




Abstract

Feflow and Modflow represent the most popular software packages for numerical groundwater
modelling. Like Feflow, the most recent version of Modflow 6 enables contaminant transport
simulation in addition to groundwater flow modeling. Apart from the methodological differences,
Feflow offers some specific features that are not directly supported by Modflow. The variable leak-
age factors, which can be defined separately for effluent and influent conditions, and the interface
manager, which enables a dynamic query of external model data, are to be mentioned in particular.

The literature shows that both modeling packages yield comparable results, when equivalent func-
tions are used. However, it remains unclear to what extend also the direct translation of Feflow spe-
cific functions into the Modflow environment is possible and reasonable. To answer this question,
the present work takes the attempt to directly transfer an existing Feflow model for groundwater
flow and contaminant transport simulation to Modflow 6. Various methods are used to compen-
sate the differences. Furthermore, an attempt is made to directly replicate the calculation methods
of Feflow by executing Modflow in a loop, whereby the groundwater level can be queried per
simulation step. The preliminary data processing, the setup of the Modflow model and the simu-
lations execution is carried out with FloPy, a package in the Python environment. A calibration is
performed with PEST and the Python package PyEMU.

The techniques used to compensate the groundwater level dependencies have yielded very similar
results with respect to the flow model. The interaction with the rivers, and thus the leakage factors,
have thereby shown to be a key point in the model translation. The temporal depth-variability of
the recharge rate has a minor effect. The coarser discretization in Modflow leads to localized
deviations, especially in marginal areas with high gradients. However, the emulation of the Feflow
calculation method by looping Modflow has shown weaknesses and has not provided comparable
results. For improved and more stable functionality, this method must be revised and optimized.

In the recently integrated groundwater transport model of Modflow 6, problems occurred with the
input of coupled recharge rate and contaminant load. In combination with an error in the Modflow
transport source code (input file size limitation), only limited results could be obtained.

This work reveals that the direct translation of Feflow specific functions into the Modflow envi-
ronment is only partly possible. Especially for dynamic groundwater level queries, the currently
available version of Modflow is less practicable. Therefore, the choice of the optimal software
package depends on the research question as well as the characteristics of the aquifer.
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Kurzfassung

Feflow und Modflow sind die meist genützten Softwarepakete für die numerische Grundwasser-
modellierung. Wie auch Feflow ermöglicht die neueste Version von Modflow 6 neben der Strö-
mungsmodellierung auch die Simulation von Stofftransport. Abgesehen von den methodischen
Unterschieden bietet Feflow einige spezifische Funktionen, die von Modflow nicht direkt unter-
stützt werden. Hier sind insbesondere die variablen Leakagefaktoren, die getrennt für influente
und effluente Bedingungen definiert werden können und der Interface Manger, der eine dynamis-
che Abfrage externer Modelldaten ermöglicht, zu nennen.

Bisherigen Erkentnissen zufolge führen beide Softwarepakete bei Verwendung gleichwertiger
Funktionen zu ähnlichen Ergebnissen. Es bleibt jedoch unklar, inwieweit auch die direkte Über-
setzung von Feflow-spezifischen Funktionen in die Modflow-Umgebung möglich und sinnvoll ist.
Um diese Frage zu beantworten, wird in der vorliegenden Arbeit der Versuch unternommen, ein
bestehendes Feflow-Modell zur Simulation von Grundwasserströmung und Schadstofftransport
direkt auf Modflow 6 zu übertragen. Dabei werden verschiedene Methoden eingesetzt, um die
Unterschiede zwischen den Programmen zu kompensieren. Außerdem wird versucht, die Berech-
nungsmethoden von Feflow direkt nachzubilden, indem Modflow in einer Schleife ausgeführt
wird, wobei der Grundwasserstand pro Simulationsschritt abgefragt werden kann. Die vorausge-
hende Datenverarbeitung, der Aufbau des Modflow-Modells und die Ausführung der Simulationen
erfolgt mit FloPy, einem Python-Paket. Eine Kalibrierung wird mit PEST und dem Python-Paket
PyEMU durchgeführt.

Die angewandten Techniken zur Kompensation der Grundwasserstandsabhängigkeiten haben zu
sehr ähnlichen Ergebnissen wie in jenem des Feflow-Strömungsmodell geführt. Die Interaktion
mit den Flüssen, und damit die Leakagefaktoren, haben sich dabei als ein zentraler Punkt in der
Modellübersetzung erwiesen. Die zeitliche Tiefenvariabilität der Neubildungsrate hat einen gerin-
gen Einfluss. Die gröbere Diskretisierung in Modflow führt zu lokalen Abweichungen, insbeson-
dere in Randbereichen mit hohen Gradienten. Die Nachbildung der Feflow-Berechnungsmethode,
bei der Modflow in einer Schleife ausgeführt wird, hat jedoch Schwächen gezeigt und keine ver-
gleichbaren Ergebnisse geliefert. Für eine verbesserte und stabilere Funktionalität muss diese
Methode überarbeitet und optimiert werden.

Im kürzlich integrierten Grundwassertransportmodell von Modflow 6 traten Probleme bei der
Eingabe der gekoppelten Neubildungsrate und Schadstoffeingabe auf. In Kombination mit einem
Fehler im Modflow-Transport-Quellcode (Größenbegrenzung der Eingabedatei) konnten nur lim-
itierte Ergebnisse erzielt werden.

Diese Arbeit zeigt, dass die direkte Übertragung von Feflow auf Modflow nur teilweise praktikabel
ist. Die Wahl des optimalen Softwarepakets hängt insbesondere von der Forschungsfrage als auch
von den Eigenschaften des Untersuchungsgebiets bzw. des Aquifers ab.
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1. Introduction

1.1. Motivation

Numerical modeling of groundwater flow and contaminant transport is an important tool to answer
questions concerning the dynamics, supply, quality or future availability of the resource water.
Specifically, it can be used to assess groundwater levels or pollutant dispersal is space and time,
which would otherwise be only possible through invasive interventions, if at all. A conceptual,
systemic model serves as a basis, where characteristics of the aquifer, sources and sinks of water
(or pollutants) are defined. The numerical modeling is based on physical and hydraulic principles
and is performed over the spatially and temporally resolved model area.

There are different approaches for solving numerical models. The most common software pack-
ages are Feflow and Modflow. However, they differ in their solution method: Feflow is based on
the finite-element method and therefore works node-centered, while Modflow (version 6) relies on
control-volume finite differences and is therefore cell-centered.

Wang and Anderson [1982] have shown that from a purely mathematical point of view both
methods lead to exactly the same results. The dispersion of a contaminant plume was simulated by
Chapman et al. [2012] in an experimental laboratory setting and compared with the results of the
numerical modeling programs Feflow v6.0 and Modflow 2005 in combination with MT3DMS. The
models are constructed with the typical model grid in each case - triangular in the case of Feflow
and a structured one in the case of Modflow. They show that the results of the flow and the transport
simulation hardly differ and reproduce results of the experiment relatively accurately, whereby an
adequate spatial and temporal discretization is required. A performance evaluation, based on a real
aquifer, of the same software packages (Feflow and Modflow 2005 with MT3DMS), was carried
out by Matiatos et al. [2019]. Almost identical results were obtained with a calibrated modelrun,
however Feflow provided a slightly better match with observed values in respect of groundwater
flow and transport simulation.

The papers mentioned have in common that they compare functions or packages, that are equally
available in both software packages. An attempt that has not been carried out so far is a translation
of Feflow specific functions into the Modflow environment. In particular, the interface manager,
which enables an exchange with external models and thus a groundwater level-dependent defini-
tion of the recharge rate, as well as the direction-dependent leakage factor (inflow and outflow
factor) must be mentioned.

The question that arises is to what extent the direct translation of the Feflow specific functions into
a Modflow setting is possible and reasonable in terms of practicability. In this work, an existing
Feflow model is rebuilt with the open-source code Modflow 6 [Hughes et al., 2017], developed
and released by the United States Geological Survey (USGS). The commonalities and differences
in both software packages are discussed, possibilities and limitations are investigated. The focus
lies thus less on a conceptual model construction than on a direct transfer of existing parameters.

The existing Feflow model concerns the Western Leibnitzer Field and was generated for the SI-
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1. Introduction 1.4. Project Area

MUR-AT project by JR-AquaConSol with a simulation period running from 1993 until 2018
[Mach et al., 2019]. The groundwater recharge and the Nitrate leaching in the unsaturated zone
was calculated with STOTRASIM [Feichtinger, 1998].

1.2. General Approach

In principle, it is attempted to take over the parameters and transfer them directly from Feflow to
the Modflow model without intervention. Three fundamental differences between the models and
the underlying software make a direct transfer problematic and require a methodical approach:

• Discretization: vertex-based (Feflow) vs. structured square grid (current Modflow model1).

• Transfer-in and transfer-out rates in Feflow vs. one conductance in Modflow

• Interface for time-depth dependent recharge in Feflow

For these reasons, different approaches were chosen in order to reproduce the results from Feflow
as accurately as possible. Table 1.1 lists a compilation of used methods and parameters.

Table 1.1.: Modelruns and parameters. GWL...groundwater level.
modelrun leakage recharge run mode

MR 1 rivers as wells mean GWL classic
MR 2 manual selection interpolated classic

�

MR 2a calibration interpolated classic
MR 3 GWL query GWL query loop

1.3. Software and Graphical User Interface

Initially it was intended to use the commercial Graphical User Interface (GUI) Visual Modflow
Flex from Waterloo Hydrogeologic. The direct parameter transfer in this work requires a high level
of data processing. Visual Modflow Flex is strongly oriented towards conceptual modeling and
not very suitable in handling and transposing large amounts of transient data and external time-
series. Therefore, the author decided to switch to FloPy [Bakker et al., 2021], a Python package
for creating, running, and post-processing Modflow-based models. The use of this package allows
to benefit from the data processing possibilities of Python.

1.4. Project Area

The model area is located in southern Styria (Austria), approximately 30 km south of the city Graz.
The river Mur divides the basin "Leibnitzer Feld" in a western and an eastern part; the western part
with an area of around 40 km2 is the subject of this thesis (Fig. 1.1). Along the river Mur, forming
the eastern project edge, there are three barrages in the project area, partly with accompanying
drainages. The western project edge is defined by the rivers Lassnitz and Sulm, with the Lassnitz
flowing into the Sulm west of the town of Leibnitz.
The longitudinal extension stretches over about 13.5 km, from the southern foot of the Buchkogel

1Transport simulations were not supported for unstructured grids at the time of defining the object of study (Transport
model was not included in Modflow 6 and MT3D does not support unstructured grids; see 2.3.2)
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1.4. Project Area 1. Introduction

to the confluence of the Sulm and the Mur in the south; the maximum width of about 5.4 km is
reached in the middle third. In general, the project area is relatively flat, with a slightly overall
dipping to the south. The maximum natural elevation of the terrain surface is about 296 m in the
north and 259 m in the south [Digitaler Atlas Steiermark, 2021]. Fank et al. [1993] and Mach
et al. [2019] give a detailed description of land use, soil types, morphology and hydrology in the
project area.

Geological Overview:
The geological conditions of the Leibnitz Field are characterized by accumulation of fluvioglacial
and fluviatile sediments over an erosional relief created from predominantly Neogene deposits.

Along the western valley margin in the project area, Paleozoic basement is partly found, built up
mainly of greenschists and phyllites.
Stratigraphically above are the Neogene deposits. These are mainly composed of blue-grey clay
marls and sand layers and act as groundwater barrier for the shallow groundwater body. In the
western marginal areas of the project area, siliciclastic sediments are also deposited here, indicat-
ing the shallow marine area of the Para-Tethys in the Neogene here. Furthermore, Leithakalke
(Buchkogel) are found in the marginal areas [Fank et al., 1993].

The Quaternary cover can be differentiated into auzones and worm-age low terraces.
The auzones, situated along the Mur, show a structure of weakly silty, sandy gravels above the
pre-Quaternary base. Partly this stratum is covered by a 1.5 to 3 m thick silt/clay layer [Fank
et al., 1993].
The low terraces are divided into two sub-terraces and are mainly composed of low silty, sandy
gravels with stones. The coarse-grained components are consistently well rounded and of crys-
talline and calcareous origin.
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1. Introduction 1.4. Project Area

Figure 1.1.: Orthofoto with overlayed map of the model area: Western Leibnitzer Field (red). blue: lakes and rivers.
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2. Fundamentals

2.1. Numerical Methods

2.1.1. Groundwater Flow

Compared to other methods (e.g. analytical models or analytical element models), numerical
groundwater modeling offers advantages in spatial and temporal resolution or discretization and
allows heterogeneous and anisotropic conditions to be represented. The solution is thereby not
continuous, but calculated at discrete points in space and for specific units of time [Anderson
et al., 2015]. In numerical groundwater modeling, three approaches in particular are used: finite-
differences (FD), the finite-element (FE) and control volume finite-differences (CVFD) method.
All methods are based on Darcy’s law and the derived general governing differential equation for
tree-dimensional transient groundwater flow in heterogeneous and anisotropic conditions ("ground-
water equation"):

δ

δx

Kxx ·
δh
δx

 +
δ

δy

Kyy ·
δh
δy

 +
δ

δz

Kzz ·
δh
δz

 + W = S s
δ

δt
(2.1)

where:

Kxx,Kyy,Kzz = hydraulic conductivities along x, y and z axis [LT−1]
h = piezometric head [L]
W = volume flux per unit volume (source or sink of water) [T−1]
S s = specific storage of the porous media [-]
t = time [T]

The methods mentioned use different solution approaches to calculate the hydraulic head from the
groundwater equation, or in the case of the CVFD method the groundwater equation is extended
by the continuity equation [Anderson et al., 2015; Dehotin et al., 2011]. All approaches calculate
in a direct or an iterative way - usually a combination of both is applied, or a specific solution can
be selected by the user [Anderson et al., 2015].

Further, all methods use the same definitions of Boundary Condition (BC), which can be divided
into the following three types: (1st) specified head (Dirichlet), (2nd) specified flow (Neumann)
and (3rd) head-dependent (Robin1) BC. In general they represent locations in the model domain,
where water flows into or out of the model due to external factors (sources and sinks).

FD is a straight forward method, that works cell-centered and hydraulic heads are calculated as an
average (constant) value per cell in a structured, rectangular grid. Modflow up to version 5 is the
most widely distributed and researched software package based on this method.

1Feflow uses the designation "Cauchy" for this type of BC. The USGS calls it "Robin"-BC. Both terms describe
the same (third) type of a BC. Jazayeri and Werner [2019] point out the confusing nomenclature and refer to the
consistent designation in mathematical literature, where the third BC is named after Victor Gustave Robin.
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2. Fundamentals 2.1. Numerical Methods

The CVFD method is an extension of FD due to the possibility of unstructured grids. Here, the
intercell exchange is described with the help of conductance - a measure which includes the flow
area of connected cell-surfaces in the hydraulic conductivity [Dehotin et al., 2011; Panday et al.,
2013]. The model remains cell-centred and calculated values are constant per cell. With Modflow-
USG (Unstructured Grid), the CVFD-code has gained popularity and has become a standard with
the launch of Modflow version 6.

A FE model is constructed from nodes, which allows the model grid to be of flexible shapes
(typically triangular). Hydraulic heads are calculated as continuous values along the nodes and
(linearly) interpolated within the cells [Wang and Anderson, 1982]. Feflow is the common soft-
ware tool used for FE.

In the final SI-MUR-AT report Mach et al., 2019 summarize the FE in general as follows: "The
finite element method represents a discrete way of describing groundwater flow that starts directly
from the physical conditions of the groundwater flow. The finite element method makes it possible
to determine the potential heights in the nodal points via the physical description in the interior
and at the edges of the elements. In the discretized flow plane, the shape of the potential surface
depends on the potential heights at the nodes of the mesh. It is assumed that the potential height
within and on the edges of a triangular element changes linearly in each direction. This results in
a linear system of equations.
The fulfillment of the continuity condition depends on the degree of discretization. The smaller the
triangular elements are, the better the exact course of the potential distribution can be approxi-
mated. A second dependence for the fulfillment of the continuity is given by the form of the triangle
elements. An equilateral triangle represents the best shape of the elements."

2.1.2. Transport

The basic form of the solute transport equation [Konikow et al., 1996] is shown below:

δC
δt

+
Vi

R f

δC
δxi
−

1
εR f

δ

δxi

εDi j +
δC
δx j

 − ∑[W(C′ −C)]
εR f

+ λC = 0 (2.2)

where:

C (C′) = volumetric concentration (in source / sink) [M/L3]
ε = effective porosity [-]
V = vector of interstitial fluid velocity components [LT−1]
D = second-rank tensor of dispersion coefficients [L2T−1]
W = volumetric fluid sink (W<0) or fluid source (W>0) rate per unit volume of aquifer [T−1]
λ = dacay rate [T−1]
t = time [T]
R f = retardation coefficient [-]
xi = Cartesian coordinates [L]

Transport simulations are in any case coupled to the flow model - the solution approach works
according to the same principle, but additional hydrodynamic processes are considered in the
equation: advection, dispersion, diffusion, retardation and decay [Zheng and Wang, 1999].

Mach et al., 2019 describe FE transport modelling as follows: "[...] Lagrangian and Eulerian
methods are primarily used. In order to minimize the numerical error caused by the approxima-
tions in the solution of the transport equation, the Peclet and Courant criteria must be observed,
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2.3. Modflow 2. Fundamentals

which specify upper limits for the spatial and temporal discretization, i.e. the calculation set must
not be too coarse and the time step must not be too long [Kinzelbach, 1987]."

2.2. Feflow

Feflow (FF) is a software package for modeling fluid flow and transport of dissolved constituents
and/or heat transport processes in porous or fractured media, in different dimensional represen-
tations and for variably saturated conditions [Diersch, 2014]. It is distributed by DHI (since
2007; https://www.mikepoweredbydhi.com/products/feflow), based on the finite element
method and is usually operated via the integrated GUI.

Mach et al., 2019 summarize the features and advantages of Feflow in the final SI-MUR-AT re-
port as follows: "Feflow offers a variety of pre- and post-processing functionalities while being
compatible with numerous data formats for importing and exporting data from and to external
sources. Especially for the solution algorithms for the finite element method Feflow offers a high
number of alternative choices, so that specific aspects of the problem can be addressed."
Trefry and Chris, 2007 rate Feflow mainly positively in their test report, among other things be-
cause of the practical GUI functionality, the integrated PEST interface, the support and "a full
developer application programming interface that allows users to add custom code modules di-
rectly into the FEFLOW simulator.". It is necessary to mention that Feflow v 5.3 was reviewed
and the software was distributed by the german company WASY at that time.

2.3. Modflow

2.3.1. General

Modflow 6 (MF) is an object-oriented program and framework developed to provide a platform for
supporting multiple local-scale groundwater models. It presently contains two types of hydrologic
models, the Groundwater Flow (GWF) Model and the Groundwater Transport (GWT) Model. The
GWF Model for Modflow 6 is based on a generalized control-volume finite-difference (CVFD)
approach in which a cell can be hydraulically connected to any number of surrounding cells.
Users can define the model grid using:

• a regular Modflow grid consisting of layers, rows, and columns,

• a layered grid defined by (x, y) vertex pairs, or

• a general unstructured grid based on concepts developed for Modflow-USG.

The source code is a free public domain software, written primarily in FORTRAN. Since the first
developments in the 1980s, the USGS has released six core versions. The most current version,
Modflow 6, was released in 2017.

Unlike Feflow, Modflow itself is a pure code for solving the equation systems - there is no direct or
integrated GUI. However, there are several programmes that are based on the Modflow code and
offer an integrated GUI. Among the most popular are Modelmuse (USGS), Visual Modflow Flex
(Waterloo Hydrogeologic) and Processing Modflow (Wen-Hsing Chiang and Wolfgang Kinzel-
bach). In addition, the USGS has developed FloPy, a Python package for creating, running, and
post-processing Modflow-based models.
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2. Fundamentals 2.3. Modflow

2.3.2. Releases and Developement

In the course of this thesis (starting 01.07.2020), several updates of the current Modflow (MF) ver-
sion 6 were released. The following list shows their history and the most important innovations for
the present work (quoted from the corresponding release notes on github.com/MODFLOW-USGS/
modflow6/releases):

• MF 6 Version 6.1.1 Released on 12.07.2020

• MF 6 Version 6.2.0 Released on 22.10.2020

– A new Groundwater Transport (GWT) Model is introduced in this release as a way
to simulate the fate and transport of a dissolved solute. Extensive testing of the GWT
Model has been performed but changes to the code and input may be required in re-
sponse to user needs and testing.

• MF 6 Version 6.2.1 Released on 18.02.2021

– The Source and Sink Mixing (SSM) Package for the Groundwater Transport Model
was modified to include an alternative option for the concentration value assigned to
sinks. A new AUXMIXED option was added to represent evaporation-like sinks where
the solute or a portion of the solute may be left behind. The AUXMIXED option
provides an alternative method for determining the groundwater sink concentration.
If the cell concentration is larger than the user-specified sink concentration, then the
concentration of the sink will be assigned as the specified concentration. Alternatively,
if the specified concentration is larger than the cell concentration, then water will be
withdrawn at the cell concentration. Thus, the AUXMIXED option is designed to work
with the Evapotranspiration and Recharge packages where water may be withdrawn at
a concentration that is less than the cell concentration.

2.3.3. Structure

Figure 2.1 shows the structure and components for a single Groundwater Flow Model (GWF) in
Modflow. Accordingly, a model is initialised with FloPy. The simulation consists of a Timing
Module, a Numerical Solution, and a GWF Model. Beneath the GWF Model are individual pack-
ages, which describe the hydrogeologic processes that are simulated. The only packages that do
not fit into the hydrologic categories are the "Observation" and the "Output Control" Packages,
which manage the printing and saving of GWF Model results to output files [Langevin et al.,
2021].

With the release of MF 6.2.0 the possibility to initiate a further Groundwater Transport Model
(GWT) within the same simulation and numerical solution instance was created. A so-called
"Model Exchange object" couples two models, and is therefore specified at the simulation level
[MODFLOW Development Team Revision 27bb36e1, 2020]. A transport model can also be run
independently. To do this, all inter-cellular flows and budgets must be exported from the GWF
model and transferred to the transport model.
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2.4. Main discrepancies 2. Fundamentals

Figure 2.1.: Diagram showing the Modflow 6 components for a simulation. Langevin et al., 2021.

2.4. Main discrepancies

Wang and Anderson [1982] have demonstrated that FD and FE lead to the same results, provided
that the cell sizes or node distances are "sufficiently" small, although there are different concepts
behind it. They further have shown, that both methods yield the same set of algebraic equations
through the solution process [Anderson et al., 2015].

Although both software packages use the same definitions of boundary conditions (BC), the input
differs: Feflow basically follows the three base types of BC, whereby all are defined in a linear or
areal context. In order to realize a point BC, i.e. wells, a fourth type is introduced [DHI-WASY
GmbH, n.d.]. Table 2.1 lists the options in Feflow according BCs. FF allows further settings for
each BC.

Modflow relies on packages that are based on the respective boundary conditions (Tab. 2.2). For
example the river, drain, stream-flow routing and lake package work with a head-dependent flux
of a third-type BC (Robin), but differ in functionality and input parameters. Modflow is stringent
in setting up the packages - all parameters must be defined at all times. For a detailed describtion
see Langevin et al. [2021].

The main discrepancies (especially concerning the current project) are listed in table 2.3. The
typical grids of the finite-element and the finite differences method are shown in figure 2.2.
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Table 2.1.: Boundary Conditions available in Feflow [DHI-WASY GmbH, n.d.].
BC Short Description Examples
Hydraulic-head
BC

Fixed hydraulic head (1st kind/Dirich-
let boundary condition).

Well-known groundwater level
at boundary,
Surface water body perfectly
connected to the aquifer

Fluid-flux BC Fixed flux (Darcy flux) across a model
boundary (2nd kind/Neumann bound-
ary condition).

Lateral inflow into the aquifer
from a slope

Fluid-transfer
BC

Fixed reference water level with ad-
ditional transfer rate (3rd kind/Cauchy
boundary condition)

River/lake with clogging layer,
Partly clogged drain

Well BC Fixed abstraction/infiltration at a single
node or along a well screen.

Pumping/infiltration well

Table 2.2.: Modflow: List of packages available for use with the Groundwater Flow Model Langevin et al., 2021.
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2.4. Main discrepancies 2. Fundamentals

Table 2.3.: Main discrepancies: Feflow vs. Modflow 6
Feflow Modflow 6

general
numerical solution: finite elements (FE) control-volume finite differ-

ence (CVFD)
leakage: user input: transfer rate (T)

T =
kn
dn

> internal multiplication with
peripheral cell edges
> differentiation between in-
flow and outflow leakage

user input: conductance (C)
C =

ln·wn·kn
dn

> only one leakage factor avail-
able

concerning current project
discretization: unregular, triangular grid structured square-grid
interface: integrated interface for simulta-

neous groundwater level query
→ head-dependent recharge

-

Figure 2.2.: Characteristic FE grid. Right: Currently applied finite difference (FD) grid. Anderson et al., 2015.

(kn...hydraulic conductivity of riverbed ("clogged layer"), dn...riverbed thickness, ln/ wn...length/width
of the river as it crosses the cell n; all in cell n, or at node n, respectively)

2.4.1. Leakage2

In Modflow the user specifies the conductance [L2T−1]. In Feflow, the transfer rate (in and out -
depending on the direction of the exchange flux) [T−1] is user-defined, an internal multiplication
with the relevant area results in the unit L2T−1 [DHI-WASY GmbH, n.d.].

When creating the current Feflow model, it was assumed that leakage occurs via the side surfaces
of the river cells (not via the bottom surface, therefore w=1). Figure 2.3 shows this schemati-
cally. According to Diersch [2014], Mach et al. [2019] and discussions with the model creators,
the volumetric flow rate at river cell nodes is interpreted to function according to the following
equations:

Qn =
ln,1LFoutn,1 + ln,2LFoutn,2

 · hn − RS n
 · w i f hn > RS n (2.3)

2The term leakage factor is used equivalently to transfer rate or conductance per unit area.
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2. Fundamentals 2.4. Main discrepancies

Qn = −
ln,1LFinn,1 + ln,2LFinn,2

 · RS n − hn
 · w i f hn < RS n (2.4)

where:

Qn = volumetric flow rate at cell n [L3/T]
hn = piezometric head of cell n [L]
LFin/outn = leakage factor for influent/effluent conditions at cell [1/T]
RS n = River Stage in cell n [L]
ln,x = part of the cell edge [L]
w = general width = 1 [L]

NOTE that unlike Modflow, in Feflow inflows are considered as negative, outflows as positive
values

The user defines or calibrates the leakage factors (LF; [1/T]) per cell and for each direction. The
basis for this is in particular riverbed permeability and thickness. Further river water levels per
time step and the river bottom elevation as a static value are defined. In the current two dimensional
model the simplified assumption is that the river bottom elevation equals the aquiclude elevation.

The fact that leakage factors are not only defined directly at the flow boundary condition (Fig.
2.3), but also at more distant cells results from a refinement (or cell size reduction) in the process
of model development. These leakage definitions do not affect the model and remain relic.

Figure 2.3.: Leakage factor in the current Feflow model.

2.4.2. Head-dependent Recharge

Feflow provides an interface where external scripts can be placed and executed at a defined
work step. To enable a groundwater level-dependent recharge query, a script was written by JR-
AquaConSol, which stops the simulation after each time step, retrieves the calculated groundwater
level, and uses this value to determine the recharge rate for the following time step in the time-
depth tables, calculated with STOTRASIM. An example of these tables is given in figure 3.9.
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3. Data

3.1. Origin and Quantity

With the motivation to ensure a proper comparability, all input data for the Modflow model was
exported as raw ASCII-files from the most current and calibrated Feflow model version, the relat-
ing GIS or STOTRASIM files of the SI-MUR-AT project. This procedure has the disadvantage
that it deviates from a "classical" model generation: Data is partly already processed, interpolated
and calibrated. Further, in retrospect it is no longer possible to determine the extent to which the
data has been processed.

Table 3.1 lists the used data. All time-series (TS) are given in daily values and extend from
01.01.1993 to 31.12.2018, resulting in a total of 9495 time-values of each transient data point. For
transport modeling the grid was partially refined to achieve the convergence criteria.

Feflow uses the so called “PowerID” to link a data-point in a shape file, that can be any type of
boundary condition, to a time-series. This ID is used to reconstruct the connection.

Table 3.1.: Input data. Blue: transient data; orange: STOTRASIM time-depth tables (TDT); SHP: shape files with
attributes.

Type Format Quantity

flo
w

model boundary SHP 1 polygone
hydraulic conductivity SHP 30,911 points
specific yield SHP 30,911 points
initial condition SHP 15,947 points
aquifer bottom elevation SHP 30,911 points
constant head boundary SHP & TS 93 points
wells SHP & TS 11 points
hydrotopes (recharge zones) SHP & TS 2,433 polygones
river / surface waters SHP & TS 1,606 points
river lines SHP 3 lines
transfer-in* SHP 11,381 polygones
transfer-out* SHP 20,911 polygones
observation measurements SHP & TS 49 points
STOTRASIM: recharge time-depth tables TDT 278 TDT

tr
an

sp
or

t initial mass concentration SHP 61,752 points
mass transport porosity SHP 121,540 points
mass concentration BC SHP & TS 4,425 points
STOTRASIM: nitrogen time-depth tables TDT 278 TDT
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3. Data 3.2. Feflow Model Grid and Aquifer Properties

3.2. Feflow Model Grid and Aquifer Properties

Figure 3.1.: Distribution of cell sizes (n = 30,911) in the Feflow model.

The current Feflow model is con-
structed as a triangular grid, with
irregular cell-sizes and in a sin-
gle layer. The total cell number
amounts 30,911 with an average size
of 1,429 m2 (Fig. 3.1). Areas
around wells and along boundary
conditions such as rivers have been
refined - these areas are represented
by small cell sizes. Furthermore, ar-
eas that tend to lead to numerical
problems are refined in order to fa-
cilitate the convergence of the model
run. Numerical problems or errors
occur when the maximum error tol-
erance is not undercut within the allowed iteration steps, e.g. as a result of high gradients in the
aquifer properties.

Figure 3.2 shows a section of the Feflow model-grid with local refinements. It can be considered
to be representative for the entire model area. Aquifer properties (hydraulic conductivity, specific
yield, aquifer bottom elevation, top elevation) are defined for each cell. The initial GWL (IC) and
boundary conditions are assigned to nodes.

Figure 3.2.: 1 x 1 km section of the Feflow grid. Containing 1318 cells; 1266 cell centroids; 648 nodes; 29 River-BCs
and two wells.
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3.3. Boundary Conditions 3. Data

The definition of gravel dredgings ("lakes") was made by setting hydraulic conductivities to 1 m/s
and specific yield to 1 [-]. Tributary waters or drainages ("surface waters"; located in the middle of
the model area, and not along the borders) are defined with a fixed water level as a river boundary
condition.

3.3. Boundary Conditions

3.3.1. Rivers, Wells and Constant Head Boundary

Figure 3.3.: Map of plotted TS-points. X and Y in meters. Inclined numbers describe the length of the river, starting in
the north. The river Lassnitz starts outside of the model domain.
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3. Data 3.3. Boundary Conditions

Figure 3.3 shows all data-points of boundary conditions at which time-series are deposited, with
the exception of recharge. The model area is framed by the boundary conditions, whereby a gap
of about 1.5 km in the north-western part remains undefined and is therefore treated as a no-flow
boundary. Figures 3.4 - 3.6 depict the temporal and spatial variability of well pumping rates and
rivers with leakage factors. The points are linked to the corresponding time-series with an integer
ID, which is stored in the point attributes.

The pumping rates vary in the model area. The highest abstraction rates are recorded in the central
area ("Kaindorfer Brunnenfeld"). Northern and southern wells show considerably lower abstrac-
tions, or in some cases are not even in operation for at least half of the observation period (Fig.
3.4).

Figure 3.4.: Boxplot of well-pumping rates. Location of wells in fig. 3.3.

Along the Mur, the three distinctive barrages are visible (Fig. 3.5). The target level of the barrage
can be read off approximately from the mean value before a drop. Only in the case of the second
barrage is a free flow section (the bumps in this area mark the right-hand sided inflow of tributary
waters), in all the others the root of the barrage extends over the entire flow section. A fourth
barrage follows shortly outside the project area.

Within the project area (from about 6.5 km onwards), the Lassnitz has the steepest gradient of the
rivers, with a constant range of extreme and average values. Along the sulm, this range decreases
with the flow path (in the project area), especially the closer it gets to the confluence with the Mur.
In the last three kilometers before the confluence, the riverbed increasingly flattens out, with the
mean water level approaching the minimum more and more. This indicates that a relatively con-
stant water level is maintained in this area due to the strong and presumably constant exfiltration
from the project area. The maximum values are thereby reached by individual periodic high water
levels.
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Figure 3.5.: Water levels along the rivers Mur, Sulm and Lassnitz. The jumps of the Mur indicate barrage stages.
Location of TS-points in fig. 3.3.
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"TRAF_OUT" and "TRAF_IN" represent leakage factors in the different directions of exchange
fluxes in Feflow (Fig. 3.6, see 2.4.1). "Out" stands for effluent - from the aquifer into the river, "in"
for influent - from the river into the aquifer. It turns out that the values in the same geographical
regions differ by a factor of up to 10,000. Both values are calibration results.

Figure 3.6.: Leakage factors

Transport model

Figure 3.7.: Nitrate Concentration in the lakes over time.

In the transport model river and constant
head boundaries are attributed a constant
concentration in time and space with 2 mg/l
nitrate in rivers and 20 mg/l at the constant
head boundary (CHB).

A concentration time-series was assigned in
the gravel dredgings (Fig. 3.7), since con-
siderable degradation processes take place
in their shallow water. This TS applies for
every affected-cell or node, respectively.
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3.3.2. Recharge and Nitrogen Sources

Figure 3.8.: Hydrotope distribution. LWFFM:
agricultural areas with crop rota-
tion; OGEW: surface waters; REKUL:
restoration areas; SIEDL: urban areas;
WALD: forests.

The calculation of groundwater recharge and nitrogen
leaching was made externally with the model soft-
ware packages SIMWASER and/or STOTRASIM
[Feichtinger, 1998].
The calculation method is primarily selected accord-
ing to the prevailing water dynamics, based on land
use: agriculture, urban areas, forests, surface wa-
ters, and restorational areas. Land use is further
blended with site, soil, and weather characteristics,
resulting in homogeneous recharge areas and sources
of nitrogene leaching called hydrotopes (Tab. 3.2).
These models then describe water flows and nitro-
gen dynamics in the unsaturated zone (area between
the ground surface and the water table) in a one-
dimensional, vertical direction in a temporal and
depth-dependent resolution. Background for the clas-
sification, resulting hydrotopes and basis of design
are described in Mach et al. [2019].
Figure 3.8 depicts the distribution of land use in the
model domain.

Nitrogen transport is entirely bound to water move-
ment, taking into account convection and diffu-
sion/dispersion processes. Representative for all sol-
uble nitrogen compounds, only nitrate is dissolved
in the soil water, but this completely and therefore
all other nitrogen components (NH4-N, Norg) must
first be converted into nitrate in order to gain mobil-
ity in the soil. In return, however, any nitrogen de-
mand (vegetation uptake, immobilization) is covered
by NO3-N [Mach et al., 2019].

Figure 3.9 shows an exemplary time-depth diagram
of groundwater recharge in hydrotop 138 (agricul-
ture), figure 3.10 the dynamics of nitrogen leaching
in the same hydrotop.

Table 3.2.: Hydrotopes. ∗average annual recharge [mm]. Orange: time-depth dependent recharge.
land use area [km2] recharge∗ hydrotops

agriculture 23.32 337 1574
urban 12.54 550 485
forrest 6.16 229 282
surface water 1.45 186 88
restoration 0.65 543 4
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Figure 3.9.: Recharge in an agricultural hydrotope, considering crop rotation. Plotted for a period of 2 years.

In the upper soil layers (down to a depth of about 1 m), plant withdrawal and evaporation is shown
by a negative recharge rates (Fig. 3.9). The spread of the wetting-front in the unsaturated zone is
visible after precipitation (or watering) events - indicated by a high rate in the upper soil layers,
which spreads downwards with a time lag and thus decreases in intensity overall. In order to make
differences in the depth-levels easier to read, the cumulative sum is shown. The differences in the
depth-dependent recharge rate decreases with increasing depth, especially below the root zone -
from here the curve tends to be smoothed.

Figure 3.10.: Nitrogen charge in an agricultural hydrotop in kg per hectar, considering crop rotation. Plotted for a period
of 2 years.

Negative values for nitrogen leaching are also found in the upper soil layers due to plant uptake, but
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these negative areas do not reach as deep as the negative recharge (Fig. 3.10). Possible fertilization
events cannot be identified in the diagram, but a link to water dynamics is recognizable.

3.4. Feflow Results, Calibration Parameters and Reference Values

In the existing Feflow model, the hydraulic conductivity and the pore volume in particular were
important calibration parameters. Furthermore, the river transfer rate was calibrated. The ground-
water level measurements at the 48 selected observation wells, following the start of the model on
01.01.1993, were interpolated for the initial condition [Mach et al., 2019].

Figure 3.11 depicts the Feflow-calculated median groundwater level (Q50) in the project area for
the time period between 01.01.1993 and 31.12.2018 and the 48 observation wells, that were used
for model calibration.

The budget of the Feflow calculation (average daily rate of the first 3650 days) is given in table
3.3. The recharge rate was not recorded, since it was determined with the interface manager. The
magnitude of the recharge (as sum of in- plus outflows) can be estimated approximately with the
imbalance value. The high divergence between storage-in and -out is not traceable here. Mach
et al. [2019] calculate an area-weighted average of 381 mm/a for groundwater recharge rates for
the entire study area, which would result in an average recharge of about 41,750 m3 per day for
the entire area.

Table 3.3.: Feflow Budget. Average daily values [m3/day].
SOURCE IN OUT
Storage 26,683.46 32,289.48
Dirichlet 14,343.41 819.84
Cauchy 16,256.36 57,031.10
Well 0.00 4,373.65
Imbalance -37,230.68

Measured groundwater levels at the observation wells are present continuously at different time
intervals, or only in individual periods. The stored Feflow values are available in daily or weekly
intervals. Measured concentrations are only available selectively and only at individual observa-
tion wells. The existing transport model was not calibrated.
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Figure 3.11.: Q50 water level position and observation wells
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4.1. General

As described in 2.4, parts of the Feflow environment (especially the leakage factors and ground-
water recharge) cannot be directly transferred to Modflow. For this reason, different approaches
were applied and compared in their results. All methods and model runs are identical in their
spatial resolution and general in spatial discretisation, i.e. the definition of BC effected cells,
or aquifer parameter distribution. Furthermore, the calculation and thus comparative period was
limited uniformly to 3,650 days ("stress periods") - from 01.01.1993 to 30.12.2002.

At the time of defining the object of study (June 2020), internal transport modeling was not sup-
ported within Modflow (see 2.3). It was planned to use MT3D for this purpose - this transport
module only supports structured model grids [Bedekar et al., 2016]. For this reason, the dis-
cretization was also performed with such a model grid. The current Modflow version supports
transport simulations with vertex-based or unstructured grids. However, in a test not described
in this work, it was shown that a changeover to a vertex-based grid could be implemented with-
out major interventions in the Python scripts for a classical model setup. This was only done
superficially and with a GWF simulation.

Units
All length units are defined in meter, time in days and concentrations in mg per liter (≡ g/m3).

Time-series were formatted and summarized in a table according to the type of boundary condition
and indexed with the ID as column name, and the timestamp as row name. All time-depth tables
were formatted and saved for each individual hydrotop named with the ID value, with depth level
in columns and timestamp in rows. Both was done preliminary with separate Python scripts.

4.1.1. Approaches

The current Modflow version 6.2.1 does not allow the groundwater level to be queried during the
simulation1 - the leakage direction and the depth-dependent recharge rate can therefore not be
determined dynamically, i.e. according to a comparison of groundwater and river water level or a
query in the time-depth tables. The following points give a brief description of applied solutions
and a reference to the section in which they are described in detail. The results are presented and
discussed in the equivalent section in chapter 5:

Leakage

• export the Feflow budget file and define the river cells as wells and thereby use the same
explicite values as used by Feflow→ Localization of boundary condition-effected cells

• manual selection of effluent and influent areas based on the Q50 water level (according to
Fig. 3.11)→ Localization of boundary condition-effected cells

1according to rumors this possibility will be integrated in a future version
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• calibration of manual selected recharge factors→ Calibration

Recharge

• a temporal and spatial interpolation of measured groundwater levels at observation wells
to account for temporal variations→ Temporal Discretication

Change the "run mode" - Loop Modflow

• execute Modflow for one timestep each, read in calculated data, redefine initial- and bound-
ary conditions, execute Modflow again ... →Model Setup and Execution

4.2. Workflow

As the procedure of code-based model creation with the Python package FloPy had to be developed
first, attention was paid to modularity, to make it easier to replace or edit parts: Similar steps
are combined into single, executing Python files. The respective calculation results are stored
in external files so that links between the executing files are prevented and the editing options
are facilitated. Intermediate results can be reviewed or plotted. Figure 4.1 shows the schematic
workflow with the three main parts (files): (1) Spatial Discretization, (2) Temporal Discretization
and (3) Model Executive (RUNMF). These Files are listed in the appendix.

Global or basic properties such as cell size, number of time steps, model name and the order
structure are defined in a separate file ("prop.py") to ensure, that the same parameters are used and
not mixed up. To "clean up" the following files, packages and functions are also defined here.

4.2.1. Spatial Discretication (App.B.2)

The cell resolution was selected in order to ensure that no details are lost during automated pro-
cessing, especially with regard to the boundary conditions (BC). Modflow does not allow multiple
assignments of BCs of the same kind in the same cell (with the exception of wells, where several
wells can be located in one cell) [Langevin et al., 2021]. Especially in the northern part of the
project area, there are accompanying drainages (defined as river BC), which run relatively close
to the river Mur (Fig. 4.4). In order to be able to represent these, a resolution of 40 x 40 m was
chosen. This results in a total of 144 x 335 square-cells. Of these 48,240 cells 25,513 are located
within the model boundary and thus active.

The core of the spatial discretisation is an intersection function in which the values of aquifer
properties and BCs, which are mostly present as point shapes, are intersected with the cell grid.
Further processing is particularly necessary in cases, when:

• multiple points (or features in general) intersects with an active cell or

• none intersects with an active cell (Modflow requires a consistent definition of aquifer prop-
erties in active cells)

Both situations lead to an error message from Modflow and to the termination of the simulation,
but must be expected in any case. How this can be handled depends on the parameter type:
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Figure 4.1.: Schematic flowchart and file structure.
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Aquifer properties and initial conditions

These parameters - hydraulic conductivity, specific yield, effective transport-porosity, top and
bottom elevation, as well as the initial conditions - are constant over time, and characterized by
a continuously changing float value, that allows interpolation. The basis for all these parameters
are point shape files. These parameters are intersected with the grid. The average of multiple
values in individual cells is calculated. For undefined cells, the nearest available data point is
searched starting from its center and assigned. In the case of hydraulic conductivity, the unit must
be converted from m/s to m/day - it is multiplied by the factor 86,400.

To prevent numerical issues or an unintentional change in the groundwater flow calculation method
because of possible ponding, when initiating the model run, the aquifer top elevation is set to a
constant, freely chosen level, above the highest elevation of the real ground level (at 1,000 m).

Interim Results

Model domain area: When creating the model gird, each cell that is intersected by model
boundary is set active. It is irrelevant whether the whole cell is enclosed or only a part of it is
sectioned. This results in an enlargement of the model domain area. The original Feflow model
has an area of 4.00 · 107 m2. The discretization results in 25,513 active cells of 40 x 40 m each
and thus by 820,800 m2 or 2 % more, where recharge can occur.

Figure 4.2.: Results of Spatial Discretization: Model area and aquifer parameter.

The transfer of aquifer parameters and initial conditions to the model grid is shown in figure 4.2
and 4.3. Thereby, 13,278 out of a total of 25,513 (52 %) cells can be defined by an average value (at
least one data-point plots within a cell), in the case of bottom elevation, hydraulic conductivity and
specific yield (cell properties in FF). At the remaining cells, the next data point must be searched
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for, whereby the maximum distance between data point and cell center is 103 m.

In case of the initial condition, where there are fewer data points (node property in FF), the pro-
portion of cells where an average can be formed is lower (33 %), but the maximum distance to the
next data point is not significantly higher (116 m).
Since parameters relating to the transport model are available in a much higher resolution, an av-
erage can be formed at 78 / 92 %, the maximum distance being 59 / 44 m, respectively (initial
concentration / mass transport porosity).

Figure 4.3.: Results of Spatial Discretization: Aquifer Parameter and Initial Conditions. Aquifer thickness results from
a subtraction of top minus bottom elevation.
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Apparently, all these discretization results correspond relatively exactly to the "original" data in
Feflow (FF) (with the visual representation within the FF interface as a basis for comparison).
The described parameters (with the exception of hydraulic conductivity and specific yields) show
gradual values, without larger jumps. Further, if larger jumps would occur, a high data-point
density (high cell resolution in FF) is present, leading to a more direct transmission. For these
reasons, it is not assumed that important details are overlooked within the maximum 116 m spacing
(approx. 3 cell lengths).

The hydraulic conductivity and specific yields are defined in a zoned manner. With the chosen
discretization method it cannot be excluded that a gradient occurs at sharp boundaries (a "transition
cell"). From the author’s point of view, this fact must be accepted in the course of discretization.
Visually, it can be observed that "small" zones with extreme values are apparently transferred to
the model grid in a suitable extent (e.g. yellow spots in hydraulic conductivity in fig. 4.2).

Localization of boundary condition-effected cells

Figure 4.4.: Discretization in Modflow.

Table 4.1 describes the methodology for discretiz-
ing cells affected by boundary conditions according
of their type and the parameters. The handling of
river-BC cells requires several interventions and is
explained in detail below.

For all types of BC, tables are created in which the
affected cell indices, an ID to link the cell to the cor-
responding time-series, and further relevant parame-
ters are stored. Table 4.2 shows an example for the
river-BC table.

Rivers:
Data points of rivers are directly intersected with the
grid. If more than one point fall into one cell, the first
value is kept, duplicates are removed (random selec-
tion). Theses cells are the basis - other parameters are
only added if they share the same cell indices. For the
rivers, the node ID is also transmitted, because the
Feflow cell budget is stored with this number - what
is needed if the rivers are applied as wells.
The rivers leakage factors are available as polygon
shape files. These are blended with the grid and a
weighted average value is calculated for each cell,
according to their intersecting area for each direction
(leakage in and out).
The effective exchange edge of the river (compare
2.4.1) is further intersected with the grid and assigned
to the corresponding cell indices, just like the poly-
gons, that were created to classify inflow areas (the
only shape file that was created manually in this the-
sis). This classification was done on the basis of the angle of incidence of groundwater level
isolines to the river boundary condition in Fig. 3.11. The resulting table is shown in 4.2.
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Approach: Rivers as wells
This approach is a simple method to get results without worrying about the transposition of the
leakage factors. With the export of the budget per time step (each day) at each relevant node (with
a river BC) in Feflow, an explicit value is available, which specifies the volumetric water flow at
the respective node. This value corresponds to the same type of boundary condition as that of a
well BC (well pumping rate). The +/- sign indicates whether water is going into or out of the cell
(inflow / outflow).

The Modflow grid is then intersected with the river data points, duplicates in same cells are kept.
In the next step (Temporal Discretization) a flow rate from the budget file is assigned to the cells
according to their "Node ID" and saved as well. This value is positiv for influent and negative for
effluent conditions.

Table 4.1.: Boundary Conditions: Descretization Methods. *stored in a table for each BC type.
MF Re-
quirements

Available Data and For-
mat

Method Resulting Pa-
rameter*

WEL cell indices;
pumping
rates;

point shape with ID of TS direct intersection of
point shape and ID
assignment

cell indices;
TS - ID;

CHB cell indices;
hydraulic
heads;

point shape with ID of TS;
line shape, connecting
points;

intersection of line
shape; assigning ID of
nearest data point

cell indices;
TS - ID;

RIV cell indices;
river stage;
conductance;
river bottom

point shape with ID of TS;
line shape, connecting
points;
polygon shapes of leakage
factors;
polygons of manual
selected leakage direction

intersection of point
shape (randomly drop-
ping duplicates), ID and
Node ID assignment -
identification of affected
cells;
intersection of all other
shapes and merging on
affected cell indices
(using weighted average
on leakage, according to
their area per cell)

cell indices;
TS - ID / stage;
Node ID;
type (steady?);
length of line
shape per cell;
leakage_out;
leakage_in;
leakage direc-
tion;

RCH cell indices;
recharge;

polygon shape with hydro-
tope IDs

intersection of polygons:
assignment of the hydro-
top ID, that covers the
largest area of the cell

cell indices;
hydrotop ID;

CNC cell indices;
concentration;

point shape with ID intersection of point
shape (randomly drop-
ping duplicates) and ID
assignment

cell indices;
TS - ID;
type (steady?);
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Table 4.2.: Section of the river-table. "cellids" describe row and coloum indices of the cell. If "steady" = 1, "F" defines
a constant river stage; if "steady" = 0, F is used as an ID for the time-series.

cellids F node steady lengths lkg_in lkg_out riv_sec

19 (179, 133) 268.489 13147 1 40.016 0.05 6.55
20 (180, 132) 268.471 13146 1 42.95 0.05 5
21 (38, 57) 1218 13141 0 2.486 0.5 50 out
22 (90, 87) 10364 13139 0 40.384 0.699 120 in
23 (91, 88) 10363 13134 0 8.033 0.699 120 in

Interim Results (BCs)

Figure 4.5 depicts the location of BC-cells and gives an overview of the resulting leakage factors
for a manual selection of the flow direction.

An independent evaluation of the discretization is difficult in this case, rather the effect must be
assessed. However, it turns out that in the case of the river BC, isolated holes are produced, which
does not make sense from a conceptual point of view (Fig. 4.4 and 4.5). Objective of this thesis
is the comparison of results in numerical modeling - a priori these conceptual weaknesses are
accepted. In the numerical calculation it is assumed that these holes are compensated by a larger
length factor (compare 2.4.1). The transfer of BCs and their effects are presented and discussed in
more detail together with Results.

4.2.2. Temporal Discretication (App. B.3)

For each BC, an iteration is performed over the calculation period (timestamp) and a second nested
one over the affected cells (ID). The corresponding value is queried in the time-series with the
timestamp and the ID. The resulting table is saved per time step in a format readable by Modflow.

Output: With the temporal discretization, one file is written out per boundary condition for each
Stress Period (SP) (5 BCs · 3,650 SPs + nitrate leaching · 3,650 SPs = 21,900 files).

Rivers (manual leakage selection):
While iterating, an if condition is interposed: only if the flow direction in the cell ("riv_sec" is
Tab. 4.2) is attributed with "in", the inflow leakage is multiplied by the intersection length - for all
other values, the outflow leakage factor is multiplied. For outflow leakage, the intersection length
is only multiplied if it is greater than the standard cell size (> 40), otherwise it is multiplied by the
cell size.
The elevation of the aquiclude is transmitted to the river bottom. Table 4.2.2 shows an example of
the output file for day 1,429 (same cells as listed in Tab. 4.2).

Recharge (GWL Interpolation) and Nitrate Concentration:
The fact that there is a relatively high density of observation wells is taken to advantage and a
spatial interpolation is carried out at these support points for each time step. To obtain values
in areas which cannot be calculated by interpolation (marginal areas - extrapolation would be
necessary), the "nearest neighbor" value is used.
As the recharge rates are available in groundwater depth levels starting from ground surface, the
calculated values are subtracted from the ground elevation level. All time-depth tables are read
into the RAM to enable a faster query in these tables. For each cell, the depth level with the lowest
height difference to the interpolated groundwater level is determined in the respective hydrotop.
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Table 4.3.: wlf-wie.riv_stress_period_data_1429.txt. Columns: cell indices (first index describes the layer; Note that
Python is zero-based, Modflow/Fortran starts counting with 1), river stage, conductance, river bottom and
auxiliary variables.

...
1 180 134 268.4897355 262.1331180 264.6917103 1.00 0
1 181 133 268.4710066 214.7536166 264.6414261 1.00 0
1 39 58 281.3500000 2000.0000000 278.9455011 1.00 out
1 91 88 281.0832772 28.2688445 273.3883365 1.00 in
1 92 89 281.0774003 5.6234284 273.2612512 1.00 in
...

The determined value is converted to m3 per m2 and transferred to the cell. In the same step, the
nitrogen value is queried in the nitrogen time-depth tables (which are structured in the same way
as the recharge tables in regard of the depth levels).
Nitrogen, as a component of a nitrate molecule, is expressed in kg per hectare. To obtain the mass
of nitrate, it is multiplied by the factor of 4.429 (molar mass of nitrate / molar mass of nitrogen). As
Modflow only allows concentrations and not masses as input parameters for contaminant transport,
the nitrate mass is divided by the recharge (both normalized to the same unit area).

Initially, the median groundwater level was used to interrogate the recharge value per stress-period
in the time-depth tables. The use of an interpolated daily groundwater level represents an extension
here. In general, this method has some weaknesses:

• only applicable if a high density of observations is available

• only applicable for history matching, not for a future forecast

• neglects aquifer properties; results in a more or less planar groundwater surface; Darcy’s
law is not included (compare difference maps; e.g. Fig. 5.5)

• the applied interpolation method only works linearly within the support points (observation
wells) - marginal areas (where extrapolation would be needed) are assigned with the "nearest
neighbor" value, which definitely results in little correct outcomes; BUT these areas are
predominantly covered by hydrotopes of the "forest" land use type. In this land use type, no
distinction is made between depth levels for the calculation of the recharge (one level).

4.2.3. Model Setup and Execution (App. B.4)

In Flopy, the model setup basically follows the structure described in section 2.3.3. With the ini-
tialization of the simulation instance, the workspace and folder structure is defined and the path to
the executing Modflow file is provided. The amount and unit of time steps (called "stress periods")
are defined in the timing module. In the following, convergence criteria for the numerical solution
(IMS package- Iterative Model Solution) are defined. In all simulations, default values were used.
At most, the parameter "complexity" was changed from "moderate" to "complex" if convergence
could not be achieved. A model instance (both GWF and GWT) is created and registered together
with the numerical solution for the simulation. The hydrogeological packages as well as the out-
put control and observation packages are assigned to this model, whereby only basic properties are
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defined in the case of boundary conditions and paths to the previously generated files (in Temporal
Discretication) are stored for each stress-period.

Flopy then generates files readable by Modflow, saving one file for each registered package and a
parent "Name File" that contains the names of input and output files used in a model simulation and
thus controls the parts of the model program that are active. With the execution of the program, the
groundwater flow and/or transport is calculated and stored in a binary files per time step (depending
on the selected properties in the output control package).

Loop Modflow

In this approach, the model is setup classically. However, all transient data (BC) are nested into a
loop:

• setup simulation, GWF and/or GWT model and corresponding modules (Timing Module is
set to one stress period)

• definition of steady parameters and initial condition in appropriate packages

• creation of a table to store values at observations for each iteration step as the MF-observation
package does not work in the loop

• start Loop:

– query the previously created stress period data for BCs that are not affected by GWL
fluctuations (CHD, WEL and CNC); transfer to Modflow / Flopy so that it is assumed
to be the first time step;

– query of the initial condition for RIV affected cells, comparison with river stage and
definition of leakage factor

– query the initial condition for each RCH cell, access the TDT, definition of recharge
and calculation of the related concentration input

– write simulation files and run MF

– remove all BC that are looped

– load hydraulic head and/or concentrations from the binary files and redefine initial
condition; further store the values at observations in the observation-table

This method is very time-consuming. The simulation of the 3.650 days takes about 42 hours2.

4.2.4. Calibration

In the current Modflow model, the calibrated data basis can largely be taken directly from the
Feflow model. One exception here is the leakage factor, and especially the resulting conductance
(see 2.4.1).

For this purpose, the calibration program PEST (v 17.2) [Doherty, 2021] is used and operated via
the Python framework pyEMU [White et al., 2016].
A direct interface to Modflow or FloPy is not integrated in pyEMU, and therefore manual interven-
tion is necessary, for example to create the template files and to format the instruction files in the

2Given calculation times, always refer to a simulation done with a laptop with an Intel i7-8565U CPU with 1.80GHz
(4 cores) and 16GB RAM.
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required manner. A detailed documentation is given by Doherty [2021] and can be downloaded
together with the executing files from https://pesthomepage.org/.

The exact selection of the calibration parameters (par) is based on model run 2 (see Modelrun
2) and the selected flow directions, chosen according the isohypses of the FF Q50 water-level,
respectively:

par 1 inflow-, and

par 2 outflow areas of the rivers, following figure 3.6;

par 3 "problematic" area in southeastern model area - surface waters and drainages west-
ern of the river Mur (Mur itself is attributed with "inflow" in this area),

par 4 all other cells defined as river-BC in the central model area (other surface waters
and drainages)

The calibration of the four parameters was carried out over seven iteration steps, with the simula-
tion being carried out several times in each case. The calibration takes about 19 hours in total.
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Figure 4.5.: Results of Spatial Discretization: Localization of BC-effected cells and leakage factors for manual selection
of flow direction. Hydrographs of underlined observations are hereafter depicted in detail. Inflow areas are
marked, other marginal-regions are attributed outflow-dominated.34



5. Results

A compilation of the methods and modelrun (MR) that are described and discussed in this thesis
is listed in the following table:

Table 5.1.: Modelruns and parameters. Page numbers refer to the respective method section.
modelrun leakage recharge run mode

MR 1 rivers as wells (page 29) mean GWL (page 30) classic
MR 2 manual selection (page 28) interpolated (page 30) classic

�

MR 2a calibration (page 32) interpolated (page 30) classic
MR 3 GWL query (page 32) GWL query (page 32) loop

For the evaluation three types of groundwater levels are available. These are: (1) Current MF
model run; (2) Calculated by Feflow; (3) measured at observation wells. Unless otherwise stated,
comparative values always refer to the FF results. In order to compare the different model runs
with each other, five hydrographs at the same locations are shown in detail. A difference map
showing the difference between MF and FF calculated median (Q50) water level is presented for
each model run. The median FF water level is calculated from the groundwater contour lines (Fig.
3.11) and is therefore only an approximate reference.
A compilation of the results at the observation wells is also presented in the form of scatter plots.
Here, the average value of all time-steps per observation serves as the basis.
An overview plot of all observations is included in the appendix.

Further, the Root Mean Square Error (RMSE) - the square root of the average of squared differ-
ences between calculation and actual Feflow result - is used to verify the model results.

The location of observations that are shown in detail and selection criteria are described below and
are plotted in figure 4.5:

UW37685 most northern OBS, ≈ 350 m (6 diagonal cells) distance to the CHB
no influence by river-BC is expected here, but high influence of CHB

UW3798 located eastern, on the northern third, close (2 cells) to river Mur
high response to river is expected; free-flow section of the Mur, high fluctuation
expected

UW3812 centrally located OBS
less direct river influence, perhaps a clearer signal of flow from northern part of
aquifer;

UW38144 located eastern, on the southern third, between "surface waters" and river Mur
high river (with inflow) and surface water (with outflow) influence;

UW38282 most southern OBS, close to river Sulm and Sulm-Mur confluence
high groundwater outflow expected
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Transport Simulation

In principle, the contaminant transport was simulated together with the GWF in each model run,
or rather this was attempted. In advance, it can be stated that no GWT modelrun could be com-
pleted without errors - neither in a synchronous (coupled with GWF model) nor in a stand-alone
simulation. The coupled simulation of GWF and GWT was always aborted after a maximum of
20 stress periods due to missing convergence. Even suppressing the convergence criterion did not
yield any results.

A separate simulation terminates after (ALWAYS) 530 stress periods, with the explanation that the
binary budget file is not readable for this input data. An example of this short-period results for
modelrun 2 is given in the appendix (A.5).

Furthermore, the attempt to use MT3D for the transport simulation was unsuccessful. The MF 6
documentation describes that a coupling with MT3D is possible when using a structured model
grid [Langevin et al., 2021]. However, it has been shown that in FloPy MF 6 models cannot be
read in by MT3D. In the official channel of the USGS on GitHub, this problem has been listed
as an open issue since January 2020 (Issue #775: https://github.com/modflowpy/flopy/
issues/775).

5.1. Modelrun 1: Rivers as Wells, Mean GWL for Recharge

The scatter plot (Fig. 5.1) gives an overview of the results: While the calculated values of the
higher altitude (northern) observations correspond quite exactly with the FF results, they deviate
upwards below the middle altitude. The southernmost OBS has the highest deviation with an
RMSE of 1.573 m (RMSE of the northernmost is 0.07 m). The overall RMSE amounts 0.764 m.
This shows that there is too much water in the system and it is accumulating towards the south.

This high groundwater level in the south (partly significantly above ground level) is shown more
clearly in the difference map (Fig. 5.2). The curvature of the isohypses corresponds relatively
exactly to those of the Feflow calculation (Fig. 3.11) - only their values differ significantly. In
addition, there are noticeable border areas further north which have markedly too high water levels
(∆Q50 > 1 m) values and in particular, the area along the CHB although there is no river in its
vicinity.

At the selected observation wells (Fig. 5.3), it can be seen that northern one (UW37685) agrees
very closely with the FF results over the entire time span of 3,650 days. UW3798 shows little
similarity despite the spatial proximity to the Mur, which is defined by an identical volumetric
flow. The dynamics of the FF calculation are roughly adopted in the current calculation, but
with a higher amplitude. Towards the end of the first year, the calculated curve jumps up by
about half a meter. This jump correlates roughly with a measured high and can also be observed
to a lesser extent at the other observation wells. UW38144 behaves similarly asynchronously,
with the divergence increasing even more with progressing simulation period. This observation
well is somewhat further away from the Mur, but in the immediate vicinity of the surface waters.
UW3812 and UW38282 are similar in their pattern. In the first years of calculation, a high degree
of agreement with the FF results can be observed. At the southern located UW38282 a progressive
divergence starts a little earlier (about 2.5 years) than at the central located UW3812 (about 4
years). Especially at the southern one, the divergence becomes more pronounced over time and
amounts to more than 3m at the end of the calculation period (UW3812: 0.65m).
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5.1. Modelrun 1 5. Results

Figure 5.1.: Scatter plot of MR 1: Rivers as Wells.

The query in the budget file (Tab. 5.2) shows a distribution of water turnover of the BCs. The
inflows into the system are strongly dominated by recharge with a share greater than 40%. The
outflow occurs to 60% via the rivers. The difference of the totals shows an average of about 50 m3

higher outflow than inflow (0.05%).

Table 5.2.: MR 1: Budget. Average m3 / day. *sum of rivers and wells.
SOURCE IN OUT
STO 25,452.51 26.94% 27,489.98 29.08%
WEL* 15,816.55 16.74% 61,679.21 65.26%
RCH 38,864.98 41.14% 2,666.19 2.82%
CHD 14,328.17 15.17% 2,679.68 2.84%
TOTAL 94,462.21 94,514.16
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Figure 5.2.: MR 1: Rivers as Wells. Difference map (Q50).
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5.1. Modelrun 1 5. Results

Figure 5.3.: MR 1: Rivers as Wells.
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5. Results 5.2. Modelrun 2

5.2. Modelrun 2: Selected flow direction at Rivers, Interpolated
GWL for Recharge

The scatter-plot indicates a relatively high agreement to the FF results. In the central area a clus-
ter of slightly increased results can be observed. The average RMSE of this simulation amounts
0.212 m and thus within the same result spectrum as the Feflow model (RMSE Feflow vs. mea-
sured = 0.273 m).

Figure 5.4.: MR 2: Manually selected flow direction. Interpolated GWL for Recharge. Scatter Plot.

The differences map (Fig. 5.5) confirms this: areas calculated significantly too high (∆ > 0.5 m),
which can be confirmed by observation wells, are located in the central eastern vicinity to the Mur,
respectively to the surface waters. In addition, areas with a water surplus are found along the CHB
and in the southern confluence of Mur and Sulm, compared to the FF result. In the upper and lower
third, a water deficit is shown in the Q50 differences map in the central area. In particular, in the
area of gravel dredgings. In the time-series this phenomenon is only conditionally confirmed (i.e.
UW37861, A.2).

Selected observation wells (Fig. 5.6) show a high agreement, only the MF calculation of UW38144
exceeds that of FF by an average of about 0.5 m. The MF curve rises rapidly by about 0.5 meter
at the beginning of the first calculation year. The dynamics correspond very closely to that of FF,
acting almost as if the curve had been shifted upward by half a meter. In general, it is noticeable
that high and longer lasting deviations (delta values) at the observation wells occur in particular
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5.2. Modelrun 2 5. Results

when a low water level is calculated.

The budget file (Tab. 5.3) shows a massive increase in water fluxes compared to MR1 with the
rivers assigned as wells. Both inflow and outflow are up about +40% (39,000 m3 per average
day). This increase is mainly attributable to the rivers (river inflow +45,000 m3 and +42,000 m3

outflow). The CHB budget decreases in inflow and increases ouflow. The water turnover of the
recharge is almost exactly the same despite the different calculation method (mean vs. interpolated
GWL).

Table 5.3.: MR 2: Budget. Average m3 / day.
SOURCE IN OUT
STO 21,226.29 15.90% 21,552.50 16.19%
WEL 0.00 0.00% 4,060.93 3.05%
RIV 61,067.31 45.73% 99,246.19 74.54%
RCH 38,886.84 29.12% 2,666.34 2.00%
CHD 12,345.98 9.25% 5,627.36 4.23%
TOTAL 133,526.41 133,153.33

Improved results in this area are expected from a calibration with PEST.
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Figure 5.5.: MR 2: Difference map (Q50).
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5.2. Modelrun 2 5. Results

Figure 5.6.: MR 2: Manually selected flow direction. Interpolated GWL for Recharge.
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5.3. Modelrun 2a: Calibration

The calibration lowers the overall RMSE to 0.136 m. The scatterplot (Fig. 5.7) shows that the
results line up along the identity line (1:1 line) with a few minor outliners. Only four observations
exceed an overall RMSE of 0.2 m. The calibrated factors are listed in table 5.4).

Figure 5.7.: MR 2: Calibrated Leakage factors. Scatter Plot.

Table 5.4.: Calibrated leakage factors.
parameter area factor cells

par 1 inflow 1.433 199
par 2 outflow 1.678 431
par 3 SE-area 13.735 134
par 4 others 0.723 149

Reduced differentials show up in the difference map (Fig. 5.5), especially in the central and eastern
model area. Along the CHB, the results apparently remain unchanged, as well as along Lassnitz
and Sulm.
Positive differences, i.e. water surpluses, can be observed along the Mur, especially at the roots of
the barrages. In addition, a local, higher overestimation can be found in the middle of the surface
waters.
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The indicated water deficit in the southwestern area (around UW38188) is not confirmed in a
comparison with the time-series (A.3). The northernmost model tip is calculated with a lower
median water level than that of the FF simulation.

With the exception of UW38144, the selected observation wells show the same pattern as in the
uncalibrated model run (Fig. 5.9). The jump at the beginning of the simulation period can still
be observed at this hydrograph, but only with 20 cm difference. Low water levels of the current
simulation do not fall below the value of 267.2 and thus show the highest discrepancy to the FF
calculation.

The budget has increased, compared to the uncalibrated model run (+16% IN, +16% OUT). Mainly
due to the turnover in the rivers (+35% IN, +25% OUT). The outflow at the CHB has decreased
by -54%.

Table 5.5.: MR 2a: Budget. Average m3 / day.
SOURCE IN OUT
STO 20,802.82 15.58% 21,130.22 15.87%
WEL 0.00 0.00% 4,061.70 3.05%
RIV 82,427.21 61.73% 123,969.06 93.10%
RCH 38,803.01 29.06% 2,651.90 1.99%
CHD 12,694.78 9.51% 2,587.89 1.94%
TOTAL 154,727.81 154,400.76

45



5. Results 5.3. Modelrun 2a: Calibration

Figure 5.8.: MR 2a: Difference map (Q50).
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5.3. Modelrun 2a: Calibration 5. Results

Figure 5.9.: MR 2a: Calibrated Leakage factors.
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5.4. Modelrun 3: Loop Modflow

The loop variant results in very high deviations. The scatter plot indicates that, with the exception
of a few observation wells located in the north, the calculated values are significantly too high
(Fig. 5.10).

Figure 5.10.: MR 3: Loop Modflow. Scatter Plot.

The time-series show that the massive increase here occurs abruptly within the first time steps
(Fig. 5.12 and A.4). Only the northernmost observations (among others UW37685) show an
approximate correlation with the FF values. The hydrographs tend to be more jagged, those of
previous modelruns appear smoothed in comparison.

The surplus of water is also shown in the difference map (Fig. 5.11). The curvature of the ground-
water isohypses indicates effluent conditions along the entire marginal rivers. At the surface waters
with fixed water levels the, in previous modelruns rather convex isohypses now appear more con-
cave and indicate a further inflow of water (especially in the southeastern model area).

A map of the median of the first 10 days (not presented here) shows an almost identical picture than
over the entire simulation period of 3,650 days, concerning both the isohypses and the differences.

The total budget is not available, since this output file was overwritten with every time step.
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5.4. Modelrun 3: Loop Modflow 5. Results

Figure 5.11.: MR 3: Difference map (Q50).
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5. Results 5.4. Modelrun 3: Loop Modflow

Figure 5.12.: MR 3: Loop Modflow.
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6. Discussion

First, the results of the model runs are discussed separately. Following this, common properties or
cross-model findings are summarized. Further, possible causes for the problems in the transport
modeling are outlined software aspects are debated.

Modelrun 1

By substituting the explicit values of the well- for the river- BCs, one dependency is omitted. In the
case of a head-dependent flux (with a river-BC), a systemic response can be expected (higher/lower
water turnover at the river-BC cell because of higher/lower hydraulic head), which could conceal
occurring discrepancies.

The results clearly show that there is no equilibrium between inflows and outflows. The budget
file shows that this imbalance results in an increase in storage (OUT) and thus causes the increase
of the groundwater level with time (average daily storage +2,036 m3). The Feflow budget shows
an even higher difference between storage in and out (average daily storage +5.606 m3). It re-
mains unclear to what extent or whether the recharge rate, which can only be derived indirectly,
influences the storage (see 3.4).

Only three sources can be responsible for the surplus of water:

• the CHB, because of discretization problems

• due to the recharge calculation by means of the used averaged groundwater level, or because
a higher recharge occurs due to the larger area resulting from the discretization.

• there is in total already more water in the system at the beginning of the simulation (ampli-
fied by a larger model area): it shows that the initial groundwater level is on average 0.07 m
higher per cell than the Q50 water level of the FF calculation. All in all, taking into account
the specific yield, this results in a plus of 150,407 cubic meters. This plus of water could
accumulate in the south, following the morphological gradient.

The comparison with the FF budget (see 3.3) shows that the inflow at the CHB is about the same
in both models. However, the outflow value of the MF calculation is more than three times higher
than that of the FF calculation. This increase is thought to result from a bypass in the northernmost
model tip: water flowing into the aquifer from the Mur drains directly through the CHB. Therefore,
in total (IN minus OUT), less water enters the system via the CHB, compared with the FF budget
(-2,700 m3).

The recharge rate is likely to be in the same order of magnitude as the FF calculation, but the
data is not clear enough to make a reliable assessment (compare 3.4). It seems unlikely that the
recharge rate is the only reason for the surplus of water.

Finally, it is acknowledged that the reason for the water surplus cannot be clearly traced back.

51



6. Discussion

Modelrun 2 and 2a

Modelrun 2 represents an as direct as possible transfer of the model parameters from Feflow
to Modflow in a classical approach and taking into account the differences and limitations. The
results presented in the difference map of MR2 and the time-series are in line with the expectations
for the applied methods and the discretization differences, respectively: overall a relatively high
agreement can be observed, with outliners in problematic areas. With the calibration (MR 2a),
the results improve accordingly. It is expected that an increase of the calibration parameters - e.g.
finer zoning of the leakage factors - would lead to an even higher agreement with the FF results.

The significant increase in the water turnover of the rivers, which can be seen in the budget file,
is particularly remarkable. The calibration mainly leads to an increase in the leakage factors and
consequently to a further increase in the budget (the ratio of inflow to outflow increases only
slightly). It cannot be clearly determined whether this surplus of water in the rivers budget is the
result of fluctuations in the marginal areas (in the vicinity of the rivers, i.e. the Mur), flowing in
and out again within short periods of time, or whether the aquifer is flowed through over a large
area. The fact that only one leakage factor was assigned - in the majority the higher outflow factor
- could speak in favor of the first theory. When river water levels fall, this more water flows back
into the river.

Another cause in this context could be the non-continuous definition of the river-BC: In Feflow,
the river-BC cells represent the outer model boundary. In the current Modflow model, however,
some river-BC are surrounded by other cells which are not linked to a boundary condition (see
Fig. 4.4). These cells could act as a buffer, thus increasing the water inflow or outflow, because
the river-BC cells are fed by more neighboring cells.

A further possibility for the increased water exchange is the discretization. In FF, the marginal
areas along the rivers are rather fine discretized. The resolution with 40 x 40 m cells in MF can
partially result in harder jumps (upwards as well as downwards) in the river water stages and
thus higher gradients. Consequently, the volumetric exchange rate increases, which in sum can
potentially be compensated by positive and negative deviation.

A small portion of the Mur inflow drains directly through the CHB, whereby this proportion de-
creases due to the calibration.

The difference map indicates a surplus of water along the CHB and remains unchanged by the
calibration. Possible reasons for this surplus are:

• a pure problem of presentation: in the 40 x 40 m cells, a (high) divergence results from the
FF median, averaged over the entire cell area; amplified by the steep aquifer gradient

• the aquifer bottom has a steep gradient in this area: due to discretization, the CHB could be
minimally displaced, what could lead to increased water inflow

• the calculation method of the recharge rate is relatively inaccurate in the marginal areas or
the area relevant for the recharge is increased by the discretization

None of the nearby observation wells record a hydrograph that is calculated (significantly) too
high, indicating a representation problem. The budget of the CHB shows a much lower turnover
than in the FF model.
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6. Discussion

Modelrun 3

The erratic and strong deviation in the loop variant are surprising, because this method actually
transfers all dependencies from the Feflow calculation to Modflow. However, with the implemen-
tation of groundwater level-dependent recharge and leakage factors, positive feedback effects may
result: The recharge generally is highest at the surface of the terrain and decreases with depth.
When the groundwater level rises, the recharge rate increases as well. Nevertheless, the sudden
increase at the beginning of the simulation period cannot be solely due to an increased recharge
rate.

The leakage factors for out- and inflow differ by up to 10,000. If, for example, an out- instead of
an inflow factor were incorrectly assigned, up to 10,000 times more water could enter the system
due to the linear relationship between leakage factor and resultant volume flow. In the first few
time steps far too much water gets into the system, which also results in changed groundwater
dynamics, i.e. flow directions. The system does not return to a balance after these first time steps.

It is assumed that areas in which rivers and surface waters or drainages (all defined as RIV) are lo-
cated close together, are responsible for the strong and rapid groundwater level rise. For example,
two directly adjacent river-BC cells in the southeast model area show very different water stages:
the stage of the transient cell averages about 271.65 m (with very little fluctuation), while that
with a fixed stage is 267.40 m. A complex dynamic of accumulation could develop here, which,
however, cannot be traced exactly in retrospect. Such a situation has only been noticed very lo-
cally in the area between the Mur and the accompanying drainages. Presumably, in the case of
surface waters, a strict division into areas with purely effluent and variable flow direction and a
corresponding definition as a drainage (DRN Modflow package), which only allows water to flow
out, would be more suitable in this modelrun.

The long calculation times (about 42 h) make troubleshooting difficult, especially in combina-
tion with the fact that the calculation results (especially budget files) are overwritten with each
time step. It is rumored that a future Modflow version will allow a dynamic groundwater level
interrogation, which would make this relatively complex and time consuming method obsolete.
Therefore, it was decided that the time required to optimize this method was not commensurate
with the results that might be expected.

Cross-model Findings

Modelrun 1 already shows that the water dynamics in the current Modflow model are not replicated
in exactly the same way as in the Feflow model. This MR should in principle be regarded as a test
run, as it uses results from the Feflow calculation, and it fulfills this purpose.

One main reason for this is certainly the different discretization: The coarser discretization leads
to increased residuals in areas with a higher gradient. These areas are mainly located at the the
model boundaries. In addition the larger model area in the Modflow model results in a higher
total recharge. Further there already is more water in the system at the beginning of the simulation
(IC is on average higher per cell than the Q50 water level of the FF calculation; see discussion
of MR1). The non-continuous definition of the river-BC, as well as their spatial discretization
(described in the discussion of MR 2) could also be problematic here. Although these are not
large amounts when considered individually and over the entire model area, they can make an
overall difference. Determining the significance of the problematic parameters or balancing them
is even more difficult.
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6. Discussion

Outflow via rivers represents the dominant sink in the model domain, thus the adoption of leakage
factors is a key point in model translation. A separate definition of inflow and outflow leakage
factors has advantages. Especially at complex sites, for example in the area of barrages, variable
water dynamics can be considered in this way. In particular, the different conditions can be directly
addressed in the conceptual model. If only one leakage factor is available here, it must either be
calibrated and determined for an average situation, or defined as a dependency on other conditions,
e.g. the river water level, in a time-variable way. Nevertheless, modelrun 2 and its calibration
(MR 2a) prove that approximately equal groundwater levels can be calculated with one available
leakage factor. With a further, more fine-grained calibration, an even higher agreement would
certainly be achieved.

Unfortunately, modelrun 3 does not provide satisfying results - a higher level of agreement was
expected. The difficulties of this model run are thought to lie mainly in the river-BC definition
(especially its leakage factors). Concerning this point, the modelrun highlights the conceptual
weaknesses of the model translation. As a result, this modelrun unfortunately cannot be used for
an evaluation of the method to obtain a GWL-dependent recharge rate.

The comparison of the modelruns 1 and 2 shows that recharge plays a central role as a source of
water, but the temporal variability of depth-dependency has low sensitivity: there are no significant
changes in the budget when the calculation method is changed from a mean- to the interpolated
groundwater level.

It must also be mentioned here that the budget of the recharge in Feflow is unclear because this
is calculated by the external interface manager and is therefore not included in the total budget
(compare 3.4). Thus, an exact evaluation of this parameter is hardly possible.

Transport

The transport simulation has so far only provided inadequate results. Multicausal reasons are
suspected behind the problems in the transport simulation: an input error in the Source Sink
Mixing Package (Modflow) (SSM) package, what is responsible for the recharge coupled nitrate
input and a bug in the Modflow 6.2.1 program.

The SSM package of the GWT model in Modflow 6 only allows concentrations as input values
(MT3D or FF also support masses). To obtain a concentration, the leached nitrate mass is divided
by the corresponding recharge value, both normalized to a uniform area. Very small recharge
quantities lead to extremely high concentrations, which in rare cases would also become negative.
Since this is neither desirable nor practically possible, it was prevented by forming the absolute
value. This conversion offers a number of sources of error. Since no official documentation for
the Modflow’s GWT model was published yet, troubleshooting is difficult.

The official channel of the USGS on GitHub lists a problem concerning the GWT model of
Modflow 6.2.1 and large binary budget files. According to this issue, Modflow cannot read bud-
get files larger than 2 GB and results in error messages (Issue #720: https://github.com/
MODFLOW-USGS/modflow6/issues/720). The budget file of the current models has about 14 GB
in size.

A switch to MT3D for the transport simulation was not possible due to a compatibility problem
between Flopy, Modflow 6 and MT3D (see 5).
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6. Discussion

Software Aspects

Modflow itself and especially in combination with FloPy has proven to be a flexible and stable
tool for groundwater flow modeling. The model construction works very fast and robust, as long
as Python is mastered. For tricky questions, solutions can be found fairly quickly due to the large
number of scientific packages and functions that are freely available for the Python environment.
Numerous interfaces enable a wide variety of output and input formats. Nevertheless, a GUI
would sometimes be practical, especially for complex models, e.g. to be able to examine spatial
parameter distribution more quickly and easily.

In the course of the work, the impression has grown that the transport part of Modflow still requires
some adjustments and, above all, a proper documentation in order to use it as a practical and
reliable tool. In the context of FloPy, the question of applicability to everyday technical challenges
arises. Individual parameter changes in the modelrun, for example, require intervention in several
different files or sections, which means that error-proneness is high. With long calculation times,
this can lead to annoying idle times. In sum, a long training period for the user is required. The
approximately 22,000 files that are written per model run are not practical to handle and with a
size of almost 30 GB per model run (if transport is to be calculated independently), the amount of
data also causes problems.
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7. Conclusion

The present work investigates to what extend the direct translation of the Feflow specific functions
into a Modflow setting is possible and reasonable in terms of practicability. It can be concluded
that some functions could directly be transferred to Modflow, however difficulties arose with the
attempt to replicate some Feflow specific features.

The best results are obtained in the flow simulation, when the groundwater level-dependencies
are not taken over directly, but are calculated by using alternative and comparatively simpler ap-
proaches. Especially the manual selection of the leakage factors, and calculation of the recharge
rate using an interpolated or an averaged groundwater level have resulted in a high agreement with
the Feflow calculation and are additionally improved by a calibration of the leakage factors.

The work has further shown that in the given hydrogeological setting, the quality of the results or
the agreement with the Feflow model depends above all on the interaction with the rivers, and thus
on the leakage factors. The rivers represent the dominant sink in the model domain. The applied
methods for calculating the recharge rate (by interpolated and averaged groundwater level) yielded
almost equal results and indicate a comparatively low sensitivity of this parameter, although it rep-
resents the prevailing source of water. It is concluded that the recharge rate has little variability in
the range of groundwater level fluctuations. The coarser discretization leads to localized increased
residuals in areas with higher gradients. High gradients occur mainly along the model margins
(partly due to the river barrages), where additionally river- and constant head-BC are located and
are partly characterized by low aquifer thicknesses. In total this leads to the fact that these areas
are particularly susceptible to residuals, which however can be significantly improved and nar-
rowed down by a calibration of the leakage factors. It is expected, that a refined discretization
in this area would lead to further improvements. Considering the entire model domain in a large
scale, the coarser discretization seems to have little effect on the calculated groundwater levels.
The comparison of the water budget between Feflow and Modflow reveals differences, but cannot
be assessed with certainty, because the budget of Feflow is not provided completely, since the
recharge is calculated via the external interface manager and is therefore not included.

However, as already mentioned, not all features could be transferred directly to Modflow. Thus,
the attempt to emulate the calculation methods of Feflow, by looping Modflow and query the
groundwater level per time step, did not yield the expected (comparable) results. The evaluation
of this method is complicated because of the interaction of several parameters, which influence
each other. According to experts opinions, a future Modflow version might include the possibility
of a dynamic groundwater level query, which would facilitate the transfer of the special Feflow
features.

In order to evaluate the chosen methods in detail, a synthetic, more manageable and smaller model
would be appropriate, since dependencies could be more easily switched on and off, and the re-
spective effect could be better monitored. For a pure reproduction of the results it is assumed in
retrospect that a more conceptual approach, based on the available data from Feflow, would lead
to better results. I.e. to put the focus less on the uniformity of the model parameters than on the
representation of the hydraulic situation and also to take advantage of the offer and properties of
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7. Conclusion

the different Modflow packages.

Since this work could not determine the exact causes of the problems in transport simulation, only
insufficient results were obtained, which therefore cannot be evaluated. There is still no official
documentation available for the transport simulation.

In summary, the present work has shown that the two programs with the differently available func-
tions provide comparable results. Although the direct translation of some Feflow-specific features
has its limitations. Especially for dynamic groundwater level queries, the currently available ver-
sion of Modflow is less practicable. The choice of the optimal software package depends on the
research question as well as the characteristics of the aquifer.
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1   ##########################################
2   ### Properties, Packages and Functions ###
3   ##########################################
4   
5   ### Import packages ###
6   import os, sys, platform
7   import numpy as np
8   import datatable as dt
9   import matplotlib.pyplot as plt

10   import flopy
11   from flopy.utils import Raster
12   from shapely.geometry import Polygon, Point, LineString, MultiLineString,

MultiPoint, MultiPolygon
13   import shapefile as sf
14   import pandas as pd
15   import geopandas as gpd
16   from scipy.spatial import cKDTree
17   from shapely.strtree import STRtree
18   from scipy.interpolate import griddata
19   from collections import defaultdict
20   from descartes import PolygonPatch
21   import time
22   
23   
24   # Main Properties                       
25   gridsize = 40
26   stress_period_start = 0
27   stress_period_end = 3650
28   
29   modelname = 'wlf-wie'
30   filenameJNB = '210321-SG'
31   raster_resample_quality = 'linear'
32   
33   stress_periods = int(stress_period_end - stress_period_start)
34   
35   
36   ### Workspace / Definition of Directories ###
37   model_ws = 'MF_Files_tr'
38   model_op = 'ModelOutput/'
39   vtk_path = 'VTK_Files/'
40   
41   if not os.path.exists(vtk_path):
42   os.makedirs(vtk_path)
43   if not os.path.exists(model_op):
44   os.makedirs(model_op)
45   if not os.path.exists(model_ws):
46   os.makedirs(model_ws)
47   plot_folder = os.path.join(filenameJNB + '_Plots/')
48   if not os.path.exists(plot_folder):
49   os.makedirs(plot_folder)
50   
51   triExeName = '../../EXE/triangle.exe'
52   mf6ExeName = '../../EXE/mf6.2.1/bin/mf6.exe'
53   
54   shppath = '../../GIS_WIE/shp/'
55   shppathBC = '../../GIS_WIE/LFW_MasterArbeit/BC/'
56   shppathWIE = '../../GIS_WIE/shp_WIE'
57   storasimpath = '../../STORASIM/v4b DüMe erhöht DVx04/H2O'
58   transfolder = '../../GIS_WIE/LFW_MasterArbeit/TransportModel'
59   
60   bcdata = '../BC'
61   obsdata = '../OBS'
62   rchdata = '../RCH'
63   
64   outputfiles = os.path.join(model_ws, modelname)
65   
66   
67   ### Functions ###
68   
69   # find nearest data point
70   def ckdnearest(gdA, gdB):
71   nA = np.array(list(gdA.centroid.apply(lambda x: (x.x, x.y))))
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72   nB = np.array(list(gdB.geometry.apply(lambda x: (x.x, x.y))))
73   btree = cKDTree(nB)
74   dist, idx = btree.query(nA, k=1)
75   gdf = pd.concat(
76   [gdA.reset_index(drop=True),
77   gdB.iloc[idx].drop(columns="geometry").reset_index(drop=True),
78   pd.Series(dist, name='dist')], axis=1)
79   return gdf
80   
81   # raster discretization
82   def raster_load_n_resample(fname, model):
83   raster = Raster.load(os.path.join(shppathWIE, 'raster/', fname))
84   raster = raster.resample_to_grid(model.xcellcenters,
85   model.ycellcenters,
86   band=raster.bands[0],
87   method=raster_resample_quality)
88   return raster
89   
90   
91   # combined intersection and nearest data point
92   def intersect_geometry(shps, p_shp, pathofshape, model):
93   sgr = model.modelgrid
94   ix = GridIntersect(sgr)
95   
96   ts = pd.DataFrame()
97   intersection = pd.DataFrame()
98   
99   for i in shps:

100   gdf = gpd.read_file(os.path.join(pathofshape, i), delimiter=",", header=0)
101   for j in range(len(gdf.geometry)):
102   if gdf.geom_type[0] == 'LineString':
103   intersection = pd.concat([intersection,

pd.DataFrame(ix.intersect_polyline(LineString(gdf.geometry[j])))],
104   axis=0).reset_index(drop=True)
105   if gdf.geom_type[0] == 'Point':
106   intersection = pd.concat([intersection,

pd.DataFrame(ix.intersect_point(Point(gdf.geometry[j])))],
107   axis=0).reset_index(drop=True)
108   intersection['centroid'] = [Point(sgr.xcellcenters[i], sgr.ycellcenters[i]) for

i in intersection.cellids]
109   intersection = ckdnearest(intersection, p_shp)
110   
111   return intersection
112   
113   
114   # root mean square error
115   def RMSE(measured, observed):
116   return ((np.subtract(measured, observed)**2).mean())**(1/2)
117   
118   
119   # Super-class GridIntersect (by Davíd Brakenhoff); able to intersect structured and 

vertex based grid type
120   # (Is also available within the Flopy environement, but in the early stages of model 

creation (summer 2020), the built-in functiona did not fulfill expectations)
121   class GridIntersect:
122   
123   def __init__(self, mfgrid):
124   
125   self.mfgrid = mfgrid
126   
127   if mfgrid.grid_type == "structured":
128   self.gridshapes = self._rect_grid_to_shape_list()
129   elif mfgrid.grid_type == "vertex":
130   self.gridshapes = self._vtx_grid_to_shape_list()
131   
132   self.strtree = STRtree(self.gridshapes)
133   
134   def _rect_grid_to_shape_list(self):
135   shplist = []
136   for i in range(self.mfgrid.nrow):
137   for j in range(self.mfgrid.ncol):
138   xy = self.mfgrid.get_cell_vertices(i, j)
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139   p = Polygon(xy)
140   p.name = (i, j)
141   shplist.append(p)
142   return shplist
143   
144   def _vtx_grid_to_shape_list(self):
145   shplist = []
146   if isinstance(self.mfgrid._cell2d, np.recarray):
147   for icell in self.mfgrid._cell2d.icell2d:
148   points = []
149   for iv in self.mfgrid._cell2d[["icvert_0", "icvert_1",

"icvert_2"]][icell]:
150   points.append((self.mfgrid._vertices.xv[iv],
151   self.mfgrid._vertices.yv[iv]))
152   # close the polygon, if necessary
153   if points[0] != points[-1]:
154   points.append(points[0])
155   p = Polygon(points)
156   p.name = icell
157   shplist.append(p)
158   elif isinstance(self.mfgrid._cell2d, list):
159   for icell in range(len(self.mfgrid._cell2d)):
160   points = []
161   for iv in self.mfgrid._cell2d[icell][-3:]:
162   points.append((self.mfgrid._vertices[iv][1],
163   self.mfgrid._vertices[iv][2]))
164   # close the polygon, if necessary
165   if points[0] != points[-1]:
166   points.append(points[0])
167   p = Polygon(points)
168   p.name = icell
169   shplist.append(p)
170   return shplist
171   
172   def _sort_strtree_result(self, shapelist):
173   def sort_key(o):
174   return o.name
175   shapelist.sort(key=sort_key)
176   return shapelist
177   
178   def intersect_point(self, shp, sort_by_cellid=True, return_all_ix=False):
179   ixshapes = self.strtree.query(shp)
180   if sort_by_cellid:
181   ixshapes = self._sort_strtree_result(ixshapes)
182   
183   isectshp = []
184   cellids = []
185   vertices = []
186   
187   for i, r in enumerate(ixshapes):
188   intersect = shp.intersection(r)
189   if intersect.__geo_interface__["type"] == "Point" or

intersect.__geo_interface__["type"] == "MultiPoint":
190   # return all intersections (point can intersect with multiple cells)
191   if return_all_ix:
192   pt = intersect.__geo_interface__["coordinates"]
193   isectshp.append(intersect)
194   vertices.append(pt)
195   cellids.append(r.name)
196   else:
197   # return only point intersection with cell with lowest cellid
198   pt = intersect.__geo_interface__["coordinates"]
199   if pt in vertices:
200   continue
201   isectshp.append(intersect)
202   vertices.append(pt)
203   cellids.append(r.name)
204   
205   rec = np.recarray(len(isectshp), names=["cellids", "vertices", "intersects"],
206   formats=["O", "O", "O"])
207   rec.intersects = isectshp
208   rec.vertices = vertices
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209   rec.cellids = cellids
210   
211   return rec
212   
213   def intersect_polygon(self, shp, sort_by_cellid=True,

return_all_ix=False):
214   ixshapes = self.strtree.query(shp)
215   if sort_by_cellid:
216   ixshapes = self._sort_strtree_result(ixshapes)
217   
218   isectshp = []
219   cellids = []
220   vertices = []
221   areas = []
222   
223   for i, r in enumerate(ixshapes):
224   intersect = shp.intersection(r)
225   # return all intersections (also 0.0 area)
226   if return_all_ix:
227   if intersect.type == "GeometryCollection":
228   if len(intersect.__geo_interface__["geometries"]) == 0: # no 

intersect
229   continue
230   for geom in intersect:
231   isectshp.append(geom)
232   if "Polygon" in geom.type:
233   areas.append(geom.area)
234   else:
235   areas.append(np.nan)
236   if "coordinates" in geom.__geo_interface__.keys():
237   vertices.append(geom.__geo_interface__["coordinates"])
238   else:
239   vertices.append(np.nan)
240   cellids.append(r.name)
241   else:
242   isectshp.append(intersect)
243   if "Polygon" in intersect.type:
244   areas.append(intersect.area)
245   else:
246   areas.append(np.nan)
247   if "coordinates" in intersect.__geo_interface__.keys():
248   vertices.append(intersect.__geo_interface__["coordinates"])
249   else:
250   vertices.append(np.nan)
251   cellids.append(r.name)
252   else:
253   # return only intersections with area > 0.0
254   if intersect.area > 0.0:
255   isectshp.append(intersect)
256   areas.append(intersect.area)
257   vertices.append(intersect.__geo_interface__["coordinates"])
258   cellids.append(r.name)
259   
260   rec = np.recarray(len(isectshp), names=["cellids", "vertices", "areas",

"intersects"],
261   formats=["O", "O", "f8", "O"])
262   rec.intersects = isectshp
263   rec.vertices = vertices
264   rec.areas = areas
265   rec.cellids = cellids
266   
267   return rec
268   
269   def intersect_polyline(self, shp, sort_by_cellid=True, return_all_ix=False):
270   result = self.strtree.query(shp)
271   if sort_by_cellid:
272   result = self._sort_strtree_result(result)
273   
274   isectshp = []
275   cellids = []
276   vertices = []
277   lengths = []
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278   
279   for i, r in enumerate(result):
280   intersect = shp.intersection(r)
281   # add all intersects (also if length == 0.0)
282   # shapes can intersect with multiple cells (e.g. on boundary)
283   if return_all_ix:
284   if intersect.type == "GeometryCollection":
285   if len(intersect.__geo_interface__["geometries"]) == 0: # no 

intersect
286   continue
287   for geom in intersect:
288   # object is LineString or MultiLineString or Point
289   verts = geom.__geo_interface__["coordinates"]
290   vertices.append(verts)
291   if "LineString" in geom.type:
292   lengths.append(geom.length)
293   else:
294   lengths.append(np.nan)
295   isectshp.append(geom)
296   else: # object is LineString or MultiLineString or Point
297   verts = intersect.__geo_interface__["coordinates"]
298   vertices.append(verts)
299   if "LineString" in intersect.type:
300   lengths.append(intersect.length)
301   else:
302   lengths.append(np.nan)
303   isectshp.append(intersect)
304   cellids.append(r.name)
305   else:
306   # add only intersects with length > 0.0
307   # linestring intersects with only one gridcell (with lowest cellid)
308   if intersect.length > 0.0:
309   if intersect.type == "GeometryCollection":
310   for geom in intersect:
311   if "LineString" in geom.type:
312   verts = geom.__geo_interface__["coordinates"]
313   if verts in vertices:
314   continue
315   isectshp.append(geom)
316   lengths.append(geom.length)
317   vertices.append(verts)
318   cellids.append(r.name)
319   else: # result is MultiLineString or LineString
320   verts = intersect.__geo_interface__["coordinates"]
321   if verts in vertices:
322   continue
323   isectshp.append(intersect)
324   lengths.append(intersect.length)
325   vertices.append(verts)
326   cellids.append(r.name)
327   
328   rec = np.recarray(len(isectshp), names=["cellids", "vertices", "lengths",

"intersects"],
329   formats=["O", "O", "f8", "O"])
330   rec.intersects = isectshp
331   rec.vertices = vertices
332   rec.lengths = lengths
333   rec.cellids = cellids
334   
335   return rec
336   
337   
338   def plot_polygon(self, rec, ax=None, **kwargs):
339   if ax is None:
340   _, ax = plt.subplots()
341   
342   for i, ishp in enumerate(rec.intersects):
343   ppi = PolygonPatch(ishp, facecolor="C{}".format(i%10), **kwargs)
344   ax.add_patch(ppi)
345   
346   return ax
347   
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348   def plot_polyline(self, rec, ax=None, **kwargs):
349   if ax is None:
350   _, ax = plt.subplots()
351   
352   for i, ishp in enumerate(rec.intersects):
353   if ishp.type == "MultiLineString":
354   for part in ishp:
355   ax.plot(part.xy[0], part.xy[1], ls="-", c="C{}".format(i%10),

**kwargs)
356   else:
357   ax.plot(ishp.xy[0], ishp.xy[1], ls="-", c="C{}".format(i%10),

**kwargs)
358   
359   return ax
360   
361   def plot_point(self, rec, ax=None, **kwargs):
362   if ax is None:
363   _, ax = plt.subplots()
364   
365   x = [ip.x for ip in rec.intersects]
366   y = [ip.y for ip in rec.intersects]
367   
368   ax.scatter(x, y, **kwargs)
369   
370   return ax
371   
372   
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01_SDIS

May 25, 2021

1 Spactial Model Discretization
WLF Modflow Model

[1]: from prop import *
%load_ext autotime

<IPython.core.display.HTML object>

time: 0 ns

1.1 Discretisation Setup
Temporary spatial model discretization to create the GridIntersection class. Definition of model
area and boundary. DIS-model package remains unsaved at this stage - will be recreated in following
files.

[2]: shp_boundary = sf.Reader(os.path.join(shppath, 'LFW_active'))
boundary = np.array(shp_boundary.shapeRecords()[0].shape.points)

Lx = boundary.max(axis=0)[0]-boundary.min(axis=0)[0]
Ly = boundary.max(axis=0)[1]-boundary.min(axis=0)[1]
nlay = 1
delr, delc = gridsize, gridsize
nrow = int(round(Ly / delr + .49))
ncol = int(round(Lx / delc + .49))
top = 1000
xll=boundary.min(axis=0)[0]
yll=boundary.min(axis=0)[1]

temp_sim = flopy.mf6.MFSimulation(sim_name=modelname, version='mf6',␣
↪→exe_name=mf6ExeName, sim_ws=model_ws)

temp_model = flopy.mf6.ModflowGwf(temp_sim, modelname=modelname,␣
↪→model_nam_file='{}.nam'.format(modelname))

dis = flopy.mf6.ModflowGwfdis(temp_model, pname='dis', length_units='METERS',␣
↪→nlay=nlay, nrow=nrow, ncol=ncol, delr=delr,

delc=delc, top=top, xorigin=xll, yorigin=yll,
filename='{}.dis'.format(modelname))

# Grid Intersection Class

1
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sgr = temp_model.modelgrid
ix = GridIntersect(sgr)

time: 953 ms

1.2 Load and Discretize Aquifer Properties

[3]: ## idomain
act_cid = ix.intersect_polygon(Polygon(boundary))
idomain = flopy.mf6.ModflowGwfdis.idomain.empty(temp_model, layered=True,␣
↪→default_value=-1)

for i in range(len(act_cid['cellids'])):
idomain['data'][0][act_cid['cellids'][i][0], act_cid['cellids'][i][1]] = 1

np.savetxt(os.path.join(model_op, 'idomain.csv'), idomain['data'][0],␣
↪→delimiter=',')

time: 21.4 s

[4]: act_cid = pd.DataFrame(act_cid)
act_cid['centroid'] = [Point(sgr.xcellcenters[i], sgr.ycellcenters[i]) for i in␣
↪→act_cid.cellids]

act_cid.to_csv(os.path.join(model_op,'act_cid.csv'), index=True, header=True)

time: 6.02 s

[5]: botm_p = gpd.read_file(os.path.join(shppathBC, '../MaterialProperties/',␣
↪→'BottomElevation_m_polygons.shp'))

botm_p.drop(['geometry'], axis=1)
botm_p = gpd.GeoDataFrame(botm_p, geometry=[Point(xy) for xy in zip(botm_p.
↪→CENTER_X, botm_p.CENTER_Y)])

cond_p = gpd.read_file(os.path.join(shppathBC, '../MaterialProperties/',␣
↪→'Conductivity_ms.shp'))

cond_p['COND'] = cond_p['COND'] * 86400

poro_p = gpd.read_file(os.path.join(shppathBC, '../MaterialProperties/',␣
↪→'Porosity.shp'))

ic_p = gpd.read_file(os.path.join(shppathBC, '../InitialConditions/',␣
↪→'HydraulicHead_m.shp'))

topelev_p = gpd.read_file(os.path.join(shppathBC, '../', 'topelev_points.shp'))

# Transport
imc_tr = gpd.read_file(os.path.join(shppathBC + '../TransportModel',␣
↪→'MassConc_initial.shp'))
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n_tr = gpd.read_file(os.path.join(shppathBC + '../TransportModel',␣
↪→'Porosity-MassTransport.shp'))

time: 24.7 s

[6]: def materialarray(inputgdf, savename, columname):
idf = pd.DataFrame()
for j in range(len(inputgdf)):

df = pd.DataFrame(ix.intersect_point(inputgdf.loc[j, 'geometry']))
df[columname] = inputgdf.loc[j, columname]
idf = pd.concat([df, idf])

idf = idf.groupby('cellids').agg(columname=(columname, 'mean')).
↪→reset_index(drop=False)

df = ckdnearest(act_cid, inputgdf)

ea = np.zeros((nrow,ncol), dtype=float)

counteridf = 0
for i, cid in enumerate(act_cid.cellids):

if cid in list(idf.cellids):
counteridf += 1
ea[cid[0], cid[1]] = float(idf[idf.cellids == cid].columname)

else:
ea[cid[0], cid[1]] = float(df.loc[i, columname])

np.savetxt(os.path.join(model_op, savename), ea, delimiter=' ')
plt.imshow(ea)
print('cells by intersection: ', counteridf)
print('max dist of nearest point m.: ', max(df.dist))

time: 0 ns

[7]: materialarray(botm_p, 'botmelev.txt', 'BOTT')

cells by intersection: 13278
max dist of nearest point m.: 102.66667664725885

3
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time: 2min 53s

[8]: materialarray(cond_p, 'npf_hydcond.txt', 'COND')

cells by intersection: 13278
max dist of nearest point m.: 102.66667664724011

4
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time: 6min 4s

[9]: materialarray(poro_p, 'sy.txt', 'STOR')

cells by intersection: 13278
max dist of nearest point m.: 102.66667664724011

time: 5min 55s

[10]: materialarray(ic_p, 'strthead.txt', 'FINIT')

cells by intersection: 8427
max dist of nearest point m.: 116.73369350751005

5
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time: 2min 7s

[11]: materialarray(topelev_p, 'topelev.txt', 'REF_E')

cells by intersection: 23374
max dist of nearest point m.: 44.194867289044964

6
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time: 19min 23s

1.2.1 Transport Params

[12]: materialarray(imc_tr, 'imc_tr.txt', 'MINIT')

cells by intersection: 19801
max dist of nearest point m.: 59.34973145626214

time: 8min 4s

[13]: materialarray(n_tr, 'n_tr.txt', 'PORO')

cells by intersection: 23374
max dist of nearest point m.: 44.194867289044964
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time: 19min 23s

1.3 Discretization of Observations
[14]: obs_geom = pd.read_csv(os.path.join(obsdata, 'obs_geom.csv'), delimiter=",",␣

↪→header=0)
obs_geom = gpd.GeoDataFrame(obs_geom['Name'], geometry=[Point(xy) for xy in␣
↪→zip(obs_geom.X, obs_geom.Y)])

obsX = pd.DataFrame()
for i, geom in enumerate(obs_geom.geometry):

obsX = pd.concat([obsX, pd.DataFrame(ix.intersect_point(geom))], axis=0).
↪→reset_index(drop=True)

obsX = pd.merge(obs_geom, obsX, how='left', left_index=True, right_index=True).
↪→drop(columns=['vertices', 'intersects'])

obsX.to_csv(os.path.join(model_op,'X_obs.csv'), index=True, header=True)

time: 250 ms

1.4 Find BC-effected cells
[15]: river_p = gpd.read_file(os.path.join('..\..

↪→\GIS_WIE\Ganglinien_Q_Var24_Real_93_Kal77g', 'Couchy.shp'))

rivX = pd.DataFrame()
for i in range(len(river_p)):
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df = pd.DataFrame(ix.intersect_point(river_p.loc[i, 'geometry']))
df['F'] = river_p.loc[i, 'F']
df['steady'] = river_p.loc[i, 'STEADY']
df['node'] = river_p.loc[i, 'NODE']
rivX = pd.concat([df, rivX])

rivX = rivX.drop_duplicates(subset='cellids', keep='first').
↪→reset_index(drop=True)

time: 10.8 s

[16]: river_l = ['GWM_BC_Mur_ILine.lin.shp', 'GWM_BC_Sulm_ILine.lin.shp',␣
↪→'GWM_BC_Lassnitz_ILine.lin.shp', 'Allg_Gewässer_Linien.shp']

rivX_l = pd.DataFrame()
for i in river_l:

gdf = gpd.read_file(os.path.join(shppath, i))
for j in range(len(gdf)):

df = pd.DataFrame(ix.intersect_polyline(LineString(gdf.loc[j,␣
↪→'geometry'])))

rivX_l = pd.concat([df, rivX_l])
rivX_l = rivX_l.drop_duplicates(subset='cellids', keep='first').
↪→reset_index(drop=True)

time: 32.6 s

[17]: rivX = pd.merge(rivX, rivX_l, how='left', on='cellids')
rivX = rivX.loc[:, ['cellids', 'F', 'node', 'steady', 'lengths']]

time: 47 ms

[18]: ## CHB
p_shp = gpd.read_file(os.path.join('..\..\GIS_WIE\Ganglinien_Q_1st&3rdBC',␣
↪→'Dirichle.shp'))

pathofshape, shp = shppathWIE, ['1stBC_ModellgrenzeNW.shp']
chb_intersect = intersect_geometry(shp, p_shp, pathofshape, temp_model)
#chb_intersect = chb_intersect.drop_duplicates(subset='cellids', keep='first').
↪→reset_index(drop=True)

chb_intersect.to_csv(os.path.join(model_op,'X_chb.csv'), index=True,␣
↪→header=True)

time: 2.56 s

[19]: ## wells
p_shp = gpd.read_file(os.path.join(shppathBC, '4thBC.shp'))
well_intersect = pd.DataFrame()
for i in range(len(p_shp)):

df = pd.DataFrame(ix.intersect_point(p_shp.loc[i, 'geometry']))
df['F'] = p_shp.loc[i, 'F']
well_intersect = pd.concat([df, well_intersect])
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well_intersect.to_csv(os.path.join(model_op,'X_wel.csv'), index=True,␣
↪→header=True)

time: 110 ms

[20]: riv_section = gpd.read_file(os.path.join(shppathWIE, 'river_groups.shp'),␣
↪→delimiter=",", header=0)

time: 156 ms

[21]: riv_sec = pd.DataFrame()
for i in range(len(riv_section)):

df = pd.DataFrame(ix.intersect_polygon(riv_section.loc[i, 'geometry']))
df['riv_sec'] = riv_section.loc[i, 'Name']
riv_sec = pd.concat([df, riv_sec])

riv_sec = riv_sec.loc[:,['cellids', 'riv_sec']].
↪→drop_duplicates(subset='cellids', keep='first').reset_index(drop=True)

time: 4.34 s

[22]: leakage_out = gpd.read_file(os.path.join(shppathBC, 'FeFlow_Leakage\L_out.shp'))
leakage_out['leakage'] = leakage_out['TRAF_OUT']

leakage_in = gpd.read_file(os.path.join(shppathBC, 'FeFlow_Leakage\L_in.shp'))
leakage_in['leakage'] = leakage_in['TRAF_IN']

def leakX(leakage_file):
df = pd.DataFrame()
for i in range(len(leakage_file)):

dfisec = pd.DataFrame(ix.intersect_polygon(leakage_file.loc[i,␣
↪→'geometry']))

dfisec['leakage'] = leakage_file.loc[i, 'leakage']
df = pd.concat([df, dfisec]).reset_index(drop=True)

wm = lambda x: np.average(x, weights=df.loc[x.index, "areas"])
df = df.groupby('cellids').agg(leakage=('leakage', wm), areas=('areas',␣

↪→sum)).reset_index(drop=False)
return df

time: 2 s

[23]: rivX = pd.merge(rivX, leakX(leakage_in).rename(columns={'leakage': 'lkg_in'}),␣
↪→how='left', on='cellids')

rivX = pd.merge(rivX, leakX(leakage_out).rename(columns={'leakage':␣
↪→'lkg_out'}), how='left', on='cellids')

rivX = pd.merge(rivX, riv_sec, how='left', on='cellids')
rivX.to_csv(os.path.join(model_op,'rivX.csv'), index=True, header=True)

time: 6min 46s
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[24]: hydrotopes = gpd.read_file(os.path.join(shppathWIE, 'hydrotope_clipped_sp.shp'))

rch_ids = pd.DataFrame()
for i in range(len(hydrotopes)):

rchisec = pd.DataFrame(ix.intersect_polygon(hydrotopes.loc[i, 'geometry']))
rchisec['id'] = hydrotopes.loc[i, 'JOBID_Var1']
rch_ids = pd.concat([rch_ids, rchisec])

rch_ids = rch_ids.sort_values(by=['areas'], ascending=False, ignore_index=True)
rch_ids = rch_ids.drop_duplicates(subset='cellids', keep='first').
↪→reset_index(drop=True)

rch_ids.to_csv(os.path.join(model_op,'X_rch.csv'), index=True, header=True)

time: 1min 44s

1.4.1 Transport

[25]: cnbc_shp = gpd.read_file(os.path.join(transfolder, 'Mass-concentrationBC.shp'))

time: 359 ms

[26]: cnbc_intersect = pd.DataFrame()
for i in range(len(cnbc_shp)):

df = pd.DataFrame(ix.intersect_point(cnbc_shp.loc[i, 'geometry']))
df['F'] = cnbc_shp.loc[i, 'F']
df['STEADY'] = cnbc_shp.loc[i, 'STEADY']
cnbc_intersect = pd.concat([df, cnbc_intersect])

time: 21.5 s

[27]: cnbc_intersect = cnbc_intersect.groupby('cellids').agg(F=('F', 'mean'),␣
↪→steady=('STEADY', sum)).reset_index(drop=False)

cnbc_intersect.to_csv(os.path.join(model_op,'cnbc_X.csv'), index=True,␣
↪→header=True)

time: 47 ms
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02_TDIS

June 8, 2021

1 Temporal Model Discretization
WLF Modflow Model

[1]: from prop import *
%load_ext autotime

def mktpl(stringinput):
return tuple(map(int, stringinput.split('(')[1].split(')')[0].split(', ')))

<IPython.core.display.HTML object>

time: 0 ns

Get number of rows and columns

[7]: shp_boundary = sf.Reader(os.path.join(shppath, 'LFW_active'))
boundary = np.array(shp_boundary.shapeRecords()[0].shape.points)

Lx = boundary.max(axis=0)[0]-boundary.min(axis=0)[0]
Ly = boundary.max(axis=0)[1]-boundary.min(axis=0)[1]
nlay = 1
delr, delc = gridsize, gridsize
nrow = int(round(Ly / delr + .49))
ncol = int(round(Lx / delc + .49))
top = 1000
xll=boundary.min(axis=0)[0]
yll=boundary.min(axis=0)[1]

temp_sim = flopy.mf6.MFSimulation(sim_name=modelname, version='mf6',␣
↪→exe_name=mf6ExeName, sim_ws=model_ws)

temp_model = flopy.mf6.ModflowGwf(temp_sim, modelname=modelname,␣
↪→model_nam_file='{}.nam'.format(modelname))

dis = flopy.mf6.ModflowGwfdis(temp_model, pname='dis', length_units='METERS',␣
↪→nlay=nlay, nrow=nrow, ncol=ncol, delr=delr,

delc=delc, top=top, xorigin=xll, yorigin=yll,
filename='{}.dis'.format(modelname))

# Grid Intersection Class
sgr = temp_model.modelgrid
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ix = GridIntersect(sgr)

time: 797 ms

[8]: idomain = np.asarray(dt.fread(os.path.join(model_op, 'idomain.csv')))

# botm elevation
botm = np.asarray(dt.fread(os.path.join(model_op, 'botmelev.txt')))

time: 63 ms

Load previously created dataframes. Interpolation of oberservation heads.

[9]: obsX = pd.read_csv(os.path.join(model_op, 'X_obs.csv'), delimiter=",",␣
↪→header=0, index_col=0)

topelev = pd.read_csv(os.path.join(model_op, 'topelev.txt'), delimiter=" ",␣
↪→header=None, index_col=None)

time: 15 ms

[10]: #budgIO_Fl = pd.read_csv(os.path.join(bcdata,'budgIO_Tr.csv'), delimiter=",",␣
↪→header=0, index_col=0).drop(['date'], axis=1) #budget file for river-as-well

river_intersect = pd.read_csv(os.path.join(model_op, 'rivX.csv'),␣
↪→delimiter=",", header=0, index_col=0).fillna(value = 0)

riv_ts = pd.read_csv(os.path.join(bcdata, 'riv_ts.csv'), delimiter=",",␣
↪→header=0, index_col=0)

river_intersect['cellids'] = river_intersect['cellids'].apply(lambda x:␣
↪→mktpl(x))

time: 1.22 s

[18]: for ien, i in enumerate(range(stress_period_start, stress_period_end)):
stress_period_data = []
stress_period_data_dr = []

for j , cid in enumerate(river_intersect.cellids):
if not idomain[cid[0],cid[1]] == 1:

continue

if river_intersect.loc[j, 'steady'] == 0:
stage = riv_ts.loc[i, str(river_intersect.loc[j, 'F']).split('.

↪→')[0]]
else:

stage = float(river_intersect.loc[j, 'F'])

botmr = botm[cid[0], cid[1]]
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if river_intersect.loc[j, 'riv_sec'] == 'in' and river_intersect.loc[j,␣
↪→'steady'] == 0:

lkg = river_intersect.loc[j, 'lkg_in'] * river_intersect.loc[j,␣
↪→'lengths']

elif river_intersect.loc[j, 'lengths'] < gridsize:
lkg = river_intersect.loc[j, 'lkg_out'] * gridsize

else:
lkg = river_intersect.loc[j, 'lkg_out'] * river_intersect.loc[j,␣

↪→'lengths']

boundname = river_intersect.loc[j, 'riv_sec']

if river_intersect.loc[j, 'steady'] == 0:
stress_period_data.append([1, cid[0]+1, cid[1]+1,' ', stage, lkg,␣

↪→botmr, 1.0, boundname])
else:

stress_period_data_dr.append([1, cid[0]+1, cid[1]+1,' ', stage,␣
↪→lkg, 1.0, boundname])

np.savetxt(os.path.join(model_ws, '_riv_stress_period_data_' + str(i) + '.
↪→txt'), stress_period_data, delimiter=' ', fmt="%s")

np.savetxt(os.path.join(model_ws, '_drn_stress_period_data_' + str(i) + '.
↪→txt'), stress_period_data_dr, delimiter=' ', fmt="%s")

time: 8min 5s

[19]: well_intersect = pd.read_csv(os.path.join(model_op, 'X_wel.csv'),␣
↪→delimiter=",", header=0, index_col=0).reset_index(drop=True)

well_ts = pd.read_csv(os.path.join(bcdata, 'well_ts.csv'), delimiter=",",␣
↪→header=0, index_col=0).interpolate(method='linear', axis=0,␣
↪→limit_direction='both')

for ien, i in enumerate(range(stress_period_start, stress_period_end)):
stress_period_data = []
for j in range(len(well_intersect)):

cx = int(well_intersect.iloc[j, 0].split(',')[0].split('(')[1])
cy = int(well_intersect.iloc[j, 0].split(', ')[1].split(')')[0])
f = str(well_intersect.loc[j, 'F']).split('.')[0]
if idomain[cx,cy] == 1:

stress_period_data.append([1, cx+1, cy+1, format(float(well_ts.
↪→loc[i, f]*(-1)), ".10E")])

np.savetxt(os.path.join(model_ws, '_wel_stress_period_data_' + str(i) + '.
↪→txt'), stress_period_data, delimiter=' ', fmt="%s")

time: 16.7 s
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[20]: chb_intersect = pd.read_csv(os.path.join(model_op, 'X_chb.csv'), delimiter=",",␣
↪→header=0, index_col=0).reset_index(drop=True)

chb_ts = pd.read_csv(os.path.join(bcdata, 'chb_ts1.csv'), delimiter=",",␣
↪→header=0, index_col=0).interpolate(method='linear', axis=0,␣
↪→limit_direction='both')

for ien, i in enumerate(range(stress_period_start, stress_period_end)):
stress_period_data = []
for j in range(len(chb_intersect)):

cx = int(chb_intersect.iloc[j, 0].split(',')[0].split('(')[1])
cy = int(chb_intersect.iloc[j, 0].split(', ')[1].split(')')[0])
f = str(chb_intersect.loc[j, 'F']).split('.')[0]
chd = float(chb_ts.loc[i, f])
botmr = botm[cx, cy]
if idomain[cx,cy] == 1 and chd > botmr:

stress_period_data.append([1, cx+1, cy+1, format(chd, ".10E")])

np.savetxt(os.path.join(model_ws, '_chd_stress_period_data_' + str(i) + '.
↪→txt'), stress_period_data, delimiter=' ', fmt="%s")

time: 1min 38s

1.1 Recharge
Spatial interpolation of observation head levels and calculation of depth to watertable.

[21]: rch_ids = pd.read_csv(os.path.join(model_op, 'X_rch.csv'), delimiter=",",␣
↪→header=0, index_col=0)

obs_ts = pd.read_csv(os.path.join(obsdata, 'obs_ts.csv'), delimiter=",",␣
↪→header=0, index_col=0)

obs_heads = obs_ts.interpolate(method='linear', axis=0, limit_direction='both').
↪→drop(columns=['date'])

obs_heads.index.name = 'time'

time: 265 ms

Definition of recharge and groundwater folder to save data for each stress period.

[22]: gwfolder = os.path.join('GW_level_cs{}'.format(gridsize))
if not os.path.exists(gwfolder):

os.makedirs(gwfolder)

time: 0 ns

[28]: x = np.linspace(0,ncol-1,ncol)
y = np.linspace(0,nrow-1,nrow)
X, Y = np.meshgrid(x, y)
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idomain = np.where(np.asarray(dt.fread(os.path.join(model_op, 'idomain.csv')))␣
↪→== 1,

0, np.where(np.asarray(dt.fread(os.path.join(model_op,␣
↪→'idomain.csv'))) == -1, 1, 0))

mean = 0
for j in range(stress_period_start, stress_period_end):

pz, px, py = [], [], []
for i, cid in enumerate(obsX.cellids):

if np.isnan(obs_heads.iloc[j, i]):
continue

px.append(cid.split(', ')[1].split(')')[0])
py.append(cid.split(',')[0].split('(')[1])
pz.append(obs_heads.iloc[j, i])

Ti = griddata((px, py), pz, (X, Y), method='linear')
Ti2 = griddata((px, py), pz, (X, Y), method='nearest')
Ti = np.where(np.isnan(Ti), Ti2, Ti)
Ti = topelev - Ti
Ti = np.ma.array(Ti, mask=idomain)
mean = mean + Ti/stress_periods
np.savetxt(os.path.join(gwfolder, str(j)+'.csv'), Ti.filled(np.nan),␣

↪→delimiter=',')
np.savetxt(os.path.join(model_op, 'mean_gwl.csv'), mean.filled(np.nan),␣
↪→delimiter=',')

time: 7min 42s

Load STOTRASIM files into RAM

[29]: rch_files = [int(f.split('.')[0]) for f in os.listdir(rchdata) if f.endswith(".
↪→csv")]

stotrasim_files = []
for file in rch_files:

stotrasim_files.append([file, dt.fread(os.path.join(rchdata, str(file)+'.
↪→csv'), header=True)])

stotrasim_dict = defaultdict(list)
for filename, file in stotrasim_files:

stotrasim_dict[filename].append([file])

Nrchdata = '../RCH_N'
rch_Nfiles = [int(f.split('.')[0]) for f in os.listdir(Nrchdata) if f.
↪→endswith(".csv")]

stotrasim_Nfiles = []
for file in rch_Nfiles:
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stotrasim_Nfiles.append([file, dt.fread(os.path.join(rchdata, str(file)+'.
↪→csv'), header=True)])

stotrasim_Ndict = defaultdict(list)
for filename, file in stotrasim_Nfiles:

stotrasim_Ndict[filename].append([file])

time: 29.3 s

Head-depandant recharge computation

[30]: for i in range(stress_period_start, stress_period_end):
df = np.asarray([[0. for x in range(ncol)] for y in range(nrow)])
dfN = np.asarray([[0. for x in range(ncol)] for y in range(nrow)])
#gw_level = mean
gw_level = dt.fread(os.path.join(gwfolder, str(i)+'.csv'), header=False)
for j, pid in enumerate(rch_ids.id):

cx = int(rch_ids.iloc[j, 0].split(',')[0].split('(')[1])
cy = int(rch_ids.iloc[j, 0].split(', ')[1].split(')')[0])
rchf = stotrasim_dict[pid][0][0]
rchNf = stotrasim_Ndict[pid][0][0]

gwnbp = np.asarray(rchf.names[1:]).astype(int)
gwnb = gwnbp.flat[np.abs(gwnbp - gw_level[cx,cy]*100).argmin()]

rch = float(rchf[i, str(gwnb)])/1000
rchN = float(rchNf[i, str(gwnb)])*(62/14)
df[cx, cy] = rch

if rch == 0. or rchN == 0.:
dfN[cx, cy] = 0

else:
dfN[cx, cy] = float((rchN / 10) / rch)

np.savetxt(os.path.join(model_ws, modelname + '.rch_stress_period_data_' +␣
↪→str(i) + '.txt'), df, delimiter=' ')

np.savetxt(os.path.join(model_ws, modelname + '.rch_N_aux_' + str(i) + '.
↪→txt'), dfN, delimiter=' ')

time: 4h 57s

1.2 Transport

[31]: lakes = pd.merge(pd.DataFrame(index=range(0,9500)),
pd.read_csv(os.path.join('../ZR/extra/N_See_Var2.pow'),␣

↪→skiprows=3, skipfooter=2, sep=' ', header=None, engine='python'),
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how='left', left_index=True, right_on=0).
↪→reset_index(drop=True).interpolate(method='linear', axis=0,␣
↪→limit_direction='both')

time: 156 ms

[32]: cnbc_intersect = pd.read_csv(os.path.join(model_op, 'cnbc_X.csv'),␣
↪→delimiter=",", header=0, index_col=0)

cnbc_intersect['cellids'] = cnbc_intersect['cellids'].apply(lambda x: mktpl(x))

time: 62 ms

[33]: for ien, i in enumerate(range(stress_period_start, stress_period_end)):
stress_period_data = []
for j, cid in enumerate(cnbc_intersect.cellids):

if not idomain[cid[0],cid[1]] == 1:
continue

if cnbc_intersect.loc[j, 'steady'] > 0:
concentr = float(cnbc_intersect.loc[j, 'F'])

else:
concentr = lakes.iloc[i, 1]

stress_period_data.append([1, int(cid[0]+1), int(cid[1]+1),␣
↪→format(concentr, ".10E")])

np.savetxt(os.path.join(model_ws, '_cnbc_stress_period_data_' + str(i) + '.
↪→txt'), stress_period_data, delimiter=' ', fmt="%s")

time: 1min 12s
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03_RUNMF-Loop

June 20, 2021

1 Setup Groundwaterflow Model and run Modflow
WLF Modflow Model

[1]: from prop import *

def mktpl(stringinput):
return tuple(map(int, stringinput.split('(')[1].split(')')[0].split(', ')))

%load_ext autotime

<IPython.core.display.HTML object>

time: 0 ns

1.1 Definition of Simulation and Output-control

[2]: sim = flopy.mf6.MFSimulation(sim_name=modelname, version='mf6',␣
↪→exe_name=mf6ExeName,

sim_ws=model_ws)

tdis = flopy.mf6.ModflowTdis(sim, pname='tdis', time_units='DAYS', nper=1,
perioddata=([(1, 1, 1.0)]*1))

gwf_model = flopy.mf6.ModflowGwf(sim, modelname=modelname, model_nam_file='{}.
↪→nam'.format(modelname), save_flows=True)

ims = flopy.mf6.ModflowIms(sim, pname='ims', print_option='SUMMARY',
complexity='MODERATE',
outer_maximum=1000, under_relaxation='NONE',
inner_maximum=100,
rcloserecord=0.1, linear_acceleration='BICGSTAB',
scaling_method='NONE', reordering_method='NONE',
relaxation_factor=0.97)

sim.register_ims_package(ims, [gwf_model.name])

time: 141 ms
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1.2 Definition of Internal Packages

[3]: shp_boundary = sf.Reader(os.path.join(shppath, 'LFW_active'))
boundary = np.array(shp_boundary.shapeRecords()[0].shape.points)

Lx = boundary.max(axis=0)[0]-boundary.min(axis=0)[0]
Ly = boundary.max(axis=0)[1]-boundary.min(axis=0)[1]
nlay = 1
delr, delc = gridsize, gridsize
nrow = int(round(Ly / delr + .49))
ncol = int(round(Lx / delc + .49))
top = 1000
xll=boundary.min(axis=0)[0]
yll=boundary.min(axis=0)[1]

dis = flopy.mf6.ModflowGwfdis(gwf_model, pname='dis', length_units='METERS',␣
↪→nlay=nlay, nrow=nrow, ncol=ncol, delr=delr,

delc=delc, top=top, xorigin=xll, yorigin=yll,
filename='{}.dis'.format(modelname))

ic = flopy.mf6.ModflowGwfic(gwf_model, pname='ic', filename='{}.ic'.
↪→format(modelname))

npf = flopy.mf6.ModflowGwfnpf(gwf_model, pname='npf', icelltype=[0],
save_flows=True,
save_specific_discharge=True,
save_saturation=True,
filename='{}.npf'.format(modelname))

sto = flopy.mf6.ModflowGwfsto(gwf_model, ss=0.0001, storagecoefficient=False,␣
↪→iconvert=[1], transient=True)

idomain = flopy.mf6.ModflowGwfdis.idomain.empty(gwf_model, layered=True,␣
↪→default_value=-1)

idomain['data'][0] = np.asarray(dt.fread(os.path.join(model_op, 'idomain.csv')))
dis.idomain = idomain['data']

ich = flopy.mf6.ModflowGwfic.strt.empty(gwf_model, layered=True)
ich['data'] = np.asarray(dt.fread(os.path.join(model_op, 'strthead.txt')))
ic.strt = ich

k1 = flopy.mf6.ModflowGwfnpf.k.empty(gwf_model, layered=True)
k3 = flopy.mf6.ModflowGwfnpf.k33.empty(gwf_model, layered=True)
k1['data'] = np.asarray(dt.fread(os.path.join(model_op, 'npf_hydcond.txt')))
k3['data'] = k1['data'] * .1
npf.k = k1
npf.k33 = k3
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sy = flopy.mf6.ModflowGwfsto.sy.empty(gwf_model, layered=True)
sy['data'] = np.asarray(dt.fread(os.path.join(model_op, 'sy.txt')))
sto.sy = sy

# botm elevation
botm = flopy.mf6.ModflowGwfdis.botm.empty(gwf_model, layered=True)
botm['data'] = np.asarray(dt.fread(os.path.join(model_op, 'botmelev.txt')))
dis.botm = botm

# top elevation
top = np.asarray(dt.fread(os.path.join(model_op, 'topelev.txt')))

oc = flopy.mf6.ModflowGwfoc(gwf_model,
budget_filerecord=['{}.cbb'.format(modelname)],
head_filerecord=['{}.hds'.format(modelname)],
headprintrecord=[('COLUMNS', ncol, 'WIDTH', 15,␣

↪→'DIGITS', 6, 'GENERAL')],
saverecord=[('HEAD', 'ALL'), ('BUDGET', 'ALL')])

time: 329 ms

[4]: #budgIO_Fl = pd.read_csv(os.path.join(bcdata,'budgIO_Tr.csv'), delimiter=",",␣
↪→header=0, index_col=0).drop(['date'], axis=1)

river_intersect = pd.read_csv(os.path.join(model_op, 'rivX.csv'),␣
↪→delimiter=",", header=0, index_col=0).fillna(value = 0)

riv_ts = pd.read_csv(os.path.join(bcdata, 'riv_ts.csv'), delimiter=",",␣
↪→header=0, index_col=0)

obsX = pd.read_csv(os.path.join(model_op, 'X_obs.csv'), delimiter=",",␣
↪→header=0, index_col=0)

river_intersect['cellids'] = river_intersect['cellids'].apply(lambda x:␣
↪→mktpl(x))

time: 2.47 s

1.3 Definition of Modflow Stress Packages

[5]: obsX = pd.read_csv(os.path.join(model_op, 'X_obs.csv'), delimiter=",",␣
↪→header=0, index_col=0)

obs_calc = pd.DataFrame(columns=[obsX.Name], index=range(0,stress_period_end))

time: 31 ms
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[6]: rch_ids = pd.read_csv(os.path.join(model_op, 'X_rch.csv'), delimiter=",",␣
↪→header=0, index_col=0)

rch_files = [int(f.split('.')[0]) for f in os.listdir(rchdata) if f.endswith(".
↪→csv")]

stotrasim_files = []
for file in rch_files:

stotrasim_files.append([file, dt.fread(os.path.join(rchdata, str(file)+'.
↪→csv'), header=True)])

stotrasim_dict = defaultdict(list)
for filename, file in stotrasim_files:

stotrasim_dict[filename].append([file])

time: 10.8 s

[7]: for cycle in range(0, stress_period_end):

stress_period_data = []
for j , cid in enumerate(river_intersect.cellids):

if not dis.idomain[0,cid[0],cid[1]] == 1:
continue

cellid = (0, cid[0], cid[1])
if river_intersect.loc[j, 'steady'] == 0:

stage = riv_ts.loc[cycle, str(river_intersect.loc[j, 'F']).split('.
↪→')[0]]

else:
stage = float(river_intersect.loc[j, 'F'])

botmr = dis.botm[0, cid[0], cid[1]] + 0.01

if stage < botmr:
stage = botmr

if stage > ich['data'][cid[0], cid[1]]:
lkg = river_intersect.loc[j, 'lkg_in'] * river_intersect.loc[j,␣

↪→'lengths']

elif river_intersect.loc[j, 'lengths'] < gridsize:
lkg = river_intersect.loc[j, 'lkg_out'] * gridsize

else:
lkg = river_intersect.loc[j, 'lkg_out'] * river_intersect.loc[j,␣

↪→'lengths']
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stress_period_data.append([cellid, stage, lkg, botmr])

spd = {}
spd[0] = stress_period_data

riv = flopy.mf6.ModflowGwfriv(gwf_model, stress_period_data=spd)

#### Well Package

spd = {}
fname = os.path.join(f"_wel_stress_period_data_{cycle}.txt")
spd[0] = {'filename': fname, 'check': False}
wel = flopy.mf6.ModflowGwfwel(gwf_model, print_input=True,␣

↪→stress_period_data=spd)

#### Constant Head Boundary Package

spd = {}
fname = os.path.join(f"_chd_stress_period_data_{cycle}.txt")
spd[0] = {'filename': fname, 'check': False}
chd = flopy.mf6.ModflowGwfchd(gwf_model, stress_period_data=spd)

#### Recharge Package

gwrch = (top - ich['data'])

stress_period_data = []
for j, rchid in enumerate(rch_ids.id):

cx = int(rch_ids.loc[j,'cellids'].split(',')[0].split('(')[1])
cy = int(rch_ids.loc[j,'cellids'].split(', ')[1].split(')')[0])
if dis.idomain[0,cx,cy] == 1:

rchf = stotrasim_dict[rchid][0][0]
gwnbp = np.asarray(rchf.names[1:]).astype(int)
gwnb = gwnbp.flat[np.abs(gwnbp - gwrch[cx, cy]*100).argmin()]
stress_period_data.append([(0, cx, cy), float(rchf[cycle,␣

↪→str(gwnb)])/(1000)])

spd={}
spd[0] = stress_period_data

rch = flopy.mf6.ModflowGwfrch(gwf_model, stress_period_data=spd)

## Write Simulation Files

sim.write_simulation()

5
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## Run Modflow

success, buff = sim.run_simulation()

hdobj = flopy.utils.HeadFile((outputfiles + '.hds'), precision='double')
head = hdobj.get_data()
np.savetxt(os.path.join('head', 'calc_head_' + str(cycle) + '.txt'),␣

↪→head[0], delimiter=' ', fmt="%s")

for i, cid in enumerate(obsX.cellids):
cx = int(cid.split(',')[0].split('(')[1])
cy = int(cid.split(', ')[1].split(')')[0])
ts = hdobj.get_ts((0, cx, cy))
obs_calc.iloc[cycle, i] = ts[0][1]

flopy.mf6.mfmodel.MFModel.remove_package(gwf_model, riv)
flopy.mf6.mfmodel.MFModel.remove_package(gwf_model, chd)
flopy.mf6.mfmodel.MFModel.remove_package(gwf_model, wel)
flopy.mf6.mfmodel.MFModel.remove_package(gwf_model, rch)

ich['data'] = head[-1]
ic.strt = ich
print(">>> cycle: ", cycle)

obs_calc.to_csv(os.path.join(model_ws,'calc_heads.csv'), index=True,␣
↪→header=True)

writing simulation…
writing simulation name file…
writing simulation tdis package…
writing ims package ims…
writing model wlf-wie…
writing model name file…
writing package dis…
writing package ic…
writing package npf…
writing package sto…
writing package oc…
writing package riv_0…

INFORMATION: maxbound in ('gwf6', 'riv', 'dimensions') changed to 933 based on
size of stress_period_data

writing package wel_0…
INFORMATION: maxbound in ('gwf6', 'wel', 'dimensions') changed to 11 based on
size of stress_period_data

writing package chd_0…
INFORMATION: maxbound in ('gwf6', 'chd', 'dimensions') changed to 137 based on
size of stress_period_data

6
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writing package riv_0…
INFORMATION: maxbound in ('gwf6', 'riv', 'dimensions') changed to 933 based on
size of stress_period_data

writing package wel_0…
INFORMATION: maxbound in ('gwf6', 'wel', 'dimensions') changed to 11 based on
size of stress_period_data

writing package chd_0…
INFORMATION: maxbound in ('gwf6', 'chd', 'dimensions') changed to 137 based on
size of stress_period_data

writing package rch_0…
INFORMATION: maxbound in ('gwf6', 'rch', 'dimensions') changed to 25507 based on
size of stress_period_data
FloPy is using the following executable to run the model:
../../EXE/mf6.2.1/bin/mf6.exe

MODFLOW 6
U.S. GEOLOGICAL SURVEY MODULAR HYDROLOGIC MODEL

VERSION 6.2.1 02/18/2021

MODFLOW 6 compiled Feb 18 2021 08:24:05 with IFORT compiler (ver. 19.10.2)

This software has been approved for release by the U.S. Geological
Survey (USGS). Although the software has been subjected to rigorous
review, the USGS reserves the right to update the software as needed
pursuant to further analysis and review. No warranty, expressed or
implied, is made by the USGS or the U.S. Government as to the
functionality of the software and related material nor shall the
fact of release constitute any such warranty. Furthermore, the
software is released on condition that neither the USGS nor the U.S.
Government shall be held liable for any damages resulting from its
authorized or unauthorized use. Also refer to the USGS Water
Resources Software User Rights Notice for complete use, copyright,
and distribution information.

Run start date and time (yyyy/mm/dd hh:mm:ss): 2021/06/20 7:13:01

Writing simulation list file: mfsim.lst
Using Simulation name file: mfsim.nam

Solving: Stress period: 1 Time step: 1

Run end date and time (yyyy/mm/dd hh:mm:ss): 2021/06/20 7:13:03
Elapsed run time: 1.596 Seconds

Normal termination of simulation.
>>> cycle: 3649
time: 1d 18h 12min 58s

4340
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