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Notation

a Scalar
f(x) Scalar function of x
v Vector
v(x) Vector function of x
A,n Matrix or tensor
A(x) Matrix function
‖v‖ Euclidean norm of v
vi,j Derivative of vi in respect to j, i.e., ∂vi∂xi

a · b Dot product
a : b Contraction of a and b
∇ · v Divergence of v
∇v Gradient of v
f ◦ g Composition of the functions f and g, = f(g(x))
Ω̂ Reference space
Ω Real domain
ΓD Dirichlet boundary
ΓN Neumann boundary

ü Second time derivative of u = ∂2u(t)
∂t2

f ∗ g Convolution of function f and g
F [u] Fourier transformed of function u(t)
<(a) Real part of complex number a
=(a) Imaginary part of complex number a
Flow charts

Decision
Main step in calculation procedure

Sub step in calculation procedure, but important enough to show in flow chart
Optional step in calculation procedure, not essential
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Abstract

The goal of this master thesis is to show the similarities and differences of calculations in structural
dynamics in the time and frequency domain. In the time domain, results are given as quantities which
change over time. Results in the frequency domain are frequency spectra, showing the intensity of
harmonics in the sought output, e.g., the sought displacements.

This thesis starts with a short introduction to the Fourier theory in order to calculate the results in
the frequency domain. The analytical and numerical procedures for single degree of freedom (SDOF)
systems are introduced in both domains. Later on, the context is extended to multi degree of freedom
(MDOF) systems. These MDOF systems do not only naturally result for multiple interacting bodies
but also in the continuum case when discretized using the Finite Element Method (FEM). In this case,
the focus is on the numerical solution as the analytical procedure is hardly possible with reasonable
effort.

Huge systems of dynamic equations take a lot of effort to solve, therefore methods are presented to
decouple the arising systems of equation. The method used in this thesis is classical modal analysis and
enables the use of analytical procedures (applied to the decoupled equations) and also the reduction
of calculation time by reducing the system. Hence, in the thesis, we do not only compare calculations
in the time and frequency domain, but also compare analytical versus numerical techniques and full
versus reduced dynamical systems.

Each chapter is supported with examples comparing the results achieved with the different approaches.
The SDOF situation is shown by means of a cantilever beam with different loadings. To show examples
for the MDOF case, two applications are chosen based on continuous, two-dimensional domains and
discretized using the FEM. A two-dimensional extension of the cantilever beam with a single force
and a multi-story frame, which is excitated harmonically, show the similarities and differences of the
calculation. Additionally, the multi-story frame model is reduced based on modal analysis and the
comparison to the full system is presented.

In this thesis, it can be clearly seen that equivalent results may be achieved in many different ways:
Using the time or frequency domain, employing analytical or numerical methods, using the full or
reduced systems of equations in MDOF systems. One has to be careful, though, that the consid-
ered boundary value problems, identifying the dynamic structures, may be (slightly) different when
performing numerical calculations in the time and frequency domain.
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Zusammenfassung

Ziel dieser Arbeit ist die Ähnlichkeiten und Unterschiede der Berechnung von Anwendungen in der
Strukturdynamik im Zeit- und Frequenzbereich zu zeigen. Im Zeitbereich werden Zustandsgrößen in
Abhängigkeit der Zeit angegeben. Resultate im Frequenzbereich sind dagegen Frequenzspektren, zum
Beispiel Verschiebungsfrequenzen.

Eine Einführung in die Fouriertheorie bildet den Anfang dieser Arbeit, um eine Basis für die Berech-
nungen im Frequenzbereich zu schaffen. Analytische und numerische Lösungswege werden dann
zunächst für beide Bereiche für den Einmassenschwinger (SDOF) vorgestellt. Anschließend wer-
den Lösungsstrategien für Mehrmassenschwinger (MDOF) eingeführt. Diese Mehrmassenschwinger
entstehen nicht nur wenn mehrere Massen und Federn miteinander interagieren, sondern auch durch
Diskretisieren eines Kontinuums mit der Finiten Elemente Methode (FEM). Die Angabe einer ana-
lytischen Lösung ist in diesem Kontext nur mit erheblichem Aufwand möglich, weshalb hierfür nur die
numerische Lösung gezeigt wird.

Riesige Gleichungssysteme von dynamischen Gleichungen erfordern sehr viel Rechenaufwand. Da-
her werden Methoden der Entkopplung vorgestellt. In dieser Arbeit wird die klassische Methode
der Modalanalyse verwendet. Sie ermöglicht zum Einen die Nutzung der analytischen Verfahren
(angewendet auf die entkoppelten Gleichungen). Zum Anderen lässt sich auch eine Reduktion der
Berechnungszeit durch Vernachlässigung von Gleichungen mit wenig Einfluss auf das Gesamtverhal-
ten erzielen, was auch als Modellreduktion bezeichnet wird. Somit wird in dieser Arbeit nicht nur auf
den Unterschied zwischen Zeit- und Frequenzbereich eingegangen, sondern auch auf die Vergleiche von
analytischer und numerischer Lösung, und von vollständigen und reduzierten dynamischen Systemen.

Beispiele zu jedem Kapitel sollen die theoretischen Aspekte unterstützen und den Vergleich der Be-
reiche ermöglichen. Der Einmassenschwinger wird durch einen Kragarm veranschaulicht, wobei ver-
schiedene Arten von Belastungen aufgebracht werden. Zwei Beispiele, basierend auf mittels der FEM
diskretisierten zweidimensionalen Kontinua, werden als Mehrmassenschwinger interpretiert. Die Ähn-
lichkeiten bzw. Unterschiede sollen anhand einer zweidimensionalen Erweiterung eines Kragbalkens
mit einer Einzellast und eines Mehrgeschossrahmens, welcher harmonisch erregt wird, gezeigt werden.
Zusätzlich wird das Modell des Mehrgeschossrahmens mit Hilfe der Modalanalyse reduziert und die
Ergebnisse mit jenen des vollständigen Modells verglichen.

Die Schlussfolgerung dieser Arbeit ist, dass ähnliche Ergebnisse auf unterschiedlichen Wegen erzielt
werden können: durch die Verwendung des Zeit- oder Frequenzbereiches, durch Anwendung von ana-
lytischen oder numerischen Prozeduren oder durch Verwendung des vollen oder reduzierten Glei-
chungssystems bei Mehrmassenschwingern. Man muss jedoch darauf achten, dass die Anfangswert-
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probleme, welche die dynamischen Strukturen beschreiben, (leicht) unterschiedlich sind, wenn nu-
merische Berechnungen im Zeit- oder Frequenzbereich durchgeführt werden.
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1 Introduction

Structural dynamics is a very broad field of research. The aim of calculations in structural dynamics
is to obtain transient physical quantities, for example the displacement over time, or frequency results.
Among the various fields of applications are: flight simulations of airplanes, crashtests of cars, the
motion of a building according to an earthquake. Many disciplines contribute to the solution of dy-
namic systems, such as mathematics, mechanics and computer sciences. This work is mainly based on
Clough and Penzien [8] and Chopra [7]. The mathematical tools for the calculation in the frequency
domain are based on Butz [6].

In structural dynamics, one may classify solution techniques into those working in the time or fre-
quency domain. In the time domain, the sought quantities are obtained by analytically or numerically
solving (systems of) differential equations. In the frequency domain, the differential equations are
transformed in a way that algebraic equations arise, which is based on Fourier transformations.

A further distinction can be done based on the number of degrees of freedom (DOFs). The number of
DOFs describe the independent motions in the dynamical system. A single point has six DOFs in a
three-dimensional space: three translational and three rotational degrees of freedom. For some appli-
cations, it is sufficient to simplify the structure such that only one degree of freedom results. Other
applications may require a Finite Element Mesh with a very large number of DOFs (nDOF ≥ 10000).
In such a setting, analytical solutions are hardly possible and numerical methods are needed. Herein,
the time discretization is based on Newmark’s Method and in the frequency domain, the Discrete
Fourier Transformation (DFT/FFT) is used.

Although modern computers can solve a huge amount of equations fast and accurate, calculations
with a lot of DOFs are often quite time consuming. Therefore, different ways to reduce the calculation
time were introduced over the years. The methods for model reduction range from statical reductions
(e.g. Guyan [14]) to dynamic reductions up to defining a subspace in the Krylov setting [3]. Herein,
we focus on classical modal analyses for the reduction. Then, an eigenvalue decomposition of the
resulting system of dynamic equations is performed to first decouple the equations and then consider
only those equations related to significant eigenvalues.

The following work is structured into three main chapters. Chapter 2 deals with single degree of
freedom systems, and introduces the most important quantities and equations. In Chapter 3, the
context is extended to multi degree of freedom systems. Chapter 4 introduces methods to decouple
the system of equations, which enables the use of the methods in Chapter 2 and also to reduce the
calculation time by reducing the system. All chapters are supported with calculations in both, the time
and frequency domain. The focus is on the similarities and differences and the results are interpreted.

Studies in structural dynamics in the time and frequency domain



1 Introduction

The FEM calculations are done with EduFEM [11] in Matlab (Version R2017b)[1]. The other results
are either derived by hand or obtained with Matlab (Version R2017b)[1].

1.1 Mathematical preliminaries

We shortly introduce some standard mathematical operators to be used in this thesis, especially for
deriving the equations of motion of systems with distributed properties in Section 3.1.2, see also [2]
and [5].

For the definition of the operators, consider an arbitrary scalar function f(x) = f(x, y, z) and a
vector function v(x) = v(x, y, z) with respect to the three Cartesian coordinates. Furthermore, some
arbitrary tensors S and A are used. Fig. 1.1 shows a clockwise Cartesian coordinate system with three
unit-vectors i, j and k.

x

y

z

i

j

k

0

P (x, y, z)

Fig. 1.1: Cartesian coordinate system.

Nabla operator ∇: The operator is defined in a Cartesian coordinate system as

∇ ≡ ∂

∂x
i+ ∂

∂y
j + ∂

∂z
k. (1.1)

Gradient: The gradient operator applied to a scalar function f , or a vector function v, is defined as

grad f = ∇f =


∂f
∂x1...
∂f
∂xn

 , grad v = ∇v =


∂v1
∂x1

· · · ∂v1
∂xn... . . . ...

∂vn
∂x1

· · · ∂vn
∂xn

 . (1.2)

Divergence: The divergence of a vector is defined as

div v = ∇ · v = ∂fx
∂x

+ ∂fy
∂y

+ ∂fz
∂z

. (1.3)

The divergence of a tensor is defined as

div A = ∇ ·A =


∂Axx
∂x + ∂Axy

∂y + ∂Axz
∂z

∂Ayx
∂x + ∂Ayy

∂y + ∂Ayz
∂z

∂Azx
∂x + ∂Azy

∂y + ∂Azz
∂z

 . (1.4)
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1 Introduction

Double dot product (double contraction) : : The double dot product of two tensors of second
order results in a scalar value [2, p. 34]. It can also be called double-convolution [2, p. 32]. It is defined
as

S : A = c SijAji = c. (1.5)

Convolution ∗ : The convolution of two scalar functions f1(t) and f2(t) is defined as [5, p. 773]

f1(t) ∗ f2(t) =
∫ ∞
−∞

f1(τ)f2(t− τ) dτ . (1.6)

The convolution is an integral that expresses the amount of overlap of one function f1 as it is shifted
over another function f2. The convolution integral shall later be used to obtain the response in
Duhamels integral in Section 2.2.1.

Studies in structural dynamics in the time and frequency domain 3



1 Introduction

1.2 Fourier theory

This chapter is based on the books [26, pp. 167-238] and [6]. The theory of Fourier is a mathematical
tool to disassemble functions into their frequency spectra. A frequency spectrum shows the distribution
of the amplitudes (and phases) of each frequency component against the (circular) frequency. This
enables the investigation which frequency is most dominant in a signal (or function). The Fourier
transformation is an important tool in a lot of disciplines for example physics (optics, acoustics,
dynamics, waves...) and mathematics (statistic, probability,...)[6]. In this work the Fourier series, the
continuous Fourier transformation and the discrete Fourier transformation are used depending on the
application. The three methods are introduced below.

1.2.1 Fourier series

The Fourier series is used to describe a periodic function (with period T ) as a superposition of sine
and cosine-functions. The Fourier series is defined as

f(t) =
+∞∑
k=0

(Akcos(ωkt) +Bksin(ωkt)),

with ωk = 2kπ
T

and B0 = 0.
(1.7)

To calculate the coefficients Ak and Bk it is necessary to integrate over a whole period T 1. The
coefficients are calculated as

A0 = 1
T

T/2∫
−T/2

f(t) dt, (1.8a)

Ak = 2
T

T/2∫
−T/2

f(t)cos(ωkt) dt for k 6= 0, (1.8b)

Bk = 2
T

T/2∫
−T/2

f(t)sin(ωkt) dt. (1.8c)

The coefficients Ak, Bk can be interpreted as the amplitudes of each cosine or sine wave. A0 is the
mean value of the function f(t) [6, p. 7].
The Fourier series can also be written in complex notation which is more compact and also used herein.
Then, the transformation is defined as

f(t) =
+∞∑

k=−∞
(Ckeiωkt). (1.9)

Note that the summation index ranges from −∞ to ∞. The conjugated complex coefficients can be
calculated with the following equation

Ck = 1
T

T/2∫
−T/2

f(t)e−iωkt dt for k = 0,±1,±2, .... (1.10)

1A period is defined as the shortest interval in which a process is repeated, see Fig. 1.2.

Studies in structural dynamics in the time and frequency domain 4



1 Introduction

f(t)

t

period T

Fig. 1.2: Definition of period T.

The output of Eq. 1.10 (or Eq. 1.8) is, with some reformulation, the desired frequency spectrum.
The amplitude spectrum can be calculated as Amplk =

√
A2
k +B2

k =
√
=(Ck)2 + <(Ck)2, the phase

spectrum can be evaluated as tan(φk) = Ak/Bk = =(Ck)/<(Ck) [5, p. 474]. The spectrum consists of
a sequence of discrete values, e.g., {Ck}. This series is plotted over the discrete frequency values {ωk}.
The unit of the coefficients is the same as the input function. This can be easily understood by looking
at the transformation formulas. The trigonometric function as well as the exponential function do not
have units thus the coefficients are forced to have the same unit as the input to fulfil the equation.

Many properties of the Fourier series are listed in Section 1.2.4.

As seen in the equation Eq. 1.7, one needs to sum over infinitely many terms in order to reproduce
a function exactly. This is, from a practical point of view, impossible. The example below shows the
influence of a different number of considered terms.

f(t)

−f(t)

t−t T

ŷ

−T

−ŷ

f(t) =
{2ŷ
T · t t ∈ [0, T/2]
2ŷ
T · t− 2ŷ t ∈ [T/2, T ]

ŷ = 100 kN
continued periodically

Fig. 1.3: Example of a sawtooth function.

As this function is antimetric, coefficients Ak of Eq. 1.7 are zero [5, p. 476]. Consequently the reduced
Fourier series is

f(t) =
+∞∑
k=1

Bksin(kωt) with ω = 2π
T

, (1.11)

Studies in structural dynamics in the time and frequency domain 5
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with the coefficients

Bk = 2
T

∫
T

f(t)sin(kωt) dt = 2
T

T/2∫
−T/2

2ŷ
T
t · sin(kωt) dt,

= 4
T 2 ŷ

(
T 2(sin(πk)− πkcos(πk))

2π2k2

)
,

= 2ŷ
πk
· (−1)k+1.

(1.12)

Fig. 1.4 shows the sawtooth function with different numbers of considered terms k. The graphic shows
that more terms k result in better representations of f(t). Note that the overshoot at discontinuities
is typical and is called Gibbs phenomenon2. The reason for the deviation to the function and the
overshoots is that theoretically infinitely many terms of the Fourier series are needed to represent
the function. It is noteworthy that the deviation at discontinuities do not disappear or decrease with
increasing number of harmonics [6, p. 25] and the overshoots remain nearly constant in value [6, p. 31].
Fig. 1.5 shows the amplitude spectra of the sawtooth function. Note that the unit of the ordinate is
identical to the unit of the original input.

0 2 4 6 8 10

-100

-50

0

50

100
Fourier series

function f(t)

(a)

0 2 4 6 8 10

-100

-50

0

50

100
Fourier series

function f(t)

(b)

Fig. 1.4: Approximation of sawtooth function with (a) k = 3 and (b) k = 30 terms.

1.2.2 Continuous Fourier transformation

The continuous Fourier transformation can handle non-periodic arbitrary functions f(t). The
functions need to be known in closed form and need to be completely integrable3. The transformation
can be defined as

F [f ](ω) =
∞∫
−∞

f(t)e−iωt dt. (1.13)

2Named after Josiah Willard Gibbs, an American physicist.
3Completely integrable means that the integral exists and is finite everywhere.

Studies in structural dynamics in the time and frequency domain 6
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Fig. 1.5: Frequency spectra of approximated sawtooth function with (a) k = 3 and (b) k = 30 terms.

The inverse (back) transformation is used to back-transform into the time domain and is defined as

f(t) = 1
2π

∞∫
−∞

F [f ](ω)e+iωt dω. (1.14)

Note that the constant factor 1
2π is not uniquely defined [6, p. 35]. Depending on the literature,

the constant factor can also be 1√
2π and is then considered in the transformation as well as back

transformation formula. This constant factor makes the transformation formulas symmetric [6, p. 36].
Another definition for the transformation, making use of the frequency ν instead of the circular
frequency ω, is

F [f ](ν) =
∞∫
−∞

f(t)e−2πiνt dt. (1.15)

The back transformation is then defined as

f(t) =
∞∫
−∞

F [f ](ν)e+2πiνt dν. (1.16)

This definition makes the formulas symmetric as well. Note that equation (1.13) and (1.15), as well
as (1.14) and (1.16) are equivalent.

The integration borders can be altered depending on the input function f(t) to reduce calculation
effort. For example if f(t) is zero for t < 0 the borders in Eq. 1.13 (or Eq. 1.15) can be defined as
[0,∞]. The output of Eq. 1.13 is a complex function which is defined in the whole frequency axis
independent of the input function f(t). The unit is due to the integration in Eq. 1.13 the unit of input
× time.

As the Fourier transformed function F [f ](ω) is a complex function as mentioned before, one can
display the real part and the imaginary part separately. It can be shown that the real part of the
function is always symmetric and the imaginary part antimetric in case of a real valued input [4,
p. 230]. This property ensures a real valued output in the back transformation. In this thesis only
real valued inputs are investigated.

Studies in structural dynamics in the time and frequency domain 7
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The most important properties of the continuous transformation are listed in Section 1.2.4.

To demonstrate the continuous Fourier transformation, a rectangular function is considered as an
example. The function is defined in Fig. 1.6.

f(t)

t

T̂

f0

f(t) =
{
f0 t ∈ [0, T̂ ]
0 else

Fig. 1.6: Example of a step function.

This function is neither symmetric (f(t) 6= −f(t)) nor antimetric (f(t) 6= −f(−t)). To simplify the
transformation the function is shifted in the time domain to use the symmetry property Eq. 1.31,
solved with Eq. 1.13 and shifted back with Eq. 1.27.

F [f ](ω) =
T̂ /2∫
−T̂ /2

f0e−iωt dt

︸ ︷︷ ︸
Transformation of
symmetric function

· e−iωT̂/2︸ ︷︷ ︸
Shift

= f0

T̂ /2∫
−T̂ /2

cos(ωt) −i sin(ωt)︸ ︷︷ ︸
= 0 because
of sym. input

dt · e−iωT̂/2,

F [f ](ω) = T̂ · f0 ·
sin(ωT̂/2)
ωT̂/2

· e−iωT̂/2.

(1.17)

Fig. 1.7 and Fig. 1.8 show the frequency spectra for the function Eq. 1.17.
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(a)
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0.5
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1.5

(b)

Fig. 1.7: Frequency spectra of step function (a) Re(F [f ](ω)) and (b) Im(F [f ](ω)).

In many applications, only the amplitude spectrum Abs(F [f ](ω)) =
√
<(F [f ](ω))2 + =(F [f ](ω))2 is

of interest. Depending on the literature, only the half-sided amplitude spectrum with the positive
frequencies is shown, e.g. in [13], where the values on the ordinate are doubled (compare [6, pp. 11-
12], Fig. 1.6. and 1.7. and [6, p. 45]). In this work, the full amplitude spectra are shown. The phase
spectrum (φ(F [f ](ω)) = tan(=(F [f ](ω))/<(F [f ](ω)))) is needed to transform the data back in the
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Fig. 1.8: Amplitude spectrum of step function Abs(F (ω)).

time domain. Fig. 1.7 is shown to confirm that the real part of F is symmetric and the imaginary
part of F is antimetric.

1.2.3 Discrete Fourier transformation (DFT)

Most of the time f(t) is not available in closed form but with values at discrete time steps as, e.g.,
signal data coming from sensors and measurements. In this case, the discrete Fourier transformation
is used. The discretizised function f(t) can be of any form and does not need to be periodic.

The discrete Fourier transformation is defined by

Fj = 1
N

N−1∑
k=0

(fkW−kjN ) with WN = e2πi/N . (1.18)

The inverse discrete Fourier transformation is used to transform the series back into the time domain
and is defined as

fk =
N−1∑
k=0

(FjW+kj
N ) with WN = e2πi/N . (1.19)

A similar difference in notation as observed for the continuous transformation can be found for the
DFT. Depending on the literature one can find 1/N in front of the inverse or normal transformation.
The output of Eq. 1.18 is, similar to the Fourier series, a sequence of discrete values {Fj}. The desired
frequency spectrum is obtained by plotting the values over discrete frequency values. The unit of the
input and output are identical which means that, for example a load function gives discrete values
with Newton as unit. The discrete frequency values are obtained by

{ωk} = ±{0, · · · , N/2}/(tmax − tmin), (1.20)

where tmin denotes the beginning of the calculation and tmax the end of the considered period of time.
The most important properties of the discrete Fourier transformation are listed in Section 1.2.4.

An important consequence of this transformation is that periodicity is implied by the algorithm and
needs to be kept in mind [6, p. 93]. For a graphical explanation of implied periodicity, see Fig. 1.9.
The solid line represents the input series. The dashed lines show the periodic continuation of the
input.

Studies in structural dynamics in the time and frequency domain 9
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f(t)

t

T−T−2T

Fig. 1.9: Implied periodicity of the DFT.

To circumvent this restriction it is recommended to either zero-pad or window the input. Zero-padding
means to add a large number of zeros at the end of the time series [6, pp. 118-124]. This helps reducing
the implied periodicity because the distance between two data sets increases. Windowing the input
means to multiply the input with a window function, which has small function values at the borders
of the interval. Good window functions do have small derivatives on the borders as well. Detailed
explanations of window functions can be found in [6] or [15].

Another important aspect is that the Fourier coefficients, which are obtained by Eq. 1.18, are sorted
in an unintuitive way shown in Fig. 1.10, which is a modified version of [6, p. 99]. The coefficients
for the positive frequencies can be found from F0 − FN/2. The coefficients belonging to the negative
frequencies can be found on the right end (from FN/2+1−FN−1) and are descending to the left. FN−1
belongs to the smallest negative frequency and FN/2+1 to the highest. The reason is that coefficients
with negative indices are wrapped on the right end due to the minus sign in the exponent of Eq. 1.18
[6, p. 98].

FN/2 FN−1F0

frequencies frequencies

positive negative

Fig. 1.10: Series of Fourier coefficients obtained by DFT.

This sequence can be easily altered to make the post-processing more convenient. Most of the time
the coefficients are rearranged in a way that the frequency values range from −ωmax, · · · , ωmax.

Fast Fourier transformation (FFT)

The fast Fourier transformation (FFT) was invented to reduce the calculation time of the discrete FT.
Cooley and Tukey4[9] introduced an algorithm which reduces the effort from O(N2) to O(Nlog(N)),
where N is the number of discrete values. The algorithm is fast (especially when N = 2x, x ∈ N)
because it splits the input and reuses intermediate results. In the following, a short summary is
given for completeness (taken from [6, pp. 125-126]), understanding the algorithm is not essential for
following the outline of this work.

4Both were American Mathematicians.
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1 Introduction

The time series is split into two sub-series{
fk
}

=
{
f1,k

}
+
{
f2,k

}
,

=
{
f2k
}

+
{
f2k−1

}
with k = 0, · · · ,M − 1;M = N/2.

(1.21)

A DFT is performed with both series

F1,j = 1
M

M−1∑
k=0

f1,kW
−kj
M and F2,j = 1

M

M−1∑
k=0

f2,kW
−kj
M , (1.22a)

Fj = 1
N

N−1∑
k=0

fkW
−kj
N ,

= 1
N

M−1∑
k=0

f1,kW
−kj
M + W−jN

N

M−1∑
k=0

f2,kW
−kj
M ,

= 1
2F1,j + 1

2W
−j
N F2,j with j = 0, · · · , N − 1.

(1.22b)

In the last step, the relation W
−(2k+1)j
N = W−kjM W−jN was used. The coefficients are obtained by

following equations
Fj = 1

2
(
F1,j +W−jN F2,j

)
and

Fj+M = 1
2
(
F1,j −W−jN F2,j

)
.

(1.23)

This procedure is called decimation in time and can be repeated until single-part series arise [6,
p. 126]. The algorithm is graphically visualized in Fig. 1.12 with N = 4, Fig. 1.11 shows the world
famous Butterfly scheme. Both figures are modified versions of [6, pp. 129,130]. Note that the input
is bit-reversed in the algorithm!

W−jN

Butterfly-scheme

+

−

Fig. 1.11: Visualization of Butterfly-Scheme.
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Time Frequency

Input Output

F1,1,0 F1,0 F0

F1,2,0 F1,1 F1

F2,1,0 F2,0 F2

F2,2,0 F2,1 F3

W 0
4

W−1
4

0

2

1

3

0

1

2

3

+

−

+

+

+

−

−

−

+ add − subtract W−j4 multiply

Fig. 1.12: Scheme of FFT-Algorithm for N = 4.

Nyquist-frequency

The Nyquist frequency was defined by Claude Elwood Shannon5 and gives a lower border for the
sample rate6. If the sample rate is less than the Nyquist frequency, distortions known as aliasing occur.
Aliasing is an effect that signals cannot be reconstructed to the original state (back transformation
from frequency in time domain) as high frequencies cannot be distinguished. According to [7, p. 895]
or [6, p. 102] the Nyquist frequency with the unit rad/sec is defined as

ωc = π

∆t > ωmax. (1.24)

The Nyquist frequency with the unit 1/sec is defined as

fc = N

2 · T = 1
2 ·∆t > fmax. (1.25)

∆t describes the difference in time of two neighbouring data points and is mostly chosen constant.
To avoid bad affects such as aliasing it is recommended to chose ∆t between the discrete data points
small enough [6, p. 109].

5Claude Elwood Shannon, died in 2001, was an American Mathematician, electrical engineer and father of the infor-
mation theory.

6Sample rate describes how often a value for a signal is given in a defined period of time (n/sec)
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Recommendations

As mentioned previously, the DFT do have some properties which have to be kept in mind. Butz [6,
p. 123] recommends three statements in order to obtain a proper frequency spectrum.

• Use lots of zeros: zero-padding is an appropriate way to circumvent the implied periodicy.

• Choose ∆t small enough: a high sampling rate, i.e., a small time step prevents bad effects such
as aliasing.

• Use window functions.

In this thesis, zero-padding is used to alter the input in an appropriate way, furthermore ∆t is chosen
small enough to detect all relevant frequencies.

1.2.4 Properties of the Fourier transformation and summary

It may be stated that the Fourier transformation transforms differential equations in a way that al-
gebraic equations arise [5, p. 791]. Depending on the type of input, different transformations are
used. Periodic functions can be transformed into the frequency domain by using the Fourier series.
Non-periodic, analytically defined, functions are transformed with the help of the continuous Fourier
transformation. If the input is only available at discrete time steps, the discrete Fourier transforma-
tion (or FFT) is the right choice. In the following, the most important properties for the Fourier
transformation are given which are used in this thesis. The properties, taken from [6], are given with
respect to the continuous Fourier transformation. The attributes can be written down analogously for
the discrete Fourier transform but with sequences {fn} instead of closely defined functions f(t).
The ↔ arrow should denote the transformation between time and frequency domain. F [f ](ω) is the
Fourier transformed version of f(t),

f(t) FT−−→ F [f ](ω)

f(t) IFT←−− F [f ](ω).

• The Fourier transformation is a linear operation:

f(t)↔ F [f ](ω)
g(t)↔ G[g](ω)

h(t) = af(t) + bg(t)↔ aF [f ](ω) + bG[g](ω)
(1.26)

This property is useful to split the input and transform every single term by itself. Constant values
are identical before and after the transformation.

• A shift in the time domain results in modularity in the frequency domain (first displacement
law):

f(t)↔ F [f ](ω)
f(t− a)↔ F [f ](ω)e−iωa (1.27)

A modularity means that the input function f(t) is multiplied with the transformation function. This
property is useful to manipulate the function in a way that the symmetry or antimetry property can
be used.
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• A shift in the frequency domain results in (second displacement law):

f(t)↔ F [f ](ω)
f(t)e−iω0t ↔ F [f ](ω + ω0)

(1.28)

The second displacement law is the pendant to the first displacement law and is useful to alter the
transformed function in order to transform back into the time domain.

• An integration in the time domain is a simple multiplication in the frequency domain:

dku
dtk ↔ (iω)k F [u] (ω) (1.29)

The Fourier transformation transforms a differential equation into an algebraic equation which allows
the use of fundamental mathematical operations, e.g., basic arithmetic.

• A convolution in the time domain is a multiplication in the frequency domain:

f(t)↔ F (ω)
g(t)↔ G(ω)

h(t) = f(t) ∗ g(t)↔ H(ω) = F [f ](ω) ·G[g](ω)
(1.30)

The convolution which is an integration in the time domain is transformed into a multiplication in
the frequency domain.

• Symmetry property

f(t) = f(−t) ∀t ↔ F [f ](ω) ∈ <(C) (1.31)

If the input function is real and symmetric (even), the Fourier transform only contains the real part
of a complex number [5, p. 787].

• Antimetry property

f(t) = −f(−t) ∀t ↔ F [f ](ω) ∈ =(C) (1.32)

If the input function is real and antimetric (odd), the Fourier transform only contains the imaginary
part of a complex number [5, p. 787].
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The following table shows the type of spectra which is produced by different types of transforma-
tions introduced in the previous sections and summarizes the information given in this thesis and
literature.

Tab. 1.1: List of intervals of the spectra for different Fourier transformations.
Type of transforma-
tion domain of x periodicy of x frequency spectra Unit of output

Fourier series continuous interval periodic discrete same as input
Continuous Fourier
transformation continuous aperiodic continuous input × time

Discrete Fourier
transformation discrete, finite

aperiodic, con-
tinued periodi-
cally

discrete, finite same as input
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2 Systems with a single degree of freedom
(SDOF)

Different assumptions may lead to applications, where a single degree of freedom is sufficient to obtain
the desired quantity of interest. In the following, the equation of motion is derived and solution
procedures are introduced.

2.1 The equation of motion

The equation of motion (later on labelled as EOM) is a mathematical equation, which describes the
timely and spatial change of a physical quantity, for example the displacement [19]. There are several
different ways to derive the equation of motion. The most simple one to formulate the EOM for a
viscously damped system is to use the equilibrium of forces [8, p. 16]. Fig. 2.1, a modified version of
[8, p. 15], shows a simplified SDOF system and its equilibrium. Throughout this thesis, it is assumed
that the gravity force m ·g is applied instantaneously on the system and therefore excitates the system
in the same way as an external force. The gravity force is considered in f(t).

c

f(t)

m

u(t)

kg

f(t)

fS(t) fD(t)

fI(t)

u(t)

Fig. 2.1: Idealized SDOF system: (left) physical system; (right) free body diagram.

The evaluation of equilibrium of forces in vertical direction gives

↑
∑

FV = 0 : fS(t) + fD(t) + fI(t)− f(t) = 0. (2.1)

In the following the terms are explained:

Inertial force: fI(t) = m · ü(t) (2.2a)
Linear spring force: fS(t) = k · u(t) (2.2b)

Viscous damping force: fD(t) = c · u̇(t) (2.2c)
Excitation force: f(t) = m · g + fext(t) (2.2d)
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2 Systems with a single degree of freedom (SDOF)

The inertial force in the above product in Eq. 2.2a is acting against the displacement coordinate u
according to d’Alembert’s principle and Newton’s second law of motion.. The spring and damping
forces are also acting against the displacement coordinate u [8, p. 16].

D’Alembert’s principle states that a mass develops an inertial force proportional to its acceleration [7,
p. 15]

f(t) = d
dt

(
m · du

dt

)
. (2.3a)

In most cases, it is assumed that the mass does not vary over time [8, p. 9], thus giving:

f(t)−m · ü(t) = 0. (2.3b)

With this, it is possible to express the equation of motion as equations of dynamic equilibrium [8,
pp. 9,10].

Inserting all parts of Eq. 2.2 in Eq. 2.1 gives the EOM for a viscously damped SDOF system

k · u(t) + c · u̇(t) +m · ü(t) = f(t). (2.4)

This equation is a second order differential equation in time and therefore needs two initial conditions
in order to give a unique solution. The initial conditions (ICs) are:

u(t = 0) = u0, (2.5a)
u̇(t = 0) = v(t = 0) = v0. (2.5b)

The EOM may be solved in various ways such as outlined in the next sections.

2.2 Analytical solution of the EOM

In this section, the EOM from Eq. 2.4 is solved analytically and the solution is obtained in closed form.
In many general cases, this is, however, not possible as the right hand side may be too complicated or
not given in closed form. Nevertheless the analytical derivation of the solution yields interesting facts
and is therefore included in this work.

2.2.1 Solving in the time domain

The solution of the EOM is obtained in two different ways. The first way is to calculate the homo-
geneous uh(t) and particular solution up(t) separately. The superposition of both solutions yields the
total response [8, p. 34]

u(t) = uh(t) + up(t). (2.6)

Another method is to solve the convolution integral, shown in section Duhamels Integral. The
convolution integral yields the complete response and the splitting into homogeneous and particu-
lar solution is not possible. Both methods have benefits and drawbacks and are explained in the
following.
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2 Systems with a single degree of freedom (SDOF)

Homogeneous solution

For obtaining the homogeneous solution, we follow the usual outline of differential calculus. The
procedure of solving the homogeneous differential equation is based on [16, pp. 378-384]. The right
part of Eq. 2.4 is set to zero (f(t) = 0), giving

k · u(t) + c · u̇(t) +m · ü(t) = 0. (2.7)

To solve a differential equation, an Ansatz needs to be made

u(t) = α · eλ·t. (2.8)

Deriving with respect to time of Eq. 2.8 yields

u̇(t) = du(t)
dt = λα · eλ·t and ü(t) = du̇(t)

dt = λ2α · eλ·t. (2.9)

Inserting into Eq. 2.7 yields

m · αλ2eλ·t + c · αλeλ·t + k · αeλ·t = 0. (2.10)

Rearranging the coefficients and factoring out α · eλ·t leads to

α · eλ·t · (λ2 + c/m · λ+ k/m) = 0, (2.11)

with the abbreviations k/m = ω2
0 := a0, c/m = 2 · ζ ·ω0 := a1 and dividing through

(
α · eλ·t

)
6= 0, the

following equation arises
λ2 + a1 · λ+ a0 = 0. (2.12)

Eq. 2.12 is called the characteristic polynomial. The roots of this polynomial are of the following form
(with the help of p-q-Formula)

λ1/2 = −a1
2 ±

√(
a1
2

)2
− a0. (2.13)

Depending on size of D := a2
1 − 4 · a0 there are three different solutions for the roots:

λ1/2 =


(−a1 ±

√
D)/2 if D > 0

−a1/2 if D = 0
(−a1 ± i ·

√
−D)/2 if D < 0

(2.14)

The term D directly corresponds to the type of structural system [16, p. 383]. If D = 0↔ ζ = 1 the
system is critically damped [8, p. 26], if D < 0↔ ζ ∈ [0, 1) the system is underdamped [7, p. 49] and
if D > 0↔ ζ > 1 the system is overdamped [8, p. 32].

The value ζ = c/ccr = c/(2ω0m) is called the damping ratio [8, p. 27] and has values ≥ 0 (compare
table in [25, p. 143]). Note that in some literature the damping ratio is called D, e.g. in [13] and should
not be confused with D in the derivation of the homogeneous solution in the previous lines. Systems
with damping ratios ≥ 1 do not oscillate [7, p. 48], the movement is then called creep movement [13,
p. 27]. Usual damping ratios in structural dynamics are ζ ∈ [0.002, 0.07] with lower values for smaller
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2 Systems with a single degree of freedom (SDOF)

Tab. 2.1: List of damping ratios from [23].

Stress level Type and Condition of struc-
ture damping ratio ζ (%)

Working stress
(<50% of yield
stress)

Welded steel, prestressed con-
crete 2-3

At or just below
yield stress Welded steel 5-7

movements and vice versa, see [25, p. 143]. Another source of damping ratios is given in [23]. A small
excerpt is given in Tab. 2.1.

According to [16] theorem 8.12, the solution of Eq. 2.7 may now be written as

uh(t) =


α1 · eλ1t + α2 · eλ2t if D > 0
(α1 + α2t) · eλ1/2t if D = 0
α1 · eγt cos(βt) + α2 · eγt sin(βt) if D < 0

(2.15)

In Eq. 2.15 the constants α1, α2 ∈ R are obtained by inserting the initial conditions from Eq. 2.5 in
Eq. 2.6 and the constants β, γ are defined as

β =
√
−D
2 , γ = −a1

2 . (2.16)

Inserting the expression for a0, a1, β and γ from above in Eq. 2.15 yields the following solution for the
three different cases

uh(t) =


α1 · eλ1t + α2 · eλ2t if ζ > 1
(α1 + α2t) · e−ζω0t if ζ = 1
e−ζω0t(α1 · cos(ωdt) + α2 · sin(ωdt)) if ζ ∈ [0, 1)

(2.17)

with the coefficients:
λ1 = ω0(−ζ +

√
ζ2 − 1),

λ2 = ω0(−ζ −
√
ζ2 − 1),

ωd = ω0 ·
√

1− ζ2.

(2.18)

The natural circular frequency ω0 is directly related to the natural period of the system [13, p. 23].
The natural period describes the time needed to fulfil a whole period of movement, shown in Fig. 1.2.
The relation is

ω0 =
√
k/m = 2π/T . (2.19)

One may miss the solution for the undamped case but the solution is included in the underdamped
case by setting the damping ratio ζ ≡ 0. All the the above described oscillations are stable, except the
undamped case (compare [13, Tab. 1.1]). There can be scenarios where the oscillation is unstable [13,
p. 28] and the amplitude increases over time due to resonance1 or other factors, e.g. negative stiffness
[13, p. 29]. These scenarios are beyond the scope of this thesis, though.

1The scenario where the amplitude of the oscillation increases to infinity over time is called resonance when the excitation
frequency match the natural frequency of the system [8, p. 42].
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2 Systems with a single degree of freedom (SDOF)

The integration constants α1 and α2 are obtained by inserting the ICs from Eq. 2.5 into Eq. 2.6 giving
two equations

u(t = 0) = u0 = uh(t = 0) + up(t = 0) and
u̇(t = 0) = v0 = u̇h(t = 0) + u̇p(t = 0).

(2.20)

The integration constants are, in dependency of the value ζ, of the following form

ζ > 1 [
1 1
λ1 λ2

]{
α1
α2

}
=
{
u0 − up(t = 0)
v0 − u̇p(t = 0)

}
(2.21a)

ζ = 1

α1 = u0 − up(t = 0)
α2 = v0 + ζω0(u0 − up(t = 0))− u̇p(t = 0)

(2.21b)

ζ ∈ [0,1)

α1 = u0 − up(t = 0)

α2 = 1
ωd

(v0 + ζω0(u0 − up(t = 0)) + u̇p(t = 0))
(2.21c)

Note that the particular solution at time t = 0 is needed to compute the constants α1, α2 therefore
the particular solution needs to be obtained first.

Particular solution

To obtain the particular solution, an Ansatz needs to be made depending on the right side f(t)
[8, p. 33]. An incomplete list of Ansätze is given in the following table and can be found in any
mathematical collection of formulas, e.g., in [24].

Tab. 2.2: List of Ansätze for particular solution.
Right side f(t) Solutionansatz up(t)

Constant function f0 c0
Polynomial of order n cnx

n + · · ·+ c1x+ c0
Trigonometric function C1 sin(ωx) + C2 cos(ωx)

Inserting the Ansatz into Eq. 2.4 and doing a comparison of coefficients gives the desired particular
solution up(t). An example of this procedure can be found in Section 2.4. Obtaining the particular
solution can be a very difficult and time consuming task, especially for complicated right sides of the
EOM.

Therefore the convolution integral is introduced in the next section.
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2 Systems with a single degree of freedom (SDOF)

Solving with the convolution integral (Duhamels Integral)

This section closely follows the outline of [7, pp. 125-129]. The convolution integral can be used to
obtain the total response of a linear dynamic system due to an arbitrary loading f(t) [7, p. 129].
Linearity is provided because the principle is based on superposition of responses of small impulses.
An arbitrary force can be divided into a sequence of infinitesimally short impulses. The response du
to one of the impulses is given by multiplying the magnitude f(τ)dτ with the unit impulse-response
function h (t− τ):

du(t) = [f(τ)dτ ]h (t− τ) with t > τ . (2.22)

The total response at t is then the sum of all impulses up to that time

u(t) =
∫ t

0
f(τ)h (t− τ) dτ . (2.23)

The focus is now on the term h (t− τ) in Eq. 2.23. This term describes the response of the system
to an impulse. This impulse acts for an infinitesimally short duration, therefore the damper and the
spring do not have time to respond. Only the mass gets accelerated to velocity u̇(τ) [7, p. 127]. The
initial conditions for the free response due to the impulse are therefore

v(t = 0) = u̇(t = 0) = 1
m

∫ TF

0
F (t) dt = 1

m

∫ ε

0
1 · δ(t) dt = 1

m
, (2.24a)

where δ(t) is called the Dirac-function. For a function with duration ε → 0 and intensity ∞, the
product of both equals 1. The displacement at t = 0 is zero by definition of the convolution integral

u(t = 0) = 0. (2.24b)

Inserting the initial conditions from Eq. 2.24 into the last equation of Eq. 2.17 gives the desired
function

h(t− τ) ≡ u(t) = 1
mωd

e−ζω0(t−τ) sin (ωd(t− τ)) with t ≥ τ . (2.25)

Inserting Eq. 2.25 into Eq. 2.23 yields Duhamels integral

u(t) = 1
mωd

∫ t

0
f(τ)e−ζω0(t−τ) sin (ωd(t− τ)) dτ . (2.26)

The consideration of the initial conditions Eq. 2.5 is possible [7, p. 129] and expands Eq. 2.26 to

u(t) = e−ζω0t
(
u0 cos(ωdt) + v0 + ζω0u0

ωd
sin(ωdt)

)
︸ ︷︷ ︸

Response due to initial conditions ≡ free response

+ 1
mωd

∫ t

0
f(τ)e−ζω0(t−τ) sin (ωd(t− τ)) dτ︸ ︷︷ ︸

Response due to external load ≡ forced response

.
(2.27)

Solving the Duhamels integral is possible analytically in some (simpler) cases, but most of the time it
is evaluated numerically [7, p. 129]. The use of Duhamels integral is demonstrated in Section 2.4.4.
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2.2.2 Solving in the frequency domain

In this section, the EOM is solved in the frequency domain using Fourier theory. Similar to the situa-
tion in the time domain, the particular and the homogeneous solution need to be obtained separately.
The total response is then the sum of both parts

F [u] = F [uh] + F [up] . (2.28)

Homogeneous solution

The homogeneous differential equation (Eq. 2.7) is transformed into the frequency domain with the
help of the Fourier transform. This leads to

m · F [ü](ω) + c · F [u̇](ω) + k · F [u](ω) = F [0](ω) = 0. (2.29)

Using the properties of the Fourier transformation, that in the frequency domain a differentiation
becomes an multiplication F

[
dku
dtk
]

= (iω)k · F [u](ω) the following equation arises

F [u](ω) · (−mω2 + icω + k) = 0. (2.30)

The bracketed term can be interpreted as the characteristical polynomial of the differential equation.
Computing the roots and inserting in the right Ansatz leads to the homogeneous solution in the
frequency domain. This can be a cumbersome procedure as one needs to deal with distributions [4].
Therefore a different approach has been made in this work. The homogeneous solution in the time
domain (Eq. 2.17) is transformed into the frequency domain using the tools of Section 1.2.2. This
enables the consideration of initial conditions. The derivation is in the following lines.

ζ > 1
uh(t) = α1 · eλ1t︸︷︷︸

:=g(t)

+α2 · eλ2t with λ1, λ2 < 0 (2.31)

The function g(t) is transformed

G(ω) =
∞∫
−∞

g(t)e−iωt dt t≥0=
∞∫
0

eλ1te−iωt dt,

=
∞∫
0

e(λ1−iω)t dt = 1
λ1 − iω · e

(λ1−iω)t

∞∣∣∣∣∣
0

,

= 1
−λ1 + iω .

(2.32)

This result, combined with property Eq. 1.26 yields the solution in frequency domain

F [uh] (ω) = α1 ·
1

−λ1 + iω + α2 ·
1

−λ2 + iω . (2.33)

ζ = 1
uh(t) = α1 · eλt︸︷︷︸

= 1
−λ+iω

+α2 · teλt︸︷︷︸
:=h(t)

with λ < 0 (2.34)
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H(ω) =
∞∫
−∞

h(t)e−iωt dt t≥0,λ̄=−λ=
∞∫
0

te−(λ̄+iω)t dt Ad.calc.:=
Part. int.

Formula of partial integration:
∫ b

a
ḟg dt = [fg]

b∣∣∣∣∣
a

−
∫ b

a
fġ dt

g(t) = t↔ ġ(t) = 1 and

ḟ(t) = e−(λ̄+iω)t ↔ f(t) = 1
−(λ̄+ iω)

· e−(λ̄+iω)t

H(ω) = t

−(λ̄+ iω)
· e−(λ̄+iω)t

∞∣∣∣∣∣
0︸ ︷︷ ︸

=0

−
∞∫
0

1
−(λ̄+ iω)

· e−(λ̄+iω)t dt,

= 1
(λ̄+ iω)2 · e

−(λ̄+iω)t

∞∣∣∣∣∣
0

λ̄=−λ= 1
(−λ+ iω)2 .

(2.35)

The solution in the frequency domain is given with Eq. 1.26

F [uh] (ω) = α1 ·
1

−λ+ iω + α2 ·
1

(−λ+ iω)2 . (2.36)

ζ ∈ [0,1)

uh(t) = e−ζω0t(α1 · cos(ωdt) + α2 · sin(ωdt)),

= 1
2e−ζω0t

(
α1e−iωdt + α1eiωdt + iα2e−iωdt − iα2eiωdt

)
,

with (ζω0), ωd ≥ 0

(2.37)

The homogeneous solution is reformulated with Euler’s identity in order to simplify the transformation.
The transformation of each term is given in the following.

F [f1] (ω) =
∞∫
−∞

e−ζω0t · e−iωdt · e−iωt dt t≥0=
∞∫
0

e−(ζω0+iωd+iω)t dt,

= −1
ζω0 + iωd + iω e−(ζω0+iωd+iω)t

∞∣∣∣∣∣
0

= 1
ζω0 + iωd + iω .

F [f2] (ω) =
∞∫
−∞

e−ζω0t · eiωdt · e−iωt dt t≥0=
∞∫
0

e−(ζω0−iωd+iω)t dt,

= −1
ζω0 − iωd + iω e−(ζω0−iωd+iω)t

∞∣∣∣∣∣
0

= 1
ζω0 − iωd + iω .

(2.38)
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F [uh] (ω) = 1
2

[
α1

( 1
ζω0 + iωd + iω + 1

ζω0 − iωd + iω

)]
+ 1

2

[
iα2

( 1
ζω0 + iωd + iω −

1
ζω0 − iωd + iω

)]
,

= α1 ·
ζω0 + iω

ω2
d + (ζω0 + iω)2 − iα2 ·

iωd
ω2
d + (ζω0 + iω)2 .

(2.39)

The homogeneous solutions in the frequency domain are summarized:

F [uh] (ω) =


α1 · 1

−λ1+iω + α2 · 1
−λ2+iω if ζ > 1

α1 · 1
−λ+iω + α2 · 1

(−λ+iω)2 if ζ = 1
α1 · ζω0+iω

ω2
d
+(ζω0+iω)2 − iα2 · iωd

ω2
d
+(ζω0+iω)2 if ζ ∈ [0, 1)

(2.40)

with the expression for λ = ζω0 and λ1, λ2, ωd from Eq. 2.18 and α1, α2 from Eq. 2.21. Again, in
equivalence to the time domain approach, the particular solution at time t = 0 is needed to obtain the
homogeneous solution in the frequency domain. Therefore the particular solution needs to be obtained
first and transformed into the time domain.

Particular solution

This chapter is based on [13, pp. 34-63]. For obtaining the particular solution, the type of the right
hand side is important. Following [13], the right hand side can be of three different types.

• Single harmonic

• General periodic

• General non-periodic

In the following all three types are discussed and an example is being made in Section 2.4. There are
two number systems in which the particular solution can be obtained in the frequency domain: in
terms of complex numbers C or using the real numbers R [13, p. 34]. In this work, complex numbers
are chosen.

Single harmonic

A single harmonic excitation can be of the following form (with excitation frequency Ω)

f(t) = f c · cos(Ωt) + fs · sin(Ωt). (2.41)

With Euler’s formular, the force can be written as

f(t) = f+ · eiΩt + f− · e−iΩt (2.42a)

with f+ = 1
2 (f c − if s)

and f− = 1
2 (f c + ifs) .

(2.42b)
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With this kind of right hand side, the Ansatz for the particular solution is

up = u+ · eiΩt + u− · e−iΩt. (2.43)

Inserting Eq. 2.43 and its first two derivatives with respect to time in Eq. 2.4 gives

m ·
[
−Ω2u+eiΩt − Ω2u−e−iΩt

]
+ c ·

[
iΩu+eiΩt − iΩu−e−iΩt

]
+k ·

[
u+ · eiΩt + u− · e−iΩt

]
= f+ · eiΩt + f− · e−iΩt.

(2.44)

Comparing coefficients gives two equations for u+ and u−

u+ ·
[
−Ω2m+ icΩ + k

]
= f+,

u− ·
[
−Ω2m− icΩ + k

]
= f−

(2.45a)

⇒ u+ = f+H+ and u− = f−H−, (2.45b)

with the complex valued frequency response function H

H+ = 1
[−Ω2m+ icΩ + k] = 1

k (1− η2 + 2iζη) ,

H− = 1
[−Ω2m− icΩ + k] = 1

k (1− η2 − 2iζη) ,
(2.45c)

and η = Ω/ω0.

Note that the two values obtained in Eq. 2.45b are conjugate complex2. u+ and u− build the particular
solution in the frequency domain. {a; b} denotes a point in the ω−u plain. The solution for a harmonic
load is therefore given by only two values in the frequency spectrum

F [up] = {+Ω/− Ω;u+/u−}. (2.46)

The solution in the time domain is obtained by inserting Eq. 2.45b into Eq. 2.43. Using the fact that
the coefficients are conjugate complex, the transformation back into the time domain can be written
as

up(t) = 2 · <(u+) · e+iΩt. (2.47)

This formulation is possible because transforming two conjugate complex values back eliminates the
imaginary part and doubles the real part [13, p. 55].

2Conjugated complex numbers do have an equal real part and an imaginary part with equal value but different sign.
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General periodic

Every periodic function can be expressed as a Fourier series described in Section 1.2.1. With a slight
change in the notation of Eq. 1.9 and Eq. 1.10 the load f(t) can be written as

f(t) =
+∞∑

n=−∞
fneinωt, (2.48)

with the coefficients

fn = 1
T

T/2∫
−T/2

f(t)e−inωt dt, (2.49)

where T describes the length of one period and ω = 2π/T . To solve Eq. 2.4 with this kind of right
side it is useful to use the superposition principle of differential calculus. The solution for each term
of f(t) is obtained and the superposition is the particular solution.

The coefficients of Eq. 2.49 are conjugate complex to each other for n equal in absolute value [13, p. 60],
therefore the situation is the same as for a single harmonic excitation. Solving for one harmonic has
been described above in detail. The main steps are repeated here.

Choose Ansatz
upn = u+

n · einωt + u−n · e−inωt, (2.50)
insert Eq. 2.50 and it’s derivatives in the EOM and comparing coefficients gives

u+
n ·
[
−(nω)2m+ ic(nω) + k

]
= f+

n ,

u−n ·
[
−(nω)2m− ic(nω) + k

]
= f−n

(2.51a)

⇒ u+
n = f+

n H
+
n and u−n = f−n H

−
n , (2.51b)

with the complex-valued frequency response function H

H+
n = 1

[−(nω)2m+ ic(nω) + k] and

H−n = 1
[−(nω)2m− ic(nω) + k] and H0 = 1

k
.

(2.51c)

The final particular solution in the time domain is given by

up(t) = H0f0 +
∞∑
n=1

H+
n f

+
n einωt +

∞∑
n=1

H−n f
−
n e−inωt, (2.52a)

or in short form

up(t) =
∞∑

n=−∞
Hnfn︸ ︷︷ ︸
un

einωt, (2.52b)

with the frequency response function Hn

Hn = 1
−(nω)2m+ ic(nω) + k

. (2.52c)
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un is independent of t and therefore the solution in the frequency domain

F [up] = {nω;un}. (2.53)

The solution in the frequency domain is a series of discrete values in the ω − u plain.

General non-periodic

For obtaining the particular solution for a general non-periodic right hand side, the knowledge from
the previous situations can be used. The derivation is not done in detail here but may be found,
e.g., in [13, p. 62]. The fact that in case of a general non-periodic right side the derivation is similar
to general periodic right sides but, with introduction of an imaginary period T ∗, the Fourier series
evolves into the continuous Fourier transformation

f(t) = 1
2π

∫ ∞
−∞

F [f ](ω)eiωt dω. (2.54)

The spectral lines will be plotted over a frequency continua ω instead of discrete frequency values
{nω}.

The particular solution is then given by multiplying the Fourier transformed load with the complex
valued frequency response function H(iω) = 1

−ω2m+icω+k . The solution is a closely defined function

F [up] = U(iω) = H(iω) · F [f ](ω). (2.55)

The solution in the time domain is then easily obtained by inserting Eq. 2.55 in Eq. 1.14

up(t) = 1
2π ·

∞∫
−∞

U(iω)e+iωt dt. (2.56)

Remark: The evaluation of the particular solution for difficult right hand sides can only be handled
by numerically solving Eq. 2.56.
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With this the general response from Eq. 2.28 is found. Fig. 2.2 summarizes the step needed to obtain
the solution in the frequency domain.

Fourier trans-
formed load Load in time domain

Particular so-
lution F [up]

Part. sol. in
time domain
at t = 0

Homogenous so-
lution F [uh]

Full solution in
frequency domain

F [u] = F [uh] + F [up]
Post processing

Transformation
into time domain

Post processing

FT

IFT

IFT

Fig. 2.2: Flow chart of obtaining the analytical solution in the frequency domain.
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2.2.3 Comparison of calculation methods

The following flow chart summarizes the calculation in both, time and frequency domain and also
shows the connections between the calculations. Furthermore it is shown whether initial conditions
can be considered or not ([7, p. 40]). The abbreviations FT and IFT denote the Fourier transform
and the inverse Fourier transform respectively.

Decision
whether
time or

frequency
domain

Transformed
load F [f ](ω)

Load in time
domain f(t)

Particular so-
lution F [up]

Particular so-
lution up(t)

Homogeneous
solution F [uh]

Homogeneous
solution uh(t)

Complete solution
F [u] = F [up] + F [uh]

Complete solution
u(t) = up + uh

Postprocessing
(plotting spectra)

Postprocessing
(plotting dis-

placement field)

Part. sol.
up(t = 0)

Solving convo-
lution integral

ICs yes ICs yes

IFT

IFT

FT

IFT

FT

IFT

FT

IFT

FT

Fig. 2.3: Flow chart of analytically solving the equation of motion.
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2.3 Numerical solution of the EOM

In many practical applications, the right hand side is not available in closed form but rather as a series
of discrete values at discrete time steps or the right hand side f(t) is in such form that an analytical
solution cannot be obtained (with reasonable effort). In the following section, numerical procedures
are discussed in both, time and frequency domain.

2.3.1 Numerical solution in the time domain

For solving the differential equation (which is an initial value problem of second order) numerically, a
discretication (in time) needs to be made [5, p. 969]. There are various different methods to do this
and one may distinguish the methods based on the data of previous time steps employed:

• Multi-step methods, where informations of multiple former time steps are used (e.g. central
difference method [7, pp. 171-174]).

• Single-step methods, where information of only one former step is needed (e.g. Newmark’s
method).

In this work, the Newmark’s method [22] is used and introduced in the following, following the outline
of [7, pp. 174-178]. The consideration of the initial conditions from Eq. 2.5 is possible [7, p. 165].

The EOM of Eq. 2.4 is discretisied at time step tn+1

k · un+1 + c · u̇n+1 +m · ün+1 = fn+1. (2.57)

For un+1 and u̇n+1 special finite differences are used

un+1 ≈ un + ∆t · u̇n + [(1/2− β)ün + β · ün+1] ·∆t2 (2.58a)
u̇n+1 ≈ u̇n + [(1− γ)ün + γ · ün+1] ·∆t (2.58b)

where ∆t is the size of one time step which is most of the time chosen constant [7, p. 166].
Inserting Eq. 2.58 into Eq. 2.57 and reformulating gives(

m+ γ∆t · c+ β∆t2 · k
)
· ün+1 =

fn+1 − c · (u̇n + (1− γ)∆t · ün)− k ·
(
un + ∆t · u̇n + (1/2− β)∆t2 · ün

)
.

(2.59)

In Eq. 2.59 all quantities except ün+1 are known from the previous time step and the equation can be
evaluated immediately. The quantities u̇n+1 and un+1 are then given by evaluating Eq. 2.58.
At time step t = 0, the acceleration ü0 is unknown but can be obtained by analysing the EOM at
time t = 0. Reformulating said equation gives

ü0 = 1
m

(f0 − c · u̇0 − k · u0) . (2.60)

Newmark proposes in [22] to chose the values γ = 1/2 and β ≥ 1/8 and recommends β = 1/6 for the
best convergence properties. Choosing β = 1/4 makes Newmark’s method unconditionally stable [8,
p. 122].
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Linear systems enable the evaluation of a modified Newmark’s method without iteration [7, p. 175].
The displacement at time step tn+1 is calculated first and then the velocity and acceleration. According
to [7, pp. 175-176], the direct evaluation is achieved by reformulating Eq. 2.58a and Eq. 2.58b to

ün+1 = a0 · (un+1 − un)− a2 · u̇n − a3 · u̇n (2.61a)
u̇n+1 = a1 · (un+1 − un) + a4 · u̇n + a5 · ün (2.61b)

with the coefficients

a0 = 1
β∆t2 , a1 = γ

β∆t , a2 = 1
β∆t , a3 = 1

2β − 1,

a4 = 1− γ

β
, a5 = ∆t

(
1− γ

2β

)
.

(2.62)

Inserting Eq. 2.61 into Eq. 2.57 enables the calculation of un+1 directly

(a0m+ a1c+ k) · un+1 =
fn+1 +m · (a0un + a2u̇n + a3ün) + c · (a1un − a4u̇n − a5ün).

(2.63)

The whole procedure can be summarized in three major steps and is graphically shown in Fig. 2.4.
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Chosing
∆t, β, γ

Pre-processing

Initial
acceleration
ü0 from
Eq. 2.60

Constants
ai from
Eq. 2.62

Processing

Loop n = 0, · · · , N − 1
un+1 from Eq. 2.63

(ün+1, u̇n+1
from Eq. 2.61)

Post-processing Plotting of dis-
placement field

Fig. 2.4: Flow chart of numerically solving the EOM with Newmark’s method.

The time step size ∆t has to be chosen appropriately. Newmark proposes to chose the time step size
to be one fifth to one sixth of the smallest natural period of the system in order to achieve reasonable
convergence rates and small errors [22, p. 79].

The Newmark’s method gives the total response of the system to arbitrary loads. Distinguishing
damping scenarios according to D as in Eq. 2.15 or the splitting into homogeneous and particular
solutions does not apply. One can obtain the response due to initial conditions and due to external
load separately by setting the ICs or the load zero though.
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2.3.2 Numerical solution in the frequency domain

The derivation of the numerical solution is done very quickly and follows the outline of [21, p. 6]. The
response obtained is the total one [7, p. 891], which means it is not possible to extract the homogeneous
or particular solution. Furthermore the initial conditions from Eq. 2.5 are assumed to be zero with this
kind of formulation ([8, p. 108], [7, p. 900], [20, p. 57]). By considering the pseudo-force techniques,
the consideration of ICs would be possible [20, p. 57]. This technique is not followed in this thesis.

The general steps for solving the differential equation is very similar as for obtaining the homogeneous
solution. Eq. 2.4 is Fourier transformed and gives

m · F [ü](ω) + c · F [u̇](ω) + k · F [u](ω) = F [f ](ω). (2.64)

With the property Eq. 1.29 the equation is of following form

F [u](ω) · (−mω2 + icω + k) = F [f ](ω). (2.65)

Reformulating the equation gives the solution of the EOM in the frequency domain

F [u](ω) = 1
(−mω2 + icω + k) · F [f ](ω) = H(ω) · F [f ](ω). (2.66)

The numerical part comes into play when considering the Fourier transformed load, wherefore the FFT
from Section 1.2.3 is used. Discrete frequency values are inserted in the frequency response function
meaning that for every frequency value the response function needs to be evaluated. In Fig. 2.5, a
flow chart of the calculation is shown where the last step is obviously optional.

Fourier trans-
formed load {Fk;ωk} Load in time domain

Evaluation of fre-
quency response
function Hk(ωk)

Fourier transformed
displacement F [uk]

Post processing

Transformation into
time domain {uk}

Post processing

FFT

IFFT

Fig. 2.5: Flow chart of numerically solving the EOM in the frequency domain.
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Chopra [7] stated in appendix A, that depending on the damping ratio ζ and the observed calculation
time, the results may vary dramatically. Therefore it is once again shown that choosing the right
amount of zero-padding and/or modification of the calculation time is crucial for a good approximation
of the result. To keep the errors in the frequency analysis below some selected tolerance limit ε� 1,
it is necessary to choose the calculation time tf longer for systems with less damping [7, p. 901].

Fig. 2.6: Influence of the time tf on the results obtained by using the FFT in frequency analysis,
taken from [7, p. 900]
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2.3.3 Comparison of calculation methods

The following flow chart should summarize the calculation in both, time and frequency domain and also
shows the connections between the calculations. Furthermore it is shown whether initial conditions
can be considered or not ([7, p. 165], [7, p. 129] and [20, p. 57]). The abbreviations FFT and IFFT
denote the Fast Fourier transform and the inverse Fast Fourier transform respectively.

Decision
whether
time or

frequency
domain

Transformed
load F [f ](ω)

Load in time
domain f(t)

Complex valued
frequency response
function H(ω)

EOM F [u] =
H(ω)F [f ](ω) EOM mü+cu̇+ku = f

Fourier transformed
displacements

Displacements
in time domain

Postprocessing
(plotting spectra)

Postprocessing
(plotting dis-

placement field)

ICs no ICs yes

Newmark-loopMultiplication Convolution integral

IFFT

FFT

IFFT

FFT

Fig. 2.7: Flow chart of numerically solving EOM in both domains
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2.4 Examples

In this sections some solutions for a single degree of freedom system are presented. The system as well
as the system parameters are shown in the following figure. As the goal of this thesis is to compare
the computations in the time and frequency domain, both approaches are used for each example. The
example’s geometry is taken from the lecture notes "Structural Dynamics"3 of Dr. Dünser [10].

2.4.1 Introduction to example

m = 3 t

m = 0

EI = 10 000 kN m2

f(t)

L = 3 m u(t)

m = 3t
k = 3EI

L3 = 1
910 000 kN/m

ω0 =
√
k/m = 19.245 rad/ sec

ζ = 0.05→
c = 2ζmω0 = 5.77 kN sec /m
ωd = ω0

√
1− ζ2 = 19.22 rad/ sec

u0 = u̇0 = 0

Fig. 2.8: Geometrical configuration of a cantilever beam with load on end.

Four different loadings are applied on the mass on the right end of the cantilever beam. The observed
time is always 10 seconds.

• Single harmonic: f(t) = f c cos(Ωt)+fs sin(Ωt) = 50·cos(10t)+25·sin(10t) shown in Fig. 2.9(a)

• General periodic: load from Fig. 1.3 with ŷ = 50 kN and T = 10 sec shown in Fig. 2.9(b)

• General non-periodic: load from Fig. 1.6 with f0 = 50 kN and T̂ = 5 sec shown in Fig. 2.10(a)

• Arbitrary: with discrete values at time steps (marked with x) as shown in Fig. 2.10(b)

0 2 4 6 8 10

-60

-40

-20

0

20

40

60

(a)

0 2 4 6 8 10

-50

0

50

(b)

Fig. 2.9: Example of a (a) harmonic load and (b) periodic load.

3The lecture Structural Dynamics is taught by Dr.techn. C. Dünser at TU Graz in 2020. The lecture slides and notes
are only published for students enrolled in this course but not to the general public [10].
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Fig. 2.10: Example of a (a) non-periodic load and (b) arbitrary load.

2.4.2 Harmonic excitation

The EOM is solved in the time and frequency domain. Firstly, the solution is derived in the time
domain.

Solution in time domain

The Ansatz for the particular solution is chosen as proposed in Tab. 2.2

up(t) = uc cos(Ωt) + us sin(Ωt). (2.67)

Obtaining the first and second derivative with respect to time gives

u̇p(t) = dup
dt = −Ωuc sin(Ωt) + Ωus cos(Ωt) and (2.68a)

üp(t) = du̇p
dt = −Ω2uc cos(Ωt)− Ω2us cos(Ωt). (2.68b)

Inserting in the EOM Eq. 2.4 gives

f c cos(Ωt) + fs sin(Ωt) = m ·
(
−Ω2uc cos(Ωt)− Ω2us cos(Ωt)

)
+ c · (−Ωuc sin(Ωt) + Ωus cos(Ωt))
+ k · (uc cos(Ωt) + us sin(Ωt)) .

(2.69)

Rearranging and factoring out gives the following system of equations (with ∆ = (k−Ω2m)2 + (Ωc)2)

[
k − Ω2m Ωc
−Ωc k − Ω2m

]{
uc

us

}
=
{
f c

f s

}
, (2.70a)

with the coefficients

uc = k − Ω2m

∆ f c − Ωc
∆ f s = 0.0594 m and

us = k − Ω2m

∆ fs + Ωc
∆ f c = 0.0352 m.

(2.70b)
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Therefore the particular solution is

up(t) = 0.0594 cos(10t) + 0.0352 sin(10t), (2.71)

with values of the displacement and velocity at time t = 0

up(t = 0) = 0.0594 m and
u̇p(t = 0) = 0.352 m/ sec.

(2.72)

The homogeneous solution is then straightforwardly obtained by inserting the integration constants
from Eq. 2.21 in Eq. 2.17

α1 = u0 − up(t = 0) = −0.0594,

α2 = 1
ωd

(v0 + ζω0(u0 − up(t = 0)) + u̇p(t = 0)) = 0.0153,
(2.73)

uh(t) = e−0.05·19.245·t (−0.0594 · cos(19.22t) + 0.0153 · sin(19.22t)) . (2.74)

The full solution is the sum of particular and homogeneous solution and is plotted in Fig. 2.11.

Solution in frequency domain

The solution in the frequency domain is calculated next by inserting in Eq. 2.45b with Eq. 2.42b and
Eq. 2.45c. Therefore the harmonic loading needs to be rewritten with complex notation

f(t) = f+ · eiΩt + f− · e−iΩt,
with f+ = 25− 12.5i and f− = 25 + 12.5i.

(2.75)

Inserting the complex load in Eq. 2.45b together with the frequency response function gives

u+ = f+H+ = 25− 12.5i
−100 · 3 + 5.77 · 10i + 1111.11 and

u− = f−H− = 25 + 12.5i
−100 · 3− 5.77 · 10i + 1111.11 .

(2.76)

The particular solution in the frequency domain is therefore

u+ = 0.0296− 0.0175i and u− = 0.0296 + 0.0175i. (2.77)

The homogeneous solution then follows by inserting the coefficients αi from Eq. 2.73 into Eq. 2.40

F [uh](ω) = −0.0594 · 0.05 · 19.245 + iω
19.222 + (0.05 · 19.245 + iω)2

+ 0.0153i · 19.22i
19.222 + (0.05 · 19.245 + iω)2 .

(2.78)

The amplitude spectrum of F [u] is graphically shown in Fig. 2.13. The peaks in the spectrum show
the dominant frequencies at ω = 10 rad/ sec and ω = ω0. The dominant frequency of the particular
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solution is the excitation frequency Ω = 10 rad/ sec as expected. The transient part oscillates with
the natural period of the system ω0.
After transforming this solution into the time domain, results are shown in Fig. 2.12 and Fig. 2.11,
split into homogeneous, particular and total response. It can be seen that the homogeneous (transient)
solution decays over time leading to u(t)→ up(t) for large t. This is typical for damped systems.
A comparison of the two solutions in the time domain is given in Fig. 2.14. The blue line shows the
solution in the time domain. The black line marks the displacement obtained in the frequency domain.
Both calculated displacement fields behave equally, confirming the equivalence of the two approaches.
The amplitudes of the oscillations are similar. The phases match well, meaning the time difference of
the two displacements is close to zero.
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Fig. 2.11: Displacement in the time domain with harmonic load obtained in time domain.
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Fig. 2.12: Displacement in the time domain with harmonic load obtained in frequency domain.
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Fig. 2.13: Amplitude spectrum of response with harmonic load obtained in frequency domain.
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Fig. 2.14: Comparison of displacements due to harmonic load in the time and frequency domain.
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2.4.3 Periodic excitation

Solution in time domain

For obtaining the solution in the time domain, it is necessary to disassemble the sawtooth function
into the corresponding harmonics. This is shown in Section 1.2.1. The load can be expressed as (with
the help of Eq. 1.11 and Eq. 1.12)

f(t) =
+∞∑
n=1

100
πn
· (−1)n+1 sin(nωt) =

+∞∑
n=1

fsn sin(nωt). (2.79)

The particular solution can be obtained by the sum of the particular solutions of the harmonics of
f(t). The nth particular solution is derived next and is very similar to the harmonic case.

The Ansatz is similar to Eq. 2.67

up,n(t) = ucn cos(nωt) + usn sin(nωt). (2.80)

Inserting the antiderivative and the first two derivates with respect to time in the EOM Eq. 2.4 gives
a system of equations (with ∆ = (k − (nω)2m)2 + (nωc)2)[

k − (nω)2m nωc
−nωc k − (nω)2m

]{
ucn
usn

}
=
{
f cn = 0
fsn

}
, (2.81a)

giving the coefficients

ucn = −nωc∆ fsn and

usn = k − (nω)2m

∆ fsn.
(2.81b)

Therefore the particular solution is

up(t) =
∞∑
n=1
−nωc∆ fsn cos(nωt) + k − (nω)2m

∆ fsn sin(nωt), (2.82)

with the displacement and velocity at time t = 0
up(t = 0) = −2.177 · 10−5 m and
u̇p(t = 0) = −0.0034 m/ sec.

(2.83)

The homogeneous solution is then immediately obtained by evaluating the integration constants α1
and α2 from Eq. 2.21

α1 = u0 − up(t = 0) = 2.177 · 10−5 and

α2 = 1
ωd

(v0 + ζω0(u0 − up(t = 0)) + u̇p(t = 0)) = −1.684 · 10−4,
(2.84)

and inserting the coefficients in Eq. 2.17, giving

uh(t) = e−0.05·19.245·t
(
2.1773 · 10−5 · cos(19.22t)− 1.684 · 10−4 · sin(19.22t)

)
. (2.85)

The full solution is the sum of particular and homogeneous solution and is shown in Fig. 2.15 For
computing purposes, the infinite sum was stopped after the 100th term.
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Solution in frequency domain

To obtain the solution in the frequency domain, it is necessary to calculate the complex Fourier
coefficients of the sawtooth function (Ω = 2π/T )

fn = 1
T

T/2∫
−T/2

f(t)e−inΩt dt,

= 1
T

T/2∫
−T/2

f(t)(cos(nΩt)− i sin(nΩt)) dt.

(2.86)

As the sawtooth function is an antimetric function, the cosine part of Eq. 2.86 is zero. The Fourier
coefficients are

fn = −i
T

T/2∫
−T/2

2ŷ
T
t sin(nΩt) dt = −2ŷi

T 2

T/2∫
−T/2

t sin(nΩt) dt,

= (sin(πn)− πn cos(πn))T 2

2π2n2 · −2ŷi
T 2 .

(2.87)

The particular solution is obtained by inserting the coefficients in Eq. 2.51b

F [up] = {un;nΩ} with Ω = 0.628 rad/ sec and

un = − 1
−3(nΩ)2 + 5.77i(nΩ) + 1111.11 ·

50i
π2n2 (sin(πn)− πn cos(πn)).

(2.88)

The solution in the time domain is then obtained by inserting in Eq. 2.52b. The homogeneous solution
is similarly obtained as in the points above (see Eq. 2.78) and is

F [uh](ω) = 2.177 · 10−5 · 0.05 · 19.245 + iω
19.222 + (0.05 · 19.245 + iω)2

− 1.684 · 10−4i · 19.22i
19.222 + (0.05 · 19.245 + iω)2 .

(2.89)

The amplitude spectrum of F [u] is graphically shown in Fig. 2.17. The amplitude spectrum shows
the response of the system for every frequency. In this example, it is clearly seen that the system
oscillates with its natural circular frequency ω0.
The solution in the time domain is shown in Fig. 2.16, split into homogeneous, particular and total
response. The homogeneous solution is nearly zero in this example because the initial conditions are
zero and the particular solution is close to zero at time t = 0.
A comparison of the two solutions is given in Fig. 2.18. In equivalence to the harmonic test case the
solution obtained in the time domain is plotted blue and the solution in the frequency domain black.
It can be seen that both responses are similar. The phases and amplitudes of the oscillations are
equal, showing the equivalence of both approaches.
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Fig. 2.15: Displacement in the time domain with periodic load obtained in time domain.
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Fig. 2.16: Displacement in the time domain with periodic load obtained in frequency domain.
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Fig. 2.17: Amplitude spectrum of response with periodic load obtained in frequency domain.
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Fig. 2.18: Comparison of displacements due to periodic load in the time and frequency domain.
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In order to verify the results once again, the response due to the periodic loading is obtained with
Newmark’s method. Fig. 2.19 shows the total response in the time domain.
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Fig. 2.19: Displacement in the time domain with periodic load obtained with Newmark’s method.

Comparing Fig. 2.18 and Fig. 2.19, it can be seen that equivalent results are obtained. It is thus con-
firmed that all three methods (analytical time, analytical frequency and numerical time) are suitable
to perform the calculation with the given excitation and yield equivalent results.

Studies in structural dynamics in the time and frequency domain 46



2 Systems with a single degree of freedom (SDOF)

2.4.4 Non-periodic excitation

Solution in time domain

The response of this loading is calculated with help of the convolution integral. As the load jumps
from f0 to 0, the integral needs to be split and separately solved with Eq. 2.27. The forced vibration
phase4 t ≤ T̂ is given by

u(t) = e−ζω0t
(
u0 cos(ωdt) + v0 + ζω0u0

ωd
sin(ωdt)

)
︸ ︷︷ ︸

u0=v0=0→0

+ 1
mωd

∫ t

0
f0 ·e−ζω0(t−τ) · sin (ωd(t− τ)) dτ . (2.90)

Applying the partial integration rule twice gives

u(t) = f0
mωd

·

cos(ωd(t− τ)) · e−ζω0(t−τ)

ωd

t∣∣∣∣∣
0



− f0
mωd

·

ζω0 sin(ωd(t− τ)) · e−ζω0(t−τ)

ω2
d

t∣∣∣∣∣
0

−
∫ t

0
−ζω0 sin(ωd(t− τ)) · e−ζω0(t−τ)

ω2
d

dτ

 .

(2.91)

For the partial integration the trigonometric function was integrated twice and the exponential function
was derived twice.
Inserting the boundaries gives

u(t) = f0
mωd

· ωd − e−ζω0t(ζω0 sin(ωdt) + ωd cos(ωdt)
ω2
d + (ζω0)2 . (2.92)

After rearranging the coefficients, the solution for the forced vibration phase follows as

u(t) = f0
k︸︷︷︸

ustat,0

·
(

1− e−ζω0t

(
cos(ωdt) + ζ√

1− ζ2 sin(ωdt)
))

,

= 50
1111.11 ·

(
1− e−0.05·19.245·t

(
cos(19.22t) + 0.05√

1− 0.052
sin(19.22t)

))
.

(2.93)

Once the force is removed, the system oscillates until the damping stops the motion until rest. The
free vibration phase5 t ≥ T̂ can be described by inserting in Eq. 2.27

u(t) = e−ζω0t
(
u0 cos(ωdt) + v0 + ζω0u0

ωd
sin(ωdt)

)
+ 1
mωd

∫ t

0
f0e−ζω0(t−τ) sin (ωd(t− τ)) dτ︸ ︷︷ ︸

f(t)=0→0

. (2.94)

4The vibration due to external load is called forced vibration.
5The free vibration phase describes the vibration due to initial condition and zero external load.

Studies in structural dynamics in the time and frequency domain 47



2 Systems with a single degree of freedom (SDOF)

The free vibration phase is given by

u(t) = e−ζω0(t−T̂ )
(
u(t = T̂ ) · cos(ωd(t− T̂ )) + 1

ωd
(u̇(t = T̂ ) + ζω0u(t = T̂ )) · sin(ωd(t− T̂ ))

)
,

= e−0.05·19.245(t−5)(0.0451 · cos(19.22(t− 5)) + 0.0101 · sin(19.22(t− 5))),
(2.95)

with the constants u(t = T̂ ) = 0.0451 m and 1
ωd

(u̇(t = T̂ ) + ζω0u(t = T̂ )) = 0.0101. Fig. 2.20 shows
the displacement for the non-periodic load.

Solution in frequency domain

To solve the problem in the frequency domain, the load has to be transformed into the frequency
domain and was already done for the rectangular force in Eq. 1.17. The particular solution in the
frequency domain follows with Eq. 2.55

F [up](ω) = 1
−ω2m+ icω + k

· T̂ · f0 ·
sin(ωT̂/2)
ωT̂/2

· e−iωT̂/2,

= 1
−3ω2 + i5.77ω + 1111.11 · 250 · sin(2.5ω)

2.5ω · e−2.5iω.
(2.96)

At time t = 0 the particular solution has the values up(t = 0) = 1.4366 · 10−4 m and u̇p(t = 0) =
0.1206 m/ sec. The values are obtained by transforming the solution back into the time domain.

The homogeneous solution is given analogously to Eq. 2.78 by inserting the integration constants

α1 = u0 − up(t = 0) = −1.4366 · 10−4 and

α2 = 1
ωd

(v0 + ζω0(u0 − up(t = 0)) + u̇p(t = 0)) = 6.267 · 10−3 (2.97)

into Eq. 2.40
F [uh](ω) = −1.4366 · 10−4 · 0.05 · 19.245 + iω

19.222 + (0.05 · 19.245 + iω)2

+ 6.267 · 10−3 · i · 19.22 · i
19.222 + (0.05 · 19.245 + iω)2 .

(2.98)

Fig. 2.20 shows the complete response obtained with the convolution integral. Fig. 2.21 shows the
solution in the time domain obtained with a frequency analysis. The figure shows the particular,
the homogeneous and the total response. Fig. 2.22 shows the solution (amplitude spectrum) in the
frequency domain. It can be nicely seen, that the system oscillates with its natural circular frequency
ω0. As done for the other loading scenarios, Fig. 2.23 shows the solution in the time domain obtained by
the two different approaches. Both methods result in similar outcomes with expected displacements.
In the forced vibration phase, the system oscillates around the static solution with the maximum
displacement of approximately 2 ·ustat. The system starts to oscillate around the state of rest once the
load is being removed due to the ideal elastic material law. The amplitudes of the time domain solution
are slightly smaller than the ones in the frequency domain. The phases do match well, although they
are slightly shifted.
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Fig. 2.20: Displacement in the time domain with nonperiodic load obtained in time domain.
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Fig. 2.21: Displacement in the time domain with nonperiodic load obtained in frequency domain.
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Fig. 2.22: Amplitude spectrum of response with nonperiodic load obtained in frequency domain.
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Fig. 2.23: Comparison of displacements due to nonperiodic load in the time and frequency domain.
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2.4.5 Arbitrary excitation

The solution for the given load in Fig. 2.10(b) is shown in the figure below. As the load is only
available at discrete time steps, a numerical treatment is required. The solution in the time domain
was obtained by following the steps in Section 2.3.1 and the solution in the frequency domain with
the methods shown in Section 2.3.2 and transformed into the time domain by an inverse fast Fourier
transformation (IFFT). Note that the load was interpolated linearily between the given values in order
to obtain function values at each time step n.

Fig. 2.24 shows the displacement obtained in both domains. The blue line shows the solution in the
time domain, calculated with Newmark’s method. The black line marks the displacement obtained
in the frequency domain. The result is as expected, meaning that the displacement amplitudes are
highest when the load reaches its maximum. The displacements converge to zero while the load is
removed. There is little to no offset between the two lines. The amplitudes of displacement match
very well. The amplitudes of displacement are very important for the design of a building. The phases
also match nicely, which means the time change of displacements are nearly identical in both domains.
Consequently, it can be stated that both methods yield similar outcomes.
Fig. 2.25 shows the relative difference ε = |(uNewm−uFreq)|/|uNewm| between the two calculations. The
outliers can be explained by the fact that the displacement in this points have different signs which
lead to a very high relative difference. This fact is considered less important as the displacements are
very small at those values. The amplitude spectra is not shown for this test case.

2.4.6 Conclusions

As shown in the examples, both methods in the time and frequency domain yield very similar results.
The computation effort is nearly identical when calculating the solutions analytically. Depending on
the application, the relative differences vary. Considering the results of the previous examples, one may
state that the frequency domain yields advantages over the time domain approach for harmonic and
periodic loadings and non-periodic loads in closed form because algebraic equations need to be solved
instead of integrating an equation [13, p. 34]. When it comes to arbitrary loadings (and numerical
treatment in general), the time domain may be the better choice as the input needs to be altered in
the frequency domain in order to obtain good results (zero-padding, windowing,...). In conclusion, it
may be stated that both methods do have advantages and drawbacks over the other and the individual
user needs to be careful what type of loading is present in the application. One disadvantage of the
frequency domain is that one needs to chose the calculation time very carefully and pay close attention
to alter the input to obtain an accurate result when carrying out calculations numerically. One major
advantage of calculating in the frequency domain is that frequency depended properties can easily be
considered. In case of frequency dependent properties Eq. 2.66 can be written as

F [u](ω) = 1
−mω2 + ic(ω) + k(ω) · F [f ](ω) = H(ω) · F [f ](ω), (2.99)

where k(ω) and c(ω) can be depending on the frequency [8, p. 97]. Another advantage of the approach
in the frequency domain is that the interpretation of results may be easier.
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Fig. 2.24: Comparison of displacements due to arbitrary load in the time and frequency domain.
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Fig. 2.25: Relative difference of displacements in the time and frequency domain.
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3 Systems with multiple degrees of freedom
(MDOF)

As already mentioned in the introduction, it is often not sufficient to describe an application with
one single degree of freedom. Systems with many DOFs need similar techniques to be handled as
SDOF systems, with appropriate adaptations. This chapter derives the EOM for MDOF systems and
introduces methods to solve the EOM being a system of coupled equations.

3.1 The equation of motion

MDOF systems arise in many different applications. In some applications, the properties (mass,
stiffness, damping) are concentrated at specific places within the domain, e.g., several masses interact
through springs and/or dampers. Other applications have continuously distributed properties which,
as a result of some discretization also result in MDOFs. We will see that both systems lead to formally
equivalent EOMs.

3.1.1 Systems with discrete masses

This section is based on Clough [8, pp. 171-173]. The EOM of MDOF systems with discrete properties
can be formulated by expressing the equilibrium of all effective forces associated with each of the
degrees of freedom of the system [8, p. 171]. In other words, the sum of all effective reaction forces
needs to be zero for each DOF. This is the same principle as for the SDOF case (compare Section 2.1).
The arising sums of forces can be written as a set of equations in the following way

fS1(t) + fD1(t) + fI1(t)− f1(t) = 0
fS2(t) + fD2(t) + fI2(t)− f2(t) = 0
fS3(t) + fD3(t) + fI3(t)− f3(t) = 0

· · · · · · · · ·

(3.1a)

or when the forces are written in vector form

fS(t) + fD(t) + f I(t)− f(t) = 0, (3.1b)

with the elastic force vector fS(t), the damping force vector fD(t), the inertia force vector f I(t) and
the vector of external loads f(t).

Eq. 3.1b is the MDOF-equivalent to the EOM of SDOF systems

fS(t) + fD(t) + fI(t)− f(t) = 0. (3.2)
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Clough stats that expressing each of the forces in Eq. 3.1 by means of an appropriate set of influence
coefficients is the most convenient way [8, p. 171]. The information behind these coefficients is how
much each of the DOFs influence the force at one specific DOF. The calculation of the coefficients
can be done by applying unit-properties (unit-displacements uj = 1, unit-velocities u̇j = 1 and unit-
accelerations üj = 1) on each degree of freedom j and computing the response (reaction) forces at
each degree of freedom i. The coefficients can be written as

k(c/m)ij = force corresponding to DOF i due to an
unit displacment (velocity/acceleration) of DOF j.

(3.3)

This leads to following matrix-vector-products.

Set of elastic force relationships obtained by applying unit displacements

fS1
fS2
·
fSi
·


=


k11 k12 · · · k1i · · · k1N
k21 k22 · · · k2i · · · k2N
· · · · · · · · · · · · · · · · · ·
ki1 ki2 · · · kii · · · kiN
· · · · · · · · · · · · · · · · · ·

 ·


u1
u2
·
ui
·


. (3.4a)

Set of damping forces obtained by applying unit velocities

fD1
fD2
·
fDi
·


=


c11 c12 · · · c1i · · · c1N
c21 c22 · · · c2i · · · c2N
· · · · · · · · · · · · · · · · · ·
ci1 ci2 · · · cii · · · ciN
· · · · · · · · · · · · · · · · · ·

 ·


u̇1
u̇2
·
u̇i
·


. (3.4b)

Set of inertial forces obtained by applying unit accelerations

fI1
fI2
·
fIi
·


=


m11 m12 · · · m1i · · · m1N
m21 m22 · · · m2i · · · m2N
· · · · · · · · · · · · · · · · · ·
mi1 mi2 · · · mii · · · miN

· · · · · · · · · · · · · · · · · ·

 ·


ü1
ü2
·
üi
·


. (3.4c)

Inserting Eq. 3.4 in Eq. 3.1b gives the complete dynamic equilibrium of the structure

M · ü(t) + C · u̇(t) + K · u(t) = f(t) (3.5)

Eq. 3.5 is a system of coupled differential equations of second order in time. Analogously to the SDOF
case, initial conditions (ICs) are needed to obtain a unique solution. The ICs can be of the following
form

u(t = 0) = u0 (3.6a)
u̇(t = 0) = v(t = 0) = v0 (3.6b)
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Example

An example shall demonstrate this procedure (taken from the slides of Dr. Dünser [10]). The EOM for
the two-story frame is sought. The geometry is shown in Fig. 3.1(left). It is assumed that the mass of
the columns are zero and the columns as well as the ceilings can not change their length (EA→∞).
The mass of the ceilings is concentrated in the middle and the flexural stiffness is infinitely high
(EI → ∞). The corners of the frame cannot rotate. Because of the above described properties the
system is a two DOF system. The following figures (Fig. 3.1, Fig. 3.2, Fig. 3.3 and Fig. 3.4) show the
application of the unit-properties and the calculation of the influence coefficients. The red arrows and
values symbolizes the unit properties.

Geometry

m1

m2

EI →∞, EA→∞

EI →∞, EA→∞

m = 0; EI

m = 0; EI

m = 0; EI

m = 0; EI

EA→∞

EA→∞

EA→∞

EA→∞

c1

c2

B

L
L

u1 = u̇1 = ü1 = 0
u2 = u̇2 = ü2 = 0

P1(t)

P2(t)

K10

K20

1st floor∑
FH = 0

K10 = −P1(t)

2nd floor∑
FH = 0

K20 = −P2(t)

Fig. 3.1: (left) Geometry and (right) force coefficients of example frame.
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Unit displacement: u1 = 1

u1 K11

K21

12EI
L3

12EI
L3

12EI
L3

12EI
L3

12EI
L3

12EI
L3

K11 = 412EI
L3 K21 = −212EI

L3

Unit displacement: u2 = 1
u2

12EI
L3

12EI
L3

12EI
L3

12EI
L3 K12

K22

K12 = −212EI
L3 K22 = 212EI

L3

Fig. 3.2: Stiffness coefficients of example frame.

Unit velocity: u̇1 = 1

C11

C21

u̇1c2

c2

c1

C11 = c1 + c2 C21 = −c2

Unit velocity: u̇2 = 1
u̇2

c2

c2 C12

C22

C12 = −c2 C22 = c2

Fig. 3.3: Damping coefficients of example frame.
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Unit acceleration: ü1 = 1

M11

M21

ü1

m1

M11 = m1 M21 = 0

Unit acceleration: ü2 = 1
ü2

m2

M12

M22

M12 = 0 M22 = m2

Fig. 3.4: Inertia coefficients of example frame.

For equilibrium, all support forces of all response states need to vanish, in other words the sum of
forces of each DOF needs to be zero. The equilibrium for each degree of freedom needs to be fulfilled
and can be written as

first floor∑
Fx = 0 : M11ü1 +M12ü2 + C11u̇1 + C12u̇2 +K11u1 +K12u2 +K10 (3.7a)

second floor∑
Fx = 0 : M21ü1 +M22ü2 + C21u̇1 + C22u̇2 +K21u1 +K22u2 +K20 (3.7b)

Rewriting the equations in matrix-vector notation yields[
M11 M12
M21 M22

]
·
{
ü1
ü2

}
+
[
C11 C12
C21 C22

]
·
{
u̇1
u̇2

}
+
[
K11 K12
K21 K22

]
·
{
u1
u2

}
+
{
K10
K20

}
= 0. (3.7c)

The procedure of obtaining the EOM for a simplified two story frame is therefore shown.
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3.1.2 Systems with distributed properties (FEM-systems)

In many applications, the properties of a system are not available at discrete spatial points but rather
distributed continuously over the domain. In this section the EOM is derived and later discretisised
with the Finite Element Method. The derivation is done with respect to systems where only small
displacements and small strains occur. In linear elasticity, no distinction between Lagrangian1 and
Eulerian2 framework needs to be done [2, p. 307]. In the following all quantities of the domain are
given with respect to the spatial position vector x [2, p. 307].

Strong form

Later on, the discrete weak form of the initial boundary value problem (IBVP) is needed wherefore
the strong form is given as a starting point here. According to [2, pp. 307-308] the strong form of the
elastodynamics is given as

∇ · σ + ρk︸︷︷︸
:=f

= ρü with σ = σT on ΩS × (0, T ) (3.8)

There, ρ is the density of the solid, f the volume force vector, ΩS the structural domain and T the
calculation time.
The linearised constitution law (Hooke’s law) is given as

σ = λ(ε : I)I + 2µε = 2G
(

ν

1− 2ν (ε : I)I + ε
)
, (3.9)

and the linear strain-displacement relation as

ε = 1
2
[
∇u+ (∇u)T

]
. (3.10)

I describes the unity tensor. The material parameters are defined as

ν = λ

2(λ+ µ) , E = µ(3λ+ 2µ)
λ+ µ

, G = µ. (3.11)

The Lamé constants λ and µ are defined as (reformulation of Eq. 3.11)

λ = Eν

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) , (3.12)

with Young’s modulus E and Poisson’s ratio ν.

1In the Lagrangian framework, the observer sits on a particle which moves in space and time [2, p. 76].
2In the Eulerian framework, the observer stays fixed at one point in space and observes the movement of particles [2,
p. 76].
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Weak form

The weak form, or to be more precise the discrete weak form is necessary when using the Finite
Element Method (FEM). For readers not familiar with the FEM it is recommended to look at the
example in [18, 78ff]. Further reading on the FEM is given, e.g., in Hughes [17]. The derivation is
made with respect to the lecture slides of Prof. Fries3 [12].

The strong form of the initial boundary problem is:
Given the information in the equations below, find u, such that

ρü(x, t) = ∇ · σ + f on ΩS × (0, T ) (3.13a)
u(x, t) = uΓD(t) on ΓD × (0, T ) (3.13b)
σ · n = fΓN (t) on ΓN × (0, T ) (3.13c)

u(x, t = 0) = u0(x) x ∈ ΩS (3.13d)
u̇(x, t = 0) = u̇0(x) x ∈ ΩS (3.13e)

holds. ΓD denotes the part of the boundary of the domain where Dirichlet (or kinematic) BCs are
prescribed, ΓN denotes the part of the boundary where Neumann (or traction) BCs are prescribed. n
is the normal vector to the boundary of ΩS . Eq. 3.13a is a second order initial value problem in time
(and space) therefore the initial conditions u0 and u̇0 are needed as well.

To obtain the continuous weak form it is necessary to multiply Eq. 3.8 with a test function vector w,
integrate over the whole domain ΩS and apply the divergence theorem. The continuous weak form
can be then written as: Given f ,uΓD(t),fΓN (t),u0 and u̇0, find u(t) ∈ St, t ∈ (0, T ), such that for
all w ∈ V ∫

ΩS
ρw · ü dΩ +

∫
ΩS
∇w : σ dΩ =

∫
ΩS
w · f dΩ +

∫
Γ
w · t̂ dΓ (3.14)

holds. t̂ is the traction along the Neumann boundary ΓN .

It is essential to discretize the nodal displacements u and the test function w using the Ansätze

u ≈ uh =
∑
i

Niui = NT · u (3.15a)

w ≈ wh =
∑
i

Niwi = NT ·w (3.15b)

With these approximations, it is possible to find one solution for uh with wh. Inserting Eq. 3.15 into
Eq. 3.14 gives the discrete weak form needed to find a solution with the FEM: Given f ,uΓD(t),fΓN (t),u0
and u̇0, find uh(t) ∈ Sht , such that for all wh ∈ Vh∫

ΩS
ρwh · üh dΩ +

∫
ΩS

∇wh : σ dΩ =
∫

ΩS
wh · f dΩ +

∫
Γ
wh · t̂h dΓ (3.16)

holds. The spatial discretisation of Eq. 3.8 with the help of FEM gives a semi-discrete system of
equations of the form equivalent to Eq. 3.5.

M · ü(t) + C · u̇(t) + K · u(t) = f(t) (3.17)

3The lectures Finite Element Method I and II are taught by Prof. T.-P. Fries at TU Graz in 2020. The lecture slides
and notes are only published for students enrolled in this course but not for the general public [12]
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where M is the mass matrix, K the stiffness matrix and C the damping matrix. It is thus confirmed
that formally this EOM coincides with MDOF systems as described in the previous section. M and
K are calculated as below. A short comment to the damping matrix C is given in the subsection
Damping.

The terms in Eq. 3.17 are calculated as shown below in case of a 2D setting

K =
nElem∑
i=1

[∫
Ωi(λ+ 2µ)N ,xN

T
,x + µN ,yN

T
,y dΩi

∫
Ωi λN ,xN

T
,y + µN ,yN

T
,x dΩi∫

Ωi λN ,yN
T
,x + µN ,xN

T
,y dΩi

∫
Ωi(λ+ 2µ)N ,yN

T
,y + µN ,xN

T
,x dΩi

]
(3.18a)

M =
nElem∑
i=1

∫
Ωi
ρNNT dΩi (3.18b)

f =
nElem∑
i=1

[∫
ΩiNfxdΩi +

∫
ΓiN t̂x dΓi∫

ΩiNfydΩi +
∫
ΓiN t̂y dΓi

]
(3.18c)

where N ,j denotes the partial derivative of N in j-direction N ,j = ∂N
∂j with j = x, y. The matrices

K and M are sparsely filled4 due to the use of shape functions N provided by the finite elements and
featuring local supports. The Ansatz functions fulfil the Kronecker-Delta property, which means the
shape functions are zero at all nodes except for the one function belonging to that node (which is 1
there) [18, p. 255].

In the next chapters the EOM is solved in the time and frequency domain.

Damping

Damping in a structure reduces the amplitudes of a motion over time. This happens because energy
dissipates through internal and external mechanisms [25, p. 101]. Damping properties are difficult to
specify and have to be extracted from tests or chosen with respect to similar structures [7, p. 453].
Various different models were introduced over the years, the most commonly and convenient one is
the Rayleigh damping5.
The Rayleigh damping (also called "proportional viscous damping" [8, p. 234] or "classical damping"
[7, p. 456]) is proportional to a combination of the mass and the stiffness of the system [8, p. 235]
where the mass-proportional part can be interpreted as damping due to air resistance and the stiffness-
proportional part as damping due to internal friction by deformation of the structure [7, p. 455].

The Rayleigh damping is defined as
C = a0M + a1K. (3.19)

The Rayleigh damping allows the definition of two damping ratios at two frequency values. Switching
to index notation and with the relations cn = 2ωnmnζn = a0mn = a1kn and kn = ω2

nmn, the damping
ratio ζn can be expressed as

ζn = a0
2ωn

+ a1ωn
2 . (3.20)

It can be seen that the mass-proportional damping is linearly dependent on the frequency while the
stiffness-proportional damping is inversely proportional to the frequency.
The two Rayleigh damping factors a0 and a1 can be evaluated by inserting two specific frequencies

4Sparsely filled means that only the main diagonal and few off diagonals have entries 6= 0.
5Named after John Strutt, third baron Rayleigh who was an English physician.
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(modes) and two damping ratios in Eq. 3.20. Written in matrix notation the system of equation
becomes {

ζm
ζn

}
= 1

2

[
1/ωm ωm
1/ωn ωn

]{
a0
a1

}
. (3.21a)

The solutions are given as {
a0
a1

}
= 2 ωmωn

ω2
n − ω2

m

[
ωn −ωm
−1/ωn 1/ωm

]{
ζm
ζn

}
. (3.21b)

Usually, the two damping ratios are chosen the same, i.e., ζm = ζn = ζ [8, p. 236] and Eq. 3.21b
simplifies to {

a0
a1

}
= 2ζ
ωn + ωm

{
ωmωn

1

}
. (3.22)

It is recommended to chose ωm as the fundamental frequency (frequency belonging to the first mode
≡ smallest eigenfrequency [7, p. 408]) of the system and ωn to be set among higher frequencies [8,
p. 236]. The reason behind this statement is that good damping properties should be achieved in the
range of frequency which is of interest for the calculation. Fig. 3.5 shows the relationship between the
damping ratio and frequency for Rayleigh damping. The figure is slightly modified and taken from [8,
p. 235].

ω

ζ

ζn
ζm

ωnωm

Mass proportional:
a1 = 0; ζ = a0

2ω

Stiffness proportional
a0 = 0; ζ = a0

2 ω

Combined

Fig. 3.5: Relationship between damping ratio and frequency.

A very positive aspect of the Rayleigh damping is, next to the fact that very good damping properties
are achieved, that the viscous damping allows a full decoupling of the system of equation (see Chap-
ter 4 for further explanation). In the following, two other damping models are described in order to
give the reader a better overview.

The Extended Rayleigh Damping allows to specify damping ratios at more than 2 frequencies [8,
p. 237] and therefore improves the damping properties at those frequency values. The damping matrix
can be written as

Cn =
∑
b

abω
2b
n Mn. (3.23)
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The coefficients ab can be obtained by choosing ζn and ωn and solving the following system of equations

ζn = 1
2ωn

∑
b

abω
2b
n . (3.24)

Another possible way to consider damping is the complex-stiffness damping. It has advantages
over the linear viscous damping as the energy loss per cycle at a fixed displacement amplitude is
independent of the response frequency [8, p. 230]. The damping is defined as

K̂n = Kn [1 + 2iζn] . (3.25)

ζn is chosen with respect to the material of the structure in any of the presented cases. A small excerpt
can be found in Tab. 2.1. In this thesis, only the Rayleigh damping is used.

3.2 Numerical solution of the EOM

Large systems of equation are very time consuming or may quickly become impossible to solve an-
alytically. Therefore numerical procedures are typically preferred. In the following, procedures are
introduced in both, the time and frequency domain.

3.2.1 Solving in the time domain

In this work, Newmark’s method is used to solve the EOM numerically in the time domain. The
procedure introduced in Section 2.3.1 is straightforwardly extended to systems of equations [7, p. 676].
In equivalence to the SDOF case, the consideration of initial conditions is possible [7, p. 674]. The
most important equations are given in the following.

The EOM of Eq. 3.5 is discretisied at time step tn+1

K · un+1 + C · u̇n+1 + M · ün+1 = fn+1. (3.26)

The special differences outlined in Eq. 2.58 are extended to vectors

un+1 ≈ un + ∆t · u̇n + [(1/2− β)ün + β · ün+1] ·∆t2 (3.27a)
u̇n+1 ≈ u̇n + [(1− γ)ün + γ · ün+1] ·∆t (3.27b)

and are inserted in Eq. 3.26. The equilibrium at time tn+1 is(
M + γ∆t ·C + β∆t2 ·K

)
· ün+1 =

fn+1 −C · (u̇n + (1− γ)∆t · ün)−K ·
(
un + ∆t · u̇n + (1/2− β)∆t2 · ün

)
.

(3.28)

All quantities are known except the acceleration u̇n+1 at time tn+1 and the initial acceleration ü0 for
the first time step. The initial acceleration is a vector in case of a MDOF system and achieved by
evaluating the EOM at time t = 0

ü0 = 1
M (f0 −C · u̇0 −K · u0) . (3.29)
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In some applications displacements are of major importance. In order to get these, the reformulated
differences (see Eq. 2.58 for SDOF systems) are inserted in Eq. 3.26 and the displacement at time tn+1
can be calculated directly

(a0M + a1C + K) · un+1 =
fn+1 + M · (a0un + a2u̇n + a3ün) + C · (a1un − a4u̇n − a5ün),

(3.30)

with the constants ai from Eq. 2.62.

It can be seen that for every time step, a matrix needs to be inverted. This can become very expensive
and can be circumvented for linear time invariant systems (LTI-systems). For these systems the
properties (mass, stiffness and damping) do not change over time and the matrix only needs to be
inverted once. Improvement of calculation time can be achieved by LU-decomposition6 of the matrix.

3.2.2 Solving in the frequency domain

The goal of this section is to solve the EOM for MDOF systems in the frequency domain. The approach
is taken from [21, pp. 8-10]. With this approach one needs to keep in mind that the initial conditions
from Eq. 3.6 are assumed zero [20, p. 57]. In equivalence to the SDOF case, the consideration of
pseudo-forces would make the consideration of ICs possible. The EOM was derived in Section 3.1 and
is of following form

M · ü(t) + C · u̇(t) + K · u(t) = f(t), (3.31)
where M, K and C are matrices and u, f are vectors. The Fourier transform is applied on both sides
of the EOM and gives

M · F [ü](ω) + C · F [u̇](ω) + K · F [u](ω) = F [f ](ω). (3.32)

With property Eq. 1.29 the equation becomes

M · (iω)2 · F [u](ω) + C · (iω) · F [u](ω) + K · F [u](ω) = F [f ](ω). (3.33)

Factoring out F [u](ω) gives

F [u](ω) · (−M · ω2 + iCω + K) = F [f ](ω). (3.34)

The solution in the frequency domain is written as a multiplication

F [u](ω) = H(ω) · F [f ](ω), (3.35)

with
H(ω) = (−M · ω2 + iCω + K)−1, (3.36)

with F [u](ω) being the Fourier transformed unknown displacements and F [f ](ω) being the Fourier
transformed load and H(ω) the frequency response function. This equation is handled numerically by
means of the fast Fourier transformation. The calculation time of large systems with many DOFs can
be very high because the frequency response function needs to be evaluated and inverted for every
single discrete frequency value [13, p. 174]. The scheme is identical to Fig. 2.5. Note that every entry
of the load vector f(t) needs to be transformed with an FFT.

6LU-decomposition was invented by the Polish mathematician Tadeusz Banachiewicz and decomposes the matrix A in
two triangular matrices in order to solve systems of linear equations, invert A or compute detA.
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3.3 Example

Two very typical structures are considered to demonstrate the similarities of both calculation proce-
dures. The structures are chosen as nearly every civil engineer has to deal with in his/her life. The
first example is a cantilever beam typically found in balcony structures. The second structure is a
multi-story frame which schematically represents a high rise building.

3.3.1 Example 1 - Cantilever beam

In this section a 20 meter long cantilever beam is observed. The beam is excitated with a load on the
right end. It is assumed that the dead load is applied suddenly leading to a further excitation of the
structure. The load on the right end is released after half of the calculation time. Fig. 3.6 shows the
geometrical configuration of the beam. The special node at xSN is a reference point in the upper right
corner used to show results of the calculations. The system is at rest at time t = 0.

f(t)

20 m

1m

y

x

g

xSN

Fig. 3.6: Geometrical configuration of the cantilever beam.

The parameters of the example are listed below:

• Density of material ρ = 7850 kg/m3

• Gravity constant g = 9.81 m/s2

• Young’s modulus E = 210 000 000 kN/m2

• Poisson’s ratio ν = 0.3 [-]

• Lamé’s parameter λ is used for thick plates, given as

λ = E · ν
(1 + ν)(1− 2ν) (3.37)

• Rayleigh damping with ζ = 0.05 [-]

• Loading

– Dead load ρ · g

– Single force on right end acting the first half of calculation fx = −2000 kN, fy = −500 kN

• Initial conditions

– Displacement u0 = 0
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– Velocity u̇0 = 0

• Time discretization done using Newmark’s method

– Length of calculation t = 5 sec

– Time step size ∆t = 0.005 sec

– Number of time steps N = 1000

– Nyquist frequency fc = 100 / sec→ ωc = fc · 2π = 628 rad/ sec

• Spatial discretization done using the FEM with 5× 50 = 250 quadratic Lagrangian elements

• The input (load) is zero-padded for the FFT calculation; 2N zeros are added.

The cantilever beam is discretized with 250 quadratic Lagrangian elements. Fig. 3.7 shows the mesh
(yellow), highlighting the nodes on the Dirichlet (blue) and Neumann (red) boundary.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

Fig. 3.7: Mesh and boundary conditions of the cantilever beam.

The following figures show the horizontal and vertical displacements of the special node at xSN. Fig. 3.8
shows the horizontal displacements in the time domain and Fig. 3.10 the vertical displacements. The
relative differences are plotted in Fig. 3.9 as well as in Fig. 3.11.
Tab. 3.1 summarizes the most important comparisons.

Tab. 3.1: Comparison of the calculation in time and frequency domain - Cantilever beam.
Time domain Frequency domain

Calculation time [s] 3 116
max. hor. displacment [m] 0.0086 0.0086
time of max. hor. displ. [s] 0.2252 0.2202
min. ver. displacment [m] -0.2580 -0.2580
time of min. ver. displ. [s] 0.2252 0.2202

Taking the figures and the table into consideration, it can be seen that the results match very well.
The maximas and minimas of the amplitudes are nearly equal. The phases are only slightly shifted.
The peaks in the relative difference plot (Fig. 3.9) can be explained that the displacements have
different signs and are close to zero from time to time and thus may give a huge relative differences.
The displacement fields behave as expected. The system oscillates around the static solution and is
coming to rest at the static solution. Once the load is released, the system oscillates around the static
deformation due to dead load and comes to rest right there after a while. The computation times
are very different. The calculation with the frequency analysis takes nearly 40 times longer than the
calculation in the time domain7. The reason is the high effort for obtaining the frequency response
function H at every discrete frequency value.

7The calculations were done on a commercially available laptop, but the absolute times are not of interest, rather the
relative computation times.
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Fig. 3.8: Comparison of the horizontal displacement in the time domain.
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Fig. 3.9: Relative difference of the two calculation methods.
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Fig. 3.10: Comparison of the vertical displacement in the time domain.
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Fig. 3.11: Relative difference of the two calculation methods.
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3.3.2 Example 2 - Multi-story frame

The next example is a highrise building, being a typical structure in civil engineering. Many simplifi-
cations in the geometry may lead to the system shown in Fig. 3.12. A machine in the last floor with
rotating parts (e.g., a huge washing mashine) excitates the whole building harmonically. The dead
load of the structure is applied suddenly as in Section 3.3.1 and loads the building as well. The system
is at rest at the beginning t = 0. The special node at xSN is the reference point below the machine to
visualize results.

Ω = 10 rad/sec

5 m
0.2 m 0.2 m

3m
3m

3m
0.

3m
0.

3m
0.

3m
y

x

g

xSN

Fig. 3.12: Geometrical configuration of the multi-story frame.

The parameters of the example are listed below:

• Density of material ρ = 7850 kg/m3

• Gravity constant g = 9.81 m/s2

• Young’s modulus E = 210 000 000 kN/m2

• Poisson’s ratio ν = 0.3 [-]

• Lamé’s parameter λ is used for thick plates, given as

λ = E · ν
(1 + ν)(1− 2ν) (3.38)
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• Rayleigh damping with ζ = 0.05 [-]

• Loading

– Dead load ρ · g

– Washing machine running with a circular frequency of Ω = 10 rad/ sec

– F (t) = A · sin(Ωt) with A =
{
Fx
Fy

}
=
{
−200 kN
−2000 kN

}
• Initial conditions

– Displacement u0 = 0

– Velocity u̇0 = 0

• Time discretization done using Newmark’s method

– Length of calculation t = 5 sec

– Time step size ∆t = 0.005 sec

– Number of time steps N = 1000

– Nyquist frequency fc = 100 / sec→ ωc = fc · 2π = 628 rad/ sec

• Spatial discretization done using the FEM

• The input (load) is zero-padded for the FFT calculation; 2N zeros are added.

Fig. 3.13 shows the mesh (yellow) and shows the highlighted nodes with Dirichlet (blue) and Neumann
(red) boundary.

Fig. 3.13: Mesh and boundary conditions of the multi-story frame.
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The following figures show the horizontal and vertical displacements at xSN. Fig. 3.14 shows the
horizontal displacements in the time domain and the vertical displacements are given in Fig. 3.16.
The absolute differences are plotted in Fig. 3.15 as well as in Fig. 3.17.
Tab. 3.2 summarizes the most important comparisons.

Tab. 3.2: Comparison of the calculation in time and frequency domain - Multi-story frame.
Time domain Frequency domain

Calculation time [s] 22 1155
min. hor. displacment [m] -0.0050 -0.0053
time of min. hor. displ. [s] 0.1552 0.1451
min. ver. displacment [m] -0.0049 -0.0049
time of min. ver. displ. [s] 0.1552 0.1552

The results given in the table and figures once again show that both, the approach in the time and in
the frequency domain, yields similar results. The minima and maxima of the amplitudes are nearly
equal. The phases are again slightly shifted. The displacements behave in an expected way. The
system oscillates with the excitation frequency once the transient oscillation is damped out.
It is noteworthy that there is nearly no transient response in the vertical displacement field. The
steady state response dominates heavily as soon as calculation begins. It can be said that the vertical
damping properties of the frame are good.
The oscillation of the vertical response obtained by Newmark may be explained that the time step
size is not choosen small enough to converge to a solution immediately.
The calculation time difference is even higher than for the cantilever beam test case. Obtaining the
response with a frequency analysis takes 60 times longer than in the time domain. The reason can
once again be found in evaluating the frequency response function H.
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Fig. 3.14: Comparison of the horizontal displacement in the time domain.
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Fig. 3.15: Absolute difference of the two calculation methods.
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Fig. 3.16: Comparison of the vertical displacement in the time domain.
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Fig. 3.17: Absolute difference of the two calculation methods.
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degrees of freedom (MDOF)

As already mentioned in the introduction, the decoupling of the system of equations enables the use
of all methods described in Chapter 2, applied to every single (decoupled) scalar equation of the
MDOF. Furthermore, the decoupling enables a reduction of the model, i.e., the DOFs, leading to
reduced calculation times. This chapter introduces the procedure of decoupling by modal analysis and
explains the steps to obtain a solution in the time and frequency domain.

4.1 Decoupling by modal analysis

The section follows closely the outline of Chopra [7], chapter 10 and 12. In the first step, the undamped
EOM is considered. Later on, the context will be extended for viscously damped systems relevant in
this thesis. To recall the EOMs of an undamped and damped system are given below:

Undamped: M · ü(t) + K · u(t) = f(t) (4.1a)
and damped: M · ü(t) + C · u̇(t) + K · u(t) = f(t). (4.1b)

To solve the EOM with the help of a modal analysis, it is necessary to transform the physical coordi-
nates u(t) into modal coordinates q(t). This leads to a decoupled system of equations where, for each
modal equation, the modal contribution to the response is calculated. These modal contributions are
then superposed to obtain the total response. The transformation formula is given as

u(t) =
N∑
n=1

φnqn(t) = Φq(t), (4.2)

where Φ is called modal matrix and contains the N natural modes φn. The modal matrix is time in-
variant which means the matrix remains constant over time. The natural eigenmodes and frequencies
are obtained in the following.

Calculation of natural modes and frequencies

This section applies to undamped and viscously damped systems. For systems with different
damping properties, it is advised to follow further literature, eg [7], [8] or [25]. The natural modes
and frequencies are the results of the eigenvalue problem which shall be seen later. The derivation is
done for the free vibration and is valid for forced vibrations as well.
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The displacements u(t) are described mathematically by Ansatz in Eq. 4.2, where φn does not change
with time. The displacements due to free vibration (f(t) = 0) can be described by a simple harmonic
function

qn(t) = An cos(ω0t) +Bn sin(ω0t), (4.3)
where the constants An and Bn are obtained by inserting the initial conditions. Inserting Eq. 4.3 in
Eq. 4.2 and then inserting in Eq. 4.1a (with f(t) = 0) gives following equation[

−ω2
0Mφn + Kφn

]
qn(t) = 0. (4.4)

There are two possibilities to satisfy Eq. 4.4. The first one is trivial because qn(t) = 0 → u(t) = 0
which corresponds to a system without displacements. As it is the goal to find the modes of motion,
the other possibility to satisfy the other term in Eq. 4.4 is used. The natural frequencies and modes
must satisfy the algebraic equation

ω2
0Mφn = Kφn. (4.5)

Eq. 4.5 is called the matrix eigenvalue problem and is formally rewritten as[
K− ω2

0M
]
φn = 0. (4.6)

The nontrivial solutions of this equation are obtained by enforcing

det
[
K− ω2

0M
]

= 0. (4.7)

This equation is called frequency equation and gives the real and positive roots ω2
0. The roots are real

and positive if K and M are symmetric and positive definite. The positive definiteness is assured by
investigating structures which do not make any rigid body movements, which is normally the case in
civil engineering [7, p. 407].
The evaluation of the natural modes φn is possible as soon as the eigenfrequencies are known by
inserting in Eq. 4.5. Note that the eigenvalue problem does not give the amplitudes of the modes but
rather give the shape of the vector. The vectors are usually normalized1 in a way that the entries on
the main diagonal of the modal mass matrix M are unity [7, p. 410].

It can be shown that the eigenmodes are perpendicular to each other. This property allows the
decoupling of the equations and is called orthogonality of modes. The orthogonality can be formally
written as: choosing two frequencies which are not the same ωn 6= ωr and pre and post-multiply the
stiffness and mass matrix with the corresponding eigenmode. This leads to

φTnKφr = 0 and φTnMφr = 0. (4.8)

The proof of orthogonality can be found, e.g., in [7, p. 409].

To make the further computation more convenient, the eigenvalues and modes are arranged in ma-
trices. These matrices are called modal and spectral matrices. The modal matrix φ contains the N
eigenvectors in column form and is of the following form

Φ = [φjn] =


φ11 φ12 · · · φ1N
φ21 φ22 · · · φ1N
...

... . . . ...
φN1 φN2 · · · φNN

 , (4.9)

1Normalization means to modify a vector in a way that for example ||f || ≡ 1.
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where n denotes the natural mode and j the number of the DOF.
The eigenvalues can be expressed in a diagonal matrix. This matrix is the spectral matrix

Ω2 =


ω2

1
ω2

2
. . .

ω2
N

 . (4.10)

The natural frequencies of the equivalent SDOF systems are simply obtained by taking the square
root of Ω2.

In [7, p. 410], physically motivated interpretations are given. In summary, one implication is that the
work done by the n-th mode inertia forces acting on the r-th mode displacements is zero. This means
that the modes do not interfere with each other and are decoupled.

With this information the derivation of the decoupled system of equations is continued.

The modal coordinates are inserted in Eq. 4.1a

N∑
n=1

Mφnq̈n(t) +
N∑
n=1

Kφnqn(t) = f(t). (4.11)

The formal trick to decouple the equations is to premultiply all terms in Eq. 4.11 with the transposed
m-th eigenmode which gives

N∑
n=1

φTmMφnq̈n(t) +
N∑
n=1

φTmKφnqn(t) = φTmf(t). (4.12)

Because of the orthogonality of modes, all terms in the summation vanish except the terms where the
indices match (n = m). Consequently Eq. 4.12 reduces to(

φTnMφn
)
q̈n(t) +

(
φTnKφn

)
qn(t) = φTnf(t), (4.13)

or in slightly different notation
Mnq̈n(t) +Knqn(t) = Fn(t). (4.14)

Eq. 4.14 can be interpreted as the equation giving the response qn(t) of the nth SDOF system obtained
by decoupling the MDOF system. As Eq. 4.14 gives the response of the nth modal coordinate, the
system of decoupled equations can be written in matrix notation as (with N ×N dimensions)

Mq̈(t) + Kq(t) = f(t), (4.15)

with the diagonal matrices M = ΦTMΦ and K = ΦTKΦ and the force vector f(t) = ΦTf(t). The
response q can be obtained by the procedures described in the following sections. The response in the
physical coordinates is then calculated by inserting the response of Eq. 4.15 in Eq. 4.2.

The system of equation which is obtained by investigating a damped system can be handled similarly
in case of viscous damping properties as already explained in Section 3.1.2. The damping matrix C is
acquired by superposing K and M. As these matrices are symmetric and positive definite, the matrix
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C has the same properties. This fact allows the diagonalization of the damping matrix [7, p. 424]. In
the following, the procedure for decoupling the system is given.

The modal coordinates of Eq. 4.2 are inserted into Eq. 4.1b giving

N∑
n=1

Mφnq̈n(t) +
N∑
n=1

Cφnq̇n(t) +
N∑
n=1

Kφnqn(t) = f(t). (4.16)

Again, the formal trick to decouple the equations is to premultiply all terms in Eq. 4.16 with the
transposed m-th eigenmode. This gives

N∑
n=1

φTmMφnq̈n(t) +
N∑
n=1

φTmCφnq̇n(t) +
N∑
n=1

φTmKφnqn(t) = φTmf(t). (4.17)

Because of the orthogonality of modes all terms in the summation vanish except the terms where the
indices are n = m. Eq. 4.17 reduces to(

φTnMφn
)
q̈n(t) +

(
φTnCφn

)
q̇n(t) +

(
φTnKφn

)
qn(t) = φTnf(t). (4.18)

With the same reasons as given above for the undamped system, the decoupled EOM can now be
written as

Mq̈(t) + Cq̇(t) + Kq(t) = F (t), (4.19)

with the diagonal matrices M = ΦTMΦ, K = ΦTKΦ and C = ΦTCΦ and the force vector
F (t) = ΦTf(t).

The initial conditions from Eq. 3.6 need to be transformed into the modal coordinates as well. Fol-
lowing the steps in [7, p. 420], Eq. 4.2 is multiplied with φTnM giving

qn = φTnMu

φTnMφn
. (4.20)

Eq. 4.20 is called modal expansion of displacement [7, p. 420]. Inserting the initial condition vectors
u0 and u̇0 into Eq. 4.20 transforms the initial conditions into modal coordinates.

The modal solution of Eq. 4.19 can be obtained by means of the following sections. The physical and
sought response is obtained by inserting the modal response q(t) into Eq. 4.2.

4.2 Model reduction

As previously mentioned, applications with difficult geometry or loadings are often discretizised with
a lot of DOFs. Although modern computers can handle these fast and accurate, methods to reduce
the model and therefore the calculation time are very useful and introduced next. This chapter gives
a short overview of some methods and describes the modal reduction. Various other literature gives
further information.

Some model reductions represented in this thesis rely on the projection of the problem to some sub-
space, e.g. [3]. This subspace is much smaller than the original space which means the problem is
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reduced. Other reductions reduce the number of DOFs [13, p. 546]. All approaches reduce the compu-
tational effort and the reduction in effort is achieved by the transformation matrix T ∈ RN×k, where
N is a very large number (of DOFs). The transformation is defined as

u(t) = Tq, (4.21)

with q(t) ∈ Rk×1 and k � N .

• Static reduction

The static reduction is also called Guyan reduction [14] and reduces the system in a way that the
entries of the stiffness matrix associated to the external nodes match with the entries of the stiffness
matrix of the full system. Therefore the nodes (or DOFs) are split in master and slave nodes [13,
p. 548]. Slave nodes depend on the master nodes. This means that the quantities of the master nodes
can be calculated and the quantities of the slave nodes are obtained by the matrix-vector calculation
in Eq. 4.22. Slave nodes can, e.g., be chosen as the nodes where no forces act or that the matrices
remain their sparsely filled property [13, p. 551].

u =
{
uM
uS

}
and K =

[
KMM KMS
KSM KSS

]
, (4.22a)[

KMM KMS
KSM KSS

]{
uM
uS

}
=
{
fM
fS

}
, (4.22b)

u =
[

IMM
−K−1

SS KSM

]
uM, (4.22c)

q = uM and Tstat =
[

IMM
−K−1

SS KSM

]
. (4.22d)

Note that the choice of the master nodes heavily influences the accuracy of the result [13, p. 549].

• Modern reduction methods such as Krylov subspace method

The advantage of the Krylov subspace method [3] is that it only needs matrix-vector-operations and
there is no need to chose master and sleeve nodes. A possible drawback is that stability is not ensured.
Stability means that the calculation is immune to errors in the input and that the solution converges,
meaning some predefined error conditions are fulfilled.

• Modal reduction

The modal reduction is a method to reduce the system by simply reducing the number of modes which
are considered. The transformation matrix T is defined as

T =
[
φ1 φ2 · · · φk

]
≡ Φred, (4.23)

with the first k eigenmodes φ of Eq. 4.6. Gasch proposes in [13, pp. 221-224] three possibilities to
choose which modes to include

• Consider DOFs with high generalised loading fn � 1.

• Consider DOFs with small generalised stiffness Knn � 1.

Studies in structural dynamics in the time and frequency domain 77



4 Modal analysis for systems with multiple degrees of freedom (MDOF)

• Consider modes with natural frequencies which are in the range of big amplitudes of the Fourier
transformed load.

In this work the modes associated with the k smallest eigenfrequencies (longwave low eigenmodes [13,
p. 553]) are used to reduce the model.

4.3 Solving in the time domain

As already mentioned before, the decoupling of equations enables the use of all (analytical) methods
of Chapter 2. In the following the procedure for a numerical solution is described and the specialities
in comparison to the full coupled approach is given. The calculation can be summarized by seven
steps. The last two steps are optional. The procedure is taken from [13, Fig. 4.3, 4.4] and Newmark’s
method from Section 3.2.1.

Step one: Solving the eigenvalue problem

0 = det(−M · ω2 + K). (4.24)

This gives the modal matrix Φ ∈ RN×k and the spectral matrix Ω ∈ Rk×k to continue with step two.
N denotes the number of DOFs of the original system and k is the number of considered modes.

Step two: Modal decoupling of the equations by diagonalization of the matrices and load

ΦT ·K ·Φ = K,
ΦT ·C ·Φ = C,
ΦT ·M ·Φ = M,

(4.25a)

ΦT · f(t) = f(t), (4.25b)

where K,C,M ∈ Rk×k and f(t) ∈ Rk×1.

Step three: Transforming of the initial conditions into modal coordinates

q0 = ΦTMu0
ΦTMΦ and q̇0 = ΦTMu̇0

ΦTMΦ . (4.26)

Step four: Evaluating the modal response using Newmark’s method for all time steps

(a0M + a1C + K) · qn+1 =
fn+1 + M · (a0qn + a2q̇n + a3q̈n) + C · (a1qn − a4q̇n − a5q̈n),

(4.27)

where qn ∈ Rk×1 and the coefficients αi from Eq. 2.62.

Step five: Transforming the response back into the physical coordinates by inserting in

Φ · q(t) = u(t), (4.28)

where u(t) ∈ RN×1.
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Step six: Transforming the response into the frequency domain by means of FFT to obtain the
frequency spectrum (optional)

u(t) FFT−−−→ F [u](ω) (4.29)

Step seven: Postprocessing (plotting, evaluation of forces, ...)

The main difference in the calculation of the response in the time domain and in the calculation
time is the matrix on the left hand side of Eq. 4.27. This matrix is a diagonal matrix in case of
decoupling the equations. Inverting a full matrix compared to a diagonal matrix results in largely
different computational effort. Another theoretical advantage of the decoupling is the use of different
time steps for each mode. As described in Section 2.3.1, the time step size should be chosen with
respect to the highest natural frequency [22, p. 73]. As the modes are decoupled, the time step size can
be chosen with respect to the modes’ natural frequency. The disadvantage of decoupling the system
is that the computation of eigenvalues and modes of large systems requires substantial computational
effort.

4.4 Solving in the frequency domain

As already mentioned previously the decoupling of equations enables the use of all (analytical) methods
of Chapter 2. Similar to the approach in the time domain, the numerical procedure in the frequency
domain is introduced in the following. The procedure is taken from [21, pp. 8-10]. Furthermore the
specialities in comparison to the full coupled approach are given. In equivalence to the numerical
procedure for the coupled approach, the initial conditions are required to be zero [20, p. 57]. The
procedure can be summarized by eight steps. Note that step one and two need to be made independent
of the domain of calculation. The last two steps are again optional.

Step one: Solving the eigenvalue problem

0 = det(−M · ω2 + K). (4.30)

This gives the modal matrix Φ ∈ RN×k and the spectral matrix Ω ∈ Rk×k. N and k are the number
of DOFs of the original system and the considered modes respectively.

Step two: Modal decoupling of the equations by diagonalization of the matrices and load

ΦT ·K ·Φ = K,
ΦT ·C ·Φ = C,
ΦT ·M ·Φ = M,

(4.31a)

ΦT · f(t) = f(t), (4.31b)

where K,C,M ∈ Rk×k and f(t) ∈ Rk×1.

Step three: Fourier transforming the modally decoupled load [8, p. 224] using Fast Fourier transfor-
mation

f(t) FFT−−−→ F [f ](ω) (4.32)
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Step four: Evaluation of the frequency response function H(ω). H(ω) is evaluated for each discrete
frequency value obtained in step three. The function can be evaluated by

H−1(ω) =
[
1/H ii

]
. (4.33)

The frequency response function is in case of decoupling the equations a diagonal matrix thus inverting
is trivial and cheap [21, p. 10].

Step five: Obtaining the Fourier transformed modal displacements by the following multiplication

F [q](ω) = H(ω) · F [f ](ω), (4.34)

where F [q](ω) ∈ Ck×1.

Step six: Transforming back into the physical coordinates is done by inserting in

Φ · F [q](ω) = F [u](ω), (4.35)

where F [u](ω) ∈ CN×1.

Step seven: Transformation of displacements into the time domain by means of inverse fast Fourier
transformation (optional)

F [u](ω) IFFT−−−→ u(t), (4.36)

where u(t) ∈ RN×1.

Step eight: Postprocessing (plotting, evaluation of forces, ...)

The main difference in the calculation of the response in the frequency domain and in the calculation
time is matrix H. Inverting a fully filled matrix and a diagonal matrix needs different techniques
and is more or less expensive. The disadvantage of decoupling the system is that the eigenvalues and
modes of large systems need to be acquired.
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4.5 Example

In this section the previously introduced example of the multi-story frame is re-considered. The
geometry and parameters are identical to Section 3.3.2. The calculation is done in the time and
frequency domain. The main focus is the comparison of displacements and calculation time in both,
time and frequency domain. The system of equations is decoupled with the methods described above
and in order to achieve an improvement of calculation time, the system is reduced taking into account
only the first 20 eigenmodes.

4.5.1 Time domain

The methods of Section 4.3 are being used to obtain the solution in the time domain. The solution
in the time domain and the comparism with the fully coupled system is given in Fig. 4.1 and Fig. 4.3
for the horizontal and vertical displacements at xSN, see Fig. 3.12. The displacements match very
well graphically. The absolute difference (∆u = ufull − ureduced) is reasonably small. The jumps in
Fig. 4.4 can be explained that the solution obtained by Newmark’s method oscillate at the beginning
and converging to a solution after some time. The calculation time is reduced from 12.3 seconds to
8.8 seconds resulting in a reduction of roughly one third.

With the information given above it can be stated that a reduction of the system from 8558 to 20 modes
is very much useful. The amplitudes and phases are approximated well enough for simple engineering
applications. The reduction in calculation time is noticeable and may becomes even bigger for larger
systems of equations.
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Fig. 4.1: Horizontal displacement in the time domain with reduced system and fully coupled system.
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Fig. 4.2: Absolute difference of the calculation types.
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Fig. 4.3: Vertical displacement in the time domain with reduced system and fully coupled system.
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Fig. 4.4: Absolute difference of the calculation types.
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4.5.2 Frequency domain

The methods of Section 4.4 are being used to acquire the solution. The solution in the time domain
and the comparison with the fully coupled system is given in Fig. 4.5 and Fig. 4.7. The amplitude
spectra are given in Fig. 4.6 and Fig. 4.8. The amplitude spectra show dominant peaks at frequency
ω = 10 rad/s as expected. The frequency spectra are zero for frequencies |ω| > 60 rad/ sec which
means the time step is chosen small enough that all important frequencies are covered. The spectra
show nicely the dominant frequencies of the oscillation. The vertical oscillation is dominated by the
excitation frequency, there is no peak at the natural frequency. The fact that the horizontal oscillation
of the frame is partly dominated by the natural frequency is shown nicely.

It can be seen that the amplitudes in the time as well as in the frequency domain are approximated
well. The difference is marginal and small enough for simple engineering purposes. The calculation
time is dramatically reduced from roughly 17 to one minute resulting in a reduction of 94 %. The
reason is that the frequency response function H is obtained by inverting a small diagonal matrix
instead of a large sparsely filled matrix.

It is once again shown that reducing the system to roughly 0.5 % of its original size is very useful in
terms of reduced calculation time and obtaining results within engineering precision.
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Fig. 4.5: Horizontal displacement in the time domain with reduced system and fully coupled system.
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Fig. 4.6: Amplitude spectrum for horizontal displacements with reduced and fully coupled system.
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Fig. 4.7: Vertical displacement in the time domain with reduced system and fully coupled system.
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Fig. 4.8: Amplitude spectrum for vertical displacements with reduced and fully coupled system.
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4.6 Comparison of approaches

The following chart summarizes the possible approaches to solve a MDOF structural dynamics problem
covered in this thesis.

Equation of motion
Mü + Cu̇ + Ku = f

Decision
whether

coupled or
decoupled

Coupled approach Decoupled approach

Using all modes
k = NDOF

Using first k modes
⇒ Model reduction

Chapter
3.2.1 or 3.2.2

Chapter 2
or 4.3 or 4.4

Solution for
all N DOFs

Solving Eigenvalue problem

Transformation back into physical coordinates

Fig. 4.9: Flow chart of solving MDOF systems.
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5 Conclusion

We have investigated calculation methods for physical quantities in both, the time and frequency
domain. It can clearly be seen that in both domains equivalent results are achieved. Generally
speaking, it can be recommended to use the frequency domain for analytically solving the EOM,
while the time domain is the better choice for numerically solving the EOM. The discrepancies can
be explained by the fact that round-off errors occur in case of the analytical approach and that the
initial value problems (IVP) are not completely identical. In case of numerically computing in the
frequency domain, it is implied that the input is periodically continued. In the time domain, no such
implication is present. Fig. 5.1 shows the difference graphically. Clearly, both cases may be physically
meaningful, so it depends on the desired input function which approach fits better.

f(t)

t

Input function when
calculating in time
domain

f(t)

t

Input function when
calculating in frequency
domain

Fig. 5.1: Difference of IVP for numerical computation in both domains.

There are challenges to be faced in both domains when numerically carrying out calculations. In the
time domain, a suitable time step size ∆t and Newmark parameters β and γ have to be chosen. In the
frequency domain, close attention has to be paid to manipulate the input in suitable ways to obtain
accurate and viable results (zero-padding, windowing, calculation time).

Furthermore, model reduction was considered and consequences investigated. It was shown that
reducing the model to roughly 0.5 % of its original size still leads to good results. The reduction
in calculation time depends on the concrete application and on the fact whether calculations are
performed in the time or frequency domain. The reduction in the frequency domain was enormous
(∼94%) while it was less obvious in the time domain using Newmark’s method (∼33%).

This leads to the conclusion that both domains are very well suitable to perform calculations in
structural dynamics. The most important advantage of the calculation in the frequency domain is
that frequency-dependent properties can be easily considered. The challenges of choosing the right
parameters for calculations are outlined in this thesis. It is thus seen that the aim of this work, to
compare calculations obtained in various different ways, has been achieved. The final decision which
domain (time or frequency) is more suitable for calculations largely depends on the application and
the type of loading and is still up to the preferences of the individual user.
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