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Computed Tomography Reconstruction
Using Generative Energy-Based Priors

Martin Zach1, Erich Kobler2, and Thomas Pock1

Abstract— In the past decades, Computed Tomography (CT)
has established itself as one of the most important imaging
techniques in medicine. Today, the applicability of CT is only
limited by the deposited radiation dose, reduction of which
manifests in noisy or incomplete measurements. Thus, the need
for robust reconstruction algorithms arises. In this work, we
learn a parametric regularizer with a global receptive field by
maximizing it’s likelihood on reference CT data. Due to this
unsupervised learning strategy, our trained regularizer truly
represents higher-level domain statistics, which we empirically
demonstrate by synthesizing CT images. Moreover, this reg-
ularizer can easily be applied to different CT reconstruction
problems by embedding it in a variational framework, which
increases flexibility and interpretability compared to feed-
forward learning-based approaches. In addition, the accom-
panying probabilistic perspective enables experts to explore
the full posterior distribution and may quantify uncertainty
of the reconstruction approach. We apply the regularizer to
limited-angle and few-view CT reconstruction problems, where
it outperforms traditional reconstruction algorithms by a large
margin.

I. INTRODUCTION

Throughout the past decades, Computed Tomography
(CT) has become an invaluable tool in diagnostic radiology.
However, along with its ever-increasing usage have come
concerns about the associated risks from ionizing radiation
exposure [6]. Approaches that try to remedy this problem
include hardware measures such as tube current reduction or
modulation (for instance in the form of automatic exposure
control [37]), adaptive section collimation [15], or angular
under-sampling [11], [10]. Such measures are now standard
in clinical CT systems, but require robust reconstruction
algorithms.

Classical CT reconstruction algorithms include Filtered
Back-Projection (FBP) [8], [18], which has been super-
seded by more robust iterative algebraic reconstruction tech-
niques [36], [40] in clinical practice. In light of dose reduction,
these algorithms may be equipped with prior knowledge to
increase reconstruction quality of low-dose scans. Traditional,
hand-crafted regularizers, such as Total Variation (TV) [35]
and extensions such as Total Generalized Variation (TGV) [5],
typically encode regularity assumptions of the reconstruction,
such as sparsity of gradients. These hand-crafted regularizers
have been used extensively and successfully in reconstruction
problems [13], [26], [41], however they do not fully model
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Fig. 1. Our proposed method is able to reconstruct images from noisy,
limited-angle and few-view measurements (denoted by the subscripts n, la, fv)
satisfactorily.

the a-priori available information. To capture also higher-
order image statistics, the idea of learning a regularizer from
data emerged [43], [34], [23]. Although these learning-based
approaches are now dominant in many fields, such models
have classically focused on modeling local statistics and leave
much to be desired in modeling global dependencies.

From a statistical point of view, any regularizer R induces
a Gibbs-Boltzmann distribution

pR(x) =
exp(−R(x))∫

X exp(−R(ξ )) dξ
, (1)

where X is the space of all possible images. Ideally, samples
x ∼ pR should be indistinguishable from samples from the
underlying reference distribution, which is hardly possible
for hand-crafted regularizers.

In this work, we propose a novel generatively trained
regularizer utilizing a global receptive field that yields high-
quality reconstructions even in case of strong noise or heavily
undersampled measurements. In Fig. 1, we show how our
model is able to satisfactorily reconstruct CT images from
noisy (i.e. low tube current) and incomplete (i.e. limited-angle
or few-view) data without observable artifacts. In fact, using
this regularizer we can synthesize naturally appearing CT
images without any data (see Fig. 4). In contrast to feed-
forward formulations [4], [12], we cast the reconstruction as
a variational problem. This helps interpretability of the trained
regularizer by means of analyzing its induced distribution as
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well as the posterior distribution of any type of reconstruction
problem. We apply a trained model to limited-angle and few-
view reconstruction problems, and compare our approach
quantitatively and qualitatively with traditional reconstruction
algorithms. In addition, we perform experiments which
leverage the probabilistic nature of our approach, such as
prior and posterior sampling.

To summarize, we
• define a novel network architecture capable of synthe-

sizing natural CT images without measurement data,
• demonstrate that our regularizer outperforms classical

algorithms in typical reconstruction problems, and
• show that our probabilistic approach allows to compute

the pixel-wise posterior-variance, which in turn is related
to uncertainty quantification.

II. RELATED WORK

A. Learning-based CT Reconstruction

In recent years, there has been a strong shift from
hand-crafted regularizers towards data-driven reconstruction
schemes. The learning-based methods can be applied in the
sinogram domain [4], [19], such that the final image can
be reconstructed using traditional reconstruction algorithms.
Alternatively, a preliminary reconstruction may be computed
using the (noisy and possibly incomplete) sinogram, which
can subsequently be enhanced by a trained convolutional
neural network (CNN) [12]. An alternative learning-based
reconstruction approach is to learn a direct mapping from
the data domain to the image domain [42]. However, this
requires to learn a wealth of parameters solely to compute
an approximate inverse of the forward acquisition operator.
Another recently popularized approach is to learn an unrolled
iterative reconstruction algorithm [20], [2], [24]. Whilst the
results look promising, we point out that such approaches typ-
ically assume a particular acquisition setup and, at inference
time, can only be applied in settings that are very similar to
the training setting.

B. Generative Models as Regularizers in Medical Imaging

Energy-based models (EBMs) have a long history in the
field of image processing [25]. However, only recently some
works [17], [29] have explored their generative capabilities,
rivaling the performance of Generative Adversarial Networks
(GANs). While GANs have been used as an implicit prior for
reconstruction problems in medical imaging (e.g. [1]), to the
best of our knowledge, using EBMs capable of synthesizing
natural images at full-scale as regularizers in medical imaging
is still largely unexplored.

III. METHODOLOGY

In this work, we represent CT images of size n = nw×nh
pixels as vectors x ∈ Rn. The subsequent analysis easily
generalizes to image data in any dimensions. Acquiring nθ
projections with nd detector elements, the post-log sinogram
f ∈ Rm of size m = nθ ×nd is given by

f = Ax+η , (2)

where A : Rn→ Rm is the acquisition operator, and η ∈ Rm

represents the additive measurement noise, summarizing
photon statistics, thermal noise in the measurement channels,
and pre-processing steps. The linear acquisition operator A
is defined by the geometry of the measurement setup, and
throughout this work we assume that both A and η can be
characterized up to reasonable precision.

A. Bayesian Modeling

To account for measurement uncertainties and missing
data in the observations f , we adopt a rigorous statistical
interpretation of (2). Bayes’ Theorem relates the posterior
probability p(x | f ) to the data-likelihood p( f | x) and the
prior p(x) by

p(x | f ) ∝ p( f | x)p(x). (3)

Here, p(x | f ) quantifies the belief in a solution x given a
datum f . In the negative log-domain, (3) is transformed to

E(x, f ) := D(x, f )+R(x), (4)

where we identify the data-fidelity term D : Rn×Rm→ R+

modeling the negative log-likelihood − log p( f | x), and the
regularizer R : Rn → R modeling the negative log-prior
− log p(x). The energy E : Rn×Rm → R assigns a scalar
E(x, f ) to any (x, f )-pair, and in the sense of (3) is interpreted
as the negative log-posterior − log p(x | f ).

Typically, D makes use of the forward operator A to
quantify the agreement between the reconstruction of x and
the measured data f . R may for instance represent the TV
semi-norm [35], which is well known to favor piece-wise
constant solutions. For the sake of simplicity, we assume η to
be Gaussian, and consequently set D(x, f ) = 1

2σ2 ‖Ax− f‖2,
where σ2 denotes the variance of η . We discuss the choice
of R in the next section.

B. Parameter Identification

Although many hand-crafted choices for R exist, such as
TGV [5] or wavelet-based approaches [16], it is generally
agreed upon that modeling higher order image statistics should
be based on learning [43]. In contrast to the widely adopted
feed-forward approaches, in this work we retain the variational
structure to allow statistical interpretation. To account for the
parameters, we extend (4) to

E(x, f ,φ) := D(x, f )+R(x,φ), (5)

where R : Rn×Φ→ R is parametrized by φ in the set of
feasible parameters Φ. We illustrate our particular choice of R
(for two-dimensional input images) in Fig. 2 and emphasize
that the input image is reduced to a scalar only by means of
(strided) convolutions. Here, φ summarizes the convolution
kernels and biases, and Φ reduces to Rnp , where np is the
total number of parameters.

The Bayesian separation of of data-likelihood and prior
allows us to train our regularizer generatively without any
measurement data as follows. We denote by pφ the Gibbs-
Boltzmann distribution of R(·,φ) in the sense of (1), to
emphasize the dependence on the parameters. Assuming
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Fig. 2. Our proposed architecture follows a typical encoder structure. The
subscripts specify filter size and stride and the annotations show the spatial
resolution of the feature maps and the number of features.

access to a distribution px of reference CT images, we identify
the optimal parameters φ ∗ by minimize the negative log-
likelihood

φ ∗ ∈ argmin
φ∈Φ

{Γ(φ) := Ex∼px [− log pφ (x)]}. (6)

In the seminal work of [21], it is shown that the gradient of
(6) with respect to the parameters φ is given by

∇1Γ(φ) = Ex+∼px [∇2R(x+,φ)]−Ex−∼pφ [∇2R(x−,φ)], (7)

where ∇l denotes the gradient w.r.t. the l-th argument. We
discuss the estimation of the expectations in both terms
extensively in Sec. III-C.

We highlight that (6) does not require any (x, f )-pairs. That
is, for training we do not require access to measurement data
but only to (the usually much more ubiquitous) reference
images. Moreover, a trained regularization model serves as
a drop-in replacement for hand-crafted regularizers for any
reconstruction problem by adapting the data-fidelity D to
account for a particular forward operator A and noise statistics.

C. Model Sampling

While the first term in (7) is easily approximated given
any dataset, the second term requires sampling the induced
model distribution, which is known to be hard in high
dimensions [7]. For any reasonably sized image x ∈ Rn

computing the partition function is infeasible, hence the
distribution has to be approximated using Markov Chain
Monte Carlo (MCMC) techniques. In this work, we utilize
the unadjusted Langevin algorithm (ULA) [32], [31], [33],
which makes use of the gradient of the underlying probability
density function to improve mixing times of the Markov
chains. The ULA algorithm read as

xk ∼N (xk−1+
ε
2

∇1 log pφ (xk−1),βεIdn), k = 1, . . . ,K, (8)

where N (µ,Σ) denotes the normal distribution on Rn with
mean µ and covariance Σ. β ,ε ∈R+ are appropriately chosen
scaling parameters, and K denotes the total number of steps.
To aid the convergence of the Markov chains, we further
follow the idea of persistent chains [38] and use a buffer in
which the states of the chains persist throughout parameter
updates.

D. Experimental Setup

For all the following experiments, we set n f = 48, resulting
in np = 12179905 and set the ReLU leak coefficient to 0.05.

Algorithm 1: Maximum Likelihood training of an
EBM. U (X ) denotes the uniform distribution on
X and each r denotes an independent sample from
U ([0,1]).
Input : px, σdata, nbuffer, pre, K, φ , ne, ε , β
Output : φ approximately minimizing (6)

1 B←{u1, . . . ,unbuffer}, ui ∼U ([0,1]n)
2 for t = 1, . . . ,ne do
3 x+ ∼ (px ∗N (0,σ2

dataIdn)),x0 ∼B
4 Generate x− with (8) using x0, ε , K, β
5 if r > pre then xrefill = x−

6 else
7 if r > 0.5 then xrefill = x+

8 else xrefill = u∼U ([0,1]n)
9 end

10 B←B \{x0}∪{xrefill}
11 φ ← Adam(∇2R(x+,φ)−∇2R(x−,φ))
12 end

We trained the regularizer on the Low Dose CT Image and
Projection dataset [27], where the images were downsampled
to 128× 128. We optimized (7) using Adam [22] with a
learning rate of 5×10−4 and set the first and second order
momentum variables to β1 = 0.9 and β2 = 0.999. To stabilize
training, we convolved px with N (0,σ2

dataIdn), where σdata =
1.5×10−2. We used a batch size of 25 and a replay buffer
holding 8000 images with reinitialization chance of pre = 1%.
Samples in the buffer were reinitialized with an equal chance
of uniform noise or samples from the data distribution. To
sample pφ , we ran (8) with K = 500, using ε = 1 and β =
7.5×10−3.1 We summarize the training algorithm in Alg. 1.

For the reconstruction problems, we used accelerated
proximal gradient descent [28], as summarized in Alg. 2 with
J = 1×103, γ1 = 0.5, γ2 = 1.5−1. We solve the proximal
operator prox: Rn→ Rn, which for H : Rn→ R and τ ∈ R+

is defined as

proxτH(y) = argmin
x

τH(x)+
1
2
‖x− y‖2

2 (9)

using 10 iterations of the conjugate gradient method. In what
follows, the forward operator A assumes a parallel-beam
geometry with nd = 362 detectors of size 1 pixel and is
discretized using the ASTRA toolbox [39]. Unless stated
otherwise, η is 0.1% Gaussian noise.

IV. RESULTS

A. Induced Prior Distribution

For most hand-crafted regularizers, there typically exists a
geometrical interpretation. For instance, it is well known that
TV is related to the perimeter of the level sets of an image [9].
Hence, the influence on the reconstruction is fairly easily
understood. Our regularizer can hardly be interpreted in such

1Similar to [30], we reparametrize the regularizer as R
T for a-priori chosen

T , such that ε = 1 in (8).
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Algorithm 2: Accelerated proximal gradient descent
with Lipschitz-backtracking.

Input : initial α , f , x0, φ , J, γ1 ∈ (0,1), γ2 ∈ (0,1)
Output : xJ+1 approximately minimizing (5)

1 x1 = x0

2 for t = 1, . . . ,J do
3 x̄ = xt + t

t+3 (x
t − xt−1)

4 g = ∇1R(x̄,φ)
5 for ever do
6 xt+1 = proxαD(·, f )(x̄−αg)

7 Q = R(x̄,φ)+ 〈g,xt+1− x̄〉+ 1
2α
∥∥xt+1− x̄

∥∥2
2

8 if R(xt+1,φ)≤ Q then
9 α ← α/γ1

10 break
11 else α ← γ2α
12 end
13 end

a way, however the energy-perspective allows for a statistical
analysis by means of the Gibbs-Boltzmann distribution pφ .

One of the main characteristics of any distribution are
the points which locally maximize the density (modes).
By (1) it is easily seen that the modes of pφ conincide
with local minima of R(·,φ). However, modes may occur as
spikes in regions of generally low mass, and thus samples
may represent the underlying distribution more accurately.
Therefore, we inspect our regularizer by computing modes
as well as samples.

We find x ∼ pφ using Langevin sampling (8) with K =
40000 steps, and find argminx R(x,φ) with Alg. 2 using
D(x, f ) = 0. In both cases, we set x0 ∼U ([0,1]n). We show
the trajectories of xt during minimzation of R(·,φ) and
samples x∼ pφ in Fig. 3.

The results indicate that our model is able to synthesize
natural CT images without any measurement data. This is in
stark contrast to other priors typically used in medical imaging
(see e.g. [1, Fig. 1] for samples drawn from hand-crafted
priors).

B. Limited-Angle and Few-View Reconstruction

In this section, we shift our focus towards CT reconstruction
problems, where we first treat the reconstruction problem as
a deterministic mapping in the maximum a-posteriori (MAP)
sense. Specifically, we denote by x∗ : Rm→ Rn the model-
optimal reconstruction identified by the mapping

x∗( f ) ∈ argmin
x
{D(x, f )+R(x,φ)}. (10)

Further, let px̂ denote a distribution on Rn×Rm of (problem-
dependent) ( f ,x)-pairs of a (noisy and incomplete) datum f
and the corresponding reference image x.

To illustrate the capabilities of our trained regularizer, we
first consider a limited-angle reconstruction problem. Specif-
ically, we reconstruct an image from nθ = 270 projections
uniformly spaced over the quarter-circle θ ∈ [0, π

2 ]. We show

TABLE I
E( f ,x)∼px̂

[PSNR(x∗( f ),x)] FOR LIMITED-ANGLE (θ ∈ [0, π
2 ]) AND

FEW-VIEW (nθ ∈ {100,50,30,20}) RECONSTRUCTION.

FBP SART TV Ours

limited-angle θ ∈ [0, π
2 ] 19.05 27.72 29.67 34.21

few-view

nθ = 100 37.15 43.86 46.77 49.47
nθ = 50 33.12 37.05 40.21 45.06
nθ = 30 28.78 33.04 35.33 41.65
nθ = 20 25.24 30.55 31.77 38.48

qualitative results in Fig. 4 (top), where the FBP recon-
struction exhibits smearing artifacts that are characteristic
of limited-angle CT. Simultaneous Algebraic Reconstruction
Technique (SART) [3] and additional TV regularization help
remedy this problem somewhat, however the reconstruction is
not satisfactory. We observe unnatural disconnected contours
in the reconstruction, especially around the thorax. On the
contrary, our model is capable of reconstructing a natural
looking image with realistic anatomy and high level of detail.
We show E( f ,x)∼px̂ [PSNR(x∗( f ),x)] in Tab. I. The results are
in accordance with the qualitative analysis, with our model
improving the TV reconstruction by over 4.5 dB.

In contrast to limited-angle CT, in few-view CT data are
acquired over the full half-circle θ ∈ [0,π]. However, on this
half-circle only nθ � projections are sparsely acquired. In
traditional reconstruction algorithms, the sparse data manifests
itself as streaking artifacts around sharp contours, where
subsequent projections do not properly cancel each other.
Such artifacts can clearly be seen in the FBP reconstruction
in Fig. 4 (bottom), where we show the results for a nθ = 20
few-view reconstruction problem. TV regularization yields
a sharp and largely artifact-free image at the cost of losing
almost all details. Our method can reconstruct the image
satisfactorily, where artifacts are removed whilst retaining
small details. Tab. I shows quantitative results, with our
approach consistently beating the reference methods for all
nθ ∈ {100,50,30,20} by a large margin.

C. Posterior Analysis

Instead of treating R as a point estimator in the maximum
a-posteriori sense (10), the Bayesian formulation allows to
explore the full posterior distribution of any given reconstruc-
tion problem. This is especially useful in the medical domain,
where interpretability is of utmost importance. To this end, we
perform Langevin sampling of the posterior distribution (3)
with the same parameters as in training. We show some
illustrative examples for limited-angle and few-view CT in
Fig. 5. The figure shows samples ξ ∼ p(x | f ,φ) = pφ (x)p( f |
x) from the posterior distribution associated with Eq. (5) as
well as it’s expectation and variance. For the limited-angle
reconstruction, we observe large variance around regions of
high ambiguity, where there exist no projections to define
contours. Similarly, for the few-view problem, there is high
variance around small structures such as the vertebrae or blood
vessels in the lung. For both problems, the approximated
expected value over the posterior also yields a visually
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Fig. 3. Trajectories of the images from uniform noise to argminx R(x,φ) along with the corresponding R(xt ,φ) (left) and samples x∼ pφ from the Langevin
process (8) after K = 40000 steps (right).
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Fig. 4. Comparison between FBP, SART, TV, and our method for limited-
angle (θ ∈ [0, π

2 ], top) and few-view (nθ = 20, bottom) CT reconstruction.
Our model is able to faithfully reconstruct the image, whereas the other
methods are not able to fully remove the smearing and streaking artifacts.

appealing, although somewhat over-smoothed, reconstruction.

D. Out-of-Distribution Application

1) Uncertainty Quantification Through Posterior Variance
Analysis: To study how the variance relates to uncertainty,
we perform the following experiment: We introduce unnatural
(read: not present in the training data) structures into the image
by overlaying the “cameraman” image and an example of the
“grid” texture from the Describable Textures Dataset [14] on
a reference scan. Subsequently, we approximate the variance
of a few-view reconstruction problem using nθ = 20 views
by Langevin sampling.

We show the expected value and variance over the posterior

ξ ∼ p(x | f ,φ) Eξ∼p(x| f ,φ)[ξ ] Vξ∼p(x| f ,φ)[ξ ]

Fig. 5. Sampling the posterior of a limited-angle (θ ∈ [0, π
2 ], top) and

few-view (nθ = 30, bottom) CT reconstruction problem: The three images
on the left show different samples during the sampling process, the two
images on the right show the expected value and variance of the posterior
distribution respectively.

for the clean and corrupted scans in Fig. 6. Although the
bulk of the cameraman shows low variance (and indeed the
reconstruction looks natural in these regions), we observe
high variance in unnatural regions, such as the artificially
introduced corners and the tripod. Similarly, compared to the
reference scan the grid overlay leads to high variance in the
posterior.

In general, we believe that high posterior variance is related
to model uncertainty. To be more specific, we expect high
variance if the measurement data suggests structures that are
not consistent with the training data. This could potentially
aid in detecting pathologies in images.
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Reference Eξ∼p(x| f ,φ)[ξ ] Vξ∼p(x| f ,φ)[ξ ]

Fig. 6. Comparison of the posterior distribution of a corrupted (top two)
versus clean (bottom) scan: The high variance around the corrupted regions
(highlighted) relates to high model uncertainty.

2) Generalization: In Sec. IV-A we have shown how
samples x ∼ pφ resemble data drawn from px — that is,
R encodes a prior in the frequentist sense. With this, a natural
question is if our proposed regularizer can be applied to
reconstruction problems where the underlying distribution
deviates far from px. To study this, we propose the following
experiment: We let

xκ = rotκ(x)+η , (11)

where rotκ : Rn → Rn is the bi-linear rotation operator of
angle κ and η is 10 % Gaussian noise and find

x∗ ∈ argmin
x

1
2σ2 ‖x− xκ‖2 +R(x,φ). (12)

The results in Fig. 7 show that performance quickly deterio-
rates with increasing κ . This is in line with our expectations,
since our regularizer models global characteristics of the
reconstruction which are not rotation invariant.

V. CONCLUSION

In this work, we designed a parametrized regularizer
utilizing a global receptive field, which we trained on
full-scale CT images by maximizing their likelihood. The
induced Gibbs-Boltzmann distribution of the trained regu-
larizer strongly resembles the data distribution — that is,
our model is capable of synthesizing natural CT images
without any data. The maximum likelihood framework does
not assume any particular forward acquisition operator or
noise statistics, and the trained regularizer can be applied to
any reconstruction problem. In limited-angle and few-view
reconstruction problems, we observed significantly improved

0 10 20 30 40

28

30

32

34
κ 7→ Ex∼px [PSNR(x∗(xκ ), rotκ (x))]

Fig. 7. Performance of the regularizer on out-of-distribution data: For
denoising rotated images, the PSNR quickly decays even for small rotations.

quantitative and qualitative performance when compared to
classical reconstruction algorithms. Further, we were able to
relate the variance in the posterior with unnatural structures
in the underlying image, as is the case for certain pathologies.

In summary, we believe that learning energy-based models
capable of truly capturing the underlying distribution is a very
promising direction for future research. Such models yield
natural reconstructions with severely undersampled and noisy
data, where data consistency can be enforced with arbitrary
data terms. We also want to emphasize that training requires
only reconstructed images, which are typically much more
ubiquitous than image-data pairs. Future work includes the
extension to higher resolutions used in clinical practice today,
and tackling the problem of scale- and rotation-invariance.
Further, a rigorous mathematical analysis in the context of
inverse problems, stability w.r.t. training and measurement
data would improve the applicability in clinical practice.
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