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Abstract

This thesis provides a study of self-avoiding walks on quasi-transitive graphs. The con-
nective constant µ(G) of a graph G is the asymptotic growth rate of the number of
self-avoiding walks on G starting at a given vertex. For a given graph height function
mapping vertices of G to integers in a way adapted to the graph structure, a bridge is a
self-avoiding walk such that the height of its vertices is bounded below by the height of
the initial vertex and above by the height of the terminal vertex. If the roles of the initial
and terminal vertices are reversed, we talk about reversed bridges. We show that for
any graph height function, the maximum of the asymptotic growth rates of the number
of bridges and the number of reversed bridges must be equal to the connective constant
µ(G).

The main focus of this thesis is to apply the theory of formal languages to the study
of self-avoiding walks. To this end, let G be a deterministically edge-labelled graph, that
is, every (directed) edge carries a label such that any two edges starting at the same
vertex have different labels. Then the set of all words which can be read along the edges
of self-avoiding walks starting at o forms a language denoted by LSAW,o(G). We show
that the properties of this language strongly depend on the end-structure of the graph
G. It is regular if and only if all ends have size 1 and it is context-free if and only if all
ends have size at most 2.

Making use of the class of multiple context-free languages, this characterisation can
be extended even further. We show that LSAW,o(G) is a k-multiple context-free language
if and only if the size of all ends of G is at most 2k. Applied to Cayley graphs of finitely
generated groups this says that LSAW,o(G) is multiple context-free if and only if the
group is virtually free. In this setting, using our method we also show that the ordinary
generating function of self-avoiding walks is algebraic and in particular, the connective
constant is an algebraic number.
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1 Introduction

Imagine you start a sightseeing tour at an intersection in a large city. Choose one street
at random and follow it until reaching another intersection. By repeating this process
you randomly move around the city. There is only one rule: during this tour you are
not allowed to visit any location twice. In other words, your path must be self-avoiding.
Clearly you might reach an intersection where each neighbour was already visited before
and thus get trapped during this process. However, assume that your tour continues
until you have traversed n streets and thus visited n + 1 intersections. One natural
question arising from this process is,

“For a given number n, how many different sightseeing tours of length n are there?”

This question is simple enough, but depending on the underlying street grid it might be
very difficult to obtain the number of self-avoiding sightseeing tours for large n.

Let us start by formulating the problem in mathematical terms. Start with a simple
(undirected) graph G, which may (and will in most cases) contain infinitely many ver-
tices. A walk on G is a sequence (v0, e1, v1, . . . , en, vn) of vertices vi and edges ei such
that ei starts at vi−1 and ends at vi for every i. It is called self-avoiding (or a SAW), if
its vertices are pairwise different.

This notion was introduced in 1953 by the chemist Flory [16] as a model for long-
chain polymer molecules and has since attracted considerable interest. Although these
chains live in the continuum, in many cases a lattice approximation is good enough.
The self-avoidance of the walk models the excluded-volume effect, namely that no two
monomers can occupy the same position in space. The most important lattices for prac-
tical applications are the d-dimensional integer lattices Zd for d ≥ 2, where every vertex
is connected to the 2d vertices at Euclidean distance 1. Thus a lot of research has focused
on lattices, see for instance the monograph by Madras and Slade [45] and also the lecture
notes by Bauerschmidt et al. [3]. Lately, self-avoiding walks have been investigated on
more general classes of graphs, see for example the survey [23] of Grimmett and Li.

Denote by cn,o the number of self-avoiding walks with n edges starting at a fixed root
vertex o. In some graphs cn,o can be easily calculated for every n. A very basic example
is the infinite k-regular tree, where every vertex has exactly k neighbours. Independently
of the choice of the starting vertex o there are k possible directions for the first step.
Backtracking is not allowed, so there are at most k−1 choices for every consecutive step
and all of them are valid because trees are cycle-free. Thus we obtain cn,o = k(k− 1)n−1

for any choice of o.
While the calculations in this example are simple, they seem to be very difficult

for most graphs. In these cases it makes sense to find asymptotic estimates for cn,o.
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µ(Z2) ≈ 2.6381585

o

µ(H) =
√

2 +
√

2

Figure 1.1: Examples of self-avoiding walks on the lattices Z2 and H and the connective
constants of the lattices.

Hammersley [29] showed that the limit

µ(G) = lim
n→∞ c

1/n
n,o

exists for quasi-transitive graphs, that is, graphs which allow a group action by graph
automorphisms with finitely many orbits on the vertex set. Moreover, the value of µ(G)
is independent of the choice of o. This number µ(G) is called the connective constant
of the graph G. Note that by the Cauchy–Hadamard theorem, µ(G) is the reciprocal of
the radius of convergence of the SAW-generating function

FSAW,o(z) =
∞∑

n=1
cn,oz

n.

Explicit computation of µ(G) can however also be a very challenging task, even in
seemingly harmless instances such as two-dimensional lattices (see Figure 1.1). For
example, despite very precise numerical estimates, the precise value of µ(Z2) remains
elusive; in fact, it is not even known whether µ(Z2) is an algebraic number.

In light of this, it is not surprising that the celebrated paper [13] by Duminil-Copin
and Smirnov containing the first rigorous calculation of the connective constant of the
hexagonal lattice H is considered a milestone in the theory. In the final part of the proof
the Hammersley-Welsh method – a decomposition of walks into bridges – is applied.
This method is named after the authors of [30], where it is applied to the hypercubical
lattice Zd. The main idea is to obtain bounds for the number of self-avoiding walks by
decomposing them at vertices of maximal, respectively minimal first coordinate. This
process carries on until all obtained parts are bridges, which are self-avoiding walks
p = (v0, e1, v1, . . . , en, vn) on Zd satisfying

h(v0) < h(vi) ≤ h(vn), 0 < i < n,

where h(v) denotes the first coordinate of a vertex v. Using this decomposition, the
authors showed that the number of bridges bn,o of length n starting at o grows with
basically the same speed as the number of self-avoiding walks of length n. More precisely,
they showed the existence of the bridge constant

β(Zd, h) = lim
n→∞ b

1/n
n,o
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and its independence of the choice of o and additionally that it is equal to the connective
constant µ(Zd). This result is often called the bridge theorem for the lattice Zd. Con-
sequently, it is possible to determine the connective constant of Zd by counting bridges
instead of self-avoiding walks. Sadly, this also seems very difficult.

In Chapter 3 a generalisation of the bridge theorem to quasi-transitive graphs is dis-
cussed. The biggest motivation is the paper [22] by Grimmett and Li, where they intro-
duced a general notion of graph height functions, which assign integers to the vertices
of graph. Graph height functions have to be adapted to the graph structure according
to Definition 3.1.1. They proceed to study bridges with respect to unimodular graph
height functions and prove a bridge-theorem for quasi-transitive graphs, extending the
result of Hammersley and Welsh. In this thesis we extend their results even further to
obtain Theorem 3.2.2, which drops the assumption of unimodularity. The contents of
Chapter 3 were first published in [43].

Let us go back to our introductory example. Suppose that after finishing your sight-
seeing tour you want to describe the path you have taken to your friends. A simple way
to do this is by using street names. For this approach to be successful, we want every
different sightseeing tour to correspond to a unique sequence of street names.

Our setting is as follows. We have a pair (G, `), where G is a graph as above, and `
is a labelling assigning to every oriented edge e of G a label `(e) of a given alphabet Σ.
Our assumptions are that the labelling is deterministic, that is, different edges with the
same initial vertex have distinct labels, and that the group AUT(G, `) of all `-preserving
graph automorphisms of G acts quasi-transitively. The most significant class of labelled
graphs are the Cayley graphs of finitely generated groups.

The edge-labelling is extended to walks p = (v0, e1, v1, . . . , en, vn) by setting

`(p) = `(e1) . . . `(en).

In this way, any set P of walks gives rise to a language L(P) = {`(p) | p ∈ P}. This
identification of walks with their corresponding words allows us to study properties of
P via properties of the corresponding language.

In the second part of this thesis we are working with the language of self-avoiding
walks defined by

LSAW,o(G) ··= L(PSAW,o) = {`(p) | p ∈ PSAW,o},

where PSAW,o is the set of all self-avoiding walks of length at least 1 on G starting at o.
In the Chomsky-hierarchy of formal languages, the first basic class consists of the

regular languages, which are accepted by a finite state automaton, or equivalently, gen-
erated by a right-linear grammar. The second class consists of the context-free languages
(CFLs), which are accepted by a pushdown automaton, respectively, generated by a con-
text free grammar (CFG).

Our main result in Chapter 4 is a complete characterisation of all quasi-transitive
deterministically edge-labelled graphs having a regular or context-free language of self-
avoiding walks. The result is joint work with Woess and has been published in [44].
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An end of a graph G is an equivalence class of rays (one-way infinite paths) in G,
where two rays are equivalent if and only if G contains a third ray intersecting both of
them infinitely often. The size of an end is the maximum number of pairwise disjoint
rays it contains; ends are thin if they have finite size, otherwise they are thick.

Theorem 1.0.1. Let (X, `) be a quasi-transitive deterministically labelled graph, con-
nected and locally finite. For any choice of the root vertex o, the following holds.

(i) LSAW,o(G) is regular if and only if all ends of G have size 1.

(ii) LSAW,o(G) is context-free if and only if all ends of G have size at most 2.

Relating walks in labelled graphs, in particular Cayley graphs, with formal language
theory has an important history. Let P(o, o) be the set of all walks in X starting and
ending at o, possibly with several self-intersections. For a Cayley graph of a group Γ,
the language L(P(o, o)) is called the word problem of Γ.

Anisimov showed in [2] that the word problem is regular if and only if the group is
finite. In a ground-breaking work, Muller and Schupp [46] showed that the word problem
is context-free if and only if the group is virtually free, that is the group contains a free
subgroup of finite index. In particular, regularity, respectively context-freeness of the
word problem are group invariants which do not depend on the specific generating set.

Sadly this is not the case for the language of self-avoiding walks, as different generating
sets can produce different end-sizes in the respective Cayley graphs. This motivated us
to look for a more general classes of formal languages.

Multiple context-free languages (MCFLs) were introduced by Seki et al. [52] as a
generalisation of context free languages capable of modelling cross-serial dependencies
occurring in some natural languages such as Swiss German. A concise definition of
MCFLs will be given in Section 2.2; for now we only mention that they share many
useful traits with context-free languages, including polynomial time parsability, semi-
linearity and closure properties. MCFLs can be further classified depending on the
largest dimension m of tuples involved to obtain m-MCFLs, which form an infinite
strictly increasing hierarchy.

While MCFLs are not very well known and may seem artificial at first, they appear in
some natural problems. The word problem on Zd is not context free, but it was shown
to be multiple context-free in seminal work by Salvati [51] for d = 2, and this result has
since been extended by Ho [33] to all positive integers d.

For our characterisation of graphs having a multiple context-free language of self-
avoiding walks we need an additional result about MCFLs. This result is introduced in
Chapter 5, where we study languages defined by comparing lengths of runs of consecutive
identical letters. In particular, we consider languages of the form

Lk = {an1
1 an2

2 · · · ank
k | n1 ≥ n2 ≥ · · · ≥ nk ≥ 0}

and generalisations thereof. It is easy to see that L1 and L2 are context-free, and it is a
standard exercise to show that L3 is not context-free by using the pumping lemma for
CFLs. The main result of Chapter 5 generalises these observations. In particular we
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show that Lk is dk/2e-multiple context-free but not (dk/2e − 1)-multiple context-free.
The result has appeared in [41] and is joint work with Lehner.

In Chapter 6 we generalise the results of Chapter 4 to graphs with thin ends of size
larger than two. In particular we prove the following main result, which is contained in
the joint work [40] with Lehner.

Theorem 1.0.2. Let G be a simple, locally finite, connected, quasi-transitive determin-
istically edge-labelled graph and let o ∈ V (G). Then LSAW,o(G) is an MCFL if and only
if all ends of G are thin.

Applied to Cayley graphs of groups, this theorem states that the language of self-
avoiding walks on a Cayley graph of a group is multiple context-free if and only if the
group is virtually free. In particular, the property of having a multiple context-free
language of self-avoiding walks is a group invariant.

During the proof we also obtained the following result, which extends a result of Alm
and Janson [1] for one-dimensional lattices.

Theorem 1.0.3. Let G be a locally finite, connected, quasi-transitive graph having only
thin ends and let o ∈ V (G). Then the SAW-generating function FSAW,o(z) is algebraic
over Q. In particular the connective constant µ(G) is an algebraic number.

As this thesis is comprised of four research articles, we decided to provide each chapter
with its own introduction. Thus after getting familiar with the definitions and notation
from Chapter 2, each chapter can be read separately.
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2 Basic background and notation
Throughout this thesis, we denote by N the set of natural numbers starting at 1, by N0
the set N ∪ {0}, and by [n] the set {1, . . . , n}.

2.1 Graph theory
A graph G consists of a set V (G) of vertices and a set E(G) of edges. Every edge e ∈ E(G)
starts at its initial vertex e− ∈ V (G) and ends at its terminal vertex e+ ∈ V (G). The
notation v ∈ e indicates that v is one of the endpoints of e. Two different vertices of G
are adjacent, if they are the endpoints of some edge of G. We do not allow loops, so the
two endpoints e− and e+ of every edge e ∈ E(G) are different. Furthermore all graphs
considered are undirected, so all edges appear in pairs e, ē having the same endpoints but
different directions. In other words, for e ∈ E(G) the edge ē ∈ E(G) satisfies ē− = e+,
ē+ = e− and ¯̄e = e. In many cases it is useful to consider pairs (e, ē) of edges as single
undirected edges. In particular, to keep figures as simple as possible, we draw only
undirected edges. A graph is called simple, if it contains no multiple edges, or in other
words, if every edge e is uniquely defined by the pair (e−, e+) of its initial and terminal
vertex. We sometimes abuse notation and write e = e−e+; if G is not simple we still use
this notation, but will include further information needed to identify e among the edges
with the same initial and terminal vertices if necessary. The degree deg(v) of a vertex v
is the number of outgoing edges of v. The graph G is called locally finite, if all vertices
have finite degree.

A walk in a graph is an alternating sequence p = (v0, e1, v1, . . . , en, vn) of vertices
vi ∈ V (G) and edges ei ∈ E such that e−i = vi−1 and e+

i = vi for every i ∈ [n]. Its length
is the number n of edges and its initial and terminal vertices are p− = v0 and p+ = vn,
respectively. This comprises the trivial walk (v) of length 0, starting and ending at a
vertex v and also the empty walk ∅ consisting of no vertices and no edges. A walk p is
called self-avoiding or a SAW, if the vertices in p are pairwise different. The distance
dG(u, v) of two vertices u and v of G is the length of the shortest walk in G connecting
u and v. The diameter of G is the maximal distance of two vertices in G.

For two vertices u and v of p we write upv for the maximal sub-walk of p starting at
u and ending at v. If u = v0 or v = vn we omit the corresponding vertex and denote
the sub-walk by pv or up, respectively. We extend this notation even further and denote
for walks p1, . . . , pn and vertices v0, . . . , vn in the respective walks the concatenation
(v0p1v1)(v1p2v2) . . . (vn−1pnvn) of the sub-walks vi−1pivi by v0p1v1p2 . . . pnvn. If the
terminal vertex v of p1 coincides with the initial vertex of p2, we write p1p2 instead of
p1vp2, and similarly for concatenations of multiple walks. If e is an edge connecting the
terminal vertex v1 of p1 to the initial vertex v2 of p2, then we write p1ep2 instead of

12



p1v1(v1, e, v2)v2p2, and similarly for concatenations with more parts. A walk is closed if
its initial and terminal vertex coincide.

A graph G is connected if any two vertices u, v are the endpoints of some walk p in
G. Components of G are maximal connected subgraphs. A cycle is a finite connected
graph where each vertex has degree 2.

A tree is a connected and cycle-free graph. A rooted tree is a tree where one vertex
has been designated the root. For vertices u and v of a rooted tree we say that u is
an ancestor of v and v is a descendant of u if any walk from r to v contains u. The
unique ancestor of v that is also a neighbour of v is called its parent and denoted by
v↑; descendants of v in the neighbourhood of v are called its children. The forefather of
a set A ⊆ V (T ) is the unique common ancestor of all vertices in A such that none of
its children is an ancestor of all vertices in A. The cone at a vertex v in a rooted tree,
denoted by Kv, is the subtree induced by v and its descendants. An ordered tree is a
rooted tree with an ordering specified for the children of each vertex; in this case we
denote the i-th child of a vertex v with respect to this order by v↓i .

A tree consisting only of vertices of degree at most 2 is a path. We point out that
unlike walks, paths are graphs and have no direction; a finite path can be seen as the
support of a self-avoiding walk. Given two disjoint subsets A and B of vertices of a
graph G, an A–B-path on G is a subgraph of G which is a finite path intersecting A
and B only in its two endpoints. A ray is a one-way infinite path and a double ray is a
two-way infinite path.

For any set K ⊆ V (G) we denote by G − K the subgraph obtained from G by
removing K and all edges incident to K. If removing K disconnects G, then K is called
a separating set. In this case, if K = {v} then v is a cut-vertex. The vertex sets of the
maximal connected subgraphs of G−K are called components of G−K. Furthermore,
we denote by G[K] the subgraph of G induced by K, that is the graph G− (V (G) \K).

The space of ends of a connected graph was introduced by Halin in [24], and – without
graph terminology – earlier by Freudenthal (see [17] and [18]).

Two rays in a graph G are said to be equivalent, if for every finite set K ⊆ V (G)
they end up in the same component of G − K, that is, all but finitely many of their
vertices are contained in that component. An end of G is an equivalence class of rays
with respect to this equivalence relation. If ω is an end and K ⊆ V (G) is finite, then we
write C(K,ω) = CG(K,ω) for the unique component of G−K in which all representing
rays of ω end up, and say that ω belongs to this component. Two ends ω1 and ω2 of
a graph G are separated by K if C(K,ω1) 6= C(K,ω2). Halin [25] showed that an end
containing arbitrarily many disjoint rays must contain an infinite family of disjoint rays,
hence the maximum number of disjoint rays contained in an end ω is well defined in
N∪{∞}. This number is called the size of the end ω. An end of finite size is called thin,
an end of infinite size is called thick.

An automorphism γ of a graph G is a permutation of V (G)∪E(G), mapping vertices
onto vertices and edges onto edges while preserving the incidence relations, that is,
(γ(e))+ = γ(e+) and (γ(e))− = γ(e−) holds for every e ∈ E(G). When working with
graph automorphisms, we often omit parenthesis and write γu instead of γ(u) for the
image of a vertex u under the automorphism γ. The set of all automorphisms of G forms
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a group, called the automorphism group of G and denoted by AUT(G). For a subgroup
Γ ⊆ AUT(G) we define an equivalence relation on V (G) by calling u and v equivalent if
and only if there is some γ ∈ Γ such that γu = v. The equivalence classes with respect
to this relation are called orbits and denoted by Γv. We say that Γ acts transitively, if
there is exactly one orbit, and that it acts quasi-transitively, if there are only finitely
many orbits. In this case the graph G is also called (quasi-)transitive. When applying
graph automorphisms to a sets of vertices or edges of G or a subgraph of G, they are
applied element-wise and the result is again a set of vertices or edges or a subgraph of G,
respectively. The stabiliser of a vertex v under the action of Γ is Γv ··= {γ ∈ Γ | γv = v};
for a set S of vertices, the set-wise stabiliser of S is denoted ΓS ··= {γ ∈ Γ | γs ∈ S for
every s ∈ S}. Finally, a subgraph H of G is called γ-invariant, if γ maps H onto itself.

It is well known, that any infinite, locally finite, connected graph which is quasi-
transitive has either one, two, or infinitely many ends, see [18]. If it has one end, this
end is thick. If it has two ends, both are thin and must have the same size. Finally, if
it has infinitely many ends, then some of its ends must be thin. These and many more
results were given by Halin in [26].

The action of the automorphism group AUT(G) of a locally finite, connected graph
extends in the obvious way to its ends. An automorphism γ ∈ AUT(G) is called

– elliptic, if its fixes a finite subset of V (G),

– parabolic, if it is not elliptic and fixes a unique end of G, and

– hyperbolic, if it is not elliptic and fixes each of a unique pair of ends of G.

Halin [26] showed that any graph automorphism is either elliptic, parabolic, or hyper-
bolic, and additionally, that these different types of automorphisms have the following
properties. Firstly, γ is elliptic if and only if for some (every) vertex v of G the sequence
v, γv, γ2v, . . . contains only finitely many different vertices and is periodic. Secondly, if
γ is hyperbolic then the two ends fixed by γ have the same finite size k and G contains
k disjoint double rays invariant under γ. Finally, if γ is parabolic then the unique end
fixed by γ is thick and G contains infinitely many double rays invariant under γ.

A graph G is called accessible if there is a natural number k such that any two
ends can be separated by a set of vertices of size at most k. Originally the notion of
accessibility comes from group theory. Stalling’s theorem about ends of groups states
that some (every) Cayley graph of a finitely generated group Γ has more than one end
if and only if Γ admits a nontrivial decomposition as an amalgamated free product or
an HNN-extension over a finite subgroup. Γ is called accessible if the process of iterated
nontrivial splitting of Γ always terminates in a finite number of steps. Thomassen and
Woess [56] showed that accessibility of a group is equivalent to accessibility of some (and
thus all) of its Cayley graphs.

A quasi-isometry between two metric spaces (X, dX) and (Y, dY ) is a mapping ϕ :
X → Y such that there are constants A > 0 and B,B′ ≥ 0 such that for all x1 , x2 ∈ X
and y ∈ Y ,

A−1dX(x1, x2)−B ≤ dY (ϕx1, ϕx2) ≤ AdX(x1, x2) +B and dY (y, ϕX) ≤ B′.
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Two connected graphs G and H are called quasi-isometric, if the corresponding metric
spaces (G, dG) and (H, dH) are quasi-isometric, where dG and dH denote the standard
graph distance in G and H, respectively. Every quasi-isometry ϕ has a quasi-inverse
ψ : Y → X, which is a quasi-isometry such that ψϕ and ϕψ are at bounded distance
from the respective identity mappings. In other words, there is some constant M > 0
such that dX(x, ψϕ(x)) ≤M and dY (y, ϕψ(y)) ≤M for all x ∈ X, y ∈ Y . In particular
being quasi-isometric is an equivalence relation. It is well known that any quasi-isometry
between graphs G and H can be extended to the ends of G and that this extension maps
thick ends to thick ends and thin ends to thin ends, see for example Lemma 21.4 in [61].

Remark 2.1.1. Every connected quasi-transitive graph is quasi-isometric to some tran-
sitive graph. To see this, pick a finite set of representatives K ⊆ V (G) of the set of
vertex orbits {Γv | v ∈ V (G)} such that the induced subgraph G[K] is connected. Let
D be the diameter of the graph G[K]. Given u, v ∈ V (G), there is some γ ∈ Γ such
that we have dG(v, γu) ≤ D. Now consider the new graph G2D+1 with the same ver-
tex set V (G), where two vertices u, v are connected by a non-oriented edge whenever
1 ≤ dG(u, v) ≤ 2D + 1. In G2D+1, each orbit Γv induces a connected, locally finite
subgraph on which Γ acts transitively. It is easy to check that this subgraph is quasi-
isometric to G.

An edge-labelled graph is a graph G together with a label function ` assigning to every
edge e ∈ E(G) an element of some finite set Σ, called label alphabet. The labelling
is called deterministic, if any two edges e and f starting at the same vertex e− = f−

have different labels. For quasi-transitive graphs, we would like the edge-labelling to be
compatible with the action of a quasi-transitive subgroup of AUT(G). To this end, we
denote by AUT(G, `) the group of label-preserving graph automorphisms; when speaking
of a quasi-transitive edge-labelled graph it will be implicitly assumed that AUT(G, `)
acts quasi-transitively. Note that in the case of a deterministic labelling `, the group
AUT(G, `) acts freely on G, that is, the identity in AUT(G, `) is the only element fixing
a vertex of G.

One well-known class of simple, connected, locally finite, transitive graphs that come
with a natural deterministic edge-labelling are Cayley graphs of finitely generated groups.
Starting with a symmetric generating set S of a group Γ, the Cayley graph G = Cay(Γ, S)
has vertex set V (G) = Γ. We choose Σ = S, and for each γ ∈ Γ and s ∈ S there is a
directed edge from γ to γs with label s. The left regular action of Γ on itself extends
to an action on G by label preserving automorphisms; in fact, it is not hard to see that
Γ = AUT(G, `).

The following result originates from the theory of Cayley graphs of finitely generated
groups and also holds for our more general setting.

Lemma 2.1.2. The group Γ = AUT(G, `) of all graph automorphisms of the connected
deterministically edge-labelled graph G preserving the edge-labels acts fixed-point freely:
if γ ∈ Γ and γv = v for some v ∈ V (G) then γ = 1Γ, the unit element of Γ.

In particular, if Γ acts quasi-transitively then it is finitely generated.

15



ω

Hk−2

Hk−1

Hk

Hk+1

Hk+2

u v

Figure 2.1: The grandparent graphGGP. Edges connecting vertices to their grandparents
are green. The automorphism γ maps u onto v and thus the red ray onto
the blue ray.

Proof. Suppose γv = v. Since the labelling is deterministic, γu = u for all neighbours
u of v. By connectedness of G, we must have γ = 1G. If Γ acts quasi-transitively, then
the construction in Remark 2.1.1 yields a connected, locally finite subgraph on which Γ
acts transitively and fixed-point freely. Therefore that subgraph is a Cayley graph of Γ,
and Γ is finitely generated, see for instance the note [50] by Sabidussi.

Remark 2.1.3. For any two Cayley graphs of the same finitely generated group Γ with
respect to two different finite, symmetric sets of generators, the identity mapping is a
quasi-isometry with B = B′ = 0 in (4.1), that is, the mapping is bi-Lipschitz.

Using Lemma 2.1.2, it is not hard to show that there are transitive graphs G not
admitting any deterministic labelling ` such that AUT(G, `) acts quasi-transitively.

Example 2.1.4. Consider the grandparent graph GGP, defined as follows. Fix some
end ω of the infinite 3-regular tree T3 and let the graph “hang down” from the end ω.
Then the graph can be seen as a union of horizontal layers Hk, k ∈ Z. Every vertex
v ∈ Hk is adjacent to one vertex in Hk−1, called parent of v and two vertices in Hk+1,
called children of v. We add additional undirected edges connecting every child of v to
its grandparent, that is the parent of v. Doing this, we end up with the grandparent
graph GGP shown in Figure 2.1.

Clearly the group AUT(GGP) acts transitively on GGP. Soardi and Woess showed
in [54] that AUT(GGP) is the subgroup of AUT(T3) fixing the end ω, that is, it maps
any ray in ω onto some other ray in ω. Let Γ ≤ AUT(GGP) be a subgroup of graph
automorphisms acting quasi-transitively on GGP. Every layer Hk contains infinitely
many vertices, so there must be some γ ∈ Γ mapping a vertex u in Hk onto some
different vertex v 6= u in Hk. But γ is also a graph automorphism on the subgraph T3

16



and fixes the end ω of T3, so it maps the ray in ω starting at u onto the ray in ω starting
at v and thus fixes common ancestors of u and v. In particular, Γ does not act fix-point
freely, so by Lemma 2.1.2 the graph GGP does not admit any deterministic labelling `
such that AUT(G, `) acts quasi-transitively on G.

Any set of walks on an edge-labelled graph G defines a language in the following way.
Extend the label function ` to walks p = (v0, e1, . . . , en, vn) by setting

`(p) = `(e1)`(e2) . . . `(en) ∈ Σ∗.

Then for any set of walks P on G, the associated language is

L(P) ··= {`(p) | p ∈ P}.

For a given vertex o of G we denote by PSAW,o the set of self-avoiding walks of length
at least 1 on G starting at o and by LSAW,o(G) ··= L(PSAW,o) the associated language of
self-avoiding walks. Note that if the edge-labelling is deterministic, then ` is a bijection
between PSAW,o and LSAW,o(G).

2.2 Formal languages
For a finite set of letters Σ, called an alphabet, we denote by

Σ∗ ··= {w = a1a2 . . . an | n ≥ 0, ai ∈ Σ}

the set of all words over Σ. The number n of letters in a word w is called the length of
w and denoted by |w|; for the unique word of length 0 we write ε. A language over Σ is
a subset of Σ∗.

A context-free grammar is a quadruple G = (N,Σ,P, S), where N is a finite set of
non-terminals with N ∩Σ = ∅, S ∈ N is the start symbol and P ⊆ N × (N ∪Σ)∗ is a
finite set of production rules. We write A ` α for (A,α) ∈ P. If α ∈ Σ∗, we call A ` α
a terminal rule.

A production rule A ` α allows us to replace the non-terminal A by the string α. More
precisely, for strings β, γ ∈ (N ∪ Σ)∗, we say γ is obtained from β in a single step of
leftmost derivation, and write β ⇒ γ, if there is a decomposition of the form β = β1Aβ2
and γ = β1αβ2 for some β1 ∈ Σ∗, β2 ∈ (N ∪ Σ)∗ such that A ` α ∈ P. Thus, γ is
a result of using the rule A ` α to replace the leftmost non-terminal in β. A leftmost
derivation of β from α is a sequence

(α = α0, α1, . . . , αk = β)

such that αi−1 ⇒ αi for every i. We say that β is derived from α and write α ∗=⇒ β. Each
non-terminal A ∈ N generates a language LA ··= {α | A ∗=⇒ α} and the language generated
by the grammar G is L(G) ··= LS . A context-free language is a language generated by
a context-free grammar or equivalently, accepted by a pushdown automaton, see [32].
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The grammar and its generated language are called unambiguous if for every α ∈ L(G)
there is a unique leftmost derivation generating α.

A grammar and its generated language are called linear, if each production is of the
form

A ` xBy or A ` x, where A,B ∈ N, x, y ∈ Σ∗.

If in that situation one always has y = ε, then the grammar and the language are called
right-linear or regular. In this case, the language is accepted by a (deterministic) finite
state automaton, see [32].

Recall that an ordered tree is a rooted tree with an ordering specified for the children
of each vertex. For a given context-free grammar G, a derivation tree is an ordered tree
D together with a labelling λ : V (D)→ N ∪Σ∗ such that

– internal vertices have labels in N,

– leaves have labels in Σ∗ and

– whenever v1, . . . , vk are the ordered children of u in D,

λ(u) ` λ(v1) . . . λ(vk) ∈ P.

Any ordered tree induces a total order u1, . . . , uk on its leaves and we call D a deriva-
tion tree of w ∈ Σ∗ if w = λ(u1) . . . λ(uk). It is a standard result in formal language
theory that there is a bijection between leftmost derivations of w ∈ Σ∗ from A ∈ N and
derivation trees of w whose roots are labelled A.

Typical tools to show that a language is not regular, respectively not context-free, are
the well known Pumping Lemmas.

Lemma 2.2.1 (Pumping Lemma for regular languages). Let L be a regular language
over an alphabet Σ. Then there is a pumping length lp > 0 such that every w ∈ L with
|w| ≥ lp can be written as w = xyx̃ for some x, x̃, y ∈ Σ∗, such that |yx̃| ≤ lp, |y| ≥ 1
and xynx̃ ∈ L for all n ≥ 0.

Lemma 2.2.2 (Pumping Lemma for context-free languages). Let L be a context-free
language over an alphabet Σ. Then there is a pumping length lp > 0 such that every
w ∈ L with |w| ≥ lp can be written as w = xyzỹx̃ for some x, x̃, y, ỹ, z ∈ Σ∗, such that
|yzỹ| ≤ lp, |yỹ| ≥ 1 and xynzỹnx̃ ∈ L for all n ≥ 0.

The (commutative) language generating function of a given language L over the al-
phabet Σ = {a1, . . . , am} is a formal power series in the commuting variables a1, . . . , am
over Z

FL(a1, . . . , am) =
∑

w∈L
c(w),

where c(w) = ∏m
i=1 a

li
i for any word w containing exactly li copies of the letter ai.

A famous result of Chomsky and Schützenberger [7] states that the commutative
generating function of the language L(G) generated by an unambiguous context-free
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grammar G is algebraic over Q, meaning that there is an irreducible polynomial P in
m+ 1 variables with coefficients in Q such that

P (FL(a1, . . . , am), a1, . . . , am) = 0.

A proof of this statement can be found in [39].
To motivate the upcoming introduction of multiple context-free grammars as a gener-

alisation of context-free grammars, let us briefly discuss a different notation for context-
free grammars G = (N,Σ,P, S). When producing words, one usually starts with the
start symbol S and iteratively replaces non-terminals according to the rules given by P.
In terms of derivation trees, we build the trees starting from the top (root).

There is also an alternative way to build words using production rules. A production
rule A ` x0A1x1 . . . Anxn tells us that we can obtain an element of the language LA
generated by A by sticking together the strings x0, . . . , xn ∈ Σ∗ with strings yi ∈ LAi ,
i ∈ [n], according to the rule. This way of thinking is closely related to predicate logic.
We might say that a word w ∈ Σ∗ has property A ∈ N and write `G A(w) if w ∈ LA.
Then the rule A ` x0A1x1 . . . Anxn is equivalent to the statement

“If `G A1(z1), . . . ,`G An(zn), then also `G A(x0z1x1 . . . znxn)”.

In this statement, the zi play the role of variables and it is natural to write the production
as

A(x0z1x1 . . . znxn)← A1(z1), . . . , An(zn).
With this in mind, the natural way to generate words is by starting with terminal rules
and constructing the derivation from bottom to top, starting at its leaves.

Keeping this in mind, we introduce multiple context-free languages. As for context-
free languages, the first two ingredients are an alphabet Σ and a set of non-terminals N.
In the intuition above we treated every non-terminal as a property applying to all strings
it generates. In a similar way, a non-terminal of a multiple context-free language should
be viewed as a property applying to tuples of strings. To realise this, every non-terminal
is assigned an integer r ≥ 1 counting the size of the tuples, called rank. In other words,
N is a finite disjoint union N = ⋃

r∈N N(r) of finite sets N(r), whose elements are called
non-terminals of rank r. Production rules ρ of a multiple context-free grammar with
non-terminals N and alphabet Σ are expressions of the form

A(α1, . . . , αr)← A1(z1,1, . . . , z1,r1), . . . , An(zn,1, . . . , zn,rn),

where

– n ≥ 0,

– A ∈ N(r) and Ai ∈ N(ri) for all i ∈ [n],

– zi,j are variables,

– α1, . . . , αr are strings over Σ∪ {zi,j | i ∈ [n], j ∈ [ri]}, such that each zi,j occurs at
most once in α1 . . . αr.
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Production rules with n = 0 are called terminating rules. For convenience we sometimes
use the shortened notation

A(α1, . . . , αr)← (Ai(zi,1, . . . , zi,ri))i∈[n]

for the production rule ρ. For a non-terminal A ∈ N(r) and words w1, . . . , wr ∈ Σ∗ an
expression of the form A(w1, . . . , wr) is called a term. The application of the production
rule ρ to a sequence (Ai(wi,1, . . . , wi,ri))i∈[n] of n terms yields the term A(w1, . . . , wr),
where wl is obtained from αl by replacing every variable zi,j by the word wi,j . The
non-terminal A is called the head of the production and the sequence of non-terminals
A1, . . . , An are its tail.

A multiple context-free grammar is a quadruple G = (N,Σ,P, S), where N is a finite
ranked set of non-terminals, Σ is a finite alphabet, P is a finite set of production rules
over (N,Σ) and S ∈ N(1) is the start symbol. We call G k-multiple context-free or a
k-MCFG, if the rank of all non-terminals is at most k.

A term τ is called derivable in G, written `G τ if there is a sequence A of derivable
terms such that the application of a rule ρ ∈ P toA yields τ . It is implicit in this recursive
definition that if A(w1, . . . , wr) ← is a terminal rule, then the term A(w1, . . . , wr) is
derivable by letting A be the empty sequence. The language generated by G is the set
L(G) ··= {w ∈ Σ∗ | `G S(w)}. We call a language k-multiple context-free or a k-MCFL
if it is generated by a k-MCFG.

The following simple example of a 2-MCFG should be beneficial for a better under-
standing of the concepts above and a more general version of this grammar will come
up again in Chapter 5.

Example 2.2.3. Consider the MCFG G = (N,Σ,P, S), where N = {S,A}, Σ =
{a, b, c} and the set P consists of the rules ρ1, . . . , ρ5 given as follows:

ρ1 : S(z1z2)← A(z1, z2),
ρ2 : A(az1b, z2c)← A(z1, z2),
ρ3 : A(az1b, z2)← A(z1, z2),
ρ4 : A(az1, z2)← A(z1, z2),
ρ5 : A(ε, ε)← .

From the production rules it is immediately clear that the rank of A is 2 as A works
with pairs of strings. In particular the rank of the start symbol S is 1 by definition, so
that G is 2-multiple context-free. We use the recursive definition above to find all terms
derivable in G.

By the terminal rule ρ5, the term A(ε, ε) is derivable, we write `G A(ε, ε). Applying
A(az1, z2) ← A(z1, z2) to the term A(ε, ε), we replace z1 and z2 on the left side of the
rule by the empty word ε and obtain the term A(a, ε). In a similar way, consecutive
application of ρ4 yields that all terms of the form A(ak, ε), k ≥ 0 are derivable. Making
use of rule ρ3, we obtain `G A(ak+lbl, ε) for every k, l ≥ 0. Analogously, the rule
ρ2 provides `G A(ak+l+mbl+m, cm) for k, l,m ≥ 0. In a final step, we use the rule
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S(z1z2) ← A(z1, z2) containing the start symbol S to create words of the language
L(G): this rule ρ1 is used to concatenate the pairs (w1, w2) of strings appearing in
derivable terms A(w1, w2) and yields `G S(w1w2). As a conclusion, all terms of the
form S(ak+l+mbl+mcm) are derivable.

For the converse direction, note that any derivable term S(w) must arise from an
application of ρ1, so that w = w1w2 for some derivable term A(w1, w2). It is not hard
to see that in any such term, w1 = akbl and w2 = cm holds for some k ≥ l ≥ m ≥ 0: as
the only term arising from a terminal rule, A(ε, ε) satisfies this condition and the rules
ρ2, ρ3 and ρ4 preserve it. We conclude that the language generated by G is

L(G) = {ak+l+mbl+mcm | k, l,m ≥ 0} = {akblcm | k ≥ l ≥ m ≥ 0}.

Remark 2.2.4. As one might already guess from the discussion right before the in-
troduction of MCFGs, the class of context-free languages coincides with the class of
1-multiple context-free languages. A given context-free grammar G = (N,Σ,P, S) can
be easily translated into a 1-MCFG by replacing every production rule

A ` w0A1w1A2 . . . Anwn ∈ P,

where A,A1, . . . , An ∈ N and w1, . . . , wn ∈ Σ∗ with the multiple-context-free production
rule

A(w0z1w1z2 . . . znwn)← A1(z1), . . . , An(zn)
over (N,Σ). The resulting 1-MCFG G′ = (N,Σ,P′, S) then generates the same lan-
guage L(G).

Remark 2.2.5. Sometimes it will be convenient to work with a slightly different defi-
nition of multiple context-free grammars allowing non-terminals A to have rank r = 0.
For such a non-terminal A of rank 0, the only valid term is A(∅), where ∅ denotes the
empty tuple. We point out that ∅ is different from the 1-tuple (ε) containing the empty
string. Note that the generative ability of k-multiple context-free languages does not
change and that all properties discussed here remain valid under this variation.

In the Chomsky-hierarchy of formal languages, multiple context-free languages lie
strictly between context-free languages and the bigger class of context-sensitive lan-
guages. MCFLs share some important properties with context-free languages. They are
closed under under homomorphisms, inverse homomorphisms, union, intersection with
regular languages and Kleene closure. Furthermore they are parsable in polynomial time
and semilinear.

Derivation trees for multiple context-free languages were first defined by Seki et al. [52];
we use a slight variation of their definition. Let G = (N,Σ,P, S) be an MCFG. A
derivation tree of a term τ with respect to the grammar G is an ordered tree D whose
vertices are labelled with elements of P satisfying the following conditions:

– The root of D has n ≥ 0 children and is labelled with a rule ρ ∈ P.

– For i ∈ [n] the subtree Di rooted at the i-th child of the root of D is a derivation
tree of a term τi.
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S(z1z3z2z4)← A(z1z2), B(z3z4)

A(az1, az2)← A(z1, z2) B(bz1, bz2)← B(z1, z2)

A(az1, az2)← A(z1, z2) B(b, b)←

A(a, a)←

Figure 2.2: The unique derivation tree D of the word w(D) = a3b2a3b2 with respect to
the grammar G.

– The rule ρ applied to the sequence (τi)i∈[n] yields τ .

It is not hard to see that ` A(w1, . . . , wr) if and only if there is a derivation tree D of
A(w1, . . . , wr). However, in general such a derivation tree need not be unique.

An MCFG G is called unambiguous, if for every term S(w) there is at most one
derivation tree of S(w) with respect to G. An MCFL is called unambiguous if it is gen-
erated by some unambiguous MCFG. We denote by w(D) the tuple of strings w1, . . . , wr
generated by D and by `(D) the label of the root of D.

In some sense derivations trees of MCFGs are more natural than derivation trees of
CFGs. The tree corresponding to the derivation process of a term τ in an MCFG consists
of a single vertex labelled ρ for every rule ρ occurring in the process.

Example 2.2.6. Consider the MCFG G = (N,Σ,P, S), where N = {S,A,B}, Σ =
{a, b} and P consists of the rules

S(z1z3z2z4)← A(z1z2), B(z3z4),
A(az1, az2)← A(z1, z2),
B(bz1, bz2)← B(z1, z2),

A(a, a)←,
B(b, b)← .

It is a simple exercise to show that L(G) = {ambnambn | m,n ∈ N}. The unique
derivation tree D of the word w(D) = a3b2a3b2 can be found in Figure 2.2.

Remark 2.2.7. Let D be a derivation tree and let v be a vertex of D. Then by
definition replacing the subtree D′ of D rooted at v by a derivation tree D′′ satisfying
`(D′′) = `(D′) yields a derivation tree.

The pumping lemma for k-MCFLs, similarly to the well known pumping lemma for
CFLs, provides a convenient way to show that certain languages are not k-multiple
context free.
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Lemma 2.2.8 ([52, Lemma 3.2]). For every infinite k-MCFL L there is some w ∈ L,
which can be written in the form w = x1y1x2y2 . . . x2ky2kx2k+1 for some xi, yi,∈ Σ∗ such
that

– y1y2 . . . y2k 6= ε and

– x1yn1x2yn2 . . . x2ky
n
2kx2k+1 ∈ L for every n ∈ N0.

Note that this lemma is weaker than the pumping lemma for CFLs: it only provides
the existence of “pumpable” strings whereas the pumping lemma for CFLs states that
all words exceeding a certain length are pumpable.
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3 A general bridge theorem for
self-avoiding walks

In [22] Grimmett and Li proved a locality theorem for connective constants, namely that
the connective constants of two graphs are close in value whenever the graphs agree on
a large ball around the origin and some further conditions are satisfied. To obtain this
result they generalised the concept of bridges to the class of quasi-transitive graphs by
introducing the notion of graph height functions, which are basically maps assigning an
integer h(v) to every vertex v. Graph height functions have to be adapted to the graph
structure according to Definition 3.1.1. A good survey on graph height functions and
in particular some existence results for Cayley graphs can be found in [20]. Similarly to
the connective constant, the bridge constant β(G, h) of G with respect to h is the base
of the exponential growth of the number of bridges bn,o of length n starting at o,

β(G, h) = lim
n→∞ b

1/n
n,o .

The proof of its existence uses the fact that the concatenation of two bridges is again a
bridge. While it is rather simple for transitive graphs, existence of the bridge constant
of quasi-transitive graphs and its independence of the choice of o are shown in [22]. Fur-
thermore, [22] also contains the first bridge-theorem for quasi-transitive graphs, stating
that the bridge constant with respect to a unimodular graph height function is equal to
its connective constant.

The goal of this chapter is to provide a version of the bridge theorem applicable to
an even wider class of graphs. More precisely, we want to get rid of unimodularity in
the conditions of the bridge theorem. Our main result Theorem 3.2.2 states that for
any graph height function h on a graph G, the connective constant µ(G) is equal to
the maximum of the bridge constant β(G, h) with respect to h and the bridge constant
β(G,−h) with respect to the “reflected” graph height function −h.

As a consequence of this theorem, all results discussed by Grimmett and Li in Sec-
tion 5 of [22] concerning locality of connective constants also hold in the case where the
graph height functions are not unimodular. In particular they obtained conditions, un-
der which the connective constants of sequences of graphs possessing unimodular graph
height functions converges to the connective constant of a limit graph of this sequence.
The proofs in the non-unimodular case work exactly the same way after replacing cor-
responding results by the results obtained in this chapter, so they will not be discussed
here.

In Section 3.3, we provide a concrete example. The grandparent graph was given by
Trofimov in [57] as an example of a connected, locally finite, transitive graph with a
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non-unimodular automorphism group, so it admits only non-unimodular graph height
functions. We calculate the bridge constants with respect to the generic graph height
function and use our version of the bridge theorem to obtain the connective constant
of the grandparent graph. This connective constant can also be obtained by using a
different method described in Chapter 4.

3.1 Graph height functions and bridges
All graphs discussed in this chapter are assumed to be simple, even if not mentioned
explicitly. Thus it makes sense to represent any walk p by its sequence of vertices
(v0, v1, . . . , vn) and omit its edges. As we are interested in the growth rate of the number
of self-avoiding walks of length n for n going to infinity, we only consider infinite graphs.

The following definition of graph height functions on graphs is taken from [22].

Definition 3.1.1. Let G be a locally finite, connected graph. A graph height function
on G is a pair (h,Γ), where

– h : G→ Z,

– Γ ≤ AUT(G) is a subgroup of graph automorphisms acting quasi-transitively on
G and h is Γ-difference-invariant in the sense that

h(γv)− h(γu) = h(v)− h(u) for all γ ∈ Γ, u, v ∈ V (G),

– for every v ∈ V (G), there exist u,w ∈ V (G) adjacent to v such that

h(u) < h(v) < h(w).

A graph height function (h,Γ) is called unimodular if the action of Γ on G is unimodular,
that is if |Γuv| = |Γvu| for all u, v ∈ V (G) with v ∈ Γu. Note that by definition any
graph possessing a graph height function must be infinite and quasi-transitive.

Denote by d = d(h,Γ) the smallest integer satisfying h(u)− h(v) ≤ d for all edges uv
of G. This integer d(h,Γ) always exists: the height h is Γ-difference-invariant and Γ acts
with finitely many orbits on pairs (u, v) of adjacent vertices as G is locally finite. When
talking about a graph height function (h,Γ) we often simply write h and omit Γ.

Remark 3.1.2. There are infinite, locally finite, connected, quasi-transitive graphs not
supporting any graph height functions. This is still true when considering the set of all
Cayley graphs of finitely generated groups: it was shown in [21], that neither the Cayley
graph of the Grigorchuk group nor the Cayley graph of the Higman group admits a
graph height function.

From now on let G be an infinite, locally finite, connected, quasi-transitive graph and
let (h,Γ) be a graph height function on G. A self-avoiding walk (v0, v1, . . . , vn) is called

– a bridge, if h(v0) < h(vi) ≤ h(vn) holds for every i ∈ [n],
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– a reversed bridge, if h(v0) > h(vi) ≥ h(vn) holds for every i ∈ [n],

– a half-space-walk (HSW), if h(v0) < h(vi) holds for every i ∈ [n],

– a reversed half-space-walk: h(v0) > h(vi) holds for for all i ∈ [n].

Note in particular that bridges are HSWs and HSWs are SAWs. For any v ∈ V (G)
we denote by Cn,v, Bn,v, Bn,v, Hn,v and Hn,v the sets of SAWs, bridges, reversed bridges,
HSWs and reversed HSWs of length n starting at v, respectively. By definition all
of the above sets contain the walk of length 0 consisting of the single vertex v. Fur-
thermore, denote by cn,v, bn,v, bn,v, hn,v and hn,v the cardinalities of the respective sets
Cn,v, Bn,v, Bn,v, Hn,v and Hn,v. Because of symmetry, reversed bridges and reversed
half-space-walks with respect to h are bridges and HSWs with respect to the ”reflected”
height function −h, so we state most results only for bridges and HSWs.

Let p be a walk on G. The span of p is defined as the maximal height difference of
two vertices in p:

span(p) = hmax(p)− hmin(p),

where
hmax(p) = max

v∈p h(v), hmin(p) = min
v∈p h(v).

It is clear that for any bridge p, span(p) = h(vn)− h(v0).
The group Γ acts quasi-transitively on G and is h-difference invariant, so it is possible

to define
cn = max

v∈V (G)
cn,v, bn = min

v∈V (G)
bn,v and bn = min

v∈V (G)
bn,v.

Any SAW (v = v0, . . . , vn+m) ∈ Cn+m,v can be decomposed into a pair (v0, . . . , vn) ∈
Cn,v and (vn, . . . , vn+m) ∈ Cm,vn of SAWs. Picking v such that cn+m,v = cn+m results in

cn+m = cn+m,v ≤ cn,vcm ≤ cncm,

so (cn)n≥0 is a sub-multiplicative sequence. On the other hand the concatenation of
the bridges (v = v0, . . . , vn) ∈ Bn,v and (vn, . . . , vn+m) ∈ Bm,vn results in the bridge
(v0, . . . , vn+m) ∈ Bn+m,v. Picking v such that bn+m,v = bn+m yields

bnbm ≤ bn,vbm ≤ bn+m,v = bn+m.

Fekete’s Lemma states that for every sub-additive sequence (an)n≥0, the limit limn→∞ an
n

exists and is equal to infn≥0
an
n . An application of this lemma to the sub-additive se-

quences (log(cn))n≥0 and (− log(bn))n≥0 provides the existence of the limits

µ(G) ··= lim
n→∞ c

1/n
n , β(G, h) ··= lim

n→∞ b
1/n
n , β(G, h) ··= lim

n→∞ b
1/n
n .

Here µ(G) depends only on the underlying graph G and is called the connective constant
of G and β(G, h) and β(G, h) depend on the graph and the chosen height function h
and are called the bridge constant and reversed bridge constant of G with respect to h,
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respectively. We usually omit the graph and the height function if they are clear and
just write µ, β and β.

Trivially bn ≤ cn, so we obtain

bn ≤ βn ≤ µn ≤ cn, n ≥ 0, (3.1)

and the analogue statement for bn and β. Hammersley showed in [29] that

lim
n→∞ c

1/n
n,v = µ for every v ∈ V (G)

and Grimmett and Li proved in [22] the similar statement

lim
n→∞ b

1/n
n,v = β for every v ∈ V (G).

Let us denote by

FSAW,v(z) =
∑

n≥0
cn,vz

n and Fbridge,v(z) =
∑

n≥0
bn,vz

n

the generating functions of self-avoiding walks and bridges, respectively. Then the
Cauchy-Hadamard theorem implies that for any vertex v ∈ V (G) the corresponding
radii of convergence are given by

RSAW ··=
1

limn→∞ c
1/n
n,v

= 1
µ

and Rbridge ··=
1

limn→∞ b
1/n
n,v

= 1
β
,

respectively. In Section 3.3 we make use of this fact to calculate the bridge constant of the
grandparent graph by finding the radius of convergence of the corresponding generating
function.

3.2 The bridge theorem
As mentioned before the main motivation was the following version of the bridge theorem,
holding for graphs admitting a unimodular graph height function.

Theorem 3.2.1 (Grimmett and Li [22, Theorem 4.3]). Let G be a locally finite, con-
nected graph possessing a unimodular graph height function (h,Γ). Then µ(G) = β(G, h).

As a simple consequence of this theorem the bridge constant β(G, h) does not depend
on the choice of the unimodular graph height function h. However, there are simple
examples showing that unimodularity is necessary in this theorem, one of them being
the grandparent graph, which will be discussed in Section 3.3.

The main result of the current chapter of this thesis is the following extension of this
bridge theorem, holding without the requirement of unimodularity.

Theorem 3.2.2. Let G be a locally finite, connected graph possessing a graph height
function (h,Γ). Then

µ(G) = βmax(G, h) ··= max{β(G, h), β(G, h)}. (3.2)
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One inequality is clear from (3.1), we only need to show µ ≤ βmax. For convenience
we first provide a detailed proof of the transitive case which we then generalise to the
quasi-transitive case.

From now on let G be a locally finite, connected graph, let (h,Γ) be a graph height
function on G and assume that the group Γ acts transitively on G. Then the value of
cn,v does not depend on v and is therefore equal to cn. Moreover elements of Γ map
bridges onto bridges and HSWs onto HSWs, implying that also bn,v is equal to bn for
every v and hn,v does not depend on v, so we can omit v in the notation.

For simplicity we fix some vertex o of G with h(o) = 0 and write Cn, Bn, Hn and
Bn, Hn for the sets of n-step SAWs, bridges, HSWs and their reversed versions starting
at o, respectively. Moreover for every v ∈ V (G) we fix some element γv ∈ Γ with
γv(o) = v. The γ-concatenation of two walks p1 = (o, v1, . . . , vm), p2 = (o, w1, . . . , wn)
is defined as the walk

p1 ∗γ p2 ··= (o, v1, . . . , vm, γvm(w1), . . . , γvm(wn)).

In other words, p1 ∗γ p2 is the concatenation p1γvm(p2) of the walks p1 and γvm(p2) as
defined in Section 2.1. Similarly, the γ-decomposition of p1 at vl is defined to provide
the two walks (o, v1, . . . , vl) and (γ−1

vl
(vl), . . . , γ−1

vl
(vn)), both of them starting at o.

Denote byBn(a) the set of bridges inBn having span a ≥ 0 and by bn(a) the cardinality
of this set. Note that b0(0) = 1 and for d = d(h,Γ) from Definition 3.1.1 it trivially
holds that bn(a) = 0 for a > dn because the height distance per step is at most d. It
follows that

bn =
dn∑

a=0
bn(a). (3.3)

Take any HSW p = (v0, v1, . . . , vn) of length n ≥ 1. We use the following iterative
process to γ-decompose p into an alternating sequence of bridges and reversed bridges:
Let i0 = 0 and in step j ≥ 1 let

aj = max
i∈{ij−1,...,n}

∣∣∣h(vi)− h(vij−1)
∣∣∣ ,

and let ij be the largest index in {ij−1, . . . , n}, where this maximum is attained. Then
the sub-walk (vij−1 , . . . , vij ) of p has span aj and is a bridge if j is odd and a reversed
bridge if j is even.

By construction the span decreases in every step, so a1 > · · · > ak > 0. We denote
by Hn(a1, . . . , ak) the set of HSWs in Hn decomposing into an alternating sequence
p1, p2, . . . , pk of bridges and reversed bridges of spans a1, . . . , ak and by hn(a1, . . . , ak)
its cardinality. It is clear that for n ≥ 1

hn =
∑

k>0

∑

a1>···>ak>0
hn(a1, . . . , ak). (3.4)

Moreover the equality hn(a1) = bn(a1) follows directly from the definition.
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Figure 3.1: Decomposition of a HSW p into bridges (red) and reversed bridges (blue)
and construction of p+ and p− (dashed).

Lemma 3.2.3. Let n, k ≥ 1 and a1 > a2 > · · · > ak > 0. Then

hn(a1, . . . , ak) ≤
n∑

m=0
bm(a1 + a3 + . . . )bn−m(a2 + a4 + . . . ). (3.5)

Proof. Let p ∈ Hn(a1, . . . , ak). Use the decomposition process described before to con-
struct a pair (p+, p−) consisting of a bridge and a reversed bridge, both starting at o.
Begin by γ-decomposing p into the walks p1, . . . , pk such that the span of pi is ai for every
i and pi is a bridge if i is odd and a reversed bridge otherwise. Let p+ = p1 ∗γ p3 ∗γ . . .
be the γ-concatenation of all bridges pi (i odd) and p− = p2 ∗γ p4 ∗γ . . . be the γ-
concatenation of all reversed bridges pi (i even). This construction can be seen in
Figure 3.1.

Clearly p+ is a bridge and its span is a1 + a3 + . . . and p− is a reversed bridge and
its span is a2 + a4 + . . . . Moreover from the knowledge of the sequence a1, . . . , ak and
the two walks p+ and p− the original walk p can be uniquely reconstructed, so the
process of obtaining the pair (p+, p−) from p is injective. Let m = |p1| + |p3| + . . . be
the sum of lengths of the odd-index sub-walks pi. Then p+ ∈ Bm(a1 + a3 + . . . ) and
p− ∈ Bn−m(a2 + a4 + . . . ) and (3.5) follows.

A partition with distinct parts of a positive integer A is a way to write A as a sum
of distinct positive integers. Two partitions are considered the same if they differ only
in the order of their summands. Denote by pD(A) the number of different partitions
with distinct parts of the integer A ≥ 1. For consistency let pD(0) = 1. Hardy and

29



Ramanujan showed in [31] that for A→∞:

log pD(A) ∼ π
(
A

3

)1/2
. (3.6)

Lemma 3.2.4. Let L > π
√
d/3, where d = d(h,Γ) is the maximal height distance

between adjacent vertices of G. Then there is a constant K > 0 such that for all n ≥ 0

hn ≤ pD(dn)
n∑

m=0
bmbn−m ≤ KeL

√
nβnmax. (3.7)

Proof. The statement trivially holds for n = 0. In the case n > 0 application of
Lemma 3.2.3 in expression (3.4) and exchanging the finite sums yields

hn ≤
n∑

m=0

∑

k>0

∑

a1>···>ak>0
bm(a1 + a3 + . . . )bn−m(a2 + a4 + . . . ).

For given A,B ≥ 0 we want to count the number of occurrences of the summand
bm(A)bn−m(B) in the sum on the right-hand side. Clearly the total number of sequences
a1 > · · · > ak > 0 with a1 +a3 + · · · = A and a2 +a4 + · · · = B is bounded from above by
the number pD(A+B). Using that the height distance per step is at most d, it follows
that

hn ≤
n∑

m=0

dm∑

A=0

d(n−m)∑

B=0
pD(A+B)bm(A)bn−m(B).

From pD(A+B) ≤ pD(dn) and (3.3) the first inequality in (3.7) follows:

hn ≤ pD(dn)
n∑

m=0

(
dm∑

A=0
bm(A)

)

d(n−m)∑

B=0
bn−m(B)




= pD(dn)
n∑

m=0
bmbn−m.

The second inequality in (3.7) follows from bn ≤ βn (see (3.1)) and the existence of a
constant K > 0 such that

(n+ 1)pD(dn) ≤ KeL
√
n

for every n > 0, which is a consequence of (3.6).

Lemma 3.2.5. Let M > p
√

2d/3. Then there is an integer N such that for all n ≥ N

cn ≤ eM
√
n+1βn+1

max . (3.8)

Proof. Let p = (v0, . . . , vn) be any SAW of length n and l the maximal index such that
h(vl) = hmin(p). By the definition of graph height functions there is a neighbour v′ of vl
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Figure 3.2: Decomposition of a SAW into a HSW starting at v′ (red) and a HSW starting
at vl (blue).

with h(v′) < h(vl). Hence γ−1
vl

(vl, vl+1, . . . , vn) and γ−1
v′ (v′, vl, vl−1, . . . , v0) are HSWs in

Hn−l and Hl+1 respectively. This construction is shown in Figure 3.2 and yields

cn ≤
n∑

l=0
hn−lhl+1. (3.9)

Let ε > 0 such that M − ε > π
√

2d/3. By Lemma 3.2.4 there is a K > 0 such that
for every n ≥ 0,

cn ≤
n∑

l=0
K2 exp

(
M − ε√

2

(√
n− l +

√
l + 1

))
βn+1

max .

Using this estimate and the inequality
√
a+
√
b ≤
√

2a+ 2b, which holds for all a, b ∈ R+,
we obtain

cn ≤ (n+ 1)K2 exp
(
(M − ε)

√
n+ 1

)
βn+1

max . (3.10)

For n large enough (3.8) follows.

Now we have all necessary tools to finish the transitive case of the proof of Theo-
rem 3.2.2. Using µn ≤ cn (see (3.1)) and Lemma 3.2.5, it follows that for M > π

√
2d/3

and n large enough
µn−1e−M

√
n ≤ cn−1e

−M√n ≤ βnmax.

Applying the n-th root and sending n to infinity yields

µ ≤ βmax.

We briefly discuss the additional steps to generalise the proof to the case where Γ
acts quasi-transitively on the graph G. The following additional definitions and results
from [22] are necessary.
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Let the action of Γ onG admitm orbits and {o1, . . . , om} be a system of representatives
of the orbits. Let r = r(h,Γ) be the smallest non-negative integer such that for any
0 ≤ i, j ≤ m there is some vj ∈ Γoj and a bridge q(i, j) of length at most r starting at
oi and ending at vj , such that vj is the unique vertex of maximal height in the walk.
The walk obtained by going along q(j, i) in the reversed direction (from vj to oi) is a
reversed bridge and will be denoted by q(i, j). It has been shown in [22] (Proposition
3.2 and Proposition 4.2) that r(h,Γ) exists for any graph height function and moreover,
for any v ∈ V (G),

bn,v ≤ βn+r, n ≥ 0. (3.11)
From now on we denote for v ∈ V (G) and a ≥ 0 by Bn,v(a) the set of bridges of span

a starting at v and by bn,v(a) the cardinality of this set.
Furthermore, for any v ∈ V (G) and a1 > · · · > ak > 0 let Hn,v(a1, . . . , ak) be the

set of HSWs in Hn,v decomposable into an alternating sequence of bridges and reversed
bridges of spans a1, . . . , ak as described in the transitive case and let hn,v(a1, . . . , ak) be
its cardinality. Lemma 3.2.3 can be replaced by the following:

Lemma 3.2.6. Let n, k ≥ 1, a1 > a2 > · · · > ak > 0 and v ∈ V (G). Then

hn,v(a1, . . . , ak) ≤ (r + 1)k−1
n∑

m=0




kr∑

s=0

∑

t≥0
bm+s,v(a1 + a3 + · · ·+ t)







kr∑

s′=0

∑

t′≥0
bn−m+s′,v(a2 + a4 + · · ·+ t′)


 .

(3.12)

Proof. Given a walk p in Hn,v(a1, . . . , ak), we decompose it into the alternating sequence
p1, p2, . . . , pk of bridges and reversed bridges as in the transitive case. The main difficulty
is that it is not always possible to concatenate the bridges pl and pl+2 directly, as p+

l

and p−l+2 may lie in different orbits. Let (i(0), . . . , i(k − 2)) and (j(0), . . . , j(k − 2)) be
sequences defined such that v ∈ Γoi(0), p+

l ∈ Γoi(l) for l ≥ 1 and p−l+2 ∈ Γoj(l) for l ≥ 0.
Let

ql =
{
q(i(l), j(l)) if l is odd,
q(i(l), j(l)) if l is even.

Define p+ as the concatenation of the bridges p1, q1, p3, q3, . . . (odd indices) and p− as the
concatenation of the reversed bridges q0, p2, q2, p4, . . . (even indices). This construction
can be seen in Figure 3.3.

Let m be the sum of the lengths of pi having odd index i. Then p+ is in Bm+s,v(a1 +
a3 + · · ·+ t) for some 0 ≤ s ≤ kr and t ≥ 0 and p− is in Bn−m+s′,v(a2 + a4 + · · ·+ t′) for
some 0 ≤ s′ ≤ kr and t′ ≥ 0 as every q-walk has length at most r. The construction is not
injective because for a given pair (p+, p−) we might not be able to directly identify the
contained q-walks. However, the length of any q-walk is at most r, so there are at most
(r+ 1) possible positions per q-walk. Therefore any pair (p+, p−) can be constructed at
most (r + 1)k−1 times and (3.12) follows.

Lemma 3.2.4 is replaced by the following:
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Figure 3.3: Decomposition of a HSW into bridges (red) and reversed bridges (blue) and
construction of π+ and π− (dashed). Dotted lines are ν-walks.

Lemma 3.2.7. There is a constant L > 0 such that for any n ≥ 0 and v ∈ V (G)

hn,v ≤ eL
√
nβnmax. (3.13)

Proof. We begin with the observation that for all integers a, l ≥ 0
∑

t≥0
bl,v(a+ t) ≤ bl,v. (3.14)

Starting with (3.4) and using Lemma 3.2.6 and (3.14) yields

hn,v ≤
∑

k>0

∑

a1>···>ak>0
a1+···+ak≤dn

(r + 1)k
n∑

m=0

(
kr∑

s=0
bm+s,v

)(
kr∑

s′=0
bn−m+s′,v

)
.

Let ∆ denote the maximum over all degrees of vertices of G. Then it is easy to see that
βmax ≤ ∆. Furthermore, any partition of an integer A with k distinct parts satisfies
k(k + 1) ≤ 2A and therefore k <

√
2A. Using these observations, we end up with

hn,v ≤
∑

k>0

∑

a1>···>ak>0
a1+···+ak≤dn

(r + 1)k(n+ 1)(kr + 1)2βn+2kr+2r
max

≤ dn pD(dn)(r + 1)
√

2dn(n+ 1)(
√

2dn r + 1)2∆2
√

2dn r+2rβnmax.

Finally, applying (3.6), for B large enough (3.13) follows.
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Figure 3.4: The grandparent graphGGP. Edges connecting vertices to their grandparents
are green, while the edges of the original 3-regular tree are black.

Finally we obtain the analogue to Lemma 3.2.5, which which can be proved in the
same way.

Lemma 3.2.8. There is a constant M > 0 such that for any n ≥ 0 and v ∈ V (G)

cn,v ≤ eM
√
nβnmax. (3.15)

From this statement it follows directly that µ ≤ βmax, which finishes the proof of
Theorem 3.2.2.

3.3 Bridges in the grandparent graph
In this section we discuss the grandparent graph GGP introduced in Example 2.1.4 as an
example of a graph not possessing any unimodular graph height function. We calculate
the bridge constants and use the bridge theorem to obtain the connective constant.

Recall that the grandparent graph is constructed as follows. Fix some end ω of the
infinite 3-regular tree T3, let the graph “hang down” from the end ω and treat the vertex
set of GGP as the union of horizontal layers Hk, k ∈ Z as shown in Figure 3.4. Every
vertex v ∈ Hk is adjacent to one vertex in Hk−1, called parent of v and denoted by ↑(v),
and two vertices in Hk+1, called children of v. Write ↑k(v) for the k-th predecessor of
v, that is the vertex obtained by applying ↑ k times to v. Furthermore denote by ↓k(v)
the set of all vertices u such that ↑k(u) = v. We add all undirected edges connecting a
vertex v to its grandparent ↑2(v) to the graph and end up with the graph GGP as shown
in Figure 3.4.

Clearly the group AUT(GGP) acts transitively on GGP. Soardi and Woess showed
in [54] that every graph automorphism fixes the end ω. Moreover they observed that
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for any vertex v of GGP, any automorphism fixing v also fixes ↑(v). On the other hand,
there are automorphisms fixing ↑(v) and mapping v to its sibling, so that

|AUT(GGP)v↑(v)| = 1 6= 2 =
∣∣∣AUT(GGP)↑(v)v

∣∣∣ ,

thus the action of AUT(GGP) is not unimodular. In particular GGP is not a Cayley
graph and it cannot admit a unimodular graph height function.
GGP admits the obvious graph height function (h,AUT(GGP)), where the map h

associates to every vertex v the index k of the layer Hk containing v.
We fix a vertex o and use generating functions to count bridges starting at o and

calculate the bridge constants β(GGP, h) and β(GGP, h). From the structure of the
graph it is intuitively clear that there are more bridges then reversed bridges starting at
o, so we start by counting bridges. For a ≥ 0 let Ba,v be the set of all bridges of span a
starting at a vertex v and Ba(x) be the ordinary generating functions corresponding to
this class, which is independent of v and given by

Ba(x) =
∑

n≥0
bn(a)xn.

Then Ba(x) is a polynomial for every a ≥ 0 and it is not hard to obtain

B0(x) = 1, B1(x) = 2x, B2(x) = 4x+ 4x2 + 4x3.

By (3.3), the generating function Fbridge(x) counting all bridges is

Fbridge(x) =
∑

n≥0
bnx

n =
∑

a≥0
Ba(x).

For a ≥ 3 recursively count all bridges p = (v0, v1, . . . , vm) ∈ Ba,o. The different types
of bridges discussed are shown in Figure 3.5. Every bridge p starts at v0 = o, so either
v1 ∈ ↓(o) or v1 ∈ ↓2(o). If v1 ∈ ↓(o), then (v1, . . . , vm) of p must be a bridge in Ba−1,v1

(type 1).
Let now v1 ∈ ↓2(o). We distinguish the following sub-cases: If p does not contain

↑(v1), the walk (v1, . . . , vm) must be a bridge in Ba−2,v1 (type 2).
Otherwise, there is some index l > 1 such that vl = ↑(v1) and we can decompose the

walk at vl to obtain walks p1 = (v0, . . . , vl) and p2 = (vl, . . . , vm). Whenever a SAW
reaches a descendent of a vertex v after containing both v and ↑(v), it cannot reach
a predecessor of v anymore. This means that p1 can have one of two possible shapes,
depending on the parity of l. Let l = 2k in the case where l is even and l = 2k + 1
otherwise. In both cases we have vi ∈ ↓2(vi−1) for every i ∈ [k − 1]. The k-th step
satisfies vk = ↑(vk−1) if l is odd and vk ∈ ↓(vk−1) for even l. The walk concludes with the
steps vi = ↑2(vi−1) for every index k+ 1 ≤ i ≤ l. We call walks with this shape U-walks.

Since the span of p is a, the span of the U-walk p1 can be at most a. Note that for any
v there are 2 vertices in ↓(v) and 4 vertices in ↓2(v). The generating function of U-walks
of span at most a is thus given by

Ua(x) = 4x2 + 8x3 + · · ·+ (2x)a.

There are three possible ways how the second part p2 = (vl, . . . , vm) of p may look:
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o

v1

type 1

o

v1

type 2

o

v1

vl

type 3

o

v1

vl

type 4

o

v1

v2

type 5

Figure 3.5: The five different types of walks in Bd
a. U-walks are drawn red.

– The walk p2 is in Ba−1,↑(v1) and does not contain a vertex in ↓(v1). Precisely half
of the bridges in Ba−1,↑(v1) satisfy this condition. (type 3)

– The walk p2 contains a vertex of ↓(v1). If l ≥ 3 then vl−1 ∈ ↓(v1), so vl+1 has to
be the other vertex in ↓(v1) and (vl+2, . . . , vm) ∈ Ba−3,↑(vl+2). (type 4)

– Otherwise l = 2 and thus both vertices in ↓(v1) are available for vl+1. In this case
(vl+2, . . . , vm) must be in Ba−3,↑(vl+2). (type 5)

Translating these combinatorial observations into generating functions yields the re-
cursive formula

Ba(x) = fa(x)Ba−1(x) + g(x)Ba−2(x) + ha(x)Ba−3(x), (3.16)

where for x 6= 1/2,

fa(x) = 2x+ 2x2 1− (2x)a−1

1− 2x ,

g(x) = 4x,

ha(x) = 8x3 + 8x4 1− (2x)a−2

1− 2x .

Fix some x0 in the real interval [0, 1/2). Then (Ba(x0))a≥0 is a sequence in R≥0. Equa-
tion (3.16) provides a recursive definition with non-negative coefficients. In particular,
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convergence of the series induced by the sequence (Ba(x0))a≥0 is strongly related to the
sum of coefficients of its recursive definition,

Fbridge(x0) =
∑

a≥0
Ba(x0)




<∞ if lim

a→∞(fa(x0) + g(x0) + ha(x0)) < 1,
=∞ if lim

a→∞(fa(x0) + g(x0) + ha(x0)) > 1.

From this observation it follows that the radius of convergence Rbridge of Fbridge(x) is the
threshold value for x0, which can be found as the smallest positive root of the polynomial

1− 8x+ 10x2 − 8x3 + 8x4.

So in particular the bridge constant is an algebraic number, which is approximately

β(GGP, h) ≈ 6.64993.

A similar construction can be used to calculate the reversed bridge constant. For this
we define the generating functions Ba(x) counting reversed bridges of span a as above.
The main difference is that we obtain the following recursive formula by looking at the
different cases for the final parts of bridges of span a:

Ba(x) = fa(x)Ba−1(x) + g(x)Ba−2(x) + ha(x)Ba−3(x),

where for x 6= 1/2,

fa(x) = x+ x2 1− (2x)a−2

1− 2x ,

g(x) = x,

ha(x) = x3 + x4 1− (2x)a−3

1− 2x .

The radius of convergence of the generating function of reversed bridges is the smallest
positive root of the polynomial

1− 4x+ 3x2 − x3 + x4

and its reciprocal is the reversed bridge constant

β(GGP, h) ≈ 3.10380.

As an application of the bridge theorem (Theorem 3.2.2) we obtain the connective
constant of GGP,

µ(GGP) = max{β(GGP, h), β(GGP, h)} ≈ 6.64993.
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4 Context-free language of self-avoiding
walks

In this chapter we introduce the apparently new approach of connecting self-avoiding
walks with the theory of formal languages. The basic setting is as follows. Recall that
an edge-labelled graph (G, `), consists of a graph G and a labelling ` : E(G) → Σ
assigning to every oriented edge e a label `(e) of some given alphabet Σ. The labelling
is assumed to be deterministic, that is, different edges with the same initial vertex
have distinct labels. Additionally, we always assume that the group AUT(G, `) of all
`-preserving graph automorphisms of G acts quasi-transitively on G; we say that G is a
quasi-transitive edge-labelled graph.

The language of self-avoiding walks on a graph G starting at some given vertex o is

LSAW,o(G) = L
(PSAW,o

)
,

where PSAW,o denotes the set of all self-avoiding walks on G starting at o. Our main
result completely characterises the set of all graphs having a regular or context-free
language of self-avoiding walks:

Theorem 4.0.1. Let G be a simple, locally finite, connected, quasi-transitive determin-
istically edge-labelled graph. Then for any choice of o ∈ V (G), the following holds.

(i) LSAW,o(G) is regular if and only if all ends of G have size 1.

(ii) LSAW,o(G) is context-free if and only if all ends of G have size at most 2. In this
case, LSAW,o(G) is unambiguous context-free.

As already mentioned, the word problem of finitely generated groups was an important
motivation for our studies. The term word problem describes the algorithmic problem of
deciding whether two words over a given finite set S of generators of a group Γ represent
the same element. Clearly this is equivalent to asking whether a given word represents
the group identity of Γ. Looking at the Cayley graph Cay(Γ, S), where every edge is
labelled with its corresponding generator, the word problem appears in a natural way.
As discussed before, any given word corresponds to a labelled walk in Cay(Γ, S) starting
at 1Γ and the word corresponds to the identity if and only if its corresponding walk is
closed, meaning that it also ends at 1Γ. The term “word problem” often also stands for
the language of all words over a given generating set S representing the group identity
in Γ.

The word problem was first introduced in 1911 by Dehn [8] as one of three fundamental
problems in the theory of infinite groups, the other two being the conjugacy problem and
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the group isomorphism problem. One year later he invented an algorithm [9] that solves
both the word and conjugacy problem for the fundamental groups of closed orientable
2-dimensional manifolds of genus at least 2. Later, this algorithm became known as
Dehn’s algorithm and was extended and applied by various authors to a wide range of
group theoretic decision problems.

Anisimov showed in [2] that the word problem is regular if and only if the group
is finite, and this extends to quasi-transitive labelled graphs. In the ground-breaking
work [46], Muller and Schupp showed that the word problem is context-free if and only
if the group is virtually free. In particular, regularity, respectively context-freeness of the
word problem are group invariants not depending on the specific generating set. In the
subsequent work [47], context-free labelled graphs were defined via structural properties
(not necessarily quasi-transitive), and these are precisely the (deterministically) labelled
graphs for which the language of closed walks is context-free; see [6] by Ceccherini-
Silberstein and Woess. For further work on language-theoretic issues related with groups,
see e.g. Pélecq [48], as well as [5], [62], and for a new proof of the main result of [46]
and related material, Dieckert and Weiss [11].

Applied to a Cayley graph of a group, Theorem 4.0.1 says that the group is virtually
free if the language of self-avoiding walks is context-free, but the latter property is not
a group invariant.

The inspiration for the present work came from the note [19] by Gilch and Müller,
where they determined the SAW-generating function FSAW,o(z) for free products of finite
graphs – an instance of the case where the language of self-avoiding walks is regular. Fur-
thermore, in the computation of FSAW,o(z) for the bi-infinite ladder graph by Zeilberger
in [63], a context-free grammar is inherent although not mentioned or used directly.

This chapter is organised as follows: In Section 4.1, we provide the necessary back-
ground on the end space of graphs and discuss strips in locally finite graphs, that is,
two-ended quasi-transitive subgraphs. Their ends have the same finite size – the size
of the strip. In the quasi-transitive case, if there is an end of finite size m, there must
be a strip of the same size. Furthermore, if there is a thick end which is fixed by some
non-elliptic automorphism (one not fixing a finite subset of V (G)), then there are strips
of arbitrary size. In Section 4.2, the Pumping Lemmas for regular, respectively context-
free languages are used to show the following. If G is quasi-transitive and contains a
strip of size 2, then LSAW,o(G) cannot be regular, and if it contains a strip of size 3, then
LSAW,o(G) cannot be context-free.

Thus, we are left with considering graphs whose ends have size at most 2. In Sec-
tion 4.3 we first consider the case when all ends have size 1. Then the cut-vertex tree
decomposition of G has finite blocks, and we derive that LSAW,o(G) is regular. If all ends
have size 2, then we use the 3-block tree decomposition of G of Droms, Servatius and
Servatius [12] to construct an unambiguous context-free grammar for LSAW,o(G). (Al-
ternatively, one might use the vertex cuts of Dunwoody and Krön [15].) To conclude, if
G contains ends of both sizes 2 and 1, one can combine 2-connectedness of the (possibly
infinite) blocks of the cut-vertex tree decomposition with the method of the preceding
case (ends of size 1) to get context-freeness.

In the final Section 4.4, we start with a discussion of implications and future work. We
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also recall some context-free examples, including one of Lindorfer [42], and provide two
additional more detailed examples beneficial for a better understanding of the construc-
tions used in the proofs in Section 4.3. In one of these examples the SAW-generating
function is algebraic over Q, but not rational.

4.1 Ends and strips in locally finite graphs
Recall that for our language-theoretic approach, it is convenient to consider the edge set
E(G) of our (locally finite, connected) graph G as being directed and with an involution
e 7→ ē which inverts the orientation. When speaking about ends, it is sufficient to identify
each pair of oppositely oriented edges with the same endpoints with one non-oriented
edge. We shall frequently switch back and forward between these two viewpoints.

Recall from Chapter 2 that the ends of a graph G are defined as equivalence classes of
rays contained in G, where two rays are equivalent if they cannot be separated by a finite
set of vertices. The size of an end is defined as the maximum number of disjoint rays
representing the end. A ray ρ is said to end up in a given (infinite) subset of V (G), if all
but finitely many vertices of ρ are contained in the subset. If ω is an end and K ⊆ V (G)
is finite, the unique component of G − K in which all representing rays of ω end up
is denoted C(K,ω). We say that the end ω belongs to the component C(K,ω). In a
similar way we denote the component containing a given vertex v ∈ V (G) by C(K, v).

A defining sequence for an end ω consists of a sequence (Kn)n≥0 of finite subsets of
V (G) such that C(Kn−1, ω) ⊇ Kn ∪C(Kn, ω) for each n. As a consequence of Menger’s
theorem, any end ω of size m has a defining sequence Kn of size m, that is, |Kn| = m
for all n and there cannot be a defining sequence of smaller size.

Denote by ∂G the set of ends of the graph G and let Ĝ ··= V (G) ∪ ∂G. A topology
on Ĝ is given as follows. In the above notation, for v̂ ∈ Ĝ let Ĉ(K, v̂) be the union of
C(K, v̂) with the set of all ends whose rays end up in the set C(K, v̂). In other words,
Ĉ(K, v̂) contains all vertices of C(K, v̂) and additionally all ends ω belonging to C(K, v̂),
that is all ends such that C(K,ω) = C(K, v̂). Then for any defining sequence (Kn)n≥0 of
an end ω, the family (Ĉ(Kn, ω))n≥0 is a neighbourhood base of ω. If v ∈ V (G), we can
take for K the finite set of neighbours of v in G to see that the topology is discrete on
V (G). With this topology, the space ∂G of ends is the boundary of a compactification
of G.

Recall that a quasi-isometry between two metric graphs G and H with graph distances
dG and dH is a mapping ϕ : V (G) → V (H) such that there are constants A > 0,
B,B′ ≥ 0 such that for all x1, x2 ∈ V (G) and y ∈ V (H),

A−1dG(x1, x2)−B ≤ dH(ϕx1, ϕx2) ≤ AdG(x1, x2) +B and dH(y, ϕG) ≤ B′. (4.1)

The following lemma follows with some small additional effort from Lemma 21.3 and
Lemma 21.4 in [61] and their proofs. The subscripts G and H refer to the respective
graphs, their metrics, and so on. In particular, the maximum distance of two vertices in
K ⊆ V (G) in the graph G is denoted diamG(K).
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Lemma 4.1.1. Let G and H be two simple, connected graphs with bounded vertex de-
grees. If ϕ : V (G)→ V (H) is a quasi-isometry, then it extends to a continuous mapping
Ĝ→ Ĥ which restricts to a homeomorphism between the spaces of ends ∂G and ∂H.

There is an increasing function θ : N→ N with the following property: if ω ∈ ∂G and
K ⊆ V (G) with diamG(K) = k then there is K ⊆ V (H) with

ϕK ⊆ K, diamH(K) ≤ θ(k), and ϕCG(K,ω) ⊇ CH(K,ϕω) ∩ ϕG.

In particular, if ω has a defining sequence (Kn)n≥0 with diamG(Kn) ≤ k <∞ for every
n then ϕω has a defining sequence (Kn)n≥0 with diamH(Kn) ≤ θ(k), and if ω is a thick
end, then so is ϕω.

Ends having a defining sequence of finite bounded diameter are called slim ends.
Clearly in any locally finite graph every thin end is slim. Thomassen and Woess showed
in Theorem 4.4 of [56] that also the converse holds as long as the graph is transitive
and their proof can be easily generalised to the quasi-transitive case. We briefly explain
how this can be done. A tight k-vertex-cut of a connected graph G is a set K of k
vertices such that G−K has at least two components such that every vertex of K has
a neighbour in each of the components. The following lemma is Proposition 4.2 in [56].

Lemma 4.1.2. Let G be a connected, locally finite graph. Then for any v ∈ V (G) and
k ∈ N, G has only finitely many tight k-vertex-cuts containing v.

Having this lemma, we are ready to proof the mentioned generalisation of Theorem 4.4
of [56]. The main idea is that all but finitely many elements of a defining sequence of a
thin end are tight vertex-cuts.

Lemma 4.1.3. In every connected, locally finite, quasi-transitive graph G every thin
end is slim. In particular, for any integer k there is some integer m(k) such that any
end of size k has a defining sequence of diameter at most m(k).

Proof. Let ω be a thin end of G of size k and let (Kn)n≥0 be a defining sequence of
ω consisting of sets of size k. Let R1, . . . , Rk be pairwise disjoint rays belonging to ω.
Then there is some n0 ≥ 0 such that each Ri, (i ∈ [n]) intersects every Kn for n ≥ n0. In
particular Kn is a tight k-vertex-cut for n > n0. Let R be a finite set of representatives
of the vertex-orbits of the action of AUT(G) on G. Then by Lemma 4.1.2 there are only
finitely many tight k-vertex-cuts containing a vertex of R, so their diameter is bounded
from above by some integer m(k). Now for any n > n0, there are a graph automorphism
γ ∈ AUT(G) and a tight tight vertex-cut K intersecting R such that Kn = γK. We
conclude that the diameter of the sets Kn is bounded by m(k) for n > n0 and thus ω is
slim.

Combining Lemma 4.1.1 and Lemma 4.1.3, in the case where both G and H are
quasi-transitive, we obtain the following.

Corollary 4.1.4. Let G and H be connected, quasi-transitive graphs and ϕ : V (G) →
V (H) be a quasi-isometry. Then there is an increasing function η : N → N such that
any end ω ∈ ∂G of size k maps to an end ϕω ∈ ∂H of size at most η(k).
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Recall that any two Cayley graphs of the same finitely generated group Γ with respect
to two different finite, symmetric generating sets are quasi-isometric. In particular,
Corollary 4.1.4 tells us that the extension of the quasi-isometry φ serves as a bijection
between ends of different Cayley graphs preserving thickness and thinness of ends. Mak-
ing use of this, we can talk about the ends of a group, which are the ends of any (all) of
its Cayley graphs.

The action of the automorphism group of a locally finite, connected graph extends in
an obvious way to the space of ends. Recall that the automorphisms can be classified
into 3 types. An automorphism γ ∈ AUT(G) is called

– elliptic, if its fixes a finite subset of V (G),

– parabolic, if it is not elliptic and fixes a unique end of G, and

– hyperbolic, if it is not elliptic and fixes each of a unique pair of ends of G.

While this terminology was not used by Halin in [26], he showed that for a non-elliptic
automorphism γ and every v ∈ V (G) the sequence (v, γv, γ2v, . . . ) uniquely defines an
end of G called the direction of γ, denoted by D(γ). The sequence (v, γv, γ2v, . . . )
converges to the end D(γ) with respect to the topology on Ĝ and the end is fixed by γ.
The following theorem serves as one of the main pillars for our results.

Theorem 4.1.5 (Halin [26, Theorem 9]). Let γ be a non-elliptic automorphism acting
on a simple, locally finite, connected graph G. Then the following holds:

(i) D(γ) and D(γ−1) have the same size m ∈ N ∪∞.

(ii) D(γ) 6= D(γ−1) (γ is hyperbolic) if and only if m <∞.

(iii) There exist m disjoint γ-invariant double rays in G.

(iv) If γ is hyperbolic there are disjoint γ-invariant double rays R1, . . . , Rm, a set K ⊆
V (G) with |K| = m and an integer k such that (γknK)n≥0 and (γ−knK)n≥0 are
defining sequences for D(γ) and D(γ−1) respectively. Each Ri (i ≤ m) meets every
γknK (n ∈ Z) in precisely one vertex.

Definition 4.1.6. A locally finite, connected graph S is called a strip if it is quasi-
transitive and has precisely two ends.

The structure of strips is well understood. We collect without proof those basic facts
needed below. More about strips (including the original slightly different definition) can
be found in [36] by Jung and Watkins and in [34] and [35] by Imrich and Seifter.

For a strip S there is some hyperbolic automorphism γ fixing each of the two ends
ω+ and ω− of S. Thus by the previous theorem ω+ and ω− have the same finite size m.
Moreover it provides

(S1) a finite set K ⊆ V (S) with |K| = m, together with
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(S2) an automorphism τ ∈ AUT(S), such that (τnK)n≥0 and (τ−nK)n≥0 are defining
sequences for ω+ and ω−, respectively and

(S3) m disjoint, τ -invariant double rays, each of them intersecting every τnK in precisely
one vertex.

In this situation we call S a τ -strip of size m. We use the same terminology if S is a
subgraph of a bigger graph G, and τ ∈ AUT(G) is an automorphism whose restriction to
S has the above properties. By the following lemma, we may assume that the subgraph
H of S spanned by C(K,ω+) \ C(τK, ω+) is finite and connected, otherwise replace τ
by τ2.

Lemma 4.1.7. Let S be a strip and let K and τ be as given in (S1) and (S2). Then
the induced subgraph H of S spanned by C(K,ω+) \ C(τ2K,ω+) is connected.

Proof. Let R1, . . . , Rm be the m disjoint, τ -invariant double rays from (S3). We first
show that every vertex of H is connected to some Ri in H. Let P be a shortest path in
S[C(K,ω+)] connecting v ∈ V (H) to some Ri. Then v is the only vertex of P contained
in a ray Rj , so in particular it cannot contain a vertex of τ2K. We conclude that P is
contained in H.

It remains to show that any two rays Ri and Rj are connected by a path in H. Suppose
for a contradiction that this is not the case. Let P be a shortest path in S[C(K,ω+)]
connecting any two double rays Ri and Rj , which are not connected in H. Let v1 and v2
be the endpoints of P and let i1, i2 ≥ 0 such that v1 ∈ C(τ i1K,ω+)\C(τ i1+1K,ω+) and
v2 ∈ C(τ i2K,ω+)\C(τ i2+1K,ω+). By exchanging v1 and v2 if necessary, we may assume
that i2 ≥ i1. Furthermore we may relabel the Ri such that v1 and v2 lie on the rays R1
and R2, respectively. Note that the interior vertices of P cannot lie on the double rays
R1, . . . , Rm: If an interior vertex v of P lies on some Ri, then by minimality of P the
double ray Ri must be connected to both R1 and R2 in H, contradicting the assumption
that R1 and R2 are not connected in H. It follows directly that |i2 − i1| ≤ 1, otherwise
P must intersect τ i1+1K and thus some Ri. But then the path P is contained in τ i1H:
if this is not the case, P contains either a vertex of τ i1K or a vertex of C(τ i1+2K,ω+).
As before, both cases imply that P contains a vertex of some Ri. We conclude that
τ−i1P is contained in H, contradicting our assumption.

The following lemma refines the well-known argument that in a quasi-transitive graph
with more than one end, the directions of hyperbolic automorphisms are dense in the
space of ends.

Lemma 4.1.8. Let G be simple, locally finite and connected graph and let Γ ≤ AUT(G)
act quasi-transitively on G. If G has a thin end of size m then G contains a τ -strip of
size m for some τ ∈ Γ.

Proof. Let the end ω of G have size m, take m disjoint rays in ω and let (Kn)n≥0 be a
defining sequence for ω such that |Kn| = m for all n and every Kn meets each of the
m rays. Fix a finite set R of representatives of the orbits given by the action of Γ on
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G. For n ≥ 0 write Cn = C(Kn, ω) and let γn ∈ Γ such that γnKn contains an element
of R. Then every γnKn is a tight m-vertex cut, that is, a set of cardinality m such
that G− γnKn has at least two components and every vertex of γnKn has at least one
neighbour in each of them. Also γnCn is a component of G− γnKn.

By Lemma 4.1.2 there are only finitely many tight m-vertex cuts containing some given
vertex v ∈ R and clearly every cut splits the graph in finitely many components, hence
{(γnKn, γnCn) | n ≥ 0} is a finite set. Pick some j > i ≥ 0 such that (γiKi, γiCi) =
(γjKj , γjCj) and let τ = γ−1

j γi. Then

Ci ⊇ τ(Ki ∪ Ci).

We show that τ is hyperbolic and its direction D(τ) has size m. Indeed, (τnKi)n≥0 is
a defining sequence for the unique end D(τ) belonging to each of the components τnCi,
where n ∈ Z. In particular D(τ) has size at most m. By Theorem 4.1.5, τ is hyperbolic.
On the other hand there are m disjoint paths from Ki to τKi. Their images under τn
(n ∈ Z) build m disjoint τ -invariant double rays R1, . . . , Rm, implying that D(τ) has size
m, as required. Add to those double rays a finite collection of finite paths connecting
those double rays with each other and all their images under τn, n ∈ Z. After possibly
replacing τ by a suitable power τk, (k ≥ 1), we obtain a subgraph of G which is a τ -strip
of size m.

Lemma 4.1.9. Let G be a simple, locally finite, connected graph and Γ ≤ AUT(G)
act quasi-transitively on G. If Γ contains a parabolic element then for every m ≥ 1, G
contains a τ -strip of size at least m for some suitable τ ∈ Γ.

Proof. Suppose that γ ∈ Γ is parabolic and ω is the unique end fixed by γ. By Theo-
rem 4.1.5, there are countably many disjoint double rays Rn, n ∈ N, which are invariant
under γ and represent ω. For m ∈ N, we can find some connected, finite subgraph K
of G meeting each of R1, . . . , Rm. Let v be a vertex of K contained in R1. By local
finiteness of G every ball of radius r around v contains only finitely many vertices, so
we can find some k ∈ N such that dG(v, γlv) > 2 diamG(K) for every l ≥ k. We set
τ = γk and conclude that the subgraph spanned by R1, . . . , Rm together with all the
τnK, n ∈ Z, is a τ -strip and its two ends have size at least m.

Remark 4.1.10. Whenever a graph G contains a τ -strip of size m, it also contains a
τ2-strip of any size in l ∈ {1, . . . ,m − 1}. This can be seen by deleting m − l vertices
from the set K in the definition of τ -strips and their images under τ2n for n ∈ Z.

4.2 Context-freeness and ends
In this section we prove the first half of Theorem 4.0.1:

Theorem 4.2.1. Let G be a simple, connected, locally finite, deterministically edge-
labelled graph on which AUT(G, `) acts quasi-transitively and let o be a vertex of G.

(i) If LSAW,o(G) is context-free, every end of G has size at most 2.
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(ii) If LSAW,o(G) is regular, every end of G has size 1.

The proof is based on the following two lemmas and two propositions.

Lemma 4.2.2. Let G and o be as in Theorem 4.2.1 and let G′ be a subgraph of G which
is invariant under a subgroup Γ of AUT(G, `) acting quasi-transitively on G′. Suppose
LSAW,o(G) is regular, respectively context-free. Then there is a vertex o′ of G′ such that
LSAW,o′(G′) is also regular, respectively context-free.

Proof. G′ is also a deterministically edge-labelled graph. For any o′ ∈ V (G′), the lan-
guage L(P ′) induced by the set P ′ of all walks of length at least one in G′ starting at o′,
is regular. To see this, we construct a regular grammar G = (N,Σ,P, S) over the label
alphabet Σ of G such that L(G) = L(P ′). Denote by ΓV (G′) and ΓE(G′) the finite
set of orbits of the action of Γ on V (G′) and E(G′), respectively. Every edge orbit Γe
naturally connects the two not necessarily different vertex orbits Γe− and Γe+. The set
of non-terminals

N = {S} ∪ {VΓv | Γv ∈ ΓV (G)}
together with the production rules

P = {S ` VΓo′} ∪ {VΓe− ` `(e)VΓe+ | Γe ∈ ΓE(G′)} ∪ {VΓe− ` `(e) | Γe ∈ ΓE(G′)}

generates the desired language L(P ′).
Now there is some o′ ∈ V (G′) with d(o, V (G′)) = d(o, o′), and there is a walk p0 in G

of that length from o to o′. Let w0 = `(p0), and let p0P ′ be the set of all concatenated
walks p0p′, where p′ ∈ P ′. Thus, L(p0P ′) = w0L(P ′) = {w0w | w ∈ L(P ′)} is again
regular.

If LSAW,o(G) is regular (respectively context-free), then by [32] also LSAW,o(G) ∩
L(p0P ′) is regular (respectively context-free). Since o′ is the only vertex of p0 contained
in V (G′),

LSAW,o(G) ∩ L(p0P ′) = w0LSAW,o′(G′).

If we delete from the latter language the common prefix w0, we also get a regular
(respectively context-free) language.

Lemma 4.2.3. Let G be a simple, connected, infinite, locally finite, deterministically
edge-labelled graph and let Γ ≤ AUT(G, `) act quasi-transitively on G. Assume that
LSAW,o(G) is context-free for some o ∈ V (G). Then Γ contains a non-elliptic element.

Proof. Let lp be the pumping length of LSAW,o(G) given by Lemma 2.2.2 and w ∈
LSAW,o(G) with |w| ≥ lp. Then w can be written as w = xyzỹx̃ for some x, x̃, y, ỹ, z ∈ Σ∗
such that |yzỹ| ≤ lp, |yỹ| ≥ 1 and xynzỹnx̃ ∈ LSAW,o(G) for all n ≥ 0. Now either |y| > 0,
or |y| = 0 and |ỹ| > 0. Set a = x, b = y in the first case and a = xz, b = ỹ in the second
case so that a, b ∈ Σ∗ and |b| > 0.

Let v0 be the end-vertex of the walk starting at o and labelled by the word a. Then,
for every n ≥ 0, let pn be the unique self-avoiding walk of length n |b| starting at v0 and
having label bn. Thus, pn+1 is a self-avoiding extension of pn, and in the limit we obtain
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Figure 4.1: Labelled subdivision of the ladder graph.

a ray R with vertex set {v0, v1, . . . }. Since Γ acts quasi-transitively on G there must be
some τ ∈ Γ and some j > i ≥ 0 such that τvi|b| = vj|b|. Without loss of generality (up
to truncation of an initial piece of R) assume i = 0. Then τnv0 = vnj|b| 6= v0 for every
n ≥ 1 and Proposition 12 in [26] yields that τ is non-elliptic.

Remark 4.2.4. In group theoretical terms the previous lemma says that if the finitely
generated group Γ ≤ AUT(G, `) acts quasi-transitively on G and is an infinite torsion
group, that is an infinite group where all elements have finite order, then LSAW,o(G) is
not context-free.

Proposition 4.2.5. Let G be a simple, connected, infinite, quasi-transitive determin-
istically edge-labelled graph. If G contains a τ -strip S of size 2, where τ ∈ Γ, then
LSAW,o(G) is not regular.

Proof. As a τ -strip, S contains two τ -invariant double rays R1 and R2 given by their
sequences of vertices (un)n∈Z and (vn)n∈Z. The graph H mentioned in the definition of
τ -strips is connected and therefore contains a path P connecting R1 and R2. Without
loss of generality, we assume that P connects the vertices u0 and v0 and does not contain
further vertices of R1 or R2. The vertex sets of the induced subgraphs τnH of S are
pairwise disjoint, so the paths τnP are also pairwise disjoint. As a consequence, the
subgraph G′ of G spanned by R1, R2 and all τnP (n ∈ Z) is a τ -invariant subdivision
of the bi-infinite ladder, see Figure 4.1.

We suppose that LSAW,o(G) is regular for o ∈ V (G) and will reach a contradiction.
Lemma 4.2.2 applied to G′ yields an o′ ∈ V (G′) such that LSAW,o′(G′) is regular. Without
loss of generality, we assume that either o′ lies on R1 between u0 and τ−1u0 and is distinct
from the latter, or that o′ lies on P and is distinct from v0. (Otherwise we can exchange
the two rays.) In Figure 4.1, we indicate the possible positions of o′.

Let x0 be the label of the walk from o′ to τv0 via u0 and τu0. Write x1 for the common
label of the walks from τnu0 to τnv0 on τnP (n ∈ Z) and x2 for the label of the reversed
walks. Next, let y1 denote the common label of each of the walks from any τnv0 to
τn+1v0 within R2. And finally, let y2 be the common label of the walks from any τn+1u0
to τnu0 within R1. Each of the words x0, x1, x2, y1, y2 ∈ Σ∗ is non-empty, but they are
in general not just elements of Σ.

The language consisting of all words

w = x0x1y
k
1x2y

l
2, k, l ∈ N, (4.2)
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is regular, so that by the closure properties of regular languages, also its intersection
with LSAW,o′(G′), which we denote by L̄, is regular. Now, L̄ consists of all words of the
form (4.2) corresponding to self-avoiding walks starting at o′. Looking at Figure 4.1,
such a walk goes from o′ to τu0, then upwards to τv0 and to the right to τk+1v0 along
R2, then downwards to τk+1u0, and finally to the left to τk+1−lu0. Thus, in order to be
self-avoiding, one must have k > l.

Let lp be the pumping length of Lemma 2.2.1 for L̄, and let w = x0x1y
lp+1
1 x2y

lp
2 ∈ L̄.

In the decomposition w = xyx̃ of the lemma, |yx̃| ≤ lp implies that yx̃ is a postfix of ylp2 .
That is, ylp2 = ỹyx̃ for some word ỹ ∈ Σ∗. Now also w′ = xy2x̃ must be in L̄, so there
must be k, l such that

x0x1y
k
1x2y

l
2 = w′ = x0x1y

lp+1
1 x2ỹy

2x̃.

Since the labelling is deterministic and the first symbol of y1 and the first symbol of x2
are both labels of different edges starting at v0, these symbols must be different. We
conclude that k = lp + 1 and yl2 = ỹy2x̃. This is longer than y

lp
2 , so l ≥ lp + 1 = k. But

then the walk with label w starting at o′ is not self-avoiding, a contradiction.

Proposition 4.2.6. Let G be as in Proposition 4.2.5. If G contains a τ -strip S of size
3, where τ ∈ Γ, then LSAW,o(G) is not context-free.

Proof. We suppose that LSAW,o(G) is context-free and will again arrive at a contradiction.
As a τ -strip, S contains three τ -invariant double rays R1, R2 and R3. For i ∈ {1, 2, 3}

let (v(i)
n )n∈Z be the sequence of vertices of the ray Ri. As in Proposition 4.2.5, find

a path P1 in the connected induced subgraph H of S connecting two of these rays.
Without loss of generality assume that P1 is a path from v

(1)
0 to v

(2)
0 not containing

further vertices of R1, R2 or R3. In a similar way find a path P2 in the connected
induced subgraph τH of S connecting R3 and one of the other two rays. We may
assume that P2 is a path from v

(2)
r to v

(3)
r (r ≥ 1) not containing further vertices of

the three rays. The vertex sets of the graphs τnH (n ∈ Z) are pairwise disjoint, so the
paths in {τ2nP1 | n ∈ Z} ∪ {τ2mP2 | m ∈ Z} are pairwise disjoint. The subgraph G′ of
G spanned by the three rays and all images τ2nP1 and τ2nP2 (n ∈ Z) is a τ2-periodic
subdivision of the bi-infinite 3-ladder, see Figure 4.2. For convenience we replace τ with
τ2, so that G′ is τ -periodic.

Again, Lemma 4.2.2 applies to G′, and there is o′ ∈ V (G′) such that LSAW,o′(G′) is
context-free.

Up to possibly renumbering the rays, inverting their direction or exchanging R1 with
R3, we can assume without loss of generality that o′ lies on the “rectangle” with corners
v

(1)
0 , τ−1v

(1)
0 , τ−1v

(2)
0 and v

(2)
0 , but not on the path P1. In Figure 4.2, we indicate the

possible positions of o′.
Let x1 ∈ Σ∗ be the label of the self-avoiding walk constructed as follows. Start at

o′, run around that rectangle in clockwise order up to v(1)
0 , then move along P1 to v(2)

0 ,
follow R2 until v(2)

r and finally reach v
(3)
r via P2. Furthermore let x2 be the label of

the self-avoiding walk starting in v
(3)
r , following P2 to v(2)

r , then moving along R2 until
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Figure 4.2: Labelled subdivision of the 3-ladder graph.

reaching τv(2)
0 and finally reaching τv(2)

0 via τP1. Thereafter, let x3 be the label of the
walk from v

(1)
0 to v(2)

0 on P1.
Let y1 denote the label of the walk from v

(3)
r to τv(3)

r on R3, let y2 be the label of the
walk from τv

(1)
0 to v(1)

0 on R1 and let y3 be the label of the walk from v
(2)
0 to τv(2)

0 on R2.
The automorphism τ is label preserving, any translates of the previous walks are also
labelled with the same words. Each of the words xi, yi is non-empty, but again, they are
in general not just elements of Σ.

Similarly to the previous proposition, the language L1 consisting of all words

w = x1y
k
1x2y

l
2x3y

m
3 , k, l,m ∈ N, (4.3)

is regular. Recall that the class of context-free languages is closed under homomorphisms,
inverse homomorphisms and intersection with regular languages. Hence the language
L2 = L1 ∩LSAW,o′(G′) must be context-free. Following the arrows in Figure 4.2, one can
see a self-avoiding walk with such a label, with k = l = m+ 1 = 3. In general, for a walk
with label w as in (4.3) to be self-avoiding, one must have

k ≥ l > m. (4.4)

We define a language homomorphism

φ : {a1, b1, a2, b2, a3, b3}∗ → Σ∗

by setting φ(ai) = xi and φ(bi) = yi for i ∈ [3]. Note that ai and bi are single letters
while xi and yi are words over the alphabet Σ and may consist of multiple letters. Then
the language

L3 = {a1b
k
1a2b

l
2a3b

m
3 | k ≥ l > m ≥ 1} (4.5)

is context-free because

L3 = φ−1(L2) ∩ {a1b
k
1a2b

l
2a3b

m
3 | k, l,m ∈ N}.

Note that this statement strongly relies on the fact that the edge-labelling ` is deter-
ministic: the image φ(w) of any word w ∈ {a1bk1a2bl2a3bm3 | k, l,m ∈ N} is the label of a
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unique walk in P and thus has a unique representation of the form (4.3), which lies in
L2 if and only if k ≥ l > m ≥ 1.

However, using the pumping lemma for context-free languages it is an easy exercise to
show that L3 cannot be context-free, leading to a contradiction. Let lp be the pumping
length from Lemma 2.2.2 and let w = a1b

lp+1
1 a2b

lp+1
2 a3b

lp
3 ∈ L3 and w = xyzỹx̃ be a

decomposition of w such that |yzỹ| ≤ lp and |yỹ| ≥ 1. If yỹ contains some ai, then
clearly xy2zỹ2x̃ is not in L3. Otherwise yỹ cannot contain both of b1 and b3. If it does
not contain b3, then xzx̃ ist not in L3, otherwise xy2zỹ2x̃ is not in L3. This can be seen
by comparing the number of occurrences of the letters b1, b2 and b3 with the conditions
on k, l,m specified in (4.5). We conclude that w is not pumpable, thus L3 cannot be
context-free.

For the proof of Theorem 4.2.1 we will need Bass-Serre theory. As the topic cannot be
briefly introduced, we do not give all definitions here. The reader is referred to Serre [53]
and Dicks and Dunwoody [10].

The ends of a finitely generated group are the ends of any of its Cayley graphs with
respect to a finite, symmetric set of generators. In fact, they do not depend on the choice
of the generating set; see Remark 2.1.3.

In terms of Bass-Serre theory, a group Γ is accessible if it is the fundamental group of
a finite graph of groups having finite edge groups and vertex groups which are finite or
have exactly one end. The following lemma is Corollary IV.1.9 in [10].

Lemma 4.2.7. A group Γ is the fundamental group of a finite graph of finite groups if
and only if Γ is finitely generated and virtually free.

Recall that a locally finite graph G is accessible if there is an integer k such that any
two ends of G can be separated by a set containing k or fewer vertices. Thomassen
and Woess [56] showed that a simple, connected, locally finite, transitive graph G is
accessible if and only if there is an integer M such that each thin end of G has size at
most M . Moreover, they also proved that a finitely generated group is accessible if and
only if some (and therefore all) of its Cayley-graphs are accessible.

Proof of Theorem 4.2.1. First, G cannot be one-ended. Indeed, in that case, that
end has to be thick. If Γ = AUT(G, `) has only elliptic elements, then LSAW,o(G) is not
context-free by Lemma 4.2.3. Otherwise, Γ has parabolic elements, and Lemma 4.1.9
combined with Proposition 4.2.6 implies as well that LSAW,o(G) is not context-free.

Thus, G has more than one end, whence there are thin ends. If LSAW,o(G) is context-
free then by Lemma 4.1.8 and Proposition 4.2.6 all thin ends have size at most 2. We
need to prove that there are no thick ends.

Recall from Lemma 2.1.2 and its proof that in the graph G2D+1, the orbit Γo induces
a Cayley graph Cay(Γ, S) of the finitely generated group Γ. The identity mapping
ι : Γo ↪→ V (G) induces a quasi-isometric embedding of Cay(Γ, S) into G. Indeed, it is bi-
Lipschitz and quasi-surjective, that is, B = 0 in (4.1). Consequently, by Corollary 4.1.4,
the size of all thin ends of Cay(Γ, S) is bounded from above by η(2). By [56], the group
Γ is accessible. Thus, it is the fundamental group of a finite graph of finitely generated
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(sub)groups which are finite or one-ended. If all of them are finite, then by Lemma 4.2.7,
Γ is virtually free, so that the group Γ has only thin ends since any of its Cayley graphs
is quasi-isometric with a tree, see for example [60].

Thus, if Γ has a thick end, then it must have a finitely generated subgroup Γ1 having
one (thick) end. Above, we have identified Γ with the vertex set Γo in G, and Γ1o is
contained in that orbit. Under this identification, the group unit corresponds to the
“root” vertex o. Let S1 be a finite, symmetric set of generators of Γ1. Then for each
s ∈ S there is a (shortest) path Ps in G connecting o to the image so. Choose these
paths such that Ps−1 = s−1Ps and consider the subgraph G1 of G with

V (G1) =
⋃

γ∈Γ1,s∈S
γ(V (Ps)) and E(G1) =

⋃

γ∈Γ1,s∈S
γ(E(Ps)).

Clearly, G1 is a connected subgraph of G and inherits the labels from the edges of G.
Also, G1 is quasi-isometric with the Cayley graph Cay(Γ1, S1). Indeed, the embedding
Γ1 ↪→ V (G1), γ 7→ γo is bi-Lipschitz and quasi-surjective, that is, B = 0 in (4.1).

Therefore, G1 has one end, which has to be thick, and it is quasi-transitive under Γ1.
But then we are back to the situation of the beginning of this proof, that is, LSAW,o(G1)
cannot be context-free. But this contradicts Lemma 4.2.2.

We conclude that Γ and thus also G has no thick ends.

4.3 Graphs with context-free language of self-avoiding walks
The goal of this section is to prove the second half of Theorem 4.0.1:

Theorem 4.3.1. Let G be a simple, connected, locally finite, deterministically edge-
labelled graph on which AUT(G, `) acts quasi-transitively. Then for every vertex o of G
the following holds:

(i) If all ends of G have size 1, then LSAW,o(G) is regular.
(ii) If all ends of G have size at most 2, then LSAW,o(G) is unambiguous context-free.

For an integer k > 0 a graph G is called k-connected if it has more than k vertices
and no set of less than k vertices is a separating set in G. A (2-)block in a graph G
is a maximal connected subgraph of G containing no cut-vertex. If G is connected and
has at least 2 vertices, every block of G is either a pair of vertices connected by an
edge or a 2-connected graph. The intersection of 2 different blocks of G is either empty
or a cut-vertex in G. The block-cut-vertex tree T2(G) corresponding to G is the graph
having as vertices the blocks and the cut-vertices of G, where a block is adjacent to every
cut-vertex it contains. Denote for an edge e of T2(G) by B(e) the block and by c(e) the
cut-vertex incident to e. More about blocks and the block-cut-vertex tree can be found
in [58].

If G is locally finite, every cut-vertex of G belongs to a finite number of blocks and
therefore has finite degree in T2(G). On the other hand, an infinite block of G can
contain infinitely many cut-vertices, so T2(G) need not be locally finite.
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For any automorphism γ ∈ AUT(G), the image γB of a block B of G is again a block
of G and the same holds for cut-vertices. Whenever a cut-vertex c is contained in a
block B, its image γ(c) is contained in γ(B), so AUT(G) acts on the graph T2(G) by
automorphisms. Additionally, if Γ ≤ AUT(G) acts quasi-transitively on G, it also acts
quasi-transitively on T2(G).

The following lemma shows that blocks of quasi-transitive graphs are always quasi-
transitive graphs.

Lemma 4.3.2. Let G be a simple, connected, locally finite graph and suppose Γ ≤
AUT(G) acts quasi-transitively on G. Then for any block B of G, the set-wise stabiliser
ΓB of B in Γ acts quasi-transitively on B.

Proof. Γ acts quasi-transitively on G, so it acts with finitely many orbits on E(B), in
other words, the set {Γe | e ∈ E(B)} is finite. But every γ ∈ Γ mapping some edge
of B onto another edge of B clearly fixes the block B and is therefore also contained
in ΓB. This implies that also ΓB acts with finitely many orbits on E(B) and thus
quasi-transitively on B.

The following lemma is a simple consequence of the fact that a block cannot contain
ends of size 1. This is true because any defining sequence of such an end consists of
cut-vertices.

Lemma 4.3.3. Let G be a locally finite graph such that all ends of G are of size 1.
Then every block of G is finite.

In the case where the graph G has infinite blocks, we want to further decompose them.
There are different ways to do this. One natural way is to use 3-block decompositions,
first introduced by Tutte (see [58]) for finite graphs and then generalised to infinite
graphs by Droms, Servatius and Servatius in [12]. In this theory, sometimes graphs may
have multiple edges between a single pair of vertices.

Let G and H be two not necessarily simple graphs and let e ∈ E(G) and f ∈ E(H)
be (directed) edges. The edge amalgam of G and H along the edges e and f is the
graph obtained from the disjoint union of G and H by identifying the vertices e− with
f−, e+ with f+ and erasing the edges e and f and their inverse edges ē and f̄ . A
convenient way to represent a sequence of edge amalgamations of a (not necessarily
finite) set of graphs is the edge-amalgam tree T . Vertices of T are the graphs used in the
amalgamation. For clarity we denote by G(s) the graph corresponding to the vertex s of
T . Two vertices s and t are connected by a pair of directed edges (a, ā) in T if G(s) and
G(t) are amalgamated along some edges e ∈ E(G(s)) and f ∈ E(G(t)). We additionally
introduce a label function λ assigning to every directed edge a ∈ E(T ) the edge e of
G(a−) used in the amalgamation of G(a−) and G(a+). For s ∈ V (T ) an edge e of G(s) is
called virtual if e or ē is the label of some edge of T , otherwise it is called non-virtual.
Denote the resulting graph obtained from a sequence of edge amalgamations given by an
amalgamation tree T by G(T ). Then virtual edges disappear during the progress, while
non-virtual edges are still present in G(T ).
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A multilink is a graph consisting of 2 vertices and a (finite) positive number of undi-
rected edges between these vertices. A graph is said to be a 3-block if it contains at
least 3 pairs of directed edges and is either a cycle (closed path), a multilink or a locally
finite 3-connected graph. An edge-amalgam tree T is called a 3-block tree if for every
s ∈ V (T ), the graph G(s) is a 3-block and additionally for every edge a ∈ E(T ) the
corresponding graphs G(a−), G(a+) are neither both multilinks nor both cycles.

Theorem 4.3.4 ([12, Theorem 1]). For any locally finite, 2-connected graph G there is
a unique 3-block tree T such that G = G(T ).

For a given locally finite 2-connected graph G the unique 3-block tree given by the
above theorem will henceforth be denoted by T3(G). The proof of the theorem is con-
structive and allows us to “decompose” G in a unique way into (possibly infinitely many)
3-blocks, such that G is obtained from amalgamating these 3-blocks as given by T3(G).
The set of vertices and the set of non-virtual edges of each 3-block will be considered
as a subsets of V (G) and E(G), respectively. A single vertex of G may appear in more
than one block.

We state without proof the following two properties of T3(G):

(T1) For every virtual edge e = λ(a), a ∈ E(T3(G)), there is a finite sub-tree T ′ of
T3(G) containing a− but not a+ and a path in G(T ′) connecting the endpoints of
e and consisting of edges of G.

(T2) Let s ∈ V (T3(G)) and v ∈ V (G(s)). Then s is contained in a finite sub-tree T ′ of
T3(G) such that all edges of G(T ′) incident to v are edges of G.

Due to the uniqueness of the decomposition, symmetries on the graph G carry over
to T in a canonical way by mapping 3-blocks onto 3-blocks. Moreover, as in the case of
2-blocks, any Γ ≤ AUT(G) acting quasi-transitively on G also acts quasi-transitively on
T3(G).

Lemma 4.3.5. Let G be a simple, locally finite, 2-connected graph such that all ends of
G are of size at most 2. Then every 3-block of G is finite.

Proof. Clearly, multilinks and cycles are finite. Every end of a 3-connected graph must
be of size at least 3 because every defining sequence of an end consists of separating sets.

Assume that there is an infinite 3-block B of G. Then it contains an end ω of size at
least 3 and this end contains 3 disjoint rays. By property (T1) of T3(G), we can replace
all virtual edges contained in the rays by finite paths consisting of non-virtual edges of
G which are not in B. We obtain 3 disjoint rays in G, which belong to the same end of
G. This is a contradiction to the assumption that all ends of G have size at most 2.

As an important consequence of this lemma, decomposition trees T3(G) of graphs G as
in Lemma 4.3.5 are locally finite because any 3-block contains only finitely many virtual
edges.

The proof of Theorem 4.3.1 will be done in several steps. First we decompose the given
graph G into its 2-blocks and introduce a regular language L encoding the behaviour
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of walks on the block-cut-vertex tree T2(G). In the second step we further decompose
each 2-block B into its (finite) 3-blocks and use the 3-block tree T3(B) to construct a
context-free grammar for the language of self-avoiding walks on B. This second step
will be discussed first and is comprised in the upcoming Theorem 4.3.6. Finally we use
language substitution to obtain the language of self-avoiding walks on G by replacing the
variables of L by the languages on the corresponding 2-blocks. Examples 4.4.2 and 4.4.3
may be beneficial for a better understanding of the upcoming proofs.

Theorem 4.3.6. Let G be a 2-connected, locally finite, deterministically edge-labelled
graph and let Γ ≤ AUT(G, `) act quasi-transitively on G. If every end of G is of size at
most 2, then for every o ∈ V (G), the language LSAW,o(G) is unambiguous context-free.

Proof. Let T3 ··= T3(G) be the 3-block tree of G and let R ⊆ E(T3) be a set of represen-
tatives of the finite set of orbits {Γe | e ∈ E(T3)} of directed edges of T3. Recall that
any a ∈ E(T3) is labelled with some virtual edge λ(a) of the part G(a−). Denote by
ρa the representative of a in R and for a vertex u ∈ λ(a) by ρu a representative of u
contained in the edge λ(ρa). Define for a ∈ R and u ∈ λ(a) the set P0

a,u of self-avoiding
walks in G(a+) starting at u and not containing the virtual edge λ(ā) or its inverse edge.
Let P1

a,u be the subset of P0
a,u consisting of all walks not containing the second vertex of

λ(a). Note that both sets are finite because the 3-block G(a+) is finite by Lemma 4.3.5.
Fix some root vertex r of T3 such that the 3-block G(r) contains the vertex o of V (G).
We denote by Po the set of self-avoiding walks in G(r) starting at o.

We extend the label function ` on G to 3-blocks of G. Labels of non-virtual edges
are inherited from G and for any a ∈ E(T3) label the virtual directed edge e = λ(a) by
Uρa,ρu and its inverse edge ē by Uρa,ρv, where u = e− and v = e+ are initial and terminal
vertex of e. The extended label function is again denoted by ` and maps into Σ ∪Σ′,
where Σ is the label alphabet of G and Σ′ = {Ua,u | a ∈ R, u ∈ λ(a)}.

We present a grammar C = (N,Σ,P, S) generating the language of self-avoiding walks
in G starting at o. The finite set of variables is given by

N = {S} ∪Σ′ ∪ {Iia,u | a ∈ R, u ∈ λ(a), i ∈ {0, 1}}.

Let a ∈ R and u ∈ λ(a). Then for any directed edge b 6= ā in E(T3) starting at a+, the
productions given below are contained in P.

I0
a,u ` `(p) for every p ∈ P0

a,u ending with a non-virtual edge,

I0
a,u ` `(p)I0

ρb,ρv for every p ∈ P0
a,u ending at a vertex v ∈ λ(b) and not

containing the second vertex of λ(b),

I0
a,u ` `(p)I1

ρb,ρv for every p ∈ P0
a,u ending at a vertex v ∈ λ(b) and con-

taining the second vertex of λ(b), but not λ(b),

I1
a,u ` `(p) for every p ∈ P1

a,u ending with a non-virtual edge,

I1
a,u ` `(p)I0

ρb,ρv for every p ∈ P1
a,u ending at a vertex v ∈ λ(b) if the second

vertex of λ(b) is neither contained in p nor in λ(a),
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I1
a,u ` `(p)I1

ρb,ρv for every p ∈ P1
a,u ending at a vertex v ∈ λ(b) if the second

vertex of λ(b) is either contained in p or in λ(a),

Ua,u ` `(p) for every p ∈ P0
a,u ending at the second vertex of λ(a).

The set of productions P is completed by adding for every edge b ∈ E(T3) starting at
the root r the following rules.

S ` `(p) for every p ∈ Po ending with a non-virtual edge,

S ` `(p)I0
ρb,ρv for every p ∈ Po ending at a vertex v ∈ λ(b) and not

containing the second vertex of λ(b),

S ` `(p)I1
ρb,ρv for every p ∈ Po ending at a vertex v ∈ λ(b) and containing

the second vertex of λ(b) but not λ(b).

The set P is finite because the tree E(T3) is locally finite and all sets P ia,u and Po are
finite. Now we briefly discuss why the given grammar C unambiguously generates the
language of self-avoiding walks in G starting at o.

Let a = st be an edge of T3 and T ′ be the component of T3 − {s} containing t. A
self-avoiding walk p of length at least 1 in G is called an I-walk with direction a if it
starts at a vertex u ∈ λ(a) and all edges of the walk are contained in G(T ′). A U-walk
with direction a is an I-walk with direction a ending at a vertex of λ(a).

Then the following statements hold.

(a) For a ∈ E(T ) and u ∈ λ(a), the variable Uρa,ρu unambiguously generates the
language of all U-walks with direction a starting at u.

(b) For a ∈ E(T ) and u ∈ λ(a), the variable I0
ρa,ρu unambiguously generates the

language of all I-walks with direction a starting at u, and the variable I1
ρa,ρu un-

ambiguously generates the language of all I-walks with direction a starting at u
and not containing the second vertex of λ(a).

(c) The start symbol S unambiguously generates the language LSAW,o(G).

Rigorous proofs for these statements are long and technical, so we only sketch them
here.

Let s be a vertex of T and G(s) be its corresponding 3-block. Define the projection p(s)
of a self-avoiding walk p onto G(s) in the following way: Let v1, . . . , vk be the sequence of
vertices of p which are contained in G(s) ordered by their occurrence in p and pi be the
sub-walk of p connecting vi and vi+1. For every i there are 2 cases: If pi is a single edge
of G(s), add this edge to p(s). Otherwise there is an edge a of T such that pi is a U-walk
with direction a and we add the virtual edge λ(a) (or its inverse), which connects vi and
vi+1. This edge can be seen as a shortcut for the U-walk pi. For reasons of ambiguity,
if pk−1 is a U-walk and p ends at vk, we do not add the corresponding virtual edge and
consider our projection to end at vk−1. The resulting p(s) is a self-avoiding walk in G(s).

For every U-walk p with direction a starting at u we obtain the word `(p(a+)) corre-
sponding to the projection of p onto the 3-block G(a+) from the variable Ua,u in a single
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derivation step. A simple induction shows that p is generated by Ua,u. Moreover for any
word w generated by Ua,u, the walk p starting at u and having label w is a U-walk with
direction a starting at u. The word w can only be obtained from a unique sequence of
rightmost derivations because in every step we have to generate the string corresponding
to the projection of p onto some 3-block. Statement (a) follows.

For any I-walk p with direction a starting at u we derive `(p(a+)) in a single step
of derivation from I0

ρa,ρu and if p does not contain the second vertex of λ(a), also from
I1
ρa,ρu. Using (a) and induction, this implies that `(p) is generated by the corresponding

variables. Furthermore note that I0
ρa,ρu only appears in the right hand side of produc-

tions if the second vertex of λ(a) is not contained in the projection of p on any block
previously visited by p. Using this observation it is straight forward to show that walks
corresponding to words generated by I0

ρa,ρu and I1
ρa,ρu are indeed I-walks with direction

a starting at u and that every such walk is generated unambiguously. This finishes the
proof of (b).

Finally, for every SAW p starting at o we derive `(p(r)) in a single step from S and (c)
follows from (a) and (b) as before.

Proof of Theorem 4.3.1. The group Γ = AUT(G, `) acts quasi-transitively on the
block-cut-vertex tree T2 ··= T2(G). Edges of T2 are treated as being undirected, we
do not distinguish between e and ē. We use a similar approach as in 4.2.2 to create
a regular grammar G encoding the movement of a walk on the tree T2. Denote by
ΓV (T2) the set of vertex orbits and by ΓE(T2) the set of undirected edge orbits of the
action of Γ on T2. Every element of ΓV (T2) corresponds to either a class of blocks or
a class of cut-vertices of G, so for ẽ ∈ ΓE(T2) we write again B(ẽ) (block) and c(ẽ)
(cut-vertex) for the vertex orbits of the endpoints of any edge e representing ẽ. Note
that for any cut-vertex c of G, all edges of T2 incident to c lie in different orbits with
respect to Γ because by Lemma 2.1.2, Γ acts fixed-point-freely on G. For ẽ ∈ ΓE(T2)
let N(ẽ) = {f̃ ∈ ΓE(T2) \ {ẽ} | c(ẽ) = c(f̃)}. Fix some block Bo containing the vertex o.

Let L be the regular language generated by the grammar G = (N,Σ,P, S), where

N = {S} ∪ {Iẽ | ẽ ∈ ΓE(T2)},

Σ = {xo} ∪ {xo,f̃ | f̃ ∈ ΓE(T2)} ∪ {xẽ | ẽ ∈ ΓE(T2)} ∪ {xẽ,f̃ | ẽ, f̃ ∈ ΓE(T2)},

and the set of productions P consists of

S ` xo,

S ` xo,f̃Ig̃ for f̃ ∈ ΓE(T2), g̃ ∈ N(f̃),

Iẽ ` xẽ for ẽ ∈ ΓE(T2),

Iẽ ` xẽ,f̃Ig̃ for ẽ, f̃ ∈ ΓE(T2), g̃ ∈ N(f̃).

For ẽ ∈ ΓE(T2) fix some representative e ∈ E(T2) and let L(ẽ) be the language of self-
avoiding walks of length at least 1 in the block B(e) starting at the vertex c(e). Clearly,
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L(ẽ) does not depend on the choice of e. By Lemma 4.3.2 the stabiliser ΓB(e) acts quasi-
transitively on the graph B(e) and by assumption on G all ends of B(e) have size at
most 2. Hence Theorem 4.3.6 applies and L(ẽ) is context-free. Denote for f̃ ∈ ΓE(T2)
by L(ẽ, f̃) the subset of L(ẽ) corresponding to walks ending at vertices of B(e), which
lie in the orbit c(f̃). Note that L(ẽ, f̃) may be an empty language if B(ẽ) 6= B(f̃) or
if ẽ = f̃ and c(e) is the only representative of c(ẽ) in B(e). As the intersection of the
unambiguous context-free language L(ẽ) and the regular language of all walks starting
at c and ending at a representative of c(f̃), L(ẽ, f̃) is unambiguous context-free. In a
similar way let L(o) be the language of all walks in Bo starting at o and L(o, f̃) be the
subset of L(o) corresponding to walks ending at a representative of c(f).

Let ϕ be the substitution of languages given for ẽ, f̃ ∈ ΓE(T2) by

ϕ(xo) = L(o), ϕ(xo,f̃ ) = L(o, f̃), ϕ(xẽ) = L(ẽ), ϕ(xẽ,f̃ ) = L(ẽ, f̃).

Then by Theorem 3.4.1 in [32] the result ϕ(L) of the substitution is context-free.
If every end of G has size at most 1, by Lemma 4.3.3 every block of G is finite and

thus also the language of self-avoiding walks in the block is finite. We conclude that in
this case ϕ(L) is regular.

For e ∈ E(T2), a self-avoiding walk p of length at least 1 in G is called an I-walk with
direction e if it starts at c(e) and its first edge lies in the block B(e). Denote by ẽ the
orbit of e under Γ. Then the following statements hold:

(a) The variable Iẽ generates a regular language Lẽ such that ϕ(Lẽ) is the language of
I-walks with direction e.

(b) ϕ(L) is the unambiguous context-free language LSAW,o(G) of self-avoiding walks in
G starting at o.

As before we only sketch the proofs for these statements.
Let p be an I-walk with direction e ∈ E(T2). Let p1 be the part of p contained in the

block B(e). If p1 = p, then `(p1) is contained in L(ẽ) and therefore obtained in a single
step of derivation. Otherwise there is some f ∈ E(T2) such that p leaves B(e) via c(f)
and `(p1) is contained in L(ẽ, f̃). In this case p enters one of the other blocks containing
c(f), which are blocks B(g), g ∈ E(T2), such that g̃ ∈ N(f̃). The rest of p is an I-walk
with direction g. A simple induction shows that `(p) is contained in ϕ(Lẽ).

On the other hand, every word w ∈ ϕ(Le) corresponds to a unique walk p starting
at c(e) labelled by w. This walk p is self-avoiding, because the parts of p contained in
blocks are self-avoiding, and whenever leaving a block B(f), f ∈ E(T2), p can never
enter B(f) again because T2 is a tree and N(f̃) does not contain f̃ . This implies that p
is an I-walk with direction e and proves (a).

In the same way it can be seen that for any p ∈ PSAW,o, the label of the part p0
contained in Bo is contained in L(o) if p0 = p, and in L(o, f) if p leaves Bo via a vertex
in the class c(f). Therefore `(p) is contained in ϕ(L). In the same way as in (a) we
obtain that every walk starting in o and corresponding to a word in ϕ(L) is self-avoiding.

Let w ∈ ϕ(L) and p be the SAW starting at o and having label w. There is a unique
word w′ ∈ L such that w ∈ ϕ(w′). This word w′ is given by the sequence of blocks
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visited by p. Furthermore, for every a ∈ Σ the language ϕ(a) is unambiguous context-
free, hence ϕ(L) is also unambiguous context-free. This shows statement (b) and finishes
the proof.

4.4 Discussion and examples
The proof of Theorem 4.3.1 is constructive and the obtained grammar can be used to
calculate the generating function of self-avoiding walks FSAW,o(z) and the connective
constant of graphs satisfying the conditions of the theorem.

Given some language L, the ordinary generating function FL(z) is the power series

FL(z) ··=
∑

w∈L
z|w|.

Using the algebraic theory of context-free languages Chomsky and Schützenberger de-
veloped in [7], the productions of an unambiguous context-free grammar C generating
the language L can be translated into a system of polynomial equations having as one
of its solutions the language generating function FL(z).

A power series F (z) is called algebraic over a fieldK if it satisfies a polynomial equation
of the form P

(
z, F (z)

)
= 0, where P (x, y) is a bivariate polynomial in K[x, y]. From

classical elimination theory (see for example [39]) it follows that any component of a
solution of a system of polynomial equations having coefficients in K is algebraic over
K, in particular FL(z) is algebraic over Q.

Let G be a connected, locally finite, deterministically edge-labelled graph and o be
a vertex of G such that the language LSAW,o(G) is unambiguous context-free. Then
the label function ` acts as a bijection between the set PSAW,o of self-avoiding walks
starting at o and its language LSAW,o(G), whence the SAW-generating function satisfies
FSAW,o(z) = FLSAW,o(G)(z). All singularities of algebraic functions are algebraic numbers,
so in particular the radius of convergence of FSAW,o(z) and thus also the connective
constant of the graph G are algebraic numbers.

Example 2.1.4 shows that there are transitive graphs G not admitting any deter-
ministic labelling ` such that AUT(G, `) acts quasi-transitively on G. Nevertheless,
the following statement can be shown using the previous discussions and the ideas and
proofs of Section 4.3, but generating functions counting walks, instead of grammars and
language theory.

Corollary 4.4.1. Whenever all ends of a connected, locally finite, quasi-transitive graph
G are of size at most 2, the SAW-generating function FSAW,o(z) is algebraic over Q. In
particular the connective constant µ(G) is an algebraic number.

Alm and Janson showed in [1] that the generating functions of self-avoiding walks on
one-dimensional lattices are algebraic over Q, independently of the size of the ends. In
Chapter 6, we shall examine how our results can be extended to quasi-transitive graphs
having only thin ends. In future work we plan to investigate under which structural
conditions on the graph, the language of self-avoiding walks is accepted by a multipass
automaton as in [4].
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Figure 4.3: The labelled graph X (left) and its block-cut-vertex tree (right). Block-
vertices are drawn as diamonds, the edge orbits ẽ and f̃ have different colours.

Some concrete examples, where we used Theorem 4.3.1 and its constructive proof to
obtain the SAW-generating functions and the connective constants, include the “sand-
wich” of two k-regular trees, already treated in a slightly different way in [42] and the
above mentioned grandparent graph. We conclude the chapter with a detailed discussion
of two additional examples. The Cayley graph in the upcoming example has only ends
of size one, so it demonstrates the construction in the proof of Theorem 4.3.1. While
the graph is transitive and has finite blocks, these blocks are not transitive graphs.

Example 4.4.2. Consider the group Γ = 〈a, c | c2 = 1〉, which is the free product of an
infinite cyclic group and a group with two elements. Let b = ca and let G be the Cayley
graph Cay(Γ, S), where S is the symmetric generating set S = {a, a−1, b, b−1, c}. Edges
are labelled by the generators in the usual way. The resulting graph can be seen in
Figure 4.3. It is clear that all ends of G have size 1, hence the language of self-avoiding
walks on G is regular.

The blocks of G consist of 4 vertices and 5 edges. The block-cut-vertex tree T2 of
G is a biregular tree, where every block has degree 4 and every cut-vertex has degree
2. Obviously the blocks are not transitive graphs, therefore the action of AUT(G) on
E(T2) admits more than one orbit. The two orbits can be seen in Figure 4.3; we will
denote them by ẽ and f̃ .

Every block is finite, so a grammar can be simply constructed as in the proof of
Theorem 4.3.1 without further decomposition of the blocks into 3-blocks. The variables
Lẽ and Lẽ,f̃ generate the languages L(ẽ) and L(ẽ, f̃) defined in the proof. The set of
productions of a grammar G generating LSAW,o(G) (for an arbitrary choice of o) looks
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as follows:

S ` ε | Iẽ | If̃ ,
Iẽ ` Lẽ | Lẽ,ẽIf̃ | Lẽ,f̃Iẽ,
If̃ ` Lf̃ | Lf̃ ,ẽIf̃ | Lf̃ ,f̃Iẽ,
Lẽ ` a | ab−1 | ab−1a | b | ba−1 | ba−1b | c | ca | cb,
Lf̃ ` a−1 | a−1b | a−1ba−1 | a−1c | a−1ca | b−1 | b−1a | b−1ab−1 | b−1c | b−1cb,

Lẽ,ẽ ` ab−1 | ba−1 | c,
Lẽ,f̃ ` a | ab−1a | b | ba−1b | ca | cb,
Lf̃ ,ẽ ` a−1 | a−1ba−1 | a−1c | b−1 | b−1ab−1 | b−1c,

Lf̃ ,f̃ ` a−1b | b−1a.

Note that although this grammar is not regular, it is easily possible to get a regular
grammar (with only 3 variables) by substituting all L-variables in the first 3 lines by
their produced languages given by lines 4 to 9. Translating the productions into a system
of equations and solving it yields

FSAW,o(z) = −(2z − 1)
(
2z2 + z + 1

) (
2z3 + 2z2 + 2z + 1

)

4z6 + 8z5 + 8z4 + 2z3 − 4z + 1 .

The connective constant of G is the reciprocal of the smallest positive root of the de-
nominator of this generating function,

µ(G) ≈ 3.6279766.

Finally we provide an example where we end up with an SAW-generating function,
which is algebraic over Q, but not rational.

Example 4.4.3. Consider the group Γ = 〈a, b, c | a2 = b2 = c2 = (ab)3 = (bc)2 = 1〉,
which is a free product with amalgamation of dihedral groups of order 4 and 6. Let G
be the Cayley graph Cay (Γ, {a, b, c}). As before label the edges by the corresponding
generators. The resulting graph can be seen in Figure 4.4. All ends of G have size 2,
so the language of self-avoiding walks in G is context-free. The 3-block decomposition
of G can be seen in Figure 4.4. It yields 3 types of 3-blocks, denoted by A, B and C
in correspondence to the labels they contain. E(T3(G)) contains 4 types of edges, they
will be denoted by AB, BA, BC, CB, depending on the pair of 3-blocks they connect
(e.g. AB starts at A and ends at B).

A grammar generating the languages of self-avoiding walks constructed as in the proof
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Figure 4.4: The labelled graph X (left) and its 3-block decomposition (right). Any non-
virtual edge has the same colour as its generator; virtual edges are dashed.

of Lemma 4.3.6 is given by the following productions:

S ` ε | I0
BA | I0

BC | b | bI1
BA | bI1

BC | UBAI1
BC | UBCI1

BA,

I0
BA ` a | aI0

AB | aUABa | aUABaI0
AB | aUABaUABa,

I1
BA ` a | aI0

AB | aUABa | aUABaI0
AB,

I0
AB ` I0

BC | b | bI1
BC , I1

AB ` I1
BC ,

I0
BC ` c | cUCBc | cI0

CB, I1
BC ` c | cI0

CB,

I0
CB ` I0

BA | b | bI1
BA, I1

CB ` I1
BA,

UAB ` b | UBC , UBA ` aUABaUABa,

UCB ` b | UBA, UBC ` cUCBc.

Translating this set of productions into the corresponding system of equations and
solving this system yields the SAW-generating function

FSAW,o(z) = P (z) +Q(z)
√
−4z8 − 4z6 + 1

z12 (2z10 + 8z9 + 13z8 + 12z7 + 7z6 + 4z5 + 5z4 + 4z3 + z2 − 2z − 1) ,

where P (z) and Q(z) are two polynomials of degree 23 and 17, respectively. As before,
the connective constant of G can be found as the reciprocal of the smallest positive real
root of the polynomial of degree 10 in the denominator,

µ(G) ≈ 1.8306977.
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5 Comparing consecutive letter counts in
multiple context-free languages

Formal language theory makes use of mathematical tools to study the syntactical aspects
of natural and artificial languages. Two of the best known and most studied classes of
formal languages are context free and context sensitive languages, generated by context
free grammars and context sensitive grammars, respectively. Context-free grammars
have convenient generative properties, but they are not able to model cross-serial depen-
dencies, occurring in Swiss German and a few other natural languages. The expressive
power of context-sensitive grammars on the other hand often exceeds our requirements,
and the decision problem whether a given string belongs to the language generated by
such a grammar is PSPACE-complete.

To overcome these issues, intermediate classes of “mildly context sensitive languages”
were independently introduced by Vijay-Shanker et al. [59] and Seki et al. [52] in the
form of context-free rewriting systems and multiple context-free grammars (MCFGs).
These concepts turn out to be equivalent in the sense that they both lead to the same
class of languages, called multiple context-free languages (MCFLs). While MCFGs are
able to model cross-serial dependencies by dealing with tuples of strings, the languages
generated by them share several important properties with context free languages, such
as polynomial time parsability and semi-linearity.

MCFLs can be distinguished depending on the largest dimension m of tuples involved.
The m-MCFLs obtained in this way form an infinite strictly increasing hierarchy

CFL = 1-MCFL ( 2-MCFL ( . . . ( m-MCFL ( (m+ 1)-MCFL ( . . . ( CSL,

where CFL and CSL denote the classes of context free and context sensitive languages,
respectively.

A highlight in the theory of MCFGs is a result by Salvati [51], stating that the language
O2 = {w ∈ {a, ā, b, b̄}∗ | |w|a = |w|ā ∧ |w|b = |w|b̄} occurring as the word problem of the
group Z2 is a 2-MCFL. Ho [33] generalised this result by showing that for any positive
integer d the word problem of Zd is multiple context-free.

In this chapter we study languages defined by comparing lengths of runs of consecutive
identical letters and show that they are able to separate the layers of the hierarchy
mentioned above. In particular we consider languages of the form

Lk = {an1
1 an2

2 · · · ank
k | n1 ≥ n2 ≥ · · · ≥ nk ≥ 0}

and generalisations thereof. The languages L1 and L2 are easily seen to be context-free,
and it is a standard exercise to show that L3 is not context-free by using the pumping
lemma for context free languages. Our main result generalises these observations.
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Theorem 5.0.1. The language Lk = {an1
1 an2

2 · · · ank
k | n1 ≥ n2 ≥ · · · ≥ nk ≥ 0} is a

dk/2e-MCFL but not a (dk/2e − 1)-MCFL.

The first part of Theorem 5.0.1 is verified by constructing an appropriate grammar.
For the second part, one might hope that it is implied by a suitable generalisation of the
pumping lemma to m-MCFLs, but unfortunately such a generalisation does not exist.

In [52] Seki et al. generalise the concept of pumpability to m-pumpability. However,
their weak pumping lemma for m-MCFLs only confirms the existence of m-pumpable
strings in infinite m-MCFLs and not that all but finitely many words in the language
are m-pumpable. In particular, it is not strong enough to imply the second part of
Theorem 5.0.1. While Kanazawa [37] managed to prove a strong version of the pumping
lemma for the sub-class of well-nested m-MCFLs, Kanazawa et al. [38] showed that in
fact such a pumping lemma cannot exist for general m-MCFLs by giving a 3-MCFL con-
taining infinitely many words which are not k-pumpable for any given k. Nevertheless,
our proof relies heavily on the idea of pumping, thus showing that this technique can be
useful even in cases where no pumping lemma is available.

At first glance the material of this chapter seems completely unrelated to self-avoiding
walks. However, the main motivation was our wish to generalise Theorem 4.2.1. One
of the main ingredients for this theorem was the application of the pumping lemma
for context-free languages in the proof of Proposition 4.2.6. In a similar way, Theo-
rem 5.0.1 will be applied in the proof of Lemma 6.4.8, which is basically a generalisation
of Proposition 4.2.6.

5.1 Main result
In this chapter we focus on languages defined as follows: A binary relation � on a set
M is called a preorder, if it is reflexive and transitive. In contrast to partial orders,
preorders need not be antisymmetric, that is, it is possible that a � b and b � a for
different elements a, b. A preorder � is called total if for all a, b ∈ M we have a � b
or b � a. The comparability graph of a preorder is the simple undirected graph with
vertex set M , where two different vertices u and v are connected by an edge if they are
comparable. We call a preorder connected, if its comparability graph is connected. Note
that any total preorder is connected, but a connected preorder does not have to be total.

For a positive integer m and a preorder � on [m] = {1, 2, . . . ,m} define the language
L� over the alphabet Σ = {a1, . . . , am} by

L� = {an1
1 an2

2 · · · anm
m | i � j ⇒ ni ≤ nj}.

A preorder �′ on M is said to be a totalisation of a preorder � on M , if it is total and
extends �, that is, whenever a � b also a �′ b. Let T� be the set of totalisations of �.

Remark 5.1.1. Observe that
L� =

⋃

�′∈T�
L�′ .
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This is a consequence of the fact that for any given word w = an1
1 an2

2 · · · anm
m ∈ L�, the

binary relation �′ on [m] defined by i �′ j if and only if ni ≤ nj is a totalisation of �.

A natural way of specifying a language is by giving a grammar generating it. Here we
focus on multiple context-free languages and the grammars generating them. Important
definitions and basic facts about them are collected in Section 2.2.

By the following lemma it is enough to consider MCFGs in a certain normal form.

Lemma 5.1.2 (Seki et al. [52, Lemma 2.2]). Every m-MCFL L is generated by an
m-MCFG G = (N,Σ,P, S) satisfying the following conditions.

(i) If A(α1, . . . , αr)← A1(x1,1, . . . , x1,r1), . . . , An(xn,1, . . . , xn,rn) is a non-terminating
rule in P, then the string α1 · · ·αr contains each xi,j exactly once and does not
contain elements of Σ.

(ii) If A(w1, . . . , wr) ← is a terminating rule, then the string w1 · · ·wr has length at
most 1. The only rule where this string is allowed to have length 0 is the rule
S(ε)← , which is present in P if and only if ε ∈ L.

We split the proof of our main result into two parts, covered by Theorem 5.1.3 and
Theorem 5.1.4, respectively. Together, these two results clearly imply Theorem 5.0.1; it
is also worth pointing out that in fact they cover the (much larger) class of languages
L� as introduced in the previous section.

Theorem 5.1.3. For every preorder � the language L� = {an1
1 an2

2 · · · anm
m | i � j ⇒

ni ≤ nj} over the alphabet Σ = {a1, . . . , am} is a dm/2e-MCFL.

Proof. It is known (see for instance [52]) that the class of k-MCFLs is closed under
substitution and taking finite unions. Thus it is enough to consider the case where
m = 2k is even, the case m = 2k − 1 follows by substituting ε for a2k. Additionally, by
Remark 5.1.1 we may assume that � is a total preorder.

We show that L� is generated by the k-MCFG G = (N,Σ,P, S), where N = {S,A},
the non-terminal A has rank k and P consists of the rules

S(x1x2 · · ·xk)← A(x1, x2, . . . , xk)

A(ε, ε, . . . , ε)←

and for every j ∈ [2k] the additional rule ρj given by

A(y1x1y2, y3x2y4, . . . , y2k−1xky2k)← A(x1, x2, . . . , xk),

where

yi =
{
ai if j � i,
ε otherwise.

First note that if ` A(w1, . . . , wk), then each wl has the form wl = a
n2l−1
2l−1 a

n2l
2l , and

it holds that ni ≤ nj whenever i � j. This is clearly true for A(ε, ε, . . . , ε) and it is
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preserved when applying the rule ρj , which adds one instance of the letter aj and every
letter ai with j � i. Every word w generated by G is in L� since it is the concatenation
w1 · · ·wk of strings wl such that ` A(w1, . . . , wk).

Next we show that any given word in L� is generated by G. Assume for a contra-
diction that there is a word in L� which is not generated by G. Pick such a word
w = an1

1 an2
2 · · · an2k

2k with minimal nmax ··= max{nl | l ∈ [2k]}. As G generates the
empty word, w 6= ε and nmax ≥ 1. For l ∈ [2k] let n′l = nl if nl < nmax, and let
n′l = nmax − 1 otherwise. Since w ∈ L� we have n′i ≤ n′j whenever i � j, and thus
w′ = a

n′1
1 a

n′2
2 · · · a

n′2k
2k ∈ L�. By minimality of w the word w′ is generated by G, and in

particular ` A(an
′
1

1 a
n′2
2 , . . . , a

n′2k−1
2k−1 a

n′2k
2k ). Pick some minimal j with respect to � from

the set {l ∈ [2k] | nl = nmax}. Applying the rule ρj to A(an
′
1

1 a
n′2
2 , . . . , a

n′2k−1
2k−1 a

n′2k
2k ) yields

` A(an1
1 an2

2 , . . . , a
n2k−1
2k−1 a

n2k
2k ); consequently G generates w, contradicting our assump-

tion.

Theorem 5.1.4. For every connected preorder � the language L� = {an1
1 an2

2 · · · anm
m |

i � j ⇒ ni ≤ nj} over the alphabet Σ = {a1, . . . , am} is not a (dm/2e − 1)-MCFL.

Proof. Assume that there is a MCFG G = (N,Σ,P, S) generating L�, and assume that
G is given in normal form as in Lemma 5.1.2.

For a derivation tree D and i ∈ [m] denote by |D|i the total number of letters ai
occurring in all substrings contained in the term `(D) (the label of the root of D) and
by |D| = ∑m

i=1 |D|i the combined length of all substrings. Since G is in normal form, if
`(D) is not a terminating rule and D1, . . . , Dk are the derivation trees rooted at the k
children of the root of D, we have

|D|i =
k∑

j=1
|Dj |i . (5.1)

Moreover, if `(D) is a terminating rule, then

|D| = 1. (5.2)

Call a rule a combiner, if its right side contains at least 2 non-terminals. Note that a
vertex of any derivation tree labelled by a combiner has at least 2 children. Furthermore
there is an upper bound K such that the right side of any combiner contains at most K
non-terminals.

Fix n > K2C , where C is the number of combiners in P, and let D be a derivation
tree of S(an1an2 · · · anm). Then D contains a path starting at the root containing at least
2C + 1 vertices labelled with combiners. If not, then (5.1) and (5.2) imply |D| ≤ K2C ,
contradicting our choice of n. By the pigeon hole principle there is some combiner ρ
such that this path contains at least 3 vertices labelled ρ. Denote the subtrees rooted at
these three vertices by D1, D2, and D3 such that D3 ⊆ D2 ⊆ D1.

We claim that for any i � j we have |D1|j − |D2|j = |D1|i − |D2|i, and that an
analogous statement holds for D2 and D3.
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Figure 5.1: Replacing D1 with D2 yields D′ and replacing D2 with D1 yields D′′.

Assume that |D1|j − |D2|j > |D1|i − |D2|i. By (5.1) the derivation tree D′ obtained
by replacing D1 with D2 (compare Remark 2.2.7, also see Figure 5.1) satisfies

∣∣D′
∣∣
j −

∣∣D′
∣∣
i = |D|j − (|D1|j − |D2|j)− |D|i + (|D1|i − |D2|i) < 0,

because |D|j = |D|i = n. This is a contradiction, as the word w(D′) is not in L�. If
|D1|j − |D2|j < |D1|i − |D2|i, then the derivation tree D′′ obtained by replacing D2 by
D1 satisfies

∣∣D′′
∣∣
j −

∣∣D′′
∣∣
i = |D|j + (|D1|j − |D2|j)− |D|i − (|D1|i − |D2|i) < 0,

a contradiction for the same reason as before. This completes the proof of our claim.
If i, j ∈ [m] are comparable in �, then |D1|j−|D1|i = |D2|j−|D2|i. By connectedness

of the comparability graph this is true for any pair i, j.
Since ρ is a combiner, |w(D1)| > |w(D2)|. In particular |D1|i > |D2|i for some and

thus for every i ∈ [m]. Analogously we obtain |D2|i > |D3|i; in particular |D2|i > 0
holds for every i ∈ [m].

Assume now for a contradiction the Grammar G is (dm/2e − 1)-MCF. Then w(D2)
consists of at most dm/2e − 1 strings and each of them is a substring of an1an2 · · · anm
because G is in normal form. Every letter of Σ appears in w(D2), hence one of the
strings must contain at least 3 different letters and thus be of the form an1

i−1a
n
i a

n2
i+1 for

some i ∈ {2, . . . ,m − 1}. As this contradicts the fact that n ≥ |D1|i > |D2|i = n, the
grammar G cannot be (dm/2e − 1) multiple context-free.
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6 Multiple context-free language of
self-avoiding walks

As mentioned in the introduction of this thesis, explicit computation of µ(G) can be
a very challenging task, even in seemingly harmless instances such as two-dimensional
lattices.

The special case of SAWs on one-dimensional lattices turns out to be a lot more
manageable. The reason for this is that the large scale structure of one-dimensional
lattices resembles a line, that is, they can be decomposed into infinitely many pairwise
isomorphic finite parts such that each part only intersects with two others (its predecessor
and its successor). By considering restrictions of SAWs to single parts and analysing how
these restrictions fit together, Alm and Janson [1] showed that SAW-generating functions
on these lattices are always rational. While this approach fails for higher-dimensional
lattices, analogous techniques have been successfully applied to other graph classes, in
particular to graphs exhibiting some kind of large scale tree structure, see for instance
the note [19] by Gilch and Müller.

In this chapter, we follow a similar approach to study SAWs on graphs with only
thin ends, thus extending the results in Chapter 4. Our first main result concerns the
SAW-generating function.

Theorem 6.0.1. Let G be a simple, locally finite, connected, quasi-transitive graph hav-
ing only thin ends and let o ∈ V (G). Then FSAW,o(z) is algebraic over Q. In particular
the connective constant µ(G) is an algebraic number.

Our second main result connects SAWs to formal languages. As in Chapter 4, let G be
deterministically edge-labelled, that is, every (directed) edge e of G is assigned a label
`(e) from some given alphabet Σ such that different edges with the same initial vertex
have different labels. As before, edge-labelled graphs are assumed to be quasi-transitive,
that is, the group AUT(G, `) of automorphisms of G preserving ` acts with finitely many
orbits on G.

Recall that the edge-labelling is extended to walks p = (v0, e1, v1, . . . , en, vn) by setting

`(p) = `(e1) . . . `(en).

In this way, any set P of walks gives rise to a language L(P) = {`(p) | p ∈ P}, thus
allowing us to study properties of P via properties of the corresponding language.

This is particularly fruitful when L(P) belongs to a well understood family of lan-
guages. Besides the well-known classes of regular and context-free languages, the class
of multiple context free languages (MCFLs) plays an important role. These were intro-
duced by Seki et al. [52] as a generalisation of context free languages capable of modelling
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cross-serial dependencies occurring in some natural languages such as Swiss German. A
concise definition of MCFLs can be found in Section 2.2.

We are interested in the language of self-avoiding walks defined by

LSAW,o(G) = L(PSAW,o) = {`(p) | p ∈ PSAW,o},

where PSAW,o is the set of all SAWs of length at least 1 on G starting at o. In his
computation of FSAW,o(z) for the infinite ladder graph, Zeilberger [63] implicitly used
that the language of self-avoiding walks of this graph is context free. More generally,
in Chapter 4 we showed that LSAW,o(G) on a locally finite, connected, quasi-transitive
deterministically edge-labelled graph G is regular if and only if all ends of G have size
1, and that it is context-free if and only if all ends have size at most 2. In both of these
cases FSAW,o(z) can be computed using an appropriate grammar generating LSAW,o(G).
Our second main result generalises these results.

Theorem 6.0.2. Let G be a simple, locally finite, connected, quasi-transitive determin-
istically edge-labelled graph and let o ∈ V (G). Then LSAW,o(G) is an MCFL if and only
if all ends of G are thin.

In fact, what we prove is slightly stronger. Every MCFL can be assigned a rank (see
Section 2.2 for details); an MCFL is called k-multiple context free if its rank is at most
k. It is worth noting that the families of k-MCFLs form a strictly increasing hierarchy,
and that 1-MCFLs are exactly the context free languages. We show that the maximal
size of an end of G tells us exactly where LSAW,o(G) lies in this hierarchy.

Theorem 6.0.3. Let G be a simple, locally finite, connected, quasi-transitive determin-
istically edge-labelled graph and let o ∈ V (G). Then LSAW,o(G) is k-multiple context-free
if and only if every end of G has size at most 2k.

Applied to Cayley graphs of groups, Theorem 6.0.2 states that the language of self-
avoiding walks on a Cayley graph of a group is multiple context-free if and only if the
group is virtually free. In particular, the property of having a multiple context-free
language of self-avoiding walks is a group invariant.

As mentioned above, we are following a similar approach as Alm and Janson in [1].
There are two key ingredients to this approach: firstly, decomposing the graph into finite
parts, and secondly, analysing the restrictions of self-avoiding walks to these parts.

The decomposition into finite parts is formalised by the notion of tree decompositions
which will be the subject of Section 6.1. Roughly speaking these are decompositions of
a graph into parts intersecting in a tree-like manner. This notion was introduced by
Halin [27] in 1976; later it was rediscovered by Robertson and Seymour [49] and plays a
central role in the proof of the celebrated Graph Minor Theorem. For our applications it
is crucial that the tree decompositions are invariant under some quasi-transitive group
of automorphisms. Such tree decompositions have been constructed by Dunwoody and
Krön [15], inspired by a similar construction based on edge cuts introduced by Dunwoody
in [14].
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The restriction of self avoiding walks to the parts of a tree decomposition is captured by
the notion of configurations introduced and studied in Section 6.2. Among other things
we show that there is a bijection between SAWs and a specific class of configurations
called bounded consistent configurations, in other words, any SAW can be obtained by
piecing together appropriate configurations.

This bijection is central to the rest of the paper because it allows us to work with
configurations rather than self avoiding walks; this turns out to be beneficial since con-
figurations (unlike SAWs) carry a recursive structure. In Section 6.3 we use this recursive
structure to show that the set of bounded consistent configurations is in bijection with a
context free language; Theorem 6.0.1 follows from this fact. In Section 6.4, again using
the recursive structure, we show that LSAW,o(G) is an MCFL, thus proving the first half
of Theorem 6.0.3. Finally, we combine techniques from Chapter 4 with Theorem 5.0.1
to complete the proof of Theorem 6.0.3.

6.1 Graphs and tree decompositions
Recall from Chapter 2 that we consider the edges of our graph G as being directed and
with an involution e 7→ ē which inverts the direction.

In addition to the usual walks p = (v0, e1, v1, . . . , en, vn), we also make use of the
following more general concept. A multi-walk p is a sequence of vertices and edges
obtained by stringing together the sequences of vertices and edges corresponding to
walks p1, . . . , pk; the pi are called the walk components of p. In other words, a multi-
walk is a sequence of vertices and edges, such that every edge in the sequence is preceded
by its initial vertex and succeeded by its terminal vertex. Note that the walk components
of a multi-walk are uniquely determined.

For a (multi-)walk p on G and A ⊆ V (G) ∪ E(G) we denote by p ∩ A the sequence
obtained from p by deleting all elements not in A and by p − A the sequence obtained
by deleting all elements of A. For a subgraph H of G we write p ∩H for the sequence
p ∩ (V (H) ∪E(H)). In general the sequences p ∩A and p−A need not be multi-walks,
but we note that p − E is a multi-walk for E ⊆ E(G), as is p ∩H for any subgraph H
of G.

Let us provide a simple example of a Cayley graph used as a running example to
demonstrate various constructions throughout this paper. Let Cn denote the cyclic
group of order n and consider the group Γ = (C2 ∗ C2 ∗ C2) × C3, that is, the direct
product of C3 and a free product of three copies of C2. Let a, b and c be the generators
of the copies of C2 and let r be the generator of C3. Then Γ can be presented as
〈a, b, c, r | a2 = b2 = c2 = r3 = arar−1 = brbr−1 = crcr−1 = 1Γ〉. Figure 6.1 shows the
Cayley graph G of Γ with respect to the symmetric generating set S = {a, b, c, r, r−1}.

A tree decomposition of a graph G is a pair T = (T,V), consisting of a tree T and a
function V : V (T )→ 2V (G) assigning a non-empty subset of V (G) to every vertex of T ,
such that the following three conditions are satisfied:

(T1) V (G) = ⋃
t∈V (T ) V(t).
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Figure 6.1: A Cayley graph of the group (C2 ∗ C2 ∗ C2) × C3. Different edge colours
correspond to different generators.

(T2) For every e ∈ E(G) there is a t ∈ V (T ) such that V(t) contains both vertices that
are incident to e.

(T3) V(s) ∩ V(t) ⊆ V(r) for every vertex r on the unique s–t-path in T .

The set V(t) is called the part of t. For an edge e = st of T , the intersection V(e) =
V(s, t) = V(s) ∩ V(t) (= V(t, s)) is called the adhesion set of e. A tree decomposition
(T,V) of G is called Γ-invariant for a group Γ ≤ AUT(G), if every γ ∈ Γ maps parts
onto parts and thereby induces an automorphism of T . More precisely there is an action
of Γ on T by automorphisms such that for every γ ∈ Γ and t ∈ V (T ), it holds that
γ(V(t)) = V(γt).

The tree decomposition T is said to distinguish two given ends ω1 and ω2 of G if there
is some edge e of T such that the adhesion set V(e) separates ω1 and ω2. Moreover T
distinguishes the two ends efficiently, if one of its adhesion sets has the smallest size of
all subsets of vertices of G separating ω1 and ω2. We call T reduced if every adhesion
set efficiently distinguishes some pair of ends of G and no two parts corresponding to
adjacent vertices of T coincide.

Recall that a locally finite graph G is accessible if there is a natural number k such
that any two ends can be separated by a set of vertices of size at most k. The following
theorem is closely related to the works of Dicks and Dunwoody (see [14] and [10]) and
is a direct consequence of Theorem 6.4 in [28].

Theorem 6.1.1. Let G be a simple, locally finite, connected, accessible graph and let Γ
be a group acting quasi-transitively on G. Then there is a Γ-invariant tree decomposition
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(T,V) of G efficiently distinguishing all ends of G and an action of Γ on T witnessing
the Γ-invariance of (T,V) with only finitely many Γ-orbits on E(T ).

For our purpose, it is necessary for tree decompositions to additionally be reduced.
However, this is not really a restriction, as the following construction shows.

Let T = (T,V) be a tree decomposition of G and F be a subset of edges of T . The
contraction of F in T is the pair T /F = (T/F,V/F ) defined in the following way. The
tree T/F consists of a single vertex for every component of the graph (V (T ), F ) obtained
from T by only keeping the edges in F ; for a vertex t of T/F let [t]F denote the vertex
set of the corresponding component. Two different vertices [s]F and [t]F of T/F are
connected by an edge if and only if there are s′ ∈ [s]F and t′ ∈ [t]F , which are adjacent
in T . The part corresponding to [t]F ∈ V (T/F ) is (V/F )([t]F ) = ⋃

s∈[t]F V(s). It is not
hard to see that T /F is a tree decomposition of G.

Starting from a tree decomposition T = (T,V) provided by the previous theorem, we
can construct a reduced tree decomposition as follows. Let the set F consist of all edges
e of T such that the adhesion set V(e) does not minimally separate any pair of ends of
G. It is easy to check that the contraction T /F is a tree decomposition retaining all
properties mentioned in Theorem 6.1.1 and additionally every adhesion set minimally
separates two ends of G. In a second step we contract all edges of T/F connecting two
vertices whose parts coincide to obtain a reduced tree decomposition as in the following
corollary.

Corollary 6.1.2. Let G be a simple, locally finite, connected, accessible graph and let
Γ be a group acting quasi-transitively on G. Then there is a reduced Γ-invariant tree
decomposition T = (T,V) of G efficiently distinguishing all ends of G such that there
are only finitely many Γ-orbits on E(T ).

Let us again look at the Cayley graph G of the group Γ = (C2 ∗ C2 ∗ C2)× C3 given
in Figure 6.1. We already mentioned that Γ acts freely on G by left multiplication. A
reduced Γ-invariant tree decomposition (T,V) of G as provided by the previous corollary
is shown in Figure 6.2.

We require the following four important properties of tree decompositions T = (T,V)
obtained from this corollary.

(P1) The size of all adhesion sets is bounded from above by some k ∈ N.

(P2) For every K ⊆ V (G) there are only finitely many edges e of T with K = V(e).

(P3) All parts are finite if and only if all ends of G have finite size.

(P4) If all ends of G have finite size, then T is locally finite.

Firstly, T is reduced, so every adhesion set minimally separates some pair of ends of
G. The graph G is accessible, so (P1) holds.

For the proof of the other properties, we need some notation. A separation of G is
a pair (A,B) of vertex sets such that G[A] ∪ G[B] = G, which means that there are
no edges between A \ B and B \ A. The intersection A ∩ B is called the separator of

70



Figure 6.2: Decomposition tree T of the Cayley graph G. The vertex-colouring indicates
the four orbits of the group action on the vertices of T . The subgraphs of G
induced by the different parts are shown at the right side.

(A,B). Note that every edge e of the tree decomposition T corresponds to a separation
of G with separator V(e). Removal of e splits T into two components T1 and T2 and(⋃

t∈V (T1) V(t),⋃t∈V (T2) V(t)
)

is the separation of G induced by e.
Clearly any given finite set K of vertices of a locally finite graph G can occur only

finitely many times as the separator of a separation (A,B) of G. Indeed, G−K has only
finitely many components and each of these components has to be fully contained in
either A or B. This observation together with the following lemma yields property (P2).

Lemma 6.1.3. Let G, Γ and T = (T,V) be as in Corollary 6.1.2. Then every separation
(A,B) of G corresponds to at most two edges of T .

Proof. Let e1, e2 be two edges of T inducing the separation (A,B). We first show that
e1 e2 share a common vertex. For i = 1, 2 let TAi and TBi be the components of T − ei
corresponding to A and B, respectively. The separation (A,B) is induced by an edge
of T and every adhesion set separates two ends of G, so A and B are both infinite sets
and V(e1) = V(e2) = A ∩ B is finite. We may assume without loss of generality that
TA1 ⊆ TA2 and TB2 ⊆ TB1 . Let s be a vertex on the unique shortest path P connecting e1
and e2 in T . Property (T3) of tree decompositions yields

A ∩B = V(e1) ∩ V(e2) ⊆ V(s).

Moreover s is a vertex of TB1 and TA2 , so in particular

V(s) ⊆
⋃

t∈V (TB
1 )
V(t) ∩

⋃

t∈V (TA
2 )
V(t) = A ∩B,

implying that the part V(s) is equal to A ∩ B for every vertex s of P . Reducedness of
T implies that P consists of a single vertex and thus both e1 and e2 contain s.
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Let e3 be any edge of T inducing the separation (A,B) and let TA3 and TB3 be the
components of T − e3 corresponding to A and B, respectively. Then e3 intersects e1 and
e2 and thus contains their common vertex r. Finally, if e3 is different from e1 and e2,
then either TB2 ⊆ TA3 or TA1 ⊆ TB3 , leading to a contradiction.

The basis for the proof of (P3) is the following lemma, which is closely related to
Proposition 4.5 in [28].

Lemma 6.1.4. Let G, Γ and (T,V) be as in Theorem 6.1.1. Then for every vertex t of
T , the induced subgraph G[V(t)] is a quasi-transitive graph.

Proof. We show that the set-wise stabiliser ΓV(t) of V(t) in Γ acts quasi-transitively on
G[V(t)]. If u ∈ V(t) does not lie in any adhesion set, then neither does any image of
u under a graph automorphism. In particular, any γ ∈ Γ mapping u to some vertex
v ∈ V(t) fixes V(t) and thus, under the action of the stabiliser of V(t) there are only
finitely many orbits of vertices in V(t) not contained in any adhesion set.

Let m be the finite number of Γ-orbits on E(T ). Whenever γ ∈ Γ fixes t and maps a
neighbour s of t onto some other neighbour s′, γ lies in ΓV(t) and maps the adhesion set
V(s, t) onto V(s′, t). Therefore the number of orbits of adhesion sets under the action of
ΓV(t) is at most 2m. As every adhesion set contains at most k elements, ΓV(t) acts with
at most 2mk orbits on vertices of V(t) lying in adhesion sets of the tree decomposition.
We conclude that ΓV(t) acts with finitely many orbits on V(t).

Our goal is to apply the following proposition to a part V(t), but in general G[V(t)]
need not be connected, so some additional work is necessary.

Proposition 6.1.5 (Thomassen [55, Proposition 5.6]). If G is a locally finite, connected,
quasi-transitive graph with only one end, then this end is thick.

In order to prove the first implication of (P3), assume that there is some vertex t of
T such that the part V(t) is infinite. Let H be the subgraph of G obtained from the
induced subgraph G[V(t)] in the following way. For every edge e of T incident to t add
all shortest paths between any pair of vertices in the adhesion set V(e). Note that since
the stabiliser of V(t) acts quasi-transitively, the length of these paths is bounded by some
constant m ∈ N.

Any walk on G connecting two vertices of V(t) consists of sub-walks on G[V(t)] and
detours leaving V(t) via some adhesion set V(e) and re-entering via the same set. These
detours can be replaced by a shortest detour, which is by definition a walk on H, so H is
connected. Furthermore, ΓV(t) acts quasi-transitively on H because it acts with finitely
many orbits on the edges of T and thus on the adhesion sets contained in V(t).

Assume for a contradiction that H has more than one end. Then there must be a
separation (A,B) of H with finite separator A∩B such that both A and B are infinite.
Let K be the union of A ∩B and all adhesion sets V(s, t) containing both a vertex a of
A\B and a vertex b of B \A. Due to construction of H it contains an a–b-path of length
at most m and any such path must intersect the separator A ∩ B. Thus any vertex of
K lies at distance at most m from A ∩B, implying that K is finite.
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It is not hard to see that G −K contains no (A \ B)–(B \ A)-path. Indeed, assume
that P is a (A \ B)–(B \ A)-path in G which does not intersect A ∩ B. Then P is a
detour leaving and re-entering G[V(t)] via some adhesion set V(s, t) intersecting A \ B
and B \A and thus contains at least one vertex in K.

Finally, let RA and RB be rays in H[A] and H[B], respectively. Then the ends ωA
and ωB of G containing RA and RB are different, as RA and RB are separated by K.
On the other hand, each of RA and RB contains infinitely many vertices of V(t), so they
are not separated by any adhesion set of the tree decomposition T . This contradicts the
fact that T distinguishes all ends of G. We conclude that the infinite connected graph
H has precisely one end. By Proposition 6.1.5 the end of the one-ended quasi-transitive
graph H is thick. The graph G contains H as a subgraph and thus inherits the thick
end of H.

On the other hand, it is not hard to see that all ends of G are thin, if all parts of T
are finite. For any set of disjoint rays in the same end of G there must be some adhesion
set intersecting each of the rays. The size of adhesion sets is at most k, so every end of
G has size at most k.

Finally (P4) is a consequence of (P2) and (P3). Every edge e incident to a vertex s
of T corresponds to some adhesion set V(e) which is a subset of the part V(t). But the
finite part V(t) has only finitely many different subsets and each of them occurs only
finitely often as an adhesion set in (T,V).

6.1.1 Rooted tree decompositions
A rooted graph is a pair (G, o) consisting of a graph G and a designated root vertex
o ∈ V (G). Let (G, o) be a simple, locally finite, connected, rooted graph. A rooted tree
decomposition T = (T,V, r) of (G, o) consists of a tree decomposition (T,V) of G and
a fixed vertex r of T such that o is contained in V(r); note that there can be multiple
valid choices for r since o can be contained in more than one part. We call r the root of
T and V(r) the root part of the decomposition. We use the definitions and notations for
rooted trees provided in Chapter 2.

For every t ∈ V (T ) we introduce a graph G(t) on the vertex set V(t). Let us start by
defining a map E : V (T )→ 2E(G) by E(r) = E(G[V(r)]) and

E(t) = E(G[V(t)]) \ E(G[V(t↑)]) for t 6= r,

where t↑ denotes the parent of t in the rooted tree T . Edges in E(t) are called (non-
virtual) t-edges. Property (T2) of tree decompositions implies that for every edge e of
G there is some t ∈ V (T ) such that e ∈ E(t). Fix some edge e of G and let S be the set
of all vertices s of T such that V(s) contains both endpoints of e. By property (T3) the
induced subgraph T [S] is connected and thus the forefather t of S is contained in S. It
is easy to see that t is the unique vertex of T with e ∈ E(t), so the edge set of G is the
disjoint union E(G) = ⊎

t∈V (T ) E(t).
Additionally we introduce for every edge e = st of T a new set of virtual e-edges
E(e) = E(st), such that every pair of vertices of V(e) is connected by an edge in E(e). In
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other words, the e-graph G(e) = (V(e), E(e)) is a complete graph. In order to enhance
readability, we usually write E(s, t) instead of E(st) and G(s, t) instead of G(st).

Finally, we assign to every vertex t of T the t-graph

G(t) =


V(t) , E(t) ]

⊎

e : e−=t
E(e)


 .

Note that G(t) generally is not a simple graph since E(t) and the various sets E(s, t)
potentially contain edges with the same endpoints.

For convenience we extend the definition of G to subsets S of the vertex set V (T ) by
taking the union of all graphs G(t) for t ∈ S and removing all virtual edges corresponding
to edges of T [S], so that only virtual edges corresponding to edges of T with exactly one
endpoint in S remain. In terms of sets,

G(S) =


⋃

t∈S
V(t) ,

⋃

t∈S
E(t) ]

⊎

e : e−∈S, e+ /∈S
E(e)


 .

Again, we visualise these concepts using the Cayley graph G from Figure 6.1 and its
tree decomposition (T,V) shown in Figure 6.2. For a given root o of G, denote by r
the unique vertex of T such that the part V(r) has cardinality 3 and contains o. Then
(T,V, r) is a rooted tree decomposition of the rooted graph (G, o). Figure 6.3 shows
a portion of the decomposition tree T and the t-graphs for vertices t contained in it.
Compare this to Figure 6.2 and note that the t-graphs on the parts are generally neither
subgraphs (due to virtual edges) nor supergraphs (due to some missing non-virtual edges)
of the induced graphs on the parts.

6.1.2 Cones and cone types
As for rooted trees, we define for a rooted tree decomposition (T,V, r) the cone at a
vertex s ∈ V (T ) of T as the set Ks containing all descendants of s, that is, all vertices t
such that s lies on the t–r-path in T .

Let Γ ⊆ AUT(G) be a group acting on G. We say that two vertices s and t of T
different from r are cone-equivalent and write s ∼K t, if there is a γ ∈ Γ mapping s to t
and the parent s↑ of s to the parent t↑ of t. The root r is only cone equivalent to itself.
Clearly ∼K is an equivalence relation and we call the equivalence classes of vertices cone
types of the rooted tree decomposition T .

Note that if γ ∈ Γ witnesses the cone equivalence of s and t, then γ maps the cone Ks

onto the cone Kt; in this case we also call the cones Ks and Kt equivalent. The following
lemma tells us that the graphs G(s) and G(t) are isomorphic whenever s and t are cone
equivalent.

Lemma 6.1.6. Any γ ∈ Γ witnessing the cone equivalence of two vertices s and t of T
can be extended to a graph isomorphism between the graphs G(s) and G(t).
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r

Figure 6.3: Decomposition tree T of the Cayley graph G and its corresponding t-graphs.
Dashed edges are virtual e-edges; if they are shared by different t-graphs,
they have the same shape in these graphs.

Proof. Recall that by definition

G(s) =


V(s), E(s) ∪

⋃

e|e−=s
E(e)


 ,

where E(s) = E(G[V(s)]) \ E(G[V(s↑)]). Note that e ∈ E(s) if and only if γ(e) ∈ E(t),
because γ maps s↑ onto t↑. We extend γ in the natural way to virtual edges in E(s, u)
by mapping e onto the edge γ(e) ∈ E(t, γ(u)) connecting γ(e−) and γ(e+). The result is
a graph isomorphism between G(s) and G(t).

Lemma 6.1.7. Let (T,V, r) be a reduced, rooted tree decomposition of a locally finite
graph G. If there is a subgroup Γ ≤ AUT(G) such that (T,V) is Γ-invariant and the
action of Γ on E(T ) has finitely many orbits, then the number of cone types of (T,V, r)
is finite.

Proof. Let s ∼K t be two vertices in V (T ) \ {r}. Then there is a γ ∈ Γ mapping the
edge s↑s onto t↑t while preserving direction. This implies that the number of cone types
can be at most two times the number of edge orbits of Γ acting on T plus one, where the
additional type is the type of the root r, the only vertex without a parent. In particular
the number of cone types is finite.
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6.2 Configurations
Let T = (T,V, r) be a rooted tree decomposition of a simple, locally finite, connected,
rooted graph (G, o). A configuration on S ⊆ V (T ) with respect to T is a map C = (P,X)
assigning to each vertex s ∈ S a pair C(s) = (P (s), X(s)), such that for every s ∈ S one
of the following alternatives holds.

(a) X(s) ∈ V (T ) is either s or a neighbour of s in T , and P (s) is a self-avoiding walk
on G(s) starting in V(s↑, s) (or at o if s = r) and, if X(s) 6= s, ending in V(s,X(s)).
Moreover, if X(s) = s then P (s) must end with a non-virtual edge.

(b) X(s) = s↑ and P (s) = ∅ is the empty walk; this is called the empty configuration
and can only occur for s 6= r.

We call X(s) the exit direction of s. A configuration on a vertex s of T is an image pair
C(s) = (P (s), X(s)) of a configuration C = (P,X) on the set S = {s}. Note that by
Lemma 6.1.6, the sets of configurations on two cone equivalent vertices are the same up
to isomorphism.

Intuitively, configurations model the behaviour of SAWs on single parts of the tree
decomposition in the following way. Let p be a self-avoiding walk on G starting at the
root o. For any t ∈ V (T ) we define a projection pt of p onto the graph G(t). First
take all vertices and edges of p contained in G(t) to obtain the multi-walk p ∩ G(s, t).
Every detour of p in some other part V(s) with s adjacent to t in T corresponds to a
virtual edge of E(s, t) connecting the same endpoints as the detour. By replacing these
detours by their “shortcuts”, we end up with a walk pt on G(t). Note that pt might
be the empty walk for many vertices t. Let u be the vertex of T such that the final
edge of p is contained in G(u). Let xu = u and for t 6= u let xt be the neighbour of t
on the unique t–u-path in T . Then the function C defined by C(t) = (pt, xt) defines a
configuration on V (T ) with respect to T . This shows that starting from a SAW, we can
give a configuration describing the behaviour of the walk when restricted to single parts.

In order to reverse the above construction, we would like to combine configurations on
the single parts into SAWs on G. To this end, two more properties are needed. Firstly,
since SAWs are finite, only finitely many parts can make non-trivial contributions. Sec-
ondly, configurations on the parts that contribute non-trivially must fit together in a
certain way. These two properties are implied by the notions of boundedness and consis-
tency of configurations defined below. In what follows, let C = (P,X) be a configuration
on S ⊆ V (T ).

The weight ‖C‖ of C is the total number of non-virtual edges contained in all the
walks P (s) for s ∈ S, so ‖C‖ = ∑

s∈S ‖C(s)‖, where ‖C(s)‖ denotes the number of non-
virtual edges in P (s). The configuration C is called boring on s ∈ S \ {r} (we also say
that C(s) is boring) if X(s) = s↑ and P (s) contains only edges in E(s↑, s). In particular,
the empty configuration is boring and all boring configurations have weight 0. We call
a configuration C bounded, if C(s) is boring for all but finitely many s ∈ S.

Let s, t ∈ S be adjacent vertices; without loss of generality assume s = t↑. The
configurations C(s) and C(t) are called compatible, if either P (s) ∩ V(s, t) = ∅ and C(t)
is the empty configuration, or if they satisfy the following four conditions.
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(C1) The ordered sequences of vertices obtained by intersecting the walks P (s) and P (t)
with V(s, t) coincide,

P (s) ∩ V(s, t) = (v1, . . . , vl) = P (t) ∩ V(s, t).

(C2) For every i ∈ {1, . . . , l − 1}

viP (s)vi+1 ∩ E(s, t) = ∅ ⇐⇒ viP (t)vi+1 ∩ E(s, t) 6= ∅.

(C3) X(s) = t ⇐⇒ X(t) 6= s.

(C4) If X(s) = t, then P (s) ends in vl, otherwise P (t) ends in vl.

The configuration C is called consistent, if the configurations C(t↑) and C(t) are com-
patible whenever both t and t↑ are in S.

Configurations on the complete vertex set V (T ) of the tree decomposition T are called
configurations on T and the set of all bounded consistent configurations on T is denoted
by CT .

Remark 6.2.1. By (C3), a consistent configuration C = (P,X) ∈ CT induces an orien-
tation of the edges of T . Clearly any vertex s ∈ V (T ) can be incident to at most one
vertex t with X(t) 6= s, namely the vertex X(s) in the case X(s) 6= s. It is not hard to
see that if there is a vertex s with X(s) = s, then for every other vertex t of T , X(t)
lies on the unique t–s-path in T ; in other words, X(t) points towards s. In particular
there can be at most one such vertex s. Also note that in the case where C is bounded
there is exactly one vertex s with X(s) = s. This vertex s can be found by starting at
any vertex of T and following exit directions.

Let us go back to the Cayley graph G from Figure 6.1. Using the decomposition tree
T and the t-graphs from Figure 6.3, an example of a bounded consistent configuration
(W,X) on T is shown in Figure 6.4. Note that there are only 3 vertices carrying non-
boring configurations and that all exit directions point towards the unique vertex s of T
with X(s) = s.

The following extension lemma can be seen as the reason why boring configurations
are indeed not interesting to us. More precisely, it shows that a bounded consistent
configuration on T , is uniquely determined by the (finitely many) non-boring configura-
tions. Moreover, it tells us that under certain conditions a consistent configuration on a
finite set S ⊆ V (T ) can be extended to a bounded consistent configuration on T .

Lemma 6.2.2. Let s, t ∈ V (T ) such that s = t↑ and let cs = (ps, xs) be a configuration
on s such that ps ∩ E(s, t) = ∅ and xs 6= t. Then there is a unique configuration ct on t
compatible with cs, and this configuration ct is boring.

Proof. Suppose ct = (pt, xt) is a configuration on t such that ct and cs are compatible.
Then xt = s by (C3) and pt∩V(s, t) = (v1, . . . , vl) = ps∩V(s, t) by (C1). Property (C2)
implies that the sub-walks viptvi+1 contain only the virtual edge vivi+1 in E(s, t) and
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Figure 6.4: A bounded consistent configuration (W,X) on the tree decomposition T of
the Cayley graph G. Edges of the walk W (t) on the t-graph G(t) are drawn
bold and decorated with arrows according to their direction. Exit directions
of vertices of T are also denoted by arrows pointing from a vertex t to a
vertex s if X(t) = s.

by the definition of configurations and (C4) the walk pt starts at v1 and ends at vl. We
conclude that the configuration ct on t is unique and boring. Moreover, the consider-
ations above can be used to construct such a configuration, and in particular such a
configuration exists.

Our goal in this section is to establish a one-to-one correspondence ψr between bounded
consistent configurations C on the rooted tree decomposition T = (T,V, r) and self-
avoiding walks of length at least 1 on the underlying graph G starting at its root o. The
main idea is to contract the sub-tree induced by all vertices of T carrying non-boring
configurations to a single vertex. By also contracting the corresponding configurations,
only a single non-boring configuration remains; its walk is a walk on G and we denote
it by ψr(C).

In Section 6.1 we already discussed how to contract a set F of edges of a tree decom-
position T to obtain a contracted tree decomposition T /F . Let us repeat this process
for rooted tree decompositions and configurations on those tree decompositions. As we
are only interested in contractions of finite sets of edges, we first focus on the special
case where a single edge is contracted.

The following definition of the contraction of a rooted tree decomposition coincides
with our earlier definition of contractions of tree decompositions; the root part of the
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contraction is simply the equivalence class of r. We still give a detailed definition in
order to introduce some notation.

Let T = (T,V, r) be a rooted tree decomposition of a simple, locally finite, connected,
rooted graph (G, o) and let f ∈ E(T ). We may without loss of generality assume that
f− = (f+)↑ (if not, use the reversed edge). Define the contraction T /f = (T/f,V/f, r/f)
as follows.

The tree T/f is obtained from T by identifying the two endpoints f− and f+ of f and
deleting the edge f . More precisely, T/f can be described as follows. The vertex set of
T/f is obtained from the vertex set of T by replacing f− and f+ by a single vertex tf .
Every edge e ∈ E(T ) \ {f} not incident to f corresponds to an edge in T/f with the
same endpoints. Every edge e = st of T where t is an endpoint of f corresponds to an
edge connecting s and tf in T/f . We abuse notation and denote the edge corresponding
to e in T/f by e as well. The part V/f(tf ) is defined as V(f−)∪ V(f+); for every other
vertex of T/f we define V/f(t) = V(t). Finally, if r is incident to f , then let r/f = tf ,
otherwise let r/f = r.

Denote the parent of t ∈ V (T/f) by t↑/f . From the assumption f− = (f+)↑ it follows
that (tf )↑/f = (f−)↑, unless f− = r, in this case tf = r/f has no parent. For every other
vertex of T/f we have t↑/f = tf if t↑ ∈ {f−, f+}, and t↑/f = t↑ otherwise. Note that if
an edge e ∈ E(T ) \ {f} connects t to t↑ (or f− to (f−)↑), then the corresponding edge
in T/f that is also denoted by e connects t to t↑/f (or tf to (tf )↑/f ).

For e ∈ E(T/f) let V/f(e) and E/f(e) denote the adhesion set corresponding to e
and the set of e-edges with respect to the tree decomposition T /f , respectively. For
t ∈ V (T/f) let E/f(t) and G/f(t) denote the set of t-edges and the t-graph with respect
to the tree decomposition T /f , respectively. Using property (T3) of tree decompositions,
it is not hard to see that V/f(e) = V(e), E/f(e) = E(e), E/f(tf ) = E(f−) ∪ E(f+), and
E/f(t) = E(t) for t 6= tf . It follows that

G/f(t) =
{

(G(f−) ∪ G(f+))− E(f) if t = tf ,

G(t) otherwise.

Next we define contractions of configurations. Let C = (P,X) be a bounded consistent
configuration on T . For the definition of the contracted configuration C/f , assume
again without loss of generality that f− = (f+)↑, and let P (f−) ∩ V(f) = (v1, . . . , vl) =
P (f+)∩V(f), where the last equality follows from (C1). Let t0 = f−. For 1 ≤ j ≤ l−1,
let tj ∈ {f−, f+} be such that P (tj)∩E(f) = ∅; note that this uniquely defines a vertex
by (C2). If X(f−) = f+, then let tl = f+, otherwise let tl = f−. Define the walk pf as
the concatenation

P (t0)v1P (t1)v2 . . . vlP (tl).

In other words, pf is obtained from P (f−) and P (f+) by deleting all edges in E(f) and
then piecing the walk components of the resulting multi-walks together in a consistent
manner, see Figure 6.5.

The contraction C/f = (P/f,X/f) of the configuration C is defined as follows. For
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G(f−)
P (f−)

G(f+) P (f+)

G/f(tf )

pf

Figure 6.5: Combining walks P (f−) and P (f+) of compatible configurations on the end-
points of f into a walk pf on G/f(tf ).

the contracted vertex tf , let

P/f(tf ) = pf and X/f(tf ) =





X(f−) if X(f−) /∈ {f−, f+},
X(f+) if X(f+) /∈ {f−, f+},
tf otherwise.

Note that by (C3), the conditions in the first two cases in the definition of X/f cannot
be satisfied simultaneously, and in the third case X(f−) = X(f+) ∈ {f−, f+} holds.
For t 6= tf we define

P/f(t) = P (t) and X/f(t) =
{
X(t) if X(t) /∈ {f−, f+},
tf otherwise.

Note the similarity between the definition of X/f(t) and our observations about t↑/f
above; clearly, if X(t) = t↑, then X/f(t) = t↑/f .

Lemma 6.2.3. The walk pf is a self-avoiding walk on G/f(tf ) satisfying pf ∩ G(f−) =
P (f−)−E(f) and pf ∩G(f+) = P (f+)−E(f). In particular, the set of edges contained
in pf consists of the edge sets of P (f−)− E(f) and P (f+)− E(f).

Proof. If P (f+) is the empty walk, then pf = P (f−) and all claimed properties are
trivially satisfied, so assume that P (f+) 6= ∅. Since C is a configuration, P (f+) must
start in v1, that is, P (f+)v1 is a trivial walk only consisting of v1. By (C2), if tj = f−,
then P (f+) contains the edge vjvj+1 ∈ E(f), and if tj = f+, then P (f−) contains the
edge vjvj+1 ∈ E(f). Properties (C3) and (C4) imply that if tl = f+, then vlP (t−) is
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trivial and vice versa. Combining these observations with the fact that P (f−) can be
decomposed as P (f−) = P (f−)v1P (f−)v2 . . . vlP (f−) we conclude that

pf ∩ G(f−) = P (f−)− E(f),

and similarly for f+. This implies that pf uses no vertex more than once: for vertices
in V(f), this holds by definition, for vertices outside of V(f), this follows from the fact
that P (f−) and P (f+) are self-avoiding. Hence pf is self-avoiding.

The following lemma shows that C/f as defined above is indeed a bounded consistent
configuration on T /f .

Lemma 6.2.4. Let T = (T,V, r) be a rooted tree decomposition of the simple, locally
finite, connected, rooted graph (G, o), let C ∈ CT , and let f ∈ E(T ). Then C/f ∈ CT /f
and ‖C/f‖ = ‖C‖.

Proof. We start by showing that C/f = (P/f,X/f) is a configuration on T /f . First
consider t 6= tf . If C(t) is empty, then P/f(t) = P (t) = ∅ and X(t) = t↑, so by the
above observation X/f(t) = t↑/f . This shows that C/f(t) is the empty configuration.
If C(t) is non-empty, then P (t) = P/f(t) is a non-empty self-avoiding walk on G(t) =
G/f(t) starting in V(t↑, t) = V/f(t↑/f , t), or in o, if t = r, and ending in V(t,X(t)) =
V/f(t,X/f(t)). In case X/f(t) = t, clearly also X(t) = t, so in this case P (t) =
P/f(t) ends in a non-virtual edge. We conclude that C/f(t) = (P/f(t), X/f(t)) is a
configuration on t.

Now consider the contracted vertex tf . As before, without loss of generality assume
that f− = (f+)↑. If P/f(tf ) = pf is the empty walk, then P (f−) is the empty walk and
thus C(f−) must be the empty configuration. In particular X(f−) = (f−)↑ /∈ {f−, f+},
and thus X/f(tf ) = X(f−) = (tf )↑/f , showing that C/f(tf ) is the empty configuration.

So we may assume that pf is non-empty. By Lemma 6.2.3, pf is a self-avoiding
walk on G/f(tf ); it only remains to show that the first and last vertex of pf lie in the
appropriate adhesion sets. The first vertex of pf is the same as the first vertex of P (f−),
consequently it lies in V((f−)↑, f−) = V/f((tf )↑/f , tf ), or it is equal to o if tf = r/f and
thus f− = r. The last vertex of pf is the last vertex of P (tl). If X(f+) /∈ {f−, f+},
then X(f−) = f+, and thus tl = f+. It follows that the last vertex of pf lies in
V(f+, X(f+)) = V/f(tf , X/f(tf )). IfX(f−) /∈ {f−, f+} an analogous argument applies.
If both X(f−) and X(f+) are contained in {f−, f+}, then X/f(tf ) = tf ; in this case
P (tl) ends with a non-virtual edge, and consequently pf does not end in a virtual edge
if X/f(tf ) = tf . We conclude that C/f(tf ) = (P/f(tf ), X/f(tf )) is a configuration on
tf .

By construction the number of non-boring parts with respect to C/f is at most the
number of non-boring parts with respect to C, so C/f is bounded. Moreover C and C/f
use the same non-virtual edges, so ‖C/f‖ = ‖C‖ holds.

It remains to show that C/f is consistent, or in other words, that C/f(s) and C/f(t)
are compatible for any edge st ∈ E(T/f). If st is not incident with f , then this follows
from the fact that C is consistent, so we may without loss of generality assume that
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t = tf . We only treat the case where s is a neighbour of f− in T , the case where s and
f+ are neighbours is completely analogous.

Note that V/f(s, tf ) = V(s, f−) ⊆ V (G(f−)). Thus Lemma 6.2.3 implies that pf ∩
V/f(s, tf ) = P (f−)∩ V(s, f−) which in turn implies (C1). Next, note that E/f(s, tf ) =
E(s, f−) ⊆ E(G(f−)). By Lemma 6.2.3 we thus have upfv ∩ E/f(s, tf ) = uP (f−)v ∩
E(s, f−) for any pair of vertices u, v in V/f(s, tf ), and (C2) follows. For condition (C3)
observe that

X/f(tf ) = s ⇐⇒ X(f−) = s ⇐⇒ X(s) 6= f− ⇐⇒ X/f(s) 6= tf .

Finally, note that if X/f(tf ) = s, then X(f+) = f−, and consequently pf ends in the
same vertex as P (f−), so (C4) is satisfied.

Lemma 6.2.5. Let T = (T,V, r) be a rooted tree decomposition of the rooted graph
(G, o) and f ∈ E(T ). Then the function C 7→ C/f bijectively maps CT to CT /f .

Proof. As before, denote by tf the contracted vertex in T/f . Let C ′ = (P ′, X ′) ∈ CT /f .
We show that for any t ∈ V (T ), there is a unique choice C(t) = (P (t), X(t)) such that
C is a consistent configuration and C/f = C ′.

First consider t /∈ {f−, f+}. Necessarily P (t) = P ′(t), otherwise P/f(t) 6= P ′(t) by the
definition of contraction. Similarly, if X ′(t) /∈ {f−, f+}, then X(t) = X ′(t) as otherwise
X/f(t) 6= X ′(t). If X ′(t) = tf , then X(t) must be either f− or f+. Moreover, for C
to be a configuration, X(t) must be adjacent to t, and since T is a tree, t cannot be
adjacent to both f− and f+. So we have shown that X(t) must be the unique neighbour
of t in {f−, f+}.

By Lemma 6.2.3, we know that if we want C/f = C ′, we have to make sure that
P ′(tf ) ∩ G(f−) = P (f−)− E(f). So P (f−) can only differ from the multi-walk P ′(tf ) ∩
G(f−) by edges in E(f). Let q1, . . . , ql be the walk components of P ′(tf ) ∩ G(f−). Note
that each qj for j > 1 starts in V(f), and each qj for j < l ends in V(f). In particular, it
is possible to define a walk P (f−) = q1e1q2 . . . el−1ql, where ej ∈ E(f) is a virtual edge
connecting the last vertex of qj to the first vertex of qj+1. By the above discussion, this
is the only choice of P (f−) for which P/f(tf ) = P ′(tf ) can possibly hold. A completely
analogous argument applies to P (f+).

Finally, let us consider the exit directions of f− and f+. If X ′(tf ) 6= tf , then by (C2),
there is a unique neighbour x of tf in T/f such that X ′(x) 6= tf and thus X(x) /∈
{f−, f+}. If x is a neighbour of f− in T , then necessarily X(f−) = x and X(f+) = f−,
otherwise C is not consistent. Similarly, if x is a neighbour of f+ in T , then necessarily
X(f+) = x and X(f−) = f+. If X ′(tf ) = tf , then X(f−) = X(f+) ∈ {f−, f+}, since
otherwise either C/f 6= C ′, or C is not consistent. Note that in this case P ′(tf ) ends in a
non-virtual edge e because C ′ is a configuration. If e ∈ E(f−), then X(f+) = X(f−) =
f−, otherwise C is either not a configuration (if both endpoints of e lie in V(f)), or it is
inconsistent due to (C4). If e ∈ E(f+), then analogously X(f+) = X(f−) = f+.

A straight forward check (left to the reader) shows that the above construction indeed
gives a bounded consistent configuration C = (P, T ) ∈ CT with C/f = C ′.
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Our next goal is to define contraction of finite sets of edges. For this purpose, let
T = (T,V, r) be a rooted tree-decomposition of a simple, locally finite, connected, rooted
graph (G, o) and let F = {f1, . . . , fk} be a finite subset of E(T ). Then we define

T /F = T /f1/f2/ . . . /fk.

We note once again that this definition is consistent with the definition of T /F given
in Section 6.1. If the set F induces a connected subgraph of T , then there is a unique
contracted vertex in T/F ; we denote it by tF . Analogously, for a configuration C on T ,
we define C/F = (P/F,X/F ) by

C/F = C/f1/f2/ . . . /fk.

We would like these definitions to be independent of the order in which the edge con-
tractions are carried out. In order to make sense of this statement, we first need to
clarify when we consider two tree decompositions and configurations on them to be the
same. Let T1 = (T1,V1, r1) and T2 = (T2,V2, r2) be rooted tree decompositions of the
same rooted graph (G, o). We say that T1 and T2 are isomorphic if there is an isomor-
phism ι : T1 → T2 such that ι(r1) = r2 and V1 = V2 ◦ ι. We call two configurations
C1 = (P1, X1) on T1 and C2 = (P2, X2) on T2 isomorphic, if there is an isomorphism
ι as above additionally satisfying P1 = P2 ◦ ι and ι ◦ X1 = X2 ◦ ι. Since we only care
about tree decompositions and configurations up to isomorphism, we write T1 = T2 and
C1 = C2 to denote the fact that the respective tree decompositions and configurations
are isomorphic. Inductive application of the following lemma shows that T /F and C/F
(up to isomorphism) indeed do not depend on the order in which edges are contracted.

Lemma 6.2.6. Let T = (T,V, r) be a rooted tree-decomposition of a simple, locally
finite, connected, rooted graph (G, o), let C = (P,X) be a configuration on T and let
F = {f1, f2} ⊆ E(T ). Then T /f1/f2 = T /f2/f1 and C/f1/f2 = C/f2/f1.

Proof. Before we get started, we need to discuss a notational issue. Recall that when we
defined contractions, we abused notation so that we could refer to vertices and edges of
T and T/f by the same names. When considering contractions of different edges, this is
a potential source of confusion. For example, if there is an edge e connecting f−1 to f−2 ,
then e refers to the edge connecting tf1 to f−2 in T/f1, as well as to the edge connecting
tf2 to f−1 in T/f2.

However, for double contractions as considered in this lemma, this abuse of notation
works in our favour, that is, the function mapping every vertex of T/f1/f2 to the vertex
of T/f2/f1 with the same name is an isomorphism (which will play the role of ι). More
precisely, there are two cases to consider: if f1 and f2 are not incident, then T/f1/f2
and T/f2/f1 both contain two contracted vertices denoted by tf1 and tf2 . In this case,
any edge incident to f−1 or f+

1 in T is incident to tf1 in T/f1/f2 and T/f2/f1 and any
edge incident to f−2 or f+

2 in T is incident to tf2 in T/f1/f2 and T/f2/f1. If f1 and f2
are incident, then T/f1/f2 and T/f2/f1 both contain a unique contracted vertex which
we will denote by tF . In this case, any edge incident to f−1 , f+

1 , f−2 , or f+
2 in T is

incident to tF in T/f1/f2 and T/f2/f1. The endpoints of all other edges are the same
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in T , T/f1/f2, and T/f2/f1 thus giving the desired isomorphism. In light of the above
discussion, we will from now on treat T/f1/f2 and T/f2/f1 as the same tree and denote
it by T/F .

The claim T /f1/f2 = T /f2/f1 follows directly from the definition of contraction. First
note that by definition, if t /∈ {f−1 , f+

1 , f
−
2 , f

+
2 }, then V/f1/f2(t) = V(t) = V/f2/f1(t).

If f1 and f2 are not incident, then

V/f1/f2(tf1) = V/f1(tf1) = V(f−1 ) ∪ V(f+
1 ) = V/f2(f−1 ) ∪ V/f2(f+

1 ) = V/f2/f1(tf1),

and analogous arguments show that V/f1/f2(tf2) = V/f2/f1(tf2). In case f1 and f2 are
incident, the same line of reasoning leads to

V/f1/f2(tF ) = V/f2/f1(tF ) = V(f−1 ) ∪ V(f+
1 ) ∪ V(f−2 ) ∪ V(f+

2 ),

where two of the sets in the union on the right-hand side are the same. It is also easily
verified that r/f1/f2 = r/f2/f1, thus showing that indeed T /f1/f2 = T /f2/f1.

Our next goal is to show that P/f1/f2 = P/f2/f1. If t /∈ {f−1 , f+
1 , f

−
2 , f

+
2 }, then

P/f1/f2(t) = P (t) = P/f2/f1(t) by definition, so it only remains to consider the con-
tracted vertices.

If f1 and f2 are not incident, then P/f1/f2(tf1) = P/f1(tf1) and Lemma 6.2.3 tells
us that this walk contains exactly the edges of P (f−1 ) − E(f1) and P (f+

1 ) − E(f1). On
the other hand, P/f2/f1(tf1) contains exactly the edges of P/f2(f−1 ) − E/f2(f1) and
P/f2(f+

1 ) − E/f2(f1). Since P/f2(f−1 ) = P (f−1 ), P/f2(f+
1 ) = P (f+

1 ), and E/f2(f1) =
E(f1), the two edge sets coincide, and using that a self avoiding walk is uniquely deter-
mined by its set of edges we conclude that P/f1/f2(tf1) = P/f2/f1(tf1). An analogous
argument shows that P/f1/f2(tf2) = P/f2/f1(tf2).

If f1 and f2 are incident, then we may assume without loss of generality that f−1 = f−2 ,
in particular the edge f2 connects f+

2 to tf1 in T/f1. By Lemma 6.2.3, the edge set
of P/f1/f2(tF ) consists of the edges of P/f1(f+

2 ) − E/f1(f2) = P (f+
2 ) − E(f2) and

P/f1(tf1) − E/f1(f2). Again by Lemma 6.2.3, the edge set of the latter multi-walk
consists of the edge sets of P (f−1 )− (E(f1) ∪ E(f2)) and P (f+

1 )− (E(f1) ∪ E(f2)). Since
f1 is not incident to f+

2 , the graph G(f+
2 ) and thus also the walk P (f+

2 ) is disjoint from
E(f1), and we conclude that the edge set of the walk P/f1/f2(tF ) consists of the edge
sets of P (f−1 )− (E(f1) ∪ E(f2)), P (f+

1 )− (E(f1) ∪ E(f2)), and P (f+
2 )− (E(f1) ∪ E(f2)).

Since f−1 = f−2 , this is symmetric in f1 and f2, and an analogous argument shows that
the edge set of P/f2/f1(tF ) is the same. Thus the two walks coincide.

Finally, we need to show that X/f1/f2 = X/f2/f1. By Lemma 6.2.4, both C/f1/f2
and C/f2/f1 are bounded consistent configurations, thus by Remark 6.2.1 it suffices to
show that the unique vertex t ∈ T/F with X/f1/f2(t) = t also satisfies X/f2/f1(t) = t.
This clearly follows from the definition of X/f .

Recall that the goal of this section is relating bounded consistent configurations on T
to self-avoiding walks of length at least 1 starting at the root o of G. In this sense the
upcoming Theorem 6.2.7 is the main result of this section. In preparation of this theorem,
for each vertex t, we define a map ψt mapping bounded consistent configurations C on
T to SAWs on the graph G(Kt) corresponding to the cone Kt as follows.
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First, recall the definition of G(S) for S subset of V (T ). In particular, when S = Ks

is a cone,

G(Ks) =


 ⋃

t∈Ks

V(t) ,
⋃

t∈Ks

E(t) ] E(s, s↑)


 .

Let S ⊆ Kt consist of the vertex t and all vertices of Kt carrying non-boring configura-
tions. Note that Lemma 6.2.2 implies that T [S] is connected and thus a finite subtree
of Kt. Let F = E(T [S]) be the set of its edges. We define

ψt(C) = P/F (tF ),

where tF is the unique contracted vertex in T/F . In other words, ψt(C) is the self-
avoiding walk on the finite graph G/F (tF ) obtained by contracting all edges of T [Kt]
connecting two vertices carrying non-boring configurations. By (C2) all its virtual edges
must be in E/F (t↑F , tF ) = E(t↑, t), because all other neighbours of tF carry boring con-
figurations. In particular, ψt(C) is a SAW on G(Kt) as claimed.

Let us illustrate this definition using the bounded consistent configuration depicted
in Figure 6.4. In Figure 6.6 we iteratively contract edges incident to the root vertex r
until only a single vertex carrying a non-boring configuration remains. This only takes
two steps. Any further contraction, for example the one done in the third step, does not
change the walk ψr(C) anymore.

Theorem 6.2.7. Let (G, o) be a simple, locally finite, connected graph rooted at o ∈
V (G), and let T = (T,V, r) be a rooted tree decomposition of (G, o). Then ψr is a
bijection between the set CT and the set of self-avoiding walks of length at least 1 on G
starting at o and for every C ∈ CT , the weight ‖C‖ coincides with the length of ψr(C).

Proof. Let C ∈ CT . As above, let S be the set of all vertices of T carrying non-boring
configurations and let F = E(T [S]). Note that the root r is contained in S, and con-
sequently tF is the root of T/F . By the above discussion, ψr(C) = P/F (tF ) is a
self-avoiding walk on G starting at the vertex o. Furthermore, by inductive application
of Lemma 6.2.4, the weight ‖C‖ is equal to the weight ‖C/F‖, which is the length of the
walk ψr(C), because ψr(C) contains no virtual edges. Finally, note that X/F (tF ) = tF
and thus P/F (tF ) ends with a non-virtual edge, in particular ψr(C) has length at least
1.

It remains to show that ψr is bijective. We first show that it is injective. For i = 1, 2
let Ci = (Pi, Xi) ∈ CT such that ψr(C1) = ψr(C2). Let S consist of all vertices s of
T such that at least one of C1(s) and C2(s) is non-boring and let F = E(T [S]). Then
X1/F (tF ) = X2/F (tF ) = tF because all neighbours of tF carry boring configurations.
While S could potentially contain some vertices s of T such that Ci(s) is boring, this
does not influence the result of Pi/F (tF ). Thus by assumption

P1/F (tF ) = ψr(C1) = ψr(C2) = P2/F (tF )

and this walk does not contain virtual edges, so Lemma 6.2.2 implies that C1/F = C2/F .
Inductive application of Lemma 6.2.5 yields C1 = C2, so ψr is injective.
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Figure 6.6: Contraction of the bounded consistent configuration C on T . The walk
ψr(t) is reached after 2 steps. It contains only non-virtual edges and does
not change anymore during the third contraction.

To prove that ψr is surjective, let p be a SAW of length at least 1 on G starting at
o. There is a finite subset S ⊆ V (T ) such that all edges of p are contained in G(S) and
T [S] is connected. As before, let F = E(T [S]). Then (p, tF ) is a configuration on tF
and p does not contain virtual edges, thus Lemma 6.2.2 provides a bounded consistent
configuration C ∈ CT /F such that C(tF ) = (p, tF ). Lemma 6.2.5 yields a configuration
C ∈ CT with ψr(C) = P and therefore ψr is surjective.

Remark 6.2.8. While ψt maps bounded consistent configurations on the cone Kt to
walks on the corresponding graph G(Kt), it is (in general) only a bijection in the case
t = r. This is due to the fact that for t 6= r the exit direction X(t) at vertex t is in
general not uniquely determined by the walk ψt(C); in many cases it can be either t or
t↑.
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6.3 A grammar for bounded consistent configurations
Throughout this section let (G, o) be a rooted, simple, locally finite, connected graph
having only thin ends and let Γ be a group acting quasi-transitively on G. Corollary 5.5
in [56] by Thomassen and Woess states that any transitive graph without thick ends
is accessible. Using the fact that any quasi-transitive graph is quasi-isometric to some
transitive graph (see Remark 2.1.1), and additionally that quasi-isometries preserve ac-
cessibility (see also Lemma 4.1.1), we obtain that the graph G is accessible.

By Corollary 6.1.2 there is a reduced, Γ-invariant, rooted tree decomposition T =
(T,V, r) of (G, o) such that there are only finitely many Γ-orbits on E(T ). By prop-
erty (P3) in Section 6.1 the parts of such a tree decomposition are finite and by (P4)
the tree T is locally finite.

Our goal in this section is to reveal a recursive structure in the set of bounded con-
sistent configurations, which we later use to define a context-free grammar. To this end
we first show that there are only finitely many essentially different configurations on
vertices of T . The letters in Σ will correspond to these different configurations, and the
production rules will reflect the ways in which individual configurations can be combined
in a compatible way.

6.3.1 Choosing representatives of configurations
We would like to define a function ρ assigning one of finitely many representatives to
each vertex t of T and each configuration c = (p, x) on t. This function ρ is chosen in
a way that for neighbouring vertices s and t of T and configurations cs and ct on them
compatibility only depends on ρ(cs) and ρ(ct).

We start by choosing representatives of the cone equivalence classes of vertices of T .

Lemma 6.3.1. There is a finite subset R of V (T ) containing exactly one vertex of every
cone type such that T [R] is connected.

Proof. Choose a subset R of V (T ) such that R contains at least one vertex of every cone
type, T [R] is connected, and R has minimal cardinality among all such sets. Clearly
R is finite as there are only finitely many cone types. Assume that R contains two
vertices s and t in the same cone type and let γ ∈ Γ map Ks onto Kt. Then the set
R′ = (R ∪ γ(R ∩Ks)) \ (R ∩Ks) still satisfies the condition that T [R′] is connected and
has smaller cardinality than R, because t ∈ R ∩ γ(R ∩Ks).

Let us now fix a set of representatives R of the cone types of T as in the previous
lemma. The representative of a vertex t of T is denoted by ρ(t) ∈ R.

For every vertex t of T we define an automorphism δt ∈ Γ mapping Kt to Kρ(t). For
t ∈ R let δt = 1Γ, the neutral element in Γ, which acts as the identity on G. For any
vertex t ∈ V (T ) \R with t↑ ∈ R fix some arbitrary automorphism δt ∈ Γ mapping Kt to
Kρ(t). Finally for all other vertices t of T inductively define

δt = δδ
t↑ (t) ◦ δt↑ . (6.1)
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This is well defined because δt↑(t) must be a child of a vertex of R for every t; in
particular, if δt↑(t) ∈ R, then δδ

t↑ (t) = 1Γ. Note that equation (6.1) in fact holds for all
vertices t of T besides the root r.

We use these maps to extend the map ρ to configurations. Let c = (p, x) be a
configuration on a vertex t of T . Then ρmaps c onto a configuration on the representative
ρ(t) = δt(t) of t by

ρ(c) = δt(c) = (δt(p), δt(x)).

Additionally for every t ∈ T let t↓1, . . . , t
↓
k(t) be the k(t) children of t ordered in a way

such that
δt(t↓i) = δt(t)↓i = ρ(t)↓i. (6.2)

This can be achieved by fixing any order of the children of vertices in R and then ordering
the children of any vertex t accordingly. From the definition (6.1) of δt it is immediate
that

δt↓i
= δδt(t↓i) ◦ δt. (6.3)

Note that the representative of the i-th child of t is exactly the representative of the
i-th child of ρ(t):

ρ(t↓i) = δt↓i
(t↓i) = δδt(t↓i)(δt(t

↓
i)) = δρ(t)↓i

(ρ(t)↓i) = ρ(ρ(t)↓i). (6.4)

In the above equation, the first and last equalities use the definition of ρ on t↓i and ρ(t)↓i
respectively, the other equalities follow from (6.3) and (6.2).

Moreover we can use δt to map a consistent configuration C on t and its children
to a consistent configuration δt ◦ C ◦ δ−1

t on the representative ρ(t) and its children.
Note that δ−1

t is applied to vertices of T whereas δt is applied to configurations on the
corresponding parts. Similar to (6.4), we get that the configuration assigned by C to
the i-th child of t and the configuration assigned by δt ◦ C ◦ δ−1

t to the i-th child of the
representative of t have the same image under ρ:

ρ(C(t↓i)) = δt↓i
(C(t↓i)) = δδt(t↓i)(δt(C(t↓i))) = ρ(δt(C(t↓i))) = ρ(δt ◦ C ◦ δ−1

t (ρ(t)↓i)). (6.5)

Similarly to (6.4), the first and second equalities in (6.5) follow from the definition of ρ
and equation (6.3), respectively. For the third equality, we use the definition of ρ and
the fact that δt(C(t↓i)) is a configuration on δt(t↓i). The last equality follows from (6.2).

Let us illustrate the above definitions using the tree decomposition (T,V) shown in
Figure 6.2. As before, we choose the central vertex corresponding to a part of cardinality
3 as the root r. It is not hard to see that Γ acts with six orbits on the set of directed
edges of T , so we obtain seven cone types and the set R has to contain seven vertices
(see also Lemma 6.1.7). Figure 6.7 shows a valid choice of the set R. Note that we could
also have taken the seven vertices in the first three layers of the rooted tree T as our set
R.

Let us sketch the recursive definition of δt using the vertices t1, t2 and t3 in Figure 6.7.
First, note that the vertex t1 is contained in R, so by definition δt1 is the identity map.
The parent of t2 is in R, so we may choose an arbitrary automorphism γ in Γ mapping t2
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r

t3

t2

t1

Figure 6.7: Cone types of the tree decomposition T . The square nodes give one possible
valid choice for the set R. The marked cones rooted at t1, t2 and t3 have the
same type.

to its representative t1 in R and set δt2 = γ. Regarding t3, note that the representative
of t↑3 in R is t↑2, thus by definition δt↑3

maps the cone Kt↑3
onto Kt↑2

and thus t3 onto t2.
The map δt3 is obtained by first applying δt↑3 (which maps t3 to t2), and then applying
δδ

t↑3
= δt2 (which maps t2 to t1).

6.3.2 Construction of the grammar
The goal of this section is to construct a context-free language, whose words are in
one-to-one correspondence with bounded consistent configurations on the rooted tree
decomposition T . Essentially, this language is obtained by going through the vertices of
the decomposition tree carrying non-boring configurations in the order given by depth-
first search and noting down the corresponding representatives of configurations (that
is, their images under ρ).

Instead of constructing a context free grammar for this language, we construct a 1-
multiple context free grammar. Clearly the two notions are equivalent; recall that by
Remark 2.2.4 every context-free grammar stands in one-to-one correspondence to a 1-
multiple context-free grammar generating the same language. However, in anticipation
of Section 6.4, where a multiple context free grammar for SAWs is constructed in a
very similar way, it makes more sense to consider multiple context-free grammars in the
present section as well.

The 1-multiple context-free grammar G = (N,Σ,P, Ar) generating our desired lan-
guage is defined as follows.

The alphabet is
Σ = {ac | c configuration on some t ∈ R}.
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The set of non-terminals is

N = {Ar} ∪ {At,c | t ∈ R, c configuration on t}.

For each t ∈ R and every consistent configuration C on the set {t, t↓1, . . . , t↓k(t)}, the set
P contains a production rule as follows. If C(t) is non-boring, then the production

At,C(t)(aC(t)x1 . . . xk(t))←
(
Aρ(t↓i),ρ(C(t↓i))(xi)

)
i∈[k(t)]

is in P. If C(t) is boring, then P contains the terminal rule

At,C(t)(ε)← .

Additionally P contains for every configuration C(r) on r the production

Ar(x)← Ar,C(r)(x).

Note that any production rule of this grammar is uniquely determined by its head
and tail. This means that we do not lose any information by using simplified derivation
trees, where every vertex is labelled by the head of its corresponding rule instead of the
complete rule. To shorten notation, we henceforth work with simplified labels.

Remark 6.3.2. Observe that for any simplified derivation tree D of G whose root d is
labelled At,c, the following three conditions hold.

(i) The number of children of d is uniquely given by the pair (t, c); we denote it by k.

(ii) If c is non-boring, the word corresponding to D is w(D) = acw(D1) . . . w(Dk),
where Di is the sub-tree of D rooted at the i-th child of d and k > 0. Otherwise c
is boring, w(D) = ε and d is the only vertex of D.

(iii) Let d = v1, v2, . . . , vn be the vertices of D in DFS-order and let λ(vi) = Ati,ci be
their labels. Then

w(D) = x1 . . . xn, where xi =
{
aci if ci is non-boring
ε otherwise

Observations (i) and (ii) are direct consequences of the structure of G. For (iii) use
induction on the number of vertices n of D. If n = 1, then (ii) implies that c1 is boring
and w(D) = ε, so (iii) holds. Let now n > 1 and suppose (iii) holds for every derivation
tree with at most n−1 vertices. Then c1 is non-boring and the claim follows from (ii) by
applying the induction hypothesis on the sub-trees D1, . . . , Dk rooted at the k children
of v1.

Lemma 6.3.3. The grammar G is unambiguous 1-multiple context-free.
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r
t3

t2

t1
t6

t5

t4 φ
Ar,C(r)

At1,C(t1) Aρ(t2),ρ(C(t2)) At3,C(t3)

At4,C(t4) At6,C(t6)

Figure 6.8: The map φ transforms the configuration C on the decomposition tree T
into the derivation tree φ(C) over the grammar G. The generated word is
w(φ(C)) = aC(r)aC(t1)aC(t4)aρ(C(t2))aC(t3)aC(t6).

Proof. Let D and D′ be different non-trivial (consisting of at least 2 vertices) derivation
trees. Then there is a smallest positive number m, such that the m-th vertices u and
u′ in the DFS-orders on D and D′ either have a different number of children or have a
different label. Remark 6.3.2 (i) implies that in any case λ(u) = At,c 6= λ(u′) = At′,c′ , so
in particular c 6= c′. By minimality of m, the parents of u and u′ have the same label,
so by Lemma 6.2.2 the configurations c and c′ must be non-boring. Thus Remark 6.3.2
(iii) implies that w(D) 6= w(D′) and G is unambiguous.

Bounded consistent configurations on T are closely related to derivation trees of G.
Let us define a map φ assigning to any given C = (P,X) ∈ CT a derivation tree of
our grammar G as follows. Let S ⊆ V (T ) consist of all vertices s carrying non-boring
configurations C(s) and their neighbours. Then T [S] is connected and can be seen as
an ordered tree with root r, where the order of the children is inherited from the tree T .
We label every vertex s of T [S] with λ(s) = Aρ(s),ρ(C(s)).

As an example, we provide in Figure 6.8 the derivation tree φ(C) of the configuration
C given in Figure 6.4. Note that the vertex t2 is not contained in the set R from
Figure 6.7, so we need to apply ρ to the respective configuration. For all other ti, the
map ρ is the identity map and can be omitted. The vertex t5 is not contained in φ(C)
because its parent t2 carries a boring configuration.

Lemma 6.3.4. The map φ is a bijection between the set CT of bounded consistent
configurations on T and the set of derivation trees whose root is labelled by Ar,c for
some configuration c on r.

Proof. Observe that an ordered tree labelled with non-terminals of N is a simplified
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derivation tree of G if and only if for every vertex t and its children t1, . . . , tk there is a
rule in P with head λ(t) and tail (λ(t1), . . . , λ(tk)).

Let S be as above and s be a vertex of T [S]. If C(s) is boring, then s is a leaf in T [S]
and Aρ(s),ρ(C(s))(ε)← is a rule in P.

Otherwise C(s) is non-boring and we consider the children s↓1, . . . , s
↓
k(s) of s in T , which

are also the children of s in T [S]. Then the production

Aρ(s),ρ(C(s))(aρ(C(s))x1 . . . xk(s))←
(
Aρ(s↓i),ρ(C(s↓i))(xi)

)
i∈[k(s)]

is in P because δs ◦ C ◦ δ−1
s is a consistent configuration on {δs(s), δs(s↓i), . . . , δs(s↓k(t))}

and (6.4) and (6.5) hold. We conclude that φ(C) is a derivation tree of G.
Our next step is to show that φ is surjective. Let D be a derivation tree of G whose

root d is labelled Ar,c. We recursively construct an embedding ι of D into T and a
bounded consistent configuration C on T such that every vertex u of D has the label

λ(u) = Aρ(ι(u)),ρ(C(ι(u))). (6.6)

We start the top-down construction by setting ι(d) = r and C(r) = c. Then clearly
d satisfies (6.6). Suppose now ι(u) = t is already defined for a vertex u of D and that
u satisfies (6.6). Let u1, . . . , uk be the k > 0 children of u in D and λ(ui) = Asi,ci their
labels. Then

Aρ(t),ρ(C(t))(aρ(C(t))x1 . . . xk)← (Asi,ci(xi))i∈[k] (6.7)

is a rule in P. This implies that t has precisely k children t↓1, . . . , t
↓
k in T and moreover

that ρ(t↓i) = si holds for every i. We define ι(ui) = t↓i and C(t↓i) = δ−1
ti (ci). Then

C(t↓i) is compatible with C(t) for every i ∈ [k]; the production rule (6.7) is in P if and
only if ρ(C(t)) = δt(C(t)) and δ−1

ρ(t)↓i
(ci) = δt(δ−1

ti (ci)) are compatible. In this way we
have constructed a consistent configuration C on the sub-tree ι(D) of T . Note that by
definition of the set P, configurations on leaves of ι(D) are boring. By Lemma 6.2.2 the
configuration C can be (uniquely) extended to a bounded consistent configuration on T .
Moreover it follows directly from (6.6) that φ(C) = D, so φ is surjective.

Finally, it is not hard to see that φ is injective. Any two different configurations
C1 6= C2 have to differ on some vertex t of T ; we pick such a t with minimal distance to
the root r. Then C1(t↑) = C2(t↑), so Lemma 6.2.2 yields that C1(t↑) is non-boring. Thus
t is a vertex of φ(C1) and φ(C2). For i ∈ {1, 2} the label of t in φ(Ci) is Aρ(t),ρ(Ci(t)), so
in particular φ(C1) 6= φ(C2) and we conclude that φ is injective.

It is clear that φ also describes a bijection between the set CT of bounded consistent
configurations on T and derivation trees of G whose roots are labelled Ar. Moreover, the
number of occurrences of a given letter ac in the word w(φ(C)) ∈ L(G) corresponding
to φ(C) is equal to the number of vertices t of T with ρ(C(t)) = c.

Combining the previous results, the composition of the bijection φ mapping configu-
rations onto derivation trees and the natural bijection w between derivation trees and
their corresponding words of an unambiguous 1-multiple context-free grammar G is a
bijection between CT and words in L(G), as stated in the following corollary.
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Corollary 6.3.5. There is a bijection θ between the set CT of bounded consistent config-
urations on T and the words in the unambiguous 1-multiple context-free language L(G)
such that the number of occurrences of a given letter ac in θ(C) coincides with the number
of vertices t of T with ρ(C(t)) = c.

Further combining Corollary 6.3.5 with the connection between bounded consistent
configurations and SAWs established in Theorem 6.2.7, we obtain the proof of our first
main result, Theorem 6.0.1. Before we turn to the proof, let us recall the statement of
the theorem.

Theorem 6.0.1. Let G be a locally finite, connected, quasi-transitive graph having only
thin ends and let o ∈ V (G). Then FSAW,o(z) is algebraic over Q. In particular the
connective constant µ(G) is an algebraic number.

Proof. Let Γ be a group acting quasi-transitively on G and T = (T,V, r) be a reduced,
Γ-invariant, rooted tree decomposition of (G, o) such that there are only finitely many
Γ-orbits on E(T ). Then by Theorem 6.2.7 the generating function of self-avoiding walks
coincides with the generating function of the set CT ,

FSAW,o(z) =
∑

C∈CT
z‖C‖.

Let G = (N,Σ,P, S) be the unambiguous 1-multiple context-free grammar over the
alphabet Σ = {ac1 , . . . , acm} as defined at the start of Section 6.3.2, where the ci are
configurations on vertices in R, and let FL(G)(ac1 , . . . , acm) be the commutative language
generating function of L(G). Chomsky and Schützenberger showed in [7] that commuta-
tive language generating functions of unambiguous context-free languages are algebraic
over Q, that is, there is an irreducible polynomial P in m+ 1 variables with coefficients
in Q such that

P (FL(G)(ac1 , . . . , acm), ac1 , . . . , acm) = 0.

Corollary 6.3.5 yields that the generating function of CT coincides with the generating
function obtained by substituting every variable aci in FL(G) by the monomial z‖ci‖,

FSAW,o(z) = FL(G)
(
z‖c1‖, . . . , z‖cm‖

)

In particular FSAW,o(z) is algebraic over Q; it satisfies the equation

Q (FSAW,o(z), z) = 0,

where Q(y, z) = P
(
y, z‖c1‖, . . . , z‖cm‖

)
is a polynomial with coefficients in Q. The

connective constant µ(G) is the reciprocal of the radius of convergences of the algebraic
function FSAW,o(z) and thus an algebraic number.
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6.4 The multiple context-free language of self-avoiding walks
In this section, we prove the second main result of this paper, which we briefly recall for
convenience.

Theorem 6.0.3. Let G be a simple, locally finite, connected, quasi-transitive determin-
istically edge-labelled graph and let o ∈ V (G). Then LSAW,o(G) is k-multiple context-free
if and only if every end of G has size at most 2k.

The proofs of the two implications are quite different from one another and will be
discussed separately in the two subsections of this section. In order to show that bounded
end size implies that LSAW,o(G) is a MCFL, we adopt a similar approach as in the
previous section and construct a MCFG which is very closely related to the grammar G
defined in Section 6.3. For the converse implication we essentially follow the approach
of Section 4.2; note that this part does not depend on the other results of the current
chapter and can be read independently.

6.4.1 Bounded end size implies multiple context-freeness
We use again the assumptions, notation and definition from the previous section. In
particular T = (T,V, r) again denotes a rooted tree decomposition of a rooted graph
(G, o) fixed throughout this section; we also fix a map ρ as constructed in Section 6.3. Our
aim is proving the following theorem, a stronger version of one of the two implications
of Theorem 6.0.3.

Theorem 6.4.1. Let G be a simple, locally finite, connected, quasi-transitive edge-
labelled graph having only ends of size at most k and let o be a given vertex of G.
Then the language of self-avoiding walks LSAW,o(G) is dk/2e-multiple context-free.

If the edge-labelling is deterministic, then LSAW,o(G) is unambiguous dk/2e-multiple
context-free.

To prove the above theorem, we give an MCFG G = (N,Σ,P, Ar) and show that
it generates the language LSAW,o(G). As mentioned above, G is a refinement of the
1-MCFG from Section 6.3.

Obviously, the alphabet Σ has to consist of all edge-labels. Note that this is a finite
set since G is locally finite and the group of label preserving automorphisms is assumed
to act quasi-transitively.

Like in Section 6.3, the set of non-terminals is

N = {Ar} ∪ {At,c | t ∈ R, c configuration on t}.

However, since we are constructing a MCFG, we need to assign a rank to each non-
terminal; to this end some additional definitions are necessary. For a vertex t of T and a
configuration c = (p, x) on t let µ(c) denote the number of walk components of p−E(t↑, t)
containing at least two vertices of V(t↑, t). Furthermore let r(c) = µ(c) + 1 if x 6= t↑ and
the final walk component of p − E(t↑, t) contains only a single vertex of V(t↑, t) and let
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Figure 6.9: Decomposition of P (t) into sub-walks P lh. For even l, the walk P lh is equal to
some U ji ; for instance P 4

2 = U2
1 means that the fourth sub-walk in the second

walk component of P (t)−E(t↑, t) coincides with the second walk component
of P (t) ∩ G(t, t↓1).

r(c) = µ(c) otherwise. Define the rank of the non-terminal At,c to be r(c). Note that
r(c) = 0 if and only if c is boring. For a configuration c = (p, x) on the root part, we
define r(c) = 1; note that this is consistent with the above definition in the sense that
the root has no parent and there is exactly one walk component of p.

Next we turn to the set P of production rules. For every boring configuration c on a
vertex t ∈ R, P contains the rule

At,c(∅)← .

For non-boring configurations, we need more involved production rules that require
some preliminary definitions. Let t ∈ R and let C = (P,X) be a consistent configuration
on {t, t↓1, . . . , t↓k(t)} such that C(t) is non-boring. Let P1, . . . , Pµ(C(t)) be the walk compo-
nents of P (t)−E(t↑, t) containing at least 2 vertices of V(t↑, t), and if r(C(t)) > µ(C(t))
let Pr(C(t)) be the (possibly trivial) final walk component of P (t)−E(t↑, t). Moreover, for
each i ∈ [k(t)] let U1

i , . . . , U
µi
i be the non-trivial walk components of P (t)∩G(t, t↓i), that

is, the walk components that contain more than one vertex. Every Ph admits a unique
decomposition into an odd number of sub-walks Ph = P 1

hP
2
h . . . P

2m+1
h such that P lh is a

(possibly trivial) non-virtual walk if l is odd and equal to some U ji if l is even. Observe
that P lh = U ji means that the l-th part in the decomposition of Ph is the j-th walk
component of P (t) ∩ G(t, t↓i), that is, the notation P lh indicates which walk component
of P (t) the walk lies in, whereas the notation Qji tells us which adhesion set the virtual
edges belong to, see Figure 6.9 for an example.
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For h < r(C(t)), the string αh corresponding to Ph is

αh = `(P 1
h )z(P 2

h )`(P 3
h )z(P 4

h ) . . . `(P 2m+1
h ),

where z(P lh) = zi,j with i, j chosen such that P lh = U ji ; in other words, αh is obtained
from Ph by concatenating labels of non-virtual walks P lh, and variables zi,j for virtual
walks P lh. For h = r(C(t)), we define

αh = `(P 1
h )z(P 2

h )`(P 3
h )z(P 4

h ) . . . `(P 2m+1
h )β,

where z(P lh) = zi,j as above, and β = ε unless there is some i ∈ [k(t)] such that X(t) = t↓i
and P (t) does not end with an edge in E(t, t↓i), in which case β is equal to the single
variable zi,µi+1.

For every t ∈ R and each configuration C on t and its children such that C(t) is
non-boring, P includes the production rule

At,C(t)(α1, . . . , αr(C(t)))←
(
Aρ(t↓i),ρ(C(t↓i))(zi,1, . . . , zi,r(C(t↓i)))

)
i∈[k(t)]

(6.8)

where the strings α1, . . . , αr(C(t)) are defined as above.
Finally, for every configuration c on the root r the production rule

Ar(z)← Ar,c(z)

is in P; this is a well formed production rule since Ar,c has rank 1.
Before showing that this grammar indeed generates the language LSAW,o(G), let us

discuss why this intuitively should be true.
Let us extend the label function ` to walks p on the graph G(Kt) corresponding to the

coneKt in the natural way by mapping p onto the tuple of labels `(p) = (`(p1), . . . , `(pm))
of the non-trivial walk components p1, . . . , pm of p − E(t↑, t). If p is the empty walk,
then `(p) = ∅. For a bounded consistent configuration C ∈ CT with C(t) = c, we
want the term At,c(`(ψt(C))) to be derivable in G, where ψt(C) is the walk on G(Kt)
corresponding to the configuration C as defined on page 85. This is inductively taken
care of by production rules of type (6.8): sub-walks of Ph consisting of virtual edges
correspond to variables zi,j in the string αh which are subsequently replaced by strings
corresponding to walk components of ψs(C) − E(t, s) where s is some child of t. To
see that this intuitively makes sense, recall that by definition ψt(C) is obtained by
contracting all edges vertices carrying non-boring configurations and then taking the
walk P (tF ), where tF is the unique contracted vertex. By Lemma 6.2.6, the order of
edge contractions does not matter, hence we can first contract all edges not incident to t;
in particular, the walk ψt(C) can be obtained by replacing sub-walks consisting of virtual
edges in E(t, s) by appropriate sub-walks of ψs(C), see Figure 6.10. This replacement
procedure is essentially captured by rules of type (6.8).

When making the above intuition precise, there are some technical issues that need to
be addressed, leading to the fairly involved definition of r(c) and to the subtle difference
between αh for h < r(C(t)) and αr(C(t)). These are due to the fact that walk components
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Figure 6.10: Iterated contraction shows that we can obtain ψt(C) by combining walks
P (t) and ψs(C) for all children s of t.

of ψt(C) − E(t↑, t) come in two different flavours. Recall that the walk ψt(C) starts in
V(t↑, t), and so does every walk component of ψt(C) − E(t↑, t). Call a walk component
a U-walk if it returns to V(t↑, t), and an I-walk if it doesn’t. We now sketch how these
two types of walks relate to the definitions of r(c) and αh.

Firstly, recall that the rank r(C(t)) of At,C(t) should equal the number of walk com-
ponents of ψt(C) − E(t↑, t). It is not hard to see that the projection of any U-walk is a
non-trivial walk component of P (t)− E(t↑, t) containing at least two vertices in V(t↑, t).
I-walks on the other hand may or may not use edges of G(t). Note however that if there
is an I-walk, then it is necessarily the last walk component of ψt(C)− E(t↑, t), and it is
not hard to see that in this case X(t) 6= t↑. In particular, we have r(C(t)) = µ(C(t)) + 1
if and only if there is an I-walk. Since µ(C(t)) clearly counts the number of U-walks, we
conclude that r(C(t)) is indeed the number of walk components.

I-walks are also the reason why we need to include β in the definition of αr(C(t)). If
t has a child t↓i such that ψt↓i (C) − E(t, t↓i) contains an I-walk, then ψt(C) ends in this
I-walk. Note that this happens if and only if X(t) = t↓i and the last edge of P (t) is not
contained in E(t, t↓i). We would like the production rules to reflect this possibility, but
the I-walk only intersects V(t) in its starting point and thus it does not correspond to
any non-trivial walk component of P (t)∩G(t, t↓i). Adding zi,µi+1 to the end of the string
αr(C(t)) allows us to replace the trivial walk consisting of the last vertex of P (t) by such
an I-walk. We once again point out that an I-walk always sits at the end of ψt(C), so
we only have to consider this in the definition of αh for h = r(C(t)).

With the above intuition and the resulting subtleties in mind, let us start by proving
some basic results about the grammar G.

Lemma 6.4.2. The grammar G is a dk/2e-multiple context-free.

Proof. As mentioned in the previous section, R is a finite set and the number of valid
configurations on a given part is finite, so N and P are finite sets. For the proof of
multiple context-freeness of G, it only remains to verify that every expression (6.8) is a
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well-formed production rule over (N,Σ). Compatibility of C(t) and C(t↓i) implies that
µi = µ(C(t↓i))) for every i. Additionally, if X(t) = t↓i for some i ∈ [k(t)] and P (t)
does not end with an edge in E(t, t↓i), then X(t↓i) 6= t and the final walk component of
P (t↓i)−E(t, t↓i) contains only a single vertex of V(t, t↓i), so µi+1 = µ(C(t↓i))+1 = r(C(t↓i)).
We conclude that every variable zi,j with j ≤ r(C(t↓i)) occurs in α1 . . . αr(C(t)) and it
follows directly from the construction that none of them occurs more than once. As a
consequence, G is multiple-context-free.

Let P1, . . . , Pr(C(t)) be the walk components of P (t)−E(t↑, t). Then Pi contains at least
two vertices of V(t↑, t) for i < r(C(t)) and at least one vertex of V(t↑, t) for i = r(C(t)).

The size of V(t↑, t) is at most k, so 2r(c) − 1 ≤ k holds, which for an integer k is
equivalent to r(c) ≤ dk/2e. We conclude that G is dk/2e-multiple-context-free.

While the grammar G may appear more complicated than the 1-multiple context-free
grammar of configurations introduced in Section 6.3, the two grammars share many
structural similarities. In particular, production rules are again uniquely determined
by their heads and tails, so we can again work with simplified derivation trees, where
every vertex is labelled with the head of its production rule. In fact we even show that
simplified derivation trees of the two grammars are the same.

To this end, let us again define a map φ mapping bounded consistent configurations
C on T to simplified derivation trees of G. Let the set S consist of all vertices s ∈ V (T )
carrying non-boring configurations C(s) and the neighbours of such vertices. Then T [S]
is an ordered tree with root r, where the order on the children of a vertex s is s↓1, . . . , s

↓
k(t).

By labelling every vertex s of T [S] with Aρ(s),ρ(C(s)), we obtain an ordered tree labelled
with elements of N.

The following lemma is analogous to Lemma 6.3.4, the proof is exactly the same and
is thus omitted.

Lemma 6.4.3. The map φ is a bijection between the set CT of bounded consistent
configurations on T and the set of derivation trees whose root is labelled by Ar,c for
some configuration c on r.

It remains to show that for any configuration C ∈ CT , the word `(ψr(C)) given by the
SAW ψr(C) on G coincides with the word corresponding to the derivation tree φ(C).

Lemma 6.4.4. Let C ∈ CT be a bounded consistent configuration on T . Then

`(ψr(C)) = w(φ(C)).

Proof. Let C ∈ CT . During the proof we denote for t ∈ V (T ) by φt(C) the cone of φ(C)
rooted at t. We prove that whenever C(t↑) is non-boring it holds that

`(ψt(C)) = w(φt(C)). (6.9)

We proceed by induction on the number of vertices s ∈ Kt carrying non-boring configu-
rations C(s).
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Let t ∈ V (T ) be such that C(s) is boring for every s ∈ Kt. Then ψt(C) is the
empty walk, so `(ψt(C)) = ∅. Furthermore φt(C) consists only of the vertex t labelled
Aρ(t),ρ(C(t)) and ρ(C(t)) is boring, so w(φt(C)) = ∅.

For the induction step we first set up some notation. Let r be the number of walk
components of ψt(C) − E(t↑, t). For h ∈ [r], let Qh denote the h-th walk component of
ψt(C)−E(t↑, t), and let wh = `(Qh). By definition `(ψt(C)) = (w1, . . . , wr). Analogously,
for each child t↓i of t, we define ri as the number of walk components of ψt↓i (C)−E(t, t↓i).
For j ∈ [ri], let Qji be the j-th walk component of ψt↓i (C) − E(t, t↓i) and let wji be the
label of Qji . The definition of ` together with the induction hypothesis imply that

w(φt↓i (C)) = `(ψt↓i (C)) = (w1
i , . . . , w

ri
i ),

in particular ri = r(C(t↓i)). We examine the left-hand side and right-hand side of (6.9)
independently, and show that they yield the same tuple of words.

For the left-hand side first recall that for any vertex s of T we have that ψs(C) =
P/F (tF ) where F is the set of edges in Ks incident to vertices with non-boring configura-
tions. By Lemma 6.2.6 the order of edge contractions does not play a role, in particular
ψt(C) can be obtained by first contracting all such edges not incident to t, and then
contracting the edges connecting t to t↑i one by one.

This means that we can construct ψt(C) from P (t) by performing the following mod-
ifications for each i ∈ [k(t)]. For every virtual edge uv ∈ P (t) ∩ E(t, t↓i), the walk ψt↓i (C)
contains a sub-walk with the same endpoints entirely consisting of non-virtual edges. Re-
place every such virtual edge in P (t) by the corresponding walk in ψt↓i (C). If X(t) = t↓i,
then append the sub-walk of ψt↓i (C) after the last vertex in V(t, t↓i) to the resulting walk.
Note that equivalently, we can let U1

i , . . . , U
µi
i be the sequence of non-trivial walk com-

ponents of P (t)∩G(t, t↓i), replace every U ji by the respective Qji , and append Qri
i in case

X(t) = t↓i and P (t) does not end in a virtual edge in E(t, t↓i).
Let P1, . . . , Pr(C(t)) be the walk components of P (t)−E(t↑, t) and for every h ∈ [r(C(t))]

let Ph = P 1
hP

2
h . . . P

2m+1
h be the unique decomposition into sub-walks such that P lh is a

possibly trivial non-virtual walk if l is odd and equal to some U ji if l is even. By the
above discussion, for h < r(C(t)) we thus have

`(Qh) = `(P 1
h )˜̀(P 2

h )`(P 3
h )˜̀(P 4

h ) . . . `(P 2m+1
h ),

where ˜̀(P lh) = `(Qji ) = wji for the unique indices i, j satisfying P lh = U ji . For the final
walk component, that is, h = r(C(t)), we analogously obtain

`(Qh) = `(P 1
h )˜̀(P 2

h )`(P 3
h )˜̀(P 4

h ) . . . `(P 2m+1
h )β,

where ˜̀(P lh) = wji as above and β = ε, unless X(t) = t↓i and P (t) does not end with an
edge in E(t, t↓i), in which case β = `(Qµi+1

i ) = wµi+1
i .

We now turn to the right-hand side of (6.9). For every i ∈ [k(t)], the induction
hypothesis implies that φt↓i (C) is a derivation tree of the term

τi ··= Aρ(t↓i),ρ(C(t↓i))

(
w1
i , . . . , w

ri
i

)
.
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Moreover the root t of φt(C) has label Aρ(t),ρ(C(t)), so φt(C) is a derivation tree of the
term obtained by application of the rule

Aρ(t),ρ(C(t))(α1, . . . , αr(C(t)))←
(
Aρ(t↓i),ρ(C(t↓i))(zi,1, . . . , zi,r(C(t↓i)))

)
i∈[r(C(t))]

to (τi)i∈[k(t)]. By definition of αh, the h-th entry of this term is obtained from the wji in
the exact same way as `(Qh) and we conclude that `(ψt(C)) = w(φt(C)) as claimed.

We are now able to prove the main result of this section by combining the previous
results.

Proof of Theorem 6.4.1. Theorem 6.2.7 yields that the language of self-avoiding walks
of the graph G satisfies

LSAW,o(G) = {`(ψr(C)) | C ∈ CT }.

Furthermore Lemma 6.4.3 implies that the language generated by the grammar G is
given by

LG = {w(φ(C)) | C ∈ CT }.
But by Lemma 6.4.4 these two sets are equal and G is a dk/2e-multiple-context-free
grammar generating LSAW,o(G).

Finally, if the edge-labelling of G is deterministic, then ` is a bijection between the set
of self-avoiding walks on G and LSAW,o(G). Lemma 6.4.4 provides equality of the maps
w ◦ φ = ` ◦ ψr, so in particular w ◦ φ is also a bijection. We conclude that w bijectively
maps derivation trees with respect to G onto words in L(G), so G is unambiguous.

6.4.2 Multiple context-freeness implies bounded end size
In this section we prove the second part of our main result, namely

Theorem 6.4.5. Let G be a simple, locally finite, connected, quasi-transitive deter-
ministically edge-labelled graph such that LSAW,o(G) is k-multiple context-free for some
o ∈ V (G). Then every end of G has size at most 2k.

As mentioned before, the proof of this statement will mostly follow the approach in
Section 4.2.

Recall that any graph automorphism is either elliptic, parabolic or hyperbolic, de-
pending on whether it fixes a finite subset of vertices, a unique end or a unique pair of
ends. In what follows, elliptic automorphisms are useless, so as a first step we eliminate
the possibility that all label-preserving automorphisms are elliptic.

We remark that there are numerous examples of infinite graphs admitting a transitive
group action by only elliptic automorphisms. To see this, note that any non-elliptic auto-
morphism must have infinite order because it cannot fix a finite set of vertices. Therefore
some interesting examples arise from the study of the famous Burnside Problem from
1902, asking whether every finitely generated torsion group, that is a group in which
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every element has finite order, must be finite. While this question remained unsolved
for more than 60 years, nowadays various examples of infinite torsion groups are known.
Any such group acts transitively on its Cayley graph by only elliptic automorphisms.

However, if LSAW,o(G) is multiple context-free, then there are always non-elliptic au-
tomorphisms. The following lemma extends Lemma 4.2.3 to multiple context-free lan-
guages; the proof is essentially the same.

Lemma 6.4.6. Let G be a connected, infinite, locally finite and deterministically edge-
labelled graph and let Γ ≤ AUT(G, `) act quasi-transitively on G. If LSAW,o(G) is multiple
context-free for some vertex o of G, then Γ contains a non-elliptic element.

Proof. The graph G is infinite and connected, so LSAW,o(G) is an infinite language.
Thus by Lemma 2.2.8 the k-multiple context-free language LSAW,o(G) contains some
word w = x1y1x2 . . . y2kx2k+1 such that at least one of y1, . . . , y2k is not the empty word
ε, and x1yn1x2 . . . yn2kx2k+1 ∈ LSAW,o(G) for every n ∈ N0. Let m = min{i ∈ [2k] | yi 6= ε}.
Then for every n ∈ N0, the word x1 . . . xmynm is a prefix of some word in LSAW,o(G) and
thus itself contained in LSAW,o(G). Let v0 be the end-vertex of the unique walk p on G
starting at o and having label `(p) = x1 . . . xm. Then for every n ≥ 0 there is a unique
self-avoiding walk pn of length n |ym| starting at v0 and having label ynm. We denote
by vn the endpoint of the walk pn. Using the fact that Γ acts quasi-transitively on G,
there must be some τ ∈ Γ and some 0 ≤ i < j ≤ n such that τvi = vj . Since τ is label
preserving, τ lvi = vj+(l−1)(j−i) 6= vi for every l > 0 and Proposition 12 in [26] yields that
τ is non-elliptic.

Recall from Section 4.1 that a locally finite, connected graph S is called a strip if it is
quasi-transitive and has precisely two ends. It is called a τ -strip for τ ∈ AUT(S), if the
cyclic group 〈τ〉 generated by τ acts quasi-transitively on S. We use the same notation
if S is a subgraph of a graph G invariant under τ ∈ AUT(G). Note that both ends of
a strip have the same finite size k which we call the size of S. It follows directly from
Theorem 4.1.5 that any τ -strip of size k contains k disjoint τ -invariant double rays.

The following lemma is a combination of Lemma 4.1.8 and Lemma 4.1.9 and provides
the existence of τ -strips in certain types of graphs. In particular, it implies that τ -strips
exist whenever there is a non-elliptic automorphism.

Lemma 6.4.7. Let G be a locally finite connected graph and let Γ act quasi-transitively
on G.

1. If G has a thin end of size k, then it contains a τ -strip of size k for some τ ∈ Γ.

2. If Γ contains a parabolic element, then for every k ≥ 1, the graph G contains a
τ -strip of size k for some τ ∈ Γ.

With these existence results for τ -strips in a graph G in mind, we turn to the relation
between strips in a graph G and its language of SAWs. A combination of the previous
lemma and the upcoming lemma is already sufficient to treat graphs G without thick
ends.
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Lemma 6.4.8. Let G be a connected, infinite, deterministically edge-labelled graph on
which AUT(G, `) acts quasi-transitively, let o be a vertex of G and let k ∈ N. If G
contains a τ -strip of size 2k + 1 for some τ ∈ AUT(G, `), then LSAW,o(G) is not k-
multiple context-free.

Proof. The proof can be outlined as follows. We start by defining an infinite set P of
walks such that firstly, the language `(P) is regular, and secondly, the language `(PSAW)
of the subset PSAW consisting of all self-avoiding walks in P is not k-multiple context-
free. It then follows from the closure properties of k-multiple context free languages that
LSAW,o(G) is not k-multiple context-free.

The set P essentially consists of spiral-shaped walks on the strip S, see Figure 6.11.
For a concise definition, first recall that the strip S contains 2k + 1 τ -invariant rays
R1, . . . , R2k+1 and that the subgroup 〈τ〉 of AUT(G, `) generated by τ acts quasi-
transitively on S. After possibly replacing τ with some power τ l, we can find a set
K be a set of orbit representatives of the action of 〈τ〉 on S such that the induced sub-
graphs S[K] and Ri[K] (for every i ∈ [2k + 1]) are connected. See Lemma 4.1.7 on how
to find such a set K.

Let TK be a spanning tree of S[K] containing all edges of the paths Ri[K]. Such a tree
exists because S[K] is connected and the rays Ri are disjoint and acyclic. For j ∈ [2k]
let TK(j) be the smallest sub-tree of TK containing the paths Rj [K], . . . , R2k+1[K]. We
call a ray Ri pendant in TK(j) if TK(j) contains precisely one edge connecting a vertex
of Ri to a vertex not in Ri. Clearly TK(j) contains at least two pendant rays and we
may relabel the rays in a way such that for every i ∈ [2k], the rays Ri and Ri+1 are
pendant in the tree TK(i).

For i, j ∈ [2k + 1] with i 6= j let Wi,j be the path connecting Ri to Rj in TK .
Furthermore let W0,2 consist of a shortest walk connecting o to some v0 ∈ τn(TK),
followed by a walk connecting v0 and R2 on τn(TK).

It will be convenient to slightly abuse notation and define concatenations of walks
whose endpoint and starting point do not coincide, but the endpoint of the first walk
can be mapped onto onto the starting point by a suitable power of τ . More precisely, let
P and Q be two walks on S, let u be the endpoint of P and let v be the starting point
of Q. If v = τ i(u), we write PQ for the concatenation of P and τ iQ.

Using this notation, for each i ∈ [2k] let us define a walk

Xi = Wi−1,i+1QWi+1,i,

where Q is the path connecting the endpoint of Wi−1,i+1 to the starting point of τ(Wi+1,i)
on the ray Ri+1 if i is odd and the endpoint of τ(Wi−1,i+1) to the starting point of Wi+1,i
if i is even. Note that we apply the notation defined above, so Xi consists of the paths
Wi−1,i+1, Q and τ(Wi+1,i). In particular Xi is self-avoiding because Wi−1,i+1 and Wi+1,i
are fully contained in S[K]. Moreover, let X2k+1 = W2k,2k+1Q, where Q connects the
endpoint of W2k,2k+1 with its image under τ on the ray R2k+1. Furthermore observe
that Xi is contained in TK(i− 1) meets Ri−1 and Ri only in its endpoints.

Next, for every i ∈ [2k+ 1] let ri be the terminal vertex of Xi. Note that ri is a vertex
of Ri. Moreover for i ≤ 2k it lies in the same orbit as the initial vertex of Xi+1 because

102



o

v0

X̃1 X̃2X̃3

Ỹ1
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Figure 6.11: Spiral shaped walks in P. The dashed rectangles contain the set K and its
respective translates under τ i.

the rays Ri and Ri+1 are pendant in the tree TK(i). Finally let Yi be the sub-path of Ri
connecting ri with τ2(ri) if i is odd and let Yi be the sub-path of Ri connecting τ2(ri)
with ri if i is even.

Let P be the infinite set of walks of the form

X1Y
n1

1 X2Y
n2

2 . . . X2k+1Y
n2k+1

2k+1 , (6.10)

where n1, . . . , n2k+1 ∈ N. See Figure 6.11 for an illustration of an element of P.
The language L(P) has the form

L(P) = {x1y
n1
1 x2y

n2
2 . . . x2k+1y

n2k+1
2k+1 | n1, . . . , n2k+1 ∈ N} (6.11)

where the words xi and yi are the labels of the walks Xi and Yi, respectively. Clearly,
L(P) is a regular language.

We claim that a walk of type (6.10) is self-avoiding if and only if ni+1 < ni for every
i ∈ [2k]. Fix a walk W = X1Y

n1
1 X2Y

n2
2 . . . X2k+1Y

n2k+1
2k+1 ∈ P and denote by X̃i the

sub-walk of W corresponding to Xi and by Ỹi the sub-walk of W corresponding to the
concatenated walk Y ni

i . In the example shown in Figure 6.11 we have n2 = n1 − 1.
Observe that n2 ≥ n1 would yield a self-intersection on R2.

We say that a vertex v ∈ S lies on level l ∈ Z, if v ∈ τ2l(K)∪τ2l+1(K). First note that
the walk X̃1 does not contain vertices on level l ≥ 1. Moreover, it follows inductively
that X̃i contains only vertices on level li = ∑i−1

j=1(−1)j−1nj and that Ỹi starts on level li
and ends on level li+1.

Assume that the walk W is not self-avoiding. Then there is some index i ∈ [2k + 1]
such that X̃i intersects either X̃j for j > i or contains an interior point of Ỹj for some
j ∈ [2k + 1]. For j < i − 1, the walk X̃i does not intersect Ỹj because Rj does not
intersect TK(i − 1). For j ∈ {i − 1, i}, the walk X̃i contains only a single vertex of Rj ,
which is an endpoint of Ỹj . Therefore j > i, and in particular Ỹj contains a vertex on
level li. Without loss of generality assume that j is odd, the other case is symmetric.
Since Ỹj connects levels lj to lj+1 > lj we conclude that lj+1 ≥ li ≥ lj . If i is odd, then

0 ≥ lj − li =
j−1∑

l=i
(−1)l−1nl = (ni − ni+1) + · · ·+ (nj−2 − nj−1),
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so there is some index l such that nl−1 ≤ nl. Otherwise i is even and an analogous
argument using 0 ≤ lj+1 − li leads to the same conclusion.

For the converse implication assume that there is i ∈ [2k] such that ni+1 ≥ ni. We
claim that the sub-walk X̃iỸiX̃i+1Ỹi+1 of W is not self-avoiding. Assume without loss of
generality that i is odd, the other case is symmetric. Since ni − ni+1 ≤ 0 we know that
li+2 ≤ li < li+1. In particular, both X̃i and Ỹi+1 contain vertices on level li. Moreover,
by definition of Xi the walk X̃i contains a vertex v of Ri+1 ∩ τ2li+1(K). Finally the
sub-path Ỹi+1 of Ri+1 starts at a vertex in τ2li+1(K) and ends at a vertex in τ2li+2(K)
and thus must contain the vertex v. We conclude that W is not self-avoiding.

Let us now assume that the language LSAW,o(G) is k-multiple context-free. Recall that
the class of k-multiple context-free languages is closed under homomorphisms, inverse
homomorphisms, and intersection with regular languages. Using these properties and
Theorem 5.0.1, we derive a contradiction. First, note that the language

L(PSAW) = {x1y
n1
1 x2y

n2
2 . . . x2k+1y

n2k+1
2k+1 | n1 > n2 > · · · > n2k+1 > 0}

is the intersection of the regular language L(P) and the k-multiple context-free language
LSAW,o(G) and thus must be k-multiple context-free. We define a language homomor-
phism

φ : {a1, b1, . . . , a2k+1, b2k+1}∗ → Σ∗

by setting φ(ai) = xiy
2k+2−i
i and φ(bi) = yi for every i ∈ [2k + 1]; we point out that ai

and bi are single letters, whereas xi and yi are labels of walks and thus may consist of
multiple letters. The language

L1 = {a1b
n1
1 . . . a2k+1b

n2k+1
2k+1 | n1 ≥ n2 ≥ · · · ≥ n2k+1 ≥ 0}

is k-multiple context-free because

L1 = φ−1(L(PSAW)) ∩ {a1b
n1
1 . . . a2k+1b

n2k+1
2k+1 | n1, . . . , n2k+1 ∈ N0}.

Note that this statement strongly relies on the fact that the edge-labelling ` is deter-
ministic: the image φ(w) of any word w ∈ {a1b

n1
1 . . . a2k+1b

n2k+1
2k+1 | n1, . . . , n2k+1 ∈ N0} is

the label of a unique walk in P and thus has a unique representation of the form (6.11),
which lies in L(PSAW) if and only if n1 ≥ n2 ≥ · · · ≥ n2k+1 ≥ 0.

Finally, the language L2 = {cn1
1 . . . c

n2k+1
2k+1 | n1 ≥ n2 ≥ · · · ≥ n2k+1 ≥ 0} is the image

of L1 under the obvious homomorphism mapping ai to ε and bi to ci and thus must be
k-multiple context-free, a contradiction to Theorem 5.0.1.

The property of having a k-multiple context-free language of SAWs is closed under
taking certain subgraphs. The following lemma extends Lemma 4.2.2 to MCFLs; the
proof works exactly the same and is thus omitted.

Lemma 6.4.9. Let H be a subgraph of G which is invariant under a subgroup Γ of
AUT(G, `) acting quasi-transitively on H. If LSAW,o(G) is k-multiple context-free, then
there is a vertex o′ ∈ V (H) such that LSAW,o′(H) is also k-multiple context-free.
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Knowing that k-multiple context-freeness of the language of self-avoiding walks forbids
τ -strips of size at least 2k+ 1, we are able to prove the main result of this section. Note
that the case of thin ends is already taken care of, so we mainly need to deal with thick
ends in the proof.

Proof of Theorem 6.4.5. By Lemma 6.4.8 there is no τ ∈ Γ = AUT(G, `) such that the
graph G contains a τ -strip of size 2k + 1. Lemma 6.4.7 yields that all thin ends of G
have size at most 2k, thus G is accessible.

Assume for a contradiction that G contains a thick end. By Theorem 6.1.1 there is
a tree decomposition (T,V) of G efficiently distinguishing all ends of G such that there
are only finitely many Γ-orbits on E(T ). We have seen in Section 6.1 that G having a
thick end implies that there is a vertex t of T such that the part V(t) is infinite. By
Lemma 6.1.4 the set-wise stabiliser ΓV(t) ≤ Γ of V(t) acts quasi-transitively on this part.

Let H be the subgraph of G obtained from the induced subgraph G[V(t)] in the
following way. For every edge e of T incident to t add for every pair of vertices in the
adhesion set V(e) all shortest walks connecting these vertices. Then H is connected and
ΓV(t) acts quasi-transitively on H because it acts with finitely many orbits on the edges
of T and thus on the adhesion sets contained in V(t). By Lemma 6.4.9 there exists
a vertex o′ of H such that the language LSAW,o′(H) is k-multiple context-free and by
Lemma 6.4.6 the subgroup ΓV(t) contains a non-elliptic graph automorphism γ. As H
has only a single (thick) end, γ fixes this end and is parabolic. By Lemma 6.4.7, the
graph H contains a τ -strip S of size 2k + 1 for some τ ∈ ΓV(t). But S is also a τ -strip
in the original graph G, contradicting Lemma 6.4.8. We conclude that all ends of G are
thin.
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Z. 33.1 (1931), pp. 692–713.
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pp. xiv + 425.

[46] D. E. Muller and P. E. Schupp. “Groups, the theory of ends, and context-free
languages”. In: J. Comput. Syst. Sci. 26 (1983), pp. 295–310.

[47] D. E. Muller and P. E. Schupp. “The theory of ends, pushdown automata, and
second-order logic”. In: Theor. Comput. Sci. 37 (1985), pp. 51–75.
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