
Claudia Pröll, BSc

Automation of a Flow Calorimetry for Chemical Reaction
Optimization

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieurin

Master’s degree programme: Verfahrenstechnik

submitted to

Graz University of Technology

Supervisors

Assoc.Prof. Dipl.-Ing. Dr.techn. Heidrun Gruber-Wölfler
Dipl.-Ing. Sebastian Soritz, BSc

Institute of Process and Particle Engineering

Graz, September 2021

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly indicated all

material which has been quoted either literally or by content from the sources

used. The text document uploaded to TUGRAZonline is identical to the present

master’s thesis.

Date, Signature

TU Graz

Abstract

In this thesis, a laboratory system with a heat flow calorimeter as the core element is auto-

mated. Reaction calorimeters are used in the field of chemical and pharmaceutical process

development. As a measuring device for the amount of heat absorbed or released in a

chemical reaction, they provide essential information about the reaction that has taken place.

The automatisation is implemented by means of the widely used programming language

Python. The created implementation is divided into three basic main parts. The first part

comprises the device drivers, with the help of which each device in the process chain can be

controlled and operated. The second part is given by the individual strategies, which have

detailed information on the sequence control. The strategies enable the individualised usage

of the laboratory system. The last part of the implementation refers to the element of the

implementation that is capable of executing the strategies. Meaning, this part ensures that the

controlling of the system is implemented. Finally, in order to demonstrate the functionality of

the created application, neutralisation experiments were conducted at different molarities. In

addition to the successful execution of the application, the characteristics of the results corre-

spond to the expectations. As the concentration and flow rate increase, the measured values

approach the literature value given for the experiment. Overall, the developed application can

be used successfully in the laboratory, the individual elements can be used independently of

each other and also for other purposes, and due to the application architecture, the future

extension with further functions does not require a great deal of effort.

September 2021 I

TU Graz

Kurzfassung

Reaktionskalorimeter werden im Bereich der chemischen und pharmazeutischen Verfahrens-

entwicklung eingesetzt. Als Messgerät für die aufgenommene oder abgegebene Wärmemenge

einer chemischen Reaktion liefern sie wesentliche Informationen über die stattgefundene

Reaktion. Im Rahmen dieser Arbeit wird eine Laboranlage mit einem Wärmestromkalorimeter

als Kernelement automatisiert. Diese Automatisierung wird mittels der verbreiteten Pro-

grammiersprache Python implementiert. Die erstellte Implementierung gliedert sich in drei

grundlegende Hauptteile. Der erste Teil umfasst die Gerätedriver, mit deren Hilfe jedes in

der Prozesskette auftretende Gerät angesteuert und bedient werden kann. Den zweiten

Teil bilden die individuellen Strategien, welche über detaillierte Informationen zur Ablaufs-

teuerung verfügen. Durch diese Strategien wird der individualisierte Einsatz der Laboranlage

möglich. Der letzte Teil bezieht sich auf jenen Teil der Implementierung, der dazu im Stande

ist, die Strategien auszuführen. Das heißt, der dritte Teil sorgt dafür, dass die Steuerung

der Anlage umgesetzt wird. Um die Funktionalität der erstellten Applikation zu zeigen, wur-

den abschließend Neutralisationsversuche bei verschiedenen Konzentrationen durchgeführt.

Zusätzlich zur erfolgreichen Ausführung der Applikation, entspricht das Verhalten der Ergeb-

nisse den Erwartungen. Mit steigender Konzentration und steigender Durchflussrate nähern

sich die Messwerte dem für den Versuch gegebenen Literaturwert an. Die entwickelte App-

likation kann im Allgemeinen erfolgreich im Labor eingesetzt werden, die einzelnen Elemente

können unabhängig voneinander und auch für andere Aufgaben genutzt werden und aufgrund

der Applikationsarchitektur ist die zukünftige Erweiterung um weitere Funktionen nicht mit

großem Aufwand verbunden.

II September 2021

TU Graz

Acknowledgement

I would like to express my very great appreciation to Assoc.Prof. Dipl.-Ing. Dr.techn. Heidrun

Gruber-Wölfler for her support during this thesis and for giving me the opportunity to write a

thesis in her research group, as well as to Dipl.-Ing. Sebastian Soritz, BSc for his support and

advice during the thesis and for the many helpful tips and suggestions. I would also like to

thank my family, partner and friends who have always been supportive throughout my studies.

September 2021 III

TU Graz Contents

Contents

Abstract I

Zusammenfassung II

Acknowledgement III

List of Figures VI

List of Listings VII

List of Tables IX

List of Symbols X

1 Introduction 1

1.1 Task Formulation and Intended Use . 1

1.2 Structure of the Thesis . 1

2 Theoretical Background 3

2.1 Flow Chemistry . 3

2.2 Basic Principles of Calorimetry . 4

2.3 Neutralisation Reaction . 6

2.4 Process Setup and Communication Details . 8

2.5 State Machine . 13

2.5.1 Basic Concept of the State Machine . 13

2.5.2 Elements of the State Machine . 14

2.5.3 Example of a State Machine . 15

2.6 Design pattern . 16

2.6.1 Definition of design pattern . 16

2.6.2 Factory method pattern . 17

2.6.3 State pattern . 18

2.6.4 Strategy pattern . 19

3 Application Development 21

3.1 Basic Principles of Application Development . 21

3.2 Use Case Specification . 22

3.3 Application Architecture . 23

3.4 Implementation . 25

3.4.1 Implementation Approach . 25

IV September 2021

Contents TU Graz

3.4.2 Realisation of the State Machine Concept 25

3.4.3 Creating a State Machine . 32

3.4.4 Additional State Machines of the Equipment 38

3.4.5 Realisation of the Strategy Pattern . 43

4 Results and Discussion 51

4.1 Testing of the Application . 51

4.2 Final Application . 52

4.3 Experimental Results . 57

5 Conclusion and Outlook 61

6 Experimental Procedure 63

6.1 Details on conducting the Experiments . 63

6.2 Calorimeter-Thermostat Calibration . 65

6.3 Calorimeter Calibration . 66

7 References 68

8 Appendix 70

8.1 Application Code . 70

8.1.1 Auto.py . 70

8.1.2 Calibration.py . 74

8.1.3 Calorimeter.py . 75

8.1.4 Communication.py . 77

8.1.5 Dictionary.py . 78

8.1.6 Excel_Functions.py . 78

8.1.7 Fisher.py . 79

8.1.8 HPLC.py . 85

8.1.9 Lambda.py . 92

8.1.10 LayerB.py . 96

8.1.11 LayerC.py . 97

8.1.12 Operating_OCAE.py . 98

8.1.13 Operating_OPL.py . 99

8.1.14 pyState.py . 99

8.1.15 pyStrategy.py . 100

8.1.16 Strategy_OCAE.py . 101

8.1.17 Strategy_OPL.py . 104

8.2 Output Calculation from Measurement Data . 106

September 2021 V

TU Graz List of Figures

List of Figures

1 Standard setup of a two substance system used for flow chemistry. [7] 4

2 Typical heat flow reaction calorimeter. 6

3 Devices used for the automatisation application. 8

4 Communication frame associated with serial interface RS-232. 8

5 Basic elements and their notation in state diagrams. 13

6 State diagram describing a possible measuring procedure in the laboratory. . . 15

7 Structure of the Factory Method Pattern. 18

8 Structure of the State Pattern. 19

9 Structure of the Strategy Pattern. 20

10 Four steps of application development. 21

11 Flowchart illustrating the application architecture and its participants. 24

12 Resulting state machine for the thermostat driver. 33

13 Resulting state machine for the composite Configuration state of the Fisher

thermostat. 34

14 Resulting state machine for the composite Deactivated state of the Fisher

thermostat. 35

15 Resulting state machine for the composite Activating state of the Fisher ther-

mostat. 36

16 State diagram of the composite layer B state Send_And_Check. 37

17 State diagram of the HPLC pump driver. 39

18 State diagram of the Lambda pump driver. 41

19 State diagram of the calorimeter driver. 42

20 State diagram of the context as part of the Strategy Pattern. 46

21 Worksheets of the output excel file. 55

22 Relative errors of the determined molar reaction enthalpy from the first experi-

ment at a temperature of 25◦C using a concentration of 1.65 mM. 57

23 Determined molar reaction enthalpy from the second and third experiment at a

temperature of 25◦C using a concentration of 1 M and 2 M. 58

24 Evaluation worksheet containing the results of experiment 3a. 59

25 Dia_Raw_Temp worksheet displaying the plot of measured temperatures of

experiment 3a over time. 60

26 Calibration curve between thermostat and calorimeter in the interval of 25 to

40◦C. 66

27 Calibration curve to convert measured voltage into heat quantity for the tem-

perature combination of 25◦C at the calorimeter and 26◦C at the thermostat. . 67

VI September 2021

List of Listings TU Graz

List of Listings

1 Specification of the state template. 26

2 Factory template that must be present and adhered to when implementing any

state machine. 28

3 Specification of the relevant functions of the engine class. 29

4 State machine template for a composite state. 31

5 State machine template if the created state machine is not a composite state. . 31

6 Basic strategy from which any additional strategy can be built. 44

7 Template for the list entries of the operating point list. 48

8 Specifications needed for the execution of the OPL strategy. 53

9 Specifications needed for the execution of the OCAE strategy. 54

10 Initialisation and Calling of the context class. 54

11 The Auto.py file corresponds to the context of the strategy pattern and is

therefore responsible for the execution of the individual strategies. 70

12 The Calibration.py file contains the calibration equation for the pumps, calorime-

ter and calorimeter-thermostat combination. 74

13 The Calorimeter.py file contains its corresponding device driver and can be

used to operate this device. 75

14 In the Communication.py file, the library for serial communication available in

Python is adapted for own purposes. 77

15 The Dictionary.py file contains some basic interchangeable parameters. 78

16 The Excel_Functions.py contains the function, which is responsible for the

setup of the basic output file. 78

17 The Fisher.py file contains its corresponding device driver and can be used to

operate this device. 79

18 The HPLC.py file contains its corresponding device driver and can be used to

operate this device. 85

19 The Lambda.py file contains its corresponding device driver and can be used

to operate this device. 92

20 The LayerB.py file contains several state classes, which are in general more

complex than layer C states. 96

21 The LayerC.py file contains simple state classes. 97

22 The Operating_OCAE.py file is used to execute the Auto.py file using the

Output Calculation Absolute Evaluation strategy. 98

23 The Operating_OPL.py file is used to execute the Auto.py file using the Opera-

tion Point List strategy. 99

September 2021 VII

TU Graz List of Listings

24 The pyState.py file contains the basic state class and the engine class. Both

classes are used later when creating a state machine. 99

25 The pyStrategy.py file contains the basic strategy class. 100

26 The Strategy_OCAE.py file corresponds to a concrete strategy of the strategy

pattern and contains the strategy for evaluating the measurement data and for

creating an Excel output file. 101

27 The Strategy_OPL.py file corresponds to a concrete strategy of the strategy

pattern and contains the strategy which does not yet further restrict the handling

of the system. 104

VIII September 2021

List of Tables TU Graz

List of Tables

1 Serial communication protocol of the Fisher thermostat. 10

2 Serial communication protocol of the HPLC pump. 11

3 Serial communication protocol of the Lambda pump. 12

4 Concentrations of the prepared solutions for the various experiments in mol·l-1. 63

5 Pumps used for the various experiments. 64

6 Parameters of the quadratic calibration curve for various temperature combina-

tions of calorimeter and thermostat. 67

September 2021 IX

TU Graz List of Symbols

List of Symbols

ρ density g·ml−1

A heat transfer area m2

c concentration mol·l−1

cA concentration of component A mol·l−1

cB concentration of component B mol·l−1

cp,water specific heat capacity of water J·mol−1·K−1

cwater concentration of water mol·l−1

∆H◦ standard enthalpy of reaction kJ·mol−1

∆hR molar reaction enthalpy kJ·mol−1

Ki calibration value of the pump

M molar mass g·mol−1

m mass g

N number of bits

ṅA,act molar flow rate of component A mol·s−1

ṅB,act molar flow rate of component B mol·s−1

Qflow heat flow W

Q̇A convective heat flow of component A at the inlet W

Q̇B convective heat flow of component B at the inlet W

Q̇conv convective heat flow W

Q̇out convective heat flow at the outlet W

Q̇pre transmitted heat flow at the precooling element W

Q̇r1 transmitted heat flow at the first reactor W

Q̇r2 transmitted heat flow at the second reactor W

Q̇reac reaction heat flow W

Q̇seg transmitted heat flow at a segment W

Q̇tran transmitted heat flow W

TA inlet temperature of component A K

TB inlet temperature of component B K

Tj jacket temperature K

Tn symbol duration time s

Tout outlet temperature K

Tr reactor temperature K

Tset set temperature at the calorimeter K

∆TA temperature difference at the inlet of component A K

X September 2021

List of Symbols TU Graz

∆TB temperature difference at the inlet of component B K

∆Tout temperature difference at the outlet K

U thermal heat transfer coefficient W·m−2·K−1

Upre measured voltage at the precooling element mV

Ur1 measured voltage at the first reactor mV

Ur2 measured voltage at the second reactor mV

Useg measured voltage at a segment mV

V volume ml

V̇A volumetric target flow rate of component A ml·min−1

V̇A,act volumetric flow rate of component A ml·min−1

V̇B volumetric target flow rate of component B ml·min−1

V̇B,act volumetric flow rate of component B ml·min−1

September 2021 XI

TU Graz

1 Introduction

1.1 Task Formulation and Intended Use

Chemical reactions can be characterised by the energy released or absorbed in the form

of heat. Knowledge of this heat is essential, for example, when scaling up reactions for

large-scale plants. Furthermore, since this heat is directly related to the reaction rate, it

provides information about the kinetics of a chemical reaction. For these reasons, reaction

calorimeters are of great importance and have long been used for these purposes due to the

simplicity of measuring heat quantity. If in addition the calorimeter and its equipment are to be

automated, besides simplifying the work in the laboratory, this will also facilitate the reaction

screening of various reactions.

In the context of this thesis, an automatisation tool in the programming language Python for a

system consisting of several pumps, a thermostat and a reaction calorimeter is to be designed

and implemented. For the reaction calorimeter, the heat flow calorimeter developed by MAIER

et al. is to be used [1]. The objective of the development is to generate an application for

the sequence control, which runs autonomously and includes error handling, starting from

automatic setting of basic settings to the processing of specified operating points up to the

evaluation of the measurement data received. The essential parts of the application and

therefore this thesis are the subroutines which can control a single device, and also those

which combine these individual subroutines to obtain the sequence control. Finally, the

functionality of the application is to be demonstrated by conducting a neutralisation reaction.

The purpose of this sequence control, as mentioned earlier, is to facilitate reaction screening.

Associated with this, the application is to be programmed in such a way that an optimisation

algorithm can be easily integrated. By evaluating the measurement data, the optimisation

algorithm could determine the specifications for the next operating points of the reactions to

be conducted. Thus, the optimal reaction conditions would not only be determined by the

optimisation algorithm, but also directly applied by the automatisation application.

1.2 Structure of the Thesis

This thesis is divided into six sections. Following the first section Introduction, the second

section Theoretical background provides the theoretical background relevant for this work. In

this respect, general aspects such as flow chemistry, reaction calorimetry and neutralisation

reactions are discussed. This is followed by a description of elements which are decisive for

September 2021 1

TU Graz 1 Introduction

the implementation, such as the serial interface, the individual devices and the underlying

programming principles.

Subsequently, the process of designing and implementing the application is described in the

third section Program development. At first, the use cases are defined, which are determined

based on the task formulation and consideration of how the system will be operated. Based

on these use cases, the architecture of the automatisation application is planned. Finally, the

implementation is described.

In the fourth section Results and discussion, firstly the testing and the functionality of the final

application is described, and secondly the results of the neutralisation experiments conducted

as prove of concept are presented and discussed. The fifth section Conclusion and outlook

contains a summary of the entire work and an outlook on what possible extensions can

be made. The sixth section Experimental procedure provides additional information on the

experimental procedure, concerning the equipment and materials used and various calibration

curves. Furthermore, in the Appendix the implementation of the application can be looked up.

2 September 2021

TU Graz

2 Theoretical Background

2.1 Flow Chemistry

Flow chemistry deals with conducting a chemical process using continuous flow instead of a

batch process. The application of continuous flow goes hand in hand with the current trend

in pharmaceutical industry to use microreactors or microreactor systems. The combination

offers advantages over conventional processes such as better mixing, better heat and mass

transfer as well as easier process control. [2, 3]

Discontinuous mode or batch mode refers to the process in which the required starting materi-

als are fed to the apparatus at the beginning. The system proceeds until the desired degree

of processing is reached. Subsequently, the container is completely emptied. A new process

cycle is started by refilling the cleaned container. This mode of operation is common when a

product is only required in small quantities, as is the case in the pharmaceutical sector. The

advantage of this approach is that the reactor can be used for different products and thus

offers a high degree of flexibility. However, the dead times during filling and emptying, higher

energy costs, increased work effort and the varying product quality are shortcomings of this

operation mode. The opposite of the batch process is the continuous mode of operation.

The input of new material and discharge of products take place continuously. This mode of

operation overcomes the disadvantages of the discontinuous mode of operation. It eliminates

dead times, the operating costs are lower and the product quality is more consistent. [4, 5]

In the pharmaceutical industry, it used to be common to take advantage of the flexibility of

the discontinuous operation mode and thus to manufacture different substances one after the

other using a batch reactor. The production of a drug, starting from the synthesis of the active

pharmaceutical ingredient (API) up to the manufacturing of the dosage form, consists of a

process chain of many individual batch steps. Since dead times arise for each of these batch

steps due to filling and emptying times, the time lost adds up. Furthermore, the individual

processing steps do not always take place at the same location, which leads to costly

intermediate storage and transport. For this reason, the trend in the pharmaceutical

sector is towards continuous operation, i.e. the application of flow chemistry. In addition to

eliminating dead times occurring in batch, the continuous approach makes it possible to

combine several process steps, such as synthesis and purification. The aim is an end-to-end

process which covers the entire process from the starting material to the drug as the final

product. [5, 6]

September 2021 3

TU Graz 2 Theoretical Background

The realisation of a chemical process by means of continuous flow and the application of

microreactor systems is specific to each process. Figure 1 illustrates the generalised setup of

a standard two-feed continuous flow system, which can be divided into six segments. The first

segment consists of two pumps delivering the reagents to the reactor. Prior to the reactor, the

reagents are mixed with each other. After the reactor unit, a quenching module and a unit to

regulate the pressure follow. Finally, the products are collected in a container. Other optional

segments to be integrated into the system are analysis tools or purification steps. [7]

Figure 1: Standard setup of a two substance system used for flow chemistry. [7]

An additional advantage of continuous operation mode is a simple automatisation of the

system. Automatisation in this context means that once the system has been set up and

the preliminary experimental preparations are completed, the system runs independently.

Meaning, the manual work steps during the runtime of the experiment are replaced by the

automatisation. As the system is automated, the possibility of automated reaction optimisation

arises as well. Reaction optimisation aims to maximise product yields and to generate kinetic

reaction models while minimising the total number of experiments conducted. [8]

2.2 Basic Principles of Calorimetry

Calorimetry is defined as the quantitative measurement of heat and has been used since the

18th century. Consequently, a variety of methods have been developed, which differ in their

measurement and control principles or in their operation mode. [9, 10]

Regarding the different measurement methods, a distinction is made between compensation

of thermal effects, measurement of temperature differences and temperature modulation. For

the compensation method, the temperature differences generated by the reaction are avoided.

To do this, the heat must be either supplied or dissipated accordingly. This can be achieved,

for example, by a PELTIER element. The electric current passing through the PELTIER

4 September 2021

2.2 Basic Principles of Calorimetry TU Graz

element provides information about the amount of compensated heat. For the method of

measuring temperature differences, the amount of heat is derived from the measured

difference. A distinction is made between temporal and spatial method. The former measures

the difference in terms of time before and after the reaction and the latter measures the

difference locally at specific points in the calorimeter. The last measurement method is that

of temperature modulation. Here, the aim is to determine the amount of heat required for a

periodically given temperature profile. [10]

The second type of calorimeter classification, the different operation methods, concerns

the way of controlling the reaction temperature. The methods are divided into isothermal,

adiabatic, isoperibolic and temperature-programmed. In the isothermal operation method,

the reaction temperature is kept constant, which goes hand in hand with the measurement

method based on the compensations of thermal effects. In the adiabatic operation method,

the cooling or heating temperature is adjusted to minimise the heat exchange between the

medium and the reactor medium. In the isoperibolic operation method, the cooling or heating

temperature is kept constant while the temperature change of the reactor medium is measured.

The temperature-programmed operation method is related to the temperature modulation

measurement method in so far as that the reaction temperature is varied with respect to a

given profile. [11]

In the context of this thesis, a reaction calorimeter with an isothermal mode of operation is

used. A chemical reaction is generally linked to the release or uptake of heat. Therefore,

measuring heat flux is a common method to characterise those reaction processes and is

referred to as reaction calorimetry. In the case of reaction calorimetry, a distinction can

be made between four established methods: heat-flow reaction calorimeter, heat-balance

reaction calorimeter, power-compensation reaction calorimeter and Peltier calorimeter. [11, 12]

Since the heat flow calorimeter corresponds to the method of the calorimeter used, only this

will be discussed in more detail. Figure 2 shows a typical heat flow reaction calorimeter and a

schematic drawing of its reactor.

For the heat flow calorimeter using isothermal operation mode, the following balance is valid:

Qflow = U · A · (Tr − Tj) (1)

Whereby Qflow refers to the heat flow (W), U to the thermal heat transfer coefficient (W·m−2·K−1),

A to the heat transfer area (m2), Tr to the reactor temperature (K) and Tj to the jacket temper-

ature (K). The principle of determining the heat flow is based on measuring the temperature

difference and converting it by means of a calibration factor. This means that the thermal heat

September 2021 5

TU Graz 2 Theoretical Background

(a) Mettler RC1mx heat flow reaction

calorimeter [13].

(b) Schematic drawing of a heat flow reac-

tion calorimeter [11].

Figure 2: Typical heat flow reaction calorimeter.

transfer coefficient and the heat exchange surface are combined into one factor, which must

be known in order to evaluate the measurement. [12]

It is relevant how the temperature difference (Tr − Tj) is measured and how the reactor

temperature Tr is kept constant. Thermocouple elements, which are based on the SEEBECK

effect, serve as the basis for the measurement of the temperature difference. A local

temperature difference generates a heat flow. The heat flow causes a voltage in the thermo-

couple, which is then measured. Using a calibration curve between the measured voltage

and the amount of heat, the actual amount of heat can be determined. Thermocouples are

also used as the basis for keeping the temperature constant, this time based on the PELTIER

effect. An electric current, which is adjusted via the voltage, generates a heat flow. By means

of a control unit, the voltage can be adjusted in such a way that the exact amount of heat is

produced which is necessary to keep the reactor at the desired temperature. [1, 12]

2.3 Neutralisation Reaction

A neutralisation reaction refers to the reaction in which an acid and a base react with each

other in an aqueous solution. The products are water and the corresponding salt from the

remaining base ions and acid residue ions. The resulting pH-value of the reaction product

depends on the acid and base used. [14]

The starting point is a weak or strong acid and base, each of which is put into aqueous

6 September 2021

2.3 Neutralisation Reaction TU Graz

solution. On contact with water, the acid or base begins to dissociate, whereby only strong

acids or strong bases dissociate completely. In the case of the acid HA, this process results in

anions A− and oxonium ions H3O+ (Equation 2), and in the case of the base B, in cations B+

and hydroxide ions OH− (Equation 3).

HA + H2O ⇀↽ A− + H3O+ (2)

B + H2O ⇀↽ B+ + OH− (3)

In the neutralisation reaction, hydrogen protons react with hydroxide ions. Therefore, in-

dependent of the starting materials, the same chemical reaction takes place, namely the

formation of water (Equation 4). In connection with this, the occurring neutralisation heat of

∆H◦ = −57.4 kJ ·mol−1 is always the same [15].

H+ + OH− → H2O (4)

The overall neutralisation reaction can be expressed in the following way:

acid + base→ salts + water (5)

As already mentioned, the resulting pH value depends on the acid and base initially used. If a

strong acid and a strong base are the starting materials of the neutralisation reaction, there is

approximately the same amount of oxonium ions and hydroxide ions in solution. Consequently,

there is a neutralisation of the pH value, which only assumes minimal deviations around 7.

The behaviour is different when a weak acid is combined with a strong base or a strong acid

with a weak base. The weaker the substance, the worse it generally dissociates and leading

to an imbalance of oxonium ions and hydroxide ions in aqueous solution. For the weak acid

and the strong base, hydroxide ions remain in the product, which moves the pH value into the

basic range. The opposite is the case for the combination of a strong acid and a weak base.

Here, oxonium ions remain in solution and the pH value is shifted to the acidic range.

In the context of this thesis, acetic acid, a weak acid, and sodium hydroxide, a strong base,

are used as starting materials for the neutralisation reaction. Due to the properties of these

substances, the pH value is only minimally shifted to the basic range depending on the initial

concentration and thus can be used for the prove of concept of the sequence control program.

The corresponding reaction equation for an acetic acid - sodium hydroxide neutralisation

reaction is given in the Equation 6.

NaOH + CH3COOH→ CH3COONa + H2O (6)

September 2021 7

TU Graz 2 Theoretical Background

2.4 Process Setup and Communication Details

Figure 1 illustrates a common system setup that could be found in flow chemistry. The system

that is to be automated in the context of this thesis follows exactly this setup, although not all

elements are electronic and can therefore not be addressed. The pumps at the beginning of

the plant and the use of pumps for the optional quenching are crucial for the automatisation.

Unlike in the illustration, the number of pumps is variable. Another element for automatisation

is the reactor. In the context of this thesis, a reaction calorimeter is used, which supplies

measurement data. Additionally, a thermostat is needed to control the temperature at the

calorimeter, which is not shown separately in Figure 1. All the equipment used (thermostat,

two different types of pumps and calorimeter) is shown in Figure 3.

(a) Thermostat from Fisher

Scientific [16].

(b) HPLC pump from

Knauer [17].

(c) Syringe pump from

LAMBDA Laboratory Instru-

ments [18].

(d) Heat flow calorime-

ters [1].

Figure 3: Devices used for the automatisation application.

For communicating with devices in the context of this thesis, the RS-232 serial interface is of

primary importance. The transmitted message is formed by several elements, whereby the

entire construct is referred to as the communication frame and is given in Figure 4. From this

figure it is evident that the message consists of four elements: start bit, data frame, parity and

stop bit. The start and stop bits initiate and terminate the message, the data frame contains

Figure 4: Communication frame associated with serial interface RS-232.

8 September 2021

2.4 Process Setup and Communication Details TU Graz

the actual message and the parity serves as an optional check in which the bits of the sent

message are counted. [19]

In order to be able to send the message, a connection between the communicating

devices must first be established. For this purpose, the following communication parameters

are necessary, which also include details of the individual elements of the communication

frame [19]:

Port name: The operating system assigns a name to each serial communication port,

e.g. COM1.

Baud rate: The baud rate indicates the number of data bits sent per second. It refers

to the number of bits of the overall communication frame and not the number

of bits of the data frame.

Parity : The parity check counts the number of high bits. When specifying the parity

bit, the bit that completes the total number of all bits to even or odd is

passed. Alternatively, it is possible that no parity check is carried out.

Data bits: This specifies the number of bits N available for the data frame. The number

is usually 8.

Stop bits: The reciprocal of the baud rate results in the symbol duration time Tn.

When specifying the stop bit, the length of this bit is given as a multiple of

the symbol duration time.

For the later planning of the application architecture and its implementation, it is crucial to

have detailed information about the individual devices. The necessary information includes

the available functions and the communication protocol, which are specified below for each

individual device.

Fisher Thermostat

The thermostat used is the Fisherbrand™ Isotemp™ R20 Refrigerated and Heated Bath

Circulators from Fisher Scientific (Figure 3a). All necessary information about the device is

taken from the corresponding device manual. [16]

The following settings for the communication parameters are available for the serial interface

between host PC (master) and thermostat (slave):

Serial comm RS-232, RS-485, Off

Baud 19200, 9600, 4800, 2400, 1200, 600, 300

Parity None, Odd, Even

September 2021 9

TU Graz 2 Theoretical Background

Data bits 8

Stop bits 1, 2

In Table 1 all functions of the thermostat used within the implementation are specified.

Additionally, the communication protocol is evident from this. The slave returns a response to

every command sent by the master. The master can only send a new command when the

master has received the response. Each command sent and its corresponding response are

terminated with a carriage return.

Table 1: Serial communication protocol of the Fisher thermostat.

Command description Master command Slave response

Read displayed setpoint RS [Value]C∗

Read external probe enabled RE [Binary value]

Read pump speed RPS [String value]∗∗

Read temperature unit RTU [String value]∗∗∗

Read unit on RO [Binary value]

Set displayed setpoint SS [Value] OK

Set external probe on status SE [Binary value] OK

Set pump speed SPS [String value]∗∗ OK

Set temperature unit STU [String value]∗∗∗ OK

Set unit on status SO [Binary value] OK

*C denotes Celsius, setting in Kelvin (K) and Fahrenheit (F) would also be possible
**Pump speed can be specified in low (L), medium (M) and high (H)
***Temperature unit is returned in Celsius (C), Kelvin (K) or Fahrenheit (F)

HPLC Pump

Two different types of pumps are used for the automatisation. The first is the HPLC (High

performance liquid chromatography) pump, namely the AZURA Pump P 4.1S or P 2.1S from

Knauer (Figure 3b). All necessary information about the device is taken from the correspond-

ing device manual. [17]

The settings for the serial communication interface between host PC and the HPLC pump are

specified as follows:

10 September 2021

2.4 Process Setup and Communication Details TU Graz

Serial comm RS-232, LAN

Baud 9600

Parity no parity check

Data bits 8

Stop bits 1

In Table 2 all functions of the HPLC pump used in the implementation are specified. Once

again, the communication protocol is apparent, which is analogous to the thermostat. All

commands and responses are terminated with a carriage return.

Table 2: Serial communication protocol of the HPLC pump.

Command description Master command Slave response

Read flow in µl/min FLOW? FLOW:[Value]

Read pressure in 0.1 MPa PRESSURE? PRESSURE:[Value]

Read minimum pressure in 0.1 MPa PMIN[Pump head]?∗ PMIN[Pump head]:[Value]

Read maximum pressure in 0.1 MPa PMAX[Pump head]? PMAX[Pump head]:[Value]

Set flow in µl/min FLOW:[Value] OK

Set pressure in 0.1 MPa PRESSURE:[Value] OK

Set minimum pressure in 0.1 MPa PMIN[Pump head]:[Value] OK

Set maximum pressure in 0.1 MPa PMAX[Pump head]:[Value] OK

*A distinction is made between maximum flow rate of 10 ml·min-1 or 50 ml·min-1, inserting the
numbers in the command for each case.

Lambda Pump

The second type of pump used is a syringe pump, namely the Polyvalent programmable

syringe pump - LAMBDA VIT-FIT from LAMBDA Laboratory Instruments (Figure 3c). All

necessary information about the device is taken from the corresponding device manual. [18]

The settings for the serial communication interface between host PC and the Lambda pump

are specified as follows:

Serial comm RS-232, RS-485

Baud 2400

Parity Odd

September 2021 11

TU Graz 2 Theoretical Background

Data bits 8

Stop bits 1

The communication with the Lambda pump is simpler than that of the previously mentioned

devices. A command can be sent to switch on and set the flow rate at the same time. For

switching off, this command can be used with a flow rate equal to zero. If this command is

sent by the master, the slave will not return an answer. Another command can be used to

query which flow rate is currently set. An overview of how the two commands are used in the

implementation and how they are composed is given in Table 3.

Table 3: Serial communication protocol of the Lambda pump.

Command Description Master command Slave response

Read pump settings # ss mm G qs cr < mm ss r ddd qs cr

Set flow and turn pump on # ss mm r ddd qs cr -

Turn pump off # ss mm r 000 qs cr -

Explanation of indices

ss pump address

mm host-PC address

r pusher movement to the left (infusion)

ddd speed of rotation

qs control sum in HEX format

cr carriage return

G indicates the request for data

Calorimeter

The heat flow calorimeter developed by MAIER et al. is used as the reaction calorimeter for the

automatisation. The reactor of the calorimeter is divided into three segments, the precooling

element, in which the components are not yet mixed with each other, and the two reactor

elements. The measuring and the operating principles of this calorimeter are described in

section 2.2 and in literature [1], additional information regarding the calibration is given in

section 6.3 and the calculation method for evaluating the measurement results is given in the

Appendix 8.2. The following settings are defined for the serial communication interface of the

heat flow calorimeter [1]:

12 September 2021

2.5 State Machine TU Graz

Serial comm RS-232

Baud 9600

Parity no parity check

Data bits 8

Stop bits 1

The calorimeter has the characteristic of constantly sending values without having them

explicitly requested. Consequently, the values can be retrieved at any time. Also relevant is

the setting of a target temperature, for which the command has the following format:

< 1, Value >

Whereby the temperature in degrees Celsius is set for Value.

2.5 State Machine

2.5.1 Basic Concept of the State Machine

In the context of this thesis, the concept of state machines will later be used for the implemen-

tation of device drivers and the sequence control. State machines offer a way to describe the

behaviour of a system. This is achieved by assigning states, which each describe a specific

situation, and state changes, which provide the transition between the states. Furthermore,

internal activities, which describe actions that are completed within the state, and events,

which trigger state changes, are important aspects. The graphical representation of a state

machine is called state diagram (Figure 5). The most important elements are explained in

more detail below. All subsequent descriptions of the state machine are taken from the book

UML 2.5: Das umfassende Handbuch by KECHER et al. [20].

state name

internal activity

state name

internal activity

final statestate transitioniniatial state

event [guard] / effect

Figure 5: Basic elements and their notation in state diagrams.

September 2021 13

TU Graz 2 Theoretical Background

2.5.2 Elements of the State Machine

State

Every state describes a specific situation of the system. As already mentioned, the sum of all

states should cover the entire observable system behaviour. A distinction is made between

static and dynamic states. Their difference depends on what happens during the active state.

If the active state itself does not execute any action, for example it waits for an external input,

it is referred to as a static state. If the active state itself performs an action, it is called a

dynamic state.

Transition and Event

Transition refers to the one-way state change between two states and consists of up to three

parts: the event, the guard and the effect. In the simplest case, the event is sufficient, but

must be present for every transition. This is because the event triggers the transition and

determines exactly which state is entered. A variety of different events can be distinguished.

The events relevant for this thesis are:

Call event :

This is the simplest type of event. The event received is like a request to perform a certain

operation. The state machine then changes to the state that performs this operation. For

example, one receives an instruction from the supervisor to immediately carry out certain

measurements in the laboratory.

Signal event :

These events are signals that enter the system from outside. In other words, the system

receives information. The state machine now has the possibility to react to this information.

For example, the fire alarm goes off during a measurement in the laboratory.

Change event :

This event is triggered under a certain condition. For example, after the laboratory work is

finished, the laboratory can be cleaned up.

Time event :

This event is a special version of the change event. Here the condition refers to a point

in time or a time period. For example, the measurement is finished when the measured

value is constant for two minutes.

As already mentioned besides the event the guard and the effect are also parts of the transition.

14 September 2021

2.5 State Machine TU Graz

The guard can be added in order to introduce a safety barrier. This means that the transition

is only executed when the guard allows it. For example, the laboratory cannot be left until it

has been cleaned up. The effect is an action that does not occur in the state but during the

transition. The action is characterised by the fact that it can be done instantaneously. For

example, the light is switched on when entering the laboratory.

Composite State

A composite state is when a state consists of several states and thus forms its own state

machine. This is also referred to as a hierarchical state diagram. For example, several

activities can be carried out in the laboratory. Each individual activity could in turn be divided

into several steps.

2.5.3 Example of a State Machine

In Figure 6 an example of a state machine is given. The example illustrates how the process

of a measurement in the laboratory could be described by means of states.

Preparation
Preparation of the solutions

Measurement

Results
Evaluation of
the results

Filling
Filling the
measuring cell

Waiting
Progression of
the measurement

Postprocessing
Cleaning up the laboratory

end of working day is reached
[laboratory is completely tidied up]

continue with clean-up work

do measurement
[all solutions are prepared]

after five
minutes

when filling
== completed

Figure 6: State diagram describing a possible measuring procedure in the laboratory.

Starting is in the Preparation state. Here, the internal activity is the preparation of the solutions

to be measured. With the request that a measurement is to be made, a transition can be

September 2021 15

TU Graz 2 Theoretical Background

triggered (call event). However, before proceeding to the measurement process and thus

carrying out the transition, a guard is first used to check whether all solutions have actually

been prepared. Only if the result of this query is positive, the transition to the Measurement

state is triggered.

The Measurement state is a composite state. It forms its own state machine consisting of

three states. It starts in the Filling state. The internal activity is the filling of the measuring cell

with the prepared solution. Here, a change event, whose condition is the completed filling of

the system, triggers the transition to the Waiting state. The now active state, which in contrast

to all other states is static, waits for the measurement to progress. A time event that refers

to a period of time is used for the transition. The measurement is considered finished after

five minutes. Subsequently, the Results state is entered. The internal activity is the recording

and evaluation of the results. The next transition causes the composite Measurement state to

enter the final state, which in turn causes the composite state to be exited and the next state,

Postprocessing, to be entered. Again, a change event is used to trigger the transition, with the

condition that the overall process of the measurement is completed.

The Postprocessing state is the last state which can be entered. The internal activity is

cleaning up the laboratory. The last event is again a time event, which is related to a point

in time, the end of the working day. Again, a guard is integrated which checks whether the

laboratory is really completely tidied up; it cannot be left before this.

2.6 Design pattern

2.6.1 Definition of design pattern

The theory presented in the following sections is based on the book Design patterns: Ab-

straction and reuse of object-oriented design by GAMMA et al., who are also known as the

Gang of Four and are responsible for the establishment of this subject area [21]. Since the

beginnings of object-oriented programming, certain problems have been identified that can be

found repeatedly in slightly modified forms. In order to organise these problems as clearly,

efficiently and extensibly as possible, pattern implementations have been created. These

pattern implementations are also called design patterns. A typical design pattern consists of

the following four elements:

Pattern name:

A meaningful pattern name makes it possible on the one hand to guess what the pattern

16 September 2021

2.6 Design pattern TU Graz

does without going into further detail, and on the other hand to facilitate easy communica-

tion between developers.

Problem:

This indicates the problem for which the pattern was planned or which problems can be

solved by the pattern. If a pattern is to be chosen for one’s own purpose, the pattern

whose problem is most similar to one’s own problem is always selected. In the ideal case,

the problem is even congruent. If there is no suitable pattern yet, the question can be

asked whether the problem can be generalised and a new pattern can be developed from it.

Solution:

The solution specifies how the problem is broken down and solved. It specifies which

objects are required, how they are interrelated and how they interact with each other. The

solution thus provides a description for the structuring, which is not to be confused with an

implementation.

Consequences:

By using the pattern, the main problem is solved, but other side effects can occur. These

can be positive or negative. If these are known for the respective patterns, they are

indicated so that the user is informed about them in advance. Negative side effects can be

for example the use of a lot of storage space, increased runtimes, a considerable effort for

expansion when requirements change over time.

2.6.2 Factory method pattern

Problem

The motivation to use a Factory Method Pattern is given when objects with the same interface

are to be created, but the exact class and the number of possible classes are not yet specified.

The design pattern thus provides an interface for object creation and delegates the instantiation

of the various individual classes to subclasses.

Solution

The solution of the Factory Method Pattern is best explained by its structure. In Figure 7, this

structure is given, along with the participants of the design pattern.

September 2021 17

TU Graz 2 Theoretical Background

return new ConcreteProduct
ConcreteProduct

product=FactoryMethod()

Creator
FactoryMethod()
AnOperation()

ConcreteCreator
FactoryMethod()

Product

Figure 7: Structure of the Factory Method Pattern.

The design pattern has the participants Creator, Product, Concrete Creator and Concrete

Product. The Creator is characterised by two properties. First, it contains the basic Factory

Method, which returns the object Product. Secondly, the Creator has the ability to call the

Factory Method function itself to create the Product object. The subclasses mentioned in the

problem statement are the Concrete Creators. These inherit from the Creator and therefore

create objects that have the same interface as the Product object. In order to instantiate a

specific class, the inherited functions are adapted accordingly in the Concrete Creator. The

object that is returned by a Concrete Creator is called Concrete Product.

Consequences

The greatest advantage of the Factory Method Pattern is the decoupling between the Creator

and the Concrete Products. This means that new Product types can easily be added to an

existing application at a later stage. However, the use of this design pattern leads to the

creation of subclasses, which, with a high number of subclasses, could lead to a considerable

increase in the complexity of the code.

2.6.3 State pattern

Problem

A problem is to be solved by using a state machine (cf. section 2.5). This means that the

behaviour of an object is to be described by means of internal states. The State Pattern offers

a possibility to model these internal states and their possible state changes.

Solution

In Figure 8 the structure and participants of the State Pattern are given.

18 September 2021

2.6 Design pattern TU Graz

state->Handle()

State
Handle()

ConcreteStateB
Handle()

ConcreteStateA
Handle()

Context
Request()

state

Figure 8: Structure of the State Pattern.

The design pattern features the participants State, Concrete State and Context. The State

object forms the basic class for describing a state. It therefore contains all the functions that

are necessary to operate a state. The individual states are implemented by the Concrete

States. For this purpose, the Concrete States inherit from the State object and adapt the

inherited functions accordingly. The last participant, the Context, has the functionality of the

state machine. This means that it has the information about which combinations of states and

state changes exist and ensures that the instance of the current state is stored according to

the situation. The Context thus defines the interface for using the state machine.

Consequences

The structuring of the state pattern has several positive side effects. New states and associated

new behaviours can be easily added. Furthermore, this pattern is highly maintainable.

Although many problems can be solved by means of a state machine, the number of states

required can increase greatly as the complexity of the problem increases. Consequently, the

implementation effort also increases considerably. Therefore, it should always be considered

in advance whether a solution using a state machine is worthwhile for a given problem or

whether another solution strategy would be more effective.

2.6.4 Strategy pattern

Problem

The Strategy Pattern is used if different variants of an algorithm are necessary and these are

not to be implemented by means of an overall algorithm. Meaning, a given problem has a

main scheme that is valid for all applications. However, each individual application requires

one or more additional individual features.

September 2021 19

TU Graz 2 Theoretical Background

Solution

The Strategy Pattern suggests that an object is defined for each variant of the algorithm.

Another participant then receives the corresponding object depending on the desired variant

and executes it. The exact structure and participants of the Strategy Pattern are given in

Figure 9.

ConcreteStrategyC
AlgorithmInterface()

Strategy
AlgorithmInterface()

ConcreteStrategyB
AlgorithmInterface()

ConcreteStrategyA
AlgorithmInterface()

Context
ContextInterface()

strategy

Figure 9: Structure of the Strategy Pattern.

This pattern has the participants Strategy, Concrete Strategy and Context. The Strategy

represents the base class, which contains all the necessary functions for all further strategies.

The Concrete Strategy objects inherit from the base class and adapt the functions of the

Concrete Strategy accordingly. The Context has a general algorithm that is designed in such

a way that it first calls the functions of the base class and second can execute all strategies

with it.

Consequences

If a subfunction of the algorithm is passed to the Strategy, the remaining code in the Context

object is simplified. As a result, the Context becomes clearer and more readable for a third

party. Furthermore, the use of Strategy Patterns makes it possible to easily add new strategies

later on, as long as they correspond to the basic schema.

When applying the Strategy Pattern, an assignment must be made for the algorithm as to

which tasks are taken over by the Strategy and which by the Context. This boundary must be

clearly defined, which is not easy to implement for every problem.

20 September 2021

TU Graz

3 Application Development

3.1 Basic Principles of Application Development

In general, application development can be divided into four successive steps. These are the

formulation of the problem, the development of an architecture, the implementation according

to the architecture and the testing of the application. The last three parts form a cycle, as

the architecture is adapted according to the errors found during testing and the changes are

subsequently implemented. This principle is illustrated in Figure 10.

testing

implementation

architecture

problem definition

Figure 10: Four steps of application development.

In the following subsections, the first three points - problem definition, architecture and im-

plementation - are dealt with in more detail. As errors are constantly being corrected due

to the ongoing testing process, only the final version of the application architecture and the

implementation are presented here.

The testing process in this thesis involves three steps. First, each individual class is tested for

functionality immediately after its implementation. Secondly, those elements of the application

concerning one of the devices are tested first without and then with the corresponding device.

Thirdly, the entire application is also tested first without devices and then with the devices.

As part of the last aspect, neutralisation experiments are carried out in order to demonstrate

not only that the processing of operating points works, but also that a correct evaluation of

measurement data is provided. More details on testing are given in section 4.1.

September 2021 21

TU Graz 3 Application Development

3.2 Use Case Specification

The use cases are specified at the beginning of the thesis and do not yet contain any imple-

mentation details. It is important that they are well formulated and that the sum of all use

cases covers the desired scope of functionality. This means that no relevant use case should

be overlooked, because once the architecture has been defined, implementing a new use

case can prove to be difficult. In the context of this thesis, three use cases are defined.

The first use case, Specific Use Case, is the use of the installation for the measurement of

a reaction between two different components. At least one operating point is to be handled

during the execution. For this purpose, a list of operating points with at least one list entry is

defined in advance. An operating point consists of a specification that determines the duration

of the operating point, a set temperature and the flow rates of the components. Furthermore,

in this use case the measurement results of the calorimeter are to be recorded, evaluated and

saved in a file. Specific data for the evaluation of the measurement is therefore also required

for this use case.

The second use case, Optimisation Use Case, is based on the first use case and the intended

use of the application. In addition to conducting a measurement, it should be possible to apply

an optimisation algorithm. Input of this application are the results of the calculation from the

measurement data and output of the application is a new operating point. The initially defined

operating point list can therefore always be extended by any number of new operating points

after each processed point, insofar as the capacities (e.g. volume of the solution provided)

permit. Since the implementation of a reaction optimisation software is not part of this work,

the aim of this use case is to provide an interface between the automatisation and optimisation

program.

The third use case, Standard Use Case, is the use of the installation without evaluating the

generated measurement data and under no exact specification of the number of pumps. This

has several advantages. The information required for an evaluation is not needed for this use

case and therefore does not have to be specified. Furthermore, in this case the system can

be operated without any pumps at all. The residual behaviour is similar to the Specific Use

Case. Again, a list of predefined operating points with at least one entry is to be processed

and the measurement data obtained from the calorimeter is to be saved in a file.

22 September 2021

3.3 Application Architecture TU Graz

3.3 Application Architecture

In order to define the application architecture the use cases are compared with each other. It

is important to define the main similarities and significant differences between the use cases.

When considering the commonalities, the following points arise:

When using the setup, at least the calorimeter and the thermostat are always present.

This means that at least the specification for the duration of the operating point and the set

temperature must be specified for the operating point.

In all cases, the number of pumps is specified at the beginning and does not change

during the run. Consequently, an equipment list can be set up for each use case at the

outset, which is then valid for the entire runtime.

An operation run consists of one or more operating points, in all cases existing operating

points must be processed in sequence.

The formatting of the data generated by the calorimeter during the run is always the same.

Furthermore, for each use case there is the requirement to save the received data without

processing it to a file.

When considering the differences, the following points can be identified:

Depending on the use case, the data generated by the calorimeter is to be evaluated.

Related to this, the required set of input information for the program varies.

The length of the operating point list is not known in advance for each use case. Depending

on the use case, it can be manipulated during the run.

The aim is to find a sequence that can ideally satisfy both the commonalities and the dif-

ferences. This means that the sequence searched for can execute each of the use cases.

Figure 11 illustrates one possible solution by means of a flowchart.

The workflow is started at the decision whether an operating point to be executed exists. If

there is none, the workflow is finished. If the decision is positive, the first step of the workflow

follows. Thereby, information on the operating point is fetched. In the next step, the operating

point is set. Subsequently, a loop is initiated, which contains the two processes of reading the

data and processing the data. The loop is terminated with the positive decision whether the

operating point is finished. Since the entire process is also a loop, the workflow starts again

after the termination of the operating point.

Based on this workflow, the architecture can be planned as a final step. For this purpose,

participants are assigned to each element in the flowchart, which is shown by means of

various colours in Figure 11. For the first decision, whether there is an operating point to

September 2021 23

TU Graz 3 Application Development

Figure 11: Flowchart illustrating the application architecture and its participants.

be executed, two participants can be assigned. The first participant, the implementor, asks

the question, while the second participant, the originator, answers the question. In the next

process, these two participants are involved again. The implementor gets the data of the

operating point from the originator. The next process in the flowchart has only one participant

which is the implementor who makes sure that the operating point is set. Subsequently, the

two processes of reading in and processing the data follow. The reading is done by the

implementor and the processing by the originator. The final decision is handled in the same

way as the previous decision. The implementor asks whether the operating point is finished,

while the originator provides the answer.

When looking at the participants, it is noticeable that the implementor has no independent

information on the operating points. Consequently, the implementor’s task is to work through

exactly one use case, whereby any of the three can be assumed here. In contrast, the

originator has the information about the operating points and also the information about

24 September 2021

3.4 Implementation TU Graz

what happens with the received data. Hence the implementor deals with the originally

mentioned commonalities of the use cases and the originator deals with the mentioned

differences. Therefore, this problem can be solved using a strategy pattern for the subsequent

implementation. Within the Strategy Pattern, the implementor is the context, which will be

equipped with a specific strategy. The context handles the communication with the devices.

The originator is the specific strategy. This means that, if necessary, a specific strategy can

be written for each individual use case.

3.4 Implementation

3.4.1 Implementation Approach

The architecture given in the previous section specifies the functionality of the context and

the individual strategies. How the application achieves this functionality is an implementation

detail. Since the implementation procedure is bottom up, the relevant elements of the context

are implemented first.

The essential task of the context is the communication with the individual devices and the

operation of these. Both the communication and the operation as well as the context itself

are implemented by means of state machines. Therefore, the general realisation of the state

machine concept is discussed first in the following subsection. Based on this, a description is

given of how an example problem (operation of the thermostat) can be abstracted and the

corresponding state machine can be constructed. Subsequently, the state machines of the

remaining devices are explained.

For the implementation of the context, the relevant functions of the strategy and thus the basic

strategy must be defined first. Afterwards, the state machine of the context is implemented.

The final section addresses the entire strategy pattern and thus the three participants, strategy,

context and specific strategy, as the combination of all participants gives the sequence control.

3.4.2 Realisation of the State Machine Concept

The state machine concept (cf. section 2.5) is to be implemented by means of a design

pattern, the state pattern (cf. section 2.6.3). Based on this design pattern, an implementation

template is created for each of the two participants, the state and the context, which are

given the names state template and state machine template. For the state machine template,

however, two more elements are needed. The first element is a factory, which handles the

September 2021 25

TU Graz 3 Application Development

building of the states, and the second is the engine, which operates the states. Since the

factory is also an implementation template, it will be referred to as the factory template in the

following.

State Template

In general, defining a template for the state within the context of the state pattern ensures

that each individual state created later has the same functions. To create the template, it is

necessary to consider which functions must be available for the operation of states.

First, a state is initialised, i.e. it is entered. For this purpose, an enter function is defined,

which has an input variable, namely the name of the state. In the next step, it should be

possible to execute the state, for which a call function is defined. If the state is no longer

needed, it is to be exited. Therefore, an exit function is created. Two more functions are

necessary to operate the states. For special states, it may be the case that they themselves

must be able to react to an event from outside. For this purpose, a handle event function is

defined. Furthermore, the name of the state should be able to be queried externally. The get

state function thus returns the state designation that the enter function has received.

The state template is implemented according to the state pattern as a separate class from

which the individual states can later inherit. In the context of this thesis, this class is called

State_Base and is given in Listing 1.

1 class State_Base:

2

3 def enter(self , name):

4 self.name = name

5

6 def __call__(self):

7 return None

8

9 def exit(self):

10 return

11

12 def handle_event(self , event):

13 return False

14

15 def get_state(self):

16 return self.name

Listing 1: Specification of the state template.

26 September 2021

3.4 Implementation TU Graz

If a new state is built from this template later, the individual functions are overridden corre-

sponding to the state. The enter function receives all parameters relevant to the state and

eventually needs to provide other parameters for the call function. For example, the enter

function receives a time as input variable from which a deadline is to be defined for the call

function. The call function is equipped with the internal activity of the state. For example,

the call function receives the ability to trigger the event that leaves the active state after the

expiration of a given deadline. Finally, the handle event function can be adjusted too.

Factory Template

In order for a state to exist, it must be built and entered. This task is done by the factory.

The factory is an essential part of the engine, the object that operates the states, and thus

should have the same structure for each state machine. Therefore, the application of a design

pattern is suitable here. The factory template is designed based on the factory method pattern

introduced in the section 2.6.2. The basic principle of decoupling the creator and the concrete

products is fulfilled in this template, but the introduced factory template has a much simpler

structure than the original design pattern.

The factory consists of two functions. The first is the initialisation function, whereby the factory

receives the necessary parameters for each possible state. The second is the create state

function. From the sum of all possible states, the desired state is built and entered according

to the call of this function. In contrast to the implementation of the state template, no general

class is created for the factory template from which inheritance is possible. Instead, each

factory used must be specifically defined each time according to the template presented in

Listing 2.

Listing 2 demonstrates that the factory is always defined as a class. The initialisation function

in this template receives three parameters that are saved within the class so that they are

accessible to all other functions. When implementing this function for an individual factory, the

incoming parameters are adapted correspondingly.

The second function, create state, has the state name as an incoming variable. In this

example, there are two possible states that can be built: State 1 and State 2. By means of

a conditional operation, these two are queried. If one of the two branches is entered, the

correct state is instantiated and entered according to the input state name. The function then

returns the object of the entered state. If the factory is called with a state name for which

no state exists, the last line triggers an error message. When implementing this function for

an individual factory, it is important to ensure that the input parameter remains the same

September 2021 27

TU Graz 3 Application Development

and that the object of the entered state is always returned. The state names, the instantia-

tion of the state class and the entering of this instance must be adapted for each state machine.

1 class factory:

2 def __init__(self , parameter_1 , parameter_2 , parameter_3):

3 self.parameter_1 = parameter_1

4 self.parameter_2 = parameter_2

5 self.parameter_3 = parameter_3

6

7 def create_state(self , state_name):

8 if state_name == "State_1":

9 st = State_1_class ()

10 st.enter(state_name , self.parameter_1 , self.parameter_3)

11 return st

12 elif state_name == "State_2":

13 st = State_2_class ()

14 st.enter(state_name , self.parameter_2 , self.parameter_3)

15 return st

16 raise Exception("Unhandled State in Factory")

Listing 2: Factory template that must be present and adhered to when implementing any state machine.

Engine Object

The engine is responsible for operating the states. For example, it deals with retrieving the

call function of the active state, handling occurring events, etc. In contrast to the previous

elements of the state machine, no template is necessary in this case. The engine class is

defined only once and instantiated in each state machine. The complete implementation of

the engine is given in the Appendix 8.1.14. For a better understanding of the engine class, its

relevant functions are given in Listing 3 and are explained below.

__init__:

This is the initialisation function of the engine. The function receives a table with the

information which state transfers to which state with which event. In other words, it is a list

with all possible states and transitions. Furthermore, the factory of the state machine and

the initial state are handed over. Finally, the variable self.cur is defined, which will later be

continuously overridden with the active state.

enter :

This function creates the specified initial state using the factory.

search_in_table:

This function has an event as an imput parameter. The state and transition table is

28 September 2021

3.4 Implementation TU Graz

searched for this event by means of a loop. If there is an entry with this event for the active

state, the active state is exited. The new state, which can also be taken from the table, is

built and entered using the factory. If this procedure is successful, i.e. the specified event

actually triggers a transition, the function additionally returns True. Otherwise, the function

returns False. This feature makes it possible to query externally whether the event has

been handled.

1 class Engine:

2

3 def __init__(self , table , factory , init_state):

4 self.tab = table

5 self.fac = factory

6 self.init_state = init_state

7 self.cur = None

8

9 def enter(self):

10 self.cur = self.fac.create_state(self.init_state)

11

12 if self.cur is None:

13 raise Exception("Factory has created None")

14

15 def search_in_table(self , event):

16 for tran in self.tab:

17 if not tran [0] == self.cur.get_state ():

18 continue

19 if not tran [1] == event:

20 continue

21

22 self.cur.exit()

23 self.cur = self.fac.create_state(tran [2])

24 return True

25 return False

26

27 def tick(self):

28 ent = self.cur()

29 if ent is None:

30 return None

31 if self.search_in_table(ent):

32 return None

33 return ent

34

35 def handle_event(self , event):

36 if self.search_in_table(event):

37 return True

38 if self.cur.handle_event(event):

39 return True

40 return False

Listing 3: Specification of the relevant functions of the engine class.

September 2021 29

TU Graz 3 Application Development

tick :

This function first calls the call function of the active state. The response of the call function

is stored in the variable ent. The next step is to check what is saved in the variable ent. If

ent is None, nothing else needs to be done and the tick function is terminated. If ent is

unequal to None, the search_in_table function checks whether the variable ent contains

an executable event. If this is the case, the tick function is terminated with the execution of

the transition. If both branches are ineffective, the tick function returns the variable ent.

handle_event :

This function asks the engine to handle a certain event. First, the table is searched to see

if the event is contained in it. If there is no entry for the combination of active state and

given event, the handle_event function of the active state is called and checked whether

it can handle this event itself. Again, the function returns True if successful and False if

unsuccessful.

State Machine Template

When specifying the state machine template, a distinction is made between two cases. The

first case is given when the built state machine is again a state. In other words, the state

machine of a composite state is to be defined. The second case occurs when the state

machine is not a composite state. However, both cases have the following elements in

common:

Each state machine class contains the factory class described in this section.

The initialisation function or its equivalent always defines the table of possible combinations

of active states, state changes and target states that apply to the state machine. In addition,

the factory and the engine are initialised in this function.

In all cases, there must be a function that calls the tick function of the engine.

In the first case, the implementation of a state machine of a composite state, the structure

of the object is already given by the state template. Meaning, the composite state inherits

all the necessary functions from the State_Base as usual. The only distinctive difference

between the composite state and an ordinary state is that the former is additionally equipped

with the factory necessary for a state machine. The behaviour as a state machine is achieved

by overriding the inherited functions. In Listing 4, the state machine template is given for the

case of a composite state. The template shows which changes of the inherited functions are

mandatory.

30 September 2021

3.4 Implementation TU Graz

1 class Composite_State(State_Base):

2 class factory: ...

3 # Definition corresponding to Listing 2

4

5 def enter(self , name , par_1 , par_2 , par_3):

6 super().enter(name)

7 self.tab = [

8 ["State_1", "next", "State_2"],

9 ["State_2", "back", "State_1"],

10]

11 self.fac = Composite_State.factory(par_1 , par_2 , par_3)

12 self.en = Engine(self.tab , self.fac , "State_1")

13 self.en.enter()

14

15 def __call__(self):

16 self.en.tick()

17

18 def exit(self):

19 self.en.exit()

20 super().exit()

Listing 4: State machine template for a composite state.

In the second case, the state is not a composite state, which means that the structure is not

given by the State_Base. The state machine template for this case is given in Listing 5. It can

be seen that the structure here is very similar to the previous template.

According to this template, a class is defined for the state machine. Within this class, the

factory class and five other functions are defined. Analogous to the enter function and the call

function of the composite state, the initialisation function and the tick function are defined here.

The next two functions defined in the given template are the __del__ function and the get_state

function. These two functions also appear in the composite state with the same functionality.

The only significant difference from the previous template is the last function, which appears

here for the first time. This function returns the state name of the active state specified in the

initialisation function. For an individual implementation of a state machine, further functions or

classes can be added to the object or the existing functions can be overridden correspondingly.

1 class State_Machine ():

2 class factory: ...

3 # Definition corresponding to Listing 2

4

5 def __init__(self , name , par_1 , par_2 , par_3):

6 self.name = name

7 self.tab = [

8 ["State_1", "next", "State_2"],

9 ["State_2", "back", "State_1"],

10]

September 2021 31

TU Graz 3 Application Development

11 self.fac = State_Machine.factory(par_1 , par_2 , par_3)

12 self.en = Engine(self.tab , self.fac , "State_1")

13 self.en.enter()

14

15 def tick(self):

16 self.en.tick()

17

18 def __del__(self):

19 self.en.exit()

20

21 def get_state(self):

22 return self.en.get_state ()

23

24 def get_name(self):

25 return self.name

Listing 5: State machine template if the created state machine is not a composite state.

3.4.3 Creating a State Machine

This section describes how to proceed when planning and implementing a state machine. To

illustrate this planning process, the Fisher thermostat is used as example.

The first step is to consider which functions are necessary to operate the thermostat. In order

to set an operating point, it must be possible to set a specific temperature at the thermostat.

For the subsequent operation of the operating point, switch-on and switch-off functions of the

thermostat pump are required. In addition to these functions that concern the processing of

the operating points, there are also functions that are necessary for a one-time setting. Such a

configuration is important as the system could be used by other people. General settings can

be adjusted by them and, if unnoticed, lead to errors when the unit is operated again. These

one-time settings include the temperature unit, which can be specified in Celsius, Fahrenheit

and Kelvin according to the manual. Furthermore, the distinction between external or internal

temperature sensor and the setting of the pump speed are relevant.

The next step is to gather the necessary information about the thermostat used. A comparison

with its device manual shows that all the desired functions mentioned earlier are available. If

this is not the case, the device is not suited for automatisation. Furthermore, the thermostat

has the ability that the individual specifications can not only be set by the master, but can also

be queried. It is worth noting that each setting of the master triggers the response OK of the

slave if successfully executed. The set of functions and their denotations, which are finally

used for the implementation, are described in more detail in section 2.4.

32 September 2021

3.4 Implementation TU Graz

Based on the functions mentioned, the states entered by the thermostat and their transitions

are determined. Starting from the Configuration state, one-time settings are configured.

Regarding the switch-on and switch-off functions of the thermostat pump, the following

four different states result: Deactivated, Activating, Activated and Deactivating. Since the

temperature is set while the pump is activated or deactivated, there is no separate state for

this issue. By assuming the pump is deactivated in the Configuration state, the event next

causes a transition from the active state to the Deactivated state. In order to enable error

handling later, an Error state is defined, which can be entered from any other state triggered

by the error event. The remaining transitions can be obtained from the Figure 12, which

illustrates the state diagram resulting from these definitions.

specific built state class

State_Base

Underlying State classes:

Deactivating

+ pump is turned off

Activated

+ pump remains activated
+ pump activity is checked

Error

+ error handling

Activating

+ pump is turned on

Deactivated

+ pump remains deactivated
+ pump activity is checked

Configuration

+ pump is turned off
+ pump activity is checked
+ one-time setting
+ one-time setting is checked

pump_off

next

pump_on

next

next

error

error

error

error

error

Figure 12: Resulting state machine for the thermostat driver.

Designing Layer A States

For each state in Figure 12, which are referred to as layer A states, one or more internal

activities can be assigned. However, the sum of the internal activities of each of these states

September 2021 33

TU Graz 3 Application Development

is still very extensive. Therefore, constructing a composite state for each individual state is

recommended. Consequently, a state machine is defined for each layer A state.

While the thermostat is in the Configuration state, the following tasks must be carried out or at

least considered:

Ensure the pump is turned off.

One-time settings are to be made and verified.

Error handling should be supplementable later.

For this reason, this layer A state starts with switching off the pump and then checking the

pump activity. Subsequently, the three settings and checks of the temperature unit, the pump

speed and the temperature sensor used are carried out. At the end, the Finished state is

defined, which generates the event next, which triggers the transition from the Configuration

state to the Deactivated state. For error handling within the Configuration state, an Error state

is defined. This state can be entered within the Configuration state by all states that perform

either a setting or a query. Analogous to the Finished state, the Error state triggers the event

error, which results in the transition from the Configuration state to the Error state (one level

higher). In Figure 13 the state machine for the composite Configuration state is shown.

specific built state class
State_Base
Send_And_Check

Underlying State classes:

Error
+ error handling

Finished
+ event for exiting
 Configuration and
 entering Deactivated
 is triggered

Check_External_Probe
+ choosen temperature
 sensor is checked

Set_External_Probe
+ external/internal
 temperature sensor
 is choosen

Check_Pump_Speed
+ set pump speed
 is checked

Set_Pump_Speed
+ set desired pump
 speed
+ device answer is
 checked

Check_Temp_Unit
+ check if °C is
 the used unit

Set_Temp_Unit
+ °C is set as the
 used unit
+ device answer is
 checked

Configuration

Check_Pump_State
+ pump activity
 is checked

Pump_Off
+ pump is turned off
+ device answer is
 checked

error
error

next

error

nextnextnext

next

next

next

error

error

next

Figure 13: Resulting state machine for the composite Configuration state of the Fisher thermostat.

34 September 2021

3.4 Implementation TU Graz

The planned state machines for the composite Deactivated and Activated state are very

similar and can therefore be explained together. The tasks of these states can be defined as

followed:

Pump activity must be checked regularly.

If there is a new set temperature, it is to be set and checked.

Again, error handling should be possible.

Figure 14 shows the state machine for the composite Deactivated state. The composite

Deactivated or Activated state starts with the pump activity check. Depending on the state,

it is asked whether the pump is switched off or on. Since the thermostat is likely to remain

in one of these two states for a longer period of time and the constant query of the pump

activity is not necessary, a delay state called Waiting is introduced. After the expiration of

a given deadline the Waiting state is exited and the Check_Pump_State state is entered

again. Furthermore, the state machine is set up in such a way that if a new temperature

is to be set, this is only handled during the Waiting state. In this way, it is ensured that the

Check_Pump_State state is not aborted under any circumstances, while the Waiting state is

aborted for this purpose. A state is then defined for the temperature setting and its check. The

Error state is also specified and has the same functionality as in the composite Configuration

Check_Temp
+ set temperature
 is checked

Set_Temp
+ set desired
 temperature
+ device answer is
 checked

Error
+ error handling

Waiting
+ waits until
 deadline expires

Deactivated

specific built state class
State_Base
Send_And_Check
Delay_State

Underlying State classes:

Check_Pump_State
+ pump activity is
 checked

next

error
error

error
error

error

next

next

new_temp

next

Figure 14: Resulting state machine for the composite Deactivated state of the Fisher thermostat.

September 2021 35

TU Graz 3 Application Development

state. In order to leave the Deactivated or Activated state, the request to switch the pump on

or off can be made externally at any time. As soon as the Waiting state is entered and there

is no new temperature to be set, the layer A state can be terminated.

Finally, the Activating and Deactivating states can be explained together. The tasks of these

states can be defined as followed:

Depending on the state the pump must be switched on or off.

Subsequently, the pump activity must be checked.

Error handling should be possible.

After the pump has been switched on or off and the pump activity has been checked, the

Finished state is entered. Analogous to the Finished state of the composite Configuration

state, an event is also triggered, which results in a transition from Activating to Activated

or from Deactivating to Deactivated. Figure 15 shows the state machine for the composite

Activating state.

Finished
+ event for exiting
 Activating and
 entering Activated
 is triggered

Check_Pump_State
+ pump activity is
 checked

specific built state class
State_Base
Send_And_Check

Underlying State classes:

Error
+ error handling

Pump_On
+ pump is turned on
+ device answer is
 checked

Activating

nextnext

error
error

Figure 15: Resulting state machine for the composite Activating state of the Fisher thermostat.

Designing Layer B States

When describing the composite layer A states, a large number of new states have emerged.

Due to the functionality of the states, they can be grouped into three different state classes,

which are indicated by different highlighting in Figure 13, 14 and 15. These few states are

referred to as layer B states. Due to the assigned internal activity, some of these are again

composite states.

36 September 2021

3.4 Implementation TU Graz

The first layer B state addresses the task of doing a configuration or a query. The state

passes through the three internal states of sending a command, checking the response

received and beeing finished, which is why the state is also referred to as Send_And_Check.

Since the check can be negative, this state again contains an Error state. Furthermore, the

Send_And_Check state has the following special feature: Depending on the specification, the

sequence can be repeated. This has the advantage that in case of a one-time communication

problem, the Error state is not entered immediately. Figure 16 shows the state machine for

the composite Send_And_Check state.

Finished
+ event for exiting
 Send_And_Check and
 entering the next
 state is triggered

Check
+ response is
 awaited
+ response is
 checked

State_Base
Send_And_Check
simple internal states

Underlying State classes:

Error
+ error handling

Send
+ input buffer is
 cleared
+ message is sent
 to the device

Send_And_Check

next

timeout
retry

error

next

Figure 16: State diagram of the composite layer B state Send_And_Check.

The remaining two layer B states are simpler and therefore no more composite states are

necessary. For the layer A states Deactivated and Activated, a delay state occurs. This state

receives a deadline when entering, does not actively do anything during this period of time

and triggers an event after its expiration. Furthermore, the internal states Finished and Error

are supposed to trigger corresponding events. Therefore, it is sufficient to define these as

simple base states without specific content.

Designing Layer C States

For the composite Layer B state Send_And_Check, an internal activity must now be assigned

to each of the internal states, which are referred to as layer C states. In Figure 16, the two

Layer C states are highlighted using gray colour.

September 2021 37

TU Graz 3 Application Development

The Send state ensures that the input buffer is cleared first and then sends a given message

as a byte array to the device. Afterwards, the state returns an event. The Check state is

waiting for a response. If the response does not arrive within a certain period of time, a timeout

event is triggered. After the response is received, it is checked whether it corresponds to the

expectation. If the check is positive, the state returns the regular event. However, if the check

is negative, an error event is triggered.

Final Implementation

Having specified the structure of the state machine top down, it can be implemented. In the

context of this thesis, the state machine is implemented bottom up, starting with the layer C

and layer B states. When implementing the state machines, the state template and state

machine template presented in chapter 3.4.2 are applied. Furthermore, all layer B and layer C

states are formulated in such a general way that they can be used later for the implementation

of the state machines of the remaining equipment.

When implementing the layer A states, the composite layer B state Send_And_Check is used

for the first time. Depending on the application, the messages and checkers used for the

responses differ. The checkers in particular are not one-liners and are therefore additionally

implemented as classes, though this is not discussed in more detail here.

Finally, the layer A states are combined to form the thermostat driver, resulting in the state

machine given in Figure 12. For later purposes, the interface is of importance. Including

which information is needed to create the driver instance and which functions can be called

externally. According to this implementation, the name of the driver, a setting class and a

communication handle are required for the instantiation of the thermostat driver. The functions

that can be called externally are the ability to switch the pump on or off and to specify the

temperature. With the setting class and all the callable functions, the requirements for the

thermostat stated at the beginning of this section are fulfilled.

The exact implementation of all states mentioned in this section and the additional functions

required for the thermostat driver can be looked up in the Appendix 8.1.7, 8.1.10 and 8.1.11.

3.4.4 Additional State Machines of the Equipment

This section briefly describes the state machines of the remaining devices: HPLC pump,

Lambda pump and the calorimeter. The architecture of each state machine is displayed

38 September 2021

3.4 Implementation TU Graz

and compared with that of the thermostat driver. The exact implementation of the individual

state machines can be looked up in the Appendix 8.1.3, 8.1.8 and 8.1.9. The functions

of the devices relevant for the implementation and the applicable settings for the serial

communication interface are given in section 2.4.

HPLC Pump

The state machine of the HPLC driver can be seen in Figure 17. It is evident that there is a

high degree of similarity to the state machine of the thermostat driver.

Deactivating

Error

FinishedPump_Off Check_Pump_State

Activated

Error

Check_Flowrate

Check_New_Flowrate

Set_Flowrate

WaitingCheck_Pump_StateGet_Boundaries

Deactivated

Check_FlowrateError

Set_FlowrateCheck_Pump_State Waiting

Configuration

Check_Pump_State

Error Check_PMin

Set_PMaxCheck_PMaxFinished

Set_PMin

ErrorActivating

Pump_Off

State_Base

Send_And_Check

Delay_State

Send_And_Save

Underlying State classes:

next

error

pump_off

next

pump_on

next

errorerror

nextnext

error

next

error

next

next

next

new_flowrate

nextnext

error

error

next

next

new_flowratenext

next

next

next

error

next

error

error

error
next

next

error

error

error

next

Figure 17: State diagram of the HPLC pump driver.

September 2021 39

TU Graz 3 Application Development

As preliminary settings can also be specified for the HPLC pump, the state machine again

starts in a Configuration state. This state has the same structure as the Configuration state

of the thermostat driver. The only difference is that the individual Send_and_Check classes

are equipped with the functions relevant for the HPLC pump. This concerns the setting and

subsequent checking of a pressure range that must not be left during the runtime of the pump.

Having terminated the configuration, the HPLC pump switches to the Deactivated state. Again,

this state has the same structure as the corresponding state for the thermostat driver. The

only difference is that not the temperature but the flow rate is set and subsequently checked.

If the HPLC pump is to be switched on, the Deactivated state is exited and the Activating

state is entered. The latter is implemented using the Send_and_Check state instead of using

the corresponding state of the thermostat driver. The reason for this is a different check of

the pump activity of the HPLC pump than that of the thermostat. In case of the thermostat,

the activity could be checked directly via a separate query. No such function is available for

the HPLC pump. Therefore, the pressure is checked instead. In the Deactivated state, the

pressure becomes minimal but not zero, so a query is possible. However, at the moment of

switching on, the pressure to be checked is unknown. Thus, the query is omitted.

Following the Activating state, the Activated state is entered. There are noticeable differences

between this and the Activated state of the thermostat driver, which also result from the differ-

ent pump activity query. The Get_Boundaries state is entered first, which periodically asks the

HPLC pump for the pressure and subsequently saves the response. The state is not exited

until a predefined number of pressure values is reached and the mean value and standard

deviation are calculated from these. Implementing the Get_Boundaries state a new state

class, the Send_And_Save class, is developed. Another difference between the Activated

states is the distinction made for the flow rate check. Creating two different states makes the

subsequent transition easier to handle. If a new flow rate is set, the Get_Boundaries state

must be re-entered, as different pressures may occur for a different flow rate.

The remaining two states are the Dectivated state and the Error state. The former corre-

sponds exactly to the Deactivated state of the thermostat driver, i.e. all objects contained

therein are even given the same labels. The latter is defined as a basic state class, as is every

Error state that occurs at any level in a driver state machine.

The interface of the HPLC driver class becomes important during implementation and its

later use. For the instantiation, a specific driver name, the specification of the settings, the

calibration curve valid for the specific pump and the communication handle are required. The

40 September 2021

3.4 Implementation TU Graz

relevant functions to be called externally to operate the pump are switching it on and off and

setting a flow rate.

Lambda Pump

Figure 18 illustrates the state machine of the Lambda driver. It contains the familiar states

Deactivating, Deactivated, Activating, Activated and Error. No default settings are possible for

the Lambda pump, which is why the Configuration state is omitted for this state machine.

Set_Flowrate

Activated

Error

Check_Pump_State Waiting

Activating

Check_Pump_State

Error

FinishedPump_On

Error

Check_Pump_State Waiting

Check_Pump_State

Deactivating

Error

FinishedPump_Off

Deactivated

Error

State_Base

Send_And_Check

Delay_State

simple internal states

Underlying State classes:

next

next

new_flowrate

error

next

next

error

nextnext

error

next

next

error

nextnext

pump_off

error

pump_on

next

error

error

error

Figure 18: State diagram of the Lambda pump driver.

Since the communication between master and slave is simpler for the Lambda pump than for

the previous units, its state machine also simplifies. The two states Deactivating and Activating

generally have the same internal states and the same sequence as the corresponding states

of the thermostat driver. The only difference is that the first state Pump_Off or Pump_On does

not correspond to a Send_And_Check state, but instead to the simpler layer C Send state.

September 2021 41

TU Graz 3 Application Development

The other two composite states, Deactivated and Activated, have a simpler structure com-

pared to those of the thermostat driver. Since the setting of the flow rate is coupled with

the switching on of the pump, no flow rate can be set in the Deactivated state. Thus, all

internal states associated with this task are omitted in the Deactivated state. In the Activated

state, the flow rate can be changed, but again only by means of the simpler layer C Send state.

The interface of the Lambda driver class is similar to that of the HPLC driver. For the

instantiation, a specific driver name, the calibration curve valid for the specific pump and the

communication handle are required. The relevant functions that need to be called externally

to operate the pump are the same as for the HPLC pump, switching on and off and setting a

flow rate.

Calorimeter

In Figure 19 the state machine for the calorimeter is given. The calorimeter has a funda-

mentally different functionality than the thermostat and the pumps, consequently the state

machine is completely different. Though the state machine is simpler than the previous ones,

new state classes have to be designed for most of the occurring states.

Set_Temp
+ set new temperature

Error
+ error handling

Read_And_Check

Error
+ error handling

Check
+ set temperature is
 checked

Read
+ reads and saves data
+ state is active for
 a given time period

Clear
+ clears input buffer
+ deletes if existing
 the file

specific built state classes

State_Base

Underlying State classes:

next new_set_temperror

nextcheck

error

next

Figure 19: State diagram of the calorimeter driver.

42 September 2021

3.4 Implementation TU Graz

The calorimeter starts off in the Clear state. It ensures an emptying of the input buffer of the

calorimeter. In addition, it is checked whether the file in which the data is to be saved already

exists. If this is the case, the file is deleted. This is because the data in the file will be added

later and not overridden. If an old file with entered data were to be used, the data would be

mixed in this case.

The event next causes a transition from the Clear state to the Read_And_Check state, which

is a composite state. The internal state Read ensures that the data is read, stored internally

and externally in the file. The internal state Check is entered at regular intervals. It checks the

set temperature of the calorimeter. The Read_And_Check state also contains an Error state,

which in turn enables error handling.

If a new temperature is to be set at the calorimeter, there is a transition from Read_And_Check

to the Set_Temp state. After the temperature is successfully set, this state is exited and the

Read_And_Check state is re-entered.

For the interface of the calorimeter driver class, the instantiation and the externally called

functions are once again significant. When the driver class is instantiated, the driver name

and the communication handle are passed. Additionally, an empty list is passed in which the

measurement data is written later. Only one function that can be called externally is required,

namely the one for setting the temperature.

3.4.5 Realisation of the Strategy Pattern

According to the architecture defined in section 3.3, the sequence control is implemented

by means of a strategy pattern. The given architecture determines which tasks are handled

by the strategy and which by the context. Therefore, the interface between strategy and

context is first defined in more detail. This is achieved by formulating the basic functions of

the strategy, i.e. the creation of a basic strategy class. Subsequently, the sequences relevant

to the context (cf. Figure 11), which were specified in the architecture, are implemented by

means of a state machine. Finally, the individual strategies for the use cases specified at the

beginning (cf. section 3.2) are formulated in more detail based on the basic strategy class.

Basic Strategy Class

The functions of the strategy result from the workflow of the architecture. First, it is queried

whether a new operating point exists and if so, its information is passed from the strategy to

the context. For this purpose, the function get_operation_point is defined. The next task in

September 2021 43

TU Graz 3 Application Development

the workflow, which brings the strategy back into action, is processing the data. In order to

be able to process data, the strategy must first receive the data from the context, which is

covered by the push_value function. The last element in the workflow is the query whether

the operation point is finished, which is carried out by the point_complete function.

In addition to these functions that directly affect workflow, there are other functions required

for the strategy. The has_error function is introduced for error handling. For the evaluation of

the measurement data and thus for the Specific Use Case, the push_actual_flowrate function

is required, which returns the actual flow rate set at the pumps. Furthermore, it should be

possible for the strategy to give instructions to the context shortly before the program is

terminated. This is achieved by the get_finish_instruction function.

Apart from the functions, a class is defined in the basic strategy which contains the relevant

information of the operating points for the context. Meaning the operating point passed to the

basic strategy class contains the three sets of information: specification, which determines

the duration of the operating point, set temperature and flow rates of the components. The

operating point that is passed on via the class created in the basic strategy class contains

all previously mentioned information except the duration information. This is because this

term can be specified differently and when handled by the strategy, the methodology is easily

interchangeable.

The basic strategy is implemented according to the strategy pattern as a separate class from

which the individual strategies can inherit. In the context of this thesis, this class is called

Strategy_Base and is given in Listing 6.

1 class Strategy_Base:

2 class operation_point_information:

3 def __init__(self , temperature , flowrate_list):

4 self.temperature = temperature

5 self.flowrate_list = flowrate_list

6

7 def get_temperature(self):

8 return self.temperature

9

10 def get_flowrate(self , idx):

11 return self.flowrate_list[idx]

12

13 def get_number_of_pumps(self):

14 return len(self.flowrate_list)

15

16 def get_operation_point(self):

17 return None

44 September 2021

3.4 Implementation TU Graz

18

19 def push_value(self , value):

20 return

21

22 def point_complete(self):

23 return False

24

25 def has_error(self):

26 return False

27

28 def push_actual_flowrate(self , val):

29 return

30

31 def get_finish_instruction(self):

32 return None

Listing 6: Basic strategy from which any additional strategy can be built.

Context Class

The strategy has the relevant information on the program workflow, such as which devices are

present in the system, which working points are to be set and how they are to be processed.

For the sake of completeness, it should be mentioned that the strategy can also take over

actions, such as the evaluation of measurement data. However, all the points mentioned have

in common that there is no direct contact with the individual units and the information about

the workflow is only available but not used. Consequently, these tasks, the communication

with the devices and the execution of the sequence control, are carried out by the context.

The context is planned based on the given architecture and the previously defined functions

of the basic strategy. In the scope of this work, the context is implemented analogously to the

drivers as a state machine. The corresponding state diagram is given in Figure 20.

If no errors occur, the state machine runs through the states Apply_Configuration,

List_Processing and Finished in sequence. In the Apply_Configuration state, the system

is prepared for the upcoming processing of the operating points. This includes the task of

bringing all existing devices featuring a pump into the Deactivated state. In connection with

this, those units featuring a Configuration state must pass through this state, as this is the

only way they can reach the Deactivated state.

The List_Processing state is more complex than the other states and is therefore a composite

state. Furthermore, communication between context and strategy becomes relevant. When

entering List_Processing, the decision is first made whether another operation point is to

be processed. For this purpose, the get_operation_point function of the strategy is called.

September 2021 45

TU Graz 3 Application Development

Set_operating_Point
+ set temperature at calorimeter and
 thermostat
+ turn thermostat pump on
+ given pumps are turned on or off
 depending on the operating point
+ return actual flow ratesError_Thermostat

+ return error message
+ all functioning devices are
 turned off

Error
+ return error message
+ all functioning devices are
 turned off

Error_Pump
+ return error message
+ all functioning devices are
 turned off

List_Processing

Error
+ error handling

Error_Calorimeter
+ return error message
+ all functioning devices are
 turned off

Finished
+ event for exiting List_Processing
 and entering the next state is
 triggered

Finished
+ pumps are turned off
+ thermostat is turned off

Operating
+ operating point is being completed
+ return measured data

Apply_Configuration
+ active until all pumps and
 the thermostat pump are
 turned off
+ ensuring communication with
 the calorimeter

next

error_calorimeter

error_thermostat

error_pump

next

error

error_thermostat

error_pump

error_calorimeter

error

next

error

Is there another
operating point?

[True] [False]

next

Figure 20: State diagram of the context as part of the Strategy Pattern.

If the strategy passes an operating point to the context, the Set_Operating_Point state is

subsequently entered. All relevant settings for the operating point are made in this state. First,

the operating temperature is set at the calorimeter and the thermostat. The temperature at the

thermostat is always set slightly higher according to the calibration (cf. section 6.2). Secondly,

the thermostat pump and the pumps according to the operating point are switched on. The

flow rate that is actually set at the pumps is subsequently returned to the strategy. With this,

the Set_Operating_Point state is terminated and the Operating state is entered. It consists

of the three functions of the strategy push_value, point_complete and has_error. Thus, the

measurement data are forwarded to the strategy and a query is made whether the operating

point is completed. The last function informs whether an error has occurred on the part of the

strategy. If an error occurs during the Operating state, the Error state is entered. Otherwise,

after completion of the Operating state, the system returns to the decision at the beginning. If

there is no further operating point, the Finished state is entered, which triggers the event to

exit the List_Processing state.

The Finished state of this state machine is not a basic state class, unlike all previous Finished

states. The state class built for this purpose ensures that all devices featuring a pump are

transferred to their Deactivated state in a specific order. First the pumps are deactivated,

46 September 2021

3.4 Implementation TU Graz

next the thermostat pump is deactivated. Furthermore, the last function of the strategy the

get_finish_instruction function is called. This state class can also be used for the individual

error states. In this case, those devices that can still be addressed are switched off in the

same order mentioned before. Regarding the error states, it can be seen that there are four

different states. Three of them concern the individual units pumps, thermostat and calorimeter.

In this way, the error handling can be treated in a device-specific manner. The state machine

is aware of which device the error originates from and, if necessary, the error state for the

individual devices can be adjusted individually. The last error state is the standard error state,

which is used if the context or the strategy have an error and not the devices.

Once again, the resulting interface after implementation of the context is important. When

instantiating the context, the strategy to be used, a list of the pumps used (name and

communication port), a list of the thermostat information (communication port and settings if

desired), the communication port of the calorimeter and an empty list for the measurement

data must be provided. The functions that are called externally are reduced to the tick and

the get_state function. More details regarding the implementation of the state machine class

for the context is given in the Appendix 8.1.1. The additional functions and classes that are

necessary to give the context its described functionality are also given therein.

Concret Strategies

As sequence control is the combination of context and strategy, the last step in program

development is to plan the concrete strategies. The aim is to cover all three of the initially

defined use cases, starting with the Standard Use Case.

OPERATION_POINT_LIST STRATEGY

The basic idea of this concrete strategy, which fulfils the Standard Use Case, is to provide a

list of all operating points at the beginning and to work through these points one after the other.

Thus, this concrete strategy is also referred to as Operation_Point_List strategy. Consequently,

the input is only the list of operating points. For this purpose, a class is first defined which

specifies the format of an entry in this list, which is given in Listing 7.

As can be seen from Listing 7, the specification of the duration of the operating point is given

for this concrete strategy via an absolute time value. Furthermore, the entry also contains a

desired set temperature and a list that assigns a flow rate to each existing pump. The length

of the flow rate list results in the number of pumps, which can be requested by means of

the get_number_of_pumps function also contained in this class. When executing the final

September 2021 47

TU Graz 3 Application Development

program later, it is important that the length of the flow rate list matches the length of the

pump list used to create the context. Listing 7 also gives an example of how the creation of an

operating point list, and thus the instantiation of this class, can be done.

1 class operation_point_list_entry:

2 def __init__(self , time_ms , temperature , flowrate_list):

3 self.time_ms = time_ms

4 self.temperature = temperature

5 self.flowrate_list = flowrate_list

6

7 def get_time_ms(self):

8 return self.time_ms

9

10 def get_temperature(self):

11 return self.temperature

12

13 def get_flowrate(self , idx):

14 return self.flowrate_list[idx]

15

16 def get_number_of_pumps(self):

17 return len(self.flowrate_list)

18

19 example_list = [

20 operation_point_list_entry (3, 25, []),

21 operation_point_list_entry (3, 27, [1, 2]) ,]

Listing 7: Template for the list entries of the operating point list.

The next step is to plan the class for the concrete strategy. For this purpose, the functions are

inherited from the basic strategy and adapted one after the other. Basically, the processing of

the operating points consists of three recurring steps. First, the desired temperature must be

set at the calorimeter, followed by regular checks to see whether the temperature has already

remained stable. During this time period, the pump of the thermostat must be switched on,

but the other pumps must be switched off. Secondly, a deadline is defined and the pumps

are switched on according to the operating point. Thirdly, the system waits until the deadline

expires and records the measured data. If the list of operating points consists of several

entries, where each entry has the same set temperature, the first step does not have to be

repeated each time.

For a simple handling of these three steps, states are defined again. Since the implementation

of a sophisticated state machine is too time-consuming in relation to the complexity of the

three steps, a simple state query by means of branches is sufficient. In other words, regarding

the relevant functions inherited from the basic strategy, the individual states are entered via

branches and the internal activity of the state is defined therein. The implementation results in

48 September 2021

3.4 Implementation TU Graz

the following overriding of the individual functions, whereby only fundamental changes are

discussed here. Details of the implementation are provided in the Appendix 8.1.17.

__init__ :

In this function, the incoming operating point list is first saved and additional variables are

predefined for the strategy. It is worth noting that the internal active state is set to that of

the temperature adjustment (temperature equilibration).

get_operation_point :

First it is checked whether there is still an entry to be edited in the initially received list. If

there is not, the function is completed. If there is a point, it is saved as the current operating

point. The next step is to check whether there is a new set temperature in the current

operating point. If there is a new temperature, the internal state is set to temperature

equilibration. Furthermore, a deadline is set for how long the temperature adjustment

may take before the strategy reports an error. The function returns an object with the

temperature to be set and the flow rates of the pumps set to zero, which is then executed

by the context. If there is no new temperature, the internal state is set to that of setting a

deadline (setting deadline). In this case, an object is returned with the temperature to be

set and the flow rates of the pumps corresponding to the operating point.

push_value :

The function is only adapted insofar as the measurement data received from the context is

saved within the strategy.

point_complete :

This function includes a query for each of the three possible states. If the temperature equi-

libration state is entered, the system waits for at least the last 10 measured temperatures

to be within an absolute deviation of ±0.1 for each of the three reactors of the calorimeter.

Whereby a failure rate of 10 % is tolerated. If the setting deadline state is entered, the

function sets a deadline based on the time specified in the operating point. The state is

subsequently set to that of waiting until the deadline has expired (waiting for deadline).

If the waiting for deadline state is entered, it is only checked whether the deadline has

already expired.

has_error :

This function checks whether the deadline defined for the temperature adjustment has not

yet expired. If it takes too long, the context is notified of an error.

September 2021 49

TU Graz 3 Application Development

OUTPUT_CALCULATION_ABSOLUTE_EVALUATION STRATEGY

This concrete strategy addresses the implementation of the Specific Use Case. In this use

case, the measurement data received is to be evaluated in addition. Therefore, the implemen-

tation of the previous strategy (predefined operating point list and its processing) is completely

adopted and extended with the additional requirements. The concrete strategy is named

Output_Calculation_Absolute_Evaluation strategy due to the fact that the time period in which

the data is evaluated is specified from the outset as an absolute value. Care must be taken

that the duration of the evaluation does not exceed the duration of the operating point. The

implementation is given in the Appendix 8.1.16.

The notable amendments made in the implementation of this strategy are narrowed down to

the following points:

Within the __init__ function, an Excel file is prepared for the output. Tables and headings

are predefined. The substance data are subsequently entered into the Excel file.

Within the push_value function, the evaluation of the measurement data described in

section 2.2 is implemented and results are written in the file. In addition, the measurement

data are also saved in the Excel file.

Within the scope of this strategy, the get_finish_instruction function is given a functionality.

Two diagrams are created from the sum of all available measurement data. The first shows

the individual inlet, outlet, reactor and set temperature over time. The second shows the

measured voltage at the three reactors over time. Finally, the entire Excel file is formatted.

The Output_Calculation_Absolute_Evaluation strategy is designed to fulfil not only the Spe-

cific Use Case but also the Optimisation Use Case. Thus, the strategy offers a possible

interface for reaction optimisation. For this purpose, the opimisation algorithm would have to

be integrated into the push_value function, where the results of the evaluation are already

available. Furthermore, due to the way of implementing the processing of the operating points,

adding additional operating points in between is not a problem.

50 September 2021

TU Graz

4 Results and Discussion

4.1 Testing of the Application

As already mentioned in section 3.1, application development consists of the four tasks of

formulating the problem, developing an architecture, implementing the architecture and testing

the application. The testing process, which is directly linked to the implementation, provides

important insights into the interim results of the application development. The procedure cho-

sen for this purpose is to test simple elements of the code immediately after implementation.

In this way, occurring malfunctions and possible future sources of error are easier to identify

and assign. If an error or a possible source of error is detected, the respective part of the

application is immediately corrected.

An example of debugging is the addition of a retry variable to the layer B state Send_And_Check.

After testing the thermostat device driver, it became apparent that it changes to the error state

after an indeterminable amount of time during operation. In order to get to the bottom of

this behaviour, the communication between the host PC and the thermostat that takes place

during the runtime of the application was given as an output on the console. It was apparent

that, contrary to expectations and the communication protocol of the device, the response to a

request from the host PC was not always received. According to the former Send_And_Check

state, in case of not receiving an answer or getting an unexpected answer, the error state

is entered immediately. By introducing the retry variable, the request is repeated after a

negative response. How often the request should be repeated before entering the error state

is specified via this variable. Since the state class is to remain applicable for all other devices,

the specification of 0 repetitions is possible.

In addition to immediately checking simple elements, testing those parts of the code that

directly affect the devices is of importance too, as the previous debugging example demon-

strates. In the simplest case, this testing procedure includes sending commands to the device

and receiving its responses. In the next step, the layer A states concerning the corresponding

devices are to be checked. It is important that each of the internal states of the composite

layer A states are run through. Finally, the entire driver is checked. Each state change that is

specified in the table of the state machine driver must be entered at least once.

As a final test, the entire application is run, whereby neutralisation experiments are conducted

for this purpose. Since there are two strategies, the experiments are carried out with both of

these strategies. In this context, the choice of strategy has no influence on the experiment itself.

September 2021 51

TU Graz 4 Results and Discussion

The only difference is that one strategy provides a complete evaluation of the measurement

data, whereas with the other strategy the evaluation must be done by the operator. Therefore,

further differentiation is not necessary when illustrating the experiment results in section 4.3.

4.2 Final Application

The final application features the two strategies Operation_Point_List (OPL) and Output_

Calculation_Absolute_Evaluation (OCAE). In order to be able to execute the application, a

separate file is written for each strategy. In the following, the necessary input for each strategy,

the initialisation of the context class, the output of the application and the execution of the

application are described.

Input for the Operation_Point_List Strategy

For the OPL strategy, the list of operation points is required first. For this purpose, the array

operation_point_list is created, in which the desired operating points can be entered. Each en-

try corresponds to the operation_point_list_entry class, which is defined for the OPL strategy.

A list entry consists of three elements. First, the desired operating point duration is entered in

ms. Here, care must be taken when entering that no duration is specified that is too short,

since each operating point must first stabilise in order to obtain accurate measurement results.

The second specification is the desired temperature at the calorimeter in ◦C. A temperature

with two decimal digits could be specified here, but in this case care must be taken that a

corresponding calibration curve is available. Otherwise, the application would enter the error

state. The third information is the list of volumetric flow rates in ml·min−1.

In the next step, the used devices are defined for the strategy. First, the pumps are assigned.

For this purpose, an array is created, which can also have zero entries if no pumps are desired

for the execution of the application. However, each pump entry requires two elements. First

element is the designation for the pump. In case of the pumps available in the laboratory, there

are the following six designations: Lambda 1, Lambda 2, Lambda 3, HPLC A, HPLC B and

HPLC C. Secondly, the correct port name for the corresponding pump must be specified. The

remaining devices are the thermostat and the calorimeter. Here, in case of the thermostat,

the port name is written in an array, and in the case of the calorimeter, it is saved in a variable.

After the operating points and the devices have been specified, the strategy class can be

initialised. Listing 8 shows the implementation of the specifications necessary for the OPL

52 September 2021

4.2 Final Application TU Graz

strategy. The complete implementation of the file for executing this strategy is given in Ap-

pendix 8.1.13.

1 # List of operating points

2 operation_point_list = [

3 Strategy_OPL.operation_point_list_entry (3*6E4, 25, [6, 6]),

4 Strategy_OPL.operation_point_list_entry (5*6E4, 35, [5, 5]),

5]

6

7 # Devices used

8 User_Pumps = [["Lambda 1", "COM1"], ["Lambda 2", "COM2"]]

9 User_Fisher = ["COM3"]

10 Portname_Calorimeter = "COM4"

11

12 # Setting up the strategy

13 strategy = Strategy_OPL.Operation_Point_List(

operation_point_list)

Listing 8: Specifications needed for the execution of the OPL strategy.

Input for the Output_Calculation_Absolute_Evaluation Strategy

The OCAE strategy also requires a list of operating points first, which is structured analogously

to the OPL strategy. However, in the case of the operation_point_list_entry class, it should

be noted that this is defined here via the OCAE strategy. The subsequent definition of the

devices is again identical.

In the next step, the additional data follow. Since this strategy immediately evaluates the data

received from the calorimeter, the strategy needs a stabilisation time (here: dead time), a

name for the created Excel file and the substance data. The dead time refers to the period of

time, starting from the beginning of an operating point, within which the measured data is to

be excluded from evaluation. For the Excel file, it must be considered that it is always saved

in the same folder. If the name is not changed, the existing file will be overwritten. Finally, the

substance data are defined in the substance_data class, which is defined in the strategy. All

entries are made in a two dimensional array. This is because two participating substances

are assumed in this strategy. It is therefore important to always keep the same order for

substance A and substance B. Furthermore, the first substance entered should correspond

to the limiting substance. The first entry for the substance data list is the weighed-in mass

in g, the second is the volume used for the preparation of the solution in ml, the third is the

molar mass corresponding to the substances in g·mol−1 and the fourth is the substance

assignment to the pumps. Listing 9 shows the implementation of the specifications necessary

for the OCAE strategy. In this example, it can be seen that substance B is filled in the pump

September 2021 53

TU Graz 4 Results and Discussion

Lambda 1. Furthermore, it is evident that substance B weighs 5 g and a volume of 50 ml is

used for the solution preparation.

1 # List of operating points

2 operation_point_list = [

3 Strategy_OCAE.operation_point_list_entry (3E5, 25, [6, 6]),

4 Strategy_OCAE.operation_point_list_entry (3E5, 35, [5, 5]),

5]

6

7 # Devices used

8 User_Pumps = [["Lambda 1", "COM1"], ["Lambda 2", "COM2"]]

9 User_Fisher = ["COM3"]

10 Portname_Calorimeter = "COM4"

11

12 # Additional data

13 dead_time = 1*6E4

14 excel_file_name = "strategy_ocae"

15 substance_data = Strategy_OCAE.substance_data ([7, 5], [100,

50], [40.01 , 60.05] , ["B", "A"])

16

17 # Setting up the strategy

18 strategy = Strategy_OCAE.

Output_Calculation_Absolute_Evaluation

19 (operation_point_list , substance_data , dead_time ,

excel_file_name)

Listing 9: Specifications needed for the execution of the OCAE strategy.

Analogous to the OPL strategy, the OCAE strategy can be initialised after defining the required

information. The complete implementation of the file for executing this strategy is given in

Appendix 8.1.12.

Initialisation of the Context

According to the strategy pattern, the context class is the same for every strategy and is to be

initialised with the specific strategy. The code given in Listing 10 is therefore the same for all

strategies. Once the class has been initialised, it only needs to have its tick function called

regularly, which ensures that the context state machine is run. The regular call is achieved by

means of a loop that is exited as soon as the context has reached the finished state or an

error state.

1 # Setting up the automatization

2 automat = Auto.matization(strategy , User_Pumps , User_Fisher ,

Portname_Calorimeter)

3

4 # Automatization is called until the end state is reached

54 September 2021

4.2 Final Application TU Graz

5 while(True):

6 automat.tick()

7 if automat.get_state () == "Finished":

8 break

9 if automat.get_state () == "Error_Thermostat" or automat.

get_state () == "Error_Pump" or automat.get_state () == "

Error_Calorimeter" or automat.get_state () == "Error":

10 break

11 print("Done")

Listing 10: Initialisation and Calling of the context class.

Output of the Application

For both strategies, the output is a log file containing the complete data from the calorimeter.

In case of the OCAE strategy, a second output is obtained with the Excel file. In Figure 21,

the four resulting worksheets of the output Excel file are given. It can be seen that the

(a) Evaluation worksheet containing the substance data

and the evaluation of the measurement data.

(b) Raw_Data_Com worksheet containing the measure-

ment data.

(c) Dia_Raw_Temp worksheet displaying the plot of

measured temperatures over time.

(d) Dia_Raw_Voltage worksheet displaying the plot of

measured voltages over time.

Figure 21: Worksheets of the output excel file.

September 2021 55

TU Graz 4 Results and Discussion

output is divided into the four topics substance data, process setup, raw data processing and

calculation. First, the substance data, which is the input for the concrete strategy, is given.

Secondly, the period during which the evaluation is carried out, the desired and actual flow

rates of both components and the flow rate converted to the water content of the components

are stated. Thirdly, the results averaged over the evaluation period, the calculated temperature

differences and the outgoing heat quantity are given. Finally, the remaining heat quantities

(incoming heat quantity, reactor heat quantity) and the resulting molar reaction enthalpy are

listed. The relevant data are highlighted in colour.

Execution of the Application

The final application can be used in the laboratory. To do this, the system must first be set up

accordingly. A calorimeter and a thermostat are required in any case. The number of pumps

can vary. Subsequently, a decision should be made as to what the system will be used for.

For an experiment involving two components, the OCAE or the OPL strategy can be used. For

an experiment with only one component (for example to determine the specific heat capacity

of a substance) or more than two components, the OCAE strategy cannot be used and the

OPL strategy remains. In this context, the decision of which strategy to use is therefore based

on how many components are used in the experiment. The number of components does

not necessarily have to be equal to the number of pumps. The number of pumps is greater

than or equal to the number of components. This means, that in order to have more solvent

available for an experiment using syringe pumps, two pumps can be used with the same

substance. When entering the specifications in the application, care should be taken that no

mistakes are made. After a strategy has been selected, the input data should be entered into

the corresponding operation file. Regarding the number of operating points, it is important

to ensure that enough initial substance is provided for the specified flow rates and operating

times. Once the system has been completely set up, the tightness has been checked and the

initial substances have been fed to the pumps accordingly, the application can be started.

Now the automated process follows, replacing the typical laboratory work. In terms of the

application sequence, all units are first switched off. This ensures that the application is aware

of the initial state of all the units and prevents the system from behaving incorrectly. Afterwards,

the calorimeter and thermostat are set to the corresponding operating temperature and the

pump of the thermostat is switched on. The temperature is then adjusted in the calorimeter.

The application automatically detects when the temperature has reached a constant value and

subsequently switches to the first operating point. Now all the operating points entered in the

operating point list are processed. If there are temperature changes between the points, the

pumps are switched off for this period of time so that the initial substances are not consumed

56 September 2021

4.3 Experimental Results TU Graz

unnecessarily. When all operating points have been processed, the application is finished. If

the application does not run correctly, it ends in an error state with an output indicating which

device caused the error.

After finishing the application, the user has the log file with the data of the performed measure-

ment. If the application was carried out using the OCAE strategy, the data of this measurement

is already evaluated. The advantage of the OCAE strategy is that the data is not calculated

afterwards but continuously during the measurement. This strategy can therefore be combined

very well with an optimisation software.

4.3 Experimental Results

In this subsection, the results of the neutralisation experiments conducted as part of the verifi-

cation of the functionality of the developed sequence control are presented and discussed.

The experiments are carried out at the three different concentrations of 1.65 mM, 1 M and

2 M and are subsequently referenced as first, second and third experiment respectively. The

third experiment is carried out twice, thus a distinction is made between experiment 3a and

3b. For every experiment the same set temperature at the calorimeter of 25◦C is used.

The first experiment (Figure 22) differs from the other experiments insofar as the measurement

of the amount of heat is almost undetectable due to the concentration being lower by a factor of

Figure 22: Relative errors of the determined molar reaction enthalpy from the first experiment at a

temperature of 25◦C using a concentration of 1.65 mM.

September 2021 57

TU Graz 4 Results and Discussion

103 compared to the others. As a result, there are huge deviations of up to more than 1000 %.

Figure 22 illustrates the deviations of the determined molar reaction enthalpy in relation to

the literature value of ∆hR = −57.4 kJ ·mol−1 given in section 2.3. In addition to the huge

deviations, it remains worth mentioning that the individual errors seem to repeat at a given

flow rate. Since each flow rate was only measured twice, further measurements are needed to

check whether this behaviour is actually reproducible. If so, the offset error could be corrected

and measurements of low concentrations would become feasible.

The remaining experiments 2, 3a and 3b are summed up in Figure 23. The Excel worksheet

with the evaluation results of the neutralisation experiment (Figure 24) and the diagram of the

temperatures during the experiment (Figure 25) are given exemplarily for experiment 3a.

Figure 23: Determined molar reaction enthalpy from the second and third experiment at a temperature

of 25◦C using a concentration of 1 M and 2 M.

In contrast to the first experiment, the deviation from the literature value is much smaller,

which is why the absolute values are shown instead of the relative error. The literature

value of the molar reaction enthalpy is depicted via the red line. As can also be seen in

Figure 22, independent of the concentration, the error decreases with increasing flow rate and

approaches the literature value. Above a flow rate of 2 ml·min−1, the result obtained for the

molar reaction enthalpy is approximately constant for all experiments presented in Figure 23.

An offset error of about 26% remains in all experiments. This may be due to possible flow

disturbances in the tubes, leading to the flow rate of the pumps not being maintained, or due

to the fact that the ambient conditions during the experiments do not correspond to those at

which the calorimeter calibration is carried out.

58 September 2021

4.3 Experimental Results TU Graz

Figure 24: Evaluation worksheet containing the results of experiment 3a.

September 2021 59

TU Graz 4 Results and Discussion

22

22,5

23

23,5

24

24,5

25

25,5

26

26,5

5 230 455 683 910 1138 1366 1593 1821 2050 2278

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

T_set

T_pre

T_r1

T_r2

T_A

T_B

T_out

Figure 25: Dia_Raw_Temp worksheet displaying the plot of measured temperatures of experiment 3a

over time.

60 September 2021

TU Graz

5 Conclusion and Outlook

In this thesis, an application for the sequence control of a system setup revolving around the

calorimeter developed by MAIER et al. is designed and implemented [1]. The process system

consists of several elements to be controlled by the application. First, there is a variable

number of pumps which convey one or more reagents to the calorimeter. Regarding the

controllable pumps, two different types are available, a syringe pump and a HPLC pump.

Following the pumps is the heat flow calorimeter as the reactor of the system setup. Finally,

the thermostat is the last element to be controlled in the process system.

The application can be divided into several subroutines. For each individual device, there is a

separate object that can be used to operate only the single device. These objects are each

referenced as drivers and implemented using the concept of the state machines and the state

design pattern. In general terms, the devices each have a state in which they are activated

and a state in which they are deactivated. If the state change of activation or deactivation is

rather complex, a separate state is implemented instead of a simple state change. If basic

settings are to be set on the unit, there is a separate state for this purpose, which is only

entered once at the beginning. For possible error handling, an error state is inserted for each

state machine, which currently leads to the device or the system being shut down.

Additional subroutines deal with the implementation of the application using the strategy

pattern. This means that the application has two files for the written strategies and one file for

the executability of the individual strategies. The first strategy is very general and ensures

that the application can be used in a very wide range. This means that there is no restriction

on the number of pumps, which makes it possible to handle the system without pumps, with

only one pump or to use pumps for the quench step. The strategy can also be used to create

calibration curves for the calorimeter or the thermostat and calorimeter combination. The

second strategy is more specific and limits the number of pumps used to at least two, one per

reagent. Furthermore, it enables an automated evaluation of the measurement data, which

is why the substance data must be specified at the beginning. Both, the strategies and the

subroutine which executes the strategies and controls the individual device drivers are again

realised using state machines.

The functionality of the written application is demonstrated by conducting neutralisation re-

actions at a temperature of 25◦C. Acetic acid and sodium hydroxide at concentrations of

1.65 mM, 1 M and 2 M are used for this purpose. The results for the molar reaction enthalpy

at 1.65 mM reveal that, regardless of the flow rate used, the concentration is too low to be

September 2021 61

TU Graz 5 Conclusion and Outlook

adequately detected. Consequently, the results differ significantly from the literature value

of ∆hR = −57.4 kJ ·mol−1. The results at the two higher concentrations, gradually reach the

literature value at a flow rate higher than 2 ml·min−1 with a remaining deviation of 26 %.

By implementing the automatisation application by means of strategies, a high degree of

flexibility is provided for the use and expansion of the application. With regard to the use

of the application, the simple strategy provides a wide range in which the system can be

used automatically, and the more specific strategy is reduced to a reaction between two

reactants with known substance data, but with the advantage of also having the evaluation of

the measurement data automated. Regarding the extension of the application, it is possible to

add an infinite number of further strategies for various problems by adopting the structure of a

strategy given in this thesis. The advantage of the new strategies is that the remaining part of

the application does not have to be changed, so that previous strategies can still be used.

A possible extension, which is also directly related to the intended use of the written application,

is the addition of an optimisation algorithm. For this purpose, the specific strategy could

be adopted and the optimisation added. The optimisation leads to the calculation of the

optimal operating point from the measured data, which is subsequently set. Another possible

development of the application results from the current implementation of error handling. All

errors are currently handled in the same way and result in the system being shut down in a

safe, predefined sequence. If necessary, frequently occurring errors can be identified and, if

possible, handled differently so that it is not always necessary to restart the whole system. In

the end, the development of another calorimeter driver should be mentioned as a possible

development, which can not only handle the calorimeter with the three segments, but also

those with more segments. In this context, it would be useful to design the driver in such a

way that the number of segments present in the calorimeter can be variable for the driver.

62 September 2021

TU Graz

6 Experimental Procedure

6.1 Details on conducting the Experiments

For the neutralisation experiment, acetic acid from the company Sigma-Aldrich with a purity of

99.8 % and sodium hydroxide pellets from the company Carl Roth with a purity of ≥ 99 %

are used. Since this is a neutralisation, the same concentration is used for the acid and the

base. The three concentrations of 1.65 mM, 1 M and 2 M are selected, and the experiments

are referred to as the first, second and third experiment, respectively. The third experiment is

performed twice, which is why a distinction is made between experiment 3a and 3b.

Preparation of the Solutions

At the beginning of each experiment, the solutions corresponding to the selected concentration

are prepared. For this purpose, the quantity (volume) in which the solution is to be prepared

is defined beforehand. Then the mass of the substance to be weighed in can be calculated as

follows:

m [g] = V [ml] · c [mol·l−1] ·M [g·mol−1] · 10−3 (7)

Whereby m refers to the mass to be weighed, V to the total volume of the solution, c to the

concentration of the solution and M to the molar mass of the substance used. The weighed

mass is placed in a volumetric flask, which is subsequently filled with deionised water. After

reformulating the Equation 7, the actual concentration can be calculated from the weighed-in

mass.

In the laboratory, first the sodium hydroxide solution is prepared. The actual concentration of

the basic solution is determined from the weighed mass and from this in turn the necessary

mass of acetic acid is calculated. Since acetic acid is a liquid, the mass is converted into

the necessary volume by means of its density of ρ = 1.049 g ·ml−1. The acetic acid is then

Table 4: Concentrations of the prepared solutions for the various experiments in mol·l-1.

3rd experiment
1st experiment 2nd experiment

(a) (b)

acetic acid 1.6719 · 10−3 1.0087 2.0497 2.0323

sodium hydroxide 1.6496 · 10−3 1.0067 2.0591 2.0326

September 2021 63

TU Graz 6 Experimental Procedure

pipetted, and the pipetted quantity is weighed and used for the subsequent calculation of the

actual concentration. The actual concentrations prepared for the individual experiments are

given in Table 4 in the unit of mol·l-1.

Experimental Setup used

A detailed overview of the general setup of the system is given in section 2.4. That section

also provides details on the thermostats, the two different types of pumps and the calorimeter.

When conducting the experiment, the calorimeter and the thermostat are always present. The

only difference are the pumps used in each experiment. Since the application is designed to

fit the equipment available in the laboratory, it is worth noting that there are three pumps for

each of the two types (HPLC or Lambda). Therefore they are referenced as A, B and C in the

case of the HPLC pumps and 1, 2 and 3 in the case of the Lambda pumps. This distinction is

particularly important for the Lambda pump, as each pump has a different calibration curve

between the set rotation speed and the flow rate. For the HPLC pump, attention must be paid

to the different pump heads, which are automatically selected correctly when the explicit HPLC

pump is selected in the application. Details of the pumps used for the individual experiments

1, 2, 3a and 3b are given in Table 5.

Table 5: Pumps used for the various experiments.

3rd experiment
1st experiment 2nd experiment

(a) (b)

acetic acid Lambda 1 Lambda 2, Lambda 3 Lambda 1 HPLC A

sodium hydroxide Lambda 2 HPLC B Lambda 2 HPLC B

Performing the Experiment by means of the Application

For the two experiments 3a and 3b, the completed sequence control application given in the

Appendix 8.1 is used. For the other experiments, a previous version of the application, or only

parts of the application, are used. After the solutions have been prepared and the equipment

has been set up, the specifications for conducting the measurement are entered into the

application. The procedure corresponds to the one described in section 4.2.

64 September 2021

6.2 Calorimeter-Thermostat Calibration TU Graz

First, the list of operating points is defined. An operating point consists of the operating point

duration, the set temperature and the list of flow rates. In the case of the time period, a

duration of 3 minutes is chosen for all experiments and the set temperature is always set to

25◦C. For the flow rates, values in a range from 0.2 to 4 ml·min−1 for each pump are selected.

In the next step, the devices used and their port names are specified. For this purpose, the

pump names are first assigned according to the experiment (Table 5). For the thermostat and

calorimeter, only the port name is required.

6.2 Calorimeter-Thermostat Calibration

A target temperature is to be set on the calorimeter. The thermostat is used to supply the

calorimeter with a temperature higher than the target temperature. The temperature is then

adjusted at the calorimeter by further cooling using a PELTIER element until the target temper-

ature is reached. The thermostat is used because cooling down only by means of the PELTIER

element during the reaction is not practical. The temperature must always be above the set

temperature, as the PELTIER element used can only work in one direction, i.e. cooling. The

built-in control unit of the calorimeter thus becomes active once the temperature measured at

the reactors is above the target temperature for the first time.

When conducting various experiments, it is therefore important to know for which set tempera-

ture on the calorimeter which temperature must be set on the thermostat. Furthermore, it is

important to note that heat is lost through the thermostat’s hoses. This heat loss increases

as the temperature rises, which is why a uniform temperature difference between target

temperature and thermostat temperature is not practical and instead a calibration curve is

created for this purpose.

As a design choice during implementation, only integers are to be set for the thermostat

temperature in terms of the calibration curve. Thus, instead of a continuous function, a

discrete function is created for the calibration. For this purpose, the discrete values 25, 30, 35

and 40 are selected to cover the interval from 25 to 40◦C, which are set as target temperature

on the calorimeter. In each case, the same temperature is set at the thermostat and increased

until the target temperature is actually reached at the calorimeter. The resulting diagram is

given in Figure 26.

September 2021 65

TU Graz 6 Experimental Procedure

Figure 26: Calibration curve between thermostat and calorimeter in the interval of 25 to 40◦C.

6.3 Calorimeter Calibration

In order to determine the heat quantity using the SEEBECK effect, a quadratic calibration curve

between the measured voltage and heat quantity is required. A calibration is always valid for

the combination of the set temperature at the calorimeter and the corresponding temperature

at the thermostat.

For calibration, a power supply is connected to the heat foils integrated in the calorimeter and

various voltage and current tuples are set. Through this introduced power, the foils heat up

and simulate the formation of a heat flux resulting from a chemical reaction. The PELTIER

element of the calorimeter acts in the same way as in normal operation mode and dissipates

the heat generated to keep the calorimeter at a constant temperature. The voltage resulting

due to the heat flux is measured via the SEEBECK element. The calibration curve can then be

generated from the known power input and the measured voltage.

The calibration curves are determined for the set temperatures at the calorimeter of 25, 30, 35

and 40◦C (and for the temperatures at the thermostat derived from the calorimeter-thermostat

calibration curve, cf. Figure 26). The resulting parameter tuples a, b and c for the quadratic

function at the different temperatures are given in Table 6. The graphical illustration of the

calibration curve based on the measured data is given as an example in Figure 27.

66 September 2021

6.3 Calorimeter Calibration TU Graz

Table 6: Parameters of the quadratic calibration curve for various temperature combinations of

calorimeter and thermostat.

calorimeter: 25◦C; thermostat: 26◦C

precooling 1st reactor 2nd reactor

a 0.6518 0.4091 0.4039

b 8.3911 8.5318 8.7333

c -0.0598 0.0261 -0.0475

calorimeter: 30◦C; thermostat: 34◦C

precooling 1st reactor 2nd reactor

a 0.9217 0.6194 0.7441

b 8.0548 8.1511 8.3637

c 0.0291 0.0944 0.0420

calorimeter: 35◦C; thermostat: 40◦C

precooling 1st reactor 2nd reactor

a 0.4921 0.6368 0.3782

b 8.3027 8.1373 8.5837

c 0.1518 0.1511 0.1580

calorimeter: 40◦C; thermostat: 46◦C

precooling 1st reactor 2nd reactor

a 0.7618 0.7157 0.4186

b 7.8524 7.8297 8.2974

c 0.2782 0.2332 0.2775

Figure 27: Calibration curve to convert measured voltage into heat quantity for the temperature

combination of 25◦C at the calorimeter and 26◦C at the thermostat.

September 2021 67

TU Graz 7 References

7 References

[1] M. C. Maier, M. Leitner, C. O. Kappe, and H. Gruber-Woelfler. A modular 3d printed

isothermal heat flow calorimeter for reaction calorimetry in continuous flow. Reaction

Chemistry & Engineering, 5(8):1410–1420, 2020.

[2] K. F. Jensen. Flow chemistry—microreaction technology comes of age. AIChE Journal,

63(3):858–869, 2017.

[3] J. Deng, J. Zhang, K. Wang, and G. Luo. Microreaction technology for synthetic chemistry.

Chinese Journal of Chemistry, 37(2):161–170, 2019.

[4] O. Levenspiel. Chemical reaction engineering. John Wiley & Sons, 1999.

[5] P. Kleinebudde, J. Khinast, and J. Rantanen. Continuous manufacturing of pharmaceuti-

cals. John Wiley & Sons, 2017.

[6] D. J. am Ende and M. T. am Ende. Chemical Engineering in the Pharmaceutical Industry,

Active Pharmaceutical Ingredients. Wiley, 2019.

[7] M. B. Plutschack, B. Pieber, K. Gilmore, and P. H. Seeberger. The hitchhiker’s guide to

flow chemistry ii. Chemical reviews, 117(18):11796–11893, 2017.

[8] B. J. Reizman and K. F. Jensen. Feedback in flow for accelerated reaction development.

Accounts of chemical research, 49(9):1786–1796, 2016.

[9] S. M. Sarge, G. W. H. Höhne, and W. Hemminger. Calorimetry: fundamentals, instru-

mentation and applications. John Wiley & Sons, 2014.

[10] S. B. Warrington and G. W. H. Höhne. Thermal analysis and calorimetry. Ullmann’s

Encyclopedia of Industrial Chemistry, 2000.

[11] A. Zogg, F. Stoessel, U. Fischer, and K. Hungerbühler. Isothermal reaction calorimetry

as a tool for kinetic analysis. Thermochimica acta, 419(1-2):1–17, 2004.

[12] C. Eveleigh. Literature review of isothermal reaction calorimetry. University of Ottawa,

2016.

[13] Mettler Toledo. RC1mx Reaction Calorimeter. Documentation.

[14] H. Bannwarth, B. P. Kremer, and A. Schulz. Basiswissen Physik, Chemie und Biochemie.

Springer, 2007.

[15] E. Riedel and H.-J. Meyer. Allgemeine und anorganische Chemie. de Gruyter, 2018.

68 September 2021

TU Graz

[16] Fisher Scientific. Isotemp® Circulators/Baths. User’s Manual. December 15, 2016.

[17] Knauer. AZURA Pump P 2.1S/P 4.1S Instructions. Document No. V6870.

[18] Lambda Laboratory Instruments. Operation Manual Syringe Pump - Infusion Pump.

[19] T. Flik. Mikroprozessortechnik und Rechnerstrukturen. Springer-Verlag, 2005.

[20] C. Kecher, A. Salvanos, and R. Hoffmann-Elbern. UML 2.5: Das umfassende Handbuch.

Rheinwerk Verlag, 2017.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction

and reuse of object-oriented design. In European Conference on Object-Oriented

Programming, pages 406–431. Springer, 1993.

September 2021 69

TU Graz 8 Appendix

8 Appendix

8.1 Application Code

8.1.1 Auto.py

1 # This f i l e conta ins the s ta te machine c lass f o r the au tomat i za t ion
2 # and the f o l l o w i n g a d d i t i o n a l r e l evan t c lasses and f u n c t i o n s f o r
3 # the c ons t r u c t i on o f t h i s c lass : the requ i red s ta te classes , which
4 # can be assigned to the laye rs (A) and (B) , and f u n c t i o n s f o r
5 # generat ing the d r i v e r s o f each device .
6
7 # l i b r a r y / modules from python :
8 impor t t ime
9

10 # own s c r i p t s :
11 impor t Ca lor imeter
12 impor t Communication
13 impor t D i c t i o n a r y
14 impor t F isher
15 impor t HPLC
16 impor t Lambda
17 impor t pyState
18
19 # laye r (B) s ta tes :
20 c lass Set_Operat ing_Point (pyState . State_Base) :
21 def en ter (s e l f , ope ra t i ng_po in t_s t ra tegy , pump_l ist , thermostat , ca lo r ime te r , ope ra t i on_po in t) :
22 super () . en ter (" Set_Operat ing_Point ")
23 p r i n t (" en te r i ng s ta te Set_Operat ing_Point ")
24 s e l f . ope ra t i ng_po in t_s t ra tegy = ope ra t i ng_po in t_s t ra tegy
25 s e l f . pump_l is t = pump_l is t
26 s e l f . thermosta t = thermosta t
27 s e l f . ca l o r ime te r = ca lo r ime te r
28 s e l f . ope ra t i on_po in t = opera t i on_po in t
29
30 def __ca l l__ (s e l f) :
31 current_temp = s e l f . ope ra t i on_po in t . get_temperature ()
32 s e l f . ca l o r ime te r . set_target_Temp (current_temp)
33 s e l f . thermosta t . set_target_temp (D i c t i o n a r y . ca lo r ime te r_ the rmos ta t [" c a l i b r a t i o n "] . forward (current_temp))
34 s e l f . thermosta t . act ivate_pump ()
35
36 pump_actual_f lowrates = []
37 f o r idx i n range (len (s e l f . pump_l is t)) :
38 tmp_f lowrate = s e l f . ope ra t i on_po in t . ge t_ f l owra te (i dx)
39 pump_actual_f lowrates . append (s e l f . pump_l is t [i dx] . s e t _ t a r g e t _ f l o w r a t e (tmp_f lowrate))
40 i f tmp_f lowrate > 0 . 0 :
41 s e l f . pump_l is t [i dx] . act ivate_pump ()
42 else :
43 s e l f . pump_l is t [i dx] . deactivate_pump ()
44
45 s e l f . ope ra t i ng_po in t_s t ra tegy . push_ac tua l_ f lowra te (pump_actual_f lowrates)
46 r e t u r n " next "
47
48 c lass Operat ing (pyState . State_Base) :
49 def en ter (s e l f , ope ra t i ng_po in t_s t ra tegy , calodata , ca loda ta_ idx) :
50 super () . en ter (" Operat ing ")
51 p r i n t (" en te r i ng s ta te Operat ing ")
52 s e l f . ope ra t i ng_po in t_s t ra tegy = ope ra t i ng_po in t_s t ra tegy
53 s e l f . ca lodata = calodata
54 s e l f . ca loda ta_ idx = ca loda ta_ idx
55
56 def __ca l l__ (s e l f) :
57 push_empty = True
58 whi le s e l f . ca loda ta_ idx [0] < len (s e l f . ca lodata) :
59 push_empty = False
60 s e l f . ope ra t i ng_po in t_s t ra tegy . push_value (s e l f . ca lodata [s e l f . ca loda ta_ idx [0]])
61 s e l f . ca loda ta_ idx [0] += 1
62 i f push_empty :
63 s e l f . ope ra t i ng_po in t_s t ra tegy . push_value (None)
64
65 i f s e l f . ope ra t i ng_po in t_s t ra tegy . has_error () :
66 r e t u r n " e r r o r "
67
68 i f s e l f . ope ra t i ng_po in t_s t ra tegy . point_complete () :
69 r e t u r n " next "
70
71 # laye r (A) s ta tes :
72 c lass App ly_Conf igura t ion (pyState . State_Base) :
73 " " " This s ta te runs the c o n f i g u r a t i o n s ta te o f a l l devices and puts them a l l i n a deac t i va ted mode . " " "
74 def en ter (s e l f , pump_l ist , thermostat , ca lo r ime te r , ca lodata) :
75 super () . en ter (" App ly_Conf igura t ion ")
76 p r i n t (" en te r i ng s ta te Apply_Conf ig ")
77 s e l f . pump_l is t = pump_l is t
78 s e l f . thermosta t = thermosta t
79 s e l f . ca l o r ime te r = ca lo r ime te r

70 September 2021

8.1 Application Code TU Graz

80 s e l f . ca lodata = calodata
81
82 s e l f . deadl ine = t ime . monotonic_ns () + 60 * 1E9
83
84 def __ca l l__ (s e l f) :
85
86 f o r i tm i n s e l f . pump_l is t :
87 i tm . t i c k ()
88
89 s e l f . thermosta t . t i c k ()
90 s e l f . ca l o r ime te r . t i c k ()
91
92 i f s e l f . deadl ine < t ime . monotonic_ns () :
93 r e t u r n " e r r o r "
94
95 i f s e l f . thermosta t . ge t_s ta te () == " Er ro r " :
96 r e t u r n " e r ro r_ the rmos ta t "
97
98 i f s e l f . ca l o r ime te r . ge t_s ta te () == " Er ro r " :
99 r e t u r n " e r r o r _ c a l o r i m e t e r "

100
101 f o r i tm i n s e l f . pump_l is t :
102 i f i tm . ge t_s ta te () == " Er ro r " :
103 r e t u r n " error_pump "
104
105 f o r i tm i n s e l f . pump_l is t :
106 i f not i tm . ge t_s ta te () == " Deact ivated " :
107 r e t u r n None
108
109 i f not s e l f . thermosta t . ge t_s ta te () == " Deact ivated " :
110 r e t u r n None
111
112 i f len (s e l f . ca lodata) == 0:
113 r e t u r n None
114
115 r e t u r n " next "
116
117 c lass L is t_Process ing (pyState . State_Base) :
118 " " " This s ta te ensures the processing o f the opera t ing po in t s . " " "
119 c lass f a c t o r y :
120 def _ _ i n i t _ _ (s e l f , pump_l ist , thermostat , ca lo r ime te r , calodata , ope ra t i ng_po in t_s t ra tegy) :
121 s e l f . pump_l is t = pump_l is t
122 s e l f . thermosta t = thermosta t
123 s e l f . ca l o r ime te r = ca lo r ime te r
124 s e l f . ope ra t i ng_po in t_s t ra tegy = ope ra t i ng_po in t_s t ra tegy
125 s e l f . ca lodata = calodata
126 s e l f . ca loda ta_ idx = [len (ca lodata)]
127
128 def c rea te_s ta te (s e l f , state_name) :
129 i f state_name == " Set_Operat ing_Point " :
130 tmp_operat ion_poin t = s e l f . ope ra t i ng_po in t_s t ra tegy . ge t_opera t ion_po in t ()
131 i f tmp_operat ion_poin t i s not None :
132 s t = Set_Operat ing_Point ()
133 s t . en ter (s e l f . ope ra t i ng_po in t_s t ra tegy , s e l f . pump_l ist , s e l f . thermostat , s e l f . ca lo r ime te r ,

tmp_operat ion_poin t)
134 r e t u r n s t
135 else :
136 s t = pyState . State_Base ()
137 s t . en ter (" F in ished ")
138 r e t u r n s t
139 e l i f state_name == " Operat ing " :
140 s t = Operat ing ()
141 s t . en ter (s e l f . ope ra t i ng_po in t_s t ra tegy , s e l f . calodata , s e l f . ca loda ta_ idx)
142 r e t u r n s t
143 e l i f state_name == " Er ro r " :
144 s t = pyState . State_Base ()
145 s t . en ter (state_name)
146 r e t u r n s t
147 ra i se Except ion (" Unhandled State i n Factory ")
148
149 def en ter (s e l f , pump_l ist , thermostat , ca lo r ime te r , calodata , ope ra t i ng_po in t_s t ra tegy) :
150 super () . en ter (" L is t_Process ing ")
151 p r i n t (" en te r i ng s ta te L is t_Process ing ")
152 s e l f . tab = [
153 [" Set_Operat ing_Point " , " next " , " Operat ing "] ,
154 [" Operat ing " , " next " , " Set_Operat ing_Point "] ,
155 [" Operat ing " , " e r r o r " , " E r ro r "] ,
156]
157 s e l f . pump_l is t = pump_l is t
158 s e l f . thermosta t = thermosta t
159 s e l f . ca l o r ime te r = ca lo r ime te r
160 s e l f . fac = L is t_Process ing . f a c t o r y (pump_l ist , thermostat , ca lo r ime te r , calodata , ope ra t i ng_po in t_s t ra tegy)
161 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Set_Operat ing_Point ")
162 s e l f . en . en ter ()
163
164 def __ca l l__ (s e l f) :
165 f o r i tm i n s e l f . pump_l is t :
166 i tm . t i c k ()
167 s e l f . thermosta t . t i c k ()
168 s e l f . ca l o r ime te r . t i c k ()
169
170 s e l f . en . t i c k ()
171
172 i f s e l f . thermosta t . ge t_s ta te () == " Er ro r " :
173 r e t u r n " e r ro r_ the rmos ta t "

September 2021 71

TU Graz 8 Appendix

174
175 i f s e l f . ca l o r ime te r . ge t_s ta te () == " Er ro r " :
176 r e t u r n " e r r o r _ c a l o r i m e t e r "
177
178 f o r i tm i n s e l f . pump_l is t :
179 i f i tm . ge t_s ta te () == " Er ro r " :
180 r e t u r n " error_pump "
181
182 i f s e l f . en . ge t_s ta te () == " Er ro r " :
183 r e t u r n " e r r o r "
184
185 i f s e l f . en . ge t_s ta te () == " F in ished " :
186 r e t u r n " next "
187
188 def e x i t (s e l f) :
189 s e l f . en . e x i t ()
190 super () . e x i t ()
191
192 c lass Deac t i va t i ng (pyState . State_Base) :
193 " " " This s ta te f i r s t swi tches o f f the pumps and then the thermosta t . I t i s used f o r the regu la r shutdown as we l l as f o r

the e r r o r shutdown . " " "
194 def en ter (s e l f , state_name , leave_thermostat_on , pump_l ist , thermostat , ca lo r ime te r , ope ra t i ng_po in t_s t ra tegy ,

nex t_s ta te) :
195 super () . en ter (state_name)
196 p r i n t (" en te r i ng s ta te " , state_name)
197
198 i f state_name . f i n d (" E r ro r ") != −1:
199 i f state_name == " Shutdown_Error_Pump " :
200 f o r i tm i n pump_l is t :
201 i f i tm . ge t_s ta te () == " Er ro r " :
202 p r i n t (next_s ta te , " from pump" , i tm . get_name ())
203 else :
204 p r i n t (nex t_s ta te)
205
206 s e l f . leave_thermostat_on = leave_thermostat_on
207 s e l f . pump_l is t = pump_l is t
208 s e l f . thermosta t = thermosta t
209 s e l f . ca l o r ime te r = ca lo r ime te r
210 s e l f . nex t_s ta te = nex t_s ta te
211
212 s e l f . counter = 0
213 f o r i tm i n s e l f . pump_l is t :
214 i tm . deactivate_pump ()
215
216 ope ra t i ng_po in t_s t ra tegy . g e t _ f i n i s h _ i n s t r u c t i o n ()
217
218 def __ca l l__ (s e l f) :
219
220 f o r i tm i n s e l f . pump_l is t :
221 i tm . t i c k ()
222
223 s e l f . thermosta t . t i c k ()
224 s e l f . ca l o r ime te r . t i c k ()
225
226 i f s e l f . name == s e l f . nex t_s ta te :
227 r e t u r n None
228
229 i f s e l f . counter == 0:
230 f o r i tm i n s e l f . pump_l is t :
231 i f not (i tm . ge t_s ta te () == " Deact ivated " or i tm . ge t_s ta te () == " Er ro r ") :
232 r e t u r n None
233
234 i f s e l f . leave_thermostat_on :
235 s e l f . name = s e l f . nex t_s ta te
236 r e t u r n None
237 else :
238 s e l f . counter = 1
239 r e t u r n None
240
241 i f s e l f . counter == 1:
242 s e l f . thermosta t . deactivate_pump ()
243 s e l f . counter = 2
244 r e t u r n None
245
246 i f s e l f . counter == 2:
247 i f not (s e l f . thermosta t . ge t_s ta te () == " Deact ivated " or s e l f . thermosta t . ge t_s ta te () == " Er ro r ") :
248 r e t u r n None
249 else :
250 s e l f . name = s e l f . nex t_s ta te
251 r e t u r n None
252
253 # generate the d r i v e r s :
254 def generate_hplc (name, por t , c a l i b r a t i o n _ f u n c , head , _PMin_ = None , _PMax_ = None) :
255 i f head i s None :
256 ra i se Except ion ("No pump head i s given ")
257 s e t t i n g s = HPLC. Dr i ve r . Se t t i ngs (head)
258 i f not _PMin_ i s None and not _PMax_ i s None :
259 s e t t i n g s . set_PMinMax (_PMin_ , _PMax_)
260
261 ch = Communication . Handle (por t , 9600 , Communication . Handle .PARITY_NONE, 1)
262 r e t u r n HPLC. Dr i ve r (name, se t t i ngs , c a l i b r a t i o n _ f u n c , ch) # HPLC. dummy_cmd_handle ())
263
264 def generate_lambda (name, por t , c a l i b r a t i o n _ f u n c , address) :
265 ch = Communication . Handle (por t , 2400 , Communication . Handle .PARITY_ODD, 1)
266 r e t u r n Lambda . Dr i ve r (name, address , c a l i b r a t i o n _ f u n c , ch) # Lambda . dummy_cmd_handle ())

72 September 2021

8.1 Application Code TU Graz

267
268 def genera te_ f i she r (por t , _pump_speed = None , _ext_probe = None) :
269 s e t t i n g s = Fisher . D r i ve r . Se t t i ngs ()
270 i f not _pump_speed i s None :
271 s e t t i n g s . set_pump_speed (_pump_speed)
272 i f not _ext_probe i s None :
273 s e t t i n g s . se t_ex terna l_probe (_ext_probe)
274
275 ch = Communication . Handle (por t , 9600 , Communication . Handle .PARITY_NONE, 1)
276 r e t u r n F isher . D r i ve r (" F isher " , se t t i ngs , ch) # F isher . dummy_cmd_handle ())
277
278 def genera te_ca lo r imeter (por t , d a t a l i s t) :
279 ch = Communication . Handle (por t , 9600 , Communication . Handle .PARITY_NONE, 1)
280 r e t u r n Calor imeter . D r i ve r (" Calo " , d a t a l i s t , ch)
281
282 def i n i t i a l i z e _ t h e r m o s t a t (t h e r m o s t a t _ s p e c i f i c a t i o n) :
283 i f len (t h e r m o s t a t _ s p e c i f i c a t i o n) == 0:
284 ra i se Except ion (" There i s no given s p e c i f i c a t i o n f o r the thermosta t ")
285 i f len (t h e r m o s t a t _ s p e c i f i c a t i o n) == 1:
286 r e t u r n genera te_ f i she r (t h e r m o s t a t _ s p e c i f i c a t i o n [0])
287
288 _pump_speed = None
289 _ext_probe = None
290
291 num = len (t h e r m o s t a t _ s p e c i f i c a t i o n) −1
292 f o r idx i n range (num) :
293 i f type (t h e r m o s t a t _ s p e c i f i c a t i o n [i dx +1]) == s t r :
294 _pump_speed = t h e r m o s t a t _ s p e c i f i c a t i o n [i dx +1]
295 e l i f type (t h e r m o s t a t _ s p e c i f i c a t i o n [i dx +1]) == i n t or type (t h e r m o s t a t _ s p e c i f i c a t i o n [i dx +1]) == f l o a t :
296 _ext_probe = t h e r m o s t a t _ s p e c i f i c a t i o n [i dx +1]
297 else :
298 ra i se Except ion (" Given thermosta t s e t t i n g cannot be handled ")
299
300 r e t u r n genera te_ f i she r (t h e r m o s t a t _ s p e c i f i c a t i o n [0] , _pump_speed , _ext_probe)
301
302 def i n i t i a l i z e _ s i n g l e _ p u m p d r i v e r (pump_cfg_entry) :
303 leng th = len (pump_cfg_entry)
304 i f l eng th < 2:
305 ra i se Except ion (" I n v a l i d l i s t en t r y ")
306
307 pump_name = pump_cfg_entry [0]
308
309 i f pump_name == "HPLC A" or pump_name == "HPLC B" or pump_name == "HPLC C" :
310 i f l eng th == 2:
311 r e t u r n generate_hplc (pump_name, pump_cfg_entry [1] , D i c t i o n a r y . pump_ca l ib ra t ion [pump_name] , D i c t i o n a r y . pump_head

[pump_name])
312 i f l eng th == 4:
313 r e t u r n generate_hplc (pump_name, pump_cfg_entry [1] , D i c t i o n a r y . pump_ca l ib ra t ion [pump_name] , D i c t i o n a r y . pump_head

[pump_name] , pump_cfg_entry [2] , pump_cfg_entry [3])
314 ra i se Except ion (" I n v a l i d l i s t en t r y ")
315
316 i f pump_name == "Lambda 1 " or pump_name == "Lambda 2 " or pump_name == "Lambda 3 " :
317 r e t u r n generate_lambda (pump_name, pump_cfg_entry [1] , D i c t i o n a r y . pump_ca l ib ra t ion [pump_name] , D i c t i o n a r y .

lambda_address [pump_name])
318 ra i se Except ion (" I n v a l i d l i s t en t r y ")
319
320 def i n i t i a l i z e _ a l l _ p u m p d r i v e r s (pump_l is t) :
321
322 r e t = []
323 f o r i tm i n pump_l is t :
324 r e t . append (i n i t i a l i z e _ s i n g l e _ p u m p d r i v e r (i tm))
325 r e t u r n r e t
326
327 # s ta te machine c lass f o r the au tomat i za t ion :
328 c lass mat i za t i on :
329
330 c lass f a c t o r y :
331 def _ _ i n i t _ _ (s e l f , ope ra t i ng_po in t_s t ra tegy , pump_l ist , thermostat , ca lo r ime te r , ca lodata) :
332 s e l f . ope ra t i ng_po in t_s t ra tegy = ope ra t i ng_po in t_s t ra tegy
333 s e l f . pump_l is t = pump_l is t
334 s e l f . thermosta t = thermosta t
335 s e l f . ca l o r ime te r = ca lo r ime te r
336 s e l f . ca lodata = calodata
337
338 def c rea te_s ta te (s e l f , state_name) :
339 i f state_name == " App ly_Conf igura t ion " :
340 s t = App ly_Conf igura t ion ()
341 s t . en ter (s e l f . pump_l ist , s e l f . thermostat , s e l f . ca lo r ime te r , s e l f . ca lodata)
342 r e t u r n s t
343 e l i f state_name == " L is t_Process ing " :
344 s t = L is t_Process ing ()
345 s t . en ter (s e l f . pump_l ist , s e l f . thermostat , s e l f . ca lo r ime te r , s e l f . calodata , s e l f . ope ra t i ng_po in t_s t ra tegy)
346 r e t u r n s t
347 e l i f state_name == " Fin ished " :
348 s t = Deac t i va t i ng ()
349 s t . en ter (" Shutdown_ { } " . format (state_name) , False , s e l f . pump_l ist , s e l f . thermostat , s e l f . ca lo r ime te r , s e l f .

ope ra t i ng_po in t_s t ra tegy , state_name)
350 r e t u r n s t
351 e l i f state_name == " Er ro r " or state_name == " Er ro r_Ca lo r imete r " or state_name == " Error_Thermostat " or

state_name == " Error_Pump " :
352 s t = Deac t i va t i ng ()
353 s t . en ter (" Shutdown_ { } " . format (state_name) , False , s e l f . pump_l ist , s e l f . thermostat , s e l f . ca lo r ime te r , s e l f .

ope ra t i ng_po in t_s t ra tegy , state_name)
354 r e t u r n s t

September 2021 73

TU Graz 8 Appendix

355 ra i se Except ion (" Unhandled State i n Factory ")
356
357 def _ _ i n i t _ _ (s e l f , ope ra t i ng_po in t_s t ra tegy , User_Pumps , User_Fisher , Portname_Calorimeter) :
358 s e l f . tab = [
359 [" App ly_Conf igura t ion " , " next " , " L is t_Process ing "] ,
360 [" L is t_Process ing " , " next " , " F in ished "] ,
361
362 [" App ly_Conf igura t ion " , " e r r o r _ c a l o r i m e t e r " , " Er ro r_Ca lo r imete r "] ,
363 [" L is t_Process ing " , " e r r o r _ c a l o r i m e t e r " , " Er ro r_Ca lo r imete r "] ,
364
365 [" App ly_Conf igura t ion " , " e r ro r_ the rmos ta t " , " Error_Thermostat "] ,
366 [" L is t_Process ing " , " e r ro r_ the rmos ta t " , " Error_Thermostat "] ,
367
368 [" App ly_Conf igura t ion " , " error_pump " , " Error_Pump "] ,
369 [" L is t_Process ing " , " error_pump " , " Error_Pump "] ,
370
371 [" App ly_Conf igura t ion " , " e r r o r " , " E r ro r "] ,
372 [" L is t_Process ing " , " e r r o r " , " E r ro r "] ,
373]
374
375 s e l f . ca lodata = []
376
377 s e l f . thermosta t = i n i t i a l i z e _ t h e r m o s t a t (User_Fisher)
378 s e l f . ca l o r ime te r = genera te_ca lo r imeter (Portname_Calorimeter , s e l f . ca lodata)
379 s e l f . pump_l is t = i n i t i a l i z e _ a l l _ p u m p d r i v e r s (User_Pumps)
380
381 s e l f . fac = mat i za t i on . f a c t o r y (ope ra t i ng_po in t_s t ra tegy , s e l f . pump_l ist , s e l f . thermostat , s e l f . ca lo r ime te r , s e l f .

ca lodata)
382 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " App ly_Conf igura t ion ")
383 s e l f . en . en ter ()
384
385 def t i c k (s e l f) :
386 s e l f . en . t i c k ()
387
388 def __del__ (s e l f) :
389 s e l f . en . e x i t ()
390
391 def ge t_s ta te (s e l f) :
392 r e t u r n s e l f . en . ge t_s ta te ()

Listing 11: The Auto.py file corresponds to the context of the strategy pattern and is therefore

responsible for the execution of the individual strategies.

8.1.2 Calibration.py

1 # This f i l e conta ins c lasses wi th the corresponding c a l i b r a t i o n
2 # f o r each device . The c a l i b r a t i o n values are s p e c i f i e d i n the
3 # d i c t i o n a r y .
4 c lass Pumps :
5 def _ _ i n i t _ _ (s e l f , c a l i _ v a l) :
6 s e l f . c a l i _ v a l = c a l i _ v a l
7
8 def __ca l l__ (s e l f , value) :
9 r e t u r n value * s e l f . c a l i _ v a l

10
11 def forward (s e l f , value) :
12 r e t u r n value * s e l f . c a l i _ v a l
13
14 def backward (s e l f , value) :
15 r e t u r n value / s e l f . c a l i _ v a l
16
17 c lass Thermostat :
18 " " " This c lass ensures t h a t the c o r r e c t temperature i s se lec ted a t the thermosta t f o r a given set temperature o f the

ca lo r ime te r . " " "
19 def _ _ i n i t _ _ (s e l f , l o w e r _ l i m i t , upper_ l im i t , l i s t) :
20 s e l f . l i s t = sor ted (l i s t , key=lambda en t ry : en t ry [0])
21 s e l f . u p p e r _ l i m i t = u p p e r _ l i m i t
22 s e l f . l o w e r _ l i m i t = l o w e r _ l i m i t
23
24 def forward (s e l f , value) :
25 i f value < s e l f . l o w e r _ l i m i t :
26 ra i se Except ion (" Ca lor imeter set temperature i s too low ")
27 i f not value <= s e l f . u p p e r _ l i m i t :
28 ra i se Except ion (" Ca lor imeter set temperature i s too high ")
29
30 f o r i tm i n s e l f . l i s t :
31 i f value <= i tm [0] :
32 r e t u r n i tm [1]
33
34 ra i se Except ion (" Given set temperature i s above the given c a l i b r a t i o n tab l e ")
35
36 c lass Calor imeter :
37 def _ _ i n i t _ _ (s e l f , l i s t) :
38 s e l f . l i s t = l i s t
39 i f not len (s e l f . l i s t) == 3:
40 ra i se Except ion (" Given parameter l i s t i s incomplete ")
41
42 def forward (s e l f , v a l u e _ l i s t) :
43 tmp = []

74 September 2021

8.1 Application Code TU Graz

44
45 i f not len (v a l u e _ l i s t) == 3:
46 ra i se Except ion (" Given eva lua t i on data l i s t i s incomplete ")
47
48 f o r idx i n range (3) :
49 tmp . append ((s e l f . l i s t [i dx] [0] * v a l u e _ l i s t [i dx] * v a l u e _ l i s t [i dx]+ s e l f . l i s t [i dx] [1] * v a l u e _ l i s t [i dx]+ s e l f . l i s t [i dx

] [2]) * (−1))
50
51 r e t u r n tmp

Listing 12: The Calibration.py file contains the calibration equation for the pumps, calorimeter and

calorimeter-thermostat combination.

8.1.3 Calorimeter.py

1 # This f i l e conta ins the d r i v e r c lass f o r the ca lo r ime te r and the
2 # requ i red s ta te classes , which can be assigned to the laye rs (A)
3 # and (B) .
4
5 # l i b r a r y / modules from python :
6 impor t math
7 impor t os
8 impor t re
9 impor t t ime

10
11 # own s c r i p t s :
12 impor t pyState
13
14 # laye r (B) s ta tes :
15 c lass Read_Data (pyState . State_Base) :
16 " " " This s ta te quer ies and s to res the data from the ca lo r ime te r . " " "
17 def en ter (s e l f , name, path , d a t a l i s t , t imeout_er ror_s , t imeout_check_s , com_handle) :
18 super () . en ter (name)
19 s e l f . com_handle = com_handle
20 s e l f . pa t te rn_va lues = re . compile (r " (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S+) \ t (\ S

+) \ t (\ S+) \ t (\ S+) . * [\ r \ n] ")
21 s e l f . pa t te rn_ l ine_comple te = re . compile (r " (. +) \ n ")
22
23 s e l f . dead l i ne_e r ro r_de l t a = t imeout_er ro r_s * 1E9
24 s e l f . dead l i ne_e r ro r = t ime . monotonic_ns () + s e l f . dead l i ne_e r ro r_de l t a
25 s e l f . deadl ine_check = t ime . monotonic_ns () + t imeout_check_s * 1E9
26
27 s e l f . d a t a l i s t = d a t a l i s t
28 s e l f . out_path = path
29 s e l f . c u r r e n t _ l i n e = " "
30
31 def __ca l l__ (s e l f) :
32 s e l f . c u r r e n t _ l i n e = s e l f . c u r r e n t _ l i n e + s e l f . com_handle . rece ive () . decode (’ u t f −8 ’)
33 tmp = s e l f . pa t te rn_ l ine_comple te . match (s e l f . c u r r e n t _ l i n e)
34
35 whi le not tmp i s None :
36 s e l f . dead l i ne_e r ro r = t ime . monotonic_ns () + s e l f . dead l i ne_e r ro r_de l t a
37 tmp_val = s e l f . pa t te rn_va lues . match (tmp . group (0))
38 i f not tmp_val i s None :
39 wi th open (s e l f . out_path , ’ a ’) as f o u t :
40 f o u t . w r i t e (tmp . group (1))
41
42 l i n e = []
43 f o r idx i n range (11) :
44 l i n e . append (f l o a t (tmp_val . group (idx +1)))
45 s e l f . d a t a l i s t . append (l i n e)
46
47 s e l f . c u r r e n t _ l i n e = s e l f . c u r r e n t _ l i n e [tmp . end () :]
48 tmp = s e l f . pa t te rn_ l ine_comple te . match (s e l f . c u r r e n t _ l i n e)
49
50 i f s e l f . deadl ine_check < t ime . monotonic_ns () :
51 r e t u r n " check "
52 i f s e l f . dead l i ne_e r ro r < t ime . monotonic_ns () :
53 r e t u r n " e r r o r "
54 r e t u r n None
55
56 c lass Check_Set_Temp (pyState . State_Base) :
57 " " " This s ta te checks the set temperature . " " "
58 def en ter (s e l f , name, d a t a l i s t , set_Temp) :
59 super () . en ter (name)
60 s e l f . l is t_Temp = f l o a t (d a t a l i s t [len (d a t a l i s t) − 1] [1])
61 s e l f . set_Temp = set_Temp
62
63 def __ca l l__ (s e l f) :
64 i f math . isnan (s e l f . set_Temp [0]) :
65 r e t u r n " next "
66 i f f l o a t (s e l f . set_Temp [0]) == s e l f . l is t_Temp :
67 r e t u r n " next "
68 r e t u r n " e r r o r "
69
70 # laye r (A) s ta tes :
71 c lass Clear (pyState . State_Base) :
72 " " " This s ta te ensures a proper s t a r t i n g po in t f o r the ca lo r ime te r . " " "
73 def en ter (s e l f , name, path , com_handle) :

September 2021 75

TU Graz 8 Appendix

74 super () . en ter (name)
75 s e l f . com_handle = com_handle
76 s e l f . out_path = path
77
78 def __ca l l__ (s e l f) :
79 i f os . path . i s f i l e (s e l f . out_path) :
80 os . remove (s e l f . out_path)
81
82 s e l f . com_handle . c l e a r _ i n p u t _ b u f f e r ()
83
84 r e t u r n " next "
85
86 c lass Read_And_Check (pyState . State_Base) :
87 " " " This s ta te combines the substates " Read_Data " and " Check_Set_Temp " . " " "
88 c lass f a c t o r y :
89 def _ _ i n i t _ _ (s e l f , path , d a t a l i s t , set_Temp , com_handle) :
90 s e l f . d a t a l i s t = d a t a l i s t
91 s e l f . set_Temp = set_Temp
92 s e l f . com_handle = com_handle
93 s e l f . out_path = path
94
95 def c rea te_s ta te (s e l f , state_name) :
96 i f state_name == "Read" :
97 s t = Read_Data ()
98 s t . en ter (state_name , s e l f . out_path , s e l f . d a t a l i s t , 7 , 10 , s e l f . com_handle)
99 r e t u r n s t

100 e l i f state_name == " Check " :
101 s t = Check_Set_Temp ()
102 s t . en ter (state_name , s e l f . d a t a l i s t , s e l f . set_Temp)
103 r e t u r n s t
104 e l i f state_name == " Er ro r " :
105 s t = pyState . State_Base ()
106 s t . en ter (state_name)
107 r e t u r n s t
108 ra i se Except ion (" Unhandled State i n Factory ")
109
110 def en ter (s e l f , name, path , d a t a l i s t , target_Temp , set_Temp , com_handle) :
111 super () . en ter (name)
112 s e l f . target_Temp = target_Temp
113 s e l f . set_Temp = set_Temp
114 s e l f . tab = [
115 ["Read" , " check " , " Check "] ,
116 ["Read" , " e r r o r " , " E r ro r "] ,
117 [" Check " , " next " , "Read"] ,
118 [" Check " , " e r r o r " , " E r ro r "] ,
119]
120 s e l f . fac = Read_And_Check . f a c t o r y (path , d a t a l i s t , s e l f . set_Temp , com_handle)
121 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , "Read")
122 s e l f . en . en ter ()
123
124 def __ca l l__ (s e l f) :
125 s e l f . en . t i c k ()
126
127 i f s e l f . en . ge t_s ta te () == " Er ro r " :
128 r e t u r n " e r r o r "
129
130 i f not s e l f . en . ge t_s ta te () == "Read" :
131 r e t u r n None
132
133 i f math . i s f i n i t e (s e l f . target_Temp [0]) and not s e l f . target_Temp [0] == s e l f . set_Temp [0] :
134 s e l f . set_Temp [0] = s e l f . target_Temp [0]
135 r e t u r n " new_set_Temp "
136
137 def e x i t (s e l f) :
138 s e l f . en . e x i t ()
139 super () . e x i t ()
140
141 c lass Set_Temp (pyState . State_Base) :
142 " " " This s ta te sets a new set temperature a t the ca lo r ime te r . " " "
143 def en ter (s e l f , name, set_Temp , com_handle) :
144 super () . en ter (name)
145 s e l f . com_handle = com_handle
146 s e l f . set_Temp = set_Temp
147
148 def __ca l l__ (s e l f) :
149 i f math . isnan (s e l f . set_Temp [0]) :
150 r e t u r n " next "
151
152 t e x t = " <1 , { :02 .2 f } > " . format (f l o a t (s e l f . set_Temp [0]))
153 com = bytear ray (t e x t . encode (’ u t f −8 ’))
154 s e l f . com_handle . send (com)
155 r e t u r n " next "
156
157 # d r i v e r c lass f o r the ca lo r ime te r :
158 c lass Dr i ve r :
159
160 c lass f a c t o r y :
161 def _ _ i n i t _ _ (s e l f , d a t a l i s t , target_Temp , set_Temp , com_handle) :
162 s e l f . target_Temp = target_Temp
163 s e l f . set_Temp = set_Temp
164 s e l f . com_handle = com_handle
165
166 s e l f . d a t a l i s t = d a t a l i s t
167 s e l f . out_path = " t e s t . log "

76 September 2021

8.1 Application Code TU Graz

168
169 def c rea te_s ta te (s e l f , state_name) :
170 i f state_name == " Clear " :
171 s t = Clear ()
172 s t . en ter (state_name , s e l f . out_path , s e l f . com_handle)
173 r e t u r n s t
174 e l i f state_name == " Read_And_Check " :
175 s t = Read_And_Check ()
176 s t . en ter (state_name , s e l f . out_path , s e l f . d a t a l i s t , s e l f . target_Temp , s e l f . set_Temp , s e l f . com_handle)
177 r e t u r n s t
178 e l i f state_name == " Set_Temp " :
179 s t = Set_Temp ()
180 s t . en ter (state_name , s e l f . set_Temp , s e l f . com_handle)
181 r e t u r n s t
182 e l i f state_name == " Er ro r " :
183 s t = pyState . State_Base ()
184 s t . en ter (state_name)
185 r e t u r n s t
186 ra i se Except ion (" Unhandled State i n Factory ")
187
188 def _ _ i n i t _ _ (s e l f , name, d a t a l i s t , com_handle) :
189 s e l f . name = name
190 s e l f . tab = [
191 [" Clear " , " next " , " Read_And_Check "] ,
192 [" Read_And_Check " , " new_set_Temp " , " Set_Temp "] ,
193 [" Read_And_Check " , " e r r o r " , " E r ro r "] ,
194 [" Set_Temp " , " next " , " Read_And_Check "] ,
195]
196 s e l f . target_Temp = [f l o a t (" nan ")]
197 s e l f . set_Temp = [f l o a t (" nan ")]
198
199 s e l f . fac = Dr i ve r . f a c t o r y (d a t a l i s t , s e l f . target_Temp , s e l f . set_Temp , com_handle)
200 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Clear ")
201 s e l f . en . en ter ()
202
203 def t i c k (s e l f) :
204 s e l f . en . t i c k ()
205
206 def __del__ (s e l f) :
207 s e l f . en . e x i t ()
208
209 def ge t_s ta te (s e l f) :
210 r e t u r n s e l f . en . ge t_s ta te ()
211
212 def get_name (s e l f) :
213 r e t u r n s e l f . name
214
215 # In the fo l l ow ing , the f u n c t i o n s are def ined to ob ta in the s e t t i n g s f o r the ca lo r ime te r (from outs ide) .
216 def set_target_Temp (s e l f , va l) :
217 s e l f . target_Temp [0] = va l

Listing 13: The Calorimeter.py file contains its corresponding device driver and can be used to operate

this device.

8.1.4 Communication.py

1 # This f i l e conta ins the s e r i a l i n t e r f a c e . For t h i s purpose , the
2 # l i b r a r y " s e r i a l " i s used and adapted i n the c lass " Handle " f o r
3 # the own a p p l i c a t i o n .
4
5 # l i b r a r y / modules from python :
6 impor t s e r i a l
7
8 c lass Handle :
9 PARITY_NONE = s e r i a l .PARITY_NONE

10 PARITY_EVEN = s e r i a l .PARITY_EVEN
11 PARITY_ODD = s e r i a l .PARITY_ODD
12
13 def _ _ i n i t _ _ (s e l f , por t , baudrate , p a r i t y , s t o p b i t s) :
14 s e l f . com = s e r i a l . S e r i a l (por t , baudrate , 8 , p a r i t y , s t opb i t s , t imeout =0)
15
16 def c l e a r _ i n p u t _ b u f f e r (s e l f) :
17 s e l f . com. r e s e t _ i n p u t _ b u f f e r ()
18
19 def send (s e l f , msg) :
20 s e l f . com. w r i t e (msg)
21
22 def rece ive (s e l f) :
23 ans = s e l f . com. read (100)
24 r e t u r n ans

Listing 14: In the Communication.py file, the library for serial communication available in Python is

adapted for own purposes.

September 2021 77

TU Graz 8 Appendix

8.1.5 Dictionary.py

1 # This f i l e conta ins general s e t t i n g s and values t h a t do not have to be
2 # changed every t ime the a p p l i c a t i o n i s run , but i t i s s t i l l convenient to
3 # be able to change these values .
4
5 # own s c r i p t s :
6 impor t C a l i b r a t i o n
7
8 pump_ca l ib ra t ion = {
9 "HPLC A" : C a l i b r a t i o n . Pumps(1000) ,

10 "HPLC B" : C a l i b r a t i o n . Pumps(1000) ,
11 "HPLC C" : C a l i b r a t i o n . Pumps(1000) ,
12 "Lambda 1 " : C a l i b r a t i o n . Pumps(20.117) ,
13 "Lambda 2 " : C a l i b r a t i o n . Pumps(80.265) ,
14 "Lambda 3 " : C a l i b r a t i o n . Pumps(20.294) ,
15 }
16
17 ca lo r ime te r_ the rmos ta t = {
18 " c a l i b r a t i o n " : C a l i b r a t i o n . Thermostat (25 , 40 , [[2 5 , 2 6] , [30 , 34] , [35 , 40] , [40 , 4 6]]) ,
19 " 40 " : C a l i b r a t i o n . Ca lor imeter ([[0 . 7 6 1 8 , 7.8524 , 0 .2782] , [0 .7157 , 7.8297 , 0 .2332] , [0 .4186 , 8.2974 , 0 . 2 7 7 5]]) ,
20 " 35 " : C a l i b r a t i o n . Ca lor imeter ([[0 . 4 9 2 1 , 8.3027 , 0 .1518] , [0 .6368 , 8.1373 , 0 .1511] , [0 .3782 , 8.5837 , 0 . 1 5 8 0]]) ,
21 " 30 " : C a l i b r a t i o n . Ca lor imeter ([[0 . 9 2 1 7 , 8.0548 , 0 .0291] , [0 .6194 , 8.1511 , 0 .0944] , [0 .7441 , 8.3637 , 0 . 0 4 2 0]]) ,
22 " 25 " : C a l i b r a t i o n . Ca lor imeter ([[0 . 6 5 1 8 , 8.3911 , −0.0598] , [0 .4091 , 8.5318 , 0 .0261] , [0 .4039 , 8.7333 , −0 .0475]]) ,
23 }
24
25 pump_head = {
26 "HPLC A" : 50 ,
27 "HPLC B" : 50 ,
28 "HPLC C" : 10 ,
29 }
30
31 lambda_address = {
32 "Lambda 1 " : 2 ,
33 "Lambda 2 " : 2 ,
34 "Lambda 3 " : 2 ,
35 }
36
37 c a l c u l a t i o n_ da t a = {
38 " concen t ra t i on " : 0.997/18.015*1000 , # mol / l
39 " cp " : 75.336 , # J / (molK)
40 }

Listing 15: The Dictionary.py file contains some basic interchangeable parameters.

8.1.6 Excel_Functions.py

1 # This f i l e conta ins a f u n c t i o n t h a t creates an Excel f i l e f o r
2 # the OCAE (Output Ca l cu l a t i on Absolute Eva lua t ion) s t r a tegy .
3 # The created Excel f i l e a l ready conta ins a l l headings and
4 # substance data .
5
6 # l i b r a r y / modules from python :
7 from openpyxl impor t Workbook
8
9 # own s c r i p t s :

10 impor t D i c t i o n a r y
11
12 def create_exce l (substance_data , f i le_name) :
13 wb = Workbook ()
14
15 # create a l l sheets
16 sheet = []
17 sheet_names = [" Eva lua t ion " , "Raw_Data_COM"]
18
19 sheet . append (wb . a c t i v e)
20 sheet [0] . t i t l e = sheet_names [0]
21 sheet . append (wb . create_sheet (sheet_names [1]))
22
23 # setup the eva lua t i on sheet
24 counter = 1
25 re t_coun te r = []
26
27 t i t l e = [[" Substance Data "] , [" Process setup "] , ["Raw Data Processing "] , [" Ca l cu l a t i on "]]
28 data = [[" Substance " , " Molar Mass [g / mol] " , " Weighing [g] " , " Volume [ml] " , " Concent ra t ion [mol / l] "] ,
29 [" Process Poin ts " , " Eva lua t ion S t a r t Time " , " Eva lua t ion End Time " , "V_A [ml / min] " , "V_A, act [ml / min] " , "n_A , ac t

[mol / s] " , "n_A , act , water [mol / s] " , "V_B [ml / min] " , "V_B, ac t [ml / min] " , "n_B , ac t [mol / s] " , "n_B , act , water [mol / s] "] ,
30 [" Process Poin ts " , "T_A [◦C] " , "T_B [◦C] " , " T_out [◦C] " , " Upre [V] " , " Ur1 [V] " , " Ur2 [V] " , "dT_A [◦C] " , "dT_B [

◦C] " , " dT_out [◦C] " , "Q_Out [W] "] ,
31 [" Process Poin ts " , "Q_A [W] " , "Q_B [W] " , " Qpre [W] − cp f l u x " , "QSE, pre [W] " , " Qr1 [W] " , " Qr2 [W] " , " dHr [kJ /

mol] "]]
32
33 f o r idx i n range (4) :
34 sheet [0] . append (t i t l e [i dx])
35 sheet [0] . append (data [i dx])
36 counter += 2
37 re t_coun te r . append ([counter −2 , counter , len (data [i dx])])
38
39 # i n s e r t substance data to the eva lua t i on sheet
40 sheet [0] . inser t_ rows (idx =3 , amount = 3)
41 f o r idx i n range (2) :

78 September 2021

8.1 Application Code TU Graz

42 sheet [0] . c e l l (row= idx +3 , column=1) . value = chr (i dx +97)
43 sheet [0] . c e l l (row= idx +3 , column=2) . value = substance_data . get_molar_mass () [i dx]
44 sheet [0] . c e l l (row= idx +3 , column=3) . value = substance_data . get_weighing () [i dx]
45 sheet [0] . c e l l (row= idx +3 , column=4) . value = substance_data . get_volume () [i dx]
46 sheet [0] . c e l l (row= idx +3 , column=5) . value = substance_data . ge t_concen t ra t ion () [i dx]
47
48 sheet [0] . c e l l (row=2 , column=8) . value = " A d d i t i o n a l data "
49 sheet [0] . c e l l (row=3 , column=8) . value = " concen t ra t i on [mol / l] "
50 sheet [0] . c e l l (row=3 , column=9) . value = D i c t i o n a r y . c a l c u l a t i o n_ d a t a [" concen t ra t i on "]
51 sheet [0] . c e l l (row=4 , column=8) . value = " cp [J / (molK)] "
52 sheet [0] . c e l l (row=4 , column=9) . value = D i c t i o n a r y . c a l c u l a t i o n_ d a t a [" cp "]
53
54 # remember a t which p o s i t i o n the t i t l e s are and where rows have to be inse r t ed l a t e r
55 sheet [0] . inser t_ rows (idx =8 , amount=1)
56 sheet [0] . inser t_ rows (idx =11 , amount=1)
57
58 va l = 3
59 f o r idx i n range (1 ,4) :
60 re t_coun te r [i dx] [0] += va l
61 re t_coun te r [i dx] [1] += va l
62 va l += 1
63 re t_coun te r [0] [1] = 5
64
65 # setup the eva lua t i on sheet
66 sheet [1] . append ([" Elapsed_Time " , " T_set " , " T_pre " , " T_r1 " , " T_r2 " , "T_A" , "T_B" , " T_out " , " U_pre " , " U_r1 " , " U_r2 "])
67
68 wb . save (" { } . x l sx " . format (f i le_name))
69
70 r e t u r n wb, sheet , re t_coun te r

Listing 16: The Excel_Functions.py contains the function, which is responsible for the setup of the

basic output file.

8.1.7 Fisher.py

1 # This f i l e conta ins the d r i v e r c lass f o r the F isher thermosta t and
2 # the f o l l o w i n g a d d i t i o n a l r e l evan t c lasses f o r the cons t r uc t i on and
3 # simple t e s t i n g o f the d r i v e r c lass : the dummy communication handle ,
4 # the response checkers and a l l l a ye r (A) s ta tes .
5
6 # l i b r a r y / modules from python :
7 impor t math
8 impor t re
9

10 # own s c r i p t s :
11 impor t LayerB
12 impor t pyState
13
14 # dummy communication handle :
15 c lass dummy_cmd_handle () :
16 " " " This c lass can be used f o r t e s t i n g the d r i v e r . Thus , no ac tua l F isher thermosta t i s needed . " " "
17 def _ _ i n i t _ _ (s e l f) :
18 s e l f . resp = "OK\ r \ n "
19 s e l f . va l = 0
20 s e l f . resp_RO = " 0 "
21 s e l f . resp_RPS = "M"
22 s e l f . resp_RE = " 0 "
23
24 def send (s e l f , msg) :
25 # p r i n t (msg)
26 i f msg . decode (" ASCII ") == "RO\ r " :
27 s e l f . resp = " { } \ r " . format (s e l f . resp_RO)
28 e l i f msg . decode (" ASCII ") == "SO 1\ r " :
29 s e l f . resp = "OK\ r \ n "
30 s e l f . resp_RO = " 1 "
31 e l i f msg . decode (" ASCII ") == "SO 0\ r " :
32 s e l f . resp = "OK\ r \ n "
33 s e l f . resp_RO = " 0 "
34 e l i f msg . decode (" ASCII ") == "STU C\ r " :
35 s e l f . resp = "OK\ r \ n "
36 e l i f msg . decode (" ASCII ") == "RTU\ r " :
37 s e l f . resp = "C\ r \ n "
38 e l i f msg . decode (" ASCII ") == "SPS M\ r " :
39 s e l f . resp = "OK\ r \ n "
40 s e l f . resp_RPS = "M"
41 e l i f msg . decode (" ASCII ") == "SPS L \ r " :
42 s e l f . resp = "OK\ r \ n "
43 s e l f . resp_RPS = " L "
44 e l i f msg . decode (" ASCII ") == "SPS H\ r " :
45 s e l f . resp = "OK\ r \ n "
46 s e l f . resp_RPS = "H"
47 e l i f msg . decode (" ASCII ") == "RPS\ r " :
48 s e l f . resp = " { } \ r " . format (s e l f . resp_RPS)
49 e l i f msg . decode (" ASCII ") == "SE 0\ r " :
50 s e l f . resp = "OK\ r \ n "
51 s e l f . resp_RE = " 0 "
52 e l i f msg . decode (" ASCII ") == "SE 1\ r " :
53 s e l f . resp = "OK\ r \ n "

September 2021 79

TU Graz 8 Appendix

54 s e l f . resp_RE = " 1 "
55 e l i f msg . decode (" ASCII ") == "RE\ r " :
56 s e l f . resp = " { } \ r " . format (s e l f . resp_RE)
57 e l i f msg . decode (" ASCII ") == "RS\ r " :
58 s e l f . resp = " { : . 1 f }C\ r " . format (s e l f . va l)
59 e l i f msg . decode (" ASCII ") == "SS 26 .0 \ r " :
60 s e l f . resp = "OK\ r \ n "
61 s e l f . va l = 26.0
62 e l i f msg . decode (" ASCII ") == "SS 25 .0 \ r " :
63 s e l f . resp = "OK\ r \ n "
64 s e l f . va l = 25.0
65
66 def c l e a r _ i n p u t _ b u f f e r (s e l f) :
67 # p r i n t (" . . . c l ea r . . . ")
68 r e t u r n
69 def rece ive (s e l f) :
70 # p r i n t (" . . . rece ive . . . { } " . format (s e l f . resp))
71 r e t u r n by tear ray (s e l f . resp . encode (" ASCII "))
72
73 # response checkers :
74 c lass check_response_base :
75 " " " This c lass forms the basis f o r a l l o ther response checkers . " " "
76 def _ _ i n i t _ _ (s e l f , resp) :
77 s e l f . resp = resp
78
79 def __ca l l__ (s e l f , ans) :
80 i f ans . decode (" ASCII ") == s e l f . resp :
81 r e t u r n True
82 r e t u r n False
83
84 c lass check_OK (check_response_base) :
85 def _ _ i n i t _ _ (s e l f) :
86 super () . _ _ i n i t _ _ ("OK")
87
88 c lass check_0 (check_response_base) :
89 def _ _ i n i t _ _ (s e l f) :
90 super () . _ _ i n i t _ _ (" 0 ")
91
92 c lass check_1 (check_response_base) :
93 def _ _ i n i t _ _ (s e l f) :
94 super () . _ _ i n i t _ _ (" 1 ")
95
96 c lass check_set_Temp (check_response_base) :
97 def _ _ i n i t _ _ (s e l f , resp) :
98 s e l f . resp = f l o a t (resp)
99

100 def __ca l l__ (s e l f , ans) :
101 answer = ans . decode (" ASCII ")
102 f i n d _ p a t t e r n = re . compile (r " ([\ d \ .] *) C")
103 i f not f i n d _ p a t t e r n . match (answer) i s None :
104 value = f l o a t (f i n d _ p a t t e r n . match (answer) . group (1))
105 else :
106 r e t u r n False
107
108 i f value == s e l f . resp :
109 r e t u r n True
110 r e t u r n False
111
112 # laye r (A) s ta tes :
113 c lass Deact ivated (pyState . State_Base) :
114 " " " This s ta te checks whether the pump of the thermosta t i s s t i l l swi tched o f f and whether the set temperature i s

c o r r e c t . A d i f f e r e n t se t temperature can be set and the pump can be a c t i v a t e d from outs ide . " " "
115 c lass f a c t o r y :
116 def _ _ i n i t _ _ (s e l f , set_temp , com_handle) :
117 s e l f . set_temp = set_temp
118 s e l f . com_handle = com_handle
119
120 def c rea te_s ta te (s e l f , state_name) :
121 i f state_name == " Check_Pump_State " :
122 s t = LayerB . Send_And_Check ()
123 s t . en ter (state_name , "RO" , check_0 () , s e l f . com_handle , 3)
124 r e t u r n s t
125 e l i f state_name == " Set_Temp " :
126 s t = LayerB . Send_And_Check ()
127 s t . en ter (state_name , "SS { : . 1 f } " . format (s e l f . set_temp [0]) , check_OK () , s e l f . com_handle , 3)
128 r e t u r n s t
129 e l i f state_name == "Check_Temp" :
130 s t = LayerB . Send_And_Check ()
131 s t . en ter (state_name , "RS" , check_set_Temp (s e l f . set_temp [0]) , s e l f . com_handle , 3)
132 r e t u r n s t
133 e l i f state_name == " Wai t ing " :
134 s t = LayerB . Delay_State ()
135 s t . en ter (state_name , 500 , " next ")
136 r e t u r n s t
137 e l i f state_name == " Er ro r " :
138 s t = pyState . State_Base ()
139 s t . en ter (state_name)
140 r e t u r n s t
141 ra i se Except ion (" Unhandled State i n Factory ")
142
143 def en ter (s e l f , name, target_temp , set_temp , com_handle) :
144 super () . en ter (name)
145 s e l f . target_temp = target_temp
146 s e l f . set_temp = set_temp

80 September 2021

8.1 Application Code TU Graz

147 s e l f . pump_on_flag = False
148
149 s e l f . tab = [
150 [" Check_Pump_State " , " next " , " Wai t ing "] ,
151 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
152 [" Wai t ing " , " next " , " Check_Pump_State "] ,
153 [" Wai t ing " , " new_temp " , " Set_Temp "] ,
154 [" Set_Temp " , " next " , "Check_Temp"] ,
155 [" Set_Temp " , " e r r o r " , " E r ro r "] ,
156 ["Check_Temp" , " next " , " Check_Pump_State "] ,
157 ["Check_Temp" , " e r r o r " , " E r ro r "] ,
158]
159 s e l f . fac = Deact ivated . f a c t o r y (set_temp , com_handle)
160 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Check_Pump_State ")
161 s e l f . en . en ter ()
162
163 def __ca l l__ (s e l f) :
164 s e l f . en . t i c k ()
165
166 i f s e l f . en . ge t_s ta te () == " Er ro r " :
167 r e t u r n " e r r o r "
168
169 i f not s e l f . en . ge t_s ta te () == " Wai t ing " :
170 r e t u r n None
171
172 i f math . i s f i n i t e (s e l f . target_temp [0]) and not s e l f . target_temp [0] == s e l f . set_temp [0] :
173 s e l f . set_temp [0] = s e l f . target_temp [0]
174 s e l f . en . handle_event (" new_temp ")
175 r e t u r n None
176 e l i f s e l f . pump_on_flag :
177 r e t u r n "pump_on"
178
179 def e x i t (s e l f) :
180 s e l f . en . e x i t ()
181 super () . e x i t ()
182
183 def handle_event (s e l f , event) :
184 i f event == " request_pump_on " :
185 s e l f . pump_on_flag = True
186 r e t u r n True
187 r e t u r n False
188
189 c lass Ac t i va ted (pyState . State_Base) :
190 " " " This s ta te checks whether the pump of the thermosta t i s s t i l l swi tched on and whether the set temperature i s c o r r e c t

. A d i f f e r e n t se t temperature can be set and the pump can be deac t i va ted from outs ide . " " "
191 c lass f a c t o r y :
192 def _ _ i n i t _ _ (s e l f , set_temp , com_handle) :
193 s e l f . set_temp = set_temp
194 s e l f . com_handle = com_handle
195
196 def c rea te_s ta te (s e l f , state_name) :
197 i f state_name == " Check_Pump_State " :
198 s t = LayerB . Send_And_Check ()
199 s t . en ter (state_name , "RO" , check_1 () , s e l f . com_handle , 3)
200 r e t u r n s t
201 e l i f state_name == " Set_Temp " :
202 s t = LayerB . Send_And_Check ()
203 s t . en ter (state_name , "SS { : . 1 f } " . format (s e l f . set_temp [0]) , check_OK () , s e l f . com_handle , 3)
204 r e t u r n s t
205 e l i f state_name == "Check_Temp" :
206 s t = LayerB . Send_And_Check ()
207 s t . en ter (state_name , "RS" , check_set_Temp (s e l f . set_temp [0]) , s e l f . com_handle , 3)
208 r e t u r n s t
209 e l i f state_name == " Wai t ing " :
210 s t = LayerB . Delay_State ()
211 s t . en ter (state_name , 500 , " next ")
212 r e t u r n s t
213 e l i f state_name == " Er ro r " :
214 s t = pyState . State_Base ()
215 s t . en ter (state_name)
216 r e t u r n s t
217 ra i se Except ion (" Unhandled State i n Factory ")
218
219 def en ter (s e l f , name, target_temp , set_temp , com_handle) :
220 super () . en ter (name)
221 s e l f . target_temp = target_temp
222 s e l f . set_temp = set_temp
223 s e l f . pump_off_f lag = False
224
225 s e l f . tab = [
226 [" Check_Pump_State " , " next " , " Wai t ing "] ,
227 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
228 [" Wai t ing " , " next " , "Check_Temp"] ,
229 [" Wai t ing " , " new_temp " , " Set_Temp "] ,
230 [" Set_Temp " , " next " , "Check_Temp"] ,
231 [" Set_Temp " , " e r r o r " , " E r ro r "] ,
232 ["Check_Temp" , " next " , " Check_Pump_State "] ,
233 ["Check_Temp" , " e r r o r " , " E r ro r "] ,
234]
235 s e l f . fac = Ac t i va ted . f a c t o r y (set_temp , com_handle)
236 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Check_Pump_State ")
237 s e l f . en . en ter ()
238

September 2021 81

TU Graz 8 Appendix

239 def __ca l l__ (s e l f) :
240 s e l f . en . t i c k ()
241
242 i f s e l f . en . ge t_s ta te () == " Er ro r " :
243 r e t u r n " e r r o r "
244
245 i f not s e l f . en . ge t_s ta te () == " Wai t ing " :
246 r e t u r n None
247
248 i f math . i s f i n i t e (s e l f . target_temp [0]) and not s e l f . target_temp [0] == s e l f . set_temp [0] :
249 s e l f . set_temp [0] = s e l f . target_temp [0]
250 s e l f . en . handle_event (" new_temp ")
251 r e t u r n None
252 e l i f s e l f . pump_off_f lag :
253 r e t u r n " pump_off "
254
255 def e x i t (s e l f) :
256 s e l f . en . e x i t ()
257 super () . e x i t ()
258
259 def handle_event (s e l f , event) :
260 i f event == " request_pump_off " :
261 s e l f . pump_off_f lag = True
262 r e t u r n True
263 r e t u r n False
264
265 c lass A c t i v a t i n g (pyState . State_Base) :
266 " " " This s ta te a c t i v a t e s the pump of the thermosta t and checks whether the switch −on has worked . " " "
267 c lass f a c t o r y :
268 def _ _ i n i t _ _ (s e l f , com_handle) :
269 s e l f . com_handle = com_handle
270
271 def c rea te_s ta te (s e l f , state_name) :
272 i f state_name == "Pump_On" :
273 s t = LayerB . Send_And_Check ()
274 s t . en ter (state_name , "SO 1 " , check_OK () , s e l f . com_handle , 3)
275 r e t u r n s t
276 e l i f state_name == " Check_Pump_State " :
277 s t = LayerB . Send_And_Check ()
278 s t . en ter (state_name , "RO" , check_1 () , s e l f . com_handle , 3)
279 r e t u r n s t
280 e l i f state_name == " Fin ished " :
281 s t = pyState . State_Base ()
282 s t . en ter (state_name)
283 r e t u r n s t
284 e l i f state_name == " Er ro r " :
285 s t = pyState . State_Base ()
286 s t . en ter (state_name)
287 r e t u r n s t
288 ra i se Except ion (" Unhandled State i n Factory ")
289
290 def en ter (s e l f , name, com_handle) :
291 super () . en ter (name)
292 s e l f . tab = [
293 ["Pump_On" , " next " , " Check_Pump_State "] ,
294 ["Pump_On" , " e r r o r " , " E r ro r "] ,
295 [" Check_Pump_State " , " next " , " F in ished "] ,
296 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
297]
298 s e l f . fac = A c t i v a t i n g . f a c t o r y (com_handle)
299 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , "Pump_On")
300 s e l f . en . en ter ()
301
302 def __ca l l__ (s e l f) :
303 s e l f . en . t i c k ()
304
305 i f s e l f . en . ge t_s ta te () == " F in ished " :
306 r e t u r n " next "
307 i f s e l f . en . ge t_s ta te () == " Er ro r " :
308 r e t u r n " e r r o r "
309
310 def e x i t (s e l f) :
311 s e l f . en . e x i t ()
312 super () . e x i t ()
313
314 c lass Deac t i va t i ng (pyState . State_Base) :
315 " " " This s ta te deac t i va tes the pump of the thermosta t and checks whether the shutdown has worked . " " "
316 c lass f a c t o r y :
317 def _ _ i n i t _ _ (s e l f , com_handle) :
318 s e l f . com_handle = com_handle
319
320 def c rea te_s ta te (s e l f , state_name) :
321 i f state_name == " Pump_Off " :
322 s t = LayerB . Send_And_Check ()
323 s t . en ter (state_name , "SO 0 " , check_OK () , s e l f . com_handle , 3)
324 r e t u r n s t
325 e l i f state_name == " Check_Pump_State " :
326 s t = LayerB . Send_And_Check ()
327 s t . en ter (state_name , "RO" , check_0 () , s e l f . com_handle , 3)
328 r e t u r n s t
329 e l i f state_name == " Fin ished " :
330 s t = pyState . State_Base ()
331 s t . en ter (state_name)
332 r e t u r n s t

82 September 2021

8.1 Application Code TU Graz

333 e l i f state_name == " Er ro r " :
334 s t = pyState . State_Base ()
335 s t . en ter (state_name)
336 r e t u r n s t
337 ra i se Except ion (" Unhandled State i n Factory ")
338
339 def en ter (s e l f , name, com_handle) :
340 super () . en ter (name)
341 s e l f . tab = [
342 [" Pump_Off " , " next " , " Check_Pump_State "] ,
343 [" Pump_Off " , " e r r o r " , " E r ro r "] ,
344 [" Check_Pump_State " , " next " , " F in ished "] ,
345 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
346]
347 s e l f . fac = Deac t i va t i ng . f a c t o r y (com_handle)
348 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Pump_Off ")
349 s e l f . en . en ter ()
350
351 def __ca l l__ (s e l f) :
352 s e l f . en . t i c k ()
353
354 i f s e l f . en . ge t_s ta te () == " F in ished " :
355 r e t u r n " next "
356 i f s e l f . en . ge t_s ta te () == " Er ro r " :
357 r e t u r n " e r r o r "
358
359 def e x i t (s e l f) :
360 s e l f . en . e x i t ()
361 super () . e x i t ()
362
363 c lass Con f i gu ra t i on (pyState . State_Base) :
364 " " " This s ta te deac t i va tes the pump of the thermosta t and ad jus ts a l l i n i t i a l s e t t i n g s . " " "
365 c lass f a c t o r y :
366 def _ _ i n i t _ _ (s e l f , se t t i ngs , com_handle) :
367 s e l f . s e t t i n g s = s e t t i n g s
368 s e l f . com_handle = com_handle
369
370 def c rea te_s ta te (s e l f , state_name) :
371 i f state_name == " Pump_Off " :
372 s t = LayerB . Send_And_Check ()
373 s t . en ter (state_name , "SO 0 " , check_OK () , s e l f . com_handle , 3)
374 r e t u r n s t
375 e l i f state_name == " Check_Pump_State " :
376 s t = LayerB . Send_And_Check ()
377 s t . en ter (state_name , "RO" , check_0 () , s e l f . com_handle , 3)
378 r e t u r n s t
379 e l i f state_name == " Set_Temp_Unit " :
380 s t = LayerB . Send_And_Check ()
381 s t . en ter (state_name , "STU C" , check_OK () , s e l f . com_handle , 3)
382 r e t u r n s t
383 e l i f state_name == " Check_Temp_Unit " :
384 s t = LayerB . Send_And_Check ()
385 s t . en ter (state_name , "RTU" , check_response_base ("C") , s e l f . com_handle , 3)
386 r e t u r n s t
387 e l i f state_name == " Set_Pump_Speed " :
388 s t = LayerB . Send_And_Check ()
389 s t . en ter (state_name , "SPS { } " . format (s e l f . s e t t i n g s . get_pump_speed ()) , check_OK () , s e l f . com_handle , 3)
390 r e t u r n s t
391 e l i f state_name == "Check_Pump_Speed" :
392 s t = LayerB . Send_And_Check ()
393 s t . en ter (state_name , "RPS" , check_response_base (s e l f . s e t t i n g s . get_pump_speed ()) , s e l f . com_handle , 3)
394 r e t u r n s t
395 e l i f state_name == " Set_External_Probe " :
396 s t = LayerB . Send_And_Check ()
397 s t . en ter (state_name , "SE { } " . format (s e l f . s e t t i n g s . get_externa l_probe ()) , check_OK () , s e l f . com_handle , 3)
398 r e t u r n s t
399 e l i f state_name == " Check_External_Probe " :
400 s t = LayerB . Send_And_Check ()
401 s t . en ter (state_name , "RE" , check_response_base (" { } " . format (s e l f . s e t t i n g s . get_externa l_probe ())) , s e l f .

com_handle , 3)
402 r e t u r n s t
403 e l i f state_name == " Fin ished " :
404 s t = pyState . State_Base ()
405 s t . en ter (state_name)
406 r e t u r n s t
407 e l i f state_name == " Er ro r " :
408 s t = pyState . State_Base ()
409 s t . en ter (state_name)
410 r e t u r n s t
411 ra i se Except ion (" Unhandled State i n Factory ")
412
413 def en ter (s e l f , name, se t t i ngs , com_handle) :
414 super () . en ter (name)
415 s e l f . tab = [
416 [" Pump_Off " , " next " , " Check_Pump_State "] ,
417 [" Pump_Off " , " e r r o r " , " E r ro r "] ,
418 [" Check_Pump_State " , " next " , " Set_Temp_Unit "] ,
419 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
420 [" Set_Temp_Unit " , " next " , " Check_Temp_Unit "] ,
421 [" Set_Temp_Unit " , " e r r o r " , " E r ro r "] ,
422 [" Check_Temp_Unit " , " next " , " Set_Pump_Speed "] ,
423 [" Check_Temp_Unit " , " e r r o r " , " E r ro r "] ,
424 [" Set_Pump_Speed " , " next " , "Check_Pump_Speed"] ,

September 2021 83

TU Graz 8 Appendix

425 [" Set_Pump_Speed " , " e r r o r " , " E r ro r "] ,
426 ["Check_Pump_Speed" , " next " , " Set_External_Probe "] ,
427 ["Check_Pump_Speed" , " e r r o r " , " E r ro r "] ,
428 [" Set_External_Probe " , " next " , " Check_External_Probe "] ,
429 [" Set_External_Probe " , " e r r o r " , " E r ro r "] ,
430 [" Check_External_Probe " , " next " , " F in ished "] ,
431 [" Check_External_Probe " , " e r r o r " , " E r ro r "] ,
432]
433 s e l f . fac = Con f i gu ra t i on . f a c t o r y (se t t i ngs , com_handle)
434 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Pump_Off ")
435 s e l f . en . en ter ()
436
437 def __ca l l__ (s e l f) :
438 s e l f . en . t i c k ()
439
440 i f s e l f . en . ge t_s ta te () == " F in ished " :
441 r e t u r n " next "
442 i f s e l f . en . ge t_s ta te () == " Er ro r " :
443 r e t u r n " e r r o r "
444
445 def e x i t (s e l f) :
446 s e l f . en . e x i t ()
447 super () . e x i t ()
448
449 # d r i v e r c lass f o r the F isher thermosta t :
450 c lass Dr i ve r :
451
452 c lass Se t t i ngs :
453 def _ _ i n i t _ _ (s e l f) :
454 s e l f . _pump_speed = " L "
455 s e l f . _ext_probe = 0
456
457 def get_pump_speed (s e l f) :
458 r e t u r n s e l f . _pump_speed
459 def get_externa l_probe (s e l f) :
460 r e t u r n s e l f . _ext_probe
461 def set_pump_speed (s e l f , va l) :
462 i f va l == ’ L ’ or va l == ’M ’ or va l == ’H ’ :
463 s e l f . _pump_speed = va l
464 r e t u r n
465 ra i se Except ion (" I n v a l i d value (L , M, H) ")
466 def se t_ex terna l_probe (s e l f , va l) :
467 i f va l == 0 or va l == 1:
468 s e l f . _ext_probe = va l
469 r e t u r n
470 ra i se Except ion (" I n v a l i d value (0 , 1) ")
471
472 c lass f a c t o r y :
473 def _ _ i n i t _ _ (s e l f , se t t i ngs , target_temp , set_temp , com_handle) :
474 s e l f . s e t t i n g s = s e t t i n g s
475 s e l f . target_temp = target_temp
476 s e l f . set_temp = set_temp
477 s e l f . com_handle = com_handle
478
479 def c rea te_s ta te (s e l f , state_name) :
480 i f state_name == " Con f i gu ra t i on " :
481 s t = Con f i gu ra t i on ()
482 s t . en ter (state_name , s e l f . se t t i ngs , s e l f . com_handle)
483 r e t u r n s t
484 e l i f state_name == " Deact ivated " :
485 s t = Deact ivated ()
486 s t . en ter (state_name , s e l f . target_temp , s e l f . set_temp , s e l f . com_handle)
487 r e t u r n s t
488 e l i f state_name == " Ac t i va ted " :
489 s t = Ac t i va ted ()
490 s t . en ter (state_name , s e l f . target_temp , s e l f . set_temp , s e l f . com_handle)
491 r e t u r n s t
492 e l i f state_name == " Deac t i va t i ng " :
493 s t = Deac t i va t i ng ()
494 s t . en ter (state_name , s e l f . com_handle)
495 r e t u r n s t
496 e l i f state_name == " A c t i v a t i n g " :
497 s t = A c t i v a t i n g ()
498 s t . en ter (state_name , s e l f . com_handle)
499 r e t u r n s t
500 e l i f state_name == " Er ro r " :
501 s t = pyState . State_Base ()
502 s t . en ter (state_name)
503 r e t u r n s t
504 ra i se Except ion (" Unhandled State i n Factory ")
505
506 def _ _ i n i t _ _ (s e l f , name, se t t i ngs , com_handle) :
507 s e l f . name = name
508 s e l f . tab = [
509 [" Con f i gu ra t i on " , " next " , " Deact ivated "] ,
510 [" Con f i gu ra t i on " , " e r r o r " , " E r ro r "] ,
511 [" Deact ivated " , "pump_on" , " A c t i v a t i n g "] ,
512 [" Deact ivated " , " e r r o r " , " E r ro r "] ,
513 [" A c t i v a t i n g " , " next " , " Ac t i va ted "] ,
514 [" A c t i v a t i n g " , " e r r o r " , " E r ro r "] ,
515 [" Ac t i va ted " , " pump_off " , " Deac t i va t i ng "] ,
516 [" Ac t i va ted " , " e r r o r " , " E r ro r "] ,
517 [" Deac t i va t i ng " , " next " , " Deact ivated "] ,
518 [" Deac t i va t i ng " , " e r r o r " , " E r ro r "] ,

84 September 2021

8.1 Application Code TU Graz

519]
520 s e l f . target_temp = [f l o a t (" nan ")]
521 s e l f . set_temp = [f l o a t (" nan ")]
522
523 s e l f . target_pump_state = False
524
525 s e l f . fac = Dr i ve r . f a c t o r y (se t t i ngs , s e l f . target_temp , s e l f . set_temp , com_handle)
526 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Con f i gu ra t i on ")
527 s e l f . en . en ter ()
528
529 def t i c k (s e l f) :
530 s e l f . en . t i c k ()
531
532 i f s e l f . en . ge t_s ta te () == " Con f i gu ra t i on " :
533 r e t u r n
534
535 i f s e l f . en . ge t_s ta te () == " Deact ivated " and s e l f . target_pump_state :
536 s e l f . en . handle_event (" request_pump_on ")
537 r e t u r n
538
539 i f s e l f . en . ge t_s ta te () == " Ac t i va ted " and not s e l f . target_pump_state :
540 s e l f . en . handle_event (" request_pump_off ")
541 r e t u r n
542
543 def __del__ (s e l f) :
544 s e l f . en . e x i t ()
545
546 def ge t_s ta te (s e l f) :
547 r e t u r n s e l f . en . ge t_s ta te ()
548
549 def get_name (s e l f) :
550 r e t u r n s e l f . name
551
552 # In the fo l l ow ing , the f u n c t i o n s are def ined to ob ta in the s e t t i n g s f o r the F isher thermosta t (from outs ide) .
553 def set_target_temp (s e l f , va l) :
554 s e l f . target_temp [0] = va l
555
556 def act ivate_pump (s e l f) :
557 s e l f . target_pump_state = True
558
559 def deactivate_pump (s e l f) :
560 s e l f . target_pump_state = False

Listing 17: The Fisher.py file contains its corresponding device driver and can be used to operate this

device.

8.1.8 HPLC.py

1 # This f i l e conta ins the d r i v e r c lass f o r the HPLC pump and the
2 # f o l l o w i n g a d d i t i o n a l r e l evan t c lasses and f u n c t i o n s f o r the
3 # c ons t r u c t i on and simple t e s t i n g o f the d r i v e r c lass : the dummy
4 # communication handle , two spec ia l substates , the response
5 # checkers and a l l l a ye r (A) s ta tes .
6
7 # l i b r a r y / modules from python :
8 impor t re
9 impor t s t a t i s t i c s

10 impor t t ime
11
12 # own s c r i p t s :
13 impor t LayerB
14 impor t LayerC
15 impor t pyState
16
17 # dummy communication handle :
18 c lass dummy_cmd_handle () :
19 " " " This c lass can be used f o r t e s t i n g the d r i v e r . Thus , no ac tua l HPLC pump i s needed . " " "
20 def _ _ i n i t _ _ (s e l f) :
21 s e l f . press = 0
22 s e l f . f l ow = 0
23 s e l f . pump = False
24 s e l f . resp = " 0 "
25
26 def send (s e l f , msg) :
27 # p r i n t (msg)
28 i f msg . decode (" ASCII ") == "PRESSURE?\ r " :
29 i f s e l f . pump == False :
30 s e l f . resp = "PRESSURE: 0 \ r "
31 e l i f s e l f . f l ow <= 0:
32 s e l f . resp = "PRESSURE: 0 \ r "
33 else :
34 s e l f . resp = "PRESSURE: 3 0 \ r "
35 e l i f msg . decode (" ASCII ") == "PMIN50 : 0 \ r " :
36 s e l f . resp = "PMIN50 :OK\ r "
37 e l i f msg . decode (" ASCII ") == "PMIN50?\ r " :
38 s e l f . resp = "PMIN50 : 0 \ r "
39 e l i f msg . decode (" ASCII ") == "PMAX50: 100\ r " :
40 s e l f . resp = "PMAX50:OK\ r "
41 e l i f msg . decode (" ASCII ") == "PMAX50?\ r " :

September 2021 85

TU Graz 8 Appendix

42 s e l f . resp = "PMAX50:100 \ r "
43 e l i f msg . decode (" ASCII ") == "FLOW: 06000\ r " :
44 s e l f . resp = "FLOW:OK\ r "
45 s e l f . f l ow = 6000
46 e l i f msg . decode (" ASCII ") == "FLOW: 00000\ r " :
47 s e l f . resp = "FLOW:OK\ r "
48 s e l f . f l ow = 0
49 e l i f msg . decode (" ASCII ") == "FLOW?\ r " :
50 s e l f . resp = "FLOW: { : 0 5 } \ r " . format (s e l f . f l ow)
51 e l i f msg . decode (" ASCII ") == "ON\ r " :
52 s e l f . pump = True
53 s e l f . resp = "ON:OK\ r "
54 e l i f msg . decode (" ASCII ") == "OFF\ r " :
55 s e l f . pump = False
56 s e l f . resp = "OFF:OK\ r "
57
58 def c l e a r _ i n p u t _ b u f f e r (s e l f) :
59 # p r i n t (" . . . c l ea r . . . ")
60 r e t u r n
61
62 def rece ive (s e l f) :
63 # p r i n t (" . . . rece ive . . . { } " . format (s e l f . resp))
64 r e t u r n by tear ray (s e l f . resp . encode (" ASCII "))
65
66 # two spec ia l substates :
67 # These s ta tes are requ i red by the HPLC pump to i n i t i a l l y query the
68 # system pressure , generate a re ference value from i t and l a t e r check
69 # f o r t h i s re ference value .
70 c lass Save_Answer (pyState . State_Base) :
71 " " " This l aye r (C) s ta te receives , checks and saves the response rece ived . " " "
72 def en ter (s e l f , name, timeout_ms , com_handle , d a t a l i s t , boundaries , next_event , t imeout_event , done_event) :
73 super () . en ter (name)
74 s e l f . com_handle = com_handle
75 s e l f . deadl ine = t ime . monotonic_ns () + timeout_ms * 1000000
76
77 s e l f . next_event = next_event
78 s e l f . t imeout_event = t imeout_event
79 s e l f . done_event = done_event
80
81 s e l f . d a t a l i s t = d a t a l i s t
82 s e l f . boundaries = boundaries
83 s e l f . response = by tear ray ()
84
85 def __ca l l__ (s e l f) :
86 end_of_frame = ’ \ r ’ . encode (" ASCII ")
87 tmp = s e l f . com_handle . rece ive ()
88 f o r chr i n tmp :
89 i f chr == end_of_frame [0] :
90 st r_ans = f i n d _ p a t t e r n (s e l f . response)
91 s e l f . d a t a l i s t . append (f l o a t (s t r_ans))
92 i f len (s e l f . d a t a l i s t) < 10:
93 r e t u r n s e l f . next_event
94 # c a l c u l a t i o n o f the mean and standard d e v i a t i o n
95 s e l f . boundaries [0] = s t a t i s t i c s . mean(s e l f . d a t a l i s t)
96 s e l f . boundaries [1] = s t a t i s t i c s . stdev (s e l f . d a t a l i s t)
97 r e t u r n s e l f . done_event
98 s e l f . response . append (chr)
99

100 i f t ime . monotonic_ns () > s e l f . deadl ine :
101 r e t u r n s e l f . t imeout_event
102 r e t u r n None
103
104 c lass Send_And_Save_Data (pyState . State_Base) :
105 " " " This l aye r (B) s ta te combines the substates sending a command and wa i t i ng and saving the response . " " "
106 c lass f a c t o r y :
107 def _ _ i n i t _ _ (s e l f , d a t a l i s t , boundaries , com_handle) :
108 s e l f . d a t a l i s t = d a t a l i s t
109 s e l f . boundaries = boundaries
110 s e l f . com_handle = com_handle
111
112 def c rea te_s ta te (s e l f , state_name) :
113 i f state_name == "Send" :
114 s t = LayerC .Send_Command ()
115 s t . en ter (state_name , "PRESSURE? " , s e l f . com_handle , " next ")
116 r e t u r n s t
117 e l i f state_name == " Save " :
118 s t = Save_Answer ()
119 s t . en ter (state_name , 1000 , s e l f . com_handle , s e l f . d a t a l i s t , s e l f . boundaries , " next " , " t imeout " , " done ")
120 r e t u r n s t
121 e l i f state_name == " Wai t ing " :
122 s t = LayerB . Delay_State ()
123 s t . en ter (state_name , 500 , " next ")
124 r e t u r n s t
125 e l i f state_name == " Fin ished " :
126 s t = pyState . State_Base ()
127 s t . en ter (state_name)
128 r e t u r n s t
129 e l i f state_name == " Er ro r " :
130 s t = pyState . State_Base ()
131 s t . en ter (state_name)
132 r e t u r n s t
133 ra i se Except ion (" Unhandled State i n Factory ")

86 September 2021

8.1 Application Code TU Graz

134
135 def en ter (s e l f , name, boundaries , com_handle) :
136 super () . en ter (name)
137 s e l f . tab = [
138 ["Send" , " next " , " Save "] ,
139 [" Save " , " next " , " Wai t ing "] ,
140 [" Save " , " t imeout " , " E r ro r "] ,
141 [" Save " , " done " , " F in ished "] ,
142 [" Wai t ing " , " next " , "Send"] ,
143]
144 s e l f . d a t a l i s t = []
145
146 s e l f . fac = Send_And_Save_Data . f a c t o r y (s e l f . d a t a l i s t , boundaries , com_handle)
147 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , "Send")
148 s e l f . en . en ter ()
149
150 def __ca l l__ (s e l f) :
151 s e l f . en . t i c k ()
152
153 i f s e l f . en . ge t_s ta te () == " F in ished " :
154 r e t u r n " next "
155 i f s e l f . en . ge t_s ta te () == " Er ro r " :
156 r e t u r n " e r r o r "
157
158 def e x i t (s e l f) :
159 s e l f . en . e x i t ()
160 super () . e x i t ()
161
162 # response checkers :
163 def f i n d _ p a t t e r n (ans) :
164 answer = ans . decode (" ASCII ")
165 f i n d _ p a t t e r n = re . compile (r " \w * : (. *) ")
166 i f not f i n d _ p a t t e r n . match (answer) i s None :
167 st r_ans = f i n d _ p a t t e r n . match (answer) . group (1)
168 r e t u r n s t r_ans
169 else :
170 r e t u r n False
171
172 c lass check_response_base :
173 " " " This c lass forms the basis f o r a l l o ther response checkers . " " "
174 def _ _ i n i t _ _ (s e l f , resp) :
175 s e l f . resp = resp
176
177 def __ca l l__ (s e l f , ans) :
178 # step 1: f i n d pa t t e rn
179 st r_ans = f i n d _ p a t t e r n (ans)
180
181 # step 2: compare pa t t e rn
182 i f s t r_ans == s e l f . resp :
183 r e t u r n True
184 r e t u r n False
185
186 c lass check_ok (check_response_base) :
187 def _ _ i n i t _ _ (s e l f) :
188 super () . _ _ i n i t _ _ ("OK")
189
190 c lass check_f low (check_response_base) :
191 def _ _ i n i t _ _ (s e l f , va l) :
192 s e l f . va l = va l
193
194 def __ca l l__ (s e l f , ans) :
195 st r_ans = f i n d _ p a t t e r n (ans)
196 i f i n t (s t r_ans) == s e l f . va l :
197 r e t u r n True
198 r e t u r n False
199
200 c lass check_boundaries (check_response_base) :
201 def _ _ i n i t _ _ (s e l f , boundaries) :
202 s e l f . lower = 0 # boundaries [0] − 3 * boundaries [1]
203 s e l f . upper = 450 # boundaries [0] + 3 * boundaries [1]
204
205 def __ca l l__ (s e l f , ans) :
206 st r_ans = f i n d _ p a t t e r n (ans)
207 va l = f l o a t (s t r_ans)
208 i f va l <= s e l f . upper and va l >= s e l f . lower :
209 r e t u r n True
210 r e t u r n False
211
212 c lass check_0 (check_response_base) :
213 def _ _ i n i t _ _ (s e l f) :
214 super () . _ _ i n i t _ _ (0)
215
216 def __ca l l__ (s e l f , ans) :
217 st r_ans = f i n d _ p a t t e r n (ans)
218 va l = f l o a t (s t r_ans)
219 i f va l <= 40:
220 r e t u r n True
221 r e t u r n False
222
223 # laye r (A) s ta tes :
224 c lass Con f i gu ra t i on (pyState . State_Base) :
225 " " " This s ta te deac t i va tes the HPLC pump and ad jus ts a l l i n i t i a l s e t t i n g s . " " "
226 c lass f a c t o r y :
227 def _ _ i n i t _ _ (s e l f , se t t i ngs , com_handle) :
228 s e l f . head = s e t t i n g s . get_head ()

September 2021 87

TU Graz 8 Appendix

229 s e l f . s e t t i n g s = s e t t i n g s
230 s e l f . com_handle = com_handle
231
232 def c rea te_s ta te (s e l f , state_name) :
233 i f state_name == " Pump_Off " :
234 s t = LayerB . Send_And_Check ()
235 s t . en ter (state_name , "OFF" , check_ok () , s e l f . com_handle , 0)
236 r e t u r n s t
237 e l i f state_name == " Check_Pump_State " :
238 s t = LayerB . Send_And_Check ()
239 s t . en ter (state_name , "PRESSURE? " , check_0 () , s e l f . com_handle , 0)
240 r e t u r n s t
241 e l i f state_name == " Set_PMin " :
242 s t = LayerB . Send_And_Check ()
243 s t . en ter (state_name , "PMIN { : . 2 } : { : . 0 f } " . format (s t r (s e l f . head) , s e l f . s e t t i n g s . get_PMin ()) , check_ok () , s e l f

. com_handle , 0)
244 r e t u r n s t
245 e l i f state_name == " Check_PMin " :
246 s t = LayerB . Send_And_Check ()
247 s t . en ter (state_name , "PMIN { : . 2 } ? " . format (s t r (s e l f . head)) , check_response_base (" { : . 0 f } " . format (s e l f . s e t t i n g s

. get_PMin ())) , s e l f . com_handle , 0)
248 r e t u r n s t
249 e l i f state_name == " Set_PMax " :
250 s t = LayerB . Send_And_Check ()
251 s t . en ter (state_name , "PMAX{ : . 2 } : { : . 0 f } " . format (s t r (s e l f . head) , s e l f . s e t t i n g s . get_PMax ()) , check_ok () , s e l f

. com_handle , 0)
252 r e t u r n s t
253 e l i f state_name == "Check_PMax" :
254 s t = LayerB . Send_And_Check ()
255 s t . en ter (state_name , "PMAX{ : . 2 } ? " . format (s t r (s e l f . head)) , check_response_base (" { : . 0 f } " . format (s e l f . s e t t i n g s

. get_PMax ())) , s e l f . com_handle , 0)
256 r e t u r n s t
257 e l i f state_name == " Fin ished " :
258 s t = pyState . State_Base ()
259 s t . en ter (state_name)
260 r e t u r n s t
261 e l i f state_name == " Er ro r " :
262 s t = pyState . State_Base ()
263 s t . en ter (state_name)
264 r e t u r n s t
265 ra i se Except ion (" Unhandled State i n Factory ")
266
267 def en ter (s e l f , name, se t t i ngs , com_handle) :
268 super () . en ter (name)
269 s e l f . tab = [
270 [" Pump_Off " , " next " , " Check_Pump_State "] ,
271 [" Pump_Off " , " e r r o r " , " E r ro r "] ,
272 [" Check_Pump_State " , " next " , " Set_PMin "] ,
273 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
274 [" Set_PMin " , " next " , " Check_PMin "] ,
275 [" Set_PMin " , " e r r o r " , " E r ro r "] ,
276 [" Check_PMin " , " next " , " Set_PMax "] ,
277 [" Check_PMin " , " e r r o r " , " E r ro r "] ,
278 [" Set_PMax " , " next " , "Check_PMax"] ,
279 [" Set_PMax " , " e r r o r " , " E r ro r "] ,
280 ["Check_PMax" , " next " , " F in ished "] ,
281 ["Check_PMax" , " e r r o r " , " E r ro r "] ,
282]
283 s e l f . fac = Con f i gu ra t i on . f a c t o r y (se t t i ngs , com_handle)
284 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Pump_Off ")
285 s e l f . en . en ter ()
286
287 def __ca l l__ (s e l f) :
288 s e l f . en . t i c k ()
289
290 i f s e l f . en . ge t_s ta te () == " F in ished " :
291 r e t u r n " next "
292 i f s e l f . en . ge t_s ta te () == " Er ro r " :
293 r e t u r n " e r r o r "
294
295 def e x i t (s e l f) :
296 s e l f . en . e x i t ()
297 super () . e x i t ()
298
299 c lass Deact ivated (pyState . State_Base) :
300 " " " This s ta te checks whether the HPLC pump i s s t i l l swi tched o f f and whether anyth ing has changed i n the s e t t i n g s and

ad jus ts them i f necessary . " " "
301 c lass f a c t o r y :
302 def _ _ i n i t _ _ (s e l f , se t_ f l owra te , com_handle) :
303 s e l f . se t_ f low = se t_ f l ow ra te
304 s e l f . com_handle = com_handle
305
306 def c rea te_s ta te (s e l f , state_name) :
307 i f state_name == " Check_Pump_State " :
308 s t = LayerB . Send_And_Check ()
309 s t . en ter (state_name , "PRESSURE? " , check_0 () , s e l f . com_handle , 0)
310 r e t u r n s t
311 e l i f state_name == " Set_Flowrate " :
312 s t = LayerB . Send_And_Check ()
313 s t . en ter (state_name , "FLOW: { : 0 5 . 0 f } " . format (s e l f . se t_ f low [0]) , check_ok () , s e l f . com_handle , 0)
314 r e t u r n s t
315 e l i f state_name == " Check_Flowrate " :
316 s t = LayerB . Send_And_Check ()

88 September 2021

8.1 Application Code TU Graz

317 s t . en ter (state_name , "FLOW? " , check_f low (s e l f . se t_ f low [0]) , s e l f . com_handle , 0)
318 r e t u r n s t
319 e l i f state_name == " Wai t ing " :
320 s t = LayerB . Delay_State ()
321 s t . en ter (state_name , 500 , " next ")
322 r e t u r n s t
323 e l i f state_name == " Er ro r " :
324 s t = pyState . State_Base ()
325 s t . en ter (state_name)
326 r e t u r n s t
327 ra i se Except ion (" Unhandled State i n Factory ")
328
329 def en ter (s e l f , name, t a r g e t _ f l o w r a t e , se t_ f l owra te , com_handle) :
330 super () . en ter (name)
331 s e l f . t a r g e t _ f l o w r a t e = t a r g e t _ f l o w r a t e
332 s e l f . s e t_ f l o w ra te = se t_ f l ow ra te
333 s e l f . pump_on_flag = False
334 s e l f . tab = [
335 [" Check_Pump_State " , " next " , " Wai t ing "] ,
336 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
337 [" Wai t ing " , " next " , " Check_Pump_State "] ,
338 [" Wai t ing " , " new_f lowrate " , " Set_Flowrate "] ,
339 [" Set_Flowrate " , " next " , " Check_Flowrate "] ,
340 [" Set_Flowrate " , " e r r o r " , " E r ro r "] ,
341 [" Check_Flowrate " , " next " , " Check_Pump_State "] ,
342 [" Check_Flowrate " , " e r r o r " , " E r ro r "] ,
343]
344 s e l f . fac = Deact ivated . f a c t o r y (se t_ f l owra te , com_handle)
345 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Check_Pump_State ")
346 s e l f . en . en ter ()
347
348 def __ca l l__ (s e l f) :
349 s e l f . en . t i c k ()
350
351 i f s e l f . en . ge t_s ta te () == " Er ro r " :
352 r e t u r n " e r r o r "
353
354 i f not s e l f . en . ge t_s ta te () == " Wai t ing " :
355 r e t u r n None
356
357 i f not s e l f . t a r g e t _ f l o w r a t e [0] == s e l f . se t_ f l ow ra te [0] :
358 s e l f . se t_ f l o w ra te [0] = s e l f . t a r g e t _ f l o w r a t e [0]
359 s e l f . en . handle_event (" new_f lowrate ")
360 r e t u r n None
361 e l i f s e l f . pump_on_flag :
362 r e t u r n "pump_on"
363
364 def e x i t (s e l f) :
365 s e l f . en . e x i t ()
366 super () . e x i t ()
367
368 def handle_event (s e l f , event) :
369 i f event == " request_pump_on " :
370 s e l f . pump_on_flag = True
371 r e t u r n True
372 r e t u r n False
373
374 c lass Ac t i va ted (pyState . State_Base) :
375 " " " This s ta te checks whether the HPLC pump i s s t i l l running a t the c o r r e c t f l ow ra te and whether anyth ing has changed

i n the s e t t i n g s and ad jus ts them i f necessary . " " "
376 c lass f a c t o r y :
377 def _ _ i n i t _ _ (s e l f , se t_ f l owra te , com_handle) :
378 s e l f . se t_ f low = se t_ f l ow ra te
379 s e l f . com_handle = com_handle
380 s e l f . boundaries = [0 , 0]
381
382 def c rea te_s ta te (s e l f , state_name) :
383 i f state_name == " Get_Boundaries " :
384 s t = Send_And_Save_Data ()
385 s t . en ter (state_name , s e l f . boundaries , s e l f . com_handle)
386 r e t u r n s t
387 e l i f state_name == " Check_Pump_State " :
388 s t = LayerB . Send_And_Check ()
389 s t . en ter (state_name , "PRESSURE? " , check_boundaries (s e l f . boundaries) , s e l f . com_handle , 0)
390 r e t u r n s t
391 e l i f state_name == " Set_Flowrate " :
392 s t = LayerB . Send_And_Check ()
393 s t . en ter (state_name , "FLOW: { : 0 5 . 0 f } " . format (s e l f . se t_ f low [0]) , check_ok () , s e l f . com_handle , 0)
394 r e t u r n s t
395 e l i f state_name == " Check_Flowrate " :
396 s t = LayerB . Send_And_Check ()
397 s t . en ter (state_name , "FLOW? " , check_f low (s e l f . se t_ f low [0]) , s e l f . com_handle , 0)
398 r e t u r n s t
399 e l i f state_name == " Check_New_Flowrate " :
400 s t = LayerB . Send_And_Check ()
401 s t . en ter (state_name , "FLOW? " , check_f low (s e l f . se t_ f low [0]) , s e l f . com_handle , 0)
402 r e t u r n s t
403 e l i f state_name == " Wai t ing " :
404 s t = LayerB . Delay_State ()
405 s t . en ter (state_name , 500 , " next ")
406 r e t u r n s t
407 e l i f state_name == " Er ro r " :
408 s t = pyState . State_Base ()

September 2021 89

TU Graz 8 Appendix

409 s t . en ter (state_name)
410 r e t u r n s t
411 ra i se Except ion (" Unhandled State i n Factory ")
412
413 def en ter (s e l f , name, t a r g e t _ f l o w r a t e , se t_ f l owra te , com_handle) :
414 super () . en ter (name)
415 s e l f . t a r g e t _ f l o w r a t e = t a r g e t _ f l o w r a t e
416 s e l f . s e t_ f l o w ra te = se t_ f l ow ra te
417 s e l f . pump_off_f lag = False
418
419 s e l f . tab = [
420 [" Get_Boundaries " , " next " , " Check_Pump_State "] ,
421 [" Get_Boundaries " , " e r r o r " , " E r ro r "] ,
422 [" Check_Pump_State " , " next " , " Wai t ing "] ,
423 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
424 [" Wai t ing " , " next " , " Check_Flowrate "] ,
425 [" Wai t ing " , " new_f lowrate " , " Set_Flowrate "] ,
426 [" Set_Flowrate " , " next " , " Check_New_Flowrate "] ,
427 [" Set_Flowrate " , " e r r o r " , " E r ro r "] ,
428 [" Check_New_Flowrate " , " next " , " Get_Boundaries "] ,
429 [" Check_New_Flowrate " , " e r r o r " , " E r ro r "] ,
430 [" Check_Flowrate " , " next " , " Check_Pump_State "] ,
431 [" Check_Flowrate " , " e r r o r " , " E r ro r "] ,
432]
433 s e l f . fac = Ac t i va ted . f a c t o r y (se t_ f l owra te , com_handle)
434 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Get_Boundaries ")
435 s e l f . en . en ter ()
436
437 def __ca l l__ (s e l f) :
438 s e l f . en . t i c k ()
439
440 i f s e l f . en . ge t_s ta te () == " Er ro r " :
441 r e t u r n " e r r o r "
442
443 i f not s e l f . en . ge t_s ta te () == " Wai t ing " :
444 r e t u r n None
445
446 i f not s e l f . t a r g e t _ f l o w r a t e [0] == s e l f . se t_ f l ow ra te [0] :
447 s e l f . se t_ f l o w ra te [0] = s e l f . t a r g e t _ f l o w r a t e [0]
448 s e l f . en . handle_event (" new_f lowrate ")
449 r e t u r n None
450 e l i f s e l f . pump_off_f lag :
451 r e t u r n " pump_off "
452
453 def e x i t (s e l f) :
454 s e l f . en . e x i t ()
455 super () . e x i t ()
456
457 def handle_event (s e l f , event) :
458 i f event == " request_pump_off " :
459 s e l f . pump_off_f lag = True
460 r e t u r n True
461 r e t u r n False
462
463 c lass Deac t i va t i ng (pyState . State_Base) :
464 " " " This s ta te deac t i va tes the HPLC pump and checks whether the shutdown has worked . " " "
465 c lass f a c t o r y :
466 def _ _ i n i t _ _ (s e l f , com_handle) :
467 s e l f . com_handle = com_handle
468
469 def c rea te_s ta te (s e l f , state_name) :
470 i f state_name == " Pump_Off " :
471 s t = LayerB . Send_And_Check ()
472 s t . en ter (state_name , "OFF" , check_ok () , s e l f . com_handle , 0)
473 r e t u r n s t
474 e l i f state_name == " Check_Pump_State " :
475 s t = LayerB . Send_And_Check ()
476 s t . en ter (state_name , "PRESSURE? " , check_0 () , s e l f . com_handle , 0)
477 r e t u r n s t
478 e l i f state_name == " Fin ished " :
479 s t = pyState . State_Base ()
480 s t . en ter (state_name)
481 r e t u r n s t
482 e l i f state_name == " Er ro r " :
483 s t = pyState . State_Base ()
484 s t . en ter (state_name)
485 r e t u r n s t
486 ra i se Except ion (" Unhandled State i n Factory ")
487
488 def en ter (s e l f , name, com_handle) :
489 super () . en ter (name)
490 s e l f . tab = [
491 [" Pump_Off " , " next " , " Check_Pump_State "] ,
492 [" Pump_Off " , " e r r o r " , " e r r o r "] ,
493 [" Check_Pump_State " , " next " , " F in ished "] ,
494 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
495]
496 s e l f . fac = Deac t i va t i ng . f a c t o r y (com_handle)
497 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Pump_Off ")
498 s e l f . en . en ter ()
499
500 def __ca l l__ (s e l f) :
501 s e l f . en . t i c k ()

90 September 2021

8.1 Application Code TU Graz

502
503 i f s e l f . en . ge t_s ta te () == " F in ished " :
504 r e t u r n " next "
505 i f s e l f . en . ge t_s ta te () == " Er ro r " :
506 r e t u r n " e r r o r "
507
508 def e x i t (s e l f) :
509 s e l f . en . e x i t ()
510 super () . e x i t ()
511
512 # d r i v e r c lass f o r the HPLC pump :
513 c lass Dr i ve r :
514
515 c lass Se t t i ngs :
516 def _ _ i n i t _ _ (s e l f , head) :
517 s e l f . _PMin_ = 0
518 s e l f . _PMax_ = 100
519 s e l f . head = head
520 i f s e l f . head != 10 and s e l f . head != 50:
521 ra i se Except ion (" I n v a l i d pump head ")
522
523 def get_PMin (s e l f) :
524 r e t u r n s e l f . _PMin_
525 def get_PMax (s e l f) :
526 r e t u r n s e l f . _PMax_
527 def get_head (s e l f) :
528 r e t u r n s e l f . head
529
530 def set_PMinMax (s e l f , pmin , pmax) :
531 i f pmin >= pmax :
532 ra i se Except ion (" Minimum can ’ t be above maximum")
533 i f pmin < 0:
534 ra i se Except ion (" Minimum i s out o f boundaries ")
535 i f s e l f . head == 10 and pmax > 400:
536 ra i se Except ion ("Maximum i s out o f boundaries ")
537 i f s e l f . head == 50 and pmax > 150:
538 ra i se Except ion ("Maximum i s out o f boundaries ")
539
540 s e l f . _PMin_ = pmin
541 s e l f . _PMax_ = pmax
542
543 c lass f a c t o r y :
544 def _ _ i n i t _ _ (s e l f , se t t i ngs , t a r g e t _ f l o w r a t e , se t_ f l owra te , com_handle) :
545 s e l f . s e t t i n g s = s e t t i n g s
546 s e l f . t a r g e t _ f l o w r a t e = t a r g e t _ f l o w r a t e
547 s e l f . se t_ f l o w ra te = se t_ f l ow ra te
548 s e l f . com_handle = com_handle
549
550 def c rea te_s ta te (s e l f , state_name) :
551 i f state_name == " Con f i gu ra t i on " :
552 s t = Con f i gu ra t i on ()
553 s t . en ter (state_name , s e l f . se t t i ngs , s e l f . com_handle)
554 r e t u r n s t
555 e l i f state_name == " Deact ivated " :
556 s t = Deact ivated ()
557 s t . en ter (state_name , s e l f . t a r g e t _ f l o w r a t e , s e l f . se t_ f l owra te , s e l f . com_handle)
558 r e t u r n s t
559 e l i f state_name == " Ac t i va ted " :
560 s t = Ac t i va ted ()
561 s t . en ter (state_name , s e l f . t a r g e t _ f l o w r a t e , s e l f . se t_ f l owra te , s e l f . com_handle)
562 r e t u r n s t
563 e l i f state_name == " Deac t i va t i ng " :
564 s t = Deac t i va t i ng ()
565 s t . en ter (state_name , s e l f . com_handle)
566 r e t u r n s t
567 i f state_name == " A c t i v a t i n g " :
568 s t = LayerB . Send_And_Check ()
569 s t . en ter (state_name , "ON" , check_ok () , s e l f . com_handle , 0)
570 r e t u r n s t
571 e l i f state_name == " Er ro r " :
572 s t = pyState . State_Base ()
573 s t . en ter (state_name)
574 r e t u r n s t
575 ra i se Except ion (" Unhandled State i n Factory ")
576
577 def _ _ i n i t _ _ (s e l f , name, se t t i ngs , c a l i b r a t i o n _ f u n c , com_handle) :
578 s e l f . name = name
579 s e l f . tab = [
580 [" Con f i gu ra t i on " , " next " , " Deact ivated "] ,
581 [" Con f i gu ra t i on " , " e r r o r " , " E r ro r "] ,
582 [" Deact ivated " , "pump_on" , " A c t i v a t i n g "] ,
583 [" Deact ivated " , " e r r o r " , " E r ro r "] ,
584 [" A c t i v a t i n g " , " next " , " Ac t i va ted "] ,
585 [" A c t i v a t i n g " , " e r r o r " , " E r ro r "] ,
586 [" Ac t i va ted " , " pump_off " , " Deac t i va t i ng "] ,
587 [" Ac t i va ted " , " e r r o r " , " E r ro r "] ,
588 [" Deac t i va t i ng " , " next " , " Deact ivated "] ,
589 [" Deac t i va t i ng " , " e r r o r " , " E r ro r "] ,
590]
591 s e l f . c a l i b r a t i o n _ f u n c = c a l i b r a t i o n _ f u n c
592 s e l f . t a r g e t _ f l o w r a t e = [0]
593 s e l f . s e t_ f l o w ra te = [f l o a t (" nan ")]
594
595 s e l f . target_pump_state = False

September 2021 91

TU Graz 8 Appendix

596
597 s e l f . fac = Dr i ve r . f a c t o r y (se t t i ngs , s e l f . t a r g e t _ f l o w r a t e , s e l f . se t_ f l owra te , com_handle)
598 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Con f i gu ra t i on ")
599 s e l f . en . en ter ()
600
601 def t i c k (s e l f) :
602 s e l f . en . t i c k ()
603
604 i f s e l f . en . ge t_s ta te () == " Con f i gu ra t i on " :
605 r e t u r n
606
607 i f s e l f . en . ge t_s ta te () == " Deact ivated " and s e l f . target_pump_state :
608 s e l f . en . handle_event (" request_pump_on ")
609 r e t u r n
610
611 i f s e l f . en . ge t_s ta te () == " Ac t i va ted " and not s e l f . target_pump_state :
612 s e l f . en . handle_event (" request_pump_off ")
613 r e t u r n
614
615 def __del__ (s e l f) :
616 s e l f . en . e x i t ()
617
618 def ge t_s ta te (s e l f) :
619 r e t u r n s e l f . en . ge t_s ta te ()
620
621 def get_name (s e l f) :
622 r e t u r n s e l f . name
623
624 # In the fo l l ow ing , the f u n c t i o n s are def ined to ob ta in the s e t t i n g s f o r the HPLC pump (from outs ide) .
625 def s e t _ t a r g e t _ f l o w r a t e (s e l f , va l) :
626 s e l f . t a r g e t _ f l o w r a t e [0] = round (s e l f . c a l i b r a t i o n _ f u n c . forward (va l))
627 r e t u r n s e l f . c a l i b r a t i o n _ f u n c . backward (s e l f . t a r g e t _ f l o w r a t e [0])
628
629 def act ivate_pump (s e l f) :
630 s e l f . target_pump_state = True
631
632 def deactivate_pump (s e l f) :
633 s e l f . target_pump_state = False

Listing 18: The HPLC.py file contains its corresponding device driver and can be used to operate this

device.

8.1.9 Lambda.py

1 # This f i l e conta ins the d r i v e r c lass f o r the Lambda pump and the
2 # f o l l o w i n g a d d i t i o n a l r e l evan t c lasses f o r the cons t r uc t i on and
3 # simple t e s t i n g o f the d r i v e r c lass : the dummy communication handle ,
4 # generat ion o f the commands t h a t w i l l l a t e r be sent to the pump,
5 # the response checker and a l l l a ye r (A) s ta tes .
6
7 # l i b r a r y / modules from python :
8 impor t re
9

10 # own s c r i p t s :
11 impor t LayerB
12 impor t pyState
13
14 # dummy communication handle :
15 c lass dummy_cmd_handle :
16 " " " This c lass can be used f o r t e s t i n g the d r i v e r . Thus , no ac tua l Lambda pump i s needed . " " "
17 def _ _ i n i t _ _ (s e l f) :
18 s e l f . resp = " <0201r1232D \ r \ n "
19
20 def send (s e l f , msg) :
21 # p r i n t (msg)
22 i f msg . decode (" ASCII ") == " #0201r000E8 \ r " :
23 s e l f . resp = " <0102r0002D \ r "
24 e l i f msg . decode (" ASCII ") == " #0201r123EE \ r " :
25 s e l f . resp = " <0102r1232D \ r "
26 e l i f msg . decode (" ASCII ") == " #0201r321EE \ r " :
27 s e l f . resp = " <0102r3212D \ r "
28
29 def c l e a r _ i n p u t _ b u f f e r (s e l f) :
30 # p r i n t (" . . . c l ea r . . . ")
31 r e t u r n None
32
33 def rece ive (s e l f) :
34 # p r i n t (" . . . rece ive . . . { } " . format (s e l f . resp))
35 r e t u r n by tear ray (s e l f . resp . encode (" ASCII "))
36
37 # generat ion o f the commands t h a t w i l l l a t e r be sent to the pump :
38 c lass bui ld_set_msg :
39 " " " This c lass b u i l d s the command wi th the checksum f o r s e t t i n g a f low ra te . " " "
40 def _ _ i n i t _ _ (s e l f , address , ddd) :
41 s e l f . address = address
42 s e l f . ddd = ddd
43
44 def __ca l l__ (s e l f) :
45 mm = 1

92 September 2021

8.1 Application Code TU Graz

46 step1 = " #{ :02 d } { : 0 2 d } r { : 0 3 . 0 f } " . format (s e l f . address , mm, s e l f . ddd)
47 qs = sum(by tear ray (step1 . encode (" ASCII "))) & 0xFF
48 msg = " { } { : 0 2X} " . format (step1 , qs)
49
50 r e t u r n msg
51
52 c lass build_read_msg :
53 " " " This c lass b u i l d s the command wi th the checksum f o r the query which f low ra te i s set . " " "
54 def _ _ i n i t _ _ (s e l f , address) :
55 s e l f . address = address
56
57 def __ca l l__ (s e l f) :
58 mm = 1
59 step1 = " #{ :02 d } { : 0 2 d }G" . format (s e l f . address , mm)
60 qs = sum(by tear ray (step1 . encode (" ASCII "))) & 0xFF
61 msg = " { } { : 0 2X} " . format (step1 , qs)
62
63 r e t u r n msg
64
65 # response checker :
66 c lass check_response :
67 " " " This c lass compares the rece ived answer " ans " w i th the expected answer " resp " . " " "
68 def _ _ i n i t _ _ (s e l f , resp) :
69 s e l f . resp = resp
70
71 def __ca l l__ (s e l f , ans) :
72 # step 1: f i n d pa t t e rn
73 answer = ans . decode (" ASCII ")
74 f i n d _ p a t t e r n = re . compile (r " <\d { 4 } (\w{ 1 }) (\ d { 3 }) \S* ")
75 i f not f i n d _ p a t t e r n . match (answer) i s None :
76 l r i n f o = f i n d _ p a t t e r n . match (answer) . group (1)
77 ddd = i n t (f i n d _ p a t t e r n . match (answer) . group (2))
78 else :
79 r e t u r n False
80
81 # step 2: compare pa t t e rn
82 i f ddd == s e l f . resp and l r i n f o == " r " :
83 r e t u r n True
84 else :
85 r e t u r n False
86
87 # laye r (A) s ta tes :
88 c lass Deac t i va t i ng (pyState . State_Base) :
89 " " " This s ta te deac t i va tes the Lambda pump and checks whether the shutdown has worked . " " "
90 c lass f a c t o r y :
91 def _ _ i n i t _ _ (s e l f , address , com_handle) :
92 s e l f . address = address
93 s e l f . com_handle = com_handle
94
95 def c rea te_s ta te (s e l f , state_name) :
96 i f state_name == " Pump_Off " :
97 s t = LayerB . Send ()
98 s t . en ter (state_name , bui ld_set_msg (s e l f . address , 0) () , s e l f . com_handle , " next ")
99 r e t u r n s t

100 e l i f state_name == " Check_Pump_State " :
101 s t = LayerB . Send_And_Check ()
102 s t . en ter (state_name , build_read_msg (s e l f . address) () , check_response (0) , s e l f . com_handle , 0)
103 r e t u r n s t
104 e l i f state_name == " Fin ished " :
105 s t = pyState . State_Base ()
106 s t . en ter (state_name)
107 r e t u r n s t
108 e l i f state_name == " Er ro r " :
109 s t = pyState . State_Base ()
110 s t . en ter (state_name)
111 r e t u r n s t
112 ra i se Except ion (" Unhandled State i n Factory ")
113
114 def en ter (s e l f , name, address , com_handle) :
115 super () . en ter (name)
116 s e l f . tab = [
117 [" Pump_Off " , " next " , " Check_Pump_State "] ,
118 [" Check_Pump_State " , " next " , " F in ished "] ,
119 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
120]
121 s e l f . fac = Deac t i va t i ng . f a c t o r y (address , com_handle)
122 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Pump_Off ")
123 s e l f . en . en ter ()
124
125 def __ca l l__ (s e l f) :
126 s e l f . en . t i c k ()
127
128 i f s e l f . en . ge t_s ta te () == " F in ished " :
129 r e t u r n " next "
130 i f s e l f . en . ge t_s ta te () == " Er ro r " :
131 r e t u r n " e r r o r "
132
133 def e x i t (s e l f) :
134 s e l f . en . e x i t ()
135 super () . e x i t ()
136
137 c lass Deact ivated (pyState . State_Base) :
138 " " " This s ta te checks whether the Lambda pump i s s t i l l swi tched o f f and wai ts whether the pump should be switched on

again . " " "
139 c lass f a c t o r y :

September 2021 93

TU Graz 8 Appendix

140 def _ _ i n i t _ _ (s e l f , address , com_handle) :
141 s e l f . address = address
142 s e l f . com_handle = com_handle
143
144 def c rea te_s ta te (s e l f , state_name) :
145 i f state_name == " Check_Pump_State " :
146 s t = LayerB . Send_And_Check ()
147 s t . en ter (state_name , build_read_msg (s e l f . address) () , check_response (0) , s e l f . com_handle , 0)
148 r e t u r n s t
149 e l i f state_name == " Wai t ing " :
150 s t = LayerB . Delay_State ()
151 s t . en ter (state_name , 500 , " next ")
152 r e t u r n s t
153 e l i f state_name == " Er ro r " :
154 s t = pyState . State_Base ()
155 s t . en ter (state_name)
156 r e t u r n s t
157 ra i se Except ion (" Unhandled State i n Factory ")
158
159 def en ter (s e l f , name, address , com_handle) :
160 super () . en ter (name)
161 s e l f . pump_on_flag = False
162 s e l f . tab = [
163 [" Check_Pump_State " , " next " , " Wai t ing "] ,
164 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
165 [" Wai t ing " , " next " , " Check_Pump_State "] ,
166]
167 s e l f . fac = Deact ivated . f a c t o r y (address , com_handle)
168 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Check_Pump_State ")
169 s e l f . en . en ter ()
170
171 def __ca l l__ (s e l f) :
172 s e l f . en . t i c k ()
173
174 i f s e l f . en . ge t_s ta te () == " Er ro r " :
175 r e t u r n " e r r o r "
176
177 i f not s e l f . en . ge t_s ta te () == " Wai t ing " :
178 r e t u r n None
179
180 i f s e l f . pump_on_flag :
181 r e t u r n "pump_on"
182
183 def e x i t (s e l f) :
184 s e l f . en . e x i t ()
185 super () . e x i t ()
186
187 def handle_event (s e l f , event) :
188 i f event == " request_pump_on " :
189 s e l f . pump_on_flag = True
190 r e t u r n True
191 r e t u r n False
192
193 c lass A c t i v a t i n g (pyState . State_Base) :
194 " " " This s ta te a c t i v a t e s the Lambda pump and checks whether the switch −on has worked . " " "
195 c lass f a c t o r y :
196 def _ _ i n i t _ _ (s e l f , se t_ f l owra te , address , com_handle) :
197 s e l f . f l ow = se t_ f l o w ra te
198 s e l f . address = address
199 s e l f . com_handle = com_handle
200
201 def c rea te_s ta te (s e l f , state_name) :
202 i f state_name == "Pump_On" :
203 s t = LayerB . Send ()
204 s t . en ter (state_name , bui ld_set_msg (s e l f . address , s e l f . f l ow [0]) () , s e l f . com_handle , " next ")
205 r e t u r n s t
206 e l i f state_name == " Check_Pump_State " :
207 s t = LayerB . Send_And_Check ()
208 s t . en ter (state_name , build_read_msg (s e l f . address) () , check_response (s e l f . f l ow [0]) , s e l f . com_handle , 0)
209 r e t u r n s t
210 e l i f state_name == " Fin ished " :
211 s t = pyState . State_Base ()
212 s t . en ter (state_name)
213 r e t u r n s t
214 e l i f state_name == " Er ro r " :
215 s t = pyState . State_Base ()
216 s t . en ter (state_name)
217 r e t u r n s t
218 ra i se Except ion (" Unhandled State i n Factory ")
219
220 def en ter (s e l f , name, t a r g e t _ f l o w r a t e , se t_ f l owra te , address , com_handle) :
221 super () . en ter (name)
222 s e l f . tab = [
223 ["Pump_On" , " next " , " Check_Pump_State "] ,
224 [" Check_Pump_State " , " next " , " F in ished "] ,
225 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
226]
227 s e t_ f l o w ra te [0] = t a r g e t _ f l o w r a t e [0]
228 s e l f . fac = A c t i v a t i n g . f a c t o r y (se t_ f l owra te , address , com_handle)
229 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , "Pump_On")
230 s e l f . en . en ter ()
231
232 def __ca l l__ (s e l f) :
233 s e l f . en . t i c k ()

94 September 2021

8.1 Application Code TU Graz

234
235 i f s e l f . en . ge t_s ta te () == " F in ished " :
236 r e t u r n " next "
237 i f s e l f . en . ge t_s ta te () == " Er ro r " :
238 r e t u r n " e r r o r "
239
240 def e x i t (s e l f) :
241 s e l f . en . e x i t ()
242 super () . e x i t ()
243
244 c lass Ac t i va ted (pyState . State_Base) :
245 " " " This s ta te checks whether the Lambda pump i s s t i l l running a t the c o r r e c t f low ra te and whether anyth ing has changed

i n the s e t t i n g s and ad jus ts them i f necessary . " " "
246 c lass f a c t o r y :
247 def _ _ i n i t _ _ (s e l f , se t_ f l owra te , address , com_handle) :
248 s e l f . f l ow = se t_ f l o w ra te
249 s e l f . address = address
250 s e l f . com_handle = com_handle
251
252 def c rea te_s ta te (s e l f , state_name) :
253 i f state_name == " Check_Pump_State " :
254 s t = LayerB . Send_And_Check ()
255 s t . en ter (state_name , build_read_msg (s e l f . address) () , check_response (s e l f . f l ow [0]) , s e l f . com_handle , 0)
256 r e t u r n s t
257 e l i f state_name == " Wai t ing " :
258 s t = LayerB . Delay_State ()
259 s t . en ter (state_name , 500 , " next ")
260 r e t u r n s t
261 e l i f state_name == " Set_Flowrate " :
262 s t = LayerB . Send ()
263 s t . en ter (state_name , bui ld_set_msg (s e l f . address , s e l f . f l ow [0]) () , s e l f . com_handle , " next ")
264 r e t u r n s t
265 e l i f state_name == " Er ro r " :
266 s t = pyState . State_Base ()
267 s t . en ter (state_name)
268 r e t u r n s t
269 ra i se Except ion (" Unhandled State i n Factory ")
270
271 def en ter (s e l f , name, t a r g e t _ f l o w r a t e , se t_ f l owra te , address , com_handle) :
272 super () . en ter (name)
273 s e l f . t a r g e t _ f l o w r a t e = t a r g e t _ f l o w r a t e
274 s e l f . s e t_ f l o w ra te = se t_ f l ow ra te
275 s e l f . pump_off_f lag = False
276
277 s e l f . tab = [
278 [" Check_Pump_State " , " next " , " Wai t ing "] ,
279 [" Check_Pump_State " , " e r r o r " , " E r ro r "] ,
280 [" Wai t ing " , " next " , " Check_Pump_State "] ,
281 [" Wai t ing " , " new_f lowrate " , " Set_Flowrate "] ,
282 [" Set_Flowrate " , " next " , " Check_Pump_State "] ,
283]
284 s e l f . fac = Ac t i va ted . f a c t o r y (se t_ f l owra te , address , com_handle)
285 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Check_Pump_State ")
286 s e l f . en . en ter ()
287
288 def __ca l l__ (s e l f) :
289 s e l f . en . t i c k ()
290
291 i f s e l f . en . ge t_s ta te () == " Er ro r " :
292 r e t u r n " e r r o r "
293
294 i f not s e l f . en . ge t_s ta te () == " Wai t ing " :
295 r e t u r n None
296
297 i f not s e l f . t a r g e t _ f l o w r a t e [0] == s e l f . se t_ f l ow ra te [0] :
298 s e l f . se t_ f l o w ra te [0] = s e l f . t a r g e t _ f l o w r a t e [0]
299 s e l f . en . handle_event (" new_f lowrate ")
300 r e t u r n None
301 e l i f s e l f . pump_off_f lag :
302 r e t u r n " pump_off "
303
304 def e x i t (s e l f) :
305 s e l f . en . e x i t ()
306 super () . e x i t ()
307
308 def handle_event (s e l f , event) :
309 i f event == " request_pump_off " :
310 s e l f . pump_off_f lag = True
311 r e t u r n True
312 r e t u r n False
313
314 # d r i v e r c lass f o r the Lambda pump :
315 c lass Dr i ve r :
316
317 c lass f a c t o r y :
318 def _ _ i n i t _ _ (s e l f , address , t a r g e t _ f l o w r a t e , se t_ f l owra te , com_handle) :
319 s e l f . address = address
320 s e l f . t a r g e t _ f l o w r a t e = t a r g e t _ f l o w r a t e
321 s e l f . se t_ f l o w ra te = se t_ f l ow ra te
322 s e l f . com_handle = com_handle
323
324 def c rea te_s ta te (s e l f , state_name) :
325 i f state_name == " Deac t i va t i ng " :
326 s t = Deac t i va t i ng ()

September 2021 95

TU Graz 8 Appendix

327 s t . en ter (state_name , s e l f . address , s e l f . com_handle)
328 r e t u r n s t
329 e l i f state_name == " Deact ivated " :
330 s t = Deact ivated ()
331 s t . en ter (state_name , s e l f . address , s e l f . com_handle)
332 r e t u r n s t
333 e l i f state_name == " Ac t i va ted " :
334 s t = Ac t i va ted ()
335 s t . en ter (state_name , s e l f . t a r g e t _ f l o w r a t e , s e l f . se t_ f l owra te , s e l f . address , s e l f . com_handle)
336 r e t u r n s t
337 e l i f state_name == " A c t i v a t i n g " :
338 s t = A c t i v a t i n g ()
339 s t . en ter (state_name , s e l f . t a r g e t _ f l o w r a t e , s e l f . se t_ f l owra te , s e l f . address , s e l f . com_handle)
340 r e t u r n s t
341 e l i f state_name == " Er ro r " :
342 s t = pyState . State_Base ()
343 s t . en ter (state_name)
344 r e t u r n s t
345 ra i se Except ion (" Unhandled State i n Factory ")
346
347 def _ _ i n i t _ _ (s e l f , name, address , c a l i b r a t i o n _ f u n c , com_handle) :
348 s e l f . name = name
349 s e l f . tab = [
350 [" Deac t i va t i ng " , " next " , " Deact ivated "] ,
351 [" Deac t i va t i ng " , " e r r o r " , " E r ro r "] ,
352 [" Deact ivated " , "pump_on" , " A c t i v a t i n g "] ,
353 [" Deact ivated " , " e r r o r " , " E r ro r "] ,
354 [" A c t i v a t i n g " , " next " , " Ac t i va ted "] ,
355 [" A c t i v a t i n g " , " e r r o r " , " E r ro r "] ,
356 [" Ac t i va ted " , " pump_off " , " Deac t i va t i ng "] ,
357 [" Ac t i va ted " , " e r r o r " , " E r ro r "] ,
358]
359 s e l f . c a l i b r a t i o n _ f u n c = c a l i b r a t i o n _ f u n c
360 s e l f . t a r g e t _ f l o w r a t e = [0]
361 s e l f . s e t_ f l o w ra te = [−1]
362
363 s e l f . target_pump_state = False
364
365 s e l f . fac = Dr i ve r . f a c t o r y (address , s e l f . t a r g e t _ f l o w r a t e , s e l f . se t_ f l owra te , com_handle)
366 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , " Deac t i va t i ng ")
367 s e l f . en . en ter ()
368
369 def t i c k (s e l f) :
370 s e l f . en . t i c k ()
371
372 i f s e l f . en . ge t_s ta te () == " Deact ivated " and s e l f . target_pump_state and s e l f . t a r g e t _ f l o w r a t e [0] != 0 :
373 s e l f . en . handle_event (" request_pump_on ")
374 r e t u r n
375
376 i f s e l f . en . ge t_s ta te () == " Ac t i va ted " and (not s e l f . target_pump_state or s e l f . t a r g e t _ f l o w r a t e [0] == 0) :
377 s e l f . en . handle_event (" request_pump_off ")
378 r e t u r n
379
380 def __del__ (s e l f) :
381 s e l f . en . e x i t ()
382
383 def ge t_s ta te (s e l f) :
384 r e t u r n s e l f . en . ge t_s ta te ()
385
386 def get_name (s e l f) :
387 r e t u r n s e l f . name
388
389 # In the fo l l ow ing , the f u n c t i o n s are def ined to ob ta in the s e t t i n g s f o r the Lambda pump (from outs ide) .
390 def s e t _ t a r g e t _ f l o w r a t e (s e l f , va l) :
391 s e l f . t a r g e t _ f l o w r a t e [0] = round (s e l f . c a l i b r a t i o n _ f u n c . forward (va l))
392 r e t u r n s e l f . c a l i b r a t i o n _ f u n c . backward (s e l f . t a r g e t _ f l o w r a t e [0])
393
394 def act ivate_pump (s e l f) :
395 s e l f . target_pump_state = True
396
397 def deactivate_pump (s e l f) :
398 s e l f . target_pump_state = False

Listing 19: The Lambda.py file contains its corresponding device driver and can be used to operate

this device.

8.1.10 LayerB.py

1 # This f i l e conta ins re l evan t c lasses f o r the generat ion o f the HPLC,
2 # Lambda and Thermostat d r i v e r s . The classes l i s t e d i n t h i s f i l e are
3 # poss ib le s ta tes on the middle (second) l aye r (B) . Higher l aye rs (A)
4 # can be b u i l t from these classes .
5
6 # l i b r a r y / modules from python :
7 impor t t ime
8
9 # own s c r i p t s :

10 impor t LayerC
11 impor t pyState

96 September 2021

8.1 Application Code TU Graz

12
13 c lass Send_And_Check (pyState . State_Base) :
14 " " " This s ta te combines the substates sending a command, wa i t i ng f o r the response and checking the response . " " "
15 c lass f a c t o r y :
16 def _ _ i n i t _ _ (s e l f , msg , checker , com_handle , re t r y_coun t) :
17 s e l f .msg = msg
18 s e l f . checker = checker
19 s e l f . com_handle = com_handle
20 s e l f . r e t r y_coun t = [re t r y_coun t]
21
22 def c rea te_s ta te (s e l f , state_name) :
23 i f state_name == "Send" :
24 s t = LayerC .Send_Command ()
25 s t . en ter (state_name , s e l f . msg , s e l f . com_handle , " next ")
26 r e t u r n s t
27 e l i f state_name == " Check " :
28 s t = LayerC . Wait_For_Answer ()
29 s t . en ter (state_name , 1000 , s e l f . com_handle , s e l f . checker , " next " , " t imeout " , s e l f . re t ry_count , " r e t r y " , "

e r r o r ")
30 r e t u r n s t
31 e l i f state_name == " Fin ished " :
32 s t = pyState . State_Base ()
33 s t . en ter (state_name)
34 r e t u r n s t
35 e l i f state_name == " Er ro r " :
36 s t = pyState . State_Base ()
37 s t . en ter (state_name)
38 r e t u r n s t
39 ra i se Except ion (" Unhandled State i n Factory ")
40
41 def en ter (s e l f , name, msg, checker , com_handle , re t r y_coun t) :
42 super () . en ter (name)
43 s e l f . tab = [
44 ["Send" , " next " , " Check "] ,
45 [" Check " , " next " , " F in ished "] ,
46 [" Check " , " r e t r y " , "Send"] ,
47 [" Check " , " t imeout " , " E r ro r "] ,
48 [" Check " , " e r r o r " , " E r ro r "] ,
49]
50 s e l f . fac = Send_And_Check . f a c t o r y (msg , checker , com_handle , re t r y_coun t)
51 s e l f . en = pyState . Engine (s e l f . tab , s e l f . fac , "Send")
52 s e l f . en . en ter ()
53
54 def __ca l l__ (s e l f) :
55 s e l f . en . t i c k ()
56
57 i f s e l f . en . ge t_s ta te () == " F in ished " :
58 r e t u r n " next "
59 i f s e l f . en . ge t_s ta te () == " Er ro r " :
60 r e t u r n " e r r o r "
61
62 def e x i t (s e l f) :
63 s e l f . en . e x i t ()
64 super () . e x i t ()
65
66 c lass Delay_State (pyState . State_Base) :
67 " " " This s ta te wa i ts f o r the given t ime . " " "
68 def en ter (s e l f , name, delay_time_ms , next_event) :
69 super () . en ter (name)
70 s e l f . deadl ine = t ime . monotonic_ns () + delay_time_ms * 1000000
71 s e l f . next_event = next_event
72
73 def __ca l l__ (s e l f) :
74 i f t ime . monotonic_ns () > s e l f . deadl ine :
75 r e t u r n s e l f . next_event
76 r e t u r n None
77
78 # Spec ia l case f o r the Lambda pump : In case no response i s expected to
79 # a sent command, Send_And_Check cannot be used on laye r (B) , ins tead
80 # Send_Command from laye r (C) i s used .
81 from LayerC impor t Send_Command as Send

Listing 20: The LayerB.py file contains several state classes, which are in general more complex than

layer C states.

8.1.11 LayerC.py

1 # This f i l e conta ins re l evan t c lasses f o r the generat ion o f the HPLC,
2 # Lambda and Thermostat d r i v e r s . The classes l i s t e d i n t h i s f i l e are
3 # poss ib le s ta tes on the lowest (t h i r d) l aye r (C) . Higher l aye rs (A)
4 # and (B) can be b u i l t from these classes .
5
6 # l i b r a r y / modules from python :
7 impor t t ime
8
9 # own s c r i p t s :

10 impor t pyState
11

September 2021 97

TU Graz 8 Appendix

12 c lass Send_Command(pyState . State_Base) :
13 " " " This s ta te sends a command to a device . " " "
14 def en ter (s e l f , name, msg, com_handle , next_event) :
15 super () . en ter (name)
16 s e l f .msg = by tear ray ((msg + " \ r ") . encode (" ASCII "))
17 s e l f . com_handle = com_handle
18 s e l f . next_event = next_event
19
20 def __ca l l__ (s e l f) :
21 s e l f . com_handle . c l e a r _ i n p u t _ b u f f e r ()
22 s e l f . com_handle . send (s e l f .msg)
23 r e t u r n s e l f . next_event
24
25 c lass Wait_For_Answer (pyState . State_Base) :
26 " " " This s ta te wa i ts f o r the response of a device and checks whether i t corresponds to the expected response . " " "
27 def en ter (s e l f , name, timeout_ms , com_handle , response_checker , next_event , t imeout_event , re t ry_count , re t ry_event ,

e r ro r_even t) :
28 super () . en ter (name)
29 s e l f . com_handle = com_handle
30 s e l f . deadl ine = t ime . monotonic_ns () + timeout_ms * 1000000
31
32 s e l f . response_checker = response_checker
33
34 s e l f . next_event = next_event
35 s e l f . t imeout_event = t imeout_event
36 s e l f . r e t r y_coun t = re t r y_coun t
37 s e l f . r e t r y_even t = re t r y_even t
38 s e l f . e r ro r_even t = er ro r_even t
39
40 s e l f . response = by tear ray ()
41
42 def __ca l l__ (s e l f) :
43 end_of_frame = ’ \ r ’ . encode (" ASCII ")
44 tmp = s e l f . com_handle . rece ive ()
45 f o r chr i n tmp :
46 i f chr == end_of_frame [0] :
47 i f s e l f . response_checker (s e l f . response) :
48 r e t u r n s e l f . next_event
49 i f s e l f . r e t r y_coun t [0] > 0 :
50 s e l f . r e t r y_coun t [0] −= 1
51 r e t u r n s e l f . r e t r y_even t
52 p r i n t (s e l f . response)
53 r e t u r n s e l f . e r ro r_even t
54 s e l f . response . append (chr)
55
56 i f t ime . monotonic_ns () > s e l f . deadl ine :
57 r e t u r n s e l f . t imeout_event
58 r e t u r n None

Listing 21: The LayerC.py file contains simple state classes.

8.1.12 Operating_OCAE.py

1 # This f i l e can be used l a t e r to run the OCAE (Output Ca l cu la t i on
2 # Absolute Eva lua t ion) s t r a tegy . For i n d i v i d u a l experiments , the
3 # opera t ing po in t l i s t , the opera t ing time , the dead time , the f i l e
4 # name and the devices i n fo rma t i on can be adapted .
5
6 # own s c r i p t s :
7 impor t Auto
8 impor t Strategy_OCAE
9

10 opera t ing_t ime = 0.3*60*1E3
11 dead_time = 0.1*60*1E3
12 excel_f i le_name = " st rategy_ocae "
13
14 # L i s t o f opera t ing po in t s
15 o p e r a t i o n _ p o i n t _ l i s t = [
16 Strategy_OCAE . o p e r a t i o n _ p o i n t _ l i s t _ e n t r y (operat ing_t ime , 25 , [6 . 1 , 6 . 0 5]) ,
17 Strategy_OCAE . o p e r a t i o n _ p o i n t _ l i s t _ e n t r y (operat ing_t ime , 25 , [6 . 1 , 6 . 0 5]) ,
18 Strategy_OCAE . o p e r a t i o n _ p o i n t _ l i s t _ e n t r y (operat ing_t ime , 25 , [6 . 1 , 6 . 0 5]) ,
19 Strategy_OCAE . o p e r a t i o n _ p o i n t _ l i s t _ e n t r y (operat ing_t ime , 25 , [6 . 1 , 6 . 0 5]) ,
20]
21
22 # Substance data
23 substance_data = Strategy_OCAE . substance_data ([4 , 6] , [50 , 50] , [40 .01 , 60 .05] , ["B" , "A"])
24
25 # Devices used
26 User_Pumps = [["Lambda 1 " , "COM12"] , ["Lambda 3 " , "COM11"]] # [[" HPLC A" , "COM12"] , ["HPLC B" , "COM11 "]]
27 User_Fisher = ["COM8"]
28 Portname_Calorimeter = "COM6"
29
30 # Se t t i ng up the s t r a tegy
31 s t ra tegy = Strategy_OCAE . Output_Calcu la t ion_Abso lu te_Eva luat ion (o p e r a t i o n _ p o i n t _ l i s t , substance_data , dead_time ,

excel_f i le_name)
32
33 # Se t t i ng up the au tomat i za t ion
34 automat = Auto . ma t i za t i on (s t ra tegy , User_Pumps , User_Fisher , Portname_Calorimeter)
35

98 September 2021

8.1 Application Code TU Graz

36 # Automat iza t ion i s c a l l e d u n t i l the end s ta te i s reached
37 whi le (True) :
38 automat . t i c k ()
39 i f automat . ge t_s ta te () == " F in ished " :
40 break
41 i f automat . ge t_s ta te () == " Error_Thermostat " or automat . ge t_s ta te () == " Error_Pump " or automat . ge t_s ta te () == "

Er ro r_Ca lo r imete r " or automat . ge t_s ta te () == " Er ro r " :
42 break
43 p r i n t ("Done")

Listing 22: The Operating_OCAE.py file is used to execute the Auto.py file using the Output Calculation

Absolute Evaluation strategy.

8.1.13 Operating_OPL.py

1 # This f i l e can be used l a t e r to run the OPL (Operat ion Po in t L i s t)
2 # s t r a tegy . For i n d i v i d u a l experiments , the opera t ing po in t l i s t ,
3 # the opera t ing t ime and the devices i n fo rma t i on can be adapted .
4
5 # own s c r i p t s :
6 impor t Auto
7 impor t Strategy_OPL
8
9 opera t ing_t ime = 0.3*60*1E3

10
11 # L i s t o f opera t ing po in t s
12 o p e r a t i o n _ p o i n t _ l i s t = [
13 Strategy_OPL . o p e r a t i o n _ p o i n t _ l i s t _ e n t r y (operat ing_t ime , 25 , [6 . 1 , 6 . 0 5]) ,
14 Strategy_OPL . o p e r a t i o n _ p o i n t _ l i s t _ e n t r y (operat ing_t ime , 25 , [6 . 1 , 6 . 0 5]) ,
15]
16
17 # Devices used
18 User_Pumps = [["Lambda 1 " , "COM12"] , ["Lambda 3 " , "COM11"]] # [[" HPLC A" , "COM12"] , ["HPLC B" , "COM11 "]]
19 User_Fisher = ["COM8"]
20 Portname_Calorimeter = "COM6"
21
22 # Se t t i ng up the s t r a tegy
23 s t ra tegy = Strategy_OPL . Opera t ion_Po in t_L is t (o p e r a t i o n _ p o i n t _ l i s t)
24
25 # Se t t i ng up the au tomat i za t ion
26 automat = Auto . ma t i za t i on (s t ra tegy , User_Pumps , User_Fisher , Portname_Calorimeter)
27
28 # Automat iza t ion i s c a l l e d u n t i l the end s ta te i s reached
29 whi le (True) :
30 automat . t i c k ()
31 i f automat . ge t_s ta te () == " F in ished " :
32 break
33 i f automat . ge t_s ta te () == " Error_Thermostat " or automat . ge t_s ta te () == " Error_Pump " or automat . ge t_s ta te () == "

Er ro r_Ca lo r imete r " or automat . ge t_s ta te () == " Er ro r " :
34 break
35 p r i n t ("Done")

Listing 23: The Operating_OPL.py file is used to execute the Auto.py file using the Operation Point

List strategy.

8.1.14 pyState.py

1 # This f i l e conta ins the basic c lass f o r c rea t i ng a s ta te , from which
2 # a l l f u r t h e r s ta tes i n h e r i t l a t e r , and the engine c lass t h a t i s
3 # respons ib le f o r b u i l d i n g (t h i s i s done v ia the f a c t o r y) and running
4 # the sta tes , which i s always c a l l e d i n the s ta te machine .
5
6 c lass State_Base :
7
8 def en ter (s e l f , name) :
9 s e l f . name = name

10 # p r i n t (" en te r i ng s ta te −−− { } " . format (s e l f . name))
11
12 def __ca l l__ (s e l f) :
13 r e t u r n None
14
15 def e x i t (s e l f) :
16 # p r i n t (" e x i t i n g s ta te −−− { } " . format (s e l f . name))
17 r e t u r n
18
19 def handle_event (s e l f , event) :
20 r e t u r n False
21
22 def ge t_s ta te (s e l f) :
23 r e t u r n s e l f . name
24
25 c lass Engine :
26
27 def _ _ i n i t _ _ (s e l f , tab le , f ac to ry , i n i t _ s t a t e) :

September 2021 99

TU Graz 8 Appendix

28 s e l f . tab = tab l e
29 s e l f . fac = f a c t o r y
30 s e l f . i n i t _ s t a t e = i n i t _ s t a t e
31 s e l f . cur = None
32
33 def en ter (s e l f) :
34 s e l f . cur = s e l f . fac . c rea te_s ta te (s e l f . i n i t _ s t a t e)
35
36 i f s e l f . cur i s None :
37 ra i se Except ion (" Factory has created None")
38
39 def __del__ (s e l f) :
40 s e l f . e x i t ()
41
42 def e x i t (s e l f) :
43 i f s e l f . cur i s not None :
44 s e l f . cur . e x i t ()
45 s e l f . cur = None
46
47 def search_ in_ tab le (s e l f , event) :
48 f o r t r an i n s e l f . tab :
49 i f not t r an [0] == s e l f . cur . ge t_s ta te () :
50 cont inue
51 i f not t r an [1] == event :
52 cont inue
53
54 s e l f . cur . e x i t ()
55 s e l f . cur = s e l f . fac . c rea te_s ta te (t r an [2])
56 r e t u r n True
57 r e t u r n False
58
59 def t i c k (s e l f) :
60 ent = s e l f . cur ()
61 i f ent i s None :
62 r e t u r n None
63 i f s e l f . search_ in_ tab le (ent) :
64 r e t u r n None
65 r e t u r n ent
66
67 def handle_event (s e l f , event) :
68 i f s e l f . search_ in_ tab le (event) :
69 r e t u r n True
70 i f s e l f . cur . handle_event (event) :
71 r e t u r n True
72 r e t u r n False
73
74 def ge t_s ta te (s e l f) :
75 r e t u r n s e l f . cur . ge t_s ta te ()

Listing 24: The pyState.py file contains the basic state class and the engine class. Both classes are

used later when creating a state machine.

8.1.15 pyStrategy.py

1 # This f i l e conta ins the basic c lass f o r c rea t i ng a s t ra tegy , from
2 # which a l l f u r t h e r s t r a t e g i e s i n h e r i t l a t e r . I nhe r i t ance ensures
3 # t h a t a l l e s s e n t i a l f u n c t i o n s are always inc luded i n a s t r a tegy .
4
5 c lass Strategy_Base :
6 c lass ope ra t i on_po in t_ i n fo rma t i on :
7 def _ _ i n i t _ _ (s e l f , temperature , f l o w r a t e _ l i s t) :
8 s e l f . temperature = temperature
9 s e l f . f l o w r a t e _ l i s t = f l o w r a t e _ l i s t

10
11 def get_temperature (s e l f) :
12 r e t u r n s e l f . temperature
13
14 def ge t_ f l owra te (s e l f , i dx) :
15 r e t u r n s e l f . f l o w r a t e _ l i s t [i dx]
16
17 def get_number_of_pumps (s e l f) :
18 r e t u r n len (s e l f . f l o w r a t e _ l i s t)
19
20 def ge t_opera t ion_po in t (s e l f) :
21 r e t u r n None
22
23 def push_value (s e l f , value) :
24 r e t u r n
25
26 def point_complete (s e l f) :
27 r e t u r n False
28
29 def has_error (s e l f) :
30 r e t u r n False
31
32 def push_ac tua l_ f lowra te (s e l f , va l) :
33 r e t u r n
34
35 def g e t _ f i n i s h _ i n s t r u c t i o n (s e l f) :

100 September 2021

8.1 Application Code TU Graz

36 r e t u r n None

Listing 25: The pyStrategy.py file contains the basic strategy class.

8.1.16 Strategy_OCAE.py

1 # This f i l e conta ins the Output Ca l cu l a t i on Absolute Eva lua t ion
2 # s t ra tegy and i t s necessary classed .
3
4 # l i b r a r y / modules from python :
5 from enum impor t Enum
6 from openpyxl . cha r t impor t LineChart , Reference
7 from openpyxl . s t y l e s impor t Alignment , Border , Font , P a t t e r n F i l l , Side
8 impor t math
9 impor t t ime

10
11 # own s c r i p t s :
12 impor t D i c t i o n a r y
13 impor t Excel_Funct ions
14 impor t pyStrategy
15
16 c lass o p e r a t i o n _ p o i n t _ l i s t _ e n t r y :
17 " " " This c lass tu rns the user ’ s i npu t i n t o an ob jec t , making i t eas ie r to handle the opera t ing po in t s . " " "
18 def _ _ i n i t _ _ (s e l f , time_ms , temperature , f l o w r a t e _ l i s t) :
19 s e l f . time_ms = time_ms
20 s e l f . temperature = round (temperature)
21 s e l f . f l o w r a t e _ l i s t = f l o w r a t e _ l i s t
22
23 def get_time_ms (s e l f) :
24 r e t u r n s e l f . time_ms
25
26 def get_temperature (s e l f) :
27 r e t u r n s e l f . temperature
28
29 def ge t_ f l owra te (s e l f , i dx) :
30 r e t u r n s e l f . f l o w r a t e _ l i s t [i dx]
31
32 def get_number_of_pumps (s e l f) :
33 r e t u r n len (s e l f . f l o w r a t e _ l i s t)
34
35 c lass substance_data :
36 def _ _ i n i t _ _ (s e l f , weighing_g , volume_ml , molar_mass_gpermol , pump_substance_assignment_l ist) :
37 s e l f . weighing = weighing_g
38 s e l f . volume = volume_ml
39 s e l f . molar_mass = molar_mass_gpermol
40 s e l f . l i s t = pump_substance_assignment_l ist
41
42 i f len (s e l f . weighing) != 2 or len (s e l f . volume) != 2 or len (s e l f . molar_mass) != 2 :
43 ra i se Except ion (" Substance data i s not complete ")
44
45 def get_weighing (s e l f) :
46 r e t u r n s e l f . weighing
47
48 def get_volume (s e l f) :
49 r e t u r n s e l f . volume
50
51 def get_molar_mass (s e l f) :
52 r e t u r n s e l f . molar_mass
53
54 def ge t_concen t ra t ion (s e l f) :
55 concen t ra t i on = [] # mol / l
56 f o r idx i n range (2) :
57 concen t ra t i on . append (s e l f . weighing [i dx] / (s e l f . volume [idx] * 1E−3) / s e l f . molar_mass [idx])
58 r e t u r n concen t ra t i on
59
60 def get_pump_substance_assignment_l ist (s e l f) :
61 r e t u r n s e l f . l i s t
62
63 c lass Output_Calcu la t ion_Abso lu te_Eva luat ion (pyStrategy . Strategy_Base) :
64 c lass States (Enum) :
65 TEMPERATURE_EQUILIBRATION = 0 ,
66 SETTING_DEADLINE = 1 ,
67 WAITING_FOR_DEADLINE = 2 ,
68
69 def _ _ i n i t _ _ (s e l f , o p e r a t i o n _ p o i n t _ l i s t , substance_data , dead_time_ms , excel_name) :
70 s e l f . l i s t = o p e r a t i o n _ p o i n t _ l i s t
71 s e l f . substance_data = substance_data
72 s e l f . dead_time = dead_time_ms
73
74 s e l f . i dx = 0
75 s e l f . cur_temp = f l o a t ("NaN")
76 s e l f . cur_deadl ine = 0
77 s e l f . min_time = 0
78 s e l f . cu r_opera t ion_po in t = None
79 s e l f . s t a t e = Output_Calcu la t ion_Abso lu te_Eva luat ion . States .TEMPERATURE_EQUILIBRATION
80 s e l f . d a t a l i s t = []
81
82 # v a r i a b l e s f o r c a l c u l a t i o n
83 s e l f . process_poin t = 0
84

September 2021 101

TU Graz 8 Appendix

85 # create excel f i l e
86 s e l f . excel_name = excel_name
87 [s e l f . workbook , s e l f . sheet , s e l f . counter] = Excel_Funct ions . c reate_exce l (s e l f . substance_data , s e l f . excel_name)
88
89 # s a n i t y check
90 f o r idx i n range (len (s e l f . l i s t)) :
91 i f not len (s e l f . substance_data . l i s t) == len (s e l f . l i s t [i dx] . f l o w r a t e _ l i s t) :
92 ra i se Except ion (" Length o f substance pump assignment l i s t and f low ra te l i s t do not match ")
93
94 i f not s e l f . dead_time < s e l f . l i s t [i dx] . time_ms :
95 ra i se Except ion (" The dead t ime i s longer than the opera t ing time , so there i s no eva lua t i on t ime ")
96
97 t r y :
98 tmp = " { : d } " . format (i n t (s e l f . l i s t [i dx] . temperature))
99 D i c t i o n a r y . ca lo r ime te r_ the rmos ta t [tmp]

100 except KeyError :
101 ra i se Except ion ("No ca lo r ime te r c a l i b r a t i o n i s given f o r the given set temperature ")
102
103 def ge t_opera t ion_po in t (s e l f) :
104 i f not s e l f . i dx < len (s e l f . l i s t) :
105 s e l f . cu r_opera t ion_po in t = None
106 r e t u r n None
107
108 s e l f . cu r_opera t ion_po in t = s e l f . l i s t [s e l f . i dx]
109 i f not s e l f . cu r_opera t ion_po in t . get_temperature () == s e l f . cur_temp :
110 s e l f . cur_deadl ine = t ime . monotonic_ns () + 10 * 60 * 1E9
111 s e l f . s t a t e = Output_Calcu la t ion_Abso lu te_Eva luat ion . States .TEMPERATURE_EQUILIBRATION
112 s e l f . cur_temp = s e l f . cu r_opera t ion_po in t . get_temperature ()
113 r e t u r n pyStrategy . Strategy_Base . ope ra t i on_po in t_ i n fo rma t i on (s e l f . cur_temp , [0] * s e l f . cu r_opera t ion_po in t .

get_number_of_pumps ())
114
115 s e l f . s t a t e = Output_Calcu la t ion_Abso lu te_Eva luat ion . States . SETTING_DEADLINE
116 s e l f . i dx += 1
117 r e t u r n pyStrategy . Strategy_Base . ope ra t i on_po in t_ i n fo rma t i on (s e l f . cur_temp , s e l f . cu r_opera t ion_po in t . f l o w r a t e _ l i s t)
118
119 def push_value (s e l f , l i n e) :
120 i f l i n e i s None :
121 r e t u r n
122
123 s e l f . d a t a l i s t . append (l i n e)
124 s e l f . sheet [1] . append (l i n e)
125
126 i f not s e l f . s t a t e == Output_Calcu la t ion_Abso lu te_Eva luat ion . States .WAITING_FOR_DEADLINE :
127 r e t u r n
128
129 # one−t ime c a l c u l a t i o n
130 i f s e l f . min_time < t ime . monotonic_ns () and s e l f . wa i t ing_coun te r == 0:
131 s e l f . s t a r t i n g _ i d x = len (s e l f . d a t a l i s t) −1
132 s e l f . wa i t i ng_coun te r = 1
133
134 s e l f . process_poin t += 1
135 s e l f . eva lu ta ion_ t ime = [s e l f . d a t a l i s t [s e l f . s t a r t i n g _ i d x] [0] , None]
136 s e l f . set_vo lume_f lowrate = [0 , 0]
137 s e l f . ac tua l_vo lume_f lowrate = [0 , 0]
138 s e l f . ac tua l_mo la r_ f l owra te = [0 , 0]
139 s e l f . ac tua l_water_molar_ f lowra te = [0 , 0]
140
141 f o r idx i n range (1 ,4) :
142 s e l f . sheet [0] . inser t_ rows (idx= s e l f . counter [i dx] [1] , amount=1)
143 i f i dx == 1:
144 f o r jdx i n range (1 ,4) :
145 s e l f . counter [j dx] [1] += 1
146 i f j dx != 1 :
147 s e l f . counter [j dx] [0] += 1
148 i f i dx == 2:
149 f o r jdx i n range (2 ,4) :
150 s e l f . counter [j dx] [1] += 1
151 s e l f . counter [3] [0] += 1
152 i f i dx == 3:
153 s e l f . counter [i dx] [1] += 1
154
155 f o r idx i n range (len (s e l f . substance_data . l i s t)) :
156 i f s e l f . substance_data . l i s t [i dx] == "A" :
157 jdx = 0
158 i f s e l f . substance_data . l i s t [i dx] == "B" :
159 jdx = 1
160 s e l f . set_vo lume_f lowrate [j dx] += s e l f . cu r_opera t ion_po in t . f l o w r a t e _ l i s t [i dx]
161 s e l f . ac tua l_vo lume_f lowrate [j dx] += s e l f . a c t u a l _ f l o w r a t e _ l i s t [i dx]
162 s e l f . ac tua l_mo la r_ f lowra te [j dx] += s e l f . a c t u a l _ f l o w r a t e _ l i s t [i dx] * s e l f . substance_data . ge t_concen t ra t ion ()

[i dx] / 6E4
163 s e l f . ac tua l_water_molar_ f lowra te [j dx] += s e l f . a c t u a l _ f l o w r a t e _ l i s t [i dx] * D i c t i o n a r y . c a l c u l a t i o n _d a ta ["

concen t ra t i on "] / 6E4
164
165 # process setup en t ry
166 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=1) . value = s e l f . process_point
167 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=2) . value = s e l f . eva lu ta ion_ t ime [0]
168 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=4) . value = s e l f . set_volume_f lowrate [0]
169 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=5) . value = s e l f . ac tua l_vo lume_f lowrate [0]
170 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=6) . value = s e l f . ac tua l_mo la r_ f lowra te [0]
171 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=7) . value = s e l f . ac tua l_water_molar_ f lowra te [0]
172 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=8) . value = s e l f . set_volume_f lowrate [1]
173 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=9) . value = s e l f . ac tua l_vo lume_f lowrate [1]
174 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=10) . value = s e l f . ac tua l_mo la r_ f lowra te [1]

102 September 2021

8.1 Application Code TU Graz

175 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=11) . value = s e l f . ac tua l_water_molar_ f lowra te [1]
176
177 # ongoing c a l c u l a t i o n
178 i f s e l f . wa i t i ng_coun te r == 1:
179 mean_values = []
180 temp_di f ference = []
181 hea t_ f l ux_ou ts ide = []
182 hea t_ f l ux_ reac to r = None
183 en tha lpy_d i f f e rence = None
184
185 # process setup en t ry
186 s e l f . eva lu ta ion_ t ime [1] = s e l f . d a t a l i s t [len (s e l f . d a t a l i s t) −1] [0]
187 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [1] − 1 , column=3) . value = s e l f . eva lu ta ion_ t ime [1]
188
189 # raw data processing en t ry (mean values)
190 s e l f . sheet [0] . c e l l (row= s e l f . counter [2] [1] − 1 , column=1) . value = s e l f . process_point
191 f o r idx i n range (5 ,11) :
192 mean = 0
193 counter = 0
194 f o r jdx i n range (s e l f . s t a r t i n g _ i d x , len (s e l f . d a t a l i s t)) :
195 counter += 1
196 mean += s e l f . d a t a l i s t [j dx] [i dx]
197 mean_values . append (mean / counter)
198 s e l f . sheet [0] . c e l l (row= s e l f . counter [2] [1] − 1 , column=idx −3) . value = mean_values [idx −5]
199
200 # raw data processing and c a l c u l a t i o n en t ry (temperature d i f f e r e n c e and outs ide heat f l u x)
201 f o r idx i n range (3) :
202 temp_di f fe rence . append (s e l f . cu r_opera t ion_po in t . temperature − mean_values [i dx])
203 s e l f . sheet [0] . c e l l (row= s e l f . counter [2] [1] − 1 , column= idx +8) . value = temp_di f ference [i dx]
204
205 i f not i dx == 2:
206 tmp = s e l f . ac tua l_vo lume_f lowrate [i dx] * D i c t i o n a r y . c a l c u l a t i o n _d a ta [" concen t ra t i on "] * D i c t i o n a r y .

c a l c u l a t i on _ da t a [" cp "] * temp_di f fe rence [i dx] / 6E4
207 hea t_ f l ux_ou ts ide . append (tmp)
208 s e l f . sheet [0] . c e l l (row= s e l f . counter [3] [1] − 1 , column= idx +2) . value = hea t_ f l ux_ou ts ide [i dx]
209
210 else :
211 tmp = sum(s e l f . ac tua l_water_molar_ f lowra te) * D i c t i o n a r y . c a l c u l a t i o n _d a ta [" cp "] * temp_di f fe rence [i dx]
212 hea t_ f l ux_ou ts ide . append (tmp)
213 s e l f . sheet [0] . c e l l (row= s e l f . counter [2] [1] − 1 , column= s e l f . counter [2] [2]) . value = hea t_ f l ux_ou ts ide [i dx]
214
215 # c a l c u l a t i o n en t ry (reac to r heat f l u x and entha lpy d i f f e r e n c e)
216 s e l f . sheet [0] . c e l l (row= s e l f . counter [3] [1] − 1 , column=1) . value = s e l f . process_point
217 hea t_ f l ux_ reac to r = D i c t i o n a r y . ca lo r ime te r_ the rmos ta t [" { : d } " . format (i n t (s e l f . cu r_opera t ion_po in t . temperature))

] . forward (mean_values [3 :])
218 hea t_ f l ux_ reac to r . i n s e r t (1 , hea t_ f l ux_ reac to r [0] −sum(hea t_ f l ux_ou ts ide [: 2]))
219
220 f o r idx i n range (len (hea t_ f l ux_ reac to r)) :
221 s e l f . sheet [0] . c e l l (row= s e l f . counter [3] [1] − 1 , column= idx +4) . value = hea t_ f l ux_ reac to r [i dx]
222
223 en tha lpy_d i f f e rence = (sum(hea t_ f l ux_ reac to r [1 :]) +hea t_ f l ux_ou ts ide [2]) / (s e l f . ac tua l_mo la r_ f lowra te [0] *1000)
224 s e l f . sheet [0] . c e l l (row= s e l f . counter [3] [1] − 1 , column= s e l f . counter [3] [2]) . value = en tha lpy_d i f f e rence
225
226 # save changes
227 s e l f . workbook . save (" { } . x l sx " . format (s e l f . excel_name))
228
229 def point_complete (s e l f) :
230 i f s e l f . s t a t e == Output_Calcu la t ion_Abso lu te_Eva luat ion . States .TEMPERATURE_EQUILIBRATION:
231 va l = 10
232 i f len (s e l f . d a t a l i s t) < va l :
233 r e t u r n False
234
235 f o r co l_ i dx i n [2 , 3 , 4] :
236 va l i d_coun t = 0
237 f o r idx i n range (va l) :
238 i f abs (s e l f . d a t a l i s t [len (s e l f . d a t a l i s t) −1− idx] [co l_ i dx] − s e l f . cu r_opera t ion_po in t . get_temperature ()) <

0 . 1 :
239 va l i d_coun t += 1
240 i f va l i d_coun t < math . c e i l (va l * 0 . 9) :
241 r e t u r n False
242 # r e t u r n True i f dummy i s used
243 r e t u r n True
244 e l i f s e l f . s t a t e == Output_Calcu la t ion_Abso lu te_Eva luat ion . States . SETTING_DEADLINE :
245 s e l f . cur_deadl ine = t ime . monotonic_ns () + s e l f . cu r_opera t ion_po in t . get_time_ms () * 1E6
246 s e l f . min_time = t ime . monotonic_ns () + s e l f . dead_time
247 s e l f . s t a t e = Output_Calcu la t ion_Abso lu te_Eva luat ion . States .WAITING_FOR_DEADLINE
248 s e l f . wa i t i ng_coun te r = 0
249 r e t u r n False
250 e l i f s e l f . s t a t e == Output_Calcu la t ion_Abso lu te_Eva luat ion . States .WAITING_FOR_DEADLINE :
251 i f s e l f . cur_deadl ine < t ime . monotonic_ns () :
252 s e l f . workbook . save (" { } . x l sx " . format (s e l f . excel_name))
253 r e t u r n True
254 else :
255 r e t u r n False
256 ra i se Except ion ("You should not land here ")
257
258 def has_error (s e l f) :
259 i f not s e l f . s t a t e == Output_Calcu la t ion_Abso lu te_Eva luat ion . States .TEMPERATURE_EQUILIBRATION:
260 r e t u r n False
261
262 i f s e l f . cur_deadl ine < t ime . monotonic_ns () :
263 p r i n t (" set_temp i s not reached at the reac to r ")
264 r e t u r n True
265 r e t u r n False
266

September 2021 103

TU Graz 8 Appendix

267 def push_ac tua l_ f lowra te (s e l f , va l) :
268 s e l f . a c t u a l _ f l o w r a t e _ l i s t = va l
269
270 def g e t _ f i n i s h _ i n s t r u c t i o n (s e l f) :
271 # generate char ts
272 Dia_Raw_Temp = LineChart ()
273
274 Dia_Raw_Temp . y_axis . t i t l e = " Temperature [◦C] "
275 y_data = Reference (s e l f . sheet [1] , min_col = 2 , min_row = 1 , max_col = 8 , max_row = len (s e l f . d a t a l i s t) +1)
276 Dia_Raw_Temp . add_data (y_data , t i t l e s _ f r o m _ d a t a = True)
277
278 Dia_Raw_Temp . x_axis . t i t l e = " Time [s] "
279 Dia_Raw_Temp . x_axis . t i c k L b l S k i p = math . c e i l (len (s e l f . d a t a l i s t) / 10)
280 x_data = Reference (s e l f . sheet [1] , min_col = 1 , min_row = 2 , max_row = len (s e l f . d a t a l i s t) +1)
281 Dia_Raw_Temp . se t_ca tegor ies (x_data)
282
283 char t1 = s e l f . workbook . c rea te_char tsheet ("Dia_Raw_Temp")
284 char t1 . add_chart (Dia_Raw_Temp)
285
286 Dia_Raw_Voltage = LineChart ()
287
288 Dia_Raw_Voltage . y_axis . t i t l e = " Vol tage [mV] "
289 y_data = Reference (s e l f . sheet [1] , min_col = 9 , min_row = 1 , max_col = 11 , max_row = len (s e l f . d a t a l i s t) +1)
290 Dia_Raw_Voltage . add_data (y_data , t i t l e s _ f r o m _ d a t a = True)
291
292 Dia_Raw_Voltage . x_axis . t i t l e = " Time [s] "
293 Dia_Raw_Voltage . x_axis . t i c k L b l S k i p = math . c e i l (len (s e l f . d a t a l i s t) / 10)
294 x_data = Reference (s e l f . sheet [1] , min_col = 1 , min_row = 2 , max_row = len (s e l f . d a t a l i s t) +1)
295 Dia_Raw_Voltage . se t_ca tegor ies (x_data)
296
297 char t2 = s e l f . workbook . c rea te_char tsheet (" Dia_Raw_Voltage ")
298 char t2 . add_chart (Dia_Raw_Voltage)
299
300 # f o r m a t t i n g
301 substance_a_color = " 3BCCFF"
302 substance_b_color = " 3D33FF"
303 r e s u l t _ c o l o r = "FF087F"
304 add_data_color = " 4B0082 "
305
306 f o r idx i n range (4) :
307 s e l f . sheet [0] . c e l l (row= s e l f . counter [i dx] [0] , column=1) . f o n t = Font (bold=True)
308 s e l f . sheet [0] . c e l l (row= s e l f . counter [i dx] [0] , column=1) . a l ignment = Al ignment (h o r i z o n t a l = " center ")
309 s e l f . sheet [0] . merge_cel ls (s ta r t_ row= s e l f . counter [i dx] [0] , s tar t_co lumn =1 , end_row= s e l f . counter [i dx] [0] ,

end_column= s e l f . counter [i dx] [2])
310
311 f o r jdx i n range (1 , s e l f . counter [i dx] [2] + 1) :
312 s e l f . sheet [0] . c e l l (row= s e l f . counter [i dx] [0] + 1 , column= jdx) . border = Border (bottom=Side (bo rde r_s ty le=" t h i c k "

))
313
314 f o r idx i n range (s e l f . process_poin t) :
315 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [0] + idx +2 , column=5) . f i l l = P a t t e r n F i l l (" l i gh tUp " , fgCo lo r=

substance_a_color)
316 s e l f . sheet [0] . c e l l (row= s e l f . counter [1] [0] + idx +2 , column=9) . f i l l = P a t t e r n F i l l (" l i gh tUp " , fgCo lo r=

substance_b_color)
317 s e l f . sheet [0] . c e l l (row= s e l f . counter [3] [0] + idx +2 , column=8) . f i l l = P a t t e r n F i l l (" l i gh tUp " , fgCo lo r= r e s u l t _ c o l o r)
318
319 f o r idx i n range (1 , s e l f . counter [0] [2] + 1) :
320 s e l f . sheet [0] . c e l l (row=3 , column= idx) . f i l l = P a t t e r n F i l l (" l i g h t T r e l l i s " , fgCo lo r=substance_a_color)
321 s e l f . sheet [0] . c e l l (row=4 , column= idx) . f i l l = P a t t e r n F i l l (" l i g h t T r e l l i s " , fgCo lo r=substance_b_color)
322
323 s e l f . sheet [0] . c e l l (row=2 , column=8) . f o n t = Font (bold=True)
324 s e l f . sheet [0] . c e l l (row=2 , column=8) . a l ignment = Al ignment (h o r i z o n t a l = " center ")
325 s e l f . sheet [0] . merge_cel ls (s ta r t_ row =2 , s tar t_co lumn =8 , end_row=2 , end_column=9)
326 f o r idx i n range (2) :
327 s e l f . sheet [0] . c e l l (row= idx +3 , column=9) . f i l l = P a t t e r n F i l l (" l i g h t T r e l l i s " , fgCo lo r=add_data_color)
328 s e l f . sheet [0] . c e l l (row=3 , column= idx +8) . border = Border (top=Side (bo rde r_s ty le=" t h i c k "))
329
330 s e l f . workbook . save (" { } . x l sx " . format (s e l f . excel_name))

Listing 26: The Strategy_OCAE.py file corresponds to a concrete strategy of the strategy pattern and

contains the strategy for evaluating the measurement data and for creating an Excel output file.

8.1.17 Strategy_OPL.py

1 # This f i l e conta ins the Operat ion Po in t L i s t s t r a t egy and i t s
2 # necessary c lasses .
3
4 # l i b r a r y / modules from python :
5 from enum impor t Enum
6 impor t math
7 impor t t ime
8
9 # own s c r i p t s :

10 impor t pyStrategy
11
12 c lass o p e r a t i o n _ p o i n t _ l i s t _ e n t r y :
13 " " " This c lass tu rns the user ’ s i npu t i n t o an ob jec t , making i t eas ie r to handle the opera t ing po in t s . " " "
14 def _ _ i n i t _ _ (s e l f , time_ms , temperature , f l o w r a t e _ l i s t) :
15 s e l f . time_ms = time_ms

104 September 2021

8.1 Application Code TU Graz

16 s e l f . temperature = temperature
17 s e l f . f l o w r a t e _ l i s t = f l o w r a t e _ l i s t
18
19 def get_time_ms (s e l f) :
20 r e t u r n s e l f . time_ms
21
22 def get_temperature (s e l f) :
23 r e t u r n s e l f . temperature
24
25 def ge t_ f l owra te (s e l f , i dx) :
26 r e t u r n s e l f . f l o w r a t e _ l i s t [i dx]
27
28 def get_number_of_pumps (s e l f) :
29 r e t u r n len (s e l f . f l o w r a t e _ l i s t)
30
31 c lass Opera t ion_Po in t_L is t (pyStrategy . Strategy_Base) :
32 c lass States (Enum) :
33 TEMPERATURE_EQUILIBRATION = 0 ,
34 SETTING_DEADLINE = 1 ,
35 WAITING_FOR_DEADLINE = 2 ,
36
37 def _ _ i n i t _ _ (s e l f , o p e r a t i o n _ p o i n t _ l i s t) :
38 s e l f . l i s t = o p e r a t i o n _ p o i n t _ l i s t
39 s e l f . i dx = 0
40 s e l f . cur_temp = f l o a t ("NaN")
41 s e l f . cur_deadl ine = 0
42 s e l f . cu r_opera t ion_po in t = None
43 s e l f . s t a t e = Opera t ion_Po in t_L is t . States .TEMPERATURE_EQUILIBRATION
44 s e l f . d a t a l i s t = []
45
46 def ge t_opera t ion_po in t (s e l f) :
47 i f not s e l f . i dx < len (s e l f . l i s t) :
48 s e l f . cu r_opera t ion_po in t = None
49 r e t u r n None
50
51 s e l f . cu r_opera t ion_po in t = s e l f . l i s t [s e l f . i dx]
52 i f not s e l f . cu r_opera t ion_po in t . get_temperature () == s e l f . cur_temp :
53 s e l f . cur_deadl ine = t ime . monotonic_ns () + 10 * 60 * 1E9
54 s e l f . s t a t e = Opera t ion_Po in t_L is t . States .TEMPERATURE_EQUILIBRATION
55 s e l f . cur_temp = s e l f . cu r_opera t ion_po in t . get_temperature ()
56 r e t u r n pyStrategy . Strategy_Base . ope ra t i on_po in t_ i n fo rma t i on (s e l f . cur_temp , [0] * s e l f . cu r_opera t ion_po in t .

get_number_of_pumps ())
57
58 s e l f . s t a t e = Opera t ion_Po in t_L is t . States . SETTING_DEADLINE
59 s e l f . i dx += 1
60 r e t u r n pyStrategy . Strategy_Base . ope ra t i on_po in t_ i n fo rma t i on (s e l f . cur_temp , s e l f . cu r_opera t ion_po in t . f l o w r a t e _ l i s t)
61
62 def push_value (s e l f , l i n e) :
63 i f l i n e i s not None :
64 s e l f . d a t a l i s t . append (l i n e)
65
66 def point_complete (s e l f) :
67 i f s e l f . s t a t e == Opera t ion_Po in t_L is t . States .TEMPERATURE_EQUILIBRATION:
68 va l = 10
69 i f len (s e l f . d a t a l i s t) < va l :
70 r e t u r n False
71
72 f o r co l_ i dx i n [2 , 3 , 4] :
73 va l i d_coun t = 0
74 f o r idx i n range (va l) :
75 i f abs (s e l f . d a t a l i s t [len (s e l f . d a t a l i s t) −1− idx] [co l_ i dx] − s e l f . cu r_opera t ion_po in t . get_temperature ()) <

0 . 1 :
76 va l i d_coun t += 1
77 i f va l i d_coun t < math . c e i l (va l * 0 . 9) :
78 # r e t u r n False
79 r e t u r n True
80 r e t u r n True
81 e l i f s e l f . s t a t e == Opera t ion_Po in t_L is t . States . SETTING_DEADLINE :
82 s e l f . cur_deadl ine = t ime . monotonic_ns () + s e l f . cu r_opera t ion_po in t . get_time_ms () * 1E6
83 s e l f . s t a t e = Opera t ion_Po in t_L is t . States .WAITING_FOR_DEADLINE
84 r e t u r n False
85 e l i f s e l f . s t a t e == Opera t ion_Po in t_L is t . States .WAITING_FOR_DEADLINE :
86 i f s e l f . cur_deadl ine < t ime . monotonic_ns () :
87 r e t u r n True
88 else :
89 r e t u r n False
90 ra i se Except ion ("You should not land here ")
91
92 def has_error (s e l f) :
93 i f not s e l f . s t a t e == Opera t ion_Po in t_L is t . States .TEMPERATURE_EQUILIBRATION:
94 r e t u r n False
95
96 i f s e l f . cur_deadl ine < t ime . monotonic_ns () :
97 p r i n t (" set_temp i s not reached at the reac to r ")
98 r e t u r n True
99 r e t u r n False

Listing 27: The Strategy_OPL.py file corresponds to a concrete strategy of the strategy pattern and

contains the strategy which does not yet further restrict the handling of the system.

September 2021 105

TU Graz 8 Appendix

8.2 Output Calculation from Measurement Data

The molar reaction enthalpy is to be calculated from the measurement data obtained from the

calorimeter. For this purpose, the actual volumetric flow rates V̇A,act and V̇B,act are determined

in the first step using the target flow rates V̇A and V̇B and the known calibration values Ki of

the used pumps (Equation 8 and 9).

V̇A,act =
V̇A

Ki
(8)

V̇B,act =
V̇B

Ki
(9)

Based on the known concentrations cA and cB of the two components and the previously cal-

culated actual volume fluxes, the actual mole fluxes ṅA,act and ṅB,act are derived (Equation 10

and 11).

ṅA,act =
V̇A,act

60
· cA

103 (10)

ṅB,act =
V̇B,act

60
· cB

103 (11)

In the next step, certain measurement data are averaged over the time interval relevant

for the evaluation of the operating point. These specific measurement data include the

temperatures TA and TB of the two components at the inlet, the temperature Tout at the outlet

and the measured voltages Upre, Ur1 and Ur2 in each of the three segments of the calorimeter.

Subsequently, the temperature differences ∆TA, ∆TB and ∆Tout to the set temperature Tset

are calculated from the three averaged temperatures (Equation 12-14).

∆TA = Tset − TA (12)

∆TB = Tset − TB (13)

∆Tout = Tset − Tout (14)

The general heat balance given in Equation 15 applies to the reactor plate of the calorimeter.

The temporal change of the heat quantity is given by the convective Q̇conv, the transmitted

Q̇tran and the reaction heat flux Q̇reac.

dQ
dt

= −Q̇conv − Q̇tran + Q̇reac (15)

106 September 2021

8.2 Output Calculation from Measurement Data TU Graz

Using the calculated temperature differences, the convective heat flows Q̇A and Q̇B at the

inlet and the convective heat flow Q̇out at the outlet of the calorimeter can be computed. To

calculate these heat fluxes, the actual volumetric flow rates, the concentration of water cwater

and the specific heat capacity of water cp,water are needed in addition to the temperature

differences (Equation 16-18).

Q̇A =
V̇A

60
· cwater

103 ·∆TA · cp,water (16)

Q̇B =
V̇B

60
· cwater

103 ·∆TB · cp,water (17)

Q̇out =
(

V̇A,act

60
· cwater

103 +
V̇B,act

60
· cwater

103

)
·∆Tout · cp,water (18)

The transmitted heat flux is derived from the measured data. For this purpose, the calibra-

tion curve of the calorimeter is evaluated for each segment as given in Equation 19. The

corresponding heat quantity Q̇seg is determined from the measured voltage Useg . The trans-

mitted heat flux then results from the sum of these three heat quantities Q̇pre, Q̇r1 and Q̇r2

(Equation 20).

Q̇seg = (−1) ·
(

a · U2
seg + b · Useg + c

)
(19)

Q̇tran = Q̇pre + Q̇r1 + Q̇r2 (20)

Since in a steady state operation the change of the heat quantity equals zero, regarding the

heat balance in Equation 15 the reaction heat flux results in the sum of the convective and the

transmitted heat fluxes (Equation 21).

Q̇reac = Q̇conv + Q̇tran (21)

Finally, the molar reaction enthalpy ∆hR can be calculated from the reaction heat flux and the

actual mole flux of the limiting component assuming complete conversion (Equation 22).

∆hR =
Q̇reac

ṅA,act · 103 =
−Q̇A − Q̇B + Q̇out + Q̇pre + Q̇r1 + Q̇r2

ṅA,act · 103 (22)

September 2021 107

	Abstract
	Zusammenfassung
	Acknowledgement
	List of Figures
	List of Listings
	List of Tables
	List of Symbols
	Introduction
	Task Formulation and Intended Use
	Structure of the Thesis

	Theoretical Background
	Flow Chemistry
	Basic Principles of Calorimetry
	Neutralisation Reaction
	Process Setup and Communication Details
	State Machine
	Basic Concept of the State Machine
	Elements of the State Machine
	Example of a State Machine

	Design pattern
	Definition of design pattern
	Factory method pattern
	State pattern
	Strategy pattern

	Application Development
	Basic Principles of Application Development
	Use Case Specification
	Application Architecture
	Implementation
	Implementation Approach
	Realisation of the State Machine Concept
	Creating a State Machine
	Additional State Machines of the Equipment
	Realisation of the Strategy Pattern

	Results and Discussion
	Testing of the Application
	Final Application
	Experimental Results

	Conclusion and Outlook
	Experimental Procedure
	Details on conducting the Experiments
	Calorimeter-Thermostat Calibration
	Calorimeter Calibration

	References
	Appendix
	Application Code
	Auto.py
	Calibration.py
	Calorimeter.py
	Communication.py
	Dictionary.py
	Excel_Functions.py
	Fisher.py
	HPLC.py
	Lambda.py
	LayerB.py
	LayerC.py
	Operating_OCAE.py
	Operating_OPL.py
	pyState.py
	pyStrategy.py
	Strategy_OCAE.py
	Strategy_OPL.py

	Output Calculation from Measurement Data

