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Real Estate Attribute Prediction
from Multiple Visual Modalities with Missing Data

Eric Stumpe!, Miroslav Despotovic?, Zedong Zhang? and Matthias Zeppelzauer'

Abstract— The assessment and valuation of real estate re-
quires large datasets with real estate information. Unfortu-
nately, real estate databases are usually sparse in practice, i.e.,
not for each property every important attribute is available.
In this paper, we study the potential of predicting high-level
real estate attributes from visual data, specifically from two
visual modalities, namely indoor (interior) and outdoor (facade)
photos. We design three models using different multimodal
fusion strategies and evaluate them for three different use cases.
Thereby, a particular challenge is to handle missing modalities.
We evaluate different fusion strategies, present baselines for
the different prediction tasks, and find that enriching the
training data with additional incomplete samples can lead to an
improvement in prediction accuracy. Furthermore, the fusion
of information from indoor and outdoor photos results in a
performance boost of up to 5% in Macro F1-score.

I. INTRODUCTION

Over the last few years, significant progress has been made
in the field of automatic real estate appraisal. While earlier
models have exclusively utilized textual and categorical input
data such as the number of rooms or the floor area [4],
[20], [28] to predict building attributes, recent research has
demonstrated that the inclusion of visual information from
building photographs can be beneficial [21], [14], [29].
Examples include sophisticated price estimation models [21],
machine learning methods for predicting building heating
energy demand [7], but also the analysis methods for ar-
chitectural style [8]. A prerequisite for the development of
efficient machine learning models in the domain of automatic
real estate valuation is the availability of a sufficiently large
and well-annotated dataset. In practice, obtaining enough
data is usually not an issue, but the corresponding anno-
tations are often incomplete or include varying annotation
categories/schemes when obtained from different sources.
This calls for new automated methods to fill such annotation
gaps and missing data.

In this work?, we leverage the information contained in
real estate images to predict high-level real estate attributes
and thereby show a novel way to fill missing data in
real estate databases. Examples for such attributes that we
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examine are e.g. the type of commercial use of an object (e.g.
“industrial”, “hospitality”, “retail” or “office”) or the general
type of a building, i.e., whether it is a commercial building or
a residential building. Specifically, we use pairs of facade and
interior photos of real estate objects as input which we refer
to as two different visual input modalities in the following.
This means that the input to our method is a pair of indoor
and outdoor images, see also Figure 1. The facade and
interior embody separate visual aspects of the same property
and contain complementary clues for estimating a particular
attribute. Consider the photo pair of Figure 1 as an example
for the task of differentiating between commercial and res-
idential real estate objects. The large window fronts of the
facade image serve as an indicator that this object may be a
commercial office building. Even stronger hints are provided
by the many office chairs in the interior image. This example
illustrates that for each of the two visual input modalities,
different types of information need to be extracted and fused
to successfully predict a particular attribute. To evaluate how
this can be best achieved, in this work we implement and
evaluate three multimodal architectures representing different
fusion approaches with different fusion levels. In addition,
interior and facade photos are not always both available for
each real estate object. We therefore analyze how robust our
proposed models are to missing modalities and whether using
additional incomplete samples in the training set can improve
prediction accuracy.
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Fig. 1. Concept of multimodal learning with two visual modalities.
II. RELATED WORK

In this section we first provide an overview of computer
vision methods for real estate analysis and then review re-



lated work on multimodal image classification and prediction
from missing data/modalities.

A. Real Estate Image Analysis

An early approach on multimodal learning for real estate
analysis, which also utilizes visual information, was pro-
posed by Ahmed et al. [1]. To leverage the image information
of a building, the authors extracted SURF features [2]
from different room types and trained a neural network to
predict the price from both visual and textual features. In
another work by Kostic et al. [14], image entropy, level of
greenness, and features extracted from a CNN pretrained on
ImageNet [6] were used for price prediction. A method for
estimating the age of a building from its visual appearance
was introduced by Zeppelzauer et al. [30] where the authors
extracted patches of interest via SIFT features [17] and
gave them as input to a neural network that predicts the
building age through decision fusion. This method was
extended in Despotovic et al. [7] for predicting the heating
demand of a building. A model based on long-short-term-
memory (LSTM) networks was developed by You et al.
[29]. To achieve a robust estimate of a property’s value,
the LSTM network was also provided with photos from the
neighborhood of the building. Bin et al. [3] took advantage
of attention modules [26] and fused information from both
textual data and satellite images in order to automatically
predict property prices in Los Angeles. Using Crowdsourc-
ing, Poursaeed et al. [21] built a dataset with luxury scores
for different room types. Subsequently, a CNN network
was trained to predict the luxury score of each room and
merge it with textual data to predict the property price. A
comprehensive overview of the emerging trend of image
analysis in the real estate domain has recently been provided
by Koch et al. [13].

B. Multimodal Learning

An important architectural design choice in multimodal
learning is where to fuse the information from different input
modalities. Early fusion models combine all modalities at
the input level, which can be achieved by concatenating raw
data or preprocessed input features [15], [11]. Limitations for
this type of models can arise from differing dimensionalities
and sampling rates of the input modalities [22]. Another
option is to fuse modalities at the decision level of the model
[10], [16], [19], which is usually called late fusion. In this
case, a separate classifier is used for each modality, and the
overall model prediction can be computed by using e.g. the
maximum or average of the predictions or by stacking a
meta-classifier on top. When the information of modalities is
merged throughout the model, it is referred to as intermediate
fusion. This type of fusion can be achieved in a variety of
ways. Wang et al. [27] proposed a strategy for handling
pairs of corresponding RGB images and depth maps. Based
on the batch normalization activation levels of the model’s
intermediate layers, feature map channels are exchanged
between both modalities to replace irrelevant information.
The work of Nagrani et al. [18] has shown that Visual
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Transformers [9] can be successfully applied to a multimodal
problem. To exchange cross-modal information in the model
they used attention bottlenecks. In our study we apply the
ideas of Joze et al. [12] for one of our three network variants.
The authors used so-called multi modal transfer modules
(MMTM) between modality-specific CNN streams. These
modules help to recalibrate the magnitude of channel-wise
features in each stream, which will be described in more
detail in section III.

C. Missing Modalities

Sun et al. [23] proposed an image translation method
that can compensate for the absence of single modalities.
They implemented an encoder-decoder architecture for each
modality and arranged them in a cyclical structure during
training so that one image modality can always be recon-
structed from the encoded information of another modality.
In a similar approach, Tran et al. [25] developed a cascading
network of residual autoencoders for the task of predicting
missing modalities. Choi et al. [5] used subnetworks for each
modality, each yielding a feature vector of the same dimen-
sion. Then, a random sampling process is applied which
takes sparse features from each modality and combines them,
improving the ability of the network to compensate for
missing information. In our work, the ability of our models
to handle missing data is not achieved through the network
architecture design, but through data augmentation.

III. APPROACH

The main goal of our work is to develop a network
architecture that can perform the following functions.

1) When provided with an input pair of both a photo of
the building facade X} ,,, and from the interior X .
of the same real estate object i, it should be able to
predict the correct class yi,. of a given category (see
Figure 1).

2) The model should be capable of dealing with missing
modalities, which in this instance refers to either an

. i i
absent indoor X; . . or facade photo X ..

In our method, we handle a missing modality by representing
the missing Xfmerior or Xfiacade as a black image with all RGB
values set to zero. We further investigate how different fusion
strategies perform in this scenario. To this end, we implement
three model architectures, each representing a different fu-
sion archetype. A full description of these architectures can
be found in Section III-A. The high level attributes which
we investigate are the commercial type, residential type and
object type of a property. More details on these attributes can
be found in IV-A To evaluate our approach, we formulate
the following five research questions (RQs), which we will
answer in Section IV.
« RQI: What predictive performance can be achieved for
different high-level real estate attributes?
« RQ2: How efficient is the fusion of modalities compared
to using only single modalities during training?
« RQ3: What is the best fusion strategy to merge the
information of the two input modalities?



¢ RQ4: Are networks trained on complete pairs of photos
still capable of correctly predicting missing modality
samples?

« RQ5: Does the addition of incomplete data in the
training set lead to better test accuracy?

A. Multimodal Network Architectures

The key to multimodal classification lies in the effective
fusion of information from different modalities. Therefore, in
this work we evaluate the performance of three model archi-
tectures that follow different fusion strategies. For all three
architectures EfficientNet BO [24] pretrained on ImageNet
[6] is chosen as the backbone architecture to achieve strong
classification performance and to allow a fair comparison
between all architectures. The three multimodal architecture
variants are illustrated in Figure 2 and described in the
following.

a) Early Fusion b) Late Fusion ¢) Intermediate Fusion
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Fig. 2. Overview of the developed network architectures.

Early Fusion: The network architecture in Figure 2 a)
represents the concept of early fusion. Both leacade and
X eriop Of every input pair, each of size (224 x 224 x 3)
are horizontally concatenated at the beginning to produce a
single input image of size (224 x 448 x 3). The concatenated
samples are then fed to the EfficientNet BO backbone, whose
output is a featuremap of size (7 x 14 x 1280). This layer
is followed by a global average pooling and a dense layer
with softmax activation to output the classification scores.

Late Fusion: Here, instead of concatenating the input
images at the beginning, both image modalities are
processed in separate subnetworks and are fused at a later
stage (Figure 2 b)). Therefore, two separate EfficientNet
BO sub-networks are utilized, which accept input images
of size (224 x 224 x 3). In the fusion stage, the two (7 x
7 x 1280) output feature maps are concatenated along the
channel dimension and are again processed through a global
average pooling layer and a dense layer.

Intermediate Fusion: The third architecture in Figure 2
c) is an extension of the previous one with multimodal
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transfer modules (MMTM) introduced by Joze et al. [12].
The concept behind multimodal transfer module blocks is
illustrated in Figure 3. An MMTM block accepts two feature
maps Fy, F>; from the same Layer L of the two network
streams 1 and 2. Within the MMTM block, the information
from both feature maps then gets merged through global
average pooling and dense layers to generate two gating
signals s; and s;. Both gating signals are used to reweight
the importance of each featuremap channel of Fj ; and F3 ;.
For more details the interested reader can refer to [12]. We
use three MMTM blocks, which connect the outputs of the
first excitation layers of stages 5, 6 and 7 of EfficientNet
BO [24].

| —— | S——
e (il
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Fig. 3. Concept of multimodal transfer modules (MMTM). Fi;, F>
indicate feature maps of both network streams at layer L. sy, s, are the
generated gating signals.

IV. EXPERIMENTAL AND RESULTS

In this section, we first provide an overview of the datasets
and use cases that serve for the evaluation of our approach.
Furthermore, we provide the training details, including the
used hyperparameters and the evaluation metrics.

A. Datasets and Use Cases

We evaluate our approach with three different sets of real
estate categories and therefore compile the following datasets
with respective class labels, making up three different use
cases (UC) for evaluation:

¢ UCI - Commercial type: classes: industrial, hospitality
sector, retail, office

« UC2 - Residential type: classes: apartment, house

« UC3 - Object type: classes: commercial, residential

Each of the respective datasets consists of pairs of facade
and indoor photos taken from real estate objects in Austria
with corresponding class labels. Often, there are several
interior and exterior photos per real estate object. We handle
this case by creating multiple unique samples for each real
estate object. For example, if six interior and three exterior
photos are available for an “office” class commercial object,
we create three interior-exterior pair samples of ground-truth
class “office” by selecting three random interior photos and
assigning one outdoor photo to each. Regardless of whether
there are multiple pairs of photos per real estate object, all
generated samples are assigned the ground truth class of the
associated real estate property.

An overview of these datasets, classes and their partitioning
into training, validation and test set can be found in Table I.
In our experiments we also want to investigate whether



TABLE I
DATASETS FOR THE THREE INVESTIGATED USE CASES

dataset split UCI1: Commercial type UC2: Residential type UC3: Object type
industry | hospitality sector retail offices apartment house commercial | residential
Train 25 (+30) 30 (+20) 75 (+100) | 100 (+50) 300 (+250) | 300 (+250) 230 (+200) | 600 (+500)
Val 12 (+14) 15 (+10) 37 (+40) 47 (+20) 50 (+50) 50 (+50) 111 (+84) 100 (+100)
Test 14 17 43 50 667 177 124 844

training with additional incomplete data, meaning either
indoor X! . or facade image X[ . is missing, can lead
to an improvement in prediction accuracy. Therefore, we
optionally add incomplete samples to the datasets, where
the respective missing visual modality is replaced by a
black image. The amount of additional incomplete samples
is indicated by the values in parentheses in Table I. When
only complete samples are used during training, we refer
to the dataset as “complete” and when additional missing
samples are added we denote it as “complete + missing”. To
avoid bias in favor of one modality, the number of samples
with missing facades and missing interior in the “Missing”
dataset is kept equal.

B. Training Procedure and Parameters

All experiments are conducted with the following hyper-
parameters. Training is performed for a total of 200 epochs
with a batch size of 16 and a learning rate of 0.0001 using
the Adam optimizer. As a loss function, categorical cross
entropy is used. After each epoch, the updated network
weights are only saved if the validation loss decreases. To
prevent overfitting, we also apply several data augmentation
operations including image flipping, rotation, zoom, shear
and brightness correction. If an incomplete sample is fed to
the network we replace the missing modality with a black
image.

C. Evaluation Metric

Since we have a varying amount of data available for each
class, our test sets also have different numbers of samples. In
our evaluation we nevertheless want to give equal importance
to each class and therefore use the Macro F1-score metric,
which is defined as follows:

1 N
Macro Fl-score = N ZFl—scorei, (1)

i=1
where N is the number of classes and i represents the class
label.

D. Experiments

In the following, we provide an overview of our
experiments. We run experiments for variations of
different use cases, modality configurations and multimodal
architectures (independent variables). Details on each
variable are provided below.

Use Cases: Each experiment is conducted on all three

use cases, where each has its corresponding dataset (see
Table I).
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Modality Configuration: We further want to evaluate
whether a multimodal learning approach leads to better
results than using only single modality data for training,
which is why we also analyze four different modality
configurations. The first is the default complete configuration,
where all data consists of full pairs of interior and facade
photos. From this we generate two additional single modality
configurations. Specifically, for facade only we modify the
complete configuration by setting all interior photos to
black and do the opposite for interior only. Finally, we
generate a fourth complete + missing configuration, in which
extra missing modality samples are added to the complete
configuration (compare Table I).

Multimodal Architecture: We conduct each experiment
with all three multimodal network architectures (early
fusion, late fusion and intermediate fusion, see Figure 2).

In total this amounts to 36 different experiment
configurations (3 use cases, 4 dataset configurations, 3
network architectures). In addition, we repeat every training
process three times for each experiment to capture the
variations of results originating from different random
initializations of the network weights.

V. RESULTS

In the following, we present our experimental results
and answer the posed research questions from Section III.
The results of all our 36 experiments can be found in
Table II. The presented values are Macro Fl-scores for the
respective test sets, which are additionally averaged over
all three training runs. The value inside the parentheses is
the standard deviation over all three training repetitions. To
evaluate the performance when a network receives samples
with missing modality, the same test set is used in three
alterations. test_c refers to the test set with complete pairs
(no missing data). fest_f and fest_i refer to the same test set,
but here only one modality, facade or interior, is used at a
time, while the other one is blackened to simulate missing
data in the test sets. For an overview of the split for each
modality configuration refer to section IV-A.

With respect to research question 1 (RQ1), Table II
shows that the prediction scores differ greatly between the
different use cases. While the best Macro Fl-score for UCI
(Commercial type) is 0.62, the highest prediction value for
UC2 (Residential type) amounts to 0.78. In the UC3 (Object
type) setting, the Macro Fl-score reaches 0.81. However, it



TABLE I
MACRO F1-SCORES AVERAGED OVER THREE TRAINING RUNS AND IN PARENTHESES THE RESPECTIVE STANDARD DEVIATIONS. RB INDICATES THE

RANDOM BASELINE.

. . UC1: Commercial type UC2: Residential type UC3: Object type
Moty | ki 53 5 500 =0
test_c [ test ] testi test_c [ test f ] test_i testc | testf | testi
early 0.54 (0.04) 0.37 (0.05) 0.42 (0.03) | 0.78 (0.01) 0.76 (0.01) 0.58 (0.01) | 0.76 (0.04) 0.71 (0.03) 0.70 (0.03)
complete late 0.54 (0.06) 0.36 (0.05) 0.42 (0.03) | 0.76 (0.01) 0.76 (0.01) 0.60 (0.01) | 0.77 (0.02) 0.72 (0.01) 0.71 (0.01)
intermediate | 0.56 (0.05) 0.41 (0.04) 0.44 (0.02) | 0.77 (0.01) 0.76 (0.01) 0.61 (0.01) | 0.77 (0.02)  0.72 (0.01)  0.72 (0.01)
early 0.52 (0.03) 0.72 (0.01) 0.70 (0.02)
facade only Tate 0.40 (0.06) 0.75 (0.01) 0.66 (0.03)
intermediate 0.41 (0.03) 0.77 (0.01) 0.70 (0.02)
early 0.41 (0.04) 0.60 (0.01) 0.69 (0.01)
interior only Tate 0.44 (0.02) 0.61 (0.01) 0.72 (0.01)
intermediate 0.42 (0.05) 0.62 (0.01) 0.67 (0.06)
early 0.57 (0.03) 0.40 (0.03) 0.45 (0.03) | 0.75(0.01) 0.72 (0.02) 0.57 (0.01) | 0.77 (0.01) 0.71 (0.01) 0.71 (0.03)
complete+missing Tate 0.62 (0.03) 042 (0.08) 0.49 (0.02) | 0.75 (0.01) 0.73 (0.01)  0.58 (0.05) | 0.79 (0.02)  0.72 (0.02)  0.70 (0.02)
intermediate | 0.62 (0.03) 0.42 (0.06) 0.48 (0.05) | 0.76 (0.01) 0.74 (0.01) 0.55(0.03) | 0.81 (0.01) 0.72 (0.01) 0.75 (0.00)

should be noted that the random baseline (RB) of 50% for
UC2 and UC3 is already much bigger than the respective
25% of UCI1. Nevertheless, a large margin over the random
baseline is achieved for all three use cases.

With research question 2 (RQ2) we wanted to discern
whether multimodal learning on both visual modalities is
superior to training on individual modalities. For all use
cases, complete yields better results than facade only and
interior only. There is an increase of 4% of the score for
UC1 compared to the best result for the single modality
configurations. For UC3, the improvement is 5%. Only for
UC2 the performances are almost equal. The reason for the
high score for residential properties is probably due to the
strong difference in the appearance of facades of apartment
buildings and houses, which is also reflected in the similarly
high score of the facade only configuration. Overall, we
can see that training on both modalities provides clear
advantages over using only one modality.

Regarding research question 3 (RQ3: which architecture
is best suited for multimodal fusion?) we do not reach
a clear conclusion. In almost all cases Macro Fl-score
differences are within 1% or 2%, which does not allow
for declaring a clear winner when considering the standard
deviations across the three runs. One possible explanation
for why the early fusion architecture produces similar
results compared to the others, is the fact that both visual
modalities concatenated at the input level are RGB images.
Hence, the network does not have to deal with information
of different dimensionality and domains in its initial layers.
It can therefore focus on learning to extract the same
low-level features (e.g. edges), which are representative for
both input modalities. To summarize the answer to RQ3, we
find no significant performance differences between using
early, late and intermediate fusion strategies in the evaluated
use cases.

Concerning research question 4 (RQ4: generalizability

and robustness to missing data) we compare the Macro
Fl-scores of the complete configuration for festf and
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test_i with that of the training configurations interior only
and facade only. Despite the fact that the corresponding
networks of complete have never been exposed to missing
modalities and have only been trained on complete samples
they still provide comparable prediction scores for fest_f and
test_i. Overall the results show that our multimodal network
architectures are capable of handling incomplete input data.

Investigating research question 5 (RQS5) shows that
adding additional data with missing modalities leads to
better results for two of three use cases. In case of UC1, the
increase in Macro Fl-score from training on complete to
complete + missing is the largest with almost 6%. For UC2,
scores are at the same level, whereas for UC3 performance
increases by 6%. These results show that the proposed
multimodal network architectures can take benefit of the
information contained in the additional incomplete training
samples.

VI. QUALITATIVE RESULTS

To further investigate especially the limitations of our
approach, we qualitatively analyzed the results. During
our experiments, we found that pairs of images that were
incorrectly predicted by our networks can be systematically
grouped into three main failure types. In this section we
want to showcase these failure types using exemplary pairs
of photos from our test set and their corresponding predicted
labels. For this purpose, we take UC1 (commercial types)
and the predictions from the late multimodal architecture
for the complete + missing modality configuration because
it represents one of the most robust combinations. The
selected pairs of indoor and facade photos are shown in
Figure 4. All pairs are placed in a confusion matrix-like
layout, with true positive samples indicated by a green
background (diagonal samples). The three failure types are
represented by different border colors for the off-diagonal
entries.

Unused Clues (blue): This failure type includes samples
whose class can be easily recognized by the human observer,
but which was not predicted correctly by the network. For
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Fig. 4. Confusion matrix with exemplary predicted images from the testset. A Green Background indicates true positive samples. Colored borders indicate
different failure types (blue: unused clues, orange: conflicting clues, red: missing clues). Photos taken from justimmo* .

example, pair 2) shows two beds in the interior, which is a
clear indication for a hospitality object. In addition, in pair
3), the depicted retail property was also misclassified as an
industrial building despite having a visible storefront. One
explanation for the failed detection in this case could be that
in our dataset many industrial buildings have a gray colored
floor similar to the one in this pair. In image 9), a lamp
post with a brewery logo can be seen, which is a subtle hint
for a restaurant that a human observer can understand but
was not detected by the network. We hypothesize that this
failure type can be mitigated by increasing the total amount
of training data available. This way, the network receives
more samples from which it can learn relevant patterns.

Conflicting Clues (orange): Some of the samples shown
have visual modalities that contain conflicting information.
The pair 4) shows photos of an office building with a
corresponding looking facade. However, the interior photo
depicts a large hall that could also be found in a typical
industrial building. The opposite case for an actual industry
building can be found in pair 12). Here, the interior photo
displays a conference room suggestive of an office building,
whereas the exterior resembles an industry building. Pair
14) is a clothing store, which can be recognized by the
interior photo. The facade, on the other hand, has nothing
in common with typical storefronts. To reduce this failure
type, increasing the size of the dataset alone may not be
sufficient. In practice, there are often more than two photos
available for a given property, all of which could be used
in a single model to counteract conflicting modalities.
Furthermore, to mitigate such cases, it will be important
to assess the representativeness of an image for the target
class, i.e., to give less characteristic and speaking images
less weight.
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Missing Clues (red): The last failure type contains
samples that lack any useful clues for classification. In pair
7) a real estate object with an unusual appearance for an
office building is shown, which represents a difficult task
for our network. Example 11) contains a pair of photos with
little useful information. The outdoor photo is a close-up of
the door, that gives no hints about the rest of the facade, and
the interior photo is a shot of an empty room in suboptimal
lighting conditions. A similar issue is present in pair 8).
The facade is ambiguous and the room is also empty and
lacks information. With respect to this type of failure, the
use of additional input photos per property could also be
beneficial. In practice, however, we expect that for a certain
percentage of real estate objects accurate predictions will
fail due to ambiguous or inexpressive pictures. In such cases
the incorporation of additional data modalities, e.g. textual
descriptions and categorical data can help.

VII. CONCLUSION

In this paper, we demonstrated the effectiveness and feasi-
bility of using visual data for the prediction of high-level real
estate attributes. We leveraged two complementary visual
modalities, compared different multimodal fusion strategies
and evaluated our approach in three different use cases.
Our experiments show that networks trained on both visual
modalities (facade and interior) yield better results than
networks utilizing only one modality. Furthermore, we could
show that our multimodal network architectures provide
robust predictions for input samples, which lack one of the
two input modalities and that additional training data — even
when it is incomplete — can improve the robustness of the
models. In future, we plan to extend the proposed multimodal
architectures to accept an arbitrary number of input images
showing different perspectives of a real estate object.
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