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Abstract

The intriguing nonequilibrium physics of strongly interacting many body systems has

become increasingly accessible to theoretical studies in recent years, fueled to a large extent

by new and improved theoretical methods. A non-equilibrium setup is for example the

shining of a short laser pulse onto a material, or a sudden change of one or more Hamiltonian

parameters of a theoretical model like the Hubbard model. The present thesis contains three

parts, introducing a new non-equilibrium Dynamical Mean Field Theory (DMFT) solver

and expanding the range of accessible problems, studying non-equilibrium physics of light

absorption in a small Hubbard system, and studying front dynamics in spin systems.

In the first part of the present thesis a new so-called impurity solver for non-equilibrium

DMFT is introduced. DMFT is one of the most promising avenues for describing, predicting,

and understanding strongly correlated materials. One of the crucial elements of every DMFT

simulation is the impurity solver. In equilibrium, several solvers are available which satisfy

important criteria like the usage of a controlled approximation, flexibility of parameter regions,

and the ability to solve the impurity problem at low temperatures. In non-equilibrium setups,

currently available solvers cannot satisfy all of the aforementioned properties. Examples of

existing non-equilibrium solvers are the Non-Crossing Approximation (NCA), which does not

have a fine-grained control parameter and is severely restricted to certain parameter regions,

and Continuous-Time Quantum Monte Carlo (CTQMC), which has a dynamic sign problem

or phase problem. In the present thesis, we develop a new impurity solver for non-equilibrium

DMFT at zero temperature, modifying the Hamiltonian formalism at finite temperatures

developed by Gramsch et al. The new solver employs Matrix Product States (MPS), which

have been used successfully as solvers in equilibrium setups and also in non-equilibrium setups

with trivial initial states in recent years. The MPS ansatz brings in all the desired properties

mentioned above. It is a controlled approximation, in the sense that one can increase the

matrix dimensions involved and get a more accurate result. As long as the required matrix

dimensions stay low, one can freely change the parameters of the Hamiltonian. The solver is

formulated directly at zero temperature. While large matrix dimensions may pose a problem

in certain simulations, there is no sign problem.

i



An important non-equilibrium effect, with potential applications in solar cells, is impact

ionization, where one photon can excite more than one electron by means of electron-electron

scattering processes. In the second part of the thesis we investigate the 4 × 3 Hubbard

model under the influence of a short laser pulse. Impact ionization has been observed for the

Hubbard model, but only with the help of DMFT or similar methods, which all neglect spatial

correlations. On a small lattice, it is possible to fully account for spatial correlations. We

indeed observe impact ionization for suitably high photon energies, and Auger recombination

for lower photon energies. We are also able to show that there is multiple photon absorption

at high light intensity and we introduce a technique to study the individual time-evolution

for different multiphoton contributions.

In the third part we simulate front dynamics of the one dimensional 𝑋𝑌 spin-model. The

dynamics of spin chains have gained a recent surge in popularity as they can be experimentally

realized with laser traps and have several other interesting properties, such as integrability

of theoretical models. We investigate the behavior of a chain for several different initial

states, such as a Jordan-Wigner excitation or a double domain wall. For the Jordan-Wigner

excitation of the symmetry broken ground state we find what we call a hydrodynamical phase

transition. The magnetization profile of the steady state and the entanglement entropy show

a qualitatively different behavior above and below a certain critical magnetic field strength.

For the double domain wall we find that the magnetization profile factorizes and can be

related to a single domain wall.
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Zusammenfassung

Durch die Entwicklung von neuen und verbesserten Methoden wurde die Erforschung von

korrelierten Vielteilchensystemen im Nichtgleichgewicht in den letzten Jahren stark vorange-

trieben. Ein Beispiel für ein solches System im Nichtgleichgewicht ist etwa ein Material unter

Einfluss eines kurzen Laserpulses, oder eine plötzliche Veränderung von einem oder mehreren

Parametern des Hubbard-Modells. Die vorliegende Arbeit besteht aus drei Teilen, erstens

der Entwicklung eines neuen Nichtgleichgewichts Dynamical Mean Field Theory (DMFT,

dynamische Molekularfeldtheorie) Solvers, der die Menge an untersuchbaren Problemen ver-

größert, zweitens der Untersuchung von Lichtabsorptionen in einem kleinen Hubbardsystem,

und drittens der Untersuchung der Frontdynamik eines Spin-Modells.

Im ersten Teil dieser Arbeit wird ein neuer sogenannter Impuritysolver (impurity =

Störstelle) für Nichtgleichgewichts-DMFT eingeführt, welche eine der vielversprechendsten

Ansätze ist, um die Materialeigenschaften von stark korrelierten Materialien zu beschreiben,

zu verstehen und vorherzusagen. Der Impuritysolver ist einer der wichtigsten Bestandteile

von DMFT, wobei für den Gleichtsgewichtsfall mehrere Solver verfügbar sind. Diese erfüllen

mehrere wichtige Qualitätskriterien, wie die Nutzung einer kontrollierten Approximation,

eine große Reichweite an untersuchbaren Paramtererbereichen, und die Möglichkeit, das

Impurityproblem bei niedrigen Temperaturen zu lösen. Im Nichtgleichgewicht ist die Situation

derzeit so, dass es keinen Solver gibt, der alle oben genannten Kriterien erfüllt. Als Beispiele

für Nichtgleichgewichtssolver seien die Non-Crossing Approximation (NCA) und Continuous-

Time Quantum Monte Carlo (CTQMC) genannt. Dabei hat NCA das Problem, dass es

keinen guten Kontrollparameter für die Approximation besitzt, während CTQMC durch das

dynamische Vorzeichenproblem geplagt wird. In der vorliegende Arbeit entwickeln wir einen

Solver für Nichtgleichgewichts-DMFT und bauen dabei auf den Hamiltonschen Formalismus

für endliche Temperaturen auf, der von Gramsch et al. vorgestellt wurde. Dieser neue Solver

funktioniert mithilfe von Matrixproduktzuständen (MPS), die schon erfolgreich als Solver

für Gleichgewichts-DMFT und Nichtgleichgewichts-DMFT mit trivialen Anfangszuständen

in den letzen Jahren verwendet wurden. Die Methode der MPS liefert alle oben erwähnten

gewünschten Qualitätskriterien eines Solvers. Es ist eine kontrollierte Approximation, in dem

Sinne, dass die benutzten Matrixdimensionen vergrößert werden können um die Genauigkeit zu

iii



erhöhen, und so lange diese klein genug bleiben, können die Parameter des Hamiltonoperators

nach Belieben angepasst werden. Außerdem ist der Solver direkt für die Temperatur des

absoluten Nullpunkts formuliert. Wenn man MPS verwendet, gibt es in der Simulation kein

Vorzeichenproblem, jedoch könnten die benötigten Matrixdimensionen ein Problem darstellen,

wenn diese zu groß werden und damit die benötigte Rechenleistung zu stark ansteigt.

Ein wichtiger Nichtgleichgewichtseffekt, der für Solarzellen relevant ist, ist Stoßionisation

(impact ionization), bei der ein Photon mehr als ein Elektron anregen kann. Dies geschieht

mithilfe von Elektron-Elektron Streuprozessen. Im zweiten Teil dieser Arbeit untersuchen wir

ein 4×3 Hubbard-Model, das sich unter dem Einfluss eines kurzen Laserpulses befindet. Mithilfe

von DMFT und ähnlichen Methoden wurde der Nachweis von Stoßionisation im Hubbard-

Modell bereits erbracht. Ein Nachteil dieser Methoden ist, dass sie örtliche Korrelationen

vernachlässigen. Dieser Nachteil kann umgangen werden, indem man nur ein kleines System

simuliert, wo es möglich ist, alle Korrelationen in die Rechnung miteinzubeziehen. Wir können

tatsächlich die Existenz von Stoßionisation auf dem kleinen Gitter nachweisen, wenn die

Photonenenergie ausreichend groß ist. Bei niedrigen Photonenenergien beobachten wir den

verwandten Effekt der Auger-Rekombination. Bei hohen Lichtintensitäten tritt die Absorption

von mehreren Photonen auf. Außerdem führen wir eine Methode ein, die es ermöglicht,

die Beträge und Zeitentwicklungen der verschieden Multiphotonenabsorptionen einzeln zu

untersuchen.

Im dritten Teil der vorliegenden Arbeit analysieren wir die Frontdynamik des eindimen-

sionalen 𝑋𝑌-Spin-Modells. Durch die Tatsache, dass Spinketten mittels Laserfallen realisiert

werden können und mehrere weitere interessanter theoretische Eigenschaften, wie zum Beispiel

die Integrabilität dieser Modelle, wurden sie in den letzten Jahren ein immer populäreres

Ziel von wissenschaftlichen Arbeiten. Für die vorliegende Arbeit untersuchen wir das Verhal-

ten der 𝑋𝑌-Kette bei verschiedenen Anfangszuständen, wie der Jordan-Wigner-Anregung

oder der einer doppelten Domänenwand. Für den Fall einer Jordan-Wigner-Anregung des

symmetriegebrochenen Grundzustandes entdecken wir einen Effekt, den wir als hydrodyna-

mischen Phasenübergang bezeichnen. Bei diesem zeigen das Magnetisierungsprofil und die

Von-Neumann-Entropie des sich einstellenden stationären Zustandes ein qualitativ unter-

schiedliches Verhalten, je nachdem ob die magnetische Feldstärke unter- oder oberhalb einer

kritischen Feldstärke liegt. Bei der doppelten Domänenwand zeigt sich, dass das Magnetisie-
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rungsprofil faktorisiert und in das Profil einer einfachen Domänenwand übergeführt werden

kann.
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Introduction

Preface
1 Introduction

This thesis is separated into three main parts. The first part is about a new non-equilibrium

Dynamical Mean Field solver based on Matrix Product States, formulated to work directly

at zero temperature, without the need of an analytic continuation, and without any sign

problem. In the second part we analyze a small Hubbard model under the influence of a

short laser pulse, taking spatial correlations fully into account. The third part is about front

dynamics of the 𝑋𝑌 model.

One of the main goals of theoretical solid state physics is to do ab initio calculations.

This means we want to start from the full Hamiltonian and correctly understand material

properties of elements and material compounds without the use of parameters obtained from

experiments. The Hamiltonian of the electrons in a many body system is given by:

𝐻 = − ∑
𝑖

ℏ2 ∇2
𝑖

2𝑚𝑒
+ ∑

𝑖≠𝑗

𝑒2

8𝜋𝜖0 ∣𝑥𝑖 − 𝑥𝑗∣
+ 𝑉 (𝑥1, 𝑥2, … ) (1)

From here on, we will use atomic units (ℏ = 𝑒 = 𝑚𝑒 = (4𝜋𝜖0)−1 = 1). An important area

of research here is Density Functional Theory1 (DFT), which has been successfully used to

predict material properties in many cases. With DFT one maps the Hamiltonian to a set of

non-interacting particles in so-called Kohn-Sham orbitals, which are easier to self-consistently

solve than the full many body Hamiltonian. This mapping is in principle exact, though the

knowledge of the exact potential in the Kohn-Sham orbitals would involve solving the full

many body Hamiltonian, thus there is a need of approximations here. Further improvements

are possible by extracting a Hubbard-type model2–4 from the DFT results, the simplest case

of which is described below. From there, there are several routes one can take. One possibility

is to solve the Hubbard-type model with with Dynamical Mean Field Theory5–8 (DMFT).

Note that these steps are not isolated and need to be solved in a self-consistent manner in

a realistic material calculation, meaning that one uses the results from DMFT and plugs

them back into DFT and so on, until convergence is reached. This long self-consistent loop

is the state of the art for modern ab initio material calculations. Another approach is to

1



Introduction

reduce the Hubbard-type model until one reaches a model where a solution or approximate

solution can be found. In the simplest case, only a hopping term (kinetic energy) and an

on-site repulsion (potential energy) remain. The Hubbard model has become the basic model

to understand the interplay of kinetic and potential energy terms in many-body systems,

with applications for example in understanding ferromagnetism9, superconductivity10, and

metal-insulator transitions11. After over half a century, the Hubbard model is still a hot topic

of research.

empty site spin-up
electron

spin-down
electron

double occupied
site

possible
hopping

impossible
hopping

Coulomb
repulsion

Figure 1. The Hubbard model with nearest-neighbor hopping.

Definition 1: Hubbard model

𝐻 = −𝑣 ∑
⟨𝑖,𝑗⟩,𝑠

𝑐†
𝑖,𝑠𝑐𝑗,𝑠 + 𝑐†

𝑗,𝑠𝑐𝑗,𝑠 + 𝑈 ∑
𝑖

(𝑛𝑖,↑ − 1
2

) (𝑛𝑖,↓ − 1
2

) − 𝜇 ∑
𝑖,𝑠

𝑛𝑖,𝑠 (2)

The Hubbard model is defined in Def. (1) Usually the hopping amplitude is denoted by

𝑡. We will use 𝑣 here because 𝑡 is used for time, and will call 𝑈 the Coulomb repulsion or

interaction, 𝜇 is the chemical potential, and 𝑠 is the spin, 𝑠 ∈ {↑, ↓}. The 𝑐𝑖 and 𝑐†
𝑖 are the

2
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electron annihilation and creation operators with the anticommutating relationship:

{𝑐𝑖,𝑠, 𝑐𝑗,𝑠′} = 𝑐𝑖,𝑠 𝑐𝑗,𝑠′ + 𝑐𝑗,𝑠′ 𝑐𝑖,𝑠 = 0 (3)

{𝑐†
𝑖,𝑠, 𝑐†

𝑗,𝑠′} = 0 (4)

{𝑐𝑖,𝑠, 𝑐†
𝑗,𝑠′} = 𝛿𝑖,𝑗 𝛿𝑠,𝑠′ (5)

𝑛𝑖,𝑠 = 𝑐†
𝑖,𝑠 𝑐𝑖,𝑠 (6)

Even though the Hubbard model is a very simplified version of the full many body Hamiltonian,

an analytic solution for the thermodynamic limit is yet to be found, except in one dimension,

where the Hubbard model has been solved by the Bethe ansatz12,13. With solution, we mean

the computation of the eigenstates of the system or at least the quasi-particle spectrum, where

quasi-particles are one-particle excited states of the ground state14. The spectrum can be

calculated from the retarded Green function:

𝐺𝑘(𝑡) = −𝑖 𝜃(𝑡) (⟨𝑐𝑘(𝑡) 𝑐†
𝑘⟩ + ⟨𝑐†

𝑘 𝑐𝑘(𝑡)⟩) (7)

The Green function in itself is an interesting quantity because it is closely connected to

experiment via Photo Emission Spectroscopy (PES)15,16 and X-ray Absorption Spectroscopy

(XAS)17. Unfortunately, without any simplifications or clever tricks that are only possible

in certain situations, the Green function is mostly as hard to compute exactly as the diago-

nalization of the Hamiltonian. Probably the simplest workaround to solve this problem is

to neglect the electron-electron interaction in the full many-body Hamiltonian, amounting

to setting the Coulomb repulsion 𝑈 to zero in the Hubbard model. This approximation is

called free electron approximation and works surprisingly well for some materials18. A better

approximation can be obtained by perturbation theory19–22, where one does an expansion

of the Green function (or other desired quantities) with respect to one of the Hamiltonian

parameters and can often obtain good results, depending on the investigated parameter values.

However, there is a class of materials called strongly correlated where these approaches predict

qualitatively wrong material properties, e.g. telling us that a material should be a metal while

experiments show it to be insulator. This remains a problem for a number of approaches

including the free electron approximation, static mean field calculations, perturbation theory

3
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in the Coulomb repulsion 𝑈 or the hopping amplitude 𝑣, or Density Functional Theory23.

To correctly predict and understand material properties of strongly correlated materials one

simply needs to account for both the Coulomb repulsion and the hopping amplitude.

For small system sizes it is possible to calculate the properties of the Hubbard model with

Exact Diagonalization (ED) or Lanczos-based methods24. Although these methods are exact

and can fully account for spatial correlations, at the time of this thesis this fails at about

15-20+ lattice sites at half filling, depending on the employed computer architecture, because

of exponential growth of the Hilbert space. Another important method to gain information

from the many body Hamiltonian is Quantum Monte Carlo25 (QMC). The static26 and

dynamic27–29 properties of large one-dimensional systems are accessible30 with Matrix Product

State (MPS) based methods, even in the one-dimensional thermodynamic limit31.

With DMFT it is possible to approximately solve the Hubbard model, neglecting spatial

correlations but keeping temporal correlations, by mapping the Hubbard model to the

Anderson Impurity Model32,33, for which the simplest case is shown below. The mapping

from the Hubbard model is exact in the limits of 𝑈 = 0, 𝑈 = ∞, and infinite dimension.

Although the mapping is only exact in these cases, the combination of DFT and DMFT can

be used to reliably predict and understand properties of strongly correlated materials6,7,34,35.

Hubbard-type model Anderson Impurity Model

impurity

Figure 2. With DMFT the Hubbard model gets mapped to the Anderson impurity model.
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Definition 2: Anderson Impurity Model (AIM)

𝐻 = 𝐻imp + 𝐻bath + 𝐻hyb (8)

𝐻imp = 𝑈 (𝑛0,↑ − 1
2

) (𝑛0,↓ − 1
2

) − 𝜇 𝑛0,𝑠 (9)

𝐻bath = ∑
𝑝,𝑠

(𝜖𝑝,𝑠 − 𝜇) 𝑛𝑝,𝑠 (10)

𝐻hyb = ∑
𝑝,𝑠

𝑉𝑝,𝑠(𝑡) 𝑐†
0,𝑠𝑐𝑝,𝑠 + 𝑉 ∗

𝑝,𝑠(𝑡) 𝑐†
𝑝,𝑠𝑐0,𝑠 (11)

0 is the lattice site of the impurity.

If one is interested only in static properties, the hopping amplitudes to the bath sites

𝑉𝑝,𝑠 are time-independent. So, instead of solving the Hubbard model, one must solve the

Anderson Impurity model, which is still not an easy task. In the context of DMFT, solving

means computing the one-particle impurity Green function 𝐺(𝑡). With the approximation of

a local self-energy one can use DMFT to predict properties of real three-dimensional materials

and it is possible to qualitatively and quantitatively predict properties of strongly correlated

materials (see e.g. Refs. 6, 36–38). To solve the impurity problem there are a number of

readily available solvers, including Continuous-Time Quantum Monte Carlo (CTQMC)39,

Numerical Renormalization Group (NRG)40, and recently developed multi-orbital MPS-based

methods41.

DMFT is mostly employed to answer questions about the static properties of materials

with a constant Hamiltonian. However, it is also possible to predict the behavior of systems

under a time-dependent Hamiltonian, by using a non-equilibrium version of DMFT42. This

is relevant for example for computing the absorbed energy of a strongly correlated material

when it is hit by a short laser pulse, where the pulse is approximated with a Peierls phase43,

amounting to multiplying the hopping amplitude by a time-dependent complex phase. The

most important component of the DMFT framework is the impurity solver which computes

the Green function of the Anderson Impurity Model. In equilibrium, the most used solver

is CTQMC which can be extended to non-equilibrium setups42 but has the disadvantage of

being hindered by a sign problem, related to to the complex nature of 𝑒−𝑖𝑡𝐻. It is known that
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there probably will never be a general solution to the sign problem44, though in equilibrium

one can do basis transformations to reduce it. In non-equilibrium there is no workaround

for the so-called dynamic sign problem, although it can be alleviated45. To circumvent the

dynamic sign problem, the Non-Crossing Approximation (NCA) or its generalizations46 have

been used to solve the non-equilibrium impurity problem. Although NCA can reach long

simulation times, it has the problem that it is not a controlled approximation and it takes a

great deal of experience to interpret the validity of the results. Therefore, a new impurity

solver for non-equilibrium DMFT would be helpful. Other relevant methods that should be

mentioned are the Configuration Interaction47 (CI) method, the inchworm method45, and the

Auxiliary Master Equation Approach48 (AMEA).

For the present thesis we solve the non-equilibrium impurity problem with a non-trivial

initial state at zero temperature. To this end, we modify the usually used L-shaped Kadanoff-

Baym contour42 into a two-dimensional real time contour and show that it is possible to do

non-equilibrium DMFT at zero temperature with correlated initial states. The new solver is

Hamiltonian based and we extend the mapping method developed in Ref. 49 and Ref. 50 for

its use. The method developed in Ref. 49 has already beed used with the MPS ansatz as an

non-equilibrium impurity solver51, but so far only trivial initial states and small bath sizes

were simulated with this method. To test the new solver we replicate the simulations done in

Ref. 52 and the subsequent Ref. 53 and furthermore extend the results by simulating initial

states that have not been accessible before at zero temperature. Similar simulations have

been performed in Ref. 46 at non-zero temperature as a proof of concept for the Non-Crossing

Approximation and its generalizations.

As mentioned above, instead of trying to obtain quantitative ab initio results with

DFT+DMFT (or other methods), one can simplify the full body Hamiltonian to a manageable

model and find good qualitative results. In the second part of the present thesis we do this

by investigating photoexcitations of strongly correlated systems. We compute the double

occupancy as a function of time of the ground state of a 4 × 3 Hubbard model under the

influence of a Peierls laser pulse43,54–58. The double occupancy is an important quantity here,

because it is a measure for the number of free charge carriers, which in turn is an important

quantity for many fields including solar power generation. Here, an important effect is impact

ionization, where an excited electron with sufficient energy creates further excitations by
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electron-electron scattering, potentially allowing the production of solar cells with greater

efficiency than the Shockley–Queisser limit59,60. Relevant studies were already performed with

DMFT55,61,62 and a Boltzmann approach63 where spatial correlations are neglected64. To

study whether such correlations suppress impact ionization65 and the inverse process Auger

recombination65 we simulate this small system by exact diagonalization where the spatial

correlations can be accounted for. A study, performed in parallel, that focuses on different

lattice geometries and disorder, was done by Kauch et al.58.

An ongoing area of non-equilibrium research concerns the behavior and properties of

spin-models, which are connected to the Hubbard model in the limit of high interaction

parameters 𝑈. The general class of integrable spin-models is interesting, because of the

high number of conservations laws and the fact that they can be experimentally realized by

ultra-cold atoms in laser traps66. In the course of this thesis the one dimensional 𝑋𝑌-model

with Jordan-Wigner, domain wall and spin flip initial states was investigated with the tool of

Matrix Product States.

𝐻 = −
𝑛−1
∑
𝑖=1

1 + 𝛾
4

𝜎𝑥
𝑖 𝜎𝑥

𝑖+1 + 1 − 𝛾
4

𝜎𝑦
𝑖 𝜎𝑦

𝑖+1 − ℎ
2

∑
𝑖

𝜎𝑧
𝑖 (12)

Matrix Product States proved to be a viable and flexible tool to simulate such systems and

to compare the results to other methods. The reason is that Matrix Product States are a

general description of the underlying model and as long as the required matrix dimensions

stay low, one can e.g. freely change the initial state of the investigated system and compute

the observables and entanglement entropy as a function of time.

The structure of the thesis is as follows. In Subpart I.A, we review the currently used frame-

work for non-equilibrium DMFT. There, in Sec. I.A.1 we provide some historic background

on the development of non-equilibrium DMFT and how it relates to the present work, and we

briefly review equilibrium DMFT in Sec. I.A.2. A review of the framework of non-equilibrium

Green functions can be found in Sec. I.A.3. These are extensively used for non-equilibrium

DMFT itself, which is presented in Sec. I.A.4.

In Subpart I.B we present the our adaptations of the formalism necessary to solve the

problem of mapping to the Hamiltonian parameters of the Anderson Impurity Problem and

for our approach to non-equilibrium DMFT at zero temperature. There, we introduce a
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new contour with two real time axes in Sec. I.B.1 and an effective contour, used to do the

computation of the Green function, in Sec. I.B.2. The mapping to the Hamiltonian parameters

of the Anderson Impurity Model from the hybridization function, which is based on the work

of Ref. 49, is described in Sec. I.B.3. The computation of the momentum resolved Green

function on the new contour is covered in Sec. I.B.2. After reviewing existing non-equilibrium

solvers in Sec. I.B.5, we review MPS in Sec. I.B.6 and swap gates, used for time-evolution, in

Sec. I.B.7. Section I.B.8 contains a summary of the new solver.

In Subpart I.C, we test the new solver by replicating the results of Ref. 52 and the

subsequent Ref. 53, where quenches to the Hubbard model on the Bethe lattice have been

simulated. We also extend these results by simulating interacting initial states, which was not

possible at zero temperature before.

Part II contains a submitted publication regarding the Hubbard under the influence of a

short laser pulse as mentioned above. In Part III we present two publications regarding the

front dynamics of one dimensional spin systems.
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2 List of Special Symbols and Abbreviations

Description Symbol Introduced in/at

equilibrium time 𝑡𝐸 Def. (I.A.1)

non-equilibrium time 𝑡𝑁 Def. (I.A.1)

imaginary time 𝜏 Def. (I.A.1)

time on contour t Def. (I.A.1)

operator 𝐴 in Schrödinger picture 𝐴t Def. (I.A.2)

L-shaped contour Fig. I.A.1

contour with two real time axes Fig. I.B.2

contour greater >C Def. (I.A.2)

contour Heaviside function 𝜃C Def. (I.A.2)

contour Dirac delta 𝛿C Def. (I.A.3)

contour ordering operator TC Def. (I.A.2)

integral over contour ∫
C

Def. (I.A.3)

convolution over contour ∗ Def. (I.A.3)

inverse of 𝐹, so that 𝐹 ∗ 𝐹 −1 = 𝐹 −1 ∗ 𝐹 = 𝛿C 𝐹 −1(t, t′) Def. (I.A.3)

greater non-equilibrium component > 𝑁 Def. (I.A.5), Def. (I.B.9)

greater equilibrium component > 𝐸 Def. (I.B.9)

lesser non-equilibrium component < 𝑁 Def. (I.A.5), Def. (I.B.9)
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lesser equilibrium component < 𝐸 Def. (I.B.9)

right-mixing component ¬¬¬ Def. (I.A.5), Def. (I.B.9)

pre-right-mixing component ¬¬¬ Def. (I.B.9)

left-mixing component ¬¬¬ Def. (I.A.5), Def. (I.B.9)

pre-left-mixing component ¬¬¬ Def. (I.B.9)

Matsubara component 𝑀 Def. (I.A.5)

retarded non-equilibrium component 𝑅𝑁 Def. (I.A.5), Def. (I.B.9)

retarded equilibrium component 𝑅𝐸 Def. (I.B.9)

advanced non-equilibrium component 𝐴𝑁 Def. (I.A.5), Def. (I.B.9)

advanced equilibrium component 𝐴𝐸 Def. (I.B.9)

Sign convention used for the Fourier transform and inverse Fourier transform:

F [𝑓](𝜔) = 𝑓(𝜔) = ∫
∞

−∞
𝑒𝑖𝜔𝑡𝐸𝑓(𝑡𝐸) d𝑡𝐸

F−1[𝑓](𝑡𝐸) = 𝑓(𝑡𝐸) = 1
2 𝜋

∫
∞

−∞
𝑒−𝑖𝜔𝑡𝐸𝑓(𝜔) d𝜔

We will generally use the same symbol for a function in 𝜔-space and 𝑡𝐸-space but with different

arguments 𝜔 and 𝑡𝐸.

There is no unique notation in various publications with respect to the different parts of

the Hamiltonian of the Anderson Impurity Model. If not stated otherwise, we will use 𝐻imp,

𝐻bath, and 𝐻hyb in the present thesis. For example, what we call 𝐻imp here, is called 𝐻loc

or 𝐻int in some publications. We will however use 𝐻loc in some parts of the thesis, were it

refers to the local part of some Hubbard-type Hamiltonian, which coincides with 𝐻imp of the

Anderson Impurity Model.
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Non-Equilibrium Dynamical Mean
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Overview

I.1 Overview

In the first part of the thesis a new non-equilibrium Dynamical Mean Field Theory (DMFT)

solver is introduced and tested on quenches in the Hubbard model on the Bethe lattice. The

new solver works directly at zero temperature, does not need an analytic continuation, and

can incorporate any parameter regime, including quenches from interacting ground states.

As discussed in the introduction, the combination of Density Functional Theory (DFT) and

DMFT is the state of the art for modern ab initio material calculations. In Sec. I.A.1 we

provide some historic background on the development of non-equilibrium DMFT and how

it relates to the present work. It is easier to understand non-equilibrium DMFT if one

has an understanding of equilibrium DMFT first. There is a short review of equilibrium

DMFT in Sec. I.A.2. In Sec. I.A.3, we present the framework of non-equilibrium Green

functions, which are the basis for non-equilibrium DMFT introduced in Sec. I.A.4. The ansatz

of non-equilibrium Green functions is modified in Sec. I.B.1 for the new solver. The main

reason to modify this formalism is to provide a mapping from the hybridization function to

the Hamiltonian parameters that works directly at zero temperature, which is presented in

Sec. I.B.3 and extends the formalism introduced in Ref. 49 and Ref. 50. In Sec. I.B.1 a new

contour is introduced which contains time-evolutions of time from −∞ and ∞. In practice

these time-evolutions cannot be performed to infinity and for the computation of the impurity

Green functions it suffices to use an effective contour which is presented in Sec. I.B.2. For

DMFT we need to be able to compute the momentum resolved Green function from the

impurity Green function. While in equilibrium this is a simple computation in 𝜔-space, in

non-equilibrium one needs to solve an integral equation on the contour. We present a way

to solve this equation in Sec. I.B.4. In Sec. I.B.5, there is an overview over the existing

non-equilibrium solvers, before we shortly review Matrix Product States in Sec. I.B.6 and

swap gates in Sec. I.B.7. The new solver is tested in Subpart I.C by replicating and extending

the results of Ref. 52 and the following Ref. 53.
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Development of Non-Equilibrium DMFT

I.A.1 Development of Non-Equilibrium DMFT

This section serves as an short overview over the history of DMFT and non-equilibrium

DMFT and how the first two parts of the present thesis are related to the field. An extensive

history of DMFT can be found in Ref. 64. After the work in the early 1990s of Metzner et al.32,

Ohkawa67, and Georges et al.33 it was clear it is possible to self-consistently map the infinite

dimensional Hubbard model to the Anderson Impurity Model, subject to the condition that

the hopping amplitude is correctly scaled down as the dimensionality of the Hubbard model

goes to infinity. A key insight was that in the limit of infinite dimensions the self-energy of the

Hubbard model becomes local64, i.e. is independent of the lattice sites and is only a function

of 𝜔 in 𝜔-space. An important feature of this mapping is, while the Anderson Impurity Model

is still an interacting many body problem its local Green function is generally much easier to

compute than its pendant of the Hubbard model. Further relevant insights with respect to the

present thesis were provided in the early 2010s68–70 where it was shown that it is possible to

compute the spectral function of the Anderson Impurity Model using Matrix Product States

and the Chebyshev expansion for up to two orbitals70, or alternatively compute the Green

function directly in the time-domain with Matrix Product States for up to two orbitals69.

Later, it was shown that it is possible to directly compute the Green function with a modified

MPS ansatz for three and more orbitals by Bauernfeind et al.41,71, where so-called Fork Tensor

Product States were introduced. There, instead of matrices tensors are arranged in a tree

structure, better fitting the geometry of the Anderson Impurity Model, and swap gates30,72,

in combination with the Suzuki-Trotter decomposition73 of the time-evolution operator, were

used to efficiently compute the Green function. One of the main advantages of the Matrix

Product and Fork Product approaches is that they allow the solution of the Impurity problem

at zero temperature where the performed approximations are in a controlled manner, i.e. the

errors stemming from their approximations (finite bond dimension, time step) can in principal

be made arbitrary small in exchange for higher computational cost. This stands in contrast

to e.g. perturbation theory where the error depends discontinuously on the included order of

the Taylor expansion.

Meanwhile, in 2006, Freericks et al.74,75 showed that it is possible to generalize the DMFT

formalism to non-equilibrium setups, i.e. situations where the Hamiltonian of the lattice
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system is time-dependent. In the early stages of non-equilibrium DMFT primarily the Falicov-

Kimball was investigated76 as its Green function can be computed exactly77–79. Important

results include the derivation of the momentum sum rules80 and the theoretical connection of

non-equilibrium DMFT to pump-probe experiments and photoemission spectroscopy by81,82.

One of the most critical parts of every DMFT simulation is the Impurity solver and there the

the weak83 and strong84 coupling expansion of CTQMC were translated to non-equilibrium,

as well as the Non-Crossing Approximation (NCA) and its generalizations46. The latter,

though being confined to high 𝑈 parameter regions, have the advantage of reaching very long

simulation times without the sign problem. A defining feature of CTQMC and NCA is that

they do not need an explicit Hamiltonian of the Anderson Impurity model, because they are

based on the effective action. A mapping from the action to time-dependent Anderson Impurity

model Hamiltonian parameters was achieved in the in the early 2010s by Gramsch et al.49,

paving the way to use Hamiltonian based solvers. This mapping was subsequently used by

Wolf et al. to solve non-equilibrium DMFT with Matrix Product States51, for relatively small

bath sites and a product-like initial state of the lattice system85.

Other methods that are not related to this work but are relevant to the field include the

Configuration Interaction47 (CI) method, which can be used as a solver for DMFT86, the

inchworm method45, a sampling method alleviating the dynamical sign problem, and the

Auxiliary Master Equation Approach48 (AMEA), where the impurity problem is mapped to

an auxiliary open quantum system and steady states can be investigated. A relevant package

for non-equilibrium computations named NESSi has also recently been published87.

In the present thesis we build on and extend the work of Gramsch et al.49 to derive a

mapping for the Hamiltonian parameters at 𝑇 = 0 and use swap gates in combination with

the time-evolution operator as introduced by Bauernfeind et al.41 to build an Impurity solver

for non-equilibrium DMFT that works with correlated initial states at 𝑇 = 0. As a work

of reference we use Refs. 52 and 53 by Eckstein et al., where a quench in the interaction

parameter 𝑈 and 𝑇 = 0 was simulated. In Refs. 52 and 53 the simulation of the system at

𝑇 = 0 was possible as the authors used the ground state of 𝑈 = 0 where the self-energy

vanishes and this simplifies the computation.
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I.A.2 Equilibrium Dynamical Mean Field Theory

The Hubbard model has only been solved exactly in one dimension12,13. As we would like

to model a real material, one must use approximations to get the properties of the Hubbard

model in two or three dimensions. One of the more successful methods is Dynamical Mean

Field Theory (DMFT)5,6,32,33,64. With DMFT the Hubbard model gets approximately mapped

to an Anderson Impurity Model (AIM), which is in general still a fully interacting model but

easier to solve than the full Hubbard model. In general, this mapping is not exact, because it

assumes a local self-energy of the Hubbard model. Despite this approximation, DMFT (in

combination with Density Functional Theory) is one of the most successful methods, when it

comes to predicting and understanding the properties of strongly correlated materials6,34,88.

The central quantity of DMFT is the retarded single particle Green function. In the

literature, equilibrium DMFT is usually derived on the imaginary axis64. We will stay on the

real axis here, where the concepts stay the same and treat the case of zero temperature, for

future reference later in this thesis.

𝐺𝑘(𝑡) = −𝑖 𝜃(𝑡) (⟨𝜓 ∣ 𝑐𝑘(𝑡)𝑐†
𝑘 ∣ 𝜓⟩ + ⟨𝜓 ∣ 𝑐†

𝑘𝑐𝑘(𝑡) ∣ 𝜓⟩) (I.A.1)

Here 𝑘 numbers the eigenstate of the free (𝑈 = 0) Hamiltonian, and |𝜓⟩ is its ground state

(assumed to be unique). Usually, the retarded Green function is marked with a superscript 𝑅.

For the sake of brevity, we will omit this in this section. The Green function is interesting

because several important properties like the density of states or the optical conductivity can

be derived from it. Thus, computing 𝐺𝑘(𝑡) is one of the most important tasks in many body

physics, albeit not an easy one. In the context of DMFT, the Green function is the central

quantity because the mapping to the AIM is done so that the Hubbard model and the AIM

have the same Green function. Equation (I.A.1) treats the case 𝑇 = 0. When the task is to

predict properties of real material compounds, one can formulate this for finite temperatures

with the density matrix formalism. This is discussed in later chapters. To examine the inner

workings of DMFT we start by taking a look at the Green function of the non-interacting
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Hamiltonian (𝑈 = 0), 𝐺0,𝑘(𝑡).

𝐺0,𝑘(𝑡) = −𝑖 𝜃(𝑡) (⟨𝜓0 ∣ 𝑐𝑘(𝑡)𝑐†
𝑘 ∣ 𝜓0⟩ + ⟨𝜓0 ∣ 𝑐†

𝑘𝑐𝑘(𝑡) ∣ 𝜓0⟩) (I.A.2)

In contrast to 𝑈 ≠ 0, this Green function is easy obtained, and after a Fourier transform we

get:

𝐺0,𝑘(𝜔) = ∫
∞

−∞
𝑒𝑖𝜔𝑡 𝐺0,𝑘(𝑡) d𝑡 = 1

𝜔 − 𝜖𝑘 + 𝜇 + 𝑖0+ (I.A.3)

0+ is an infinitesimal small number introduced to solve the integral of the Fourier transform89.

The ansatz for the interacting case is to introduce the self-energy Σ(𝜔, 𝑘) (see Ref. 64).

𝐺𝑘(𝜔) = 1
𝜔 − 𝜖𝑘 + 𝜇 − Σ(𝜔, 𝑘) + 𝑖0+ (I.A.4)

⇒ 𝐺𝑘(𝜔)−1 = 𝐺0,𝑘(𝜔)−1 − Σ(𝜔, 𝑘) (I.A.5)

⇒ 𝐺𝑘(𝜔) = 𝐺0,𝑘(𝜔) + 𝐺0,𝑘(𝜔) Σ(𝜔, 𝑘) 𝐺𝑘(𝜔) = 𝐺0,𝑘(𝜔) + 𝐺𝑘(𝜔) Σ(𝜔, 𝑘) 𝐺0,𝑘(𝜔)

(I.A.6)

The last line is known as the Dyson equation. Note that this is only a definition and transforms

the problem of computing 𝐺𝑘(𝜔) to computing Σ(𝜔, 𝑘).

On the other hand, it can be shown that the Green function of the Anderson Impurity

model at the impurity 𝐺IMP can be written as follows5,64:

−𝑖 𝜔 𝐺IMP(𝜔) = 𝑖 𝜇 𝐺IMP(𝜔) − 𝑖 ΣIMP(𝜔) 𝐺IMP(𝜔) − 𝑖 Δ(𝜔) 𝐺IMP(𝜔) − 𝑖 (I.A.7)

⇒ 𝐺IMP(𝜔) = 1
𝜔 + 𝜇 − Δ(𝜔) − ΣIMP(𝜔)

(I.A.8)

Δ(𝜔) = ∑
𝑝

|𝑉𝑝|2

𝜔 − 𝜖𝑝 + 𝜇 + 𝑖0+ (I.A.9)

Where Δ is the so-called hybridization function, and the self-energy of the impurity ΣIMP(𝜔)

is defined similarly to Σ(𝜔, 𝑘), meaning that it is zero if 𝑈 = 0. The DMFT approximation is

that Σ(𝜔, 𝑘) ≈ ΣIMP(𝜔). As this expression is independent of 𝑘, it amounts to assuming a

local self-energy of the lattice model Σ𝑖𝑗(𝜔) = ΣIMP(𝜔) 𝛿𝑖𝑗.
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It can be shown that the self-energy can be computed from the lattice Green function5,64:

𝐺(𝜔)−1 = 𝜔 + 𝜇 − Σ(𝜔) − Δ(𝜔) (I.A.10)

G0(𝜔)−1 = 𝜔 + 𝜇 − Δ(𝜔) (I.A.11)

Σ(𝜔) = G0(𝜔)−1 − 𝐺loc(𝜔)−1 (I.A.12)

𝐺loc(𝜔) = 1
𝑁𝑘

∑
𝑘

𝐺𝑘(𝜔) 𝑒−𝑖𝑘0⏟
=1

( 1
𝑁𝑘

∑𝑘=1) (I.A.13)

Equation (I.A.12) follows directly from Eqs. (I.A.10) and (I.A.11). G0(𝜔) is called Weiss

effective field and plays the same role as the effective magnetic field plays in classical mean

field theory. 𝐺loc(𝜔) is the inverse spatial Fourier transformation of 𝐺𝑘 for equal lattice

sites of the creation and annihilation operators and called local Green function. Because we

investigate translational invariant systems, this quantity is equal to the lattice Green function.

All of the equations above form a set of coupled non-linear equations that need to be solved

simultaneously. As this is not possible in general, the ansatz is to solve them iteratively and

self-consistently. The resulting solution scheme is depicted in Alg. (I.A.1).

As mentioned above, the only approximation is a 𝑘-independent self-energy. This means

DMFT is exact in the limits 𝑈 = 0, 𝑈 → ∞, and in the case of infinite dimensions64. This

gives an intuitive explanation why DMFT works so well for real materials.

Algorithm I.A.1: Equilibrium Dynamical Mean Field Theory

The superscript (𝑛) denotes the iteration number.

0. Start with initial guess for Δ(0)(𝜔). Set (𝑛) ⟶ (0).

Most of the time, if no good guess is available and the solution is suspected to be

metallic one can start from the semicircular density of states.

1. From Δ(𝑛)(𝜔) compute the bath parameters 𝑉 (𝑛)
𝑙 , 𝜖(𝑛)

𝑙 .

2. Solve impurity problem, i.e. compute impurity Green function 𝐺(𝑛)
IMP(𝜔).

If ∣𝐺(𝑛)
IMP(𝜔) − 𝐺(𝑛−1)

IMP (𝜔)∣ is sufficiently small the algorithm is converged.

3. Compute Σ(𝑛)
IMP(𝜔) = 𝐺(𝑛)

0,IMP(𝜔)−1 − 𝐺(𝑛)
IMP(𝜔)−1.

Now, the DMFT approximation is Σ(𝑛)(𝜔) = Σ(𝑛)
IMP(𝜔).

21



Non-Equilibrium Green Functions

4. Compute the local Green function

𝐺(𝑛)
loc (𝜔) = 1

𝑁𝑘
∑𝑘 𝐺(𝑛)

𝑘 (𝜔) = 1
𝑁𝑘

∑𝑘 (𝐺(𝑛)
0,𝑘(𝜔)−1 − Σ(𝑛)(𝜔))

−1
.

5. Compute the Weiss effective field G(𝑛)
0 (𝜔) = (𝐺(𝑛)

loc (𝜔)−1 + Σ(𝑛)(𝜔))
−1

.

6. Compute the hybridization function of the next iteration

Δ(𝑛+1)(𝜔) = 𝜔 + 𝜇 − G(𝑛)
0 (𝜔)−1.

7. Go to step 1 and start a new iteration (𝑛) ⟶ (𝑛 + 1).

If the algorithm is done on the Bethe lattice one can skip steps 3 − 6 and instead do:

Δ(𝑛+1)(𝜔) = ∣𝑣2∣ 𝐺(𝑛)
IMP(𝜔).

I.A.3 Non-Equilibrium Green Functions

The DMFT algorithm as described above (Alg. (I.A.1)) only works for situations where the

Hamiltonian of the lattice system is constant with respect to time. This is sufficient to predict

the properties of real world materials in equilibrium64. On the other hand, it is desirable

to analyze setups where a time-dependent Hamiltonian is needed, e.g. when simulating the

effect of a laser pulse on a material55. A laser pulse can be simulated by introducing a

time-dependent hopping amplitude 𝑣(𝑡) in the lattice model (Peierls phase43). To this end, a

modification of the equilibrium DMFT formalism is necessary. As equilibrium DMFT heavily

relies on the use of 𝜔-space of the Green functions we also need to extend the definition of

the Green function, because the Fourier space is of limited use in a time-dependent setting.

In this section we take a look at the framework of non-equilibrium Green functions and follow

Ref. 42. First, we will review the usual formalism used for 𝑇 ≠ 0 and then will introduce the

extensions used to simulate systems at 𝑇 = 0 in another section. From here on, when we talk

about ”time” we will have to distinguish between three different concepts of time.
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Definition I.A.1: Equilibrium time, imaginary time, and non-equilibrium

time

Let 𝐻(𝑡) be the time-dependent Hamiltonian of our system. The Hamiltonian is assumed

to be constant for 𝑡 ≤ 0. The equilibrium time will be denoted as 𝑡𝐸, the non-equilibrium

time as 𝑡𝑁, and the imaginary time as 𝜏. They are defined over different time-evolutions,

as can be seen in the Heisenberg picture of a generic operator 𝑂.

equilibrium time 𝑂(𝑡𝐸) = 𝑒𝑖 𝐻(0) 𝑡𝐸 𝑂 𝑒−𝑖 𝐻(0) 𝑡𝐸 (I.A.14)

imaginary time 𝑂(𝜏) = 𝑒𝐻(0) 𝜏 𝑂 𝑒−𝐻(0) 𝜏 (I.A.15)

non-equilibrium time 𝑂(𝑡𝑁) = (T 𝑒𝑖 ∫𝑡𝑁
0

𝐻( ̄𝑡) d ̄𝑡) 𝑂 (T 𝑒−𝑖 ∫𝑡𝑁
0

𝐻( ̄𝑡) d ̄𝑡) (I.A.16)

where T is the time-ordering operator. If not stated otherwise, the bare letter 𝑡 denotes

a time, that is either one of those three time concepts. The boldfaced time t is defined

as the tuple containing positional information and a numerical value:

t = (C𝑖, 𝑡) (I.A.17)

where C𝑖 is the 𝑖-th element of the contour C we integrate over (as defined below).

I.A.3.1 Finite Temperature

This subsection of the finite temperature Green functions follows Ref. 42, with adapted

notation. In the context of non-equilibrium DMFT we are interested in expectation values of

the form

⟨𝐴(𝑡𝑁) 𝐵(𝑡′
𝑁)⟩ = tr (𝜌 𝐴(𝑡𝑁) 𝐵(𝑡′

𝑁)) (I.A.18)

=
tr (𝑒−𝛽 𝐻(0)𝐴(𝑡𝑁) 𝐵(𝑡′

𝑁))
tr (𝑒−𝛽 𝐻(0))

(I.A.19)

Here, 𝐴(𝑡𝑁) and 𝐵(𝑡′
𝑁) are in the Heisenberg picture:

𝐴(𝑡𝑁) = (T 𝑒𝑖 ∫𝑡𝑁
0

𝐻( ̄𝑡) d ̄𝑡) 𝐴 (T 𝑒−𝑖 ∫𝑡𝑁
0

𝐻( ̄𝑡) d ̄𝑡) (I.A.20)
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Figure I.A.1. The L-shaped contour of the Kadanoff-Baym formalism.

𝐻(0) is the Hamiltonian at time 𝑡𝑁 ≤ 0. The idea is to rewrite Eq. (I.A.19), so we can define

a non-equilibrium Green function that lets us derive a non-equilibrium DMFT formalism that

is formally equivalent to equilibrium DMFT. To this end, we need some further definitions.
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Definition I.A.2: Contour notation

𝐴t = Operator 𝐴 in the Schrödinger picture. (I.A.21)

Is still subject to contour ordering TC as defined below.

t >C t′ =
⎧{
⎨{⎩

true if t comes after t′ on the contour (Fig. I.A.1)

false otherwise
(I.A.22)

𝜃C(t, t′) =
⎧{
⎨{⎩

1 if t >C t′

0 otherwise
(I.A.23)

TC 𝐴t 𝐵t′ =
⎧{
⎨{⎩

𝐴t 𝐵t′ if t >C t′

± 𝐵t′ 𝐴t if t′ >C t
(I.A.24)

T C 𝐴t 𝐵t′ =
⎧{
⎨{⎩

± 𝐵t′ 𝐴t if t >C t′

𝐴t 𝐵t′ if t′ >C t
(I.A.25)

(I.A.26)

where we take the minus sign if 𝐴 and 𝐵 are fermionic.

Definition I.A.3: Contour calculus notation

∫
C

𝐹(t̄) dt̄ =

̄𝑡𝑁∈C1

⏞⏞⏞⏞⏞⏞⏞
∫

𝑡max

0
𝐹( ̄𝑡𝑁) d ̄𝑡𝑁 +

̄𝑡𝑁∈C2

⏞⏞⏞⏞⏞⏞⏞
∫

0

𝑡max

𝐹( ̄𝑡𝑁) d ̄𝑡𝑁 − 𝑖

̄𝜏∈C3

⏞⏞⏞⏞⏞
∫

𝛽

0
𝐹( ̄𝜏) d ̄𝜏 (I.A.27)

(𝐹 ∗ 𝐺)(t, t′) = ∫
C

𝐹(t, t̄) 𝐺( ̄t, t′) dt̄ , convolution (I.A.28)

𝜕𝐹(t)
𝜕t = lim

ℎ→0

𝐹(t + ℎ) − 𝐹(t − ℎ)
2ℎ

(I.A.29)

𝛿C(t, t′) = 𝜕𝜃C(t, t′)
𝜕t = −𝜕𝜃C(t, t′)

𝜕t′ (I.A.30)

(𝛿C ∗ 𝐹)(t, t′) = (𝐹 ∗ 𝛿C)(t, t′) = 𝐹(t, t′) (I.A.31)

(𝐹 −1 ∗ 𝐹)(t, t′) = (𝐹 ∗ 𝐹 −1)(t, t′) = 𝛿C(t, t′) (I.A.32)
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In Eq. (I.A.29) the sum t + ℎ is not an ordinary sum and to be interpreted as move ℎ

forward on the contour from position t. In the same manner t − ℎ is to be interpreted

as move ℎ backwards on the contour from position t.

With these tools it is possible to generalize Eq. (I.A.19) into the contour-ordered expectation

value. This generalization is indicated by the action 𝑆 in the subscript.

⟨𝐴(t) 𝐵(t′)⟩𝑆 =
tr (TC 𝑒𝑆 𝐴t 𝐵t′)

tr (TC 𝑒𝑆)
𝑆 = −𝑖 ∫

C
𝐻( ̄t) dt̄ (I.A.33)

With the ordinary time-evolution operator

U(𝑡, 𝑡′) =
⎧{
⎨{⎩

T 𝑒−𝑖 ∫𝑡
𝑡′ 𝐻( ̄𝑡) d ̄𝑡 if 𝑡 > 𝑡′

T 𝑒𝑖 ∫𝑡′

𝑡
𝐻( ̄𝑡) d ̄𝑡 otherwise

(I.A.34)

it is possible to sketch a proof, that all information of Eq. (I.A.19) is contained in Eq. (I.A.33).

To this end, we investigate the special case when 𝐴𝑡𝑁
is located on part C2 of the contour

and 𝐵𝑡′
𝑁

is located on part C1 of the contour.

TC 𝑒−𝑖 ∫
C

𝐻( ̄𝑡) d ̄𝑡
C2

⏞𝐴𝑡𝑁

C1

⏞𝐵𝑡′
𝑁

= TC

C3

⏞⏞⏞⏞⏞U(−𝑖𝛽, 0)
C2

⏞⏞⏞⏞⏞U(0, 𝑡max)
C1

⏞⏞⏞⏞⏞U(𝑡max, 0)
C2

⏞𝐴𝑡𝑁

C1

⏞𝐵𝑡′
𝑁

(I.A.35)

= 𝑈(−𝑖𝛽, 0)U(0, 𝑡𝑁) 𝐴U(𝑡𝑁, 𝑡′
𝑁) 𝐵U(𝑡′

𝑁, 0) (I.A.36)

= 𝑈(−𝑖𝛽, 0)U(0, 𝑡𝑁) 𝐴U(𝑡𝑁, 0) 𝑈(0, 𝑡′
𝑁) 𝐵U(𝑡′

𝑁, 0) (I.A.37)

= 𝑒−𝛽𝐻(0) 𝐴(𝑡𝑁) 𝐵(𝑡′
𝑁) (I.A.38)

In the last line, 𝐴(𝑡𝑁) and 𝐵(𝑡′
𝑁) are in the Heisenberg picture again. In addition to

Eq. (I.A.19), the contour ordered version of the expectation value also contains the expectation

value ⟨𝐵(𝑡′
𝑁) 𝐴(𝑡𝑁)⟩, because the operators can switch places if we place them on the contour

accordingly (Fig. I.A.2). Now we have all the necessary basics to define the central quantity

of non-equilibrium DMFT.
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Figure I.A.2. Sketch of the difference between ⟨
C2

⏞𝐴(𝑡𝑁)
C1

⏞𝐵(𝑡′
𝑁)⟩𝑆 (left) and ⟨

C1

⏞𝐴(𝑡𝑁)
C2

⏞𝐵(𝑡′
𝑁)⟩𝑆 (right).

The numerical values of 𝑡𝑁 and 𝑡′
𝑁 may be the same on the left and right hand side, but the

expectation values are different, because of the contour-ordering.

Definition I.A.4: Contour-ordered Green function of the L-shaped contour

𝐺(t, t′) = −𝑖
tr (TC 𝑒𝑆 𝑐t 𝑐†

t′)
tr (TC 𝑒𝑆)

= −𝑖 ⟨𝑐(t) 𝑐†(t′)⟩
𝑆

(I.A.39)

where 𝑆 = −𝑖 ∫
C

𝐻(t̄) dt̄.

As mentioned above the exact order of operators 𝑐 and 𝑐† depends on the position of their

time arguments on the contour. Let 𝐺𝑖𝑗(t, t′) be the Green function where t ∈ C𝑖 and t′ ∈ C𝑗,

and 𝑖, 𝑗 ∈ {1, 2, 3}. It can be seen that the Green function has nine different components

that are not totally independent of each other. Namely there are only four independent
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components.

𝐺11(𝑡𝑁, 𝑡′
𝑁) =

⎧{
⎨{⎩

𝐺12(𝑡𝑁, 𝑡′
𝑁) if 𝑡𝑁 ≤ 𝑡′

𝑁

𝐺21(𝑡𝑁, 𝑡′
𝑁) otherwise

𝐺22(𝑡𝑁, 𝑡′
𝑁) =

⎧{
⎨{⎩

𝐺21(𝑡𝑁, 𝑡′
𝑁) if 𝑡𝑁 < 𝑡′

𝑁

𝐺12(𝑡𝑁, 𝑡′
𝑁) otherwise

(I.A.40)

𝐺23(𝑡𝑁, 𝜏) = 𝐺13(𝑡𝑁, 𝜏) 𝐺32(𝜏, 𝑡𝑁) = 𝐺31(𝜏, 𝑡𝑁) (I.A.41)

𝐺33(𝜏, 𝜏 ′) =
⎧{
⎨{⎩

𝐺31(𝜏 − 𝜏 ′, 0) if 𝜏 ≥ 𝜏 ′

𝐺13(0, 𝜏 ′ − 𝜏) if 𝜏 < 𝜏 ′
(I.A.42)

The two cases in Eq. (I.A.42) are equal to 𝐺33, because the backwards time-evolution along

the contour cancels if there is no operator placed there and this can be shown in the eigenbasis

of 𝐻(0). To store the Green function in memory and to examine it analytically, we will give

its components names and will use the same convention as in existing literature42.

Definition I.A.5: Components of the Green function of the L-shaped con-

tour

Let 𝐺𝑖𝑗(t, t′) = 𝐺(t, t′) where 𝑡 and 𝑡′ live on the L-shaped contour (Fig. I.A.1), and

𝑡 ∈ C𝑖 and 𝑡 ∈ C𝑗. The components of the contour-ordered Green function are defined

as follows.
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greater non-eq. 𝐺>𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = 𝐺21(𝑡𝑁, 𝑡′
𝑁) = −𝑖 ⟨𝑐(𝑡𝑁) 𝑐†(𝑡′

𝑁)⟩ (I.A.43)

lesser non-eq. 𝐺<𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = 𝐺12(𝑡𝑁, 𝑡′
𝑁) = 𝑖 ⟨𝑐†(𝑡′

𝑁) 𝑐(𝑡𝑁)⟩ (I.A.44)

right-mixing90 𝐺 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = 𝐺31(𝜏, 𝑡𝑁) = −𝑖 ⟨𝑐(𝜏) 𝑐†(𝑡𝑁)⟩ (I.A.45)

left-mixing 𝐺¬¬¬
𝐿(𝑡𝑁, 𝜏) = 𝐺13(𝑡𝑁, 𝜏) = 𝑖 ⟨𝑐†(𝜏) 𝑐(𝑡𝑁)⟩ (I.A.46)

Matsubara 𝐺𝑀
𝐿 (𝜏, 𝜏 ′) = −𝑖𝐺33(𝜏, 𝜏 ′) =

⎧{
⎨{⎩

− ⟨𝑐(𝜏) 𝑐†(𝜏 ′)⟩ if 𝜏 ≥ 𝜏 ′

⟨𝑐†(𝜏 ′) 𝑐(𝜏)⟩ if 𝜏 < 𝜏 ′

(I.A.47)

retarded non-eq. 𝐺𝑅𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = 𝜃(𝑡𝑁 − 𝑡′
𝑁) (𝐺>𝑁

𝐿 (𝑡𝑁, 𝑡′
𝑁) − 𝐺<𝑁

𝐿 (𝑡𝑁, 𝑡′
𝑁))

(I.A.48)

advanced non-eq. 𝐺𝐴𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = 𝜃(𝑡′
𝑁 − 𝑡𝑁) (𝐺<𝑁

𝐿 (𝑡𝑁, 𝑡′
𝑁) − 𝐺>𝑁

𝐿 (𝑡𝑁, 𝑡′
𝑁))

(I.A.49)

The subscript 𝐿 was added in this thesis to distinguish the notation from the zero

temperature formalism described below. It will always be used from here on, when we

talk about the Green function of the L-shaped contour.

These are the same definitions as in Ref. 42. In this thesis, the extra superscript N is used

to distinguish the non-equilibrium components from the equilibrium counter parts that will

be introduced later.

Definition I.A.6: Components of generic functions on the contour

For generic functions on the contour we define the same components as in Def. (I.A.5).

For example: 𝐴>𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = 𝐴21(𝑡𝑁, 𝑡′
𝑁). All generic functions on the contour convolute

as described below.

I.A.3.2 Convolution

The exact rules how to write the convolutions of two functions 𝐴𝐿(t, t′) and 𝐵𝐿(t, t′)

over the contour are called Langreth rules91. We will look at an example here and how it can
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be written in terms of the components defined in Def. (I.A.5). Note that the definition of

the components in Def. (I.A.5) slightly vary in literature and the corresponding convolution

may differ. For example, Ref. 91 uses 𝐺𝑀(𝜏, 𝜏 ′) = 𝐺33(𝜏, 𝜏 ′) instead of the more commonly

used 𝐺𝑀(𝜏, 𝜏 ′) = −𝑖𝐺33(𝜏, 𝜏 ′). We will take a look at the right-mixing component of the

convolution.

(𝐴𝐿 ∗ 𝐵𝐿) ¬¬¬(𝜏, 𝑡𝑁) ≡ (𝐴𝐿 ∗ 𝐵𝐿)31(𝜏, 𝑡𝑁) (I.A.50)

=
3

∑
𝑗=1

∫ 𝐴𝐿,3𝑗(𝜏, ̄t) 𝐵𝐿,𝑗1(t̄, 𝑡𝑁) d ̄t (I.A.51)

= ∫
𝑡𝑁

0
𝐴𝐿,31(𝜏, ̄𝑡𝑁) 𝐵𝐿,11( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.A.52)

+ ∫
0

𝑡𝑁

𝐴𝐿,32(𝜏, ̄𝑡𝑁) 𝐵𝐿,21( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

− 𝑖 ∫
𝛽

0
𝐴𝐿,33(𝜏, ̄𝜏) 𝐵𝐿,31( ̄𝜏 , 𝑡𝑁) d ̄𝜏

In the second line, 𝑗 marks the region where ̄t lies on the contour. 𝐴𝐿,3𝑗 is to be read as:

The 3𝑗 component of 𝐴 on the L-shaped contour. First, we plug in the definitions of the

components:

(𝐴𝐿 ∗ 𝐵𝐿) ¬¬¬(𝜏, 𝑡𝑁) = ∫
𝑡𝑁

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵<𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.A.53)

+ ∫
0

𝑡𝑁

𝐴 ¬¬¬
𝐿(𝜏, ̄𝑡𝑁) 𝐵>𝑁

𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

− 𝑖 ∫
𝛽

0
𝑖𝐴𝑀

𝐿 (𝜏, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

It is possible to combine the first and second line into one single expression.

(𝐴𝐿 ∗ 𝐵𝐿) ¬¬¬(𝜏, 𝑡𝑁) = ∫
∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵𝐴𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.A.54)

+ ∫
𝛽

0
𝐴𝑀

𝐿 (𝜏, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏
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Below, we will take the limit 𝛽 → ∞. To stay consistent, we write:

(𝐴𝐿 ∗ 𝐵𝐿) ¬¬¬(𝜏, 𝑡𝑁) = ∫
∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵𝐴𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.A.55)

+ ∫
𝛽
2

0
𝐴𝑀

𝐿 (𝜏, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
𝛽

𝛽
2

(−𝐴𝑀
𝐿 (𝜏, 𝛽 − ̃𝜏)) (−𝐵 ¬¬¬

𝐿(𝛽 − ̃𝜏 , 𝑡𝑁)) d ̃𝜏

In the last line we used the periodicity42 of fermionic Green functions 𝑓(−𝜏) = −𝑓(𝛽 − 𝜏).

Now, substitute ̄𝜏 = 𝛽 − ̃𝜏:

(𝐴𝐿 ∗ 𝐵𝐿) ¬¬¬(𝜏, 𝑡𝑁) = ∫
∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵𝐴𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.A.56)

+ ∫
𝛽
2

0
𝐴𝑀

𝐿 (𝜏, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
0

− 𝛽
2

𝐴𝑀
𝐿 (𝜏, ̄𝜏) 𝐵 ¬¬¬

𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

In the limit 𝛽 → ∞ we get:

(𝐴𝐿 ∗ 𝐵𝐿) ¬¬¬(𝜏, 𝑡𝑁) = ∫
∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵𝐴𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.A.57)

+ ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

The last equation is a compact representation of the right-mixing component of the convolution

in the limit of zero temperature.

I.A.4 Non-Equilibrium Dynamical Mean Field Theory

In this section we derive the formalism of non-equilibrium Dynamical Mean Field Theory

(DMFT). First, we will derive the Dyson equation, which connects the Green function and the

self-energy. Like in equilibrium DMFT, we assume the self-energy to be 𝑘-independent. In

the next subsection we will show that computation of the Green function can be formulated

with an effective action instead of the full lattice Hamiltonian. The effective action of the
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Anderson impurity model and the Hubbard model in infinite dimensions (where the self-energy

is indeed local) will have the same form. Eventually, we will derive the non-equilibrium DMFT

equations. In this whole section we will use the concept of contour-ordered Green functions as

introduced above. Note, that we will use that there is some kind of contour, but will not use

the specific shape of the contour. This means that the derivation is valid for every contour.

I.A.4.1 Derivation of the Non-Equilibrium Dyson Equation

For the derivation of the non-equilibrium Dyson equation there is a myriad of sources, e.g.

Refs. 50, 91–93, though many use slightly different formalisms or approaches. We will loosely

follow Ref. 50. We shortly review the derivation process here with the equations of motion of

the Green function.

In this section, we assume that there is some contour C over which we integrate to compute

the Green function but make no restriction about the specific form or shape. The only

assumption is that we integrate from the initial position ti to the final position tf. The

Hamiltonian of the Hubbard model can be split into non-interacting (𝐻0) and interacting

(𝐻1) part. Note that we use here a generalized version of Def. (1) and allow time-dependent

Hamiltonian parameters and a bond-dependent hopping.

𝐻 = 𝐻0 + 𝐻1 (I.A.58)

𝐻0 = ∑
𝑖,𝑗,𝑠

𝑣𝑖𝑗(𝑡) 𝑐†
𝑖,𝑠 𝑐𝑗,𝑠 − 𝜇(𝑡) ∑

𝑖,𝑠
𝑛𝑖,𝑠 (I.A.59)

𝐻1 = 𝑈(𝑡) ∑
𝑖

(𝑛𝑖,↑ − 1
2

) (𝑛𝑗,↓ − 1
2

) (I.A.60)

We work in the basis of the diagonalized non-interacting Hamiltonian:

𝐻0 = ∑
𝑘,𝑠

(𝜖𝑘(𝑡) − 𝜇(𝑡)) 𝑛𝑘,𝑠 (I.A.61)

It is possible to write a generalization of the time-evolution operator UC(t, t′) on the contour.

It has almost the same definition as the normal time-evolution operator, the only difference
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being the integration in the exponential function, where we integrate over the contour:

UC(t, t′) =
⎧{
⎨{⎩

T 𝑒−𝑖 ∫t
C,t′ 𝐻(t̄) dt̄ if t > t′

T 𝑒𝑖 ∫t′

C,t
𝐻( ̄t) d ̄t otherwise

(I.A.62)

For this time-evolution operator it is relatively straight forward to calculate the derivative.

𝜕UC(t, t′)
𝜕t = −𝑖 𝐻t UC(t, t′) (I.A.63)

𝜕UC(t, t′)
𝜕t′ = −𝑖UC(t, t′) 𝐻t′ (I.A.64)

Furthermore, we can define the contour Heisenberg representation of an operator 𝑂(t) and

compute its derivative. Like the contour time-evolution operator, it has a very similar

definition to its real time counter part.

𝑂(t) = UC(ti, t) 𝑂t UC(t, ti) (I.A.65)
𝜕 𝑂(t)

𝜕t = 𝑖UC(ti, t) [𝐻t, 𝑂t]UC(t, ti) + UC(ti, t) (𝜕 𝑂t
𝜕t ) UC(t, ti) (I.A.66)

A general contour ordered expectation value with two time arguments can now be represented

as a sum of the two different orderings multiplied by the Heaviside function on the contour

𝜃C (see Def. (I.A.2)).

⟨𝐴(t) 𝐵(t′)⟩𝑆 =
⎧{
⎨{⎩

⟨𝐴(t) 𝐵(t′)⟩UC
if t >C t′

± ⟨𝐵(t′) 𝐴(t)⟩UC
otherwise

(I.A.67)

= ⟨𝐴(t) 𝐵(t′)⟩UC
𝜃C(t, t′) ± ⟨𝐵(t′) 𝐴(t)⟩UC

𝜃C(t′, t) (I.A.68)

⟨…⟩UC
= tr (UC(tf, ti) … )

tr (UC(tf, ti))
(I.A.69)
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Where one takes the + sign if 𝐴 and 𝐵 commute with each other, and the − sign if they

anticommute with each other. The Green function can now be represented as:

𝐺𝑘(t, t′) = −𝑖 (⟨𝑐𝑘(t) 𝑐†
𝑘(t′)⟩

UC
𝜃C(t, t′) − ⟨𝑐†

𝑘(t′) 𝑐𝑘(t)⟩
UC

𝜃C(t′, t)) (I.A.70)

⟨…⟩UC
= tr (UC(tf, ti) … )

tr (UC(tf, ti))
(I.A.71)

Here we explicitly write down the 𝑘 that are the eigenstates of the non-interacting Hamilto-

nian. The equation above may look cumbersome in comparison to the compact notation in

Def. (I.A.4) we used above. The advantage is, and the reason we introduced the definitions

above, it is now easy to compute the derivative of the Green function:

𝜕
𝜕t 𝐺𝑘(t, t′) = ⟨[𝐻, 𝑐𝑘](t) 𝑐†

𝑘(t′)⟩
UC

𝜃C(t, t′) − ⟨𝑐†
𝑘(t′) [𝐻, 𝑐𝑘](t)⟩

UC
𝜃C(t′, t) − 𝑖𝛿C(t, t′)

(I.A.72)

Now we use the fact that we split the Hamiltonian into interacting and non-interacting part

and compute the commutator.

[𝐻, 𝑐𝑘] = − (𝜖𝑘(𝑡) − 𝜇(𝑡)) 𝑐𝑘 + [𝐻1, 𝑐𝑘] (I.A.73)

The first term of the right hand side reduces to the Green function, when inserted into

Eq. (I.A.72). The second term introduces higher order terms to the derivative which are in

general harder to calculate than the Green function itself. The only exception is 𝑈 = 0 where

𝐻1 = 0.

These higher order terms will be eliminated by introducing the non-equilibrium self-energy,

which is implicitly defined as the solution of the following equation50:

(Σ𝑘 ∗ 𝐺𝑘) (t, t′) = 𝑖 ⟨[𝐻1, 𝑐𝑘](t) 𝑐†
𝑘(t′)⟩

UC
𝜃C(t, t′) − 𝑖 ⟨𝑐†

𝑘(t′) [𝐻1, 𝑐𝑘](t)⟩
UC

𝜃C(t′, t)

(I.A.74)

At first glance, the definition of the non-equilibrium self-energy may seem odd, but this

definition allows us to get a Dyson equation that is form equivalent to the equilibrium case.
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With the self-energy the derivative of the Green function breaks down to:

𝜕
𝜕t 𝐺𝑘(t, t′) = −𝑖 (𝜖𝑘(t) − 𝜇(t)) 𝐺𝑘(t, t′) − 𝑖 (Σ𝑘 ∗ 𝐺𝑘) (t, t′) − 𝑖𝛿C(t, t′) (I.A.75)

After we bring every instance of 𝐺𝑘 that is not in a contour convolution to the left hand side,

we get the following important intermediate result:

(𝑖 𝜕
𝜕t − (𝜖𝑘(t) − 𝜇(t))) 𝐺𝑘(t, t′) = (Σ𝑘 ∗ 𝐺𝑘) (t, t′) + 𝛿C(t, t′) (I.A.76)

In the non-interacting case (𝑈 = 0) the self-energy vanishes

(𝑖 𝜕
𝜕t − (𝜖𝑘(t) − 𝜇(t))) 𝐺0,𝑘(t, t′) = 𝛿C(t, t′) (I.A.77)

and it is possible to find an explicit formula for 𝐺−1
0,𝑘(t, t′) by convoluting both sides of the

equation above with 𝐺−1
0,𝑘(t, t′) from the right (by definition 𝐺 ∗ 𝐺−1 = 𝛿C):

𝐺−1
0,𝑘(t, t′) = (𝑖 𝜕

𝜕t − (𝜖𝑘(t) − 𝜇(t))) 𝛿C(t, t′) (I.A.78)

With this explicit form of 𝐺−1
0,𝑘 we can compute the convolution 𝐺−1

0,𝑘 ∗ 𝐺𝑘:

(𝐺−1
0,𝑘 ∗ 𝐺𝑘) (t, t′) = ∫

C
(𝑖 𝜕

𝜕t − (𝜖𝑘(t) − 𝜇(t))) 𝛿C(t, t̄) 𝐺𝑘(t̄, t) d ̄t (I.A.79)

= (𝑖 𝜕
𝜕t − (𝜖𝑘(t) − 𝜇(t))) 𝐺𝑘(t, t) (I.A.80)

= (Σ𝑘 ∗ 𝐺𝑘) (t, t′) + 𝛿C(t, t′) (I.A.81)

From the second last to last line we used Eq. (I.A.76). Thus we find:

𝐺−1
0,𝑘 ∗ 𝐺𝑘 = 𝛿C + Σ𝑘 ∗ 𝐺𝑘 (I.A.82)

After convolution of both sides with 𝐺0,𝑘 from the left we get the non-equilibrium Dyson

equation:
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Definition I.A.7: Dyson equation

𝐺𝑘 = 𝐺0,𝑘 + 𝐺0,𝑘 ∗ Σ𝑘 ∗ 𝐺𝑘 (I.A.83)

This equation looks like the equilibrium Dyson equation (Eq. (I.A.6)) in 𝜔-space. The

difference is the use of the contour convolution instead of a simple product in 𝜔-space. In fact,

if the Hamiltonian is constant and the C-shaped Keldysh contour is used, then this Dyson

equation reduces to the equilibrium case. It should be emphasized again, that we did not

specify the exact form of the contour C. The Green function, the self-energy, and the contour

convolution may change with a different contour, but the Dyson equation stays the same. On

a further note, it is possible to do the calculation in this chapter not in 𝑘-space but in the

space of the lattice sites, where the Green function is:

𝐺(𝑖,𝑗)(t, t′) = −𝑖
tr (TC 𝑒𝑆 𝑐𝑖,t 𝑐†

𝑗,t′)
tr (TC 𝑒𝑆)

(I.A.84)

In that case the Dyson equation emerges again50:

𝐺 = 𝐺0 + 𝐺0 ○∗ Σ ○∗ 𝐺 (I.A.85)

The difference here is that the Green function and self-energy are now matrices with lattice

site indices and the convolution is a matrix product and contour convolution:

(𝐹 ○∗ 𝐺)𝑖𝑗 (t, t′) = ∑
𝑚

(𝐹𝑖𝑚 ∗ 𝐺𝑚𝑗) (t, t′) (I.A.86)

This formalism is not needed for the present thesis and we will stay in 𝑘-space.

I.A.4.2 Effective Action

This subsection summarizes the results of section III of Ref. 49. One way to rewrite

Hubbard-like Hamiltonians is to single out one site 0 and split the Hamiltonian in terms that

act only on site 0, on sites other than 0, and terms that connect site 0 with the rest49. With
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Hubbard-like we mean a general Hamiltonian with arbitrary geometry. This includes the

Anderson impurity model. To avoid a symbol collision with the non-interacting Hamiltonian,

we will use 𝐻(0) instead of 𝐻0 for the Hamiltonian of the isolated site which is used in Ref. 49.

Note that the Hamiltonian parameters are implicitly time-dependent and we furthermore let

the hopping amplitude be spin-dependent.

𝐻 = 𝐻(0) + 𝐻(0) + Δ𝐻 = ∑
𝑖𝑗𝑠

𝑣𝑖𝑗𝑠 𝑐†
𝑖,𝑠 𝑐𝑗,𝑠 + 𝑣𝑗𝑖𝑠 𝑐†

𝑗,𝑠 𝑐𝑗,𝑠 + ∑
𝑖

𝑈𝑖 𝑛𝑖,↑ 𝑛𝑖,↓ (I.A.87)

𝐻(0) = ∑
𝑠

2 𝑣00𝑠 𝑐†
0,𝑠 𝑐0,𝑠 + 𝑈0 𝑛0,↑ 𝑛0,↓ (I.A.88)

Δ𝐻 = ∑
𝑖𝑠

𝑣𝑖0𝑠 𝑐†
𝑖,𝑠 𝑐0,𝑠 + 𝑣0𝑖𝑠 𝑐†

0,𝑠 𝑐𝑗,𝑠 (I.A.89)

𝐻(0) = ∑
𝑖𝑗𝑠

𝑖,𝑗≠0

𝑣𝑖𝑗𝑠 𝑐†
𝑖,𝑠 𝑐𝑗,𝑠 + 𝑣𝑗𝑖𝑠 𝑐†

𝑗,𝑠 𝑐𝑗,𝑠 + ∑
𝑖

𝑖≠0

𝑈𝑖 𝑛𝑖,↑ 𝑛𝑗,↓ (I.A.90)

The parameters 𝑈 and 𝑣 are implicitly time-dependent. The action also splits into three parts,

𝑆 = 𝑆(0) + 𝑆(0) + Δ𝑆, where 𝑆(0) = −𝑖 ∫
C

𝐻(0)(t) dt and accordingly for the other two parts

of the Hamiltonian. It is possible to split the total trace into the two subspaces formed by

the occupation bases of site 0 and the rest.

tr 𝑂 = ∑
{𝑛𝑖}=0,1

⟨𝑛0, 𝑛1, … | 𝑂 | 𝑛0, 𝑛1, …⟩ (I.A.91)

tr0 𝑂 = ∑
{𝑛0}=0,1

⟨𝑛0 | 𝑂 | 𝑛0⟩ (I.A.92)

tr𝑅 𝑂 = ∑
{𝑛𝑖}=0,1;𝑖≠0

⟨𝑛1, 𝑛2, … | 𝑂 | 𝑛1, 𝑛2, …⟩ (I.A.93)

𝑂0 = tr𝑅 𝑂 (I.A.94)

tr 𝑂 = tr0 tr𝑅 𝑂 = tr0 𝑂0 (I.A.95)

Here the 𝑛𝑖 are the occupation numbers in the occupation basis. As shown in Ref. 49, one

can trace out the rest of the system and derive an effective action 𝑆eff. Then the expectation

value of an operator 𝑂 that acts only on site 0 can be written in terms of the effective action.

⟨𝑂⟩𝑆 = ⟨𝑂⟩𝑆eff
= 1

𝑍𝑒𝑓𝑓
tr0 (TC 𝑒𝑆eff 𝑂) (I.A.96)
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The effective action is expressed in terms of general 2𝑛-time hybridization functions Δ.

𝑆eff = 𝑆(0) − 𝑖
∞

∑
𝑛=1

∑
𝑠1,…,𝑠𝑛
𝑠′

1,…,𝑠′
𝑛

2𝑛 integrals
⏞
∫
C

… ∫
C

Δ𝑠1,…,𝑠𝑛,𝑠′
1,…,𝑠′

𝑛
(t1, … , tn, t′

1, … , t′
n) (I.A.97)

𝑐†
0,𝑠1,t1

… 𝑐†
0,𝑠𝑛,tn

𝑐0,𝑠1,t′
1

… 𝑐0,𝑠𝑛,t′
n

dt1 … dtn dt′
1 … dt′

n

The 2𝑛-time hybridization functions Δ can be expressed in terms of connected Green functions.

Δ𝑠1,…,𝑠′
𝑛
(t1, … , t′

n) = (−𝑖)𝑛−1

𝑛!2
∑

𝑖1,…,𝑖𝑛,𝑗1,…,𝑗𝑛
𝑠1,…,𝑠𝑛,𝑠′

1,…,𝑠′
𝑛

𝑣0,𝑖1,𝑠1
… 𝑣𝑗𝑛,0,𝑠′

𝑛
𝐺(0),𝑐

(𝑖1,𝑠1),…,(𝑗𝑛,𝑠′
𝑛)(t1, … , t′

n)

(I.A.98)

The connected Green functions indicate that the sum over the lattice site indices 𝑖1 … 𝑗𝑛

includes only terms where the lattice sites are connected by the Hamiltonian 𝐻(0). This is

going to be important for the Anderson Impurity Model and the Hubbard model on the Bethe

lattice.

𝐺(0),𝑐
(𝑖1,𝑠1),…,(𝑗𝑛,𝑠′

𝑛)(t1, … , t′
n) = (−𝑖)𝑛 ⟨𝑐𝑖1,𝑠1,t1

… 𝑐𝑖𝑛,𝑠𝑛,tn
𝑐†

𝑗1,𝑠′
1,t′

1
… 𝑐†

𝑗𝑛,𝑠′
𝑛,t′

n
⟩

𝑆(0)
(I.A.99)

To summarize this lengthy result so far: It is possible to reduce the computation of the Green

function of a general Hamiltonian to the Hilbert space of only one lattice site without loss

of generality. The problem is, in order to do so, one needs to know the higher order Green

functions 𝐺(0),𝑐 which are harder to compute than just the Green function. However, there

are three important cases, where the computation vastly simplifies49,64. The conceptually

simplest one is the Anderson Impurity Model, where isolated lattice site 0 is the impurity.

When the impurity is removed and it is the only site connecting the bath sites, all higher

order connected Green functions vanish.

𝑆eff = 𝑆(0) − 𝑖 ∑
𝑠,𝑠′

∫
C

Δ𝑠,𝑠′(t, t′) 𝑐†
0,𝑠,t 𝑐0,𝑠′,t′ dt dt′ (I.A.100)

The same effective action can be derived very similarly for the Bethe lattice because the

removal of site 0 splits the lattice into Z separated sublattices, where Z is the connectivity.
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The third case is the limit to infinite dimensions 𝑑 = 2Z → ∞ on the hypercubic lattice. If

the hopping is scaled like 𝑣 = 𝑣0√
Z , one finds that all higher order terms vanish in Eq. (I.A.98)

and the same effective action as in Eq. (I.A.100) is recovered.

On the Bethe lattice with infinite connectivity it is also relatively simple to connect the

Green function with the hybridization function42,49,64 and to get a self-consistency condition

for DMFT. In the limit of infinite connectivity, the effect of the removal of one lattice site

can be neglected for the Green function (here, 𝑖 ≠ 0).

lim
Z→∞

𝐺(0),𝑐
(𝑖,𝑠),(𝑖,𝑠′)(t, t′) = lim

Z→∞
𝐺(𝑖,𝑠),(𝑖,𝑠′)(t, t′) (I.A.101)

To this end, one needs to do the same scaling of the hopping as above, so that the kinetic

energy stays finite. Then, there is a very simple connection between the Green function and

the hybridization function.

Δ(t, t′) = 𝑣(t) 𝐺(t, t′) 𝑣(t′)∗ (I.A.102)

To summarize this subsection, it can be shown that the computation of the local Green

function (or any operator that acts only on one site) of the Hubbard model can be substituted

by the computation of the Green function on the Anderson Impurity Model, provided that

the right hybridization function is used.

I.A.4.3 Self-Consistency Scheme

In this subsection we will closely follow Refs. 42 and 50. The idea behind the derivation of

non-equilibrium DMFT is the same as for equilibrium DMFT (see Sec. I.A.2 ). We will show

that there is again a simple set of coupled equations that include the Green function 𝐺, the

self-energy Σ, and the hybridization function Δ, under the assumption that the self-energy is

local (𝑘-independent).

As just discussed in Sec. I.A.4.2, the Hubbard model in infinite dimensions and the

Anderson impurity model can be modeled with an effective action 𝑆eff that contains the
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hybridization function Δ( ̄t, ̄̄t).

𝑆(0) = −𝑖 ∫
C

𝑈(t̄) (𝑛0,↑ − 1
2

) (𝑛0,↓ − 1
2

) − 𝜇( ̄t) ∑
𝑠

𝑛0,𝑠 dt̄ (I.A.103)

𝑆eff = 𝑆(0) − 𝑖 ∬
C

𝑐†
̄t Δ( ̄t, ̄̄t) 𝑐 ̄̄t d ̄t d ̄t̄ (I.A.104)

𝐺(t, t′) = −𝑖
tr (TC 𝑒𝑆eff 𝑐0,t 𝑐†

0,t′)
tr (TC 𝑒𝑆eff)

(I.A.105)

Depending on what model is exactly described with Eq. (I.A.104), the meaning of the Green

function in Eq. (I.A.105) changes. If the model is the Anderson Impurity Model, then

𝐺 = 𝐺IMP. On the other hand, if the model is the investigated lattice model, then 𝐺 is the

Green function of the lattice, where the modelling with a hybridization function Δ( ̄t, ̄̄t), with

only two time arguments, is in general only an approximation.

In the same way as above (Sec. I.A.4.1) we can compute the equation of motion, though

one cannot define a simple contour Heisenberg picture of the time-evolution operator because

of the presence of Δ(t̄, ̄t̄). Note that the Green function is not defined with a Hamiltonian

here, but with an effective action. The next steps50 correspond to Eqs. (I.A.72) and (I.A.76),

where the Green function is defined with a Hamiltonian.

𝜕
𝜕t𝐺(t, t′) = ⟨[𝐻loc,t, 𝑐t], 𝑐†

t′⟩
𝑆

− 𝑖(Δ ∗ 𝐺)(t, t′) − 𝑖𝛿C(t, t′) (I.A.106)

Similar to Sec. I.A.4.1, we have again split the local Hamiltonian into interacting and non-

interacting part, 𝐻loc = − 𝜇 ∑𝑠 𝑐†
0,𝑠𝑐0,𝑠⏟⏟⏟⏟⏟⏟⏟

𝐻0

+ 𝑈 (𝑛0,↑ − 1
2) (𝑛0,↓ − 1

2)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻1

and pull all higher order

terms of the commutator into the self-energy.

𝜕
𝜕t𝐺(t, t′) = 𝑖𝜇(t) 𝐺(t, t′) − 𝑖 (Σ ∗ 𝐺) (t, t′) − 𝑖(Δ ∗ 𝐺)(t, t′) − 𝑖𝛿C(t, t′) (I.A.107)

This equation corresponds to Eq. (I.A.7) in the equilibrium case. Following from that we

get again explicit results for the inverse of the Green function 𝐺−1 and the inverse of the

non-interacting Green function 𝐺−1
0 . Note that, in contrast to 𝜔-space, in the time domain
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the inverse 𝐺−1(t, t′) ≠ 1
𝐺(t,t′) (see Def. (I.A.3)), but is defined via Eq. (I.A.32)

𝐺−1 ∗ 𝐺 = 𝐺 ∗ 𝐺−1 = 𝛿C . (I.A.108)

After replicating the steps corresponding to Eqs. (I.A.77) to (I.A.79), the Dyson equation

emerges again:

𝐺−1(t, t′) = (𝑖 𝜕
𝜕t + 𝜇(t)) 𝛿C(t, t′) − Σ(t, t′) − Δ(t, t′) (I.A.109)

𝐺−1
0 (t, t′) = (𝑖 𝜕

𝜕t + 𝜇(t)) 𝛿C(t, t′) − Δ(t, t′) (I.A.110)

𝐺 = 𝐺0 + 𝐺0 ∗ Σ ∗ 𝐺 = 𝐺0 + 𝐺 ∗ Σ ∗ 𝐺0 (I.A.111)

Equations (I.A.109) and (I.A.110) correspond to Eqs. (I.A.10) and (I.A.11) in the equilibrium

case. Here we explicitly assumed a 𝑘-independent self-energy. This holds true for the infinite

dimensional system, but not for a general Hamiltonian (e.g. the three-dimensional Hubbard

model). On the other hand, the explicit knowledge of the lattice geometry allows us to

compute the 𝑘-dependent Green function from the Dyson equation (Eq. (I.A.83)), with the

approximation of a 𝑘-independent self-energy.

𝐺𝑘 = 𝐺0,𝑘 + 𝐺0,𝑘 ∗ Σ ∗ 𝐺𝑘 (I.A.112)

𝐺(t, t′) = 𝐺loc(t, t′) = 1
𝑁𝑘

∑
𝑘

𝐺𝑘(t, t′) ( 1
𝑁𝑘

∑𝑘=1) (I.A.113)

Analogous to the equilibrium case, Eq. (I.A.105) and Eq. (I.A.109) to Eq. (I.A.113) form a set

of coupled equations that need to be solved. Like in the equilibrium case, it is generally not

possible to solve these equations simultaneously and the remedy is to solve them iteratively

and self-consistently (Alg. (I.A.2)). A closer inspection of the equations shows that they are

formally equivalent to the equilibrium case (see Sec. I.A.2). The difference is that instead

of multiplication in 𝜔-space a convolution on the contour is done and that we cannot get

the inverse of a function on the contour by a simple division in 𝜔-space but need to find the

inverse of the contour convolution. In fact, in equilibrium and under a suitable contour (e.g.

the C-shaped contour) the equations above simplify to the equilibrium equations of Sec. I.A.2

after a Fourier transform to 𝜔-space.
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Algorithm I.A.2: Unstable Non-Equilibrium Dynamical Mean Field The-

ory42

The superscript (𝑛) denotes the iteration number.

0. Start with initial guess for Δ(0)(t, t′). Set (𝑛) ⟶ 0.

When no good guess is available and the solution is suspected to be metallic, one

can usually start from the semicircular density of states.

1. From Δ(𝑛)(t, t′) compute the bath parameters 𝑉 (𝑛)
𝑙 , 𝜖(𝑛)

𝑙 (see Sec. I.B.3).

2. Solve impurity problem, i.e. compute impurity Green function 𝐺(𝑛)
IMP(t, t′).

If ∣𝐺(𝑛)
IMP(t, t′) − 𝐺(𝑛−1)

IMP (t, t′)∣ is sufficiently small for all t and t′, the algorithm

is converged.

3. Compute Σ(𝑛)
IMP(t, t′) = 𝐺(𝑛)

0,IMP(t, t′)−1 − 𝐺(𝑛)
IMP(t, t′)−1, where 𝐺(𝑛)

0,IMP(t, t′) is

the non-interacting Green function of the impurity system.

Now, the DMFT approximation is Σ(𝑛)(t, t′) = Σ(𝑛)
IMP(t, t′).

4. Compute the local Green function

𝐺(𝑛)
loc (t, t′) = 1

𝑁𝑘
∑𝑘 𝐺(𝑛)

𝑘 (t, t′) = 1
𝑁𝑘

∑𝑘 (𝐺(𝑛)
0,𝑘(t, t′)−1 − Σ(𝑛)(t, t′))

−1
.

5. Compute the Weiss effective field G(𝑛)
0 (t, t′) = (𝐺(𝑛)

loc (t, t′)−1 + Σ(𝑛)(t, t′))
−1

.

6. Compute the hybridization function of the next iteration

Δ(𝑛+1)(t, t′) = (𝑖 𝜕
𝜕t + 𝜇(t)) 𝛿C(t, t′) − G(𝑛)

0 (t, t′)−1.

7. Go to step 1 and start a new iteration (𝑛 ⟶ 𝑛 + 1)

If the algorithm is done on the Bethe lattice one can skip steps 3 − 6 and instead do:

Δ(𝑛+1)(t, t′) = 𝑣(t) 𝐺(𝑛)
IMP(t, t′) 𝑣(t′)∗.

The problem of Alg. (I.A.2) is that the necessary contour inversions in steps 3, 4, 5, and

6 are not stable42. With contour inversion we mean the computation of 𝐹 −1 from 𝐹. One

example is in step 3, which is the Dyson equation (Eq. (I.A.111)) rearranged. Convoluting

the right hand side of Eq. (I.A.111) with 𝐺−1
0,IMP from the right and bringing the resulting 𝛿C
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to the left, we obtain:

𝐺IMP ∗ 𝐺−1
0,IMP − 𝛿C = 𝐺IMP ∗ Σ (I.A.114)

Solving this equation for Σ amounts to solving an equation of the following form for 𝑋:

Solve for 𝑋: 𝐹 ∗ 𝑋 = 𝑄 (I.A.115)

Here, 𝑄 = 𝐺IMP ∗ 𝐺−1
0,IMP − 𝛿C , 𝐹 = 𝐺IMP, and 𝑋 = ΣIMP. This process is numerically not

stable42.

A way around this is to use the impurity Green function 𝑔 of an isolated impurity42.

𝑔−1(t, t′) = (𝑖 𝜕
𝜕t + 𝜇(t)) 𝛿C(t, t′) − Σ(t, t′) (I.A.116)

⇒ 𝑔−1 = 𝐺−1 + Δ (I.A.117)

Convoluting Eq. (I.A.117) with 𝐺 from the right and 𝑔 from the left (or 𝐺 from left and 𝑔

from right) yields an equation similar to the Dyson equation:

𝐺 = 𝑔 + 𝑔 ∗ Δ ∗ 𝐺 (I.A.118)

= 𝑔 + 𝐺 ∗ Δ ∗ 𝑔 (I.A.119)

The lattice geometry gets included from the 𝑘-dependent Dyson equation (with 𝑘-independent

self-energy) and one can show that the following holds true42:

𝐺𝑘 = 𝑔 + 𝑔 ∗ 𝜀𝑘 ∗ 𝐺𝑘 (I.A.120)

= 𝑔 + 𝐺𝑘 ∗ 𝜀𝑘 ∗ 𝑔 (I.A.121)

where 𝜀𝑘(t, t′) = 𝜖𝑘(t) 𝛿C(t, t′).
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Performing the 𝑘-sum on both sides of Eq. (I.A.120) allows us to extract Δ again.

1
𝑁𝑘

∑
𝑘

𝐺𝑘 = 1
𝑁𝑘

∑
𝑘

𝑔 + 1
𝑁𝑘

∑
𝑘

𝑔 ∗ 𝜀𝑘 ∗ 𝐺𝑘 (I.A.122)

𝐺 = 𝑔 + 1
𝑁𝑘

𝑔 ∗ ∑
𝑘

𝜀𝑘 ∗ 𝐺𝑘 (I.A.123)

From the first to the second line we were able to pull 𝑔 out of the 𝑘-sum as this quantity is

independent of 𝑘. A comparison to Eq. (I.A.118) shows:

Δ ∗ 𝐺 = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 ∗ 𝐺𝑘 (I.A.124)

A further insertion shows:

Δ ∗
Eq. (I.A.119)

⏞𝐺 = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 ∗
Eq. (I.A.121)

⏞𝐺𝑘 (I.A.125)

Δ ∗ (𝑔 + 𝐺 ∗ Δ ∗ 𝑔) = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 ∗ (𝑔 + 𝐺𝑘 ∗ 𝜀𝑘 ∗ 𝑔) (I.A.126)

Δ ∗ 𝑔 + Δ ∗ 𝐺 ∗ Δ ∗ 𝑔 = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 ∗ 𝑔 + 𝜀𝑘 ∗ 𝐺𝑘 ∗ 𝜀𝑘 ∗ 𝑔 (I.A.127)

After convolution with 𝑔−1 from the right we get:

Δ +
Eq. (I.A.124)

⏞Δ ∗ 𝐺 ∗ Δ = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 + 𝜀𝑘 ∗ 𝐺𝑘 ∗ 𝜀𝑘 (I.A.128)

Δ + ( 1
𝑁𝑘

∑
𝑘

𝜀𝑘 ∗ 𝐺𝑘) ∗ Δ = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 + 𝜀𝑘 ∗ 𝐺𝑘 ∗ 𝜀𝑘 (I.A.129)

This means Δ can be extracted from the equation:

Δ + 𝐺1 ∗ Δ = 𝐺2 (I.A.130)

𝐺1 = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 ∗ 𝐺𝑘 (I.A.131)

𝐺2 = 1
𝑁𝑘

∑
𝑘

𝜀𝑘 + 𝜀𝑘 ∗ 𝐺𝑘 ∗ 𝜀𝑘 (I.A.132)
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The equations above form again a set coupled equations that can be solved iteratively and

self-consistently (Alg. (I.A.3)). The difference to Alg. (I.A.2) (and the reason for all these

transformations) is that all contour inversions are now of the form:

Solve for 𝑋: 𝑋 + 𝐹 ∗ 𝑋 = 𝑄 (I.A.133)

This contour inversion is numerically much more stable42 than Eq. (I.A.115).

Algorithm I.A.3: Stable Non-Equilibrium Dynamical Mean Field Theory42

The superscript 𝑛 denotes the iteration number.

0. Start with initial guess for Δ(0)(t, t′). Set (𝑛) ⟶ 0.

When no good guess is available and the solution is suspected to be metallic, one

can usually start from the semicircular density of states.

1. From Δ(𝑛)(t, t′) compute the bath parameters 𝑉 (𝑛)
𝑙 , 𝜖(𝑛)

𝑙 (see Sec. I.B.3).

2. Solve impurity problem, i.e. compute impurity Green function 𝐺(𝑛)
IMP(t, t′).

If ∣𝐺(𝑛)
IMP(t, t′) − 𝐺(𝑛−1)

IMP (t, t′)∣ is sufficiently small for all t and t′ the algorithm

is converged.

3. Solve for 𝑔(𝑛):

𝐺(𝑛)
IMP = 𝑔(𝑛) + 𝑔(𝑛) ∗ Δ(𝑛) ∗ 𝐺(𝑛)

IMP (I.A.134)

4. Solve ∀ 𝑘:

𝐺(𝑛)
𝑘 = 𝑔(𝑛) + 𝑔(𝑛) ∗ 𝜀𝑘 ∗ 𝐺(𝑛)

𝑘 (I.A.135)

where 𝜀𝑘(t, t′) = 𝜖𝑘(t) 𝛿C(t, t′)

5. Compute 𝑘-sum:

𝐺(𝑛)
loc = 𝑔(𝑛) + 1

𝑁𝑘
𝑔(𝑛) ∗ (∑

𝑘
𝜀𝑘 ∗ 𝐺(𝑛)

𝑘 ) (I.A.136)
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6. Solve for Δ(𝑛+1):

𝐺(𝑛)
2 = Δ(𝑛+1) + 𝐺(𝑛)

1 ∗ Δ(𝑛+1) (I.A.137)

where

𝐺(𝑛)
1 = 1

𝑁𝑘
∑

𝑘
𝜀𝑘 ∗ 𝐺(𝑛)

𝑘 (I.A.138)

𝐺(𝑛)
2 = 1

𝑁𝑘
∑

𝑘
𝜀𝑘 + 𝜀𝑘 ∗ 𝐺(𝑛)

𝑘 ∗ 𝜀𝑘 (I.A.139)

7. Go to step 1 and start a new iteration (𝑛 ⟶ 𝑛 + 1)

If the algorithm is done on the Bethe lattice one can skip steps 3 − 6 and instead do:

Δ(𝑛+1)(t, t′) = 𝑣(t) 𝐺(𝑛)
IMP(t, t′) 𝑣(t′)∗.

Progressive Propagation Scheme

Because the equations used in non-equilibrium DMFT are causal42, it is possible to

do Alg. (I.A.3) in a modified manner49. With causal we mean that e.g. the convolution

(𝐴 ∗ 𝐵)>𝑁(𝑡𝑁, 𝑡′
𝑁) does not depend on 𝐴>𝑁(𝑡𝑁, 𝑡′

𝑁) (or other components) if at least one of

its arguments is greater than either one of the arguments of the convolution:

max(𝑡𝑁, 𝑡′
𝑁) > min(𝑡𝑁, 𝑡′

𝑁) (I.A.140)

Assuming that one discretizes the time in slices of distance Δ𝑡, one can first converge the

DMFT loop at 𝑡𝑁 = 0, then at 𝑡𝑁 = Δ𝑡, then at 𝑡𝑁 = 2 Δ𝑡, and so on. This iteration

scheme is illustrated in the top right of Fig. I.A.3, and requires a mapping method from the

hybridization function to the Anderson Impurity Model Hamiltonian parameters that is also

causal, i.e. computing 𝑉 (𝑡𝑁) does not change 𝑉 (𝑡′
𝑁), when 𝑡′

𝑁 < 𝑡𝑁. We present such a

mapping in Sec. I.B.3.
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Figure I.A.3. Two possible iteration schemes for the DMFT loop. Top left: All quantities are
updated for all time steps at once. Top right: 𝑡𝑁 is fixed and the Green function, hybridization
function, and the hoppings of the Anderson Impurity Model are updated only if one the time
arguments is equal to 𝑡𝑁. After the DMFT loop is converged for 𝑡𝑁, 𝑡𝑁 is increased by Δ𝑡. Bottom:
Meaning of t ≤ 𝑡𝑁 in this context on the L-shaped contour and on the contour with two real axis
which is introduced in Sec. I.B.1. Figure adapted from Ref. 49.
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I.B.1 Non-Equilibrium Green Functions at 𝑇 = 0

In some situations, it is preferable to do non-equilibrium DMFT directly at 𝑇 = 0 with only

real time arguments instead of taking the limit 𝛽 → ∞. The motivation to use only real time

arguments is the ill-posed analytic continuation which is needed to compute the Hamiltonian

parameters of the Anderson impurity model49,95, and to extract physical quantities (e.g.

the spectrum) from the Green function. Measurements in experiments are always done on

the real axis. The analytic continuation can drastically reduce energy resolution96. In the

case of multi-orbital equilibrium DMFT at zero temperature, recent progress has been made

regarding the computation of pure real time Green functions with new Matrix Product State

based methods41,69,71. For the present thesis this ansatz is carried on to the non-equilibrium

DMFT framework. To this end, the non-equilibrium Green function formalism needs to be

modified. For equilibrium DMFT, the imaginary time-evolution used by CTQMC or similar

methods can be replaced by a real time-evolution71 at zero temperature.

For non-equilibrium DMFT at zero temperature, we extend the C-shaped contour used

in the Keldysh formalism, as illustrated in Fig. I.B.1. We consider the case where the

Hamiltonian is constant at negative times and may be time-dependent at positive times.

The initial state at time 𝑡 = 0 is taken to be the ground state of the constant Hamiltonian

𝐻(𝑡 ≤ 0). Now, we first draw the Keldysh contour in a different shape, bent down vertically

for times 𝑡 ≤ 0. For the DMFT mapping from the hybridization function to Hamiltonian

parameters of the Anderson Impurity model in non-equilibrium (Sec. I.B.3), we will need

Green functions involving the initial (equilibrium) Hamiltonian at both negative and positive

times. We therefore extend the contour as shown in Fig. I.B.1 (bottom), giving us the full

axis for the ”equilibrium time” −∞ < 𝑡𝐸 < ∞, on which the constant Hamiltonian acts, and

an axis for the ”non-equilibrium” time 𝑡𝑁 ≥ 0, where the Hamiltonian can be time-dependent.

Corresponding time-evolutions were defined in Def. (I.A.1). The extended contour with two

real time axes is depicted in Fig. I.B.2. We note that the additional part of the contour by

itself, when no creation or annihilation operators are applied there, integrates to unity for the

time-evolution operator. The inclusion of positive equilibrium times will allow us to perform a

well defined Fourier transform over the equilibrium axis for the DMFT mapping (Sec. I.B.3).
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bend downwards

same situation
drawn differently

equilibrium axis

non-equilibrium axis

constant 
Hamiltonian

time-dependent 
Hamiltonian

add positive values
for equilibrium axis

Figure I.B.1. Top contour: C-shaped contour used in the Keldysh formalism94. The Hamiltonian
for 𝑡 ≤ 0 is constant (blue part), while the Hamiltonian for 𝑡 > 0 may be time-dependent (red part).
Center contour: The same situation is shown as in the top contour, where the negative times have
been bent downwards. We can identify the vertical axis with the equilibrium time and the horizontal
axis with the non-equilibrium time (Def. (I.A.1)). Bottom contour: Extended contour which allows
for the computation of the Green function with times 𝑡𝐸 > 0. This is necessary to perform the
mapping, from the hybridization function to Hamiltonian parameters, like described in Sec. I.B.3.
Note that the added part of the contour by itself, when no creation or annihilation operators are
applied there, integrates to unity for the time-evolution operator.
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Figure I.B.2. The contour C with two real time axes. Note that the arrows of time are chosen
differently from Fig. I.A.1. Thus C1 here corresponds to C1 in Fig. I.A.1. The same holds true for C2.

The contour with two real time axes has a similar structure as the L-shaped contour

(Fig. I.A.1). With the equilibrium time, we can obtain correlations from and within the

initial state of the system, whereas the non-equilibrium time deals with correlations that

build up after a quench in the parameters of the Hamiltonian. In Sec. I.B.1.2 we will show

the equality of the Green functions on the contour with two real axes, with the ground state

of the equilibrium Hamiltonian as the initial state, and the finite temperature formulation

(Sec. I.A.3) in the limit of 𝑇 → 0. We note that a large variety of initial states can be

implemented, by choosing a corresponding equilibrium Hamiltonian for which the desired

initial state is the ground state. Ideas related to the contour with two real time axes were

presented in Ref. 53. There, the authors used real-frequency representations of the right-

and left-mixing components of the Green function to simplify the computations necessary for

non-equilibrium DMFT at zero temperature on the L-shaped contour with a non-interacting

initial state.

The exact shape of the contour guarantees that the equilibrium components of a convolution

of two Green functions is a function of the time difference of the two time arguments. The

tools for the calculus on the new contour are formally the same as Def. (I.A.2) and (I.A.3),

the only difference being the shape of the contour. The same holds true for the definition of

the Green function:
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Definition I.B.8: Contour-ordered Green function

𝐺(t, t′) = −𝑖 ⟨𝜓 ∣ TC 𝑒−𝑖 ∫
C

𝐻( ̄t) d ̄t 𝑐t 𝑐†
t′ ∣ 𝜓⟩ (I.B.1)

Here |𝜓⟩ is the ground state of 𝐻(0).

This is the same definition as in the usual non-equilibrium setting (Def. (I.A.4)) in the

limit of 𝛽 → ∞, only that the Green function now lives on contour C (Fig. I.B.2) and not

on the L-shaped contour in the Kadanoff-Baym formalism. For the formalism with two real

time axes we have similar convolution rules as for the L-shaped contour. We will show in

Secs. I.B.1.2 and I.B.1.3 that we can use methods developed for the L-shaped contour also for

the new contour, as long as they only depend on addition and contour convolution.

Now, we have the same situation as in the finite temperature case, because there are several

components of the Green function depending on where on the contour the time arguments

lie. Again, all these components are not independent of each other. Based on the finite

temperature formalism, we will give the components names:
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Definition I.B.9: Components of Green function

Let 𝐺𝑖𝑗(t, t′) = 𝐺(t, t′) where t ∈ C𝑖 and t′ ∈ C𝑗 (Fig. I.B.2). The components of the

contour-ordered Green function are defined as follows.

greater eq. 𝐺>𝐸(𝑡𝐸, 𝑡′
𝐸) = 𝐺−+(𝑡𝐸, 𝑡′

𝐸) = −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝐸) 𝑐†(𝑡′
𝐸) ∣ 𝜓⟩ (I.B.2)

lesser eq. 𝐺<𝐸(𝑡𝐸, 𝑡′
𝐸) = 𝐺+−(𝑡𝐸, 𝑡′

𝐸) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡′
𝐸) 𝑐(𝑡𝐸) ∣ 𝜓⟩ (I.B.3)

greater non-eq. 𝐺>𝑁(𝑡𝑁, 𝑡′
𝑁) = 𝐺21(𝑡𝑁, 𝑡′

𝑁) = −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝑁) 𝑐†(𝑡′
𝑁) ∣ 𝜓⟩ (I.B.4)

lesser non-eq. 𝐺<𝑁(𝑡𝑁, 𝑡′
𝑁) = 𝐺12(𝑡𝑁, 𝑡′

𝑁) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡′
𝑁) 𝑐(𝑡𝑁) ∣ 𝜓⟩ (I.B.5)

right-mixing 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝐺31(𝑡𝐸, 𝑡𝑁) = −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝐸) 𝑐†(𝑡𝑁) ∣ 𝜓⟩ (I.B.6)

left-mixing 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) = 𝐺13(𝑡𝑁, 𝑡𝐸) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡𝐸) 𝑐(𝑡𝑁) ∣ 𝜓⟩ (I.B.7)

pre-right-mixing 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝐺01(𝑡𝐸, 𝑡𝑁) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡𝑁) 𝑐(𝑡𝐸) ∣ 𝜓⟩ (I.B.8)

pre-left-mixing 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) = 𝐺10(𝑡𝑁, 𝑡𝐸) = −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝑁) 𝑐†(𝑡𝐸) ∣ 𝜓⟩ (I.B.9)

retarded non-eq. 𝐺𝑅𝑁(𝑡𝑁, 𝑡′
𝑁) = 𝜃(𝑡𝑁 − 𝑡′

𝑁) (𝐺>𝑁(𝑡𝑁, 𝑡′
𝑁) − 𝐺<𝑁(𝑡𝑁, 𝑡′

𝑁))

(I.B.10)

advanced non-eq. 𝐺𝐴𝑁(𝑡𝑁, 𝑡′
𝑁) = 𝜃(𝑡′

𝑁 − 𝑡𝑁) (𝐺<𝑁(𝑡𝑁, 𝑡′
𝑁) − 𝐺>𝑁(𝑡𝑁, 𝑡′

𝑁))

(I.B.11)

retarded eq. 𝐺𝑅𝐸(𝑡𝐸, 𝑡′
𝐸) = 𝜃(𝑡𝐸 − 𝑡′

𝐸) (𝐺>𝐸(𝑡𝐸, 𝑡′
𝐸) − 𝐺<𝐸(𝑡𝐸, 𝑡′

𝐸))

(I.B.12)

advanced eq. 𝐺𝐴𝐸(𝑡𝐸, 𝑡′
𝐸) = 𝜃(𝑡′

𝐸 − 𝑡𝐸) (𝐺<𝐸(𝑡𝐸, 𝑡′
𝐸) − 𝐺>𝐸(𝑡𝐸, 𝑡′

𝐸))

(I.B.13)

Keldysh eq. 𝐺𝐾𝐸(𝑡𝐸, 𝑡′
𝐸) = 𝐺>𝐸(𝑡𝐸, 𝑡′

𝐸) + 𝐺<𝐸(𝑡𝐸, 𝑡′
𝐸) (I.B.14)

where |𝜓⟩ is the ground state of 𝐻(0). Note that the pre-mixing components 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁)

and 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) are strictly speaking only defined for 𝑡𝐸 ≤ 0, but one can easily modify

the contour to integrate to positive 𝑡𝐸 and back to 0, before switching to C1.

We chose the names and symbols in Def. (I.B.9) so that there is correspondence to the

notation used in Def. (I.A.5) and in the existing literature42,49. For example, the two right-

mixing components 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) and 𝐺 ¬¬¬
𝐿(𝜏, 𝑡𝑁) have almost the same definition, the only
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difference being that we use equilibrium time here instead of imaginary time. There is

no apparently corresponding definition for the pre-mixing components in the usual finite

temperature formalism, but they are connected to the mixing components at negative

imaginary times (see Sec. I.B.1.2). They are basically the same as the mixing components, but

the equilibrium time argument lies before the non-equilibrium time argument on the contour.

Since such cases exist here, there are more components in Def. (I.B.9) than in Def. (I.A.5).

I.B.1.1 Convolution

For the formalism with two real time axes we have similar convolution rules as above,

the only differences coming from the exact shape of the contour. To provide an example

we will take a look at the right-mixing component of the convolution 𝐴 ∗ 𝐵, like we did in

Sec. I.A.3.2 for the L-shaped contour.

(𝐴 ∗ 𝐵) ¬¬¬(𝑡𝐸, 𝑡𝑁) = (𝐴 ∗ 𝐵)31(𝑡𝐸, 𝑡𝑁) (I.B.15)

=
3

∑
𝑗=0

∫ 𝐴3𝑗(𝑡𝐸, t̄) 𝐵𝑗1( ̄t, 𝑡𝑁) dt̄ (I.B.16)

= ∫
0

−∞
𝐴30(𝑡𝐸, ̄𝑡𝐸) 𝐵01( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸 (I.B.17)

+ ∫
𝑡𝑁

0
𝐴31(𝑡𝐸, ̄𝑡𝑁) 𝐵11( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴32(𝑡𝐸, ̄𝑡𝑁) 𝐵21( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
𝑡𝐸

0
𝐴33(𝑡𝐸, ̄𝑡𝑁) 𝐵31( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

+ ∫
−∞

𝑡𝐸

𝐴33(𝑡𝐸, ̄𝑡𝑁) 𝐵31( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸
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In the second line, 𝑗 marks the region where ̄t lies on the contour. With the suitable

components plugged in:

(𝐴 ∗ 𝐵) ¬¬¬(𝑡𝐸, 𝑡𝑁) = ∫
0

−∞
𝐴>𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸 (I.B.18)

+ ∫
𝑡𝑁

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵<( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵>( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
𝑡𝐸

0
𝐴>𝐸(𝑡𝐸, ̄𝑡𝑁) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

+ ∫
−∞

𝑡𝐸

𝐴<𝐸(𝑡𝐸, ̄𝑡𝑁) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

The second and third line can be combined in a similar way as above.

(𝐴 ∗ 𝐵) ¬¬¬(𝑡𝐸, 𝑡𝑁) = ∫
0

−∞
𝐴>𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸 (I.B.19)

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
𝑡𝐸

0
𝐴>𝐸(𝑡𝐸, ̄𝑡𝑁) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

+ ∫
−∞

𝑡𝐸

𝐴<𝐸(𝑡𝐸, ̄𝑡𝑁) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

This is the final result for the right-mixing component of the convolution on the contour with

two real time axes, similar to the results in Sec. I.A.3.2. Below we will show the connection

of this convolution to the convolution of the L-shaped contour in the limit of 𝛽 → ∞.

I.B.1.2 Equality of Green functions on the two Contours in the limit 𝛽 → ∞

In the limit of 𝛽 → ∞, we show that all the information contained in 𝐺𝐿(t, t′) (see

Def. (I.A.5)) is also contained within 𝐺(t, t′). The connection is made possible by taking

the expectation values in Def. (I.A.5) in the limit of 𝛽 → ∞. The right-mixing component
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(Eq. (I.A.45)) of 𝐺𝐿, for 𝜏 ≥ 0, in the eigenbasis of 𝐻(0) is:

𝐺 ¬¬¬
𝐿(

≥0
⏞𝜏 , 𝑡𝑁) = −𝑖 ⟨𝜓 ∣ 𝑐(𝜏) 𝑐†(𝑡𝑁) ∣ 𝜓⟩ (I.B.20)

= −𝑖 ∑
𝑛

⟨𝜓 | 𝑐 | 𝑛⟩ ⟨𝑛 ∣ 𝑐†(𝑡𝑁) ∣ 𝜓⟩ 𝑒−𝜏(𝐸𝑛−𝐸0) (I.B.21)

For 𝜏 < 0 which is needed for for the limit 𝛽 → ∞, we need to use the periodicity of fermionic

Green functions42 (𝑓(−𝜏) = −𝑓(𝛽 − 𝜏)):

𝐺 ¬¬¬
𝐿(

<0
⏞𝜏 , 𝑡𝑁) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡𝑁) 𝑐(𝜏) ∣ 𝜓⟩ (I.B.22)

= 𝑖 ∑
𝑛

⟨𝜓 ∣ 𝑐†(𝑡𝑁) ∣ 𝑛⟩ ⟨𝑛 | 𝑐 | 𝜓⟩ 𝑒−𝜏(𝐸0−𝐸𝑛) (I.B.23)

For the contour with two real axes we will look at the Fourier transform of the right-mixing

component (Eq. (I.B.6)) with respect to equilibrium time. After some calculation we get:

𝐺 ¬¬¬(𝜔, 𝑡𝑁) = ∫
∞

−∞
𝑒𝑖𝜔𝑡𝐸 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) d𝑡𝐸 (I.B.24)

= −𝑖 2𝜋 ∑
𝑛

⟨𝜓 | 𝑐 | 𝑛⟩ ⟨𝑛 ∣ 𝑐†(𝑡𝑁) ∣ 𝜓⟩ 𝛿(𝜔 − (𝐸𝑛 − 𝐸0)) (I.B.25)

𝐺 ¬¬¬(𝜔, 𝑡𝑁) = ∫
∞

−∞
𝑒𝑖𝜔𝑡𝐸 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) d𝑡𝐸 (I.B.26)

= 𝑖 2𝜋 ∑
𝑛

⟨𝜓 ∣ 𝑐†(𝑡𝑁) ∣ 𝑛⟩ ⟨𝑛 | 𝑐 | 𝜓⟩ 𝛿(𝜔 − (𝐸0 − 𝐸𝑛)) (I.B.27)

A comparison of Eqs. (I.B.21), (I.B.23), (I.B.25) and (I.B.27) shows, the right-mixing compo-

nent of the L-shaped contour can be expressed with an integral over the right-mixing and

pre-right-mixing component of the contour with two real axes.

𝐺 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = 1

2𝜋
∫

∞

−∞
𝑒−𝜏𝜔 (𝐺 ¬¬¬(𝜔, 𝑡𝑁) 𝜃(𝜏) + 𝐺 ¬¬¬(𝜔, 𝑡𝑁) 𝜃(−𝜏)) d𝜔 (I.B.28)

The same holds true for the left-mixing component, Matsubara component, greater, and lesser

component, showing the possibility of doing the computation of the Green function on the
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contour with two real time axes without information loss.

𝐺¬¬¬
𝐿(𝜏, 𝑡𝑁) = 1

2𝜋
∫

∞

−∞
𝑒−𝜏𝜔 (𝐺¬¬¬(𝜔, 𝑡𝑁) 𝜃(𝜏) + 𝐺¬¬¬(𝜔, 𝑡𝑁) 𝜃(−𝜏)) d𝜔 (I.B.29)

𝐺𝑀
𝐿 (𝜏, 𝜏 ′) = 1

𝑖 2𝜋
∫

∞

−∞
𝑒−(𝜏−𝜏′)𝜔 (𝐺>𝐸(𝜔, 𝑡𝑁) 𝜃(𝜏 − 𝜏 ′) + 𝐺<𝐸(𝜔, 𝑡𝑁) 𝜃(𝜏 ′ − 𝜏)) d𝜔

(I.B.30)

𝐺>𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = 𝐺>𝑁(𝑡𝑁, 𝑡′
𝑁) (I.B.31)

𝐺<𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = 𝐺<𝑁(𝑡𝑁, 𝑡′
𝑁) (I.B.32)

From Eqs. (I.B.31) and (I.B.32) automatically follows that the retarded and advanced non-

equilibrium components are also equal between the L-shaped contour and the contour with

two real time axes.

I.B.1.3 Equality After Contour Convolution

Non-equilibrium DMFT makes heavy use of the contour convolution. To check if we can

use the existing non-equilibrium DMFT framework for the contour with two real time axes, we

need to show whether the relations Eqs. (I.B.28) to (I.B.32) between generic Green functions

on the L-shaped contour and the contour with two real time axes hold true after convolution

over their respective contours. In mathematical terms:

𝐶 ≡ 𝐴 ∗ 𝐵 (...on the contour with two real time axes) (I.B.33)

𝐶𝐿 ≡ 𝐴𝐿 ∗ 𝐵𝐿 (...on the L-shaped contour) (I.B.34)

Based on the properties of the Green function in the previous subsection (Sec. I.B.1.2) we

require the following properties for 𝐴 and 𝐵:

∀𝜔 ≤ 0 ∶ 𝐴>𝐸(𝜔) = 𝐴 ¬¬¬(𝜔, 𝑡𝑁) = 𝐴¬¬¬(𝑡𝑁, 𝜔) = 0 (I.B.35)

∀𝜔 ≥ 0 ∶ 𝐴<𝐸(𝜔) = 𝐴 ¬¬¬(𝜔, 𝑡𝑁) = 𝐴¬¬¬(𝑡𝑁, 𝜔) = 0 (I.B.36)

These assumptions are motivated by the Fourier transform of the Green function (Sec. VI.1),

because we assume that the ground state is unique. We assume that these properties shall
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hold true for all generic functions on the contour with two real time axes. Then, we need to

show the following if Eqs. (I.B.28) to (I.B.32) shall hold true after convolution:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) ?= 1

2𝜋
∫

∞

−∞
𝑒−𝜏𝜔 (𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝜃(𝜏) + 𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝜃(−𝜏)) d𝜔 (I.B.37)

𝐶¬¬¬
𝐿(𝜏, 𝑡𝑁) ?= 1

2𝜋
∫

∞

−∞
𝑒−𝜏𝜔 (𝐶¬¬¬(𝜔, 𝑡𝑁) 𝜃(𝜏) + 𝐶¬¬¬(𝜔, 𝑡𝑁) 𝜃(−𝜏)) d𝜔 (I.B.38)

𝐶𝑀
𝐿 (𝜏, 𝜏 ′) ?= 1

𝑖 2𝜋
∫

∞

−∞
𝑒−(𝜏−𝜏′)𝜔 (𝐶>𝐸(𝜔, 𝑡𝑁) 𝜃(𝜏 − 𝜏 ′) + 𝐶<𝐸(𝜔, 𝑡𝑁) 𝜃(𝜏 ′ − 𝜏)) d𝜔

(I.B.39)

𝐶>𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) ?= 𝐶>𝑁(𝑡𝑁, 𝑡′
𝑁) (I.B.40)

𝐶<𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) ?= 𝐶<𝑁(𝑡𝑁, 𝑡′
𝑁) (I.B.41)

The detailed calculation for the right-mixing component is done here, in the main text. The

corresponding calculations of the other components are located in the appendix. First, we

start out by writing the definition of 𝐶 ¬¬¬(𝑡𝐸, 𝑡𝑁).

𝐶 ¬¬¬(𝑡𝐸, 𝑡𝑁) = ∫
0

−∞
𝐴>𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸 (I.B.42)

+ ∫
𝑡𝑁

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵<𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵>𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
𝑡𝐸

0
𝐴>𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

+ ∫
−∞

𝑡𝐸

𝐴<𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸
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The next step is to replace the integration over ̄𝑡𝐸 with an integration in frequency space.

𝐶 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

(I.B.43)

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝑡𝐸

0
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

𝑡𝐸

𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

= − 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝑡𝐸𝜔′

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″ (I.B.44)

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔″𝑡𝐸 − 𝑒−𝑖𝜔′𝑡𝐸

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝑡𝐸𝜔″

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″

Here, the 0+ is to be read as lim𝜂→0+ 𝜂 and is needed for the regularization of the integrals

over ̄𝑡𝐸. This is the same technique, used to Fourier transform retarded and advanced Green

functions89 and is layed out in more detail in Sec. VI.3.1. The Fourier transform is trivial to

perform with ∫∞
−∞

𝑒𝑖𝑥𝑝 d𝑝 = 2𝜋 𝛿(𝑥) (Ref. 97).

𝐶 ¬¬¬(𝜔, 𝑡𝑁) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ − 𝑖0+ d𝜔″ (I.B.45)

+ ∫
∞

0
𝐴 ¬¬¬(𝜔, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) d ̄𝑡

− 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔 − 𝑖0+ d𝜔′
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This equation could further simplified, using the Dirac identity18 1
𝑥±𝑖0+ = P( 1

𝑥) ∓ 𝑖𝜋𝛿(𝑥),

where P is the Cauchy principal value. We will do a similar approach (Sec. VI.3.2), that

uses information about the products 𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) and 𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) and makes

it easier to compare the result with the calculation on the L-shaped contour. After doing the

calculation as layed out in Sec. VI.3.2 we arrive at:

𝐶 ¬¬¬(𝜔, 𝑡𝑁) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ + 0+ d𝜔″ (I.B.46)

+ ∫
∞

0
𝐴 ¬¬¬(𝜔, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) d ̄𝑡

− 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔 − 0+ d𝜔′

+ 1
2

(𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) − 𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔, 𝑡𝑁))

The last line has the dirac delta already integrated out, and vanishes according to the

assumptions Eqs. (I.B.35) and (I.B.36). To compare this result with the result of the L-shaped

contour the last step is to integrate over 𝜔 (Eq. (I.B.28)).

1
2𝜋

∫
∞

−∞
𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝑒−𝜏𝜔 d𝜔 = − 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

(I.B.47)

+ 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡 d𝜔′

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″
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The corresponding calculation for the pre-right-mixing components yields:

1
2𝜋

∫
∞

−∞
𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝑒−𝜏𝜔 d𝜔 = − 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

(I.B.48)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡𝑁 d𝜔′

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

In the case of the L-shaped contour, we start with the definition of the convolution.

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = ∫

𝑡𝑁

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵<𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.B.49)

+ ∫
0

𝑡𝑁

𝐴 ¬¬¬
𝐿(𝜏, ̄𝑡𝑁) 𝐵>𝑁

𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

= ∫
∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡) 𝐵𝐴𝑁
𝐿 ( ̄𝑡, 𝑡𝑁) d ̄𝑡

+ ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

Let us first start with the case 𝜏 ≥ 0. With the corresponding integration limits we get:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = ∫

∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵𝐴𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (I.B.50)

+ ∫
0

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
𝜏

0
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
∞

𝜏
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏
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In the next step, we replace the right-mixing and Matsubara components with Eqs. (I.B.28)

and (I.B.30) and integrate out the 𝜏.

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = 1

2𝜋
∫

∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡𝑁 d𝜔′ (I.B.51)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝜏

0
𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

𝜏
𝐴<𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡𝑁 d𝜔′ (I.B.52)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″ − 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

Like above, the 0+ stems from the regularization of the integral over 𝜏.

These regularizations are possible, because we required ∀𝜔 < 0 ∶ 𝐴>𝐸(𝜔) = 𝐵 ¬¬¬(𝜔, 𝑡𝑁) = 0

and ∀𝜔 > 0 ∶ 𝐴<𝐸(𝜔) = 𝐵 ¬¬¬(𝜔, 𝑡𝑁) = 0. A comparison of Eq. (I.B.47) and Eq. (I.B.52) shows

that these equations are the same and this proves Eq. (I.B.37) for 𝜏 ≥ 0. The corresponding

result for 𝜏 < 0 is:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = 1

2𝜋
∫

∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡 d𝜔′ (I.B.53)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′ − 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

A comparison of Eq. (I.B.48) and Eq. (I.B.53) shows that these equations are the same and

this proves Eq. (I.B.37) for 𝜏 < 0. To summarize the calculation so far, we have shown that
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the right-mixing component of the convolution over the L-shaped contour can be expressed in

convolutions over the contour with two real axes (Eqs. (I.B.28) and (I.B.37)). In the appendix

(Sec. VI.4) it is shown that similar relations hold for the other components of the convolution,

i.e. Eqs. (I.B.28) to (I.B.32) hold true after convolution. To show that these equations carry

on the result of a convolution we relied on the properties Eqs. (I.B.35) and (I.B.36). Because

the convolution in DMFT is iterated several times we need to check whether Eqs. (I.B.35)

and (I.B.36) carry over to the result of a convolution. To this end, we will take a closer look

at the right-mixing component.

∀𝜔 ≤ 0 ∶ 𝐶 ¬¬¬(𝜔, 𝑡𝑁) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔)⏟

=0

𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1
𝜔 − 𝜔″ + 0+ d𝜔″ (I.B.54)

+ ∫
∞

0
𝐴 ¬¬¬(𝜔, ̄𝑡)⏟

=0

𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) d ̄𝑡

− 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁)⏟⏟⏟⏟⏟

=0

1
𝜔′ − 𝜔

d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔)⏟

=0

𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1
𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁)⏟⏟⏟⏟⏟

=0

1
𝜔′ − 𝜔 − 0+ d𝜔′

+ 1
2

(𝐴>𝐸(𝜔)⏟
=0

𝐵 ¬¬¬(𝜔, 𝑡𝑁) − 𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔, 𝑡𝑁)⏟⏟⏟⏟⏟
=0

)

= 0

The analogous equalities for the other components can easily be checked in the appendix,

Sec. VI.4, where all components in Fourier space are listed. This means, if an algorithm on

the L-shaped contour in the limit of 𝛽 → ∞ relies only on convolution and addition, we can

use the contour with two real time axes instead.
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I.B.2 Exploiting Symmetries at 𝑇 = 0

I.B.2.1 Effective Contour

In this section we describe two effective contours to compute the impurity Green function.

To compute the Green function of the impurity one does not need to use the full contour as

depicted in Fig. I.B.2. The full contour is needed to (i) perform a consistent convolution,

because the effective contour described below does not preserve time translational invariance

on the equilibrium axis after convolution, and (ii) for the solution of the mapping problem

(Sec. I.B.3), where we perform a Fourier transform with respect to equilibrium time to obtain

e.g. Eq. (I.B.98). A closer inspection of Def. (I.B.9) shows that we did not perform the

time-evolution along the infinite equilibrium axis starting from −∞, but started from 𝑡𝐸 = 0.

One can show that this time-evolution path is valid for the computation of the impurity

Green function. For example, the right-mixing component:

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) = −𝑖 lim
𝑅→∞

⟨𝜓 ∣U(−𝑅, 0) 𝑐(𝑡𝐸) 𝑐†(𝑡𝑁)U(0, −𝑅) ∣ 𝜓⟩ (I.B.55)

= −𝑖 lim
𝑅→∞

𝑒−𝑖𝐸𝜓𝑅 ⟨𝜓 ∣ 𝑐(𝑡𝐸) 𝑐†(𝑡𝑁) ∣ 𝜓⟩ 𝑒𝑖𝐸𝜓𝑅 (I.B.56)

= −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝐸) 𝑐†(𝑡𝑁) ∣ 𝜓⟩ (I.B.57)

This is again the same formula as in Def. (I.B.9). Here 𝐸𝜓 is the ground state energy of the

system at 𝑡𝑁 = 0, and the time-evolution operator applied to the ground state is just a phase

factor that gets canceled from line two to three

This implies that the computation of the impurity Green function only involved two smaller

contours depicted in Fig. I.B.3. Experience shows that for large |𝑡𝐸| the Green function tends

to zero, so we only need to choose a suitable 𝑡𝐸,max when computing the Green function. If

the algorithm employed does not allow a high enough 𝑡𝐸,max, one usually uses a tool called

linear prediction98,99 (see Sec. VI.2).

The contours above do not include the pre-mixing components. This is not a problem,

because the pre-mixing components of the Green function can be computed from the mixing
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Figure I.B.3. Contours used for computing the impurity Green function.

components.

− (𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁))∗ = −𝑖 (⟨𝜓 ∣ 𝑐(𝑡𝐸) 𝑐†(𝑡𝑁) ∣ 𝜓⟩)∗ (I.B.58)

= −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝑁) 𝑐†(𝑡𝐸) ∣ 𝜓⟩ (I.B.59)

= 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) (I.B.60)

Similarly for the pre-right-mixing component:

− (𝐺¬¬¬(𝑡𝑁, 𝑡𝐸))∗ = 𝑖 (⟨𝜓 ∣ 𝑐†(𝑡𝐸) 𝑐(𝑡𝑁) ∣ 𝜓⟩)∗ (I.B.61)

= 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡𝑁) 𝑐(𝑡𝐸) ∣ 𝜓⟩ (I.B.62)

= 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) (I.B.63)

Note that these two smaller contours and symmetries can only be used when computing the

impurity Green function, whereas the contour convolutions necessary non-equilibrium DMFT

involve the full contour of Fig. I.B.2.

I.B.2.2 Iterative Time-Evolution Scheme for Green Functions

Suppose we have a method (more on that later) to efficiently store states and apply

operators to them. One possible method to efficiently compute the Green function is written

in Alg. (I.B.4) and sketched in Fig. I.B.4. Like in many applications involving continuous

functions we discretize the Green function along a grid of nodes or time slices with respect to
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equilibrium and non-equilibrium time. For example the right-mixing component:

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) ⟶ 𝐺 ¬¬¬(𝑚 Δ𝑡, 𝑛 Δ𝑡) (I.B.64)

𝑚 ∈ Z (I.B.65)

𝑛 ∈ N (I.B.66)

Algorithm I.B.4: Integration scheme for computing the Green function with

Hamiltonian based solvers

We assume that we have the Green functions listed below up to some current 𝑡𝑁,max.

The non-equilibrium is by definition restricted to 𝑡𝑁 ≥ 0. We now want to compute

them up to 𝑡𝑁,max + Δ𝑡, i.e. we want to compute:

• 𝐺>𝑁(𝑡𝑁,max + Δ𝑡, 𝑡𝑁) ∀𝑡𝑁 ≤ 𝑡𝑁,max + Δ𝑡

• 𝐺>𝑁(𝑡𝑁, 𝑡𝑁,max + Δ𝑡) ∀𝑡𝑁 ≤ 𝑡𝑁,max + Δ𝑡

• 𝐺<𝑁(𝑡𝑁,max + Δ𝑡, 𝑡𝑁) ∀𝑡𝑁 ≤ 𝑡𝑁,max + Δ𝑡

• 𝐺<𝑁(𝑡𝑁, 𝑡𝑁,max + Δ𝑡) ∀𝑡𝑁 ≤ 𝑡𝑁,max + Δ𝑡

• 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁,max + Δ𝑡) ∀ |𝑡𝐸| ≤ 𝑡𝐸,max

• 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁,max + Δ𝑡) ∀ |𝑡𝐸| ≤ 𝑡𝐸,max

• 𝐺¬¬¬(𝑡𝑁,max + Δ𝑡, 𝑡𝐸) ∀ |𝑡𝐸| ≤ 𝑡𝐸,max

• 𝐺¬¬¬(𝑡𝑁,max + Δ𝑡, 𝑡𝐸) ∀ |𝑡𝐸| ≤ 𝑡𝐸,max

Furthermore, we assume that we know the time-evolved ground state ∣𝜓(𝑡𝑁,max)⟩ and

have stored in memory.

1. Time-evolve (Eqs. (I.A.34) and (I.B.220)) ∣𝜓(𝑡𝑁,max)⟩ to the next time slice

∣𝜓(𝑡𝑁,max + Δ𝑡)⟩ = U(𝑡𝑁,max + Δ𝑡, 𝑡𝑁,max)) ∣𝜓(𝑡𝑁,max)⟩ (I.B.67)
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2. Apply creation and annihilation operators

∣𝜑(𝑡𝑁,max + Δ𝑡)⟩ = 𝑐† ∣𝜓(𝑡𝑁,max + Δ𝑡)⟩ (I.B.68)

∣𝜒(𝑡𝑁,max + Δ𝑡)⟩ = 𝑐 ∣𝜓(𝑡𝑁,max + Δ𝑡)⟩ (I.B.69)

3. For 𝑡𝑁 ∈ [𝑡𝑁, max + Δ𝑡, 𝑡𝑁,max, 𝑡𝑁,max − Δ𝑡, … , 2 Δ𝑡, 1 Δ𝑡]:

(a) Compute Green functions

𝐺>𝑁(𝑡𝑁, 𝑡𝑁,max + Δ𝑡) = −𝑖 ⟨𝜓(𝑡𝑁) | 𝑐 | 𝜑(𝑡𝑁)⟩ (I.B.70)

𝐺<𝑁(𝑡𝑁,max + Δ𝑡, 𝑡𝑁) = 𝑖 ⟨𝜓(𝑡𝑁) ∣ 𝑐† ∣ 𝜒(𝑡𝑁)⟩ (I.B.71)

(b) Evolve |𝜑⟩ and |𝜒⟩ (and also |𝜓⟩ if not stored in memory) backwards in time

|𝜑(𝑡𝑁 − Δ𝑡)⟩ = U(𝑡𝑁 − Δ𝑡, 𝑡𝑁) |𝜑(𝑡𝑁)⟩ (I.B.72)

|𝜒(𝑡𝑁 − Δ𝑡)⟩ = U(𝑡𝑁 − Δ𝑡, 𝑡𝑁) |𝜒(𝑡𝑁)⟩ (I.B.73)

|𝜓(𝑡𝑁 − Δ𝑡)⟩ = U(𝑡𝑁 − Δ𝑡, 𝑡𝑁) |𝜓(𝑡𝑁)⟩ (I.B.74)

4. Apply creation and annihilation operators

|𝜑0(0)⟩ = 𝑐† |𝜓(0)⟩ (I.B.75)

|𝜒0(0)⟩ = 𝑐 |𝜓(0)⟩ (I.B.76)

5. For 𝑡𝐸 ∈ [0, 1 Δ𝑡, 2 Δ𝑡, … , 𝑡𝐸,max]:

(a) Compute Green function (𝐸𝜓 is the ground state energy of 𝐻(0))

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁,max + Δ𝑡) = −𝑖 𝑒𝑖𝑡𝐸𝐸𝜓 ⟨𝜑0(𝑡𝐸) | 𝜑(0)⟩ (I.B.77)

𝐺¬¬¬(𝑡𝑁,max + Δ𝑡, 𝑡𝐸) = 𝑖 𝑒𝑖𝑡𝐸𝐸𝜓 ⟨𝜒0(𝑡𝐸) | 𝜒(0)⟩ (I.B.78)
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(b) Time-evolve |𝜑0⟩ and |𝜒0⟩

|𝜑0(𝑡𝐸 + Δ𝑡)⟩ = 𝑒𝑖 Δ𝑡 𝐻(0) |𝜑0(𝑡𝐸)⟩ (I.B.79)

|𝜒0(𝑡𝐸 + Δ𝑡)⟩ = 𝑒𝑖 Δ𝑡 𝐻(0) |𝜒0(𝑡𝐸)⟩ (I.B.80)

Because |𝜑0(𝑡𝐸)⟩ and |𝜒0(𝑡𝐸)⟩ are the same for all 𝑡𝑁, they may be stored

in memory if their size allows it.

6. For 𝑡𝐸 ∈ [0, −1 Δ𝑡, −2 Δ𝑡, … , −𝑡𝐸,max]:

(a) Compute Green function (𝐸𝜓 is the ground state energy of 𝐻(0))

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁,max + Δ𝑡) = −𝑖 𝑒𝑖𝑡𝐸𝐸𝜓 ⟨𝜑0(𝑡𝐸) | 𝜑(0)⟩ (I.B.81)

𝐺¬¬¬(𝑡𝑁,max + Δ𝑡, 𝑡𝐸) = 𝑖 𝑒𝑖𝑡𝐸𝐸𝜓 ⟨𝜒0(𝑡𝐸) | 𝜒(0)⟩ (I.B.82)

(b) Time-evolve |𝜑0⟩ and |𝜒0⟩

|𝜑0(𝑡𝐸 − Δ𝑡)⟩ = 𝑒−𝑖 Δ𝑡 𝐻(0) |𝜑0(𝑡𝐸)⟩ (I.B.83)

|𝜒0(𝑡𝐸 − Δ𝑡)⟩ = 𝑒−𝑖 Δ𝑡 𝐻(0) |𝜒0(𝑡𝐸)⟩ (I.B.84)

Because |𝜑0(𝑡𝐸)⟩ and |𝜒0(𝑡𝐸)⟩ are the same for all 𝑡𝑁, they may be stored

in memory if their size allows it.
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Figure I.B.4. Graphical illustration of Alg. (I.B.4), with the same numbering of steps. Only the
computation of the greater and right-mixing component are shown.
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I.B.3 Computation of the Anderson Impurity Hamiltonian Pa-

rameters

In this section we will follow and extend Refs. 49 and 50 to our contour with two real

time axes. The goal is to compute the values of Hamiltonian parameters of the Anderson

Impurity Model for a given hybridization function. The context here is the DMFT loop,

where one computes the hybridization function from the previously obtained Green function

and in turn needs to compute the Green function of the new iteration according to the new

hybridization function. In order to obtain the impurity Green function of the new iteration

with a Hamiltonian based solver, one needs to map the hybridization function to Hamiltonian

parameters of the Anderson Impurity Model. Following Ref. 49 we split the hybridization

function into two parts:

Δ(t, t′) = Δ−(t, t′) + Δ+(t, t′) (I.B.85)

The first hybridization function Δ− is defined so that it is equal to the total hybridization

function if one of the time arguments is on the equilibrium axis. The second hybridization

function is simply the difference between the total hybridization function and the first

hybridization function.

Δ ¬¬¬
− = Δ ¬¬¬ (I.B.86)

Δ ¬¬¬

− = Δ ¬¬¬ (I.B.87)

Δ¬¬¬
− = Δ¬¬¬ (I.B.88)

Δ¬¬¬
− = Δ¬¬¬ (I.B.89)

Δ+ = Δ − Δ− (I.B.90)

Accompanying these two hybridization functions there are two baths coupled to the impurity

with their own set of Hamiltonian parameters 𝑉−, 𝜖− and 𝑉+, 𝜖+. We will call the bath

stemming from Δ− initial bath or first bath and the bath stemming from Δ+ second bath.

The splitting of the original hybridization into the first and second hybridization function

is performed to simplify the mapping problem. The first bath is used to describe the initial

equilibrium state of the system and its correlations with states at non-zero non-equilibrium
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time, while the second bath deals with correlations that build up during the quench of the

Hamiltonian parameters of the lattice system.

equilibrium state at tN = 0 described with 
this bath 

filled sites at tN = 0
empty s

ites at t N =
 0

Figure I.B.5. Illustration of the two baths. The mixing components of the hybridization function
Δ ¬¬¬/¬¬¬ = Δ ¬¬¬/¬¬¬

− are used to obtain the Anderson Impurity Model Hamiltonian parameters of the first
bath. The greater non-equilibrium and lesser non-equilibrium components of the second hybridization
function Δ+ = Δ − Δ− are used to obtain the Anderson Impurity Model Hamiltonian parameters of
the second bath. By construction the second bath is decoupled from the impurity at 𝑡𝑁 = 0. Note
that the depicted occupation of the impurity and the first bath are just one basis state used to
represent the state. The depicted occupation of the second bath is the actual basis state used at
𝑡𝑁 = 0.

I.B.3.1 Initial Bath, Δ−

The parameters 𝑉− and 𝜖− are obtained from the initial hybridization function Δ− which is

by definition equal to the total hybridization function if at least one of the function arguments

lies on the equilibrium axis of the contour. Because the non-equilibrium DMFT formalism
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with the non-equilibrium axis removed is equal to equilibrium DMFT, 𝑉− and 𝜖− describe

the initial equilibrium state and its correlations with states at non-zero non-equilibrium time.

To obtain a relation between 𝑉−, 𝜖− and the hybridization function Δ, we start

from Eq. (I.A.98) for the Anderson Impurity Model, where the removed site 0 is the impurity.

In Eq. (I.A.98) for the Anderson Impurity Model all higher order terms vanish, because the

bath sites are isolated after the removal of the impurity. We will drop the spin index for sake

of brevity and arrive at:

Δ(t, t′) = ∑
𝑝

𝑉𝑝(t)𝑉𝑝(t′)∗ 𝑔𝑝(t, t′) (I.B.91)

Here 𝑔𝑝 are the Green functions of isolated bath sites, emerging from the removal of the

impurity. In explicit form they can be written as42,49,50:

𝑔𝑝(t, t′) = −𝑖 [𝜃C(t, t′) − 𝜃(−𝜖 + 𝜇)] 𝑒−𝑖(𝜖𝑝−𝜇)(t−t′) (I.B.92)

The subtraction t − t′ is meant in way that the information of the contour is ignored and

subtraction is the difference of the numerical values of t and t′. To get this result one

needs to assume that the 𝜖𝑝 are not time-dependent, which is not a problem here as every

time-dependency can be pulled into the hoppings 𝑉𝑝, as shown for example in Ref. 49. To

simplify the calculation for the first bath one can transform the sum into an integral with

𝜌(𝜖) = ∑𝑝 𝛿(𝜖 − 𝜖𝑝). Thus, the hybridization function has the form:

Δ(t, t′) = −𝑖 ∫ 𝜌(𝜖)𝑉 (𝜖, t) 𝑉 (𝜖, t′)∗ [𝜃C(t, t′) − 𝜃(−𝜖 + 𝜇)] 𝑒−𝑖(𝜖−𝜇)(t−t′) d𝜖 (I.B.93)

The bath density of states of the initial bath 𝜌− can assumed to be constant and absorbed

into the hybridization function49. The bath parameters will be discretized again later. In this

subsection we deal with the initial bath only.

Δ−(t, t′) = −𝑖 ∫ 𝑉−(𝜖, t) 𝑉−(𝜖, t′)∗ [𝜃C(t, t′) − 𝜃(−𝜖 + 𝜇)] 𝑒−𝑖(𝜖−𝜇)(t−t′) d𝜖 (I.B.94)

To provide a better orientation: This is equation (41) from Ref. 49 with 𝑔 already plugged in.

Similar to in Ref. 49 we will use the use the fact that the bath hopping parameters cannot
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depend on equilibrium time and will use a Fourier transform. The whole reason we defined

the contour with two real time axes is that this Fourier transform can easily be done!

First, we look at the left-mixing component of the hybridization function.

Δ¬¬¬(𝑡𝑁, 𝑡𝐸) = 𝑖 ∫ 𝑉−(𝜖, 𝑡𝑁) 𝑉−(𝜖, 0)∗ 𝜃(−𝜖 + 𝜇) 𝑒−𝑖(𝜖−𝜇)(𝑡𝑁−𝑡𝐸) d𝜖 (I.B.95)

The Fourier transform can easily be done with97:

∫
∞

−∞
𝑒𝑖𝑡(𝑥−𝑎) d𝑡 = 2𝜋 𝛿(𝑥 − 𝑎) (I.B.96)

Δ¬¬¬(𝑡𝑁, 𝜔) = ∫ Δ¬¬¬(𝑡𝑁, 𝑡𝐸) 𝑒𝑖𝜔𝑡𝐸 d𝑡𝐸 (I.B.97)

= 𝑖 2𝜋 𝑉−(𝜇 − 𝜔, 𝑡𝑁) 𝑉−(𝜇 − 𝜔, 0)∗ 𝜃(𝜔) 𝑒𝑖𝜔𝑡𝑁 (I.B.98)

Substituting 𝜖 = 𝜔 − 𝜇 gives us our intermediate result:

𝑉−(𝜖, 𝑡𝑁) = − 𝑖
2𝜋

1
𝑉−(𝜖, 0)∗ 𝑒𝑖(𝜖−𝜇)𝑡𝑁 Δ¬¬¬(𝑡𝑁, 𝜇 − 𝜖) (I.B.99)

with the restriction 𝜖 < 𝜇. The right-mixing component is dealt with similarly.

Δ ¬¬¬(𝑡𝐸, 𝑡𝑁) = −𝑖 ∫ 𝑉−(𝜖, 0) 𝑉−(𝜖, 𝑡𝑁)∗ (1 − 𝜃(−𝜖 + 𝜇)) 𝑒−𝑖(𝜖−𝜇)(𝑡𝐸−𝑡𝑁) d𝜖 (I.B.100)

= −𝑖 ∫ 𝑉−(𝜖, 0) 𝑉−(𝜖, 𝑡𝑁)∗ 𝜃(𝜖 − 𝜇) 𝑒−𝑖(𝜖−𝜇)(𝑡𝐸−𝑡𝑁) d𝜖 (I.B.101)

Again, the Fourier transform is easily done with Eq. (I.B.96).

Δ ¬¬¬(𝜔, 𝑡𝑁) = ∫ Δ ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝑒𝑖𝜔𝑡𝐸 d𝑡𝐸 (I.B.102)

= −𝑖 2𝜋 𝑉−(𝜔 + 𝜇, 0) 𝑉−(𝜔 + 𝜇, 𝑡𝑁)∗ 𝜃(𝜔) 𝑒𝑖𝜔𝑡𝑁 (I.B.103)
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Complex conjugate both sides of the equation and substitute 𝜖 = 𝜔 + 𝜇 an we will get our

next intermediate result.

𝑉−(𝜖, 𝑡𝑁) = − 𝑖
2𝜋

1
𝑉−(𝜖, 0)∗ 𝑒𝑖(𝜖−𝜇)𝑡𝑁 Δ ¬¬¬(𝜖 − 𝜇, 𝑡𝑁)∗ (I.B.104)

with the restriction 𝜖 > 𝜇.

Now, combining Eq. (I.B.99) and Eq. (I.B.104) yields an expression for the hopping

amplitude.

𝑉−(𝜖, 𝑡𝑁) = − 𝑖
2𝜋

1
𝑉−(𝜖, 0)∗ 𝑒𝑖(𝜖−𝜇)𝑡𝑁 ⋅

⎧{
⎨{⎩

Δ¬¬¬(𝑡𝑁, 𝜇 − 𝜖) if 𝜖 < 𝜇

Δ ¬¬¬(𝜖 − 𝜇, 𝑡𝑁)∗ if 𝜖 > 𝜇
(I.B.105)

and for 𝑡 = 0:

|𝑉−(𝜖, 0)|2 = − 𝑖
2𝜋

(Δ¬¬¬(0, 𝜇 − 𝜖) 𝜃(−𝜖 + 𝜇) + Δ ¬¬¬(𝜖 − 𝜇, 0)∗ 𝜃(𝜖 − 𝜇)) (I.B.106)

The Heaviside 𝜃 functions are mutually exclusive, and are already contained in Δ¬¬¬(0, 𝜇 − 𝜖)

and 𝐷𝑒𝑙𝑡𝑎 ¬¬¬(𝜖 − 𝜇, 0)∗ (see Eqs. (I.B.98) and (I.B.103)). Furthermore, the left hand side of

the equation is real. From this it follows that Fourier transformed hybridization functions

at 𝑡𝑁 = 0 must be purely imaginary and the complex conjugate operation is equal to sign

inversion.

|𝑉−(𝜖, 0)|2 = 𝑖
2𝜋

(Δ ¬¬¬(𝜖 − 𝜇, 0) − Δ¬¬¬(0, 𝜇 − 𝜖)) (I.B.107)

We emphasize that in contrast to Ref. 49 no analytical continuation from the complex axis to

the real axis is needed to compute the bath parameters.

To do a Fourier transform of e.g. Δ¬¬¬(𝑡𝑁, 𝑡𝐸) needs the function on the infinite interval

𝑡𝐸 ∈ (−∞, ∞). In practice, this data is impossible to obtain, so we use the tool linear

prediction (Sec. VI.2) to extrapolate the data for 𝑡𝐸 > 𝑡𝐸,max. Sometimes, it is difficult to do

a linear prediction for the functions Δ¬¬¬(𝑡𝑁, 𝑡𝐸) and Δ ¬¬¬(𝑡𝐸, 𝑡𝑁), because they do not tend to

zero fast enough. To work around this problem, we rewrite Eq. (I.B.105). Here, we will use
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the convolution theroem:

F [𝑓 ∗ 𝑔] = (F [𝑓] ⋅ F [𝑔]) (I.B.108)

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓( ̃𝑡) 𝑔(𝑡 − ̃𝑡) d ̃𝑡 (I.B.109)

We will again write equation I.B.105 as a sum similar to Eq. (I.B.107).

𝑉−(𝜖, 𝑡𝑁) = − 𝑖
2𝜋

1
𝑉−(𝜖, 0)∗ (𝑒𝑖(𝜖−𝜇)𝑡𝑁Δ¬¬¬(𝑡𝑁, 𝜇 − 𝜖) + 𝑒𝑖(𝜖−𝜇)𝑡𝑁Δ ¬¬¬(𝜖 − 𝜇, 𝑡𝑁)∗) (I.B.110)

After Fourier transforming all terms of the right hand side separately and then combining

them with the convolution theorem one arrives at the following result:

𝑉−(𝜖, 𝑡𝑁) = − 𝑖
2𝜋

1
𝑉−(𝜖, 0)∗ F [𝑒−𝑖𝜇𝑡𝐸 (Δ¬¬¬(𝑡𝑁, −(𝑡𝐸 − 𝑡𝑁)) + Δ ¬¬¬(−(𝑡𝐸 − 𝑡𝑁), 𝑡𝑁)∗)]

(I.B.111)

We found that it is generally easier to perform a linear prediction for

(Δ¬¬¬(𝑡𝑁, −(𝑡𝐸 − 𝑡𝑁)) + Δ ¬¬¬(−(𝑡𝐸 − 𝑡𝑁), 𝑡𝑁)∗) than for the two terms separately.

I.B.3.2 Rediscretization of Inital Bath

So far we have found a representation of the hoppings with continuous energies 𝜖. Because

a Hamiltonian based solver can only deal with a finite number of bath sites, one must integrate

over intervals of the continuous solution to get a discretized result. Here, we choose the 𝜖𝑝,−

of the Hamiltonian to be equidistantly distributed over the relevant energy window with a

distance of Δ𝜖 = 𝜖𝑝,− − 𝜖𝑝−1,−

continuous: 𝑉−(𝜖, 𝑡𝑁) = 𝑓(𝜖, 𝑡𝑁) (I.B.112)

discrete: 𝑉𝑝,−(𝑡𝑁) = ∫
𝜖𝑝+ Δ𝜖

2

𝜖𝑝− Δ𝜖
2

𝑉−(𝜖, 𝑡𝑁) d𝜖 (I.B.113)

One can easily verify that the discrete bath parameters solve Eq. (I.B.94) under the assumption

that enough bath sites are used and discretization errors do not dominate.
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I.B.3.3 Second Bath, Δ+

As shown in Sec. I.B.1.2, Green functions where both arguments lie on the non-equilibrium

time axis have the same value on (i) the contour with two real time axes and (ii) the L-shaped

contour in the limit 𝛽 → 0. By construction, all the mixing components of the second bath

are equal to zero (neglecting discretization errors), meaning that all hopping parameters of

the second bath are equal to zero at 𝑡𝑁 = 0. Thus, the bath parameters stemming from Δ+

can be computed exactly the same as in Ref. 49. We will review the process briefly here. Note

that the second bath can be viewed as two separated baths, one which is occupied at 𝑡𝑁 = 0

and one which is empty 𝑡𝑁 = 0.

For the second bath the same relation between the Hamiltonian parameters and the

hybridization function as in Eqs. (I.B.91) and (I.B.93) must hold true.

Δ(t, t′) = −𝑖 ∑
𝑝

𝑉𝑝,+(t)𝑉𝑝,+(t′)∗ [𝜃C(t, t′) − 𝜃(−𝜖 + 𝜇)] 𝑒−𝑖(𝜖𝑝−𝜇)(t−t′) (I.B.114)

At this point the occupation of the bath sites at 𝑡𝑁 = 0 and the 𝜖𝑝 for the second bath can be

chosen freely. The trick used in Ref. 49 is to separate the bath sites into occupied at 𝑡𝑁 = 0

and unoccupied at 𝑡𝑁 = 0 and to use two different values for 𝜖𝑝(𝑡𝑁 = 0) and 𝜖𝑝(𝑡𝑁 ≠ 0). The

initial value 𝜖𝑝(𝑡𝑁 = 0) is chosen so that the occupation is either zero or one and the second

value is set to 𝜖𝑝(𝑡𝑁 ≠ 0) = 𝜇 so the exponential function in Eq. (I.B.114) vanishes. For our

contour with two real time axes there is no need to use two different values for 𝜖𝑝(𝑡𝑁 = 0)

and 𝜖𝑝(𝑡𝑁 ≠ 0) and one can simply set:

𝜖𝑝 =
⎧{
⎨{⎩

𝜇 − 0+ if bath site 𝑝 is occupied at 𝑡𝑁 = 0

𝜇 + 0+ if bath site 𝑝 is unoccupied at 𝑡𝑁 = 0
(I.B.115)

These settings of occupation and value for 𝜖𝑝 vastly simplify the computation of the bath

parameters. As a reminder: We can freely choose the initial occupation and 𝜖𝑝 for the second

bath, because the second bath is decoupled from the impurity at 𝑡𝑁 = 0 by construction,
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𝑉+(0) = 0. After plugging Eq. (I.B.115) into Eq. (I.B.93) we get:

−𝑖 Δ<𝑁
+ (𝑡𝑁, 𝑡′

𝑁) = ∑
𝑝,occupied

𝑉𝑝,+(𝑡𝑁)𝑉𝑝,+(𝑡′
𝑁)∗ (I.B.116)

𝑖 Δ>𝑁
+ (𝑡𝑁, 𝑡′

𝑁) = ∑
𝑝,unoccupied

𝑉𝑝,+(𝑡𝑁)𝑉𝑝,+(𝑡′
𝑁)∗ (I.B.117)

This is equation (52) in Ref. 49. The quantities −𝑖 Δ<𝑁
+ (𝑡𝑁, 𝑡′

𝑁) and 𝑖 Δ>𝑁
+ (𝑡𝑁, 𝑡′

𝑁) can be

viewed as matrices where the matrix indices are the time steps on the contour. Then, the

computation of the path parameters 𝑉𝑝,+(𝑡𝑁) can be viewed as a matrix decomposition of

the form 𝑀 = 𝑉 𝑉 † and there are several different algorithms to do that, e.g. diagonalization

of 𝑀. However, the low-rank Cholesky decomposition has some unique properties making it

a well suited algorithm in this scenario. To use the Cholesky decomposition −𝑖 Δ<𝑁
+ (𝑡𝑁, 𝑡′

𝑁)

and 𝑖 Δ>𝑁
+ (𝑡𝑁, 𝑡′

𝑁) must be positive definite, which is shown to hold true in Ref. 49. A

desirable property of the Cholesky decomposition is that the addition of a new time step on

the non-equilibrium axis does not change the hopping amplitudes of the previous time steps.

This would not hold true if one would use the diagonalization of 𝑀.

We will now describe a possible iterative process to find a good low-rank Cholesky

decomposition of a matrix 𝑀 = 𝑉 𝑉 † and follow Ref. 49. If 𝑀𝑡𝑛,𝑡′
𝑛

= −𝑖 Δ<𝑁
+ (𝑡𝑁, 𝑡′

𝑁), then

𝑉𝑡𝑛,𝑝 = 𝑉+,𝑝(𝑡𝑁) is the hopping matrix for the bath sites of the second bath that are occupied

in the initial state. If 𝑀𝑡𝑛,𝑡′
𝑛

= 𝑖 Δ>𝑁
+ (𝑡𝑁, 𝑡′

𝑁), then 𝑉𝑡𝑛,𝑝 = 𝑉+,𝑝(𝑡𝑁) is the hopping matrix

for the bath sites of the second bath that are unoccupied in the initial state. This process

is illustrated in Fig. I.B.6. The context here is that with every time-step addded on the

non-equilibrium axis in the DMFT loop, we couple two new bath sites of the second to the

impurity, one that was occupied in the initial state and one that was unoccupied in the initial

state. This process continues until there are not any bath sites left to couple to the impurity

due to the finite bath size. Then, one must find a suitable low-rank Cholesky approximation.

The authors of Ref. 49 claim that one can use the classical exact Cholesky decomposition

if the number of time steps is lower than the bath sites of the second bath. We cannot

verify this fact, because 𝑀 is numerical not positive definite due to the finite system size

and finite time-step, which introduce discretization errors. Hence, we do not use the exact

Cholesky decomposition, but solve a minimization problem from the very first time step on

the non-equilibrium axis.
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We will write 𝑀 and 𝑉 in block matrix form and assume that we already computed the

low-rank Cholesky decomposition of the upper left block of 𝑀, which is the result of the

previous iteration step.

𝑀 = ⎛⎜
⎝

�̃� 𝑚𝑟

𝑚𝑙 𝑚𝑑

⎞⎟
⎠

𝑉 = ⎛⎜
⎝

̃𝑉 0

𝑣† 𝑤
⎞⎟
⎠

�̃� ≈ ̃𝑉 ̃𝑉 † (I.B.118)

𝑀 ∈ C𝑁×𝑁 �̃� ∈ C(𝑁−1)×(𝑁−1) 𝑚𝑟 ∈ C(𝑁−1)×1 𝑚𝑙 ∈ C1×(𝑁−1) 𝑚𝑑 ∈ C

𝑉 ∈ C𝑁×𝑁 ̃𝑉 ∈ C(𝑁−1)×(𝑁−1) 𝑣† ∈ C1×(𝑁−1) 𝑤 ∈ R

𝑉 is a matrix that grows in 𝑝-dimension (columns) until the number of time steps is greater

than the number of assigned bath sites of the second bath. If the number of time steps is

greater than the number of assigned bath sites, we set 𝑤 to zero und the non-zero entries of

𝑉 can only grow in the time-dimension (rows). Now, under the assumption that we already

found a good approximation for �̃� ≈ ̃𝑉 ̃𝑉 †, we want to find a good approximation for

𝑀 ≈ 𝑉 𝑉 †, which results in the following minimization problem:

∥𝑀 − 𝑉 𝑉 †∥2 (I.B.119)

= ∥⎛⎜
⎝

�̃� 𝑚𝑟

𝑚𝑙 𝑚𝑑

⎞⎟
⎠

− ⎛⎜
⎝

̃𝑉 0

𝑣† 𝑤
⎞⎟
⎠

⎛⎜
⎝

̃𝑉 † 𝑣

0 𝑤
⎞⎟
⎠

∥

2

(I.B.120)

= ∥⎛⎜
⎝

�̃� 𝑚𝑟

𝑚𝑙 𝑚𝑑

⎞⎟
⎠

− ⎛⎜
⎝

̃𝑉 ̃𝑉 † ̃𝑉 𝑣

𝑣† ̃𝑉 † 𝑣† 𝑣 − 𝑤2
⎞⎟
⎠

∥

2

(I.B.121)

= ∥⎛⎜
⎝

�̃� − ̃𝑉 ̃𝑉 † 𝑚𝑟 − ̃𝑉 𝑣

𝑚𝑙 − 𝑣† ̃𝑉 † 𝑚𝑑 − 𝑣† 𝑣 + 𝑤2
⎞⎟
⎠

∥

2

(I.B.122)

≈ ∥⎛⎜
⎝

0 𝑚𝑟 − ̃𝑉 𝑣

𝑚𝑙 − 𝑣† ̃𝑉 † 𝑚𝑑 − 𝑣† 𝑣 + 𝑤2
⎞⎟
⎠

∥

2

(I.B.123)

‖⋅‖ is the Euclidean matrix norm. From the second last to the last line we used the fact

that we already minimized ∥�̃� − ̃𝑉 ̃𝑉 †∥
2

in the previous time step. To find a good low-rank

Cholesky decomposition we minimize Eq. (I.B.123) with respect to 𝑣 if the maximum number
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of bath sites is reached and with respect to 𝑣 and 𝑤 if it is possible to couple more bath sites

from the second bath to the impurity.

Figure I.B.6. Graphical representation of the low-rank Cholesky decomposition for 5 bath sites.
Note that the matrices of the hopping amplitudes cannot grow anymore after 5 time steps in the 𝑝
index. At every new time step new entries are added to −𝑖 Δ<𝑁

+ (𝑡𝑁, 𝑡′
𝑁) (yellow), which results to

the addition of a new row to 𝑉+ (red).

Algorithm I.B.5: Summary: Computation of the bath parameters of the

Anderson Impurity Model

In the present thesis we will always use 99 bath sites for the first bath and 100 bath sites

for the second bath. Context: Here we consider the case, where the non-equilibrium

DMFT loop is repeated for every subsequent time step (see Fig. I.A.3, top right) and
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assume that the non-equilibrium DMFT loop is already converged up to some 𝑡𝑁,𝑚𝑎𝑥. A

vastly simplified version of the DMFT loop (Alg. (I.A.3)) reads as follows:

⋯ → Δ(𝑛−1) → 𝐺(𝑛)
IMP → Δ(𝑛) → 𝐺(𝑛+1)

IMP → … (I.B.124)

Here, (𝑛) is the DMFT loop iteration index. The impurity solver computes the impurity

Green function up to 𝑡𝑁,𝑚𝑎𝑥 + Δ𝑡 and from which one obtains updated entries for the

hybridization function Δ up to 𝑡𝑁,𝑚𝑎𝑥 + Δ𝑡. In order for a Hamiltonian based impurity

solver to compute the Green function according to a hybridization function, one needs

to compute suitable Hamiltonian parameters for the Anderson Impurity model. Because

the DMFT loop is already converged up to some 𝑡𝑁,𝑚𝑎𝑥, one only needs to compute

the Hamiltonian parameters for 𝑡𝑁 = 𝑡𝑁,𝑚𝑎𝑥 + Δ𝑡 here. Note that we choose the 𝜖𝑝,−

of the first bath to be equidistantly distributed over the relevant energy window with

a distance of Δ𝜖 = 𝜖𝑝,− − 𝜖𝑝−1,− For all the equations below the following holds true:

𝑡′
𝑁 ≤ 𝑡𝑁 + Δ𝑡.

1. Compute the continuous hopping amplitudes of the first bath and discretize

𝑉−(𝜖, 𝑡𝑁 + Δ𝑡) = − 𝑖
2𝜋

1
𝑉−(𝜖, 0)∗ F [𝑒−𝑖𝜇𝑡𝐸(Δ¬¬¬(𝑡𝑁, −(𝑡𝐸 − 𝑡𝑁 − Δ𝑡)) (I.B.125)

+ Δ ¬¬¬(−(𝑡𝐸 − 𝑡𝑁), 𝑡𝑁 + Δ𝑡)∗)]

𝑉𝑝,−(𝑡𝑁 + Δ𝑡) = ∫
𝜖𝑝+ Δ𝜖

2

𝜖𝑝− Δ𝜖
2

𝑉−(𝜖, 𝑡𝑁 + Δ𝑡) d𝜖 (I.B.126)
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2. Compute the resulting > 𝑁 and < 𝑁 components of the first hybridization function

Δ>𝑁
− (𝑡𝑁 + Δ𝑡, 𝑡′

𝑁) = −𝑖 ∫ 𝑉−(𝜖, 𝑡𝑁 + Δ𝑡) 𝑉−(𝜖, 𝑡′
𝑁)∗ [1 − 𝜃(−𝜖 + 𝜇)] (I.B.127)

𝑒−𝑖(𝜖−𝜇)(𝑡𝑁+Δ𝑡−𝑡′
𝑁) d𝜖

Δ>𝑁
− (𝑡′

𝑁, 𝑡𝑁 + Δ𝑡) = −𝑖 ∫ 𝑉−(𝜖, 𝑡′
𝑁) 𝑉−(𝜖, 𝑡𝑁 + Δ𝑡)∗ [1 − 𝜃(−𝜖 + 𝜇)] (I.B.128)

𝑒−𝑖(𝜖−𝜇)(𝑡′
𝑁−𝑡𝑁−Δ𝑡) d𝜖

Δ<𝑁
− (𝑡𝑁 + Δ𝑡, 𝑡′

𝑁) = 𝑖 ∫ 𝑉−(𝜖, 𝑡𝑁 + Δ𝑡) 𝑉−(𝜖, 𝑡′
𝑁)∗ 𝜃(−𝜖 + 𝜇) (I.B.129)

𝑒−𝑖(𝜖−𝜇)(𝑡𝑁+Δ𝑡−𝑡′
𝑁) d𝜖

Δ<𝑁
− (𝑡′

𝑁, 𝑡𝑁 + Δ𝑡) = 𝑖 ∫ 𝑉−(𝜖, 𝑡′
𝑁) 𝑉−(𝜖, 𝑡𝑁 + Δ𝑡)∗ 𝜃(−𝜖 + 𝜇) (I.B.130)

𝑒−𝑖(𝜖−𝜇)(𝑡′
𝑁−𝑡𝑁−Δ𝑡) d𝜖

3. Compute the resulting > 𝑁 and < 𝑁 components of the second hybridization

function

Δ>𝑁
+ (𝑡𝑁 + Δ𝑡, 𝑡′

𝑁) = Δ>𝑁(𝑡𝑁 + Δ𝑡, 𝑡′
𝑁) − Δ>𝑁

− (𝑡𝑁 + Δ𝑡, 𝑡′
𝑁) (I.B.131)

Δ>𝑁
+ (𝑡′

𝑁, 𝑡𝑁 + Δ𝑡) = Δ>𝑁(𝑡′
𝑁, 𝑡𝑁 + Δ𝑡) − Δ>𝑁

− (𝑡′
𝑁, 𝑡𝑁 + Δ𝑡) (I.B.132)

Δ<𝑁
+ (𝑡𝑁 + Δ𝑡, 𝑡′

𝑁) = Δ<𝑁(𝑡𝑁 + Δ𝑡, 𝑡′
𝑁) − Δ<𝑁

− (𝑡𝑁 + Δ𝑡, 𝑡′
𝑁) (I.B.133)

Δ<𝑁
+ (𝑡′

𝑁, 𝑡𝑁 + Δ𝑡) = Δ<𝑁(𝑡′
𝑁, 𝑡𝑁 + Δ𝑡) − Δ<𝑁

− (𝑡′
𝑁, 𝑡𝑁 + Δ𝑡) (I.B.134)

4. Minimize Eq. (I.B.123) with respect to 𝑣 and 𝑤, if new bath sites of the second

bath can be coupled to the impurity. Minimize Eq. (I.B.123) with respect to 𝑣

while keeping 𝑤 = 0, if no new bath sites of the second bath can be coupled to the

impurity. Set 𝑀𝑡𝑛,𝑡′
𝑛

= −𝑖 Δ<𝑁
+ (𝑡𝑁, 𝑡′

𝑁), to compute the new hopping amplitudes

for the bath sites of the second bath that are occupied in the initial state. Set

𝑀𝑡𝑛,𝑡′
𝑛

= 𝑖 Δ>𝑁
+ (𝑡𝑁, 𝑡′

𝑁), to compute the new hopping amplitudes for the bath

sites of the second bath that are unoccupied in the initial state. Here, we have

already coupled 𝑝𝑚𝑎𝑥 bath sites to the initially occupied part of the second bath

and additionally 𝑝𝑚𝑎𝑥 bath sites of the initially unoccupied part of the second bath.
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The hopping amplitudes of the second bath are:

𝑉+,𝑝(𝑡𝑁 + Δ𝑡) = 𝑣𝑝 (I.B.135)

𝑉+,𝑝𝑚𝑎𝑥+1(𝑡𝑁 + Δ𝑡) = 𝑤 (I.B.136)

Here, 𝑣𝑝 is the 𝑝-th entry of vector 𝑣. The last equation can only be used if the

number of time steps is lower than the number of bath sites in the second bath,

i.e. there are still bath sites that can be coupled to the impurity.

I.B.4 Numerical Solution of Integral Equation for 𝐺𝑘

I.B.4.1 Problem Statement

In this section we follow Ref. 42. In DMFT one must compute the momentum resolved

Green function 𝐺𝑘 from the impurity Green function 𝐺 (see Eqs. (I.A.134) and (I.A.135)),

which amounts to solving an integral equation on the contour. In this section we provide a

solution on our new contour with two real time axes. The computation of 𝐺𝑘 can be simplified

to the solution of the following two equations:

𝐺 = 𝐺𝑘 + 𝐺𝑘 ∗ Δ ∗ 𝐺 − 𝐺𝑘 ∗ 𝜀 ∗ 𝐺 (I.B.137)

= 𝐺𝑘 + 𝐺 ∗ Δ ∗ 𝐺𝑘 − 𝐺 ∗ 𝜀 ∗ 𝐺𝑘 (I.B.138)

This is the combination of Eq. (I.A.134) and Eq. (I.A.135).

This means, to obtain 𝐺𝑘, we need to solve two equations of the following form for 𝑋:

𝑄 = 𝑋 + 𝑋 ∗ 𝐹𝑅 (I.B.139)

𝑄 = 𝑋 + 𝐹𝐿 ∗ 𝑋 (I.B.140)
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with:

𝑄 = 𝐺 (I.B.141)

𝑋 = 𝐺𝑘 (I.B.142)

𝐹𝐿 = 𝐺 ∗ Δ − 𝐺 ∗ 𝜀 (I.B.143)

𝐹𝑅 = Δ ∗ 𝐺 − 𝜀 ∗ 𝐺 (I.B.144)

To numerically solve Eqs. (I.B.139) and (I.B.140), we follow Appendix A of Ref. 42 and

discretize the relevant integrals. These two equations can be solved on the non-equilibrium

axis time slice by time slice. As a general note for this section, the advanced and retarded

components in this section occur only strictly within integrals. Thus, if the first and second

time argument are equal, no special care has to be taken regarding the Heaviside step function

contained in their definitions and the retarded component is simply the difference between

the greater and lesser and vice versa for the advanced component.

I.B.4.2 𝑡𝑁 = 0

On the equilibrium axis the convolution ∗ in Eqs. (I.B.139) and (I.B.140) is reduced to a

multiplication in 𝜔-space. The different components of Eq. (I.B.139) can be written as:

𝑄𝑅𝐸(𝜔) = 𝑋𝑅𝐸(𝜔) + 𝑋𝑅𝐸(𝜔) 𝐹 𝑅𝐸
𝑅 (𝜔) (I.B.145)

𝑄𝐴𝐸(𝜔) = 𝑋𝐴𝐸(𝜔) + 𝑋𝐴𝐸(𝜔) 𝐹 𝐴𝐸
𝑅 (𝜔) (I.B.146)

𝑄>𝐸(𝜔) = 𝑋>𝐸(𝜔) + 𝑋>𝐸(𝜔) 𝐹 𝐴𝐸
𝑅 (𝜔) + 𝑋𝑅𝐸(𝜔) 𝐹 >𝐸

𝑅 (𝜔) (I.B.147)

𝑄<𝐸(𝜔) = 𝑋<𝐸(𝜔) + 𝑋<𝐸(𝜔) 𝐹 𝐴𝐸
𝑅 (𝜔) + 𝑋𝑅𝐸(𝜔) 𝐹 <𝐸

𝑅 (𝜔) (I.B.148)
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With the solutions:

𝑋𝑅𝐸(𝜔) = 𝑄𝑅𝐸(𝜔)
1 + 𝐹 𝑅𝐸

𝑅 (𝜔)
(I.B.149)

𝑋𝐴𝐸(𝜔) = 𝑄𝐴𝐸(𝜔)
1 + 𝐹 𝐴𝐸

𝑅 (𝜔)
(I.B.150)

𝑋>𝐸(𝜔) =
𝑄>𝐸(𝜔) − 𝑋𝑅𝐸(𝜔) 𝐹 >𝐸

𝑅 (𝜔)
1 + 𝐹 𝐴𝐸

𝑅 (𝜔)
(I.B.151)

𝑋<𝐸(𝜔) =
𝑄<𝐸(𝜔) − 𝑋𝑅𝐸(𝜔) 𝐹 <𝐸

𝑅 (𝜔)
1 + 𝐹 𝐴𝐸

𝑅 (𝜔)
(I.B.152)

There is also a similar solution when one starts from Eq. (I.B.140). Now, we can do an inverse

Fourier transform and get the mixing components of 𝑋 at 𝑡𝑁 = 0.

𝑋 ¬¬¬(𝑡𝐸 − 𝑡′
𝐸, 0) = 𝑋¬¬¬(0, 𝑡′

𝐸 − 𝑡𝐸) = 𝑋>𝐸(𝑡𝐸, 𝑡′
𝐸) = 1

2𝜋
∫

∞

−∞
𝑒−𝑖𝜔(𝑡𝐸−𝑡′

𝐸)𝑋>𝐸(𝜔) d𝜔

(I.B.153)

𝑋¬¬¬(0, 𝑡′
𝐸 − 𝑡𝐸) = 𝑋 ¬¬¬(𝑡𝐸 − 𝑡′

𝐸, 0) = 𝑋<𝐸(𝑡𝐸, 𝑡′
𝐸) = 1

2𝜋
∫

∞

−∞
𝑒−𝑖𝜔(𝑡𝐸−𝑡′

𝐸)𝑋<𝐸(𝜔) d𝜔

(I.B.154)

I.B.4.3 𝑡𝑁 ≠ 0

Here we assume that the contour is discretized in time steps of Δ𝑡 and that for the

calculation of an entry of 𝑋 all other entries with lower non-equilibrium time are already

known. For example, if we want to calculate 𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) we assume that we have already

computed all 𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁 − 𝑚 ⋅ Δ𝑡), where 𝑚 > 0 and 𝑡𝑁 − 𝑚 ⋅ Δ𝑡 ≥ 0.

We will discretize the integrals with a summation:

∫
𝑡1

𝑡0

𝑓(𝑡) d𝑡 ≈ ∑
𝑚

𝑤𝑚 𝑓(𝑡0 + 𝑚Δ𝑡) (I.B.155)

Here 𝑤𝑚 are the weights chosen to discretize the integral. Examples of usable weights are the

trapezoid rule or Simpson’s rule42, which is used in the present thesis.
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I.B.4.3.1 Right-Mixing Component

The right-mixing component of 𝑋 can be computed from Eq. (I.B.139), which reads in

integral notation:

𝑄 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) (I.B.156)

+ ∫
0

−∞
𝑋>𝐸(𝑡𝐸, 𝑡𝐸) (𝐹 ¬¬¬

𝑅(𝑡𝐸, 𝑡𝑁) − 𝐹 ¬¬¬
𝑅(𝑡𝐸, 𝑡𝑁)) d𝑡𝐸

+ ∫
𝑡𝑁

0
𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝐹 𝐴𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) d𝑡𝑁

+ ∫
∞

∞
𝑋𝑅𝐸(𝑡𝐸, 𝑡𝐸) 𝐹 ¬¬¬

𝑅(𝑡𝐸, 𝑡𝑁) d𝑡𝐸

Of the three integrals above, only the second one contains unknown information by our

assumption that we already computed all entries with non-equilibrium time lower than 𝑡𝑁.

When we discretize the second integral only the last term of the sum contains unknown entries

of 𝑋, i.e. 𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) is not yet determined, while we already computed 𝑋 ¬¬¬(𝑡𝐸, 𝑡′
𝑁) with

𝑡′
𝑁 < 𝑡𝑁 by assumption. The solution of the equation above can be written as:

𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝑄 ¬¬¬(𝑡𝐸, 𝑡𝑁) − 𝑅 ¬¬¬(𝑡𝐸, 𝑡𝑁)
1 + 𝑤𝑁 (𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) − 𝐹 >𝑁
𝑅 (𝑡𝑁, 𝑡𝑁))

(I.B.157)

where 𝑤𝑁 is the last weight of the integral approximation:

∫
𝑡𝑁

0
𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝐹 𝐴𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) d𝑡𝑁 ≈ 𝑤0𝑋 ¬¬¬(𝑡𝐸, 0) 𝐹 𝐴𝑁
𝑅 (0, 𝑡𝑁)

+ 𝑤1 𝑋 ¬¬¬(𝑡𝐸, Δ𝑡) 𝐹 𝐴𝑁
𝑅 (Δ𝑡, 𝑡𝑁)

+ 𝑤2 𝑋 ¬¬¬(𝑡𝐸, 2Δ𝑡) 𝐹 𝐴𝑁
𝑅 (2Δ𝑡, 𝑡𝑁)

+ …

+ 𝑤𝑁 𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝐹 𝐴𝑁
𝑅 (𝑡𝑁, 𝑡𝑁)

=
𝑁

∑
𝑚=0

𝑤𝑚 𝑋 ¬¬¬(𝑡𝐸, 𝑚 ⋅ Δ𝑡) 𝐹 𝐴𝑁
𝑅 (𝑚 ⋅ Δ𝑡, 𝑡𝑁)
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and 𝑅 ¬¬¬(𝑡𝐸, 𝑡𝑁) is the rest of the known integral quantities combined into one term:

𝑅 ¬¬¬(𝑡𝐸, 𝑡𝑁) = ∫
0

−∞
𝑋>𝐸(𝑡𝐸, 𝑡𝐸) (𝐹 ¬¬¬

𝑅(𝑡𝐸, 𝑡𝑁) − 𝐹 ¬¬¬
𝑅(𝑡𝐸, 𝑡𝑁)) d𝑡𝐸 (I.B.158)

+ ∫
∞

∞
𝑋𝑅𝐸(𝑡𝐸, 𝑡𝐸) 𝐹 ¬¬¬

𝑅(𝑡𝐸, 𝑡𝑁) d𝑡𝐸

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝑋 ¬¬¬(𝑡𝐸, 𝑚 ⋅ Δ𝑡) 𝐹 𝐴𝑁
𝑅 (𝑚 ⋅ Δ𝑡, 𝑡𝑁)

The first two integrals must also be discretized, but they are written in continuous from here

for the sake of brevity.

I.B.4.3.2 Pre-Right-Mixing Component

In a similar manner, the solution of the pre-right-mixing component yields:

𝑋 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝑄 ¬¬¬(𝑡𝐸, 𝑡𝑁) − 𝑅 ¬¬¬(𝑡𝐸, 𝑡𝑁)
1 + 𝑤𝑁 (𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) − 𝐹 >𝑁
𝑅 (𝑡𝑁, 𝑡𝑁))

(I.B.159)

with:

𝑅 ¬¬¬(𝑡𝐸, 𝑡𝑁) = ∫
0

−∞
𝑋<𝐸(𝑡𝐸, 𝑡𝐸) (𝐹 ¬¬¬

𝑅(𝑡𝐸, 𝑡𝑁) − 𝐹 ¬¬¬
𝑅(𝑡𝐸, 𝑡𝑁)) d𝑡𝐸 (I.B.160)

+ ∫
∞

∞
𝑋𝑅𝐸(𝑡𝐸, 𝑡𝐸) 𝐹 ¬¬¬

𝑅(𝑡𝐸, 𝑡𝑁) d𝑡𝐸

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝑋 ¬¬¬(𝑡𝐸, 𝑚 ⋅ Δ𝑡) 𝐹 𝐴𝑁
𝑅 (𝑚 ⋅ Δ𝑡, 𝑡𝑁)

I.B.4.3.3 Left-Mixing Component

The computation of the left-mixing component 𝑋¬¬¬(𝑡𝑁, 𝑡𝐸) is very similar to the right-

mixing component, with the difference that we use Eq. (I.B.140).

𝑋¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝑄¬¬¬(𝑡𝐸, 𝑡𝑁) − 𝑅¬¬¬(𝑡𝑁, 𝑡𝐸)
1 + 𝑤𝑁 (𝐹 >𝑁

𝐿 (𝑡𝑁, 𝑡𝑁) − 𝐹 <𝑁
𝐿 (𝑡𝑁, 𝑡𝑁))

(I.B.161)
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with:

𝑅¬¬¬(𝑡𝑁, 𝑡𝐸) = ∫
0

−∞
(𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) − 𝐹¬¬¬
𝐿(𝑡𝑁, 𝑡𝐸)) 𝑋<𝐸(𝑡𝐸, 𝑡𝐸) d𝑡𝐸 (I.B.162)

+ ∫
∞

−∞
𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋𝐴𝐸(𝑡𝐸, 𝑡𝐸) d𝑡𝐸

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝐹 𝑅𝑁
𝐿 (𝑡𝑁, 𝑚 ⋅ Δ𝑡) 𝑋¬¬¬(𝑚 ⋅ Δ𝑡, 𝑡𝑁)

I.B.4.3.4 Pre-Left-Mixing Component

In a similar manner, the solution of the pre-left-mixing component yields:

𝑋¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝑄¬¬¬(𝑡𝐸, 𝑡𝑁) − 𝑅¬¬¬(𝑡𝑁, 𝑡𝐸)
1 + 𝑤𝑁 (𝐹 >𝑁

𝐿 (𝑡𝑁, 𝑡𝑁) − 𝐹 <𝑁
𝐿 (𝑡𝑁, 𝑡𝑁))

(I.B.163)

with:

𝑅¬¬¬(𝑡𝑁, 𝑡𝐸) = ∫
0

−∞
(𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) − 𝐹¬¬¬
𝐿(𝑡𝑁, 𝑡𝐸)) 𝑋>𝐸(𝑡𝐸, 𝑡𝐸) d𝑡𝐸 (I.B.164)

+ ∫
∞

−∞
𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋𝐴𝐸(𝑡𝐸, 𝑡𝐸) d𝑡𝐸

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝐹 𝑅𝑁
𝐿 (𝑡𝑁, 𝑚 ⋅ Δ𝑡) 𝑋¬¬¬(𝑚 ⋅ Δ𝑡, 𝑡𝑁)

I.B.4.3.5 Greater and Lesser Components

The solution of the non-equilibrium greater and lesser components of 𝑋 is very similar

to the previous components, with the difference that one must distinguish whether 𝑡𝑁 > 𝑡′
𝑁,

𝑡𝑁 < 𝑡′
𝑁, or 𝑡𝑁 = 𝑡′

𝑁, because different unknown entries of 𝑋 emerge when taking care of the

three different cases. For the sake of brevity whe define a general component 𝐶 ∈ {<, >}.

Note that Green functions denoted with 𝐶 here are not the causal Green function used in

other settings, but either the lesser or greater component.
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The first case is 𝑡𝑁 > 𝑡′
𝑁, and then one can use Eq. (I.B.140) to solve the non-equilibrium

greater and lesser components of 𝑋, with the solution:

𝑋>𝑁(𝑡𝑁, 𝑡′
𝑁) =

𝑄>𝑁(𝑡𝑁, 𝑡′
𝑁) − 𝑅>𝑁

𝐿 (𝑡𝑁, 𝑡′
𝑁)

1 + 𝑤𝑁 (𝐹 >𝑁
𝐿 (𝑡𝑁, 𝑡𝑁) − 𝐹 <𝑁

𝐿 (𝑡𝑁, 𝑡𝑁))
(I.B.165)

𝑋<𝑁(𝑡𝑁, 𝑡′
𝑁) =

𝑄<𝑁(𝑡𝑁, 𝑡′
𝑁) − 𝑅<𝑁

𝐿 (𝑡𝑁, 𝑡′
𝑁)

1 + 𝑤𝑁 (𝐹 >𝑁
𝐿 (𝑡𝑁, 𝑡𝑁) − 𝐹 <𝑁

𝐿 (𝑡𝑁, 𝑡𝑁))
(I.B.166)

with:

𝑅𝐶𝑁
𝐿 = ∫

0

−∞
(𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋 ¬¬¬(𝑡𝐸, 𝑡′
𝑁)) − (𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋 ¬¬¬(𝑡𝐸, 𝑡′
𝑁)) d𝑡𝐸 (I.B.167)

+ ∫
𝑡′

𝑁

0
𝐹 𝐶𝑁

𝐿 (𝑡𝑁, 𝑡𝑁) 𝑋𝐴𝑁(𝑡𝑁, 𝑡′
𝑁) d𝑡𝑁

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝐹 𝑅𝑁
𝐿 (𝑡𝑁, 𝑚 ⋅ Δ𝑡) 𝑋𝐶𝑁(𝑚 ⋅ Δ𝑡, 𝑡𝑁)

The second case, 𝑡𝑁 < 𝑡′
𝑁, can be solved in the same way with the use of Eq. (I.B.140).

𝑋>𝑁(𝑡𝑁, 𝑡′
𝑁) =

𝑄>𝑁(𝑡𝑁, 𝑡′
𝑁) − 𝑅>𝑁

𝑅 (𝑡𝑁, 𝑡′
𝑁)

1 + 𝑤𝑁 (𝐹 <𝑁
𝑅 (𝑡′

𝑁, 𝑡′
𝑁) − 𝐹 >𝑁

𝑅 (𝑡′
𝑁, 𝑡′

𝑁))
(I.B.168)

𝑋<𝑁(𝑡𝑁, 𝑡′
𝑁) =

𝑄<𝑁(𝑡𝑁, 𝑡′
𝑁) − 𝑅<𝑁

𝑅 (𝑡𝑁, 𝑡′
𝑁)

1 + 𝑤𝑁 (𝐹 <𝑁
𝑅 (𝑡′

𝑁, 𝑡′
𝑁) − 𝐹 >𝑁

𝑅 (𝑡′
𝑁, 𝑡′

𝑁))
(I.B.169)

with:

𝑅𝐶𝑁
𝑅 = ∫

0

−∞
(𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋 ¬¬¬(𝑡𝐸, 𝑡′
𝑁)) − (𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋 ¬¬¬(𝑡𝐸, 𝑡′
𝑁)) d𝑡𝐸 (I.B.170)

+ ∫
𝑡𝑁

0
𝑋𝑅𝑁(𝑡𝑁, 𝑡𝑁) 𝐹 𝐶𝑁

𝑅 (𝑡𝑁, 𝑡′
𝑁) d𝑡𝑁

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝑋𝐶𝑁(𝑡𝑁, 𝑚 ⋅ Δ𝑡) 𝐹 𝐴𝑁
𝑅 (𝑚 ⋅ Δ𝑡, 𝑡′

𝑁)

The third case, 𝑡𝑁 = 𝑡′
𝑁, is a bit more involved and one cannot solve for the greater and lesser

component separately, but must solve both at the same time. One can solve for Eq. (I.B.140)
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or Eq. (I.B.139). We will present the solution of the latter here:

𝑋>𝑁(𝑡𝑁, 𝑡𝑁) =
(𝑄>𝑁(𝑡𝑁, 𝑡𝑁) − 𝑅𝑅) (1 − 𝑤𝑁 𝐹 >𝑁

𝑅 (𝑡𝑁, 𝑡𝑁))
1 + 𝑤𝑁 (𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) − 𝐹 >𝑁
𝑅 (𝑡𝑁, 𝑡𝑁))

(I.B.171)

−
(𝑄<𝑁(𝑡𝑁, 𝑡𝑁) − 𝑅𝑅) (−𝑤𝑁 𝐹 >𝑁

𝑅 (𝑡𝑁, 𝑡𝑁))
1 + 𝑤𝑁 (𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) − 𝐹 >𝑁
𝑅 (𝑡𝑁, 𝑡𝑁))

𝑋<𝑁(𝑡𝑁, 𝑡𝑁) =
(𝑄<𝑁(𝑡𝑁, 𝑡𝑁) − 𝑅𝑅) (1 + 𝑤𝑁 𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁))
1 + 𝑤𝑁 (𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) − 𝐹 >𝑁
𝑅 (𝑡𝑁, 𝑡𝑁))

(I.B.172)

−
(𝑄>𝑁(𝑡𝑁, 𝑡𝑁) − 𝑅𝑅) (𝑤𝑁 𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁))
1 + 𝑤𝑁 (𝐹 <𝑁

𝑅 (𝑡𝑁, 𝑡𝑁) − 𝐹 >𝑁
𝑅 (𝑡𝑁, 𝑡𝑁))

with:

𝑅𝑅 = ∫
0

−∞
(𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋 ¬¬¬(𝑡𝐸, 𝑡′
𝑁)) − (𝐹¬¬¬

𝐿(𝑡𝑁, 𝑡𝐸) 𝑋 ¬¬¬(𝑡𝐸, 𝑡′
𝑁)) d𝑡𝐸 (I.B.173)

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝑋>𝑁(𝑡𝑁, 𝑚 ⋅ Δ𝑡) 𝐹 <𝑁
𝑅 (𝑚 ⋅ Δ𝑡, 𝑡𝑁)

+
𝑁−1
∑
𝑚=0

𝑤𝑚 𝑋<𝑁(𝑡𝑁, 𝑚 ⋅ Δ𝑡) 𝐹 >𝑁
𝑅 (𝑚 ⋅ Δ𝑡, 𝑡𝑁)

I.B.4.4 Stabilization

To stabilize the computation we will perform a damping on the Green function and the

hybridization function on the equilibrium axis:

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) ⟶ 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝑒−𝛼|𝑡𝐸| (I.B.174)

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) ⟶ 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝑒−𝛼|𝑡𝐸| (I.B.175)

𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) ⟶ 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) 𝑒−𝛼|𝑡𝐸| (I.B.176)

𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) ⟶ 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) 𝑒−𝛼|𝑡𝐸| (I.B.177)
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I.B.5 Existing Non-Equilibrium Impurity Solvers

This section serves as a brief overview over the existing impurity solvers and their respective

limitations. For more in-depth information see Refs. 39, 42, 46, and 51. The state of the

art methods for equilibrium DMFT are the so called Continuous-Time Quantum Monte

Carlo (CTQMC) solvers. A general feature of many interesting Hamiltonians is that they

are separable into two different parts, where each part is diagonalizable trivially on their

own but the combination of the two parts is is not. An example is the hopping term and

interaction term of the Hubbard model, with the hopping term being diagonal in 𝑘-space and

the interaction term being diagonal in real space. The general strategy of CTQMC is to split

the Hamiltonian into these separate parts, expanding the partition function in powers of one

of those Hamiltonians, and do an importance sampling with Monte Carlo methods over the

resulting sum. For weak-coupling CTQMC (CT-INT; or the more generalized CT-AUX) this

means expanding the partition function in powers of the interaction term 𝐻imp (see Def. (2)).

𝑍
𝑍0

=
∞

∑
𝑛=0

(−𝑖)𝑛

𝑛!
∫
C

… ∫
C

𝑈(t1) … 𝑈(tn) ∏
𝑠

⟨(𝑛𝑠(t1) − 𝛼𝑠) … (𝑛𝑠(tn) − 𝛼𝑠)⟩𝑆0
dt1 … dtn

(I.B.178)

Here, the expectation value is taken with respect to the action 𝑆0 = −𝑖 ∫
C

𝐻hyb(t)+𝐻bath(t) dt,

𝑍0 = tr 𝑒𝑆0 , and the 𝛼 cause a chemical potential shift to avoid one kind of sign problem,

which is described below. Due to Wick’s theorem, it is possible to calculate the coefficients in

Eq. (I.B.178) which are however complex weights 𝑤𝑐, 𝑍
𝑍0

= ∑𝑐 𝑤𝑐. They can be used as a

probability distribution for importance sampling after:

⟨𝑂⟩𝑤 =
∑𝑐 𝑤𝑐 𝑂𝑐

∑𝑐 𝑤𝑐
=

∑𝑐 |𝑤𝑐| 𝜙𝑐 𝑂𝑐

∑𝑐 |𝑤𝑐| 𝜙𝑐
=

∑𝑐 |𝑤𝑐| 𝜙𝑐 𝑂𝑐

∑𝑐 |𝑤𝑐| 𝜙𝑐

∑𝑐 |𝑤𝑐|
∑𝑐 |𝑤𝑐|⏟

=1

(I.B.179)

=
∑𝑐 |𝑤𝑐| 𝜙𝑐 𝑂𝑐

∑𝑐 |𝑤𝑐|
∑𝑐 |𝑤𝑐| 𝜙𝑐

∑𝑐 |𝑤𝑐|

=
⟨𝜙 𝑂⟩|𝑤|

⟨𝜙⟩|𝑤|
(𝜙𝑐 = 𝑒𝑖 Arg(𝑤𝑐))
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The so called sign problem is that, although this mapping is well defined, the sampled expec-

tation value in the denominator ⟨𝜙⟩|𝑤| may be very small with relatively large uncertainties,

which renders the sampled expectation value ⟨𝑂⟩𝑤 not accurate enough. Although certain

basis transformations with respect to 𝑤𝑐 can reduce or eliminate the sign problem in special

cases, there probably is no general solution to the sign problem as this would imply 𝑃 = 𝑁𝑃

(see Ref. 44).

In the same vein, it is possible to expand the partition function in powers of 𝐻hyb, which

is called strong-coupling CTQMC (CT-HYB). Then the partition function is given by:

𝑍 = ⟨
∞

∑
𝑛=0

(−𝑖)𝑛

𝑛!
∫
C

… ∫
C

𝐻hyb(t1) … 𝐻hyb(tn) dt1 … dtn⟩
𝑆0

(I.B.180)

With 𝑆0 = −𝑖 ∫
C

𝐻imp(t) + 𝐻bath(t) dt. After tracing out the bath it is possible to do an

importance sampling of the sum in Eq. (I.B.180), where the weights are again in general

complex.

Both of these two sampling methods are well defined and make no approximation, except for

statistical errors from the finite sample size, but suffer to varying degree from the sign problem

that gets exponentially worse with increasing non-equilibrium time 𝑡𝑁, inverse temperature 𝛽,

and the number of particles 𝑁 (see Refs. 39, 42, and 44). This is best understood by looking

at the relative error of the sampled expectation value of 𝜙:

1
√𝑁samples

√Var(𝜙)|𝑤|

∣⟨𝜙⟩|𝑤|∣
= 1

√𝑁samples

√⟨|𝜙|2⟩|𝑤| − | ⟨𝜙⟩|𝑤| |2

∣⟨𝜙⟩|𝑤|∣
(I.B.181)

= 1
√𝑁samples

√1 − | ⟨𝜙⟩|𝑤| |2

∣⟨𝜙⟩|𝑤|∣
(I.B.182)

−−−−−−→
∣⟨𝜙⟩|𝑤|∣≪1

1

√𝑁samples ∣⟨𝜙⟩|𝑤|∣
(I.B.183)

The expectation value of the phase can be related to the ratio of two partition functions:

⟨𝜙⟩|𝑤| =
∑𝑐 |𝑤𝑐|𝜙𝑐

∑𝑐 |𝑤𝑐|
=

∑𝑐 𝑤𝑐

∑𝑐 |𝑤𝑐|
= 𝑍𝑤

𝑍|𝑤|
(I.B.184)
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In equilibrium, the partition function can be related to 𝛽 which is the inverse temperature, 𝑁

the number of particles, and the free energy density 𝑓 with 𝑍 = 𝑒−𝛽𝑁𝑓, meaning the relative

error can be expressed as44:

|Δ𝜙|
| ⟨𝜙⟩|𝑤| |

≈ 1

√𝑁samples ∣⟨𝜙⟩|𝑤|∣
= 𝑒𝛽 𝑁 (𝑓𝑤−𝑓|𝑤|)

√𝑁samples
(I.B.185)

With real time evolution in quantum Monte Carlo, the expectation value of the phase shrinks

exponentially with increasing real time ⟨𝜙⟩|𝑤| ∝ 𝑒−𝛼 𝑡𝑚𝑎𝑥 (see Ref. 42), which means the

relative error grows exponentially with increasing time:

|Δ𝜙|
| ⟨𝜙⟩|𝑤| |

≈ 1

√𝑁samples ∣⟨𝜙⟩|𝑤|∣
∝ 𝑒𝛼 𝑡𝑁,𝑚𝑎𝑥

√𝑁samples
(I.B.186)

This means that if one increases the inverse temperature, the number of particles, and/or

the maximum time, while keeping the relative error constant, the number of needed samples

grows exponentially.

For fermionic systems it strongly depends on the investigated system how severe the sign

problem is. In equilibrium it can be completely eliminated in some very special cases39.

Furthermore, the sign problem is more severe for strong-coupling CTQMC than for weak-

coupling CTQMC, where short simulation can be reached42. In general, low temperatures

are not accessible to the above mentioned sampling methods, and there are alternatives

in equilibrium41,100,101, however there are exceptions where even in non-equilibrium setups

CTQMC can be used52,53. In non-equilibrium, as a rule of thumb the sign problem is

more severe than in equilibrium39,42. The severity depends on several factors such as filling,

particle-hole symmetry, and more39.

If one wants to reach long simulation times in non-equilibrium, the best current option

may be to use the Non-Crossing Approximation (NCA) or its generalizations42,46. The

Non-Crossing Approximation is the lowest order of the strong-coupling perturbation theory,

where ones does a Taylor expansion of the partition function with respect to the hybridization

function, like in Eq. (I.B.180). After a basis transformation to the impurity Hilbert space,

the expansion can be expressed as a sum of Feynman diagrams14. For NCA, only diagrams

with no crossing in them are kept for the result. As mentioned before, the great advantage of

94



Existing Non-Equilibrium Impurity Solvers

NCA is that it possible to reach long simulation times (see e.g. Ref 102). The disadvantage is

that it is not a controlled approximation, in the sense that there is no parameter that can be

arbitrarily tuned to get a better result like the number of samples for Monte Carlo methods

or the discarded weight/cutoff for Matrix Product Based approaches. It is for example known

that in equilibrium the Fermi-liquid behavior is not correctly reproduced by NCA if 𝑇 ≪ 𝑇𝑘

(see Refs. 46, 103, and 104). This problem can be reduced by truncating at higher orders

(One-Crossing Approximation) with higher computational cost, yet the problem still remains

that NCA is not a controlled approximation and it usually takes a great deal of experience to

know in which parameter regions the results are usable.

Other solvers that are not related to this work but are relevant to the field include the

Configuration Interaction47 (CI) method, which can be used as a solver for DMFT86, and

the inchworm method45, a Monte Carlo sampling method alleviating the dynamical sign

problem, and the Auxiliary Master Equation Approach48 (AMEA), where steady states can

be investigated.

A relatively new category of equilibrium impurity solvers is based on Matrix Product

States68–70,105,106 or Tensor Product States41,71, which recently have been used for up to five

orbitals71. In Ref. 51, such an approach has been extended to single-orbital non-equilibrium

setups, however the only published application of the solver has been restricted to non-

correlated initial states, i. e. the initial state of the lattice system is a product state.

|𝜓(0)⟩ = (|↑1⟩ + |↓1⟩) ⊗ (|↑2⟩ + |↓2⟩) ⊗ … (I.B.187)

In Ref. 51 the computational cost with respect to (non-equilibrium) time increases exponen-

tially, and the number of bath sites is relatively low in comparison to the present thesis.

With Tensor Network based approaches the impurity Green function can be computed

directly on the real41,69 or imaginary106 axis at zero temperature after mapping the hybridiza-

tion to a corresponding Hamiltonian49. Tensor Product State based solvers do not suffer

from the sign problem but do suffer from the problem of growing matrix dimensions if the

entanglement entropy is large. In the present thesis, we also develop a Matrix Product States

based solver to directly compute the Green function on two real time axis (see Sec. I.B.1) at

zero temperature. To calculate the ground state we use DMRG30 and for the time-evolution
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we use swap gates30,72 in combination with the Suzuki-Trotter decomposition of the time-

evolution operator, a method introduced in Ref. 41. We will show in Subpart I.C that this

new solver can simulate quenches with correlated initial states.

I.B.6 Matrix Product States and Techniques

This section serves as a brief recapitulation of Matrix Product States (MPS) and the

techniques used for time-evolution. For a more in-depth introduction see Ref. 30. The MPS

formalism is a clever way to rewrite a quantum state into a tensor product.

Definition I.B.10: Matrix Product State (MPS) and Matrix Product Oper-

ator (MPO)

A Matrix Product State |𝜓⟩ is a quantum state on a lattice with 𝑁 lattice sites that is

stored in the form:

|𝜓⟩ = ∑
{𝑠𝑖}

𝐴𝑠1
[1] 𝐴𝑠2

[2] … 𝐴𝑠𝑁−1
[𝑁−1] 𝐴𝑠𝑁

[𝑁] |𝑠1, 𝑠2, … , 𝑠𝑁−1, 𝑠𝑁⟩ (I.B.188)

𝐴𝑠1
[1] ∈ C𝑑1×1×𝑞1 (I.B.189)

𝐴𝑠𝑁
[𝑁] ∈ C𝑑𝑁×𝑝𝑁×1 (I.B.190)

𝐴𝑠𝑖
[𝑖] ∈ C𝑑𝑖×𝑝𝑖×𝑞𝑖 (I.B.191)

𝑞𝑖−1 = 𝑝𝑖 (I.B.192)

The subscript [𝑖], that indicates the lattice site, is from here on omitted and implied by

the superscript 𝑠𝑖. The local Hilbert space dimension of site 𝑖 is denoted by 𝑑𝑖 and the

used matrix dimensions 𝑝𝑖 and 𝑞𝑖 are called bond dimension. There is also a similar

method to store operators in matrix product form:

𝑂 = ∑
{𝑠𝑖}

𝑊 𝑠1,𝑠′
1

[1] … 𝑊 𝑠𝑁,𝑠′
𝑁

[𝑁] |𝑠1, 𝑠2, … , 𝑠𝑁−1, 𝑠𝑁⟩ ⟨𝑠′
1, 𝑠′

2, … , 𝑠′
𝑁−1, 𝑠′

𝑁| (I.B.193)

This is basically a compression algorithm. Instead of storing ∏𝑖 𝑑𝑖 entries we only need

to keep ∑𝑖 𝑑𝑖 𝑝𝑖 𝑞𝑖 entries. There is a convention for a graphical representation of Matrix
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Figure I.B.7. Graphical representation of |𝜓⟩, ⟨𝜓| in MPS form. Also shown is an operator 𝑂
in Matrix Product Operator (MPO) form and the operator application 𝑂 |𝜓⟩. Connected lines
stand for a sum over all possible index value which is called matrix product or tensor contraction,
depending on the tensor type.

Product States and for Matrix Product Operators depicted in Fig. I.B.7. The convention is

that connected indices stand for a summation over the index values of the connected indices.

In the case of Fig. I.B.7 the graph of |𝜓⟩ stands for:

∑
𝑎…𝑓

𝐴𝑠1𝑎 𝐴𝑠2
𝑎,𝑏 𝐴𝑠3

𝑏,𝑐 𝐴𝑠4
𝑐,𝑑 𝐴𝑠5

𝑑,𝑒 𝐴𝑠6
𝑒,𝑓 𝐴𝑠7

𝑓 (I.B.194)

For ⟨𝜓| we take the complex conjugate of every entry.

The great advantage of the MPS representation is, that we have efficient methods to

compute the ground state26 of a Hamiltonian and the time-evolution of a state27 without

leaving the MPS representation. Usually, in the framework of MPS, the Singular Value

Decomposition (SVD) (see Ref. 30) is used to compress a tensor.
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Definition I.B.11: Singular Value Decomposition (SVD)

The Singular Value Decomposition decomposes a matrix 𝑀 into a product of three

matrices 𝑈, 𝐷, 𝑉 † with the following properties:

𝑀 = 𝑈 𝐷 𝑉 † 𝑀 ∈ C𝑝×𝑞 (I.B.195)

𝑈† 𝑈 = 1 𝑈 ∈ C𝑝×𝑚 (I.B.196)

𝐷 ∈ {diag(𝑥) | 𝑥 ∈ R𝑚
+ } (I.B.197)

𝑉 † 𝑉 = 1 𝑉 † ∈ C𝑚×𝑞 (I.B.198)

The entries of the diagonal matrix 𝐷 are called singular values. Compression of the

MPS is done by cutting of smaller singular values in 𝐷, reducing it from a 𝑚 × 𝑚

matrix to a �̃� × �̃� matrix, where �̃� < 𝑚.

When truncating the diagonal matrix 𝐷 of a quantum state one must keep the sum of

all squared entries to one ∑𝑖 𝐷2
𝑖,𝑖 = 1 by renormalizing with the singular values which are

kept after truncation. In the present thesis we use the MPS library ITensor107. An important

technical detail, when truncating the diagonal matrix 𝐷, is how many singular values are kept.

In ITensor this is controlled by a parameter called cutoff, which is defined in Def. (I.B.12)

Definition I.B.12: Cutoff

Let 𝜖 be the cutoff. When the smallest singular values are discarded, the number of

discarded singular values is maximized while keeping by the following inequality to hold

true:

∑𝑖∈discarded 𝐷2
𝑖,𝑖

∑𝑖 𝐷2
𝑖,𝑖

< 𝜖 (I.B.199)
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Figure I.B.8. Compressed images108 of Erwin Schrödinger. Shown are various compressions where
the orignal image was decomposed with an SVD into three matrices and multiplied back again.

The MPS representation of a quantum state is not unique. This stems from the fact that

we can insert a matrix 𝑌 an its inverse between two adjacent MPS tensors.

|𝜓⟩ = ∑
{𝑠𝑖}

𝐴𝑠1 … 𝐴𝑠𝑘 𝐴𝑠𝑘+1 … 𝐴𝑠𝑁 |𝑠1, 𝑠2, … , 𝑠𝑁−1, 𝑠𝑁⟩ (I.B.200)

= ∑ 𝐴𝑠1 … 𝐴𝑠𝑘 𝑌⏟
̃𝐴𝑠𝑘

𝑌 −1 𝐴𝑠𝑘+1⏟⏟⏟⏟⏟
̃𝐴𝑠𝑘+1

… 𝐴𝑠𝑁 |𝑠1, 𝑠2, … , 𝑠𝑁−1, 𝑠𝑁⟩ (I.B.201)

= ∑ 𝐴𝑠1 … ̃𝐴𝑠𝑘 ̃𝐴𝑠𝑘+1 … 𝐴𝑠𝑁 |𝑠1, 𝑠2, … , 𝑠𝑁−1, 𝑠𝑁⟩ (I.B.202)

(I.B.203)

This gauge invariance is used to bring the MPS into so called right-, left-, and mixed-canonical

form. To understand this we first need to define right-, and left-normalized tensors.

Definition I.B.13: Tensor and MPS gauges

A tensor is left-normalized if it the following condition holds true.

∑
𝑖

𝐴𝑠𝑖,† 𝐴𝑠𝑖 = 1 (I.B.204)

A tensor is right-normalized if it the following condition holds true.

∑
𝑖

𝐴𝑠𝑖 𝐴𝑠𝑖,† = 1 (I.B.205)
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Figure I.B.9. Graphical representation of a left-normalized tensor and a right-normalized tensor.
Triangles pointing to the right are left-normalized tensors (because they collapse to the right when
contracting), while triangles pointing to the left are right-normalized tensors.

SVD

contract 
tensors

SVD

contract 
tensors

Figure I.B.10. Decomposition of a tensor 𝐴𝑠𝑖 into a 𝐿𝑠𝑖 ⋅ 𝐶 where 𝐿 is left-normalized, and into
𝐶 ⋅ 𝑅𝑠𝑖 where 𝑅 is right-normalized.

If every tensor of an MPS is left-normalized, the MPS is called left-canonical. If every

tensor of an MPS is right-normalized, the MPS is called right-canonical. If every tensor

left of a certain lattice site is left-normalized and every tensor right of the lattice site is

right-normalized it is a mixed-canonical MPS. An example of a mixed canonical MPS

can be seen in Fig. I.B.11.

It is possible to change between the different gauges with an SVD. The interested reader is

referred to section 4 of Ref. 30 for more details, but for here it is sufficient to know that we

can transform an arbitrary tensor into a product of a left-normalized tensor and a matrix, or

a matrix and a right-normalized tensor (see Fig. I.B.10). This is depicted in Fig. I.B.10. The

process on how to move the center site and change the gauge is drawn in Fig. I.B.11. For

the MPS based impurity solver we need to apply MPO that act onto two lattice sites. The

application of the MPO is algorithmically very similar to the other operations and is shown

in Fig. I.B.12 and the calculation of an expectation value of an operator that acts only on one

lattice is very efficient and depicted in Fig. I.B.13. Ground state search is possible with the
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center site

new center site

SVD

Figure I.B.11. The center site of a mixed canonical MPS with five lattice sites is moved with an
SVD.

contract tensors

SVD

contract tensors

Figure I.B.12. Application of a two-site MPO to an MPS and subsequent transformation to a valid
MPS.

Density Matrix Renormalization Group26,30 (DMRG), where the energy is locally minimized

on the tensor level and a variational search is performed30. The time-evolution is done in

this thesis by a Suzuki-Trotter splitting73 as outlined below. There are other techniques

available31,109, but not used here. The matrix exponential of two non-commuting matrices 𝐴
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Figure I.B.13. Graphical representation of the computation of the expectation value of an operator
that acts only on one site. The tensor multiplications to the left and to the right collapse according
to Fig. I.B.9.

and 𝐵, 𝑒𝜏(𝐴+𝐵), can be be approximated by the following expression.

𝑒𝜏
2 𝐴 𝑒𝜏𝐵 𝑒𝜏

2 𝐴 = (1 + 𝜏
2

𝐴 + 𝜏2

8
𝐴2) (1 + 𝜏𝐵 + 𝜏2

2
𝐵) (1 + 𝜏

2
𝐴 + 𝜏2

8
𝐴2) + O (𝜏3)

(I.B.206)

= 1 + 𝜏 (𝐴 + 𝐵) + 𝜏2

2
(𝐴2 + 𝐴𝐵 + 𝐵𝐴 + 𝐵2) + O (𝜏3) (I.B.207)

= 𝑒𝜏(𝐴+𝐵) + O (𝜏3) (I.B.208)

This is useful when the matrix exponential of the separated terms, 𝑒𝜏𝐴 and 𝑒𝜏𝐵, can be

computed without problems. This means the exponential of a sum of three or more non-

commuting operators can be split by recursively peeling off one operator.

𝑒𝜏(𝐴+𝐵+𝐶) = 𝑒𝜏(𝐴+(𝐵+𝐶)) (I.B.209)

= 𝑒𝜏
2 𝐴 𝑒𝜏(𝐵+𝐶) 𝑒𝜏

2 𝐴 + O (𝜏3) (I.B.210)

= 𝑒𝜏
2 𝐴 (𝑒𝜏

2 𝐵 𝑒𝜏𝐶 𝑒𝜏
2 𝐵 + O (𝜏3)) 𝑒𝜏

2 𝐴 + O (𝜏3) (I.B.211)

= 𝑒𝜏
2 𝐴 𝑒𝜏

2 𝐵 𝑒𝜏𝐶 𝑒𝜏
2 𝐵 𝑒𝜏

2 𝐴 + O (𝜏3) (I.B.212)

102



Matrix Product States and Techniques

For the Anderson Impurity Model (AIM) one can peel off the single hybridization terms in

this way. To this end we rewrite the AIM Hamiltonian (Def. (2)):

𝐻 = 𝐻imp + ∑
𝑝

𝐻𝑝,↑ + ∑
𝑝

𝐻𝑝,↓ (I.B.213)

𝐻imp = 𝑈 (𝑛0,↑ − 1
2

) (𝑛0,↓ − 1
2

) − 𝜇 𝑛0,𝑠 (I.B.214)

𝐻𝑝,𝑠 = 𝑉𝑝,𝑠(𝑡) 𝑐†
0,𝑠𝑐𝑝,𝑠 + 𝑉 ∗

𝑝,𝑠(𝑡) 𝑐†
𝑝,𝑠𝑐0,𝑠 + (𝜖𝑝,𝑠 − 𝜇) 𝑛𝑝,𝑠 (I.B.215)

𝑒𝜏𝐻 = 𝑒𝜏(𝐻imp+∑𝑝 𝐻𝑝,↑+∑𝑝 𝐻𝑝,↓) (I.B.216)

= 𝑒𝜏
2 𝐻imp 𝑒

𝜏
2 ∑𝑝 𝐻𝑝,↑ 𝑒𝜏 ∑𝑝 𝐻𝑝,↓ 𝑒

𝜏
2 ∑𝑝 𝐻𝑝,↑ 𝑒𝜏

2 𝐻imp + O (𝜏3) (I.B.217)

= 𝑒𝜏
2 𝐻imp (

1
∏

𝑝=𝑁𝑏

𝑒𝜏
2 𝐻𝑝,↓) (

𝑁𝑏

∏
𝑝=1

𝑒𝜏
2 𝐻𝑝,↓) (I.B.218)

(
1

∏
𝑝=𝑁𝑏

𝑒𝜏
2 𝐻𝑝,↑) (

𝑁𝑏

∏
𝑝=1

𝑒𝜏
2 𝐻𝑝,↑) 𝑒𝜏

2 𝐻imp + O (𝜏3)

𝑁𝑏 is the number of bath sites. To apply these operators within the MPS framework we need

a valid MPS geometry for the state. The Anderson Impurity Model couples the impurity

with every bath site, which can be interpreted as a star geometry (Fig. I.B.14, top left). To

use MPS we need a linear geometry41,51 and the local Hilbert space dimension 𝑑 should be

as low as possible, because the computational cost grows like O(𝑑3). To minimize the 𝑑, we

can split the two spin directions into two connected star geometries41. Then, the Anderson

Impurity Model can be viewed as a spin-less fermion model with special long-ranged hopping

amplitudes and a local interaction term that affects only two sites corresponding to the

spin-up site 0↑ and spin-down site 0↓ of the impurity (Fig. I.B.14, top right).

𝐻 = ∑
𝑖↑

𝑣𝑖↑
𝑐†

0↑
𝑐𝑖↑

+ 𝑣∗
𝑖↑

𝑐†
𝑖↑

𝑐0↑
+ (𝜖𝑖↑

− 𝜇) 𝑛𝑖↑
(I.B.219)

+ ∑
𝑖↓

𝑣𝑖↓
𝑐†

0↓
𝑐𝑖↓

+ 𝑣∗
𝑖↓

𝑐†
𝑖↓

𝑐0↓
+ (𝜖𝑖↓

− 𝜇) 𝑛𝑖↓

+ 𝑈 (𝑛0↑
− 1

2
) (𝑛0↓

− 1
2

)

Note that this splitting of spins does not always pay off in the general (non-Anderson Impurity

Model) case, because there might be a strong correlation between the different spin flavors

103



Matrix Product States and Techniques

separate spins

rearrange into MPS geometry

Figure I.B.14. The Mapping of the star geometry to a valid MPS geometry. The solid lines in the
bottom graph mark the nearest-neighbor connections in the MPS geometry, while the colored lines
stand for interaction terms in the Anderson Impurity Model Hamiltonian.

on the same or neighboring lattice sites. For the Anderson Impurity Model this splitting

works well, because the spin-up and spin-down electrons in the bath do not interact with each

other directly and are only connected via the impurity. Finally, the model with split spins is

brought into a linear geometry which can be represented as a MPS (Fig. I.B.14, bottom). A

problem with this geometry and time-evolution via the Suzuki-Trotter splitting as outlined

above is that one would have to repeatedly apply long-ranged MPO, i.e. the interactions

of the Hamiltonian are not of the nearest-neighbor kind, for which MPS are particular well

suited. A solution was presented in Ref. 41 by applying so called swap gates with the local

time-evolution operators which effectively move the impurity through the lattice while doing

a time-evolution step. This process is explained in more detail in the next section. Another

technical point is that for the time-evolution we need to compute the time-ordered product

of the matrix exponential. This is approximated in the present thesis by taking the mean

of the Hamiltonian between two consecutive time steps and doing a time-evolution as if the

Hamiltonian was constant.

T 𝑒−𝑖 ∫𝑡0+Δ𝑡
𝑡0

𝐻( ̄𝑡)𝑑 ̄𝑡 ≈ 𝑒− 𝑖Δ𝑡
2 (𝐻(𝑡0)+𝐻(𝑡0+Δ𝑡)) (I.B.220)
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When one computes the Green function with Matrix Product States it is possible to

extrapolate the Green function to longer simulation times with linear prediction. This is

summarized in Sec. VI.2.

I.B.7 Swap Gates

Ref. 41 introduced swap gates30,72 to compute the time evolution of the Anderson Impurity

Model where the usage of the star basis in the MPS formalism introduces long ranged

interactions. A swap gate changes the order of two neighboring lattice sites, including

the fermionic ordering41, and the graphical representation in the MPS notation is depicted

in Fig. I.B.15. The fermionic ordering used in this thesis is the same as the MPS geometry

in Fig. I.B.14.

∣𝑛𝑁𝑏,↑, 𝑛𝑁𝑏,↓, 𝑛𝑁𝑏−1,↑, 𝑛𝑁𝑏−1,↓, … , 𝑛0,↑, 𝑛0,↑⟩ (I.B.221)

= (𝑐†
𝑁𝑏,↑)

𝑛𝑁𝑏,↑ (𝑐†
𝑁𝑏−1,↑)

𝑛𝑁𝑏−1,↑ … (𝑐†
2,↑)

𝑛2,↑ (𝑐†
1,↑)

𝑛1,↑

(𝑐†
0,↓)

𝑛0,↓ (𝑐†
0,↓)

𝑛0,↓

(𝑐†
1,↓)

𝑛1,↓ (𝑐†
2,↓)

𝑛2,↓ … (𝑐†
𝑁𝑏−1,↓)

𝑛𝑁𝑏−1,↓ (𝑐†
𝑁𝑏,↓)

𝑛𝑁𝑏,↓ |0⟩

Here, 𝑁𝑏 is the number of bath sites and site 0 is the impurity. As mentioned above, in the

fermionic ordering employed here, the Anderson Impurity Model can be viewed as a spin-less

fermion model, meaning we can ignore the spin for now. When changing the fermionic ordering

of a basis state in the occupation basis, one has to multiply the state with −1 if both lattice

Figure I.B.15. Graphical representation of a swap gate (left) and a combination of a swap gate and
a general operator that acts on two neighboring sites (right).
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site are occupied. In matrix representation this can be written as:

𝑆𝑖,𝑖+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

|0, 0⟩ |0, 1⟩ |1, 0⟩ |1, 1⟩

⟨0, 0| 1 0 0 0

⟨0, 1| 0 0 1 0

⟨1, 0| 0 1 0 0

⟨1, 1| 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(I.B.222)

This has the property 𝑆2
𝑖,𝑖+1 = 1 and can be written in spin-less fermion notation as:

𝑆𝑖,𝑖+1 = 1 + 𝑐†
𝑖 𝑐𝑖+1 + 𝑐†

𝑖+1𝑐𝑖 − 𝑛𝑖 − 𝑛𝑖+1 (I.B.223)

With a bit of effort one can verify the following statements:

∀𝛼, 𝛽 ∶ 𝑆𝑖,𝑖+1 𝑄𝛼
𝑖−1 𝑄𝛽

𝑖 𝑆𝑖,𝑖+1 = 𝑄𝛼
𝑖−1 𝑄𝛽

𝑖+1 (I.B.224)

𝛼, 𝛽 ∈ {1, 2, 3, 4} 𝑄𝑖 = (1𝑖, 𝑐†
𝑖 , 𝑐𝑖, 𝑐†

𝑖 𝑐𝑖)

Since 1𝑖, 𝑐†
𝑖 , 𝑐𝑖, and 𝑐†

𝑖 𝑐𝑖 form an operator basis, we can write every operator 𝑂𝑖,𝑗 that acts

non-trivially on only two lattice sites 𝑖 and 𝑗 as:

𝑂𝑖,𝑗 = ∑
𝛼,𝛽

𝑂𝛼,𝛽 𝑄𝛼
𝑖 𝑄𝛽

𝑗 (I.B.225)

This means we can apply every operator of the form Eq. (I.B.225) by swapping sites with

swap gates until the relevant sites are nearest-neighbors and then apply 𝑂𝑖,𝑖+1 and then swap

the sites back to their original places. In Sec. I.B.6, we peeled of the single hybridization terms

from the time-evolution operator one by one. Without swap gates an expensive computational

step would be application of 𝑒𝜏
2 𝐻𝑝,𝑠 to the Matrix Product State. To work around this problem

the impurity is swapped back and forth through the bath, so that it neighbors every bath

site and the application of 𝑒𝜏
2 𝐻𝑝,𝑠 is a simple nearest-neighbor operation. This can best be

viewed in the graphical MPS notation as shown in Fig. I.B.16. Another optimization is that

we can combine a time-evolution operator and a swap gate into a single operator (Fig. I.B.15,
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right hand side) to cut the computational cost, because the multiplication of two gates is way

cheaper than two successive applications of two operators.
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impurity

spin-up bath spin-down bath

Figure I.B.16. Graphical representation of one time step of Δ𝑡 (adapted from Ref. 110). Step by
step, we swap one spin of the impurity along the bath and handle the single interactions with the
bath, one site at a time. Note that when we swap from the center to the side of the chain, we first
apply the time-evolution operator and then swap gate, and when we swap back to the center we first
apply the swap gate and then the time-evolution operator.
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I.B.8 Summary: New Solver on Real Time Contour

The theoretical ingredients of the new solver are distributed over Part I. We summarize

the necessary steps of the solver here. Note that there is a similar list of steps in Alg. (I.A.3).

Here, the actual steps we programmed are presented. The solver is operated in such a way

that we repeat the DMFT loop for every subsequent time step like described in the top right

of Fig. I.A.3.

Algorithm I.B.6: Summary of non-equilibrium DMFT with the new solver

Let 𝐻(𝑡) be the Hamiltonian of the lattice system. For every 𝑡𝑁 ∈ {0, Δ𝑡, 2Δ𝑡, … }

do:

0. • If 𝑡𝑁 = 0, then start with an initial guess for the equilibrium impurity Green

function.

When no good guess is available and the solution is suspected to be metallic,

one can usually start from the semicircular density of states.

• If 𝑡𝑁 ≠ 0, one can use the values of the Green function from the last time

step on the non-equilibrium axis, i.e. the first initial guess for the Green

function is:

𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) = 𝐺¬¬¬(𝑡𝑁 − Δ𝑡, 𝑡𝐸) (I.B.226)

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁 − Δ𝑡) (I.B.227)

𝐺>𝑁(𝑡𝑁, 𝑡′
𝑁) = 𝐺>𝑁(𝑡𝑁 − Δ𝑡, 𝑡′

𝑁) (I.B.228)

𝐺>𝑁(𝑡′
𝑁, 𝑡𝑁) = 𝐺>𝑁(𝑡′

𝑁, 𝑡𝑁 − Δ𝑡) (I.B.229)

𝐺<𝑁(𝑡𝑁, 𝑡′
𝑁) = 𝐺>𝑁(𝑡𝑁 − Δ𝑡, 𝑡′

𝑁) (I.B.230)

𝐺<𝑁(𝑡′
𝑁, 𝑡𝑁) = 𝐺<𝑁(𝑡′

𝑁, 𝑡𝑁 − Δ𝑡) (I.B.231)

For all:

𝑡′
𝑁 ≤ 𝑡𝑁 (I.B.232)

|𝑡𝐸| ≤ 𝑡𝐸,𝑚𝑎𝑥 (= 20 in the present thesis) (I.B.233)
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1. Compute 𝐺𝑘 from the impurity Green function 𝐺 and then the new Δ from 𝐺𝑘 like

described in Sec. I.B.4. If the investigated lattice is the Bethe lattice one can instead

compute the updated hybridization function with: Δ(t, t′) = 𝑣(t) 𝐺(𝑛)
IMP(t, t′) 𝑣(t′)∗,

for all t ≤ 𝑡𝑁 and t′ ≤ 𝑡𝑁 (according to Fig. I.A.3, bottom)

2. Compute the hopping amplitudes of the Anderson Impurity Model with Alg. (I.B.5)

to set the bath parameters. Note that 𝑡𝑁,𝑚𝑎𝑥 in Alg. (I.B.5) corresponds to 𝑡𝑁 −Δ𝑡

here.

3. Compute the Green function of the Anderson Impurity Model, for all t ≤ 𝑡𝑁 and

t′ ≤ 𝑡𝑁 (according to Fig. I.A.3, bottom), like described in Alg. (I.B.4). Use MPS

and swap gates for the time-evolution like described in Secs. I.B.6 and I.B.7. Note

that 𝑡𝑁,𝑚𝑎𝑥 in Alg. (I.B.4) corresponds to 𝑡𝑁 − Δ𝑡 here.

4. Go back to step 1 and repeat until the Green function and hybridization function

at 𝑡𝑁 are converged. If they are converged, then increase 𝑡𝑁 → 𝑡𝑁 + Δ𝑡 and go to

step 0.

The total computational cost of the solver cannot be easily quantified in advance, because

the required matrix dimension 𝑚 to represent the quantum state of the Anderson Impurity

Model as an MPS up to a certain accuracy (see the keyword discarded weight in Ref. 30)

depends on the type of quench investigated in 𝐻(𝑡) and on how close one operates to the

Mott transition. The computational cost of MPS operations goes like O(𝑚3). Additionally,

with the naïve integration scheme we use here we need to compute the Green function

𝐺(t, t′) for every combination of t and t′. Suppose that we want the non-equilibrium DMFT

loop to converge up to some 𝑡𝑁,𝑚𝑎𝑥. Then there is a computational cost of the order of

O(𝑡2
𝑁,𝑚𝑎𝑥 + 𝑡𝑁,𝑚𝑎𝑥 𝑡𝐸,𝑚𝑎𝑥). Because the required matrix dimension is a function of time the

total computational cost is of the order of O(∑𝑡𝑁
(𝑡𝑁 + 𝑡𝐸,𝑚𝑎𝑥 + 𝑚(𝑡𝑁)3) Δ𝑡).
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New Solver: Tests and First Results
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I.C.1 Model

To test our new non-equilibrium DMFT solver, we replicate and extend the simulations

done in Ref. 52 and the subsequent Ref. 53, where the authors used weak-coupling CTQMC

(see Sec. I.B.5) as the solver. We investigate the Hubbard model at half-filling on the Bethe

lattice, simulating the situation where the initial state is the ground state at zero temperature

and the system is time-evolved after a quench in the interaction parameter 𝑈. For an easier

comparison with Ref. 52 we will use a different notation for time in this subpart of the present

thesis and 𝑡 denotes what is the non-equilibrium time 𝑡𝑁 in the rest of Part I. We will provide

energies in units of hopping, and times in units of inverse hopping.

𝐻 = − ∑
⟨𝑖,𝑗⟩,𝑠

𝑐†
𝑖,𝑠𝑐𝑗,𝑠 + 𝑐†

𝑗,𝑠𝑐𝑗,𝑠 + 𝑈(𝑡) ∑
𝑖

(𝑛𝑖,↑ − 1
2

) (𝑛𝑖,↓ − 1
2

) (I.C.1)

𝑈(𝑡) =
⎧{
⎨{⎩

𝑈0 if 𝑡 ≤ 0

𝑈1 if 𝑡 > 0
(I.C.2)

In Ref. 46, several quenches of this kind with 𝑈0 > 0 and non-zero temperature 𝛽 = 5 were

investigated as a proof of concept for the Non-Crossing Approximation and its generalizations.

Usually, action based solvers cannot do DMFT at zero temperature, because the L-shaped

contour would have to go to infinity on the imaginary axis. The authors of Ref. 52 and 53

circumvented this problem by considering only the non-interacting initial state of 𝑈0 = 0. In

this case the Green function only needs to be computed on the real axis with the impurity

solver because the self-energy is strictly zero if one of the time arguments lies on the imaginary

axis53.

∀𝜏 ∶ Σ ¬¬¬
𝐿(𝜏, 𝑡) = Σ¬¬¬

𝐿(𝑡, 𝜏) = 0 (I.C.3)

This simplifies the computations since all components can be related to the real time branch

of the Green function53. In Ref. 52, the double occupancy per lattice site, the momentum
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Table I.C.1. Summary of the main parameters used for the simulations in this thesis. The step
numbers inside the parenthesis refer to those in Fig. I.B.4. The cutoff is defined in Def. (I.B.12).
The linear prediction is described in Sec. VI.2.

cutoff, equilibrium axis (step 5b) 10−08

cutoff, forward time-evolution (step 1) 10−10

cutoff, backwards time-evolution (step 3b) 10−08

time step 10−2

bath sites, first bath 99

bath sites, second bath 100

𝑡𝐸,𝑚𝑎𝑥, impurity solver 20

𝑡𝐸,𝑚𝑎𝑥, linear prediction 100

distribution, and its discontinuity at the Fermi-level were calculated:

𝑑(𝑡) = ⟨𝑛0,↑(𝑡) 𝑛0,↓(𝑡)⟩ (I.C.4)

𝑛𝜖(𝑡) = ⟨𝑐†
𝜖𝑘(𝑡) 𝑐𝜖𝑘

(𝑡)⟩ (I.C.5)

Δ𝑛(𝑡) = lim
𝜖→0+

(𝑛−𝜖(𝑡) − 𝑛𝜖(𝑡)) (I.C.6)

In the case of 𝑈0 = 0, the initial double occupancy can easily be calculated, because the two

spin directions do not interact:

𝑈0 = 0 ∶ 𝑑(0) = ⟨𝑛0,↑(0) 𝑛0,↓(0)⟩ = ⟨𝑛0,↑(0)⟩ ⟨𝑛0,↓(0)⟩ = 1
2

1
2

= 1
4

(I.C.7)

In the present thesis, we measure the same quantities and furthermore investigate different

quenches with 𝑈0 ≠ 0, which is now possible with our new solver at zero temperature.

To use a Matrix Product State based solver, one must choose suitable values for the cutoff

and other parameters. They are specified in table I.C.1. To compensate for small numerical

errors, we enforce particle-hole symmetry by averaging pairs of hopping amplitudes to. Let
̃𝑉−/+ be the hopping amplitude obtained with Alg. (I.B.5). The actual hopping amplitudes

𝑉− of the first bath used for the impurity solver are computed as follows.

𝑉−(𝜖, 𝑡) = 1
2

( ̃𝑉−(𝜖, 𝑡) + ̃𝑉−(−𝜖, 𝑡)∗) (I.C.8)
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The same holds true for the second bath where we average over two corresponding bath

orbitals that are occupied and empty in the initial state. In Sec. I.B.3 we explain that we

couple two bath sites to the impurity for every time slice, where one of those bath sites is

initially occupied and the other is initially empty. Let 𝑝 be a bath site of the second bath

that is initially empty and 𝑝 be the bath site of the second bath that gets coupled to the

impurity at the same time slice. Since Δ<𝑁
+ (𝑡, 𝑡′) = Δ>𝑁

+ (𝑡, 𝑡′)∗ holds true when the system

is particle-hole symmetric49, we enforce particle-hole symmetry for the second bath in the

following way:

init. occ.
⏞𝑉+,𝑝(𝑡) = 1

2
(

init. occ.
⏞̃𝑉+,𝑝(𝑡) +

init. empty
⏞̃𝑉+,𝑝(𝑡)∗ ) (I.C.9)

𝑉+,𝑝(𝑡)⏟
init. empty

= 1
2

( ̃𝑉+,𝑝(𝑡)⏟
init. occ.

+ ̃𝑉+,𝑝(𝑡)∗⏟
init. empty

)
∗

(I.C.10)

Spin symmetry is enforced by taking the average of the hopping amplitudes of spin-up and

spin-down. We do not numerically enforce half-filling at the impurity level, but we check that

the initial state is in the correct particle sector at the impurity after performing the ground

state search with DMRG. We start with an initial state of the Anderson Impurity Model

that is half-filled on the whole system. This means that the number of spin-up electrons in

the initial state of the impurity and the first bath is 1+𝑁𝑏,−
2 , where 𝑁𝑏,− is the number of

bath sites of the first bath. The second bath, which is initially decoupled from the impurity,

contains additional 𝑁𝑏,+
2 spin-up electrons, where 𝑁𝑏,+ is the number of bath sites of the

second bath. The number of spin-down electrons is equal to number spin-up electrons in each

bath of the initial state.
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I.C.2 Double Occupancy

I.C.2.1 Comparison with Existing Results (𝑈0 = 0)

In Fig. I.C.1 the results of the double occupancy taken from Ref. 52 are shown. One of

the main results of the referenced publications 52 and 53 is that there is fast thermalization

at 𝑈1 = 𝑈𝑑𝑦𝑛
𝑐 = 3.2, indicated by a fast convergence to zero of the discontinuity Δ𝑛(𝑡) at

the Fermi-level, and a qualitatively different behavior of the system depending on whether

𝑈1 < 𝑈𝑑𝑦𝑛
𝑐 or 𝑈1 > 𝑈𝑑𝑦𝑛

𝑐 . This will be examined in Sec. I.C.3.

Here, we will focus on the double occupancy, where the qualitatively different behavior with

𝑈1 can also be seen, albeit not as well as with the momentum distribution. When 𝑈1 < 𝑈𝑑𝑦𝑛
𝑐 ,

the double occupancy quickly decays from its initial value and slowly thermalizes afterwards52.

For 𝑈1 > 𝑈𝑑𝑦𝑛
𝑐 , Ref. 52 points out an oscillating behavior that is well understood in the

atomic limit52. In Fig. I.C.2 a comparison between the double occupancy taken from Ref. 52

and the one computed with our new solver is shown. The time series align very well, with

maximum differences of only about 4 ⋅ 10−3. Filling conservation with our solver holds up

very well and the difference between the single up/down expectation value and the analytic

value at half-filling is very small: ∣⟨𝑛↑(𝑡)⟩ − 0.5∣ ⪅ 10−4, whereas in Ref. 52 the difference111

is ∣⟨𝑛↑(𝑡)⟩ − 0.5∣ ⪅ 10−3. This may explain some of the small deviations in Fig. I.C.2.

0.13

0.17

0.21

0.25

d
(t

)

U=0.5

U=1

U=1.5

U=2

U=2.5

U=3 U=3.3
U=4

U=5

U=6

U=8

0 1 2 3 4
t

0 1 2 3

a b

t

Figure I.C.1. Plot taken from Ref. 52 (𝑈0 = 0). The double occupancy is shown as a function of
time for different 𝑈1. The left column is for values of 𝑈1 < 3.2, while the quenches 𝑈1 > 3.2 are in
the right column.
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Figure I.C.2. Double occupancy per site as a function of time for 𝑈0 = 0, calculated with our new
solver. The dashed lines are taken from Ref. 52 for comparison.
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I.C.2.2 New Results, Interacting Initial States

One great improvement of the new solver is that we are not restricted to specific parameter

ranges and we can simulate different initial interaction strengths 𝑈0 ≠ 0. The time series

for the double occupancies can be seen in Fig. I.C.3 and the overall appearance agrees very

well with the first expectations one would have on how the system would behave after the

quench. For 𝑈1 < 𝑈0, the system increases the number of double occupations versus the

initial state, while it decreases the number of double occupations 𝑈1 > 𝑈0. For small 𝑈1,

the double occupancy appears to exhibit damped oscillations, possibly for all 𝑈1 on the left

column of Fig. I.C.3. We show the double occupancy including larger times for a few cases in

Fig. I.C.4, where the damped oscillations are more clearly visible. For larger 𝑈1 (right column

of Fig. I.C.3), we see again an oscillating behavior like for 𝑈0 = 0 that is well understood in

the atomic limit52. An apparent shift of 𝑈𝑑𝑦𝑛
𝑐 towards larger 𝑈1 of the onset of this oscillating

behavior will be discussed in Sec. I.C.3.4.

Crossings at Constant 𝑈1

An interesting phenomenon can be observed when we group the double occupancy time

series by 𝑈1, as shown in Figs. I.C.5 and I.C.6. If 𝑈0 and 𝑈1 are both small, time series

with the same 𝑈1 intersect each other at nearly the same time of 𝑡 ≈ 0.55 in units of inverse

hoppings. At the crossing point the double occupancy is about the same as the equilibrium

double occupancy of 𝑈1. The double occupancies also appear to converge to approximately

this same value at large times, when 𝑈1 is not too large. Furthermore, for very small 𝑈1

there seems to be a second crossing point at 𝑡 ≈ 1.65. These crossings vanish at higher

𝑈1 ≈ 3.5. This suggests that there may be an effective model for the Bethe lattice based on

the Taylor series with respect to 𝑈 which is a reasonable approximation for small 𝑈, even in

non-equilibrium situations. We also investigated the behavior of the crossing points for equal

𝑈1 with respect to the time step and the cutoff. The results can be seen in Fig. I.C.7. They

show only a slight dependence on these computational parameters, with the area enclosed by

the crossing points staying approximately constant.
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Figure I.C.3. Double occupancy per site as a function of time for 𝑈0 ≠ 0. Some of the time series
end at earlier times 𝑡 < 3, which is not due to a limitation of the solver. These simulations were
stopped there during the exploration of the parameter space.
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Figure I.C.4. Examples of a few quenches where we performed simulations to longer times than the
value of 𝑡 = 3, which is used in the rest of the present part. The maximum time here is arbitrary
and not a consequence of the computational cost.
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Figure I.C.5. Double occupancy as a function of time for several 𝑈0 grouped by 𝑈1. For small
𝑈1, there are crossings at 𝑡 ≈ 0.55, at which the double occupancies are almost the same as the
equilibrium double occupancy of 𝑈1. For 𝑈1 = 0.5 and 𝑈1 = 1, there seems to be a second crossing
point at 𝑡 ≈ 1.6. The small plots on the right hand side, all on the same scale, zoom in on the
crossing areas.
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Figure I.C.6. Double occupancy as a function of time for several 𝑈0 grouped by 𝑈1. For small
𝑈1, there are crossings at 𝑡 ≈ 0.55, at which the double occupancies are almost the same as the
equilibrium double occupancy of 𝑈1. The small plots on the right hand side, all on the same scale,
zoom in on the crossing areas. The crossing points apparently dissolve around 𝑈1 ≈ 3.5.
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Figure I.C.7. Influence of computational parameters on the crossings of the double occupancy as
a function of time, plotted for several 𝑈0 and grouped by 𝑈1. The axes are centered around the
crossing regions mentioned above. The solid lines mark simulations with the main parameter tuples
used for this thesis. The dashed lines mark simulations with a smaller time step Δ𝑡 = Δ𝑡𝑚𝑎𝑖𝑛

2 . The
dash-dotted lines mark simulations with a larger cutoff of 10−8 for forward time-evolution and 10−6

for backward time-evolution after the creation/annihilation operator has been applied. Some dashed
and dash-dotted lines are not visible to the eye, because they are on top of their corresponding solid
lines. It can be seen that the intersection area stays almost the same for the different parameter sets
and there is no clear trend visible of a growing or shrinking crossing area.

123



Momentum Distribution and Discontinuity of Time-Dependent Occupation

I.C.3 Momentum Distribution and Discontinuity of Time-

Dependent Occupation

One of the main results of Ref. 52 is that at 𝑈0 = 0 there is fast thermalization at

𝑈1 = 𝑈𝑑𝑦𝑛
𝑐 = 3.2, indicated by a fast convergence to zero of the discontinuity Δ𝑛(𝑡) at

the Fermi-level, and a qualitatively different behavior of the system depending on whether

𝑈1 < 𝑈𝑑𝑦𝑛
𝑐 or 𝑈1 > 𝑈𝑑𝑦𝑛

𝑐 . When 𝑈1 < 𝑈𝑑𝑦𝑛
𝑐 , the authors of Ref. 52 find that the discontinuity

settles on a prethermalization plateau, before tending to zero on long time scales. On the

other hand, when 𝑈1 > 𝑈𝑑𝑦𝑛
𝑐 , they report collapse-and-revival oscillations, where the time

series of the discontinuity forms a damped oscillation with zero as minimal value. The results

of Ref. 52 are shown in Fig. I.C.8. In the present thesis, we will not determine whether the

system thermalizes after the quench for 𝑈0 > 0, but will investigate the behavior of the

discontinuity of the momentum distribution at the Fermi-level.

In order to compute the momentum distribution ⟨𝑛𝜖(𝑡)⟩ = Im(𝐺<
𝜖 (𝑡, 𝑡)), one must solve

the following integral equation on the contour, like described in Sec. I.B.4. Note that 𝜖 = 𝜖𝑘

corresponds to the energy of the free-particle eigenstate 𝑘.

𝐺 = 𝐺𝜖 + 𝐺𝜖 ∗ Δ ∗ 𝐺 − 𝐺𝜖 ∗ 𝜀 ∗ 𝐺 (I.C.11)
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Figure I.C.8. Plot taken from Ref. 52 (𝑈0 = 0). The discontinuity of the momentum distribution
as a function of time is shown for different 𝑈1. The left column is for values of 𝑈1 < 3.2, while the
quenches 𝑈1 > 3.2 are on the right column.
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On the contour with two real time axes this poses a small problem because there may be

𝐺 ¬¬¬
𝜖 (𝑡𝐸, 𝑡𝑁) (or other mixing components) that decay very slowly to zero with respect to 𝑡𝐸,

and the momentum resolved Green function may not have converged to zero by the maximum

𝑡𝐸 calculated, altering the results. To circumvent this problem we damp the Green function

and the hybridization function with an exponentially decaying function after performing the

linear prediction (Sec. VI.2), which amounts to convoluting the Green function with a Lorentz

peak in 𝜔-space. For the single components this means:

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) ⟶ 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝑒−𝛼|𝑡𝐸| (I.C.12)

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) ⟶ 𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝑒−𝛼|𝑡𝐸| (I.C.13)

𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) ⟶ 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) 𝑒−𝛼|𝑡𝐸| (I.C.14)

𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) ⟶ 𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) 𝑒−𝛼|𝑡𝐸| (I.C.15)

𝐺>𝑁(𝑡𝑁, 𝑡𝑁) ⟶ 𝐺>𝑁(𝑡𝑁, 𝑡𝑁) (I.C.16)

𝐺<𝑁(𝑡𝑁, 𝑡𝑁) ⟶ 𝐺<𝑁(𝑡𝑁, 𝑡𝑁) (I.C.17)

Note that the non-equilibrium components stay unaltered. We did the calculation with several

different dampings 𝛼 ∈ {1
5 , 1

6 , 1
7 , … , 1

20} for later extrapolation to 𝛼 = 0 (see below). Although

such an approach generally seems to work for continuous functions, it is more difficult in the

present case, because the discontinuity of the momentum distribution at 𝜖 = 0, which is the

quantity of interest here, becomes convoluted with the damping function.
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I.C.3.1 Momentum Distribution at Finite Broadening

To give a general impression of the time-dependent momentum distribution we present the

data with the lowest damping 𝛼 = 1
20 in Figs. I.C.9 to I.C.13. The number of nodes for 𝜖 is

equal to 200, which are equally distributed over the range [−2, 2]. In these plots, areas where

the absolute values of the slope of ⟨𝑛𝜖(𝑡)⟩ with respect to 𝜖 is greater than 0.4 are marked in

red to indicate the area with a possible discontinuity at 𝛼 = 0. In Fig. I.C.9 we see that the

results qualitatively align very well with the results of Ref. 52 (Fig. I.C.8). For 𝑈1 ≲ 3.2 there

is a shrinking and plateauing gap, while for 𝑈1 ≳ 3.2 we see the collapse-and-revival regime

indicated by the shrinking and growing red areas. These results stay almost unchanged in the

cases of 𝑈0 = 0.5 and 𝑈0 = 1.0, where we see a potential rapid convergence to zero of the

discontinuity at 𝑈1 ≈ 3.5. However, at 𝑈0 = 2 there is rapid convergence at 𝑈1 = 4, whereas

at 𝑈0 = 0, the case 𝑈1 = 4 shows oscillations. This indicates that there is an increasing 𝑈𝑑𝑦𝑛
𝑐

with increasing 𝑈0. Because the data points with respect to 𝑈1 are rather sparse, we cannot

determine whether there is a range of 𝑈1 where the rapid convergence happens or whether it

is one singular 𝑈1. The behavior of the red regions in other cases also suggests that 𝑈𝑑𝑦𝑛
𝑐

shifts to higher values when 𝑈0 grows. For example, the size of the red region is larger for the

quench 𝑈0 = 1, 𝑈1 = 2 than for 𝑈0 = 0, 𝑈1 = 2. In Sec. I.C.3.4 (Fig. I.C.18), we will show

that after extrapolating the data to zero broadening, one can indeed see a clear shift towards

larger 𝑈1 when the initial coupling 𝑈0 is increased.
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U0 = 0.0

Figure I.C.9. ⟨𝑛𝜖(𝑡)⟩ for 𝑈0 = 0 and several values of 𝑈1. In this figure there is an applied
broadening of 𝛼 = 1

20 . The red regions mark where the absolute value of the slope of ⟨𝑛𝜖(𝑡)⟩ with
respect to 𝜖 is greater than 0.4.
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U0 = 0.5

Figure I.C.10. ⟨𝑛𝜖(𝑡)⟩ for 𝑈0 = 0.5 and several values of 𝑈1. In this figure there is an applied
broadening of 𝛼 = 1

20 . The red regions mark where the absolute value of the slope of ⟨𝑛𝜖(𝑡)⟩ with
respect to 𝜖 is greater than 0.4.
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U0 = 1.0

Figure I.C.11. ⟨𝑛𝜖(𝑡)⟩ for 𝑈0 = 1 and several values of 𝑈1. In this figure there is an applied
broadening of 𝛼 = 1

20 . The red regions mark where the absolute value of the slope of ⟨𝑛𝜖(𝑡)⟩ with
respect to 𝜖 is greater than 0.4.
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U0 = 2.0

Figure I.C.12. ⟨𝑛𝜖(𝑡)⟩ for 𝑈0 = 2 and several values of 𝑈1. In this figure there is an applied
broadening of 𝛼 = 1

20 . The red regions mark where the absolute value of the slope of ⟨𝑛𝜖(𝑡)⟩ with
respect to 𝜖 is greater than 0.4.

130



Momentum Distribution and Discontinuity of Time-Dependent Occupation

Figure I.C.13. ⟨𝑛𝜖(𝑡)⟩ for 𝑈0 = 3, 𝑈0 = 4, and 𝑈1 = 0. In this figure there is an applied broadening
of 𝛼 = 1

20 . The red regions mark where the absolute value of the slope of ⟨𝑛𝜖(𝑡)⟩ with respect to 𝜖 is
greater than 0.4.
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I.C.3.2 Extrapolation to Zero Broadening

To test if the broadened momentum distribution is consistent with Ref. 52 we extrapolate

with a series of polynomial fits to zero damping/broadening. This is described in Alg. (I.C.7)

and illustrated in Fig. I.C.14. When solving Eq. (I.C.11) the particle-hole symmetry can be

violated by numerical errors, possibly introduced by the linear prediction (Sec. VI.2). For

extrapolating the discontinuity to zero damping, we re-introduce particle-hole symmetry for

the momentum distribution by averaging over 𝜖 and −𝜖.

⟨𝑛𝜖,𝛼(𝑡)⟩ ⟵ 1
2

(⟨𝑛𝜖,𝛼(𝑡)⟩ + ⟨𝑛−𝜖,𝛼(𝑡)⟩) (I.C.18)

Algorithm I.C.7: Extrapolation of the discontinuity to zero broadening

1. For every 𝛼 do a polynomial fit of 4th degree for ⟨𝑛𝜖,𝛼(𝑡)⟩ with respect to 𝜖 in the

range −1.5 ≤ 𝜖 ≤ −0.25.

⟨𝑛𝜖,𝛼(𝑡)⟩ ≈ 𝑝𝑛(𝜖, 𝛼, 𝑡) (I.C.19)

Assuming particle-hole symmetry, set the gap 𝑔(𝛼, 𝑡) for this particular 𝛼 to:

𝑔(𝛼, 𝑡) = 2 𝑝𝑛(𝜖 = 0, 𝛼, 𝑡) − 1 (I.C.20)

2. Do a do a polynomial fit of 4th degree for 𝑔(𝛼, 𝑡) with respect to 𝛼.

𝑔(𝛼, 𝑡) ≈ 𝑝𝑔(𝛼, 𝑡) (I.C.21)

3. The extrapolated gap at 𝜖 = 0 is 𝑝𝑔(𝛼 = 0, 𝑡).

Note that we first fit the gap for every 𝛼 and then extrapolate to 𝛼 = 0. To test the

stability of the fit, we perform a bootstrap like analysis where we do the steps described

in Alg. (I.C.7) 128 times and every time we omit 50 % of the 𝜖 and 𝛼 points.
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interval used 
for fit

polynomial fit extrapolated 
value at ε = 0
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Figure I.C.14. Illustration of the extrapolation process described in Alg. (I.C.7). On the left hand
side, the fit of the broadened momentum distribution with a polynomial of 4th degree is shown for
two values of 𝛼. On the right hand side, the resulting gap 𝑔(𝛼, 𝑡) = 2 𝑝𝑛(𝜖 = 0, 𝛼, 𝑡) − 1 is shown for
each 𝛼 and extrapolated to 𝛼 = 0.

An alternative approach, that has slightly bigger computational cost, is to first extrapolate

the momentum distribution to 𝛼 = 0 and then to determine the gap as described in Alg. (I.C.8)

and illustrated in Fig. I.C.15.

Algorithm I.C.8: Extrapolation of the discontinuity to zero broadening (un-

used alternative)

1. For every 𝜖 do a polynomial fit of 4th degree for ⟨𝑛𝜖,𝛼(𝑡)⟩ with respect to 𝛼.

⟨𝑛𝜖,𝛼(𝑡)⟩ ≈ 𝑝𝑛(𝜖, 𝛼, 𝑡) (I.C.22)

The momentum distribution with zero broadening is now approximated with:

⟨𝑛𝜖,𝛼(𝑡)⟩ = 𝑝𝑛(𝜖, 𝛼 = 0, 𝑡) (I.C.23)

2. Do a polynomial fit of the extrapolated momentum distribution in the range

−1.5 ≤ 𝜖 ≤ −0.25 with respect to 𝜖.

⟨𝑛𝜖(𝑡)⟩ ≈ 𝑝𝑔(𝜖, 𝑡) (I.C.24)
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3. Using particle-hole symmetry, the extrapolated gap at 𝜖 = 0 is 2 𝑝𝑔(𝜖 = 0, 𝑡) − 1.

Both methods yield almost identical results, which depend on the exact fit intervals and

the polynomial degree. The uncertainty of the discontinuity, determined by the bootstrap-like

method for either of these two algorithms seems to be smaller generally when the discontinuity

is small. However, for some quenches there appears to be an instability which produces

large jumps, visible for example in the top right of Fig. I.C.17 below. The reason for these

instabilities may be overfitting in the vicinity of the discontinuity. Indeed, in Fig. I.C.15 we

see that the momentum distribution appears to be overestimated below the discontinuity

and underestimated above the discontinuity. A similar peak at small |𝜖| can be seen when

computing the equilibrium occupation function − Im(𝐺<𝐸(𝜔))
2 Im(𝐺𝑅𝐸(𝜔)) (not shown), which should be

a simple step function. The origin of the small overfitting is probably the linear prediction

(Sec. VI.2) of the Green function in equilibrium time. The occurrence and frequency of the

instabilities depends rather noticeably on the fit range in 𝜖. Further research regarding a

stable approximation for large 𝑡𝐸 should be done because stable computations of 𝐺𝜖 are of

prime importance when doing simulations on a different geometry than the Bethe lattice,

since 𝐺𝜖 is then needed to compute the hybridization function. The two algorithms produce

almost identical results, including error bars. In the following we will take the results from

Alg. (I.C.7).
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interval used 
for fit

extrapolated 
value at ε = 0

overfitting

Figure I.C.15. Illustration of Alg. (I.C.8). Top row: 𝑛𝜖,𝛼(𝑡) at 𝑡 = 0.2 as a function of 𝜖 for
the different dampings of the Green function, the extrapolation to zero damping (red), and the
polynomial fit of the extrapolation (blue). In the example shown, there appears to be an overfitting in
the vicinity of the discontinuity, probably stemming from the linear prediction of the Green function.
In order to extract the discontinuity to zero damping the red line is fitted with a polynomial in a
suitable energy range (−1.5 ≤ 𝜖 ≤ −0.25) and extrapolated to 𝜖 = 0 (blue). Bottom row: Polynomial
fit of 4th degree, in 𝛼, to perform the extrapolation, for two different 𝜖. The dots show the ⟨𝑛𝜖,𝛼(𝑡)⟩
obtained from the deconvolution of the damped Green function 𝐺 (Eq. (I.C.11)) and the solid lines
depict the polynomial fit.
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I.C.3.3 Comparison with Existing Results (𝑈0 = 0)

The results of the extrapolation for 𝑈0 = 0 can be seen in Fig. I.C.16. Although we

essentially perform a fit of a fit, the results are in very good agreement with Ref. 52, with a

qualitative change in behavior at 𝑈1 = 𝑈𝑑𝑦𝑛
𝑐 ≈ 3.2: For 𝑈1 < 𝑈𝑑𝑦𝑛

𝑐 , there is a shrinking and

plateauing discontinuity, while for 𝑈1 > 𝑈𝑑𝑦𝑛
𝑐 the discontinuity reaches zero and oscillates

afterwards.

Figure I.C.16. Approximate discontinuity at the fermi level as a function of time for 𝑈0 = 0,
computed with Alg. (I.C.7). The light colored regions mark the uncertainty (1 𝜎) stemming from
the bootstrap-like analysis described below Alg. (I.C.7). They are hard to see in this plot, because
the standard deviation of the bootstrap samples is small. The dashed lines are taken from Ref. 52
for comparison.
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I.C.3.4 New Results, Interacting Initial States

In Fig. I.C.17 we present the discontinuities at the Fermi-level computed with Alg. (I.C.7).

As a general rule of thumb, it seems that Alg. (I.C.7) is not as stable for 𝑈0 ≠ 0 as it is for

𝑈0 = 0 and we see some jumps in some time series of Fig. I.C.17, especially at 𝑈0 = 0.5. The

extrapolation tends to yield smaller error bars at larger 𝑈1 in the right hand column. The

temporal behavior of the discontinuity resembles that of the double occupancy (Fig. I.C.3): It

curves towards higher values for 0 < 𝑈1 < 𝑈0, and towards lower values for 𝑈1 > 𝑈0. When

𝑈1 < 𝑈0, the maximum of the discontinuity first increases with increasing 𝑈1 (different from

the double occupancy), and the discontinuities of the time series decrease monotonically with

increasing 𝑈1, which also continues for 𝑈1 > 𝑈0.

In line with the behavior already observed in Sec. I.C.3.1, the data show that 𝑈𝑑𝑦𝑛
𝑐 increases

with increasing 𝑈0. At 𝑈1 = 3.0 for example, the value of the discontinuity at large times

increases from about 0.04 at 𝑈0 = 0.5 to about 0.5 at 𝑈0 = 2.0. At 𝑈1 = 4.0, there is a large

oscillation in time for 𝑈0 = 0, which becomes smaller in amplitude for 𝑈0 = 0.5 and is not

present anymore at 𝑈0 = 2.0, where the discontinuity instead exhibits fast convergence to

zero. To better visualize that 𝑈𝑑𝑦𝑛
𝑐 increases, we plot the minimum of the discontinuity in

the interval 𝑡 ∈ [0, 3] in Fig. I.C.18, showing an apparent shift of the curves for increasing 𝑈0

towards larger 𝑈1.

We also note that the time scale of the collapse-and-revival oscillations increases with

increasing 𝑈0, which can be seen if we compare the time of the first local maximum of the

discontinuity of 𝑈1 = 6 for the different 𝑈0.
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Figure I.C.17. Approximate discontinuity at the fermi level as a function of time for 𝑈0 > 0,
computed with Alg. (I.C.7). The light colored regions mark the uncertainty (1 𝜎) stemming from
the bootstrap-like analysis described below Alg. (I.C.7).
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Figure I.C.18. Minimal discontinuity in the interval 𝑡 ∈ [0, 3] as a function of 𝑈1, taken from
Figs. I.C.16 and I.C.17. It can clearly be seen that for growing 𝑈0 the lines and their intersect with
zero move to higher 𝑈1. For the computation of the minimum the large jumps in the discontinuities
of 𝑈0 = 0.5, 𝑈1 = 2.5 and 𝑈0 = 0.5, 𝑈1 = 3.0 were discarded. The error bars mark the uncertainty
(1 𝜎) stemming from the bootstrap-like analysis described below Alg. (I.C.7). At 𝑈1 = 1.5 the large
error bars belong to 𝑈0 = 2.0.
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I.C.4 Energy

With the momentum distribution we can compute the kinetic energy and the potential

energy per lattice site of the system. Again, there is the difficulty that the kinetic energy gets

altered by the damping of the Green function and we need to extrapolate to zero damping of

the Green function as described in Alg. (I.C.9).

Algorithm I.C.9: Extrapolation of the kinetic energy to zero broadening

1. For every 𝛼 compute the kinetic energy 𝐸𝑘𝑖𝑛(𝑡, 𝛼).

𝐸𝑘𝑖𝑛(𝑡, 𝛼) = ∫
2

−2
𝜖 ⟨𝑛𝜖,𝛼(𝑡)⟩

√
4 − 𝜖2

2𝜋
d𝜖 (I.C.25)

2. Do a do a polynomial fit of 4th degree for 𝐸𝑘𝑖𝑛(𝑡, 𝛼) with respect to 𝛼.

𝐸𝑘𝑖𝑛(𝑡, 𝛼) ≈ 𝑝𝐸(𝛼, 𝑡) (I.C.26)

3. The extrapolated kinetic energy is 𝑝𝐸(𝛼 = 0, 𝑡).

The results of the extrapolation to 𝛼 = 0 are presented in Fig. I.C.19 for several different

quenches. We applied the same bootstrap-like algorithm described below Alg. (I.C.7) but

find, that the uncertainty is smaller the line width in Fig. I.C.19, thus we will not show the

uncertainties here. An important quality criterion for non-equilibrium DMFT solvers is that

the total energy per lattice site stays constant when the Hamiltonian is constant. For the

simulation setup in this section, this means a constant energy after the quench. We find that

the total energy stays constant within a reasonable margin with our new solver. The observed

small changes with respect to time may mostly stem from the extrapolation to 𝛼 = 0. This

is indicated by the fact that the total energy, extrapolated to 𝛼 = 0, changes the least with

respect to time when it changes the least with respect to 𝛼. In Fig. I.C.20 we present the total

energy per lattice site before and after the quench. Note that the total energy per lattice site

after the quench is a linear function with respect to 𝑈1, since the kinetic energy immediately
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Figure I.C.19. Potential energy (red), kinetic energy extrapolated with a polynomial to zero
broadening (blue), total energy for various broadenings (thin gray lines), and extrapolated total
energy (black) as a function of time for several quenches.

after the quench must be the same as immediately before because of its sudden nature, and

the potential energy is a linear function with respect to 𝑈.
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Figure I.C.20. Total energy per site before the quench (𝐸0, left) as a function of 𝑈0 and total
energy per site after the quench (𝐸1, right) as a function of 𝑈1.
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I.C.5 Convergence and Computational Scaling

The relevant control parameters for Matrix Product State based DMFT solvers are the

time-step and the cutoff (Def. (I.B.12)). In Fig. I.C.21 we present a comparison of the double

occupancy, for a computationally difficult quench, computed with the cutoff used for the

simulations in this section and several other cutoffs. We find that the results converge very

well with decreasing cutoff and additionally note that the double occupancy of Ref. 52 for

this specific quench appear to become statistically unstable beyond 𝑡 ≈ 2 while our new

solver remains stable (see Fig. I.C.2). Even the larger cutoffs, where the simulations are

quantitatively different than the simulation with the main cutoff, seem to at least indicate

a good qualitative description of the behavior. On the relevant scales there is no difference

in the double occupancies of the simulation with the main cutoff and a simulation with a

magnitude smaller cutoff.

The main obstacle for reaching long times with Matrix Product State based solvers is

the increasing entanglement entropy after the quench. This in turn increases the required

matrix dimensions involved in the computation, which are shown in Figs. I.C.21 and I.C.22.

Figure I.C.21. Left: Double occupancy as a function of time for 𝑈0 = 0 and 𝑈1 = 6 for several
cutoff parameters. The first number, after the rightwards arrow, indicates the cutoff used for forward
time-evolution, while the second number, after the leftwards arrow, indicates the cutoff used for
backwards time-evolution after the creation/annihilation operator has been applied to the state. The
black line marks the main parameter tuple used for the simulations of the thesis. Right: Maximum
bond dimension of |𝜓(𝑡)⟩ of the Anderson Impurity Model as a function of time.
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We see an exponential increase in bond dimension similar to Ref. 51. The most expensive

calculation in the process is the Singular Value Decomposition of an MPS matrix which has

the computational cost of O(𝑚3), where 𝑚 is the bond dimension of the Matrix Product

State. We performed our simulations for all independent components (spin-up, spin-down,

right-mixing, left-mixing, greater non-equilibrium, lesser non-equilibrium) in parallel with

HTCondor112. As a rule of thumb for this setup: For the lower bond dimensions in Fig. I.C.22,

one iteration for one 𝑡𝑁 of the DMFT loop takes ≈ 10 minutes, for the higher bond dimensions

in Fig. I.C.22 it can take several hours to complete. There is no general description on how

the entanglement entropy grows, because it depends on the type of quench investigated. For

the quenches performed here, we find that the bond dimension 𝑚, which is indirectly linked

to the entanglement entropy, grows like 𝑚 ∝ 𝑒const 𝑡. This means that the computational

cost, for the type of quench investigated here, grows like O(𝑒3 const 𝑡). Note that the bond

dimension is not an observable and different geometric orderings of the underlying Matrix

Product State may lower the required bond dimension. Another possibility to lower the bond

dimension may be to find a different mapping for the second bath (see Sec. I.B.3), where the

𝜖 are distributed over a suitable energy range and not set to 𝜖𝑝 = 𝜇, possibly allowing the

time-dependent hopping amplitudes to converge in time when there is a steady-state. Future

research in this area may prove to be fruitful and provide better orderings of the Matrix

Product State. Note that the bond dimensions depicted in Figs. I.C.21 and I.C.22 are for the

MPS of |𝜓(𝑡)⟩. Most of the computations need to be performed for the MPS representations

of 𝑐 |𝜓(𝑡)⟩ and 𝑐† |𝜓(𝑡)⟩. They have a much lower bond dimension, because the application of

these operators remove states from |𝜓(𝑡)⟩. For example in the MPS representation of 𝑐 |𝜓(𝑡)⟩

we do not need to store basis states where the impurity of |𝜓(𝑡)⟩ is empty and vice versa

for 𝑐† |𝜓(𝑡)⟩. Furthermore, we use the conservation of quantum numbers (particle number,

spin) in ITensor107, which means the tensors of the MPS is split up into different blocks for

the different quantum numbers and the bond dimension we provide here is the total bond

dimension of all blocks. The computational cost is dominated by the size of the largest block.
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Figure I.C.22. Maximum bond dimension of |𝜓(𝑡)⟩ of the Anderson Impurity Model as a function
of time at constant cutoff. The plots are grouped by 𝑈0, except for the bottom row where 𝑈0 = 3
and 𝑈0 = 4 are shown. In each plot, only two time series are colored to provide a better overview.
For the simulation parameters see table I.C.1. In the bottom right we show the maximum bond
dimension of longer runs, some of which appear in Fig. I.C.4.

I.C.6 Conclusions

In the previous sections we replicated and extended the results of Ref. 52 with which our

results agree very well for the quenches with 𝑈0 = 0 at zero temperature for the double
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occupancy and momentum distribution. The authors of Ref. 52 were only able to simulate

this particular quench at zero temperature, by using the fact that the self-energy vanishes on

the imaginary axis of the L-shaped contour. We demonstrated that the new solver does not

have this restriction and can simulate different quenches with 𝑈0 ≠ 0.

Because the new solver is Hamiltonian based, any observable local to the impurity, such

as the double occupancy, can be directly measured at the impurity. This is not the case

for the momentum distribution, which is not a local observable. To obtain the momentum

distribution, one must solve a contour integral equation as described in Sec. I.B.4. A difficulty

here is the integration with respect to equilibrium time from −∞ to ∞. Since one cannot

time-evolve from −∞ to ∞, one must extrapolate the values of the Green function for large

equilibrium times from small times by linear prediction and stabilize the computation by

damping the Green function, corresponding to a convolution in energy space. In the previous

section it was seen that this complicates the determination of the exact height of a step like

function like the momentum distribution. Further research should be done in this area to

minimize the influence of the linear prediction and the damping. Note that on the Bethe

lattice this is only a problem for the evaluation of the data, because one does not need 𝐺𝑘 to

do a DMFT loop. Even for different lattice geometries, where 𝐺𝑘 is needed for the 𝑘-sum in

the DMFT loop, damping probably is not a big problem since the 𝑘-sum will likely suppress

its negative effects. This claim is supported by the fact that, in equilibrium, MPS based

solvers can be used to reliable predict material properties41,71, and the same linear prediction

and damping scheme needs to be done there.

Another difference of Hamiltonian based solvers to established non-equilibrium solvers

like e.g. the Non-Crossing Approximation (NCA) or CTQMC is in the implementation of

the self-consistency scheme. For the established solvers it is viable to do a global update of

the Green function, meaning that every time slice of 𝐺(t, t′) is updated at once for every

iteration of the DMFT loop (Fig. I.A.3, top left). Although this is also possible to do with

Hamiltonian based solvers, it probably is, in general, better to do several DMFT loops after

increasing the maximum non-equilibrium time by one time step49 (Fig. I.A.3, top right). This

may pose a problem for Hamiltonian based solvers, if the goal is to reach as long simulation

times as are possible with NCA (O(𝑡𝑁 = 100)).
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In general, the new solver is not restricted to any parameter region as long as the entan-

glement entropy stays low, because a growing entanglement entropy means growing matrix

dimensions in the Matrix Product state (MPS) formalism. The matrix dimension is a bottle-

neck for the MPS time-evolution, because the computational cost goes with O(𝑚3), where

𝑚 is the matrix dimension of a MPS matrix. As mentioned in Sec. I.C.5, there is room for

future improvement here, e.g. testing different MPS geometries or finding a different mapping

for the second bath where the 𝜖 are distributed over a suitable energy range and not bound

to 𝜖𝑝 = 𝜇, possibly allowing the time-dependent hopping amplitudes to converge in time

when there is a steady-state. Note that the finite matrix dimension is the only approximation

done with respect to the representation of the quantum state and we can freely change any

parameter of the Hamiltonian or the system without any other approximations. This includes

the hopping amplitude and the chemical potential, and any quenches there could be simulated

without any change to the algorithm.
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Part II

Impact ionization and multiple photon

absorptions in the two-dimensional

photoexcited Hubbard model

(arXiv:2007.16201)
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This part of the thesis contains Ref. 113,

F. Maislinger and H. G. Evertz, “Impact ionization and multiple photon
absorptions in the two-dimensional photoexcited hubbard model,” arXiv
preprint arXiv:2007.16201 (2020).

While DMFT fully accounts for temporal correlations on the impurity, a disadvantage

of this method is the neglect of spatial correlations between the lattice sites64. An ongoing

area of research is the dynamics of photoinduced excitations of the Hubbard model55,61,62,

where spatial correlations may qualitatively alter the results. One important quantity in this

field is the time-dependent double occupancy after a short photon pulse, which is potentially

important for e.g. the solar power industry, because it is linked to the number of mobile

charge carriers. A crucial question here is whether the double occupancy increases further

after the incoming photon pulse, indicating that an excited electron with sufficient energy

excited further electrons from the lower Hubbard band. This effect has been shown to

exist with DMFT55,61,62. To test if this is still the case with spatial correlations taken into

account, we simulated a 4 × 3 Hubbard model, using Lánczos-based methods24. For a better

understanding of the contributing eigenstates, we computed the eigenstate spectrum of the

time-evolved quantum states by Fourier transforming the Loschmidt amplitude, a method

which was independently developed for the present study and also introduced by other authors

in Ref. 114. We analyzed the emerging multiphoton absorptions by applying a gaussian filter,

a method that was, to our knowledge, not used in prior publications. All simulations in

this paper were programmed from the ground up in Python, using only the general purpose

libraries numpy115,116 and scipy117, by the author of this thesis. The calculations and analysis

were performed under guidance from H. G. Evertz. Most of the text (excluding the abstract

and summary) was initially written by the author of this thesis and then modified and finalized

together with H. G. Evertz.
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Introduction

Impact ionization and multiple photon absorptions in the
two-dimensional photoexcited Hubbard model

Florian Maislinger1 and Hans Gerd Evertz1

1Institute of Theoretical and Computational Physics, Graz
University of Technology, 8010 Graz, Austria

(Dated: 31 July 2020)

We study the non-equilibrium response of a 4 × 3 Hubbard model at 𝑈 = 8 under the
influence of a short electric field pulse, with the main focus on multiple photon excitations
and on the change of double occupancy after the pulse. The behavior mainly depends on
the driving frequency of the electric field. The largest change of double occupancy occurs
during the pulse. For frequencies below the Mott gap, we observe multiphoton excitations at
large field intensities. For frequencies beyond the gap energy, there is a region where Auger
recombination reduces the double occupancy after the pulse. Impact ionization (Multi Exciton
Generation), namely a growing double occupancy after the pulse, occurs for frequencies
larger than twice the Mott gap. From the Loschmidt amplitude we compute the eigenstate
spectrum of the quantum state after the pulse, observing multiple distinct photon excitation
peaks, in line with expectations from a quasiparticle picture. We introduce a technique with
which we analyze the time evolution of double occupancy in each peak individually. The
long-term behavior of the double occupancy almost only depends on the absorbed energy,
and we explore the connection of this property to the Eigenstate Thermalization Hypothesis.

II.1 Introduction

One exciting area of research is the influence of
photoexcitations on strongly correlated electron sys-
tems. In strongly correlated materials, one generally
cannot neglect the electron-electron interaction when
describing and predicting material properties, because
strong localization and Coulomb interaction effects
play an important role118. In the context of computa-
tional material science this means that one of its most
prominent approaches, the Density Function Theory
(DFT)1, fails to reliably predict the correct proper-
ties118. There are several possible but computationally
expensive routes one can take to tackle this problem.
One of them is to map the many body Hamiltonian
to a Hubbard type model and to use Dynamical Mean
Field Theory (DMFT)64 to solve it. The approach
we choose here is to consider small lattice sizes, akin
to nano crystals or quantum dots119–122, and to use
precise techniques related to exact diagonalization to
compute the ground state and the time evolution.

An important effect for, e.g., the solar power in-
dustry is impact ionization65,123,124, also called Mul-
tiple Exciton Generation (MEG)122,125–127, Carrier
Multiplication (CM)122, or Multi Carrier Generation
(MCG)124, where an excited electron with kinetic en-
ergy larger than the band or Mott gap of the mate-
rial generates additional excitations through electron-
electron scattering. Impact ionization has been ob-
served experimentally125–131. It would allow to raise

the theoretical efficiency limit of solar cells from ap-
proximately 30%59 to approximately 60%60. How-
ever, impact ionization cannot be used to significantly
increase the efficiency of classical silicon based so-
lar cells132, because the electron-phonon scattering
process is faster by an order of magnitude than the
relevant electron-electron scattering processes133. In
strongly interacting Mott insulators, on the other
hand, the relevant electron-electron scattering pro-
cesses can be much faster than electron-phonon scatter-
ing processes due to strong localization and Coulomb
interaction mentioned above. It has therefore been
proposed to use Mott insulators for photovoltaic pur-
poses65,123,134.

Impact ionization has been numerically confirmed
to exist for the infinite dimensional hypercubic lattice
in a DMFT calculation55 and a quantum Boltzmann
approach63, and in DMFT calculations for a corre-
lated layer connected to two metallic leads61 and for
models of LaVO3 and YTiO3

62. The drawback of
DMFT is that it neglects spatial correlations64. In
the present paper, we take such correlations into full
account. We examine the 4 × 3 Hubbard model, ex-
posed to a short laser pulse55–58,102,135,136. We use
Lánczos-based methods24 to compute the ground state,
and a related scaling method137 to compute the time
evolution. An independent study by Kauch et. al.58

observed impact ionization in Hubbard models, with
the focus on different geometries, disorder, and the
quasiparticle spectrum.
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When the intensity of the electric field is high,
one enters the domain of nonlinear optics, where mul-
tiphoton absorption processes 125,138–150 become rel-
evant. With multiphoton absorption it is possible
to reach excited states beyond a gap, even when
the energy of a single photon is smaller than the
gap. Multiphoton absorption is a single physical pro-
cess described by Quantum Electrodynamics151, dif-
ferent from the consecutive absorption of single pho-
tons138. Experimentally, the necessary field strengths
are achieved by focusing a pulsed laser beam onto a
very small (order of 10−9 cm2) area139. Relevant ap-
plications include multiphoton microscopy139,140 and
high-resolution three dimensional polymerization of
photoresists141–143. High resolution in comparison to
single photon absorption is achieved because of the
nonlinear dependence of multiphoton absorption on
the field intensity143,144. The effect can be utilized
in a variety of materials including molecules138,145,
nano-crystals146–148, cuprates149,150, and chalcogenide
glasses144. We observe multiphoton absorption at high
electric field intensity with a driving frequency below
the Mott gap size.

An interesting phenomenon that has been observed
for many quantum systems is that the long time mean
of the expectation value of an observable can tend to a
value which depends only on the energy of the initial
state. This is the topic of the so called Eigenstate
Thermalization Hypothesis (ETH)152,153. The depen-
dence on energy only can be understood when the
initial state is dominated by a single peak in the eigen-
state spectrum of the Hamiltonian and the relevant
observable varies slowly in eigenenergy. In the present
paper, we observe and explain a similar dependence
on energy only, for states with support in a very large
energy range.

In Sec. II.2 we provide an overview over the model,
briefly present numerical methods, and discuss expec-
tations based on a quasiparticle picture. Sec. II.3.1
shows the time dependence of the double occupancy
during and after the photo pulse, including impact
ionization. We calculate the emerging eigenstate spec-
trum from the Loschmidt amplitude in Sec. II.3.2,
observing a clear peaked structure with distances in
multiple of the photon energy. The time evolution of
the individual peaks is analyzed in Sec. II.3.3. The
long time behavior of the double occupancy is mostly
governed by the amount of absorbed energy during the
pulse. A connection to the Eigenstate Thermalization
Hypothesis is explored in Sec. II.3.4.

Figure II.1. Electric field pulse, for Ω = 8 and 𝐼0 = 0.71.
Inset: time domain. Main figure: absolute value of the
Fourier transform of the electric field. The two peaks are
of Gaussian shape with a width of �̃� = 1

2 .

Figure II.2. Equilibrium density of states of 𝐻(0), at
half filling and 𝑈 = 8 on the 4 × 3 lattice, convoluted
with a Gaussian peak of width 𝜎 = 1

10 for smoothness.

II.2 Model

We investigate a 4 × 3 Hubbard model with open
boundary conditions and nearest-neighbor hopping
𝑣𝑖𝑗(𝑡),

𝐻(𝑡) = 𝐻0(𝑡) + 𝐻1 (II.1a)

𝐻0(𝑡) = − ∑
⟨𝑖𝑗⟩,𝑠

𝑣𝑖𝑗(𝑡) 𝑐†
𝑖,𝑠𝑐𝑗,𝑠 (II.1b)

𝐻1 = 𝑈 ∑
𝑖

(𝑛𝑖,↑ − 1
2

) (𝑛𝑖,↓ − 1
2

) (II.1c)
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at half-filling, ∑𝑖 𝑛𝑖,↑ = ∑𝑖 𝑛𝑖,↓ = 𝑁
2 , 𝑁 = 12.

The initial state at time 𝑡 = 0 is the ground
state, calculated with the Lánczos method24. At time
𝑡 > 0 the system is irradiated by an electric field �⃗�
of frequency Ω, in plane with the 2𝑑 system, and
angled at 45∘ to the lattice. We incorporate the field
into the Hubbard model by the Peierls phase43,54,
𝜙(𝑡) = ∫𝑥𝑗

𝑥𝑖

⃗𝐴(𝑥, 𝑡) d�⃗�, where ⃗𝐴 is the vector po-

tential, with �⃗� = − 𝜕�⃗�
𝜕𝑡 . Then all nearest-neighbor

hopping amplitudes obtain the same time-dependent
complex phase factor

𝑣𝑖𝑗(𝑡) = 𝑣 𝑒𝑖𝜙(𝑡) . (II.2)

We employ a Gaussian shaped light pulse55–58, cen-
tered at time 𝑡𝑖 = 5𝑣−1, with a width of 𝜎 = 2𝑣−1

and intensity 𝐼0, see Fig. II.1, so that

𝜙(𝑡) = −𝐼0 𝑒− (𝑡−𝑡𝑖)2

2 𝜎2 (cos (Ω (𝑡 − 𝑡𝑖)) − cos (−Ω 𝑡𝑖)) .
(II.3)

We investigate the model at 𝑈 = 8𝑣. In the
following, all energies will be specified in units of the
hopping amplitude 𝑣 and all times in units of 𝑣−1.

Our main observable of interest is the total double
occupancy of the system:

𝑑 = ∑
𝑖

𝑛𝑖,↑ 𝑛𝑖,↓ (II.4)

as a measure of excitations of the system. We will use
an increasing double occupancy after the incoming
photon pulse as a measure for impact ionization55.

We approximate the time-evolution operator U by

U(𝑡0 + Δ𝑡, 𝑡0) = T 𝑒−𝑖 ∫𝑡0+Δ𝑡
𝑡0

𝐻( ̄𝑡)𝑑 ̄𝑡 (II.5a)

≈ 𝑒− 𝑖Δ𝑡
2 (𝐻(𝑡0)+𝐻(𝑡0+Δ𝑡)) (II.5b)

We use a modified scaling and squaring method
to compute the action of the matrix exponential
on the state117,137. Convergence of the simula-
tions was verified by using several different time
steps, Δ𝑡 = 10−2 ⋅ 2−𝑛, 𝑛 ∈ {0, 1, 2, 3, 4}. For a
detailed description of a similar numerical setup
see Ref. 57. The density of states was calcu-
lated with 𝐻(0) from the Fourier transform of
−𝑖𝜃(𝑡) ( ⟨𝐺𝑆|𝑐𝑖,↑(𝑡) 𝑐†

𝑖,↑|𝐺𝑆⟩ + ⟨𝐺𝑆|𝑐†
𝑖,↑ 𝑐𝑖,↑(𝑡)|𝐺𝑆⟩)

(Ref. 69), averaging over all sites 𝑖.

II.2.1 Quasiparticle picture

The density of states is shown in Fig. II.2. There
is a gap of 𝐸𝑔𝑎𝑝 ≈ 4.7 and the width of the Hubbard

1

1

1

3b 3a

2a

2b

1

1

Figure II.3. Expected excitation processes in the quasi-
particle picture, for different ranges of the photon energy
Ω. In each subfigure, the horizontal axis represents en-
ergy and the semicircles schematically depict the lower
and upper Hubbard bands. An electron is excited by a
photon (step 1) into the upper Hubbard band, given that
the photon energy is not too low (first subfigure) or too
high (third subfigure). For the energy range depicted in
the fourth subfigure, Auger recombination can reduce the
number of excited electrons (step 2). At higher photon
energies (last subfigure), a single photon can lead to two
excited electrons via impact ionization (step 3).

bands is 𝐸𝑏𝑤 ≈ 5.8. The reaction of the system
to the pulse will depend on the value of Ω. The
excitations expected to happen in the single particle
picture are illustrated in Fig. II.3. When Ω < 𝐸𝑔𝑎𝑝,
then the system should not react to the pulse, because
an incoming photon does not carry enough energy to
excite electrons. When 𝐸𝑔𝑎𝑝 < Ω < 𝐸𝑔𝑎𝑝 + 2𝐸𝑏𝑤,
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a photon can excite an electron to the upper Hubbard
band, leaving behind a hole, and for Ω > 𝐸𝑔𝑎𝑝 +
2𝐸𝑏𝑤, no final state is available, so the photon should
not be absorbed.

Electron scattering can later modify the number
of excited electrons. When 𝐸𝑔𝑎𝑝 < Ω < 𝐸𝑏𝑤 + 𝐸𝑔𝑎𝑝

2
(third subfigure of Fig. II.3), Auger recombination65,
can reduce the number of excited electrons. Con-
versely, when 2 𝐸𝑔𝑎𝑝 < Ω < 2 𝐸𝑏𝑤 + 𝐸𝑔𝑎𝑝 (and
also 𝐸𝑔𝑎𝑝 < 𝐸𝑏𝑤), then an excited electron can
subsequently transfer enough energy by scattering
processes to excite another electron into the upper
Hubbard band. Thus a single photon can produce
two excited electrons in this process of impact ioniza-
tion55,58,61,62,65.

Note that this is an idealized view. In non-
equilibrium, the spectral function is time depen-
dent56–58,63,102,145,154–157 and there is a photo-induced
insulator-metal transition in the Hubbard model in var-
ious setups56–58,135,155,156,158–160. Such an insulator-
metal transition has also been observed in experiment
in quasi one- and two-dimensional materials161–166.
We also note that the incoming photon pulse has a
finite width �̃� = 1

2 in frequency, due to the finite
width of the Gaussian peak in the time domain (see
Fig. II.1).
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Figure II.4. Double occupancy as a function of time for 𝐼0 = 0.71 and several different Ω. The right hand side
shows the double occupancy for short times, where the electric field pulse acts.
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Figure II.5. Double occupancy at 𝑡 = 20 after the pulse
as a function of Ω and several different intensities 𝐼0. For
small 𝐼0 the response is in good agreement with the quasi-
particle picture according to the density of states. To
minimize small oscillations with respect to time we show
averages over times from 𝑡 = 17.5 to 𝑡 = 22.5. Color
codes for the intensity 𝐼0.

Figure II.6. Further change of double occupancy after
the pulse. Shown is the difference between the values
at 𝑡 = 300 and 𝑡 = 20. To minimize small oscillations
with respect to time we used occupancies averaged over
intervals with length 5 around 𝑡 = 20 resp. 𝑡 = 297.5.
Color codes for the intensity 𝐼0.

II.3 Results

II.3.1 Time evolution of the double occu-
pancy

In Fig. II.4 we show the time evolution of the
double occupancy for several photon energies Ω at an
intensity of 𝐼0 = 0.71. The overall behavior is mostly
in agreement with expectations from the quasiparticle
picture, except for Ω = 3.2 below the gap.

For all Ω, there are initial oscillations with a fre-
quency of roughly 2Ω. At large times, the double
occupancy converges to a constant value, up to small
fluctuations.

For very small and very large photon energies, the
double occupancy oscillates slightly during the pulse
but then returns to almost exactly its original value.

At frequencies Ω between 𝐸𝑔𝑎𝑝 and 𝐸𝑔𝑎𝑝+2𝐸𝑏𝑤,
where absorption is expected, the double occupancy
rises quickly during the pulse, i.e., elecrons are ex-
cited across the gap and energy is transferred into
the system. Note that after the pulse has decayed,
the Hamiltonian 𝐻(𝑡) becomes the time-independent
bare 𝐻(0) again, so that energy is then conserved. At
Ω = 9.1, just below the region where impact ioniza-
tion is expected, the double occupancy stays (almost)
constant after the pulse. At Ω = 10.7, the double
occupancy shows the expected impact ionization be-
havior, noticeably rising further after the pulse, which
was also observed by Kauch et al.58. We note that
the corresponding time scale is large compared to the
electron hopping time55,58,62

At Ω = 7.5, the double occupancy goes down after
the pulse, compatible with the expected Auger recom-
bination, beginning already after the pulse maximum
at time 𝑡 = 5.

Remarkably, at Ω = 3.2, below 𝐸𝑔𝑎𝑝, where the
quasiparticle picture would forbid excitations, Fig. II.4
exhibits a sizeable increase of the double occupancy.
We will later show that this is due to multiphoton
excitations.

In Fig. II.5 we display the double occupancy at
𝑡 = 20 after the pulse, for different intensities 𝐼0 and
different frequencies Ω. There is a strong nonlinear
dependence on 𝐼0. We will show in Sec. II.3.2 that
it occurs together with multiple photon excitations.
Indeed, for Ω below 𝐸𝑔𝑎𝑝, a sizeable excitation of
double occupations does not occur for small intensi-
ties, but only at large 𝐼0, as would be expected for
multiphoton absorption.

The energy absorbed by the Hubbard system
matches the change in double occupancy in Fig. II.5
closely, which will be further explored in Sec. II.3.4.
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Figure II.7. Eigenstate spectrum at 𝑡 = 20 for Ω =
10.7 > 2𝐸𝑔𝑎𝑝 at two values of the electric field intensity.

In Fig. II.6 we show the further change of double
occupancy after the pulse, from 𝑡 = 20 to 𝑡 = 300
where it has converged well for all Ω. In the energy
range 2 𝐸𝑔𝑎𝑝 < Ω < 𝐸𝑔𝑎𝑝 + 2 𝐸𝑏𝑤 the double oc-
cupancy increases, i.e., there is impact ionization, as
suggested by the quasiparticle picture. Impact ion-
ization is larger at higher intensities. We will show
below that this is again connected to the absorption
of several photons during the pulse. Notably, when
the intensity is large, impact ionization even occurs
at small Ω < 𝐸𝑔𝑎𝑝. The double occupancy decreases
after the pulse in a range of lower values of Ω. For the
small 𝐼0, this range closely matches the expectation
𝐸𝑔𝑎𝑝 < Ω < 𝐸𝑏𝑤 + 𝐸𝑔𝑎𝑝

2 from the single particle
picture, while at 𝐼0 = 0.71 and 𝐼0 = 0.97, the range
extends to larger energies. We will discuss these pro-
cesses further in Sec. II.3.3.

II.3.2 Eigenstate spectrum

For a better understanding of the excited state
after the pulse, we examine the eigenstate spectrum
of |𝜓(𝑡)⟩. To this end we compute the Fourier trans-
form of the Loschmidt amplitude, with respect to an
auxiliary time span 𝜏 (Refs. 114, 167–169).

𝐿(𝜏) = ⟨𝜓(𝑡)| 𝑒−𝑖𝜏𝐻(0) |𝜓(𝑡)⟩ (II.6a)

∫
∞

−∞
𝑒𝑖𝜔𝜏𝐿(𝜏) d𝜏 = 2𝜋 ∑

𝑛
|⟨𝑛|𝜓(𝑡)⟩|2 𝛿(𝜔 − 𝐸𝑛)

(II.6b)

Figure II.8. Eigenstate spectrum at 𝑡 = 20 for Ω = 3 <
𝐸𝑔𝑎𝑝 at different field intensities. The first peak at 0 ⋅ Ω
is dominant for all three cases. Its height is ≈ 1.4 for
𝐼0 = 0.26, ≈ 0.8 for 𝐼0 = 0.71, and ≈ 0.3 for 𝐼0 = 0.97.

Eq. (II.6b) can also be viewed as the probability distri-
bution of work done on the system170 by the electric
field. In Eq. (II.6b), the sum runs over all eigenstates
|𝑛⟩ of 𝐻(0), and 𝐸𝑛 is the energy of |𝑛⟩. Through
Eq. (II.6b) we obtain the energy spectrum of an arbi-
trary state, while only using the tool of time-evolution.
This is very useful here, because the large Hilbert
space dimension prohibits full diagonalization of the
Hamiltonian. We note that the eigenstate spectrum
is independent of time after the pulse has decayed,
because then the Hamiltonian 𝐻(𝑡) reverts back to
the initial Hamiltonian 𝐻(0).

We damped the time evolution in Eq. (II.6a) with
exp(−𝑡2/(2𝜎2)), 𝜎 = 5/

√
2, thus widening the spec-

tra by �̃� = 1/𝜎 ≈ 0.3.
In Fig. II.7 we show the resulting spectrum for the

case of Ω = 10.7, after the pulse has decayed. The
spectrum has a very distinct peaked structure, with
the distances between the peaks close to Ω. The ex-
cited state |𝜓(𝑡)⟩ thus consists of groups of eigenstates
of 𝐻(0) close to multiples of the photon energy. At
low intensity, 𝐼0 = 0.26, the peaks are narrow, and
excitations at 1Ω and 2Ω dominate. For large inten-
sity 𝐼0 = 0.71, the peaks are wider, shifted slightly to
higher energies, and they include higher multiples of
Ω. The ground state is then almost depleted, in line
with the saturation of double occupancy in Fig. II.5.
Since 2Ω is larger than 𝐸𝑔𝑎𝑝 + 2𝐸𝑏𝑤 here, peaks
beyond 1Ω must correspond to the sequential excita-
tion of several electrons from the lower to the upper
Hubbard band, by several photons. We will investi-
gate these peaks individually in Sec. II.3.3. Below

158



Results

the gap, Ω < 𝐸𝑔𝑎𝑝, Fig. II.5 showed that the double
occupancy is increased by the light pulse when the
intensity 𝐼0 is large, even though single photon absorp-
tion is energetically forbidden. In Fig. II.8 we show
corresponding eigenstate spectra for Ω = 3 at differ-
ent intensities 𝐼0. At small 𝐼0 = 0.26, where there is
very little absorption, Fig. II.8 shows that |𝜓(𝑡)⟩ has
almost returned to the ground state (slightly widened
in the plot), with an additional small excitation at 2Ω.
At larger intensity 𝐼0 = 0.71, however, states with
higher multiples of the photon energy have become
excited. Thus the increase in double occupancy here
is indeed due to multiphoton absorption. The largest
amplitude in Fig. II.8 is from three-photon excitations
at 3Ω = 9, where the available phase space is the
largest as indicated by the highest absorption values
in Figs. II.4 and II.5. At excitation energy 4Ω, both
4-photon absorption and two sequential two-photon
absorptions can contribute. At 5Ω = 15 and be-
yond, the end of the bandwidth has been reached, so
that the excitations, still sizeable in Fig. II.8, must
correspond to sequential absorptions. We note that
since the density of states develops a small in-gap den-
sity after electron excitations 56–58,102,155, additional
processes with single-photon absorption will also be
possible after the initial two-photon absorption has
taken place.

II.3.3 Time evolution of individual photon-
absorption peaks

Knowing the structure of the eigenstate spectrum,
one can gain considerable additional insight into the
development of |𝜓(𝑡)⟩. Here we introduce a technique
to decompose a state |𝜓(𝑡)⟩ into states |𝑓𝑖(𝑡)⟩ with
support around the individual photon peaks. We
isolate the contribution of a photon peak to |𝜓(𝑡)⟩ by
applying a filter,

∣𝜑(𝑡, 𝜎𝑓, 𝐸𝑓)⟩ = 1
N (𝑡)

𝑒
−

(𝐻(0)−𝐸𝑓)2

2𝜎2
𝑓 |𝜓(𝑡)⟩ . (II.7)

We take N (𝑡) such that ⟨𝜑(𝑡)|𝜑(𝑡)⟩ = 1. This is a
Gaussian peak centered around 𝐸𝑓. Expanding |𝜑(𝑡)⟩
in the eigenbasis of 𝐻(0) shows that basis states which
are energetically too far away from 𝐸𝑓 are discarded
in |𝜑(𝑡)⟩. Note that the filtering from |𝜓(𝑡)⟩ to |𝜑(𝑡)⟩
is very similar to doing a time-evolution.

Suppose that we have derived a number of distinct
states |𝑓𝑖(𝑡)⟩ from a state |𝜓(𝑡)⟩ with the filtering
procedure above. To find the best representation

∣𝜓′(𝑡)⟩ of |𝜓(𝑡)⟩ that is a linear combination of filter
results |𝑓𝑖(𝑡)⟩ we use:

∣𝜓′(𝑡)⟩ = ∑
𝑖

𝛼𝑖(𝑡) |𝑓𝑖(𝑡)⟩ (II.8)

and choose the coefficients 𝛼𝑖(𝑡) such that
∣ |𝜓(𝑡)⟩ − ∣𝜓′(𝑡)⟩ ∣2 is minimized. We will look at
the expectation value of an operator 𝑂 with respect
to the single states |𝑓𝑖(𝑡)⟩, including the coefficients
𝛼𝑖(𝑡):

⟨𝑂⟩𝑖 = |𝛼𝑖(𝑡)|2 ⟨𝑓𝑖(𝑡)|𝑂|𝑓𝑖(𝑡)⟩ (II.9a)

⟨𝑂⟩non-diag = ∑
𝑖≠𝑗

�̄�𝑖(𝑡) 𝛼𝑗(𝑡) ⟨𝑓𝑖(𝑡)∣𝑂∣𝑓𝑗(𝑡)⟩

(II.9b)

(with the time dependence not denoted). Specifi-
cally for the photon peaks we define |𝑓𝑖(𝑡)⟩ as follows:

|𝑓𝑖(𝑡)⟩ = ∣𝜑 (𝑡, Ω
3

, 𝐸𝐺𝑆 + 𝑖 ⋅ Ω)⟩ (II.10)

In other words, |𝑓𝑖(𝑡)⟩ is a filtered state centered
around the energy that is 𝑖 times Ω above the ground
state energy, filtered with a width of 𝜎𝑓 = Ω

3 . Note
that each filtered state still contains many eigenstates,
so that observables, like the double occupancy, remain
time dependent even after the light pulse.

We find that the set of filtered states |𝑓𝑖(𝑡)⟩ pro-
vides a good representation of the original state |𝜓(𝑡)⟩
at all times. The absolute value of the overlap between
the filtered states ∣⟨𝑓𝑖(𝑡)∣𝑓𝑗(𝑡)⟩∣ is about 5⋅10−2 when
they are Ω apart, 10−4 when 2Ω apart, and 10−8

when they are 3Ω apart. The norm squared of the
difference between the original time-evolved state and
the best approximation ∣ |𝜓(𝑡)⟩ − ∑𝑖 𝛼𝑖(𝑡) |𝑓𝑖(𝑡)⟩ ∣2

is of the order of 10−2. The relative difference be-
tween the expectation value of the double occupancy
of the original states and the sum of filtered state
contributions Eqs. (II.9a) and (II.9b) is of the order
of 0.5 %.

We examine two cases, Ω = 10.7 where the double
occupancy increases, and Ω = 7.5 where it decreases
after the pulse. In both cases we find that during
the pulse, the initial rise of the photon peaks occurs
sequentially, delayed by roughly one hopping time
for each additional photon, in line with the expected
sequential nature of photon absorptions at these values
of Ω.

The eigenstate spectra of the two states after the
pulse are shown in Figs. II.9 and II.10 (center row). At
every time 𝑡, we separately filter out each peak and cal-
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Figure II.9. Double occupancy of the different peaks as a function of time, computed with Eqs. (II.9a) and (II.9b),
for Ω = 10.7 and 𝐼0 = 0.71. The center row displays the eigenstate spectrum computed with Eq. (II.6b), showing
peaks with a distance of ≈ Ω. The red dashed curve in the center row shows the eigenstate spectrum after filtering for
one specific peak. The top and bottom rows display the contributions of the filtered peaks to the double occupancy.

culate the double occupancy according to Eq. (II.9a),
including the coefficient |𝛼𝑖(𝑡)|2. The results are
shown in Fig. II.9 and Fig. II.10 (top and bottom
rows).

For Ω = 10.7, we saw in Fig. II.4 that there
is an increase of double occupancy after the pulse,
in line with the impact ionization expected in the
quasiparticle picture. Fig. II.9 shows that indeed each
photon peak and also the non-diagonal part contribute

to the increase. The largest contributions to the double
occupancy and to its increase come from the states
with two and three absorbed photons, each of which
can separately contribute to the impact ionization
process sketched in Fig. II.3.

At Ω = 7.5, absorption of up to 6 photons is
visible, and the remaining contribution of the ground
state is tiny. Now |𝜓(𝑡)⟩ has a decreasing double
occupancy as a function of time. The individual peaks
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Figure II.10. Double occupancy of the different peaks as a function of time, computed with Eqs. (II.9a) and (II.9b),
for Ω = 7.5 and 𝐼0 = 0.71. The center row displays the eigenstate spectrum computed with Eq. (II.6b), showing
peaks with a distance of ≈ Ω. The top and bottom rows display the contributions of the filtered peaks to the double
occupancy.

in Fig. II.10 all contribute to this decrease, with the
notable exception of the single photon peak, for which
the double occupancy stays almost constant.

This difference in behavior is in line with Auger
recombination in the quasiparticle picture, shown in
Fig. II.3 (fourth subfigure), which is only possible
when at least two electrons are excited into the upper
Hubbard band. Thus this decay channel is absent in
the single photon peak. The upper bound for this

process is Ω < 𝐸𝑏𝑤 + 𝐸𝑔𝑎𝑝
2 ≈ 8.1 for two initially

excited electrons, matching the observed Ω-range of
decay at small intensities in Fig. II.6. The range
in Fig. II.6 is wider at larger intensities, 𝐼0 = 0.71
and 0.97, where absorption of more photons becomes
important (Figs. II.7 and II.10), thus allowing Auger-
like processes with more initial photons and larger
energy range. Furthermore, for more initially excited
electrons there are more decay channels, suggesting a
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stronger decrease of double occupancy, in agreement
with the behavior of the large 3Ω peak in Fig. II.10,
which shows the largest change in double occupancy
after the pulse.

II.3.4 Eigenstate Thermalization

Another way to learn about the photoexcited sys-
tem is to look at the double occupancy as a function
of absorbed energy, shown in Fig. II.11. Interestingly,
whereas the double occupancy at time 𝑡 = 20 depends
on intensity and frequency separately, after conver-
gence at long simulation times it depends almost only
on the absorbed energy, with an almost linear relation
between those two quantities.

In many physical systems it has been observed
that long time averages of some expectation values are
actually close to a microcanonical average, which has
been discussed under the name of Eigenstate Ther-
malization Hypothesis (ETH)152,153,171.

When the Hamiltonian is not time-dependent (long
after the light pulse in our case), a quantum state
under unitary time-evolution can be written in the
eigenbasis of the Hamiltonian:

|𝜓(𝑡)⟩ = ∑
𝑛

𝑒−𝑖(𝑡−𝑡0)𝐸𝑛 𝛼𝑛 |𝑛⟩ , 𝛼𝑛 = ⟨𝑛|𝜓(𝑡0)⟩

(II.11)
The mean of the expectation value of an observable

𝑂 is

⟨𝑂(𝑡)⟩ ∶= 1
𝑡 − 𝑡0

∫
𝑡

𝑡0

⟨𝑂(𝑡′)⟩ d𝑡′ (II.12a)

= ∑
𝑚,𝑛

𝛼∗
𝑚𝛼𝑛 ⟨𝑚|𝑂|𝑛⟩

∫𝑡
𝑡0

𝑒−𝑖(𝑡′−𝑡0)(𝐸𝑛−𝐸𝑚) d𝑡′

𝑡 − 𝑡0
(II.12b)

Under the assumption of no degeneracy, only the
diagonal contributions survive for long times:

⟨𝑂(𝑡)⟩ −−−→
𝑡 ≫ 𝑡0

∑
𝑛

⟨𝑛|𝑂|𝑛⟩ |⟨𝑛|𝜓⟩|2 (II.13)

The Eigenstate Thermalization
Hypothesis152,153,171 tries to explain the pecu-
liar observation that this long-time mean of ⟨𝑂(𝑡)⟩
often coincides with a microcanonical average, where
we take the average of the expectation values of the
eigenstates in a small energy window Δ𝐸 around
𝐸𝜓 = ∑𝑛 𝐸𝑛 |⟨𝑛|𝜓⟩|2, For 𝑡 ≫ 𝑡0:

⟨𝑂(𝑡)⟩ ?= ⟨𝑂⟩𝑚𝑐 ≡ 1
N

∑
𝑛

∣𝐸𝑛−𝐸𝜓∣<Δ𝐸

⟨𝑛|𝑂|𝑛⟩

(II.14)

This is rather surprising, because the left hand
side of the equation above depends on the specific
coefficients of the state in the eigenbasis |⟨𝑛|𝜓⟩|2,
while the right hand side does not. One possible
explanation is that for many physical situations the
state has a single peak in the eigenstate spectrum and
in addition, the difference between two expectation
values of two separate eigenstates is small when the
difference between their eigenenergies is small:

𝐸𝑚 ≈ 𝐸𝑛 ⇒ ⟨𝑚|𝑂|𝑚⟩ ≈ ⟨𝑛|𝑂|𝑛⟩ (II.15)

In our case, however, we do not have a single peak
in the eigenstate spectrum, but a series of peaks that
stretch over almost the whole eigenenergy range, as
can be seen in Figs. II.9 and II.10. We now show that
eigenstate thermalization still holds when there is an
almost linear relation between the eigenenergies and
the expectation values of their respective eigenvalues
(Fig. II.12, inset) in the energy range(s) where |𝜓(𝑡0)⟩
has an overlap with the eigenstates:

⟨𝑛|𝑂|𝑛⟩ = 𝑎 ⋅ 𝐸𝑛 + 𝑏 + 𝜖(𝐸𝑛) (II.16a)
|𝜖(𝐸𝑛)| ≤ 𝑀 (II.16b)

with 𝑀 the maximum deviation from the linear
behavior. Then the long-time average of ⟨𝑂(𝑡)⟩ has
the same linear behavior as a function of 𝐸𝜓 with at
most the same maximum deviation 𝑀, no matter how
peaked the structure of |𝜓(𝑡0)⟩ is in the eigenstate
spectrum. Namely, for large 𝑡 ≫ 𝑡0, where Eq. (II.13)
holds, we have

∣⟨𝑂(𝑡)⟩ − 𝑎 𝐸𝜓 − 𝑏∣ =

= ∣∑
𝑛

⟨𝑛|𝑂|𝑛⟩ |⟨𝑛|𝜓⟩|2 − 𝑎 𝐸𝜓 − 𝑏∣

= ∣∑
𝑛

(𝑎 ⋅ 𝐸𝑛 + 𝑏 + 𝜖(𝐸𝑛)) |⟨𝑛|𝜓⟩|2 − 𝑎 𝐸𝜓 − 𝑏∣

= ∣∑
𝑛

𝜖(𝐸𝑛) |⟨𝑛|𝜓⟩|2∣ ≤ 𝑀 (II.17)

Similarly, for the difference between the long time
average and the microcanonical average Eq. (II.14)
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Figure II.11. Double occupancy as a function of absorbed energy from the pulse, for time 𝑡 = 20 after the pulse
and for 𝑡 = 300 after convergence. Different colors mark different pulse frequencies Ω. For long simulation times, the
double occupancies tend to a linear function. To reduce the effect of short-time oscillations, the figures show averages
over the double occupancy in time intervals of length 5 around 𝑡 = 20, resp. 𝑡 = 297.5.

Figure II.12. Double occupancy as a function of energy
for uniformly sampled states of the 4 × 3 Hubbard model,
each projected onto a narrow energy range around ener-
gies 𝐸𝑓. The slope of the linear fit agrees to within a few
percent with the one in Fig. II.11. Inset: Sketch of expec-
tation values of an operator 𝑂 that is well approximated
by a linear function with respect to the eigenenergies 𝐸𝑛.

∣⟨𝑂(𝑡)⟩ − ⟨𝑂⟩𝑚𝑐∣ ≤ 𝑀 + 𝑀′ + |𝑎|Δ𝐸
N

(II.18)

with Δ𝐸 and N from Eq. (II.14) and 𝑀′ the
maximum deviation from linear behaviour within the
small energy range Δ𝐸. The upper bounds apply

when |𝜓⟩ has support only from eigenstates where the
deviation Eq. (II.16b) is maximal.

We examined the linearity Eq. (II.16a) of the dou-
ble occupancy in the Hubbard model by uniformly
sampling states from the hypersphere of normed
states172. For each value of 𝐸𝑓 in Fig. II.12, we
took a sample of 𝑁𝑟 = 9 states |𝑟⟩, projected and
normalized each state to a small range around 𝐸𝑓 by
∣𝑟𝑓⟩ = 1

N 𝑒− (𝐻−𝐸𝑓)2

2 |𝑟⟩, and plotted the averaged dou-
ble occupancy 𝑑(𝐸𝑓) = 1

𝑁𝑟
∑𝑟𝑓

⟨𝑟𝑓∣∑𝑖 𝑛𝑖↑𝑛𝑖 ↓∣𝑟𝑓⟩,
which is similar to the microcanonical average
Eq. (II.14), since contributions that are nondiagonal in
eigenstates cancel stochastically. The approximately
linear behavior in Fig. II.12 was verified for a smaller
3 × 2 system where exact diagonalization is still pos-
sible.

Fig. II.12 indicates that for the Hubbard model,
the double occupancy of eigenstates is indeed close
to linear in the eigenstate energies, like Eq. (II.16a),
with the same slope as in Fig. II.11. The steps in the
figure correspond to individual double occupations.

In our case, the double occupancy after the light
pulse converges (up to small fluctuations) at large
times 𝑡. The converged value, shown in Fig. II.11, is
then the same as the long time average. Taking into
account the actual eigenstate spectra of the excited
states, the convergence towards linear behavior in
Fig. II.11 indeed corresponds to Eq. (II.17).
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II.4 Summary

We investigated the non-equilibrium response of
a strongly correlated Mott insulator to a short light
pulse, using exact-diagonalization based calculations
on a 4 × 3 Hubbard model for a large range of light
intensities and of photon energies Ω. The pulse ex-
cites electrons into the upper Hubbard band, quickly
increasing the number of doubly occupied sites. At
sufficiently large photon energies, we observed impact
ionization (also seen in Ref. 58), namely a further
increase in the double occupancy over time after the
light pulse had ended. Conversely, at lower photon
energies, we observed Auger recombination with a
reduction in double occupancy.

We calculated the eigenstate spectra of the non-
equilibrium states, i.e. the probability distribution
of the work done by the light pulse, as the Fourier
transform of the Loschmidt amplitude. The resulting
spectra exhibit distinct peaks at distances of about
Ω, corresponding to the absorption of multiple pho-
tons. The absorption rate is strongly nonlinear in
light intensity. Multiphoton absorption was identified
for small photon energies below the band gap, which
leads to electron excitations when the light intensity
is large.

We introduced a technique, using tools similar to
time evolution, to isolate photon peaks in the eigen-
state spectra. This enabled us to investigate the non-
equilibrium evolution of double occupancy in individ-
ual photon peaks. We showed for example that, as
expected from the quasiparticle picture of Auger re-

combination, double occupations excited by a single
photon do not contribute to the overall reduction over
time which occurs at intermediate light frequencies.

We found that at large times, the double occu-
pancy moves towards a function that only depends
on the absorbed energy, reminiscent of the Eigenstate
Thermalization Hypothesis. Eigenstate Thermaliza-
tion is usually observed for states with support in a
narrow region of eigenenergies. We showed that the
observed dependence on energy alone will also happen
for states which contain a wide range of eigenener-
gies, when the relevant observable is almost a linear
function of energy.

The analysis of eigenstate spectra via the
Loschmidt amplitude and the filtering of the relevant
energy ranges provided valuable insight into multiple
photon absorptions and should prove to be useful tools
to investigate strongly correlated systems, when full
diagonalization is not possible, but the computation
of the time-evolution is accessible.
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This part of the thesis contains the publications Ref. 173 and Ref. 174,

V. Eisler and F. Maislinger, “Hydrodynamical phase transition for domain-
wall melting in the XY chain,” Physical Review B 98, 161117 (2018).

V. Eisler and F. Maislinger, “Front dynamics in the XY chain after local
excitations,” SciPost Physics 8, 37 (2020).

In the large 𝑈 limit, the Hubbard model reduces to the quantum Heisenberg spin-model175.

When the coupling of one component of the spins becomes negligible, e.g. because of strong

crystal anisotropy, the Heisenberg model becomes the quantum 𝑋𝑌 spin-model176, which has

the following Hamiltonian:

𝐻 = −
𝑛−1
∑
𝑖=1

1 + 𝛾
4

𝜎𝑥
𝑖 𝜎𝑥

𝑖+1 + 1 − 𝛾
4

𝜎𝑦
𝑖 𝜎𝑦

𝑖+1 − ℎ
2

∑
𝑖

𝜎𝑧
𝑖 (III.1)

With strong anisotropy (𝛾 = 1) the 𝑋𝑌 model becomes the Transverse Field Ising (TI)

model, where the peculiar fact was recently discovered that in one dimension the rescaled

magnetization profiles of the time-evolved Jordan-Wigner excitation are the same for different

magnetic field strengths177. Here, the Jordan-Wigner excitation corresponds to a series of

operators applied to the symmetry broken ground state. These profiles were found to be

numerically177 and analytically178 identical to the particle density profile of free fermions in

one dimension, where the initial state is fully filled in half of the chain and empty in the

other half of the chain. Based on these results we analyzed a different model, namely the 𝑋𝑌

model instead of the TI model, with the same initial state. We performed the computations

of the expectation values and entanglement entropy with the Matrix Product State approach,

to check the correctness of other approaches, which are a Pfaffian approach, a semi-classical

approach, and a form-factor approach.
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The contribution of Florian Maislinger to both publications was doing the Matrix Product

State calculations and explorations in parameter space to check for interesting results in the

time series of the magnetization profile, correlation functions, and the entanglement entropy.

He also contributed to the semiclassical calculations in Subpart III.A and programmed the

simulations for both publications from the ground up in C++ using the ITensor library107, and

in Python. Viktor Eisler did the calculations and programming of the other approaches. The

bulk of the text of both publications was written by Viktor Eisler, while Florian Maislinger

contributed the parts which are relevant to Matrix Product States.

168



Subpart III.A

Hydrodynamical phase transition for

domain-wall melting in the XY chain

(Phys. Rev. B 98, 161117(R))

169



170



Article

Hydrodynamical phase transition for domain-wall melting in the
XY chain

Viktor Eisler1 and Florian Maislinger1

1Institute of Theoretical and Computational Physics, Graz
University of Technology, 8010 Graz, Austria

We study the melting of a domain wall, prepared as a certain low-energy excitation above
the ferromagnetic ground state of the XY chain. In a well defined parameter regime the
time-evolved magnetization profile develops sharp kink-like structures in the bulk, showing
features of a phase transition in the hydrodynamic scaling limit. The transition is of purely
dynamical nature and can be attributed to the appearance of a negative effective mass term
in the dispersion. The signatures are also clearly visible in the entanglement profile measured
along the front region, which can be obtained by covariance-matrix methods despite the
state being non-Gaussian.

III.A.1 Article

Uncovering the mechanism of phase transitions
belongs to one of the most spectacular achievements
of statistical physics. The abrupt changes in the prop-
erties of matter, in response to the tuning of a control
parameter, could be understood through simple con-
cepts such as order parameter, symmetry breaking, or
free energy. While the theory is well established for sys-
tems in thermal equilibrium, and can even be extended
to quantum phase transitions at zero temperature179,
it is far from obvious how these concepts generalize
to the nonequilibrium scenario.

Due to this ambiguity, there has been various at-
tempts to lift the definition of a phase transition into
the dynamical regime. In the particular context of
quantum quenches66,180, dynamical quantum phase
transitions (DQPT) were introduced by analogy, via
the definition of a dynamical free energy density181.
It is simply given via the overlap between initial and
time-evolved states, and DQPT manifests itself in the
nonanalytic real-time behavior of this return proba-
bility, see182 for a recent review. Despite not being a
conventional observable, the return probability and
the signatures of a DQPT could directly be detected
in a recent experiment183.

On the other hand, in a number of approaches the
definition of dynamical phases is based on the time-
asymptotic behavior of an order parameter that shows
abrupt changes when crossing the phase boundaries.
Dynamical phase transitions based on a suitable order
parameter have been identified for quench protocols
of various closed many-body systems52,184,185 and the
studies have even been extended to the open-system
scenario186,187. Furthermore, connections between the
different concepts of a DQPT, based on dynamical
free energy vs. order parameter, have recently been
pointed out188,189.

Here we shall address the question whether a phase
transition in simple quantum chains might occur due
to the presence of initial spin gradients, which drive the
system towards a nonequilibrium steady state (NESS).
In the context of Markovian open system dynamics,
such an example was found earlier for a boundary
driven open XY spin chain, where the emergence of
long range order was observed in the NESS below a
critical value ℎ < ℎ𝑐 of a model parameter190. Al-
though the phenomenon seems robust enough against
the details of incoherent driving191, no counterpart of
the phase transition under closed unitary dynamics
has been found so far.

To mimic the effect of gradients imposed at the
boundaries in the open system setup, here we prepare
instead a domain-wall initial state and then let the
system evolve under its own unitary dynamics. The
domain wall is created as a simple low-lying excitation
above the ferromegnatic (symmetry-broken) ground
state of the XY chain. Our main result is illustrated
on Fig. III.A.1, where the qualitative change in the
time-evolved and properly normalized magnetization
profiles is clearly visible. The phase transition point
ℎ𝑐 exactly coincides with the one found in Ref.190,
and is signalled by an infinite slope in the center of
the profile, whereas kinks are developing in the bulk
for ℎ < ℎ𝑐. The nonanalytical behavior appears only
in the hydrodynamical limit, shown by the solid lines
in Fig. III.A.1. However, in contrast to Ref.190, our
results on the correlations indicate that the NESS
itself is similar to the symmetry-restored ground state
of the chain and does not show any criticality around
ℎ𝑐. Hence we use the term hydrodynamical phase
transition to distinguish between the two behaviors.
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Figure III.A.1. Normalized magnetization profiles (sym-
bols) at 𝑡 = 200 compared to the hydrodynamic solution
(red solid lines) in (III.A.10). The phase transition is lo-
cated at ℎ𝑐 = 1 − 𝛾2 = 0.75.

The Hamiltonian of the XY chain is given by

𝐻 = −
𝑁−1
∑
𝑛=1

(1 + 𝛾
4

𝜎𝑥
𝑛𝜎𝑥

𝑛+1 + 1 − 𝛾
4

𝜎𝑦
𝑛𝜎𝑦

𝑛+1)−ℎ
2

𝑁
∑
𝑛=1

𝜎𝑧
𝑛

(III.A.1)
where 𝜎𝛼

𝑛 are Pauli matrices on site 𝑛, 𝛾 is the
anisotropy and ℎ is a transverse magnetic field. The
XY model can be mapped to a chain of free fermions
via a Jordan-Wigner (JW) transformation, by intro-
ducing the Majorana operators

𝑎2𝑗−1 =
𝑗−1

∏
𝑘=1

𝜎𝑧
𝑘𝜎𝑥

𝑗 , 𝑎2𝑗 =
𝑗−1

∏
𝑘=1

𝜎𝑧
𝑘𝜎𝑦

𝑗 , (III.A.2)

satisfying anticommutation relations {𝑎𝑘, 𝑎𝑙} =
2𝛿𝑘,𝑙. While the open boundaries in Eq. (III.A.1)
are most suitable for numerical investigations of the
dynamics on finite size chains, for the analytical treat-
ment one should impose antiperiodic boundary condi-
tions 𝜎𝑥,𝑦

𝑁+1 = −𝜎𝑥,𝑦
1 on the spins, such that 𝐻 can be

brought into a diagonal form by a Fourier transform
and a Bogoliubov rotation192.

We focus on the parameter regime 0 < 𝛾 ≤ 1 and
0 ≤ ℎ < 1, where the model is in a gapped ferromag-
netic phase, with magnetic order in the 𝑥 direction.
In particular, in the limit 𝑁 → ∞, the ground state
is twofold degenerate, with |0⟩NS and |0⟩R located
in the Neveu-Schwarz (NS) and Ramond (R) sectors,
corresponding to ±1 eigenvalues of the parity operator
𝑃 = ∏𝑁

𝑘=1 𝜎𝑧
𝑘, which commutes with the Hamiltonian

[𝐻, 𝑃]=0. Since both of the ground states are parity
eigenstates, their magnetization is vanishing. However,
starting from the symmetry-broken ground state | ⇑ ⟩,
a domain wall initial state can be prepared via a JW

excitation, i.e. acting with a single Majorana operator
as

|JW⟩ = 𝑎2𝑛0−1| ⇑ ⟩, | ⇑ ⟩ = |0⟩NS + |0⟩R√
2

.

(III.A.3)
In numerical calculations we always consider domain
walls localized in the middle of the chain, 𝑛0 = 𝑁/2+
1.

Our primary goal is to calculate the magnetization
profile in the time evolved state

e−𝑖𝐻𝑡|JW⟩ = |𝜙𝑡⟩NS + |𝜙𝑡⟩R√
2

(III.A.4)

being a superposition of states from the two parity sec-
tors. Both can be obtained by rewriting the excitation
in (III.A.3) in the fermionic eigenbasis of the Hamil-
tonian, leading to a superposition of single-particle
states. These can then be trivially time evolved and
yield193

|𝜙𝑡⟩NS = 1√
𝑁

∑
𝑞∈NS

e−𝑖𝜖𝑞𝑡e−𝑖𝑞(𝑛0−1)e𝑖𝜃𝑞/2|𝑞⟩NS,

(III.A.5)
where the single-particle dispersion 𝜖𝑞 and the Bogoli-
ubov phase 𝜃𝑞 are given by

𝜖𝑞 = √(cos 𝑞 − ℎ)2 + 𝛾2 sin2 𝑞 ,

e𝑖(𝜃𝑞+𝑞) = cos 𝑞 − ℎ + 𝑖𝛾 sin 𝑞
𝜖𝑞

.
(III.A.6)

The result for |𝜙𝑡⟩R is completely analogous to
(III.A.5), with the sum running over momenta 𝑝 ∈ 𝑅.
In turn, the normalized magnetization can be cast in
the form

M𝑛(𝑡) = ⟨JW|𝜎𝑥
𝑛(𝑡)|JW⟩

⟨ ⇑ |𝜎𝑥
𝑛| ⇑ ⟩

= Re R⟨𝜙𝑡| ̂M𝑛|𝜙𝑡⟩NS ,

(III.A.7)
where, in the limit 𝑁 ≫ 1, the form factors read194,195

R⟨𝑝| ̂M𝑛|𝑞⟩NS = − 𝑖
𝑁

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞

e𝑖(𝑛−1/2)(𝑞−𝑝)

sin 𝑞−𝑝
2

.

(III.A.8)
Combining the results (III.A.5)-(III.A.8) and con-

sidering the thermodynamic limit, one ends up with
a double integral formula for the magnetization196.
Interestingly, this is exactly the same expression as
the one found earlier for the transverse Ising (TI)
chain178, except that the form of the dispersion and
the Bogoliubov angle (III.A.6) are now more general.
In fact, it is the very presence of the XY anisotropy
that will give rise to a peculiar dynamical behavior.
The hydrodynamical phase transition is encoded in
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the 𝑞 ≪ 1 expansion of the dispersion

𝜖𝑞 ≈ Δ + ℎ − ℎ𝑐
2Δ

𝑞2 + 𝑐 𝑞4, (III.A.9)

where Δ = 1−ℎ is the excitation gap and ℎ𝑐 = 1−𝛾2

is a critical field. The coefficient 𝑐 has a lengthy
expression in terms of ℎ and 𝛾, satisfying 𝑐 > 0
for any ℎ < ℎ𝑐. In contrast, the mass term in Eq.
(III.A.9) becomes negative below the critical field.
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Figure III.A.2. Single-particle velocities 𝑣𝑞 and dispersion
𝜖𝑞 (inset).

While a negative effective mass has no effect on the
ground-state properties, it will play a crucial role in the
dynamics. Indeed, in a well-defined limit, the shape
of the melting domain wall is entirely determined by
the group velocities 𝑣𝑞 = d𝜖𝑞

d𝑞 . These are shown on
Fig. III.A.2 for 𝛾 = 0.5, and three different magnetic
fields above, below and at the critical value ℎ𝑐. In
case ℎ < ℎ𝑐, the negative slope of 𝑣𝑞 around 𝑞 → 0
leads to the development of a new local maximum,
which eventually gives rise to a nonanalytic behavior
in the hydrodynamic profiles of various observables.
In particular, introducing the scaling variable 𝜈 =
(𝑛 − 𝑛0 + 1/2)/𝑡, the magnetization profile reads

M𝑛(𝑡) = 1 − 2 ∫
𝜋

−𝜋

d𝑞
2𝜋

Θ(𝑣𝑞 − 𝜈), (III.A.10)

where Θ(𝑥) is the Heaviside step function. The result
(III.A.10) follows rigorously from a stationary-phase
analysis197 of the integral representation of M𝑛(𝑡),
and has a clear physical interpretation. Namely, each
single-particle excitation carries a spin-flip198–201 and
thus the magnetization along a fixed ray follows from
the integrated density of excitations whose speed ex-
ceeds 𝜈. Hence, for ℎ < ℎ𝑐 the nonanalytical behavior
of the density is a consequence of the new branch of

solutions around the local maximum for negative mo-
menta.

The comparison between the profiles and the hy-
drodynamic scaling function is shown on Fig. III.A.1.
The magnetization at 𝑡 = 200 and various ℎ were cal-
culated for an open chain of size 𝑁 = 400 using the
Pfaffian formalism described in178. One has an excel-
lent agreement with clear signatures of the developing
kink for ℎ < ℎ𝑐. The hydrodynamic profile in general
depends on the details of the dispersion and is hard to
obtain analytically, since the solution of 𝑣𝑞 = 𝜈 leads
to a fourth-order equation. Nevertheless, one expects
a universal behavior to emerge around the edge of
the front202. Indeed, the stationary phase calcula-
tion around 𝑣𝑞∗

= 𝑣𝑚𝑎𝑥 can be extended to capture
the fine structure of the front203–206, suggesting the
following choice for the scaling variable

𝑋 = (𝑛 − 𝑛0 + 1/2 + 𝜃′
𝑞∗

/2 − 𝑣𝑞∗
𝑡) ( 2

|𝑣″
𝑞∗

|𝑡
)

1/3

.

(III.A.11)
In turn, the edge magnetization is given by207

M𝑛(𝑡) = 1 − 2 ( 2
|𝑣″

𝑞∗
|𝑡

)
1/3

𝜌(𝑋) , (III.A.12)

where 𝜌(𝑋) = [Ai′(𝑋)]2 − 𝑋Ai2(𝑋) is just the diag-
onal part of the Airy kernel208.
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Figure III.A.3. Edge scaling of the magnetization profile,
with the scaling variable 𝑋 and function 𝜌(𝑋) defined by
Eqs. (III.A.11) and (III.A.12), respectively.

The edge scaling (III.A.12) is tested against nu-
merical calculations for ℎ = 𝛾 = 0.5 in Fig. III.A.3,
showing an excellent agreement already for moderately
large times. Note that the larger deviation towards
the bulk for 𝑡 = 50 is due to the presence of the kink
in the profile. In fact, one could ask whether zooming
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on around the kink would yield a similar universal
fine structure as for the edge. However, in the latter
case the density has a nonuniversal bulk contribution
superimposed, which spoils the step structure. It is
also worth noting that the edge scaling (III.A.12) for
the XY chain can not be derived from a simple higher-
order extension of the hydrodynamical picture209.

The signatures of the hydrodynamical phase tran-
sition are also visible on the entanglement profiles,
as measured by the von Neumann entropy between
the segment 𝐴 = [1, 𝑁/2 + 𝑟] and 𝐵 the rest of
the system. Although the XY chain maps to free
fermions, extracting the entropy via covariance-matrix
techniques for Gaussian states210,211 requires some
additional care. Indeed, the initial state is excited
from the symmetry-broken ground state of the model,
which is inherently non-Gaussian212. This difficulty
can, however, be overcome by the following considera-
tions. Let us denote by 𝜌⇑ the reduced density matrix
(RDM) arising from the time evolved state (III.A.4)
after tracing out the degrees of freedom in 𝐵. The
arrow indicates the choice of the symmetry-broken
ground state in (III.A.3) and the entropy of the RDM
is given by 𝑆(𝜌⇑) = −Tr 𝜌⇑ ln 𝜌⇑. In fact, one could
equally well have defined 𝜌⇓ starting from the spin-
reversed initial state, with the entropies of the two
RDMs satisfying 𝑆(𝜌⇑) = 𝑆(𝜌⇓) due to obvious sym-
metry reasons. The main trick is now to consider the
convex combination

𝜌𝐺 =
𝜌⇑ + 𝜌⇓

2
, (III.A.13)

which removes all the parity-odd contributions from
the RDMs, albeit still mixing parity-even terms from
the two sectors NS and R. However, in the ther-
modynamic limit all the expectation values of local
operators become equal in both sectors212, hence 𝜌𝐺
is equivalent to a Gaussian RDM where the excitation
is created upon the parity-symmetric ground state
|0⟩NS.

Due to its Gaussianity, the entropy of 𝜌𝐺 can
now be obtained by applying the covariance-matrix
formalism as shown in Ref.213. Indeed, the effect
of the Majorana excitation can be represented in a
Heisenberg picture

𝑎′
𝑘 = 𝑎2𝑛0−1𝑎𝑘𝑎2𝑛0−1 =

2𝑁
∑
𝑙=1

𝑄𝑘,𝑙𝑎𝑙,

(III.A.14)
as an orthogonal transformation on the Majoranas,
with matrix elements 𝑄𝑘,𝑙 = 𝛿𝑘,𝑙(2𝛿𝑘,2𝑛0−1 − 1).
Similarly, time evolving the state corresponds to the

transformation

𝑎′
𝑘(𝑡) = e𝑖𝐻𝑡𝑎′

𝑘e−𝑖𝐻𝑡 =
2𝑁
∑
𝑙=1

𝑅𝑘,𝑙𝑎′
𝑙,

(III.A.15)
with matrix elements 𝑅𝑘,𝑙 given as in Ref.178. Hence
𝜌𝐺 corresponds to a RDM associated to the Gaussian
state with covariance matrix

Γ̃ = 𝑅 𝑄 Γ 𝑄𝑇𝑅𝑇, (III.A.16)

where 𝑖Γ𝑘,𝑙 = NS⟨0|𝑎𝑘𝑎𝑙|0⟩NS − 𝛿𝑘,𝑙. Note that the
matrix Γ̃ is exactly the one that appears in the Pfaffian
by the calculation of the magnetization178.

Although the entropy of 𝜌𝐺 follows simply via
the eigenvalues of the reduced covariance matrix
Γ̃𝐴

210,211, one still has to relate it to the entropy
of the non-Gaussian RDM 𝜌⇑ that we are interested
in. To this end, one can make use of the inequality
for convex combinations of density matrices214,215

𝑆(∑
𝑖

𝜆𝑖𝜌𝑖) ≤ ∑
𝑖

𝜆𝑖𝑆(𝜌𝑖) − ∑
𝑖

𝜆𝑖 ln 𝜆𝑖 .

(III.A.17)
Furthermore, it is also known that the inequality is
saturated if the ranges of 𝜌𝑖 are pairwise orthogonal.
Applying it to Eq. (III.A.13), the orthogonality con-
dition is clearly satisfied due to ⟨⇑ | ⇓⟩ = 0 and hence
one arrives at

𝑆(𝜌⇑) = 𝑆(𝜌𝐺) − ln 2 . (III.A.18)

The entropy can thus be exactly evaluated using Gaus-
sian techniques.

The result for the profile Δ𝑆, measured from the
𝑡 = 0 value, is shown on Fig. III.A.4 at time 𝑡 = 200,
against the rescaled cut position. The parameters
are chosen to be identical to Fig. III.A.1, and a kink
for ℎ = 0.5 emerges again at the value of 𝑟/𝑡 equal
to the local maximum of the velocity 𝑣𝑞. Further-
more, the entropy growth for the half-chain (𝑟/𝑡 = 0)
clearly converges towards the value ln 2, which can be
interpreted as a restoration of the spin-flip symmetry
in the NESS. Note also the light dip in the middle
for ℎ = ℎ𝑐 = 0.75, which is the consequence of a
much slower convergence towards the NESS at criti-
cality. The entropy profiles obtained by the Gaussian
technique have also been compared to the results of
density-matrix renormalization group30 calculations,
finding an excellent agreement and thus justifying the
result in Eq. (III.A.18).

We finally consider the normalized equal-
time spin-correlation functions C𝑚,𝑛(𝑡) =
NS⟨𝜙𝑡| ̂M𝑚

̂M𝑛|𝜙𝑡⟩NS which can be studied
via the form-factor approach by inserting a resolution
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Figure III.A.4. Entanglement profiles as a function of the
rescaled distance 𝑟 of the cut from the middle of the chain.
The entropy difference Δ𝑆 from the initial state value is
shown at 𝑡 = 200 for the same parameter values as in Fig.
III.A.1.

of the identity between the operators. Although
in general all the multi-particle form factors are
nonvanishing, the dominant contribution to the
correlations comes from the single-particle terms

C𝑚,𝑛(𝑡) ≃ ∑
𝑝

NS⟨𝜙𝑡| ̂M𝑚|𝑝⟩R R⟨𝑝| ̂M𝑛|𝜙𝑡⟩NS .

(III.A.19)
The above expression can again be evaluated in the
hydrodynamic scaling limit and for 𝑚 < 𝑛 yields216

C𝑚,𝑛(𝑡) ≃ 1 − 2 ∫
𝜋

−𝜋

d𝑞
2𝜋

Θ(𝑣𝑞 − 𝜇)Θ(𝜈 − 𝑣𝑞) ,

(III.A.20)
where 𝜇 is defined analogously to 𝜈. The integral
in (III.A.20) gives the number of excitations with ve-
locities between the rays defined by 𝜇 and 𝜈, and
has again a simple interpretation. In fact, it is di-
rectly related to the difference of the magnetizations
along those rays and thus shows similar nonanalytical
behavior for ℎ < ℎ𝑐.

In the NESS limit 𝑡 → ∞ with 𝑚, 𝑛 fixed,
Eq. (III.A.20) predicts long-range magnetic order
C𝑚,𝑛(𝑡) → 1. Together with M𝑛(𝑡) → 0, this be-
havior is characteristic of the ground state |0⟩NS at
large separations 𝑛 − 𝑚 ≫ 1. Furthermore, a care-
ful numerical analysis shows that C𝑚,𝑛(𝑡) converges
towards the proper ground-state value even for small
separations of the spins. Indeed, in the ferromagnetic
regime the normalized correlators deviate from unity
by a term decaying exponentially with the distance217.
The source of the discrepancy is the approximation
in (III.A.19), which neglects the contribution of the

multi-particle form factors. A detailed analysis of the
correlations will be presented elsewhere218.

In conclusion, our studies of domain-wall melting
in the XY chain have revealed a phase transition,
manifest in the emergence of kinks in the profiles of
various observables. While the critical point ℎ𝑐 =
1 − 𝛾2 coincides with the one found earlier for open-
system dynamics190, the transition exists only in the
hydrodynamic regime, and does not survive the NESS
limit. In contrast, the latter one seems to be given
by the parity-symmetric ground state, which does not
show any criticality around ℎ𝑐.

Although demonstrated on a simple free-fermion
example, there is good reason to believe that this phe-
nomenon carries over to generic integrable systems,
where the proper hydrodynamic description has only
recently been identified219,220 and applied to initial
states with domain walls221,222. In particular, the
emergence of kinks in the magnetization profile has
been observed for the XXZ chain at large anisotropies,
resulting from the velocity maxima of the various quasi-
particle families that govern the hydrodynamics221.
While the mechanism seems to be closely related to
the one presented here, it is unclear whether a hydro-
dynamical phase transition point exists in the XXZ
case, since all the profiles considered in221 belong to
the kink phase.

Finally, it remains to be understood whether the
finite increase of entropy after the JW excitation could
be interpreted within a framework similar to the one
introduced for local operator insertions in conformal
field theories223. While the results have been checked
against the lattice equivalent of local primary exci-
tations for the transverse Ising chain in Ref.213, it
would be interesting to see whether the field theory
treatment could be generalized to include the massive
case and the non-local operators considered here.

We thank H. G. Evertz and M. Fagotti for dis-
cussions. The authors acknowledge funding from the
Austrian Science Fund (FWF) through Project No.
P30616-N36, and through SFB ViCoM F41 (Project
P04).
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III.A.2 Supplemental Material

III.A.2.1 Fermionization of XY Hamiltonian

In order to obtain the many-body eigenstates of the XY chain, it is useful to consider periodic 𝐻+ or
antiperiodic 𝐻− chains, instead of the open one in Eq. (III.A.1). These are given by

𝐻𝑠 = −1
2

𝑁
∑
𝑛=1

(1 + 𝛾
2

𝜎𝑥
𝑛𝜎𝑥

𝑛+1 + 1 − 𝛾
2

𝜎𝑦
𝑛𝜎𝑦

𝑛+1 + ℎ𝜎𝑧
𝑛) , (III.A.21)

where the boundary conditions are 𝜎𝑥
𝑁+1 = 𝑠𝜎𝑥

1 and 𝜎𝑦
𝑁+1 = 𝑠𝜎𝑦

1 for 𝑠 = ±. Since 𝐻𝑠 commutes with the
parity 𝑃, it can be written in a block-diagonal form

𝐻𝑠 = 1 − 𝑠𝑃
2

𝐻R + 1 + 𝑠𝑃
2

𝐻NS, 𝑃 =
𝑁
∏
𝑛=1

𝜎𝑧
𝑛 . (III.A.22)

The parity subspaces are the Ramond (R) and Neveu-Schwarz (NS) sectors, defining two different Hamiltonians.
In terms of Majorana operators, obtained via the Jordan-Wigner transformation (III.A.2), both of them can
be brought into the quadratic form

𝐻R/NS = 𝑖
2

𝑁
∑
𝑗=1

(1 + 𝛾
2

𝑎2𝑗𝑎2𝑗+1 − 1 − 𝛾
2

𝑎2𝑗−1𝑎2𝑗+2 + ℎ𝑎2𝑗−1𝑎2𝑗) , (III.A.23)

where the two Hamiltonians differ only in the boundary conditions 𝑎2𝑁+1 = ±𝑎1 and 𝑎2𝑁+2 = ±𝑎2 being
periodic for R and antiperiodic for the NS sector. Each sector can be simultaneously diagonalized by a joint
Fourier and Bogoliubov transformation

𝑎2𝑗−1 = 1√
𝑁

∑
𝑞∈R/NS

e−𝑖𝑞(𝑗−1)e𝑖𝜃𝑞/2(𝑏†
𝑞 + 𝑏−𝑞), 𝑎2𝑗 = −𝑖√

𝑁
∑

𝑞∈R/NS
e−𝑖𝑞𝑗e−𝑖𝜃𝑞/2(𝑏†

𝑞 − 𝑏−𝑞), (III.A.24)

where the allowed values of the momenta are 𝑞𝑘 = 2𝜋
𝑁 𝑘 for R and 𝑞𝑘 = 2𝜋

𝑁 (𝑘 + 1/2) for NS, respectively,
with 𝑘 = −𝑁/2, … , 𝑁/2 − 1. Note that the site index 𝑗 in the Fourier transformation is shifted by one for
odd Majorana operators. This is a dual representation in terms of which the Bogoliubov angle must satisfy

e𝑖(𝜃𝑞+𝑞) = cos 𝑞 − ℎ + 𝑖𝛾 sin 𝑞
𝜖𝑞

, 𝜖𝑞 = √(cos 𝑞 − ℎ)2 + 𝛾2 sin2 𝑞 . (III.A.25)

In fact, the above definition ensures that 𝜃𝑞 is a continuous and smooth function in its full domain 𝑞 ∈ [−𝜋, 𝜋],
for arbitrary parameters 0 < 𝛾 ≤ 1 and 0 ≤ ℎ < 1 in the ferromagnetic phase. The diagonal form of the
Hamiltonian and its many-particle eigenstates then read

𝐻R/NS = ∑
𝑞∈R/NS

𝜖𝑞𝑏†
𝑞𝑏𝑞 + const, |𝑞1, 𝑞2, … , 𝑞𝑚⟩R/NS =

𝑚
∏
𝑖=1

𝑏†
𝑞𝑖 |0⟩R/NS . (III.A.26)

Finally, it should be pointed out that the boundary condition on the spins selects the parity of the many-particle
basis: 𝑚 = 2ℓ is even for the spin-periodic Hamiltonian 𝐻+, and 𝑚 = 2ℓ + 1 is odd for the spin-antiperiodic
one 𝐻−.

III.A.2.2 Form factor approach

To calculate the time evolution of the magnetization, one also needs the corresponding form factors of the
𝜎𝑥 operator. In fact, it is more convenient to consider the matrix elements normalized by the equilibrium
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magnetization, which in the large 𝑁 limit reads194,195

R⟨𝑝| ̂M𝑛|𝑞⟩NS = R⟨𝑝|𝜎𝑥
𝑛|𝑞⟩NS

R⟨0|𝜎𝑥
𝑛|0⟩NS

= − 𝑖
𝑁

cosh Δ𝑝−Δ𝑞
2 sinh Δ𝑝+Δ𝑞

2
√sinh Δ𝑝 sinh Δ𝑞

e𝑖(𝑛−1/2)(𝑞−𝑝)

sin 𝑞−𝑝
2

. (III.A.27)

The above definition of the form factors is well-suited for the parameter regime √1 − 𝛾2 < ℎ < 1, i.e. in the
non-oscillatory ferromagnetic phase217, where the auxiliary parameter Δ𝑞 is defined via

sinh Δ𝑞 =
√1 − 𝛾2

𝛾√𝛾2 + ℎ2 − 1
𝜖𝑞. (III.A.28)

In the oscillatory phase 0 < ℎ < √1 − 𝛾2 the form factors can be obtained by analytic continuation194, i.e.
by introducing the variable Δ̃𝑞 = Δ𝑞 + 𝑖𝜋/2. In fact, the form-factor formula (III.A.27) can even be further
simplified by making use of the identity

cosh
Δ𝑝 − Δ𝑞

2
sinh

Δ𝑝 + Δ𝑞

2
= 1

2
(sinh Δ𝑝 + sinh Δ𝑞). (III.A.29)

Substituting (III.A.28) and (III.A.29) into (III.A.27), one obtains immediately Eq. (III.A.8). Using these
form factors and taking the thermodynamic limit, Eq. (III.A.7) for the magnetization can be written out as a
double integral

M𝑛(𝑡) = Im ∫
𝜋

−𝜋

d𝑝
2𝜋

∫
𝜋

−𝜋

d𝑞
2𝜋

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞

e𝑖(𝑛−𝑛0+1/2)(𝑞−𝑝)

sin 𝑞−𝑝
2

e𝑖(𝜃𝑞−𝜃𝑝)/2e𝑖(𝜖𝑝−𝜖𝑞)𝑡 . (III.A.30)

Using the properties 𝜖−𝑞 = 𝜖𝑞 and 𝜃−𝑞 = −𝜃𝑞, the above expression can be written as M𝑛(𝑡) = M𝑒
𝑛(𝑡) +

M𝑜
𝑛(𝑡) with only two nonvanishing contributions

M𝑒
𝑛(𝑡) = ∫

𝜋

−𝜋

d𝑝
2𝜋

∫
𝜋

−𝜋

d𝑞
2𝜋

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞

cos [(𝑛 − 𝑛0 + 1/2)(𝑞 − 𝑝)]
sin 𝑞−𝑝

2
sin

𝜃𝑞 − 𝜃𝑝

2
cos(𝜖𝑝 − 𝜖𝑞)𝑡 ,

M𝑜
𝑛(𝑡) = ∫

𝜋

−𝜋

d𝑝
2𝜋

∫
𝜋

−𝜋

d𝑞
2𝜋

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞

sin [(𝑛 − 𝑛0 + 1/2)(𝑞 − 𝑝)]
sin 𝑞−𝑝

2
cos

𝜃𝑞 − 𝜃𝑝

2
cos(𝜖𝑝 − 𝜖𝑞)𝑡 .

(III.A.31)

Hence the magnetization is the sum of an even and an odd function M𝑒,𝑜
𝑛 (𝑡) = ±M𝑒,𝑜

2𝑛0−1−𝑛(𝑡) under
reflections with respect to the initial domain wall position. Note that, in general, the even term has a
contribution of much smaller magnitude, and it vanishes completely in the hydrodynamic scaling limit.
Moreover, in the limit 𝛾 = 1 of a transverse Ising chain, the even part M𝑒

𝑛(𝑡) = 0 vanishes identically even
for finite times.

The normalized correlation functions C𝑚,𝑛(𝑡) = NS⟨𝜙𝑡| ̂M𝑚
̂M𝑛|𝜙𝑡⟩NS can also be studied through the

form factor approach. The standard trick is to insert an identity between the two operators, written in terms
of the eigenbasis

11 = ∑
𝑝

|𝑝⟩⟨𝑝| + ∑
𝑝1,𝑝2

|𝑝1, 𝑝2⟩⟨𝑝1, 𝑝2| + ∑
𝑝1,𝑝2,𝑝3

|𝑝1, 𝑝2, 𝑝3⟩⟨𝑝1, 𝑝2, 𝑝3| + … (III.A.32)

Thus, in contrast to the magnetization which could be exactly evaluated using only single-particle form factors,
the situation for the correlations is much more complicated as an infinite series of many-particle matrix
elements appear. Nevertheless, it is reasonable to expect that the dominant contribution to the correlations
still comes from the single-particle sector. Hence, we will consider this approximate expression, given by
(III.A.19) in the main text, which for 𝑁 → ∞ can be converted into the integral form

C𝑚,𝑛(𝑡) ≃ ∫ d𝑞1
2𝜋

∫ d𝑞2
2𝜋

e−𝑖(𝜃𝑞1−𝜃𝑞2)/2e𝑖(𝜖𝑞1−𝜖𝑞2)𝑡 ∫ d𝑝
2𝜋

𝜖𝑝 + 𝜖𝑞1

2√𝜖𝑝𝜖𝑞1

𝜖𝑝 + 𝜖𝑞2

2√𝜖𝑝𝜖𝑞2

e−𝑖(𝑚−𝑛0+1/2)(𝑞1−𝑝)

sin 𝑞1−𝑝
2

e𝑖(𝑛−𝑛0+1/2)(𝑞2−𝑝)

sin 𝑞2−𝑝
2

.

(III.A.33)
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III.A.2.3 Stationary phase calculations

The profiles in the hydrodynamic scaling limit can be obtained by stationary phase arguments, and
their derivation closely follows the lines of Refs.203–206. Let us consider first the magnetization as given by
Eq. (III.A.30). In the limit 𝑛 − 𝑛0 ≫ 1 and 𝑡 ≫ 1, the integrand is highly oscillatory and thus the main
contribution comes from around the points 𝑞𝑠 where the stationarity condition is satisfied

𝑣𝑞𝑠
𝑡 = 𝑛 − 𝑛0 + 1/2 + 𝜃′

𝑞𝑠
/2, 𝑣𝑞 =

d𝜖𝑞

d𝑞
. (III.A.34)

The stationary phase condition for the integral over 𝑝 is exactly the same. Moreover, the integrand has a pole
at 𝑝 = 𝑞 which suggests the change of variables 𝑄 = 𝑞 − 𝑝 and 𝑃 = (𝑞 + 𝑝)/2. In the new variables, the
stationarity condition is 𝑄𝑠 = 0 for arbitrary values of 𝑃. One shall thus expand the integrand in (III.A.30)
around 𝑄 = 0, setting

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞
≈ 1, sin 𝑞 − 𝑝

2
≈ 𝑄

2
, (III.A.35)

to arrive at

2 Re ∫
𝜋

−𝜋

d𝑃
2𝜋

∫
∞

−∞

d𝑄
2𝜋𝑖

e𝑖(𝑛−𝑛0+1/2+𝜃′
𝑃−𝑣𝑃𝑡)𝑄

𝑄
. (III.A.36)

To carry out the integration around the pole, we use a formal identity in complex analysis as well as the
integral representation of the Heaviside theta function

1
𝑄

= 𝑖𝜋𝛿(𝑄) + lim
𝛿→0

1
𝑄 + 𝑖𝛿

, Θ(𝑥) = − lim
𝛿→0

∫
∞

−∞

d𝑄
2𝜋𝑖

e−𝑖𝑄𝑥

𝑄 + 𝑖𝛿
. (III.A.37)

In the hydrodynamic regime one can neglect the term 𝜃′
𝑃 and introduce the scaling variable 𝜈 = (𝑛−𝑛0+1/2)/𝑡,

which brings us to the result (III.A.10) in the main text.
In general, the hydrodynamic profile is found by solving the equation 𝑣𝑞 = 𝜈. Special attention is needed

around the maximum 𝑣𝑞∗
= 𝑣𝑚𝑎𝑥 of the velocities, where the solutions coalesce at momentum 𝑞∗. To get the

fine structure of the front edge, one has to expand the dispersion around 𝑞∗ as

𝜖𝑞 ≈ 𝜖𝑞∗
+ 𝑣𝑞∗

(𝑞 − 𝑞∗) +
𝜖‴

𝑞∗

6
(𝑞 − 𝑞∗)3. (III.A.38)

Furthermore, one can introduce the following rescaled variables

𝑋 = (𝑛 − 𝑛0 + 1/2 + 𝜃′
𝑞∗

/2 − 𝑣𝑞∗
𝑡) ( −2

𝜖‴
𝑞∗

𝑡
)

1/3

, 𝑄 = ( −2
𝜖‴

𝑞∗
𝑡
)

−1/3

(𝑞 − 𝑞∗), 𝑃 = ( −2
𝜖‴

𝑞∗
𝑡
)

−1/3

(𝑝 − 𝑞∗).

(III.A.39)
Substituting (III.A.38) and (III.A.39) into (III.A.7), one arrives at the following integral

( −2
𝜖‴

𝑞∗
𝑡
)

1/3

Im ∫ d𝑃
2𝜋

∫ d𝑄
2𝜋

e𝑖𝑋(𝑄−𝑃)e𝑖(𝑄3−𝑃3)/3

(𝑄 − 𝑃)/2
. (III.A.40)

Using the integral representation of the Airy kernel

𝐾(𝑋, 𝑌 ) = lim
𝛿→0

∫ d𝑃
2𝜋

∫ d𝑄
2𝜋

e−𝑖𝑋𝑃e−𝑖𝑃3/3e𝑖𝑌 𝑄e𝑖𝑄3/3

𝑖(𝑃 − 𝑄 − 𝑖𝛿)
= Ai(𝑋)Ai′(𝑌 ) − Ai′(𝑋)Ai(𝑌 )

𝑋 − 𝑌
, (III.A.41)

one recovers (III.A.12) of the main text, where the diagonal terms of the Airy kernel208 can be obtained as

𝜌(𝑋) = lim
𝑌 →𝑋

𝐾(𝑋, 𝑌 ) = [Ai′(𝑋)]2 − 𝑋Ai2(𝑋). (III.A.42)
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The stationary phase calculation for the approximation of the correlation function in (III.A.33) is very
similar to that for the magnetization. Indeed, introducing the new set of variables

𝑄1 = 𝑞1 − 𝑝, 𝑄2 = 𝑞2 − 𝑝, 𝑃 = 𝑞1 + 𝑝
2

, (III.A.43)

and expanding around 𝑄1 = 0 and 𝑄2 = 0, one obtains

C𝑚,𝑛(𝑡) ≃ 4 ∫ d𝑃
2𝜋

∫ d𝑄1
2𝜋

e−𝑖(𝑚−𝑛0+1/2+𝜃′
𝑃−𝑣𝑃𝑡)𝑄1

𝑄1
∫ d𝑄2

2𝜋
e𝑖(𝑛−𝑛0+1/2+𝜃′

𝑃−𝑣𝑃𝑡)𝑄2

𝑄2
. (III.A.44)

Applying (III.A.37) in both the 𝑄1 and 𝑄2 integrals, the result can again be written with the help of step
functions. Using the property Θ(𝑥 − 𝑥1)Θ(𝑥 − 𝑥2) = Θ(𝑥 − max(𝑥1, 𝑥2)), and introducing the scaling
variable 𝜇 = (𝑚 − 𝑛0 + 1/2)/𝑡 analogously to 𝜈, one arrives at

C𝑚,𝑛(𝑡) ≃ 1 − 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

Θ(𝑣𝑃 − 𝜇) + 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

Θ(𝑣𝑃 − 𝜈), (III.A.45)

where we assumed 𝜇 < 𝜈. Finally, the difference of the step functions can also be rewritten as a product as in
(III.A.20).

179



180



Subpart III.B

Front dynamics in the XY chain after

local excitations (SciPost Phys. 8, 037)

181



182



Introduction

Front dynamics in the XY chain after local excitations
Viktor Eisler, Florian Maislinger

Institut für Theoretische Physik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria

Abstract

We study the time evolution of magnetization and entanglement for initial states with local
excitations, created upon the ferromagnetic ground state of the XY chain. For excitations
corresponding to a single or two well separated domain walls, the magnetization profile has a
simple hydrodynamic limit, which has a standard interpretation in terms of quasiparticles. In
contrast, for a spin-flip we obtain an interference term, which has to do with the nonlocality of
the excitation in the fermionic basis. Surprisingly, for the single domain wall the hydrodynamic
limit of the entropy and magnetization profiles are found to be directly related. Furthermore,
the entropy profile is additive for the double domain wall, whereas in case of the spin-flip
excitation one has a nontrivial behaviour.

III.B.1 Introduction

The nonequilibrium dynamics of integrable quantum many-body systems has been the focus of intensive
research66. The interest in these peculiar models, characterized by the existence of a large set of conservation
laws, comes from two main perspectives. On one hand, they show relaxation towards generalized stationary
ensembles that are not described by conventional statistical mechanics224. On the other hand, owing to the
presence of stable quasiparticle excitations, integrable models have anomalous transport properties225. A
recent milestone in understanding the transport driven by an initial inhomogeneity has been the formulation
of generalized hydrodynamics (GHD)219,220, which gives accurate predictions for the profiles of conserved
densities in an appropriate spacetime scaling limit.

The simplest paradigm of an inhomogeneous initial state is a domain wall, separating domains of spins
with different magnetizations. Letting the system evolve, the domain wall starts to melt, giving rise to an
expanding front region characterized by a nonzero spin current. The resulting magnetization profiles were
studied in various integrable spin models such as the XX chain199,203,226, the transverse Ising (TI)206,227,228,
the XY229 as well as the XXZ chains219,222,230–233. Rather generically one finds ballistic transport, with
the exception of the isotropic Heisenberg chain where a diffusive behaviour is observed instead234–239. The
common feature in all of the examples above is that the domain wall is oriented along the 𝑧-axis, and thus
the magnetization is a local operator in the fermionic representation of the corresponding spin chain. In
particular, for models with fermion-number conservation, the transverse magnetization itself corresponds to a
locally conserved density, which makes the problem directly amenable to GHD techniques.

Recently, however, domain walls created upon the symmetry-broken ferromagnetic ground states of TI or
XY chains have been considered173,177,178. The ordering in these chains occurs in the longitudinal component
of the magnetization, which is a highly nonlocal string operator in the fermionic picture, being nontrivially
related to the local conserved densities. Hence, even though one has a free-fermion model at hand, it is a
priori unclear whether a hydrodynamic description still holds for this observable. Nevertheless, in173,178 it has
been shown that, for domain walls excited by a single local fermion operator, the longitudinal magnetization
profile has the usual hydrodynamic scaling limit one would naively expect. Namely, the profile is determined
by noninteracting quasiparticles carrying the fraction of a spin-flip and traveling at the corresponding group
velocity.

In the present work we extend these studies to excitations that can be written as the product of two local
fermion operators. In the spin language they describe a double domain wall, and if the distance between them
is sufficiently large, we find that the magnetization profile factorizes in the hydrodynamic scaling limit. In other
words, the quasiparticle excitations created at the two domain walls are completely independent. In contrast,
the situation becomes nontrivial if the fermionic excitations act on neighbouring sites, even though the product
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of two adjacent domain walls is just a spin-flip and thus perfectly local in the spin-representation. Indeed, it
turns out that this composite fermionic excitation leads to interference effects between the quasiparticle modes,
encoded in the form factors of the spin operator. This interference term yields a significant contribution to
the hydrodynamic profile, which can be found analytically via stationary phase analysis.

We also study in detail the correlation functions and the entanglement entropy for the single domain wall
excitation. Interestingly, both of them can be directly related to the magnetization. For the correlations
we derive a relation which holds also for finite times if the separation of the spins is much larger than the
correlation length. On the other hand, for the entropy we propose an ansatz that is motivated by recent results
for single-mode quasiparticle excitations in a free massive quantum field theory (QFT)240,241. Our ansatz
works perfectly in the hydrodynamic regime, thereby creating an exact relation between the magnetization
and entanglement profiles. Furthermore, we observe that the entropy becomes additive for the double domain
wall excitation, whereas for the spin-flip one has again a nontrivial behaviour due to the above mentioned
interference terms.

The paper is structured as follows. We start by introducing the model in Sec. III.B.2. The magnetization
dynamics is studied in Sec. III.B.3 for three different local excitations as well as for a local quench. The
correlation functions are investigated in Sec. III.B.4, followed by the study of the entropy profiles in Sec.
III.B.5. We discuss our findings in Sec. III.B.6, and the technical details of the calculations are reported in
three Appendices.

III.B.2 Model

We consider an XY spin chain of length 𝑁 described by the Hamiltonian

𝐻 = −
𝑁−1
∑
𝑛=1

(1 + 𝛾
4

𝜎𝑥
𝑛𝜎𝑥

𝑛+1 + 1 − 𝛾
4

𝜎𝑦
𝑛𝜎𝑦

𝑛+1) − ℎ
2

𝑁
∑
𝑛=1

𝜎𝑧
𝑛 , (III.B.1)

where 𝜎𝛼
𝑛 are Pauli matrices located at site 𝑛, ℎ and 𝛾 denote the transverse magnetic field and the XY

anisotropy, respectively. We restrict ourselves to the parameter regime 0 < ℎ < 1 and 0 < 𝛾 ≤ 1 where the
chain is in a gapped ferromagnetic phase, with 𝛾 = 1 corresponding to the TI chain.

The Hamiltonian (III.B.1) is diagonalized through a standard procedure217, by first introducing Majorana
fermions via a Jordan-Wigner transformation

𝑎2𝑗−1 =
𝑗−1

∏
𝑘=1

𝜎𝑧
𝑘 𝜎𝑥

𝑗 , 𝑎2𝑗 =
𝑗−1

∏
𝑘=1

𝜎𝑧
𝑘 𝜎𝑦

𝑗 , (III.B.2)

satisfying anticommutation relations {𝑎𝑘, 𝑎𝑙} = 2𝛿𝑘,𝑙. While (III.B.1) describes an open chain which is most
suitable for our numerical calculations, the analytical treatment of the problem requires to consider either
periodic (𝑠 = +) or antiperiodic (𝑠 = −) boundary conditions, 𝜎𝑥

𝑁+1 = 𝑠𝜎𝑥
1 and 𝜎𝑦

𝑁+1 = 𝑠𝜎𝑦
1 . Due to the

global spin-flip symmetry of the model, the corresponding Hamiltonians can then be split into two parts

𝐻𝑠 = 1 − 𝑠P
2

𝐻R + 1 + 𝑠P
2

𝐻NS , P =
𝑁
∏
𝑛=1

𝜎𝑧
𝑛 . (III.B.3)

In terms of the Majorana fermions, the corresponding symmetry sectors are described by the Hamiltonians

𝐻R/NS = 𝑖
2

𝑁
∑
𝑗=1

(1 + 𝛾
2

𝑎2𝑗𝑎2𝑗+1 − 1 − 𝛾
2

𝑎2𝑗−1𝑎2𝑗+2 + ℎ𝑎2𝑗−1𝑎2𝑗) , (III.B.4)

which differ in the boundary conditions 𝑎2𝑁+1 = ±𝑎1 and 𝑎2𝑁+2 = ±𝑎2 being periodic for the Ramond (R)
and antiperiodic for the Neveu-Schwarz (NS) sectors.
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In order to diagonalize (III.B.4), one performs a Fourier transformation followed by a Bogoliubov rotation

𝑎2𝑗−1 = 1√
𝑁

∑
𝑞∈R/NS

e−𝑖𝑞𝑗e𝑖(𝜃𝑞+𝑞)/2(𝑏†
𝑞 + 𝑏−𝑞),

𝑎2𝑗 = −𝑖√
𝑁

∑
𝑞∈R/NS

e−𝑖𝑞𝑗e−𝑖(𝜃𝑞+𝑞)/2(𝑏†
𝑞 − 𝑏−𝑞),

(III.B.5)

where the Bogoliubov angle and the dispersion are given by

e𝑖(𝜃𝑞+𝑞) = cos 𝑞 − ℎ + 𝑖𝛾 sin 𝑞
𝜖𝑞

, 𝜖𝑞 = √(cos 𝑞 − ℎ)2 + 𝛾2 sin2 𝑞 . (III.B.6)

Note that the above definition ensures that the function 𝜃𝑞 is continuous within the Brillouin zone 𝑞 ∈ [−𝜋, 𝜋].
To satisfy the proper boundary conditions, the allowed values of the momenta are 𝑞𝑘 = 2𝜋

𝑁 𝑘 for R and
𝑞𝑘 = 2𝜋

𝑁 (𝑘 + 1/2) for NS, respectively, with 𝑘 = −𝑁/2, … , 𝑁/2 − 1 and 𝑁 even. The diagonalized
Hamiltonian and its 𝐾-particle eigenstates are then given by

𝐻R/NS = ∑
𝑞∈R/NS

𝜖𝑞𝑏†
𝑞𝑏𝑞 + const, |𝑞1, 𝑞2, … , 𝑞𝐾⟩R/NS =

𝐾
∏
𝑖=1

𝑏†
𝑞𝑖 |0⟩R/NS . (III.B.7)

It should be stressed that the eigenstates with 𝐾 even belong to the spin-periodic Hamiltonian 𝐻+, whereas
the eigenstates of the spin-antiperiodic 𝐻− have odd 𝐾.

In the thermodynamic limit 𝑁 → ∞, the periodic chain 𝐻+ has a doubly degenerate ground state with
ferromagnetic ordering along the 𝑥-axis, denoted by |⇑⟩ and |⇓⟩, respectively. Note however, that for finite 𝑁
the actual ground states in both symmetry sectors are given by

|0⟩NS = 1√
2

(|⇑⟩ + |⇓⟩), |0⟩R = 1√
2

(|⇑⟩ − |⇓⟩), (III.B.8)

which are separated by an exponentially small gap and both have vanishing magnetizations.

III.B.3 Magnetization dynamics

We are interested in the dynamics of the magnetization of various initial states, excited locally from the
ferromagnetic ground state |⇑⟩ and time-evolved under the Hamiltonian 𝐻 in (III.B.1). The locality of the
excitation is understood in terms of the Majorana basis, which implies that these excitations may become
highly non-local in the spin-basis representation. In fact, the latter will correspond to domain-wall excitations
and one is interested in how the inhomogeneity spreads out under unitary time evolution. On the other hand,
since the order-parameter magnetization is not conserved, even a single spin-flip excitation (which is local
in terms of the spins) will lead to nontrivial dynamics. For the study of domain-wall melting, we will also
consider for comparison a local quench setup where two separate chains are initially prepared in oppositely
magnetized ground states, and subsequently joined together.

The time-evolved magnetization can be extracted in a number of different ways. On the numerical side, we
apply matrix product state (MPS) calculations30,107 in an open-chain geometry. To ensure that we obtain the
proper ferromagnetic (symmetry-broken) ground state |⇑⟩, we introduced a small longitudinal field ℎ𝑥 > 0
in the Hamiltonian 𝐻 − ℎ𝑥 ∑𝑖 𝜎𝑥

𝑖 for the first few sweeps and set ℎ𝑥 = 0 afterwards, until convergence
is reached. The excitations are then created by acting with the matrix product operator representation
of the corresponding spin-excitation. Finally, the time evolution was implemented with the finite two-site
time-dependent variational principle (TDVP) algorithm31.

On the other hand, we also employed Pfaffian techniques for the numerical evaluation of the magnetization.
For the simple domain-wall excitation these were described in Ref.178, but the calculations can easily be
generalized for the other local excitations we deal with. In all of the examples we observed a perfect agreement
with the results of MPS calculations.
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Magnetization dynamics

Finally, we also present analytical results based on form-factor calculations. To this end, one has to first
express the excited initial state |𝜓0⟩ = (|𝜓0⟩R + |𝜓0⟩NS)/

√
2 in the fermion basis, which is then time-evolved

with the corresponding Hamiltonian in both symmetry sectors as

|𝜓𝑡⟩R/NS = e−𝑖𝑡𝐻R/NS |𝜓0⟩R/NS . (III.B.9)

Once |𝜓0⟩R/NS is written as a linear combination of the 𝐾-particle eigenstates (III.B.7), the time evolution is
trivial

e−𝑖𝑡𝐻R/NS |𝑞1, 𝑞2, … , 𝑞𝐾⟩R/NS = e−𝑖𝑡 ∑𝐾
𝑘=1 𝜖𝑞𝑘 |𝑞1, 𝑞2, … , 𝑞𝐾⟩R/NS , (III.B.10)

since the Hamiltonian 𝐻R/NS is diagonal in this basis. It is useful to introduce the normalized magnetization
which can be evaluated as

M𝑛(𝑡) = R⟨𝜓𝑡|𝜎𝑥
𝑛 |𝜓𝑡⟩NS

R⟨0|𝜎𝑥
𝑛 |0⟩NS

. (III.B.11)

Note that, since the operator 𝜎𝑥
𝑛 changes the parity of the state, the only non-vanishing contribution to

the expectation value is between different parity sectors. In turn, the calculation of M𝑛(𝑡) boils down to
evaluating multiple sums over the momenta with the form factors R⟨𝑝1, … , 𝑝𝐿|𝜎𝑥

𝑛 |𝑞1, … , 𝑞𝐾⟩NS, which are
known explicitly from previous studies194,195,242. In the following we always consider the thermodynamic
limit 𝑁 → ∞, where the sums over momenta can be turned into integrals and the expressions for the form
factors are summarized in Appendix III.B.7.1.

III.B.3.1 Single domain wall

Our first example is a single domain wall, which has already been considered for the TI178 as well as
for the XY chains173. For completeness, we revisit here the results obtained previously for the normalized
magnetization. The single domain wall is an excitation |𝜓0⟩ = 𝐷𝑛1

|⇑⟩ created by the operator

𝐷𝑛1
=

𝑛1−1

∏
𝑗=1

𝜎𝑧
𝑗 𝜎𝑥

𝑛1
= 𝑎2𝑛1−1 . (III.B.12)

As remarked before, 𝐷𝑛1
is strictly local in terms of the fermions, whereas in the spin representation it creates

spin-flips all over the sites 𝑗 < 𝑛1. In the eigenbasis of the Hamiltonian it corresponds to a linear combination
of one-particle states

|𝜓0⟩ = 1√
𝑁

∑
𝑞

e−𝑖𝑞(𝑛1−1/2)e𝑖𝜃𝑞/2 |𝑞⟩ , (III.B.13)

where we have suppressed the subscripts R/NS of the symmetry sector for notational simplicity. One thus
only needs the form factors between one-particle states, which has a relatively simple form (III.B.51) given
in Appendix III.B.7.1. Performing the time evolution (III.B.9) via (III.B.10) and inserting the result into
(III.B.11), one arrives at

M𝑛(𝑡) = ∫
𝜋

−𝜋

d𝑝
2𝜋

∫
𝜋

−𝜋

d𝑞
2𝜋

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞

e𝑖(𝑛−𝑛1+1/2)(𝑞−𝑝)

𝑖 sin ( 𝑞−𝑝
2 )

e𝑖(𝜃𝑞−𝜃𝑝)/2e−𝑖(𝜖𝑞−𝜖𝑝)𝑡 . (III.B.14)

The above expression simplifies considerably in appropriate scaling limits. Indeed, noting that the integral
receives the dominant contribution due to a pole at 𝑞 = 𝑝 in the integrand of (III.B.14), one can change
variables as 𝑄 = 𝑞 − 𝑝 and 𝑃 = (𝑞 + 𝑝)/2, and perform a stationary phase analysis as described in Appendix
III.B.7.2. In turn, one obtains

M𝑛(𝑡) = 1 − 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

Θ(𝑣𝑃 − 𝜈) , 𝜈 = 𝑛 − 𝑛1 + 1/2
𝑡

, (III.B.15)
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which is the so-called hydrodynamic scaling limit. Here Θ(𝑥) is the Heaviside step function, 𝑣𝑃 = d𝜖𝑃
d𝑃 is the

group velocity of the single-particle excitations and 𝜈 is the ray variable, with the distance measured from the
initial location 𝑛1 − 1/2 of the domain wall. The result (III.B.15) has a simple semiclassical interpretation,
which has been applied many times to understand front dynamics in quantum chains198,200,201,243. Namely,
the magnetization is transported by single-particle excitations, each carrying an elementary spin-flip, which
contribute to the hydrodynamic profile at a given ray only if their velocity 𝑣𝑃 > 𝜈.

Another interesting scaling regime emerges around the edge of the front 𝜈 ≈ 𝑣𝑚𝑎𝑥, given by the maximum
speed of excitations. In order to understand the fine structure of the edge, a higher order stationary phase
analysis has to be performed around the momentum 𝑞∗ which yields the maximum velocity 𝑣𝑞∗

= 𝑣𝑚𝑎𝑥. As
shown in Appendix III.B.7.2, this leads to the following result

M𝑛(𝑡) ≈ 1 − 2 ( 2
|𝑣″

𝑞∗
|𝑡

)
1/3

𝜌(𝑋) , 𝑋 = (𝑛 − 𝑛1 + 1/2 + 𝜃′
𝑞∗

/2 − 𝑣𝑞∗
𝑡) ( 2

|𝑣″
𝑞∗

|𝑡
)

1/3

. (III.B.16)

In other words, with the proper choice of the scaling variable 𝑋 measuring the distance from the edge, and
after appropriate rescaling, the fine structure of the magnetization front is given via the function

𝜌(𝑋) = K𝐴𝑖(𝑋, 𝑋) = [Ai′(𝑋)]2 − 𝑋Ai2(𝑋) . (III.B.17)

Note that 𝜌(𝑋) is nothing else but the diagonal part of the Airy-kernel K𝐴𝑖(𝑋, 𝑌 )208, which appears in a
number of front evolution problems related to free-fermion edge universality202,203,205,206,209,244–246.

The results (III.B.15) and (III.B.16) have already been tested against numerical calculations for various
parameters of the XY chain, where the notable feature of a hydrodynamic phase transition at ℎ𝑐 = 1−𝛾2 was
observed173. Indeed, this phase transition can be understood by the appearance of a second local maximum in
the group velocities 𝑣𝑞 for ℎ < ℎ𝑐, which in turn leads to kinks in the bulk of the hydrodynamic magnetization
profile173.

Finally, it should be noted that the analytical result was obtained by following the time evolution of
one-particle states building up the domain wall. Strictly speaking, these states are eigenstates of 𝐻− only, i.e.
the time evolution has to be performed with antiperiodic boundary conditions on the spin chain. However,
since the form factor calculations are carried out directly in the thermodynamic limit, the boundaries actually
do not play any role.

III.B.3.2 Double domain wall

We now move on to consider more complicated excitations, that are created by acting with the operator

𝐷𝑛1,𝑛2
= 𝜎𝑥

𝑛1−1

𝑛2−1

∏
𝑗=𝑛1

𝜎𝑧
𝑗 𝜎𝑥

𝑛2
= −𝑖 𝑎2𝑛1−2 𝑎2𝑛2−1 , (III.B.18)

where 𝑛2 > 𝑛1 is assumed. In terms of fermions this is a two-local operator, i.e. supported on two sites
only. In contrast, 𝐷𝑛1,𝑛2

is again nonlocal in the spin representation, and it is easy to see that it describes a
double domain wall, located at sites 𝑛1 and 𝑛2, respectively. Using (III.B.5), the excited initial state can be
written as

|𝜓0⟩ = 1
𝑁

∑
𝑞

e𝑖𝑞(𝑛2−𝑛1)e−𝑖𝜃𝑞 |0⟩ − 1
𝑁

∑
𝑞1,𝑞2

e−𝑖𝑞1(𝑛1−1/2)e−𝑖𝑞2(𝑛2−1/2)e−𝑖(𝜃𝑞1−𝜃𝑞2)/2 |𝑞1, 𝑞2⟩ . (III.B.19)

We shall restrict ourselves to the case 𝑛2 − 𝑛1 ≫ 1, i.e. when the two domain walls are spatially well
separated, such that the sum in the first term of (III.B.19) becomes highly oscillatory and can be neglected.
The initial state then involves only two-particle excitations and the time evolved state can be written as

|𝜓𝑡⟩ = − 1
𝑁

∑
𝑞1,𝑞2

e−𝑖𝑞1(𝑛1−1/2)e−𝑖𝑞2(𝑛2−1/2)e−𝑖(𝜃𝑞1−𝜃𝑞2)/2e−𝑖(𝜖𝑞1+𝜖𝑞2)𝑡 |𝑞1, 𝑞2⟩ . (III.B.20)
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The magnetization M𝑛(𝑡) can thus be expressed as a quadruple integral via two-particle form factors
R⟨𝑝1, 𝑝2|𝜎𝑥

𝑛 |𝑞1, 𝑞2⟩NS , that are reported in (III.B.53) in Appendix III.B.7.1. The result can be simplified,
similarly to the single domain wall case, by analyzing the pole-structure of the form factors combined with a
stationary phase approximation. The poles appear for momenta satisfying 𝑞1 = 𝑝1 and 𝑞2 = 𝑝2 or 𝑞1 = 𝑝2
and 𝑞2 = 𝑝1. For the first pole one obtains two independent stationary phase conditions

𝑣𝑃𝑖
𝑡 − (−1)𝑖𝜃′

𝑃𝑖
− (𝑛 − 𝑛𝑖 + 1/2) = 0 , (III.B.21)

where 𝑃𝑖 = (𝑞𝑖 + 𝑝𝑖)/2 for 𝑖 = 1, 2. Note that this pole corresponds to a process where the incoming
momenta are matched with the outgoing ones at each domain wall separately. In contrast, at the second pole
an incoming momentum of the first domain wall must match with an outgoing momentum of the second
domain wall. However, as shown in Appendix III.B.7.2, after the exchange of the outgoing momenta and
under the assumption 𝑛2 − 𝑛1 ≫ 1, the stationary phase condition cannot be satisfied. Thus only the first
pole gives a contribution to the integral and leads to the result

M𝑛(𝑡) = ∏
𝑖

∫ d𝑃𝑖
2𝜋

[1 − 2 Θ (𝑣𝑃𝑖
− 𝜈𝑖) ], 𝜈𝑖 = 𝑛 − 𝑛𝑖 + 1/2

𝑡
. (III.B.22)

The hydrodynamic scaling limit of the profile in (III.B.22) has thus a factorized form with again a very
simple physical interpretation. The ray variables 𝜈𝑖 now measure the distances from the corresponding initial
domain wall locations 𝑛𝑖 − 1/2, where quasiparticles with velocity 𝑣𝑃𝑖

are emitted, each carrying a spin-flip.
If, for a given pair of particles, one has 𝑣𝑃1

> 𝜈1 and 𝑣𝑃2
> 𝜈2 then both of the particles have reached

site 𝑛 at time 𝑡, hence the spin is flipped twice and one has a positive contribution. If, on the other hand,
𝑣𝑃1

< 𝜈1 and 𝑣𝑃2
> 𝜈2, then only one particle has arrived and the contribution is negative. The profile is

then obtained by summing the contributions over all pairs.
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Figure III.B.1. Magnetization profiles after a double domain wall excitation for different times and various ℎ and 𝛾.
The solid red lines show the approximation (III.B.22). The parameters are 𝑁 = 600, 𝑛1 = 201 and 𝑛2 = 401.

In Fig. III.B.1 we show the results of our MPS simulations together with the result (III.B.22). One can see
a perfect agreement, even after the two fronts propagating from different locations overlap in the middle. In
particular, one observes the emergence of two cusps at the ends of the overlap region, which follows from the
factorized form of (III.B.22), i.e. one multiplies two single domain wall front profiles, each having square-root
singularities at their edges. Moreover, this also implies that the outer edge of the front is still described by
the same scaling (III.B.16) as for the single domain wall. On the right of Fig. III.B.1 there are extra kinks to
be seen, which is due to the fact that one has ℎ < ℎ𝑐 there, i.e. one is beyond the hydrodynamical phase
transition point.
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III.B.3.3 Single spin-flip

After having discussed the evolution of domain walls, we now study a very simple excitation, in the form
of a single flipped spin. Naively, one would think that this excitation has a trivial hydrodynamic limit, and
the flipped spin just disperses. However, since the magnetization is not conserved under the XY dynamics, it
turns out that the profile is far from being trivial. In fact, the operator that creates a spin-flip at site 𝑛1
is just 𝜎𝑧

𝑛1
= −𝑖𝑎2𝑛1−1𝑎2𝑛1

, which is strictly local in the spin representation, but is again two-local, i.e. a
product of two adjacent Majoranas in the fermionic picture. Hence, this form is more reminiscent of a double
domain wall excitation, with the exception that they are now created at neighbouring sites. Rewriting the
excitation in the fermionic basis one has

|𝜓0⟩ = 𝑚𝑧 |0⟩ − 1
𝑁

∑
𝑞1,𝑞2

e−𝑖𝑞1(𝑛1−1/2)e−𝑖𝑞2(𝑛1+1/2)e𝑖(𝜃𝑞1−𝜃𝑞2)/2 |𝑞1, 𝑞2⟩ , (III.B.23)

where the ground-state contribution is now proportional to the transverse magnetization

𝑚𝑧 = ⟨0|𝜎𝑧
𝑛|0⟩ = − ∫

𝜋

−𝜋

d𝑞
2𝜋

e𝑖(𝜃𝑞+𝑞) , (III.B.24)

and thus cannot be neglected.
The calculation of M𝑛(𝑡) follows the same steps as in the previous cases. Note, in particular, that the

two-particle contribution in (III.B.23) has almost the same form as (III.B.19) for the double domain wall with
𝑛2 = 𝑛1 + 1, except for the sign of the Bogoliubov phases. After time evolving and taking the expectation
value with |𝜓𝑡⟩, one has now cross terms where the form factors R⟨0|𝜎𝑥

𝑛 |𝑞1, 𝑞2⟩NS appear, see (III.B.52).
However, since they have no poles, it is easy to see that their contribution is negligible in the scaling limit
we are interested in. On the other hand, the two-particle form factors now yield a contribution from both
of the poles. Indeed, the stationarity condition is, up to the sign of the 𝜃′

𝑃𝑖
term, is the same as (III.B.21)

for the double domain wall with 𝑛2 = 𝑛1 + 1. However, in the limit of 𝑡 ≫ 1 and |𝑛 − 𝑛1| ≫ 1, the two
equations are essentially the same. Hence, the process in which an incoming momentum of the first domain
wall scatters into an outgoing momentum of the neighbouring one is equally well permitted and yields a
sizable contribution.

Carrying out the stationary phase analysis in detail (see Appendix III.B.7.2), one arrives at the following
result in the hydrodynamic limit

M𝑛(𝑡) = (𝑚𝑧)2 + [1 − 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

Θ (𝑣𝑃 − ̃𝜈)]
2

− ∣𝑚𝑧 + 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

e𝑖𝑃e𝑖𝜃𝑃Θ (𝑣𝑃 − ̃𝜈)∣
2

, (III.B.25)

where the ray variable ̃𝜈 = 𝑛−𝑛1
𝑡 is slightly changed compared to (III.B.15), since the distance is now measured

from the location 𝑛1 of the spin-flip. The profile can be written as the sum of three terms, where the first one
is simply the ground-state contribution. The second one corresponds to the factorized result for the double
domain wall and the third one describes a kind of interference term, where the momenta of the excitations
building up the two domain walls are exchanged. There is no simple semiclassical interpretation of this
interference term, since the quasiparticles contribute with a phase factor. The result (III.B.25) is compared
against our numerical calculations in Fig. III.B.2 with an excellent agreement.

It is also interesting to have a look at the edge behaviour of the profile. Performing the higher order
stationary phase analysis (see Appendix III.B.7.2), one is led to the following result

M𝑛(𝑡) ≈ 1 − 2 ( 2
|𝑣″

𝑞∗
|𝑡

)
1/3

̃𝜌(�̃�) , �̃� = (𝑛 − 𝑛1 − 𝑣𝑞∗
𝑡) ( 2

|𝑣″
𝑞∗

|𝑡
)

1/3

, (III.B.26)

where the scaling function is given by

̃𝜌(�̃�) = [2 + 2 𝑚𝑧 cos(𝜃𝑞∗
+ 𝑞∗)]K𝐴𝑖(�̃�, �̃�) . (III.B.27)
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Figure III.B.2. Magnetization profiles after a spin-flip excitation for various ℎ and 𝛾. The red solid lines show the
approximation (III.B.25). The parameters are 𝑁 = 400, 𝑛1 = 200 and 𝑡 = 200.

The result is thus very similar to the one for the domain wall in (III.B.16), however the scaling function ̃𝜌(�̃�)
acquires a nontrivial prefactor, which depends explicitly on the transverse magnetization 𝑚𝑧, and even on the
Bogoliubov phase evaluated at 𝑞∗ where the quasiparticle velocity has its maximum. In particular, this phase
factor vanishes for the TI chain and one has a factor of 2 difference with respect to 𝜌(𝑋). This explains the
numerical findings of Ref.177 where the very same setup was studied. We checked the validity of the edge
scaling (III.B.26) in Fig. III.B.3 for various parameter values and found a very good agreement, there are
however some differences in the convergence towards the scaling function ̃𝜌(�̃�).
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Figure III.B.3. Edge scaling (III.B.26) of the magnetization profiles after a spin-flip excitation for various ℎ and 𝛾.
The red solid lines show the scaling function in (III.B.27).

III.B.3.4 Local quench

As a final example, we show here the results for the magnetization profile resulting from a local quench.
That is, instead of applying a local excitation to the symmetry-broken ferromagnetic state, we rather prepare
the two halves of our chain in oppositely magnetized ground states and join them together. Our goal is to
check whether this protocol yields a similar result for the hydrodynamic profile as the one found for the single
domain wall excitation.
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The initial and time-evolved states are now given by

|𝜓0⟩ = |⇓⟩ ⊗ |⇑⟩ , |𝜓𝑡⟩ = e−𝑖𝐻𝑡 |𝜓0⟩ . (III.B.28)

Since our initial state is not prepared as an excitation upon the bulk vacuum state, it is a nontrivial question
how |𝜓0⟩ can be written in the basis of the full Hamiltonian 𝐻. Thus we shall only perform numerical (MPS
and Pfaffian based) calculations for the quench. The results, shown in Fig. III.B.4, turn out to be rather
surprising. Namely, we find that in the TI limit (𝛾 = 1) the profiles after the local quench (full symbols)
almost exactly coincide with the ones for the domain wall excitation (empty symbols). The only deviations
visible at the scale of the figure are around the front edges. In sharp contrast, for 𝛾 = 0.5 one has a huge
deviation between the profiles for all the values of ℎ we considered. This signals that in the latter case the
factorized initial state is not well approximated by a single-particle excitation in the fermionic basis. We
observe that the mismatch between the profiles gradually increases as one moves away from the TI limit.
However, we have no clear explanation of this phenomenon which needs further studies.
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Figure III.B.4. Magnetization profiles after the local quench (full symbols) vs. single domain wall excitation (empty
symbols), for various ℎ and 𝛾. The parameters are 𝑁 = 400, 𝑛1 = 201 and 𝑡 = 100.

III.B.4 Correlation functions

The form-factor approach is not restricted to the study of the magnetization profile. The next simplest
physically interesting observable is the correlation function between the spins. Here we shall restrict ourselves
to equal-time correlations between the 𝑥-components of the spin, which have already been addressed briefly
in173. It is useful to work with the normalized correlation functions

C𝑚,𝑛(𝑡) = NS⟨𝜓𝑡| ̂M𝑚
̂M𝑛 |𝜓𝑡⟩NS , (III.B.29)

where the expectation value is now taken between the NS components only, since the operator 𝜎𝑥
𝑚𝜎𝑥

𝑛 does not
change the parity. Note that we use here that the corresponding expectation value between the R components
is equal to (III.B.29) in the thermodynamic limit.

In order to get a form-factor expansion of (III.B.29), we shall insert the resolution of the identity

1 = |0⟩ ⟨0| + ∑
𝑝

|𝑝⟩⟨𝑝| + ∑
𝑝1,𝑝2

|𝑝1, 𝑝2⟩⟨𝑝1, 𝑝2| + ∑
𝑝1,𝑝2,𝑝3

|𝑝1, 𝑝2, 𝑝3⟩⟨𝑝1, 𝑝2, 𝑝3| + … (III.B.30)

Note that the resolution must be taken within the R sector, but we omit here the subscripts for notational
simplicity. The form-factor expansion can be obtained by inserting the expression of |𝜓𝑡⟩NS in terms of the
fermionic basis. We focus here on the case of a single domain wall, since the calculations become rather
cumbersome for more complicated excitations. In this case |𝜓𝑡⟩NS is a superposition of single-particle states

191



Correlation functions

only and it is reasonable to assume that, for distances much larger than the correlation length |𝑛 − 𝑚| ≫ 𝜉,
the dominant contribution to the correlations comes from the single-particle terms in (III.B.30) as well. To
lowest order in the form-factor expansion we thus arrive at the result

C𝑚,𝑛(𝑡) ≃ ∫ d𝑞1
2𝜋

∫ d𝑞2
2𝜋

e−𝑖(𝜃𝑞1−𝜃𝑞2)/2e𝑖(𝜖𝑞1−𝜖𝑞2)𝑡

× ∫ d𝑝
2𝜋

𝜖𝑝 + 𝜖𝑞1

2√𝜖𝑝𝜖𝑞1

𝜖𝑝 + 𝜖𝑞2

2√𝜖𝑝𝜖𝑞2

e−𝑖(𝑚−𝑛1+1/2)(𝑞1−𝑝)

sin 𝑞1−𝑝
2

e𝑖(𝑛−𝑛1+1/2)(𝑞2−𝑝)

sin 𝑞2−𝑝
2

. (III.B.31)

The hydrodynamic limit of (III.B.31) can be obtained in a similar fashion as was done for the magnetization
profile. Expanding around the poles of the integrand and using the properties of the Θ function (see Appendix
III.B.7.3 for details) one obtains

C𝑚,𝑛(𝑡) ≃ 1 − 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

Θ(𝑣𝑃 − 𝜇)Θ(𝜈 − 𝑣𝑃) , (III.B.32)

where the ray variables

𝜇 = 𝑚 − 𝑛1 + 1/2
𝑡

, 𝜈 = 𝑛 − 𝑛1 + 1/2
𝑡

(III.B.33)

are measured from the initial domain wall location and the expression has a very simple interpretation. Let us
assume 𝜈 > 𝜇 and consider the contribution of a single quasi-particle traveling at speed 𝑣𝑃. Now, for short
times 𝑣𝑃 < 𝜇 the excitation has not yet reached the first spin and thus the correlations are ferromagnetic.
Once 𝜇 < 𝑣𝑃 < 𝜈, the first spin has been flipped while the second one is still untouched, hence the correlation
is antiferromagnetic. Finally, after the excitation has traveled through, 𝑣𝑃 > 𝜈, the second spin is also flipped
and the correlation becomes ferromagnetic again.

It turns out that, instead of approximating the integrals in (III.B.31), there is a way to directly relate
C𝑚,𝑛(𝑡) to the profile M𝑛(𝑡). Indeed, by turning the integral over 𝑝 into a contour integral and applying
the residue theorem, one obtains the formula (III.B.80) reported in Appendix III.B.7.3, which is an exact
relation at the level of one-particle form factors. However it is easy to see that, similarly to the hydrodynamic
approximation in (III.B.32), it yields perfect ferromagnetic correlations C𝑚,𝑛(𝑡) ≃ 1 when both spins are
outside the front region. Indeed, it can be shown that the many-particle form factors are the ones responsible
for the exponentially decaying correlations C0

𝑚,𝑛 in the ground state194. One can thus reincorporate these
correlations into the approximation as

C𝑚,𝑛(𝑡) ≃ C0
𝑚,𝑛 + M𝑚(𝑡) − M𝑛(𝑡) . (III.B.34)

The relation in (III.B.34) is tested against exact numerical calculations for the TI chain in Fig. III.B.5.
We have calculated the correlations along the front region while keeping the distance 𝑑 between the spins
fixed. One can see that, for 𝑑 = 1, there is still a slight deviation from (III.B.34) which, however, decreases
with increasing 𝑑. For 𝑑 = 10 one has already an excellent agreement with no visible deviations. In fact,
for |𝑛 − 𝑚| ≫ 𝜉 one has C0

𝑚,𝑛 → 1, and one recovers the one-particle result (III.B.80) which should become
exact. Note, however, that calculating the corrections to (III.B.34) would require to evaluate multiple integrals
with higher-order offdiagonal form factors and is thus a difficult task. Nevertheless, a closer investigation of
the form-factor structure in (III.B.48) confirms, that the dominant pole contribution is suppressed and thus
one indeed obtains subleading terms.
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III.B.5 Entanglement dynamics

So far we have studied the simplest observables. One can, however, gather important information
about the time-evolved state by looking at the entanglement dynamics. In particular, we are interested
in the entanglement profiles along the front region, considering a bipartition into two disjoint segments
𝐴 = [1, 𝑁/2 + 𝑟] and its complement 𝐵, and calculating the resulting von Neumann entropy. Entanglement
profiles for domain-wall type initial conditions have been studied extensively for time evolution under critical
Hamiltonians177,230,232,233,238,247–250, and even a description in terms of CFT has been given204,251. However,
much less is known about the non-critical case, such as the one at hand.

The calculation of the entanglement profile is straightforward in MPS calculations, however, extracting the
entropy via covariance-matrix techniques for Gaussian states210,211 requires some extra considerations. Indeed,
the problem lies in the nature of the initial state, since the excitations are created upon the symmetry-broken
ground state, which is inherently non-Gaussian212. Nevertheless, this difficulty can be overcome by relating
the problem to the one where the very same excitations are created upon the Gaussian, non-magnetized
ground states in (III.B.8). The method has already been outlined in173 but we expand here the arguments for
completeness.

Let us consider initial states corresponding to the two symmetry-broken ground states of the system.
Using (III.B.8), the density matrices are given by

|⇑⟩ ⟨⇑| = 𝜌𝑒 + 𝜌𝑜 , |⇓⟩ ⟨⇓| = 𝜌𝑒 − 𝜌𝑜 , (III.B.35)

where the even and odd parity components, satisfying [P, 𝜌𝑒] = 0 and {P, 𝜌𝑜} = 0, respectively, are defined
as

𝜌𝑒 = 1
2

( |0⟩NS NS⟨0| + |0⟩R R⟨0|) , 𝜌𝑜 = 1
2

(|0⟩NS R⟨0| + |0⟩R NS⟨0|) . (III.B.36)

Clearly, the problem is with the odd component 𝜌𝑜, since a Gaussian density operator is by definition even.
One can, however, eliminate 𝜌𝑜 by considering an equal-weight convex combination of the density matrices in
(III.B.35). The resulting density matrix 𝜌𝑒 is itself still a convex combination of two Gaussian states from the
NS and R sectors. However, working in the thermodynamic limit, these two states become indistinguishable212,
and one concludes that 𝜌𝑒 is equivalent to a proper Gaussian state.

Furthermore, as shown in Ref.213, excitations that can be written as a product of Majorana fermions

𝐷𝐽 = ∏
𝑗∈𝐽

𝑎𝑗 , (III.B.37)
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where 𝐽 is an arbitrary index set, preserve Gaussianity. So does unitary time evolution governed by a quadratic
Hamiltonian. Hence, introducing the notation

𝜌⇑
𝐴 = Tr𝐵 [e−𝑖𝐻𝑡𝐷𝐽 |⇑⟩ ⟨⇑| 𝐷†

𝐽 e𝑖𝐻𝑡] , 𝜌⇓
𝐴 = Tr𝐵 [e−𝑖𝐻𝑡𝐷𝐽 |⇓⟩ ⟨⇓| 𝐷†

𝐽 e𝑖𝐻𝑡] , (III.B.38)

for the reduced density matrices of a given bipartition, after exciting and time evolving the initial states in
(III.B.35), we finally come to the conclusion that

𝜌𝐴 =
𝜌⇑

𝐴 + 𝜌⇓
𝐴

2
(III.B.39)

is a well-defined Gaussian state living on the Hilbert space of segment 𝐴.
Our goal is now to relate the entropy 𝑆(𝜌⇑

𝐴) = −Tr 𝜌⇑
𝐴 ln 𝜌⇑

𝐴 of our target state to that 𝑆(𝜌𝐴) of
the Gaussian state in (III.B.39). To this end we use the inequality for convex combinations of density
matrices214,215

𝑆( ∑
𝑖

𝜆𝑖𝜌𝑖) ≤ ∑
𝑖

𝜆𝑖𝑆(𝜌𝑖) − ∑
𝑖

𝜆𝑖 ln 𝜆𝑖 . (III.B.40)

First, we note that from trivial symmetry arguments one has 𝑆(𝜌⇓
𝐴) = 𝑆(𝜌⇑

𝐴). Furthermore, it is also
known215 that the inequality (III.B.40) is saturated if the ranges of 𝜌𝑖 are pairwise orthogonal, which is again
clearly satisfied in our case due to ⟨⇑ | ⇓|⇑ | ⇓⟩ = 0. Hence one finds

𝑆(𝜌⇑
𝐴) = 𝑆(𝜌𝐴) − ln 2 . (III.B.41)

Finally, it remains to calculate the covariance matrix Γ𝐴 corresponding to 𝜌𝐴, from which the calculation
of the entropy 𝑆(𝜌𝐴) follows standard procedure210,211. Since 𝜌𝐴 is the reduced density matrix of the
time-evolved and excited ground state |𝜓𝑡⟩NS, Γ𝐴 is just the reduction of the full covariance matrix with
elements Γ𝑘,𝑙 = NS⟨𝜓𝑡| [𝑎𝑘, 𝑎𝑙] |𝜓𝑡⟩NS /2. This can be obtained by working in the Heisenberg picture. Since
𝐷𝐽 is unitary, 𝐷𝐽𝐷†

𝐽 = 1, the effect of the excitation can be absorbed by a change of the Majorana basis213

𝑎′
𝑘 = 𝐷†

𝐽 𝑎𝑘 𝐷𝐽 =
2𝑁
∑
𝑙=1

𝑄𝑘,𝑙𝑎𝑙 . (III.B.42)

The orthogonal transformation 𝑄 has a simple diagonal matrix form

𝑄𝑘𝑙 = 𝛿𝑘,𝑙 ∏
𝑗∈𝐽

(2𝛿𝑘,𝑗 − 1) , (III.B.43)

with entries ±1, depending on whether the corresponding column is part of the index set 𝐽 or not. In complete
analogy, the unitary time evolution corresponds to the basis rotation

𝑎′
𝑘(𝑡) = e𝑖𝐻𝑡𝑎′

𝑘e−𝑖𝐻𝑡 =
2𝑁
∑
𝑙=1

𝑅𝑘,𝑙𝑎′
𝑙 , (III.B.44)

where the explicit form of the orthogonal matrix 𝑅 was reported in Ref.178. Putting everything together, one
finds that

Γ = 𝑅 𝑄 Γ0 𝑄𝑇𝑅𝑇, (III.B.45)

where Γ0 is the ground-state covariance matrix with elements (Γ0)𝑘,𝑙 = NS⟨0| [𝑎𝑘, 𝑎𝑙] |0⟩NS /2.
We are now ready to discuss the entanglement dynamics for the simple excitations introduced in Sec.

III.B.3. In each case we have verified that the entropy obtained by the procedure outlined above agrees
perfectly with the results of our MPS calculations.
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III.B.5.1 Single domain wall

The entropy profiles for the single domain wall, located initially in the center (𝑟 = 0) of the chain, have
already been considered in173 and are shown in the left of Fig. III.B.6 for 𝛾 = 0.5 and several values of ℎ.
The profile Δ𝑆(𝑟) = 𝑆(𝜌⇑

𝐴) − 𝑆0 is always measured from the initial entropy 𝑆0 of the bulk ferromagnetic
state, and is plotted against the rescaled distance 𝜁 = 𝑟/𝑡 from the center of the chain. The main feature to
be seen is the emergence of a kink in the profile for ℎ < ℎ𝑐, at the value 𝜁∗ that equals the local maximum of
the quasiparticle velocity, in complete analogy to the case of the magnetization.
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Figure III.B.6. Left: entanglement profiles for the single domain wall, for various ℎ and 𝛾 = 0.5. The parameters are
𝑁 = 400, 𝑛1 = 201 and 𝑡 = 200. The solid red lines show the ansatz (III.B.46). Right: half-chain entanglement as
a function of time. The horizontal dotted line indicates the value ln 2. The inset shows the deviation from ln 2 on a
logarithmic scale. The red dashed lines with slopes −1/2 and −1, respectively, are guides to the eye.

Due to the similar features observed in the entropy and magnetization profiles, one is naturally led to
the question whether there is a simple relation between the two of them. We are also motivated by recent
results of Refs.240,241, where the entanglement content of particle excitations in 1 + 1-dimensional massive
quantum field theories was studied, with a surprisingly simple result. Namely, it has been found that the
entropy difference (relative to the ground state) of a single-mode excitation is independent of the wavenumber
and given by the binary entropy formula involving the ratio of the subsystem and full system lengths240,241.
This ratio is just the density fraction of the single-mode excitation that is contained within the subsystem.

Inspired by these findings, we put forward the following ansatz

Δ𝑆(𝜁) = −N ln N − (1 − N ) ln (1 − N ) , N (𝜁) = ∫
𝜋

−𝜋

d𝑃
2𝜋

Θ(𝑣𝑃 − 𝜁) . (III.B.46)

In other words, we assume that the static results of240,241 would generalize to our dynamical scenario, and the
entropy difference for bipartitions along the ray 𝜁 is just given by the same binary formula, with the density
ratio N (𝜁) being the fraction of the quasiparticles that have reached the entangling point. Surprisingly, we
find that the simple-minded ansatz (III.B.46), shown by the red solid lines in the left of Fig. III.B.6, gives a
very good description of the entropy profiles. Via the density fraction N (𝜁), the entropy profiles are thus
directly related to those of the magnetization (III.B.15).

In case ℎ < ℎ𝑐, one observes some deviations from the ansatz (III.B.46), which are only visible in the
regime 𝜁 < 𝜁∗ and are assumed to be finite-time effects. In order to better understand the convergence, on
the right of Fig. III.B.6 we also studied the time evolution of the half-chain entropy Δ𝑆(0), for the same
parameter values. Although each of them can be seen to converge towards the asymptotic value ln 2, their
approach is rather different. For ℎ > ℎ𝑐 the convergence is fast and steady, with rapid oscillations only,
whereas for ℎ < ℎ𝑐 there is a smaller frequency appearing with a larger amplitude, and the curve bounces
back from its asymptotical value repeatedly. Interestingly, at the critical point ℎ = ℎ𝑐 = 0.75 one can see a
slowing down in the convergence, which becomes most evident on a logarithmic scale as shown on the inset
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of the figure. Indeed, the approach seems to be a power law 𝑡−1/2, as opposed to 𝑡−1 in the ℎ ≠ ℎ𝑐 case.
This critical slowing down is responsible for the dip around 𝜁 = 0 in the profile for ℎ = ℎ𝑐 on the left of Fig.
III.B.6.

One should stress the marked difference of the entropy profiles as compared to domain-wall evolution in
critical systems, such as the XX chain. Indeed, in the latter case the entropy was found to grow logarithmically
in time in the entire front region248,251, whereas here the profiles converge to the scaling function (III.B.46)
when plotted against 𝜁 = 𝑟/𝑡. In particular, the result Δ𝑆(0) = ln 2 for 𝜁 = 0 implies that the entropy
converges towards the value attained in the ground state |0⟩NS, which has been studied in252,253. Indeed,
applying the relation (III.B.41) at 𝑡 = 0, one finds that the entropy 𝑆0 in the initial symmetry-broken ground
state is exactly ln 2 less than that of the NS ground state. This strongly suggests that the steady state is
nothing but the ground state with its symmetry restored.

III.B.5.2 Double domain wall

The profiles for the double domain wall are shown in Fig. III.B.8 for various times and two different model
parameters. In both cases, the profiles resemble those of two separate single domain walls for short times,
while for large times the main feature is the emergence of an additional plateau in the overlap region. This
strongly suggests the relation

Δ𝑆𝑛1,𝑛2
(𝑟) = Δ𝑆𝑛1

(𝑟) + Δ𝑆𝑛2
(𝑟) , (III.B.47)

where Δ𝑆𝑛1,𝑛2
(𝑟) and Δ𝑆𝑛𝑖

(𝑟) denote the entropy differences for double and single domain walls, respectively,
with the indices referring to the initial locations of the excitations. In other words, one expects the entropy
differences to be additive, which is indeed perfectly confirmed by the numerics.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-300 -200 -100  0  100  200  300

h=0.5

γ=1

∆
S

(r
)

r

t=100
t=200
t=300

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-300 -200 -100  0  100  200  300

h=0.65

γ=0.5

∆
S

(r
)

r

t=100
t=200

Figure III.B.7. Entanglement profiles after the double domain wall excitation for different ℎ and 𝛾. The parameters
are the same as in Fig. III.B.1.

III.B.5.3 Single spin-flip

Finally, we consider the entropy profiles for the spin-flip excitation, with the results shown in Fig. III.B.8,
for the same choice of parameters as for the magnetization profiles in Fig. III.B.2. When plotted against
the scaling variable 𝜁, the profiles show a different behaviour as compared to those of the single domain
wall excitation in Fig. III.B.6. In particular, the additivity (III.B.47) is not satisfied, analogously to the
corresponding result (III.B.25) for the magnetization, which does not have a factorized form. Indeed, as
explained under Sec. III.B.3.3, this has to do with an interference effect in the dynamics, where an incoming
momentum of the first excitation can travel forward as an outgoing momentum of the second one. Clearly,
such a process creates entanglement between the quasiparticles building up the two domain-wall excitations,
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which spoils the additivity and reduces the overall entropy of the state. Unfortunately, despite the qualitative
understanding of the origin of the nontrivial entropy behaviour, we have not been able to find an ansatz
analogous to (III.B.46) that captures the profiles quantitatively.
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Figure III.B.8. Entanglement profiles after a spin-flip excitation. The parameters are the same as in Fig. III.B.2.

III.B.6 Discussion

We studied the time evolution of the magnetization and entanglement profiles in the XY chain for simple
initial states that can be written as a product of one or two local fermionic excitations. The former corresponds
to a single domain wall in the spin-picture and the magnetization profile has a simple hydrodynamic limit
(III.B.15), corresponding to the motion of independent quasiparticles. Furthermore, in the very same limit we
find that the entropy is given by the simple ansatz (III.B.46) and is thus directly related to the magnetization
profile. The correlation function is also found to be related via (III.B.29) to the magnetization, which gives a
very good approximation even for finite times and distances.

For double domain walls, excited by the product of two fermions separated by a large distance, we
simply find the factorized form (III.B.22) for the magnetization, as well as the additivity (III.B.47) of the
entropy differences. For a single spin-flip, however, the fermions are located on neighbouring sites and the
excitation cannot be considered strictly local any more. As a consequence, we find an interference term in the
magnetization profile (III.B.25). Furthermore, the additivity of the entropy is lost, and we find convergence
towards a nontrivial profile

We have also compared the profiles for the single domain wall to the ones obtained via a local cut and glue
quench, where the two ferromagnetic ground states are prepared on half-chains and joined together. Rather
surprisingly we found that, while for the TI chain the respective profiles almost coincide, for the generic XY
case they become completely different (see Fig. III.B.4), with the discrepancy growing with the distance from
the TI limit. Apparently the local quench is well approximated by a single fermionic excitation for the TI but
not any more for the XY case. The precise origin of this phenomenon is unclear to us and requires further
studies.

It would be also interesting to see if a QFT treatment of the entropy increase could be given. Even though
our ansatz (III.B.46) was inspired by QFT results240,241 on the entanglement content of particle excitations,
those particles are single wave modes and there is no dynamics involved. On the other hand, for the case of
critical Hamiltonians there exists a CFT framework for calculating the time evolution of entropy after spatially
local excitations223. Whether this approach could be generalized to a massive QFT to predict the asymptotic
entropy increase after the excitations considered in this paper is a puzzling question to be addressed.

One could also think about extending the studies to excitations composed of a product of more than two
fermions. While being a straightforward generalization, the form-factor calculations are likely to be very
cumbersome, due to the increasing number of the pole contributions one has to account for. Finally, it is
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natural to ask how the setup could be extended to interacting integrable systems, and if the treatment of
such composite but still essentially local excitations could be incorporated into the theory of GHD.
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III.B.7 Appendix

III.B.7.1 Form factors for the TI and XY chains

Here we present the form factors used in the calculations of the main text. Although for our simple
excitations we required only few-particle form factors, the general expression is reported for completeness.
The formula is rather involved even after taking the thermodynamic limit 𝑁 → ∞, and for the TI chain
(𝛾 = 1) it reads242

R⟨𝑝1, … , 𝑝𝐿|𝜎𝑥
𝑛 |𝑞1, … , 𝑞𝐾⟩NS

R⟨0|𝜎𝑥
𝑛 |0⟩NS

= 𝑖−(𝐾+𝐿)/2 (−1)𝐿(𝐿−1)/2 ℎ(𝐾−𝐿)2/4 e𝑖𝑛(∑𝐾
𝑘=1 𝑞𝑘−∑𝐿

𝑙=1 𝑝𝑙)

×
𝐾
∏
𝑘=1

1
√𝑁𝜖𝑞𝑘

𝐿
∏
𝑙=1

1
√𝑁𝜖𝑝𝑙

𝐾
∏

𝑘<𝑘′=1

sin 𝑞𝑘−𝑞𝑘′
2

𝜖𝑞𝑘
+𝜖𝑞𝑘′
2

𝐿
∏

𝑙<𝑙′=1

sin 𝑝𝑙−𝑝𝑙′
2

𝜖𝑝𝑙
+𝜖𝑝𝑙′
2

𝐾
∏
𝑘=1

𝐿
∏
𝑙=1

𝜖𝑞𝑘
+𝜖𝑝𝑙
2

sin 𝑞𝑘−𝑝𝑙
2

. (III.B.48)

We have assumed here that the number of momenta 𝐾 and 𝐿 on the right and left hand side have the same
parity, otherwise the form factor vanishes. Note that we have normalized with the vacuum form factor, i.e.
with the expectation value of the ground-state magnetization. For 𝐾 = 𝐿 the form factors (III.B.48) depend
only on the dispersion relation 𝜖𝑞, given in Eq. (III.B.6), and the values of the momenta.

For the generic case of the XY chain, the expressions become even more complicated. In the limit 𝑁 → ∞
they can be written as194,195

R⟨𝑝1, … , 𝑝𝐿|𝜎𝑥
𝑛 |𝑞1, … , 𝑞𝐾⟩NS

R⟨0|𝜎𝑥
𝑛 |0⟩NS

= 𝑖−(𝐾+𝐿)/2 (−1)𝐿(𝐿−1)/2 𝑔(𝐾−𝐿)2/4 e𝑖𝑛(∑𝐾
𝑘=1 𝑞𝑘−∑𝐿

𝑙=1 𝑝𝑙)

× cosh
∑𝐾

𝑘=1 Δ𝑞𝑘
− ∑𝐿

𝑙=1 Δ𝑝𝑙

2

𝐾
∏
𝑘=1

1

√𝑁 sinh Δ𝑞𝑘

𝐿
∏
𝑙=1

1

√𝑁 sinh Δ𝑝𝑙

×
𝐾
∏

𝑘<𝑘′=1

sin 𝑞𝑘−𝑞𝑘′
2

sinh
Δ𝑞𝑘

+Δ𝑞𝑘′
2

𝐿
∏

𝑙<𝑙′=1

sin 𝑝𝑙−𝑝𝑙′
2

sinh
Δ𝑝𝑙

+Δ𝑝𝑙′
2

𝐾
∏
𝑘=1

𝐿
∏
𝑙=1

sinh Δ𝑞𝑘
+Δ𝑝𝑙
2

sin 𝑞𝑘−𝑝𝑙
2

, (III.B.49)

where we have defined

sinh Δ𝑞 =
√1 − 𝛾2

𝛾√𝛾2 + ℎ2 − 1
𝜖𝑞 , 𝑔 = 1 − 𝛾2

𝛾√𝛾2 + ℎ2 − 1
. (III.B.50)

The above definition is valid in the parameter regime √1 − 𝛾2 < ℎ < 1, i.e. in the non-oscillatory
ferromagnetic phase. In the oscillatory phase 0 < ℎ < √1 − 𝛾2 the corresponding expressions can be
obtained by analytic continuation194. One can also check that, in the singular TI limit 𝛾 → 1, the expression
(III.B.49) goes over to the one in (III.B.48). While in general they differ in the details, these will turn out to
be irrelevant for the hydrodynamic limit, since their pole structure is exactly the same.
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We now discuss the form factors needed in the main text. The simplest is the one-particle form factor
(𝐾 = 𝐿 = 1), where using some hyperbolic identities in (III.B.49), one can show that the TI and XY cases
yield the same expression

R⟨𝑝|𝜎𝑥
𝑛 |𝑞⟩NS

R⟨0|𝜎𝑥
𝑛 |0⟩NS

= − 𝑖
𝑁

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞

e𝑖𝑛(𝑞−𝑝)

sin 𝑞−𝑝
2

. (III.B.51)

Thus the formula (III.B.14) for the single domain wall excitation is valid for arbitrary parameter values of the
XY chain. In general, no such simplification occurs and in the following we restrict ourselves to the TI case
for the sake of simplicity. For the spin-flip excitation one needs the off-diagonal form factor with 𝐾 = 2 and
𝐿 = 0 which reads

R⟨0|𝜎𝑥
𝑛 |𝑞1, 𝑞2⟩NS

R⟨0|𝜎𝑥
𝑛 |0⟩NS

= − 𝑖
𝑁

ℎ
√𝜖𝑞1

𝜖𝑞2

e𝑖𝑛(𝑞1+𝑞2) 2 sin 𝑞1−𝑞2
2

𝜖𝑞1
+ 𝜖𝑞2

. (III.B.52)

One can see immediately, that this form factor does not have any poles which implies that it will only give a
subleading contribution. The diagonal two-particle form factor (𝐾 = 𝐿 = 2), on the other hand, has the form

R⟨𝑝1, 𝑝2|𝜎𝑥
𝑛 |𝑞1, 𝑞2⟩NS

R⟨0|𝜎𝑥
𝑛 |0⟩NS

= 1
𝑁2

e𝑖𝑛(𝑞1+𝑞2−𝑝1−𝑝2)

√𝜖𝑝1
𝜖𝑝2

𝜖𝑞1
𝜖𝑞2

2 sin 𝑝1−𝑝2
2

𝜖𝑝1
+ 𝜖𝑝2

2 sin 𝑞1−𝑞2
2

𝜖𝑞1
+ 𝜖𝑞2

×
𝜖𝑞1

+ 𝜖𝑝1

2 sin 𝑞1−𝑝1
2

𝜖𝑞1
+ 𝜖𝑝2

2 sin 𝑞1−𝑝2
2

𝜖𝑞2
+ 𝜖𝑝1

2 sin 𝑞2−𝑝1
2

𝜖𝑞2
+ 𝜖𝑝2

2 sin 𝑞2−𝑝2
2

, (III.B.53)

with two possible poles for 𝑞1 = 𝑝1 and 𝑞2 = 𝑝2, or with an exchange of momenta for 𝑞1 = 𝑝2 and 𝑞2 = 𝑝1. It
should be noted that, for the generic diagonal 𝐾-particle form factors in (III.B.48), an arbitrary permutation
between the incoming and outgoing momenta yields a pole, which makes the analysis of the contributions
increasingly complicated.

III.B.7.2 Stationary phase calculations for the profile

In this appendix we summarize the calculations leading to the approximations of the magnetization profile
in the hydrodynamic regime. The simplest case is the single domain wall, where M𝑛(𝑡) is given by a double
integral (III.B.14). The integrand has a pole due to the form factor, which can be regularized as

M𝑛(𝑡) = 1 + ∫
𝜋

−𝜋

d𝑝
2𝜋

∫
𝜋

−𝜋

d𝑞
2𝜋

𝜖𝑝 + 𝜖𝑞

2√𝜖𝑝𝜖𝑞

e𝑖(𝑛−𝑛1+1/2)(𝑞−𝑝)

𝑖 sin ( 𝑞−𝑝+𝑖𝜀
2 )

e𝑖(𝜃𝑞−𝜃𝑝)/2e−𝑖(𝜖𝑞−𝜖𝑝)𝑡 , (III.B.54)

by introducing the infinitesimal shift 𝜀 > 0. The integrand of (III.B.54) is highly oscillatory for |𝑛 − 𝑛1| ≫ 1
and 𝑡 ≫ 1, and the location of the pole at 𝑞 = 𝑝 suggests the change of variables 𝑄 = 𝑞−𝑝 and 𝑃 = (𝑞+𝑝)/2.
The phase factors become stationary at 𝑄 = 0, thus the integrand should be expanded around this value.
Keeping only the most singular term one has

1 + 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

∫
∞

−∞

d𝑄
2𝜋𝑖

e𝑖(𝑛−𝑛1+1/2+𝜃′
𝑃−𝑣𝑃𝑡)𝑄

𝑄 + 𝑖𝜀
, (III.B.55)

where we have extended the integration in the relative momentum up to infinity. Thanks to the definition
(III.B.6), the function 𝜃′

𝑃 varies smoothly and one can neglect it in the hydrodynamic regime. Then using the
integral representation of the Heaviside theta function

Θ(𝑥) = − lim
𝜀→0

∫
∞

−∞

d𝑄
2𝜋𝑖

e−𝑖𝑄𝑥

𝑄 + 𝑖𝜀
, (III.B.56)

and introducing the ray variable 𝜈 = (𝑛 − 𝑛1 + 1/2)/𝑡 brings us to the result (III.B.15) in the main text.
The bulk hydrodynamic profile is thus recovered by solving the equation 𝑣𝑞 = 𝜈. Special attention is

needed around the maximum 𝑣𝑞∗
= 𝑣𝑚𝑎𝑥 of the velocities, where the solutions coalesce at momentum 𝑞∗. To
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get the fine structure of the front edge, one has to expand the dispersion around 𝑞∗ as

𝜖𝑞 ≈ 𝜖𝑞∗
+ 𝑣𝑞∗

(𝑞 − 𝑞∗) +
𝜖‴

𝑞∗

6
(𝑞 − 𝑞∗)3. (III.B.57)

Furthermore, one can introduce the following rescaled variables

𝑋 = ( −2
𝜖‴

𝑞∗
𝑡
)

1/3

(𝑛 − 𝑛1 + 1/2 + 𝜃′
𝑞∗

/2 − 𝑣𝑞∗
𝑡),

𝑄 = ( −2
𝜖‴

𝑞∗
𝑡
)

−1/3

(𝑞 − 𝑞∗), 𝑃 = ( −2
𝜖‴

𝑞∗
𝑡
)

−1/3

(𝑝 − 𝑞∗).

(III.B.58)

Substituting (III.B.57) and (III.B.58) into (III.B.54), one arrives at the following integral

1 + 2 ( −2
𝜖‴

𝑞∗
𝑡
)

1/3

∫ d𝑃
2𝜋

∫ d𝑄
2𝜋

e𝑖𝑋(𝑄−𝑃)e𝑖(𝑄3−𝑃3)/3

𝑖(𝑄 − 𝑃 + 𝑖𝜀)
. (III.B.59)

Using the integral representation of the Airy kernel208

K𝐴𝑖(𝑋, 𝑌 ) = lim
𝜀→0

∫ d𝑃
2𝜋

∫ d𝑄
2𝜋

e−𝑖𝑋𝑃e−𝑖𝑃3/3e𝑖𝑌 𝑄e𝑖𝑄3/3

𝑖(𝑃 − 𝑄 − 𝑖𝜀)
= Ai(𝑋)Ai′(𝑌 ) − Ai′(𝑋)Ai(𝑌 )

𝑋 − 𝑌
, (III.B.60)

one recovers (III.B.16) of the main text, with 𝜌(𝑋) = lim𝑌 →𝑋 K𝐴𝑖(𝑋, 𝑌 ) given by the diagonal terms of
the Airy kernel.

The hydrodynamic limit (III.B.22) for the double domain wall can be obtained in a similar fashion,
however, one has now a quadruple integral to start with. The poles are contained in the two-particle form
factor (III.B.53). First, we consider the pole with 𝑞1 = 𝑝1 and 𝑞2 = 𝑝2. Changing variables as

𝑄𝑖 = 𝑞𝑖 − 𝑝𝑖, 𝑃𝑖 = 𝑞𝑖 + 𝑝𝑖
2

, (III.B.61)

and expanding the phases around the stationary points 𝑄𝑖 = 0, one has

I1 = 4 ∫ d𝑃1
2𝜋

∫ d𝑃2
2𝜋

𝑓(𝑃1, 𝑃2, 𝑄1, 𝑄2) ∫ d𝑄1
2𝜋

e−𝑖𝑥1𝑄1

𝑄1
∫ d𝑄2

2𝜋
e−𝑖𝑥2𝑄2

𝑄2
, (III.B.62)

where we defined
𝑥𝑖 = 𝑣𝑃𝑖

𝑡 − (−1)𝑖𝜃′
𝑃𝑖

− (𝑛 − 𝑛𝑖 + 1/2) . (III.B.63)

The function 𝑓 in (III.B.62) describes the slowly varying part of the form factor in (III.B.53). It is easy to see,
that the terms containing the dispersion 𝜖𝑞𝑖

and 𝜖𝑝𝑖
can be approximated by 1 to leading order. It remains to

analyze the contribution of the trigonometric factors that do not contain the poles, which can be rewritten as

𝑓(𝑃1, 𝑃2, 𝑄1, 𝑄2) ≈ −
cos( 𝑄1−𝑄2

2 ) − cos(𝑃1 − 𝑃2)

cos( 𝑄1+𝑄2
2 ) − cos(𝑃1 − 𝑃2)

. (III.B.64)

Thus, again to leading order around 𝑄𝑖 = 0, one has 𝑓(𝑃1, 𝑃2, 𝑄1, 𝑄2) ≈ −1 + O(𝑄1𝑄2), meaning that
the first correction would already remove the singularity in the integral (III.B.62), and can be neglected.
Setting 𝑓 = −1, one recovers immediately the factorized result (III.B.22).

The second pole of the form factor (III.B.53) is given by 𝑞1 = 𝑝2 and 𝑞2 = 𝑝1 and corresponds to an
exchange of the outgoing momenta. The form factor itself transforms trivially under this exchange, acquiring
only a sign. The time-evolved state (III.B.20), however, has phase factors attached to the locations of the
domain walls and thus transforms nontrivially under exchange of the momenta. Indeed, introducing the
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variables

𝑄′
1 = 𝑞1 − 𝑝2, 𝑄′

2 = 𝑞2 − 𝑝1, 𝑃 ′
1 = 𝑞1 + 𝑝2

2
, 𝑃 ′

2 = 𝑞2 + 𝑝1
2

, (III.B.65)

this phase factor can now be rewritten as

e−𝑖(𝑄′
1+𝑄′

2)(𝑛1+𝑛2)/2 e𝑖(𝑃 ′
1−𝑃 ′

2)(𝑛2−𝑛1). (III.B.66)

The second term contains the center of mass momenta and becomes highly oscillatory for |𝑛2 − 𝑛1| ≫ 1.
This phase, however, cannot be made stationary, since the time-dependent part of the phase in (III.B.20) is
symmetric under the exchange of the momenta. One thus concludes that, for large separations of the domain
walls, the second pole gives a negligible contribution.

The situation for the spin-flip excitation is different. As discussed in the main text, except for a sign
change of the Bogoliubov angles, the state (III.B.23) is a double domain wall with 𝑛2 = 𝑛1 + 1. The first
pole thus yields the very same factorized result as in (III.B.62), with the corresponding changes in 𝑥𝑖. In the
hydrodynamic limit, however, it is more natural to measure distances from the spin-flip location 𝑛1 (instead
of 𝑛1 ± 1/2) and use the ray variable ̃𝜈 = 𝑛−𝑛1

𝑡 , which gives the second term in (III.B.25). The second pole,
however, has also a significant contribution, since 𝑛2 − 𝑛1 = 1 and the phase factor in (III.B.66) now varies
slowly. Expanding around 𝑄′

𝑖 = 0, one finds

I2 = 4 ∫ d𝑃 ′
1

2𝜋
∫ d𝑃 ′

2
2𝜋

e𝑖𝑃 ′
1e𝑖𝜃𝑃′

1 e−𝑖𝑃 ′
2e−𝑖𝜃𝑃′

2 ∫ d𝑄′
1

2𝜋
e−𝑖𝑥′

1𝑄′
1

𝑄′
1

∫ d𝑄′
2

2𝜋
e−𝑖𝑥′

2𝑄′
2

𝑄′
2

, (III.B.67)

where 𝑥′
𝑖 = 𝑣𝑃 ′

𝑖
𝑡 − (𝑛 − 𝑛1) and the sign change in the form factor has been taken into account. It is easy to

see that

I2 = − ∣2 ∫ d𝑃 ′

2𝜋
e𝑖𝑃 ′e𝑖𝜃𝑃′ ∫ d𝑄′

2𝜋𝑖
e−𝑖𝑥′𝑄′

𝑄′ ∣
2

. (III.B.68)

Regularizing the pole via the identity 𝑄′−1 = 𝑖𝜋𝛿(𝑄′) + lim𝜀→0(𝑄′ + 𝑖𝜀)−1, using (III.B.56) and the
expression of the transverse magnetization in (III.B.24), the third term of (III.B.25) follows.

It remains to investigate the edge scaling regime for the spin-flip excitation. The second term of (III.B.25)
is simply the square of the profile for a single domain wall, where the edge scaling is given by (III.B.16).
To leading order, this just yields a factor 2. The situation is similar for the third term in (III.B.25) where,
additionally, the phase factors in the integral must be evaluated at the momentum 𝑞∗ where the velocity has
its maximum, 𝑣𝑞∗

= 𝑣𝑚𝑎𝑥. Collecting the terms, one obtains the prefactor in (III.B.27).
Finally it should be noted that, although the calculation above has been carried out using the form factors

for the TI chain, the result generalizes to the XY case. Indeed, the pole structure of the form factors is exactly
the same, whereas the differences in the slowly varying part are irrelevant in the hydrodynamic limit, since
they have the same trivial limit after expanding around the pole.

III.B.7.3 Calculation of correlation functions

At one-particle level of the form-factor expansion, the normalized correlation function is given by the
triple integral

C𝑚,𝑛(𝑡) ≃ ∫ d𝑞1
2𝜋

∫ d𝑞2
2𝜋

e−𝑖(𝜃𝑞1−𝜃𝑞2)/2e𝑖(𝜖𝑞1−𝜖𝑞2)𝑡

× ∫ d𝑝
2𝜋

𝜖𝑝 + 𝜖𝑞1

2√𝜖𝑝𝜖𝑞1

𝜖𝑝 + 𝜖𝑞2

2√𝜖𝑝𝜖𝑞2

e−𝑖(𝑚−𝑛1+1/2)(𝑞1−𝑝)

sin 𝑞1−𝑝
2

e𝑖(𝑛−𝑛1+1/2)(𝑞2−𝑝)

sin 𝑞2−𝑝
2

. (III.B.69)
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The stationary phase approximation of this integral is very similar to that of the magnetization profile.
Introducing the new set of variables

𝑄1 = 𝑞1 − 𝑝, 𝑄2 = 𝑞2 − 𝑝, 𝑃 = 𝑞1 + 𝑝
2

, (III.B.70)

and expanding around the poles 𝑄1 = 0 and 𝑄2 = 0, one obtains

C𝑚,𝑛(𝑡) ≃ 4 ∫ d𝑃
2𝜋

∫ d𝑄1
2𝜋

e−𝑖(𝑚−𝑛1+1/2+𝜃′
𝑃−𝑣𝑃𝑡)𝑄1

𝑄1
∫ d𝑄2

2𝜋
e𝑖(𝑛−𝑛1+1/2+𝜃′

𝑃−𝑣𝑃𝑡)𝑄2

𝑄2
. (III.B.71)

Applying (III.B.56) in both the 𝑄1 and 𝑄2 integrals, the result can again be written with the help of step
functions

C𝑚,𝑛(𝑡) ≃ 1 − 2 ∫
𝜋

−𝜋

d𝑃
2𝜋

[Θ(𝑣𝑃 − 𝜇) + Θ(𝑣𝑃 − 𝜈) − 2Θ(𝑣𝑃 − 𝜇)Θ(𝑣𝑃 − 𝜈)] , (III.B.72)

where the scaling variable 𝜇 = (𝑚 − 𝑛1 + 1/2)/𝑡 is introduced analogously to 𝜈. Assuming 𝜇 < 𝜈 and using
the identities for the step function

Θ(𝑣𝑃 − 𝜈) = 1 − Θ(𝜈 − 𝑣𝑃) , Θ(𝑣𝑃 − 𝜇) − Θ(𝑣𝑃 − 𝜈) = Θ(𝑣𝑃 − 𝜇)Θ(𝜈 − 𝑣𝑃) , (III.B.73)

the result (III.B.32) of the main text follows immediately.
Instead of applying the stationary phase argument, one can also do a more precise analysis. Indeed, it

turns out that the integral over 𝑝 in (III.B.69) can be carried out explicitly. We first regularize the factor
containing the pole as

1
sin ( 𝑞1−𝑝

2 ) sin ( 𝑞2−𝑝
2 )

= [2𝜋𝛿(𝑝 − 𝑞1) + 1
𝑖 sin ( 𝑞1−𝑝+𝑖𝜀

2 )
] [2𝜋𝛿(𝑝 − 𝑞2) + 1

𝑖 sin ( 𝑝−𝑞2+𝑖𝜀
2 )

] . (III.B.74)

Multiplying out this expression, the terms containing the delta functions can be plugged back into (III.B.69)
and integrated over. Comparing to (III.B.54), one can identify the resulting double integrals as M𝑚(𝑡) − 1
and M𝑛(𝑡) − 1, respectively, while the product of the delta functions trivially yields one. The remaining
factor from (III.B.74) can be rewritten as

1
sin ( 𝑞1−𝑝+𝑖𝜀

2 ) sin ( 𝑝−𝑞2+𝑖𝜀
2 )

= 2
cos ( 𝑞1+𝑞2

2 − 𝑝) − cos ( 𝑞1−𝑞2
2 + 𝑖𝜀)

. (III.B.75)

Introducing new variables
𝑧 = e𝑖[𝑝−(𝑞1+𝑞2)/2] , 𝑧0 = e𝑖[(𝑞1−𝑞2)/2+𝑖𝜀] , (III.B.76)

the integral over 𝑝 is transformed into the contour integral

I = ∮ d𝑧
2𝜋𝑖𝑧

𝑓(𝑧) 4
𝑧 + 𝑧−1 − (𝑧0 + 𝑧−1

0 )
, (III.B.77)

where 𝑓(𝑧) is the slowly varying regular part of the integrand in (III.B.69), and the contour is the unit circle.
Now the two poles are located at 𝑧 = 𝑧0 and 𝑧 = 𝑧−1

0 . However, for 𝜀 > 0, only 𝑧 = 𝑧0 lies inside the contour
and contributes to the integral. We have thus to obtain the residue around this pole. Rewriting

4
𝑧2 + 1 − 𝑧(𝑧0 + 𝑧−1

0 )
= 4

𝑧0 − 𝑧−1
0

( 1
𝑧 − 𝑧0

− 1
𝑧 − 𝑧−1

0
) , (III.B.78)

and the two poles correspond to 𝑝 = 𝑞1 and 𝑝 = 𝑞2, respectively. Hence the result of the contour integral is

I = 2𝑓(𝑞1)
𝑖 sin ( 𝑞1−𝑞2

2 + 𝑖𝜀)
. (III.B.79)
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Finally, noting that I enters with a minus sign (see (III.B.74)), and inserting the result back into (III.B.69),
one can easily identify the contribution as −2(M𝑛(𝑡) − 1). Collecting all the terms, one arrives at the result

C𝑚,𝑛(𝑡) ≃ 1 + M𝑚(𝑡) − M𝑛(𝑡) . (III.B.80)

As a closing remark, we give a simple argument why the many-particle contributions in the form-factor
expansion of the correlation functions can be neglected. In the one-particle expression (III.B.69), the dominant
contribution is obtained from momenta satisfying 𝑞1 = 𝑝 = 𝑞2, where the stationary phase conditions match
the poles of the integrand. The next nonvanishing term in the expansion involves three intermediate particles,
where the phase factor could be made stationary for 𝑞1 = 𝑝1 = 𝑞2 and 𝑝2 = −𝑝3. However, from (III.B.48)
one can see that there is no pole in the form factor at 𝑝2 = −𝑝3, and thus the contribution is subleading.
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IV Summary

We developed a solver for non-equilibrium Dynamical Mean Field Theory (DMFT) that

works directly at zero temperature and with correlated initial states, does not have a sign

problem, and does not need an analytic continuation of the Green function. One of the

main ideas is to use two real time axes instead of the usually L-shaped contour on which

non-equilibrium DMFT is usually done. When the quantum state is time-evolved with respect

to equilibrium time, the Hamiltonian stays constant. Green functions for DMFT of the initial

state can be calculated on the first axis, the equilibrium time axis. The second axis is the

non-equilibrium time axis, where the Hamiltonian is time-dependent. The real time solver

employed on these axes uses Matrix Product States (MPS), which represents quantum states

as a product of matrices.

In contrast to existing non-equilibrium solvers, the new solver has a number of advantages. It

is a controlled approximation, is formulated directly at zero temperature, and is flexible in what

parameter regions can be simulated, meaning that a wide range of Hamiltonian parameters

can be simulated as long as the entanglement entropy stays small enough. Limitations are

that a large entanglement entropy may prohibit long simulation times, and that several DMFT

loops have to be done for every time step, which may be slow in comparison to solvers which

can do one DMFT loop for all time steps at once.

To test the new solver we replicated and extended the results of Ref. 52, where an interaction

quench in the Hubbard model at zero temperature was investigated with DMFT, and CTQMC

as the solver. We found that our results are in good agreement with the results of Ref. 52

and can reach longer simulation times than Ref. 52 if there is a quench to high interaction

strengths. Furthermore, we are able to investigate interacting initial states, which was not

possible at zero temperature before, where we find that the critical interaction strength

increases with increasing initial interaction strength.

With the new solver many possible simulation setups can be investigated right away, such

as slow, instead of sudden quenches, quenches with isolating initial states, initial states away

from half-filling, quenches in the chemical potential, and more. A possible avenue for future
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extension is the combination of the Fork Tensor Product State ansatz (see Ref. 41) with our

solver in order to perform non-equilibrium DMFT with multiple orbitals. There is room for

improvement with regards to the computation of 𝐺𝑘 on the contour of our new solver, since

the quality of the results depends on the extrapolation to infinite equilibrium time.

In the second part of the thesis, we investigated impact ionization in a strongly correlated

model system. We calculated the time-evolution of a 4×3 Hubbard model under the influence

of a short electric field pulse and confirmed the presence of impact ionization, which is the

generation of multiple charge excitations from a single photon, even while spatial correlations

are present. We also observed multiple photon absorption and Auger recombination. This

was made possible with Gaussian filtering of states and the computation of the eigenstate

spectrum with the Loschmidt amplitude, a tool that was independently developed both for

this thesis and by other groups in Ref. 114 and 167. Interestingly, the occurrence of impact

ionization and Auger recombination align very well with expectations based on the density of

states and the quasi-particle picture. Most of the charge carriers are produced during the

laser pulse. Impact ionization, with a moderate further increase in the number of carriers

after the pulse, occurs if the energy of the photon is in the right energy window which one

expects from the quasi-particle picture. The results can also be viewed from the perspective

of the Eigenstate Thermalization Hypothesis (ETH), showing that the long-time behavior of

the system is almost entirely dependent on the absorbed energy alone.

In the third part of the thesis we used MPS for their more traditional application of simu-

lating one dimensional spin chains where we computed the expectation values of observables

and the entanglement entropy, checking and verifying the results of other methods. The

model of interest is the 𝑋𝑌 model, where the symmetry broken ground state is manipulated

with different operators at time zero and the magnetization profile of the resulting steady

state is investigated. We found that there is a ”hydrodynamical” phase transition in the

magnetization profile and entanglement entropy profile in the case of an initial Jordan-Wigner

excitation, where there shape qualitatively depends on whether the magnetic field strength

is above or below a critical field strength. In the case of two initial domain walls we found

that the magnetization profile factorizes into a product of the magnetization profiles of two

single domain walls. We also observed an interesting connection between the domain wall
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excitation of the Transverse Field Ising model and two combined chains with differently

symmetry broken ground states. In these two cases the magnetization profiles almost are

almost identical, which will be an interesting topic for future research.
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Fourier Transform of Green Function

VI Appendix
VI.1 Fourier Transform of Green Function

The Fourier transform of the components with at least on equilibrium time argument can

be easily calculated in the eigenbasis with ∫∞
−∞

𝑒𝑖𝑥𝑝 d𝑝 = 2𝜋 𝛿(𝑥) (see Ref. 97).

Greater Equilibrium Component

𝐺>𝐸(𝑡𝐸, 𝑡′
𝐸) = −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝐸) 𝑐†(𝑡′

𝐸) ∣ 𝜓⟩ (VI.1)

= −𝑖 ∑
𝑛

⟨𝜓 | 𝑐 | 𝑛⟩ ⟨𝑛 ∣ 𝑐† ∣ 𝜓⟩ 𝑒𝑖(𝑡𝐸−𝑡′
𝐸)(𝐸0−𝐸𝑛) (VI.2)

𝐺>𝐸(𝜔) = ∫
∞

−∞
𝐺>𝐸(𝑡𝐸, 𝑡′

𝐸) 𝑒𝑖𝜔(𝑡𝐸−𝑡′
𝐸) d(𝑡𝐸 − 𝑡′

𝐸) (VI.3)

= −𝑖 2𝜋 ∑
𝑛

⟨𝜓 | 𝑐 | 𝑛⟩ ⟨𝑛 ∣ 𝑐† ∣ 𝜓⟩ 𝛿 (𝜔 − (𝐸𝑛 − 𝐸0)) (VI.4)

Lesser Equilibrium Component

𝐺<𝐸(𝑡𝐸, 𝑡′
𝐸) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡′

𝐸) 𝑐(𝑡𝐸) ∣ 𝜓⟩ (VI.5)

= 𝑖 ∑
𝑛

⟨𝜓 ∣ 𝑐† ∣ 𝑛⟩ ⟨𝑛 | 𝑐 | 𝜓⟩ 𝑒𝑖(𝑡𝐸−𝑡′
𝐸)(𝐸𝑛−𝐸0) (VI.6)

𝐺<𝐸(𝜔) = ∫
∞

−∞
𝐺<𝐸(𝑡𝐸, 𝑡′

𝐸) 𝑒𝑖𝜔(𝑡𝐸−𝑡′
𝐸) d(𝑡𝐸 − 𝑡′

𝐸) (VI.7)

= 𝑖 2𝜋 ∑
𝑛

⟨𝜓 ∣ 𝑐† ∣ 𝑛⟩ ⟨𝑛 | 𝑐 | 𝜓⟩ 𝛿 (𝜔 − (𝐸0 − 𝐸𝑛)) (VI.8)
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Right-Mixing Equilibrium Component

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) = −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝐸) 𝑐†(𝑡𝑁) ∣ 𝜓⟩ (VI.9)

= −𝑖 ∑
𝑛

⟨𝜓 | 𝑐 | 𝑛⟩ ⟨𝑛 ∣ 𝑐†(𝑡𝑁) ∣ 𝜓⟩ 𝑒𝑖𝑡𝐸(𝐸0−𝐸𝑛) (VI.10)

𝐺 ¬¬¬(𝜔, 𝑡𝑁) = ∫
∞

−∞
𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝑒𝑖𝜔𝑡𝐸 d𝑡𝐸 (VI.11)

= −𝑖 2𝜋 ∑
𝑛

⟨𝜓 | 𝑐 | 𝑛⟩ ⟨𝑛 ∣ 𝑐†(𝑡𝑁) ∣ 𝜓⟩ 𝛿 (𝜔 − (𝐸𝑛 − 𝐸0)) (VI.12)

Left-Mixing Equilibrium Component

𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡𝐸) 𝑐(𝑡𝑁) ∣ 𝜓⟩ (VI.13)

= 𝑖 ∑
𝑛

⟨𝜓 ∣ 𝑐† ∣ 𝑛⟩ ⟨𝑛 | 𝑐(𝑡𝑁) | 𝜓⟩ 𝑒𝑖𝑡𝐸(𝐸0−𝐸𝑛) (VI.14)

𝐺¬¬¬(𝑡𝑁, 𝜔) = ∫
∞

−∞
𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) 𝑒𝑖𝜔𝑡𝐸 d𝑡𝐸 (VI.15)

= 𝑖 2𝜋 ∑
𝑛

⟨𝜓 ∣ 𝑐† ∣ 𝑛⟩ ⟨𝑛 | 𝑐(𝑡𝑁) | 𝜓⟩ 𝛿 (𝜔 − (𝐸𝑛 − 𝐸0)) (VI.16)

Pre-Right-Mixing Equilibrium Component

𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 𝑖 ⟨𝜓 ∣ 𝑐†(𝑡𝑁) 𝑐(𝑡𝐸) ∣ 𝜓⟩ (VI.17)

= 𝑖 ∑
𝑛

⟨𝜓 ∣ 𝑐†(𝑡𝑁) ∣ 𝑛⟩ ⟨𝑛 | 𝑐 | 𝜓⟩ 𝑒𝑖𝑡𝐸(𝐸𝑛−𝐸0) (VI.18)

𝐺 ¬¬¬(𝜔, 𝑡𝑁) = ∫
∞

−∞
𝐺 ¬¬¬(𝑡𝐸, 𝑡𝑁) 𝑒𝑖𝜔𝑡𝐸 d𝑡𝐸 (VI.19)

= 𝑖 2𝜋 ∑
𝑛

⟨𝜓 ∣ 𝑐†(𝑡𝑁) ∣ 𝑛⟩ ⟨𝑛 | 𝑐 | 𝜓⟩ 𝛿 (𝜔 − (𝐸0 − 𝐸𝑛)) (VI.20)

212



Linear Prediction

Pre-Left-Mixing Equilibrium Component

𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) = −𝑖 ⟨𝜓 ∣ 𝑐(𝑡𝑁) 𝑐†(𝑡𝐸) ∣ 𝜓⟩ (VI.21)

= −𝑖 ∑
𝑛

⟨𝜓 | 𝑐(𝑡𝑁) | 𝑛⟩ ⟨𝑛 ∣ 𝑐† ∣ 𝜓⟩ 𝑒𝑖𝑡𝐸(𝐸𝑛−𝐸0) (VI.22)

𝐺¬¬¬(𝑡𝑁, 𝜔) = ∫
∞

−∞
𝐺¬¬¬(𝑡𝑁, 𝑡𝐸) 𝑒𝑖𝜔𝑡𝐸 d𝑡𝐸 (VI.23)

= −𝑖 2𝜋 ∑
𝑛

⟨𝜓 | 𝑐(𝑡𝑁) | 𝑛⟩ ⟨𝑛 ∣ 𝑐† ∣ 𝜓⟩ 𝛿 (𝜔 − (𝐸0 − 𝐸𝑛)) (VI.24)

VI.2 Linear Prediction

In many situations, growing matrix dimensions in the MPS formalism prohibit reaching

very long simulations times. When one is primarily interested in e.g. the Fourier transform

of the Green function, it is possible to so-called use linear prediction to estimate the Green

function for times longer than the maximum simulation time68,98,99. For linear prediction it

is assumed that the Green function is a linear combination of Lorentz peaks in 𝜔-space. In

the time domain, this implies that 𝐺(𝑡) is a linear combination of earlier time steps:

𝐺(𝑡) =
𝑁

∑
𝑖=1

𝑎𝑖𝐺(𝑡 − 𝑖Δ𝑡𝐿𝑃) (VI.25)

Here Δ𝑡𝐿𝑃 can be the time step used with the time-evolution or a multiple of it. When doing

linear prediction, the 𝑎𝑖 are fitted so that the least squares error between the actual Green

function and the prediction based on the earlier values is minimized. In this thesis, linear

prediction is used to predict the right-, left-, pre-right, and pre-left-mixing components of the

Green function and and of the hybridization function with respect to the equilibrium time

𝑡𝐸.
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VI.3 Integrals

VI.3.1 𝐼1

In this subsection we analyze the order of limits and the influence of the regularization of

the following integral. More specifically, we are interested in the product 0+𝑡𝐸.

𝐼1 = lim
𝑅1→∞

lim
𝑅2→∞

∫
𝑅1

−𝑅1

𝑒𝑖𝜔𝑡𝐸 ∫
−𝑅2

𝑡𝐸

𝑓( ̄𝑡𝐸) 𝑔( ̄𝑡𝐸) d ̄𝑡𝐸 d𝑡𝐸 (VI.26)

= 1
4𝜋2 lim

𝑅1→∞
lim

𝑅2→∞
lim

𝑅3→∞
∫

𝑅1

−𝑅1

𝑅3

∬
−𝑅3

∫
−𝑅2

𝑡𝐸

(VI.27)

𝑓(𝜔′) 𝑔(𝜔″) 𝑒−𝑖(−𝜔+𝜔′+𝜔″) ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″ d𝑡𝐸

= 𝑖
4𝜋2 lim

𝑅1→∞
lim

𝜂→0+
lim

𝑅2→∞
lim

𝑅3→∞
∫

𝑅1

−𝑅1

𝑒𝑖𝜔𝑡𝐸

𝑅3

∬
−𝑅3

(VI.28)

𝑓(𝜔′) 𝑔(𝜔″) 𝑒𝑖(𝜔′+𝜔″+𝑖𝜂)𝑅2 − 𝑒−𝑖(𝜔′+𝜔″+𝑖𝜂)𝑡𝐸

𝜔′ + 𝜔″ + 𝑖𝜂
d𝜔′ d𝜔″ d𝑡𝐸

= − 𝑖
4𝜋2 lim

𝑅1→∞
lim

𝜂→0+
lim

𝑅3→∞
∫

𝑅1

−𝑅1

𝑅3

∬
−𝑅3

𝑓(𝜔′) 𝑔(𝜔″) 𝑒−𝑖(−𝜔+𝜔′+𝜔″+𝑖𝜂)𝑡𝐸

𝜔′ + 𝜔″ + 𝑖𝜂
d𝜔′ d𝜔″ d𝑡𝐸

(VI.29)

Because we do the limit 𝜂 → 0+ before 𝑅1 → ∞ the product 𝜂 𝑡𝐸 tends to zero and the

integral simplifies to:

𝐼1 = − 𝑖
4𝜋2

+∞

∭
−∞

𝑓(𝜔′) 𝑔(𝜔″) 𝑒−𝑖(−𝜔+𝜔′+𝜔″)𝑡𝐸

𝜔′ + 𝜔″ + 𝑖0+ d𝜔′ d𝜔″ d𝑡𝐸 (VI.30)

We assume here, that 𝑓(𝜔′) and 𝑔(𝜔″) are well behaved, so that the other limits can be

exchanged freely. To summarize, we can ignore the product of 𝑡𝐸 and the regularization

parameter 0+.
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VI.3.2 𝐼2

We want to solve the integral 𝐼2 below, where we assume the following properties for the

function 𝑓:

𝑓(𝜔, 𝜔′) =

⎧
{{{{
⎨
{{{{
⎩

0 if 𝜔 < 0

0 if 𝜔′ > 0

finite if 𝜔 = 0 ∧ 𝜔′ = 0

arbitrary otherwise

(VI.31)

Furthermore, we will use this representation of the dirac delta97:

lim
𝜂→0+

𝜂
𝑥2 + 𝜂2 = 𝜋 𝛿(𝑥) (VI.32)

𝐼2 = 𝑖
2𝜋

∫
∞

−∞
𝑓(𝜔, 𝜔′) 1

𝜔 − 𝜔′ ± 𝑖0+ d𝜔′ (VI.33)

= 𝑖
2𝜋

lim
𝜂→0+

∫
∞

−∞
𝑓(𝜔, 𝜔′) 1

𝜔 − 𝜔′ ± 𝑖𝜂
d𝜔′ (VI.34)

= 𝑖
2𝜋

lim
𝜂→0+

∫
∞

−∞
𝑓(𝜔, 𝜔′) 1

𝜔 − 𝜔′ ± 𝑖𝜂
𝜔 − 𝜔′ ∓ 𝑖𝜂
𝜔 − 𝜔′ ∓ 𝑖𝜂

d𝜔′ (VI.35)

= 𝑖
2𝜋

lim
𝜂→0+

∫
∞

−∞
𝑓(𝜔, 𝜔′) ( 𝜔 − 𝜔′

(𝜔 − 𝜔′)2 + 𝜂2 ∓ 𝑖 𝜂
(𝜔 − 𝜔′)2 + 𝜂2 ) d𝜔′ (VI.36)

= 𝑖
2𝜋

lim
𝜂→0+

∫
∞

−∞
𝑓(𝜔, 𝜔′) 𝜔 − 𝜔′

(𝜔 − 𝜔′)2 + 𝜂2 d𝜔′ ± 1
2

∫
∞

−∞
𝑓(𝜔, 𝜔′) 𝛿(𝜔 − 𝜔′) d𝜔′ (VI.37)

Because of the assumed properties of 𝑓(𝜔, 𝜔′), the difference 𝜔−𝜔′ will always be non-negative

within the integral, and we can simplify the first term:

𝐼2 = 𝑖
2𝜋

∫
∞

−∞
𝑓(𝜔, 𝜔′) 1

𝜔 − 𝜔′ + 0+ d𝜔′ ± 1
2

𝑓(𝜔, 𝜔) (VI.38)
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VI.4 Full Comparison After Convolution

As a reminder, we want to that relations Eqs. (VI.41) to (VI.45) are true. The proofs will

be kept rather short, as they are all very similar. For a more in depth calculation for the

right-mixing component see Sec. I.B.1.3.

𝐶 = 𝐴 ∗ 𝐵 (...on the contour with two real time axes) (VI.39)

𝐶𝐿 = 𝐴𝐿 ∗ 𝐵𝐿 (...on the L-shaped contour) (VI.40)

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) ?= 1

2𝜋
∫

∞

−∞
𝑒−𝜏𝜔 (𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝜃(𝜏) + 𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝜃(−𝜏)) d𝜔 (VI.41)

𝐶¬¬¬
𝐿(𝜏, 𝑡𝑁) ?= 1

2𝜋
∫

∞

−∞
𝑒−𝜏𝜔 (𝐶¬¬¬(𝜔, 𝑡𝑁) 𝜃(𝜏) + 𝐶¬¬¬(𝜔, 𝑡𝑁) 𝜃(−𝜏)) d𝜔 (VI.42)

𝐶𝑀
𝐿 (𝜏, 𝜏 ′) ?= 1

𝑖 2𝜋
∫

∞

−∞
𝑒−(𝜏−𝜏′)𝜔 (𝐶>𝐸(𝜔, 𝑡𝑁) 𝜃(𝜏 − 𝜏 ′) + 𝐶<𝐸(𝜔, 𝑡𝑁) 𝜃(𝜏 ′ − 𝜏)) d𝜔

(VI.43)

𝐶>𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) ?= 𝐶>𝑁(𝑡𝑁, 𝑡′
𝑁) (VI.44)

𝐶<𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) ?= 𝐶<𝑁(𝑡𝑁, 𝑡′
𝑁) (VI.45)

VI.4.1 Right-Mixing Component, 𝜏 ≥ 0

Definition on L-shaped contour:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = ∫

𝑡𝑁

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵<𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (VI.46)

+ ∫
0

𝑡𝑁

𝐴 ¬¬¬
𝐿(𝜏, ̄𝑡𝑁) 𝐵>𝑁

𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

= ∫
∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡) 𝐵𝐴𝑁
𝐿 ( ̄𝑡, 𝑡𝑁) d ̄𝑡

+ ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏
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With integration limits:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = ∫

∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵𝐴𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (VI.47)

+ ∫
0

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
𝜏

0
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
∞

𝜏
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

Replace components:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = 1

2𝜋
∫

∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡𝑁 d𝜔′ (VI.48)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝜏

0
𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

𝜏
𝐴<𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡𝑁 d𝜔′ (VI.49)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″ − 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″
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Definition on the contour with two real time axes:

𝐶 ¬¬¬(𝑡𝐸, 𝑡𝑁) = ∫
0

−∞
𝐴>𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸 (VI.50)

+ ∫
𝑡𝑁

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵<𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵>𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
𝑡𝐸

0
𝐴>𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

+ ∫
−∞

𝑡𝐸

𝐴<𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

Go to Fourier space inside of integrals and integrate over ̄𝑡𝐸:

𝐶 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

(VI.51)

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝑡𝐸

0
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

𝑡𝐸

𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

= − 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝑡𝐸𝜔′

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″ (VI.52)

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔″𝑡𝐸 − 𝑒−𝑖𝜔′𝑡𝐸

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝑡𝐸𝜔″

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″
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Go to Fourier space outside of integrals:

𝐶 ¬¬¬(𝜔, 𝑡𝑁) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ − 𝑖0+ d𝜔″ (VI.53)

+ ∫
∞

0
𝐴 ¬¬¬(𝜔, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) d ̄𝑡

− 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔 − 𝑖0+ d𝜔′

Use Sec. VI.3.2:

𝐶 ¬¬¬(𝜔, 𝑡𝑁) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ + 0+ d𝜔″ (VI.54)

+ ∫
∞

0
𝐴 ¬¬¬(𝜔, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) d ̄𝑡

− 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔 − 0+ d𝜔′

+ 1
2

(𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) − 𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔, 𝑡𝑁))

219



Full Comparison After Convolution

Integrate over 𝜔:

1
2𝜋

∫
∞

−∞
𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝑒−𝜏𝜔 d𝜔 = − 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

(VI.55)

+ 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡 d𝜔′

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

Compare Eq. (VI.49) and Eq. (VI.55). They are the same.

VI.4.2 Right-Mixing Component, 𝜏 < 0

Definition on L-shaped contour:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = ∫

𝑡𝑁

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵<𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (VI.56)

+ ∫
0

𝑡𝑁

𝐴 ¬¬¬
𝐿(𝜏, ̄𝑡𝑁) 𝐵>𝑁

𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

= ∫
∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡) 𝐵𝐴𝑁
𝐿 ( ̄𝑡, 𝑡𝑁) d ̄𝑡

+ ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

220



Full Comparison After Convolution

With integration limits:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = ∫

∞

0
𝐴 ¬¬¬

𝐿(𝜏, ̄𝑡𝑁) 𝐵𝐴𝑁
𝐿 ( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁 (VI.57)

+ ∫
𝜏

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
0

𝜏
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

+ ∫
∞

0
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡𝑁) d ̄𝜏

Replace components:

𝐶 ¬¬¬
𝐿(𝜏, 𝑡𝑁) = 1

2𝜋
∫

∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡 d𝜔′ (VI.58)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝜏

−∞
𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

𝜏
𝐴<𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

0
𝐴<𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡 d𝜔′ (VI.59)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′ − 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″
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Definition on the contour with two real time axes:

𝐶 ¬¬¬(𝑡𝐸, 𝑡𝑁) = ∫
𝑡𝐸

−∞
𝐴>𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸 (VI.60)

+ ∫
0

𝑡𝐸

𝐴<𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ ∫
−∞

0
𝐴<𝐸(𝑡𝐸, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡𝑁) d ̄𝑡𝐸

Go to Fourier space inside of integrals and integrate over ̄𝑡𝐸:

𝐶 ¬¬¬(𝑡𝐸, 𝑡𝑁) = 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝑡𝐸

−∞
𝐴>𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

(VI.61)

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

𝑡𝐸

𝐴<𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

0
𝐴<𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡𝐸) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

= − 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝑡𝐸𝜔″

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″ (VI.62)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝑡𝐸𝜔′ − 𝑒−𝑖𝜔″𝑡𝐸

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ ∫
∞

0
𝐴 ¬¬¬(𝑡𝐸, ̄𝑡𝑁) 𝐵𝐴𝑁( ̄𝑡𝑁, 𝑡𝑁) d ̄𝑡𝑁

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝑖𝜔′𝑡𝐸

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″
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Go to Fourier space outside of integrals:

𝐶 ¬¬¬(𝜔, 𝑡𝑁) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔 − 𝑖0+ d𝜔′ (VI.63)

− 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔
d𝜔′

+ ∫
∞

0
𝐴 ¬¬¬(𝜔, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) d ̄𝑡

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ − 𝑖0+ d𝜔″

Use Sec. VI.3.2:

𝐶 ¬¬¬(𝜔, 𝑡𝑁) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔 + 0+ d𝜔′ (VI.64)

− 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) 1

𝜔′ − 𝜔
d𝜔′

+ ∫
∞

0
𝐴 ¬¬¬(𝜔, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) d ̄𝑡

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 1

𝜔 − 𝜔″ − 0+ d𝜔″

+ 1
2

(𝐴>𝐸(𝜔) 𝐵 ¬¬¬(𝜔, 𝑡𝑁) − 𝐴<𝐸(𝜔) 𝐵 ¬¬¬(𝜔, 𝑡𝑁))
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Integrate over 𝜔:

1
2𝜋

∫
∞

−∞
𝐶 ¬¬¬(𝜔, 𝑡𝑁) 𝑒−𝜏𝜔 d𝜔 = − 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

(VI.65)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴 ¬¬¬(𝜔′, ̄𝑡) 𝐵𝐴𝑁( ̄𝑡, 𝑡𝑁) 𝑒−𝜏𝜔′ d ̄𝑡 d𝜔′

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡𝑁) 𝑒−𝜏𝜔′

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

Compare Eq. (VI.59) and Eq. (VI.65). They are the same.

VI.4.3 Left-Mixing Component, 𝜏 ≥ 0

Definition on L-shaped contour:

𝐶¬¬¬
𝐿(𝑡𝑁, 𝜏) = ∫

𝑡𝑁

0
𝐴>(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬

𝐿( ̄𝑡𝑁, 𝜏) d ̄𝑡𝑁 (VI.66)

+ ∫
0

𝑡𝑁

𝐴<(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬
𝐿( ̄𝑡𝑁, 𝜏) d ̄𝑡𝑁

+ ∫
∞

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏

With integration limits:

𝐶¬¬¬
𝐿(𝑡𝑁, 𝜏) = ∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬

𝐿( ̄𝑡, 𝜏) d ̄𝑡𝑁 (VI.67)

+ ∫
0

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏

+ ∫
𝜏

0
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏

+ ∫
∞

𝜏
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏
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Replace components:

𝐶¬¬¬
𝐿(𝑡𝑁, 𝜏) = 1

2𝜋
∫

∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝑁 d𝜔″ (VI.68)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵<𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝜏

0
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵<𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

𝜏
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵>𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝑁 d𝜔″ (VI.69)

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒𝜏𝜔″

𝜔′ + 𝜔″ − 0+ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝜏𝜔′ − 𝑒𝜏𝜔″

𝜔′ + 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ + 0+ d𝜔′ d𝜔″

Definition on the contour with two real time axes:

𝐶¬¬¬(𝑡𝑁, 𝑡𝐸) = ∫
0

−∞
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵<𝐸( ̄𝑡𝐸, 𝑡𝐸) d ̄𝑡𝐸 (VI.70)

+ ∫
𝑡𝑁

0
𝐴>(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴<(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

+ ∫
𝑡𝐸

0
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵<𝐸( ̄𝑡𝐸, 𝑡𝐸) d ̄𝑡𝐸

+ ∫
−∞

𝑡𝐸

𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵>𝐸( ̄𝑡𝐸, 𝑡𝐸) d ̄𝑡𝐸

(VI.71)
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Full Comparison After Convolution

Go to Fourier space inside of integrals and integrate over ̄𝑡𝐸:

𝐶¬¬¬(𝑡𝑁, 𝑡𝐸) = 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝑒−𝑖𝜔″( ̄𝑡𝐸−𝑡𝐸) d ̄𝑡𝐸 d𝜔′ d𝜔″

(VI.72)

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝑡𝐸

0
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝑒−𝑖𝜔″( ̄𝑡𝐸−𝑡𝐸) d ̄𝑡𝐸 d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

𝑡𝐸

𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝑒−𝑖𝜔″( ̄𝑡𝐸−𝑡𝐸) d ̄𝑡𝐸 d𝜔′ d𝜔″

= 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒𝑖𝜔″𝑡𝐸

𝜔′ + 𝜔″ + 𝑖0+ d𝜔′ d𝜔″ (VI.73)

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔′𝑡𝐸 − 𝑒𝑖𝜔″𝑡𝐸

𝜔′ + 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝑖𝜔′𝑡𝐸

𝜔′ + 𝜔″ + 𝑖0+ d𝜔′ d𝜔″

Go to Fourier space outside of integrals:

𝐶¬¬¬(𝑡𝑁, 𝜔) = 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(−𝜔) 1

𝜔′ − 𝜔 + 𝑖0+ d𝜔′ (VI.74)

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝐸) 𝐵¬¬¬( ̄𝑡𝐸, 𝜔) d ̄𝑡𝐸

+ 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 + 𝜔″ d𝜔″

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(−𝜔) 1

𝜔′ − 𝜔
d𝜔′

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 + 𝜔″ + 𝑖0+ d𝜔″

226



Full Comparison After Convolution

Use Sec. VI.3.2:

𝐶¬¬¬(𝑡𝑁, 𝜔) = 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(−𝜔) 1

𝜔′ − 𝜔 − 0+ d𝜔′ (VI.75)

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝐸) 𝐵¬¬¬( ̄𝑡𝐸, 𝜔) d ̄𝑡𝐸

+ 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 + 𝜔″ d𝜔″

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(−𝜔) 1

𝜔′ − 𝜔
d𝜔′

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 + 𝜔″ + 0+ d𝜔″

+ 1
2

(𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵<𝐸(−𝜔) − 𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵>𝐸(−𝜔))

Integrate over 𝜔:

1
2𝜋

∫
∞

−∞
𝐶¬¬¬(𝑡𝑁, 𝜔) 𝑒−𝜏𝜔 d𝜔 = 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(−𝜔″) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

(VI.76)

+ 1
2𝜋2 ∫

∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝐸) 𝐵¬¬¬( ̄𝑡𝐸, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝐸 d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(−𝜔″) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ + 0+ d𝜔′ d𝜔″
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Substitute negative 𝜔′ and 𝜔″:

1
2𝜋

∫
∞

−∞
𝐶¬¬¬(𝑡𝑁, 𝜔) 𝑒−𝜏𝜔 d𝜔 = 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒𝜏𝜔″

𝜔′ + 𝜔″ − 0+ d𝜔′ d𝜔″

(VI.77)

+ 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝐸) 𝐵¬¬¬( ̄𝑡𝐸, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝐸 d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒𝜏𝜔″

𝜔′ + 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ + 0+ d𝜔′ d𝜔″

Compare Eq. (VI.69) and Eq. (VI.77). They are the same.

VI.4.4 Left-Mixing Component, 𝜏 < 0

Definition on L-shaped contour:

𝐶¬¬¬
𝐿(𝑡𝑁, 𝜏) = ∫

𝑡𝑁

0
𝐴>𝑁

𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬
𝐿( ̄𝑡𝑁, 𝜏) d ̄𝑡𝑁 (VI.78)

+ ∫
0

𝑡𝑁

𝐴<𝑁
𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬

𝐿( ̄𝑡𝑁, 𝜏) d ̄𝑡𝑁

+ ∫
∞

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏

With integration limits:

𝐶¬¬¬
𝐿(𝑡𝑁, 𝜏) = ∫

∞

0
𝐴𝑅𝑁

𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬
𝐿( ̄𝑡𝑁, 𝜏) d ̄𝑡𝑁 (VI.79)

+ ∫
𝜏

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏

+ ∫
0

𝜏
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏

+ ∫
∞

0
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏) d ̄𝜏
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Replace components:

𝐶¬¬¬
𝐿(𝑡𝑁, 𝜏) = 1

2𝜋
∫

∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝑁 d𝜔″ (VI.80)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝜏

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵<𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

𝜏
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵>𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

0
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵>𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝑁 d𝜔″ (VI.81)

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ − 0+ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒𝜏𝜔″ − 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒𝜏𝜔″

𝜔′ + 𝜔″ + 0+ d𝜔′ d𝜔″

Definition on the contour with two real time axes:

𝐶¬¬¬(𝑡𝑁, 𝑡𝐸) = ∫
𝑡𝐸

−∞
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵<𝐸( ̄𝑡𝐸, 𝑡𝐸) d ̄𝑡𝐸 (VI.82)

+ ∫
0

𝑡𝐸

𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵>𝐸( ̄𝑡𝐸, 𝑡𝐸) d ̄𝑡𝐸

+ ∫
𝑡𝑁

0
𝐴>𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴<𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

+ ∫
−∞

0
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵>𝐸( ̄𝑡𝐸, 𝑡𝐸) d ̄𝑡𝐸
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Full Comparison After Convolution

Go to Fourier space inside of integrals and integrate over ̄𝑡𝐸:

𝐶¬¬¬(𝑡𝑁, 𝑡𝐸) = 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝑡𝐸

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡𝐸−𝑡𝐸) d ̄𝑡𝐸 d𝜔′ d𝜔″

(VI.83)

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

𝑡𝐸

𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝐵>𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡𝐸−𝑡𝐸) d ̄𝑡𝐸 d𝜔′ d𝜔″

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

0
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝐵>𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡𝐸−𝑡𝐸) d ̄𝑡𝐸 d𝜔′ d𝜔″

= 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔′𝑡𝐸

𝜔′ + 𝜔″ + 𝑖0+ d𝜔′ d𝜔″ (VI.84)

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒𝑖𝜔″𝑡𝐸 − 𝑒−𝑖𝜔′𝑡𝐸

𝜔′ + 𝜔″ d𝜔′ d𝜔″

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝑡𝐸) d ̄𝑡𝑁

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒𝑖𝜔″𝑡𝐸

𝜔′ + 𝜔″ + 𝑖0+ d𝜔′ d𝜔″

Go to Fourier space outside of integrals:

𝐶¬¬¬(𝑡𝑁, 𝜔) = 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 + 𝜔″ + 𝑖0+ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(−𝜔) 1

𝜔′ − 𝜔
d𝜔′

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 + 𝜔″ d𝜔″

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔) d ̄𝑡𝑁

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(−𝜔) 1

𝜔′ − 𝜔 + 𝑖0+ d𝜔′
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Use Sec. VI.3.2:

𝐶¬¬¬(𝑡𝑁, 𝜔) = 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 + 𝜔″ − 0+ d𝜔″ (VI.85)

+ 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(−𝜔) 1

𝜔′ − 𝜔
d𝜔′

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 + 𝜔″ d𝜔″

+ ∫
∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔) d ̄𝑡𝑁

− 𝑖
2𝜋

∫
∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(−𝜔) 1

𝜔′ − 𝜔 + 0+ d𝜔′

+ 1
2

(𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵<𝐸(−𝜔) − 𝐴¬¬¬(𝑡𝑁, 𝜔) 𝐵>𝐸(−𝜔))

Integrate over 𝜔:

1
2𝜋

∫
∞

−∞
𝐶¬¬¬(𝑡𝑁, 𝜔) 𝑒−𝜏𝜔 d𝜔 = 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ − 0+ d𝜔′ d𝜔″

(VI.86)

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(−𝜔″) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ d𝜔′ d𝜔″

+ 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝑁 d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(−𝜔″) 𝑒−𝜏𝜔″

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″
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Substitute negative 𝜔′ and 𝜔″:

1
2𝜋

∫
∞

−∞
𝐶¬¬¬(𝑡𝑁, 𝜔) 𝑒−𝜏𝜔 d𝜔 = 𝑖

4𝜋2 ∫
∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ − 0+ d𝜔′ d𝜔″

(VI.87)

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒𝜏𝜔″

𝜔′ + 𝜔″ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝜏𝜔′

𝜔′ + 𝜔″ d𝜔′ d𝜔″

+ 1
2𝜋

∫
∞

−∞
∫

∞

0
𝐴𝑅𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵¬¬¬( ̄𝑡𝑁, 𝜔″) 𝑒−𝜏𝜔″ d ̄𝑡𝑁 d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵>𝐸(𝜔″) 𝑒𝜏𝜔″

𝜔′ + 𝜔″ + 0+ d𝜔′ d𝜔″

Compare Eq. (VI.81) and Eq. (VI.87). They are the same.

VI.4.5 Matsubara Component, 𝜏 − 𝜏 ′ ≥ 0

Definition on L-shaped contour:

𝐶𝑀
𝐿 (𝜏 − 𝜏 ′) = −𝑖 𝐺𝐿,33(𝜏 − 𝜏 ′) (VI.88)

= ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏 (VI.89)

(VI.90)

With integration limits:

𝐶𝑀
𝐿 (𝜏 − 𝜏 ′) = ∫

𝜏′

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏 (VI.91)

+ ∫
𝜏

𝜏′

𝐴𝑀
𝐿 (𝜏 − ̄𝜏) 𝐵𝑀

𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏

+ ∫
∞

𝜏
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏
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Replace components:

𝐶𝑀
𝐿 (𝜏 − 𝜏 ′) = − 1

4𝜋2 ∫
∞

−∞
∫

∞

−∞
∫

𝜏′

−∞
𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵<𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏′)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

(VI.92)

− 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝜏

𝜏′

𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵>𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏′)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

𝜏
𝐴<𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵>𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏′)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= − 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔′

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″ (VI.93)

− 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵>𝐸(𝜔″)𝑒−(𝜏−𝜏′)𝜔″ − 𝑒−(𝜏−𝜏′)𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔″

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

Definition on the contour with two real time axes:

𝐶>𝐸(𝑡𝐸 − 𝑡′
𝐸) = ∫

𝑡′
𝐸

−∞
𝐴>𝐸(𝑡𝐸 − ̄𝑡) 𝐵<𝐸( ̄𝑡 − 𝑡′

𝐸) d ̄𝑡 (VI.94)

+ ∫
𝑡𝐸

𝑡′
𝐸

𝐴>𝐸(𝑡𝐸 − ̄𝑡) 𝐵>𝐸( ̄𝑡 − 𝑡′
𝐸) d ̄𝑡

+ ∫
−∞

𝑡𝐸

𝐴<𝐸(𝑡𝐸 − ̄𝑡) 𝐵>𝐸( ̄𝑡 − 𝑡′
𝐸) d ̄𝑡
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Go to Fourier space inside of integrals and integrate over ̄𝑡𝐸:

𝐶>𝐸(𝑡𝐸 − 𝑡′
𝐸) = 1

4𝜋2 ∫
∞

−∞
∫

∞

−∞
∫

𝑡′
𝐸

−∞
𝐴>𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡) 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡−𝑡′

𝐸) d ̄𝑡 d𝜔′ d𝜔″

(VI.95)

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝑡𝐸

𝑡′
𝐸

𝐴>𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡) 𝐵>𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡−𝑡′
𝐸) d ̄𝑡 d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

𝑡𝐸

𝐴<𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡) 𝐵>𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡−𝑡′
𝐸) d ̄𝑡 d𝜔′ d𝜔″

= − 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝑖(𝑡𝐸−𝑡′

𝐸)𝜔′

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″ (VI.96)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝑖(𝑡𝐸−𝑡′

𝐸)𝜔″ − 𝑒−𝑖(𝑡𝐸−𝑡′
𝐸)𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝑖(𝑡𝐸−𝑡′

𝐸)𝜔″

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″

Go to Fourier space outside of integrals:

𝐶>𝐸(𝜔) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 − 𝜔″ − 𝑖0+ d𝜔″ (VI.97)

− 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵>𝐸(𝜔) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔) 1

𝜔′ − 𝜔 − 𝑖0+ d𝜔′
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Use Sec. VI.3.2:

𝐶>𝐸(𝜔) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 − 𝜔″ + 0+ d𝜔″ (VI.98)

− 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵>𝐸(𝜔) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔) 1

𝜔′ − 𝜔 − 0+ d𝜔′

+ 1
2

(𝐴>𝐸(𝜔) 𝐵<𝐸(𝜔) − 𝐴<𝐸(𝜔) 𝐵>𝐸(𝜔))

Integrate over 𝜔:

1
𝑖 2𝜋

∫
∞

−∞
𝐶>𝐸(𝜔) 𝑒−(𝜏−𝜏′)𝜔 d𝜔 = − 1

4𝜋2 ∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔′

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

(VI.99)

− 1
4𝜋2 ∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔″

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

Compare Eq. (VI.93) and Eq. (VI.99). They are the same.

VI.4.6 Matsubara Component, 𝜏 − 𝜏 ′ < 0

Definition on L-shaped contour:

𝐶𝑀
𝐿 (𝜏 − 𝜏 ′) = −𝑖 𝐺𝐿,33(𝜏 − 𝜏 ′) (VI.100)

= ∫
∞

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏 (VI.101)
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With integration limits:

= ∫
𝜏

−∞
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏

+ ∫
𝜏′

𝜏
𝐴𝑀

𝐿 (𝜏 − ̄𝜏) 𝐵𝑀
𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏

+ ∫
∞

𝜏′

𝐴𝑀
𝐿 (𝜏 − ̄𝜏) 𝐵𝑀

𝐿 ( ̄𝜏 − 𝜏 ′) d ̄𝜏

Replace components:

𝐶𝑀
𝐿 (𝜏 − 𝜏 ′) = − 1

4𝜋2 ∫
∞

−∞
∫

∞

−∞
∫

𝜏

−∞
𝐴>𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵<𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏′)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

(VI.102)

− 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝜏′

𝜏
𝐴<𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵<𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏′)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

𝜏′

𝐴<𝐸(𝜔′) 𝑒−(𝜏− ̄𝜏)𝜔′ 𝐵>𝐸(𝜔″) 𝑒−( ̄𝜏−𝜏′)𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= − 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔″

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″ (VI.103)

− 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵<𝐸(𝜔″)𝑒−(𝜏−𝜏′)𝜔′ − 𝑒−(𝜏−𝜏′)𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔′

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

Definition on the contour with two real time axes:

𝐶<𝐸(𝑡𝐸 − 𝑡′
𝐸) = ∫

𝑡𝐸

−∞
𝐴>𝐸(𝑡𝐸 − ̄𝑡) 𝐵<𝐸( ̄𝑡 − 𝑡′

𝐸) d ̄𝑡 (VI.104)

+ ∫
𝑡′

𝐸

𝑡𝐸

𝐴<𝐸(𝑡𝐸 − ̄𝑡) 𝐵<𝐸( ̄𝑡 − 𝑡′
𝐸) d ̄𝑡

+ ∫
−∞

𝑡′
𝐸

𝐴<𝐸(𝑡𝐸 − ̄𝑡) 𝐵>𝐸( ̄𝑡 − 𝑡′
𝐸) d ̄𝑡
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Go to Fourier space inside of integrals and integrate over ̄𝑡𝐸:

𝐶<𝐸(𝑡𝐸 − 𝑡′
𝐸) = 1

4𝜋2 ∫
∞

−∞
∫

∞

−∞
∫

𝑡𝐸

−∞
𝐴>𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡) 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡−𝑡′

𝐸) d ̄𝑡 d𝜔′ d𝜔″

(VI.105)

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

𝑡′
𝐸

𝑡𝐸

𝐴<𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡) 𝐵<𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡−𝑡′
𝐸) d ̄𝑡 d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

𝑡′
𝐸

𝐴<𝐸(𝜔′) 𝑒−𝑖𝜔′(𝑡𝐸− ̄𝑡) 𝐵>𝐸(𝜔″) 𝑒−𝑖𝜔″( ̄𝑡−𝑡′
𝐸) d ̄𝑡 d𝜔′ d𝜔″

= − 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝑖(𝑡𝐸−𝑡′

𝐸)𝜔″

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″ (VI.106)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−𝑖(𝑡𝐸−𝑡′

𝐸)𝜔′ − 𝑒−𝑖(𝑡𝐸−𝑡′
𝐸)𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−𝑖(𝑡𝐸−𝑡′

𝐸)𝜔′

𝜔′ − 𝜔″ − 𝑖0+ d𝜔′ d𝜔″

Go to Fourier space outside of integrals:

𝐶<𝐸(𝜔) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔) 1

𝜔′ − 𝜔 − 𝑖0+ d𝜔′ (VI.107)

− 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵<𝐸(𝜔) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 − 𝜔″ − 𝑖0+ d𝜔″
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Use Sec. VI.3.2:

𝐶<𝐸(𝜔) = − 𝑖
2𝜋

∫
∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔) 1

𝜔′ − 𝜔 + 0+ d𝜔′ (VI.108)

− 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵<𝐸(𝜔″) 1

𝜔 − 𝜔″ d𝜔″

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔′) 𝐵<𝐸(𝜔) 1

𝜔′ − 𝜔
d𝜔′

+ 𝑖
2𝜋

∫
∞

−∞
𝐴<𝐸(𝜔) 𝐵>𝐸(𝜔″) 1

𝜔 − 𝜔″ − 0+ d𝜔″

+ 1
2

(𝐴>𝐸(𝜔) 𝐵<𝐸(𝜔) − 𝐴<𝐸(𝜔) 𝐵>𝐸(𝜔))

Integrate over 𝜔:

1
𝑖 2𝜋

∫
∞

−∞
𝐶<𝐸(𝜔) 𝑒−(𝜏−𝜏′)𝜔 d𝜔 = (VI.109)

= − 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴>𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔″

𝜔′ − 𝜔″ + 0+ d𝜔′ d𝜔″

− 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔′

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵<𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔″

𝜔′ − 𝜔″ d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴<𝐸(𝜔′) 𝐵>𝐸(𝜔″) 𝑒−(𝜏−𝜏′)𝜔′

𝜔′ − 𝜔″ − 0+ d𝜔′ d𝜔″

Compare Eq. (VI.103) and Eq. (VI.109). They are the same.
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VI.4.7 Greater and Lesser Non-Equilibrium Component

Definition of greater component on L-shaped contour:

𝐶>𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = ∫
𝑡′

𝑁

0
𝐴>𝑁

𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵<𝑁
𝐿 ( ̄𝑡𝑁, 𝑡′

𝑁) d ̄𝑡𝑁 (VI.110)

+ ∫
𝑡𝑁

𝑡′
𝑁

𝐴>𝑁
𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵>𝑁

𝐿 ( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴<𝑁
𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵>𝑁

𝐿 ( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

− 𝑖 ∫
∞

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡′

𝑁) d ̄𝜏

Definition of lesser component on L-shaped contour:

𝐶<𝑁
𝐿 (𝑡𝑁, 𝑡′

𝑁) = ∫
𝑡𝑁

0
𝐴>𝑁

𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵<𝑁
𝐿 ( ̄𝑡𝑁, 𝑡′

𝑁) d ̄𝑡𝑁 (VI.111)

+ ∫
𝑡′

𝑁

𝑡𝑁

𝐴<𝑁
𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵<𝑁

𝐿 ( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡′
𝑁

𝐴<𝑁
𝐿 (𝑡𝑁, ̄𝑡𝑁) 𝐵>𝑁

𝐿 ( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

− 𝑖 ∫
∞

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡′

𝑁) d ̄𝜏

Definition of greater component on the contour with two real time axes:

𝐶>𝑁(𝑡𝑁, 𝑡′
𝑁) = ∫

0

−∞
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸 (VI.112)

+ ∫
𝑡′

𝑁

0
𝐴>𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵<𝑁( ̄𝑡𝑁, 𝑡′

𝑁) d ̄𝑡𝑁

+ ∫
𝑡𝑁

𝑡′
𝑁

𝐴>𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵>𝑁( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡𝑁

𝐴<𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵>𝑁( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

+ ∫
−∞

0
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸
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Definition of lesser component on the contour with two real time axes:

𝐶<𝑁(𝑡𝑁, 𝑡′
𝑁) = ∫

0

−∞
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸 (VI.113)

+ ∫
𝑡𝑁

0
𝐴>𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵<𝑁( ̄𝑡𝑁, 𝑡′

𝑁) d ̄𝑡𝑁 (VI.114)

+ ∫
𝑡′

𝑁

𝑡𝑁

𝐴<𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵<𝑁( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

+ ∫
0

𝑡′
𝑁

𝐴<𝑁(𝑡𝑁, ̄𝑡𝑁) 𝐵>𝑁( ̄𝑡𝑁, 𝑡′
𝑁) d ̄𝑡𝑁

+ ∫
−∞

0
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸

As we assumed 𝐴>𝑁
𝐿 = 𝐴>𝑁, 𝐵>𝑁

𝐿 = 𝐵>𝑁, 𝐴<𝑁
𝐿 = 𝐴<𝑁, and 𝐵<𝑁

𝐿 = 𝐵<𝑁, we only need to

show:

−𝑖 ∫
∞

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡′

𝑁) d ̄𝜏 ?= ∫
0

−∞
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸 (VI.115)

+ ∫
−∞

0
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸

Replace integration limits of left hand side of Eq. (VI.115):

−𝑖 ∫
∞

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡′

𝑁) d ̄𝜏 = −𝑖 ∫
0

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡′

𝑁) d ̄𝜏

− 𝑖 ∫
∞

0
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡′

𝑁) d ̄𝜏
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Replace components:

−𝑖 ∫
∞

−∞
𝐴¬¬¬

𝐿(𝑡𝑁, ̄𝜏) 𝐵 ¬¬¬
𝐿( ̄𝜏 , 𝑡′

𝑁) d ̄𝜏 = (VI.116)

= − 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

∞

0
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒− ̄𝜏𝜔′ 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 𝑒− ̄𝜏𝜔″ d ̄𝜏 d𝜔′ d𝜔″

= 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 1
𝜔′ + 𝜔″ − 0+ d𝜔′ d𝜔″ (VI.117)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 1
𝜔′ + 𝜔″ + 0+ d𝜔′ d𝜔″

Right hand side of Eq. (VI.115), go to Fourier space inside of integrals and integrate over ̄𝑡𝐸:

∫
0

−∞
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸 + ∫
−∞

0
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸 = (VI.118)

= + 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

0

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

+ 1
4𝜋2 ∫

∞

−∞
∫

∞

−∞
∫

−∞

0
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝑒−𝑖𝜔′ ̄𝑡𝐸 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 𝑒−𝑖𝜔″ ̄𝑡𝐸 d ̄𝑡𝐸 d𝜔′ d𝜔″

= 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 1
𝜔′ + 𝜔″ + 𝑖0+ d𝜔′ d𝜔″ (VI.119)

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 1
𝜔′ + 𝜔″ + 𝑖0+ d𝜔′ d𝜔″

Use Sec. VI.3.2:

∫
0

−∞
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸 + ∫
−∞

0
𝐴¬¬¬(𝑡𝑁, ̄𝑡𝐸) 𝐵 ¬¬¬( ̄𝑡𝐸, 𝑡′

𝑁) d ̄𝑡𝐸 = (VI.120)

= 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 1
𝜔′ + 𝜔″ − 0+ d𝜔′ d𝜔″

− 𝑖
4𝜋2 ∫

∞

−∞
∫

∞

−∞
𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(𝜔″, 𝑡′

𝑁) 1
𝜔′ + 𝜔″ + 0+ d𝜔′ d𝜔″

+ 1
4

∫
∞

−∞
(𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(−𝜔′, 𝑡′

𝑁) − 𝐴¬¬¬(𝑡𝑁, 𝜔′) 𝐵 ¬¬¬(−𝜔′, 𝑡′
𝑁)) d𝜔′

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0,by assumption

Compare Eq. (VI.117) and Eq. (VI.120). They are the same.
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