
D
ra

ft

Enabling Classification of Heavily-occluded Objects through
Class-agnostic Image Manipulation

Benjamin Gallauner1, Stefan Thalhammer2 and Markus Vincze2

Abstract— Image classification is a fundamental task of
computer vision. When training classifiers on images of heavily-
occluded objects, classification is strongly influence by the
appearance of the occluders. That leads to a severe drop in
classification accuracy when confronted with unknown occlud-
ers. More precisely, when classifying shelf types in a shop floor,
occluded by household items, the full range of diversity of
those occluders has to be regarded as unknown for test time.
However, resulting in a severe drop in classification performance
when dealing with images containing unseen occluders during
training time. In order to improve classification, we exploit the
generalization capability of unknown object instance segmen-
tation. We segment and replace the object appearance of the
unknown occluders with random intensity noise. Consequently,
the classifier is able to focus on those image parts containing
the objects of interest. We show the theoretical foundation of
our approach through empirical analysis on a test set with large
data distribution shift with respect to the training set.

I. INTRODUCTION

Image classification is a long standing challenge in com-
puter vision. It refers to the task of assigning one or a
distribution of classes to a given image [11]. Classifica-
tion, as fundamental computer vision task, is often used to
benchmark network architectures and domain adaptation. In
computer vision systems classifiers can help to provide priors
for subsequent stages.

This paper is concerned with the special case of classi-
fying objects that are heavily occluded. In particular, we
aim to classify images of shelves belonging to one out of
three classes (standing, hanging and bucket). The respective
shelves are part of a shop floor and thus heavily-occluded
by a broad variety of household objects. Figure 1 shows a
representative sample of the class Bucket and an overview
of our proposed approach to solve the problem at hand.
Training a classifier on the available images induces a bias
such that class predictions are primarily made by memorizing
the occluding objects. In order to guide prediction making
towards leveraging image information belonging to the actual
descriptive parts of the image, i.e., the shelves, the occluding
object information has to be removed. Since the occluders
are considered to be unknown during test time, those have
to be treated as unknown.
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Fig. 1. Approach overview: Via class-agnostic segmentation we guide class
prediction towards focusing on relevant image parts.

Existing approaches try to learn a general concept about
objects, for recognizing unseen and unknown objects [8],
[15], [16], [17]. These approaches extract different object
information and employ different strategies based on the
given problem. We are interested in removing the image
information of occluding objects, thus we require instance
segmentation. While [15] and [16] provide segmentation
masks for unseen objects, these methods require depth and
RGB-data for very constraint scene setups: Segmentation
is provided for objects on a table plane from a top view.
This method is not guaranteed to generalize to objects in
arbitrary placements and varying backgrounds. The authors
of [8] provide a method for detecting objects from RGB
images based on learning the general concept of “objects”
but does not provide instance segmentation. In [17], instance
segmentation is provided for a broader range of objects but
a few images of the objects to segment are required for fine-
tuning their approach.

In this work, we are interested to learn the general concept
of “object” in a way that it generalizes to unseen objects
without requiring images of the involved objects, while
also performing instance segmentation. As such, we learn
to produce a joint encoding of diverse household objects,
using objects belonging to the categories household, kitchen,
tool and shape from the YCB dataset [2]. This is done by
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assigning the same class to all objects involved, effectively
learning to separate object instances from background. Using
that encoding, we are able to eliminate the foreground
information that mainly consists of household objects to
improve classification performance of our heavily-occluded
objects of interest.

The remainder of the paper discusses related work in
Section II, provides the problem statement in Section III,
which is followed by a description of our proposed approach
in Section IV and evaluations in Section V. Lastly, Section VI
concludes the paper.

II. RELATED WORK

Image classification is a fundamental problem in computer
vision [9]. As such it is often used to benchmark feature
learning [5], [10], [12] and domain adaptation [1], [3]. In this
paper we are interested in solving the challenging problem
of classifying objects that are containers of smaller objects
and thus heavily occluded by these. If the background is
less dominant than the foreground, foreground-background
separation or salient object detection approaches can be
used for the separation [13]. However, the classification
of images where the majority of the image is comprised
more by occluders than by the object of interest is highly
challenging when no respective annotations are available. In
order to distinguish the occluders from the objects of interest,
detection or segmentation of unseen objects can be used to
synthesize the required annotations.

Class-agnostic object detection is meant to draw bounding
boxes around image regions containing potential unknown
objects [8]. If a few images of the occluding objects are an-
notated with masks, few-shot instance segmentation learning
approaches can be applied [17]. Alternatively, the availability
of annotated data from similar object instances of the same
category enables the learning of the ability to segment unseen
objects [15], [16]. This, however, requires the knowledge of
which object categories are to be expected in the test images.

We aim to generalize instance segmentation to a a broader
range of objects. Thus, we combine class-agnostic object
detection and unseen object segmentation in order to achieve
instance segmentation coming from multiple categories of
objects.

III. PROBLEM DESCRIPTION

Training classification for objects that are heavily occluded
leads to learning to solve the task using all of the image. This,
in turns, leads to feature extraction focusing on extracting
any set of features that minimizes the task loss for the given
training set. However, there is no guarantee that the extracted
features and the decision function yields generality. Table I
presents the recall for successfully classified images on a
set of images of shelves from the same shop floor split into
Training and Val, and one Test set captured in a different
location. The Test set features different occluders that are
unseen during training time. More information on the image
sets is provided in Section V-B.1.

TABLE I
CLASSIFICATION RECALL ON Val AND Test.

Set bucket hanging standing average
Val 1.0 1.0 1.0 1.0
Test 0.08 1.00 0.09 0.39

A significant drop in performance is observed from Val
to Test. We want to emphasis that since we have a 3-class
problem, the classification recall on Test is close to random
output. Thus, the network learns no generalized encoding
relevant for the problem to be solved.

IV. APPROACH

Given a set of images X , each featuring a class C ∈
{1, ...,n} of interest, where the image parts describing the
class information are largely occluded by a set of unknown
objects U . We employ a function ŷ= f (x) to provide segmen-
tation masks y for U in x. Subsequently, x is augmented with
x{ŷ, p} = U {0, ...,255} to eliminate the object information
of U in x. Where p are the pixels in the mask and U is a
uniform distribution. In order to learn a function ĉ = g(x) for
image classification.

A. Unknown Object Instance Segmentation

In order to generalize instance segmentation to arbitrary
objects O, the input data x has to be composed of an object
set Ô sufficiently large and sufficiently diverse to encode
a feature space that effectively interpolates between object
instance o1...n. Thus, Ô has to be chosen in such a way as to
provide a superset of U . Since it is intractable to provide the
whole variety of object types in x, we choose Ô to provide
samples of all the expected object categories, in order to
learn interpolation between objects. We learn a function ŷ =
f (x), where ŷ are the masks of the object instances o1...n.
Class-agnostic segmentation f (x) is enabled by providing
∀o ∈ Ô : on = o. In other words, we map all of Ô to the
same object class. Thus, learning f (x) to separate foreground
objects from background and segmenting the foreground by
finding instances.

B. Classifying Heavily-occluded Objects

To facilitate classification of heavily-occluded images, we
apply f to X . The resulting ŷ provides segmentation masks
for U . The instance segmentations y are subsequently used
to augment training images so that x{ŷ, p}=U {0, ...,255} :
∀o∩∀x ∈ X , thus, replacing foreground object information
of U with random pixel intensities. The resulting augmented
image set Xa is used to learn the function ĉ = g(x). By
eliminating the object appearance of U from X , g can focus
on encoding features relevant for predicting c given xa.

V. EXPERIMENTS

The following section provides implementation details
and experiments. Quantification of the functioning of our
approach is done by providing comparison to standard tech-
niques for improving image classification performance.

28



D
ra

ft

A. Class Agnostic Segmentation
To facilitate class agnostic object instance segmentation of

a broader category of objects, Ô has to be chosen to represent
the variations of the expected objects in the test set.

1) Segmentation Data: Since f (x) is expected to encode
the concept of an “object”, the training data x has to be
chosen that the corresponding y is given in a way that a clear
distinction between foreground objects and background ex-
ists. The expected unknown occluding objects are household
items. As such, training data for f has to be chosen to reflect
the diversity of object appearances with U being household
items. Care has to be taken that the variations in x with re-
spect to aspects such as object placement and interaction, as
well as illumination and contrast are sufficient to generalize
to the domain of X . The YCB-video dataset [14] features
21 objects derived from the YCB-dataset [2]. The objects in
YCB-video belong to the categories food, kitchen, tool and
shape items with diverse setup and scene illumination, thus,
representing diverse object appearances. YCB-video consists
of 92 videos containing 133,827 frames. These are split into
113,199 training and 20,628 validation images.

2) Segmentation Training: In order to show-case the
generality of our class-agnostic segmentation approach we
fine-tune the standard approach for instance segmentation,
Mask-RCNN [4] with Resnet101-backbone [6] pretrained on
ImageNet [11], for encoding f (x). As such, showing that no
specialized network configuration is required, to generalize to
unknown objects. Training is done for one epoch with a base
learning rate of 0.001. The loss is reduced by one magnitude
after 66% and 90% of training iterations, which correlates
with the standard schedule. All 21 YCB-video classes are
trained to be the same class. Consequently, Mask-RCNN has
to learn the common traits that describes an object based
on the YCB-video objects. As a result, we train to predict
anchor locations containing an object of interest, while si-
multaneously predicting per-pixel instance segmentation for
each positive anchor. Non-maximum suppression is applied
to circumvent multiple detections of the same object.

3) Class-Agnostic Segmentation Results: Figure 2
presents exemplary class-agnostic segmentation results for
our shelves training set and YCB-video. On YCB-video,
the results indicate that a joint latent representation is
encoded by f (x). The mean Average Precision (mAP)
for Intersection-over-Union-thresholds (IoU), from 0.5 to
0.95 with a step size of 0.05, is 0.714 for object detection
and 0.676 for object instance segmentation. Instance
segmentation is also predicted on unseen images of the
involved objects. The middle row in the right column also
shows a properly segmented background object that is not
annotated in the training set. An error case occurring on the
images of shelves is visible in bottom image of the right
column. Showing a segmentation mask that includes the
edge of the table connected to the tuna can standing on it.
Similar errors are observable in the shelves images in the
left column showing objects not contained in YCB-video.
For these, the price labels attached to the shelves are often
detected as separate objects or via segmentation masks

Fig. 2. Class-agnostic instance segmentation results on images of our
training set for shelves (left column) and on unseen images of YCB-
video [14] (right column).

Fig. 3. Example images of the sets Train and Val, and Test.

connected to one. This behavior is acceptable since price
tags do not provide useful cues to distinguish between shelf
types. Unknown objects are segmented in most of the cases.
As such, providing a useful basis for eliminating foreground
information from the images to train g(xa) on. Enabling
g(xa) to focus more on background information of x.

B. Image Classification with Heavy Occlusion

Having an f (x) for providing ŷ of U image manipulation
can be applied to X in order to create xa.

1) Classification Data: Training and validation data is
collected in the replica of a shop floor with limited variation
regarding occluders. The procedure is automated such that a
camera is mounted to a robotic arm that pans down in front
of the cupboard containing shelves. Since the aim of this
work is to generalize to a broad variety of potential scenes,
a Test-set is captured in an actual shop floor accessible to
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customers. The shelves have varying characteristics in the
designated sets:

• Hanging provides distinct-shaped hooks to hang prod-
uct. These have the same shape and color in all sets.

• Standing provides storage spaces for different product
separated with transparent plastic dividers. Those di-
viders have the same color in all sets, but the shape is
slightly different, exhibiting a straight edge in Train and
Val, and a chamfered edge in Test.

• Bucket provides bin-like storage cages with severe dif-
ferences in shape and color. Those in Train and Val
have a metallic appearance, inclined front and price tags
attached to the buckets, while those in Test are matt
white, exhibiting a straight front and the price tags are
attached beneath the buckets.

Exemplary images of the sets are presented in Figure 3. Set
sizes are 486, 122 and 106 images for Train, Val and Test,
respectively.

2) Learning Classification: For classification,
Resnet50V2 [5] without pretraining is used as g(x).
Training is done for 50 epochs on Test on the 3-class
problem. We use a learning rate of 10−4, optimizing with
stochastic gradient descent and cross entropy loss.

3) Classification Results: The standard approach to gen-
eralize to novel domains is to augment the training data.
Applying geometric and color space augmentations virtually
increases the training data and decouples estimation making
from some characteristics of the training set.

Thus, we define applying image augmentations to X as
a baseline. In Table II an ablation regarding our applied
augmentations an their influence on the classification perfor-
mance is reported using the classification recall. In order to
guide the network towards more effective discrimination of
image classes we apply MixUp-Augmentation to our training
data. Results are provided for the test set.

TABLE II
ABLATION WITH RESPECT TO AUGMENTATIONS AND THEIR RESPECTIVE

INFLUENCE ON THE CLASSIFICATION RECALL.

Augmentation bucket hanging standing average
None 0.08 1.0 0.09 0.39

zoom (20%) 0.17 0.77 0.43 0.46
rotation (15◦) 0.20 0.72 0.42 0.45

translation(10%) 0.23 0.75 0.32 0.43
shear(λ = 0.1) 0.12 0.96 0.29 0.46
horizontal flip 0.10 0.99 0.28 0.46

brightness(10%) 0.25 0.79 0.29 0.44
MixUp [7] (α = 0.2) 0.26 0.85 0.34 0.48

all 0.42 0.95 0.12 0.50

For unknown object instance segmentation we have to set
a detection threshold for f (x). Table III compares different
detection thresholds using grid search. The intuitive and
usually generally applicable value of 0.5 provides the best
results in terms of average recall over all 3 classes.

Table IV provides results comparing our approach using a
detection threshold of 0.5 to standard augmentations. The last
two columns provide the average over all three classes (2nd

TABLE III
COMPARISON OF DIFFERENT DETECTION THRESHOLDS FOR

SEGMENTING AND MANIPULATING TRAINING DATA, EVALUATED ON THE

Test-SET USING THE AVERAGE RECALL.

threshold bucket hanging standing avg
0.3 0.03 0.64 0.51 0.39
0.4 0.01 0.60 0.61 0.41
0.5 0.02 0.65 0.58 0.42
0.6 0.00 0.59 0.63 0.41
0.7 0.00 0.63 0.51 0.38

to the right) and classes Hanging and Standing (rightmost).
For our approach we use a detection threshold of 0.5 for seg-
menting and augmenting unknown objects. Averaged over all
three classes standard augmentations result in a higher recall
than using our manipulated training data xa. Considering the
classes with little to no difference in appearance in Train/Val
and Test, Hanging and Standing, our approach significantly
improves over standard augmentations. Our approach does
not classify the Bucket of Test as such. Which is to be
expected due to the severe difference in appearance between
Train/Val and Test. This behavior hints that the network is
able to focus more on the relevant background data and spa-
tial relations of the scene, while focusing less on occluding
objects. Combining standard augmentations and our image
manipulation bridges the performance gap between using
only standard augmentations and our image manipulation.

TABLE IV
COMPARISON OF DIFFERENT STRATEGIES FOR TRAINING DATA

MANIPULATION FOR SHELF CLASSIFICATION PRESENTED AS

CLASSIFICATION RECALL.

Aug. bucket hanging standing avg(all) avg(2&3)
None 0.08 1.0 0.09 0.39 0.55

all aug. 0.42 0.95 0.12 0.50 0.54
ours 0.02 0.65 0.58 0.42 0.63

ours+aug. 0.04 0.26 0.95 0.46 0.61

VI. CONCLUSIONS

We present an approach for removing unknown objects
from images to improve the classification performance on
the objects of interest that are occluded by the unknowns.
Further investigations will investigate how significantly class-
agnostic segmentation can improve classification perfor-
mance on highly occluded objects. As such, test data with
more various and diverse object sets as training and test
data for class-agnostic segmentation and classification will
provide useful insight. The research performed in this work
focuses on household objects. We aim to extent the proposed
approach to arbitrary unknown object instance segmentation
to facilitate broader applicability in more diverse domains.
As such, promising future contributions could be made to
open set recognition and learning new objects online.
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