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Abstract

Multiscale materials modeling is an effective approach for the accurate numerical
study of material phenomena which occur across multiple length and time scales.
Atomistic-to-continuum multiscale methods are able to drastically reduce a system’s
degrees of freedom in comparison to single-scale atomistic methods. However, these
methods are computationally still very demanding, which presents a major hindrance
to their industrial adoption. This thesis introduces three novel approaches to improve
the efficiency of these methods and shows their effectiveness in various numerical
examples.

The first approach is concerned with hierarchical atomistic-to-continuum multiscale
methods. In these methods, the fine-scale data is often noise-corrupted due to limited
computational resources. This noise impairs the convergence behavior of the multiscale
method and creates a setting that shows remarkable resemblance to iteration schemes
known from the field of stochastic approximation. This resemblance justifies the use of
two well-known stochastic approximation averaging strategies in the multiscale method.
It is found that the averaging strategies reduce the impact of the noise and improve the
convergence behavior of the multiscale method.

The second and third approaches are concerned with concurrent atomistic-to-continuum
methods. The scales are commonly coupled at fixed intervals of time in these methods,
which is often inefficient. In the second approach, a demand-based coupling is proposed
instead, in order to save redundant coarse-scale computations. This coupling is achieved
via a novel algorithm which continuously judges, based on the local deformation at the
coupling interface, whether the coarse-scale computations are necessary or not.

The continuum models in concurrent atomistic-to-continuum methods are either dy-
namic or quasi-static, both of which are shown to have advantages but also significant
drawbacks. In the third approach, an alternative model, suitable for linear elastic
continua, is presented. This hybrid model uses a complementary superposition of a
dynamic and a quasi-static subproblem and aims at combining the advantages of the
dynamic and quasi-static models, while avoiding the drawbacks.
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Kurzfassung

Die Mehrskalenmodellierung von Materialien ist ein effektiver Ansatz für die präzise
numerische Untersuchung von Materialphänomenen, in die mehrere Längen- und
Zeitskalen involviert sind. Obwohl es Atomistik-zu-Kontinuum Mehrskalenmethoden
verglichen mit atomistischen Methoden erlauben, die Freiheitsgrade eines Systems
drastisch zu reduzieren, sind sie dennoch mit enormem Rechenaufwand verbunden.
Dies stellt ein großes Hindernis für den industriellen Einsatz dieser Methoden dar.
Diese Dissertation stellt drei neue Verfahren zur Effizienzsteigerung der Atomistik-
zu-Kontinuum Mehrskalenmethoden vor und zeigt deren Effektivität anhand von
zahlreichen numerischen Beispielen.

Das erste Verfahren beschäftigt sich mit hierarchischen Atomistik-zu-Kontinuum Mehr-
skalenmethoden. In diesen Methoden sind die ermittelten Größen auf der feinen Skala
durch unzureichende Rechenleistung oft fehlerbehaftet. Diese Fehler beinträchtigen
das Konvergenzverhalten der Mehrskalenmethode und erzeugen eine Situation, die
große Ähnlichkeit mit Iterationsverfahren aus dem Gebiet der stochastischen Ap-
proximation aufweist. Diese Ähnlichkeit rechtfertigt die Anwendung zweier, aus der
stochastischen Approximation bekannter, Mittelungsverfahren im Mehrskalenmodell.
Es wird gezeigt, dass die Mittelungsverfahren den negativen Einfluss der fehlerbe-
hafteten Größen reduzieren und so das Konvergenzverhalten der Mehrskalenmethode
verbessern können.

Das zweite und dritte Verfahren beschäftigt sich mit Atomistik-zu-Kontinuum Mehr-
skalenmethoden auf geteilten Gebieten. In diesen Methoden werden die Skalen üblicher-
weise in festen zeitlichen Intervallen miteinander gekoppelt; ein Ansatz, der oft in-
effizient ist. Um überflüssige Rechenzeit auf der groben Skala zu vermeiden wird
stattdessen eine bedarfsabhängige Kopplung vorgeschlagen. Diese Kopplung wird
durch einen neuartigen Algorithmus erreicht, der ständig, basierend auf der lokalen
Deformation an der Grenzfläche der beiden Skalen, entscheidet ob Berechnungen auf
der groben Skala gerade notwendig sind oder nicht.

Die Kontinuumsmodelle in Atomistik-zu-Kontinuum Mehrskalenmethoden auf geteil-
ten Gebieten sind entweder dynamisch oder quasi-statisch. Es wird gezeigt, dass beide
Ansätze Vorteile, aber auch erhebliche Nachteile aufweisen. Als drittes Verfahren wird
deshalb ein alternatives Kontinuumsmodell vorgeschlagen, das für linear-elastische
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Kurzfassung

Kontinua geeignet ist. Das Verfahren beruht auf der komplementären Superposition
eines dynamischen und eines quasi-statischen Subproblems. Das dadurch entstehende
hybride Kontinuumsmodell zielt darauf ab, die Vorteile eines dynamischen und eines
quasi-statischen Kontinuumsmodells zu vereinen und die Nachteile zu vermeiden.
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List of Symbols

This thesis combines topics from various broad fields such as continuum and statistical
mechanics, the finite element method, molecular dynamics, stochastic approximation
and others, each having their own common notation. In the thesis, the common notation
of every field is used wherever possible, which unavoidably leads to the multiple use
of symbols in some cases. However, in these cases, the same symbols denote very
different quantities which do not appear in the same parts of the text. It is therefore
hoped that the correct meaning of the symbol is immediately clear from context and
does not cause any confusion. In the notation convention used, spatial dimensions
are denoted by italic subscripts with roman letters, using uppercase letters for the
referential configuration (e.g., •I) and lowercase letters for the current configuration
(e.g., •i). Descriptive notation is denoted as nonitalic superscripts with roman letters
(e.g., •max), discrete time indices as italic superscripts with roman letters (e.g., •n),
iterations as italic superscripts with roman letters in parentheses (e.g., •(n)), descriptive
indices such as particle/atom numbers as italic superscript with greek letters (e.g., •α)
and node numbers as italic superscript with capital roman letters (e.g., •I).

Greek symbols
α pulse parameter
α known target vector used in the root finding of the function α− g(θ) = 0
β thermodynamic beta, i.e., β = 1/(kBT)
Γ phase space
γ Langevin damping coefficient
ε Lennard-Jones energy parameter
ε engineering strain
ε stochastic approximation gain sequence
η entropy per volume
Θ sample average of the series of estimated parameters θ in the stochastic

approximation process
θ vector of parameters being estimated in the stochastic approximation process
θ∗ root of the function α− g(θ) = 0
κ constant used in the definition of the stochastic approximation gain sequence

xiii



List of Symbols

Λ radial pulse parameter
λ constant used in the definition of the stochastic approximation gain sequence
ξp vector with value one at its p-th component and zero in all others
Π, Πij generalized momentum of the molecular dynamics cell
ρ mass density in the current configuration
ρ0 mass density in the reference configuration
ρEAM electron charge density function of the EAM potential
σ Lennard-Jones distance parameter
σ, σij Cauchy stress tensor
χ deformation mapping
Ψ Helmholtz free energy
Ω volume of the atomistic region
Ω0 volume of the referential molecular dynamics cell
Ωσ volume of the atomistic region used for stress evaluation
ω angular frequency

Roman symbols
A amplitude
A(r, p) microscopic phase space function
A macroscopic observable
A1, A2, A3 edge vectors of the undeformed molecular dynamics cell
a, ai continuum acceleration field
a equilibrium atomic spacing
a1, a2, a3 edge vectors of the deformed molecular dynamics cell
B continuum body
B, Bij left Cauchy-Green deformation tensor
b magnitude of the Burgers vector
b, bi body force per unit mass
C, CI J right Cauchy-Green deformation tensor
C, CI JKL Lagrangian elasticity tensor
Cinst, Cinst

I JKL instantaneous microscopic elasticity tensor

Cinst,kin, Cinst,kin
I JKL kinetic part of the instantaneous microscopic elasticity tensor

Cinst,pot, Cinst,pot
I JKL potential part of the instantaneous microscopic elasticity tensor

c stochastic approximation gain sequence
D integer factor used in the signal downsampling operation
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D damping matrix
d distance between the spatial coupling interface and a band of atoms
E total energy
E, EI J Green-Lagrange strain tensor
e vector-valued noise term
e1, e2, e3 unit vectors
e, eij Euler-Almansi strain tensor
F embedding energy function of the EAM potential
F, Fi J deformation gradient tensor
δF, δFi J first variation of the deformation gradient tensor
f (r, p) phase space distribution function
f A,min smallest frequency of the atomic motion
f c cut-off frequency
f c∗ normalized cut-off frequency
f FE maximum admissible continuum frequency
f max maximum frequency of the atomic vibration
f Ny Nyquist sampling rate
f s rate of the filter input signal
fα, f α

i force on atom α

fr, f r
i random force

fext column matrix of external nodal forces
f int column matrix of internal nodal forces
g number of independent momentum degrees of freedom in a discrete system
g vector-valued function for which the root of α− g(θ) = 0 with known α is to

be found via stochastic approximation
ĝ finite difference estimate of a function g(θ) = ∂L/∂θ = 0.
H Hamiltonian
HN Nosé Hamiltonian
HR Ray-Rahman Hamiltonian
hmax length of the largest finite element (1D)
h, hi Cauchy entropy flux per area
I unit tensor
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Noff size of the averaging window in the stochastic approximation iterate (offline)

averaging
Non size of the averaging window in the stochastic approximation iterate and

observation (online) averaging
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P continuum particle
P, Pi J first Piola-Kirchhoff stress tensor
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1. Introduction

1.1. Motivation

The exponential technical progress in the last two centuries is closely linked to the
development of new materials and applications. Until the dawn of computers, material
development heavily relied on experiments and application development was largely
based on prototyping, experience, and trial and error. Computers allowed to create
and manipulate virtual matter, to perform virtual experiments and develop virtual
prototypes. Modern simulation methods allow to replace costly experiments and tests
by virtual clones. These methods allow engineers to study phenomena which are
difficult or impossible to study in experiments.

There are many well established theories which describe the mechanical behavior of
virtual matter at certain length and time scales (see Fig. 1.1).

Length scales
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Quantum
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Mechanics

Discrete
Dislocation
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Fig. 1.1.: Length and time scales in the mechanical modeling of materials.

The fine end of the scales is the so-called microscale, where the theories of quantum
and molecular mechanics exist. Quantum mechanics and its numerical realizations (e.g.,
density functional theory and the tight-binding method) aim at solving Schrödinger’s
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1. Introduction

wave equation in order to obtain a highly accurate representation of the electronic
structure and the interactions in atomic systems. When the Born-Oppenheimer ap-
proximation and the assumption of classical particles hold, the classical molecular
mechanics theory is valid. In this theory, the potential energy of a system of atoms may
be represented by an effective potential which is a function of the nuclear coordinates
only (see, e.g., Tadmor and Miller, 2011). This effective potential, called the interatomic
potential, therefore contains no explicit contribution of the electrons. A numerical
realization of molecular mechanics is the molecular dynamics simulation technique
(MD), which is briefly presented in Section 2.2.4. The coarse end of the scales is the
so-called macroscale, where the continuum theory exists. This theory omits the discrete
structure of the material and assumes a medium (the continuum) with a continuous
distribution of matter in space. A numerical realization of continuum theory is the
finite element method (FEM), briefly presented in Section 2.1.4. Between the micro-
and macroscale, various so-called mesoscale theories exist. An example of a numerical
realization of a meso-scale theory is, e.g., discrete dislocation dynamics.

In the development of new materials with characteristic features in the nanometer range
(e.g., nano-structured materials) and new applications (e.g., micro- and nano-electro-
mechanical devices), it became clear that simulation techniques operating on a single
scale (micro-/meso-/macroscale) are insufficient. In micro- and nano-electro-mechanical
devices, the accurate modeling of the features requires simulation techniques with
microscopic resolution, e.g., MD, however, the overall size of the devices is too large to
be treated solely by MD, due to computational limitations and requires e.g., the FEM
(Rudd, 2001; Karakasidis and Charitidis, 2007). Similarly, in nano-structured materials,
the features require atomic resolution, but again, the representative volume elements
are too large to be handled by MD and thus require methods from larger scales (Chen
et al., 2014; Aluko, Gowtham, and Odegard, 2017).

The so-called atomistic-to-continuum multiscale methods have been developed to
bridge this gap between the scales. These methods can be divided into two categories.1

On one hand, there are concurrent methods, in which the body of interest is spatially
decomposed into atomistic and continuum regions, thus introducing a direct spatial
coupling between the two scales. On the other hand, there are hierarchical methods,
in which there is no spatial coupling. Instead, both scales exist everywhere in the
body and the atomistic scale is used to compute missing data for the continuum
scale. In comparison to single-scale atomistic methods, the atomistic-to-continuum
multiscale methods allow to study much larger spatial systems over longer periods

1Unfortunately, there exist different terminology conventions for the subcategories of atomistic-to-
continuum multiscale methods, which may lead to confusion. For example, some authors use the term
concurrent method as an overarching category over the two presented categories, which is then divided
into partitioned-domain and hierarchical, while other authors use the term semiconcurrent instead of
hierarchical.
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1.2. Objectives and challenges

of time at the same computational cost. From a different point of view, they aim at
producing the same results as if the problem was modeled purely atomistic, but at a
fraction of the computational cost. Despite the major decrease in computational cost,
the computational demands of the multiscale methods are still relatively high and thus,
they heavily rely on the use of high performance computing. Due to the computational
demands these methods are still only of academic interest and have not yet received
industrial adoption. To start this process, novel approaches to increase their efficiency
are needed (Van der Giessen et al., 2020).

1.2. Objectives and challenges

The main objective of this thesis is to develop approaches to increase the efficiency of
atomistic-to-continuum multiscale methods. The increase in efficiency can be under-
stood in three ways. Such approaches may allow one to i) achieve results of the same
quality at reduced computational cost, or ii) achieve results of higher quality at the
same computational cost, or iii) study larger systems over longer periods of time at the
same computational cost and accuracy.

Such approaches will be presented for hierarchical (see Chapter 4) as well as for
concurrent methods (see Chaps. 5 and 6). In the development, the focus is laid on
keeping the approaches as general as possible, so that they can be applied to a variety
of methods. To test and validate the approaches, existing multiscale methods are
naturally needed as test vehicles. While many openly accessible tools exist for single-
scale methods (e.g., Quantum Espresso (Giannozzi et al., 2009), LAMMPS (Plimpton,
1995), ParaDis (Cai et al., 2004), OOF2 (Reid et al., 2009), deal.II (Arndt et al., 2019)),
the vast majority of all multiscale methods are still limited to not openly-accessible,
in-house research codes. In the development of approaches to increase the efficiency of
the multiscale methods, one faces a high barrier to entry as the test vehicle, a numerical
implementation of the multiscale method of interest, needs to be established first.
Thus, a significant amount of programming work was spent to establish one of the two
methods used in this thesis more or less from scratch, based on the available description
of the method in the literature.2

2The code is openly accessible at https://github.com/patrickwurm/CADD.
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1. Introduction

1.3. Author contributions

In this section, the three efficiency improvement approaches presented in this thesis,
their contribution to the objective of this thesis and the author’s individual contribution
to each of the three approaches, are briefly summarized.

“A stochastic approximation approach to improve the convergence behavior of hier-
archical atomistic-to-continuum multiscale methods” (Chapter 4)
A general approach to increase the efficiency of hierarchical atomistic-to-continuum
multiscale methods is proposed. In the approach, well-known averaging techniques
methods from the field of stochastic approximation are applied on the macroscopic
observables obtained from the fine-scale computations.

Individual contribution:

• Contribution to the original idea
• Literature research and selection of the stochastic approximation (SA) averaging

strategies
• Implementation of the SA averaging strategies into an existing code of a hierar-

chical multiscale method
• Design, implementation and evaluation of three numerical examples
• Writing of the publication (80%)

“Demand-based coupling of the scales in concurrent atomistic-to-continuum meth-
ods at finite temperature” (Chapter 5)
To increase the efficiency in various concurrent atomistic-to-continuum methods, an
algorithm which detects deformation at the spatial coupling interface, and avoids
redundant continuum computations, is developed.

Individual contributions:

• Contribution to the original idea
• Programming of a one- and two-dimensional code of the Coupled Atomistic and

Discrete Discloation (CADD) method from scratch with various features such as
– Multiple interatomic potentials (Lennard-Jones potential, Embedded atom

method)
– Suitable for studying NVE and NVT (Langevin thermostat, Nose-Hoover

thermostat) ensembles in the atomistic region
– Ability to detect dislocations and pass those from the atomistic to the contin-

uum region (in the two-dimensional version)
• Literature research and development of the deformation detection algorithm
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1.4. Organization

• Application of the proposed approach to the CADD code
• Design, implementation and evaluation of three numerical examples
• Writing of the publication (90%)

“A hybrid continuum model for dynamic concurrent atomistic-to-continuum meth-
ods” (Chapter 6)
To increase efficiency, a hybrid (quasi-static and dynamic) continuum model, applicable
to various concurrent atomistic-to-continuum methods, is proposed.

Individual contributions:

• Contribution to the original idea
• Literature research
• Implementation of the quasi-static and hybrid continuum models into the previ-

ously developed CADD code
• Design, implementation and evaluation of three numerical examples
• Writing of a manuscript (90%), which is in preparation of submission as of the

writing of this thesis

1.4. Organization

This thesis is organized as follows: in Chapter 2, the fundamentals of continuum
mechanics and statistical mechanics are presented in a brief extent which covers the
basics needed to provide a foundation for the following chapters. The presentation is
not extensive by any means and references to supplementing literature are provided in
the text. Chapter 3 gives an overview of the state of the art in atomistic-to-continuum
multiscale modeling. The three efficiency improvement approaches which present the
novel contribution to the field of atomistic-to-continuum multiscale modeling are given
in Chaps. 4-6. The thesis closes with a conclusion in Chapter 7.

5





2. Fundamentals of continuum mechanics
and statistical mechanics

2.1. Continuum mechanics

This section gives a brief introduction into the mechanics of continuous media and the
finite element method. For further information, see, e.g., Malvern (1969); Truesdell and
Noll (1992); Marsden and Hughes (1994); Bonet and Wood (1997); Holzapfel (2000);
Belytschko, Liu, and Moran (2000); Zienkiewicz and Taylor (2000); Tadmor, Miller, and
Elliott (2011).

Continuum mechanics is concerned with the study of the mechanical behavior of
materials modeled as a continuum. In a continuum, the discrete atomic structure of
the material is omitted, and instead, the material is viewed as a continuous medium,
possessing a continuous distribution of matter in space. By doing so, the large number
of atoms is replaced by a few meaningful quantities. This kind of approach is known as
macroscopic modeling. A continuum body B in a three-dimensional Euclidean space is
the collection of continuum particles P ∈ B. At every instant of time t, the continuum
body occupies a volume V. Each continuum particle P is located at a point x in space,
the position of which is described by the position vector x with respect to a Cartesian
reference coordinate system. The configuration of B at time t is known as the current
(or deformed) configuration. Additionally, a reference (or undeformed) configuration is
defined, in which the continuum body occupies a volume V0 and the location of each
continuum particle is described by a position vector X (see Fig. 2.2).

The motion of particles from their reference position X to their current position x is
described by a uniquely invertible and sufficiently differentiable mapping χ, such
that x = χ(X, t). The displacement field (in Lagrangian description) is defined as
u(X, t) = χ(X, t)− X. The velocity and acceleration of a material point can thus be
defined as

v(X, t) =
∂χ(X, t)

∂t
=

∂u(X, t)
∂t

= u̇ (2.1)
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2. Fundamentals of continuum mechanics and statistical mechanics

X3, x3

X1, x1

X2, x2

X

u

x
V0 V

χ

Fig. 2.1.: Undeformed and deformed configurations.

and

a(X, t) =
∂2χ(X, t)

∂t2 =
∂2u(X, t)

∂t2 = ü, (2.2)

respectively.

2.1.1. Strain

The fundamental quantity in the description of the local deformation at a material
point is the deformation gradient tensor

F =
∂χ(X, t)

∂X
, (2.3)

which transforms elemental vectors dX in the reference configuration into elemental
vectors dx in the current configuration via dx = FdX.

With aid of the deformation gradient tensor, suitable strain measures can be defined,
such as the Green-Lagrange strain tensor

E =
1
2

(C− I), (2.4)

which operates on vectors in the reference configuration, where C = FTF is the right
Cauchy-Green deformation tensor and I is the unit tensor, or the Euler-Almansi strain
tensor

e =
1
2

(I− B−1), (2.5)

which operates on vectors in the current configuration, where B−1 is the inverse of the
left Cauchy-Green deformation tensor B = FFT.
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2.1. Continuum mechanics

2.1.2. Stress

To describe the interaction between the continuum particles, the fundamental concept
of stress is introduced. A cut through the body in the current configuration along an
arbitrary plane (with outwards unit normal vector n) reveals in every material point x
the Cauchy traction vector t, which measures the force per unit surface in the current
configuration. The corresponding cut along the plane in the reference configuration
(with outwards unit normal vector N) reveals the first Piola-Kirchhoff traction vector
T.

X3, x3

X1, x1

X2, x2

N −N
n −n

T

−T

t

−t

V0
V

X x

χ

Fig. 2.2.: Traction vectors T and t in the undeformed and deformed configuration.

Cauchy’s stress theorem states that there exist second order tensors σ and P, such that
(Holzapfel, 2000)

t(x, t, n) = σ(x, t)n, (2.6)
T(X, t, N) = P(X, t)N, (2.7)

where σ is the Cauchy stress tensor and P is the first Piola-Kirchhoff stress tensor. There
exist various other stress tensors such as the Kirchhoff, Biot and second Piola-Kirchhoff
stress tensors. An overview is, e.g., given in Bonet and Wood (1997). As an example, the
second Piola-Kirchhoff stress tensor shall be given here, which is related to the Cauchy
and the first Piola-Kirchhoff stress tensors via the relations

S = JF−1σF−T = F−1P, (2.8)

where J = det F is the determinant of the deformation gradient tensor. This stress
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2. Fundamentals of continuum mechanics and statistical mechanics

tensor is particularly useful as it is symmetric and defined purely on the reference
configuration.

2.1.3. Balance equations

The classical balance equations in continuum mechanics are the conservation of mass,
the balance of linear and angular momentum and the balance of energy. Additionally,
the entropy inequality principle is introduced, which gives the direction of energy
transfer.

It is assumed that the continuum body B is a closed system, i.e., a system that does
not allow mass transfer across its boundaries. The mass m of such a system must be
conserved throughout its motion. This is expressed by the conservation of mass

m =
∫

V0
ρ0(X) dV =

∫
V

ρ(x, t) dv = const, (2.9)

where ρ0 is the reference mass density and ρ is the current mass density.

The balance of linear momentum (written in terms of the current configuration) is

D
Dt

∫
V

ρv dv =
∫

∂V
t ds +

∫
V

ρb dv, (2.10)

where D(•)/Dt is the material time derivative, t is the Cauchy traction vector and ρb
is the body force per unit current volume. Together with Cauchy’s law t = σn, the
conservation of mass and the divergence theorem, the balance of linear momentum
leads to Cauchy’s famous first equation of motion∫

V

(
divσ + ρb− ρ

Dv
Dt

)
dv = 0. (2.11)

In terms of the reference configuration, the equivalent equation is found as∫
V0

(
DivP + ρ0b− ρ0 ∂v(X, t)

∂t

)
dV = 0. (2.12)

The balance of angular momentum (written in terms of the current configuration) is

D
Dt

∫
V

(x− x0)× ρv dv =
∫

∂V
(x− x0)× t ds +

∫
V

(x− x0)× ρb dv, (2.13)
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2.1. Continuum mechanics

where x0 is an arbitrary fixed point. An important consequence of the balance of angular
momentum is the symmetry of the Cauchy stress tensor σ = σT.

When considering mechanical and thermal energy contributions, the balance of energy
(i.e., the first law of thermodynamics, written in terms of the current configuration)
is1

D
Dt

∫
V

(
1
2

ρv2 + u
)

dv =
∫

∂V
(t · v− q · n) ds +

∫
V
(b · v + ρr) dv, (2.14)

where u is the internal energy per unit current volume, q is the heat flux per unit
current surface area and ρr is the heat source per unit current volume. As the balance
of energy does not include any information about the physical direction of energy
transfer, an additional principle is needed, which is the entropy inequality principle
(the second law of thermodynamics). It reads as

D
Dt

∫
V

η(x, t) dv +
∫

∂V
h · n ds−

∫
V

r̃ dv ≥ 0, (2.15)

where η is the entropy per unit current volume, h is the Cauchy entropy flux per unit
current surface area and r̃ is the entropy source per unit time and per unit current
volume. Another form of the second law of thermodynamics is the Clausius-Duhem
inequality

D
Dt

∫
V

η(x, t) dv +
∫

∂V

q
T
· n ds−

∫
V

ρ
r
T

dv ≥ 0, (2.16)

which uses the well known relation linear relations of the entropy flux and entropy
source with the heat flux and heat source through the proportional factor 1

T , where T is
the total temperature.

2.1.4. Principle of virtual work and finite element approximation

The principle of virtual work (i.e., the weak form of the balance of linear momentum)
written in terms of the reference configuration (Eq. 2.12) is (see, e.g., Belytschko, Liu,
and Moran, 2000)

∫
V0

(
P : δF− ρ0δu · b + ρδu · ü

)
dV−

Nd

∑
i=1

∫
∂V0,σ,i

(δu · ei)(ei · T̂) dS = 0, (2.17)

where δu and δF are the first variations of the displacement field and the deformation
gradient tensor, and T̂ is the prescribed first Piola-Kirchhoff traction vector specified

1In this thesis, only isentropic and isothermal processes are considered in the continuum. In the
study of these processes, the balance of energy does not need to be considered but is still given here for
completeness.
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2. Fundamentals of continuum mechanics and statistical mechanics

on a portion of the boundary ∂V0,σ ∈ ∂V0, often called the traction boundary. Nd is
the number of spatial dimension and ei is the unit vector of the Cartesian coordinate
system in i-direction.

An approximate solution to this non-linear equation is obtained by the finite element
approximation, in which the domain V0 is subdivided into a finite number of elements,
i.e., V0 =

⋃
e

V0,e connected at the finite element nodes. In the finite element approxima-

tion, the motion is interpolated from the position at the finite element nodes xI using
known shape functions S

x(X, t) =
Nnodes

∑
I=1

SI(X)xI(t), (2.18)

where Nnodes is the total number of finite element nodes in the domain. Likewise, the
displacement field and its first variation as well as the velocity and acceleration fields
are interpolated using their corresponding nodal values, i.e.,

u(X, t) =
Nnodes

∑
I=1

SI(X)uI(t), δu(X, t) =
Nnodes

∑
I=1

SI(X)uI(t), (2.19)

u̇(X, t) =
Nnodes

∑
I=1

SI(X)u̇I(t), ü(X, t) =
Nnodes

∑
I=1

SI(X)üI(t). (2.20)

Using the finite element approximation, the principle of virtual work can be rewritten
to yield the well-known equation of motion

MI JüJ + fint,I = fext,I or Mü + f int = fext, (2.21)

where MI J is the mass matrix

MI J = I
∫

V0
ρ0SISJ dV (2.22)

and fint,I and fext,I are the internal and external nodal forces

fint,I =
∫

V0

∂SI

∂X
P dV =

∫
V0

∂SI

∂X
FS dV, (2.23)

fext,I =
∫

V0
SIρ0b dV +

∫
∂V0,σ,i

SIeiT̂ dS . (2.24)

The quantities M, ü, f int and fext are the global mass matrix, and column matrices of
the acceleration and the internal and external nodal forces, respectively. In practice, the
so called consistent mass matrix presented here is often replaced by a diagonal matrix
called the lumped mass matrix (see, e.g., Zienkiewicz and Taylor, 2000). As shown
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2.1. Continuum mechanics

in the definition of the internal nodal forces (Eq. 2.23), the first Piola-Kirchhoff stress
tensor P is often exchanged for the second Piola-Kirchhoff stress S for convenience,
using the inverse of the relation given in Eq. 2.8.

The integrals in Eqns. 2.22-2.24 above are commonly evaluated numerically using Gauss
quadrature ∫ 1

−1
f (x) dx ≈

Nq

∑
i=1

wq,i f (xq,i), (2.25)

here shown for the standard interval of [−1, 1], with known weights wi and coordinates
xq,i of the Nq integration (or Gauss) points.

In the special case of static or quasi-static problems, the inertia term in the equations of
motion Eq. 2.21 vanishes and the resulting discrete equilibrium equation reads

f int = fext. (2.26)

Up to this point, the finite element equations are independent of the material studied
and thus of the constitutive relation, i.e., the relation of stresses and strains. The
constitutive relation comes into play in the internal nodal forces. In this thesis, only
hyperelastic material (see, e.g., Tadmor, Miller, and Elliott, 2011) is considered, for which
a strain energy density W exists, from which the stress can be obtained by derivation
with respect to the conjugate deformation measure. The conjugate deformation measure
of the second Piola-Kirchhoff stress tensor S is the Green-Lagrange strain tensor E (see,
e.g., Belytschko, Liu, and Moran, 2000), and thus

S =
∂W(S, E)

∂E
. (2.27)

Also, the material tangent (in this case the Lagrangian elasticity tensor C) can be found
as a second derivative of the strain energy density with respect to the Green-Lagrange
strain tensor, i.e.,

C =
∂2W(S, E)

∂E2 =
∂S
∂E

. (2.28)

This quantity is needed in the solution of Eq. 2.21 and Eq. 2.26.

2.1.5. Solution techniques

The equation of motion (Eq. 2.21) may be solved using explicit (e.g., the central difference
method) or implicit time integration (e.g., the Newmark β-method). For an overview
of the most common time integration methods, see, e.g., Belytschko, Liu, and Moran
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2. Fundamentals of continuum mechanics and statistical mechanics

(2000). One algorithm which can also be used for explicit time integration is the Velocity
Verlet algorithm, presented in Section 2.2.4.

The equilibrium equation (Eq. 2.26) generally is a nonlinear equation, which is com-
monly solved iteratively using the Newton-Raphson (NR) algorithm (see, e.g., Zienkiewicz
and Taylor, 2000). The NR algorithm will be briefly presented here for further reference.
Before going into details, we first acknowledge the fact that the internal forces are gen-
erally nonlinear functions of the displacements u, i.e., f int = f int(u).2 Second, we assume
so-called deadloading (i.e., the external loading is independent of the deformation). In
this case, the external forces are independent of the displacements. The equilibrium
equation (Eq. 2.26) may thus be rearranged as

fext − f int(u) = 0 = r(u), (2.29)

where r is called a residual. Starting from a state of equilibrium at a discrete instance of
time tk, the Newton-Raphson algorithm aims to find the next state of equilibrium at
tk+1

rk+1 = r(uk+1) = fext,k+1 − f int(uk+1) = 0, (2.30)

by using a first order approximation of the residual

r(uk+1,(n+1)) ≈ r(uk+1,(n)) +
(

∂r

∂u

)k+1,(n)

∆uk+1,(n) = 0, (2.31)

where n is the iteration and ∆uk+1,(n) = uk+1,(n+1) − uk+1,(n).

In this equation,

K = − ∂r

∂u
=

∂f int

∂u
(2.32)

is called the stiffness matrix. In the derivation of this matrix (see, e.g., Belytschko, Liu,
and Moran, 2000), an explicit dependence on the stress measure (in this case S) and on
the material tangent (in this case C) is revealed, i.e., K = K(S, C).

After rearrangement of Eq. 2.31, the well-known iterative scheme

uk+1,(n+1) = uk+1,(n) +
(

Kk+1,(n)
)−1 (

fext,k+1 − f int(uk+1,(n))
)

(2.33)

is found, which can be written more concisely by dropping the discrete time index as

u(n+1) = u(n) +
(

K(n)
)−1 (

fext − f int(u(n))
)

. (2.34)

2As can be seen from Eq. 2.23, the internal nodal forces do not explicitly depend on the displacements,
but rather, the dependence is implicitly included in the constitutive relation, i.e., S = S(E), E = E(F), F = F(u).
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2.2. Statistical mechanics

This section gives a brief introduction into classical statistical mechanics and molecu-
lar dynamics. For further information, see, e.g., Chandler and Wu (1987); Allen and
Tildesley (1989); Frenkel and Smit (2001); Weiner (2002); Tuckerman (2010); Tadmor
and Miller (2011).

Classical statistical mechanics aims to predict the macroscopic properties of many-body
systems composed of classical particles (e.g., atomic systems) based on the microscopic
interactions and thus offers a microscopic foundation of thermodynamics. The rationale
behind the theory is that the macroscopic properties of a many-body system do not
explicitly depend on the specific behavior of every particle in the system, but rather
reflect some kind of average behavior of the particles. The microscopic configuration
of a system of N particles at time t is sufficiently characterized by the 3N particle
positions r1, . . . , rN and the 3N particle momenta p1, . . . , pN , where pα = mαṙα, with mα

being the particle mass and ṙα = drα

dt being the particle velocity. These 6N quantities
can be regarded as a specific point described by a vector (r1, . . . , rN , p1, . . . , pN) in a
6N-dimensional space, called the phase space Γ.

2.2.1. The concepts of statistical ensembles, ensemble averages and time
averages

Intuition tells us, that there must be a large number of microscopic configurations of a
many-body system, which fit to a set of given macroscopic constraints. For example, if
the macroscopic constraint is the systems’ total energy, it is immediately clear that there
must exist a large number of different position and velocity distributions among the
particles, which give rise to the same total energy. The collection of this large number
of microscopic configurations is called an ensemble.

All microscopic configurations which belong to the same ensemble represent different
points in phase space. A macroscopic property (a macroscopic observable) A at time τ
may be found from an ensemble average as

A = 〈A(r, p)〉 =
∫

Γ
A(r, p) f (r, p, τ) dr dp, (2.35)

where A(r, p) is a corresponding microscopic phase space function and f (r, p, τ) is the
phase space distribution function which satisfies

∫
Γ = f (r, p, τ) dr dp = 1.
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2. Fundamentals of continuum mechanics and statistical mechanics

This is tantamount to performing an average over all accessible microscopic config-
urations of the ensemble at a given time. A numerical realization to compute such
ensemble averages is found in the Markov-Chain-Monte-Carlo methods.

The ergodic hypothesis implies that ensemble averages may be replaced by time
averages of the form

A = A(r, p) = lim
τe→∞

1
τe

∫ τe

0
A(r(τ), p(τ)) dτ . (2.36)

Here, in contrast to an ensemble average, not all accessible microscopic configurations
are observed at a given time, but rather the trajectory of a single system in phase
space is followed over time. This single system will take every accessible microscopic
configuration in the observed period of time τe. A numerical realization to compute
such time averages is found in the molecular dynamics simulation technique presented
in Section 2.2.4.

The two most important ensembles are the microcanonical and the canonical ensemble
which are briefly presented below. For information on various other ensembles such as
the isobaric ensemble or the grand canonical ensemble, see, e.g., Tuckerman (2010).

2.2.2. Microcanonical ensemble

The microcanonical ensemble is the collection of isolated systems (i.e., systems which
do no exchange heat or particles with its surroundings) of N identical particles in a
container of volume Ω with fixed total energy E (see Fig. 2.3).3

insulation

Fig. 2.3.: An isolated system of particles.

3Hence, the three macroscopic constraints of the system are N, Ω and E, which is why the microcanon-
ical ensemble is also called the NΩE-ensemble.
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Using the fundamental assumption of equal a priori probability (which assumes that for
isolated systems in equilibrium, all accessible microscopic configurations are equally
probable), the microcanonical ensemble average of a macroscopic observable A can be
obtained as (Tuckerman, 2010)

A = 〈A(r, p)〉 =

∫
Γ A(r, p)δ(H(r, p)− E) dr dp∫

Γ δ(H(r, p)− E) dr dp
. (2.37)

In this equation, δ is the Dirac δ-function and H(r, p) is the physical Hamiltonian of the
many-body system

H(r, p) = U (r1, . . . , rN) +
N

∑
α=1

1
2mα

pα · pα, (2.38)

where the first term is the potential energy of the system and the second term is
the kinetic energy of the system. The Lagrangian of the many-body system is found
through the Legendre transformation as

L =
N

∑
α=1

pα · ṙα −H. (2.39)

2.2.3. Canonical ensemble

As most real world experiments are conducted at a fixed temperature rather than at a
fixed energy, the canonical, or NΩT-ensemble is of great importance to describe how
the macroscopic observables measured in experiments are connected to the microscopic
constituents. The basic idea to generate such an ensemble is to consider a system
(system 1) embedded in its surroundings (system 2) such that the two systems can only
exchange heat.

The total system (system 1 and system 2) is part of the microcanonical ensemble, and
thus its energy E = E1 + E2 is conserved. The energies of the systems 1 and 2 can
fluctuate. By assuming that system 2 is much larger than system 1 (system 2 is a
“thermal reservoir” or “heatbath”, i.e., N2 � N1, Ω2 � Ω1, E2 � E1), the canonical
ensemble average can be obtained as (see, e.g., Tuckerman, 2010)

A = 〈A(r, p)〉 =

∫
Γ A(r, p) exp (−βH(r, p)) dr dp∫

Γ exp (−βH(r, p)) dr dp
, (2.40)

where the so-called thermodynamic beta β = 1/(kBT) is used, with kB being the
Boltzmann constant and T being the total temperature of the thermal reservoir.
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insulation

system 1

system 2 “thermal reservoir”

Fig. 2.4.: Two systems in contact. The total system is isolated.

2.2.4. Molecular dynamics

Molecular dynamics is a numerical simulation technique, which allows to study the
evolution of a system of atoms over time via time integration of the atomic equations of
motion. The system is subject to macroscopic constraints (e.g., N, Ω, E in the microcanon-
ical ensemble or N, Ω, T in the canonical ensemble) and spatial boundary conditions,
which define the shape and the interaction of the atoms with its surroundings. Various
spatial boundary conditions exist, such as vacuum boundary conditions (a system of
atoms surrounded by vacuum) or periodic boundary conditions (a system of atoms
interacting with an infinite array of adjacent copies of the system). The interaction
between the atoms is governed through interatomic potentials.

Interatomic potentials

In the absence of externally applied potential fields, the potential energy of a system of
atoms can be written as the series expansion

U (r1, . . . , rN) =
1
2!

N

∑
α,β=1
α 6=β

Upair(rα, rβ) +
1
3!

N

∑
α,β,γ=1

α 6=β 6=γ 6=α

U 3(rα, rβ, rγ) + . . . , (2.41)

where Upair is a two-body term, U 3 is a three-body term, etc.
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2.2. Statistical mechanics

Interatomic potentials give approximations to the potential energy of the atomic system
which allow one to derive interatomic forces via fα = − ∂U

∂rα . There exists a vast amount
of interatomic potentials, suitable to study numerous materials.

An example of a pair-potential is the Lennard-Jones potential (Jones and Chapman,
1924)

U (r1, . . . , rN) ≈ 1
2!

N

∑
α,β=1
α 6=β

Upair,LJ(rαβ) =
1
2!

N

∑
α,β=1
α 6=β

4ε

[( σ

rαβ

)12
−
( σ

rαβ

)6
]

, (2.42)

where ε is the depth of the potential well, σ is the distance at which the potential takes
a value of zero and rαβ is the distance between two particles α and β.

An example of a multi-body potential is the Embedded Atom Model (EAM) (Daw and
Baskes, 1984)

UEAM(r1, . . . , rN) ≈
N

∑
α=1

Fα

 N

∑
β=1
β 6=α

ρEAM(rαβ)

 +
1
2! ∑

α,β=1
α 6=β

Upair,EAM(rαβ), (2.43)

where Fα is an embedding energy function, which depends on the sum of the electron
charge densities ρEAM(rαβ) and Upair,EAM is a pair-potential similar to the Lennard-Jones
potential.

Molecular dynamics and the microcanonical ensemble

The Hamiltonian equations of motion of a system, which generates microscopic config-
urations of the microcanonical ensemble, can be derived from the physical Hamiltonian
(Eq. 2.38) as (Tuckerman, 2010)

ṙα =
∂H
∂pα

=
pα

mα
, ṗα = −∂H

∂rα
= − ∂U

∂rα
. (2.44)

These equations of motion conserve the Hamiltonian H(r, p), which corresponds to the
system’s total energy E. They are simply a different form of the famous Newtonian
equations of motion

mαr̈α = − ∂U
∂rα

, (2.45)

which can also be obtained from the Lagrangian L (Eq. 2.39) via the Euler-Lagrange
equation d/dt (∂L/∂ṙ) − ∂L/∂r = 0. Therefore, using the Newtonian equations of
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motion in molecular dynamics automatically results in a system, which generates
microscopic configurations of the microcanonical ensemble. There exist different time
integration methods to integrate the equations of motion in molecular dynamics, which
can, however, never exactly conserve the Hamiltonian H(r, p) due to discretization
errors.

Algorithms suitable for molecular dynamics must however satisfy the symplectic
condition, which means that they conserve a so-called shadow Hamiltonian H̃(r, p)
which remains close to the true Hamiltonian H(r, p) (Tuckerman, 2010). One time
integration algorithm which is commonly used is the velocity Verlet algorithm (Swope
et al., 1982)

rα(τ + ∆τ) = rα(τ) + ṙα(τ)∆τ +
∆τ2

2mα
fα(τ), (2.46)

ṙα(τ + ∆τ) = ṙα(τ) +
∆τ

2mα
(fα(τ) + fα(τ + ∆τ)), (2.47)

in these equations, ∆τ is the numerical time step and fα = mαr̈α = ṗα = − ∂U
∂rα is the force

on particle α. Another algorithm is the Gear sixth-order predictor-corrector scheme
(Allen and Tildesley, 1989), which consists of a predictor step

0rP,α(τ + ∆τ)
1rP,α(τ + ∆τ)
2rP,α(τ + ∆τ)
3rP,α(τ + ∆τ)
4rP,α(τ + ∆τ)
5rP,α(τ + ∆τ)

 =



1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1





0rα(τ)
1rα(τ)
2rα(τ)
3rα(τ)
4rα(τ)
5rα(τ)

 (2.48)

and a corrector step,

0rC,α(τ + ∆τ)
1rC,α(τ + ∆τ)
2rC,α(τ + ∆τ)
3rC,α(τ + ∆τ)
4rC,α(τ + ∆τ)
5rC,α(τ + ∆τ)

 =



0rP,α(τ + ∆τ)
1rP,α(τ + ∆τ)
2rP,α(τ + ∆τ)
3rP,α(τ + ∆τ)
4rP,α(τ + ∆τ)
5rP,α(τ + ∆τ)

 +



3/16
251/360

1
11/18

1/6
1/60


(

2rC,α − 2rP,α
)

, (2.49)

where the unique notation
nrα =

(∆τ)n

n!
dn rα(τ)

dτn (2.50)

is used and where 2rC,α is calculated by substituting 0rP,α into the equations of motion
(Eq. 2.45).
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Molecular dynamics and the canonical ensemble

There are many different approaches to study a system with molecular dynamics, which
generates microscopic configurations of the canonical ensemble. These approaches are
commonly known as thermostats (for an excellent review see, e.g., Hünenberger, 2005).
Widely used are the so-called extended phase space techniques, where additional
variables are introduced into the physical phase space. An example is the Nosé-Hoover
thermostat, which is governed by the Hamiltonian (Nosé, 1984; Hoover, 1985)

HN(r, p) = U (r1, . . . , rN) +
N

∑
i=α

1
2mαs2 pα · pα +

(ps)2

2Q
+ gkBT∞ ln s, (2.51)

where s and ps are two additional variables in the phase space that mimic the thermal
reservoir, Q is a thermal “mass”, g is the number of independent momentum degrees
of freedom and T∞ is the temperature of the thermal reservoir. The equations of
motion of the Nosé-Hoover thermostat can, e.g., be found in Tuckerman (2010). Another
example of an extended phase space technique is presented in Chapter 4 for the
isostress-isothermal ensemble.

An example of a thermostat which does not belong to the extended phase space tech-
niques is the so-called Langevin thermostat. The equations of motion of the Langevin
thermostat are (see, e.g., Tuckerman, 2010)

mαr̈α = − ∂U
∂rα
−mαγṙα + fr, (2.52)

where γ is a damping coefficient. The Langevin thermostat introduces damping forces
−mαγṙα and a random forces fr, which are related by the dissipation-fluctuation theo-
rem (Kantorovich, 2008a; Kantorovich, 2008b). As the random nature of the Langevin
thermostat perturbs the systems’ dynamics, it is often only used close to the system
boundary, an approach which is known as stochastic boundary conditions. A version of
the stochastic boundary conditions known as “Stadium damping” uses a spatially vary-
ing damping coefficient γ = γ(x), with increasing values towards the outer boundary of
the system (Holian and Ravelo, 1995; Qu et al., 2005).

The time integration algorithms presented in Section 2.2.4 can also be used to integrate
the equations of motion of the Nosé-Hoover and the Langevin thermostat (with slight
modifications due to the additional variables and additional terms).
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3. State of the art in
atomistic-to-continuum multiscale
methods

Atomistic-to-continuum multiscale methods can be divided into two categories (see
Fig. 3.1). On one hand, there are concurrent methods (Fig. 3.1a), in which the physical
body of interest is spatially decomposed into at least one continuum and one atomistic
region, which are coupled at spatial interfaces. These models are suitable for the study
of problems which exhibit a strong coupling of the scales. If, on the other hand, a
separation of the length and time scales can be assumed, the so-called hierarchical
methods (Fig. 3.1b) can be used. In these methods, no spatial coupling of the scales
exists and both scales are present everywhere in the body. The scales are coupled only
through the exchange of effective information. The coarse scale obtains constitutive
quantities or, in more ambitious models, even the structure of its governing equations,
from the fine scale, whereas the fine scale receives its boundary conditions from the
coarse scale.

3.1. Concurrent methods

In concurrent methods, only regions in which critical details occur, are modeled
with atomistic resolution (fine scale). The rest of the body is assumed to be modeled
sufficiently accurate as a continuum (coarse scale). There are numerous concurrent
methods available in the literature. An attempt to categorize and benchmark some
of the most prominent methods in the static, i.e., 0K limit, was made by Miller and
Tadmor (2009). An overview of static and dynamic, finite temperature methods was
made by Tadmor and Miller (2011). A comparison of several methods for the study
of fracture as well as for dislocation modeling and heat conduction was made by
Iacobellis and Behdinan (2013) and Xu and Chen (2019), respectively. According to
Miller and Tadmor (2009), most methods can be categorized using three characteristic
properties: i) They can be divided by their governing formulation into energy-based
and force-based methods. In energy-based methods, a potential single function exists
from which the governing equations of both scales are derived. In force-based methods,
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Atomistic region

Interface

Continuum
Region

(a)

Coarse scale:
Continuum

Fine scale:
Atoms

(b)

Fig. 3.1.: The classification of atomistic-to-continuum multiscale methods into (a) concurrent and (b)
hierarchical methods.

no such potential function exists, and the coupling of the scales is defined at the level
of forces. ii) The coupling of the regions at the spatial interface is highly non-trivial
and subject of ongoing developments. Some methods use a sharp spatial interface,
whereas other methods use a so-called handshake region, which is a transition region
where some kind of mixing of the coarse and fine scale models exists. iii) The coupling
between the scales may be performed using a strong compatibility, where the motion
of both scales at the interface is in lock-step, or using weak compatibility, where the
motion of the scales at the interface is only coupled in an averaged manner. Based on
this categorization, the most important concurrent methods shall here be presented
briefly.

The quasi-continuum (QC) method (Tadmor, Ortiz, and Phillips, 1996; Shenoy et al.,
1998; Shenoy et al., 1999) is probably the most well-known atomistic-to-continuum
multiscale method. It is an energy-based method with a sharp interface and a strong
compatibility coupling. Finite temperature versions of QC have been published by
Dupuy et al. (2005) and Tadmor et al. (2013). Several important improvements of the
method have been proposed, e.g., hyper-QC (Kim et al., 2014), to overcome the time
limitations of MD to accelerate the study of rare events or QCDFT (Lu, Tadmor, and
Kaxiras, 2006), an extension to a quantum mechanical coupling.

The atomistic-to-continuum coupling in the coupling of length scales (CLS) method
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(Abraham et al., 1998; Broughton et al., 1999; Abraham et al., 2000) is very similar to the
QC method. However, the CLS method additionally allows for an atomistic-to-quantum
coupling by introducing atomistic regions which are modeled using the tight-binding
approximation of quantum mechanics (Tadmor and Miller, 2011). The CLS method is
inherently able to study dynamics and finite temperature.

The bridging domain method (BD) (Xiao and Belytschko, 2004) is an energy-based
method which uses a handshake region with linear mixing of the atomistic and contin-
uum energies. A weak compatibility coupling is employed using a Lagrange multiplier-
based penalty method. A dynamic finite temperature version of BD was developed
by Anciaux, Ramisetti, and Molinari (2012). Gracie and Belytschko (2009) and Gracie
and Belytschko (2011) later combined the BD method with the extended finite element
method (XFEM) for the modeling of dislocations and cracks.

The bridging scale method (BS) (Wagner and Liu, 2003; Qian, Wagner, and Liu, 2004)
is an energy-based method with sharp interface and a mix between strong and weak
compatibility coupling. The BS method conceptually differs from other concurrent
methods, as it is envisioned that the displacements at every point of the body u consist
of coarse-scale and fine-scale displacements u = u′ + u′′. Park, Karpov, and Liu (2004)
extended the method to incorporate a finite temperature equation in the continuum.

The finite element/atomistic (FEAt) method (Kohlhoff, Gumbsch, and Fischmeister,
1991) was the first concurrent atomistic-to-continuum method published. It is a force-
based method which uses a sharp interface and a strong compatibility coupling. While
initially presented as capable of studying static and dynamic systems, it was later
shown (Junge, Anciaux, and Molinari, 2015), that the dynamic version is unstable
without additional precautions.

The atomistic-to-continuum (AtC) method (Fish et al., 2007; Parks, Bochev, and Lehoucq,
2008; Badia et al., 2008) is a force-based method which uses a handshake region with a
linear mixing of the atomistic and continuum forces and a weak compatibility coupling.
The method was developed for studying static systems and, to the author’s best
knowledge, no dynamic, finite temperature version of this method exists. The existence
of another, unrelated, method (Wagner et al., 2008; Templeton, Jones, and Wagner, 2010)
which is often also referred to by the same name in the literature (e.g., by Xu and
Chen, 2019) may unfortunately lead to confusion. Whereas the first method only adopts
a mechanical coupling between the scales, the latter method enables the study of a
thermo-mechanical coupling with non-equilibrium heat transfer between the scales.

The Coupled Atomistic and Discrete Dislocation (CADD) method (Shilkrot, Miller,
and Curtin, 2002; Shilkrot, Miller, and Curtin, 2004) is a force-based method which
uses a sharp interface and a strong compatibility coupling. In fact, the coupling is
essentially equivalent to the FEAt method. The unique feature of the CADD method
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is that it allows crystal defects such as dislocations to exist not only in the atomistic
but also in the continuum region by using the discrete dislocation methodology of
Van der Giessen and Needleman (1995). Also, the method is able to perform a seamless
two-way passing of defects over the spatial interface. Finite temperature versions of the
method have been proposed by Qu et al. (2005); Shiari, Miller, and Curtin (2005), which
either use a dynamic or quasi-static continuum model. Recently, the CADD method
was extended from 2D to 3D (Anciaux et al., 2018; Hodapp et al., 2018; Cho et al., 2018).
The 2D finite temperature CADD method serves as a vehicle for the implementation of
the two efficiency improvement approaches presented in Chapter 5 and Chapter 6 and
is described in more detail in Section 5.2.1.

The concurrent atomistic-continuum (CAC) method (Xiong et al., 2011; Chen, Shabanov,
and McDowell, 2019) is also a force-based method with a strong compatibility and
a sharp interface. In CAC, the continuum equations are derived directly from the
atomistic behavior via an extension of the well-known Irving-Kirkwood procedure. The
continuum is approximated with discontinuous finite elements, with the interatomic
potential being the only constitutive relation. Due to the fact that the element faces are
assumed to coincide with the glide planes of the atomic lattice, the method also allows
the passing of dislocations between the scales (Xiong et al., 2012).

3.2. Hierarchical methods

The hierarchical methods use a fundamentally different approach to multiscale mod-
eling than the concurrent methods. In hierarchical methods, there exists no spatial
decomposition of the body of interest into regions of different scales, and thus no
spatial coupling between the scales. Instead, both scales exist everywhere in the body.
The existing methods can be categorized by their general methodology into bottom-up
and top-down methods, as well as by the way that information is passed between the
scales into one- and two-way coupling methods.

Bottom-up methods aim to evolve the (a priori unknown) physics on the coarse-scale
from the physics of a given fine-scale model. Top-down methods, on the other hand,
assume that both the coarse-scale and fine-scale models and their governing equations
are well defined a priori. In these methods, the fine-scale is required to deliver whatever
data is missing in the coarse-scale computations. For top-down and bottom-up methods,
general frameworks have been developed which provide general guidance on the
proper design of the methods and provide means of uncertainty quantification for such
methods.

In one-way coupling (or sequential) methods, the fine-scale model is executed in a
pre-processing step, and thus there is only a one-way (fine- to coarse-scale) information
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transport. The output of the fine-scale model (e.g., missing data or the structure of the
coarse-scale physics) is then used to perform the coarse-scale computations in a subse-
quent step. In two-way coupling methods, the fine-scale and coarse-scale computations
are performed simultaneously with a two-way information transport. In these methods,
the fine-scale model may, for example, be constrained by the current local macrostate at
every discrete instance of coarse-scale time. This would be the information transport
from the coarse to the fine scale. The missing data to evolve the coarse scale physics
may then be extracted on the fly from the fine-scale model computations, which gives
the information transport in the other direction.

The so-called equation-free approach (Kevrekidis et al., 2003; Chen et al., 2004; Kevrekidis,
Gear, and Hummer, 2004) is a framework for bottom-up, two-way coupling methods
to be used when a closed form of the coarse-scale evolution equations exists in princi-
ple, but is unavailable. The aim is to estimate the data that would be missing in the
closed form of the macroscopic evolution equations by a series of properly designed
experiments on the fine scale, spatial interpolation and temporal extrapolation.

An example of a top-down method with two-way coupling is the Generalized Mathe-
matical Homogenization (GMH) approach (Chen and Fish, 2006; Fish, Chen, and Li,
2007; Li, Li, and Fish, 2008). In this approach, the coarse scale evolution equations are
integrated by solving a molecular dynamics-like dynamic unit cell problem located
in every Gauss point of the coarse scale. The dynamic unit cell problem is subject to
the local deformation gradient and temperature on the coarse scale. The method was
later included into the Adaptive Generalized Mathematical Homogenization (AGMH)
framework, which combines both hierarchical and concurrent elements. AGMH focuses
on the study of a collection of nanograins, where dislocation-free grains are modeled
as a hierarchical continuum (Li, Li, and Fish, 2008) and grains containing dislocations
are modeled with molecular dynamics.

The heterogeneous multiscale method (HMM) (E and Engquist, 2003; Engquist et al.,
2007; Abdulle et al., 2012) is a widely used framework for top-down, two-way coupling
methods. In HMM, the fine-scale model is reinitialized at every discrete instant of
coarse-scale time and run until it has sufficiently relaxed. Then, data is extracted from
the fine-scale to evolve the coarse scale for one coarse-scale time step. An extension
of the HMM approach is the so-called seamless-HMM (E, Ren, and Vanden-Eijnden,
2009). The seamless-HMM avoids reinitializing of the fine-scale model at every discrete
instant of coarse-scale time by using very small coarse-scale time steps. In contrast to
HMM, data is exchanged in every fine-scale time step in the seamless-HMM. Hence,
the two scales evolve in lock-step but use different clocks.

Li and E (2005); Li, Yang, and E (2010) developed a top-down, two-way coupling
method in the framework of HMM which uses the finite volume method on the
coarse scale to compute macroscopic fluxes from the fine scale model (molecular
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dynamics). The fine scale is constrained by the local deformation gradient tensor, mean
velocity and temperature. To improve efficiency, they use a weighted kernel function
instead of simple time average in the evaluation of the microscopic data to accelerate
convergence.

Ulz (2015b) also developed a top-down, two-way coupling method in the framework of
HMM, which uses a mechanical coupling with a quasi-static finite element model on the
coarse scale and molecular dynamics on the fine scale. To improve efficiency, the author
proposed to adjust the duration for which the fine scale problem is tracked in each
macroscopic iteration step. The idea is to save computational effort by tracking the fine
scale only for a short, insufficient duration in the first coarse scale iterations in order to
push the coarse scale solution field quickly towards the converged solution. In later
iterations, the fine scale is tracked for a proper period of time in order to obtain well
converged fine scale output. This method serves as a vehicle for the implementation
of the efficiency improvement approach presented in Chapter 4 and is described in
detail in Section 4.2. The string method was later applied to this method to explore the
free energy landscape and compute minimum free energy paths by Ulz (2019). Also, a
similar method in the framework of the seamless-HMM was proposed by Ulz (2015a),
which uses a dynamic finite element model on the coarse scale.

Chockalingam and Wellford (2011) developed a top-down, two-way coupling method
to study thermo-mechanical problems based on homogenization. In each coarse-scale
Gauss point, a molecular dynamics-like problem is solved, which is restricted by the
local coarse scale displacement gradient, temperature and temperature gradient to
compute the atomic forces, virial stresses and atomic velocities needed to evolve the
coarse scale physics. Another method with similar capabilities was proposed by Xiang
et al. (2012).

Due to the great freedom of design offered by a one-way coupling, there exists a vast
amount of top-down, one-way coupling methods. Notable contributions are, e.g., by
Keralavarma, Bower, and Curtin (2014), where various scales from quantum mechanics
to continuum mechanics are used to predict the ductility loss in aluminium-magnesium
alloys due to dynamic strain aging, or by Barton et al. (2011), where also a wide range
of scales is used to model the material strength of tantalum and vanadium under
the influence of changes in pressure, strain rate, temperature and dislocation density.
Another example was given by Jahanshahi, Ahmadi, and Khoei (2020), where the
authors evaluate the response of atomistic RVEs of defective nano-materials under
different loading conditions in order to identify suitable strain energy functions to be
used on the coarse scale. A review of top-down, one-way coupling methods used in the
modeling of material failure was given, e.g., by Budarapu et al. (2019).
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4. A stochastic approximation approach to
improve the convergence behavior of
hierarchical atomistic-to-continuum
multiscale methods

This chapter is a modified version of the peer-reviewed journal paper “A stochastic
approximation approach to improve the convergence behavior of hierarchical atomistic-
to-continuum multiscale models” published in the Journal of the Mechanics and Physics
of Solids (Wurm and Ulz, 2016).

4.1. Introduction

In hierarchical top-down methods, the fine scale is used to supply the missing data for
the coarse-scale calculations. In this data estimation-process, the fine-scale boundary
conditions and constraints are dictated by the local macrostate on the coarse scale.
Commonly, molecular dynamics is used as the fine-scale model, thus the missing data
is computed through time averaging on some representative volume element (RVE).
Herein lies one of the key challenges in hierarchical modeling. Inappropriately chosen
RVEs and/or too short periods of time for data estimation lead to poor accuracy on the
coarse scale. On the other hand, choosing large RVEs and sufficiently sampling the fine-
scale quantities in phase space results in excessive computational cost for any practical
problem. Therefore, the estimated data and hence the coarse-scale solution fields will
be erroneous in practical calculations. Thus, the data estimation can be thought of as a
measurement process, in which the measured value is erroneous or noise-corrupted.
Naturally, one should always strive to reduce this error as far as possible.

This chapter discusses strategies for reducing the error without introducing further
computational cost, by using techniques from stochastic approximation (Kushner and
Yin, 2003; Spall, 2003). Stochastic approximation (SA) is generally concerned with
finding roots or extrema of noise-corrupted functions and is used in different areas in
science and economics. A great deal of focus is placed on machine learning algorithms
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(Benaim, 1993; Cheng and Titterington, 1994; López-Rubio and Luque-Baena, 2011). But
there are also fields of application in classical engineering, e.g., in the optimization of
shape designs (El Alem, El Hami, and Ellaia, 2011; Seyedpoor et al., 2011), for estimating
the thermal conductivity in boreholes (Wen-Long et al., 2012) or damping approximation
(Sultan, 2010). In order to improve convergence of SA iteration schemes, the two
strategies “averaging of the iterates” and “averaging of the iterates and observations”
are known. As their names imply, both strategies aim at effectively reducing the noise
by using averaged quantities. It will be shown that hierarchical atomistic-to-continuum
methods exhibit strong similarities to SA schemes, which justifies the use of those
two averaging strategies to reduce the error in the coarse-scale solution fields and to
improve the convergence behavior of the multiscale method.

4.2. Hierarchical multiscale method

This section introduces a prototypical hierarchical multiscale method coupling molecu-
lar dynamics and the finite element method. It will serve as a framework to test the
performance of the two stochastic approximation averaging approaches. On the coarse
scale of this method, a standard finite element formulation is employed and a constant
uniform temperature is assumed. The fine scale is incorporated at each Gauss point
of the coarse-scale domain in the shape of a MD cell. Each MD cell contains N atoms
arranged in a perfect (defect-free) crystal. The MD cells are subject to periodic boundary
conditions to simulate bulk material.

4.2.1. Coarse-scale model: Quasi-static finite element method

As the coarse scale model, a quasi-static finite element formulation with a hyperelastic
constitutive relation (as presented in Section 2.1.4) is used, and the Newton-Raphson
method is applied to solve the nonlinear equilibrium equations (see Section 2.1.5).

The Newton-Raphson iteration scheme (Eq. 2.34) can be rewritten to show the explicit
dependences on the constitutive quantities (the second Piola-Kirchhoff stress tensor S
and the Lagrangian elasticity tensor C) as

u(n+1) = u(n) +
(

K(n)(S, C)
)−1 (

fext − f int,(n)(S)
)

. (4.1)

The constitutive quantities are obtained from the fine-scale model.
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4.2.2. Fine-scale model: Molecular dynamics and the NFT ensemble

The fine scale employs a MD approach which enables one to apply stresses and strains
onto a MD cell, while maintaining constant temperature. To this end, the three mutually
orthogonal edge vectors Ak of the referential MD cell are defined, which transform to
ak due to deformation (see Fig. 4.1). The quantity F is introduced, which is consistent
with the deformation gradient tensor from continuum mechanics. It allows a mapping
of the edge vectors and atomic positions of the form

ak = FAk, and rα = Fsα. (4.2)

It is important to note that in this setting, the referential MD cell will preserve its shape
but the atomic positions sα will change with rα.

A1 A2

A3

a1 a2

a3

Fsα rα

Fig. 4.1.: Mappings between referential and current MD cell with coordinates sα and rα, respectively.

The following Hamiltonian is based on an extended phase space approach proposed
by Ray and Rahman (1985) and is written in terms of continuum mechanics (Podio-
Guidugli, 2010; Ulz, 2013; Ulz, 2015b).

HR = Katoms + U atoms +Kcell + U cell +Kheatbath + Uheatbath

= C−1 :
1
2

N

∑
i=α

1
mαs2 pα ⊗ pα +

N

∑
α=1
U α

+ ΠTΠ :
1
2

J−1 + Ω0Sext : E +
(ps)2

2Q
+ gkBT∞ ln(s). (4.3)

The Hamiltonian consists of kinetic terms K and potential terms U . In this form,
Eq. 4.3 is the Hamiltonian for the isostress-isothermal (NσT) ensemble. However, slight
modifications, allow us to obtain the Hamiltonian for the isostress-isenthalpic (NσH)
ensemble (Andersen, 1980; Parrinello and Rahman, 1981), the canonical NFT ensemble
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(Nosé, 1984; Hoover, 1985; Hünenberger, 2005) or the microcanonical NFE ensemble.1

In Eq. 4.3, sα and pα denote the atoms’ coordinates in the referential MD cell and
conjugate momenta, respectively. The generalized coordinates and momenta of the
MD cell are F and Π, respectively. A Nosé-Hoover thermostat (see Section 2.2.3) is
included with the extra degree of freedom s, the conjugate momentum ps and the
thermal mass Q. The quantity J = ∑N

α=1 mα sα0 ⊗ sα0 is the referential inertia tensor, with
sα0 being the atoms’ initial positions in the referential MD cell. The volume in the
referential configuration is given by Ω0 and the externally applied stress is given by
Sext, which is of the same character as the second Piola-Kirchhoff stress tensor from
continuum mechanics. The associated quantity E corresponds to the Green-Lagrangian
strain tensor and C−1 = F−1F−T is the inverse of the right Cauchy-Green deformation
tensor. Eq. 4.3 further contains the Boltzmann constant kB and the temperature of the
heatbath T∞. The quantity Uα denotes the potential energy of atom α.

The equations of motion can be found as (Ulz, 2015b)

s̈αmαs2 = −mα
(

s2C−1Ċ + 2sṡ
)

ṡα −
N

∑
β 6=α

∂rαβU atoms

rαβ
sαβ, (4.4)

F̈J = −Ω0F(Sext + Sinst), (4.5)

s̈Q =
1
s

(
N

∑
α=1

mαs2(ṡα)TC ṡα − gkBT∞

)
, (4.6)

where rαβ equals the distance between atoms α and β in the current MD cell and sαβ =
sα − sβ. The instantaneous microscopic stress tensor Sinst is found during derivation
as

Sinst =
1

Ω0

[
−C−1

(
N

∑
α=1

1
mαs2 pα ⊗ pα

)
C−1 +

1
2

N

∑
α=1

N

∑
β 6=α

∂rαβU atoms

rαβ
sαβ ⊗ sαβ

]
. (4.7)

The Hamiltonian in Eq. 4.3 is valid for the NσT ensemble and the equations of motion
in Eqs. 4.4-4.6 generate microscopic configurations of this ensemble. In order to obtain
the equations of motion which generate microscopic configurations of other ensembles,
different constraints must be applied as shown in Tab. 4.1. In the following, the NFT
ensemble will be used.

The purpose of the fine-scale model is to compute the constitutive quantities S and C

for the coarse-scale computations. The microscopic counterparts to these constitutive

1The NΩE and NFE ensembles are very similar. The difference is that in the NΩE ensemble, only the
volume Ω is kept constant, while in the NFE ensemble, the volume and the shape (controlled by F) are
fixed.
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4.2. Hierarchical multiscale method

NσH s = 1, ṡ = s̈ = 0

NFT F = const., Ḟ = F̈ = 0, Sext = 0

NFE s = 1, ṡ = s̈ = 0, F = const., Ḟ = F̈ = 0, Sext = 0

Tab. 4.1.: Applied constraints used to simulate other ensembles than NσT.

quantities shall be given here.

As shown in Section 2.1.4 for a hyperelastic constitutive relation, the second Piola-
Kirchhoff S can be obtained from a given strain energy density W by derivation with
respect to the Green-Lagrange strain tensor E. An energy variable which is related
the strain energy density is the Helmholtz free energy Ψ = Ω0W. A fine-scale stress
measure corresponding to the second Piola-Kirchhoff stress can hence be obtained by
derivation of the Helmholtz free energy with respect to the Green-Lagrange strain
tensor E (see, e.g., Tadmor and Miller, 2011)

S =
1

Ω0
∂Ψ
∂E

=
1

Ω0

〈
∂HR

∂E

〉
=

1
Ω0

∂HR

∂E
= Sinst, (4.8)

where HR is the Hamiltonian given in Eq. 4.3 adapted for the NFT ensemble and Sinst

is the instantaneous microscopic stress tensor given in Eq. 4.7. In the third equality of
Eq. 4.8, the ensemble average is replaced with a time average.

The elasticity tensor is found as the second derivative of the Helmholtz free energy
with respect to E as (Ulz, 2015b)

C =
1

Ω0
∂2Ψ
∂E2 =

1
Ω0

[〈
∂2HR

∂E2

〉
− 1

kBT

(〈
∂HR

∂E
∂HR

∂E

〉
−
〈

∂HR

∂E

〉〈
∂HR

∂E

〉)]
. (4.9)

The computation of the averaged terms on the RHS of Eq. 4.9 requires a different quality
of sampling to obtain sufficient accuracy. While the first term involving the second
derivative is less demanding, the terms in the round brackets need a very thorough
sampling in phase space. In order to ensure reasonable computational cost, these latter
terms will be neglected in the method, i.e.,

C ≈ 1
Ω0

〈
∂2HR

∂E2

〉
=

1
Ω0

∂2HR

∂E2 = Cinst. (4.10)

The impact of this simplification depends on the considered material and the tempera-
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4. A SA approach to improve the convergence behavior of hierarchical models

ture level. For the materials and temperatures used in this work (single-crystal copper
at room temperature), the omitted terms only contribute 3− 5% to the total elastic-
ity tensor C (Çain and Pettitt, 1989) and may hence be neglected. The instantaneous
microscopic elasticity tensor is found as

Cinst = Cinst,kin + Cinst,pot (4.11)

Cinst,kin
I JKL = − 2

Ω0

(
C−1

IK Sinst
JL + Sinst

IL C−1
JK

)
(4.12)

Cinst,pot =
1

Ω0

[
− 1

2

N

∑
α=1

N

∑
β 6=α

∂rαβU atoms sαβ ⊗ sαβ ⊗ sαβ ⊗ sαβ

(rαβ)3

+
1
2

N

∑
α=1

N

∑
β 6=α

∂

∂E

(
∂rαβU atoms

)sαβ ⊗ sαβ

(rαβ)2

]
. (4.13)

4.2.3. Details of the hierarchical multiscale method

The hierarchical multiscale method will now be described in detail. The connection
between the two scales of the method is sketched in Fig. 4.2.

∆t

n n + 1

F
S, C

M∆τ

Fig. 4.2.: Information exchange between coarse and fine scale. The top two lines represent the coarse-scale
time with the time step ∆t and the Newton-Raphson iterations at every discrete instant of
coarse-scale time t. The bottom line shows the fine-scale time with the time step ∆τ. The choice
of ∆τ must ensure that the atomic vibrations are traced appropriately.

On the coarse scale, the domain of interest is discretized using a sufficient amount of
finite elements. Each finite element employs a number of Gauss points whereas each
Gauss point is assigned to a MD cell on the fine scale (Fig. 4.3). Every time a new
displacement field is obtained on the coarse scale, the deformation gradient in every
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4.2. Hierarchical multiscale method

Gauss point is computed. Each MD cell is constrained by its associated deformation
gradient tensor according to the Cauchy-Born rule (Ericksen, 2008) and the constant
temperature T∞, which already implies that the subsequent MD simulation is carried
out under NFT conditions. During this simulation, the MD cell is tracked forM fine-
scale time steps, and the second Piola-Kirchhoff stress tensor S (Eq. 4.8) and elasticity
tensor C (Eq. 4.10), i.e., the macroscopic observables of interest, are computed through
time averages. In the next step, the coarse scale uses these quantities to compute a new
displacement field for the next iteration in the Newton-Raphson scheme.

The MD simulation consists of two stages:

(a) Reconstruction: initialize the macroscopic constraints and let the system equili-
brate (for a number of fine-scale time stepsMa).

(b) Data estimation: follow the fine-scale model over a sufficiently large sampling
time interval [0, τe] and compute the macroscopic observable A from a time
average A(r, p) using the microscopic equivalent A(r, p) (see Section 2.2.1). This
integral can be readily approximated by a sum over the fine-scale time steps
Mb = dτe/∆τe2

A = A(r, p) ≈ 1
τe

∫ τe

0
A(r(τ), p(τ)) dτ =

1
Mb

Mb

∑
j=1

Aj. (4.14)

The sampling time interval [0, τe] is sufficiently large if the time average converges.
Specifically, the stress tensor S and the elasticity tensor C are computed from
their (instantaneous) microscopic equivalents as

S =
1
Mb

Mb

∑
j=1

Sinst,j, C =
1
Mb

Mb

∑
j=1

Cinst,j. (4.15)

The use of sufficiently large intervals [0, τe] on the fine scale demands immense
computational cost and is often not feasible in practical calculations. If the interval
[0, τe] is insufficient, the obtained macroscopic observables for the multiscale method
are erroneous and may be written as

S = S̃ + ∆S, C = C̃ + ∆C, (4.16)

where the tilde denotes the converged quantities and the ∆ denotes the error (noise).
Rendering the error to a minimum demands large molecular systems and/or a thorough
sampling in the computation (i.e., sufficiently large τe for the time average).

2The notation d•e denotes the ceil function dxe = min{n ∈ Z|n ≥ x}.
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4. A SA approach to improve the convergence behavior of hierarchical models

Fig. 4.3.: A MD cell is located at each Gauss point of the discretized macroscopic body.

Ulz (2015b) proposed a strategy in which the sampling time interval for data estimation
is varied at each coarse-scale iteration. The sampling time interval per iteration is
increased from very short intervals in the first iterations to a sufficiently long interval
in the very last iteration. Thus the fine scale is sufficiently sampled only at the very
last coarse-scale iteration to yield converged macroscopic observables. It is argued
that a significant saving in computational cost is achieved with no accompanied loss
in accuracy. However, the increase in the sampling time interval with each iteration
was chosen arbitrarily rather than based on a sound mathematical treatment. This
is in contrast to the present work. While the basic idea proposed by Ulz (2015b) is
adopted, the increase in the sampling time interval per coarse-scale iteration is adapted
to meet certain assumptions from stochastic approximation. This is further discussed
in Section 4.4.

4.3. Stochastic approximation (SA)

Stochastic approximation addresses the problem of finding roots or extrema of noisy
functions. In contrast to recursive methods used in classical numerical analysis (e.g.,
the Newton-Raphson method), the function itself, g(θ), is not known, but noisy mea-
surements are available at any desired value of θ (Kushner and Yin, 2003).

Two prototypical algorithms are presented in the literature. The Robbins-Monro algo-
rithm for root finding problems, and the Kiefer-Wolfowitz algorithm for extremum
problems.
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4.3. Stochastic approximation (SA)

Robbins and Monro (1951) proposed the recursive scheme

θ(n+1) = θ(n) + ε(n)(α− Y(n)). (4.17)

which aims at finding a root θ∗ of a function α− g(θ) = 0, where g(θ) is assumed to be
nondecreasing.

Here, {ε(n) > 0} is an appropriate gain sequence which eventually goes to zero and
Y(n) = Y(θ(n)) is a noisy measurement of g(θ(n)). As ε(n) goes to zero, the rate of change
in θ slows down accordingly.

The measurement Y(n) can be written as

Y(n) = g(θ(n)) + e(θ(n)), (4.18)

if the noise term e is dependent on θ(n). Variations of Eq. 4.18 are possible, e.g., the
noise could also be correlated to {θ(i), i ≤ n} (Kushner and Yin, 2003).

To get a better idea of the role of ε(n), Eq. 4.17 can be rewritten as

θ(n+1) = θ(n) + ε(n)(α− g(θ(n)))− ε(n)e(θ(n))

= θ(n) + ε(n)(α− g(θ(n)))︸ ︷︷ ︸
“deterministic” part

+ ε(n)(g(θ(n))− Y(n))︸ ︷︷ ︸
“stochastic” part

. (4.19)

Assuming that the function g(θ) is continuous, the recursion will converge if the
“stochastic” part in the above equation vanishes eventually. In principle, there are two
approaches to drive the “stochastic” part to zero:

(a) The noise e is driven to zero in the progress of the iteration, which is of course
not always possible in practice, or

(b) a properly chosen gain sequence {ε(n)} is introduced, which eventually goes to
zero itself.

The choice of the gain sequence {ε(n)} greatly influences the efficiency of the scheme
and is required to meet certain convergence conditions (see, e.g., Kushner and Yin, 2003;
Spall, 2003).

In case of an extremum problem, for example the search for a minimum θ∗ of L(θ), the
corresponding set of equations reads as:

g(θ) =
∂L
∂θ

= 0. (4.20)
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4. A SA approach to improve the convergence behavior of hierarchical models

Needless to say, this requires proper conditions to ensure that a root of Eq. 4.20 is
a minimum. If direct measurements of the noisy derivatives g(θ) are available, the
associated solution algorithms are called stochastic gradient or gradient-based methods
(Spall, 2003). However, if only noisy measurements of L(θ) are available, the gradients
can only be estimated, e.g., via finite differences using the noisy measurements y. This
method is the multivariate extension of the Kiefer-Wolfowitz algorithm (Kiefer and
Wolfowitz, 1952):

θ(n+1) = θ(n) − ε(n)ĝ(n)(θ(n)), (4.21)

where {ε(n)} is required to meet the same convergence conditions as before, and ĝ(n)(θ(n))
is the finite difference estimate at the iterate θ(n) which is usually either approximated
one-sided or two-sided. The two-sided approximation for a p-dimensional problem
reads as:

ĝ(n)(θ(n)) =


y(θ(n) + c(n)ξ1)− y(θ(n) − c(n)ξ1)

2c(n)

. . .
y(θ(n) + c(n)ξp)− y(θ(n) − c(n)ξp)

2c(n)

 . (4.22)

In this scheme, {c(n)} denotes another gain sequence with similar conditions as {ε(n)}
and additionally ∑∞

n=0(ε(n))2/(c(n))2 < ∞. The quantity ξi is a vector which has the value
one at its i-th component and zero in all other places.

Because of the large amount of measurements needed, these finite difference approxi-
mations are becoming quite costly for high-dimensional problems. This can be tackled
using the simultaneous perturbation approach introduced by Spall (1992).

Next to the two prototypical iteration schemes presented, there is a vast variety on
stochastic approximation algorithms and possible choices for the gain sequences {ε(n)}
and {c(n)} in the literature. In particular adaptive SA algorithms are of interest for the
present work, where some knowledge of the Jacobian and/or Hessian is used in the
method to improve the overall convergence behavior. An interesting algorithm of this
class was proposed by Spall (2000) and may be written as

θ(n+1) = θ(n) + ε(n)
(

U(θ(n))
)−1(

α− Y(n)
)

, (4.23)

which recasts the classical Robbins-Monro root finding problem. Here, U(θ(n)) denotes
the estimate of the Jacobian matrix of g at θ(n), and is calculated in a separate re-
cursive calculation using function measurements Y in the simultaneous perturbation
approach.
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4.3. Stochastic approximation (SA)

4.3.1. Averaging of the iterates

Depending on the selected gain sequence {ε(n)}, the sample average

Θ(n) =
1

Noff

n

∑
i=n−Noff+1

θ(i) (4.24)

can be a better estimate of the desired solution θ∗ than θ(n). In this expression, Noff

determines the window of averaging. This procedure is here referred to as “offline”
averaging, as it does not influence the actual stochastic approximation algorithm, but
rather replaces its final estimate with an average of previous estimates.

It is commonly known that if ε(n) approaches zero more slowly than 1/n, averaging of
the iterates may be preferable. This was originally found by Polyak and Juditsky (1992),
a proof was given by Kushner and Yang (1993). One possible choice of ε(n) that fulfills
this criterion is

ε(n) =
κ

κ + n
κ > 1. (4.25)

For further information see, e.g., Kushner and Yin (2003); Spall (2003).

4.3.2. Averaging of the iterates and observations

Another way to improve the convergence behavior under certain conditions is to use
the following scheme, which was originally proposed by Bather (1989)

θ(n+1) = θ̆(n) + nε(n)(α− Y̆(n)), (4.26)

This algorithm uses averaged values of the iterates and observations in the form

θ̆(n) =
1
n

n

∑
i=1

θ(i), Y̆(n) =
1
n

n

∑
i=1

Y(i). (4.27)

Clearly, the averaging procedure influences the stochastic approximation algorithm
itself and it is therefore referred to as “online” averaging.

When comparing this algorithm with the Robbins-Monro scheme (Eq. 4.17), not only
the use of averaged quantities but also the additional factor n becomes apparent. The
need for this factor stems from the use of averaged quantities in the algorithm and it
ensures that the convergence conditions of the gain sequence mentioned in Section 4.3
are satisfied. For further information see, e.g., Schwabe (1994).
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4.4. Application of SA to the hierarchical multiscale method

Upon closer examination, the Newton-Raphson iteration scheme (Eq. 4.1) shows strik-
ing similarities to the adaptive stochastic approximation scheme (Eq. 4.23), with the
displacements u corresponding to θ. In stochastic approximation, one is interested
in finding the values of θ = θ∗ which give a root of the function α− g(θ) = 0, while
only noise-corrupted measurements Y are available. The same applies to the multiscale
method, where one is interested in finding a nodal displacement vector u = u∗ which
fulfills fext− f int = 0, while only noise-corrupted measurements of f int(S) are available.

Furthermore, the estimate of the Jacobian matrix, U(θ(n)), corresponds to the stiffness
matrix K.3

The role of ε(n) in the multiscale method shall now be discussed in detail. At first, using
a similar approach as in Eq. 4.19 and using Eq. 4.16, Eq. 4.1 can be rewritten as

u(n+1) = u(n) +
[
K(n)(S̃ + ∆S, C̃ + ∆C)

]−1 [
fext − f int,(n)(S̃ + ∆S)

]
= u(n) +

[
K(n)(S̃, C̃)

]−1 [
fext − f int,(n)(S̃))

]
︸ ︷︷ ︸

“deterministic” part

+
[
K(n)(S̃, C̃)

]−1 [
−f int,(n)(∆S)

]
+
[
K(n)(∆S, ∆C)

]−1 [
fext − f int,(n)(S̃)− f int,(n)(∆S)

]
︸ ︷︷ ︸

“stochastic” part

,

(4.28)

where the additive decompositions K(n)(S̃ + ∆S, C̃ + ∆C) = K(n)(S̃, C̃) + K(n)(∆S, ∆C) and
f int,(n)(S̃ + ∆S) = f int,(n)(S̃) + f int,(n)(∆S) are used.

Clearly, the same situation as in Section 4.3 is revealed. The recursion will converge if the
“stochastic” part in the above equation vanishes eventually. In Section 4.3, two possible
approaches to reach this goal were presented. We refrain from the first approach, i.e.,
introducing a gain sequence, due to concerns of the validity of such an approach in
the theoretical background of the Newton-Raphson method. Furthermore, introducing
a gain sequence would certainly hinder the general applicability to other hierarchical
methods. Instead, the second approach is used, i.e., the noise is steadily reduced over

3In most classical adaptive SA algorithms it is assumed that the estimate of the Jacobian matrix
U(θ(n)) is not directly accessible, but needs to be approximated. However, in the case of the presented
multiscale method, the corresponding quantity K is directly accessible, i.e., it can be computed from
directly measured quantities.
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4.4. Application of SA to the hierarchical multiscale method

the iterations by gradually increasing the number of fine-scale time steps per iteration
M(n) for a longer sampling of the fine-scale (Fig. 4.4).

To further reduce the impact of the noise on the calculations, the SA averaging concepts
(Secs. 4.3.1 and 4.3.2) are applied on the multiscale method. These averaging concepts
are employed in SA, if the gain sequence ε(n) cannot be properly chosen. Here, we
find ourselves (to some extent) in such a situation and expect an improvement in the
multiscale method.

∆t

M(1)∆τ

... ... ... ... ... ... ...

...

M(2)∆τ M(3)∆τ M(4)∆τ M(5)∆τ M(6)∆τ M∆τ

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = nmax

Fig. 4.4.: Coarse-scale and fine-scale time lines of the described multiscale method. The number of fine-scale
time steps per iteration is increased gradually.

For reasons of consistency, the relation forM(n) is chosen according to the gain sequence
{ε(n)}.

A possible choice for ε(n) was presented in Eq. 4.25, which is also suitable for “offline”
averaging. However, a direct application of this sequence yields a very small number of
fine-scale time steps and improper averaging results on the fine scale. Therefore, the
following sequence in the atomistic-to-continuum setting is advocated

M(n) =
κ + n

κ
λ. (4.29)

The introduction of the multiplier λ > 0 ensures a reasonable number of fine-scale time
steps. This factor does not violate the criterion which led to Eq. 4.25.

To sum up, the general idea of this work is to diminish the noise in a multiscale method
by the combination of two strategies adopted from SA. Firstly, a reduction of the noise
over the course of the iterations is achieved by increasing the number of fine-scale
time steps gradually in each iteration. Secondly, two averaging schemes (“averaging of
the iterates” and “averaging of the iterates and observations”) are applied to further
improve the convergence behavior.

41



4. A SA approach to improve the convergence behavior of hierarchical models

4.4.1. “Offline” averaging

Two different search paths in a two-dimensional space are shown in Fig. 4.5 as described
by Spall (2003). The two-dimensional search path can be thought of as the nodal
position in a two-dimensional finite element simulation. If the nodal point shows
similar behavior to Fig. 4.5a, i.e., it fluctuates in a small area in which we can expect
the root θ∗ rather than strictly approaching this point as shown in Fig. 4.5b, “offline”
averaging will potentially improve the iteration result. In fact, we will see in Section 4.5
that thermal fluctuations cause the nodal points to behave in a similar manner as
shown in Fig. 4.5a. Therefore, one can expect a better estimate of the correct nodal
displacement vector u∗ when using “offline” averaging.

θ∗

θ0

(a)

θ∗

θ0

(b)

Fig. 4.5.: Two different scenarios of search paths in a two-dimensional SA problem. “Offline” averaging is
expected to improve the result of the scenario in (a), but certainly will not improve the outcome
of the scenario in (b). Figures taken from Spall (2003).

4.4.2. “Online” averaging

“Online” averaging was discussed in Section 4.3.2 as a second method for improving
the results of SA schemes. While “offline” averaging did not influence the iteration
process, “online” averaging interferes with the SA scheme as both the iterates and the
observations are constantly averaged.

It was found that Bather’s original algorithm (Eqs. 4.26, 4.27) does not perform well for
the multiscale method and for this reason two modifications were made.

Firstly, the factor nε(n) in the second term on the RHS of Eq. 4.26 is omitted. This change
is mainly introduced due to the missing one-to-one equivalence of the SA algorithm
with the NR iteration scheme. Since there is no gain sequence in the multiscale method
(please see the discussion at the beginning of this section), there is no need to artificially
introduce the factor n to satisfy the convergence criteria for the involved gain sequence.
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Secondly, instead of accounting for all previous iterates and observations in the averages,
only the last Non are taken in the form of a constant window of averaging

θ̆(n) =
1

Non

n

∑
i=n−Non+1

θ(i), Y̆(n) =
1

Non

n

∑
i=n−Non+1

Y(i). (4.30)

This change is introduced to speed up the algorithm and to prevent the first few (usually
more erroneous) iterates and observations from influencing the later iterations.

The application of this algorithm changes the NR iteration scheme in Eq. 4.1 to

u(n+1) = ŭ(n) +
[
K(n)(S̆, C̆)

]−1 [
fext − f int,(n)(S̆)

]
, (4.31)

using averages of Non preceding NR iterations

ŭ(n) =
1

Non

n

∑
i=n−Non+1

u(i), S̆ =
1

Non

n

∑
i=n−Non+1

S(i), C̆ =
1

Non

n

∑
i=n−Non+1

C(i). (4.32)

4.4.3. Stress distribution

It is important to note that an accurate displacement field does not necessarily result in
an accurate stress distribution. A reasoning for this behavior is provided below.

In Section 4.2.3, it was shown that the stresses are computed on the fine scale by an
averaging procedure. The obtained stresses in a Gauss point can be written as

S(u) = S̃(u) + ∆S(u), (4.33)

where S̃(u) again is the correct stress response (converged average) for some nodal
displacement vector u and ∆S is the error. Even if the correct nodal displacement vector
u∗ were found, the stress response obtained would still be erroneous, i.e.,

S(u∗) = S̃(u∗) + ∆S(u∗). (4.34)

As a result, insufficient fine-scale sampling will still render the stress distribution
erroneous, even if “offline” or “online” averaging yield displacements arbitrarily close
to the desired displacement field.

The stress distribution may be improved using an additional “offline” averaging of the
stresses. This idea is along the same lines of averaging the displacements and will not
cause any additional computational cost.
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4.5. Numerical examples

To show the effectiveness of the proposed strategies, three numerical examples are stud-
ied. An elongated plate under uniaxial tension serves as an introductory example. In
the second example, a plate with a circular notch under uniaxial tension is investigated.
Finally, the third example is concerned with a plate with a single crack which is also
subject to uniaxial tension. In the examples, the evolution of the displacements and
stresses over the NR iterations at characteristic points in the macroscopic domain will
be investigated and give an insight in the averaging behavior. Furthermore, the stress
distributions of the numerical simulation will be compared with analytical solutions.

All three examples are studied under conditions of plane strain at 300 K. A copper
single crystal denotes the modeled material. The domain will be discretized by the
finite element method with either linear quadrilaterals or triangles using the Newton-
Raphson method as the coarse-scale solver.

The Gauss quadrature rule is applied, using 2× 2 quadrature points for the linear
quadrilaterals and one quadrature point for the linear triangle elements. The recovery
of the nodal stresses is achieved by extrapolating the stresses from the quadrature
points to the nodes and subsequent averaging.

The Gear sixth-order predictor-corrector scheme (see Section 2.2.4) gives the time
integration algorithm on the fine scale in an MD program implemented in Fortran.
The initial cubic MD cell at each coarse-scale Gauss point contains 500 atoms in a
face-centered cubic (fcc) lattice and has periodic boundary conditions. Furthermore, the
simulation box is oriented along the crystallographic axes with the x-axis coinciding
with [100]. An EAM potential gives the atomic interaction according to the presented
functions and parameters by Zhou et al. (2001); a cut-off radius of 2.5 times the unit cell
length is taken. The fine-scale time step is set to 0.375 fs.

In the light of the preceding section, the simulation scenarios are summarized in
Tab. 4.2.

In all three examples, the number of fine-scale time steps per iteration is increased
according to Eq. 4.29 using κ = 1.1 and λ = 50. These values ensure a computationally
managable amount of total fine-scale time steps for the problems presented below. The
parameter for the window of averaging in case sa2 (Eq. 4.32) is chosen to be Non = 10 in
all three examples. A sensitivity analysis yielded that the results are rather insensitive
in regards to the choice of these three parameters, although a detailed analysis was not
performed and may be a topic for future research.
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std NR iteration scheme according to Eq. 4.1
standard case, no averaging procedures from SA are applied

sa1
NR iteration scheme according to Eq. 4.1
& “offline” averaging of the displacements (Section 4.4.1)
& “offline” averaging of the stresses (Section 4.4.3)

sa2

NR iteration scheme according to Eq. 4.31, which involves “online”
averaging of the displacements and stresses (Section 4.4.2)
& “offline” averaging of the displacements (Section 4.4.1)
& “offline” averaging of the stresses (Section 4.4.3)

Tab. 4.2.: Compared methods. For the sake of brevity, the abbreviations in the first column are introduced.

4.5.1. Stretched plate

A plate with dimensions 200× 100× 1 mm is uniaxially loaded with p = 1 GPa. The
plate is discretized by two standard 4-node quadrilaterals and is subject to Dirichlet
boundary conditions as shown in Fig. 4.6.

x

y

P p

Fig. 4.6.: Geometry and boundary conditions of the stretched plate.

The load is applied in a single coarse-scale time step in which nmax = 150 Newton-
Raphson iterations are performed. In order to gain insight into the averaging behavior
of the proposed strategies, the displacements and stresses of a characteristic node P in
the macroscopic domain are investigated.

In contrast to the following two examples, the simplicity of this example allows for a
thorough sampling of the fine-scale quantities in a reasonable computational time. A
reference case can therefore be introduced, which uses only well converged averaged
quantities on the fine scale for computation. The reference case shows 15 Newton-
Raphson iterations with 1.4 million fine-scale time steps each for sampling.

Fig. 4.7 shows the displacement of node P over the total number of fine-scale time
steps for the cases std, sa1, sa2 and the reference case. The noise clearly manifests in the
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Fig. 4.7.: Displacement of node P for the stretched plate. The dotted line shows the std case, the dashed
and dot-dashed line represent the cases sa1 and sa2, respectively. The triangles show the results
for the reference case, where only well converged averaged quantities are used. For the std case,
the displacement is simply u(n) of the corresponding scheme, whereas for cases sa1 and sa2 it is
the average over Noff previous iterations 1

Noff ∑n
i=n−Noff+1 u(i) where Noff = 50.

fluctuations of the displacement for the std case. Both averaging strategies reduce the
impact of this noise on the resulting displacement and smoothen the curve.

One can also see that the reference case yields very similar displacements, but of course
at a much higher computational expense (note that the total number of fine-scale time
steps is plotted on a logarithmic scale).
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Fig. 4.8.: Normal stress in x-direction at node P for the stretched plate. The dotted line shows the std case,
the dashed and dot-dashed line represent the cases sa1 and sa2, respectively. The triangles show
the results for the reference case, where only well converged averaged quantities are used. For
the std case, the stress is simply σ

(n)
xx , whereas for sa1 and sa2 it is the average over Noff previous

iterations 1
Noff ∑n

i=n−Noff+1 σ
(i)
xx where Noff = 50.

The same applies to the normal stress in x-direction at node P shown in Fig. 4.8.
The benefits of the two averaging strategies become even clearer in an alternative
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representation shown in Fig. 4.9, where the percentual error of the stress for the cases
std, sa1, sa2 and the reference case is shown.

It can be seen that both averaging strategies significantly reduce the error in comparison
to the std case and result in errors < 0.1% after a total of about 400, 000 fine-scale time
steps. The reference case, which uses well converged averaged quantities, needs at
least 4.2 million fine-scale time steps to yield an error < 0.1%. In this example, both
averaging schemes provide a saving of about 90% of computational effort in comparison
to the well converged reference case.
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Fig. 4.9.: Percentual error of normal stress in x-direction at node P for the stretched plate. The target stress
value is 1 GPa. The dotted line shows the std case, the dashed and dot-dashed line represent
the cases sa1 and sa2, respectively. The triangles show the results for the reference case, where
only well converged averaged quantities are used. For the std case, the stress used in the
evaluation is simply σ

(n)
xx , whereas for sa1 and sa2 it is the average over Noff previous iterations

1
Noff ∑n

i=n−Noff+1 σ
(i)
xx where Noff = 50.

4.5.2. Plate with a circular notch under uniaxial tension

A plate with dimensions 723×723×1 mm and a centrical circular notch of radius
a = 21.69 mm is considered as shown in Fig. 4.10a. The plate is loaded in y-direction
with p = 667 MPa. Due to the symmetry of the problem, only a quarter is investigated
with accordingly chosen boundary conditions to avoid unnecessary computational cost
(Fig. 4.10b). As the stress gradients in close distance to the notch are assumed to be
much higher than those on the outer edges, the element sizing is adapted accordingly,
resulting in a total amount of 546 standard 3-node triangle elements (see Fig. 4.10c).
Again, the load is applied in a single coarse-scale time step, although in this example
nmax = 70.
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Fig. 4.10.: (a) Plate with a circular notch under uniaxial tension. (b) Modeled system and boundary
conditions. (c) FEM mesh.

Comparison of the averaging behavior

In Section 4.4.1 it was mentioned that “offline” averaging is expected to improve the
final estimate of the displacement field if the nodal points’ motion over the iterations
shows similar behavior to Fig. 4.5a. To show that this is the case, a characteristic node Q
(see Fig. 4.10b), located at x = 6.804 mm and y = 24.098 mm is selected. The node moves
along a two-dimensional displacement path as shown in Fig. 4.11. A comparison with
Fig. 4.5a shows that the assumptions made in Section 4.4.1 apply and, hence, “offline”
averaging can be expected to improve the displacement field.
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Fig. 4.11.: (a) Position of node Q over the iterations. The initial and final positions of Q are given with (�)
and (×), respectively. (b) An enlarged view of the area that contains the last 20 iterations.

A node P located directly at the notch, at x = 21.69 mm and y = 0 mm, is investigated
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next. The evolution of the displacement in x-direction and the stress in y-direction
at this node over the NR iterations is shown in Figs. 4.12 and 4.13, respectively. The
proposed averaging strategies clearly smoothen the curves and show faster convergence.
It can be seen that both strategies give a good estimate of the final displacement and
stress at about 30-40 NR iterations.
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Fig. 4.12.: Displacement of node P over the iterations. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. For the std case, the displacement is simply u(n)

of the corresponding scheme, whereas for cases sa1 and sa2 it is the average over Noff previous
iterations 1

Noff ∑n
i=n−Noff+1 u(i) where Noff = 10.
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Fig. 4.13.: Normal stress at node P over the iterations. The dotted, dashed and dot-dashed lines show
the results for the cases std, sa1 and sa2, respectively. For the std case, the stress is simply σ

(n)
yy ,

whereas for sa1 and sa2 it is the average over Noff previous iterations 1
Noff ∑n

i=n−Noff+1 σ
(i)
yy where

Noff = 10.
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4. A SA approach to improve the convergence behavior of hierarchical models

Comparison of the stress distributions

The final estimates of the stress distributions (i.e., at n = nmax) for the cases std, sa1 and
sa2 will now be compared with an analytical solution. For this purpose, the normal
stresses σ(nmax)

xx and σ(nmax)
yy are normalized by p and plotted along the x- and y-axis

in Figs. 4.14 to 4.17. The analytical solution as given by Lekhnitskii (1968) (elastic
constants taken from Lazarus (1949) for copper) is presented by a solid line in all of
these figures.
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Fig. 4.14.: Normalized normal stress along the y-axis. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. The analytical solution is given as a solid
line. For the std case, the normalized stress is simply σ

(nmax)
xx /p, whereas for sa1 and sa2 it is the

normalized average over Noff previous iterations 1
pNoff ∑nmax

i=nmax−Noff+1 σ
(i)
xx where Noff = 10.

The stress distributions show a good overall agreement with the analytical solution.
This implies that the used multiscale method combined with the proposed SA averaging
schemes is appropriate for this example. For the majority of the displayed results, the
curves obtained for the averaging strategies sa1 and sa2 show less deviation from the
analytical solution than the std case.

To quantify these results, the mean absolute error (MAE)

MAE ij =
1

Nnodes

Nnodes

∑
I=1

∣∣∣σ̃(nmax),I
ij − σ∗I

ij

∣∣∣ , (4.35)

is introduced, which compares the absolute deviation of the stress component σ̃(nmax)
ij

obtained by std, sa1 or sa2 with the analytical solution. The results in Tab. 4.3 show
that both averaging schemes are able to reduce the MAE significantly, by up to about
20%.
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Fig. 4.15.: Normalized normal stress along the y-axis. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. The analytical solution is given as a solid
line. For the std case, the normalized stress is simply σ

(nmax)
yy /p, whereas for sa1 and sa2 it is the

average over Noff previous iterations 1
pNoff ∑nmax

i=nmax−Noff+1 σ
(i)
yy where Noff = 10.
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Fig. 4.16.: Normalized normal stress along the x-axis. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. The analytical solution is given as a solid
line. For the std case, the normalized stress is simply σ

(nmax)
xx /p, whereas for sa1 and sa2 it is the

average over Noff previous iterations 1
pNoff ∑nmax

i=nmax−Noff+1 σ
(i)
xx where Noff = 10.

Figs. 4.12 and 4.13 showed that both averaging strategies yield good estimates of the
final displacements and stresses at early stages of the simulation. To further investigate
this behavior, the calculations have been repeated for nmax = 25. For the sake of brevity,
only the results for the MAE will be given here (see Tab. 4.4). It is evident that both
averaging strategies yield even greater relative reduction of the MAE in comparison to
the calculations for nmax = 70 (Tab. 4.3), reducing the error by up to 50%. Furthermore,
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Fig. 4.17.: Normalized normal stress along the x-axis. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. The analytical solution is given as a solid
line. For the std case, the normalized stress is simply σ

(nmax)
yy /p, whereas for sa1 and sa2 it is the

average over Noff previous iterations 1
pNoff ∑nmax

i=nmax−Noff+1 σ
(i)
yy where Noff = 10.

MAE xx ±% MAE yy ±% MAE xy ±%
std 29.15 0 31.90 0 15.79 0
sa1 21.50 -26.21 28.23 -11.48 12.05 -23.67
sa2 23.25 -20.24 30.06 -5.78 12.60 -20.22

Tab. 4.3.: Comparison of the MAE (in MPa) of the proposed strategies for the plate with a circular notch
for nmax = 70 iterations.

MAE xx ±% MAE yy ±% MAE xy ±%
std 52.27 0 56.51 0 24.19 0
sa1 22.17 -57.58 30.04 -46.84 11.92 -50.73
sa2 24.30 -53.51 30.31 -46.37 13.70 -43.36

Tab. 4.4.: Comparison of the MAE (in MPa) of the proposed strategies for the plate with a circular notch
for nmax = 25 iterations.

at nmax = 25, both averaging strategies yield smaller MAEs than the std case after
nmax = 70 iterations.
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4.5.3. Plate with a crack under uniaxial tension

A crack of length 2a = 43.38 mm is placed along the x-axis of a plate with dimensions
723× 723× 1 mm (Fig. 4.18a). The plate is loaded in y-direction with p = 667 MPa and
only a quarter of the system is investigated as shown in Fig. 4.18b. The mesh has a total
of 573 3-node triangle elements and is chosen to be sufficiently fine around the crack
tip (see Fig. 4.18c). The load is applied in a single coarse-scale time step with nmax = 70
iterations.
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Fig. 4.18.: (a) Plate with a crack under uniaxial tension. (b) Modeled system and boundary conditions. (c)
FEM mesh.

Comparison of the averaging behavior

Two characteristic nodes P and Q are selected and displayed in Fig. 4.18b. Node P is
located at the crack tip, x = 21.69 mm and y = 0 mm, and node Q at x = 17.144 mm and
y = 3.467 mm in the undeformed configuration.

The search path of node Q is shown in Fig. 4.19. Clearly, node Q does not strictly
approach its final destination but rather fluctuates in a limited area. The considerations
made in Section 4.4.1 apply and therefore justify the use of “offline” averaging.

The evolution of the displacement in x-direction and the stress in y-direction of node
P over the NR iterations is shown in Figs. 4.12 and 4.13, respectively. Once again, the
strategies sa1 and sa2 smoothen the curves significantly, and good estimates of the final
displacement and stress are obtained (at about 30 NR iterations).
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Fig. 4.19.: (a) Position of node Q over the iterations. The initial and final positions of Q are given with (�)
and (×), respectively. (b) An enlarged view of the area that contains the last 20 iterations.
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Fig. 4.20.: Displacement of node P over the iterations. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. For the std case, the displacement is simply u(n)

of the corresponding scheme, whereas for cases sa1 and sa2 it is the average over Noff previous
iterations 1

Noff ∑n
i=n−Noff+1 u(i) where Noff = 10.

Comparison of the stress distributions

The final estimates of the stress distributions (i.e., at n = nmax) for the cases std, sa1
and sa2 will now again be compared to the analytical solution. The normal stresses
σ(nmax)

xx and σ(nmax)
yy normalized by p along the x-axis are plotted in Figs. 4.22 and 4.23.

The analytical solution is again taken from Lekhnitskii (1968) (elastic constants from
Lazarus (1949) for copper) and given by a solid line in both figures.

Similar to the last example, the stresses obtained using the averaging strategies sa1 and
sa2 show less deviation from the analytical solution than the std case. In Tab. 4.5 the
MAE (Eq. 4.35) is used once more to verify this observation for the entire macroscopic
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Iterations

St
re

ss
σ

yy
/

M
Pa

Fig. 4.21.: Normal stress at node P over the iterations. The dotted, dashed and dot-dashed lines show
the results for the cases std, sa1 and sa2, respectively. For the std case, the stress is simply σn

yy,
whereas for sa1 and sa2 it is the average over Noff previous iterations 1

Noff ∑n
i=n−Noff+1 σi

yy where
Noff = 10.
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Fig. 4.22.: Normalized normal stress along the x-axis. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. The analytical solution is given as a solid
line. For the std case, the normalized stress is simply σ

(nmax)
xx /p, whereas for sa1 and sa2 it is the

average over Noff previous iterations 1
pNoff ∑(nmax)

i=nmax−Noff+1 σ
(i)
xx where Noff = 10.

region4. The results show similar behavior to the last example, both averaging strategies
can reduce the MAE by up to about 15%.

Similar to the last example, the calculations have been repeated for nmax = 25. The
results for the MAE are shown in Tab. 4.6.

4The analytical solution shows a stress singularity at the crack tip. Therefore, the vicinity of the crack
tip (a circle with radius 1 mm) is excluded from the calculations for the MAE in Tables 4.5 and 4.6.
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Fig. 4.23.: Normalized normal stress along the x-axis. The dotted, dashed and dot-dashed lines show the
results for the cases std, sa1 and sa2, respectively. The analytical solution is given as a solid
line. For the std case, the normalized stress is simply σ

(nmax)
yy /p, whereas for sa1 and sa2 it is the

average over Noff previous iterations 1
pNoff ∑(nmax)

i=nmax−Noff+1 σ
(i)
yy where Noff = 10.

MAE xx ±% MAE yy ±% MAE xy ±%
std 21.65 0 20.25 0 18.47 0
sa1 18.31 -15.45 17.71 -14.01 15.50 -16.05
sa2 18.63 -13.95 17.32 -14.48 15.54 -15.84

Tab. 4.5.: Comparison of the MAE (in MPa) of the proposed strategies for the plate with a single crack for
nmax = 70 iterations.

MAE xx ±% MAE yy ±% MAE xy ±%
std 45.94 0 30.18 0 20.75 0
sa1 17.96 -60.90 16.96 -43.79 14.69 -29.22
sa2 21.12 -54.03 19.52 -35.30 14.78 -28.80

Tab. 4.6.: Comparison of the MAE (in MPa) of the proposed strategies for the plate with a single crack for
nmax = 25 iterations.

Just like in the preceding example, both averaging strategies result in greater relative
MAE reduction in comparison to the calculation for nmax = 70 iterations (Tab. 4.6) and
also yield smaller MAEs at nmax = 25 than the std case after nmax = 70 iterations.

56



5. Demand-based coupling of the scales in
concurrent atomistic-to-continuum
methods at finite temperature

This chapter is a modified version of the peer-reviewed journal paper “Demand-
based coupling of the scales in concurrent atomistic-to-continuum models at finite
temperature” published in the Journal of the Mechanics and Physics of Solids (Wurm
and Ulz, 2020).

5.1. Introduction

In the finite temperature versions the CADD method (and other concurrent methods),
the coarse and fine scale are coupled at fixed intervals of time, i.e., an information
transfer between the scales occurs in every or in every few fine-scale time steps. With
a focus on the continuum, this means that its solution fields are computed at fixed
intervals of time. However, in times when there is negligible deformation at the spa-
tial coupling interface and when the external (non-interfacial) boundary conditions
on the continuum do not change, these computations are unnecessary. During these
times, solving the continuum only causes the coupling interface to fluctuate around
its equilibrium position and thereby conveys (possibly unwanted) thermal energy into
the continuum. Yet, there is no qualitative change in the continuum solution fields
- the numerical effort on the continuum computation is in vain. The transition from
coupling the scales in such a fixed interval fashion towards a coupling which is based on
current demand promises to yield substantial computational savings, as the continuum
computations may be skipped in large portions of the simulation time.

To achieve such a demand-based coupling, the use of an algorithm which decides if the
coupling is necessary, is proposed. The algorithm judges the state of deformation close
to the spatial coupling interface by monitoring the relative motion between a band
of atoms and the interface. If the algorithm detects non-negligible deformation, i.e.,
deformation that is larger than some known equilibrium limit, the continuum solution
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is computed (“the continuum is activated”). Otherwise, the continuum computations
are skipped to save computational time. To this end, the algorithm requires knowledge
of the deformation at the interface, i.e., the mechanical component of the relative atomic
motion between the band and the interface. Besides the mechanical component of
interest, the motion also consists of a thermal component which manifests itself in
random thermal fluctuations. These thermal fluctuations complicate the determination
of the state of deformation and a clear separation of the mechanical and thermal
component is not feasible. However, it is assumed that the mechanical component is of
lower frequency than large parts of the thermal component, allowing for an approx-
imate separation (Mathew, Picu, and Bloomfield, 2011). Filtering out high frequency
components of the motion therefore provides reasonable knowledge of the mechanical
component of the relative atomic motion and enables the algorithm to reliably estimate
whether or not there is a demand for the continuum solution. This filtering operation
is conveniently accomplished by using well-established low-pass filters from digital
signal processing.

Filtering techniques have already been applied to atomistic-to-continuum multiscale
models by other researchers (e.g., Mathew, Picu, and Bloomfield, 2011; Ramisetti, Anci-
aux, and Molinari, 2013; Ramisetti, Anciaux, and Molinari, 2014). In these contributions,
the filtering techniques were used to reduce the problem of high frequency phonon
reflection at the spatial coupling interface between the scales. Their underlying strategy
was to divide the phonon spectrum into low and high frequency components, adopting
the idea of an approximate separation of the mechanical and thermal components.
The distinction between the two frequency ranges is made in such a way that the
low frequency components are admissible to the coarse scale as mechanical waves.
The remaining high frequency components are considered as purely thermal. To this
end, the Generalized Langevin Equation (GLE) was used as the governing equation
of motion for a portion of atoms close to the interface. The filter kernel is used in the
damping term of the GLE to filter out the high frequency phonons, reducing the kinetic
energy of the atoms. This missing energy is, e.g., restituted by the random force term in
the GLE by Mathew, Picu, and Bloomfield (2011) and Ramisetti, Anciaux, and Molinari
(2014). The filter therefore directly influences the motion of parts of the atomic region
through the GLE.

In this work, the filtering techniques are used in a different way. The presented algo-
rithm and the filtering operation included herein do not modify the governing equations
of the concurrent multiscale model at hand (which in case of this work is CADD), but
instead estimate the demand to couple the scales in the way that is inherent to the model.

To the author’s best knowledge, such a demand-based coupling has not been studied
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in the literature. A reason for this might be that the continuum is generally assumed to
be computationally inexpensive in comparison to the atomistic region. However, large
continuum regions with many degrees of freedom and continuum models of higher
complexity result in a non-negligible computational effort spent on the continuum. The
approach which is presented in this work is general in the sense that it is applicable
to many concurrent atomistic-to-continuum models. However, the CADD method
is especially well suited to test the performance of the algorithm, as it incorporates
a model in the continuum region which is more complex than others. On top of
a standard finite element formulation, CADD has additional features such as the
detection and passing of dislocations between the two scales and the time evolution of
the discrete continuum dislocations. These features shift computational burden towards
the continuum region.

5.2. Demand-based coupling

5.2.1. The CADD method and coupling of the scales

At the heart of all atomistic-to-continuum models lies the spatial decomposition of the
solid body of interest into at least one atomistic and one continuum region. Specifically
in CADD, a given initial boundary value problem is solved by considering three
subproblems (see Fig. 5.1).

2

t0 t1

t0 − t1

u0

u0

f0

u1 u0 − u1

1 3

Pad atoms

Continuum region

Atomistic region

Fig. 5.1.: The three subproblems used in the solution procedure of CADD (see text).

Subproblems 1 & 2 are concerned with the continuum, in which the discrete dislocation
methodology of Van der Giessen and Needleman (1995) for isotropic solids is employed.
In this methodology, the solution of subproblem 1 yields the displacements and tractions
in an infinite isotropic medium due to the discrete dislocations. In subproblem 2, a
linear-elastic finite element model (either dynamic or quasi-static1) with plane strain

1The two approaches are compared in Section 6.2.1.
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conditions is used. To correct for the boundary tractions t1 and displacements u1,
resulting from the discrete dislocations, the boundary conditions in subproblem 2 are
modified as shown in Fig. 5.1. In the linear-elastic dynamic FE model, the equation
of motion (Eq. 2.21) simplifies to Mü + Ku = fext, as the internal nodal forces become
a linear function of the displacements. If damping is applied, the equation reads
Mü + Du̇ + Ku = fext, where D is the damping matrix. In the linear-elastic quasi-static FE
model, the discrete equilibrium equation (Eq. 2.26) simplifies to Ku = fext. In contrast
to subproblem 1, subproblem 2 may be fully anisotropic.2

Subproblem 3 shows the atomistic problem with the pad atoms, which project into the
continuum region. These special atoms are attached to the finite elements in which they
reside to ensure proper coordination of the atoms close to the interface. The CADD
method uses a sharp interface between the regions (instead of a handshake region). At
this clearly defined interface, the finite elements are fully resolved down to the resolu-
tion of the lattice spacings, so that every interface node is associated with an interface
atom and vice versa. To alleviate the important problem of high frequency phonon
reflection and ensure temperature stability, Langevin damping (see Section 2.2.4) is
commonly used in the finite temperature CADD method.

Like the majority of concurrent atomistic-to-continuum multiscale models, the finite
temperature version of CADD uses a fixed time interval coupling (see Fig. 5.2). In this
approach, the two scales are coupled at every discrete fine-scale time, i.e., ∆t = n∆τ
with n = 1 or at any other number n > 1 of fine-scale time steps, with the continuum
being quasi-static or dynamic. If a dynamic continuum is used, n = 1 is usually chosen,
whereas for a quasi-static continuum n > 1, (n commonly O(101)−O(103)).3,4

The coupling of the continuum and atomistic region in the CADD method shall now
be described in more detail. First, we focus on the case of n = 1, i.e., when both scales
use the same time step. Assuming all quantities are known at some discrete instant
of time tn, the evolution of the system to the next discrete instant of time tn+1 starts
by updating the atomistic region. In this step, the boundary conditions on the atoms
imposed by the continuum are given in terms of the pad atom positions, which are
dictated by the deformation in the continuum time tn. In the next step, the continuum
is updated to tn+1 using the, now known, displacements of the interface atoms at tn+1

as the boundary conditions for the finite element interface nodes (see Fig. 5.2).

2The isotropic elastic constants needed in the solution of subproblem 1 may, e.g., approximately be
found from a set of anisotropic elastic constants by averaging (see, e.g. Anderson, Hirth, and Lothe, 2017).

3In this work, a dynamic continuum with n = 1, i.e., equal time steps on both scales, ∆t = ∆τ, is used.
However, the presented algorithm is also valid, e.g., for a quasi-static continuum with n > 1, i.e., ∆t > ∆τ.

4It will be shown in Chapter 6 that the choice of n for a quasi-static continuum model is nontrivial
and has great impact on the accuracy of the method.
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∆t = 8∆τ

∆τ

∆τ
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Fig. 5.2.: Two schematics of the information transport between the scales and the sequence of computations
in the finite temperature CADD method for the fixed time interval coupling. Both versions have
been used in the literature (Qu et al., 2005; Shiari, Miller, and Curtin, 2005). The schematics are
similar for other concurrent atomistic-to-continuum multiscale methods. (Top) Coupling of the
scales in every fine-scale time step, i.e., n = 1. (Bottom) Coupling of the scales in every n = 8
fine-scale time steps. The (•) symbol represents a time average of the atomic information relevant
to the continuum.

For the case that n > 1, i.e., when a coarser time step in the continuum is used, the
coupling is slightly different. The atomistic region is still updated from one discrete
instant of fine-scale time to the next, using the pad atom positions given at the last
discrete instant of coarse-scale time. The displacements of the interface atoms are,
however, averaged over the fine-scale time steps that happen during a coarse-scale
time step. These time averages are then used as the boundary conditions for the
finite element interface nodes, to update the continuum to the next discrete instant of
coarse-scale time (see Fig. 5.2).

Instead of a fixed time interval coupling, the use of a demand-based coupling to
decrease the computational cost while maintaining the same quality of results (see
Fig. 5.3) is proposed. In this approach, the atomistic computation is still performed
in every fine-scale time step in order to properly trace the dynamics in the atomistic
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5. Demand-based coupling of the scales in concurrent models

region. The continuum computation, however, is only performed if demanded. A
demand may either originate from the continuum boundary at the interface, if there
is a non-negligible deformation in the adjacent atomistic region, or, more trivially, if
the boundary conditions of the continuum change at a non-interfacial boundary. For
the former scenario, it is therefore essential to observe the deformation close to the
coupling interface.

time

time

Continuum

Atoms

Deformation
at the

interface

Deformation
at the

interface

No deformation
at the

interface

No deformation
at the

interface

Fig. 5.3.: Schematics as in Fig. 5.2 for the demand-based coupling in case of n = 1. For simple illustration,
it is assumed that the non-interfacial boundary conditions on the continuum do not change. The
schematic for any other n > 1 can be given analogously.

This may be achieved by using an algorithm that features a low-pass filter. To facilitate
comprehension, a brief introduction to digital filtering is given.

5.2.2. Introduction to digital filtering

Digital filters are used to manipulate discrete signals (e.g., discrete signals in time) in
many fields of science and engineering. Mathematically, the output signal y of a finite
impulse response (FIR) digital filter may be represented by a convolution of the input
signal x and the filter kernel k (Smith, 2002),

yi =
M−1

∑
j=0

kj xi−j, (5.1)

where yi is the value of the output signal at time ti, xi−j is the value of the input signal
at time ti−j and M is the length of the finite filter kernel. This can be written in the
usual shorthand notation as y = k ∗ x.

More specifically, low-pass filters manipulate signals by passing signal components of
frequencies below a defined cut-off frequency, while attenuating signal components of
higher frequencies. Examples of low-pass filter kernels and their frequency responses
are shown in Fig. 5.4.
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(a) (b)

Fig. 5.4.: (a) Two examples of low-pass filter kernels. The ideal filter kernel (not shown) is infinitely long
and the windowed-sinc filter kernels are of finite length. (b) Frequency responses of the filter
kernel examples. The ideal filter kernel has no transition band, i.e., it yields the desired abrupt
change in amplitude at the transition from passband to stopband. The windowed-sinc filter
kernels can only approximate the ideal kernel behavior and therefore exhibit a finite transition
band.

In practice, the so-called windowed-sinc filter kernels are commonly used. These filters
shift the phase of the output signal with respect to the input signal by a time delay of

∆tdelay = (M− 1)/(2 f s), (5.2)

where f s is the sampling rate of the input signal. A number of different windows can
be used for the windowed-sinc filter kernel, each having its own characteristics (Smith,
2002). For example, the value of a windowed-sinc filter kernel with Hamming window
at time tj is given by5

kj = Kf sin (2π f c∗(j−M/2))
j−M/2

(0.54− 0.46 cos (2π j/M)) . (5.3)

The kernels shown in Fig. 5.4a are representatives of this type of kernel. In the above
equation, Kf is a normalization constant and f c∗ is the normalized cut-off frequency
given by f c∗ = f c/ f s. The normalized cut-off frequency takes only values 0 ≤ f c∗ ≤ 0.5
due to the Nyquist-Shannon sampling theorem (Smith, 2002). The two quantities needed
to design these kernels are the cut-off frequency f c and the kernel length M. The proper
choice of these quantities is discussed in the next sections.

5The case j = M/2 must be treated separately.
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5.2.3. The algorithm in detail

Detection of deformation

In the detection of deformation, the common continuum mechanics approach of defin-
ing local deformation as the change in distance between two material points in close
proximity, is applied. To this end, the algorithm monitors the relative motion of the
coupling interface and a band of atoms close to the interface (see Fig. 5.5).

d

Fig. 5.5.: Close-up view of the spatial interface in the CADD method with the continuum region on the
left side and the atomistic region on the right side. The relative motion of the interface atoms
(blue squares) and a band of atoms (blue triangles) in distance d to the interface is monitored by
the algorithm.

Pairs of atoms are generated by associating each band atom with the closest interface
atom (see Fig. 5.6a) in the initial configuration. The relative motion of these pairs is
monitored subsequently (see Fig. 5.6b and Fig. 5.6c).

As explained above, a windowed-sinc low-pass filter with Hamming window6 in each
spatial direction α is applied to every pair to approximately eliminate the thermal
fluctuations in the relative motion. The input signal for every filter is the relative motion
of the respective pair rB − rI, the output signal

y = k ∗
(

rB − rI
)

(5.4)

gives a satisfactory representation of the deformation in the pair7. Fig. 5.7 shows
exemplarily the application of the filter to a pair in equilibrium in a one-dimensional

6The use of other filter windows is readily possible.
7Due to the distributivity property of the convolution operation, k ∗ (a + b) = k ∗ a + k ∗ b, this is equal

to applying the filter separately to the motion of the two atoms in the pair and subsequently subtracting
the individual output signals.
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Fig. 5.6.: Illustration of the detection of deformation in the algorithm. (a) A band atom B (blue triangle)
and its associated interface atom I (blue square). (b) Initial position. (c) After tracing the system.

problem. The filter is clearly able to yield an output signal which is practically void of
frequency components above the chosen cut-off frequency.

Furthermore, this figure also illustrates the fact that the filter output is not vanishing,
even despite no external deformation being applied. As mentioned above, a strict
separation of the mechanical and thermal components in the atomic motion is not
possible. Thus, the low frequency phonons passing the filter are also carrying thermally
induced information. The output signal (the deformation) in equilibrium therefore
shows finite fluctuations of amplitude ∆y = ymax− ymin around the relative equilibrium
distance of the pair atoms, the magnitude of which is characteristic for the system at
hand (e.g., lattice type, temperature level, etc.). Only deformation that exceeds these
equilibrium fluctuations should be considered as relevant by the algorithm. It is there-
fore necessary to determine the magnitude of these fluctuations before the algorithm
can be applied to a given problem. This can practically be done by tracing the system
at hand in equilibrium for a brief period of time and keeping track of the fluctuations
in the output signals of the filters. It should be noted, that the computational time
spent on this task, however, commonly does not represent an additional effort. This
is because in most practical finite temperature simulations, the system at hand has to
undergo a transient period to reach thermal equilibrium before the actual problem is
studied. This preliminary period can conveniently be used to record the magnitude of
the equilibrium fluctuations. Also, in case of multiple simulations of the same system,
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Time / ps

(a)

(b)

Fig. 5.7.: Application of the filter to a pair of band atoms and interface atoms in a one-dimensional
problem at equilibrium. (a) Despite no external deformation being applied, the filter output is
not vanishing (see text). Windowed-sinc filters have a time delay. For clearer presentation, the
output signal was shifted to account for this time delay. (b) The frequency response of the filter
output is practically void of any components of higher frequency than the cut-off frequency
f c = 3× 1011 Hz.

the magnitude of equilibrium fluctuations must only be recorded once and can then be
reused.

Non-negligible deformation is therefore detected by the algorithm if the condition

ymin
i ≤ yi ≤ ymax

i (5.5)

is violated for any spatial coordinate i.

Once this condition is violated, the continuum is activated at least for a time interval
∆tc. This is to ensure that the detected deformation at the band has enough time to
travel to the interface, before the continuum becomes inactive again. The time interval
∆tc therefore depends on the lowest relevant phase velocity in the system and the
distance d. If the condition in Eq. 5.5 is violated during the active continuum time, the
interval is refreshed.
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Low-pass filter design

The two parameters needed in the low-pass filter design are the kernel length M and
the cut-off frequency f c.

The kernel length is chosen to give a proper balance of efficiency and accuracy. Larger
kernel lengths yield a narrower transition band (see Fig. 5.4b) and therefore represent
the ideal kernel behavior more accurately. On the other hand, larger kernel lengths
also increase the computational cost of the convolution operation and its associated
memory consumption. As mentioned above (see Eq. 5.2), the kernel length also directly
affects the time delay of the filter. Thus, the algorithmic detection of deformation is
delayed in time, which means that the band of atoms must not be chosen too close to
the interface, to account for this delay. The continuum might otherwise be activated
too late, probably missing the deformation. The distance of the band atoms from the
interface d can be easily adjusted to the time delay ∆tdelay and the maximum phase
velocity.

The cut-off frequency represents the (artificial) limit between the mechanical and
thermal frequency components. A natural choice for the cut-off frequency is given by
the maximum admissible continuum frequency f FE. Only phonons with frequencies
below f FE are admissible as mechanical waves to the continuum, whereas all higher
frequency phonons will be (unphysically) reflected in the continuum. Caution must
however be taken if large, e.g., micron-sized, elements are present in the finite element
mesh, which results in a low maximum admissible continuum frequency. In this case,
the choice f c = f FE may lead to large filter delays for adequate filter quality and may
result in exceedingly large distances d of the band of atoms from the interface. Or worse,
f c = f FE may even be below the smallest frequency of the atomic motion f A,min, which
depends on the size of the atomistic region. In both of these cases, the choice f c = f FE

is inappropriate, and a larger cut-off frequency must be chosen. An appropriate choice
hence must always satisfy f c > f A,min and must yield an adequate distance of the band
atoms from the interface.

Efficiency

A number of simple measures can be introduced to cut the costs of the algorithm,
which are dominated by the convolution operation (Eq. 5.1). These measures include
a limitation of the kernel length M, and the number of band atoms NB, using Fast
Fourier Transform (FFT) convolution and downsampling of the filter input signal.

The last measure requires a brief explanation. Downsampling lowers the filter input
signal rate f s close to the lowest possible alias-free sampling rate f Ny (the Nyquist
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sampling rate8). This corresponds to a downsampling operation, i.e.,

x̂i = xDi D ∈N (5.6)

using a positive integer factor D. Small numerical time steps must commonly be used
in molecular dynamics. As a consequence, the atomic motion has a large sampling
rate in the order of 1015 Hz, while the maximum frequency of the atomic vibration
is commonly 1-2 orders of magnitude smaller. This allows for a downsampling by
D ∼ O(101− 102), thus reducing the total number of convolution operations performed
by a factor of D. Additionally, the downsampling allows for a reduction of the kernel
length M by the same factor, while maintaining the accuracy of the filter (i.e., the same
transition band width). Smaller kernel lengths reduce the individual cost of every
convolution operation performed. In summary, the use of downsampling therefore
reduces the computational cost of the filter operation by a factor of O(D2), while being
straightforward to implement.

Memory-wise, the algorithm requires to save a record of the band atom position vector
in time with the size of the kernel length M, the memory requirement of which can be
computed (for double-precision storage) as Mem = 8 Byte×Nd ×M× Nb, where Nd

is the number of spatial dimensions and Nb is the number of band atoms. For most
applications, this memory consumption should be negligible.

The computational savings provided by the application of the algorithm for each of the
examples presented is given below. In the case of the in-house software and examples
used in this study, the potential savings outweigh its cost by a factor of 60 to 65.

Continuum energy

The algorithm manipulates the coupling by skipping the continuum computation at
certain times, which is tantamount to freezing the continuum. During these inactive
periods, the potential energy of the continuum is preserved, as the positions of the
finite element nodes are kept constant. If a quasi-static continuum (Qu et al., 2005) is
used, there is no kinetic energy in the continuum, which means that the algorithm
preserves the total energy of the continuum in the inactive periods. If a dynamic
continuum (Shiari, Miller, and Curtin, 2005) is used on the other hand, the presence of
kinetic energy poses the question of how to treat this quantity which is governed by
the velocities of the finite element nodes. It was found that the most obvious choice,
preserving the kinetic energy, is also the most adequate. This means that in addition to
the nodal positions, the nodal velocities are also frozen in inactive periods. Therefore,

8The Nyquist sampling rate is twice the maximum frequency of the input signal.
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the total energy of the continuum is also preserved in the inactive periods for the
dynamic continuum.

In comparison to the fixed time coupling, the application of the proposed algorithm
obviously leads to altered dynamics of the continuum as the motion of the continuum
is frozen from time to time. However, it can be noted that this issue is often negligible.
In most cases, the main task of the continuum region is to provide the proper elastic
response to give correct boundary conditions for the atomistic region. Therefore, the
specific dynamics in the continuum region are often of secondary importance, as long
as proper boundary conditions on the atomistic region are generated. Naturally, if
accurate continuum dynamics are of particular interest to the researcher, or if the
altered continuum dynamics are assumed to significantly affect the atomistic regions,
the application of the algorithm is not advised.

Overview

The steps involved in the algorithm can be summarized as follows:

Preliminary steps

1. Design the filter by defining the parameters M and f c.
2. Select the band atoms in distance d and associate each with the nearest interface

atom.
3. Trace the system in equilibrium and record the equilibrium fluctuations ∆y for

every pair of band atom / interface atom.

Execution The low-pass filter is applied in every spatial direction α to the relative
motion of each atom pair. If the condition in Eq. 5.5 is violated or if the non-interfacial
boundary conditions on the continuum change, the continuum solution is computed. If
not, the continuum computations are skipped and the subsequent steps in the model at
hand are performed (see Fig. 5.8).
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Fig. 5.8.: Flow diagram of the execution phase.

5.3. Numerical Examples

To show the potential savings of the proposed demand-based coupling approach, three
numerical examples are studied. In the first two examples, the propagation of pulses
in a one- and a two-dimensional domain is studied, respectively. The third example is
concerned with nanoindentation in a two-dimensional domain.

Aluminium is the material of interest in all examples, and the Lennard-Jones (LJ)
potential (see Section 2.2.4) is used as the interatomic potential with parameters from
Halicioǧlu and Pound (1975). A cut-off radius of 3 times the equilibrium lattice spacing
is applied. The continuum region in the examples is discretized with linear 1D elements
(in the 1D example) and linear triangle elements (in the 2D examples). The anisotropic
elastic constants and mass densities of the continuum as well as the equilibrium lattice
spacings at the studied temperatures are found by separate MD simulations using the
given interatomic potential.

The velocity verlet algorithm (see Section 2.2.4) is used as a time integrator to evolve
the equations of motion in both regions. A fine-scale step of ∆τ = 1 fs is used in all
examples. In the finite element approximation, a lumped mass matrix is used, which is
obtained by row-summation (see, e.g., Zienkiewicz and Taylor, 2000).
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5.3.1. Pulse propagation (1D)

In this example, the propagation of longitudinal pulses of different characteristic
frequency spectra is studied. The pulses propagate from an atomistic to a continuum
region in the 1-dimensional body shown in Fig. 5.9. The left end of the continuum
region is clamped and the right side of the atomistic region is used to introduce the
pulses. To this end, the motion of the 3 atoms on the far right is controlled. The atomistic
region consists of 500 aluminum atoms at a temperature of 100 K and an equilibrium
atomic spacing of a = 2.95 Å.

10000a 500a

x

Atomistic regionContinuum region

Fig. 5.9.: Geometry of the 1-dimensional example.

Standard Newtonian dynamics is used for all atoms, except those in the Langevin
damping region given by the first 6 atoms next to the interface. The equations of motion
for the damped atoms are (cf. Eq. 2.52)

mẍ = f −mγ(x)ẋ + f r, (5.7)

where ẍ, ẋ and m are the acceleration, velocity and mass of the atom and f is the
interatomic force acting on the atom. The Langevin damping introduces the damping
force −mγ(x)ẋ and the random force f r, which are related by the fluctuation-dissipation
theorem (Kantorovich, 2008a; Kantorovich, 2008b). Here, the so-called stadium damping
approach (Holian and Ravelo, 1995; Qu et al., 2005), is used where the damping
coefficient is linearly increasing towards the interface from zero to the maximum
damping coefficient γ. From separate MD simulations, γ = 4.52× 1012 s−1 was found as
a suitable choice, which ensures temperature stability and proper canonical temperature
fluctuations. The chosen value for γ corresponds to the dimensionless value γ∗ = 1 in
reduced LJ units, i.e., γ∗ = γσ

√
m/ε = 1, where σ is the distance at which the potential

takes a value of zero and ε is the depth of the potential well in the LJ potential. Generally,
γ should neither be chosen too small, as this leads to poor temperature control, nor too
large, as this leads to significantly perturbed dynamics (see, e.g., Hünenberger, 2005).
The proposed algorithm should not be sensitive to the choice of γ, although a detailed
analysis was not performed and is left for future research. The same value for γ is used
in all presented examples.

In the continuum region, a dynamic finite element formulation with a mesh that consists
of 464 nodes is used. The maximum admissible frequency for the continuum is given
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as

f FE =
6
π

√
2ε

m
1

hmax ≈ 3× 1011 Hz, (5.8)

where and hmax = 41a is the length of the largest finite element.

The system is studied for 500 ps and a time step of ∆t = ∆τ = 1 fs is used in both
regions. In the 1-dimensional example, the band of atoms which is monitored by the
algorithm reduces to a single atom. The atom in a distance of d = 50a to the interface is
chosen as the band atom. The time interval ∆tc is chosen to be 2.5 ps and a transient
period of 50 ps is used to record the equilibrium fluctuation of the band atom. A kernel
length of M = 38 is used in the filter design, which ensures adequate accuracy and time
delay and a cut-off frequency of f c = f FE. Furthermore, a downsampling is applied to
the atomic position over time with an integer of D = 40. This yields a sampling rate
for the input signal of f s = 2.5× 1013 Hz, which is above the Nyquist sampling rate
f Ny = 2 f max = 2.172× 1013 Hz, where f max is the maximum frequency of the atomic
vibration given as

f max =
6

aπ

√
2ε

m
. (5.9)

The results for the algorithm applied to CADD (CADD+A) are compared against the
reference solution of the plain CADD method (CADD). Fig. 5.10 shows the results of
this study, where the system’s mechanical behavior is studied through the evolution
of the positions over time at various points. The graph for x ∈ (497a, 500a) shows the
boundary condition imposed on the rightmost atoms. The motion of these atoms is
controlled to introduce the same two pulses followed by a permanent deformation in
both simulations. As can be seen in the figure, the algorithm applied to CADD is able
to produce results which are of the same quality as the plain CADD solution, while
using far fewer continuum computations. It was also verified that the temperature in
the atomistic region behaves similarly in both simulations (not shown).

Time / ps

Fig. 5.11.: Comparison of the accumulated number of active continuum time steps for CADD vs. CADD+A.

The application of the algorithm causes the continuum to be activated only when
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Ti
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Fig. 5.10.: Results of the 1-dimensional problem. The evolution of the position of a number of points for
CADD and CADD+A are compared. The initial position of the interface is given by the vertical
dashed black line. The two graphs on the far left therefore show the position of two finite
element nodes and the other graphs show atom positions. The end of the transient period used
to record the equilibrium fluctuations is given by the horizontal dotted black line. The graph on
the very right shows the activity in the continuum for CADD vs. CADD+A.

deformation is taking place at the interface, while skipping the intermediate continuum
computations. As a consequence, more than half of the continuum computations can be
skipped in this example (56%). This amounts to a saving of 22% of the total simulation

73



5. Demand-based coupling of the scales in concurrent models

time. This is also illustrated in Fig. 5.11, where the accumulated number of active
continuum time steps are compared.

5.3.2. Pulse propagation (2D)

The propagation of pulses is now studied in a 2-dimensional example adapted from
the literature (see Qu et al., 2005). The geometry of the example is shown in Fig. 5.12
and the parameters used are given in Tab. 5.1.

y

x

5700Å

33
50

Å

Continuum region

Atomistic region

Fig. 5.12.: Geometry of the 2-dimensional pulse propagation example.

γ 4.52× 1012 s−1

a 2.9158 Å
d 50a
M 38
f c 3× 1011 Hz
∆tc 2.5 ps
Transient 50 psperiod
D 40
T 50 K

Tab. 5.1.: Parameters used.

The material studied is hexagonal aluminum with the c-axis aligned normal to the x, y-
plane. The lattice orientation is such, that the x- and y-axes are aligned with the [1100]-
and [1120]-directions of the crystal, respectively. In the atomistic region, 200 atomic
planes in the x- and 150 atomic planes in the y-direction are used, which results in a
total of 60351 atoms. Furthermore, a radially outwards propagating pulse is introduced
in the center of the atomistic region by applying a radial displacement of the form
(Wagner and Liu, 2003)

∆r = A
exp[−r2/Λ2]− exp[−(rcut)2/Λ2]

1− exp[−(rcut)2/Λ2]
r ≤ rcut (5.10)

to all atoms inside a circle with midpoint at the center of the atomistic region and a
radius equal to the cut-off radius. The maximum amplitude is chosen as A = 2 Å. The
characteristic frequency spectrum of the pulse is governed by the quantity Λ, which is
chosen as Λ = 3a.
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The system is allowed to reach thermodynamic equilibrium and the equilibrium fluctu-
ations are recorded in a transient period of 50 ps (the transient period is not shown in
the results). The simulation is started subsequently and the system’s response is studied
for 40 ps in total. A pulse according to Eq. 5.10 is introduced at t = 1 ps. Fig. 5.14 shows
the comparison of the pulse propagation for CADD and CADD+A. The evolution of the
temperature of the undamped atomistic region is compared in Fig. 5.13.
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Fig. 5.13.: Temperature of the undamped atomistic region over time.

The algorithm detects a non-negligible deformation at t = 2.9 ps and activates the
continuum. The pulse is fully located in the continuum region after t = 6.5 ps, and
the deformation close to the coupling interface returns to a regular level at t = 10.4 ps.
When the time interval ∆tc = 2.5 ps has passed after this last activation, the continuum
is deactivated at t = 12.9 ps. This example demonstrates nicely that in such a case, a full
tracking of the dynamic evolution of the continuum, can be considered as nonessential.
The displacement field in the continuum is frozen from this point onwards (see Fig. 5.14)
as accuracy is only required in the atomistic region.

In Fig. 5.13, it can be seen that the system cools down slightly faster for CADD+A than
for CADD, which is due to unphysical phonon reflection in the finite element mesh
(i.e., energy is transported back towards the atomistic region). This influence can be
reduced, for example, by using continuum damping or using stronger damping in the
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stadium damping region.

Comparing the simulation time after the pulse has reached the continuum, the savings
in terms of skipped continuum computations are 73% in this example. This amounts to
a saving of 29% of the total simulation time.

(a) (b)

Fig. 5.14.: Snapshots of the outwards propagating pulse at every 1.5 ps from 2 to 30.5 ps. (a) CADD, (b)
CADD+A.

5.3.3. Nanoindentation (2D)

The performance of the presented algorithm is now demonstrated in combination with
a unique feature of CADD, this being the detection of dislocations and their passing
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from one domain to the other. To this end, a two-dimensional nanoindentation problem
is studied, the geometry of which is shown in Fig. 5.15b.

2a
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detection band

(c)

Fig. 5.15.: (a) Close-up view of the indenter shortly before the nucleation of the first dislocation pair.
(b) Geometry of the 2-dimensional nanoindentation example. (c) Close-up view of the spatial
interface region. The dislocation detection band should not be confused with the band of atoms
that is used to detect deformation by the presented algorithm (the “deformation detection
band”).

The same material, atomistic potential, size of the atomistic region, simulation parame-
ters and algorithm parameters (see Tab. 5.1) are used as in the last example. The material
has three slip systems, one of which is aligned with the vertical direction and the other
two are ±60◦ from the vertical (see Fig. 5.15a). The indentation is performed with a
rigid square indenter of width 2a (see Fig. 5.15a), which is simulated by controlling the
motion of 3 layers of atoms of the width as mentioned at the top of the atomistic region.
The indenter is driven into the material at a speed of about 140 m/s and causes the
generation of six pairs of closely spaced Shockley partial dislocations. The indentation
takes place from t = 1 ps to t = 16.6 ps and the response of the system is tracked for
25 ps.

The nucleation and propagation of the dislocation pairs for CADD and CADD+A is
compared in Fig. 5.16. The dislocations travel towards the interface in the vertical
slip system. Once the dislocations are close to the interface, they are detected by the
dislocation detection band9, inherent to the CADD method, and then passed to the

9In the CADD method, the so-called dislocation detection band continuously monitors the motion of
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continuum. The dislocation detection band is shown in Fig. 5.15c. In CADD+A, the
algorithm detects non-negligible deformation at t = 7 ps and activates the continuum.

C
A

D
D

C
A

D
D

+A

(a) t = 4.6ps (b) t = 9.2ps (c) t = 13.8ps (d) t = 18.4ps (e) t = 23ps

Fig. 5.16.: Snapshots of the edge dislocations traveling towards the interface at five instances of time. The
dislocations are made visible using the local difference in potential energy. In (e), the first pair
of dislocations is already inside the continuum.

The vertical force on the indenter of CADD and CADD+A is compared in Fig. 5.17. The
nucleation of the dislocations is clearly visible as force peaks. The two dislocations of
pairs 1 and 2 nucleate practically simultaneously. The two dislocations of pairs 3 to 6
nucleate with a temporal offset of 0.6− 1.3 ps, which is noticeable by two distinguished
force peaks in each case. As a reference, the vertical force on the indenter for the case of
a rigid continuum (CADD rigid) is included, to show how strongly the deformation of

its atoms to identify possible dislocations that pass the band. To detect the dislocations, a version of the
algorithm developed by Stukowski (2014) is used.
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5.3. Numerical Examples

the continuum affects the nucleation of the pairs. In fact, the reduced elastic deformation
due to the rigid continuum causes the nucleation of a 7-th pair of dislocations.
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Fig. 5.17.: Force over time. To reduce the effect of the thermal fluctuations, the force was averaged over a
period of 0.5 ps.

The savings in terms of skipped continuum computations are 30% in this example.
This amounts to a saving of 12% of the total simulation time. Further to this, there is
an additional advantage when the presented algorithm is used in combination with a
dislocation detection. By means of a sensible placement of the deformation detection
band with respect to the dislocation detection band, the dislocation detection algorithm
does not have to be continuously active. Dislocations traveling towards the interface will
first be detected as deformation by the presented algorithm. The dislocation detection
algorithm therefore only needs to be active if deformation has been detected beforehand,
saving additional computational time.

Special care must be taken if the continuum is deactivated after dislocations have
been passed to the continuum, which show the tendency to continue traveling. Once
deactivation happens, these dislocations are trapped in place. If their trapped position
is near the interface, newly approaching dislocations in the atomistic region will
experience their influence due to the long range nature of dislocation interaction. This
will then lead to altered global dislocation dynamics. This issue can be prevented in
the following way. If there are any moving continuum dislocations in the interfacial
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5. Demand-based coupling of the scales in concurrent models

vicinity, the continuum should not be deactivated until these dislocations have moved
beyond a certain distance from the interface. As the dislocation interactions decay
linearly with distance, r−1 (Anderson, Hirth, and Lothe, 2017), the distance should be
at least 100 times the Burgers vectors magnitude b. It was numerically verified, that at
140b, the influence of the trapped dislocations is negligible. On the other hand, if the
near-interface continuum dislocations do not show the tendency to move away from
the interface, the issue is not immanent and the continuum may be deactivated safely
once these dislocations have settled.
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6. A hybrid continuum model for dynamic
concurrent atomistic-to-continuum
methods

This chapter is a modified version of a manuscript which is in preparation for submis-
sion as of the writing of this thesis.

6.1. Introduction

The continuum region in concurrent atomistic-to-continuum methods is usually either
dynamic or quasi-static (cf. Section 5.2.1) with a dynamic continuum model being
much more common. This is easily explained considering that a dynamic continuum
model (in combination with the dynamic atomistic model, i.e., molecular dynamics)
ensures maximum compatibility between the scales. However, a dynamic continuum
model introduces a practical drawback which has been pointed out by Qu et al. (2005).
When studying problems that require large continuum regions, a change in the external
boundary conditions (BCs) of the continuum takes an exceedingly long time to affect
the atomistic region. This is critical, as the time intervals that can be studied with these
methods are very limited, even with the use of high-performance parallel computing.
Qu et al. (2005) solved this issue ad-hoc by using a quasi-static continuum model instead.
In this way, the continuum is instantaneously brought into an equilibrium state, causing
the external BCs to immediately affect the atomistic region. The quasi-static continuum
does, however, introduce two other issues. First, the quasi-static solution obviously
suppresses all physical dynamics in the continuum (e.g., there are no traveling waves in
the continuum). This may be acceptable in those problems in which the dynamics in
the continuum are neither of particular interest nor have a significant impact on the
atomistic region. Second, as will be demonstrated, the quasi-static continuum generally
increases unphysical wave reflection at the interface to the atomistic domain. This
disturbs the atomistic dynamics and causes overheating of the atomistic region. This
outcome is generally not acceptable.
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6. A hybrid continuum model for concurrent methods

It is evident that both dynamic and quasi-static continuum models have their own
advantages and drawbacks, and the decision as to which one is more suitable is
problem-specific. In this chapter, an approach which combines the advantages of both
models, while removing the drawbacks, is presented. This novel approach is called the
hybrid (dynamic and quasi-static) continuum model. The approach is based on the
superposition of two complementary subproblems. One subproblem uses a quasi-static
continuum model, and, the other, a dynamic continuum model. The basic idea is to
apply the external BCs to the quasi-static subproblem and the internal BCs (which arise
from the coupling to the atomistic region) to the dynamic subproblem. In doing so,
the best aspects from both models are extracted. Applying the external BCs only to
the quasi-static subproblem ensures that they take effect immediately on the atomistic
region, even in large continuum regions. Applying the internal BCs only to the dynamic
subproblem ensures low wave reflection and allows outwards propagating waves to
exist in the continuum.

As the superposition property is limited to linear systems, the approach naturally is
limited to dynamic methods that use a linear elastic continuum model. This is the
case for the CLS method (Abraham et al., 1998; Broughton et al., 1999; Abraham et
al., 2000), the finite temperature CADD method (Qu et al., 2005; Shiari, Miller, and
Curtin, 2005) and the finite temperature BD method Anciaux, Ramisetti, and Molinari
(2012), all of which were introduced in Section 3.1. It should also be highlighted that
it is straightforward to exchange the continuum model in all atomistic-to-continuum
methods as has been pointed out by Miller and Tadmor (2009). Therefore, if one of the
currently static methods is recast into a dynamic version with a linear elastic continuum
model, our approach is also applicable1. Our approach is, therefore, applicable in
principle to all dynamic concurrent atomistic-to-continuum methods, as long as a linear
elastic continuum is used. The approach is also suitable for the study of most problems
with one important exception. As the external BCs are applied in a quasi-static manner,
it is naturally not suitable for problems which explicitly require the external BCs to be
applied dynamically (e.g., to model inward traveling waves into the atomistic region).
In this case, neither the hybrid nor the quasi-static continuum model is suitable and a
dynamic continuum model must be used.

As discussed in Section 3.1, the three eligible methods (i.e., CLS, finite temperature
CADD, finite temperature BD) differ in their key characteristics. (i) The CLS and the
finite temperature BD methods use an energy-based governing formulation, while the
finite temperature CADD method is force-based. (ii) The CLS and the finite temperature

1This is exactly what has been done for the finite temperature version of the BD method (Anciaux,
Ramisetti, and Molinari, 2012), where the non-linear Cauchy-Born continuum model, which was originally
presented in the static BD method, was exchanged for a linear elastic model in the finite temperature
version.
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6.2. Methods

CADD methods use a sharp interface between the scales. In contrast, the finite tem-
perature BD method uses a handshake region. (iii) In the CLS and finite temperature
CADD methods, a strong degree of compatibility is enforced in the coupling BCs of
the scales. In terms of the continuum, this means that the interface nodes move in step
with the interface atoms. In the finite temperature BD method, on the other hand, a
weak degree of compatibility is used, whereby the BCs are only enforced in an average
manner.

In the description of the method, special focus will be laid on the application to the
finite temperature CADD method (Qu et al., 2005; Shiari, Miller, and Curtin, 2005)2. The
application to the two other methods follows the same principles, but the different key
characteristics of the methods make a unified presentation difficult. Still, guidance for
the application of the approach to the other methods will be given and their similarities
and differences will be highlighted.

6.2. Methods

6.2.1. The continuum region in the CADD method

The spatial decomposition of a solid body into continuum and atomistic regions, V and
Ω, which is used in the CADD method, is shown in Fig. 6.1a. In CADD, the regions are
separated by a sharp interface (i.e., there is no handshake region).

û

f̂

t̂

ûΩ

V

(a)
∂Vu,I

∂Vσ

∂Vu,E

t̂

ûûA

V

(b)

Fig. 6.1.: (a) The spatial decomposition used in the CADD method. The decomposition is the same for all
other methods that do not use a handshake region, e.g., the CLS method. (b) Continuum region.
The continuum nodes on the internal (interface) boundaries ∂Vu,I are subject to displacement
BCs using the atomic displacements uA. The continuum nodes on the external (non-interfacial)
boundaries, ∂Vu,E and ∂Vσ, are subject to predefined displacements and tractions, respectively.

2In the following text, the finite temperature CADD method will simply be labeled as CADD.
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6. A hybrid continuum model for concurrent methods

The set closure V of the continuum region is the set union of the inner region and
the boundary, i.e., V = V ∪ ∂V (see Fig. 6.1b). The boundary ∂V consists of non-
intersecting displacement and traction boundaries, i.e., ∂V = ∂Vu ∪ ∂Vσ, ∂Vu ∩ ∂Vσ =
∅, where ∅ is the empty set. Furthermore, it will be useful to distinguish between
internal and external displacement boundaries ∂Vu = ∂Vu,I ∪ ∂Vu,E. Along the internal
displacement boundaries ∂Vu,I, the continuum region is coupled to the atomistic region.
All other displacement boundaries are external.

CADD applies a strong compatibility coupling between the scales. The first characteris-
tic of this coupling is that interface nodes, (i.e., the nodes at the internal displacement
boundaries ∂Vu,I) move in step with the interface atoms. This is achieved through
displacement BCs of the interface nodes using the atomic displacements ûA. This is
the directional coupling from the atomistic region to the continuum. The coupling in
the other direction (i.e., from the continuum to the atomistic region) is solely achieved
through the pad atom positions. The pad atoms strictly follow the deformation of the
continuum, which is the second characteristic of the strong compatibility coupling.

Dynamic continuum model

In the continuum region, a dynamic or a quasi-static continuum model may be used.
The standard approach, i.e., the application of a dynamic continuum model, naturally
ensures maximum compatibility between the scales and allows traveling waves to exist
in the continuum. The strong form of the dynamic initial/boundary-value problem in
the CADD method is

Find ui : V × [0, te]→ R such that
ρüi = σij,j + ρbi on V × ]0, te[ (6.1a)

ui = ûA
i on ∂Vu,I × ]0, te[ (6.1b)

ui = ûi on ∂Vu,E × ]0, te[ (6.1c)
σijnj = t̂i on ∂Vσ × ]0, te[ (6.1d)

Initial conditions:
ui(x, 0) = u0

i (x) u̇i(x, 0) = u̇0
i (x) x ∈ V

where [0, te] is the time interval, ûA
i are the atomic displacements and ûi and f̂i are

prescribed functions along the boundary.

The problem is solved through temporal and spatial discretization with the given
initial conditions. As discussed in Section 5.2.1, in the temporal discretization of the
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continuum problem, the same time step is commonly used as in the atomistic model.
The interface nodes are attached to the interface atoms at every time step, i.e., ui = ûA

i .

As discussed above, studying large continuum regions may be problematic in a dynamic
continuum model, as the external continuum BCs may take an exceedingly long time
to advance to the atomistic region. And, related to this aspect, after a change in the
BCs, the system may take long periods of time to reach a new state of equilibrium.

Quasi-static continuum model

Alternatively, a quasi-static continuum model may be used in which the continuum
region is instantaneously brought into equilibrium at every discrete instant of contin-
uum time. As long as the continuum dynamics are not of particular importance to the
studied problem, the approach is attractive, as external continuum BCs immediately
affect the atomistic region. And, related to this aspect, after a change occurs in the
BCs, the instantaneous equilibrium in the continuum region allows the whole system
to attain higher equilibration rates (i.e., the targeted system’s state of equilibrium is
attained more rapidly). The strong form of the quasi-static initial/boundary-value
problem is

Find ui : V × [0, te]→ R such that
0 = σij,j + ρbi on V × ]0, te[ (6.2a)

ui =
1

∆t

∫ t

t−∆t
ûA

i dτ on ∂Vu,I × ]0, te[ (6.2b)

ui = ûi on ∂Vu,E × ]0, te[ (6.2c)
σijnj = t̂i on ∂Vσ × ]0, te[ (6.2d)

Initial conditions:
ui(x, 0) = u0

i (x) x ∈ V

Like the dynamic problem, the quasi-static problem is solved through temporal and
spatial discretization using the given initial conditions. The temporal discretization
with time step ∆t in the continuum is commonly, however, coarser than that which is
used in the atomistic region. During a continuum time step, the displacements of the
interface atoms are averaged, i.e., ui = 1

∆t

∫ t
t−∆t ûA

i dτ.

It will be shown in the example in Section 6.3.1 that the choice of the continuum time
step ∆t significantly affects the wave reflection behavior and is, therefore, critical to the
accuracy of the model. It will also be shown that a quasi-static continuum generally
increases unphysical wave reflection. Yet another critical point is that the quasi-static
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6. A hybrid continuum model for concurrent methods

approach naturally suppresses physical dynamics in the continuum (e.g., there are no
traveling waves in the continuum).

6.2.2. Hybrid continuum model

In order to combine the advantages of the dynamic and the quasi-static continuum
model, while removing the drawbacks, the use of a hybrid (dynamic and quasi-static)
continuum model is proposed. The approach is based on the superposition of a dynamic
and a quasi-static subproblem (see Fig. 6.2) and, thus, limited to linear elastic continua.
The strong form of the hybrid initial/boundary-value problem is3

Find uD
i , uS

i : V × [0, te]→ R such that

ρüD
i = σD

ij,j + ρbD
i 0 = σS

ij,j + ρbS
i on V × ]0, te[ (6.3a)

uD
i = ûA

i uS
i = 0 on ∂Vu,I × ]0, te[ (6.3b)

uD
i = 0 uS

i = ûi on ∂Vu,E × ]0, te[ (6.3c)

σD
ij nj = 0 σS

ijnj = t̂i on ∂Vσ × ]0, te[ (6.3d)
Initial conditions:

uD
i (x, 0) = u0

i (x) uS
i (x, 0) = 0 x ∈ V

u̇D
i (x, 0) = u̇0

i (x) x ∈ V

Both subproblems are solved through temporal and spatial discretization using the
given initial conditions. As can be seen in Eqs. 6.3b, 6.3c and 6.3d, the BCs of the
dynamic and quasi-static continuum models are complementary (see Fig. 6.2). The
partitioning of the body force term in 6.3a into ρbD and ρbS requires some further
discussion. Body forces, which are constant (e.g. due to gravity) or slowly varying
over time, can be arbitrarily partitioned between the two subproblems. Due to the
superposition principle the constant influence in time of such a load can either enter
the dynamic or static equations. Body forces which are significantly varying over
time (e.g. due to rapidly varying magnetic fields) should be fully assigned to the
dynamic subproblem, due to its usually higher temporal resolution. This partitioning
was however not further explored, as body forces are assumed to be negligible in all of
the examples presented below.

The solution to the hybrid initial/boundary-value problem is found by the superpo-
sition of the dynamic and quasi-static partial solutions ui = uD

i + uS
i on V × [0, te].

The pad atom positions, which reveal the directional coupling from the continuum to

3The superscripts S and D are used to denote quantities in the quasi-static and dynamic subproblem,
respectively.
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t̂ t̂

û û0ûA 0ûA

uD uSu

Fig. 6.2.: The two complementary subproblems used in the hybrid approach. The dynamic and the
quasi-static subproblems yield uD and uS, respectively.

the atomistic region, are updated using this superposed solution. The stresses in the
hybrid model are also found by the superposition of the stresses in the dynamic and
quasi-static subproblems, i.e., σij = σD

ij + σS
ij on V × [0, te].

Fig. 6.3 illustrates the interplay between the continuum and the atomistic region for the
dynamic, quasi-static and hybrid continuum models, respectively.

As can be seen in Fig. 6.3c, the dynamic subproblem uses the atomistic time step ∆τ. In
the quasi-static subproblem, a larger time step ∆t is usually used for computational
efficiency. It can also be seen that the two subproblems do not interact with each other
and are thus independent. The dynamic subproblem solely interacts with the atomistic
problem and vice versa (see Fig. 6.2). On the other hand, the quasi-static subproblem
influences the atomistic problem but not vice versa. The quasi-static subproblem only
depends on the prescribed external BCs (see Fig. 6.2). This also allows researchers to
comfortably compute the solution of the quasi-static subproblem prior to running the
actual simulation in a preprocessing step.

Although the hybrid continuum approach is readily applicable to other methods,
the description and the equations presented were based on the CADD method. The
different key characteristics of other methods may lead to different equations. The
possible differences in the application to two other eligible methods, namely the CLS
and the dynamic BD method, will now be described.

The CLS method and the CADD method share many common key characteristics. Just
like CADD, CLS also does not use a handshake region and employs strong compatibility
coupling between the scales. A major difference between the two methods is that CLS
is an energy-based approach, while CADD is force-based. Although this causes a
significant difference in how the atomistic regions are treated in the two methods, it
has no impact on the continuum. Therefore, the current presentation of our approach
can be applied without altering to the CLS method.

The key characteristics of the dynamic BD method, on the other hand, are diametrically
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6. A hybrid continuum model for concurrent methods

opposed to those of the dynamic CADD method. It is an energy-based method that
uses a handshake region and employs weak compatibility coupling between the scales.
The mixing of the continuum and atomistic models in the handshake region, which is
part of the continuum domain V, affects the balance equations of linear momentum
(Eqs. 6.1a, 6.2a and 6.3a). The weak compatibility coupling affects both the equations
for the BCs along the internal displacement boundary (Eqs. 6.1b, 6.2b and 6.3b) and the
balance of linear momentum (Eqs. 6.1a, 6.2a and 6.3a), the latter by applying additional
forces on the nodes in the handshake region. The hybrid continuum approach is in
principally applicable to the dynamic BD method. However, a detailed investigation of
the application is not within the scope of this work and is left for future research.
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Fig. 6.3.: Interplay between the scales in the CADD method with (a) the dynamic continuum model, (b) the
quasi-static continuum model and (c) the hybrid continuum model. The (•) symbol represents
the time average of the atomic quantities relevant to the continuum. In case of the CADD method,
these quantities are the displacements of the interface atoms.
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6.3. Numerical examples

In this section, three numerical examples will be presented. The purpose of the first two
examples is to highlight the advantages and drawbacks of the dynamic and quasi-static
continuum models and to compare the performance of the hybrid continuum model
with both. The third example is a practical example, namely, a 2D tensile test, for which
the dynamic and quasi-static models are expected to yield comparable results. It will
be shown that the results of the hybrid continuum model agree very well.

Aluminium is the material of interest in all examples, and the EAM potential (see
Section 2.2.4) as given by Zhou, Johnson, and Wadley (2004) is used as the interatomic
potential. A cut-off radius of 6.404 Å is applied (see NIST, 2020).

The details of the discretization of the course scale and time integration of the equations
of motion are identical to Section 5.3. As in Section 5.3, the anisotropic elastic constants
and mass densities of the continuum as well as the equilibrium lattice spacings at the
studied temperatures are found by separate MD simulations using the given interatomic
potential.

6.3.1. (Quasi-)2D pulse reflection

In this example, the reflection of pulses at the interface will be studied for the dynamic,
quasi-static and hybrid continuum models. The two-dimensional geometry used and
the BCs of the system are shown in Fig. 6.4. Longitudinal pulses will be introduced,
which travel in horizontal direction (i.e., in the direction of the x-axis), from the atomistic
region into the continuum. Therefore, essentially one-dimensional pulse propagation is
studied using a 2D geometry (hence, the problem is quasi-2d).

The material studied is hexagonal aluminum with the c-axis aligned normal to the
x, y-plane. Two different lattice orientations are used by aligning the x-axis with the
[1120]- and [1100]-directions, respectively, which corresponds to a 90◦ rotation (see
Fig. 6.4).

For the given external continuum BCs in this example, the dynamic and the hybrid
continuum models coincide. This is because there are no external traction BCs on the
continuum, and the external displacement BCs dictate zero displacement, which leads
to zero displacements in the quasi-static subproblem when combined. The solution
only consists of the dynamic subsolution, which is equal to the solution of the dynamic
continuum model.

The right end of the atomistic domain is used to introduce the longitudinal pulses in the
horizontal direction. To this end, the motion of six layers of atoms on the far right-hand
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Fig. 6.4.: Geometry and BCs used in the quasi-2D pulse reflection example. a is the equilibrium lattice
distance.

side is controlled. In principle, any type of pulse may be introduced; however, pulses of
the form

û(x, t) = −A exp(−α(kx−ωt)2) cos(kx−ωt) (6.4)

are used, where û(x, t) is the horizontal displacement. A, k and ω are the amplitude,
wave number and frequency of the pulse, respectively, and α is a parameter which
controls the spatial extent of the pulse. This type of pulse provides a relatively sharp
frequency spectrum with a small spatial extent (exemplary pulses are shown in Fig. 6.5).
Moderate values for the amplitude of A = 1/4a are used, where a is the equilibrium
lattice spacing.

The pulses travel through the atomistic region until they reach the interface, where
parts of the pulses are reflected. Ultimately, we are interested in the reflection coefficient
R, which is the ratio of the reflected amplitude to the incoming amplitude A. To
quantify the magnitude of the reflected amplitude, the horizontal atomic displacements
after reflection is tracked. In the optimal case, the reflected amplitude is only a few
percent of the incoming amplitude. This implies that it will be much smaller than the
thermal fluctuations of the atoms at reasonable temperatures. To keep the reflected
amplitude from getting lost in the thermal noise, the thermal fluctuations are kept at a
minimum by studying the system at an initial temperature of 10−3 K. This limits the
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Time / ps

û/
Å

Fig. 6.5.: Exemplary pulses of frequency ω = 8.38× 1011 Hz and amplitude A = 1/4a for different values
of the parameter α. The pulses are shown as a function of time at a fixed position x. A value of
α = 0.05 (solid line) is used for all three pulses.

amount of error for the reflection coefficient caused by the thermal fluctuations to less
than 0.5 percentage points. In addition, no thermostat is included in this example to
solely compare the reflection caused by the different continuum models. The common
approach applied in the CADD method is to use a Langevin thermostat in the near-
interface atomistic region to control the temperature. However, in contrast to the
following numerical examples, a thermostat is omitted here, as it was found that the
Langevin thermostat itself is also a source of reflection.4

The simulations are carried out as follows: first, the system is equilibrated at 10−3 K
for 20 ps (with an equilibrium lattice spacing of a = 2.6485 Å). After equilibration,
three pulses of varying frequency are introduced and the reflection coefficient for the
dynamic/hybrid and the quasi-static continuum models are evaluated. The pulses
used have frequencies (and periods) of ω1 = 2.51× 1012 Hz (t1 = 2500∆τ), ω2 =
1.26× 1012 Hz (t2 = 5000∆τ) and ω3 = 8.38× 1011 Hz (t3 = 7500∆τ). In the quasi-
static continuum model, different values of the time step ∆t (multiples of ∆τ) are used
to show the influence on the reflection behavior. The results are shown in Fig. 6.6 and
Fig. 6.7.

The dynamic continuum model yields lower amounts of wave reflection due to the
consistent dynamical coupling, as expected. The hybrid continuum model, which here
coincides with the dynamic continuum model, retains this low wave reflection behavior.
The quasi-static continuum model generally leads to increased wave reflection, and its
reflection behavior depends significantly on the continuum time step ∆t. The optimal

4This is because of the random forces, which act on the thermostatted atoms in the Langevin thermostat.
These forces slightly perturb the dynamics of the atoms, which leads to unphysical reflection.
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Fig. 6.6.: Average reflection coefficient R of the continuum models for the two lattice directions over the
three studied pulses, with ∆t = n∆τ.

value of ∆t in terms of wave reflection also clearly depends on the pulse direction in the
lattice, i.e., the wave vector. Deviations from the optimal ∆t value result in higher wave
reflection. This behavior can be explained as follows: as ∆t increases, the continuum
becomes stiffer and eventually, as ∆t → ∞, the continuum and thus the pad atoms
are permanently locked in place. This is the limit of extreme stiffness, in which the
continuum causes the atoms to experience a rigid wall BC. On the other hand, as ∆t
decreases, the continuum becomes softer. At the limit of extreme softness, ∆t→ 0, the
quasi-static continuum can be imagined as being dynamic with zero mass and thus zero
inertia. These two extreme cases are illustrated for a simple, one-dimensional chain of
atoms in Appendix A. The time step which resembles the real system lies somewhere
in between these two extremes. In case of the x-axis being equal to the [1120] or the
[1100]-direction, this time step is about ∆t = 31∆τ or ∆t = 34∆τ, respectively.
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(a) dynamic/hybrid, R = 0.60%

(b) quasi-static ∆t = 25∆τ, R = 15.39%

(c) quasi-static ∆t = 30∆τ, R = 3.74%

(d) quasi-static ∆t = 35∆τ, R = 9.38%

Fig. 6.7.: Exemplary visualization of the propagation of pulse 2 (ω2 = 1.26× 1012 Hz, t2 = 5000∆τ) for the
x-axis coinciding with the [1120]-direction. For the dynamic/hybrid continuum model, the pulse
propagates over the interface with minimal reflection. For the quasi-static continuum model, the
reflection is higher and depends significantly on the continuum time step ∆t.94
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6.3.2. Equilibration rate

When large continuum regions are to be treated in a dynamic continuum model, the
time needed for a change in the external BCs to reach the atomistic region may become
prohibitively long. This is because of the time limitations of molecular dynamics. If
it is assumed that the simulation time for a practical system is limited to the range
of nanoseconds, a continuum region in the size of micrometers can already be large
enough to exceed the computational limitations. Also, related to this aspect, the system
may take an exceedingly long time to reach a new equilibrium state, after the continuum
BCs have changed. To avoid these issues, a quasi-static continuum model presents an
attractive alternative, as long as the dynamics in the continuum region are not important.
In the quasi-static continuum model, equilibrium in the continuum is enforced at each
continuum time step. Therefore, the atoms immediately experience changes in the
external continuum BCs, and new equilibrium states of the total system can be reached
more rapidly.

The purpose of this example is to illustrate the difference among the equilibration rates
for the dynamic, quasi-static and the hybrid continuum models. The same geometry
and material as in the last example are used. In contrast, the right-hand end of the
atomistic region is clamped by fixing the position of six layers of atoms, as shown in
Fig. 6.8. As the orientation in the atomistic region is not important in this example, the
x-axis is arbitrarily aligned with the [1120]-direction. Also, the system is now studied
at a temperature of 100 K, with an equilibrium lattice spacing of a = 2.6498 Å. After
equilibrating the system for 20 ps at 100 K, a compression of 1% (10a) is applied via
displacement BCs on the left-hand edge of the continuum with three different strain
rates ε̇1 = 2.75× 108 s−1, ε̇2 = 8.25× 108 s−1 and ε̇3 = 2.475× 109 s−1.

In this example, a Langevin thermostat is applied in the atomistic region to the first two
layers of atoms near the interface, to control the temperature. In addition to controlling
the temperature, the Langevin thermostat also provides the system with dynamic
stability at elevated temperatures due to its inherent damping abilities (Junge, Anciaux,
and Molinari, 2015). Like this damping in the atomistic vicinity of the interface, it was
also found that some, although smaller, amount of damping is needed in the continuum
vicinity of the interface to ensure dynamic stability. To this end, a mass proportional
damping is applied in the region of the pad atoms with a damping coefficient of 1/10 of
the chosen Langevin thermostat damping coefficient γ = 2.5× 1013 s−1. The continuum
damping is applied in the dynamic continuum model and the dynamic subproblem of
the hybrid continuum model.

The atoms in the compressed system will be distributed according to a linear displace-
ment field. The deviation from the compressed equilibrium state in the atomistic region
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Fig. 6.8.: Geometry and BCs used in the equilibration rate example.

is quantified using the root-mean-square deviation (RMSD)

RMSD =

√
∑N

i=1 (uA
i − ũA

i )2

N
(6.5)

of the horizontal atomic displacements uA from the known linear target displacement
field ũA. Here, N is the total number of atoms in the atomistic region. Fig. 6.9 shows the
RMSD over time for the three strain rates and the three continuum models. The strain
rate ε̇1 is low enough, such that dynamic effects in the continuum are negligible. Thus,
the dynamic and quasi-static continuum models show a similar decline in the RMSD
(see also Fig. 6.10). The hybrid continuum model follows the same behavior. In the
case of the two higher strain rates ε̇2 and ε̇3, dynamic effects are no longer negligible.
The higher the strain rate, the longer it takes the system with the dynamic continuum
model to reach an equilibrium state. The quasi-static and hybrid continuum models, on
the other hand, reach equilibrium much faster (see also Fig. 6.11 and Fig. 6.12). In all
scenarios, the quasi-static continuum model responds more quickly than the dynamic
continuum model to the external change of the BCs, but continues to behave in a
rather sluggish manner. The dynamic continuum model, on the other hand, affects the
atomistic region abruptly, when the deformation reaches the interface. This is followed
by a period of rather volatile behavior in the atomistic region. Depending on the strain
rate, either one or the other manner may be favorable. The hybrid continuum model
combines both qualities in terms of its performance in this problem setting.
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∆t = 31∆τ
dynamic
quasi-static
hybrid

(a) ε̇1 = 2.75× 108s−1

∆t = 31∆τ
dynamic
quasi-static
hybrid

(b) ε̇2 = 8.25× 108s−1

∆t = 31∆τ
dynamic
quasi-static
hybrid

(c) ε̇3 = 2.475× 109s−1

Fig. 6.9.: Root-mean-square deviation (RMSD) from the target displacement field over time for the different
continuum models at different strain rates.
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(a) dynamic

(b) quasi-static ∆t = 31∆τ

(c) hybrid

Fig. 6.10.: Exemplary comparison of the horizontal displacement over time for the dynamic (a), quasi-static
(b) and hybrid (c) continuum models for ε̇ = 2.75× 108 s−1.
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(a) dynamic

(b) quasi-static ∆t = 31∆τ

(c) hybrid

Fig. 6.11.: Exemplary comparison of the horizontal displacement over time for the dynamic (a), quasi-static
(b) and hybrid (c) continuum models for ε̇ = 8.25× 108 s−1.

99



6. A hybrid continuum model for concurrent methods

(a) dynamic

(b) quasi-static ∆t = 31∆τ

(c) hybrid

Fig. 6.12.: Exemplary comparison of the horizontal displacement over time for the dynamic (a), quasi-static
(b) and hybrid (c) continuum models for ε̇ = 2.475× 109 s−1.
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6.3.3. Tensile tests of a 2D nanowire

Uniaxial tensile tests of a 2D nanowire are performed using the dynamic, quasi-
static and hybrid continuum models. The tensile specimen is shown in Fig. 6.13. The
same material is used as in the previous examples, and the x-axis is again aligned
with the [1120]-direction of the material. The stress-strain curves of the material are
studied at temperatures of 50 K, 150 K and 250 K, with equilibrium lattice spacings
of a = 2.6491 Å, a = 2.6507 Å and a = 2.6530 Å, respectively. As in the last example,
a Langevin thermostat is applied to the first two layers of atoms near the interface.
Also, a damping in the pad atom region of the continuum is applied in the dynamic
continuum model and the dynamic subproblem of the hybrid continuum model.

15
6a

80a

rcut

260a

10a

5√
3a

5√
3a

Fig. 6.13.: Geometry and BCs used in the uniaxial tensile test example.

The tensile tests are carried out as follows: first, the system is equilibrated for 40 ps.
After equilibration, the uniaxial tensile loading is applied via displacement BCs along
the outer edges of the continuum regions. A strain rate of ε̇ = 2.75× 108 s−1 is used,
which is comparable to rates cited in related work in the literature (Ju, Lin, and Lee,
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2004; Xu and Chen, 2019). It was verified that the chosen strain rate is small enough,
such that dynamic effects in the continuum are negligible (see Section 6.3.2). Thus,
the dynamic and the quasi-static continuum model are expected to yield comparable
results. As done in comparable works, all tests were performed n = 10 times, using
different but equivalent initial configurations, to achieve reasonable statistical sampling.
The different initial configurations are obtained by assigning different random initial
velocities to the atoms.

During the tensile tests, the stress is measured in the middle part of the atomistic region
with an initial length of 80a (see Fig. 6.13). As a stress measure, the virial stress given
by (see, e.g., Tadmor and Miller, 2011)

σij =
1

Ωσ

N

∑
α=1

(
−mα(vα

i − ṽi)(vα
j − ṽj) +

1
2

N

∑
β 6=α

(xβ
i − xα

i ) f αβ
j

)
(6.6)

is used, where Ωσ is the volume of the atomistic region of interest, α and β are atoms,
i and j are spatial directions, N is the number of atoms in the volume, vα

i is the i-th
component of the velocity of atom α, ṽi is the i-th component of the average velocity, xα

i

is the i-th component of the position of atom α and f αβ
j is the j-th component of the

force on atom α applied by atom β. As a two-dimensional geometry is used, the volume
V is reduced to an area A. Hence, the computed stresses have the dimension of force
per length. To minimize the influence of known surface effects of the virial stress (see,
e.g., Zimmerman et al., 2004), the atoms in a distance of one cut-off radius rcut = 6.404 Å
from the surface are not included in the stress evaluation (see Fig. 6.13).

As a strain measure, the engineering strain ε = ∆L
L0

is used, where L0 equals the initial
length of the atomistic region after equilibration and ∆L is the change in length of the
atomistic region. Hence, the resulting stress-strain curves shown in Fig. 6.14 are (true)
stress - (engineering) strain curves.

The stress-strain curves are pictured in Fig. 6.14. The dynamic continuum, the quasi-
static continuum and the hybrid continuum model show very similar results up until
the highest observed stress value (point of fracture). As expected, the obtained curves
are strongly dependent on temperature. While the slope of the curve changes marginally,
the stresses and strains at fracture clearly decrease as the temperature increases.

Different initial configurations do not have much influence on the pre-fracture part
of the stress-strain curve (up until the highest observed stress levels). However, they
significantly affect the stress-strain curve after this point. By using different, yet equiv-
alent, initial configurations, the trajectories of microstates of the system in the phase
space that is accessible to the ensemble are followed, each of which displays slightly
different fracture behavior. Depending on the initial configuration, the fracture may
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∆t = 31∆τ
dynamic
quasi-static
hybrid

(a) T = 50 K

∆t = 31∆τ
dynamic
quasi-static
hybrid

(b) T = 150 K

∆t = 31∆τ
dynamic
quasi-static
hybrid

(c) T = 250 K

Fig. 6.14.: Stress-strain curves of the 2D aluminum nanowire at different temperatures for the dynamic,
quasi-static and hybrid continuum model. The quantity σ gives the non-zero virial stress
component in the uniaxial tensile test.

either occur rather in a localized and rapid manner, leading to a rapid drop in stress,
or in a non-localized manner, with distributed plastic deformation and an associated
slower stress decay rate. The correct statistical ensemble average can only be found
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by averaging over n → ∞ different initial configurations. For n = 10, the statistical
averaging is not optimal, which explains the slight differences seen in the stress-strain
curves in the three continuum models, but it is still reasonable. Overall, the results
agree very well, and it is expected that the curves fully converge for n→ ∞.
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7. Conclusion

This thesis presents an attempt towards the long term endeavor of taking atomistic-
to-continuum multiscale methods beyond the purely academic realm to take the next
big step of industrial adoption. One obstacle towards this goal is found in the large
computational burden associated with these methods, hence approaches to increase the
efficiency are needed in order to make these methods accessible to a wider range of
users. The thesis is a collection of three such approaches, which promise substantial
computational savings. All three approaches are general in the sense that they are
readily applicable to a many atomistic-to-continuum multiscale models. The approaches
have little limitations (see below), and thus are useful for studying a wide range of
problems. Furthermore, the approaches can rather easily be implemented into existing
codebases and have little computational overhead. A summary of the three approaches
(presented in Chaps. 4 to 6) shall be given here.

In Chapter 4, similarities between the Newton-Raphson iteration scheme commonly
used to solve the macroscopic equations in a hierarchical atomistic-to-continuum
method and adaptive schemes from the field of stochastic approximation were revealed.
Based on this finding, the application of standard averaging approaches from stochastic
approximation to the hierarchical method was proposed in order to diminish the nega-
tive influence of noisy microscopic information on the computations of the macroscale.
The noisy microscopic information results from an improper sampling of the microscale.
This problem is commonly encountered in practical applications, where a sufficient
sampling is often not feasible due to immense computational cost of the microscale
computations.
It was shown in three numerical examples that the use of the two approaches “aver-
aging of the iterates” and “averaging of the iterates and observations” leads to faster
convergence of the solution fields, i.e., the macroscopic displacement and stress distribu-
tions. The approach was also compared to a reference case, where only well-converged
(noise-free) microscopic information was used. It was shown that in this case, the
two approaches are able to achieve the same quality of results at a fraction of the
computational cost.
As the application of these methods does not introduce any noteworthy additional
computational burden (the displacement and stress fields of the most recent macro-
scopic iterations need to be stored), the consideration of these methods in hierarchical
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7. Conclusion

atomistic-to-continuum models at finite temperature is highly advocated.

In Chapter 5, a method to couple the scales in concurrent atomistic-to-continuum
models based on current demand by application to the finite temperature version of
the CADD method was carefully described.
The focus was laid on the application of the presented algorithm to a version of the
CADD method that uses a dynamic finite element formulation and couples the scales
in every instant of fine-scale time. The application to a quasi-static continuum with less
frequent coupling of the scales is readily possible, but has not been described in detail.
The presented algorithm is stable in the sense that false positives do not have a negative
impact on the simulation. In the case of a false positive, the continuum solution fields
in the model at hand are computed as inherent to the model, causing only unnecessary
computational effort, but no further disadvantages.
The algorithmic detection of deformation was achieved by using a simple, yet effective,
deformation measure as presented in Section 5.2.3. The application of more sophisti-
cated deformation measures, e.g., using invariants of the Green-Lagrange strain tensor
as proposed by Tadmor, Ortiz, and Phillips (1996), is possible.
It was shown that the computational cost of the algorithm is low and a number of mea-
sures to minimize cost were presented. The low cost is convenient for those problems
in which the continuum solution is always demanded over the course of the simulation.
This is caused by ongoing deformation at the coupling interface or ongoing changes
in the external (non-interfacial) boundary conditions of the continuum. In these cases,
the application of the algorithm is redundant. However, due to the low cost of the
algorithm, this additional effort is mostly negligible.
Due to the altered dynamics in the continuum, the application of the algorithm is
limited to problems in which accurate continuum dynamics are not of significant
importance. Caution must also be taken if the continuum region contains large, e.g.,
micron-sized, finite elements. In this case, the cut-off frequency must be increased to
allow for an adequate positioning of the band atoms as discussed above.

In Chapter 6, a hybrid continuum model for dynamic concurrent atomistic-to-continuum
methods, was presented. The model represents an attractive alternative to the common
approaches dynamic or quasi-static continuum models. The novel approach is based
on the superposition of a dynamic and a quasi-static subproblem with complementary
BCs.
The approach allows (i) the continuum to be rapidly brought to an equilibrium state,
causing the external continuum BCs to immediately take effect on the atomistic region,
thereby saving computational resources while (ii) still keeping the continuum dynamics
active, thereby avoiding massive wave reflection along the scale interface.
The limitations of the model are as follows: as the superposition property is limited to
linear systems, the hybrid continuum model is limited to linear elastic continua. As
the external continuum BCs are applied in a quasi-static manner, it is also naturally
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not suitable for problems which explicitly require the external continuum BCs to yield
dynamic effects in the continuum.
As in Chapter 5, the focus was laid on the application of the approach to the dynamic
CADD method. Nevertheless, it was argued that the approach can generally be applied
to all dynamic concurrent atomistic-to-continuum methods as long as a linear elastic
continuum is used and guidance regarding the application to two other methods was
provided.
Three numerical examples were presented, the first two of which highlighted the
advantages and drawbacks of the common approaches of dynamic and quasi-static
continuum models. It was shown that a dynamic continuum model yields excellent
wave reflection behavior but is unsuitable in large continuum regions and may lead
to low equilibration rates. While being suitable for large continuum regions, the wave
reflection behavior of the quasi-static continuum model is inferior, and improper choices
of the continuum time step ∆t can seriously and negatively affect the accuracy of the
model. The optimal choice of ∆t is non-trivial, as it seems to depend on the wave vector.
It was shown that the hybrid continuum model is capable of combining the advantages
of both methods. In the third example, a practical problem in which the dynamic and
quasi-static continuum models are expected to yield comparable results was studied. It
was found that the results of the hybrid continuum model agree very well with both.

It is to be hoped that the three presented approaches will find adoption by other
researchers and practitioners or serve as a basis to motivate alternative techniques.
What is still missing are more general benchmark studies which might help to single
out the most effective candidates from the overwhelming and continuously growing
list of available atomistic-to-continuum methods. Hopefully, these methods will then
receive a wider adoption and combined efforts in their development process. An
important step towards industrial adoption is the development of open-source, parallel
computing software packages, similar to the those available for single-scale techniques.
The presented approaches in this thesis may be part of such a software package.
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Appendix A.

1D atomic chain coupled to a quasi-static
continuum

In the example in Section 6.3.1, it was shown that the choice of the coupling frequency
∆t in the quasi-static continuum model is critical to the wave reflection behavior
at the interface. Some optimal value of ∆t in terms of wave reflection exists, and a
deviation from this value in either direction causes increased reflection. This behavior
was explained by referring to the two extreme cases of extreme stiffness (∆t→ ∞) and
extreme softness (∆t→ 0). The purpose of this Appendix is to vividly illustrate both of
these cases using a simple example. The one-dimensional chain of five atoms of mass
m shown in Fig. A.1a is considered. To simplify the description, only nearest-neighbor
interactions as well as small displacements of the atoms from their equilibrium positions
are assumed. This leads to the spring-mass system shown in Fig. A.1b with four linear
springs of spring constant k.

1
m m m m m

2 3 4 5

(a)

1
m m m m m

2 3 4 5k k k k

(b)

Fig. A.1.: (a) One dimensional chain of five atoms and (b) its approximation as a spring-mass system.

In the absence of external forces, the equations of motion (EOMs) for the system are

müA,1 = −k(uA,1 − uA,2) (A.1)

müA,2 = −k(uA,2 − uA,1)− k(uA,2 − uA,3) (A.2)

müA,3 = −k(uA,3 − uA,2)− k(uA,3 − uA,4) (A.3)

müA,4 = −k(uA,5 − uA,3)− k(uA,4 − uA,5) (A.4)

müA,5 = −k(uA,5 − uA,4). (A.5)
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Appendix A. 1D atomic chain coupled to a quasi-static continuum

The displacements u of the atoms are denoted with a superscript “A”. The displace-
ments of the nodes introduced are soon written without superscript. The left half of
the chain shall be modeled as a continuum, introducing a sharp interface at atom 3
(see Fig. A.2). It is assumed that the continuum node spacing is consistent with the
atomic spacing. Note that there is now a pad atom attached to node 2 (illustrated as a
hollow circle). In the simple case of nearest-neighbor interactions, only one pad atom is
needed.

1

mm m m m

2 3 4 5k k k k

Fig. A.2.: Spatial decomposition of the atomic chain into a continuum region and an atomistic region.
Nodes are visualized as squares, atoms as filled circles and pad atoms as hollow circles.

If a dynamic continuum (with lumped mass matrix) is used, the EOMs in Eq. A.1 to
Eq. A.5 still hold. If a quasi-static continuum is used, the EOMs of the atoms (Eq. A.3
to Eq. A.5) are still valid; however, the equations in the continuum change. At every ∆t
time steps, the displacement of node 3 is found from a time average of the displacement
of atom 3, i.e.,

u3 =
1

∆t

∫ t

t−∆t
uA,3 dτ. (A.6)

The “EOMs” of node 1 and 2 change to (notice the missing inertia term)

0 = −k(u1 − u2) (A.7)

0 = −k(u2 − u1)− k(u2 − u3). (A.8)

The two extreme cases, ∆t→ ∞ and ∆t→ 0 shall now be studied.

In the first case, ∆t→ ∞, Eq. A.6 yields u3 = 0. Eq. A.7 and Eq. A.8 yield u1 = u2 = 0,
thus no displacement occurs across the continuum. This affects the atomistic region
in the following way. The interface boundary condition (BC) of the atomistic region is
given solely through the position of the pad atom, which is attached to node 2. The
pad atom position becomes effective in the EOM of atom 3, which now reads as

müA,3 = −k(uA,3 −��u2)− k(uA,3 − uA,4). (A.9)

The EOMs of the other atoms (Eq. A.4 and Eq. A.5) do not change. The EOMs of the
atoms are thus tantamount to those in the system shown in Fig. A.3. Hence, the atoms
feel a rigid wall.
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Fig. A.3.: Effective system modeled for ∆t→ ∞.

In the second case, ∆t → 0, Eq. A.6 yields u3 = uA,3, Eq. A.7 and Eq. A.8 yield
u1 = u2 = u3 = uA,3 and, thus, a rigid body motion in the continuum. Now, the EOM of
atom 3, changes to

müA,3 =(((((
((−k(uA,3 − u2)− k(uA,3 − uA,4). (A.10)

Again, the EOMs of the other atoms are unchanged. In this case, the atoms feel a free
surface, and the EOMs in the atomistic region are tantamount to those of the system
shown in Fig. A.4.

m m m

3 4 5k k

Fig. A.4.: Effective system modeled for ∆t→ 0 (with no external continuum BC).

This free surface BC on the atoms results from the continuum permanently being in
a state of zero stress. This is only the case if no external displacement BCs and no
external tractions are present on the continuum. It will now be exemplarily shown
that, e.g., in the case of an external displacement BC, there is no longer a free surface,
but instead a rigid wall with a reduced spring constant. This boundary is equivalently
unphysical. To this end, the same system as before (Fig. A.2) is considered; however, it
is clamped at the left-hand end at the continuum, i.e., u1 = 0 (see Fig. A.5).

1

m m m m

2 3 4 5k k k k

Fig. A.5.: Spatial decomposition of the atomic chain into a continuum region and an atomistic region. The
left end of the system is clamped.

We are still concerned with the second case, i.e. ∆t→ 0 and therefore u3 = uA,3. For the
clamped boundary with u1 = 0, Eq. A.8 still holds and now yields u2 = 1

2 u3 = 1
2 uA,3. In

this case, the EOM of atom 3, changes to

müA,3 = −k(uA,3 − 1
2

uA,3)− k(uA,3 − uA,4)

= − k
2

(uA,3)− k(uA,3 − uA,4). (A.11)
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Appendix A. 1D atomic chain coupled to a quasi-static continuum

Again, the EOMs of the other atoms remain unchanged. In this case, the EOMs in the
atomistic region are tantamount to those for the system shown in Fig. A.6.

m m m

3 4 5
k
2 k k

Fig. A.6.: Effective system modeled for ∆t→ 0 (with clamped left boundary).

The system is similar to Fig. A.3, although the spring constant at the interface is now
reduced by a factor of 1/2, which is directly derived from the length of the continuum
l = 2a, where a is the equilibrium spacing of the atoms. If there were 1000 elements of
the same size across the continuum with the very left-hand node clamped, the spring
stiffness would be reduced to 1/1000k. Therefore, in the limit l → ∞, the spring stiffness
approaches zero, and the free surface BC (Fig. A.4) is recovered.

One can see that the first extreme case ∆t → ∞ leads to BCs for the atomistic region
which are too stiff. On the other hand, the second case ∆t→ 0 leads to BCs which are
too soft. Both of these unphysical cases lead to increased amounts of wave reflection at
the interface. Realistic BCs which minimize wave reflection are found in between these
extreme values (see Section 6.3.1).
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