
MORITZ LIPPMORITZ LIPP

Exploiting
Microarchitectural

Optimizations
from Software

Illustration
Natascha Eibl

Exploiting Microarchitectural
Optimizations from Software

by
Moritz Lipp

Ph.D. Thesis

Assessors

Daniel Gruss (Graz University of Technology)
Thomas Eisenbarth (University of Lübeck)

August 2021

Institute for Applied Information Processing and Communications
Faculty of Computer Science

Graz University of Technology

iii

AFFIDAVIT
I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline
is identical to the present doctoral thesis.

Date, Signature

Abstract

With abstraction layers, the implementation details of software and hard-
ware components are hidden away to deal with the complexity of modern
computer systems. While the Instruction Set Architecture (ISA) serves
as an interface between the CPU and the software running on it, the com-
puter microarchitecture is the actual hardware implementation of the ISA.
The clearly defined interfaces do not only cover up the complexity but
also allow different variants of the microarchitecture to be built. While
they all fulfill the contract defined by the ISA, they can differ in other
aspects, such as performance, security, energy efficiency, or other physical
properties. Microarchitectural attacks exploit these variations occurring
on the microarchitectural level of modern CPUs. With side-channel at-
tacks and fault attacks, there are different ways that allow learning from
and tampering with the actual implementation. These attacks allow ad-
versaries to extract sensitive information processed on the system, e.g.,
cryptographic keys or user behavior.

In this thesis, we expand the landscape of software-based microarchi-
tectural attacks and defenses. By exploring the security implications of
different optimizations, we identify previously unknown attack vectors,
allowing us to circumvent the most fundamental security guarantees of
modern processors. We combine traditional physical side-channel analy-
ses with software-based microarchitectural attack techniques to leak sen-
sitive information processed on the CPU. We enlarge our understanding
of which settings and circumstances facilitate different existing attacks
and give new insights into developing effective and efficient mitigations.

In the first part of this thesis, we discuss the contributions of this thesis
and provide background on CPU architecture and memory organization,
as well as side-channel attacks and fault attacks. Furthermore, we dis-
cuss the state of the art of software-based microarchitectural attacks and
defenses. In the second part, a selection of my peer-reviewed publications
is provided without modification from their original versions.

v

Acknowledgements

First and foremost, I want to thank my advisor, long-time office colleague
and friend, Daniel Gruss, who initially sparked my keen interest in mi-
croarchitectural attacks. While I have always considered side-channel
attacks as black magic and, therefore, have been very reluctant to learn
about them, working with Daniel on my master thesis ignited my fasci-
nation for this research field. I want to thank you for your continuous
support, the freedom you granted me in my research, the endless effort
you invest in everything, and your openness for different opinions.

I would especially like to thank Michael Schwarz for his friendship, tireless
support, and ambition to work on all those different projects with me.
I really enjoyed our time working together, discussing all kinds of ideas
while keeping the caffeine level at a healthy high, and discovering parts of
the world after conferences. I will miss the late-night debugging sessions,
ambitious paper sprints, and presenting our work together.

Looking back over the last years, I want to thank you both, Daniel and
Michael, for this incredible journey. I really enjoyed sharing the office
with you, all the discussions, and the endless effort we put in as a team.
The ups and downs we faced together make this roller coaster ride unfor-
gettable for me.

I want to thank Thomas Eisenbarth for valuable feedback, interesting
discussions and taking the time and effort to assess my thesis.

Furthermore, I would really like to thank Stefan Mangard for giving me
the opportunity to pursue a Ph.D. in the first place. Thank you for your
support and advice over the years.

Over the last couple of years, I had the honor to meet, work and make
friends with incredibly kind and talented people worldwide. While the
list would be endless, I want to especially thank Jo van Bulck and Daniel
Moghimi for insightful discussions and the great teamwork. Likewise, I
want to thank Anders Fogh, David Oswald, Berk Sunar, Julian Steck-
lina, and Thomas Prescher for great discussions and fruitful collabora-
tions. I am further grateful to all my (former) colleagues at the insti-
tute for insightful discussions and for creating such an enjoyable work-
ing environment, in particular, Martin Schwarzl, Claudio Canella, Lukas
Giner, Catherine Easdon, Andreas Kogler, Clémentine Maurice, Robert

vii

viii

Schilling, Mario Werner, Peter Pessl, Stefan More and Sebastian Ra-
macher.

I want to thank my parents, Peter and Michaela, and my siblings, Ilona,
Lukas, and Nikolaus, for all their love and support throughout my en-
tire life. I would like to thank my loving family, Gertraud, Eva, Helga,
Gerhard, Heidrun, and Renate, for their support.

A special thanks goes to all my friends; without their support, I could not
have completed this thesis. Thank you for meaningful discussions, even
late at night, and providing the necessary distractions to the working life.
Furthermore, I want to thank Yuki, Rasputin, and my bees for always
helping me to find tranquilness even in the most stressful times.

Finally, I want to be grateful to my better half, Natascha, for her never-
ending supporting love and patience. Thank you for tolerating all follow-
ing deadlines and supporting me throughout all those years. This work
could not have been done without you.

Contents

Affidavit iii

Abstract v

Acknowledgements vii

Contents ix

I. Exploiting Microarchitectural Optimizations from Soft-
ware 1

1. Introduction and Contribution 3
1.1. Main Contributions . 7
1.2. Other Contributions . 12
1.3. Outline . 17

2. Background 19
2.1. Architecture and Microarchitecture 19
2.2. Memory Organization . 34
2.3. Side-Channel Attacks and Fault Attacks 44

3. State of the Art 49
3.1. Software-based Microarchitectural Side-Channel Attacks . 49
3.2. Transient-Execution Attacks 60
3.3. Software-based Microarchitectural Fault Attacks 71
3.4. Software-based Power Side-Channel Attacks 74

4. Conclusion 77

References 79

II. Publications 105

5. Take A Way 107

6. Meltdown 149

ix

x Contents

7. Nethammer 195

8. Keystroke Timing Attacks 225

9. PLATYPUS 251

10.KASLR is Dead: Long Live KASLR 301

Part I.

Exploiting Microarchitectural
Optimizations from Software

1

1
Introduction and Contribution

In software engineering and computer science, interfaces are defined
boundaries that are shared between two or more components enabling
them to interact with each other. These components exist in software
and hardware, can be a combination of both, or in fact, even peripheral
devices or human beings interacting with a device [108]. By specify-
ing how components are supposed to interact with each other, what the
expected behavior of the other component is, interfaces grant great flex-
ibility in the implementation of the component as long as the expected
behavior is maintained.

By abstracting away components of a system, simple interfaces do not
only cover up the complexity of the system but allow different variants
of a component to be implemented. For example, in a software project, a
new, more performant algorithm is implemented for a defined interface.
Conforming to the interface’s specification, this allows it to easily replace
the old implementation without the need to modify the rest of the system.
However, these interfaces do not only exist within software projects but
also between applications and the operating system or between developers
and the actual hardware. While the implementations all fulfill the same
purpose, they can differ in other aspects like the performance.

Architecture vs. Microarchitecture

In computing, an architecture typically refers to the instruction set ar-
chitecture (ISA), also called computer architecture. While the ISA serves
as an interface between the CPU and the software running on it, the
computer microarchitecture is the actual hardware implementation of
the architecture [103]. Thus, the complexity of the implementation is
abstracted away by the (less complex) architecture specification. With
different microarchitectures implementing the same architectural specifi-
cation, the same application can perform differently on them, i.e., while

3

4 Chapter 1. Introduction and Contribution

the computed results are the same, the runtime performance, energy ef-
ficiency, or other physical properties may vary. However, this view is
not limited to the central processing unit alone but can be applied to
every abstraction layer. This includes other hardware interfaces, e.g., the
DRAM, as well [154, 267]. As long as the memory module conforms to
the specification, the manufacturer can carry out its implementation in
different ways. Furthermore, this view is not limited to hardware alone.
For instance, the operating system provides an interface for user space
applications to interact with it, i.e., system calls and signals. Thus, dif-
ferent versions of an operating system can be seen as different microarchi-
tectures as well, as the internal workings of the operating system might
differ while the functional correctness remains.

Optimizing Behind Closed Doors

In the past, modern processors have been solely optimized for perfor-
mance and power consumption. As end customers demand faster and
faster processors, manufacturers have to improve and optimize their pro-
cessors as much as possible. In a benchmark-defined world, every cycle
counts and plays a role in the market shares of manufacturers. Moreover,
operating systems and user-space applications try to get the most out of
the platform they are running on.

One typical way to increase the performance is to optimize for the com-
mon case, which is the case that occurs the most frequently. If the com-
mon case how an interface is used can be handled more efficiently, forming
a fast path of its execution, than uncommon cases (like corner cases or
runtime errors), it results in a better performance.

The clear abstraction boundaries defined by interfaces enable us to do
whatever we want in the underlying implementation as long as the behav-
ior visible to the user of the interface meets the definition of the interface.
This grants developers endless possibilities of implementing the interface
and, thus, how they can optimize the microarchitecture for different fac-
tors.

There are many different ways and locations that allow improving the
performance of an application running on a system: With compiler op-
timizations, the source code is transformed and optimized for different
attributes [200]. With runtime optimizations, different interpreters, e.g.,
JavaScript engines [291], or other runtime environments, e.g., Java vir-

5

tual machines [301], optimize the program during runtime depending on
the workload. The operating system the application is running on can be
tuned to not only give an application more resources but also in the way
these resources and the communication from the application is handled.
For instance, one of the main tasks of the operating system is to manage
the memory of the system. To do that, it needs to create the necessary
structures for processes to assign segments of the memory. While several
optimization techniques, e.g., copy-on-write, demand paging, swapping
or memory deduplication, allow optimizing the memory consumption of
applications and increase the performance of the system, they are not
visible to the user space application itself [281]. The hardware, i.e., the
processor, that executes the software allows for optimizations. Besides
the CPUs clock rate, there are many factors that influence the perfor-
mance of the processor. Different sizes and properties of caches play a
role, as well as if the processor has out-of-order or in-order execution [268].
Furthermore, the use of various predictors can increase the performance
drastically [103].

Thus, in order to speed up the overall performance of the system, security
guarantees of the architecture have often been ignored on a microarchi-
tectural level. As the inner workings of the microarchitecture are hidden
and cannot be inspected from the outside, and as long as these assump-
tions are guaranteed to hold on an architectural level, the systems behave
as expected.

In this thesis, we focus on the security implications these types of opti-
mizations can yield.

Shining light through the opaque

Clearly, defining interfaces and abstracting away complexity led us to be-
lieve that the implementation appears to be an opaque black box and that
its inner workings cannot be inspected from the outside. This assumption
even allows to ignore security guarantees on the microarchitectural level
in order to improve the performance [105, 244, 272]. However, informa-
tion can not only be transmitted over legitimate channels by the specified
interfaces, but an implementation can reveal additional information over
so-called incidental channels [127], e.g., the response time or the energy
consumed by the implementation. These channels serve as side channels
if the victim leaks information over this channel, enabling side-channel
attacks if the leaked information can be exploited by an adversary.

6 Chapter 1. Introduction and Contribution

With side-channel attacks and fault attacks, there are non-invasive and
respectively invasive ways allowing to learn from and tamper with the
actual implementation of a device to deduce sensitive information [184].
While these attacks typically require physical access to the hardware, we
want to focus on similar techniques, however, by mounting attacks against
these interfaces from software only.

Side-Channel Attacks. With the assumption that the inner workings of
the microarchitecture can not be inspected, side-channel attacks are usu-
ally not taken into account in the processor’s threat model. Side-channel
attacks exploit information leakage of a system’s implementation in hard-
ware and software. Typically, physical properties like power consumption
or magnetic radiation are monitored, and the obtained measurements are
used to deduce otherwise inaccessible information. As an example, when
executing a cryptographic operation, in some algorithms, the processor
has to perform a more power-consuming operation when processing a ‘1’
key-bit than when processing a ‘0’ [254]. By monitoring the power con-
sumption, an attacker can correlate the power trace with the operations
performed and, thus, recover the entire key [184]. Here, the attacker
observes indirect information about the key, i.e., metadata. More specif-
ically, with knowledge of the power consumption of specific operations,
this information can be mapped to the key, but the key cannot be read
out directly.

Historically, side-channel attacks required physical access to the target
under attack to either connect probes or other peripherals to perform the
measurements [184]. However, in recent years, many different software-
based attacks surfaced, thus, lifting the requirement of physical access [275].
Many microarchitectural side-channel attacks target the cache of the pro-
cessor. As a transparent optimization technique in the microarchitec-
ture, caches are small but fast memory, allowing the processor to access
recently-used data faster. The timing difference introduced by data be-
ing cached or not allows an attacker to build software-based side-channel
attacks. These so-called cache attacks allow attacking cryptographic algo-
rithms [287, 334, 335], monitor user behavior [94, 174, 220], spy on virtual
machines [114, 131], or attack ASLR [79] and kernel ASLR (KASLR) [89,
110, 140, 320].

1.1. Main Contributions 7

Fault Attacks. With fault attacks, an adversary intentionally brings
devices for a short time into physical conditions which are outside the
device’s specification. This can be achieved by temporarily using incor-
rect supply voltages, exposing the device to high or low temperature,
radiation, or by dismantling the chip and shooting at it with lasers. If
software can bring the device to the border or outside of the specified op-
erational conditions, software-induced hardware faults are possible [153,
282]. With the Rowhammer bug, Kim et al. [153] demonstrated a hard-
ware reliability issue in DRAM where repeatedly accessing a specific mem-
ory location flips bits in physically adjacent memory locations. These
bit flips have been exploited to obtain arbitrary write primitives [266],
root privileges [91, 300] or to read inaccessible memory locations [161].
CLKSCREW [282] exploited software-exposed energy management mech-
anisms to induce faults during computations on ARM-based devices. By
undervolting the CPU [53, 150, 202, 203, 230–232] through a software
interface, faulty computations allow to leak sensitive data.

1.1. Main Contributions
The main contributions of this thesis demonstrate the security impli-
cations of various microarchitectural optimizations by exploiting them
through software-accessible interfaces.

The contributions of this thesis advance the state of the art of microar-
chitectural attacks and defenses by:

• Discovering Transient-Execution Attacks. With Meltdown (Chap-
ter 6), we exploit the transient execution of instructions before a
fault is actually handled in out-of-order CPUs, while with Spectre
[156], we exploit the transient execution of instructions caused by
mispredictions. This attack does not only bypass the most funda-
mental security guarantees of modern processors by circumventing
memory isolation, but it allows, in contrast to classical side-channel
attacks, to leak data processed on the machine directly. With Melt-
down and Spectre, a whole new research field emerged in the area
of microarchitectural attacks, namely transient-execution attacks.

• Identifying previously unknown attack vectors. With Takeaway
(Chapter 5), we reverse-engineer the cache way predictor of AMD
CPUs and present two new attack techniques leaking metadata to
recover sensitive information.

8 Chapter 1. Introduction and Contribution

• Exploring if different existing attacks can be mounted remotely.
With Nethammer (Chapter 7), we show that Rowhammer faults
can be induced on commodity hardware through network requests
alone, enabling adversaries to induce bit-flips without any control
over the code executed on the target machine. We show that the
interrupt-based attack vector described in KeyDrown can also be
mounted from JavaScript within a browser, enabling a remote way
to observe inter-keystroke timings. By targeting the interrupt han-
dling, we observe inter-keystroke timings of a user’s PIN or pass-
word in sandboxed JavaScript and infer URLs entered by a user on
personal computers and smartphones (Chapter 8).

• Combining traditional physical side-channel analysis with modern
software-based microarchitectural attack techniques. With PLATY-
PUS (Chapter 9), we exploit the processor’s energy consumption
available to software to infer data and extract cryptographic keys.
While the update interval of the interface is low compared to tra-
ditional oscilloscopes used for physical side-channel attacks, we use
techniques from microarchitectural attacks to control the execution
of SGX enclaves and overcome these limitations to extract crypto-
graphic keys.

• Giving new insights into efficiently mitigating attacks. Discover-
ing new attack vectors and studying existing ones in more depth
allows us to better understand the requirements for efficient mitiga-
tions. With KAISER (Chapter 10), we initially proposed a stronger
page-table isolation for operating systems to mitigate various side-
channel attacks on KASLR. In addition, it turned out that the de-
sign of KAISER offered a software-only defense to protect against
the Meltdown attack and, thus, has been adopted in every major
operating system.

The rest of this section briefly describes the individual contributions of
this thesis, while Part II includes the corresponding peer-reviewed publi-
cations. However, as only a subset of the contributions conducted during
my Ph.D. is included within this thesis, a brief description of other results
can be found in Section 1.2.

Take a Way: Exploring the Security Implications of AMD’s Cache
Way Predictors. To optimize the energy consumption and performance
of their processors, AMD deploys a way predictor for the L1 data cache

1.1. Main Contributions 9

to predict in which way of the cache a certain address is stored. The
implementation tags each cache line with a linear-address-based micro-
tag that is computed using an undocumented hash function. In this
work, we first reverse-engineer this hash function in microarchitectures
from 2011 to 2019 and present two new attack techniques using the way
predictor as a side channel: Collide+Probe and Load+Reload. Based on
these techniques, we demonstrate a covert channel, reduce the entropy of
ASLR on the kernel (KASLR) and in the browser, recover cryptographic
keys and exfiltrate secret data from the kernel using a Spectre attack.

The paper “Take a Way: Exploring the Security Implications of AMD’s
Cache Way Predictors” was published at AsiaCCS 2020 in collaboration
with Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice,
and Daniel Gruss.

Meltdown: Reading Kernel Memory from User Space. Under the as-
sumption that the microarchitectural state is invisible and that microar-
chitectural state changes cannot be observed, security guarantees could be
ignored during transient execution as they have no visible consequences.
As microarchitectural side-channel attacks have been limited to leak only
metadata about the execution of a program, i.e., executed instructions or
data accesses, they are usually not taken into account in the processor’s
threat model. With Meltdown, however, we exploit that during transient
execution, the permission check required by the page tables is deferred
on some microarchitectures. Thus, architecturally inaccessible data is
forwarded to the adversary in the transient domain. Using a microar-
chitectural covert channel, the adversary can transmit the data to the
architectural domain leaking arbitrary memory.

Together with Spectre [156], Meltdown describes a new class of microar-
chitectural attacks and paved the way for a variety of transient-execution
attacks and their necessary mitigations. With Foreshadow [293], Zom-
bieload [262], RIDL [251], Fallout [46], CrossTalk [236], LazyFP [276],
CacheOut [248, 252], and Medusa [197] many other Meltdown-type at-
tacks followed, highlighting the importance and research interest in the
new field of transient-execution attacks. We discuss the state of the art
and, thus, the immense research efforts that followed our discovery in Sec-
tion 3.2.

The paper “Meltdown: Reading Kernel Memory from User Space” was
published at USENIX Security Symposium 2018 in collaboration with

10 Chapter 1. Introduction and Contribution

Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg.

Practical Keystroke Timing Attacks in Sandboxed JavaScript. To
mount a keystroke timing attack, an attacker so far either requires phys-
ical access to the device under attack [199], or local code execution [94,
199, 261]. We investigated whether the interrupt-based attack vector de-
scribed in our paper “KeyDrown: Eliminating Software-Based Keystroke
Timing Side-Channel Attacks” [261] can also be mounted from JavaScript
within a browser. We showed that we could not only successfully spy on
keystrokes on desktop machines but also on touches and swipes on mobile
phones. We showed that an attacker could distinguish between website
URLs a user entered in the browser bar and between users time-sharing
a machine.

The paper “Practical Keystroke Timing Attacks in Sandboxed JavaScript”
was published at ESORICS 2017 in collaboration with Daniel Gruss,
Michael Schwarz, David Bidner, Clémentine Maurice, and Stefan Man-
gard.

KASLR is Dead: Long Live KASLR. As recommended by Intel [118],
the kernel should be mapped into the address space for every user appli-
cation. However, for kernel pages, the userspace-accessible bit in the page
tables is not set. Therefore, the address space is separated into virtually
two; one for user mode and one for kernel mode.

However, this single mapping enabled various side-channel attacks break-
ing KASLR [89, 110, 140]. In 2016, we already proposed a change to
operating systems to mitigate prefetch side-channel attacks [89] that sets
up two mappings, one for the kernel and one for the user space appli-
cation. We implemented this idea as a proof-of-concept patch for the
Linux kernel and evaluated that it successfully impedes the attacks. In
the meantime, the stricter isolation provided by KAISER proved itself
useful as it also protects against the Meltdown attack [177] and, thus,
has been adopted in every major operating system by now.

The paper “KASLR is Dead: Long Live KASLR” was published at ES-
SoS 2017 in collaboration with Daniel Gruss, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.

1.1. Main Contributions 11

Nethammer: Inducing Rowhammer Faults through Network Requests.
The Rowhammer attack has always been considered a local attack where
the attacker requires access to the machine to execute code or has to
trick a victim into accessing a malicious website that induces bit flips via
JavaScript [88]. With one-location hammering [88], the question arises
whether it is possible to trigger bit flips remotely over the network with-
out the execution of attacker-controlled code. By simply crafting mini-
mal packets and sending them as fast as possible to the victim machine,
we showed that bit flips can be induced remotely on commodity hard-
ware. We demonstrated a series of remote attacks leading to temporary
or persistent errors in the system. Furthermore, we demonstrated that
the hardware countermeasure target-row-refresh (TRR) is insufficient to
protect against local and remote Rowhammer attacks.

The paper “Nethammer: Inducing Rowhammer Faults through Network
Requests” was published at the SILM Workshop 2020 in collaboration
with Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga,
Clémentine Maurice, and Daniel Gruss.

PLATYPUS: Software-based Power Side-Channel Attacks on x86. In
a classical power side-channel attack setting, an adversary requires phys-
ical access to the device to monitor the energy consumption using an os-
cilloscope. To remain within power constraints, CPU vendors provide an
interface to internal power meters allowing to obtain the energy consump-
tion of the core, main memory, or the entire package. On Intel CPUs,
the Intel Running Average Power Limit (RAPL) grants software access to
these energy measurements. While the update interval of RAPL is rather
low in contrast to real oscilloscopes, we show that with sufficient statisti-
cal evaluation, we can observe variations in the power consumption. This
does not only allow us to distinguish between different instructions but
also between different Hamming weights of operands and memory loads.

With PLATYPUS, we exploit the unprivileged access to this interface to
leak AES-NI keys from Intel SGX and the Linux kernel, break KASLR
and establish a timing-independent covert channel. Furthermore, we
leverage tools from microarchitectural attacks to precisely control the ex-
ecution of an Intel SGX enclave in combination with the RAPL interface
to recover RSA keys processed within the enclave.

The paper “PLATYPUS: Software-based Power Side-Channel Attacks
on x86” was published at IEEE S&P 2021 in collaboration with An-

12 Chapter 1. Introduction and Contribution

dreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Clau-
dio Canella, and Daniel Gruss.

1.2. Other Contributions
In this section, we want to briefly discuss other publications I have con-
tributed to during my Ph.D. that are not included within this thesis.

KeyDrown. While in many cases where the implementation of a crypto-
graphic algorithm can be attacked with a side-channel attack, the actual
implementation can be protected by modifying the code or switching to
other implementation primitives. However, protecting against attacks
monitoring user input by observing keystrokes is more difficult. Our
idea to mitigate such attacks is to artificially generate fake interrupts
that introduce indistinguishable behavior in the observed side channel.
User keystrokes are treated as noise on their own and are blended in the
noise of the generated artificial keystrokes such that an attacker cannot
distinguish between real and fake key strokes. While introducing noise
as a countermeasure against side-channel attacks usually increases the
number of measurements required to mount the attack successfully, the
introduced noise renders keystroke attacks in this scenario infeasible.

The paper “KeyDrown: Eliminating Software-Based Keystroke Timing
Side-Channel Attacks” was published at NDSS 2018 in collaboration
with Michael Schwarz, Daniel Gruss, Samuel Weiser, Clementine Mau-
rice, Raphael Spreitzer, and Stefan Mangard.

JavaScript Zero. With “Practical Keystroke Timing Attacks in Sand-
boxed JavaScript” [173], we proposed a fine-grained permission system in
JavaScript for browsers to mitigate browser-based side-channel attacks.
Typically, attacks in web browsers exploit primitives that are either rarely
used or used in an unintended way. We checked how many of the prim-
itives that have been used to mount side-channel attacks or exploits in
browsers are used on the 10 most popular websites [14]. We figured out
that many of them are not used at all. While some sites rely on some
features, they do not necessarily rely on the high resolution a feature
provides. The idea of this work is to introduce a dynamic approach that
removes these features or modifies their behavior in a way that mitigates
the attacks but does not influence the usability of the websites.

1.2. Other Contributions 13

The paper “JavaScript Zero: Real JavaScript and Zero Side-Channel At-
tacks” was published at NDSS 2018 in collaboration with Michael Schwarz
and Daniel Gruss.

Another Flip. The Rowhammer bug [153] is a disturbance error in DRAM
where repeatedly accessing a memory location leads to bit flips in physi-
cally adjacent locations. This hardware issue can be triggered from soft-
ware and, thus, has been exploited in various attack settings [69, 91, 179,
299]. In this work, we propose a new hammering technique where we re-
peatedly only access a single memory location. Furthermore, we showed
that using this technique in combination with Intel SGX and by inducing
bit flips in the program code; we can circumvent all existing Rowhammer
defenses.

The paper “Another Flip in the Wall of Rowhammer Defenses” was pub-
lished at IEEE S&P 2018 in collaboration with Daniel Gruss, Michael
Schwarz, Daniel Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang Schoechl,
and Yuval Yarom.

Use-After-FreeMail. Another class of attacks is use-after-free attacks,
where an application attempts to access a recently freed memory location.
We generalized these attacks and demonstrate that they can be applied
to different settings, e.g., to email addresses.

The paper “Use-after-freemail: Generalizing the use-after-free problem
and applying it to email services” was published at AsiaCCS 2018 in
collaboration with Daniel Gruss, Michael Schwarz, Matthias Wübbeling,
Simon Guggi, Timo Malderle, and Stefan More.

Double-Fetch Bugs. Double-fetch bugs are an exploitable race condi-
tion where a privileged context accesses an unprivileged external resource
multiple times. If the content of the external resource can be modified
in between accesses, the other access to a now different value can be
exploitable, e.g., time-of-check to time-of-use (TOCTTOU). We showed
that cache side channels allow detecting such bugs in code and that they
can be used as a trigger signal, outperforming state-of-the-art exploita-
tion techniques. Furthermore, we showed that Intel TSX can be used to
mitigate the exploitation of double-fetch bugs automatically.

14 Chapter 1. Introduction and Contribution

The paper “Automated Detection, Exploitation, and Elimination of
Double-Fetch Bugs using Modern CPU Features” was published at Asi-
aCCS 2018 in collaboration with Michael Schwarz, Daniel Gruss, Clé-
mentine Maurice, Thomas Schuster, Anders Fogh, and Stefan Mangard.

Spectre. Simultaneously to our work on Meltdown [177], we identified
issues with speculative execution in modern processors caused by the
mispredictions of branch predictors in the CPU. We showed that we can
influence the predictors to speculatively execute code that would architec-
turally never be executed and, consequently, leak sensitive data accessed
by the victim.

The paper “Spectre Attacks: Exploiting Speculative Execution” was pub-
lished at IEEE S&P 2019 in collaboration with Paul Kocher, Daniel
Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom.

NetSpectre. With the same question as with Nethammer [179], we
wanted to investigate if it is possible to exploit Spectre attacks over the
network. We demonstrated how an attacker can leak data remotely over a
network-accessible API by measuring the response time of network pack-
ets. Furthermore, we presented a novel side channel abusing Intel AVX
instructions.

The paper “NetSpectre: Read Arbitrary Memory over Network” was pub-
lished at ESORICS 2019 in collaboration with Michael Schwarz, Martin
Schwarzl, Jon Masters, and Daniel Gruss.

A Systematic Evaluation of Transient Execution Attacks and Defenses.
After Meltdown [177] and Spectre [156], a new research field of transient-
execution attacks opened up. After the disclosure of Foreshadow [293] and
Foreshadow-NG [292], we systematically analyzed all the remaining bits
in the page tables as well as other exceptions that can be exploited with
Meltdown-type attacks as well as predictors exploited with Spectre-type
attacks. This uncovered 6 new attacks.

The paper “A Systematic Evaluation of Transient Execution Attacks and
Defenses” was published at USENIX Security Symposium 2019 in collab-
oration with Claudio Canella, Jo Van Bulck, Michael Schwarz, Benjamin

1.2. Other Contributions 15

von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss.

ConTExT. In order to fully defend against transient-execution attacks,
we investigated if a software-hardware co-design is possible that would
protect sensitive data but keep the performance gain introduced by spec-
ulative execution. Thus, we proposed ConTExT, which makes the hard-
ware aware of secrets by annotating them in code and passing this infor-
mation on to the lower levels, and forcing the hardware not to use secrets
when speculating.

The paper “ConTExT: A Generic Approach for Mitigating Spectre” was
published at NDSS 2020 in collaboration with Michael Schwarz, Claudio
Canella, Robert Schilling, Florian Kargl, and Daniel Gruss.

ZombieLoad. Within our Meltdown research [177], we discovered a vari-
ant that allowed leaking values not only from the cache but also from the
Line Fill Buffer (LFB). With ZombieLoad, we continued in that direc-
tion to leak data from the load buffers. We were able to leak currently
processed data of a thread running in parallel or previously processed
data on the same core. With those techniques, we can leak loads and
stores from load ports, the line fill buffer, and the store buffer. With one
particular variant, called TSX Asynchronous Abort (TAA), we demon-
strated that these attacks even work on CPUs that already have hardware
mitigations against the other variants. We further demonstrate that the
initial microcode mitigations by Intel were insufficient, and L1D Eviction
Sampling (L1DES) still allows to leak sensitive data.

The paper “ZombieLoad: Cross-Privilege-Boundary Data Sampling” was
published at ACM CCS 2019 in collaboration with Michael Schwarz,
Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss.

Fallout. Another optimization technique to resolve data hazards is store-
to-load forwarding, where the CPU passes data from previous stores onto
subsequent loads. With Fallout, we show that we can exploit this behav-
ior and trick the CPU into forwarding previous stores from the victim to
the attacker as long as they are in the store buffer.

16 Chapter 1. Introduction and Contribution

The paper “Fallout: Leaking Data on Meltdown-resistant CPUs” was
published at ACM CCS 2019 in collaboration with Claudio Canella,
Daniel Genkin, Lukas Giner, Daniel Gruss, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval
Yarom.

LVI. With Load Value Injection (LVI), we turn around previous transient-
execution attacks directly extracting data [46, 177, 251, 293]. Rather than
directly leaking the data from the victim, we inject data into the victim
to hijack transient execution leaking sensitive information. We show that
LVI is harder to mitigate as it requires expensive software patches to
prevent transient execution after every load operation.

The paper “LVI: Hijacking Transient Execution through Microarchitec-
tural Load Value Injection” was published at IEEE S&P 2020 in collab-
oration with Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens.

Medusa. With Medusa, we investigated whether a fuzzing-based ap-
proach allows us to find new Meltdown subvariants. All existing variants
of Meltdown have been found with the manual effort by experts in the
field and fixed, either using microcode updates or for upcoming CPU
microarchitectures directly in silicon. However, certain subvariants like
TAA [122] or L1DES [124] demonstrated that not all paths had been
covered in hardware and, thus, were applicable to even the latest gener-
ation of CPUs. We introduce Transynther, an automatic approach that
allows reproducing, analyzing, and classifying existing variants and also
generating new variants and regression testing. Based on our findings, we
identify a new variant called Medusa that leaks data from write-combining
memory operations. Furthermore, Transynther synthesized a variant of
Fallout [46] that worked even on the most recent Intel Ice Lake microar-
chitecture [196].

The paper “Medusa: Microarchitectural Data Leakage via Automated
Attack Synthesis” was published at USENIX Security Symposium 2020
in collaboration with Daniel Moghimi, Berk Sunar, and Michael Schwarz.

1.3. Outline 17

1.3. Outline
The remainder of this thesis is structured as follows. Chapter 2 provides
background on the architecture, microarchitecture, and memory organi-
zation of a modern CPU. Furthermore, it introduces side-channel attacks,
fault attacks, and microarchitectural attacks. Chapter 3 gives an overview
of the state of the art in software-based microarchitectural side-channel
attacks, fault attacks, and power side-channel attacks. Chapter 4 con-
cludes this work and gives an outlook on ongoing and future research.

2
Background

In this chapter, we provide the necessary background for this thesis.
In Section 2.1, we explain architecture and microarchitecture and de-
scribe trusted-execution environments. In Section 2.2, we explain how
memory is organized in modern processors, covering the concepts of vir-
tual memory and caches. We discuss the basic concepts of side-channel
attacks and fault attacks in Section 2.3.

2.1. Architecture and Microarchitecture
In this section, we discuss the importance of abstraction to deal with
complexity in computing by means of computer architecture and microar-
chitecture. We briefly introduce the concepts of pipelined processors and
superscalar techniques of modern processors.

2.1.1. Instruction-Set Architecture
By using abstraction layers, one needs to take care only of the interface or
specification of each layer. Thus, higher levels do not necessarily need to
know the details of lower levels. In computer science, abstraction layers
play an important role in managing the complexity of modern systems,
and, therefore, they do not only exist between hardware and software but
basically everywhere.

Levels of Abstraction. Every abstraction level in a modern computer
system, as illustrated in Figure 2.1, is implemented on top of another
level and utilizes the well-defined functions of the lower level. While
the implementation of each layer is not interested in the upper layers, it
hides the unnecessary details of the lower layers. Starting with atoms,
this allows us to build complex applications.

19

20 Chapter 2. Background

Transistors

Logic Gates

Functional Units

Microarchitecture

Instruction Set Architecture

Machine Code

Assembly Language

Programming Language

Application

S
of
tw

ar
e

H
a
rd
w
ar
e

Figure 2.1.: Abstraction layers enable building complex processors from
the bottom up. The ISA connects the hardware to the soft-
ware level.

Transistors built from silicon atoms are used for amplification and to
build switches. By combining these switches, boolean logic gates (such
as or, xor, and or not) can be built. Using multiple gates, functional
blocks, such as latches, flip-flops, and registers, are built. On the next
level, they can be chained together to build more complex logical func-
tions that perform computations, like arithmetical logical units (ALU).
To design an entire processor, multiple complex processing elements are
built and connected together to enable complex computations. This in-
cludes register files, different buffers, and execution units that together
represent the microarchitecture that fetches instructions from memory,
decodes and executes them, and stores the results back to memory. The
computer architecture (or Instruction Set Architecture (ISA)) is an ab-
stract model of the machine and connects hardware and software. A
compiler uses the ISA to translate a high-level programming language to
the machine code the processor can process. This allows applications to
be executed on the CPU. Typically, an operating system manages how
the system is used and enables user space applications to run on top of
it that operate on data we provide.

2.1. Architecture and Microarchitecture 21

Instruction-Set Architecture (ISA). The ISA, or computer architec-
ture, is an abstract model of the computer. It defines not only the instruc-
tion a processor can execute as well as their behavior but also registers,
data types, and the memory model. With x86, A64, POWER, RISC-V, or
SPARC, there are many different instruction sets that are typically clas-
sified in their complexity. A complex-instruction-set computer (CISC),
like x86, supports many special (and hence, complex) instructions. On
the other hand, a reduced-instruction-set computer (RISC), like A64 or
POWER, has a smaller set of instructions and, thus, requires more in-
structions to perform tasks than some of the complex instructions would
cover.

Usually, a RISC instruction set uses fixed-length instructions. This means,
as an example with the ARM A64 instruction set, that all instructions
are 32 bits in length [24]. In contrast, CISC instruction may have in-
structions of varying lengths. For instance, instructions on x86 can be
between 1 and 15 bytes long [123]. Hence, parsing an instruction stream
is more complex, as the actual length of the next instruction can only be
determined by parsing byte by byte.

With computer architecture, one usually refers to the Instruction-Set Ar-
chitecture (ISA) of a processor and, thus, the processor’s interface as the
programmer sees it. From the hardware perspective, the ISA serves as
the design specification for the microarchitecture. This enables different
microarchitectures (from different companies) for the same ISA, allowing
to run applications compiled for one instruction set to run on all of these
microarchitectures. However, based on the actual implementation of the
microarchitecture, the program’s execution can vary in side effects, such
as performance or energy consumption.

While we focus on the CPU microarchitecture in Section 2.1.2, the dis-
tinguishing view between the architecture and microarchitecture applies
to abstraction levels in general. An architecture always describes the
interface to the underlying microarchitecture. For example, the operat-
ing system provides a clear interface for applications via specified system
calls and signals. Different versions of an operating system can be seen
as different microarchitectures as well; however, if an application adheres
to the interface, it can be executed on different implementations of the
operating system. For instance, while the internal workings – including
different optimizations – of the operating systems, can change, an appli-
cation can still be executed correctly if the guarantees of the interfaces
are kept.

22 Chapter 2. Background

2.1.2. CPU Microarchitecture

The microarchitecture of a processor is an implementation of an architec-
ture. While the ISA serves as a reference for software developers, it serves
as the interface specification for CPU designers that the microarchitecture
must meet.

In this section, we briefly discuss some fundamental techniques of modern
microarchitectures. We outline pipelined designs, as well as superscalar
techniques like out-of-order execution. In addition, we examine perfor-
mance optimization techniques like hardware-based speculation.

For a more in-depth compendium of these topics, we refer the reader
to Computer Architecture: A Quantitative Approach [103] and Modern
Processor Design: Fundamentals of Superscalar Processors [268].

2.1.2.1. Pipelining

Pipelining allows increasing the throughput of a system, i.e., the number
of tasks a system can perform per time unit. Thus, it plays an important
role in the design of modern processors to increase their performance.

With pipelining, the execution of a task is split into multiple stages (sub-
tasks) with buffers between each stage. This allows a new task to start
as soon as the previous task has completed the first stage of the pipeline.

Pipelines are not only used to perform arithmetic operations (arithmetic
pipelines), e.g., floating-point multiplications, but also to pipeline the
instructions the processor should perform in each instruction cycle (in-
struction pipelines). A simple RISC pipeline, as illustrated in Figure 2.2,
consists of the following 5 stages:

1. Instruction Fetch (IF)
2. Instruction Decode (ID)
3. Execute (EX)
4. Memory Access (MEM)
5. Write-back (WB)

In the first stage (IF), the next instruction to be executed is fetched.
Then, the instruction is decoded (ID) to determine the work the instruc-
tion should perform. In the execute stage (EX), the actual computation
is performed. If the operation needs to access memory, this is handled
in the memory stage (MEM). Finally, in the write-back stage (WB), the

2.1. Architecture and Microarchitecture 23

computed results are written to the register file.

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Figure 2.2.: A RISC Pipeline consisting of 5 stages Instruction fetch
(IF), Instruction decode (ID), Execute (ED), Memory Ac-
cess (MEM), and Write Back (WB).

In an n-stage pipeline, n different instructions can be processed at the
same time. If these instructions do not depend on each other, instructions
can continue through the pipeline without any stalls. However, when
there are dependencies between instructions within the pipeline, they have
to be detected and resolved. Conditional branches cause pipeline hazards
(problems that occur when the next instruction cannot execute in the
following clock) as the outcome of a conditional branch is unknown until
the execution stage, but its result is already required in the instruction
fetch stage to load the next instruction. A simple solution is to assume
that the branch falls through and continue fetching the next instruction
speculatively but stalling at the decode stage. If the predictions turn
out to be correct and the branch is not taken, only a single cycle is
lost. However, if the branch has been taken and the assumption was
incorrect, the new target has to be fetched and, thus, two cycles have
been lost. While this simple prediction allows gaining performance over
stalling completely, there are more sophisticated prediction techniques
discussed in Section 2.1.2.3.

Hazards cannot only occur on the instruction flow but also on the data
flow. If there are two pipeline stages in the pipeline that can simulta-
neously access the same variable, different data hazards can occur. For
example, one instruction could need the value that is computed by a
previous instruction in the pipeline. With this read-after-write (RAW)
hazard, the following instruction must be prevented from entering the
pipeline. Thus, the pipeline must stall until the preceding operation has
finished. However, the performance of resolving pipeline hazards can be

24 Chapter 2. Background

improved. Using forwarding paths, the result of the preceding operation
could be forwarded to the depending operation, reducing the penalty that
would be necessary if the pipeline needed to be stalled completely.

Precise and non-precise exceptions. In every pipeline stage, different
exceptions can interrupt the execution of several instructions. For in-
stance, a page fault or a memory-protection violation could occur in the
instruction fetch stage. In the decoding stage, the decoder could fail to
decode the instruction, or the instruction cannot be executed with the
current privilege level. In the execution stage, the actual computation
could raise an exception, i.e., if a number is divided by 0. Similar to the
instruction-fetch stage, page faults or protection violations could occur in
the memory access stage.

If an exception occurs, the pipeline must squash all following instructions
and should let all preceding instructions complete. If these conditions are
met and, thus, the machine state aligns with the sequential execution of
the instruction stream, exceptions are called precise. If, however, these
conditions are not met, e.g., preceding instructions are not completed
if an exception occurs, the exceptions are called non-precise. Typically,
modern processors support precise exceptions.

Furthermore, it can happen that multiple exceptions occur simultaneously
in more than one pipeline stage. If an exception occurs, the pipeline
started to perform operations that should not have been executed and,
thus, has to make sure that these have no architectural effect.

To handle exceptions on the architectural level, the operating system must
provide entry points for exception and interrupt handlers in a so-called
interrupt descriptor table (IDT). If an exception is architecturally raised
(when the instruction would be committed and, thus, the architectural
state be updated), the processor calls the procedure for the exception
from the IDT [118].

2.1.2.2. Superscalar Execution

With superscalar execution, pipelines are parallelized so that multiple in-
structions can be processed in every cycle. They are further diversified by
using multiple different functional units in the execution stage and by im-
plementing dynamic pipelines; out-of-order execution allows maximizing
the utilization of all execution units.

2.1. Architecture and Microarchitecture 25

Parallel and Diversified Pipelines. A simple approach to increase the
performance of a pipelined CPU is to create multiple copies of the same
pipeline to run in parallel. However, this does not only increase the
complexity but also the required hardware resources significantly.

IF IF IF

ID ID ID

RD RD RD

ALU MEM1

MEM2

FP1

FP2

FP3

BR

WB WB WB

Figure 2.3.: In the execution stage of diversified pipelines, multiple func-
tional units are implemented [268].

With diversified pipelines, however, not every stage in the pipeline is
duplicated. Instead, in the execution stage, diversified execution pipelines
using multiple functional units are implemented, e.g., for ALU, memory,
branch (BR), or floating-point operations, as illustrated in Figure 2.3.
Thus, individual pipelines customized for instruction types can be built,
and, thus, the latency for each instruction type can be minimal. For
instance, the ALU pipeline finishes with a single cycle and does not have
to wait for the completion of all floating-point stages.

Dynamic Pipelines. For instructions to complete in the same order as
defined by the instruction stream of the program in a scalar pipeline, the
preceding pipeline stages must also be stalled whenever an instruction
must be held back in a pipeline buffer. For parallel pipelines, multi-entry
buffers are necessary. If the entire multi-entry buffer is, like a single-entry
buffer, either stalled or clocked in each cycle, multiple instructions that

26 Chapter 2. Background

in theory require no stalling would also be blocked, inducing unnecessary
performance loss. To minimize the latency, subsequent instructions must
be able to bypass stalled instructions. Hence, with dynamic pipelines,
instructions can be executed out-of-order, i.e., the order instructions are
executed deviates from the order defined by the instruction stream. Thus,
instructions are executed as soon as their operands are ready. Using com-
plex multi-entry reordering buffers, as shown in Figure 2.4, the instruc-
tions are first brought in order to the dispatch buffer, where they are
dispatched to the execution units as soon as their operands are ready.
With the reorder buffer, while finishing out-of-order, they are reordered
back in order to be written back and committed to the architectural state.

IF IF IF

ID ID ID

RD RD RD

Dispatch buffer

ALU MEM1

MEM2

FP1

FP2

FP3

BR

Reorder buffer

WB WB WB

Figure 2.4.: Dynamic Pipelines use complex buffers to enable out-of-order
execution [268].

In 1967, Tomasulo [286] developed an algorithm that enabled dynamic
scheduling of instructions to allow out-of-order execution. It introduces a
reservation station, a common data bus, and register tags. A reservation
station is a buffer attached to each execution unit that holds the currently

2.1. Architecture and Microarchitecture 27

executed instructions of that instruction type. This allows dispatching in-
structions to execution units as long as there are free reservation stations,
even if the execution unit is busy executing a different instruction and
even if their operands are not available yet. Thus, instructions can wait
in the reservation station until the operands become ready. The common
data bus connects the outputs of the execution units to the reservation
stations, allowing the instructions waiting to load their required operands
from the bus. Similarly, the destination registers of these instructions are
also updated. To implement this, register renaming is used. The register
contains either a real value or a tag that indicates which execution unit
will compute the value. This tag, along with its corresponding result, is
broadcast on the common data bus by the producing execution unit, and
instructions waiting for their operands are monitoring for their tags on
the bus. If an instruction is dispatched, the tag of its output register is
stored with the id of the execution unit. Likewise, if a following instruc-
tion with the same output register is dispatched, the tag will be updated
with the id of the execution unit of the new instruction. Thus, the tag
will always contain the id of the execution unit of the last instruction.
Thus, only the latest instruction can therefore update the value of the
register, resolving write-after-write hazards. However, with Tomasulo’s
design alone, precise exceptions cannot be handled as the register file is
not updated by all instructions. For precise exceptions, modern CPU
designs use a reorder buffer, as discussed in Section 2.1.2.4.

Out-of-order designs allow to execute operations speculatively to the ex-
tent that instructions can be processed before the processor is certain
that they are actually needed and their results committed to the archi-
tectural state. While the out-of-order design enables the execution of
instructions that lie completely outside of the program’s order, note that
Tomasulo’s algorithm, in his nature, does not perform anything specu-
latively. We briefly discuss performance optimizations using speculative
execution techniques like branch predictors in Section 2.1.2.3 and further
building blocks in Section 2.1.2.4.

2.1.2.3. Speculative Execution

The instruction streams that a processor is executing are usually not only
linear but rather contain branches diverting the control flow. To improve
the performance, different prediction mechanisms are implemented that
try to make an educated guess, which instruction will be executed next.

28 Chapter 2. Background

Besides branch prediction and branch-target prediction, explainmed be-
low, other prediction-based techniques increasing the performance have
been proposed and deployed on modern systems. Examples include data
prefetching [142], way prediction [227], or value speculation [218].

Branch Prediction and Branch-Target Prediction. With branch pre-
dictors, the processor tries to determine in which direction a branch is
taken before its condition has been evaluated. Instructions on the pre-
dicted path can be executed in advance, and their results used if the
prediction turns out to be correct. However, if the prediction was in-
correct, the wrongly computed results are discarded, and execution is
continued from the correct path.

There are different ways to predict a conditional branch: Using static
branch prediction [103], the outcome is predicted based on the instruction
itself. For instance, every conditional branch is predicted to be taken.
With dynamic branch prediction [54], information is gathered during the
run-time enabling an educated guess for the outcome. For instance, one-
level branch prediction uses a 1-bit or 2-bit counter to record the last
outcome of a branch [268]. Two-level adaptive predictors [337] use the
branch history to look up the saturating counter in a pattern-history table
(PHT). With local branch predictors, a separate history is kept for each
conditional jump instruction, while global predictors share the history of
all conditional jumps. With neural branch prediction [143, 284, 304], ideas
from machine learning have been integrated into CPU architectures [18,
245].

If the direction of a branch is known (or predicted), the address of the
next instruction must be determined. The same applies to unconditional
branches that are always taken. For conditional branches, if the branch
is not taken, the next instruction is simply the one following the current
branch instruction. If a branch is taken, however, the address can ei-
ther be given (direct branch) or computed at runtime (indirect branch).
With branch-target prediction, the processor tries to predict the target
address of the branch. The branch target buffer (BTB) is used to store
the best-predicted target address for a branch instruction and is consulted
to predict the target of the next instruction that should be fetched.

Not only calls into a function can be predicted, but also the return ad-
dress can be predicted using a return-stack buffer (RSB) [106, 144]. If
a function is called, the return address is pushed onto the RSB. When

2.1. Architecture and Microarchitecture 29

returning from the function, the last entry of the RSB serves as a target
prediction from where the processor should continue executing. However,
as the return stack has a limited size, an overflow can overwrite the oldest
return address, yielding a misprediction. Intel’s return-stack buffers are
implemented as a circular array, while AMD’s RSBs have overflow and
underflow checking [322].

Uzelac and Milenkovic [290] presented experiments to reverse-engineer
the structures of branch predictors on the Intel Pentium M. Kocher et al.
[156] reverse-engineered the BTB from Intel’s Haswell microarchitecture.
Bhattacharya et al. [34] aimed to reverse-engineer the prediction model
of Intel’s branch predictors. Wong micro-benchmarked the return-stack
buffer on different microarchitectures [322]. We discuss many other works
that exploit these predictors to leak sensitive data in Section 3.1.

2.1.2.4. Modern Microarchitecture

Most superscalar processors consist of a front-end, fetching and dispatch-
ing instructions in order, an out-of-order execution engine, and a back end
that retires instructions in order, as well as the memory subsystem. In
this section, we briefly discuss state-of-the-art microarchitectures based
on Intel’s Skylake core architecture [255], as illustrated in Figure 2.5.

Front End. In the front-end, x86 instructions are fetched from memory,
decoded to micro-operations (µOPs) and sent to the execution engine.
The branch predictors decide which instructions are fetched as macro-ops
from the L1 instruction cache (L1I) and sent to the pre-decode buffer.
As x86 instructions are complex and of varying length, their boundaries
are marked in the pre-decode phase. In the instruction queue, the pre-
decoded instructions are further optimized by macro-op fusion, where two
macro-ops are combined into a single complex operation.

Using multiple, simple and complex decoders macro-operations are de-
coded into fixed-length µOPs. While simple decoders can only emit single
µOPs, the complex decoder can decode up to four µOPs. For instructions
that require more than 4 µOPs and cannot be decoded by the complex
decoder, the microcode sequencer (MS ROM) is queried. While it emits
the required µOPs, the decoders are inactive.

Finally, the decoded µOPs are send to the Allocation Queue that serves
as an interface between the front end and the execution engine. There,

30 Chapter 2. Background

E
x
ec
u
ti
on

E
n
gi
n
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,

..
.

A
L
U
,
B
ra
n
ch

L
o
a
d
d
a
ta

L
o
a
d
d
a
ta

S
to
re

d
a
ta

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

S
u
b
sy
st
em

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

F
ro
n
te
n
d

Allocation Queue

µOP µOP µOP µOP

MUX

5-Way Decode

µOPs µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

M
S

R
O

M

µOPs

L1 Instruction Cache
ITLB

Figure 2.5.: A simplified view of the Intel Skylake microarchitecture [255].

additional optimizations take place: A loop stream detector detects loops
and sends the µOPs directly to the execution engine bypassing the rest
of the front end [117]. Furthermore, micro-fusion allows fusing multiple
µOPs from the same instruction into a single complex instruction [117].

2.1. Architecture and Microarchitecture 31

To improve the performance and avoid repeatedly decoding the same
instructions, a µOP cache is used to store the µOPs of already decoded
instructions. If there is a hit in the µOP cache, the µOPs can be directly
emitted to the allocation queue avoiding the pre-decode and decoding
stage.

Execution Core. The superscalar execution core of the Skylake microar-
chitecture can process instructions out of order. The instructions arrive in
the reorder buffer (ROB) from the allocation queue of the front end. The
reorder buffer holds µOPs in different stages of completion. First, if nec-
essary, additional resources for the µOPs are allocated, e.g., entries in the
load or store buffer. The source and destination registers are mapped to
physical registers, and the register alias table performs register renaming
to enable out-of-order execution as described in Section 2.1.2.

The reservation station (or scheduler) queues µOPs until their operands
are ready, schedules and dispatches them to the corresponding execution
units. The reservation station is connected (via ports) to execution units
performing different instructions like ALU operations, floating-point op-
erations, multiplications, memory loads, and stores. For instance, port
0 is capable of integer and vector arithmetic operations as well as AES
instructions. Port 2 and 3 are for memory loads, while port 7 is for
memory stores. If an execution unit finishes executing one instruction,
it broadcasts the result on the common data bus such that depending
instructions can fetch the results they require to be executed directly.

The reorder buffer contains all in-flight instructions that have been dis-
patched but not yet retired, including instructions that are waiting for
their operands and instructions that have been completed out of order but
are not yet committed. The reorder buffer also makes sure that instruc-
tions retire in order and, thus, makes it appear that the instructions have
been executed as specified by the instruction stream. With Tomasulo’s
algorithm, the register file is updated once an instruction finishes, and
subsequent instructions can hence find the result there. However, with
the reorder buffer, the register file is not updated until the instruction
retires, thus, allowing the core to execute instructions speculatively.

Furthermore, precise exceptions are implemented with the reorder buffer.
If an exception occurs, the entry of the instruction that triggered the
exception is marked in the reorder buffer. While completing instructions,
the reorder buffer checks whether the instruction has been marked and,

32 Chapter 2. Background

thus, is not allowed to complete. Therefore, instructions that preceded
the faulting instruction can still retire in order. The results of instructions
that have been executed out of order that follow the faulting instructions
are discarded.

Memory Subsystem. The memory subsystem is responsible for load
and store instructions as well as the ordering of memory accesses. While
we discuss the memory organization, including caches, virtual memory,
and DRAM, in more depth in Section 2.2, we give a short overview of the
steps performed by the core for memory operations as well as the involved
hardware blocks.

The execution of a memory instruction consists of three steps: the mem-
ory address generation, the address translation and the actual memory ac-
cess. There are different modes how memory addresses can be computed.
If an instruction uses an absolute memory address, it uses it directly. Oth-
erwise, using a base and index register as well as a scale and displacement
value, based on the form base + index · scale + displacement, different
combinations are possible [118]. Thus, in the first step, the actual mem-
ory address is computed based on the provided values for the used mode.
If virtual memory (see Section 2.2.2) is used, the computed virtual ad-
dress has to be translated to a physical address that is used to access the
physical memory. Using so-called page tables, the address translation is
performed. Furthermore, translations are cached in translation-lookaside
buffers (TLB), speeding up subsequent accesses to the same virtual ad-
dresses.

After computing and translating the virtual address, the actual memory
access can be performed. The data is retrieved from the data cache
and stored in the renamed register or the reorder buffer. Note that the
architectural register is only updated if the load instruction completes in
the reorder buffer [268]. If the data is not cached in the data cache, a cache
miss occurs, and the data is requested from the main memory, inducing a
longer delay for the instruction to finish. Store instructions are handled
differently than load instructions, as store instructions finish as soon as
the address has been translated [268]. However, the data is only stored in
memory iff the store completes in the reorder buffer. Thus, speculatively
but erroneously executed instructions cannot affect the actual memory
contents.

Similar to registers, dependencies between two load or store instructions

2.1. Architecture and Microarchitecture 33

can exist if they refer to the same memory location. With the execution
core we described above, also memory instructions can be performed out
of order; thus, special care has to be taken to tackle possible data hazards.
Using load bypassing, loads can be executed earlier than preceding stores
if there is no data dependence between the stores and load. However,
if there is a read-after-write (RAW) dependency between a store and a
load, using load forwarding, the load retrieves its data directly from the
store instead of accessing the memory. The memory-order buffer (MOB),
consisting of a load buffer and store buffer, is used to handle the memory
requests. The load buffer queues loads that could not complete when
they were dispatched by the reservation station. It also snoops for stores
of other cores against completed loads to maintain memory ordering.
The store buffer, on the other hand, queues all stores before they are
dispatched to memory in order (when they are no longer speculative).
If a load is issued, the store buffer is checked for a potential address
match, e.g., using the lower 12 bits, such that data from a previous store
operation could be directly forwarded to the load operation [105, 107].

2.1.2.5. Trusted-Execution Environments

Trusted-Execution Environments (TEE) are a secure and isolated envi-
ronments in CPUs that protect code and data from an otherwise un-
trusted system. Different CPU manufacturers provide different TEEs:
ARM’s TrustZone [25] is probably the most widely-used TEE as it is
available in most mobile phones. With the Armv9-A architecture, ARM
introduced the Confidential Compute Architecture (CCA) [23] that builds
upon TrustZone to provide additional execution environments, so-called
realms. With Secure Encrypted Virtualization [146] and Secure Nested
Paging [17], AMD provides different technologies to isolate virtual ma-
chines from the hypervisor. With Secure Execution [112], IBM enables
running protected Linux virtual machines in the cloud.

With Software Guard Extension (SGX), Intel provides an x86 instruction-
set extension protecting applications in so-called enclaves [59]. By en-
crypting the memory, neither applications nor the operating system can
inspect the memory used by an enclave. In addition, this successfully
protects against cold-boot attacks [121]. Furthermore, local and remote
attestation ensures the integrity of an enclave before it is loaded and ex-
ecuted. To communicate with enclaves, applications can use ecalls to call
functions provided by the enclave. Using ocalls, an enclave can request

34 Chapter 2. Background

CPU Registers L1 Cache L2 Cache Memory Disk Storage

Figure 2.6.: Memory hierarchy shows different locations where data can
reside. The closer to the CPU core, the faster the access time,
e.g., loading data from one of the cache levels is faster than
accessing the data from the main memory.

functionality provided by the operating system, as an enclave itself is re-
stricted in its functionality. For instance, an enclave can not perform any
I/O operations or system calls by itself.

We discuss microarchitectural attacks targeting trusted-execution envi-
ronments in Chapter 3.

2.2. Memory Organization

The performance of modern processors does not only depend on the clock
frequency but is also influenced by the latency of instructions and, espe-
cially, the interaction with other components such as the main memory
or hard drives. In this section, we discuss the memory hierarchy, caches,
TLBs, and DRAM. We further explain the concept of virtual memory
and ASLR.

2.2.1. Memory Hierarchy

To serve memory requests as fast as possible, a memory hierarchy as
illustrated in Figure 2.6 is deployed. Frequently used data is buffered in
multiple layers that differ in capacity and speed. Closer to the core, the
memory becomes smaller but faster using different storage technologies:

Disk Storage
Usually, the slowest but largest memory is the disk storage, e.g., a
hard disk, at the end of the hierarchy. While the capacity of hard
disks and SSDs reaches multiple terabytes, the latency of a hard
disk is around 4ms [167] while the latency of an SSD can be as low
as 250µs [246].

Memory
Typically, DRAM is used for the main memory that is discussed

2.2. Memory Organization 35

in greater detail in Section 2.2.5. Modern systems deploy multiple
gigabytes of memory with latencies around 60 ns [168].

Caches
Modern microarchitectures deploy multiple levels of cache, typically
using SRAM. The lower the level, the smaller it’s capacity and lower
its latency. For instance, the L1 cache has a latency of 4 cycles.
The L2 needs 12 cycles, and the L3 around 30 cycles to serve the
requests [117]. We discuss caches in greater detail in Section 2.2.3.

CPU Registers
Register files hold the general-purpose registers and are built using
multi-ported SRAM. Typically, moving a register to another register
has a latency of 1 cycle [2]. However, using move elimination [182],
the register renaming performs the move and, thus, no latency is
induced.

Usually, programs tend to reuse the same memory locations over time re-
peatedly as well as memory locations that are close to each other, forming
two aspects of locality [272]: With temporal locality, if one memory lo-
cation is accessed at a particular time, then it is likely that it will be
referenced again soon. With spatial locality, if one memory location is
accessed at a particular time, then it is likely that nearby locations will
be used soon as well. These two principles play an important role in the
design of caches to hold frequently used data close to the core.

2.2.2. Virtual Memory

For memory isolation, processors support virtual memory as an abstrac-
tion layer for the physical memory of the system. Instead of assigning
the physical address space to each process, each process has its own vir-
tual address space organized in pages. The physical memory is divided
into fixed-size continuous blocks, so-called page frames. Using multi-level
page-translation tables, the operating system maps virtual pages to page
frames. When accessing a virtual address of a process, the CPU resolves
the mapping to operate on the actual physical address. The root of a
translation table for a process is stored in a dedicated register, e.g., the
CR3 register on x86 architectures. When switching processes, the operat-
ing system switches to the address space of the next process by updating
this register.

On modern processors, these translation tables typically have 4 levels,

36 Chapter 2. Background

as illustrated in Figure 2.7. However, with the recent Ice Lake microar-
chitecture, Intel supports another level and, thus, 5-level paging. Every
paging structure has a size of 4 kB and consists of 512 entries of each 8B.
Therefore, with 4 levels, 48 bit of the virtual address are used to index
the different page table levels (with 5 levels, 57 bits are used).

The CR3 register points to the top-most page map level 4 (PML4). Bits
39 to 47 of the virtual address are used to select one of the 512 entries
of the PML4, pointing to the page directory pointer table (PDPT). Bits
30 to 38 of the address determine which of the PDPT entries is selected.
A PDPT entry either defines a 1GB region of physical memory (a 1GB
page) or points to a page directory (PD). Bits 21 to 29 of the address
define the PD index. Similarly, a PD entry either maps to a 2MB region
of physical memory (a 2MB or huge page) or maps again to a so-called
page table (PT). Bits 12 to 20 select the page table entry that then maps
to a 4 kB page of physical memory. With 5-level paging, an additional
table, page map level 5 (PML5), is used.

In addition to the page frame number, the entries in the translation tables
store additional properties of the virtual address. For instance, these
properties can define if the process can write to the page or if the process
can execute code from the page. Furthermore, for memory protection, a
bit defines if this address can be accessed from user and kernel space, or
only from kernel space only. This allows the operating system to map
pages into the virtual address space of the user space process that can
only be accessed by the kernel.

2.2.3. Caches

As discussed in Section 2.2.1, a memory hierarchy is employed to overcome
the latency of memory accesses. Data that has been used recently is
stored in multiple layers of fast and small memories, so-called caches.
Thus, access to data in any of the caches is significantly faster than those
to the main memory.

In this section, we discuss different cache organizations and cache prop-
erties.

2.2. Memory Organization 37

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
·········

PML4E 511

PDPT

PDPTE 0

PDPTE 1
·········

PDPTE 511

Page Directory

PDE 0

PDE 1
·········

PDE 511

Page Table

PTE 0

PTE 1
·········

PTE 511

4 KiB Page

Byte 0

Byte 1
·········

Byte 4095

Figure 2.7.: Address translation on x86 processors [83]. Different bits of
the virtual address select the entry of paging tables.

2.2.3.1. Cache Organization

Due to their comparably small sizes, caches only hold a subset of the
contents of the main memory. A cache stores data divided into blocks,
so-called cache lines, that are typically 64B in size. If a cache line for
the requested memory address can be served from the cache, it is called
a cache hit. If it has to be requested from the main memory, it is called
a cache miss.

As illustrated in Figure 2.8, typically, there are multiple levels of caches in
a system. The cache closest to the core is called the first-level cache (L1)
and is typically split into an instruction cache and a data cache. The next
level, the L2 cache, is a unified cache and stores both instructions and
data. Both the L1 and L2 cache are private to each core. The last level
cache (LLC), the L3 cache, is shared among all cores and is slower but
larger than the lower levels. Furthermore, the LLC is split into so-called
slices where each core can access one slice directly and the others over a
bus.

38 Chapter 2. Background

Core 0

L1 D-Cache L1 I-Cache

L2 Cache

Core 0

L1 D-Cache L1 I-Cache

L2 Cache

Core 0

L1 D-Cache L1 I-Cache

L2 Cache

Core 0

L1 D-Cache L1 I-Cache

L2 Cache

L3 Cache

Figure 2.8.: There are typically multiple levels of caches in a system. In
this example, each core has a private L1 instruction and data
cache as well as an L2 cache. The last-level cache (L3) is
shared among all cores.

Cache Inclusion Policy. When multiple levels of caches are used, some
design decisions have to be made which cache levels hold copies of the
data, e.g., if a copy of the cache line is kept by one or multiple caches [272]:
A higher-level cache is called inclusive with regard to the lower-level cache
if all cache lines from the lower-level cache are also stored in the higher-
level cache. Caches are called exclusive to each other if a cache line can
only be kept in one of the cache levels. If a cache is neither inclusive
nor exclusive, it is called non-inclusive. Most modern Intel CPUs have
inclusive last-level caches [201], and AMD CPUs have a non-inclusive or
exclusive last-level caches [128]. ARM CPUs have non-inclusive [81, 174]
or exclusive [19].

Cache Designs. There are different ways to implement a cache, with
the simplest one being a direct-mapped cache. In a direct-mapped cache,
each cache line in the main memory maps to a single location within the
cache.

Figure 2.9 illustrates a direct-mapped cache with 8 locations and cache
lines of 64B in size. Thus, the cache controller uses the lowest 6 bits of
the 32-bit address to select a word within the cache line. To map the
address to one of the 8 possible locations, 3 bits of the address are used.
The remaining 23 bits will be stored as a tag value such that the requested
memory location can be uniquely identified and checked against.

If an address is looked up in the cache, the index bits of the address are
extracted and used to select a row in the cache. Then the tag value of
the address is compared to the tag value stored in the selected row. Only
if there is a match and the entry in the cache is marked valid it is a cache

2.2. Memory Organization 39

Tag Index Offset

Address

Tag Data1

Tag Data2

Tag Data3

Tag Data4

Tag Data5

Tag Data6

Tag Data7

Tag Data8

≡

Data

Figure 2.9.: In a direct-mapped cache, each cache line maps to a single
location within the cache.

hit, and the relevant word can be extracted using the offset bits of the
address. If, however, either the valid bit is not set or the tag does not
match, a cache miss occurs, and the data has to be requested from the
memory or higher cache levels.

Tag Index Offset

Address Way 1 Way 2

Tag Data Tag DataSet 1

Tag Data Tag DataSet 2

Tag Data Tag DataSet 3

Tag Data Tag DataSet 4

Tag Data Tag DataSet 5

Tag Data Tag DataSet 6

Tag Data Tag DataSet 7

Tag Data Tag DataSet 8

≡ ≡

Encode

Data

Figure 2.10.: In an n-way associative cache, each cache line maps into a
cache set with n ways where a cache line can be stored. The
illustration shows a 2-way cache.

The cache is called fully associative if an address can be stored at any

40 Chapter 2. Background

entry in the cache. If caches are organized in sets of cache lines, they
are called set-associative caches. Each set contains multiple ways where
a cache line can be stored. If a cache line can be stored in any of n
places in the cache, the cache is n-way associative, as illustrated in Fig-
ure 2.10. When accessing a cache line, each line stored in each way for a
set must be compared to the requested address to select to correct one.
Addresses that map to the same cache set are called congruent addresses.
Congruent addresses compete for cache lines within the same set, and
a cache-replacement policy needs to decide which cache line will be re-
placed.

Cache-replacement Policies. If all entries in a cache set are used, and a
cache miss occurs, a cache line must be evicted from the cache set to make
room for a new entry [1]. The used heuristic that determines which cache
line to evict is called cache-replacement policy. For instance, a least-
recently-used (LRU) policy would replace the cache line that has been
the least recently used. A pseudo-random replacement policy will select
a cache entry and evict it based on a pseudo-random number generator.
Fine-grained replacement policies [135] learn from the behavior of previ-
ous cache lines to be more effective. While the lower-level caches of Intel
processors use pseudo LRU (PLRU) replacement algorithms [1, 302], the
L3 cache uses an adaptive policy [321] using adaptive insertion [234] and
Re-reference Interval Prediction (RRIP) [137]. Vila et al. [302] reverse-
engineered undocumented replacement algorithms for the L2 and L3 cache
on Intel CPUs.

Virtual and Physical Tags and Indexes. The address used to index the
cache can be a virtual address or a physical address. Thus, a CPU cache
can either be virtually indexed or physically indexed. Virtually-indexed
caches are faster as they do not require an address translation before the
lookup can be performed. However, depending on the design of the cache,
situations can occur where the same physical address is stored in different
cache lines. Furthermore, the tag that is stored along with the cache line
can also be based on the virtual or physical address, allowing different
combinations with their advantages and disadvantages:

With VIVT (virtually indexed, virtually tagged), the virtual address is
used for both the index and the tag, which improves performance since no
address translation is needed. However, the virtual tag is not unique, and

2.2. Memory Organization 41

shared memory may be held more than once in the cache. In addition,
the entries need to be either tagged with a process identifier, e.g., PCID,
or flushed on each context switch as they are not unique across processes.
For PIPT (physically indexed, physically tagged) caches, the physical
address is used for both the index and the tag. This method is slower
since the virtual address has to be looked up in the translation-lookaside
buffer (TLB). However, shared memory is only held once in the cache.
With PIVT (physically indexed, virtually tagged), the physical address
is used for the index, and the virtual address is used for the tag. This
combination has no benefit since the address needs to be translated, the
virtual tag is not unique, and shared memory can still be held more
than once in the cache. VIPT (virtually indexed, physically tagged)
caches use the virtual address for the index and the physical address for
the tag. The advantage of this combination compared to PIPT is the
lower latency since the index can be looked up in parallel to the TLB
translation. However, the tag cannot be compared until the physical
address is available. Most Intel CPUs have a VIPT L1 cache [118], where
PIPT caches are used for caches of higher levels.

2.2.4. Translation Lookaside Buffer (TLB)

With virtual memory, the processor maps virtual addresses to physi-
cal addresses by walking the page tables as discussed in Section 2.2.2.
For every load or store operation, the page tables that are stored in
physical memory have to be accessed to determine the physical address
and the page attributes. To improve the performance, dedicated caches
called translation-lookaside buffers (TLB) are used to cache page-table
entries [193]. For every memory operation, the TLB is queried for the
entry of a virtual address, and only if the translation has not been cached
before, the page-miss handler (PMH) performs a page-table walk. During
each context switch, the TLB must be invalidated in order to avoid old
and incorrect translations. With global pages (defined by the global bit
in the page table) or when using process identifiers (PCID) [118], not all
entries cached in the TLB need to be invalidated.

2.2.5. DRAM

The main memory of a computer system is typically built using DRAM
chips. DRAM chips are manufactured in different configurations, varying
in their capacity, bandwidth, and latency.

42 Chapter 2. Background

DRAM Organization. To achieve a high degree of parallelism, DRAM
is organized in a hierarchy of channels, DIMMs, ranks, bank groups, and
banks. The memory controller translates physical addresses to channel,
DIMM, rank, bank group, bank, row, and column addresses to address
the correct data [268]. A single DRAM bank consists of a two-dimensional
array of cells, as illustrated in Figure 2.11a. Each single DRAM cell is
made out of a capacitor and an access transistor, as shown in Figure 2.11b.
The charge state of the capacitor, either charged or discharged, represents
a binary data value. Each cell in the grid is connected to the neighbor
cell with a wire forming a horizontal word line and a vertical bit line. If
a word line of a row is raised to a high voltage, all access transistors in
that row are activated, thus, connecting all capacitors to their respective
bit line. By doing that, the charge representing the data of the row is
transferred to the so-called row buffer.

R
ow

d
ec

o
d
er

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

Sense amplifier

Row buffer

Column decoder

(a) Rows of cells

b
it
li
n
e

word line

(b) Single cell

Figure 2.11.: A DRAM chip uses an array of DRAM cells that each consist
of a transistor and capacitor. The word line and bit lines
are used to select the cells that will be loaded into the row
buffer.

DRAM Accessing. To access data in a memory bank, the desired row
needs to be opened at first by raising the corresponding word line, as
illustrated in Figure 2.11. By that, the row is connected to all bit lines,

2.2. Memory Organization 43

the data is sensed by the sense amplifier and transferred into the row
buffer. Then the data in the row buffer is accessed and modified by
reading or writing in the row buffer. If data from a different row but in
the same bank needs to be accessed, the current row needs to be closed
by lowering the corresponding word line, and the row buffer is cleared.

However, the charge stored in the capacitor of a DRAM cell is not per-
sistent because its charge can disperse over time. This means that after
some time, data is lost. To avoid this, the cell’s charge must be refreshed
by fully charging or discharging it. DRAM specifications require that all
cells in a rank are refreshed within a certain amount of time, the so-called
refresh rate [141].

With Rowhammer, this effect can be exploited to induce bit flips in
DRAM. We discuss state of the art in software-based fault attacks tar-
geting DRAM in Section 3.3.

2.2.6. Address Space Layout Randomization

To successfully exploit memory corruption bugs, the knowledge of ad-
dresses of specific data or functions is often required. A lightweight and
probabilistic defense against such attacks is Address Space Layout Ran-
domization (ASLR) [215]. With ASLR, the positions in the virtual ad-
dress space of the executable, stack, heap, and libraries of a process are
randomized at the start of the process. To defeat the randomization,
an attacker must successfully guess the address of the data required for
the attack. With increasing entropy, a successful guess becomes more
unlikely.

Kernel ASLR (KASLR) applies ASLR in the operating system [64]. By
randomizing the locations of kernel code, data, and drivers on every boot,
this mitigation strategy impedes the exploitation of kernel bugs. With
fine-grained KASLR (FGKASLR) [3], Intel proposed a new implementa-
tion for the Linux kernel. Instead of rearranging the entire kernel binary,
the kernel code is randomized at boot time on a per-function level gran-
ularity.

However, various side-channel attacks [49, 90, 110, 140, 158, 175] have
been demonstrated in the past that either reduce the entropy of KASLR
or allow to break it entirely. We discuss them in more detail in Sec-
tion 3.1.

44 Chapter 2. Background

2.3. Side-Channel Attacks and Fault Attacks

In this section, we briefly discuss the basics of side-channel attacks and
fault attacks. We outline software-based microarchitectural attacks but
discuss the more recent attacks and state of the art in Chapter 3.

2.3.1. Side-Channel Attacks

Side-channel attacks exploit the indirect information leakage of software
implementations or hardware devices to reconstruct sensitive data [149].
The execution time of an algorithm, the power consumption, or the elec-
tromagnetic emanation of a device provides additional information that
an adversary can exploit. Furthermore, the additional information must
not necessarily be directly revealed by the device itself. Hall et al. [100]
observed the reactions of users using the device as an additional informa-
tion source. However, an information source that is published on purpose
could also serve as a side channel [275]. For instance, the memory foot-
print [138] or operating system statistics [274] allow deducing sensitive
information, e.g., visited websites. With a side channel attack an adver-
sary can only leak meta data, e.g., the device uses more or less energy,
but not the data directly. However, in a successful attack the adversary
can infer the corresponding data from the obtained meta data with high
probability.

Side-channel attacks can be categorized in different ways. While active
attacks actively influence the behavior of the device, passive attacks only
monitor the side channel in a passive manner. For instance, an adversary
that actively delayers a chip to obtain his measurements is invasive. On
the contrary, a non-invasive adversary obtains his measurements with-
out modifying the system under attack. In a local attack, the adversary
requires direct physical access to the device, e.g., to obtain power mea-
surements. With vicinity side-channel attacks [275], an attacker has to
be in the vicinity of the targeted device, e.g., to monitor the Wi-Fi sig-
nals [15]. However, side-channel attacks can also be conducted remotely,
e.g., by measuring response times over the network [264]. However, side-
channel attacks that are software-only can also be seen as remote attacks
if an adversary can run his exploit on the victim machine, either by an
installed application or within sandboxed JavaScript in the browser.

In attacks against the implementation of cryptographic algorithms, an
attacker can make use of the property that the measurements can be re-

2.3. Side-Channel Attacks and Fault Attacks 45

peated as often as necessary, allowing to average out measurement noise.
However, side-channel attacks in many scenarios cannot profit from that.
For example, when monitoring one-time events, like user input, the at-
tacker typically has only one chance of observing the event as the attacker
cannot force the victim to type the passphrase as often as required. For
user input, the attacker can detect the exact points in time where the user
pressed a key on the keyboard and, thus, compute the inter-keystroke tim-
ings. These timings allow an attacker to compute, to some extent, which
words a user typed by correlating the inter-keystroke timings with the dis-
tances between characters and the likelihood that they belong together.
As side-channel attacks only use metadata, such attacks are very hard to
mount without profiling the victim first as users tend to type in different
ways.

Covert Channels. In computing, a communication channel transmits
information from one or several senders to one or several receivers. Fol-
lowing the definition of Lampson [162], a covert channel transfers infor-
mation despite not being a legitimate channel, i.e., a channel that has
been explicitly designed to be used to transmit information. In a covert
channel, both the sender and receiver are controlled by the adversary
to transmit data, enabling communication where both the receiver and
sender are not allowed to communicate using legitimate channels or want
to hide their communication. With a side channel, however, the victim
serves as the sender of the channel. At the same time, the adversary con-
trols only the receiving end of the channel to observe and infer the data.
Note that the actual channel used can be the same for a covert channel
and a side channel, i.e., the energy consumption or the CPU cache.

As these terms are often used interchangeably, Intel introduced incidental
channels allowing to clearly distinguish between the usage of side channels
and covert channels [127]. All channels that are not legitimate channels
are incidental channels. An incidental channel is used as a covert channel
if the adversary controls both the sender and receiver. An incidental
channel is used as a side channel if the adversary can not control the
sender but only the receiver.

2.3.2. Fault Attacks

Fault attacks deliberately manipulate the device under attack to induce
errors within its computations by bringing the device to the edge of or

46 Chapter 2. Background

outside its specified working conditions, e.g., violating voltage or temper-
ature constraints. A fault attack consists of two steps: fault injection and
fault exploitation.

The first step is to inject a fault at the right moment of time (when the
device executes the targeted operation) to corrupt or skip the computa-
tion. This can be achieved by bringing the device outside of its normal
operating conditions. A fault can be induced by manipulating the clock
(clock glitching) or voltage (voltage glitching), exposing the device to a
high temperature, or using a laser beam. The second step is the actual ex-
ploitation of the fault and depends on the induced fault. For instance, an
induced bit flip could flip the permission bit in a page table, allowing an
unprivileged user to access arbitrary memory [299]. A prominent class of
fault attacks is differential fault analysis (DFA), where faults are induced
in cryptographic implementations to reveal their inner states [38].

2.3.3. Software-based Microarchitectural Attacks

Software-based Microarchitectural attacks target the actual microarchi-
tectural implementation of an ISA specification (see Section 2.1.2) by
crafting side-channel and fault attacks purely in software. We discuss
the state-of-the-art of software-based microarchitectural attacks in more
depth in Chapter 3.

Software-based Microarchitectural Side-Channel Attacks. Using mi-
croarchitectural side-channel attacks, observable side effects on the mi-
croarchitectural level are exploited to leak sensitive information. Many
microarchitectural side-channel attacks target the cache of the processor,
or other microarchitectural elements such as the TLB [80] or branch pre-
dictors [68]. With caches, the timing difference introduced by data being
cached or not allows an attacker to leak sensitive information. Alongside
Prime+Probe [287], Evict+Time [287], or Flush+Reload [335], many dif-
ferent attack variants have been published. These variants allow to attack
cryptographic algorithms [287, 334, 335], to monitor user behavior [94,
174, 220], spy on virtual machines [114, 131], or attack ASLR [79] and
kernel ASLR (KASLR) [89, 110, 140, 320].

Transient-Execution Attacks. More recent attacks on other microar-
chitectural elements, transient-execution attacks, bypass the most funda-

2.3. Side-Channel Attacks and Fault Attacks 47

mental security guarantees of modern processors. These attacks exploit
the transient execution of instructions that, while executed, are not com-
mitted to the architectural state by the processor. However, during their
execution, they leave microarchitectural state changes that an adversary
can observe. Meltdown-type attacks [26, 50, 119, 126, 155, 177, 276, 292,
293] exploit transient execution of instructions before a fault is handled,
while Spectre-type attacks [50, 52, 109, 155–157, 183] exploit the transient
execution of instructions caused by mispredictions. These attacks allow
the execution of instructions operating with the actual data processed by
the CPU. They typically use the cache as a covert channel to transmit
the data from a microarchitectural state to an architectural state. With
transient-execution attacks, a new research field emerged in the field of
microarchitectural attacks.

Software-based Microarchitectural Fault Attacks. While traditional
fault attacks (see Section 2.3.2) require physical access to the device to
induce faults from the outside, software-based microarchitectural fault at-
tacks aim to induce faults on the microarchitectural level from software
only.

The Rowhammer bug was the first software-based microarchitectural fault
attack, inducing bit flips in DRAM cells. Targeting the DRAM microar-
chitecture, bit flips can be induced by repeatedly accessing DRAM cells
in a high frequency [153]. By inducing bit flips in memory regions that
are not controlled by the adversary, powerful attacks have been demon-
strated: from privilege escalation [88, 266, 299, 327] to fault attacks on
cryptographic primitives [35, 238], to denial-of-service attacks [88, 139].

Karimi et al. maliciously simulated aging effects in CPU cores to degrade
the processor’s performance by 10.91% in 4 weeks [147]. Tang et al. [282]
use software-controlled frequency-induced faults to break ARM Trust-
Zone. Plundervolt [202], Voltjockey [233], and V0LTpwn [150] reduce the
voltage of modern processor cores to induce faults within computations
of trusted-execution environments, compromising their security guaran-
tees.

3
State of the Art

In this chapter, we discuss state-of-the-art software-based microarchitec-
tural attacks and defenses. We discuss software-based microarchitectural
side-channel attacks in Section 3.1, transient-execution attacks in Sec-
tion 3.2, and fault attacks in Section 3.3. In Section 3.4, we will discuss
software-based power side-channel attacks.

3.1. Software-based Microarchitectural
Side-Channel Attacks

In this section, we provide an overview of side-channel attacks targeting
the CPU microarchitecture by executing software. We discuss observable
variations in the behavior of different microarchitectural elements often
introduced by performance optimizations that allow leaking sensitive in-
formation processed on the machine. Numerous works already provided
an exhaustive overview and systematized the landscape of microarchi-
tectural attacks over the past years [7, 33, 74, 83, 181, 205, 275, 280,
338, 340]. However, the field is growing at a fast pace, and new attacks
or defenses emerge almost daily. In this work, we discuss the current
state-of-the-art and how we extended it.

Microarchitectural Side-Channel Attack. Typically, a microarchitec-
tural side-channel attack consists of 3 phases:

1. Preparation: The adversary sets the microarchitectural element to
a known state.

2. Schedule: The victim performs an event changing the state of the
microarchitectural element.

3. Observation: The adversary detects the state change of the microar-
chitectural element.

49

50 Chapter 3. State of the Art

In the first phase, the preparation phase, the adversary sets the microar-
chitectural element to a known state. The microarchitectural element
needs to be shared between the victim and adversary. As an example,
the adversary ensures that the cache is filled with its own data. In the sec-
ond phase, the victim is scheduled, i.e., the victim process can perform an
operation that changes the state of the microarchitectural element. Note
that the second phase is not necessarily executed sequentially or triggered
by the attacker. Many of the described attacks can be mounted in par-
allel to the victim and, thus, a victim action might not be triggered all
the time. In the observation step, the adversary detects the state change
that the victim has performed; typically, by observing timing differences.
The meta-information of detecting the state change enables the attacker
to infer that the victim has performed a certain operation.

Timing Measurement. For timing-based side-channel attacks, in most
cases, a high-resolution timer is used to distinguish subtle timing differ-
ences. While most attacks utilize the rdtsc instruction on x86 CPUs,
on other architectures such timers are not available to unprivileged user
space or not exposed to adversaries running in unprivileged environments.
Hence, in addition to rdtsc, alternative timers have been studied in the
literature: We explored a dedicated counting thread, unprivileged access
to hardware performance counters or the use of POSIX functions as alter-
native measurement sources on ARM-based devices [174]. Schwarz et al.
[263] explored alternative timing sources in JavaScript where native coun-
ters are not accessible.

Shared Elements. Microarchitectural side-channel attacks target mi-
croarchitectural elements that are accessible (directly or indirectly) for
the adversary and the victim. For instance, some microarchitectural el-
ements are private to each CPU core, e.g., the L1 data and instruction
cache. To be accessible to both the attacker and the victim, they have
to run on the same physical core such that both have access to the L1
caches. Some of the elements are statically partitioned between hardware
threads, and, thus, the attacker and victim even need to run on the same
logical core. On the other hand, some elements are shared between all
cores, e.g., the last-level cache, or among all CPUs, e.g., the main memory.

In addition, the attacker typically targets victims from a higher privilege
domain (the operating system, hypervisor, or sandbox) or processes that

3.1. Software-based Microarchitectural Side-Channel Attacks 51

are isolated from the attacker (other user-space applications, trusted-
execution environments). However, in virtualized (virtual machines),
sandboxed (web browser), or other restricted environments (Intel SGX,
TrustZone), access to these resources can be limited or restricted in dif-
ferent ways.

In the remainder of this section, we discuss different attacks on different
microarchitectural elements, namely the cache, the TLB, various predic-
tion mechanisms, the main memory, and exception handling.

3.1.1. Cache Attacks

The most prominent microarchitectural element exploited for side-channel
attacks is the cache. In this section, we discuss different types of cache
attacks that have been used to establish a covert communication channel,
attack cryptographic implementations, and to monitor user activity.

Evict+Time. With Evict+Time, Osvik et al. [211] generalized the first
cache attacks [32, 219] where an adversary manipulates the cache state
and observes timing differences in the execution time of the algorithm un-
der attack. By evicting a cache set, the adversary replaces the cache lines
in the cache set by loading its own data ensuring that victim-controlled
cache lines are not cached anymore. First, the adversary triggers an
event, e.g., an encryption, and, thus, ensures that the memory blocks by
the victim are cached. The attack consists of 2 steps:

1. Evict: By evicting congruent addresses, a specific cache set is primed
(loaded with the adversaries data).

2. Time: The adversary measures the execution time of the event
again.

If the adversary measures a difference in the execution time, the victim
accessed cache lines that map to the primed cache set as accesses to these
cache lines will yield cache misses and, therefore, have to be loaded from
main memory. If, on the other hand, the adversary does not observe
an increase in the execution time, the victim did not access cache lines
within the primed set.

Usually Evict+Time attacks are quite susceptible to noise and, therefore,
require a large number of measurements. Evict+Time has been used to

52 Chapter 3. State of the Art

attack cryptographic implementations [32, 136, 174, 192, 211, 219, 287],
ASLR [79], and KASLR [110].

Prime+Probe. With Prime+Probe [32, 211, 219], the adversary mea-
sures how long it takes to refill a specific cache set in contrast to Evict+Time
where the execution time of the entire algorithm is measured. The attack
consists of 3 steps:

1. Prime: The adversary primes a cache set by filling the specific set
with attacker-controlled memory locations (Figure 3.1a).

2. Schedule: The victim is scheduled, e.g., performs an encryption
(Figure 3.1b).

3. Probe: The adversary measures how long it takes to reload the
addresses used in the Prime step (Figure 3.1c).

Likewise to Evict+Time, Prime+Probe attacks work on a cache-set gran-
ularity. They can be quite noisy and, thus, require a higher repeti-
tion of measurements. Prime+Probe is often mounted in parallel to
the victim’s execution and, thus, the victim is not directly scheduled
in the second step. However, depending on the attack, the signal can
be amplified by monitoring multiple cache sets at the same time. With
Multi-Prime+Probe [261], it is possible to detect one-time events such as
keystrokes.

Prime+Probe has been used to attack cryptographic implementation tar-
geting the L1 data and L1 instruction caches [4–6, 8, 9, 40, 44, 206, 211,
219, 343] and also the last-level cache [61, 97, 115, 129, 148, 180, 188,
189, 239, 242, 310]. As the last-level cache is physically indexed, phys-
ical address information is typically required to find addresses for the
eviction. Oren et al. [210] used Prime+Probe in sandboxed JavaScript
to recover information of other processes, users, and virtual machines.
Lipp et al. [174] mounted Prime+Probe on mobile devices, Maurice et al.
[190] established a covert channel in the cloud, and Schwarz et al. [261]
monitored inter-keystroke timings targeting kernel drivers. Several at-
tacks target Intel SGX enclaves [42, 77, 195, 258] or mount their attack
from an enclave [265]. With NetCAT [160], Kurth et al. demonstrated
the first network-based Prime+Probe attack using Direct Cache Access
(DCA). While most attacks have been demonstrated on inclusive caches,
Yan et al. [332] use Prime+Probe on non-inclusive caches targeting cache
directories.

However, the Prime+Probe attack technique is not limited to CPU caches

3.1. Software-based Microarchitectural Side-Channel Attacks 53

Victim address space Cache Attacker address space

(a) Prime

Victim address space Cache Attacker address space

Load data

Load data

(b) Schedule

Victim address space Cache Attacker address space

Fast ac
cess

Slow access

(c) Probe

Figure 3.1.: In a Prime+Probe attack, the adversary first primes the cache
set by loading its own data. If the victim accesses addresses
of the same cache set, the adversary measures a higher timing
the probe phase.

and has been demonstrated against all kinds of buffers. Pessl et al. [220]
targeted the DRAM row buffer to monitor keystrokes. Bhattacharya et al.
[35] combined Prime+Probe with Rowhammer in a cryptographic attack.
Using Prime+Probe on branch predictors, Aciicmez et al. [10] attacked

54 Chapter 3. State of the Art

RSA, while Evtyushkin established a covert channel [66] and demon-
strated an attack against KASLR [67].

Flush+Reload . While Evict+Time and Prime+Probe attacks typically
target an entire cache set, and, thus, work on a cache-set granularity, the
Flush+Reload attack targets a single cache line. While Gullasch et al.
[96] described the first flush-based cache attack, Yarom and Falkner [335]
demonstrated with Flush+Reload an attack that measures how long it
takes to reload a single cache line after it has been flushed from the
cache. The attack consists of 3 phases:

1. Flush: The adversary invalidates a single cache line from the cache
using a dedicated instruction (Figure 3.2a), e.g., clflush.

2. Schedule: The victim is scheduled and performs an event (Fig-
ure 3.2b), e.g., performs an encryption.

3. Reload: The adversary measures how long it takes to reload the
address used in the Flush step (Figure 3.2c).

The idea is that if the victim performed an access to the invalidated ad-
dress, the victim loads said address into the cache. Thus, the adversary
observes a cache hit rather than a cache miss that would occur if the
victim did not access the address. Typically, this attack is performed in a
loop to monitor accesses by the victim continuously. While Flush+Reload
experiences very little noise, it has, however, 2 limitations. First, the
memory used for the attack needs to be shared between the victim pro-
cess and the adversary process. This can be achieved by targeting the
executable of the victim or a shared system library. Second, a dedicated
cache-line invalidation instruction must be accessible to the unprivileged
attacker. On x86, an adversary can use clflush or clflushopt; on
ARMv8-based devices, dc civac. However, such instructions can be dis-
abled on ARM for unprivileged access, and while they are not available
on all architectures, they are also not exposed to restricted environments
such as JavaScript.

Flush+Reload has been demonstrated in attacks against cryptographic
implementations [16, 31, 82, 96, 98, 114, 131–133, 174, 225, 335, 342], to
monitor user interaction [94, 174, 199, 309, 341] like user input or as a
covert communication channel [156, 174, 177].

3.1. Software-based Microarchitectural Side-Channel Attacks 55

Victim address space Cache Attacker address space

flushes

(a) Flush

Victim address space Cache Attacker address space

Load data

(b) Schedule

Victim address space Cache Attacker address space

Reload data

(c) Reload

Figure 3.2.: With Flush+Reload, the adversary invalidates a cache line
shared with the victim. If the victim accesses the cache line,
the adversary observes a low access time in the reload step.

Evict+Reload . Flush instructions are not available to unprivileged user
space on certain architectures at all, e.g., ARMv7, or not exposed to
the user in sandboxed environments or interpreted languages. There-
fore, Evict+Reload [94, 174] describes a special variant of Flush+Reload
that replaces the flush step, that invalidates the targeted cache line, with
eviction. The targeted cache line is evicted when the replacement policy
decides to remove the cache line from the cache and replaces it with other
data. In the most simple form, the adversary loads random data into the

56 Chapter 3. State of the Art

cache that the targeted cache line will be evicted with high probabil-
ity. By using efficient eviction, adversaries can mount similar attacks on
these devices [174], in JavaScript [79, 156, 251] or remotely [264]. Song
and Liu [271] and Vila et al. [303] present techniques to efficiently find
eviction sets.

Flush+Flush. With Flush+Flush, Gruss et al. [92] demonstrated a vari-
ant of Flush+Reload that performs no direct memory accesses. In con-
trast, it exploits timing differences in the clflush instructions to dis-
tinguish cache hits from misses. Flush+Flush has been used to break
cryptographic algorithms [92, 297], monitor user input [92] and to estab-
lish covert communication [92, 174]

Prime+Abort. Prime+Abort [63, 86] is a variant of Prime+Probe that
replaces the timing of the probe step with the abort semantics of Intel
TSX. When the victim process evicts a cache line that has been loaded
within the TSX transaction by the adversary, the transaction is aborted.
This allows the adversary to detect memory accesses by the victim with-
out requiring a high-resolution timer.

Other Cache Attacks. With Reload+Refresh, Briongos et al. [43]
abused cache-replacement policies of the LLC. Cui and Cheng [60] use
timing differences caused by dirty cache lines to establish a covert chan-
nel. Wan et al. [308] exploit timing differences in the congestion of the
CPU mesh interconnect. Maurice et al. [188], Irazoqui et al. [130], and
Yarom et al. [336] reverse-engineered the complex addressing functions of
Intel’s last-level caches. Xiong et al. [328] target the LRU replacement
policy to establish a covert channel.

With Takeaway (Chapter 5), we advance the state of the art by exploiting
timing differences induced by cache-way predictors as a side channel.

3.1.2. TLB Attacks
The translation-lookaside buffer (TLB) stores the page translations from
virtual to physical memory to speed up subsequent accesses to the same
address. The timing difference, whether an address has already been
translated and cached in the TLB or if the translation is uncached, can
be exploited in multiple ways.

3.1. Software-based Microarchitectural Side-Channel Attacks 57

These timing differences have been exploited to break KASLR in various
ways [46, 90, 110, 140, 158, 256]. For instance, there is a timing difference
in the prefetch instruction if an address is cached in the TLB or not [90].

Gras et al. [80] exploited the TLB to leak fine-grained information about
victim processes to leak EdDSA keys. Deng et al. [62] modeled different
timing-based TLB attacks. Schwarz et al. [256] further exploited the
interaction between the store buffer and the TLB to break ASLR from
JavaScript and to monitor the control flow of the kernel.

3.1.3. Predictors

Predictors play an important role in optimizing the performance in mod-
ern microarchitectures using speculative execution. Besides branch pre-
dictors that try to predict the control flow of programs, other predictors
try to predict the data flow.

Branch Predictors. Aciicmez et al. [10] exploited timing differences that
are caused by mispredicted branches to recover cryptographic keys. Bu-
lygin [45] mounted a side channel on the return-stack buffer to leak cryp-
tographic keys and to establish a covert channel between virtual ma-
chines. Evtyushkin et al. [66] established a Prime+Probe covert channel
on branch predictors, followed by breaking KASLR [67] using BTB colli-
sions. With BranchScope, Evtyushkin et al. [68] presented a fine-grained
attack on the directional branch predictor to attack Intel SGX. Similarly,
Lee et al. [166] presented a BTB side-channel attack inferring the control
flow of SGX enclaves. With BlueThunder, Huo et al. [111] demonstrated
a PHT-based side-channel attack against Intel SGX.

Way Predictors. With Takeaway (see Chapter 5), we advance the state
of the art by exploiting way predictors. AMD uses cache way predictors
to predict in which cache way a certain address is located. We reverse-
engineered the cache way predictors resulting in two attack techniques:
With Collide+Probe, an attacker can monitor a victim’s memory accesses
without knowledge of physical addresses or shared memory when time-
sharing a logical core. With Load+Reload, highly accurate memory-
access traces of victims on the same physical core can be obtained. We
demonstrated these techniques to establish a covert channel, break ASLR

58 Chapter 3. State of the Art

and KASLR, recover AES keys, and to exfiltrate secret data from the
kernel.

Store-to-load Forwarding. With store-to-load forwarding, a CPU for-
wards the data from a previous store operation to a subsequent load
operation. As discussed in Section 2.1.2, the data is typically forwarded
after the processor asserts that the address of the store and load match.
Schwarz et al. [256] exploit this optimization in combination with the
TLB to break KASLR. On Intel CPUs, loads are checked against previ-
ous stores, but instead of comparing the full address, only the lower 12 bits
have to match before the load is reissued [117]. This effect is also known
as 4K aliasing. In addition, partial address checks based on the physical
address are performed as well [134]. Sullivan et al. [278] exploited this
effect to establish a high-performance covert channel. With MemJam,
Moghimi et al. [194] inject false dependencies of memory read-after-write
hazards that slow down the victim’s access to specific memory blocks.
Using a similar technique as Evict+Time, they successfully recovered se-
cret keys from a variety of constant-time cryptographic implementations.
With Spoiler, Islam et al. [134] exploited the dependency resolution logic
to learn about physical address mappings accelerating Prime+Probe at-
tacks and Rowhammer attacks.

In contrast to store-to-load forwarding, AMD’s predictive store forward-
ing does not wait for the address calculation to complete [11]. By learning
the relationship between loads and stores within the same context over
time, a predictor speculatively performs store-to-load forwarding.

Prefetcher. Bhattacharya et al. [36] explored the influence of hard-
ware prefetchers in cache timing attacks. Shin et al. [269] exploit stride
prefetchers to monitor access patterns, allowing to leak cryptographic
keys. With PAPP, Wang et al. [310] reverse-engineered hardware prefetch-
ers and their replacement policies to build a prefetcher-aware Prime+Probe
attack. Rohan et al. [243] reverse-engineered the L2 hardware prefetcher
and used it to establish a covert channel between two processes running
on the same physical core.

3.1. Software-based Microarchitectural Side-Channel Attacks 59

3.1.4. DRAM

The main memory, usually implemented as DRAM, plays another impor-
tant role in the memory hierarchy (see Section 2.2.1). By design, DRAM
modules (see Section 2.2.5) contain row buffers that are necessary to read
from and write to rows in the chip. Memory requests to a row that have
already been opened are faster as they are still buffered in the row buffer.
With DRAMA, Pessl et al. [220] exploit these timing differences caused by
row hits and row conflicts in DRAM modules to not only reverse-engineer
the mapping functions of the memory controller but also monitor user ac-
tivity and establish a covert channel. Furthermore, Barenghi et al. [28],
Wang et al. [312] , and Helm et al. [102] discuss alternative approaches to
reverse-engineer the mapping functions. Schwarz et al. [263] exploited this
measurable effect in JavaScript to build a DRAM-based covert channel.
We used this timing difference to automatically classify the page policies
actively used by the memory controller [179]. Furthermore, side-channel
attacks targeting the DRAM have been mounted on SGX enclaves [313]
or by monitoring the bandwidth [314].

3.1.5. Exceptions and Interrupts

Another category of microarchitectural side-channel attacks targets ex-
ceptions and interrupt handling that disrupts the execution of instruc-
tions. While exceptions are unexpected events occurring within the ex-
ecution of instructions, e.g., page faults, interrupts are events triggered
from outside the program, e.g., hardware break points, user input, or
timers. Whenever an exception or interrupt occurs, it has to be handled
by the operating system before the execution of the program can continue.

In this section, we discuss several works that exploit exceptions and in-
terrupts to deduce sensitive information. Suzaki et al. [279], Owens et al.
[212], Xiao et al. [325], Bosman [41] and Gruss et al. [85], Harnik [101]
used page faults caused by memory deduplication to detect running pro-
cesses and fingerprinting. Xu et al. [330], Van Bulck et al. [296], Xiao et
al. [326] and Weiser et al. [317] induce page faults in controlled-channel
attacks against Intel SGX enclaves. With Nemesis, Van Bulck et al. [295]
measured the latency of timer interrupts to infer instruction timings of
Intel SGX enclaves.

With KeyDrown [261], we monitored processor interrupts to infer inter-
keystroke timings. We demonstrated the applicability of the attack in

60 Chapter 3. State of the Art

JavaScript on desktop and mobile devices (see Chapter 8), allowing us to
observe user activity for touch and tap events, i.e., when a user enters
the unlock pin code of the phone.

3.1.6. Other Microarchitectural Side-Channel Attacks
In addition to the discussed categories of microarchitectural side-channel
attacks, further research on other microarchitectural elements has been
conducted. Sibert et al. described several possible side-channel attacks on
the Intel 80x86 processor already in 1995, e.g., on the FPU, the cache, and
TLB. Wang [315] identified various attack vectors in processors in 2006:
From the contention of functional units in SMT processors to speculation-
based covered channels. Aldaya et al. [13] exploited port contention to
recover cryptographic keys. Andrysco et al. [20] identified timing dif-
ferences in the floating-point instructions depending on their operands.
Evtyushkin et al. [65] targeted the random number generators on pro-
cessors to establish a covert channel across CPU cores and across virtual
machines. Paccagnella et al. [213] target the CPU on-chip ring inter-
connect. Uhsadel et al. [289] and Bhattacharya and Mukhopadhyay [35]
exploit hardware performance counters to conduct side-channel attacks.
Jang et al. [140] exploit transactional memory to derandomize the kernel
address-space layout (KASLR). Canella et al. [49] exploit a side channel
introduced by incomplete Meltdown mitigations to break KASLR. Weber
et al. [316] present a fuzzing-based framework to automatically discover
microarchitectural side channels.

3.2. Transient-Execution Attacks
Transient-execution attacks exploit the microarchitectural side effects of
instructions that are executed transiently, i.e., instructions that are exe-
cuted by the processor but their results are never committed to the archi-
tectural state. While microarchitectural side-channel attacks have been
limited to leak only metadata about the execution of a program, i.e., ex-
ecuted instructions or data accesses, transient-execution attacks extract
victim data directly. In this section, we discuss transient-execution at-
tacks in general, their different variants, and defenses.

Basic Idea. With speculative execution (see Section 2.1.2.3), processors
try to predict which instructions should be executed next, leading to the

3.2. Transient-Execution Attacks 61

transient execution of these instructions if the prediction was false. With
out-of-order execution (see Section 2.1.2), operations following an instruc-
tion triggering an exception can also be executed transiently. While tran-
sient instructions are never committed to the architectural state, their
execution alone can cause observable side effects in the microarchitec-
tural domain. Using microarchitectural side-channel techniques, these
side effects can be made visible in the architectural domain.

Transient-execution attacks describe a new class of microarchitectural at-
tacks that access secret data in the transient domain and use a microar-
chitectural covert channel to transmit secret data to the architectural
domain. Thus, transient-execution attacks consist of two main parts: the
access to secret data and the covert communication channel. The access
to secret data could be a location in the victim’s memory that the vic-
tim instruction stream would usually not access, e.g., an out-of-bounds
memory access. Furthermore, as transient instructions are never com-
mitted to the architectural state, a processor may weaken its security
guarantees within the transient domain, allowing instructions to access
data they otherwise would not be able to access, i.e., data of another
security domain.

A transient-execution attack typically consists of multiple phases. While
Canella et al. [50] initially proposed 5 distinct phases and Xiong and
Szefer [329] used 3 phases, Canella et al. [47] and Gruss [84] recently
used 6 phases to describe the basic idea of a transient-execution attack.
However, we only consider 3 phases for simplicity:

1. Trigger. The adversary steers the processor to execute certain in-
structions transiently using a trigger instruction. This trigger in-
struction can be a mispredicted branch instruction or an instruction
triggering a fault, assist, or interrupt.

2. Access and Send. In the transient domain, these instructions access
secret data and form the sending part of the covert channel.

3. Receive. In the architectural domain, the adversary recovers the
secret data with the receiving end of the covert channel.

Like the first transient-execution attacks, Meltdown [177] and Spectre [156],
we distinguish the different types of transient-execution attacks based on
the trigger instruction: While Spectre-type attacks trigger transient exe-
cution in the form of speculative execution following a data- or control-
flow misprediction, Meltdown-type attacks exploit illegal data flow follow-

62 Chapter 3. State of the Art

ing faults, assists, or other events causing a (partial) flush of the pipeline.
With Load Value Injection (LVI), Meltdown-type data leakage effects are
reversely exploited to poison transient execution in a victim domain form-
ing another subclass of transient-execution attacks. After the disclosure
of the original Meltdown [177] and Spectre [156] paper, different classifi-
cation schemes have been proposed [50, 127, 251, 329] to shed some light
on the jungle of different transient-execution attacks.

Transient-execution attacks can be leveraged within or between differ-
ent protection domains, e.g., the operating system, virtual machines, or
trusted-execution environments such as Intel SGX. However, these do-
mains are not limited to an individual CPU but can span all kinds of
devices that are connected to each other [127] as transient-execution at-
tacks have also been demonstrated remotely [264].

In the remainder of this section, we discuss Spectre-, Meltdown- and LVI-
type attacks in more detail and the mitigations they require.

3.2.1. Spectre-type Attacks

Spectre-type attacks exploit the transient execution of instructions that
follow a control- or data-flow misprediction. The idea is to mistrain the
branch-prediction unit such that the processor speculatively executes in-
structions that do not occur architecturally in the instruction stream. In
modern processors, multiple different predictors jointly decide the out-
come and the target of a branch (see Section 2.1.2.3). Thus, by poisoning
one or multiple prediction units, Spectre-type attacks steer the transient
execution to so-called gadgets, i.e., code snippets that enable the adver-
sary to expose sensitive data through microarchitectural state changes.

Following the classification scheme by Canella et al. [50], Spectre-type
attacks can be classified by the prediction unit they mistrain.

• Pattern History Table (PHT). With Spectre-PHT, initially described
as Variant 1 [156], the Pattern History Table mispredicts whether
a branch should be taken or not taken. The PHT is typically mis-
trained to take a branch by repeatedly calling the targeted code
with arguments that will take a branch, i.e., in-bound values, for
a bounds check. Then, the code is executed with an out-of-bounds
argument that would architecturally not take the branch. However,
the CPU will first mispredict the branch direction and execute the

3.2. Transient-Execution Attacks 63

instructions transiently with the provided out-of-bound values be-
fore it detects and corrects the misprediction.

• Branch Target Buffer (BTB). With Spectre-BTB, initially described
as Variant 2 [156], the Branch Target Buffer is exploited to mispre-
dict the address the control flow should be redirected to. This allows
an adversary to basically steer the transient execution to any ad-
dress in the victim domain, enabling return-oriented programming
attack techniques in the transient domain.

• Return Stack Buffer (RSB). With the RSB, the return address of a
function can be predicted on a ret instruction. The RSB stores the
location of the most recent call instructions. While we suspected
that the RSB can be exploited in the original Spectre paper et al.
[156], Maisuradze and Rossow [183] and Koruyeh et al. [157] were
the first to demonstrate this variant by over- and underflowing the
RSB. By poisoning the RSB with incorrect return addresses, the ad-
versary can steer the victim’s execution to a gadget leaking sensitive
information.

• Store-to-load Forwarding (STL). Originally described as Variant
4 [273], Horn exploited the memory disambiguator to mispredict
that a load does not depend on an earlier store operation. The load
operation is speculatively executed, returning a stale value from the
cache.

In addition, there are other hardware predictors whose behavior can
influence the transient domain. With Value Prediction [170, 171], Li-
pasti and Shen explore data prediction that tries to predict the actual
results of instructions based on previous results. However, while thor-
oughly researched [145, 216–218, 247] and with value-prediction cham-
pionships [27], so far, value prediction has not been documented to be
implemented in modern microarchitectures. With Zen 3, AMD imple-
ments a predictive store forwarding mechanism [11] that predicts depen-
dencies between loads and stores. Before the actual address has been
determined, the processor predicts whether store-to-load forwarding will
occur between a load and a store based on previous executions.

With Spectre-type attacks, the code gadget performing the secret access
and the sending part of the covert channel are always executed in the
victim’s context. For instance, in a scenario where a user-space applica-
tion targets the operating system, the access to the secret kernel address
is performed speculatively in the kernel’s context and, thus, represents a

64 Chapter 3. State of the Art

legitimate access in that domain. However, there are different mistrain-
ing strategies that allow the attacker to poison the victim branch [50]
executed within the kernel. As branch predictors are typically indexed
by the virtual address, it is possible to mistrain the predictor from the
same address space or from a different address space controlled by the
attacker. In addition, usually, only a subset of the bits of the address is
used for the index, allowing to use shadow branches whose addresses are
congruent to the victim branch. In sandboxing scenarios, e.g., JavaScript
in a browser, the adversary targets secrets within the same domain.

While we discuss mitigation strategies against Spectre-type attacks later,
there have been various different approaches to automatically find differ-
ent Spectre gadgets in existing codebases and binaries. Wang et al. [311]
used taint tracking, and Bloem et al. [39] used taint analysis and model
checking to identify gadgets. Guarnieri et al. [95] used symbolic execu-
tion, and Oleksenko et al. [209] used fuzzing techniques to find gadgets.

Kiriansky and Waldspurger [155] used speculative stores for speculative
buffer overflows. With speculative probing [76], Göktaş et al. combine
Spectre with a memory corruption vulnerability. The attacker first over-
writes the victim code pointer before Spectre is used for fault suppression
to prevent the application from crashing if the overwritten location is
invalid. With SpecROP, Bhattacharyya et al. [37] demonstrated Spectre-
style code-reuse attacks. Most Spectre-type attacks have been demon-
strated with a cache side-channel to leak from the transient domain [29,
76, 155–157, 183, 273]. Spectre-type attacks have been demonstrated
with other side channels as well enabling different gadgets that can be ex-
ploited: Bhattacharya et al. [34] and Fustos and Yun [72] use contention-
based side channels, we used AMD’s way predictor [175], Rensee et al.
[240] the µOP cache, and Schwarz et al. [256] used TLB effects on the
store buffer. Furthermore, Schwarz et al. [264] used timing differences in-
troduced by the AVX unit. Weber et al. [316] exploits that the AVX unit
is resetted faster if an x87-FPU instruction is executed. Alternative covert
channels enable other Spectre gadgets that have different requirements to
be exploited. For instance, our covert channel based on the way predictor
lifts the requirement of cache-based covert channels that require shared
memory between the adversary and victim domain. Wampler et al. [307]
leverages speculative execution to hide malware from static and dynamic
analysis.

3.2. Transient-Execution Attacks 65

3.2.1.1. Mitigations

Spectre-type attacks exploit speculative execution and, thus, a fundamen-
tal microarchitectural design that increases performance. Mispredictions
represent a corner case in speculative execution that should happen only
very rarely. While they are explicitly triggered in Spectre-type attacks,
they are an expected side effect. Hence, the underlying issue is much
more fundamental and cannot be fully mitigated in hardware. Thus, it
remains an open issue in the future [191].

To prevent the exploitation of Spectre-type attacks, mitigation strategies
on various levels have been suggested. As Canella et al. [48], Xiong et al.
[329] and Gruss [84] give a more in-depth overview of these mitigations,
we only focus on an excerpt of these.

To prevent the processor from speculating, serializing, or fencing instruc-
tions can be inserted to ensure that the following instructions are only
executed when all previous instructions are completed. With lfence on
x86 and DSB SY barrier instructions can be used to prevent speculation.
These barriers have to be inserted in every potential Spectre gadget to
prevent its exploitation. Therefore, automatically detecting these gadgets
is an ongoing research effort [39, 95, 209, 311].

Future branch predictor designs could partition [305, 348] or encrypt [165]
prediction history on a per-context level. However, these approaches can-
not protect against attack variants that use in-place mistraining within
the same domain. For existing CPUs, to prevent cross-domain mistrain-
ing, Indirect Branch Restricted Speculation (IBRS) does not allow un-
privileged code to mistrain privileged code. With Single Thread Indirect
Branch Prediction (STIBP), one hardware thread cannot influence the
history of the other. The Indirect Branch Predictor Barrier (IBPB) is
used during context switches to flush the BTB. With retpolines [288], in-
direct branches are rewritten to special code sequences that use returns.
When speculating, the RSB will predict an endless loop until the actual
target is known.

3.2.2. Meltdown-type Attacks

Meltdown-type attacks exploit illegal data flow during transient instruc-
tions following a fault, assist, or other events, causing a (partial) flush
of the pipeline or the selective replay of instructions. While Spectre-
type attacks exploit the intended speculative execution of instructions,

66 Chapter 3. State of the Art

Meltdown-type attacks exploit that security guarantees of the architec-
ture are neglected during transient execution. While these microarchi-
tectural design decisions are sensible from a performance point of view
and simplicity, they have immense security implications if the microar-
chitectural state can be inspected. Meltdown-type attacks directly read
sensitive data processed in other protection domains without relying on
instruction sequences in the victim domain.

In our original Meltdown attack [177], we exploited the fact that data from
kernel addresses is forwarded transiently to the unprivileged attacker if
the data is stored in the L1 data cache [323]. The unauthorized loads
are forwarded to subsequent transient instructions allowing the attacker
to establish a cache-based covert channel to exfiltrate the data. When
the exception raised by the user-mode access to a kernel page (defined by
the U/S-bit in the x86 page table entry [118]) is handled on instruction
commitment or suppressed by using transactional memory or a mispre-
diction, the microarchitectural state change has already been performed
to transmit the secret. With Meltdown, the memory isolation protection
of the processor has been melted down.

In contrast to Spectre-type attacks where the access to the secret is per-
formed by the victim in the victim’s context, Meltdown-type attacks di-
rectly bypass the victim’s security domain and enable adversaries to leak
the data directly. The code sequences accessing the secret are directly
controlled by the adversary to leak from other domains, i.e., other user-
space applications [177, 251, 262, 276], the operating system or hypervi-
sor [46, 177, 251, 262], virtual machines [262, 276] and trusted-execution
environments [237, 262, 293], by picking up data from different buffers
and buses.

While the L1 cache has been primarily used to leak data in Meltdown [177]
and Foreshadow [293], the complex interaction between different microar-
chitectural attacks enabled further exploitation of illegal data flows within
the transient domain. In the original Meltdown paper [177], we already
attributed some leakage to the line-fill buffers (LFB). In subsequent work,
the line-fill buffers (LFB) and load ports (LP) have been studied more
thoroughly in ZombieLoad [262], RIDL [251], and Medusa [197]. Espe-
cially with one variant of ZombieLoad, also known as TSX Asynchronous
Abort (TAA), we exploited Intel’s transactional memory extension to leak
data on CPUs that have been deemed secure against the other described
variants. In addition, we demonstrated that the initially proposed miti-
gations by Intel have been insufficient and could still be exploited. With

3.2. Transient-Execution Attacks 67

CacheOut [252], Van Schaik further explored this variant. These variants
have further been described in two addenda by the RIDL authors [249,
250]. With Fallout [46], we showed that we can leak previous stores
from the store buffer. With Medusa [197], we developed a fuzzing ap-
proach to generate and evaluate new variants that allow leaking from
various buffers. Further attacks target floating-point registers [276] and
privileged registers [125] on the same CPU core. CrossTalk [237] targets
staging buffers that are shared between CPU cores.

We systematize Meltdown-type attacks by classifying them based on their
fault condition and back then uncovered two yet undescribed variants that
allowed us to bypass protection keys and checks from the bound instruc-
tion [50]. However, while the proposed canonical naming scheme brought
a better structure into the original names of these attacks. This scheme
takes an architectural or software viewpoint. Later, Canella et al. [47]
looked for similarities in Meltdown-type attacks based on their microar-
chitectural behavior. With Medusa [197], we use hardware performance
counters to find similarities and differences between them to get a better
understanding from where values are leaked and which hardware paths
they exploit. We show that both, the newly generated and already de-
scribed variants, fit in the previous naming scheme.

3.2.2.1. Mitigations

In contrast to Spectre-type attacks, Meltdown-type attacks can be mit-
igated relatively easily on the silicon level. With the assumption that
the microarchitectural state cannot be inspected and the security guar-
antees on the architectural level are met, different processor designs con-
tain different optimizations for speed, simplicity, and energy efficiency.
If, thereby, the security guarantees are neglected on the microarchitec-
tural level, Meltdown-type attacks are possible. While Intel seems to be
affected by almost all published attacks, some variants are also appli-
cable to microarchitectures from other CPU vendors. While the ARM
Cortex-A75 design has been vulnerable to Meltdown [22], we additionally
demonstrated that the Samsung Exynos M1 used in the Samsung Galaxy
S7 phone has been vulnerable as well [177]. Furthermore, Apple [21] and
IBM [226] stated that some of their CPUs are affected by Meltdown as
well.

The issue with Meltdown is that despite the failed permission check, the
unauthorized load still returns the architectural data value to subsequent

68 Chapter 3. State of the Art

operations that are executed subsequently. The load operation queries
the L1 cache and TLB in parallel and continues the load with the cor-
responding page-frame number (PFN), allowing the load to pick up the
correct value from the L1 cache. However, upon detecting the privilege
violation, the load could be treated differently or squashed entirely as
there is no need for the results to be broadcast to dependent operations.
Alternatively, the TLB could return an invalid PFN, e.g., all bits set, or
the result of the load could be masked with all bits zeroed out. Further-
more, as the TLB result is required for the tag check, the permission bit
is already known, and the load could be handled as if the page is not
mapped at all. Canella et al. [49] observed that AMD CPUs stall when
a kernel address is accessed without privileges. Moreover, they noted
that Intel CPUs containing Meltdown hardware mitigation seem to still
execute the load, however, the result is zeroed out. While this prevents
the data leakage caused by Meltdown as the adversary will only read a
zero value, this behavior still allows certain LVI-type attacks, as we dis-
cuss in Section 3.2.3. Henry Wong [323] further analyzed the behavior
of Meltdown on a variety of different microarchitectures. On the Intel
Core 2, Wong observed the Foreshadow attack where data is forwarded
for not-present pages before the Foreshadow paper [293] was public.

These above described design changes to mitigate Meltdown can only be
incorporated in new microarchitectures, and, hence, a software workaround
is required. For Meltdown to succeed, the kernel address has to be
mapped in the virtual address space used by the user-space application.
If the kernel page is not mapped while running in user mode, the TLB
cannot translate it and, thus, the kernel data cannot be forwarded tran-
siently. In 2017, we proposed the KAISER patch [87] to the Linux kernel
to prevent various side-channel attacks that allowed defeating KASLR.
By enforcing stronger kernel isolation, kernel pages are not mapped while
running in user mode. As this design change of the operating system also
defeats Meltdown, it has been adopted by the major operating systems
to mitigate Meltdown in software on affected CPUs.

To mitigate other Meltdown-type attacks, Intel introduced or modified in-
structions that allow flushing different microarchitectural buffers on con-
text switches. For instance, the L1 data cache is flushed when entering
or exiting an SGX enclave. Similarly, the hypervisor flushes the L1 data
cache when switching between virtual machines. For ZombieLoad and
RIDL, the verw instruction clears the line-fill buffers and store buffer and
is used on every context switch. While more recent CPU generations al-

3.2. Transient-Execution Attacks 69

ready integrate hardware mitigations against ZombieLoad and RIDL, the
TAA variant could still leak sensitive information on the Cascade Lake
microarchitecture. There, a microcode update introduced an option that
effectively disables TSX. In addition, all these mitigations do not prevent
attack scenarios where the victim and adversary run on SMT threads of
the same core, and, thus, it is recommended to disable hyper-threading.

3.2.3. LVI-type Attacks

LVI-type attacks reversely exploit Meltdown-type leakage effects to inject
poisoned values into the victim domain to obtain sensitive information.
Instead of a poisoned prediction history that is used in Spectre-type at-
tacks, the transiently injected data values instead trick the victim into ex-
posing its data. Likewise to Spectre-type attacks, the access and sending
component of the covert channel is performed by the victim, and, hence,
the victim is architecturally allowed to perform that access. In contrast
to Meltdown-type attacks, LVI-type attacks require specific code gadgets
in the victim domain. However, in contrast to Spectre gadgets, LVI gad-
gets are much simpler, and depending on the adversary’s capabilities, a
single load operation can serve as an exploitable LVI gadget.

To exploit an LVI-type attack, the victim has to perform an operation
that induces a fault or assist. While these faults can occur during the
regular execution of a victim process, the likelihood that the same in-
struction faults on a regular basis is very low. In our user-to-kernel
proof-of-concept, we assume that the targeted kernel page is swappable
and artificially clear the accessed bit of the targeted page. As Windows
periodically clears the accessed bit of pages, we use the same principle in
a user-to-user setting. However, LVI-type attacks can be best performed
in scenarios where a malicious operating system targets an Intel SGX en-
clave to use precise execution control of the enclave [296]. By interrupting
the enclave before executing the targeted instruction, the adversary can
directly clear the accessed or supervisor bit for the enclave page to trig-
ger the fault when resuming the enclave. Furthermore, the adversary can
force the enclave to repeatedly execute the same instruction [296] increas-
ing the chance to inject the malicious data and, thus, to leak the sensitive
information. With LVI-NULL, we describe a special case where it is suffi-
cient to inject a zero value into the victim. In Meltdown-resistant CPUs,
the results to dependent instructions are zeroed out to prevent data leak-
age [120, 256] and, therefore, in an LVI-type attack, a zero value would

70 Chapter 3. State of the Art

be transiently injected. While an injected zero value seems rather harm-
less, when targeting an SGX enclave, a malicious operating system can
map the zero page to exploit a transient null-pointer dereference in the
enclave.

3.2.3.1. Mitigations

As LVI-type attacks invertedly exploit the leakage effects of Meltdown-
type attacks, hardware mitigations of Meltdown-type attacks can be suf-
ficient to eliminate the LVI counterpart. However, in Section 3.2.2.1, we
discuss that in case of a faulting load returning a fixed value, e.g., all
bits set to 0 or 1, instead of the actual inaccessible value mitigates the
data leakage. In an LVI attack, this means that a value of all 0s or 1s is
injected into the victim domain. We demonstrated that this behavior on
its own can be exploited again by leaking AES-NI keys or mapping the
null page in an Intel SGX setting to transiently hijack control flow [294].
Hence, in-silicon mitigations should prevent illegal data flows from loads
to dependent operations.

Since hardware mitigations require new microarchitecture revisions, obvi-
ously, software-based solutions are necessary to protect existing microar-
chitectures. The lfence instruction acts as a barrier to stop speculative
execution. Hence, we suggested to automatically insert an lfence in-
struction as a speculation barrier after every implicit and explicit load
operation [294]. However, our proof-of-concept compiler pass shows a
non-negligible performance impact between a factor of 2 and 19 [294].
Building upon this approach, Intel developed an optimized LVI mitiga-
tion pass for compilers to minimize the number of lfences that need to
be inserted [116]. The idea is only to insert a barrier between load in-
structions and subsequent instructions that may transmit the loaded value
using a covert channel. Following a similar approach used by Bender et al.
[30] to insert fences to enforce certain memory ordering constraints, Intel
analyzed the control-flow graph to detect all possible load (source) and
transmit instructions (sink). By solving the minimum multi-cut problem,
the number of fences can be minimized such that every load followed
by a transmitter instruction is protected by at least one barrier. While
with this algorithm, the minimal number of lfences can be inserted, the
performance overhead is still significant [164].

3.3. Software-based Microarchitectural Fault Attacks 71

3.3. Software-based Microarchitectural Fault
Attacks

While traditional fault attacks (see Section 2.3.2) require physical access
to the device to induce faults from the outside, software-based microar-
chitectural fault attacks aim to induce faults in microarchitectures solely
from software. In this section, we discuss the state-of-the-art of fault
attacks inducing bit flips in the main memory and CPU cores.

3.3.1. Rowhammer

In 2014, Kim et al. [153] described that bit flips can be induced in DRAM
cells from software by accessing neighboring rows in a high frequency. By
forcing repeated memory accesses from DRAM, i.e., using Flush+Reload,
neighboring rows are frequently opened and closed between refresh cycles,
flipping bits by triggering disturbance errors [153]. Seaborn and Dul-
lien [266] made the security implications of the Rowhammer bug clear by
gaining kernel privileges from an unprivileged user space program. Sub-
sequent research showed different techniques to exploit the Rowhammer
bug in numerous ways [12, 35, 41, 51, 55–57, 69, 70, 88, 91, 134, 139, 152,
161, 163, 169, 174, 179, 220, 224, 228, 238, 241, 283, 300, 318, 327, 333,
339, 346, 347]:

Remote Attacks. Gruss et al. [91] showed that bit flips can be induced
within sandboxed JavaScript, enabling remote Rowhammer attacks in the
browser. Bosman et al. [41] exploited memory deduplication in combina-
tion with Rowhammer to disclose pointers allowing to gain arbitrary read
and write access in the Microsoft Edge web browser. Tatar et al. [283]
demonstrated remote Rowhammer attacks using RDMA network cards.
De Ridder et al. [241] demonstrated Rowhammer attacks are still possible
from JavaScript by using a many-sided attack approach.

In a cloud setting, Xiao et al. [327] demonstrated cross-VM Rowham-
mer attacks. Razavi et al. [238] exploited bit flips in co-located virtual
machines to break public-key authentication mechanisms.

With Nethammer (see Chapter 7), we demonstrated remote Rowhammer
attacks on common server hardware. Similar to Tatar et al. [283], we
invalidate the assumption that Rowhammer requires a local attacker. We

72 Chapter 3. State of the Art

discuss scenarios where an adversary can use uncontrolled bit flips to alter
DNS entries or target OCSP servers.

Improving Rowhammer and Rowhammer Techniques. By reverse-
engineering the DRAM mapping functions, Pessl et al. [220] allowed to
develop faster and more reliable Rowhammer attacks. Aga et al. [12]
exploited Intel CAT to accelerate eviction-based Rowhammer attacks.
Islam et al. [134] exploited store-to-load forwarding to learn about the
physical page mappings, improving Rowhammer attacks. Quao et al.
[228] used non-temporal instructions to induce bit flips. Zhang et al. [345,
347] described Rowhammer attacks through implicit memory accesses by
the page table walk.

Kwong et al. [161] studied the relationships of data and the induced bit-
flip patterns, not to corrupt data in neighboring rows but to actually infer
their contents.

We present one-location hammering [88] where in contrast to previous at-
tack techniques, we only keep a single row open. In Nethammer (see Chap-
ter 7), we study the effect of memory-replacement policies that enable
one-location hammering. Furthermore, we discuss opcode flipping as a
new exploitation technique by flipping bits in a targeted way in user
space binaries [88]. With memory waylaying, we exploit system-level op-
timizations in combination with a side channel to place target pages at
attacker-chosen physical locations.

Rowhammer Protections. Cojocar et al. [57] demonstrated Rowham-
mer attacks on ECC-protected DDR chips. Kim et al. [152] analyzed
modern DRAM devices and mitigation techniques and concluded that
newer chips are more susceptible to bit flips. Frigo et al. [70] studied
TRR in more depth and demonstrated bit flips despite the mitigation on
a variety of DIMMs. Walker [306] investigates the physical root causes of
bit flips as a starting to point to find effective mitigations for the future.

In Nethammer (see Chapter 7), we already showed that TRR is insuffi-
cient to mitigate Rowhammer.

Attacking Cryptographic Implementations. By combining Rowham-
mer with a Prime+Probe cache attack, Bhattacharya et al. [35] recovered
cryptographic keys. Poddebniak et al. [224] showed Rowhammer attacks

3.3. Software-based Microarchitectural Fault Attacks 73

against EdDSA, and Zeitouni et al. [339] targeted Rowhammer-based
physically unclonable functions (PUF). Mus et al. [204] used Rowham-
mer to recover secret keys from a constant-time implementation of the
post-quantum signature scheme LUOV.

Other. Chakraborty et al. [51] attacked the Page Frame Cache (PFC)
with Rowhammer. Yao et al. [333] targeted deep neural networks with
Rowhammer. Jang et al. [139] used bit flips inside SGX enclaves to mount
a denial-of-service attack. Weissman et al. [318] induced bit flips using
FPGAs in heterogeneous FPGA-CPU platforms. Van der Veen et al.
[300] and Lipp [172] induce bit flips on ARM-based devices. Frigo et al.
[69] induced bit flips using GPU primitives on mobile phones.

3.3.2. Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) is an energy-saving tech-
nique that reduces energy consumption and temperature. By adjusting
voltage and frequency regulators, the core voltage and core frequency
can be changed accordingly to the runtime demands. Registers in CPUs
are built using flip-flops that only change their states when a clock edge
occurs, i.e., the control signal going from ‘0’ to ‘1’ or from ‘1’ to ‘0’. How-
ever, the intermediate combinatorial logic between two registers does not
produce their outputs immediately, leaving a small timing delay until the
values are propagated. When this timing delay is not taken into account
or not met between a clock cycle, the output is not properly latched into
the input register, leaving it at a stale value [282]. By either overclocking
or undervolting, this timing constraint can be violated, and a fault can
be induced.

With CLKSCREW [282], Tang et al. exploited the energy management
mechanisms to extract cryptographic keys from TrustZone. Using a ma-
licious kernel driver, they adjusted the frequencies using privileged in-
terfaces to overclock the CPU to induce faults. Qiu et al. [230], on the
other hand, manipulated the core voltage to undervolt the ARM pro-
cessor to recover AES keys processed within TrustZone. Murdock et al.
[202] demonstrated with Plundervolt a similar attack on Intel processors.
By abusing a not officially documented voltage-scaling interface, they
were able to induce predictable faults during SGX enclave computation,
to recover keys from AES-NI implementations. Around the same time,
Qiu et al. [231, 232], Kenjar et al. [150], and Chen et al. [53] showed similar

74 Chapter 3. State of the Art

attacks targeting Intel SGX. Rabich [235] explored software-based fault
attacks on AMD Zen processors. While system crashes were produced,
single faults in operations could not be observed.

3.3.3. Circuit Aging

Circuit aging is not only a reliability concern, the security implications
of aging need to be taken into account [159] as well. With their MAGIC
attack, Karimi et al. [147] simulated specially crafted software sequences
over a long period of time to maliciously trigger aging effects in CPU cores
that degrade the processor’s performance. They observed performance
degradation of up to 10.91% within 4 weeks. Zhao et al. [350] explored the
impact of different routing algorithms for aging acceleration in networks-
on-chip.

3.4. Software-based Power Side-Channel Attacks
In this section, we want to discuss the state-of-the-art of power side-
channel attacks that are conducted using software only. In contrast to
traditional power side-channel attacks where physical access or physical
proximity to obtain the power measurements is required, these attacks
obtain their power information using interfaces exposed to software.

CPU Energy Measurements. To limit, monitor and budget the energy
consumption of processors, CPU manufacturers provide interfaces that
expose the energy measurements to the operating system. With Intel
Running Average Power Limit (RAPL), Intel provides an interface that
exposes some of its measurement counters to unprivileged user space [78,
214].

This interface is used to monitor the energy consumption of different
workloads [99, 151] or the impact of different software defenses [104].
Only recently, research regarding the security implications of such an
interface have been conducted: Fusi [71] used RAPL to attack RSA-
16384 but concluded that the sampling rate of RAPL is too low to mount
an attack, showing that it is only observable whether branches are taken,
and accessed data is cached. Mantel et al. [185] distinguish RSA keys with
different Hamming weights using RAPL but do not try to extract keys or
perform other concrete attacks. Gao et al. [73] use RAPL in containers to

3.4. Software-based Power Side-Channel Attacks 75

infer information about the host environment, e.g., co-location of multiple
containers.

We advanced the state of the art by analyzing the RAPL interface fur-
ther. We observed that one can distinguish instructions and also operands
and data loaded based on their Hamming weight [176]. We demonstrated
attacks against AES-NI, the Linux kernel, and Intel SGX enclaves. We
combined the power leakage of Intel RAPL with SGX-step [296] to fin-
gerprint individual instructions executed inside an enclave leaking RSA
keys. Furthermore, we established a covert communication channel, even
in virtual machines [178] as the RAPL interface has been exposed to Xen
guests [324]. Zhang et al. [344] establish a covert communication channel
and perform website fingerprinting using Intel RAPL.

Furthermore, other CPU manufacturers, e.g., ARM, NVIDIA [207], IBM
POWER [113], Ampere [58], Hygon [319], or Marvell [187], provide dif-
ferent power interfaces as well. However, while we conducted some ex-
periments on AMD CPUs [176], they all have not been studied in detail
yet.

Power Analysis on Mobile Devices. Yan et al. [331] monitor system
power information on mobile devices to acquire voltage and current,
observing a correlation with keystrokes, enabling them to infer pass-
word lengths and also distinguish different applications. Qin et al. [229]
use the same interfaces to fingerprint websites on mobile devices. Vasi-
lakis [298] characterized the energy consumption of instructions on ARM
using power sensors available on the targeted platform.

On-die Power Analysis. O’Flynn and Dewar [208] recorded power mea-
surements using an onboard ADC from the non-secure world to recover
secrets processed in the secure world on TrustZone-M. Zhao and Suh [349]
use an FPGA to observe a CPU’s power consumption on the same SoC
to break RSA. Moini et al. [198] targeted BNN accelerators in remote
FPGAs. Tian et al. [285] attacked the versatile tensor accelerator in
multi-tenant FPGAs. With CAPSULe, Giechaskiel et al. [75] established
cross-FPGA covert-channel attacks using leakage of the power supply
units. Schellenberg et al. [253] develop an internal sensor in an FPGA to
deploy key-recovery attacks.

4
Conclusion

In this thesis, we show that microarchitectural performance optimiza-
tions can be exploited from software interfaces on different abstraction
levels. From the CPU or DRAM microarchitecture to the microarchitec-
ture on an operating-system level, side channels and fault attacks allow
extracting sensitive information over abstraction boundaries. With only
software-based approaches, we uncover sensitive information processed by
the victim, even in remote scenarios.

With Meltdown and Spectre, the research field of transient-execution at-
tacks emerged that, in contrast to side-channel attacks, allows extracting
data directly. To mitigate these attacks, a combination of CPU microcode
patches, updates to the operating systems, as well as toolchains and com-
pilers, are necessary; most of them coming with a non-negligible perfor-
mance impact. However, painting a somewhat darker picture, with a high
probability, similar issues exist in any sufficiently enough complex system.
Thus, the future will not only bring new attack variants to light but will
also require a rethinking of tackling these challenges on the microarchi-
tectural level. In addition, further performance optimizations can and
will not only be introduced in the CPU microarchitecture but in every
other abstraction layer as well [186, 221–223, 277]. Future research will
need to investigate the security implications of these and show if similar
or new attacks are possible.

However, the clear definitions of the interfaces that enabled these opti-
mizations in the microarchitectures in the first place allow to either revert
the optimizations or safely implement them in new generations without
breaking the functionality defined by the architecture. It is astonishing
to see that most of these attacks targeting the fine nuances on a microar-
chitectural level could be mitigated on previous generations with software
and firmware updates. However, future designs will need to tackle them
on the silicon level.

77

Bibliography

[1] Andreas Abel and Jan Reineke. “Reverse engineering of cache re-
placement policies in intel microprocessors and their evaluation”.
In: ISPASS. 2014.

[2] Andreas Abel and Jan Reineke. “uops.info: Characterizing La-
tency, Throughput, and Port Usage of Instructions on Intel Mi-
croarchitectures”. In: ACM ASPLOS. 2019.

[3] Accardi, Kristen Carlson. Function Granular KASLR. 2020. url:
https://patchwork.kernel.org/project/kernel-hardening/
list/?series=354389.

[4] Onur Acıiçmez. “Yet Another MicroArchitectural Attack: Exploit-
ing I-cache”. In: CSAW. 2007.

[5] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. “New
Results on Instruction Cache Attacks”. In: CHES. 2010.

[6] Onur Acıiçmez and Çetin Kaya Koç. “Trace-Driven Cache Attacks
on AES (Short Paper)”. In: ICICS. 2006.

[7] Onur Acıiçmez and Cetin Kaya Koç. “Microarchitectural attacks
and countermeasures”. In: Cryptographic Engineering. 2009.

[8] Onur Acıiçmez and Werner Schindler. “A Vulnerability in RSA Im-
plementations Due to Instruction Cache Analysis and Its Demon-
stration on OpenSSL”. In: CT-RSA. 2008.

[9] Onur Acıiçmez and Jean-Pierre Seifert. “Cheap Hardware Paral-
lelism Implies Cheap Security”. In: FDTC. 2007.

[10] Onur Acıiçmez, Jean-Pierre Seifert, and Çetin Kaya Koç. “Pre-
dicting secret keys via branch prediction”. In: CT-RSA. 2007.

[11] Advanced Micro Devices Inc. Security Analysis of AMD Predictive
Store Forwarding. 2021.

[12] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin.
“When good protections go bad: Exploiting anti-DoS measures to
accelerate Rowhammer attacks”. In: HOST. 2017.

[13] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. “Port Contention for Fun
and Profit”. In: IEEE S&P. 2018.

[14] Alexa Internet, Inc. The top 500 sites on the web. 2016. url:
http://www.alexa.com/topsites.

[15] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad Shahzad.
“Keystroke recognition using wifi signals”. In: MobiCom. 2015.

79

https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389
https://patchwork.kernel.org/project/kernel-hardening/list/?series=354389
http://www.alexa.com/topsites

80 Bibliography

[16] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van
de Pol, and Yuval Yarom. “Amplifying Side Channels Through
Performance Degradation”. In: ACSAC. 2016.

[17] AMD. “Strengthening VM isolation with integrity protection and
more”. In: White Paper (2020).

[18] AMD Takes Computing to a New Horizon with Ryzen™Processors.
Advanced Micro Devices Inc., 2016. url: https : / / www . amd .
com/en-us/press-releases/Pages/amd-takes-computing-
2016dec13.aspx.

[19] Andrei Frumusanu. Arm’s Cortex-A76 CPU Unveiled: Taking Aim
at the Top for 7nm. 2018. url: https://www.anandtech.com/
show/12785/arm-cortex-a76-cpu-unveiled-7nm-powerhouse/.

[20] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit
Jhala, Sorin Lerner, and Hovav Shacham. “On subnormal float-
ing point and abnormal timing”. In: IEEE S&P. 2015.

[21] Apple Inc. About speculative execution vulnerabilities in ARM-
based and Intel CPUs. 2018. url: https : / / support . apple .
com/en-us/HT208394.

[22] ARM. Cache Speculation Side-channels. Version 2.4. 2018.
[23] Arm. Arm Confidential Compute Architecture. 2021. url: https:

//www.arm.com/why-arm/architecture/security-features/
arm-confidential-compute-architecture.

[24] Arm. Armv8-A Instruction Set Architecture. 2019.
[25] Arm. GlobalPlatform based Trusted Execution Environment and

TrustZone Ready. 2013.
[26] Arm Limited. Vulnerability of Speculative Processors to Cache

Timing Side-Channel Mechanism. 2018.
[27] Arthur Perais. Value Prediction Championship. 2021. url: https:

//www.microarch.org/cvp1/.
[28] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo, and Gerardo

Pelosi. “Software-only Reverse Engineering of Physical DRAM
Mappings for Rowhammer Attacks”. In: IVSW. 2018.

[29] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong
Yu, Zirui Neil Zhao, Xiang Zou, Thomas Unterluggauer, Josep
Torrellas, Carlos Rozas, Adam Morrison, et al. “Speculative In-
terference Attacks: Breaking Invisible Speculation Schemes”. In:
ACM ASPLOS. 2021.

[30] John Bender, Mohsen Lesani, and Jens Palsberg. “Declarative
fence insertion”. In: ACM SIGPLAN. ACM. 2015.

https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://www.anandtech.com/show/12785/arm-cortex-a76-cpu-unveiled-7nm-powerhouse/
https://www.anandtech.com/show/12785/arm-cortex-a76-cpu-unveiled-7nm-powerhouse/
https://support.apple.com/en-us/HT208394
https://support.apple.com/en-us/HT208394
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.microarch.org/cvp1/
https://www.microarch.org/cvp1/

Bibliography 81

[31] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
“Ooh Aah... Just a Little Bit: A small amount of side channel can
go a long way”. In: CHES. 2014.

[32] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http : / / cr . yp . to / antiforgery / cachetiming -
20050414.pdf.

[33] Johann Betz, Dirk Westhoff, and Günter Müller. “Survey on covert
channels in virtual machines and cloud computing”. In: ETT
(2016).

[34] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and
Debdeep Mukhopadhyay. “Branch Prediction Attack on Blinded
Scalar Multiplication”. In: IEEE TC (2019).

[35] Sarani Bhattacharya and Debdeep Mukhopadhyay. “Curious Case
of Rowhammer: Flipping Secret Exponent Bits Using Timing
Analysis”. In: CHES. 2016.

[36] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopad-
hyay. “Hardware prefetchers leak : A revisit of SVF for cache-
timing attacks”. In: MICRO. 2012.

[37] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M Koruyeh, Nael
Abu-Ghazaleh, Chengyu Song, and Mathias Payer. “SpecROP:
Speculative Exploitation of {ROP} Chains”. In: RAID. 2020.

[38] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret
Key Cryptosystems”. In: CRYPTO. 1997.

[39] Roderick Bloem, Swen Jacobs, and Yakir Vizel. “Efficient
Information-Flow Verification Under Speculative Execution”. In:
Symposium on Automated Technology for Verification and Analy-
sis. 2019.

[40] Joseph Bonneau and Ilya Mironov. “Cache-collision timing attacks
against AES”. In: CHES. 2006.

[41] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Dedup Est Machina: Memory Deduplication as an Advanced Ex-
ploitation Vector”. In: IEEE S&P. 2016.

[42] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kos-
tiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. “Software
Grand Exposure: SGX Cache Attacks Are Practical”. In: WOOT.
2017.

[43] Samira Briongos, Pedro Malagón, José M Moya, and Thomas
Eisenbarth. “RELOAD+REFRESH: Abusing Cache Replacement
Policies to Perform Stealthy Cache Attacks”. In: USENIX Security
Symposium. 2020.

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

82 Bibliography

[44] Billy Brumley and Risto Hakala. “Cache-Timing Template At-
tacks”. In: AsiaCrypt. 2009.

[45] Yuriy Bulygin. “Cpu side-channels vs. virtualization malware: The
good, the bad, or the ugly”. In: ToorCon (2008).

[46] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss,
Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens,
Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom.
“Fallout: Leaking Data on Meltdown-resistant CPUs”. In: ACM
CCS. 2019.

[47] Claudio Canella, Khaled N. Khasawneh, and Daniel Gruss. “The
Evolution of Transient-Execution Attacks”. In: GLSVLSI. 2020.

[48] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss,
and Khaled N. Khasawneh. “Evolution of Defenses against
Transient-Execution Attacks”. In: GLSVLSI. 2020.

[49] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. “KASLR: Break It, Fix It, Repeat”.
In: AsiaCCS. 2020.

[50] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. “A Systematic Evaluation of Tran-
sient Execution Attacks and Defenses”. In: USENIX Security Sym-
posium. Extended classification tree and PoCs at https://tran-
sient.fail/. 2019.

[51] Anirban Chakraborty, Sarani Bhattacharya, and Debdeep Mu-
khopadhyay. “ExplFrame: Exploiting Page Frame Cache for Fault
Analysis of Block Ciphers”. In: arXiv:1905.12974 (2019).

[52] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. “SgxPectre Attacks: Stealing Intel
Secrets from SGX Enclaves via Speculative Execution”. In: Eu-
roS&P. 2019.

[53] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
Oswald, and Flavio D Garcia. “VoltPillager: Hardware-based fault
injection attacks against Intel SGX Enclaves using the SVID volt-
age scaling interface”. In: USENIX Security Symposium. 2020.

[54] Chih-Cheng Cheng. “The schemes and performances of dynamic
branch predictors”. In: Berkeley Wireless Research Center, Tech.
Rep (2000).

[55] Yueqiang Cheng, Zhi Zhang, and Surya Nepal. “Still Hammerable
and Exploitable: on the Effectiveness of Software-only Physical
Kernel Isolation”. In: arXiv:1802.07060 (2018).

Bibliography 83

[56] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan
Saroiu, Alec Wolman, and Onur Mutlu. “Are We Susceptible to
Rowhammer? An End-to-End Methodology for Cloud Providers”.
In: IEEE S&P. 2020.

[57] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert
Bos. “Exploiting correcting codes: On the effectiveness of ecc mem-
ory against rowhammer attacks”. In: IEEE S&P. 2019.

[58] Ampere Computing. Ampere AltraTM Linux Kernel Porting
Guide. 2020. url: https : / / github . com / AmpereComputing /
ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-
Porting-Guide.

[59] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In:
Cryptology ePrint Archive, Report 2016/086 (2016).

[60] Yujie Cui and Xu Cheng. “Abusing Cache Line Dirty States to
Leak Information in Commercial Processors”. In: (2021). url: ht
tps://arxiv.org/abs/2104.08559.

[61] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
“Cachequote: Efficiently recovering long-term secrets of SGX
EPID via cache attacks”. In: CHES. 2018.

[62] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. “Secure TLBs”.
In: Proceedings of the International Symposium on Computer Ar-
chitecture. ISCA. 2019.

[63] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean
Tullsen. “Prime+Abort: A Timer-Free High-Precision L3 Cache
Attack using Intel TSX”. In: USENIX Security Symposium. 2017.

[64] Jake Edge. Kernel address space layout randomization. 2013. url:
https://lwn.net/Articles/569635/.

[65] Dmitry Evtyushkin and Dmitry Ponomarev. “Covert Channels
Through Random Number Generator: Mechanisms, Capacity Es-
timation and Mitigations”. In: ACM CCS. 2016.

[66] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Covert channels through branch predictors: a feasibility study”.
In: HASP. 2015.

[67] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Jump over ASLR: Attacking branch predictors to bypass ASLR”.
In: MICRO. 2016.

[68] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. “BranchScope: A New Side-Channel At-
tack on Directional Branch Predictor”. In: ACM ASPLOS. 2018.

https://github.com/AmpereComputing/ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-Porting-Guide
https://github.com/AmpereComputing/ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-Porting-Guide
https://github.com/AmpereComputing/ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-Porting-Guide
https://arxiv.org/abs/2104.08559
https://arxiv.org/abs/2104.08559
https://lwn.net/Articles/569635/

84 Bibliography

[69] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
“Grand Pwning Unit: Accelerating Microarchitectural Attacks
with the GPU”. In: S&P. 2018.

[70] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. “TRRespass: Exploiting the Many Sides of Target Row
Refresh”. In: S&P. 2020.

[71] Matteo Fusi. Information-Leakage Analysis Based on Hardware
Performance Counters. 2017.

[72] Jacob Fustos and Heechul Yun. “SpectreRewind: Leaking Secrets
to Past Instructions”. In: ASHES. 2020.

[73] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis,
and Haining Wang. “ContainerLeaks: Emerging Security Threats
of Information Leakages in Container Clouds”. In: DSN. 2017.

[74] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A Sur-
vey of Microarchitectural Timing Attacks and Countermeasures
on Contemporary Hardware”. In: Journal of Cryptographic Engi-
neering (2016).

[75] Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. “CAP-
SULe: Cross-FPGA Covert-Channel Attacks through Power Sup-
ply Unit Leakage”. In: IEEE S&P. 2020.

[76] Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Herbert Bos,
and Cristiano Giuffrida. “Speculative Probing: Hacking Blind in
the Spectre Era”. In: ACM CCS. 2020.

[77] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. “Cache Attacks on Intel SGX”. In: EuroSec. 2017.

[78] Corey Gough, Ian Steiner, and Winston Saunders. Energy Efficient
Servers. Apress, 2015.

[79] Ben Gras and Kaveh Razavi. “ASLR on the Line: Practical Cache
Attacks on the MMU.” In: NDSS. 2017.

[80] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks”. In: USENIX Security Symposium.
2018.

[81] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Ira-
zoqui, Johann Heyszl, and Thomas Eisenbarth. “AutoLock: Why
Cache Attacks on ARM Are Harder Than You Think”. In: USENIX
Security Symposium. 2017.

Bibliography 85

[82] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yu-
val Yarom. “Flush, Gauss, and Reload – A Cache Attack on the
BLISS Lattice-Based Signature Scheme”. In: CHES. 2016.

[83] Daniel Gruss. “Software-based Microarchitectural Attacks”. PhD
thesis. Graz University of Technology, 2017.

[84] Daniel Gruss. “Transient-Execution Attacks”. Habilitation. Graz
University of Technology, 2020.

[85] Daniel Gruss, David Bidner, and Stefan Mangard. “Practical
Memory Deduplication Attacks in Sandboxed JavaScript”. In: ES-
ORICS. 2015.

[86] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Ist-
van Haller, and Manuel Costa. “Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory”. In:
USENIX Security Symposium. 2017.

[87] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. “KASLR is Dead: Long
Live KASLR”. In: ESSoS. 2017.

[88] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
“Another Flip in the Wall of Rowhammer Defenses”. In: IEEE
S&P. 2018.

[89] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR”. In: ACM CCS. 2016.

[90] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR”. In: ACM CCS. 2016.

[91] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
“Rowhammer.js: A Remote Software-Induced Fault Attack in
JavaScript”. In: DIMVA. 2016.

[92] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In:
DIMVA. 2016.

[93] Daniel Gruss, Michael Schwarz, Matthias Wübbeling, Simon
Guggi, Timo Malderle, Stefan More, and Moritz Lipp. “Use-after-
freemail: Generalizing the use-after-free problem and applying it
to email services”. In: AsiaCCS. 2018.

[94] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches”. In: USENIX Security Symposium. 2015.

86 Bibliography

[95] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and
Andrés Sánchez. “SPECTECTOR: Principled Detection of Spec-
ulative Information Flows”. In: IEEE S&P. 2020.

[96] David Gullasch, Endre Bangerter, and Stephan Krenn. “Cache
Games – Bringing Access-Based Cache Attacks on AES to Prac-
tice”. In: IEEE S&P. 2011.

[97] Berk Gulmezoglu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. “Cross-VM cache attacks on AES”.
In: IEEE TMSCS (2016).

[98] Berk Gülmezoğlu, Mehmet Sinan Inci, Thomas Eisenbarth, and
Berk Sunar. “A Faster and More Realistic Flush+Reload Attack
on AES”. In: COSADE. 2015.

[99] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Här-
tig. “Measuring energy consumption for short code paths using
RAPL”. In: ACM SIGMETRICS (2012).

[100] Chris Hall, Ian Goldberg, and Bruce Schneier. “Reaction attacks
against several public-key cryptosystem”. In: ICICS. 1999.

[101] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg.
“Side channels in cloud services, the case of deduplication in cloud
storage”. In: IEEE S&P (2010).

[102] Christian Helm, Soramichi Akiyama, and Kenjiro Taura. “Reli-
able Reverse Engineering of Intel DRAM Addressing Using Per-
formance Counters”. In: 2020 28th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). 2020.

[103] John L Hennessy and David A Patterson. Computer Architecture:
A Quantitative Approach. 6th ed. Morgan Kaufmann, 2017.

[104] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang Schröder-
Preikschat, and Timo Hönig. “The Price of Meltdown and Spectre:
Energy Overhead of Mitigations at Operating System Level”. In:
EuroSys. 2021.

[105] Sebastien Hily, Zhongying Zhang, and Per Hammarlund. Resolv-
ing false dependencies of speculative load instructions. US Patent
7,603,527. 2009.

[106] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, et al. “The
microarchitecture of the Pentium 4 processor”. In: Intel Technology
Journal. 2001.

[107] Rodney E Hooker and Colin Eddy. Store-to-load forwarding based
on load/store address computation source information compar-
isons. US Patent 8,533,438. 2013.

Bibliography 87

[108] Branden Hookway. Interface. MIT Press, 2014.
[109] Jann Horn. Speculative Execution, Variant 4: Speculative Store

Bypass. 2018.
[110] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Tim-

ing Side Channel Attacks against Kernel Space ASLR”. In: IEEE
S&P. 2013.

[111] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. “Bluethunder: A 2-level Di-
rectional Predictor Based Side-Channel Attack against SGX”. In:
CHES. 2020.

[112] IBM. IBM Secure Execution for Linux. 2020.
[113] IBM. POWER9 Processor User’s Manual. 2.0. 2018.
[114] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas

Eisenbarth, and Berk Sunar. “Cache Attacks Enable Bulk Key
Recovery on the Cloud”. In: CHES. 2016.

[115] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. “Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud”. In: Cryptology ePrint
Archive, Report 2015/898 (2015).

[116] Intel. Affected Processors: Transient Execution Attacks. 2020. url:
https://software.intel.com/security-software-guidance
/ best - practices / optimized - mitigation - approach - load -
value-injectioOn.

[117] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019.

[118] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019.

[119] Intel. Intel Analysis of Speculative Execution Side Channels. 2018.
url: https://software.intel.com/security-software-guida
nce/api-app/sites/default/files/336983-Intel-Analysis-
of-Speculative-Execution-Side-Channels-White-Paper.pdf.

[120] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018.

[121] Intel. Intel Software Guard Extensions (Intel SGX). 2019. url:
https://software.intel.com/en-us/sgx.

[122] Intel. Intel Transactional Synchronization Extensions (Intel TSX)
Asynchronous Abort / CVE-2019-11135 / INTEL-SA-00270. 2019.
url: https : / / software . intel . com / content / www / us / en /
develop/articles/software-security-guidance/advisory-
guidance/intel-tsx-asynchronous-abort.html.

https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injectioOn
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injectioOn
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injectioOn
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/intel-tsx-asynchronous-abort.html

88 Bibliography

[123] Intel. Intel Architecture Instruction Set Extensions Programming
Reference. 2012.

[124] Intel. L1D Eviction Sampling / CVE-2020-0549 / INTEL-SA-
00329. 2020. url: https : / / software . intel . com / content /
www/us/en/develop/articles/software-security-guidance/
advisory-guidance/l1d-eviction-sampling.html.

[125] Intel. Q2 2018 Speculative Execution Side Channel Update. 2018.
[126] Intel. Speculative Execution Side Channel Mitigations. Revision

3.0. 2018.
[127] Intel Corporation. Refined Speculative Execution Terminology.

2020. url: https://software.intel.com/security-software-
guidance / insights / refined - speculative - execution -
terminology.

[128] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “Cross pro-
cessor cache attacks”. In: AsiaCCS. 2016.

[129] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES”. In: IEEE S&P. 2015.

[130] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “Systematic
reverse engineering of cache slice selection in Intel processors”. In:
DSD. 2015.

[131] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Know Thy Neighbor: Crypto Library Detection in Cloud”.
In: PETS (2015).

[132] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Lucky 13 Strikes Back”. In: AsiaCCS. 2015.

[133] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Wait a minute! A fast, Cross-VM attack on AES”. In:
RAID. 2014.

[134] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gulmezoglu, Thomas Eisenbarth, and Berk Sunar. “SPOILER:
Speculative Load Hazards Boost Rowhammer and Cache Attacks”.
In: USENIX Security Symposium. 2019.

[135] Akanksha Jain and Calvin Lin. “Cache Replacement Policies”. In:
Synthesis Lectures on Computer Architecture (2019).

[136] Himanshi Jain, D Anthony Balaraju, and Chester Rebeiro. “Spy
Cartel: Parallelizing Evict+ Time-Based Cache Attacks on Last-
Level Caches”. In: Journal of Hardware and Systems Security
(2019).

https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1d-eviction-sampling.html
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology

Bibliography 89

[137] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel
Emer. “High performance cache replacement using re-reference in-
terval prediction (RRIP)”. In: ACM SIGARCH (2010).

[138] Suman Jana and Vitaly Shmatikov. “Memento: Learning secrets
from process footprints”. In: IEEE S&P. 2012.

[139] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. “SGX-
Bomb: Locking Down the Processor via Rowhammer Attack”. In:
SysTEX. 2017.

[140] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX”. In: ACM
CCS. 2016.

[141] Jedec Solid State Technology Association. Low Power Double Data
Rate 3. 2013. url: http://www.jedec.org/standards-documen
ts/docs/jesd209-4a.

[142] Yvon Jegou and Olivier Temam. “Speculative prefetching”. In:
ICS. 1993.

[143] Daniel A Jiménez and Calvin Lin. “Dynamic branch prediction
with perceptrons”. In: IEEE HPCA. 2001.

[144] David R Kaeli and Philip G Emma. “Branch history table pre-
diction of moving target branches due to subroutine returns”. In:
ACM SIGARCH (1991).

[145] Kleovoulos Kalaitzidis and André Seznec. “Leveraging Value
Equality Prediction for Value Speculation”. In: ACM TACO
(2020).

[146] David Kaplan, Jeremy Powell, and Tom Woller. “AMD Memory
Encryption”. In: White paper (2016).

[147] Naghmeh Karimi, Arun Karthik Kanuparthi, Xueyang Wang,
Ozgur Sinanoglu, and Ramesh Karri. “Magic: Malicious aging in
circuits/cores”. In: ACM TACO (2015).

[148] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. “A high-resolution side-channel attack on last-level
cache”. In: DAC. 2016.

[149] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. “Side
channel cryptanalysis of product ciphers”. In: ESORICS. 1998.

[150] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. “V0LTpwn: Attacking x86 Processor In-
tegrity from Software”. In: USENIX Security Symposium. 2020.

[151] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurmi-
nen, and Zhonghong Ou. “RAPL in Action: Experiences in Using
RAPL for Power Measurements”. In: ToMPECS (2018).

http://www.jedec.org/standards-documents/docs/jesd209-4a
http://www.jedec.org/standards-documents/docs/jesd209-4a

90 Bibliography

[152] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Has-
san, Roknoddin Azizi, Lois Orosa, and Onur Mutlu. “Revisiting
RowHammer: An Experimental Analysis of Modern DRAM De-
vices and Mitigation Techniques”. In: ISCA. 2020.

[153] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors”. In: ISCA. 2014.

[154] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and
Onur Mutlu. “Exploiting the dram microarchitecture to increase
memory-level parallelism”. In: arXiv:1805.01966 (2018).

[155] Vladimir Kiriansky and Carl Waldspurger. “Speculative Buffer
Overflows: Attacks and Defenses”. In: arXiv:1807.03757 (2018).

[156] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
“Spectre Attacks: Exploiting Speculative Execution”. In: IEEE
S&P. 2019.

[157] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer”. In: WOOT. 2018.

[158] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. “TagBleed: Breaking KASLR on the Isolated Kernel Ad-
dress Space Using Tagged TLBs”. In: EuroS&P. 2020.

[159] Daniel Kraak, Mottaqiallah Taouil, Said Hamdioui, Pieter Weckx,
Francky Catthoor, Abhijit Chatterjee, Adit Singh, Hans-Joachim
Wunderlich, and Naghmeh Karimi. “Device aging: A reliability
and security concern”. In: IEEE ETC. 2018.

[160] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida,
Herbert Bos, and Kaveh Razavi. “NetCAT: Practical Cache At-
tacks from the Network”. In: S&P. 2020.

[161] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
“RAMBleed: Reading Bits in Memory Without Accessing Them”.
In: IEEE S&P. 2020.

[162] Butler W Lampson. “A note on the confinement problem”. In:
Communications of the ACM (1973).

[163] Mark Lanteigne. How Rowhammer Could Be Used to Exploit Weak-
nesses in Computer Hardware. 2016. url: http://www.thirdio.
com/rowhammer.pdf.

http://www.thirdio.com/rowhammer.pdf
http://www.thirdio.com/rowhammer.pdf

Bibliography 91

[164] Michael Larabel. The Brutal Performance Impact From Mitigating
The LVI Vulnerability. 2020.

[165] Jaekyu Lee, Yasuo Ishii, and Dam Sunwoo. “Securing Branch Pre-
dictors with Two-Level Encryption”. In: ACM TACO (2020).

[166] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. “Inferring fine-grained control flow in-
side {SGX} enclaves with branch shadowing”. In: USENIX Secu-
rity Symposium. 2017.

[167] Levi Norman. Latency: The Heartbeat of a Solid State Disk. 2010.
[168] David Levinthal. Performance Analysis Guide for Intel. 2009.
[169] Chulseung Lim, Kyungbae Park, Geunyong Bak, Donghyuk Yun,

Myungsang Park, Sanghyeon Baeg, Shi-Jie Wen, and Richard
Wong. “Study of proton radiation effect to row hammer fault in
DDR4 SDRAMs”. In: Microelectronics Reliability (2018).

[170] Mikko H Lipasti and John Paul Shen. “Exceeding the dataflow
limit via value prediction”. In: MICRO. 1996.

[171] Mikko H Lipasti, Christopher B Wilkerson, and John Paul Shen.
“Value locality and load value prediction”. In: ACM SIGPLAN
(1996).

[172] Moritz Lipp. Cache Attacks and Rowhammer on ARM. Master
Thesis, Graz University of Technology. 2016.

[173] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. “Practical Keystroke Tim-
ing Attacks in Sandboxed JavaScript”. In: ESORICS. 2017.

[174] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. “ARMageddon: Cache Attacks on Mo-
bile Devices”. In: USENIX Security Symposium. 2016.

[175] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clé-
mentine Maurice, and Daniel Gruss. “Take a Way: Exploring the
Security Implications of AMD’s Cache Way Predictors”. In: Asi-
aCCS. 2020.

[176] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. “PLATY-
PUS: Software-based Power Side-Channel Attacks on x86”. In:
IEEE S&P. 2021.

[177] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. “Melt-
down: Reading Kernel Memory from User Space”. In: USENIX
Security Symposium. 2018.

92 Bibliography

[178] Moritz Lipp, Michael Schwarz, Andreas Kogler, and Daniel Gruss.
Attacking CPUs with Power Side Channels from Software: Warum
leaked hier Strom? rC3. 2020.

[179] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,
Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss.
“Nethammer: Inducing Rowhammer Faults through Network Re-
quests”. In: SILM Workshop. 2020.

[180] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In:
IEEE S&P. 2015.

[181] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. “A
survey of microarchitectural side-channel vulnerabilities, attacks
and defenses in cryptography”. In: arXiv:2103.14244 (2021).

[182] Venkateswara Madduri, Jonathan Combs, James E Phillips,
Stephen J Robinson, James D Allen, and Jonathan J Tyler. Micro-
architecture for eliminating MOV operations. US Patent 9,454,371.
2016.

[183] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution
Using Return Stack Buffers”. In: ACM CCS. 2018.

[184] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards. 2008.

[185] Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich
Weber. “How Secure is Green IT? The Case of Software-Based
Energy Side Channels”. In: ESORICS. 2018.

[186] Jan Kasper Martinsen, Hakan Håkan, and Anders Isberg. “Us-
ing speculation to enhance javascript performance in web applica-
tions”. In: IEEE Internet Computing (2012).

[187] Marvell. tx2mon. 2020. url: https://github.com/Marvell-
SPBU/tx2mon.

[188] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. “Reverse Engineering In-
tel Complex Addressing Using Performance Counters”. In: RAID.
2015.

[189] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Au-
rélien Francillon. “C5: Cross-Cores Cache Covert Channel”. In:
DIMVA. 2015.

[190] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and
Kay Römer. “Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud”. In: NDSS. 2017.

https://github.com/Marvell-SPBU/tx2mon
https://github.com/Marvell-SPBU/tx2mon

Bibliography 93

[191] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and
Toon Verwaest. “Spectre is here to stay: An analysis of side-
channels and speculative execution”. In: arXiv:1902.05178 (2019).

[192] Vahid Meraji and Hadi Soleimany. “Evict+ Time Attack on Intel
CPUs without Explicit Knowledge of Address Offsets.” In: ISeCure
(2021).

[193] Sparsh Mittal. “A survey of techniques for architecting TLBs”. In:
Concurrency and computation: practice and experience (2017).

[194] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. “Mem-
Jam: A False Dependency Attack against Constant-Time Crypto
Implementations in SGX”. In: CT-RSA. 2018.

[195] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
“CacheZoom: How SGX amplifies the power of cache attacks”. In:
CHES. 2017.

[196] Daniel Moghimi. “Data Sampling on MDS-resistant 10th Genera-
tion Intel Core (Ice Lake)”. In: arXiv:2007.07428 (2020).

[197] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
“Medusa: Microarchitectural Data Leakage via Automated Attack
Synthesis”. In: USENIX Security Symposium. 2020.

[198] Shayan Moini, Shanquan Tian, Daniel Holcomb, Jakub Szefer, and
Russell Tessier. “Power Side-Channel Attacks on BNN Accelera-
tors in Remote FPGAs”. In: IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems (2021).

[199] John Monaco. “SoK: Keylogging Side Channels”. In: IEEE S&P.
2018.

[200] Robert Morgan. Building an optimizing compiler. Digital Press,
1998.

[201] David Mulnix. “Intel Xeon processor scalable family technical
overview”. In: Intel Corp (2017).

[202] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. “Plundervolt: Software-based
fault injection attacks against Intel SGX”. In: IEEE S&P. 2020.

[203] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. “Plundervolt: Software-based
Fault Injection Attacks against Intel SGX”. In: IEEE S&P. 2020.

[204] Koksal Mus, Saad Islam, and Berk Sunar. “QuantumHammer:
A Practical Hybrid Attack on the LUOV Signature Scheme”. In:
ACM SIGSAC. 2020.

[205] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre,
Muhammad Khurram Bhatti, and Guy Gogniat. “Winter is here!

94 Bibliography

A decade of cache-based side-channel attacks, detection & mitiga-
tion for RSA”. In: Information Systems (2020).

[206] Michael Neve and Jean-Pierre Seifert. “Advances on Access-Driven
Cache Attacks on AES”. In: SAC. 2006.

[207] NVIDIA. Jetson TX2: Thermal Design Guide. 2017.
[208] Colin O’Flynn and Alex Dewar. “On-Device Power Analysis Across

Hardware Security Domains”. In: CHES (2019).
[209] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof

Fetzer. “Bringing Spectre-type vulnerabilities to the surface”. In:
USENIX Security. 2020.

[210] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications”. In: ACM CCS. 2015.

[211] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: the Case of AES”. In: CT-RSA. 2006.

[212] Rodney Owens and Weichao Wang. “Non-interactive OS finger-
printing through memory de-duplication technique in virtual ma-
chines”. In: IEEE IPCCC. 2011.

[213] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher.
“Lord of the Ring (s): Side Channel Attacks on the CPU On-Chip
Ring Interconnect Are Practical”. In: arXiv:2103.03443 (2021).

[214] Jacob Pan. RAPL (Running Average Power Limit) driver. 2013.
url: https://lwn.net/Articles/545745/.

[215] PaX Team. Address space layout randomization (ASLR). 2003.
[216] Arthur Perais and André Seznec. “BeBoP: A cost effective pre-

dictor infrastructure for superscalar value prediction”. In: IEEE
HPCA. 2015.

[217] Arthur Perais and André Seznec. “EOLE: Paving the way for an
effective implementation of value prediction”. In: ISCA. 2014.

[218] Arthur Perais and André Seznec. “Practical data value speculation
for future high-end processors”. In: IEEE HPCA. 2014.

[219] Colin Percival. “Cache missing for fun and profit”. In: BSDCan.
2005.

[220] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

[221] Christopher JF Pickett and Clark Verbrugge. “Return value pre-
diction in a Java virtual machine”. In: VPW. 2004.

https://lwn.net/Articles/545745/

Bibliography 95

[222] Christopher JF Pickett and Clark Verbrugge. “Software thread
level speculation for the Java language and virtual machine envi-
ronment”. In: LCPC. 2005.

[223] Filip Pizlo. Speculation in JavaScriptCore. 2020. url: https://
webkit.org/blog/10308/speculation-in-javascriptcore/.

[224] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Man-
fred Lochter, and Paul Rösler. “Attacking deterministic signature
schemes using fault attacks”. In: EuroS&P. 2018.

[225] Joop van de Pol, Nigel P Smart, and Yuval Yarom. “Just a little
bit more”. In: CT-RSA. 2015.

[226] Potential Impact on Processors in the POWER Family. IBM, 2018.
url: https://www.ibm.com/blogs/psirt/potential-impact-
processors-power-family/.

[227] Michael D Powell, Amit Agarwal, TN Vijaykumar, Babak Falsafi,
and Kaushik Roy. “Reducing set-associative cache energy via way-
prediction and selective direct-mapping”. In: MICRO. 2001.

[228] Rui Qiao and Mark Seaborn. “A New Approach for Rowhammer
Attacks”. In: IEEE HOST. 2016.

[229] Yi Qin and Chuan Yue. “Website Fingerprinting by Power Es-
timation Based Side-Channel Attacks on Android 7”. In: Trust-
Com/BigDataSE. 2018.

[230] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
“VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies”. In: ACM CCS. 2019.

[231] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
“VoltJockey: Breaking SGX by Software-Controlled Voltage-Indu-
ced Hardware Faults”. In: AsianHOST. 2019.

[232] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, Ruidong Tian,
Chunlu Wang, and Gang Qu. “VoltJockey: A New Dynamic Volt-
age Scaling based Fault Injection Attack on Intel SGX”. In: IEEE
TCADICS (2020).

[233] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, Ruidong Tian,
Chunlu Wang, and Gang Qu. “VoltJockey: A New Dynamic Volt-
age Scaling based Fault Injection Attack on Intel SGX”. In: IEEE
TCAD (2020).

[234] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C.
Steely, and Joel Emer. “Adaptive insertion policies for high per-
formance caching”. In: ACM SIGARCH (2007).

[235] Anja Rabich, Thomas Eisenbarth, and Luca Wilke. “Software-
based Undervolting Faults in AMD Zen Processors”. Thesis.

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/

96 Bibliography

[236] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. “CROSSTALK: Speculative Data Leaks
Across Cores Are Real”. In: IEEE S&P. 2021.

[237] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. “CrossTalk: Speculative Data Leaks Across
Cores Are Real”. In: IEEE S&P. 2021.

[238] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. “Flip Feng Shui: Hammering a Needle
in the Software Stack”. In: USENIX Security Symposium. 2016.

[239] Cezar Reinbrecht, Altamiro Susin, Lilian Bossuet, Georg Sigl, and
Johanna Sepúlveda. “Side channel attack on NoC-based MPSoCs
are practical: NoC Prime+Probe attack”. In: SBCCI. 2016.

[240] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jor-
dan, Dean M Tullsen, and Ashish Venkat. “I See Dead µops: Leak-
ing Secrets via Intel/AMD Micro-Op Caches”. In: (2021).

[241] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos,
Cristiano Giuffrida, and Kaveh Razavi. “SMASH: Synchronized
Many-sided Rowhammer Attacks From JavaScript”. In: USENIX
Security Symposium. 2021.

[242] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. “Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds”. In: ACM CCS. 2009.

[243] Aditya Rohan, Biswabandan Panda, and Prakhar Agarwal. “Re-
verse Engineering the Stream Prefetcher for Profit”. In: SILM
Workshop. 2020.

[244] Kevin W Rudd. “Efficient exception handling techniques for high-
performance processor architectures”. In: Departments of Electrical
Engineering and Computer Science, Stanford University, Technical
Report CSL-TR-97-732 (1997).

[245] Jeff Rupley, Brad Burgess, Brian Grayson, and Gerald D Zuraski.
“Samsung M3 processor”. In: MICRO (2019).

[246] Samsung. Samsung Z-SSD SZ985: Ultra-low Latency SSD for En-
terprise and Data Centers. 2018.

[247] Yiannakis Sazeides and James E Smith. “The predictability of data
values”. In: MICRO. 1997.

[248] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. SGAxe: How SGX Fails in Practice. 2020.

[249] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cris-

Bibliography 97

tiano Giuffrida. Addendum 2 to RIDL: Rogue In-flight Data Load.
2020.

[250] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. Addendum to RIDL: Rogue In-flight Data Load.
2019.

[251] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. “RIDL: Rogue In-flight Data Load”. In: IEEE
S&P. 2019.

[252] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. “CacheOut: Leaking Data on Intel
CPUs via Cache Evictions”. In: IEEE S&P. 2020.

[253] Falk Schellenberg, Dennis RE Gnad, Amir Moradi, and Mehdi B
Tahoori. “An inside job: Remote power analysis attacks on FP-
GAs”. In: IEEE Design & Test (2021).

[254] Bruce Schneier. Applied cryptography: protocols, algorithms, and
source code in C. John Wiley & Sons, 2007.

[255] David Schor. Skylake (client). 2018. url: https://en.wikichip.
org/wiki/intel/microarchitectures/skylake_(client).

[256] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
“Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs”. In: arXiv:1905.05725 (2019).

[257] Michael Schwarz, Daniel Gruss, Moritz Lipp, Maurice Clémentine,
Thomas Schuster, Anders Fogh, and Stefan Mangard. “Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features”. In: AsiaCCS (2018).

[258] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. “Malware Guard Extension: Using SGX
to Conceal Cache Attacks”. In: DIMVA. 2017.

[259] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. “ConTExT: A Generic Approach
for Mitigating Spectre”. In: NDSS. 2020.

[260] Michael Schwarz, Moritz Lipp, and Daniel Gruss. “JavaScript
Zero: Real JavaScript and Zero Side-Channel Attacks”. In: NDSS.
2018.

[261] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
“KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks”. In: NDSS. 2018.

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

98 Bibliography

[262] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Ju-
lian Stecklina, Thomas Prescher, and Daniel Gruss. “ZombieLoad:
Cross-Privilege-Boundary Data Sampling”. In: ACM CCS. 2019.

[263] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. “Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript”. In: FC.
2017.

[264] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. “NetSpectre: Read Arbitrary Memory over Net-
work”. In: ESORICS. 2019.

[265] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. “Malware Guard Extension: Abusing
Intel SGX to conceal cache attacks”. In: Cybersecurity (2020).

[266] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM
rowhammer bug to gain kernel privileges”. In: Black Hat Brief-
ings. 2015.

[267] O Seongil, Young Hoon Son, Nam Sung Kim, and Jung Ho Ahn.
“Row-buffer decoupling: A case for low-latency DRAM microar-
chitecture”. In: ISCA. 2014.

[268] John Paul Shen and Mikko H Lipasti. Modern Processor Design:
Fundamentals of Superscalar Processors. Waveland Press, 2013.

[269] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong,
and Junbeom Hur. “Unveiling Hardware-based Data Prefetcher, a
Hidden Source of Information Leakage”. In: ACM SIGSAC. 2018.

[270] Olin Sibert, Phillip Porras, and Robert Lindell. “The Intel 80x86
Processor Architecture: Pitfalls for Secure Systems”. In: IEEE
S&P. 1995.

[271] Wei Song and Peng Liu. “Dynamically Finding Minimal Eviction
Sets Can be Quicker Than You Think for Side-Channel Attacks
Against the LLC”. In: RAID. 2019.

[272] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on
Memory Consistency and Cache Coherence. 2011.

[273] Spectre Variant 4. 2018. url: https://bugs.chromium.org/p/
project-zero/issues/detail?id=1528.

[274] Raphael Spreitzer, Felix Kirchengast, Daniel Gruss, and Stefan
Mangard. “ProcHarvester: Fully Automated Analysis of Procfs
Side-Channel Leaks on Android”. In: AsiaCCS. 2018.

[275] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Ste-
fan Mangard. “Systematic classification of side-channel attacks: a

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

Bibliography 99

case study for mobile devices”. In: IEEE Communications Surveys
& Tutorials (2017).

[276] Julian Stecklina and Thomas Prescher. “LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels”. In:
arXiv:1806.07480 (2018).

[277] Lixin Su and Mikko H Lipasti. “Speculative optimization using
hardware-monitored guarded regions for Java virtual machines”.
In: IEEE VEE. 2007.

[278] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin.
“Microarchitectural Minefields: 4K-aliasing Covert Channel and
Multi-tenant Detection in IaaS Clouds”. In: NDSS. 2018.

[279] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho.
“Memory Deduplication as a Threat to the Guest OS”. In: EuroSys.
2011.

[280] Jakub Szefer. “Survey of microarchitectural side and covert chan-
nels, attacks, and defenses”. In: Journal of Hardware and Systems
Security (2019).

[281] Andrew S Tanenbaum and Herbert Bos. Modern operating sys-
tems. Pearson, 2015.

[282] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLK-
SCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement”. In: USENIX Security Symposium. 2017.

[283] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh Razavi. “Throwhammer:
Rowhammer Attacks over the Network and Defenses”. In: USENIX
ATC. 2018.

[284] Elvira Teran, Zhe Wang, and Daniel A Jiménez. “Perceptron learn-
ing for reuse prediction”. In: MICRO. 2016.

[285] Shanquan Tian, Shayan Moini, Adam Wolnikowski, Daniel Hol-
comb, Russell Tessier, and Jakub Szefer. “Remote Power Attacks
on the Versatile Tensor Accelerator in Multi-Tenant FPGAs”. In:
IEEE FCCM. 2021.

[286] Robert M Tomasulo. “An efficient algorithm for exploiting multi-
ple arithmetic units”. In: IBM Journal of Research and Develop-
ment (1967).

[287] Eran Tromer, Dag Arne Osvik, and Adi Shamir. “Efficient Cache
Attacks on AES, and Countermeasures”. In: Journal of Cryptology
(2010).

100 Bibliography

[288] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. 2018. url: https://support.google.com/faqs/
answer/7625886.

[289] Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede. “Exploiting
hardware performance counters”. In: FDTC. 2008.

[290] Vladimir Uzelac and Aleksandar Milenkovic. “Experiment flows
and microbenchmarks for reverse engineering of branch predictor
structures”. In: IEEE ISPASS. 2009.

[291] V8 team. v8 - Documentation. 2019. url: https://v8.dev/docs.
[292] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris

Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. “Breaking Virtual Memory Pro-
tection and the SGX Ecosystem with Foreshadow”. In: MICRO
(2019).

[293] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. “Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Ex-
ecution”. In: USENIX Security Symposium. 2018.

[294] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. “LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection”. In: IEEE S&P.
2020.

[295] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Nemesis:
Studying Microarchitectural Timing Leaks in Rudimentary CPU
Interrupt Logic”. In: ACM CCS. 2018.

[296] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Con-
trol”. In: SysTEX. 2017.

[297] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. “Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution”. In:
USENIX Security Symposium. 2017.

[298] Evangelos Vasilakis. “An Instruction Level Energy Characteriza-
tion of ARM Processors”. In: FORTH-ICS/TR-450 (2015).

[299] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer,
Daniel Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos,
Kaveh Razavi, and Cristiano Giuffrida. “Drammer. Deterministic
Rowhammer Attacks on Mobile Platforms”. In: ACM CCS. 2016.

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://v8.dev/docs

Bibliography 101

[300] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer,
Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos,
Kaveh Razavi, and Cristiano Giuffrida. “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms”. In: ACM CCS. 2016.

[301] Bill Venners. “The java virtual machine”. In: Java and the Java
Virtual Machine: Definition, Verification, Validation (1998).

[302] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf.
“CacheQuery: Learning Replacement Policies from Hardware
Caches”. In: PLDI. 2020.

[303] Pepe Vila, Boris Köpf, and Jose Morales. “Theory and Practice of
Finding Eviction Sets”. In: IEEE S&P. 2019.

[304] Lucian N Vintan and Mihaela Iridon. “Towards a high performance
neural branch predictor”. In: IEEE IJCNN. 1999.

[305] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Di-
estelhorst, Bashir M Al-Hashimi, and Geoff V Merrett. “BRB: Mit-
igating Branch Predictor Side-Channels”. In: IEEE HPCA. 2019.

[306] Andrew J Walker, Sungkwon Lee, and Dafna Beery. “On DRAM
Rowhammer and the Physics of Insecurity”. In: IEEE TED. 2021.

[307] Jack Wampler, Ian Martiny, and Eric Wustrow. “ExSpectre: Hid-
ing Malware in Speculative Execution.” In: NDSS. 2019.

[308] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. “Volcano:
Stateless Cache Side-channel Attack by Exploiting Mesh Intercon-
nect”. In: arXiv:2103.04533 (2021).

[309] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael Abu-
Ghazaleh, Srikanth V Krishnamurthy, Edward JM Colbert, and
Paul Yu. “Unveiling your keystrokes: A Cache-based Side-channel
Attack on Graphics Libraries”. In: NDSS. 2019.

[310] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V
Krishnamurthy. “PAPP: Prefetcher-Aware Prime and Probe Side-
channel Attack”. In: DAC. 2019.

[311] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tu-
lika Mitra, and Abhik Roychoudhury. “oo7: Low-overhead Defense
against Spectre attacks via Program Analysis”. In: Transactions on
Software Engineering (2019).

[312] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal.
“DRAMDig: a knowledge-assisted tool to uncover DRAM address
mapping”. In: DAC. 2020.

[313] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, Xi-
aoFeng Wang, Vincent Bindschaedler, Haixu Tang, and Carl A

102 Bibliography

Gunter. “Leaky Cauldron on the Dark Land: Understanding Mem-
ory Side-Channel Hazards in SGX”. In: ACM CCS. 2017.

[314] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. “Timing chan-
nel protection for a shared memory controller”. In: IEEE HPCA.
2014.

[315] Zhenghong Wang and Ruby B Lee. “Covert and Side Channels due
to Processor Architecture”. In: ACSAC. 2006.

[316] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz,
and Christian Rossow. “Osiris: Automated Discovery Of Microar-
chitectural Side Channels”. In: USENIX Security Symposium.
2021.

[317] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. “Single
Trace Attack Against RSA Key Generation in Intel SGX SSL”.
In: AsiaCCS. 2018.

[318] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custo-
dio, Thomas Eisenbarth, and Berk Sunar. “JackHammer: Effi-
cient Rowhammer on Heterogeneous FPGA-CPU Platforms”. In:
arXiv:1912.11523 (2019).

[319] Pu Wen. Add support for Hygon Fam 18h (Dhyana) RAPL. 2019.
url: https://patchwork.kernel.org/patch/11123607/.

[320] Felix Wilhelm. PoC for breaking hypervisor ASLR using branch
target buffer collisions. 2016. url: https://github.com/felixw
ilhelm/mario_baslr.

[321] Henry Wong. Intel Ivy Bridge Cache Replacement Policy. Re-
trieved on July 16, 2015. url: http://blog.stuffedcow.net/
2013/01/ivb-cache-replacement/.

[322] Henry Wong. Microbenchmarking Return Address Branch Pre-
diction. Retrieved on September 17, 2018. url: http://blog.
stuffedcow.net/2018/04/ras-microbenchmarks/.

[323] Henry Wong. The Microarchitecture Behind Meltdown. 2018. url:
http://blog.stuffedcow.net/2018/05/meltdown-microarchi
tecture/.

[324] xenbits. Information leak via power sidechannel. 2020. url: https:
//xenbits.xen.org/xsa/advisory-351.html.

[325] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. “Secu-
rity implications of memory deduplication in a virtualized envi-
ronment”. In: IEEE DSN. 2013.

[326] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang.
“Stacco: Differentially Analyzing Side-channel Traces for Detect-

https://patchwork.kernel.org/patch/11123607/
https://github.com/felixwilhelm/mario_baslr
https://github.com/felixwilhelm/mario_baslr
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2018/04/ras-microbenchmarks/
http://blog.stuffedcow.net/2018/04/ras-microbenchmarks/
http://blog.stuffedcow.net/2018/05/meltdown-microarchitecture/
http://blog.stuffedcow.net/2018/05/meltdown-microarchitecture/
https://xenbits.xen.org/xsa/advisory-351.html
https://xenbits.xen.org/xsa/advisory-351.html

Bibliography 103

ing SSL/TLS Vulnerabilities in Secure Enclaves”. In: ACM CCS.
2017.

[327] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodor-
escu. “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer
Attacks and Privilege Escalation”. In: USENIX Security Sympo-
sium. 2016.

[328] Wenjie Xiong, Stefan Katzenbeisser, and Jakub Szefer. “Leaking
Information Through Cache LRU States in Commercial Processors
and Secure Caches”. In: IEEE TC (2021).

[329] Wenjie Xiong and Jakub Szefer. “Survey of Transient Execution
Attacks”. In: arXiv:2005.13435 (2020).

[330] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems”. In: IEEE S&P. 2015.

[331] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. “A Study on
Power Side Channels on Mobile Devices”. In: ACM Internetware.
2015.

[332] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. “Attack directories,
not caches: Side channel attacks in a non-inclusive world”. In: IEEE
S&P. 2019.

[333] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. “Deephammer: De-
pleting the intelligence of deep neural networks through targeted
chain of bit flips”. In: USENIX Security Symposium. 2020.

[334] Yuval Yarom and Naomi Benger. “Recovering OpenSSL ECDSA
Nonces Using the FLUSH+RELOAD Cache Side-channel Attack”.
In: Cryptology ePrint Archive, Report 2014/140 (2014).

[335] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX
Security Symposium. 2014.

[336] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Ger-
not Heiser. “Mapping the Intel Last-Level Cache”. In: Cryptology
ePrint Archive, Report 2015/905 (2015).

[337] Tse-Yu Yeh and Yale N Patt. “Two-level adaptive training branch
prediction”. In: MICRO. 1991.

[338] Andreas Zankl, Hermann Seuschek, Gorka Irazoqui, and Berk Gul-
mezoglu. “Side-channel Attacks in the Internet of Things: Threats
and Challenges”. In: Research Anthology on Artificial Intelligence
Applications in Security. 2021.

104 Bibliography

[339] Shaza Zeitouni, David Gens, and Ahmad-Reza Sadeghi. “It’s
Mammer Time: How to Attack (Rowhammer-based) DRAM-
PUFs”. In: DAC. 2018.

[340] Weijuan Zhang, Xiaoqi Jia, Chang Wang, Shengzhi Zhang, Qingjia
Huang, Mingsheng Wang, and Peng Liu. “A Comprehensive Study
of Co-residence Threat in Multi-tenant Public PaaS Clouds”. In:
ICICS. 2016.

[341] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. “Return-
oriented Flush-Reload Side Channels on ARM and their Impli-
cations for Android Devices”. In: ACM CCS. 2016.

[342] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-Tenant Side-Channel Attacks in PaaS Clouds”. In:
ACM CCS. 2014.

[343] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-VM Side Channels and Their Use to Extract Private
Keys”. In: ACM CCS. 2012.

[344] Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao. “Red Alert
for Power Leakage: Exploiting Intel RAPL-Induced Side Chan-
nels”. In: AsiaCCS. 2021.

[345] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, and Zhi
Wang. TeleHammer: A Formal Model of Implicit Rowhammer.
2020. eprint: 1912.03076.

[346] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, and
Zhi Wang. “TeleHammer: Cross-Privilege-Boundary Rowhammer
through Implicit Accesses”. In: arXiv:1912.03076 (2019).

[347] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang,
and Yuval Yarom. “PThammer: Cross-User-Kernel-Boundary
Rowhammer through Implicit Accesses”. In: MICRO. 2020.

[348] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang, Jiazhen Li,
Lixin Zhang, Xuehai Qian, and Dan Meng. “A lightweight isolation
mechanism for secure branch predictors”. In: arXiv:2005.08183
(2020).

[349] Mark Zhao and G Edward Suh. “FPGA-based Remote Power Side-
Channel Attacks”. In: IEEE S&P. 2018.

[350] Yinyuan Zhao, Xiaohang Wang, Yingtao Jiang, Liang Wang,
Amit Kumar Singh, Letian Huang, and Mei Yang. “An enhanced
planned obsolescence attack by aging networks-on-chip”. In: JSA
(2021).

1912.03076

Part II.

Publications

105

5
Take A Way: Exploring the Security

Implications of AMD’s Cache Way
Predictors

Publication Data
Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémen-
tine Maurice, and Daniel Gruss. “Take a Way: Exploring the Security
Implications of AMD’s Cache Way Predictors”. In: AsiaCCS. 2020

Contributions
Main author.

107

108 Chapter 5. Take A Way

Take A Way: Exploring the Security Implications of
AMD’s Cache Way Predictors

Moritz Lipp1, Vedad Hadžić1, Michael Schwarz1, Arthur Perais2,
Clémentine Maurice3, Daniel Gruss1

1 Graz University of Technology 2 Unaffiliated 3 Univ Rennes, CNRS,
IRISA

Abstract

To optimize the energy consumption and performance of their CPUs,
AMD introduced a way predictor for the L1-data (L1D) cache to pre-
dict in which cache way a certain address is located. Consequently, only
this way is accessed, significantly reducing the power consumption of the
processor.

In this paper, we are the first to exploit the cache way predictor. We
reverse-engineered AMD’s L1D cache way predictor in microarchitectures
from 2011 to 2019, resulting in two new attack techniques. With Col-
lide+Probe, an attacker can monitor a victim’s memory accesses without
knowledge of physical addresses or shared memory when time-sharing a
logical core. With Load+Reload, we exploit the way predictor to obtain
highly-accurate memory-access traces of victims on the same physical
core. While Load+Reload relies on shared memory, it does not invali-
date the cache line, allowing stealthier attacks that do not induce any
last-level-cache evictions.

We evaluate our new side channel in different attack scenarios. We
demonstrate a covert channel with up to 588.9 kB/s, which we also use
in a Spectre attack to exfiltrate secret data from the kernel. Further-
more, we present a key-recovery attack from a vulnerable cryptographic
implementation. We also show an entropy-reducing attack on ASLR of
the kernel of a fully patched Linux system, the hypervisor, and our own
address space from JavaScript. Finally, we propose countermeasures in
software and hardware mitigating the presented attacks.

1. Introduction 109

1. Introduction

With caches, out-of-order execution, speculative execution, or simultane-
ous multithreading (SMT), modern processors are equipped with numer-
ous features optimizing the system’s throughput and power consump-
tion. Despite their performance benefits, these optimizations are often
not designed with a central focus on security properties. Hence, microar-
chitectural attacks have exploited these optimizations to undermine the
system’s security.

Cache attacks on cryptographic algorithms were the first microarchitec-
tural attacks [12, 42, 59]. Osvik et al. [58] showed that an attacker can ob-
serve the cache state at the granularity of a cache set using Prime+Probe.
Yarom et al. [81] proposed Flush+Reload, a technique that can observe
victim activity at a cache-line granularity. Both Prime+Probe and Flush+
Reload are generic techniques that allow implementing a variety of dif-
ferent attacks, e.g., on cryptographic algorithms [12, 25, 50, 54, 59, 66,
81], web server function calls [83], user input [31, 48, 82], and address
layout [24]. Flush+Reload requires shared memory between the attacker
and the victim. When attacking the last-level cache, Prime+Probe re-
quires it to be shared and inclusive. While some Intel processors do not
have inclusive last-level caches anymore [80], AMD always focused on
non-inclusive or exclusive last-level caches [37]. Without inclusivity and
shared memory, these attacks do not apply to AMD CPUs.

With the recent transient-execution attacks, adversaries can directly ex-
filtrate otherwise inaccessible data on the system [41, 49, 64, 68, 74].
However, AMD’s microarchitectures seem to be vulnerable to only a few
of them [7, 16]. Consequently, AMD CPUs do not require software mit-
igations with high performance penalties. Additionally, with the perfor-
mance improvements of the latest microarchitectures, the share of AMD
CPU’s used is currently increasing in the cloud [2] and consumer desk-
tops [34].

Since the Bulldozer microarchitecture [5], AMD uses an L1D cache way
predictor in their processors. The predictor computes a µTag using an
undocumented hash function on the virtual address. This µTag is used
to look up the L1D cache way in a prediction table. Hence, the CPU has
to compare the cache tag in only one way instead of all possible ways,
reducing the power consumption.

In this paper, we present the first attacks on cache way predictors. For

110 Chapter 5. Take A Way

this purpose, we reverse-engineered the undocumented hash function of
AMD’s L1D cache way predictor in microarchitectures from 2001 up to
2019. We discovered two different hash functions that have been im-
plemented in AMD’s way predictors. Knowledge of these functions is
the basis of our attack techniques. In the first attack technique, Col-
lide+Probe, we exploit µTag collisions of virtual addresses to monitor
the memory accesses of a victim time-sharing the same logical core. Col-
lide+Probe does not require shared memory between the victim and the
attacker, unlike Flush+Reload, and no knowledge of physical addresses,
unlike Prime+Probe. In the second attack technique, Load+Reload, we
exploit the property that a physical memory location can only reside
once in the L1D cache. Thus, accessing the same location with a differ-
ent virtual address evicts the location from the L1D cache. This allows
an attacker to monitor memory accesses on a victim, even if the victim
runs on a sibling logical core. Load+Reload is on par with Flush+Reload
in terms of accuracy and can achieve a higher temporal resolution as it
does not invalidate a cache line in the entire cache hierarchy. This allows
stealthier attacks that do not induce last-level-cache evictions.

We demonstrate the implications of Collide+Probe and Load+Reload in
different attack scenarios. First, we implement a covert channel between
two processes with a transmission rate of up to 588.9 kB/s outperforming
state-of-the-art covert channels. Second, we use µTag collisions to reduce
the entropy of different ASLR implementations. We break kernel ASLR
on a fully updated Linux system and demonstrate entropy reduction on
user-space applications, the hypervisor, and even on our own address
space from sandboxed JavaScript. Furthermore, we successfully recover
the secret key using Collide+Probe on an AES T-table implementation.
Finally, we use Collide+Probe as a covert channel in a Spectre attack
to exfiltrate secret data from the kernel. While we still use a cache-
based covert channel, in contrast to previous attacks [41, 44, 51, 70],
we do not rely on shared memory between the user application and the
kernel. We propose different countermeasures in software and hardware,
mitigating Collide+Probe and Load+Reload on current systems and in
future designs.

Contributions. The main contributions are as follows:

1. We reverse engineer the L1D cache way predictor of AMD CPUs and
provide the addressing functions for virtually all microarchitectures.

2. Background 111

2. We uncover the L1D cache way predictor as a source of side-channel
leakage and present two new cache-attack techniques, Collide+Probe
and Load+Reload.

3. We show that Collide+Probe is on par with Flush+Reload and
Prime+Probe but works in scenarios where other cache attacks fail.

4. We demonstrate and evaluate our attacks in sandboxed
JavaScript and virtualized cloud environments.

Responsible Disclosure. We responsibly disclosed our findings to AMD
on August 23rd, 2019.

Outline. Section 2 provides background information on CPU caches,
cache attacks, way prediction, and simultaneous multithreading (SMT).
Section 3 describes the reverse engineering of the way predictor that is
necessary for our Collide+Probe and Load+Reload attack techniques out-
lined in Section 4. In Section 5, we evaluate the attack techniques in
different scenarios. Section 6 discusses the interactions between the way
predictor and other CPU features. We propose countermeasures in Sec-
tion 7 and conclude our work in Section 8.

2. Background
In this section, we provide background on CPU caches, cache attacks,
high-resolution timing sources, simultaneous multithreading (SMT), and
way prediction.

2.1. CPU Caches

CPU caches are a type of memory that is small and fast, that the CPU
uses to store copies of data from main memory to hide the latency of
memory accesses. Modern CPUs have multiple cache levels, typically
three, varying in size and latency: the L1 cache is the smallest and fastest,
while the L3 cache, also called the last-level cache, is bigger and slower.

Modern caches are set-associative, i.e., a cache line is stored in a fixed
set determined by either its virtual or physical address. The L1 cache
typically has 8 ways per set, and the last-level cache has 12 to 20 ways,

112 Chapter 5. Take A Way

depending on the size of the cache. Each line can be stored in any of
the ways of a cache set, as determined by the replacement policy. While
the replacement policy for the L1 and L2 data cache on Intel is most of
the time pseudo least-recently-used (LRU) [1], the replacement policy for
the last-level cache (LLC) can differ [78]. Intel CPUs until Sandy Bridge
use pseudo least-recently-used (LRU), for newer microarchitectures it is
undocumented [78].

The last-level cache is physically indexed and shared across cores of the
same CPU. In most Intel implementations, it is also inclusive of L1 and
L2, which means that all data in L1 and L2 is also stored in the last-
level cache. On AMD Zen processors, the L1D cache is virtually indexed
and physically tagged (VIPT). On AMD processors, the last-level cache
is a non-inclusive victim cache while on most Intel CPUs it is inclusive.
To maintain the inclusiveness property, every line evicted from the last-
level cache is also evicted from L1 and L2. The last-level cache, though
shared across cores, is also divided into slices. The undocumented hash
function on Intel CPUs that maps physical addresses to slices has been
reverse-engineered [52].

2.2. Cache Attacks

Cache attacks are based on the timing difference between accessing cached
and non-cached memory. They can be leveraged to build side-channel
attacks and covert channels. Among cache attacks, access-driven attacks
are the most powerful ones, where an attacker monitors its own activity
to infer the activity of its victim. More specifically, an attacker detects
which cache lines or cache sets the victim has accessed.

Access-driven attacks can further be categorized into two types, depend-
ing on whether or not the attacker shares memory with its victim, e.g.,
using a shared library or memory deduplication. Flush+Reload [81],
Evict+Reload [31] and Flush+Flush [30] all rely on shared memory that
is also shared in the cache to infer whether the victim accessed a par-
ticular cache line. The attacker evicts the shared data either by using
the clflush instruction (Flush+Reload and Flush+Flush), or by access-
ing congruent addresses, i.e., cache lines that belong to the same cache
set (Evict+Reload). These attacks have a very fine granularity (i.e., a
64-byte memory region), but they are not applicable if shared memory is
not available in the corresponding environment. Especially in the cloud,
shared memory is usually not available across VMs as memory deduplica-

2. Background 113

tion is disabled for security concerns [75]. Irazoqui et al. [37] showed that
an attack similar to Flush+Reload is also possible in a cross-CPU attack.
It exploits that cache invalidations (e.g., from clflush) are propagated
to all physical processors installed in the same system. When reloading
the data, as in Flush+Reload, they can distinguish the timing difference
between a cache hit in a remote processor and a cache miss, which goes
to DRAM.

The second type of access-driven attacks, called Prime+Probe [38, 50, 59],
does not rely on shared memory and is, thus, applicable to more restrictive
environments. As the attacker has no shared cache line with the victim,
the clflush instruction cannot be used. Thus, the attacker has to access
congruent addresses instead (cf. Evict+Reload). The granularity of the
attack is coarser, i.e., an attacker only obtains information about the
accessed cache set. Hence, this attack is more susceptible to noise. In
addition to the noise caused by other processes, the replacement policy
makes it hard to guarantee that data is actually evicted from a cache
set [29].

With the general development to switch from inclusive caches to non-
inclusive caches, Intel introduced cache directories. Yan et al. [80] showed
that the cache directory is still inclusive, and an attacker can evict a
cache directory entry of the victim to invalidate the corresponding cache
line. This allows mounting Prime+Probe and Evict+Reload attacks on
the cache directory. They also analyzed whether the same attack works
on AMD Piledriver and Zen processors and discovered that it does not,
because these processors either do not use a directory or use a directory
with high associativity, preventing cross-core eviction either way. Thus, it
remains to be answered what types of eviction-based attacks are feasible
on AMD processors and on which microarchitectural structures.

2.3. High-resolution Timing

For most cache attacks, the attacker requires a method to measure timing
differences in the range of a few CPU cycles. The rdtsc instruction
provides unprivileged access to a model-specific register returning the
current cycle count and is commonly used for cache attacks on Intel CPUs.
Using this instruction, an attacker can get timestamps with a resolution
between 1 and 3 cycles on modern CPUs. On AMD CPUs, this register
has a cycle-accurate resolution until the Zen microarchitecture. Since
then, it has a significantly lower resolution as it is only updated every 20

114 Chapter 5. Take A Way

to 35 cycles (cf. Section A). Thus, rdtsc is only sufficient if the attacker
can repeat the measurement and use the average timing differences over
all executions. If an attacker tries to monitor one-time events, the rdtsc
instruction on AMD cannot directly be used to observe timing differences,
which are only a few CPU cycles.

The AMD Ryzen microarchitecture provides the Actual Performance Fre-
quency Clock Counter (APERF counter) [3] which can be used to improve
the accuracy of the timestamp counter. However, it can only be accessed
in kernel mode. Although other timing primitives provided by the ker-
nel, such as get_monotonic_time, provide nanosecond resolution, they
can be more noisy and still not sufficiently accurate to observe timing
differences, which are only a few CPU cycles.

Hence, on more recent AMD CPUs, it is necessary to resort to a dif-
ferent method for timing measurements. Lipp et al. [48] showed that
counting threads can be used on ARM-based devices where unprivileged
high-resolution timers are unavailable. Schwarz et al. [66] showed that a
counting thread can have a higher resolution than the rdtsc instruction
on Intel CPUs. A counting thread constantly increments a global variable
used as a timestamp without relying on microarchitectural specifics and,
thus, can also be used on AMD CPUs.

2.4. Simultaneous Multithreading (SMT)

Simultaneous Multithreading (SMT) allows optimizing the efficiency of
superscalar CPUs. SMT enables multiple independent threads to run in
parallel on the same physical core sharing the same resources, e.g., execu-
tion units and buffers. This allows utilizing the available resources better,
increasing the efficiency and throughput of the processor. While on an
architectural level, the threads are isolated from each other and cannot
access data of other threads, on a microarchitectural level, the same phys-
ical resources may be used. Intel introduced SMT as Hyperthreading in
2002. AMD introduced 2-way SMT with the Zen microarchitecture in
2017.

Recently, microarchitectural attacks also targeted different shared re-
sources: the TLB [23], store buffer [15], execution ports [8, 13], fill-
buffers [64, 68], and load ports [64, 68].

3. Reverse-engineering AMDs Way Predictor 115

2.5. Way Prediction
To look up a cache line in a set-associative cache, bits in the address
determine in which set the cache line is located. With an n-way cache,
n possible entries need to be checked for a tag match. To avoid wast-
ing power for n comparisons leading to a single match, Inoue et al. [36]
presented way prediction for set-associative caches. Instead of checking
all ways of the cache, a way is predicted, and only this entry is checked
for a tag match. As only one way is activated, the power consumption
is reduced. If the prediction is correct, the access has been completed,
and access times similar to a direct-mapped cache are achieved. If the
prediction is incorrect, a normal associative check has to be performed.

We only describe AMD’s way predictor [6, 22] in more detail in the follow-
ing section. However, other CPU manufacturers hold patents for cache
way prediction as well [56, 63]. CPU’s like the Alpha 21264 [40] also
implement way prediction to combine the advantages of set-associative
caches and the fast access time of a direct-mapped cache.

3. Reverse-engineering AMDs Way Predictor
In this section, we explain how to reverse-engineer the L1D way predic-
tor used in AMD CPUs since the Bulldozer microarchitecture. First,
we explain how the AMD L1D way predictor predicts the L1D cache
way based on hashed virtual addresses. Second, we reverse-engineer the
undocumented hash function used for the way prediction in different mi-
croarchitectures. With the knowledge of the hash function and how the
L1D way predictor works, we can then build powerful side-channel attacks
exploiting AMD’s way predictor.

3.1. Way Predictor
Since the AMD Bulldozer microarchitecture, AMD uses a way predictor
in the L1 data cache [5]. By predicting the cache way, the CPU only
has to compare the cache tag in one way instead of all ways. While this
reduces the power consumption of an L1D lookup [6], it may increase the
latency in the case of a misprediction.

Every cache line in the L1D cache is tagged with a linear-address-based
µTag [6, 22]. This µTag is computed using an undocumented hash func-
tion, which takes the virtual address as the input. For every memory load,

116 Chapter 5. Take A Way

µTag µTag

Way 1 Way n

. . .Set

= =

VA

H
as
h

µTag

Early MissWay Prediction

L1D L2

Figure 5.1.: Simplified illustration of AMD’s way predictor.

the way predictor predicts the cache way of every memory load based on
this µTag. As the virtual address, and thus the µTag, is known before
the physical address, the CPU does not have to wait for the TLB lookup.
Figure 5.1 illustrates AMD’s way predictor. If there is no match for the
calculated µTag, an early miss is detected, and a request to L2 issued.

Aliased cache lines can induce performance penalties, i.e., two different
virtual addresses map to the same physical location. VIPT caches with a
size lower or equal the number of ways multiplied by the page size behave
functionally like PIPT caches. Hence, there are no duplicates for aliased
addresses and, thus, in such a case where data is loaded from an aliased
address, the load sees an L1D cache miss and thus loads the data from the
L2 data cache [6]. If there are multiple memory loads from aliased virtual
addresses, they all suffer an L1D cache miss. The reason is that every
load updates the µTag and thus ensures that any other aliased address
sees an L1D cache miss [6]. In addition, if two different virtual addresses
yield the same µTag, accessing one after the other yields a conflict in the
µTag table. Thus, an L1D cache miss is suffered, and the data is loaded
from the L2 data cache.

3.2. Hash Function

The L1D way predictor computes a hash (µTag) from the virtual address,
which is used for the lookup to the way-predictor table. We assume that
this undocumented hash function is linear based on the knowledge of other
such hash functions, e.g., the cache-slice function of Intel CPUs [52], the

3. Reverse-engineering AMDs Way Predictor 117

DRAM-mapping function of Intel, ARM, and AMD CPUs [4, 60, 71],
or the hash function for indirect branch prediction on Intel CPUs [41].
Moreover, we expect the size of the µTag to be a power of 2, resulting in
a linear function.

We rely on µTag collisions to reverse-engineer the hash function. We
pick two random virtual addresses that map to the same cache set. If
the two addresses have the same µTag, repeatedly accessing them one
after the other results in conflicts. As the data is then loaded from the
L2 cache, we can either measure an increased access time or observe an
increased number in the performance counter for L1 misses, as illustrated
in Figure 5.2.

Creating Sets. With the ability to detect conflicts, we can build N
sets representing the number of entries in the µTag table. First, we
create a pool v of virtual addresses, which all map to the same cache set,
i.e., where bits 6 to 11 of the virtual address are the same. We start
with one set S0 containing one random virtual address out of the pool v.
For each other randomly-picked address vx, we measure the access time
while alternatively accessing vx and an address from each set S0...n. If
we encounter a high access time, we measure conflicts and add vx to that
set. If vx does not conflict with any existing set, we create a new set Sn+1

containing vx.

In our experiments, we recovered 256 sets. Due to measurement errors
caused by system noise, there are sets with single entries that can be
discarded. Furthermore, to retrieve all sets, we need to make sure to test
against virtual addresses where a wide range of bits is set covering the
yet unknown bits used by the hash function.

Recovering the Hash Function. Every virtual address, which is in the
same set, produces the same hash. To recover the hash function, we need
to find which bits in the virtual address are used for the 8 output bits
that map to the 256 sets. Due to its linearity, each output bit of the hash
function can be expressed as a series of XORs of bits in the virtual address.
Hence, we can express the virtual addresses as an over-determined linear
equation system in finite field 2, i.e., GF(2). The solutions of the equation
system are then linear functions that produce the µTag from the virtual
address.

118 Chapter 5. Take A Way

0 20 40 60 80 100 120 140 160 180 200
0

500

1,000

1,500

2,000

Access time (increments)

M
ea
su
re
m
en
ts

Colliding addresses

Non-colliding addresses

Figure 5.2.: Measured duration of 250 alternating accesses to addresses
with and without the same µTag.

To build the equation system, we use each of the virtual addresses in the
256 sets. For every virtual address, the b bits of the virtual address a
are the coefficients, and the bits of the hash function x are the unknown.
The right-hand side of the equation y is the same for all addresses in the
set. Hence, for every address a in set s, we get an equation of the form
ab−1xb−1 ⊕ ab−2xb−2 ⊕ · · · ⊕ a12x12 = ys.

While the least-significant bits 0-5 define the cache line offset, note that
bits 6-11 determine the cache set and are not used for the µTag computa-
tion [6]. To solve the equation system, we used the Z3 SMT solver. Every
solution vector represents a function which XORs the virtual-address bits
that correspond to ‘1’-bits in the solution vector. The hash function is
the set of linearly independent functions, i.e., every linearly independent
function yields one bit of the hash function. The order of the bits cannot
be recovered. However, this is not relevant, as we are only interested
whether addresses collide, not in their numeric µTag value.

We successfully recovered the undocumented µTag hash function on the
AMD Zen, Zen+ and Zen 2 microarchitecture. The function illustrated
in Figure 5.3a uses bits 12 to 27 to produce an 8-bit value mapping to
one of the 256 sets:

h(v) = (v12 ⊕ v27) ‖ (v13 ⊕ v26) ‖ (v14 ⊕ v25) ‖ (v15 ⊕ v20) ‖
(v16 ⊕ v21) ‖ (v17 ⊕ v22) ‖ (v18 ⊕ v23) ‖ (v19 ⊕ v24)

We recovered the same function for various models of the AMD Zen mi-
croarchitectures that are listed in Table 5.1. For the Bulldozer microar-
chitecture (FX-4100), the Piledriver microarchitecture (FX-8350), and
the Steamroller microarchitecture (A10-7870K), the hash function uses
the same bits but in a different combination Figure 5.3b.

3. Reverse-engineering AMDs Way Predictor 119

. . . 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 . . .

f1
f2
f3

f4
f5
f6
f7
f8

(a) Zen, Zen+, Zen 2

. . . 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 . . .

f1
f2
f3
f4
f5
f6
f7
f8

(b) Bulldozer, Piledriver, Steamroller

Figure 5.3.: The recovered hash functions use bits 12 to 27 of the virtual
address to compute the µTag.

3.3. Simultaneous Multithreading

As AMD introduced simultaneous multithreading starting with the Zen
microarchitecture, the filed patent [22] does not cover any insights on how
the way predictor might handle multiple threads. While the way predictor
has been used since the Bulldozer microarchitecture [5], parts of the way
predictor have only been documented with the release of the Zen microar-
chitecture [6]. However, the influence of simultaneous multithreading is
not mentioned.

Typically, two sibling threads can either share a hardware structure com-
petitively with the option to tag entries or by statically partitioning them.
For instance, on the Zen microarchitecture, execution units, schedulers,
or the cache are competitively shared, and the store queue and retire
queue are statically partitioned [17]. Although the load queue, as well
as the instruction and data TLB, are competitively shared between the
threads, the data in these structures can only be accessed by the thread
owning it.

Under the assumption that the data structures of the way predictor are
competitively shared between threads, one thread could directly influence
the sibling thread, enabling cross-thread attacks. We validate this as-

120 Chapter 5. Take A Way

sumption by accessing two addresses with the same µTag on both threads.
However, we do not observe collisions, neither by measuring the access
time nor in the number of L1 misses. While we reverse-engineered the
same mapping function (see Section 3.2) for both threads, the possibility
remains that additional per-thread information is used for selecting the
data-structure entry, allowing one thread to evict entries of the other.

Hence, we extend the experiment in accessing addresses mapping to all
possible µTags on one hardware thread (and all possible cache sets).
While we repeatedly accessed one of these addresses on one hardware
thread, we measure the number of L1 misses to a single virtual address
on the sibling thread. However, we are not able to observe any collisions
and, thus, conclude that either individual structures are used per thread
or that they are shared but tagged for each thread. The only exceptions
are aliased loads as the hardware updates the µTag in the aliased way
(see Section 3.1).

In another experiment, we measure access times of two virtual addresses
that are mapped to the same physical address. As documented [6], loads
to an aliased address see an L1D cache miss and, thus, load the data
from the L2 data cache. While we verified this behavior, we additionally
observed that this is also the case if the other thread performs the other
load. Hence, the structure used is searched by the sibling thread, sug-
gesting a competitively shared structure that is tagged with the hardware
threads.

4. Using the Way Predictor for Side Channels
In this section, we present two novel side channels that leverage AMD’s
L1D cache way predictor. With Collide+Probe, we monitor memory
accesses of a victim’s process without requiring the knowledge of physical
addresses. With Load+Reload, while relying on shared memory similar
to Flush+Reload, we can monitor memory accesses of a victim’s process
running on the sibling hardware thread without invalidating the targeted
cache line from the entire cache hierarchy.

4.1. Collide+Probe

Collide+Probe is a new cache side channel exploiting µTag collisions in
AMD’s L1D cache way predictor. As described in Section 3, the way

4. Using the Way Predictor for Side Channels 121

predictor uses virtual-address-based µTags to predict the L1D cache way.
If an address is accessed, the µTag is computed, and the way-predictor
entry for this µTag is updated. If a subsequent access to a different
address with the same µTag is performed, a µTag collision occurs, and
the data has to be loaded from the L2D cache, increasing the access time.
With Collide+Probe, we exploit this timing difference to monitor accesses
to such colliding addresses.

Threat Model. For this attack, we assume that the attacker has unpriv-
ileged native code execution on the target machine and runs on the same
logical CPU core as the victim. Furthermore, the attacker can force the
execution of the victim’s code, e.g., via a function call in a library or a
system call.

Setup. The attacker first chooses a virtual address v of the victim that
should be monitored for accesses. This can be an arbitrary valid address
in the victim’s address space. There are no constraints in choosing the
address. The attacker can then compute the µTag µv of the target address
using the hash function from Section 3.2. We assume that ASLR is either
not active or has already been broken (cf. Section 5.2). However, although
with ASLR, the actual virtual address used in the victim’s process are
typically unknown to the attacker, it is still possible to mount an attack.
Instead of choosing a virtual address, the attacker initially performs a
cache template attack [31] to detect which of 256 possible µTags should
be monitored. Similar to Prime+Probe [58], where the attacker monitors
the activity of cache sets, the attacker monitors µTag collisions while
triggering the victim.

Attack. To mount a Collide+Probe attack, the attacker selects a virtual
address v′ in its own address space that yields the same µTag µv′ as the
target address v, i.e., µv = µv′ . As there are only 256 different µTags,
this can easily be done by randomly choosing addresses until the chosen
address has the same µTag. Moreover, both v and v′ have to be in the
same cache set. However, this is easily satisfiable, as the cache set is
determined by bits 6-11 of the virtual address. The attack consists of 3
phases performed repeatedly:

Phase 1: Collide. In the first phase, the attacker accesses the pre-
computed address v′ and, thus, updates the way predictor. The way

122 Chapter 5. Take A Way

predictor associates the cache line of v′ with its µTag µv′ and subsequent
memory accesses with the same µTag are predicted to be in the same
cache way. Since the victim’s address v has the same µTag (µv = µv′),
the µTag of that cache line is marked invalid and the data is effectively
inaccessible from the L1D cache.

Phase 2: Scheduling the victim. In the second phase, the victim is sched-
uled to perform its operations. If the victim does not access the monitored
address v, the way predictor remains in the same state as set up by the
attacker. Thus, the attacker’s data is still accessible from the L1D cache.
However, if the victim performs an access to the monitored address v, the
way predictor is updated again causing the attacker’s data to be inacces-
sible from L1D.

Phase 3: Probe. In the third and last phase of the attack, the attacker
measures the access time to the pre-computed address v′. If the victim
has not accessed the monitored address v, the data of the pre-computed
address v′ is still accessible from the L1D cache and the way prediction
is correct. Thus, the measured access time is fast. If the victim has
accessed the monitored address v and thus changed the state of the way
predictor, the attacker suffers an L1D cache miss when accessing v′, as
the prediction is now incorrect. The data of the pre-computed address v′

is loaded from the L2 cache and, thus, the measured access time is slow.
By distinguishing between these cases, the attacker can deduce whether
the victim has accessed the targeted data.

Listing 5.1 shows an implementation of the Collide+Probe attack where
the colliding address colliding_address is computed beforehand. The
code closely follows the three attack phases. First, the colliding address
is accessed. Then, the victim is scheduled, illustrated by the run_victim
function. Afterwards, the access time to the same address is measured
where the get_time function is implemented using a timing source dis-
cussed in Section 2.3. The measured access time allows the attacker to
distinguish between an L1D cache hit and an L2-cache hit and, thus, de-
duce if the victim has accessed the targeted address. As other accesses
with the same cache set influence the measurements, the attacker can
repeat the experiment to average out the measured noise.

Comparison to Other Cache Attacks. Finally, we want to discuss the
advantages and disadvantages of the Collide+Probe attack in compari-
son to other cache side-channel attacks. In contrast to Prime+Probe, no

4. Using the Way Predictor for Side Channels 123

1 access(colliding_address);
2 run_victim();
3 size_t begin = get_time();
4 access(colliding_address);
5 size_t end = get_time() − begin;
6 if ((end − begin) > THRESHOLD) report_event();

Listing 5.1: Implementation of the Collide+Probe attack

knowledge of physical addresses is required as the way predictor uses the
virtual address to compute µTags. Thus, with native code execution, an
attacker can find addresses corresponding to a specific µTag without any
effort. Another advantage of Collide+Probe over Prime+Probe is that a
single memory load is enough to guarantee that a subsequent load with
the same µTag is served from the L2 cache. With Prime+Probe, multi-
ple loads are required to ensure that the target address is evicted from
the cache. In modern Prime+Probe attacks, the last-level cache is tar-
geted [38, 48, 50, 67], and knowledge of physical addresses is required to
compute both the cache set and cache slice [52]. While Collide+Probe re-
quires knowledge of virtual addresses, they are typically easier to get than
physical addresses. In contrast to Flush+Reload, Collide+Probe does
neither require any specific instructions like clflush nor shared memory
between the victim and the attacker. A disadvantage is that distinguish-
ing L1D from L2 hits in Collide+Probe requires a timing primitive with
higher precision than required to distinguish cache hits from misses in
Flush+Reload.

4.2. Load+Reload

Load+Reload exploits the way predictor’s behavior for aliased address,
i.e., virtual addresses mapping to the same physical address. When ac-
cessing data through a virtual-address alias, the data is always requested
from the L2 cache instead of the L1D cache [6]. By monitoring the perfor-
mance counter for L1 misses, we also observe this behavior across hard-
ware threads. Consequently, this allows one thread to evict shared data
used by the sibling thread with a single load. Although the requested data
is stored in the L1D cache, it remains inaccessible for the other thread
and, thus, introduces a timing difference when it is accessed.

124 Chapter 5. Take A Way

Threat Model. For this attack, we assume that the attacker has un-
privileged native code execution on the target machine. The attacker
and victim run simultaneously on the same physical but different logical
CPU thread. The attack target is a memory location with virtual address
v shared between the attacker and victim, e.g., a shared library.

Attack. Load+Reload exploits the timing difference when accessing a
virtual-address alias v′ to build a cross-thread attack on shared memory.
The attack consists of 3 phases:

Phase 1: Load. In contrast to Flush+Reload, where the targeted address
v is flushed from the cache hierarchy, Load+Reload loads an address v′

with the same physical tag as v in the first phase. Thereby, it renders the
cache line containing v inaccessible from the L1D cache for the sibling
thread.

Phase 2: Scheduling the victim. In the second phase, the victim process
is scheduled. If the victim process accesses the targeted cache line with
address v, it sees an L1D cache miss. As a result, it loads the data from
the L2 cache, invalidating the attacker’s cache line with address v′ in the
process.

Phase 3: Reload. In the third phase, the attacker measures the access
time to the address v′. If the victim process has accessed the cache line
with address v, the attacker observes an L1D cache miss and loads the
data from the L2 cache, resulting in a higher access time. Otherwise,
if the victim has not accessed the cache line with address v, it is still
accessible in the L1D cache for the attacker and, thus, a lower access
time is measured. By distinguishing between both cases, the attacker can
deduce whether the victim has accessed the address v.

Comparison with Flush+Reload . While Flush+Reload invalidates a
cache line from the entire cache hierarchy, Load+Reload only evicts the
data for the sibling thread from the L1D. Thus, Load+Reload is limited
to cross-thread scenarios, while Flush+Reload is applicable to cross-core
scenarios too.

5. Case Studies 125

5. Case Studies

To demonstrate the impact of the side channel introduced by the µTag,
we implement different attack scenarios. In Section 5.1, we implement a
covert channel between two processes with a transmission rate of up to
588.9 kB/s outperforming state-of-the-art covert channels. In Section 5.2,
we break kernel ASLR, demonstrate how user-space ASLR can be weak-
ened, and reduce the ASLR entropy of the hypervisor in a virtual-machine
setting. In Section 5.3, we use Collide+Probe as a covert channel to ex-
tract secret data from the kernel in a Spectre attack. In Section 5.4, we
recover secret keys in AES T-table implementations.

Timing Measurement. As explained in Section 2.3, we cannot rely on
the rdtsc instruction for high-resolution timestamps on AMD CPUs since
the Zen microarchitecture. As we use recent AMD CPUs for our evalu-
ation, we use a counting thread (cf. Section 2.3) running on the sibling
logical CPU core for most of our experiments if applicable. In other cases,
e.g., a covert channel scenario, the counting thread runs on a different
physical CPU core.

Environment. We evaluate our attacks on different environments listed
in Table 5.1, with CPUs from K8 (released 2013) to Zen 2 (released in
2019). We have reverse-engineered 2 unique hash functions, as described
in Section 3. One is the same for all Zen microarchitectures, and the other
is the same for all previous microarchitectures with a way predictor.

5.1. Covert Channel

A covert channel is a communication channel between two parties that
are not allowed to communicate with each other. Such a covert channel
can be established by leveraging a side channel. The µTag used by AMD’s
L1D way prediction enables a covert channel for two processes accessing
addresses with the same µTag.

For the most simplistic form of the covert channel, two processes agree
on a µTag and a cache set (i.e., the least-significant 12 bits of the virtual
addresses are the same). This µTag is used for sending and receiving data
by inducing and measuring cache misses.

126 Chapter 5. Take A Way

Table 5.1.: Tested CPUs with their microarchitecture (µ-arch.) and
whether they have a way predictor (WP).

Setup CPU µ-arch. WP

Lab AMD Athlon 64 X2 3800+ K8 7

Lab AMD Turion II Neo N40L K10 7

Lab AMD Phenom II X6 1055T K10 7

Lab AMD E-450 Bobcat 7

Lab AMD Athlon 5350 Jaguar 7

Lab AMD FX-4100 Bulldozer 3

Lab AMD FX-8350 Piledriver 3

Lab AMD A10-7870K Steamroller 3

Lab AMD Ryzen Threadripper 1920X Zen 3

Lab AMD Ryzen Threadripper 1950X Zen 3

Lab AMD Ryzen Threadripper 1700X Zen 3

Lab AMD Ryzen Threadripper 2970WX Zen+ 3

Lab AMD Ryzen 7 3700X Zen 2 3

Cloud AMD EPYC 7401p Zen 3

Cloud AMD EPYC 7571 Zen 3

In the initialization phase, both parties allocate their own page. The
sender chooses a virtual address vS , and the receiver chooses a virtual
address vR that fulfills the aforementioned requirements, i.e., vS and vR
are in the same cache set and yield the same µTag. The µTag can simply
be computed using the reverse-engineered hash function of Section 3.

To encode a 1-bit to transmit, the sender accesses address vS . To trans-
mit a 0-bit, the sender does not access address vS . The receiving end
decodes the transmitted information by measuring the access time when
loading address vR. If the sender has accessed address vS to transmit a
1, the collision caused by the same µTag of vS and vR results in a slow
access time for the receiver. If the sender has not accessed address vS ,
no collision caused the address vR to be evicted from L1D and, thus, the
access time is fast. This timing difference allows the receiver to decode
the transmitted bit.

Different cache-based covert channels use the same side channel to trans-
mit multiple bits at once. For instance, different cache lines [30, 48] or
different cache sets [48, 53] are used to encode one bit of information
on its own. We extended the described µTag covert channel to transmit

5. Case Studies 127

0 10 20 30 40 50 60 70 80
0

200

400

600

Number of Channels

T
R

[k
B
/
s]

AMD Ryzen Threadripper 1920X

AMD EPYC 7751

Figure 5.4.: Mean transmission rate of the covert channels using multiple
parallel channels on different CPUs.

multiple bits in parallel by utilizing multiple cache sets. Instead of de-
coding the transmitted bit based on the timing difference of one address,
we use two addresses in two cache sets for every bit we transmit: One to
represent a 1-bit and the other to represent the 0-bit. As the L1D has 64
cache sets, we can transmit up to 32 bit in parallel without reusing cache
sets.

Performance Evaluation. We evaluated the transmission and error rate
of our covert channel in a local setting and a cloud setting by sending
and receiving a randomly generated data blob. We achieved a maximum
transmission rate of 588.9 kB/s (σx̄ = 0.544, n = 1000) using 80 channels
in parallel on the AMD Ryzen Threadripper 1920X. On the AMD EPYC
7571 in the Amazon EC2 cloud, we achieved a maximum transmission
rate of 544.0 kB/s (σx̄ = 0.548, n = 1000) also using 80 channels. In
contrast, L1 Prime+Probe achieved a transmission rate of 400 kB/s [59]
and Flush+Flush a transmission rate of 496 kB/s [30]. As illustrated
in Figure 5.4, the mean transmission rate increases with the number of
bits sent in parallel. However, the error rate increases drastically when
transmitting more than 64 bits in parallel, as illustrated in Figure 5.6. As
the number of available different cache sets for our channel is exhausted
for our covert channel, sending more bits in parallel would reuse already
used sets. This increases the chance of wrong measurements and, thus,
the error rate.

Error Correction. As accesses to unrelated addresses with the same
µTag as our covert channel introduce noise in our measurements, an at-
tacker can use error correction to achieve better transmission. Using
hamming codes [33], we introduce n additional parity bits allowing us to
detect and correct wrongly measured bits of a packet with a size of 2n−1

128 Chapter 5. Take A Way

bits. For our covert channel, we implemented different Hamming codes
H(m,n) that encode n bits by adding m−n parity bits. The receiving end
of the covert channel computes the parity bits from the received data and
compares it with the received parity bits. Naturally, they only differ if a
transmission error occurred. The erroneous bit position can be computed,
and the bit error corrected by flipping the bit. This allows to detect up
to 2-bit errors and correct one-bit errors for a single transmission.

We evaluated different hamming codes on an AMD Ryzen Threadrip-
per 1920X, as illustrated in Figure 5.7 in Section B. When sending data
through 60 parallel channels, the H(7, 4) code reduces the error rate to
0.14% (σx̄ = 0.08, n = 1000), whereas the H(15, 11) code achieves an
error rate of 0.16% (σx̄ = 0.08, n = 1000). While the H(7, 4) code is
slightly more robust [33], the H(15, 11) code achieves a better transmis-
sion rate of 452.2 kB/s (σx̄ = 7.79, n = 1000).

More robust protocols have been used in cache-based covert channels
in the past [48, 53] to achieve error-free communication. While these
techniques can be applied to our covert channel as well, we leave it up to
future work.

Limitations. As we are not able to observe µTag collisions between two
processes running on sibling threads on one physical core, our covert
channel is limited to processes running on the same logical core.

5.2. Breaking ASLR and KASLR

To exploit a memory corruption vulnerability, an attacker often requires
knowledge of the location of specific data in memory. With address space
layout randomization (ASLR), a basic memory protection mechanism has
been developed that randomizes the locations of memory sections to im-
pede the exploitation of these bugs. ASLR is not only applied to user-
space applications but also implemented in the kernel (KASLR), random-
izing the offsets of code, data, and modules on every boot.

In this section, we exploit the relation between virtual addresses and
µTags to reduce the entropy of ASLR in different scenarios. With Col-
lide+Probe, we can determine the µTags accessed by the victim, e.g., the
kernel or the browser, and use the reverse-engineered mapping functions
(Section 3.2) to infer bits of the addresses. We show an additional attack
on heap ASLR in Section C.

5. Case Studies 129

Table 5.2.: Evaluation of the ASLR experiments
Target Entropy Bits Reduced Success Rate Timing Source Time

Linux Kernel 9 7 98.5% thread 0.51ms (σ = 12.12µs)
User Process 13 13 88.9% thread 1.94 s (σ = 1.76 s)

Virt. Manager 28 16 90.0% rdtsc 2.88 s (σ = 3.16 s)
Virt. Module 18 8 98.9% rdtsc 0.14 s (σ = 1.74ms)

Mozilla Firefox 28 15 98.0% web worker 2.33 s (σ = 0.03 s)
Google Chrome 28 15 86.1% web worker 2.90 s (σ = 0.25 s)

Chrome V8 28 15 100.0% rdtsc 1.14 s (σ = 0.03 s)

5.2.1. Kernel

On modern Linux systems, the position of the kernel text segment is
randomized inside the 1GB area from 0xffff ffff 8000 0000 - 0xffff
ffff c000 0000 [39, 46]. As the kernel image is mapped using 2MB
pages, it can only be mapped in 512 different locations, resulting in 9 bit
of entropy [65].

Global variables are stored in the .bss and .data sections of the kernel
image. Since 2MB physical pages are used, the 21 lower address bits of
a global variable are identical to the lower 21 bits of the offset within
the the kernel image section. Typically, the kernel image is public and
does not differ among users with the same operating system. With the
knowledge of the µTag from the address of a global variable, one can
compute the address bits 21 to 27 using the hash function of AMD’s L1D
cache way predictor.

To defeat KASLR using Collide+Probe, the attacker needs to know the
offset of a global variable within the kernel image that is accessed by
the kernel on a user-triggerable event, e.g., a system call or an inter-
rupt. While not many system calls access global variables, we found that
the SYS_time system call returns the value of the global second counter
obj.xtime_sec. Using Collide+Probe, the attacker accesses an address
v′ with a specific µTag µv′ and schedules the system call, which accesses
the global variable with address v and µTag µv. Upon returning from
the kernel, the attacker probes the µTag µv′ using address v′. On a
conflict, the attacker infers that the address v′ has the same µTag, i.e.,
t = µv′ = µv. Otherwise, the attacker chooses another address v′ with
a different µTag µv′ and repeats the process. As the µTag bits t0 to t7
are known, the address bits v20 to v27 can be computed from address
bits v12 to v19 based on the way predictor’s hash functions (Section 3.2).
Following this approach, we can compute address bits 21 to 27 of the

130 Chapter 5. Take A Way

global variable. As we know the offset of the global variable inside the
kernel image, we can also recover the start address of the kernel image
mapping, leaving only bits 28 and 29 unknown. As the kernel is only
randomized once per boot, the reduction to only 4 address possibilities
gives an attacker a significant advantage.

For the evaluation, we tested 10 different randomization offsets on a
Linux 4.15.0-58 kernel with an AMD Ryzen Threadripper 1920X pro-
cessor. We ran our experiment 1000 times for each randomization offset.
With a success rate of 98.5%, we were able to reduce the entropy of
KASLR on average in 0.51ms (σ = 12.12µs, n = 10 000).

While there are several microarchitectural KASLR breaks, this is to the
best of our knowledge the first which reportedly works on AMD and not
only on Intel CPUs. Hund et al. [35] measured differences in the runtime
of page faults when repeatedly accessing either valid or invalid kernel ad-
dresses on Intel CPUs. Barresi et al. [11] exploited page deduplication to
break ASLR: a copy-on-write pagefault only occurs for the page with the
correctly guessed address. Gruss et al. [28] exploited runtime differences
in the prefetch instruction on Intel CPUs to detect mapped kernel pages.
Jang et al. [39] showed that the difference in access time to valid and in-
valid kernel addresses can be measured when suppressing exceptions with
Intel TSX. Evtyushkin et al. [21] exploited the branch-target buffer on
Intel CPUs to gain information on mapped pages. Schwarz et al. [65]
showed that the store-to-load forwarding logic on Intel CPUs is missing
a permission check which allows to detect whether any virtual address is
valid. Canella et al. [15] exploited that recent stores can be leaked from
the store buffer on vulnerable Intel CPUs, allowing to detect valid kernel
addresses.

5.2.2. Hypervisor

The Kernel-based Virtual Machine (KVM) is a virtualization module that
allows the Linux kernel to act as a hypervisor to run multiple, isolated
environments in parallel called virtual machines or guests. Virtual ma-
chines can communicate with the hypervisor using hypercalls with the
privileged vmcall instruction. In the past, collisions in the branch target
buffer (BTB) have been used to break hypervisor ASLR [21, 77].

In this scenario, we leak the base address of the KVM kernel module
from a guest virtual machine. We issue hypercalls with invalid call num-

5. Case Studies 131

bers and monitor, which µTags have been accessed using Collide+Probe.
In our evaluation, we identified two cache sets enabling us to weaken
ASLR of the kvm and the kvm_amd module with a success rate of 98.8%
and an average runtime of 0.14 s (σ = 1.74ms, n = 1000). We verified
our results by comparing the leaked address bits with the symbol table
(/proc/kallsyms).

Another target is the user-space virtualization manager, e.g., QEMU.
Guest operating systems can interact with virtualization managers
through various methods, e.g., the out instruction. Likewise to the pre-
viously described hypercall method, a guest virtual machine can use this
method to trigger the managing user process to interact with the guest
memory from its own address space. By using Collide+Probe in this sce-
nario, we were able to reduce the ASLR entropy by 16 bits with a success
rate of 90.0% with an average run time of 2.88 s (σ = 3.16 s, n = 1000).

5.2.3. JavaScript

In this section, we show that Collide+Probe is not only restricted to na-
tive environments. We use Collide+Probe to break ASLR from JavaScript
within Chrome and Firefox. As the JavaScript standard does not define
a way to retrieve any address information, side channels in browsers have
been used in the past [57], also to break ASLR, simplifying browser ex-
ploitation [24, 65].

The idea of our ASLR break is similar to the approach of reverse-
engineering the way predictor’s mapping function, as described in Sec-
tion 3.2. First, we allocate a large chunk of memory as a JavaScript
typed array. If the requested array length is big enough, the execution
engine allocates it using mmap, placing the array at the beginning of a
memory page [29, 69]. This allows using the indices within the array as
virtual addresses with an additional constant offset. By accessing pairs
of addresses, we can find µTag collisions allowing us to build an equation
system where the only unknown bits are the bits of the address where
the start of the array is located. As the equation system is very small, an
attacker can trivially solve it in JavaScript.

However, to distinguish between colliding and non-colliding ad-
dresses, we require a high-precision timer in JavaScript. While the
performance.now() function only returns rounded results for security
reasons [9, 14], we leverage an alternative timing source [24, 69]. For

132 Chapter 5. Take A Way

our evaluation, we used the technique of a counting thread constantly
incrementing a shared variable [24, 48, 69, 79].

We tested our proof-of-concept in both the Chrome 76.0.3809 and Fire-
fox 68.0.2 web browsers as well as the Chrome V8 standalone engine. In
Firefox, we are able to reduce the entropy by 15 bits with a success rate
of 98% and an average run time of 2.33 s (σ = 0.03 s, n = 1000). With
Chrome, we can correctly reduce the bits with a success rate of 86.1% and
an average run time of 2.90 s (σ = 0.25 s, n = 1000). As the JavaScript
standard does not provide any functionality to retrieve the addresses used
by variables, we extended the capabilities of the Chrome V8 engine to ver-
ify our results. We introduced several custom JavaScript functions, in-
cluding one that returned the virtual address of an array. This provided
us with the ground truth to verify that our proof-of-concept recovered
the address bits correctly. Inside the extended Chrome V8 engine, we
were able to recover the address bits with a success rate of 100% and an
average run time of 1.14 s (σ = 0.03 s, n = 1000).

5.3. Leaking Kernel Memory

In this section, we combine Spectre with Collide+Probe to leak kernel
memory without the requirement of shared memory. While some Spectre-
type attacks use AVX [70] or port contention [13], most attacks use the
cache as a covert channel to encode secrets [16, 41]. During transient
execution, the kernel caches a user-space address based on a secret. By
monitoring the presence of said address in the cache, the attacker can
deduce the leaked value.

As AMD CPU’s are not vulnerable to Meltdown [49], stronger kernel
isolation [27] is not enforced on modern operating systems, leaving the
kernel mapped in user space. However, with SMAP enabled, the processor
never loads an address into the cache if the translation triggers a SMAP
violation, i.e., the kernel tries to access a user-space address [7]. Thus,
an attacker has to find a vulnerable indirect branch that can access user-
space memory. We lift this restriction by using Collide+Probe as a cache-
based covert channel to infer secret values accessed by the kernel. With
Collide+Probe, we can observe µTag collisions based on the secret value
that is leaked and, thus, remove the requirement of shared memory, i.e.,
user memory that is directly accessible to the kernel.

To evaluate Collide+Probe as a covert channel for a Spectre-type attack,

5. Case Studies 133

we implement a custom kernel module containing a Spectre-PHT gadget
as illustrated as follows:

1 if (index < bounds) { a = LUT[data[index] ∗ 4096]; }

The execution of the presented code snippet can be triggered with an
ioctl command that allows the user to control the index variable as it
is passed as an argument. First, we mistrain the branch predictor by re-
peatedly providing an index that is in bounds, letting the processor follow
the branch to access a fixed kernel-memory location. Then, we access an
address that collides with the kernel address accessed based on a possi-
ble byte-value located at data[index]. By providing an out-of-bounds
index, the processor now speculatively accesses a memory location based
on the secret data located at the out-of-bounds index. Using Collide+
Probe, we can now detect if the kernel has accessed the address based
on the assumed secret byte value. By repeating this step for each of the
256 possible byte values, we can deduce the actual byte as we observe
µTag conflicts. As we cannot ensure that the processor always misspecu-
lates when providing the out-of-bounds index, we run this attack multiple
times for each byte we want to leak.

We successfully leaked a secret string using Collide+Probe as a covert
channel on an AMD Ryzen Threadripper 1920X. With our unoptimized
version, we are able to leak the secret bytes with a success rate of 99.5%
(σx̄ = 0.19, n = 100) and a leakage rate of 0.66B/s (σx̄ = 0.00043, n =
100). While we leak full byte values in our proof-of-concept, other gad-
gets could allow to leak bit-wise, reducing the overhead of measuring
every possible byte value significantly. In addition, the parameters for
the number of mistrainings or the necessary repetitions of the attack to
leak a byte can be further tweaked to match the processor under attack.
To utilize this side channel, the attacker requires the knowledge of the
address of the kernel-memory that is accessed by the gadget. Thus, on
systems with active kernel ASLR, the attacker first needs to defeat it.
However, as described in Section 5.2, the attacker can use Collide+Probe
to derandomize the kernel as well.

5.4. Attacking AES T-Tables

In this section, we show an attack on an AES [19] T-table implementation.
While cache attacks have already been demonstrated against T-table im-
plementations [30, 31, 48, 58, 72] and appropriate countermeasures, e.g.,

134 Chapter 5. Take A Way

bit-sliced implementations [43, 62], have been presented, they serve as a
good example to demonstrate the applicability of the side channel and
allow to compare it against other existing cache side-channels. Further-
more, AES T-tables are still sometimes used in practice. While some
implementations fall back to T-table implementations [20] if the AES-NI
instruction extension [32] is not available, others only offer T-table-based
implementations [45, 55]. For evaluation purposes, we used the T-table
implementation of OpenSSL version 1.1.1c.

In this implementation, the SubBytes, ShiftRows, and MixColumns steps
of the AES round transformation are replaced by look-ups to 4 pre-
computed T-tables T0, …, T3. As the MixColumns operation is omitted in
the last round, an additional T-table T4 is necessary. Each table contains
256 4-byte words, requiring 1 kB of memory.

In our proof-of-concept, we mount the first-round attack by Osvik et al.
[58]. Let ki denote the initial key bytes, pi the plaintext bytes and xi =
pi ⊕ ki for i = 0, . . . , 15 the initial state of AES. The initial state bytes
are used to select elements of the pre-computed T-tables for the following
round. An attacker who controls the plaintext byte pi and monitors which
entries of the T-table are accessed can deduce the key byte ki = si ⊕ pi.
However, with a cache-line size of 64B, it is only possible to derive the
upper 4 bit of ki if the T-tables are properly aligned in memory. With
second-round and last-round attacks [58, 73] or disaligned T-tables [72],
the key space can be reduced further.

Figure 5.5 shows the results of a Collide+Probe and a Load+Reload
attack on the AMD Ryzen Threadripper 1920X on the first key byte.
As the first key byte is set to zero, the diagonal shows a higher number of
cache hits than the other parts of the table. We repeated every experiment
1000 times. With Collide+Probe, we can successfully recover with a
probability of 100% (σx̄ = 0) the upper 4 bits of each ki with 168 867
(σx̄ = 719) encryptions per byte in 0.07 s (σx̄ = 0.0003). With Load+
Reload, we require 367 731 (σx̄ = 82388) encryptions and an average
runtime of 0.53 s (σx̄ = 0.11) to recover 99.0% (σx̄ = 0.0058) of the key
bits. Using Prime+Probe on the L1 cache, we can successfully recover
99.7% (σx̄ = 0.01) of the key bits with 450 406 encryptions (σx̄ = 1129)
in 1.23 s (σx̄ = 0.003).

6. Discussion 135

00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0

0x186800

0x186840

0x186880

0x1868c0

0x186900

0x186940

0x186980

0x1869c0

0x186a00

0x186a40

0x186a80

0x186ac0

0x186b00

0x186b40

0x186b80

0x186bc0

99 94 94 94 93 93 92 92 92 94 95 92 92 92 93 94

93 100 90 91 93 88 93 91 91 90 92 91 88 93 89 91

94 87 100 92 95 97 95 92 89 93 93 92 95 87 90 97

96 93 93 100 94 90 93 92 94 95 90 91 94 92 90 89

94 90 92 88 100 90 93 88 94 91 87 96 90 88 90 91

91 90 91 95 89 100 86 91 90 95 93 95 94 93 96 89

94 88 95 95 94 88 100 88 93 89 91 82 90 91 87 91

93 98 91 88 91 89 94 99 87 85 94 91 96 93 90 92

95 91 89 89 90 93 91 92 100 89 91 92 89 90 92 88

95 89 96 90 92 91 96 89 90 100 91 90 91 92 92 88

95 94 88 91 95 91 91 92 93 88 100 94 95 93 92 93

93 93 94 91 90 93 92 94 92 96 90 100 92 91 90 88

90 95 92 94 90 91 90 90 96 97 92 94 100 91 93 88

91 87 91 89 88 93 93 94 87 95 95 91 89 100 87 93

96 93 91 90 94 93 94 90 89 97 95 94 92 95 100 97

88 92 93 96 91 97 89 94 95 84 92 98 91 97 90 100

Byte value

A
d
d
re
ss

(a) Collide+Probe

00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0

0x186800

0x186840

0x186880

0x1868c0

0x186900

0x186940

0x186980

0x1869c0

0x186a00

0x186a40

0x186a80

0x186ac0

0x186b00

0x186b40

0x186b80

0x186bc0

195 177 181 180 183 180 185 179 170 181 177 176 175 178 173 175

179 197 180 174 180 177 177 177 176 172 166 170 177 183 167 180

179 182 196 176 181 185 180 166 172 177 175 182 188 169 183 171

180 182 176 194 178 178 174 167 182 175 182 174 177 174 178 174

184 182 184 177 193 186 180 173 177 176 171 181 182 184 161 172

175 178 174 172 181 196 183 179 182 182 175 176 179 182 172 182

176 181 179 171 178 175 189 164 177 176 172 175 174 164 177 183

175 171 179 172 172 182 173 196 180 174 189 179 182 169 179 175

179 177 170 168 180 174 178 179 189 182 178 186 179 179 179 182

185 185 169 178 165 177 169 167 174 197 171 177 184 174 171 172

176 180 171 169 178 182 178 177 182 183 195 166 172 182 175 178

168 185 179 171 177 173 189 179 190 185 182 195 175 178 186 184

171 177 180 173 179 176 174 180 176 184 169 178 195 179 172 169

178 187 172 164 171 180 178 180 173 174 183 175 181 196 175 174

185 173 179 175 179 182 182 175 178 177 172 170 176 178 185 187

179 180 181 180 174 180 179 175 182 181 172 179 181 170 176 186

Byte value

A
d
d
re
ss

(b) Load+Reload

Figure 5.5.: Cache access pattern with Collide+Probe and Load+Reload
on the first key byte.

6. Discussion
While the official documentation of the way prediction feature does not
explain how it interacts with other processor features, we discuss the
interactions with instruction caches, transient execution, and hypervisors.

Instruction Caches. The patent [22] describes that AMD’s way predic-
tor can be used for both data and instruction cache. However, AMD only
documents a way predictor for the L1D cache [6] and not for the L1I
cache.

Transient Execution. Speculative execution is a crucial optimization
in modern processors. When the CPU encounters a branch, instead of
waiting for the branch condition, the CPU guesses the outcome and con-
tinues the execution in a transient state. If the speculation was correct,
the executed instructions are committed. Otherwise, they are discarded.
Similarly, CPUs employ out-of-order execution to transiently execute in-
structions ahead of time as soon as their dependencies are fulfilled. On an
exception, the transiently executed instructions following the exception
are simply discarded, but leave traces in the microarchitectural state [16].
We investigated the possibility that AMD Zen processors use the data
from the predicted way without waiting for the physical tag returned by
the TLB. However, we were not able to produce any such results.

136 Chapter 5. Take A Way

Hypervisor. AMD does not document any interactions of the way pre-
dictor with virtualization. As we have shown in our experiments (cf. Sec-
tion 5.2), the way predictor does not distinguish between virtual machines
and hypervisors. The way predictor uses the virtual address without any
tagging, regardless whether it is a guest or host virtual address.

7. Countermeasures

In this section, we discuss mitigations to the presented attacks on AMD’s
way predictor. We first discuss hardware-only mitigations, followed by
mitigations requiring hardware and software changes, as well as a software-
only solution.

Temporarily Disable Way Predictor. One solution lies in designing the
processor in a way that allows temporarily disabling the way predictor
temporarily. Alves et al. [10] evaluated the performance impact penalty of
instruction replays caused by mispredictions. By dynamically disabling
way prediction, they observe a higher performance than with standard
way prediction. Dynamically disabling way prediction can also be used
to prevent attacks by disabling it if too many mispredictions within a
defined time window are detected. If an adversary tries to exploit the
way predictor or if the current legitimate workload provokes too many
conflicts, the processor deactivates the way predictor and falls back to
comparing the tags from all ways. However, it is unknown whether AMD
processors support this in hardware, and there is no documented operat-
ing system interface to it.

Keyed Hash Function. The currently used mapping functions (Sec-
tion 3) rely solely on bits of the virtual address. This allows an at-
tacker to reverse-engineer the used function once and easily find colliding
virtual addresses resulting in the same µTag. By keying the mapping
function with an additional process- or context-dependent secret input,
a reverse-engineered hash function is only valid for the attacker process.
ScatterCache [76] and CEASAR-S [61] are novel cache designs prevent-
ing cache attacks by introducing a similar keyed mapping function for
skewed-associative caches. Hence, we expect that such methods are also
effective when used for the way predictor. Moreover, the key can be

7. Countermeasures 137

updated regularly, e.g., when returning from the kernel, and, thus, not
remain the same over the execution time of the program.

State Flushing. With Collide+Probe, an attacker cannot monitor mem-
ory accesses of a victim running on a sibling thread. However, µTag
collisions can still be observed after context switches or transitions be-
tween kernel and user mode. To mitigate Collide+Probe, the state of the
way predictor can be cleared when switching to another user-space ap-
plication or returning from the kernel. Every subsequent memory access
yields a misprediction and is thus served from the L2 data cache. This
yields the same result as invalidating the L1 data cache, which is cur-
rently a required mitigation technique against Foreshadow [74] and MDS
attacks [15, 64, 68]. However, we expect it to be more power-efficient than
flushing the L1D. To mitigate Spectre attacks [41, 44, 51], it is already
necessary to invalidate branch predictors upon context switches [16]. As
invalidating predictors and the L1D cache on Intel has been implemented
through CPU microcode updates, introducing an MSR to invalidate the
way predictor might be possible on AMD as well.

Uniformly-distributed Collisions. While the previously described coun-
termeasures rely on either microcode updates or hardware modifications,
we also propose an entirely software-based mitigation. Our attack on an
optimized AES T-table implementation in Section 5.4 relies on the fact
that an attacker can observe the key-dependent look-ups to the T-tables.
We propose to map such secret data n times, such that the data is ac-
cessible via n different virtual addresses, which all have a different µTag.
When accessing the data, a random address is chosen out of the n possible
addresses. The attacker cannot learn which T-table has been accessed by
monitoring the accessed µTags, as a uniform distribution over all possibil-
ities will be observed. This technique is not restricted to T-table imple-
mentations but can be applied to virtually any secret-dependent memory
access within an application. With dynamic software diversity [18], di-
versified replicas of program parts are generated automatically to thwart
cache-side channel attacks.

138 Chapter 5. Take A Way

8. Conclusion
The key takeaway of this paper is that AMD’s cache way predictors leak
secret information. To understand the implementation details, we re-
verse engineered AMD’s L1D cache way predictor, leading to two novel
side-channel attack techniques. First, Collide+Probe allows monitoring
memory accesses on the current logical core without the knowledge of
physical addresses or shared memory. Second, Load+Reload obtains ac-
curate memory-access traces of applications co-located on the same phys-
ical core.

We evaluated our new attack techniques in different scenarios. We es-
tablished a high-speed covert channel and utilized it in a Spectre at-
tack to leak secret data from the kernel. Furthermore, we reduced the
entropy of different ASLR implementations from native code and sand-
boxed JavaScript. Finally, we recovered a key from a vulnerable AES
implementation.

Our attacks demonstrate that AMD’s design is vulnerable to side-channel
attacks. However, we propose countermeasures in software and hardware,
allowing to secure existing implementations and future designs of way
predictors.

Acknowledgments
We thank our anonymous reviewers for their comments and suggestions
that helped improving the paper. The project was supported by the
Austrian Research Promotion Agency (FFG) via the K-project DeSS-
net, which is funded in the context of COMET - Competence Centers
for Excellent Technologies by BMVIT, BMWFW, Styria, and Carinthia.
It was also supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 681402). This work also benefited from the support
of the project ANR-19-CE39-0007 MIAOUS of the French National Re-
search Agency (ANR). Additional funding was provided by generous gifts
from Intel. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily
reflect the views of the funding parties.

References 139

References
[1] Andreas Abel and Jan Reineke. “Measurement-based Modeling

of the Cache Replacement Policy”. In: Real-Time and Embedded
Technology and Applications Symposium (RTAS). 2013.

[2] Advanced Micro Devices Inc. 2nd Gen AMD EPYC Processors Set
New Standard for the Modern Datacenter with Record-Breaking
Performance and Significant TCO Savings. 2019.

[3] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s
Manual. 2017.

[4] Advanced Micro Devices Inc. BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 15h Models 00h-0Fh Processors. 2013.

[5] Advanced Micro Devices Inc. Software Optimization Guide for
AMD Family 15h Processors. Jan. 2014.

[6] Advanced Micro Devices Inc. Software Optimization Guide for
AMD Family 17h Processors. 2017.

[7] Advanced Micro Devices Inc. Software Techniques for Managing
Speculation on AMD Processors. Revison 7.10.18. 2018.

[8] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. “Port Contention for Fun
and Profit”. In: S&P. 2018.

[9] Alex Christensen. Reduce resolution of performance.now. 2015.
url: https://bugs.webkit.org/show_bug.cgi?id=146531.

[10] Ricardo Alves, Stefanos Kaxiras, and David Black-Schaffer. “Dy-
namically disabling way-prediction to reduce instruction replay”.
In: International Conference on Computer Design (ICCD). 2018.

[11] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R.
Gross. “CAIN: Silently Breaking ASLR in the Cloud”. In: WOOT.
2015.

[12] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http : / / cr . yp . to / antiforgery / cachetiming -
20050414.pdf.

[13] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neug-
schwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer,
and Anil Kurmus. “SMoTherSpectre: exploiting speculative exe-
cution through port contention”. In: CCS. 2019.

[14] Boris Zbarsky. Reduce resolution of performance.now. 2015. url:
https://hg.mozilla.org/integration/mozilla-inbound/
rev/48ae8b5e62ab.

https://bugs.webkit.org/show_bug.cgi?id=146531
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab

140 Chapter 5. Take A Way

[15] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss,
Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens,
Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom.
“Fallout: Leaking Data on Meltdown-resistant CPUs”. In: CCS.
2019.

[16] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. “A Systematic Evaluation of Tran-
sient Execution Attacks and Defenses”. In: USENIX Security Sym-
posium. Extended classification tree and PoCs at https://tran-
sient.fail/. 2019.

[17] Mike Clark. “A new x86 core architecture for the next generation
of computing”. In: IEEE Hot Chips Symposium (HCS). 2016.

[18] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen,
and Michael Franz. “Thwarting Cache Side-Channel Attacks
Through Dynamic Software Diversity”. In: NDSS. 2015.

[19] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-
the advanced encryption standard. 2013.

[20] Helder Eijs. PyCryptodome: A self-contained cryptographic library
for Python. 2018. url: https://www.pycryptodome.org.

[21] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Jump over ASLR: Attacking branch predictors to bypass ASLR”.
In: MICRO. 2016.

[22] W. Shen Gene and S. Craig Nelson. MicroTLB and micro tag for
reducing power in a processor. US Patent 7,117,290 B2. Oct. 2006.

[23] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks”. In: USENIX Security Symposium.
2018.

[24] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the
MMU”. In: NDSS. 2017.

[25] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yu-
val Yarom. “Flush, Gauss, and Reload – A Cache Attack on the
BLISS Lattice-Based Signature Scheme”. In: CHES. 2016.

[26] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjel-
lum. “A high-performance, portable implementation of the MPI
message passing interface standard”. In: Parallel computing (1996).

https://www.pycryptodome.org

References 141

[27] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. “KASLR is Dead: Long
Live KASLR”. In: ESSoS. 2017.

[28] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR”. In: CCS. 2016.

[29] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
“Rowhammer.js: A Remote Software-Induced Fault Attack in
JavaScript”. In: DIMVA. 2016.

[30] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In:
DIMVA. 2016.

[31] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches”. In: USENIX Security Symposium. 2015.

[32] Shay Gueron. Intel Advanced Encryption Standard (Intel AES)
Instructions Set – Rev 3.01. 2012.

[33] Richard W Hamming. “Error detecting and error correcting codes”.
In: The Bell system technical journal (1950).

[34] Joel Hruska. AMD Gains Market Share in Desktop and Laptop,
Slips in Servers. 2019. url: https://www.extremetech.com/
computing/291032-amd.

[35] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Tim-
ing Side Channel Attacks against Kernel Space ASLR”. In: S&P.
2013.

[36] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. “Way-
predicting set-associative cache for high performance and low en-
ergy consumption”. In: Symposium on Low Power Electronics and
Design. 1999.

[37] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “Cross pro-
cessor cache attacks”. In: AsiaCCS. 2016.

[38] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES”. In: S&P. 2015.

[39] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX”. In: CCS.
2016.

[40] Richard E Kessler. “The alpha 21264 microprocessor”. In: IEEE
Micro (1999).

https://www.extremetech.com/computing/291032-amd
https://www.extremetech.com/computing/291032-amd

142 Chapter 5. Take A Way

[41] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
“Spectre Attacks: Exploiting Speculative Execution”. In: S&P.
2019.

[42] Paul C. Kocher. “Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems”. In: CRYPTO. 1996.

[43] Robert Könighofer. “A Fast and Cache-Timing Resistant Imple-
mentation of the AES”. In: CT-RSA. 2008.

[44] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer”. In: WOOT. 2018.

[45] Marcin Krzyzanowski. CryptoSwift: Growing collection of standard
and secure cryptographic algorithms implemented in Swift. 2019.
url: https://cryptoswift.io.

[46] Linux. Complete virtual memory map with 4-level page tables. 2019.
url: https://www.kernel.org/doc/Documentation/x86/x86_
64/mm.txt.

[47] Linux. Linux Kernel 5.0 Process (x86). 2019. url: https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/arch/x86/kernel/process.c.

[48] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. “ARMageddon: Cache Attacks on Mo-
bile Devices”. In: USENIX Security Symposium. 2016.

[49] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. “Melt-
down: Reading Kernel Memory from User Space”. In: USENIX
Security Symposium. 2018.

[50] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In:
S&P. 2015.

[51] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution
Using Return Stack Buffers”. In: CCS. 2018.

[52] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. “Reverse Engineering In-
tel Complex Addressing Using Performance Counters”. In: RAID.
2015.

[53] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and

https://cryptoswift.io
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kernel/process.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kernel/process.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/kernel/process.c

References 143

Kay Römer. “Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud”. In: NDSS. 2017.

[54] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
“Cachezoom: How SGX amplifies the power of cache attacks”. In:
CHES. 2017.

[55] Richard Moore. pyaes: Pure-Python implementation of AES block-
cipher and common modes of operation. 2017. url: https : / /
github.com/ricmoo/pyaes.

[56] Louis-Marie Vincent Mouton, Nicolas Jean Phillippe Huot, Gilles
Eric Grandou, and Stephane Eric Sebastian Brochier. Cache ac-
cessing using a micro TAG. US Patent 8,151,055. 2012.

[57] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications”. In: CCS. 2015.

[58] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: the Case of AES”. In: CT-RSA. 2006.

[59] Colin Percival. “Cache missing for fun and profit”. In: BSDCan.
2005.

[60] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

[61] Moinuddin K Qureshi. “New attacks and defense for encrypted-
address cache”. In: ISCA. 2019.

[62] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. “Bit-
slice Implementation of AES”. In: Cryptology and Network Security
(CANS). 2006.

[63] David J Sager and Glenn J Hinton. Way-predicting cache memory.
US Patent 6,425,055. 2002.

[64] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. “RIDL: Rogue In-flight Data Load”. In: S&P. 2019.

[65] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
“Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs”. In: arXiv:1905.05725 (2019).

[66] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. “Malware Guard Extension: Using SGX
to Conceal Cache Attacks ”. In: DIMVA. 2017.

[67] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.

https://github.com/ricmoo/pyaes
https://github.com/ricmoo/pyaes

144 Chapter 5. Take A Way

“KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks”. In: NDSS. 2018.

[68] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Ju-
lian Stecklina, Thomas Prescher, and Daniel Gruss. “ZombieLoad:
Cross-Privilege-Boundary Data Sampling”. In: CCS. 2019.

[69] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. “Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript”. In: FC.
2017.

[70] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
“NetSpectre: Read Arbitrary Memory over Network”. In: ES-
ORICS. 2019.

[71] Mark Seaborn. How physical addresses map to rows and banks
in DRAM. 2015. url: http://lackingrhoticity.blogspot.
com/2015/05/how-physical-addresses-map-to-rows-and-
banks.html.

[72] Raphael Spreitzer and Thomas Plos. “Cache-Access Pattern At-
tack on Disaligned AES T-Tables”. In: COSADE. 2013.

[73] Junko Takahashi, Toshinori Fukunaga, Kazumaro Aoki, and Hi-
toshi Fuji. “Highly accurate key extraction method for access-
driven cache attacks using correlation coefficient”. In: ACISP.
2013.

[74] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. “Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Ex-
ecution”. In: USENIX Security Symposium. 2018.

[75] VMWare. Security considerations and disallowing inter-Virtual
Machine Transparent Page Sharing (2080735). 2018. url: https:
//kb.vmware.com/s/article/2080735.

[76] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. “ScatterCache:
Thwarting Cache Attacks via Cache Set Randomization”. In:
USENIX Security Symposium. 2019.

[77] Felix Wilhelm. PoC for breaking hypervisor ASLR using branch
target buffer collisions. 2016. url: https://github.com/felixw
ilhelm/mario_baslr.

[78] Henry Wong. Intel Ivy Bridge Cache Replacement Policy. 2013.
url: http : / / blog . stuffedcow . net / 2013 / 01 / ivb - cache -
replacement/.

http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://kb.vmware.com/s/article/2080735
https://kb.vmware.com/s/article/2080735
https://github.com/felixwilhelm/mario_baslr
https://github.com/felixwilhelm/mario_baslr
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

References 145

[79] John C Wray. “An analysis of covert timing channels”. In: Journal
of Computer Security 1.3-4 (1992), pp. 219–232.

[80] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. “Attack directories,
not caches: Side channel attacks in a non-inclusive world”. In: S&P.
2019.

[81] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX
Security Symposium. 2014.

[82] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. “Return-
oriented flush-reload side channels on arm and their implications
for android devices”. In: CCS. 2016.

[83] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-Tenant Side-Channel Attacks in PaaS Clouds”. In:
CCS. 2014.

Appendix

A. RDTSC Resolution

We measure the resolution of the rdtsc instruction using the following
experimental setup. We assume that the timestamp counter (TSC) is
updated in a fixed interval. This assumption is based on the documen-
tation in the manual that the timestamp counter is independent of the
CPU frequency [6]. Hence, there is a modulus x and a constant C, such
that TSC mod x ≡ C iff x is the TSC increment. We can easily find this
x with brute-force, i.e., trying all different x until we find an x, which
always results in the same value C. Table 5.3 shows a rdtsc increments
for the CPUs we tested.

B. Covert Channel Error Rate

Figure 5.6 illustrates the error rate of the covert channel described in Sec-
tion 5.1. The error rate increases drastically when transmitting more
than 64 bits in parallel. Thus, we evaluated different hamming codes on
an AMD Ryzen Threadripper 1920X (Figure 5.7).

146 Chapter 5. Take A Way

Table 5.3.: rdtsc increments on various CPUs.
Setup CPU µ-arch. Increment

Lab AMD Athlon 64 X2 3800+ K8 1
Lab AMD Turion II Neo N40L K10 1
Lab AMD Phenom II X6 1055T K10 1
Lab AMD E-450 Bobcat 1
Lab AMD Athlon 5350 Jaguar 1
Lab AMD FX-4100 Bulldozer 1
Lab AMD FX-8350 Piledriver 1
Lab AMD A10-7870K Steamroller 1
Lab AMD Ryzen Threadripper 1920X Zen 35
Lab AMD Ryzen Threadripper 1950X Zen 34
Lab AMD Ryzen Threadripper 1700X Zen 34
Lab AMD Ryzen Threadripper 2970WX Zen+ 30
Lab AMD Ryzen 7 3700X Zen 2 36

Cloud AMD EPYC 7401p Zen 20
Cloud AMD EPYC 7571 Zen 22

0 10 20 30 40 50 60 70 80
0

1

2

3

Number of Channels

E
rr
o
r
R
a
te

[%
]

AMD Threadripper Ryzen 1920X

AMD EPYC 7751

Figure 5.6.: Error rate of the covert channel.

0 10 20 30 40 50 60 70 80
0

1

2

3

Number of Channels

E
rr
o
r
R
a
te

[%
]

No Error Correction Hamming(7,4)

Hamming(15,11)

Figure 5.7.: Error rate of the covert channel with and without error cor-
rection using different Hamming codes.

References 147

C. Userspace ASLR
Linux also uses ASLR for user processes by default. However, randomiz-
ing the code section requires compiler support for position-independent
code. The heap memory region is of particular interest because it is lo-
cated just after the code section with an offset of up to 32MB [47]. User
programs use 4 kB pages, giving an effective 13-bit entropy for the start
of the brk-based heap memory.

It is possible to fully break heap ASLR through the use of µTags. An
attack requires an interface to the victim application that incurs a victim
access to data on the heap. We evaluated the ASLR break using a client-
server scenario in a toy application, where the attacker is the malicious
client. The attacker repeatedly sends benign requests until it is distin-
guishable which tag is being accessed by the victim. This already reduces
the ASLR entropy by 8 bits because it reveals a linear combination of the
address bits. It is also possible to recover all address bits up to bit 27
by using the µTags of multiple pages and solving the resulting equation
system.

Again, a limitation is that the attack is susceptible to noise. Too many
accesses while processing the attacker’s request negatively impact the
measurements such that the attacker will always observe a cache miss. In
our experiments, we were not able to mount the attack using a socket-
based interface. Hence, attacking other user-space applications that rely
on a more complex interface, e.g., using D-Bus, is currently not practical.
However, future work may refine our techniques to also mount attacks in
more noisy scenarios. For our evaluation, we targeted a shared-memory-
based API for high-speed transmission without system calls [26] provided
by the victim application. We were able to recover 13 bits with an average
success rate of 88.9% in 1.94 s (σ = 1.76 s, n = 1000).

6
Meltdown: Reading Kernel Memory

from User Space

Publication Data
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. “Meltdown: Reading Kernel
Memory from User Space”. In: USENIX Security Symposium. 2018

Contributions
Main author.

149

150 Chapter 6. Meltdown

Meltdown: Reading Kernel Memory from User Space

Moritz Lipp1, Michael Schwarz1, Daniel Gruss1, Thomas Prescher2,
Werner Haas2, Anders Fogh3, Jann Horn4, Stefan Mangard1, Paul

Kocher5, Daniel Genkin6, 9, Yuval Yarom7, Mike Hamburg8

1Graz University of Technology, 2Cyberus Technology GmbH, 3G-Data
Advanced Analytics, 4Google Project Zero, 5Independent

(www.paulkocher.com), 6University of Michigan, 7University of Adelaide
& Data61, 8Rambus, Cryptography Research Division

Abstract
The security of computer systems fundamentally relies on memory iso-
lation, e.g., kernel address ranges are marked as non-accessible and are
protected from user access. In this paper, we present Meltdown. Melt-
down exploits side effects of out-of-order execution on modern processors
to read arbitrary kernel-memory locations including personal data and
passwords. Out-of-order execution is an indispensable performance fea-
ture and present in a wide range of modern processors. The attack is
independent of the operating system, and it does not rely on any soft-
ware vulnerabilities. Meltdown breaks all security guarantees provided
by address space isolation as well as paravirtualized environments and,
thus, every security mechanism building upon this foundation. On af-
fected systems, Meltdown enables an adversary to read memory of other
processes or virtual machines in the cloud without any permissions or
privileges, affecting millions of customers and virtually every user of a
personal computer. We show that the KAISER defense mechanism for
KASLR has the important (but inadvertent) side effect of impeding Melt-
down. We stress that KAISER must be deployed immediately to prevent
large-scale exploitation of this severe information leakage.

1. Introduction
A central security feature of today’s operating systems is memory isola-
tion. Operating systems ensure that user programs cannot access each
other’s memory or kernel memory. This isolation is a cornerstone of our

9Work was partially done while the author was affiliated to University of Pennsylvania
and University of Maryland.

1. Introduction 151

computing environments and allows running multiple applications at the
same time on personal devices or executing processes of multiple users on
a single machine in the cloud.

On modern processors, the isolation between the kernel and user pro-
cesses is typically realized by a supervisor bit of the processor that defines
whether a memory page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel code and it is
cleared when switching to user processes. This hardware feature allows
operating systems to map the kernel into the address space of every pro-
cess and to have very efficient transitions from the user process to the
kernel, e.g., for interrupt handling. Consequently, in practice, there is no
change of the memory mapping when switching from a user process to
the kernel.

In this work, we present Meltdown10. Meltdown is a novel attack that al-
lows overcoming memory isolation completely by providing a simple way
for any user process to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in the kernel region.
Meltdown does not exploit any software vulnerability, i.e., it works on all
major operating systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, e.g., modern Intel microar-
chitectures since 2010 and potentially on other CPUs of other vendors.

While side-channel attacks typically require very specific knowledge about
the target application and are tailored to only leak information about its
secrets, Meltdown allows an adversary who can run code on the vulnera-
ble processor to obtain a dump of the entire kernel address space, includ-
ing any mapped physical memory. The root cause of the simplicity and
strength of Meltdown are side effects caused by out-of-order execution.

Out-of-order execution is an important performance feature of today’s
processors in order to overcome latencies of busy execution units, e.g., a
memory fetch unit needs to wait for data arrival from memory. Instead
of stalling the execution, modern processors run operations out-of-order
i.e., they look ahead and schedule subsequent operations to idle execution
units of the core. However, such operations often have unwanted side-

10Using the practice of responsible disclosure, disjoint groups of authors of this paper
provided preliminary versions of our results to partially overlapping groups of CPU
vendors and other affected companies. In coordination with industry, the authors
participated in an embargo of the results. Meltdown is documented under CVE-
2017-5754.

152 Chapter 6. Meltdown

effects, e.g., timing differences [23, 55, 63] can leak information from both
sequential and out-of-order execution.

From a security perspective, one observation is particularly significant:
vulnerable out-of-order CPUs allow an unprivileged process to load data
from a privileged (kernel or physical) address into a temporary CPU
register. Moreover, the CPU even performs further computations based
on this register value, e.g., access to an array based on the register value.
By simply discarding the results of the memory lookups (e.g., the modified
register states), if it turns out that an instruction should not have been
executed, the processor ensures correct program execution. Hence, on
the architectural level (e.g., the abstract definition of how the processor
should perform computations) no security problem arises.

However, we observed that out-of-order memory lookups influence the
cache, which in turn can be detected through the cache side channel.
As a result, an attacker can dump the entire kernel memory by read-
ing privileged memory in an out-of-order execution stream, and transmit
the data from this elusive state via a microarchitectural covert channel
(e.g., Flush+Reload) to the outside world. On the receiving end of the
covert channel, the register value is reconstructed. Hence, on the microar-
chitectural level (e.g., the actual hardware implementation), there is an
exploitable security problem.

Meltdown breaks all security guarantees provided by the CPU’s memory
isolation capabilities. We evaluated the attack on modern desktop ma-
chines and laptops, as well as servers in the cloud. Meltdown allows an
unprivileged process to read data mapped in the kernel address space,
including the entire physical memory on Linux, Android and OS X, and
a large fraction of the physical memory on Windows. This may include
the physical memory of other processes, the kernel, and in the case of
kernel-sharing sandbox solutions (e.g., Docker, LXC) or Xen in paravir-
tualization mode, the memory of the kernel (or hypervisor), and other
co-located instances. While the performance heavily depends on the spe-
cific machine, e.g., processor speed, TLB and cache sizes, and DRAM
speed, we can dump arbitrary kernel and physical memory with 3.2KB/s
to 503KB/s. Hence, an enormous number of systems are affected.

The countermeasure KAISER [20], developed initially to prevent side-
channel attacks targeting KASLR, inadvertently protects against Melt-
down as well. Our evaluation shows that KAISER prevents Meltdown to
a large extent. Consequently, we stress that it is of utmost importance

1. Introduction 153

to deploy KAISER on all operating systems immediately. Fortunately,
during a responsible disclosure window, the three major operating sys-
tems (Windows, Linux, and OS X) implemented variants of KAISER and
recently rolled out these patches.

Meltdown is distinct from the Spectre Attacks [40] in several ways, no-
tably that Spectre requires tailoring to the victim process’s software en-
vironment, but applies more broadly to CPUs and is not mitigated by
KAISER.

Contributions. The contributions of this work are:

1. We describe out-of-order execution as a new, extremely powerful,
software-based side channel.

2. We show how out-of-order execution can be combined with a mi-
croarchitectural covert channel to transfer the data from an elusive
state to a receiver on the outside.

3. We present an end-to-end attack combining out-of-order execution
with exception handlers or TSX, to read arbitrary physical mem-
ory without any permissions or privileges, on laptops, desktop ma-
chines, mobile phones and on public cloud machines.

4. We evaluate the performance of Meltdown and the effects of KAISER
on it.

Outline. The remainder of this paper is structured as follows: In Sec-
tion 2, we describe the fundamental problem which is introduced with
out-of-order execution. In Section 3, we provide a toy example illustrat-
ing the side channel Meltdown exploits. In Section 4, we describe the
building blocks of Meltdown. We present the full attack in Section 5. In
Section 6, we evaluate the performance of the Meltdown attack on several
different systems and discuss its limitations. In Section 7, we discuss the
effects of the software-based KAISER countermeasure and propose solu-
tions in hardware. In Section 8, we discuss related work and conclude our
work in Section 9.

154 Chapter 6. Meltdown

2. Background
In this section, we provide background on out-of-order execution, address
translation, and cache attacks.

2.1. Out-of-order execution
Out-of-order execution is an optimization technique that allows maximiz-
ing the utilization of all execution units of a CPU core as exhaustive as
possible. Instead of processing instructions strictly in the sequential pro-
gram order, the CPU executes them as soon as all required resources are
available. While the execution unit of the current operation is occupied,
other execution units can run ahead. Hence, instructions can be run in
parallel as long as their results follow the architectural definition.

In practice, CPUs supporting out-of-order execution allow running oper-
ations speculatively to the extent that the processor’s out-of-order logic
processes instructions before the CPU is certain that the instruction will
be needed and committed. In this paper, we refer to speculative execution
in a more restricted meaning, where it refers to an instruction sequence
following a branch, and use the term out-of-order execution to refer to any
way of getting an operation executed before the processor has committed
the results of all prior instructions.

In 1967, Tomasulo [61] developed an algorithm that enabled dynamic
scheduling of instructions to allow out-of-order execution. Tomasulo [61]
introduced a unified reservation station that allows a CPU to use a data
value as it has been computed instead of storing it in a register and re-
reading it. The reservation station renames registers to allow instructions
that operate on the same physical registers to use the last logical one to
solve read-after-write (RAW), write-after-read (WAR) and write-after-
write (WAW) hazards. Furthermore, the reservation unit connects all
execution units via a common data bus (CDB). If an operand is not
available, the reservation unit can listen on the CDB until it is available
and then directly begin the execution of the instruction.

On the Intel architecture, the pipeline consists of the front-end, the ex-
ecution engine (back-end) and the memory subsystem [33]. x86 instruc-
tions are fetched by the front-end from memory and decoded to micro-
operations (µOPs) which are continuously sent to the execution engine.
Out-of-order execution is implemented within the execution engine as il-
lustrated in Figure 6.1. The Reorder Buffer is responsible for register allo-

2. Background 155

cation, register renaming and retiring. Additionally, other optimizations
like move elimination or the recognition of zeroing idioms are directly
handled by the reorder buffer. The µOPs are forwarded to the Unified
Reservation Station (Scheduler) that queues the operations on exit ports
that are connected to Execution Units. Each execution unit can perform
different tasks like ALU operations, AES operations, address generation
units (AGU) or memory loads and stores. AGUs, as well as load and
store execution units, are directly connected to the memory subsystem to
process its requests.

Since CPUs usually do not run linear instruction streams, they have
branch prediction units that are used to obtain an educated guess of which
instruction is executed next. Branch predictors try to determine which
direction of a branch is taken before its condition is actually evaluated.
Instructions that lie on that path and do not have any dependencies can
be executed in advance and their results immediately used if the predic-
tion was correct. If the prediction was incorrect, the reorder buffer allows
to rollback to a sane state by clearing the reorder buffer and re-initializing
the unified reservation station.

There are various approaches to predict a branch: With static branch
prediction [28], the outcome is predicted solely based on the instruction
itself. Dynamic branch prediction [8] gathers statistics at run-time to
predict the outcome. One-level branch prediction uses a 1-bit or 2-bit
counter to record the last outcome of a branch [45]. Modern processors
often use two-level adaptive predictors [64] with a history of the last n
outcomes, allowing to predict regularly recurring patterns. More recently,
ideas to use neural branch prediction [38, 60, 62] have been picked up and
integrated into CPU architectures [9].

2.2. Address Spaces

To isolate processes from each other, CPUs support virtual address spaces
where virtual addresses are translated to physical addresses. A virtual ad-
dress space is divided into a set of pages that can be individually mapped
to physical memory through a multi-level page translation table. The
translation tables define the actual virtual to physical mapping and also
protection properties that are used to enforce privilege checks, such as
readable, writable, executable and user-accessible. The currently used
translation table is held in a special CPU register. On each context
switch, the operating system updates this register with the next process’

156 Chapter 6. Meltdown

translation table address in order to implement per-process virtual ad-
dress spaces. Because of that, each process can only reference data that
belongs to its virtual address space. Each virtual address space itself is
split into a user and a kernel part. While the user address space can be
accessed by the running application, the kernel address space can only
be accessed if the CPU is running in privileged mode. This is enforced
by the operating system disabling the user-accessible property of the cor-
responding translation tables. The kernel address space does not only
have memory mapped for the kernel’s own usage, but it also needs to
perform operations on user pages, e.g., filling them with data. Conse-
quently, the entire physical memory is typically mapped in the kernel.
On Linux and OS X, this is done via a direct-physical map, i.e., the en-
tire physical memory is directly mapped to a pre-defined virtual address
(cf. Figure 6.2).

Instead of a direct-physical map, Windows maintains a multiple so-called
paged pools, non-paged pools, and the system cache. These pools are
virtual memory regions in the kernel address space mapping physical
pages to virtual addresses which are either required to remain in the
memory (non-paged pool) or can be removed from the memory because a
copy is already stored on the disk (paged pool). The system cache further
contains mappings of all file-backed pages. Combined, these memory
pools will typically map a large fraction of the physical memory into the
kernel address space of every process.

The exploitation of memory corruption bugs often requires knowledge
of addresses of specific data. In order to impede such attacks, address
space layout randomization (ASLR) has been introduced as well as non-
executable stacks and stack canaries. To protect the kernel, kernel ASLR
(KASLR) randomizes the offsets where drivers are located on every boot,
making attacks harder as they now require to guess the location of kernel
data structures. However, side-channel attacks allow to detect the exact
location of kernel data structures [21, 29, 37] or derandomize ASLR in
JavaScript [16]. A combination of a software bug and the knowledge of
these addresses can lead to privileged code execution.

2.3. Cache Attacks

In order to speed-up memory accesses and address translation, the CPU
contains small memory buffers, called caches, that store frequently used
data. CPU caches hide slow memory access latencies by buffering fre-

2. Background 157

quently used data in smaller and faster internal memory. Modern CPUs
have multiple levels of caches that are either private per core or shared
among them. Address space translation tables are also stored in memory
and, thus, also cached in the regular caches.

Cache side-channel attacks exploit timing differences that are introduced
by the caches. Different cache attack techniques have been proposed and
demonstrated in the past, including Evict+Time [55], Prime+Probe [55,
56], and Flush+Reload [63]. Flush+Reload attacks work on a single cache
line granularity. These attacks exploit the shared, inclusive last-level
cache. An attacker frequently flushes a targeted memory location using
the clflush instruction. By measuring the time it takes to reload the
data, the attacker determines whether data was loaded into the cache by
another process in the meantime. The Flush+Reload attack has been used
for attacks on various computations, e.g., cryptographic algorithms [4,
36, 63], web server function calls [65], user input [23, 47, 58], and kernel
addressing information [21].

A special use case of a side-channel attack is a covert channel. Here the
attacker controls both, the part that induces the side effect, and the part
that measures the side effect. This can be used to leak information from
one security domain to another, while bypassing any boundaries existing
on the architectural level or above. Both Prime+Probe and Flush+Reload
have been used in high-performance covert channels [22, 48, 52].

158 Chapter 6. Meltdown

E
x
ec
u
ti
on

E
n
gi
n
e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,

..
.

A
L
U
,
B
ra
n
ch

L
o
a
d
d
a
ta

L
o
a
d
d
a
ta

S
to
re

d
a
ta

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

S
u
b
sy
st
em

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

F
ro
n
te
n
d

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 6.1.: Simplified illustration of a single core of the Intel’s Skylake
microarchitecture. Instructions are decoded into µOPs and
executed out-of-order in the execution engine by individual
execution units.

2. Background 159

Physical memory
0 max

User
0 247

Kernel
−247 −1

Figure 6.2.: The physical memory is directly mapped in the kernel at
a certain offset. A physical address (blue) which is mapped
accessible to the user space is also mapped in the kernel space
through the direct mapping.

160 Chapter 6. Meltdown

3. A Toy Example

In this section, we start with a toy example, i.e., a simple code snippet, to
illustrate that out-of-order execution can change the microarchitectural
state in a way that leaks information. However, despite its simplicity, it
is used as a basis for Section 4 and Section 5, where we show how this
change in state can be exploited for an attack.

Listing 6.1 shows a simple code snippet first raising an (unhandled) ex-
ception and then accessing an array. The property of an exception is that
the control flow does not continue with the code after the exception, but
jumps to an exception handler in the operating system. Regardless of
whether this exception is raised due to a memory access, e.g., by access-
ing an invalid address, or due to any other CPU exception, e.g., a division
by zero, the control flow continues in the kernel and not with the next
user space instruction.

Thus, our toy example cannot access the array in theory, as the exception
immediately traps to the kernel and terminates the application. However,
due to the out-of-order execution, the CPU might have already executed
the following instructions as there is no dependency on the instruction
triggering the exception. This is illustrated in Figure 6.3. Due to the
exception, the instructions executed out of order are not retired and,
thus, never have architectural effects.

Although the instructions executed out of order do not have any visible
architectural effect on registers or memory, they have microarchitectural
side effects. During the out-of-order execution, the referenced memory is
fetched into a register and also stored in the cache. If the out-of-order
execution has to be discarded, the register and memory contents are never
committed. Nevertheless, the cached memory contents are kept in the
cache. We can leverage a microarchitectural side-channel attack such as
Flush+Reload [63], which detects whether a specific memory location is
cached, to make this microarchitectural state visible. Other side channels

1 raise_exception();
2 // the line below is never reached
3 access(probe_array[data ∗ 4096]);

Listing 6.1: A toy example to illustrate side-effects of out-of-order
execution.

3. A Toy Example 161

<instr.>

<instr.>
...

<instr.>
[Exception]

e
x
e
c
u
t
e
d

T
r
a
n
si
e
n
t

E
x
e
c
u
t
io
n

access(array[data * 4096])

<instr.>

<instr.>
...

<instr.>

Exception
Handler

<instr.>

<instr.>
[Terminate]

Figure 6.3.: If an executed instruction causes an exception, diverting the
control flow to an exception handler, the subsequent instruc-
tion must not be executed. Due to out-of-order execution,
the subsequent instructions may already have been partially
executed, but not retired. However, architectural effects of
the execution are discarded.

can also detect whether a specific memory location is cached, including
Prime+Probe [48, 52, 55], Evict+Reload [47], or Flush+Flush [22]. As
Flush+Reload is the most accurate known cache side channel and is simple
to implement, we do not consider any other side channel for this example.

Based on the value of data in this example, a different part of the cache is
accessed when executing the memory access out of order. As data is mul-
tiplied by 4096, data accesses to probe_array are scattered over the array
with a distance of 4KB (assuming an 1B data type for probe_array).
Thus, there is an injective mapping from the value of data to a mem-
ory page, i.e., different values for data never result in an access to the
same page. Consequently, if a cache line of a page is cached, we know
the value of data. The spreading over pages eliminates false positives
due to the prefetcher, as the prefetcher cannot access data across page
boundaries [33].

Figure 6.4 shows the result of a Flush+Reload measurement iterating
over all pages, after executing the out-of-order snippet with data = 84.
Although the array access should not have happened due to the exception,
we can clearly see that the index which would have been accessed is
cached. Iterating over all pages (e.g., in the exception handler) shows
only a cache hit for page 84 This shows that even instructions which are
never actually executed, change the microarchitectural state of the CPU.
Section 4 modifies this toy example not to read a value but to leak an
inaccessible secret.

162 Chapter 6. Meltdown

0 20 40 60 80 100 120 140 160 180 200 220 240

300

400

500

Page

A
cc
es
s
ti
m
e

[c
y
cl
es
]

Figure 6.4.: Even if a memory location is only accessed during out-of-
order execution, it remains cached. Iterating over the 256
pages of probe_array shows one cache hit, exactly on the
page that was accessed during the out-of-order execution.

4. Building Blocks of the Attack
The toy example in Section 3 illustrated that side-effects of out-of-order
execution can modify the microarchitectural state to leak information.
While the code snippet reveals the data value passed to a cache-side
channel, we want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want to generalize and
discuss the necessary building blocks to exploit out-of-order execution for
an attack.

The adversary targets a secret value that is kept somewhere in physical
memory. Note that register contents are also stored in memory upon con-
text switches, i.e., they are also stored in physical memory. As described
in Section 2.2, the address space of every process typically includes the en-
tire user space, as well as the entire kernel space, which typically also has
all physical memory (in-use) mapped. However, these memory regions
are only accessible in privileged mode (cf. Section 2.2).

In this work, we demonstrate leaking secrets by bypassing the privileged-
mode isolation, giving an attacker full read access to the entire kernel
space, including any physical memory mapped and, thus, the physical
memory of any other process and the kernel. Note that Kocher et al.
[40] pursue an orthogonal approach, called Spectre Attacks, which trick
speculatively executed instructions into leaking information that the vic-
tim process is authorized to access. As a result, Spectre Attacks lack
the privilege escalation aspect of Meltdown and require tailoring to the
victim process’s software environment, but apply more broadly to CPUs
that support speculative execution and are not prevented by KAISER.

The full Meltdown attack consists of two building blocks, as illustrated

4. Building Blocks of the Attack 163

Exception Handling/Suppression

Transient Instructions
Secret

Microarchitectural State Change

Section 4.1

Architectural State

Transfer (Covert Channel)

Recovered Secret
Recovery

L
ea

k
ed

Accessed

Section 4.2

Figure 6.5.: The Meltdown attack uses exception handling or suppression,
e.g., TSX, to run a series of transient instructions. These
transient instructions obtain a (persistent) secret value and
change the microarchitectural state of the processor based
on this secret value. This forms the sending part of a mi-
croarchitectural covert channel. The receiving side reads the
microarchitectural state, making it architectural and recovers
the secret value.

in Figure 6.5. The first building block of Meltdown is to make the CPU
execute one or more instructions that would never occur in the executed
path. In the toy example (cf. Section 3), this is an access to an array,
which would normally never be executed, as the previous instruction al-
ways raises an exception. We call such an instruction, which is executed
out of order and leaving measurable side effects, a transient instruction.
Furthermore, we call any sequence of instructions containing at least one
transient instruction a transient instruction sequence.

In order to leverage transient instructions for an attack, the transient
instruction sequence must utilize a secret value that an attacker wants to
leak. Section 4.1 describes building blocks to run a transient instruction
sequence with a dependency on a secret value.

The second building block of Meltdown is to transfer the microarchitec-
tural side effect of the transient instruction sequence to an architectural
state to further process the leaked secret. Thus, the second building
described in Section 4.2 describes building blocks to transfer a microar-
chitectural side effect to an architectural state using a covert channel.

164 Chapter 6. Meltdown

4.1. Executing Transient Instructions

The first building block of Meltdown is the execution of transient instruc-
tions. Transient instructions occur all the time, as the CPU continuously
runs ahead of the current instruction to minimize the experienced latency
and, thus, to maximize the performance (cf. Section 2.1). Transient in-
structions introduce an exploitable side channel if their operation depends
on a secret value. We focus on addresses that are mapped within the at-
tacker’s process, i.e., the user-accessible user space addresses as well as
the user-inaccessible kernel space addresses. Note that attacks targeting
code that is executed within the context (i.e., address space) of another
process are possible [40], but out of scope in this work, since all physical
memory (including the memory of other processes) can be read through
the kernel address space regardless.

Accessing user-inaccessible pages, such as kernel pages, triggers an excep-
tion which generally terminates the application. If the attacker targets a
secret at a user-inaccessible address, the attacker has to cope with this ex-
ception. We propose two approaches: With exception handling, we catch
the exception effectively occurring after executing the transient instruc-
tion sequence, and with exception suppression, we prevent the exception
from occurring at all and instead redirect the control flow after executing
the transient instruction sequence. We discuss these approaches in detail
in the following.

Exception handling. A trivial approach is to fork the attacking appli-
cation before accessing the invalid memory location that terminates the
process and only access the invalid memory location in the child process.
The CPU executes the transient instruction sequence in the child pro-
cess before crashing. The parent process can then recover the secret by
observing the microarchitectural state, e.g., through a side-channel.

It is also possible to install a signal handler that is executed when a certain
exception occurs, e.g., a segmentation fault. This allows the attacker to
issue the instruction sequence and prevent the application from crashing,
reducing the overhead as no new process has to be created.

Exception suppression. A different approach to deal with exceptions is
to prevent them from being raised in the first place. Transactional mem-
ory allows to group memory accesses into one seemingly atomic operation,

4. Building Blocks of the Attack 165

giving the option to roll-back to a previous state if an error occurs. If an
exception occurs within the transaction, the architectural state is reset,
and the program execution continues without disruption.

Furthermore, speculative execution issues instructions that might not oc-
cur on the executed code path due to a branch misprediction. Such
instructions depending on a preceding conditional branch can be specula-
tively executed. Thus, the invalid memory access is put within a specula-
tive instruction sequence that is only executed if a prior branch condition
evaluates to true. By making sure that the condition never evaluates
to true in the executed code path, we can suppress the occurring excep-
tion as the memory access is only executed speculatively. This technique
may require sophisticated training of the branch predictor. Kocher et al.
[40] pursue this approach in orthogonal work, since this construct can
frequently be found in code of other processes.

4.2. Building a Covert Channel

The second building block of Meltdown is the transfer of the microarchi-
tectural state, which was changed by the transient instruction sequence,
into an architectural state (cf. Figure 6.5). The transient instruction
sequence can be seen as the sending end of a microarchitectural covert
channel. The receiving end of the covert channel receives the microarchi-
tectural state change and deduces the secret from the state. Note that
the receiver is not part of the transient instruction sequence and can be
a different thread or even a different process e.g., the parent process in
the fork-and-crash approach.

We leverage techniques from cache attacks, as the cache state is a mi-
croarchitectural state which can be reliably transferred into an archi-
tectural state using various techniques [22, 55, 63]. Specifically, we use
Flush+Reload [63], as it allows to build a fast and low-noise covert chan-
nel. Thus, depending on the secret value, the transient instruction se-
quence (cf. Section 4.1) performs a regular memory access, e.g., as it does
in the toy example (cf. Section 3).

After the transient instruction sequence accessed an accessible address,
i.e., this is the sender of the covert channel; the address is cached for sub-
sequent accesses. The receiver can then monitor whether the address has
been loaded into the cache by measuring the access time to the address.
Thus, the sender can transmit a ‘1’-bit by accessing an address which is

166 Chapter 6. Meltdown

loaded into the monitored cache, and a ‘0’-bit by not accessing such an
address.

Using multiple different cache lines, as in our toy example in Section 3,
allows to transmit multiple bits at once. For every of the 256 different
byte values, the sender accesses a different cache line. By performing
a Flush+Reload attack on all of the 256 possible cache lines, the re-
ceiver can recover a full byte instead of just one bit. However, since the
Flush+Reload attack takes much longer (typically several hundred cycles)
than the transient instruction sequence, transmitting only a single bit at
once is more efficient. The attacker can simply do that by shifting and
masking the secret value accordingly.

Note that the covert channel is not limited to microarchitectural states
which rely on the cache. Any microarchitectural state which can be in-
fluenced by an instruction (sequence) and is observable through a side
channel can be used to build the sending end of a covert channel. The
sender could, for example, issue an instruction (sequence) which occu-
pies a certain execution port such as the ALU to send a ‘1’-bit. The
receiver measures the latency when executing an instruction (sequence)
on the same execution port. A high latency implies that the sender sends
a ‘1’-bit, whereas a low latency implies that sender sends a ‘0’-bit. The
advantage of the Flush+Reload cache covert channel is the noise resis-
tance and the high transmission rate [22]. Furthermore, the leakage can
be observed from any CPU core [63], i.e., rescheduling events do not
significantly affect the covert channel.

5. Meltdown

In this section, we present Meltdown, a powerful attack allowing to read
arbitrary physical memory from an unprivileged user program, comprised
of the building blocks presented in Section 4. First, we discuss the attack
setting to emphasize the wide applicability of this attack. Second, we
present an attack overview, showing how Meltdown can be mounted on
both Windows and Linux on personal computers, on Android on mobile
phones as well as in the cloud. Finally, we discuss a concrete imple-
mentation of Meltdown allowing to dump arbitrary kernel memory with
3.2KB/s to 503KB/s.

5. Meltdown 167

Attack setting. In our attack, we consider personal computers and vir-
tual machines in the cloud. In the attack scenario, the attacker has
arbitrary unprivileged code execution on the attacked system, i.e., the
attacker can run any code with the privileges of a normal user. However,
the attacker has no physical access to the machine. Furthermore, we
assume that the system is fully protected with state-of-the-art software-
based defenses such as ASLR and KASLR as well as CPU features like
SMAP, SMEP, NX, and PXN. Most importantly, we assume a completely
bug-free operating system, thus, no software vulnerability exists that can
be exploited to gain kernel privileges or leak information. The attacker
targets secret user data, e.g., passwords and private keys, or any other
valuable information.

5.1. Attack Description

Meltdown combines the two building blocks discussed in Section 4. First,
an attacker makes the CPU execute a transient instruction sequence
which uses an inaccessible secret value stored somewhere in physical mem-
ory (cf. Section 4.1). The transient instruction sequence acts as the trans-
mitter of a covert channel (cf. Section 4.2), ultimately leaking the secret
value to the attacker.

Meltdown consists of 3 steps:

Step 1 The content of an attacker-chosen memory location, which is in-
accessible to the attacker, is loaded into a register.

Step 2 A transient instruction accesses a cache line based on the secret
content of the register.

Step 3 The attacker uses Flush+Reload to determine the accessed cache
line and hence the secret stored at the chosen memory location.

By repeating these steps for different memory locations, the attacker can
dump the kernel memory, including the entire physical memory.

Listing 6.2 shows the basic implementation of the transient instruction
sequence and the sending part of the covert channel, using x86 assembly
instructions. Note that this part of the attack could also be implemented
entirely in higher level languages like C. In the following, we will discuss
each step of Meltdown and the corresponding code line in Listing 6.2.

168 Chapter 6. Meltdown

1 ; rcx = kernel address, rbx = probe array
2 xor rax, rax
3 retry:
4 mov al, byte [rcx]
5 shl rax, 0xc
6 jz retry
7 mov rbx, qword [rbx + rax]

Listing 6.2: The core of Meltdown. An inaccessible kernel address is
moved to a register, raising an exception. Subsequent
instructions are executed out of order before the exception
is raised, leaking the data from the kernel address through
the indirect memory access.

Step 1: Reading the secret. To load data from the main memory into
a register, the data in the main memory is referenced using a virtual
address. In parallel to translating a virtual address into a physical ad-
dress, the CPU also checks the permission bits of the virtual address, i.e.,
whether this virtual address is user accessible or only accessible by the
kernel. As already discussed in Section 2.2, this hardware-based isola-
tion through a permission bit is considered secure and recommended by
the hardware vendors. Hence, modern operating systems always map the
entire kernel into the virtual address space of every user process.

As a consequence, all kernel addresses lead to a valid physical address
when translating them, and the CPU can access the content of such ad-
dresses. The only difference to accessing a user space address is that the
CPU raises an exception as the current permission level does not allow
to access such an address. Hence, the user space cannot simply read the
contents of such an address. However, Meltdown exploits the out-of-order
execution of modern CPUs, which still executes instructions in the small
time window between the illegal memory access and the raising of the
exception.

In line 4 of Listing 6.2, we load the byte value located at the target kernel
address, stored in the RCX register, into the least significant byte of the
RAX register represented by AL. As explained in more detail in Section 2.1,
the MOV instruction is fetched by the core, decoded into µOPs, allocated,
and sent to the reorder buffer. There, architectural registers (e.g., RAX and
RCX in Listing 6.2) are mapped to underlying physical registers enabling
out-of-order execution. Trying to utilize the pipeline as much as possi-
ble, subsequent instructions (lines 5-7) are already decoded and allocated

5. Meltdown 169

as µOPs as well. The µOPs are further sent to the reservation station
holding the µOPs while they wait to be executed by the corresponding
execution unit. The execution of a µOP can be delayed if execution units
are already used to their corresponding capacity, or operand values have
not been computed yet.

When the kernel address is loaded in line 4, it is likely that the CPU
already issued the subsequent instructions as part of the out-of-order
execution, and that their corresponding µOPs wait in the reservation
station for the content of the kernel address to arrive. As soon as the
fetched data is observed on the common data bus, the µOPs can begin
their execution. Furthermore, processor interconnects [3, 31] and cache
coherence protocols [59] guarantee that the most recent value of a memory
address is read, regardless of the storage location in a multi-core or multi-
CPU system.

When the µOPs finish their execution, they retire in-order, and, thus,
their results are committed to the architectural state. During the retire-
ment, any interrupts and exceptions that occurred during the execution
of the instruction are handled. Thus, if the MOV instruction that loads
the kernel address is retired, the exception is registered, and the pipeline
is flushed to eliminate all results of subsequent instructions which were
executed out of order. However, there is a race condition between raising
this exception and our attack step 2 as described below.

As reported by Gruss et al. [21], prefetching kernel addresses sometimes
succeeds. We found that prefetching the kernel address can slightly im-
prove the performance of the attack on some systems.

Step 2: Transmitting the secret. The instruction sequence from step 1
which is executed out of order has to be chosen in a way that it becomes
a transient instruction sequence. If this transient instruction sequence is
executed before the MOV instruction is retired (i.e., raises the exception),
and the transient instruction sequence performed computations based on
the secret, it can be utilized to transmit the secret to the attacker.

As already discussed, we utilize cache attacks that allow building fast
and low-noise covert channels using the CPU’s cache. Thus, the transient
instruction sequence has to encode the secret into the microarchitectural
cache state, similar to the toy example in Section 3.

We allocate a probe array in memory and ensure that no part of this

170 Chapter 6. Meltdown

array is cached. To transmit the secret, the transient instruction sequence
contains an indirect memory access to an address which is computed
based on the secret (inaccessible) value. In line 5 of Listing 6.2, the
secret value from step 1 is multiplied by the page size, i.e., 4KB. The
multiplication of the secret ensures that accesses to the array have a large
spatial distance to each other. This prevents the hardware prefetcher from
loading adjacent memory locations into the cache as well. Here, we read a
single byte at once. Hence, our probe array is 256×4096 bytes, assuming
4KB pages.

Note that in the out-of-order execution we have a noise-bias towards
register value ‘0’. We discuss the reasons for this in Section 5.2. However,
for this reason, we introduce a retry-logic into the transient instruction
sequence. In case we read a ‘0’, we try to reread the secret (step 1). In line
7, the multiplied secret is added to the base address of the probe array,
forming the target address of the covert channel. This address is read to
cache the corresponding cache line. The address will be loaded into the
L1 data cache of the requesting core and, due to the inclusiveness, also
the L3 cache where it can be read from other cores. Consequently, our
transient instruction sequence affects the cache state based on the secret
value that was read in step 1.

Since the transient instruction sequence in step 2 races against raising
the exception, reducing the runtime of step 2 can significantly improve
the performance of the attack. For instance, taking care that the ad-
dress translation for the probe array is cached in the translation-lookaside
buffer (TLB) increases the attack performance on some systems.

Step 3: Receiving the secret. In step 3, the attacker recovers the secret
value (step 1) by leveraging a microarchitectural side-channel attack (i.e.,
the receiving end of a microarchitectural covert channel) that transfers
the cache state (step 2) back into an architectural state. As discussed in
Section 4.2, our implementation of Meltdown relies on Flush+Reload for
this purpose.

When the transient instruction sequence of step 2 is executed, exactly
one cache line of the probe array is cached. The position of the cached
cache line within the probe array depends only on the secret which is
read in step 1. Thus, the attacker iterates over all 256 pages of the probe
array and measures the access time for every first cache line (i.e., offset)
on the page. The number of the page containing the cached cache line

5. Meltdown 171

corresponds directly to the secret value.

Dumping the entire physical memory. Repeating all 3 steps of Melt-
down, an attacker can dump the entire memory by iterating over all
addresses. However, as the memory access to the kernel address raises an
exception that terminates the program, we use one of the methods from
Section 4.1 to handle or suppress the exception.

As all major operating systems also typically map the entire physical
memory into the kernel address space (cf. Section 2.2) in every user pro-
cess, Meltdown can also read the entire physical memory of the target
machine.

5.2. Optimizations and Limitations

Inherent bias towards 0. While CPUs generally stall if a value is not
available during an out-of-order load operation [28], CPUs might continue
with the out-of-order execution by assuming a value for the load [12]. We
observed that the illegal memory load in our Meltdown implementation
(line 4 in Listing 6.2) often returns a ‘0’, which can be clearly observed
when implemented using an add instruction instead of the mov. The
reason for this bias to ‘0’ may either be that the memory load is masked
out by a failed permission check, or a speculated value because the data
of the stalled load is not available yet.

This inherent bias results from the race condition in the out-of-order exe-
cution, which may be won (i.e., reads the correct value), but is often lost
(i.e., reads a value of ‘0’). This bias varies between different machines as
well as hardware and software configurations and the specific implemen-
tation of Meltdown. In an unoptimized version, the probability that a
value of ’0’ is erroneously returned is high. Consequently, our Meltdown
implementation performs a certain number of retries when the code in
Listing 6.2 results in reading a value of ‘0’ from the Flush+Reload attack.
The maximum number of retries is an optimization parameter influencing
the attack performance and the error rate. On the Intel Core i5-6200U
using exeception handling, we read a ’0’ on average in 5.25% (σ = 4.15)
with our unoptimized version. With a simple retry loop, we reduced the
probability to 0.67% (σ = 1.47). On the Core i7-8700K, we read on aver-
age a ’0’ in 1.78% (σ = 3.07). Using Intel TSX, the probability is further
reduced to 0.008%.

172 Chapter 6. Meltdown

Optimizing the case of 0. Due to the inherent bias of Meltdown, a cache
hit on cache line ‘0’ in the Flush+Reload measurement, does not provide
the attacker with any information. Hence, measuring cache line ‘0’ can
be omitted and in case there is no cache hit on any other cache line, the
value can be assumed to be ‘0’. To minimize the number of cases where
no cache hit on a non-zero line occurs, we retry reading the address in the
transient instruction sequence until it encounters a value different from
‘0’ (line 6). This loop is terminated either by reading a non-zero value
or by the raised exception of the invalid memory access. In either case,
the time until exception handling or exception suppression returns the
control flow is independent of the loop after the invalid memory access,
i.e., the loop does not slow down the attack measurably. Hence, these
optimizations may increase the attack performance.

Single-bit transmission. In the attack description in Section 5.1, the
attacker transmitted 8 bits through the covert channel at once and per-
formed 28 = 256 Flush+Reload measurements to recover the secret. How-
ever, there is a trade-off between running more transient instruction
sequences and performing more Flush+Reload measurements. The at-
tacker could transmit an arbitrary number of bits in a single transmission
through the covert channel, by reading more bits using a MOV instruction
for a larger data value. Furthermore, the attacker could mask bits using
additional instructions in the transient instruction sequence. We found
the number of additional instructions in the transient instruction sequence
to have a negligible influence on the performance of the attack.

The performance bottleneck in the generic attack described above is in-
deed, the time spent on Flush+Reload measurements. In fact, with this
implementation, almost the entire time is spent on Flush+Reload mea-
surements. By transmitting only a single bit, we can omit all but one
Flush+Reload measurement, i.e., the measurement on cache line 1. If the
transmitted bit was a ‘1’, then we observe a cache hit on cache line 1.
Otherwise, we observe no cache hit on cache line 1.

Transmitting only a single bit at once also has drawbacks. As described
above, our side channel has a bias towards a secret value of ‘0’. If we
read and transmit multiple bits at once, the likelihood that all bits are
‘0’ may be quite small for actual user data. The likelihood that a single
bit is ‘0’ is typically close to 50%. Hence, the number of bits read and
transmitted at once is a trade-off between some implicit error-reduction
and the overall transmission rate of the covert channel.

6. Evaluation 173

However, since the error rates are quite small in either case, our evaluation
(cf. Section 6) is based on the single-bit transmission mechanics.

Exception Suppression using Intel TSX. In Section 4.1, we discussed
the option to prevent that an exception is raised due an invalid memory
access. Using Intel TSX, a hardware transactional memory implementa-
tion, we can completely suppress the exception [37].

With Intel TSX, multiple instructions can be grouped to a transaction,
which appears to be an atomic operation, i.e., either all or no instruc-
tion is executed. If one instruction within the transaction fails, already
executed instructions are reverted, but no exception is raised.

If we wrap the code from listing 6.2 with such a TSX instruction, any
exception is suppressed. However, the microarchitectural effects are still
visible, i.e., the cache state is persistently manipulated from within the
hardware transaction [19]. This results in higher channel capacity, as
suppressing the exception is significantly faster than trapping into the
kernel for handling the exception, and continuing afterward.

Dealing with KASLR. In 2013, kernel address space layout randomiza-
tion (KASLR) was introduced to the Linux kernel (starting from version
3.14 [11]) allowing to randomize the location of kernel code at boot time.
However, only as recently as May 2017, KASLR was enabled by default in
version 4.12 [54]. With KASLR also the direct-physical map is random-
ized and not fixed at a certain address such that the attacker is required
to obtain the randomized offset before mounting the Meltdown attack.
However, the randomization is limited to 40 bit.

Thus, if we assume a setup of the target machine with 8GB of RAM, it
is sufficient to test the address space for addresses in 8GB steps. This
allows covering the search space of 40 bit with only 128 tests in the worst
case. If the attacker can successfully obtain a value from a tested address,
the attacker can proceed to dump the entire memory from that location.
This allows mounting Meltdown on a system despite being protected by
KASLR within seconds.

174 Chapter 6. Meltdown

Table 6.1.: Experimental setups.
Environment CPU Model Cores

Lab Celeron G540 2
Lab Core i5-3230M 2
Lab Core i5-3320M 2
Lab Core i7-4790 4
Lab Core i5-6200U 2
Lab Core i7-6600U 2
Lab Core i7-6700K 4
Lab Core i7-8700K 12
Lab Xeon E5-1630 v3 8

Cloud Xeon E5-2676 v3 12
Cloud Xeon E5-2650 v4 12
Phone Exynos 8890 8

6. Evaluation
In this section, we evaluate Meltdown and the performance of our proof-
of-concept implementation.11 Section 6.1 discusses the information which
Meltdown can leak, and Section 6.2 evaluates the performance of Melt-
down, including countermeasures. Finally, we discuss limitations for
AMD and ARM in Section 6.3.

Table 6.1 shows a list of configurations on which we successfully repro-
duced Meltdown. For the evaluation of Meltdown, we used both laptops
as well as desktop PCs with Intel Core CPUs and an ARM-based mobile
phone. For the cloud setup, we tested Meltdown in virtual machines run-
ning on Intel Xeon CPUs hosted in the Amazon Elastic Compute Cloud
as well as on DigitalOcean. Note that for ethical reasons we did not use
Meltdown on addresses referring to physical memory of other tenants.

6.1. Leakage and Environments
We evaluated Meltdown on both Linux (cf. Section 6.1.1), Windows 10
(cf. Section 6.1.3) and Android (cf. Section 6.1.4), without the patches
introducing the KAISER mechanism. On these operating systems, Melt-
down can successfully leak kernel memory. We also evaluated the effect
of the KAISER patches on Meltdown on Linux, to show that KAISER
prevents the leakage of kernel memory (cf. Section 6.1.2). Furthermore,
11https://github.com/IAIK/meltdown

https://github.com/IAIK/meltdown

6. Evaluation 175

we discuss the information leakage when running inside containers such
as Docker (cf. Section 6.1.5). Finally, we evaluate Meltdown on uncached
and uncacheable memory (cf. Section 6.1.6).

6.1.1. Linux

We successfully evaluated Meltdown on multiple versions of the Linux ker-
nel, from 2.6.32 to 4.13.0, without the patches introducing the KAISER
mechanism. On all these versions of the Linux kernel, the kernel address
space is also mapped into the user address space. Thus, all kernel ad-
dresses are also mapped into the address space of user space applications,
but any access is prevented due to the permission settings for these ad-
dresses. As Meltdown bypasses these permission settings, an attacker can
leak the complete kernel memory if the virtual address of the kernel base
is known. Since all major operating systems also map the entire phys-
ical memory into the kernel address space (cf. Section 2.2), all physical
memory can also be read.

Before kernel 4.12, kernel address space layout randomization (KASLR)
was not active by default [57]. If KASLR is active, Meltdown can still be
used to find the kernel by searching through the address space (cf. Sec-
tion 5.2). An attacker can also simply de-randomize the direct-physical
map by iterating through the virtual address space. Without KASLR,
the direct-physical map starts at address 0xffff 8800 0000 0000 and
linearly maps the entire physical memory. On such systems, an attacker
can use Meltdown to dump the entire physical memory, simply by reading
from virtual addresses starting at 0xffff 8800 0000 0000.

On newer systems, where KASLR is active by default, the randomization
of the direct-physical map is limited to 40 bit. It is even further limited
due to the linearity of the mapping. Assuming that the target system
has at least 8GB of physical memory, the attacker can test addresses in
steps of 8GB, resulting in a maximum of 128 memory locations to test.
Starting from one discovered location, the attacker can again dump the
entire physical memory.

Hence, for the evaluation, we can assume that the randomization is either
disabled, or the offset was already retrieved in a pre-computation step.

176 Chapter 6. Meltdown

6.1.2. Linux with KAISER Patch

The KAISER patch by Gruss et al. [20] implements a stronger isolation
between kernel and user space. KAISER does not map any kernel memory
in the user space, except for some parts required by the x86 architecture
(e.g., interrupt handlers). Thus, there is no valid mapping to either kernel
memory or physical memory (via the direct-physical map) in the user
space, and such addresses can therefore not be resolved. Consequently,
Meltdown cannot leak any kernel or physical memory except for the few
memory locations which have to be mapped in user space.

We verified that KAISER indeed prevents Meltdown, and there is no
leakage of any kernel or physical memory.

Furthermore, if KASLR is active, and the few remaining memory loca-
tions are randomized, finding these memory locations is not trivial due
to their small size of several kilobytes. Section 7.2 discusses the security
implications of these mapped memory locations.

6.1.3. Microsoft Windows

We successfully evaluated Meltdown on a recent Microsoft Windows 10
operating system, last updated just before patches against Meltdown were
rolled out. In line with the results on Linux (cf. Section 6.1.1), Meltdown
also can leak arbitrary kernel memory on Windows. This is not surprising,
since Meltdown does not exploit any software issues, but is caused by a
hardware issue.

In contrast to Linux, Windows does not have the concept of an identity
mapping, which linearly maps the physical memory into the virtual ad-
dress space. Instead, a large fraction of the physical memory is mapped
in the paged pools, non-paged pools, and the system cache. Furthermore,
Windows maps the kernel into the address space of every application too.
Thus, Meltdown can read kernel memory which is mapped in the kernel
address space, i.e., any part of the kernel which is not swapped out, and
any page mapped in the paged and non-paged pool, and the system cache.

Note that there are physical pages which are mapped in one process but
not in the (kernel) address space of another process, i.e., physical pages
which cannot be attacked using Meltdown. However, most of the physical
memory will still be accessible through Meltdown.

We were successfully able to read the binary of the Windows kernel using

6. Evaluation 177

Meltdown. To verify that the leaked data is actual kernel memory, we first
used the Windows kernel debugger to obtain kernel addresses containing
actual data. After leaking the data, we again used the Windows kernel
debugger to compare the leaked data with the actual memory content,
confirming that Meltdown can successfully leak kernel memory.

6.1.4. Android

We successfully evaluated Meltdown on a Samsung Galaxy S7 mohile
phone running LineageOS Android 14.1 with a Linux kernel 3.18.14. The
device is equipped with a Samsung Exynos 8 Octa 8890 SoC consisting
of a ARM Cortex-A53 CPU with 4 cores as well as an Exynos M1 ”Mon-
goose” CPU with 4 cores [6]. While we were not able to mount the attack
on the Cortex-A53 CPU, we successfully mounted Meltdown on Sam-
sung’s custom cores. Using exception suppression described in Section 4.1,
we successfully leaked a pre-defined string using the direct-physical map
located at the virtual address 0xffff ffbf c000 0000.

6.1.5. Containers

We evaluated Meltdown in containers sharing a kernel, including Docker,
LXC, and OpenVZ and found that the attack can be mounted without
any restrictions. Running Meltdown inside a container allows to leak
information not only from the underlying kernel but also from all other
containers running on the same physical host.

The commonality of most container solutions is that every container uses
the same kernel, i.e., the kernel is shared among all containers. Thus, ev-
ery container has a valid mapping of the entire physical memory through
the direct-physical map of the shared kernel. Furthermore, Meltdown
cannot be blocked in containers, as it uses only memory accesses. Espe-
cially with Intel TSX, only unprivileged instructions are executed without
even trapping into the kernel.

Thus, the isolation of containers sharing a kernel can be entirely broken
using Meltdown. This is especially critical for cheaper hosting providers
where users are not separated through fully virtualized machines, but only
through containers. We verified that our attack works in such a setup,
by successfully leaking memory contents from a container of a different
user under our control.

178 Chapter 6. Meltdown

6.1.6. Uncached and Uncacheable Memory

In this section, we evaluate whether it is a requirement for data to be
leaked by Meltdown to reside in the L1 data cache [32]. Therefore, we
constructed a setup with two processes pinned to different physical cores.
By flushing the value, using the clflush instruction, and only reloading
it on the other core, we create a situation where the target data is not
in the L1 data cache of the attacker core. As described in Section 6.2,
we can still leak the data at a lower reading rate. This clearly shows
that data presence in the attacker’s L1 data cache is not a requirement
for Meltdown. Furthermore, this observation has also been confirmed by
other researchers [5, 7, 35].

The reason why Meltdown can leak uncached memory may be that Melt-
down implicitly caches the data. We devise a second experiment, where
we mark pages as uncacheable and try to leak data from them. This has
the consequence that every read or write operation to one of those pages
will directly go to the main memory, thus, bypassing the cache. In prac-
tice, only a negligible amount of system memory is marked uncacheable.
We observed that if the attacker is able to trigger a legitimate load of
the target address, e.g., by issuing a system call (regular or in specula-
tive execution [40]), on the same CPU core as the Meltdown attack, the
attacker can leak the content of the uncacheable pages. We suspect that
Meltdown reads the value from the line fill buffers. As the fill buffers
are shared between threads running on the same core, the read to the
same address within the Meltdown attack could be served from one of
the fill buffers allowing the attack to succeed. However, we leave further
investigations on this matter open for future work.

A similar observation on uncacheable memory was also made with Spectre
attacks on the System Management Mode [10]. While the attack works
on memory set uncacheable over Memory-Type Range Registers, it does
not work on memory-mapped I/O regions, which is the expected behavior
as accesses to memory-mapped I/O can always have architectural effects.

6.2. Meltdown Performance

To evaluate the performance of Meltdown, we leaked known values from
kernel memory. This allows us to not only determine how fast an attacker
can leak memory, but also the error rate, i.e., how many byte errors to
expect. The race condition in Meltdown (cf. Section 5.2) has a significant

6. Evaluation 179

influence on the performance of the attack, however, the race condition
can always be won. If the targeted data resides close to the core, e.g.,
in the L1 data cache, the race condition is won with a high probability.
In this scenario, we achieved average reading rates of up to 582KB/s
(µ = 552.4, σ = 10.2) with an error rate as low as 0.003% (µ = 0.009, σ =
0.014) using exception suppression on the Core i7-8700K over 10 runs
over 10 seconds. With the Core i7-6700K we achieved 569KB/s (µ =
515.5, σ = 5.99) with an minimum error rate of 0.002% (µ = 0.003, σ =
0.001) and 491KB/s (µ = 466.3, σ = 16.75) with a minimum error rate
of 10.7% (µ = 11.59, σ = 0.62) on the Xeon E5-1630. However, with
a slower version with an average reading speed of 137KB/s, we were
able to reduce the error rate to 0. Furthermore, on the Intel Core i7-
6700K if the data resides in the L3 data cache but not in L1, the race
condition can still be won often, but the average reading rate decreases to
12.4KB/s with an error rate as low as 0.02% using exception suppression.
However, if the data is uncached, winning the race condition is more
difficult and, thus, we have observed reading rates of less than 10B/s
on most systems. Nevertheless, there are two optimizations to improve
the reading rate: First, by simultaneously letting other threads prefetch
the memory locations [21] of and around the target value and access the
target memory location (with exception suppression or handling). This
increases the probability that the spying thread sees the secret data value
in the right moment during the data race. Second, by triggering the
hardware prefetcher through speculative accesses to memory locations
of and around the target value. With these two optimizations, we can
improve the reading rate for uncached data to 3.2KB/s.

For all tests, we used Flush+Reload as a covert channel to leak the mem-
ory as described in Section 5, and Intel TSX to suppress the exception. An
extensive evaluation of exception suppression using conditional branches
was done by Kocher et al. [40] and is thus omitted in this paper for the
sake of brevity.

6.3. Limitations on ARM and AMD

We also tried to reproduce the Meltdown bug on several ARM and AMD
CPUs. While we were able to successfully leak kernel memory with the
attack described in Section 5 on different Intel CPUs and a Samsung
Exynos M1 processor, we did not manage to mount Meltdown on other
ARM cores nor on AMD. In the case of ARM, the only affected proces-

180 Chapter 6. Meltdown

sor is the Cortex-A75 [17] which has not been available and, thus, was
not among our devices under test. However, appropriate kernel patches
have already been provided [2]. Furthermore, an altered attack of Melt-
down targeting system registers instead of inaccessible memory locations
is applicable on several ARM processors [17]. Meanwhile, AMD pub-
licly stated that none of their CPUs are not affected by Meltdown due to
architectural differences [1].

The major part of a microarchitecture is usually not publicly documented.
Thus, it is virtually impossible to know the differences in the implemen-
tations that allow or prevent Meltdown without proprietary knowledge
and, thus, the intellectual property of the individual CPU manufacturers.
The key point is that on a microarchitectural level the load to the un-
privileged address and the subsequent instructions are executed while the
fault is only handled when the faulting instruction is retired. It can be
assumed that the execution units for the load and the TLB are designed
differently on ARM, AMD and Intel and, thus, the privileges for the load
are checked differently and occurring faults are handled differently, e.g.,
issuing a load only after the permission bit in the page table entry has
been checked. However, from a performance perspective, issuing the load
in parallel or only checking permissions while retiring an instruction is a
reasonable decision. As trying to load kernel addresses from user space
is not what programs usually do and by guaranteeing that the state does
not become architecturally visible, not squashing the load is legitimate.
However, as the state becomes visible on the microarchitectural level,
such implementations are vulnerable.

However, for both ARM and AMD, the toy example as described in Sec-
tion 3 works reliably, indicating that out-of-order execution generally oc-
curs and instructions past illegal memory accesses are also performed.

7. Countermeasures

In this section, we discuss countermeasures against the Meltdown attack.
At first, as the issue is rooted in the hardware itself, we discuss possible
microcode updates and general changes in the hardware design. Sec-
ond, we discuss the KAISER countermeasure that has been developed
to mitigate side-channel attacks against KASLR which inadvertently also
protects against Meltdown.

7. Countermeasures 181

7.1. Hardware

Meltdown bypasses the hardware-enforced isolation of security domains.
There is no software vulnerability involved in Meltdown. Any software
patch (e.g., KAISER [20]) will leave small amounts of memory exposed
(cf. Section 7.2). There is no documentation whether a fix requires the de-
velopment of completely new hardware, or can be fixed using a microcode
update.

As Meltdown exploits out-of-order execution, a trivial countermeasure
is to disable out-of-order execution completely. However, performance
impacts would be devastating, as the parallelism of modern CPUs could
not be leveraged anymore. Thus, this is not a viable solution.

Meltdown is some form of race condition between the fetch of a memory
address and the corresponding permission check for this address. Serializ-
ing the permission check and the register fetch can prevent Meltdown, as
the memory address is never fetched if the permission check fails. How-
ever, this involves a significant overhead to every memory fetch, as the
memory fetch has to stall until the permission check is completed.

A more realistic solution would be to introduce a hard split of user space
and kernel space. This could be enabled optionally by modern kernels
using a new hard-split bit in a CPU control register, e.g., CR4. If the
hard-split bit is set, the kernel has to reside in the upper half of the address
space, and the user space has to reside in the lower half of the address
space. With this hard split, a memory fetch can immediately identify
whether such a fetch of the destination would violate a security boundary,
as the privilege level can be directly derived from the virtual address
without any further lookups. We expect the performance impacts of such
a solution to be minimal. Furthermore, the backwards compatibility is
ensured, since the hard-split bit is not set by default and the kernel only
sets it if it supports the hard-split feature.

Note that these countermeasures only prevent Meltdown, and not the
class of Spectre attacks described by Kocher et al. [40]. Likewise, their
presented countermeasures [40] do not affect Meltdown. We stress that
it is important to deploy countermeasures against both attacks.

182 Chapter 6. Meltdown

7.2. KAISER

As existing hardware is not as easy to patch, there is a need for software
workarounds until new hardware can be deployed. Gruss et al. [20] pro-
posed KAISER, a kernel modification to not have the kernel mapped in
the user space. This modification was intended to prevent side-channel
attacks breaking KASLR [21, 29, 37]. However, it also prevents Melt-
down, as it ensures that there is no valid mapping to kernel space or
physical memory available in user space. In concurrent work to KAISER,
Gens et al. [14] proposed LAZARUS as a modification to the Linux ker-
nel to thwart side-channel attacks breaking KASLR by separating address
spaces similar to KAISER. As the Linux kernel continued the develop-
ment of the original KAISER patch and Windows [53] and macOS [34]
based their implementation on the concept of KAISER to defeat Melt-
down, we will discuss KAISER in more depth.

Although KAISER provides basic protection against Meltdown, it still has
some limitations. Due to the design of the x86 architecture, several privi-
leged memory locations are still required to be mapped in user space [20],
leaving a residual attack surface for Meltdown, i.e., these memory lo-
cations can still be read from user space. Even though these memory
locations do not contain any secrets, e.g., credentials, they might still
contain pointers. Leaking one pointer can suffice to break KASLR, as
the randomization can be computed from the pointer value.

Still, KAISER is the best short-time solution currently available and
should therefore be deployed on all systems immediately. Even with Melt-
down, KAISER can avoid having any kernel pointers on memory locations
that are mapped in the user space which would leak information about
the randomized offsets. This would require trampoline locations for ev-
ery kernel pointer, i.e., the interrupt handler would not call into kernel
code directly, but through a trampoline function. The trampoline func-
tion must only be mapped in the kernel. It must be randomized with a
different offset than the remaining kernel. Consequently, an attacker can
only leak pointers to the trampoline code, but not the randomized offsets
of the remaining kernel. Such trampoline code is required for every ker-
nel memory that still has to be mapped in user space and contains kernel
addresses. This approach is a trade-off between performance and security
which has to be assessed in future work.

The original KAISER patch [18] for the Linux kernel has been improved [24–
27] with various optimizations, e.g., support for PCIDs. Afterwards, be-

8. Discussion 183

fore merging it into the mainline kernel, it has been renamed to kernel
page-table isolation (KPTI) [15, 49]. KPTI is active in recent releases of
the Linux kernel and has been backported to older versions as well [30,
42–44].

Microsoft implemented a similar patch inspired by KAISER [53] named
KVA Shadow [39]. While KVA Shadow only maps a minimum of kernel
transition code and data pages required to switch between address spaces,
it does not protect against side-channel attacks against KASLR [39].

Apple released updates in iOS 11.2, macOS 10.13.2 and tvOS 11.2 to
mitigate Meltdown. Similar to Linux and Windows, macOS shared the
kernel and user address spaces in 64-bit mode unless the -no-shared-
cr3 boot option was set [46]. This option unmaps the user space while
running in kernel mode but does not unmap the kernel while running
in user mode [51]. Hence, it has no effect on Meltdown. Consequently,
Apple introduced Double Map [34] following the principles of KAISER to
mitigate Meltdown.

8. Discussion
Meltdown fundamentally changes our perspective on the security of hard-
ware optimizations that manipulate the state of microarchitectural ele-
ments. The fact that hardware optimizations can change the state of
microarchitectural elements, and thereby imperil secure software imple-
mentations, is known since more than 20 years [41]. Both industry and the
scientific community so far accepted this as a necessary evil for efficient
computing. Today it is considered a bug when a cryptographic algorithm
is not protected against the microarchitectural leakage introduced by the
hardware optimizations. Meltdown changes the situation entirely. Melt-
down shifts the granularity from a comparably low spatial and temporal
granularity, e.g., 64-bytes every few hundred cycles for cache attacks, to
an arbitrary granularity, allowing an attacker to read every single bit.
This is nothing any (cryptographic) algorithm can protect itself against.
KAISER is a short-term software fix, but the problem we have uncovered
is much more significant.

We expect several more performance optimizations in modern CPUs which
affect the microarchitectural state in some way, not even necessarily
through the cache. Thus, hardware which is designed to provide cer-
tain security guarantees, e.g., CPUs running untrusted code, requires a

184 Chapter 6. Meltdown

redesign to avoid Meltdown- and Spectre-like attacks. Meltdown also
shows that even error-free software, which is explicitly written to thwart
side-channel attacks, is not secure if the design of the underlying hardware
is not taken into account.

With the integration of KAISER into all major operating systems, an
important step has already been done to prevent Meltdown. KAISER
is a fundamental change in operating system design. Instead of always
mapping everything into the address space, mapping only the minimally
required memory locations appears to be a first step in reducing the at-
tack surface. However, it might not be enough, and even stronger isolation
may be required. In this case, we can trade flexibility for performance
and security, by e.g., enforcing a certain virtual memory layout for ev-
ery operating system. As most modern operating systems already use a
similar memory layout, this might be a promising approach.

Meltdown also heavily affects cloud providers, especially if the guests are
not fully virtualized. For performance reasons, many hosting or cloud
providers do not have an abstraction layer for virtual memory. In such
environments, which typically use containers, such as Docker or OpenVZ,
the kernel is shared among all guests. Thus, the isolation between guests
can simply be circumvented with Meltdown, fully exposing the data of
all other guests on the same host. For these providers, changing their
infrastructure to full virtualization or using software workarounds such
as KAISER would both increase the costs significantly.

Concurrent work has investigated the possibility to read kernel memory
via out-of-order or speculative execution, but has not succeeded [13, 50].
We are the first to demonstrate that it is possible. Even if Meltdown
is fixed, Spectre [40] will remain an issue, requiring different defenses.
Mitigating only one of them will leave the security of the entire system
at risk. Meltdown and Spectre open a new field of research to investigate
to what extent performance optimizations change the microarchitectural
state, how this state can be translated into an architectural state, and
how such attacks can be prevented.

9. Conclusion
In this paper, we presented Meltdown, a novel software-based attack ex-
ploiting out-of-order execution and side channels on modern processors to
read arbitrary kernel memory from an unprivileged user space program.

References 185

Without requiring any software vulnerability and independent of the op-
erating system, Meltdown enables an adversary to read sensitive data of
other processes or virtual machines in the cloud with up to 503KB/s, af-
fecting millions of devices. We showed that the countermeasure KAISER,
originally proposed to protect from side-channel attacks against KASLR,
inadvertently impedes Meltdown as well. We stress that KAISER needs
to be deployed on every operating system as a short-term workaround,
until Meltdown is fixed in hardware, to prevent large-scale exploitation
of Meltdown.

Acknowledgments
Several authors of this paper found Meltdown independently, ultimately
leading to this collaboration. We want to thank everyone who helped us
in making this collaboration possible, especially Intel who handled our
responsible disclosure professionally, comunicated a clear timeline and
connected all involved researchers. We thank Mark Brand from Google
Project Zero for contributing ideas and Peter Cordes and Henry Wong
for valuable feedback. We would like to thank our anonymous reviewers
for their valuable feedback. Furthermore, we would like to thank Intel,
ARM, Qualcomm, and Microsoft for feedback on an early draft.

Daniel Gruss, Moritz Lipp, Stefan Mangard and Michael Schwarz were
supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant
agreement No 681402).

Daniel Genkin was supported by NSF awards #1514261 and #1652259,
financial assistance award 70NANB15H328 from the U.S. Department of
Commerce, National Institute of Standards and Technology, the 2017-
2018 Rothschild Postdoctoral Fellowship, and the Defense Advanced Re-
search Project Agency (DARPA) under Contract #FA8650-16-C-7622.

References
[1] AMD. Software techniques for managing speculation on AMD pro-

cessors. 2018.
[2] ARM. AArch64 Linux kernel port (KPTI base). 2018. url: https:

//git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.
git/log/?h=kpti.

https://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git/log/?h=kpti
https://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git/log/?h=kpti
https://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git/log/?h=kpti

186 Chapter 6. Meltdown

[3] ARM Limited. ARM CoreLink CCI-400 Cache Coherent Intercon-
nect Technical Reference Manual. r1p5. ARM Limited, 2015.

[4] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom.
“‘Ooh Aah... Just a Little Bit’: A small amount of side channel
can go a long way”. In: CHES’14. 2014.

[5] Pavel Boldin. Meltdown Reading Other process’s memory. Jan.
2018. url: https://www.youtube.com/watch?v=EMBGXswJC4s.

[6] Brad Burgess. “Samsung Exynos M1 Processor”. In: IEEE Hot
Chips. 2016. url: https://ieeexplore.ieee.org/stamp/stamp
.jsp?arnumber=7936205.

[7] Raphael Carvalho. Twitter: Meltdown with Uncached Memory.
Jan. 2018. url: https://twitter.com/raphael_scarv/status/
952078140028964864.

[8] Chih-Cheng Cheng. “The schemes and performances of dynamic
branch predictors”. In: Berkeley Wireless Research Center, Tech.
Rep (2000).

[9] Advanced Micro Devies. AMD Takes Computing to a New Horizon
with Ryzen™Processors. 2016. url: https://www.amd.com/en-
us/press-releases/Pages/amd-takes-computing-2016dec13.
aspx.

[10] Eclypsium. System Management Mode Speculative Execution At-
tacks. May 2018. url: https://blog.eclypsium.com/2018/
05 / 17 / system - management - mode - speculative - execution -
attacks/.

[11] Jake Edge. Kernel address space layout randomization. 2013. url:
https://lwn.net/Articles/569635/.

[12] R. Eickemeyer, H. Le, D. Nguyen, B. Stolt, and B. Thompto.
Load lookahead prefetch for microprocessors. US Patent App.
11/016,236. 2006. url: https : / / encrypted . google . com /
patents/US20060149935.

[13] Anders Fogh. Negative Result: Reading Kernel Memory From User
Mode. 2017. url: https://cyber.wtf/2017/07/28/negative-
result-reading-kernel-memory-from-user-mode/.

[14] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen,
Yier Jin, and Ahmad-Reza Sadeghi. “LAZARUS: Practical Side-
Channel Resilient Kernel-Space Randomization”. In: RAID. 2017.

[15] Thomas Gleixner. x86/kpti: Kernel Page Table Isolation (was
KAISER). Dec. 2017. url: https : / / lkml . org / lkml / 2017 /
12/4/709.

https://www.youtube.com/watch?v=EMBGXswJC4s
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7936205
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7936205
https://twitter.com/raphael_scarv/status/952078140028964864
https://twitter.com/raphael_scarv/status/952078140028964864
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://www.amd.com/en-us/press-releases/Pages/amd-takes-computing-2016dec13.aspx
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/
https://lwn.net/Articles/569635/
https://encrypted.google.com/patents/US20060149935
https://encrypted.google.com/patents/US20060149935
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://lkml.org/lkml/2017/12/4/709
https://lkml.org/lkml/2017/12/4/709

References 187

[16] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the
MMU”. In: NDSS. 2017.

[17] Richard Grisenthwaite. Cache Speculation Side-channels. 2018.
[18] Daniel Gruss. [RFC, PATCH] x86_64: KAISER - do not map

kernel in user mode. May 2017. url: https://lkml.org/lkml/
2017/5/4/220.

[19] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Ist-
van Haller, and Manuel Costa. “Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory”. In:
USENIX Security Symposium. 2017.

[20] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. “KASLR is Dead: Long
Live KASLR”. In: International Symposium on Engineering Se-
cure Software and Systems. Springer. 2017, pp. 161–176.

[21] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR”. In: CCS. 2016.

[22] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In:
DIMVA. 2016.

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches”. In: USENIX Security Symposium. 2015.

[24] Dave Hansen. [PATCH 00/23] KAISER: unmap most of the kernel
from userspace page tables. Oct. 2017. url: https://lkml.org/
lkml/2017/10/31/884.

[25] Dave Hansen. [v2] KAISER: unmap most of the kernel from
userspace page tables. Nov. 2017. url: https://lkml.org/lkml/
2017/11/8/752.

[26] Dave Hansen. [v3] KAISER: unmap most of the kernel from
userspace page tables. Nov. 2017. url: https://lkml.org/lkml/
2017/11/10/433.

[27] Dave Hansen. [v4] KAISER: unmap most of the kernel from
userspace page tables. Nov. 2017. url: https://lkml.org/lkml/
2017/11/22/956.

[28] John L Hennessy and David A Patterson. Computer Architecture:
A Quantitative Approach. 6th ed. Morgan Kaufmann, 2017.

https://lkml.org/lkml/2017/5/4/220
https://lkml.org/lkml/2017/5/4/220
https://lkml.org/lkml/2017/10/31/884
https://lkml.org/lkml/2017/10/31/884
https://lkml.org/lkml/2017/11/8/752
https://lkml.org/lkml/2017/11/8/752
https://lkml.org/lkml/2017/11/10/433
https://lkml.org/lkml/2017/11/10/433
https://lkml.org/lkml/2017/11/22/956
https://lkml.org/lkml/2017/11/22/956

188 Chapter 6. Meltdown

[29] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Tim-
ing Side Channel Attacks against Kernel Space ASLR”. In: S&P.
2013.

[30] Ben Hutchings. Linux 3.16.53. 2018. url: https://cdn.kernel.
org/pub/linux/kernel/v3.x/ChangeLog-3.16.53.

[31] Intel. An Introduction to the Intel QuickPath Interconnect. Jan.
2009.

[32] Intel. Intel Analysis of Speculative Execution Side Channels. Jan.
2018. url: https://newsroom.intel.com/wp-content/uplo
ads/sites/11/2018/01/Intel-Analysis-of-Speculative-
Execution-Side-Channels.pdf.

[33] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2017.

[34] Alex Ionescu. Twitter: Apple Double Map. 2017. url: https://
twitter.com/aionescu/status/948609809540046849.

[35] Alex Ionescu. Twitter: Meltdown with Uncached Memory. Jan.
2018. url: https : / / twitter . com / aionescu / status /
950994906759143425.

[36] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Wait a minute! A fast, Cross-VM attack on AES”. In:
RAID’14. 2014.

[37] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX”. In: CCS.
2016.

[38] Daniel A Jiménez and Calvin Lin. “Dynamic branch prediction
with perceptrons”. In: High-Performance Computer Architecture,
2001. HPCA. The Seventh International Symposium on. IEEE.
2001, pp. 197–206.

[39] Ken Johnson. KVA Shadow: Mitigating Meltdown on Windows.
Mar. 2018. url: https://blogs.technet.microsoft.com/srd/
2018/03/23/kva-shadow-mitigating-meltdown-on-windows/.

[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
“Spectre Attacks: Exploiting Speculative Execution”. In: S&P.
2019.

[41] Paul C. Kocher. “Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems”. In: CRYPTO. 1996.

[42] Greg Kroah-Hartman. Linux 4.14.11. 2018. url: https://cdn.
kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.14.11.

https://cdn.kernel.org/pub/linux/kernel/v3.x/ChangeLog-3.16.53
https://cdn.kernel.org/pub/linux/kernel/v3.x/ChangeLog-3.16.53
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/950994906759143425
https://twitter.com/aionescu/status/950994906759143425
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.14.11
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.14.11

References 189

[43] Greg Kroah-Hartman. Linux 4.4.110. 2018. url: https://cdn.
kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.4.110.

[44] Greg Kroah-Hartman. Linux 4.9.75. 2018. url: https://cdn.
kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.9.75.

[45] Ben Lee, A Malishevsky, D Beck, A Schmid, and E Landry. “Dy-
namic Branch Prediction”. In: Oregon State University ().

[46] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s
Core. John Wiley & Sons, 2012.

[47] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. “ARMageddon: Cache Attacks on Mo-
bile Devices”. In: USENIX Security Symposium. 2016.

[48] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In:
S&P. 2015.

[49] LWN. The current state of kernel page-table isolation. Dec. 2017.
url: https://lwn.net/SubscriberLink/741878/eb6c9d3913d
7cb2b/.

[50] Giorgi Maisuradze and Christian Rossow. “Speculose: Analyzing
the Security Implications of Speculative Execution in CPUs”. In:
arXiv:1801.04084 (2018).

[51] Tarjei Mandt. Attacking the iOS Kernel: A Look at ’evasi0n’. 2013.
url: www.nislab.no/content/download/38610/481190/file/
NISlecture201303.pdf.

[52] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and
Kay Römer. “Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud”. In: NDSS. 2017.

[53] Matt Miller. Mitigating speculative execution side channel hard-
ware vulnerabilities. Mar. 2018. url: https://blogs.technet.
microsoft.com/srd/2018/03/15/mitigating-speculative-
execution-side-channel-hardware-vulnerabilities/.

[54] Ingor Molnar. x86: Enable KASLR by default. 2017. url: https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/l
inux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b
236e59.

[55] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: the Case of AES”. In: CT-RSA. 2006.

[56] Colin Percival. “Cache missing for fun and profit”. In: BSDCan.
2005.

https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.4.110
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.4.110
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.9.75
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.9.75
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf
www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b236e59
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b236e59
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b236e59
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6807c84652b0b7e2e198e50a9ad47ef41b236e59

190 Chapter 6. Meltdown

[57] Phoronix. Linux 4.12 To Enable KASLR By Default. 2017. url:
https://www.phoronix.com/scan.php?page=news_item&px=
KASLR-Default-Linux-4.12.

[58] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
“KeyDrown: Eliminating Software-Based Keystroke Timing Side-
Channel Attacks”. In: NDSS. 2018.

[59] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on
Memory Consistency and Cache Coherence. 2011.

[60] Elvira Teran, Zhe Wang, and Daniel A Jiménez. “Perceptron
learning for reuse prediction”. In: Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on. IEEE.
2016, pp. 1–12.

[61] Robert M Tomasulo. “An efficient algorithm for exploiting multi-
ple arithmetic units”. In: IBM Journal of research and Development
11.1 (1967), pp. 25–33.

[62] Lucian N Vintan and Mihaela Iridon. “Towards a high performance
neural branch predictor”. In: Neural Networks, 1999. IJCNN’99.
International Joint Conference on. Vol. 2. IEEE. 1999, pp. 868–
873.

[63] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX
Security Symposium. 2014.

[64] Tse-Yu Yeh and Yale N Patt. “Two-level adaptive training branch
prediction”. In: Proceedings of the 24th annual international sym-
posium on Microarchitecture. ACM. 1991, pp. 51–61.

[65] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-Tenant Side-Channel Attacks in PaaS Clouds”. In:
CCS. 2014.

Appendix

9.1. Meltdown in Practice

In this section, we show how Meltdown can be used in practice. In Sec-
tion 9.1.1, we show physical memory dumps obtained via Meltdown, in-
cluding passwords of the Firefox password manager. In Section 9.1.2, we
demonstrate a real-world exploit.

https://www.phoronix.com/scan.php?page=news_item&px=KASLR-Default-Linux-4.12
https://www.phoronix.com/scan.php?page=news_item&px=KASLR-Default-Linux-4.12

References 191

9.1.1. Physical-memory Dump using Meltdown

listing 6.3 shows a memory dump using Meltdown on an Intel Core i7-
6700K running Ubuntu 16.10 with the Linux kernel 4.8.0. In this example,
we can identify HTTP headers of a request to a web server running on
the machine. The XX cases represent bytes where the side channel did not
yield any results, i.e., no Flush+Reload hit. Additional repetitions of the
attack may still be able to read these bytes.

Listing 6.4 shows a memory dump of Firefox 56 using Meltdown on the
same machine. We can clearly identify some of the passwords that are
stored in the internal password manager, i.e., Dolphin18, insta_0203,
and secretpwd0. The attack also recovered a URL which appears to be
related to a Firefox add-on.

9.1.2. Real-world Meltdown Exploit

In this section, we present a real-world exploit showing the applicability
of Meltdown in practice, implemented by Pavel Boldin in collaboration
with Raphael Carvalho. The exploit dumps the memory of a specific
process, provided either the process id (PID) or the process name.

First, the exploit de-randomizes the kernel address space layout to be
able to access internal kernel structures. Second, the kernel’s task list
is traversed until the victim process is found. Finally, the root of the
victim’s multilevel page table is extracted from the task structure and
traversed to dump any of the victim’s pages.

The three steps of the exploit are combined to an end-to-end exploit which
targets a specific kernel build and a specific victim. The exploit can easily
be adapted to work on any kernel build. The only requirement is access
to either the binary or the symbol table of the kernel, which is true for all
public kernels which are distributed as packages, i.e., not self-compiled.
In the remainder of this section, we provide a detailed explanation of the
three steps.

Breaking KASLR. The first step is to de-randomize KASLR to access
internal kernel structures. The exploit locates a known value inside the
kernel, specifically the Linux banner string, as the content is known and
it is large enough to rule out false positives. It starts looking for the
banner string at the (non-randomized) default address according to the

192 Chapter 6. Meltdown

79cbb80: 6c4c 48 32 5a 78 66 56 44 73 4b 57 39 34 68 6d |lLH2ZxfVDsKW94hm|
79cbb90: 3364 2f 41 4d 41 45 44 41 41 41 41 41 51 45 42 |3d/AMAEDAAAAAQEB|
79cbba0: 4141 41 41 41 41 3d 3d XX XX XX XX XX XX XX XX |AAAAAA==........|
79cbbb0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbbc0: XXXX XX 65 2d 68 65 61 64 XX XX XX XX XX XX XX |...e-head.......|
79cbbd0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbbe0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbbf0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbc00: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbc10: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbc20: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbc30: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbc40: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
79cbc50: XXXX XX XX 0d 0a XX 6f 72 69 67 69 6e 61 6c 2d |.......original-|
79cbc60: 7265 73 70 6f 6e 73 65 2d 68 65 61 64 65 72 73 |response-headers|
79cbc70: XX44 61 74 65 3a 20 53 61 74 2c 20 30 39 20 44 |.Date: Sat, 09 D|
79cbc80: 6563 20 32 30 31 37 20 32 32 3a 32 39 3a 32 35 |ec 2017 22:29:25|
79cbc90: 2047 4d 54 0d 0a 43 6f 6e 74 65 6e 74 2d 4c 65 | GMT..Content-Le|
79cbca0: 6e67 74 68 3a 20 31 0d 0a 43 6f 6e 74 65 6e 74 |ngth: 1..Content|
79cbcb0: 2d54 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6c |-Type: text/html|
79cbcc0: 3b20 63 68 61 72 73 65 74 3d 75 74 66 2d 38 0d |; charset=utf-8.|

Listing (6.3) Memory dump showing HTTP Headers on Ubuntu 16.10 on a Intel
Core i7-6700K

f94b76f0: 12 XX e0 81 19 XX e0 81 44 6f 6c 70 68 69 6e 31 |........Dolphin1|
f94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |8...............|
f94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.k............|
f94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
f94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |....J...........|
f94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
f94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 73 74 |............inst|
f94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |a_0203..........|
f94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |pR.}(...........|
f94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
f94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX |....T...........|
f94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
f94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65 63 72 |............secr|
f94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |etpwd0..........|
f94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |0..}(...........|
f94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
f94b77f0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|
f94b7800: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |................|
f94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c|
f94b7820: 64 6e 2e 6d 6f 7a 69 6c 6c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/u|
f94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|

Listing (6.4) Memory dump of Firefox 56 on Ubuntu 16.10 on a Intel Core i7-
6700K disclosing saved passwords.

References 193

symbol table of the running kernel. If the string is not found, the next
attempt is made at the next possible randomized address until the target
is found. As the Linux KASLR implementation only has an entropy of
6 bits [37], there are only 64 possible randomization offsets, making this
approach practical.

The difference between the found address and the non-randomized base
address is then the randomization offset of the kernel address space.
The remainder of this section assumes that addresses are already de-
randomized using the detected offset.

Locating the Victim Process. Linux manages all processes (including
their hierarchy) in a linked list. The head of this task list is stored in the
init_task structure, which is at a fixed offset that only varies among
different kernel builds. Thus, knowledge of the kernel build is sufficient
to locate the task list.

Among other members, each task list structure contains a pointer to the
next element in the task list as well as a task’s PID, name, and the root
of the multilevel page table. Thus, the exploit traverses the task list until
the victim process is found.

Dumping the Victim Process. The root of the multilevel page table is
extracted from the victim’s task list entry. The page table entries on all
levels are physical page addresses. Meltdown can read these addresses via
the direct-physical map, i.e., by adding the base address of the direct-
physical map to the physical addresses. This base address is 0xffff
8800 0000 0000 if the direct-physical map is not randomized. If the
direct-physical map is randomized, it can be extracted from the kernel’s
page_offset_base variable.

Starting at the root of the victim’s multilevel page table, the exploit
can simply traverse the levels down to the lowest level. For a specific
address of the victim, the exploit uses the paging structures to resolve the
respective physical address and read the content of this physical address
via the direct-physical map. The exploit can also be easily extended to
enumerate all pages belonging to the victim process, and then dump any
(or all) of these pages.

7
Nethammer: Inducing Rowhammer

Faults through Network Requests

Publication Data
Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker
Tadesse Aga, Clémentine Maurice, and Daniel Gruss. “Nethammer: In-
ducing Rowhammer Faults through Network Requests”. In: SILM Work-
shop. 2020

Contributions
Main author.

195

196 Chapter 7. Nethammer

Nethammer: Inducing Rowhammer Faults through
Network Requests

Moritz Lipp1, Michael Schwarz1, Lukas Raab1, Lukas Lamster1,
Misiker Tadesse Aga2, Clémentine Maurice3, Daniel Gruss1
1 Graz University of Technology 2 Univ Rennes, CNRS, IRISA 3

University of Michigan

Abstract

In this paper, we present Nethammer, a remote Rowhammer attack with-
out a single attacker-controlled line of code on the targeted system, i.e.,
not even JavaScript. Nethammer works on commodity consumer-grade
systems that either are protected with quality-of-service techniques like
Intel CAT or that use uncached memory, flush instructions, or non-
temporal instructions while handling network requests (e.g., for inter-
action with the network device). We demonstrate that the frequency of
the cache misses is in all three cases high enough to induce bit flips. Our
evaluation showed that depending on the location, the bit flip compro-
mises either the security and integrity of the system and the data of its
users, or it can leave persistent damage on the system, i.e., persistent
denial of service. We invalidate threat models of Rowhammer defenses
building upon the assumption of a local attacker. Consequently, we show
that most state-of-the-art defenses do not affect our attack. In particular,
we demonstrate that target-row-refresh (TRR) implemented in DDR4 has
no aggravating effect on local or remote Rowhammer attacks.

1. Introduction

Hardware-fault attacks have been considered a security threat since at
least 1997 [6, 7]. In such attacks, the attacker intentionally brings de-
vices into physical conditions that are outside their specification for a
short time. For instance, this can be achieved by temporarily using in-
correct supply voltages, exposing them to high or low temperatures, ex-
posing them to radiation, or by dismantling the chip and shooting at
it with lasers. Fault attacks typically require physical access to the de-
vice. However, if software can bring the device to the border or outside

1. Introduction 197

of the specified operational conditions, software-induced hardware faults
are possible [34, 51].

The Rowhammer bug is a hardware reliability issue of DRAM [34]. An at-
tacker can exploit this bug by repeatedly accessing (hammering) DRAM
cells at a high frequency, causing unauthorized changes in physically
adjacent memory locations. Examples of Rowhammer attacks include
privilege escalation from native environments [17, 49], from within a
browser’s sandbox [18], and from within virtual machines running on
third-party compute clouds [55], mounting fault attacks on cryptographic
primitives [5, 48], and obtaining root privileges on mobile phones [54].

Intel CAT is a quality-of-service feature [21], allowing to restrict cache
allocation of cores to a subset of cache ways of the last-level cache, re-
moving interference of workloads in shared environments, e.g., protecting
virtual machines against performance degradation due to cache thrashing
of co-located virtual machines. However, Aga et al. [1] showed that Intel
CAT facilitates eviction-based Rowhammer attacks.

The large majority of previous Rowhammer attacks required some form
of local code execution, e.g., JavaScript [18] or native code [1, 4, 5, 17, 34,
41, 46, 48, 49, 54, 55]. Consequently, all works on Rowhammer defenses
assume that some form of local code execution is required [4, 8, 9, 16, 20,
27, 33, 34, 44, 58]. In contrast, Tatar et al. [52] utilized RDMA-enabled
network cards to perform targeted memory accesses to specific physical
addresses over a remote interface to induce bit flips.

In this paper, we challenge the requirements of remote Rowhammer at-
tacks. We present Nethammer, a Rowhammer attack that does not re-
quire local code execution, nor RDMA-enabled network cards. Netham-
mer only requires a fast network connection between the attacker and
the victim. It sends a crafted stream of size-optimized packets to the
victim, causing a high number of memory accesses to the same set of
memory locations. If any software processing the network request (e.g.,
user application, shared libraries, network stack, network driver) use un-
cached memory, non-temporal instructions or flush instructions (e.g., for
interaction with the network device) an attacker can induce bit flips.
Furthermore, if Intel CAT is activated, e.g., as an anti-DoS mechanism,
memory accesses lead to fast cache eviction and, thus, frequent DRAM
accesses, i.e., Rowhammer. While, as in the first practical Rowhammer
attacks [49], an attacker cannot control the addresses of the bit flips,
we demonstrate how an attacker can still exploit them and reduce the

198 Chapter 7. Nethammer

probability of flips in non-attacker controlled regions by spraying.

To build Nethammer, we systematically analyzed the requirements to in-
duce bit flips and, in particular, real-world memory-controller page poli-
cies. In most Rowhammer attacks, two DRAM rows are hammered to
induce bit flips. The reason is that they assume that an “open-page”
memory controller policy is used, i.e., a DRAM row is kept open until a
different row is accessed. However, modern CPUs employ more sophisti-
cated memory controller policies that preemptively close rows [17]. We
demonstrate one-location hammering [17] with adaptive page policies for
the first time.

We also analyzed memory operations during network requests and ana-
lyzed the Nethammer bit flips we empirically obtained on our target sys-
tems and different potential target applications. In all cases, the triggered
bit flips may induce persistent denial-of-service attacks by corrupting the
persistent state, e.g., the file system on the remote machine. We empir-
ically observed bit flips using Nethammer already after 300ms runtime
and up to 10 000 per hour.

Finally, we evaluate state-of-the-art defenses and show that most of them
do not affect our attack. In particular, we show that TRR does not
mitigate Rowhammer.

Contributions. The contributions of this work are:

• We present Nethammer, a remote Rowhammer attack that does not
require attacker-controlled code on the target device, nor RDMA-
enabled network cards.

• We demonstrate Nethammer on systems using uncached memory
(or clflush) while handling network packets.

• We show how memory controller policies can automatically be iden-
tified.

• We show that the TRR countermeasure in DDR4 has no significant
effect on Rowhammer attacks.

Outline. Section 2 provides background. Section 3 gives an attack
overview. Section 4 describes the building blocks. Section 5 describes

2. Background and Related Work 199

specific exploit strategies. Section 6 evaluates our empiric results. In Sec-
tion 7, we discuss limitations and specific defenses. Section 8 concludes.

Responsible Disclosure. We responsibly informed Intel about Netham-
mer on March 20, 2018. We disclosed a full report of Nethammer, includ-
ing the ineffectiveness of TRR on DDR4 to Intel, ARM, Qualcomm, on
May 11, 2018.

2. Background and Related Work
In this section, we discuss background information and related work on
DRAM, memory controller policies, and the Rowhammer attack. Fur-
thermore, we discuss caches and cache eviction as well as the Intel CAT
technology.

DRAM and Memory Controller Policies. DRAM in modern computers
is organized for a high degree of parallelism, in a hierarchy of 1–4 channels,
one or more DIMMs, 1–4 ranks, 1–4 bank groups, and 8 or 16 banks.
Each bank is an array of cells, organized in rows and columns, storing
the actual memory content. The memory controller translates physical
addresses to channel, DIMM, rank, bank group, bank, row, and column
addresses. Pessl et al. [45] reverse-engineered these addressing functions
using an automated technique for several processors.

As DRAM cells lose their charge over time, they must be refreshed peri-
odically. The refresh interval is defined as 64ms but can be adjusted to
compensate, e.g., for temperature.

Each bank has a row buffer, buffering any read and write accesses to
rows in this bank. Hence, depending on the state of the row buffer three
different cases can occur: Row hits are the fastest, an access to a row in
a pre-charged bank (i.e., no row in the row buffer) is a few nanoseconds
slower, row conflicts (i.e., other row in row buffer) are measurably slower.
The memory controller can optimize the memory performance by deciding
when to close a row preemptively and pre-charge the bank. Typically,
memory controllers employ one of the three following page policies:

1. Closed-page policy: the page is immediately closed, and the bank is
pre-charged.

200 Chapter 7. Nethammer

2. Fixed open-page policy: the page is left open for a fixed amount of
time. This policy is beneficial for high-locality workloads, for power
consumption and bank utilization [32].

3. Adaptive open-page policy: the adaptive open-page policy by In-
tel [12] is similar to the fixed open-page policy but dynamically
adjusts the page timeout interval per bank.

As modern processors have many cores running independently as well
as deploy large caches and complex algorithms for spatial and temporal
prefetching, the probability that subsequent memory accesses go to the
same row decreases. Awashti et al. [3] proposed an access-based page
policy that assumes a row receives the same number of accesses as the
last time it was activated. Shen et al. [50] proposed a policy taking past
memory accesses into account to decide whether to close a row preemp-
tively. Intel suggested predicting how long a row should be kept open [31,
53]. Consequently, more complex memory controller policies have been
proposed and are implemented in modern processors [16, 32].

Rowhammer. Increasing DRAM cell density achieves higher storage ca-
pacity and lower power consumption, but cells may be more susceptible to
disturbance errors [41], i.e., bit flips. Such bit flips can be induced from
software by bypassing the cache using specific instructions [34], cache
eviction [1, 4, 14, 18], or uncached memory [46, 54]. Different access
patterns have been developed to induce Rowhammer bit flips:

1. Single-sided hammering [49] accesses 8 randomly chosen memory
locations simultaneously. The probability is high that at least 2 out
of 8 random memory locations map into the same out of 32 DRAM
banks on DDR3.

2. Double-sided hammering hammers two rows sandwiching a third.
This requires at least partial knowledge of virtual-to-physical and
physical-to-DRAM mappings.

3. One-location hammering [17] only accesses one single location at a
high frequency. The attacker does not directly induce row conflicts
but instead keeps re-opening one row permanently. As modern pro-
cessors do not use strict open-page policies anymore, the memory
controller preemptively closes rows earlier than necessary, causing
row conflicts on the subsequent accesses of the attacker.

2. Background and Related Work 201

Using these techniques, the Rowhammer bug has been exploited in dif-
ferent scenarios and environments, e.g., attacking [5], sandboxes [14, 18,
49], native environments [17, 49], virtual machines [48, 55], mobile de-
vices [54].

To develop defenses, a large body of research focused on detecting [9, 19,
20, 27, 44, 58], neutralizing [8, 18, 48, 54], or eliminating [4, 8, 16, 33, 34]
Rowhammer attacks in software or hardware. The NethammerLPDDR4
standard [30] specifies two features to mitigate Rowhammer attacks: with
Target Row Refresh (TRR) the memory controller refreshes adjacent rows
of a certain row and with Maximum Activation Count (MAC) the number
of times a row can be activated before adjacent rows have to be refreshed
is specified. One-location hammering however bypasses all software-based
defenses [17].

Tatar et al. [52] utilized RDMA-enabled network cards to induce bit flips
remotely. RDMA enables remote access to specific physical addresses
in a controlled way and, hence, can be used to implement Rowhammer
memory access patterns. RDMA-enabled network cards are expensive
and are only used by a few cloud providers [39]. In 2019, Cojocar et al.
[10] demonstrated Rowhammer attacks bypassing ECC protection. In
March 2020, Frigo et al. [15] analyzed TRR in more depth, confirming
our findings of Section 6.

Caches and Cache Eviction. Hardware caches keep frequently used data
from main memory in smaller but faster memories. Modern CPUs have
multiple cache levels, with the L3 cache usually being the largest but
slowest cache, shared across cores and inclusive to lower-level caches.
The L3 cache on such CPUs has sets consisting of a fixed number of
cache ways, where the set is determined by the physical address, and a
replacement policy decides which way to replace (evict).

To mount a Rowhammer attack, an attacker needs to bypass the cache,
e.g., via the unprivileged clflush instruction [56], or uncached mem-
ory [54]. An attacker can also resort to cache eviction by accessing con-
gruent memory addresses [14, 18, 35], i.e., addresses that map to the
same cache set. Gruss et al. [18] observed that it is important to trick the
replacement policy into keeping memory locations of the attacker cached,
rather than the victim address that the attacker wants to evict.

In 2016, Intel introduced Cache Allocation Technology (CAT) [25] to ad-
dress quality of service in multi-core server platforms [21, 24]. Intel CAT

202 Chapter 7. Nethammer

Last-LevelCache

VM1 VM2 VM3

(a) CAT disabled

Last-LevelCache

VM1 VM2 VM3

(b) CAT enabled

Figure 7.1.: When Intel CAT is disabled in (a), the cache is shared among
the virtual machines. In (b), CAT is configured with 6 ways
for VM1, and 1 way for VM2 and VM3.

allows system software to partition the last-level cache to optimize work-
loads in shared environments as well as to isolate applications or virtual
machines on servers. When a virtual machine on a server thrashes the
cache and therefore decreases the performance of other co-located ma-
chines, the hypervisor can restrict this virtual machine to a subset of the
cache to retain the performance of other tenants. More specifically, Intel
CAT allows restricting the number of cache ways available to processes,
virtual machines, and containers, as illustrated in Figure 7.1. However,
Aga et al. [1] showed that Intel CAT allows improving eviction-based
Rowhammer attacks as it reduces the number of accesses, and thus the
time, required for cache eviction.

3. Nethammer Attack
In this section, we present Nethammer, a Rowhammer attack not rely-
ing on any attacker-controlled code on the victim machine, nor RDMA-
enabled network cards.

Attack Overview. Nethammer sends a crafted stream of network pack-
ets to the target device to mount a one-location or single-sided Rowham-
mer attack. For each packet received on the target device, a set of ad-
dresses is accessed, e.g., in the kernel driver, in a user-space applica-
tion processing the contents, somewhere in between (e.g., network stack,

3. Nethammer Attack 203

shared libraries), or a combination of all. By repeatedly sending packets,
this set of addresses is hammered and, thus, bit flips may be induced.
As frequently-used addresses are served from the cache for performance,
the cache must be bypassed such that the access goes directly into the
DRAM to cause the row conflicts required for hammering. This can be
achieved in different ways if the code that is executed (in kernel space or
user space) when receiving a packet,

1. evicts (and later on reloads) an address;

2. uses uncached memory;

3. uses non-temporal instructions;

4. flushes (and later on reloads) an address.

Non-temporal instructions perform their operations directly to the mem-
ory bypassing the cache [46]. Uncached memory is used on virtually all
ARM-based devices for interaction with the hardware, e.g., access buffers
used by the network controller. Intel x86 processors have the clflush
instruction for the same purpose, and we found several open-source repos-
itories where the clflush instruction was used for interaction with the
hardware, but only one of them was an (outdated) network driver. We
still describe this attack for completeness’ sake, as it also applies to closed
source drivers or user-space applications that handle the received packets
and possibly use the clflush instruction. We verified that an attack is
practical in both scenarios, as we describe in Section 6.

However, the main focus and contribution of this paper is an eviction-
based remote Rowhammer attack. As caches are large and cache replace-
ment policies try to keep frequently-used data in the cache, it is not trivial
to mount an eviction-based attack without executing attacker-controlled
code on the device. However, to address quality of service in multi-core
server platforms, Intel introduced CAT (cf. Section 2), allowing to control
the amount of cache available to applications or virtual machines dynam-
ically, as illustrated in Figure 7.1. If a virtual machine is thrashing the
cache, the hypervisor limits the number of cache ways available to this
virtual machine to meet performance guarantees given to other tenants
on the same host. Thus, if an attacker excessively uses the cache, its
virtual machine is restricted to a low number of ways, possibly only one,
leading to a fast self-eviction of addresses.

To induce bit flips remotely, one requirement is to send as many packets
as possible over the network in a short time frame. As an example,

204 Chapter 7. Nethammer

UDP packets without content can be used, allowing an overall packet
size of 64B, which is the minimum packet size for an Ethernet packet.
This allows to send up to 1 024 000 packets per second over a 500Mbit/s
connection.

Attack Setup. In our attack setup, the attacker has a fast network con-
nection to the victim machine, e.g., a gigabit connection. We assume that
the victim machine has DDR2, DDR3, or DDR4 memory that is suscep-
tible to one-location (or single-sided) hammering. As DRAM with ECC
can detect and correct single-bit errors and, thus, complicates Rowham-
mer attacks, we assume non-ECC memory on the victim machine. We
did find server systems that have no ECC memory in the wild [22, 23, 28,
42]. Note that this is not a real limitation, as Cojocar et al. [10] demon-
strated Rowhammer attacks bypassing ECC protection. Furthermore, we
assume that the victim machine uses either Intel CAT, available in Xeon
CPUs, or uncached memory while handling network packets. We found
12.7% of the dedicated hosts for sale on Hetzner [22] to have a Xeon
CPU but non-ECC memory. Finally, we assume that the attacker has
a sufficiently fast network connection to the victim, see Section 4.3. For
our attack on personal computers, tablets, smartphones, or devices with
similar hardware configuration, we make no further assumptions.

4. From Regular Memory Accesses to Rowhammer
We investigate memory-controller page policies to determine whether reg-
ular memory accesses that occur while handling network packets could, at
least in theory, induce bit flips. Note that these investigations are obliv-
ious to the specific technique to access the DRAM row (i.e., eviction,
flushing, uncached memory).

In Section 4.1, we propose a method to determine the memory-controller
page policy on real-world systems automatically. We show that one-
location hammering does not necessarily need a closed-page policy, but
instead, adaptive policies may allow one-location hammering.

Based on these insights, we demonstrate the first one-location Rowham-
mer attack on an ARM device in Section 4.2. Finally, we investigate
whether Rowhammer via network packets is theoretically possible. This
is not trivial, as network packets do not arrive at the same speed as the
memory accesses in an optimized tight loop.

4. From Regular Memory Accesses to Rowhammer 205

4.1. Automated Classification of Memory-Controller Page
Policies

Gruss et al. [17] found that the memory-controller page policy has a
significant influence on the way the Rowhammer bug can be triggered.
In particular, they found that one-location hammering works and de-
duced from this that the memory-controller page policy must be similar
to a closed-page policy. To get a more in-depth understanding of the
memory-controller page policy used on a specific system, we present an
automated method to detect the used policy. This is a significant step
forward for Rowhammer attacks, as it allows to deduce whether specific
attack variants may or may not work without an empiric evaluation.

The undocumented mapping functions [45] allow to select addresses to
access specific DRAM channels, ranks, banks, but also rows. Accessing
same-bank different-row addresses consecutively causes a row conflict in
the corresponding bank, incurring higher latency for the second access as
the currently active row must be closed (written back), the bank must be
pre-charged, and only then the new row can be fetched with an activate
command.

We assume knowledge of processor and DRAM timings. For the DRAM
this means in particular, the tRCD latency (the time to select a column
address), and the tRP latency (the time between pre-charge and row ac-
tivation). These three timings influence the observed latency as follows:

1. we consider the case page open / row hit as the baseline;

2. in the case page empty / bank pre-charged, we observe an additional
latency of tRP over a row hit;

3. in the case page miss / row conflict, we observe an additional latency
of (tRP + tRCD) over a row hit.

To compute the actual number of cycles we can expect, we have to divide
the DRAM latency value by the DRAM clock rate. In the case of DDR4,
we have to additionally divide the latency value by factor two, as DDR4 is
double-clocked. This yields the latency in nanoseconds. By dividing the
nanoseconds by the processor clock speed, we obtain the latency in CPU
cycles. Still, as we cannot obtain absolutely clean measurements due
to out-of-order execution, prefetching, and other mechanisms that aim
to hide the DRAM latency, the actually observed latency will deviate
slightly.

206 Chapter 7. Nethammer

As in our test we cannot simply measure the three different cases, we
define an experiment that allows to distinguish the different policies. In
the experiment we use for our automated classification, we select two
addresses A and B that map to the same bank but different rows. Using
the clflush instruction, we make sure that A and B are not cached, in
order to load those addresses directly from main memory. We base our
method on two observations for open-page policies:

• Single: By loading address A an increasing number of times (n =
1..10 000) before measuring the time it takes to load the same ad-
dress on a subsequent access, we can measure the access time of an
address in DRAM if the corresponding row is already active. For
an open-page policy, the access time should be the same for any n.

• Conflict: By accessing address A and subsequently measuring the
access time to address B, we can measure the access time of an
address in DRAM in the occurrence of a row conflict.

Our classification runs the following checks:

1. If there is no timing difference between the two cases described
above (Single with a large n and Conflict), the system uses a closed-
page policy. The closed-page policy immediately closes the row after
every read or write request. Thus, there is no timing difference
between these two cases. The timing observed corresponds to the
row-pre-charged state.

2. Otherwise, if the timing for the Single case is the same, regardless
of the value of n, but differs from the timing for Conflict, the system
uses an open-page policy. The timing difference corresponds to the
row hits and conflicts. Following the definition of the open-page
policy, the timing for row hits is always the same.

3. Otherwise, the timing for the Single case will have a jump at some
n, after which the page policy is adapted to cope better with our
workload. Consequently, the timing differences we observe corre-
spond to row hit and row-pre-charged states.

Figure 7.2 shows the memory access time measured on an Intel Xeon
D-1541 with different page policies, i.e., the closed-page policy can be
distinguished using our method. We also verified our results by reading
out the CLOSE_PG bit in the mcmtr configuration register of the integrated
memory controller [26].

4. From Regular Memory Accesses to Rowhammer 207

0 100 200
255

260

265

270

275

280

Time [ms]

A
cc

es
s

ti
m

e
[c

yc
le

s]

Single Address Conflicting Address

(a) Open-page policy

0 100 200
255

260

265

270

275

280

Time [ms]

A
cc

es
s

ti
m

e
[c

yc
le

s]

Single Address Conflicting Address

(b) Closed-page policy

0 100 200
255

260

265

270

275

280

Time [ms]

A
cc

es
s

ti
m

e
[c

yc
le

s]

Single Address Conflicting Address

(c) Adaptive policy

Figure 7.2.: Measured access times over a period of time for a single ad-
dress (blue) and an address causing a row conflict (red) for
different page policies on the Intel Xeon D-1541: open policy
(left), closed policy (middle), adaptive policy (right).

0 100 200 300 400 500 600 700 800 900 1,000

200

300

400

500

Number of previous accesses

A
cc
es
s

ti
m
e

[c
y
cl
es
] Adaptive policy Open-page policy

Figure 7.3.: Open-page policy and adaptive page policy can be distin-
guished by testing increasing numbers of accesses to the same
row.

We validated that we can distinguish open-page policy and adaptive page
policy by running our experiments on two systems with the corresponding
page policies. Figure 7.3 shows the results of these experiments. The
difference between open-page policy and adaptive policy is clearly visible.

Our experiments show that adaptive page policies often behave like closed-
page policies. This indicates the possibility of one-locating hammering on
systems using an adaptive page policy.

4.2. One-location Hammering on ARM

To make Nethammer a more generic attack, it is essential to demonstrate
it not only on Intel CPUs but also on ARM CPUs. This is particularly
interesting as ARM CPUs dominate the mobile market, and ARM-based
devices are predominant also in IoT applications. Gruss et al. [17] only
demonstrated one-location hammering on Intel CPUs. However, as one-
location hammering is the most plausible hammering variant for Netham-
mer, we need to investigate whether it is possible to trigger one-location

208 Chapter 7. Nethammer

hammering bit flips on ARM.

In our experiments, we used a LG Nexus 4 E960 mobile phone equipped
with a Qualcomm Snapdragon 600 (APQ8064) SoC and 2GB of LPDDR2
RAM, susceptible to bit flips using double-sided hammering. The page
policy used by the memory controller is selected via the DDR_CMD_EXEC_OPT_0
register: if the bit is set to 1 (the recommended value [47]), a closed-page
policy is used. If the bit is set to 0, an open-page policy is used. Hence,
we can expect the memory controller to preemptively close rows, enabling
one-location hammering.

So far, bit flips on ARM-based devices have only been demonstrated in
the combination of double-sided hammering, and uncached memory [54],
or access via the GPU [14]. Even in the presence of a flush instruction [2]
or optimal cache eviction strategies [35], the access frequency to the two
neighboring rows is too low to induce bit flips. Furthermore, devices with
the ARMv8 instruction set that allows exposing a flush instruction to
unprivileged programs are usually equipped with NethammerLPDDR4
memory.

In our experiment, we allocated uncached memory using the Android ION
memory allocator [57]. We hammered a single random address within
the uncached memory region at a high frequency and then checked the
memory for occurred bit flips. We were able to observe 4 bit flips while
hammering for 10 hours. Thus, we can conclude that there are ARM-
based devices that are vulnerable to one-location hammering.

4.3. Minimal Access Frequency for Rowhammer Attacks

Nethammer requires a high frequency of memory accesses caused by pro-
cessing network packets. Previous work indicated that at least 43 000 to
139 000 row activations [4, 18, 34] are required within one refresh interval
to induce a bit flip.

In our experiments, we send 500Mbit/s (and more) over the network
interface. With a minimum size of 64B for ethernet packets, this corre-
sponds to 1 024 000 packets per second. Several kernel functions are called
multiple times, e.g., up to 6 times (cf. Section 6). Hence, on a 500Mbit/s
connection, the attack can induce 6 144 000 accesses per second. Divided
by the default refresh interval of 64ms, we are at 393 216 accesses per
refresh interval. This is clearly above the previously reported required
number of memory accesses [4, 18, 34]. Hence, we conclude that in the-

5. Exploiting Bit Flips over a Network 209

ory, if the system is susceptible to Rowhammer attacks, network packets
can induce bit flips. In the following section, we will describe how an
attacker can exploit such bit flips.

5. Exploiting Bit Flips over a Network
Nethammer does not control where in physical memory a bit flip is in-
duced and, thus, what is stored at that location, the bit flip can have
different consequences. We distinguish between bit flips in user mem-
ory, i.e., memory pages that are mapped as user_accessible in at least
one process and bit flips in kernel memory. We can also distinguish the
bit flips based on their high-level effect, again forming two groups, de-
pending on whether or not they lead to a denial-of-service situation. A
denial-of-service situation can be persistent if the bit flip is written back
to a permanent storage location. Then it may be necessary to reinstall
the system software or parts of it from scratch, clearly taking more time
than just a reboot.

File System Data Structures. File system data structures, e.g., inodes,
are not directly part of the kernel code or data but are also in the kernel
memory. An inode is a data structure defining a file or a directory of a
file system. Each inode contains metadata, such as the size of the file,
owner, and permission data, as well as the disk block location of its data.
If a bit flips in the inode structure, it corrupts the file system and, thus,
causes persistent loss of data. This may again crash the entire system.
We empirically validated that this case occurs.1

SGX Enclave Page Cache. Bit flips in this region lock up the memory
controller instantly (unsafely), halting the entire system [17, 29]. We
empirically validated that this case occurs and found unsafe halting of
the system to often leave permanent file system damage.

Application Memory. If a bit flip occurs in a user-space application,
e.g., code or data, a possible outcome is the crash of the program. Such
a flip may render the affected service unavailable. Another outcome of
a bit flip in the data of a user-space application, e.g., in the database of

1In fact, it was a problem when trying to trigger the other cases.

210 Chapter 7. Nethammer

a service, is that the service delivers modified, possibly invalid, content.
Depending on the service, its users cannot distinguish if the data is correct
or has been altered.

One example are DNS entries, which are altered such that a character of
DNS entry points to a different domain, i.e., bitsquatting [11]. Such bit
flips in domains have been successfully exploited before using Rowhammer
attacks [48]. Using zone transfers, an attacker can retrieve entries of an
entire zone. The attacker queries the DNS server for its entries, mounts
the attack, and then verifies whether a bit flip at an exploitable position
has occurred by monitoring changes in the queried entries. If so, the
attacker can register the changed domain and host a malicious service on
the domain, e.g., a phishing website or a mail server intercepting email
traffic. Users querying the DNS server for said entry connect to the
attacker-controlled server and are thus exposed to data theft.

An attacker can also target Online Certificate Status Protocol (OCSP)
servers that allow querying the status of a single certificate. The OCSP
server manages a list of revoked certificate fingerprints. Liu et al. [36]
evaluated 74 full IPv4 HTTPS scans and found that 8% of 38 514 130
unique SSL certificates served have been revoked. The attacker flips a bit
in the memory of an OCSP server of a certificate authority where private
keys of certificates have become public, and the certificates have thus
been revoked. The attacker can either flip the status or the identifier of
the certificate (a chance of 99.875% per bit flip in the OCSP revocation
list). A bit flip in the certificate identifier leads to the OCSP server not
finding the certificate in its database anymore, thus, returning “unknown”
as the state. Most browsers fall back to their own certificate revocation
list in such a case [43]. However, only high-value revocations are kept in
the browser’s list, making it very unlikely that the certificate is in the
certificate revocation list of the browser. Hence, an attacker can again
reuse that certificate.

We empirically observed bit flips in these applications, with a lower fre-
quency than denial-of-service bit flips.

Cryptographic Material. Cryptographic material as part of the appli-
cation memory is particularly interesting for attacks. To commit changes
to a version-controlled repository, users authenticate with the service us-
ing public-key cryptography. As the position of the bit flip cannot be
controlled using Nethammer, an attacker can improve the probability to

6. Evaluation 211

induce a bit flip in the modulus of a public key by loading as many keys as
possible into the main memory of the server. Some APIs, e.g., the GitLab
API, allow enumerating the registered users as well as their public keys.
By enumerating and, thus, accessing all public keys of the service, the
attacker loads the public keys into the DRAM. In the first step of the at-
tack, the attacker enumerates all keys of all users and stores them locally.
In the second step, the attacker mounts Nethammer to induce bit flips on
the targeted system. The more keys the attacker loaded into memory, the
more likely it is that the bit flip corrupts the modulus of a public key of
a user. For instance, with 80% of the memory filled with 4096-bit keys,
the chance to hit a bit of a modulus is 79.7%. As the attacker does not
know which key was affected by the bit flip, the attacker enumerates all
keys again and compares them with the locally stored keys. If a modified
key has been found, the attacker computes a new corresponding private
key [40, 48]. Consequently, the attacker can make changes to the soft-
ware repository as that user and, thus, introduce bugs that can later be
exploited if the software is distributed. The original public key is restored
after a while when the key is evicted from the page cache and reloaded
from the hard drive. As the correct key is restored, the attack leaves no
traces. Furthermore, it breaks the non-repudiation guarantee provided by
the public-key authentication, making the victim whose public key was
attacked the prime suspect in possible investigations.

6. Evaluation
In this section, we evaluate Nethammer and its performance. We show
that the number of bit flips induced by Nethammer depends on how the
cache is bypassed and the memory controller’s page policy. We evalu-
ate which kernel functions are executed when handling a UDP network
packet. We describe the bit flips we obtained when running Nethammer
in different attack scenarios. Finally, we show that TRR, a countermea-
sure against Rowhammer implemented in some DDR4 RAMs, does not
protect against Nethammer or Rowhammer in general.

Environment. In our evaluation, we used the test systems listed in Ta-
ble 7.1. We used the second and third system for our experiments with
Intel CAT, which was configured exactly as recommended for quality-
of-service purposes. For completeness’ sake, on the first system, we ran
an unprivileged server application which uses clflush while handling re-

212 Chapter 7. Nethammer

Table 7.1.: List of test systems that were used for the experiments.
Device CPU DRAM Network card Operating system

Desktop Intel i7-6700K @ 4GHz 8GB DDR4 @ 2133MHz Intel 10G X550T Ubuntu 16.04
Server Intel Xeon E5-1630v4 @ 3.7GHz 8GB DDR4 @ 2133MHz Intel i210/i218-LM Gigabit Xubuntu 17.10
Server Intel Xeon D-1541 @ 2.1GHz 8GB DDR4 @ 2133MHz Intel i350-AM2 Gigabit Ubuntu 16.04

LG Nexus 4 Qualcomm APQ8064 @ 1.5GHz 2GB LPDDR2 @ 533MHz USB Adapter Android 5.1.1

quests, and in another experiment, we installed a network driver which
uses clflush while interacting with the network card. To mount Netham-
mer, we used a Gigabit switch to connect two other machines with the
victim machine. The two other machines were used to flood the victim
machine with network packets triggering the Rowhammer bug. We used
the fourth system for our experiments on an ARM-based device that uses
uncached memory in the process of handling a network packet.

Evaluation of the Different Cache Bypasses for Nethammer. In Sec-
tion 4, we investigated the requirements to trigger the Rowhammer bug
over the network. In this section, we evaluate Nethammer for three cache-
bypass techniques (cf. Section 3): Intel Xeon CPUs with Intel CAT for
fast cache eviction, uncached memory on an ARM-based mobile device,
and a single clflush instruction in the code running when receiving a
packet.

The operating system will handle every network packet received by the
network card. The operating system parses the packets depending on
their type, validates their checksum and copies, and delivers every packet
to each registered socket queue. Thus, for each received packet, quite
some code is executed before the packet finally arrives at the application
destined to handle its content.

We tested Nethammer on Intel Xeon CPUs with Intel CAT. The number
of cache ways has been limited to a single one for code handling the
processing of UDP packets, resulting in fast cache eviction. If a function
is called multiple times for one packet, the same addresses are accessed
and loaded from DRAM with a high probability, thus, hammering this
location. To estimate how many different functions are called and how
often they are called, we use the perf framework to count the number
of function calls related to UDP packet handling. Section A shows the
results of a system handling UDP packets. Out of 27 different functions
we identified, most were called only once for each received packet. The
function __udp4_lib_lookup is called twice. In a more extensive scan, we

6. Evaluation 213

found that nf_hook_slow is called 6 times while handling UDP packets
on some kernels.

With this knowledge, we analyzed how many bit flips can be induced
by this code execution. We observed 45 bit flips per hour on the Intel
Xeon E5-1630v4. As TRR is active on this system (see Section 6), fewer
bit flips occur in comparison to systems without TRR. In Section 6, we
evaluate the number of bit flips depending on the configured page policy.

In Section 4.2, we demonstrated that ARM-based devices are vulnerable
to one-location hammering in general. To investigate whether bit flips
can also be induced over the network, we connect the LG Nexus 4 using
an OTG USB ethernet adapter to a local network. Using a different
machine, we send as many network packets as possible to the mobile
phone. An application on the phone allocates memory and repeatedly
checks the allocated memory for occurred bit flips. However, we were not
able to observe any bit flips on the device within 12 hours of hammering.
As the device does not deploy technology like Intel CAT (Section 2), the
cache is not limited for certain applications and, thus, the eviction caused
by handling memory packets has a low probability. As network drivers
often use DMA memory and, thus, uncached memory, bit flips can be
induced by network packets. While we identified a remarkable number
of around 5500 uncacheable pages used by the system, we were not able
to induce any bit flips remotely. However, the USB ethernet adapter
allowed only a network capacity of less than 16Mbit s−1, which is clearly
too slow for a Nethammer attack. Nevertheless, we were successfully able
to induce bit flips using Nethammer on the Intel Xeon E5-1630v4, where
one uncached address is accessed for every received UDP packet. Non-
temporal instructions directly operate on the memory, thus, behaving
similar to uncached memory.

We implemented an unprivileged userspace server application which uses
clflush while handling network requests. We then also tested a network
driver implementation that uses clflush in the process of handling a
network packet. Both tests were performed on an Intel i7-6700K CPU.
While clflush is not very commonly used, our experiments provide valu-
able insights into the implications if it is used somewhere. We sent UDP
packets with up to 500Mbit s−1 and scanned memory regions where we
expected bit flips. The results for both cases were very similar. For the
driver variant, we observed a bit flip every 350ms showing that hammer-
ing over the network is feasible if at least two memory accesses are served
from main memory, due to flushing an address while handling a network

214 Chapter 7. Nethammer

0 10 20 30 40 50 60 70 80 90 100

0
10
20
30

CPU Load

B
it

fl
ip

s

Figure 7.4.: Number of bit flips depending on the CPU load with a closed-
page policy after 15 minutes.

packet. Thus, in this scenario, up to 10 000 bit flips per hour can be
induced.

Influence of Memory-Controller Page Policies on Rowhammer. In or-
der to evaluate the actual influence of the used memory-controller page
policy on Nethammer, i.e., how many bit flips can be induced depending
on the policy used, we mounted the Nethammer in different settings. The
experiment was conducted on our Intel Xeon D-1541 test system, as the
BIOS of its motherboard allowed to chose between different page policies:
Auto, Closed, Open, Adaptive. For each run, we configured the victim ma-
chine with one of the policies and Intel CAT, and, mounted a Nethammer
attack for at least 4 hours. To detect bit flips, we ran a program on the
victim machine that mapped a file into memory. The program then re-
peatedly scans the content of all allocated pages and reports bit flips if
the content has changed.

We detected 11 bit flips in 4 hours with the Closed policy, with the first
one after 90 minutes. We did not observe any bit flips with the Open
policy within the first 4 hours. However, when running the experiment
longer, we observed 46 bit flips within 10 hours. With the Adaptive policy,
we observed 10 bit flips in 4 hours, with the first one within the second
hour of the experiment. While this experiment was conducted without
any additional load on the system, we see in Figure 7.4 that additional
CPU utilization increases the number of bit flips drastically. Using the
Closed policy, we observed 27 bit flips with a load of 35% within 15
minutes.

These results do not immediately align with the assumption that a pol-
icy that preemptively closes rows is required to induce bit flips using
one-location hammering. However, depending on the addresses that are
accessed and the constant eviction through Intel CAT, it is possible that

6. Evaluation 215

two addresses map to the same bank but different rows and, thus, bit flips
can be induced through single-sided hammering. In fact, the attacker can-
not know whether the hammering was actually one-location hammering
or single-sided hammering. However, as long as a bit flip occurs, the
attacker does not care how many addresses mapped to the same bank.
Finally, depending on the actual parameters used by a fixed-open-page
policy, a row can still be closed early enough to induce bit flips.

Bit Flips induced by Nethammer. As described in Section 5, a bit
flip can occur in user space or kernel space leading to different effects
depending on the memory it corrupts. In this section, we present bit flips
that we have observed in our experiments and their effects.

We observed Nethammer bit flips that caused the system not to boot
anymore. It stopped responding after the bootloader stage. We inspected
the kernel image and compared it to the original kernel image distributed
by the operating system. As the kernel image differed blockwise at many
locations, we assume that Nethammer caused a bit flip in a file-system
inode. The inode of a program that wanted to write data did not point
to the correct file but to the kernel image and, thus, corrupted the kernel
image.

Furthermore, we observed several bit flips immediately halting the entire
system with no further interaction possible. By debugging the operating
system over a serial connection, we detected bit flips in certain modules
such as the keyboard or network driver. In these cases, the system was
still running but did not respond to any user input or network packets
anymore. We also observed bit flips that were likely in the SGX EPC re-
gion, causing an immediate permanent locking of the memory controller.

We observed that bit flips crashed running processes and services or pre-
vented the execution of others as the bit flip triggered a segmentation
fault when functions of a library were executed. On one occasion, a bit
flip occurred either in the SSH daemon or the stored passwords of the
machine, preventing to log in on the system. The system was restored
to a stable state by rebooting the machine and thus reloading the entire
code.

We also validated that an attacker can increase chances of a bit flip in a
target page by increasing the memory usage. This was the most common
scenario, overlapping with our test setup to detect bit flips for our eval-

216 Chapter 7. Nethammer

uation. Unsurprisingly, these flips equally occur when filling the memory
with actual content that the attacker targets.

Target Row Refresh (TRR). Previous assumptions on the Rowhammer
bug lead to the conclusion that only bit flips in the victim row adjacent
to the hammering rows would occur. While the probability for bit flips
to occur in directly adjacent rows is much higher, Kim et al. [34] al-
ready showed rows further away (even a distance of 8 rows and more)
are affected as well. Still, the hardware vendors opted for implementing
defenses focusing on the directly adjacent rows.

With the Low Power Double Data Rate 4 (NethammerLPDDR4) stan-
dard, the NethammerLPDDR4 standard defines a reliability feature called
Target Row Refresh (TRR). The idea of TRR is to refresh adjacent rows
if the targeted row is accessed at a high frequency. More specifically, TRR
works with a maximum number of activations allowed during one refresh
cycle, the maximum active count. Thus, if a double-sided Rowhammer
attack (Section 2) is mounted, and two hammered rows are accessed more
than the defined maximum active count, the adjacent rows (in particular
the victim row of the attack) will be refreshed. As the potential victim
rows are refreshed, in theory, no bit flip will occur, and the attack is
mitigated. However, in practice, bit flips can be further away from the
hammered rows, and thus, TRR may be ineffective.

With the Ivy Bridge processor family, Intel introduced Pseudo Target
Row Refresh (pTRR) for Intel Xeon CPUs to mitigate the Rowhammer
bug [38]. On these systems, pTRR-compliant DIMMs must be used; oth-
erwise, the system will default into double refresh mode, where the time
interval in which a row is refreshed is halved [38]. However, Kim et al. [34]
showed that a reduced refresh period of 32ms is not sufficient enough to
impede bit flips in all cases. While pTRR is implemented in the memory
controller [37], DRAM module specifications allow automatically running
TRR in the background.

In our experiments, we were able to induce bit flips on a pTRR-supporting
DDR4 module using double-sided hammering on an Intel i7-6700K. The
bit flips occurred in directly adjacent rows and rows further away. We
observed that when using the same DDR4 DRAM on the Intel Xeon E5-
1630 v4 CPU, no bit flips occurred in the directly adjacent rows, but we
observed no statistically significant difference in the number of bit flips for
the rows further away. This indicates that TRR is active on the second

7. Discussion 217

machine but also that TRR does not prevent the occurrence of exploitable
bit flips in practice. Thus, we conclude that the TRR hardware defense is
insufficient in mitigating Rowhammer attacks. In March 2020, Frigo et al.
[15] analyzed TRR in more depth, confirming our findings that TRR does
not prevent Rowhammer in practice.

7. Discussion

To induce the Rowhammer bug, one needs to access memory in the main
memory repeatedly and, thus, needs to circumvent the cache. Therefore,
either native flush instructions [56], eviction [1, 18] uncached memory [54]
or non-temporal instructions [46] can be used to remove data from the
cache. In particular, for eviction-based Nethammer, the system must
use Intel CAT as described in Section 2 in a configuration that restricts
the number of ways available to a virtual machine in a cloud scenario to
guarantee performance to other co-located machines [24]. Furthermore,
the DRAM has to be susceptible to Rowhammer. We discovered in a
brief market survey that many cloud providers offer hardware without
ECC RAM [22, 23, 28, 42], potentially allowing Nethammer attacks.

Nethammer sends as many network packets to the victim machine as pos-
sible, aiming to induce bit flips. Depending on the actual attack scenario
(cf. Section 5), additional traffic, e.g., by enumerating the public keys
of the service, is generated. If the victim uses network monitoring soft-
ware, the attack might be prevented due to the highly increased amount
of traffic. In our experiments, we sent a stream of UDP packets with
up to 500Mbit/s to the target system. We could induce a bit flip every
350ms. Thus, if the first random bit flip already hits the target or causes
a denial-of-service, the attack could already be successful. As the rows are
periodically refreshed, an attacker only needs a burst of memory accesses
to a row between two refreshes, i.e., within a period of 64ms. Hence, an
attacker could mount Nethammer for a few hundred milliseconds and then
pause the attack for a longer time to prevent detection. While ethernet
adapters in mobile phones are uncommon, many ARM-based embedded
devices in IoT setups have gigabit ethernet.

The maximum throughput of these network cards we measured was too
low on many of these devices, e.g., the Raspberry Pi 3 Model B+ [13],
and WiFi chips typically offer too little capacity. However, on more recent
modems, e.g., the Qualcomm X20 Gigabit LTE modem, throughputs up

218 Chapter 7. Nethammer

to 1.2Gbit/s are possible in practice. This would enable sending enough
packets to hammer specific addresses and potentially induce bit flips on
the device.

8. Conclusion
In this paper, we presented Nethammer, a remote Rowhammer attack,
with no attacker-controlled line of code on the target system. We demon-
strate attacks on commodity consumer-grade systems, leading to tempo-
rary or persistent damage to the system. In some cases, the system was
rendered unbootable after the attack. Our method to automatically iden-
tify the page policy used by the memory controller allowed us to show
that adaptive page policies are also vulnerable to one-location hammer-
ing. We demonstrated the first one-location hammering attack on an
ARM device, indicating their future exposure to Nethammer. Finally, we
demonstrated that target-row-refresh (TRR) on DDR4 memory has no
aggravating effect on local or remote Rowhammer attacks.

Acknowledgments
We thank our reviewers for their comments and suggestions that helped
improving the paper. The project was supported by the Austrian Re-
search Promotion Agency (FFG) via the K-project DeSSnet, which is
funded in the context of COMET - Competence Centers for Excellent
Technologies by BMVIT, BMWFW, Styria, and Carinthia. It was also
supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant
agreement No 681402). This work also benefited from the support of the
project ANR-19-CE39-0007 MIAOUS of the French National Research
Agency (ANR). Additional funding was provided by generous gifts from
Intel and Red Hat. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References 219

References
[1] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin.

“When good protections go bad: Exploiting anti-DoS measures to
accelerate Rowhammer attacks”. In: HOST. 2017.

[2] ARM. ARM Architecture Reference Manual ARMv8. ARM Lim-
ited, 2013.

[3] Manu Awasthi, David W. Nellans, Rajeev Balasubramonian, and
Al Davis. “Prediction Based DRAM Row-Buffer Management in
the Many-Core Era”. In: PACT. 2011.

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao,
Reetuparna Das, Matthew Hicks, Yossi Oren, and Todd Austin.
“ANVIL: Software-based protection against next-generation
Rowhammer attacks”. In: ACM SIGPLAN Notices (2016).

[5] Sarani Bhattacharya and Debdeep Mukhopadhyay. “Curious Case
of Rowhammer: Flipping Secret Exponent Bits Using Timing
Analysis”. In: CHES. 2016.

[6] Eli Biham. “A fast new DES implementation in software”. In: In-
ternational Workshop on Fast Software Encryption. 1997.

[7] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the
Importance of Checking Cryptographic Protocols for Faults”. In:
EUROCRYPT. 1997.

[8] Ferdinand Brasser, Lucas Davi, David Gens, Christopher
Liebchen, and Ahmad-Reza Sadeghi. “CAn’t Touch This:
Software-only Mitigation against Rowhammer Attacks targeting
Kernel Memory”. In: USENIX Security Symposium. 2017.

[9] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time
detection of cache-based side-channel attacks using Hardware Per-
formance Counters. ePrint 2015/1034. 2015.

[10] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert
Bos. “Exploiting correcting codes: On the effectiveness of ecc mem-
ory against rowhammer attacks”. In: S&P. 2019.

[11] Artem Dinaburg. “Bitsquatting: DNS Hijacking without Exploita-
tion”. In: BlackHat US Briefings. 2011.

[12] James M. Dodd. Adaptive page management. 2003.
[13] Raspberry Pi Foundation. Raspberry Pi 3 Model B+. 2018. url:

https://www.raspberrypi.org/products/raspberry-pi-3-
model-b-plus.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus

220 Chapter 7. Nethammer

[14] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
“Grand Pwning Unit: Accelerating Microarchitectural Attacks
with the GPU”. In: S&P. 2018.

[15] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. “TRRespass: Exploiting the Many Sides of Target Row
Refresh”. In: S&P. 2020.

[16] Mohsen Ghasempour, Mikel Lujan, and Jim Garside. ARMOR: A
Run-time Memory Hot-Row Detector. 2015. url: http://apt.
cs.manchester.ac.uk/projects/ARMOR/RowHammer.

[17] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
“Another Flip in the Wall of Rowhammer Defenses”. In: S&P.
2018.

[18] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
“Rowhammer.js: A Remote Software-Induced Fault Attack in
JavaScript”. In: DIMVA. 2016.

[19] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In:
DIMVA. 2016.

[20] Nishad Herath and Anders Fogh. “These are Not Your Grand Dad-
dys CPU Performance Counters – CPU Hardware Performance
Counters for Security”. In: BlackHat US Briefings. 2015.

[21] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal,
Chris Gianos, Ronak Singhal, and Ravi Iyer. “Cache QoS: From
concept to reality in the Intel Xeon processor E5-2600 v3 product
family”. In: IEEE HPCA. 2016.

[22] Hetzner. Dedicated Root Server Hosting. 2018. url: https://www.
hetzner.com/dedicated-rootserver/.

[23] DefineQuality Hosting. Highend Dedicated Rootserver. 2018. url:
https://definequality.net/dedicated.php.

[24] Intel. Improving Real-Time Performance by Utilizing Cache Al-
location Technology: Enhancing Performance via Allocation of
the Processor’s Cache. 2015. url: https : / / www . intel . com /
content / www / us / en / communications / cache - allocation -
technology-white-paper.html.

[25] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019.

[26] Intel. Intel Xeon Processor E5 v4 Product Family: Datasheet Vol-
ume 2: Registers. 2016.

http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer
https://www.hetzner.com/dedicated-rootserver/
https://www.hetzner.com/dedicated-rootserver/
https://definequality.net/dedicated.php
https://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
https://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
https://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html

References 221

[27] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT:
Stopping Microarchitectural Attacks Before Execution. ePrint
2016/1196. 2017.

[28] myLoc managed IT. The dedicated server in comparison. 2018.
url: https://www.myloc.de/en/server-hosting/dedicated-
server/dedicated-server-comparison.html.

[29] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. “SGX-
Bomb: Locking Down the Processor via Rowhammer Attack”. In:
SysTEX. 2017.

[30] JEDEC Solid State Technology Association. Low Power Double
Data Rate 4. 2017. url: http://www.jedec.org/standards-
documents/docs/jesd209-4b.

[31] Suryaprasad Kareenahalli, Zohar B. Bogin, and Mihir D. Shah.
Adaptive idle timer for a memory device. 2003.

[32] Dimitris Kaseridis, Jeffrey Stuecheli, and Lizy Kurian John. “Min-
imalist open-page: A DRAM page-mode scheduling policy for the
many-core era”. In: MICRO. 2011.

[33] Dae-Hyun Kim, Prashant J Nair, and Moinuddin K Qureshi. “Ar-
chitectural support for mitigating row hammering in DRAM mem-
ories”. In: IEEE Computer Architecture Letters 14 (2015).

[34] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors”. In: ISCA. 2014.

[35] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. “ARMageddon: Cache Attacks on Mo-
bile Devices”. In: USENIX Security Symposium. 2016.

[36] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin,
Bruce Maggs, Alan Mislove, Aaron Schulman, and Christo Wilson.
“An End-to-End Measurement of Certificate Revocation in the
Web’s PKI”. In: IMC. 2015.

[37] Sreenivas Mandava, Brian S. Morris, Suneeta Sah, Roy M. Stevens,
Ted Rossin, Mathew W. Stefaniw, and John H. Crawford. Tech-
niques for determining victim row addresses in a volatile memory.
2017.

[38] Marcin Kaczmarski. Thoughts on Intel Xeon E5-2600 v2 Product
Family Performance Optimisation – component selection guide-
lines. Infobazy 2014. Aug. 2014. url: http://infobazy.gda.pl/
2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf.

https://www.myloc.de/en/server-hosting/dedicated-server/dedicated-server-comparison.html
https://www.myloc.de/en/server-hosting/dedicated-server/dedicated-server-comparison.html
http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b
http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf
http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf

222 Chapter 7. Nethammer

[39] Microsoft Azure. High performance compute VM sizes. 2018. url:
https://docs.microsoft.com/en-us/azure/virtual-machine
s/windows/sizes-hpc.

[40] James A Muir. “Seifert’s RSA fault attack: Simplified analysis and
generalizations”. In: International Conference on Information and
Communications Security. 2006.

[41] Onur Mutlu. “The RowHammer problem and other issues we may
face as memory becomes denser”. In: Design, Automation & Test
in Europe Conference & Exhibition (DATE). 2017.

[42] netcup. Dedicated servers for professional applications. 2018. url:
https://www.netcup.eu/professional/dedizierte-server/.

[43] Paul Mutton. Certificate revocation: Why browsers remain affected
by Heartbleed. 2014. url: https://news.netcraft.com/archi
ves/2014/04/24/certificate-revocation-why-browsers-
remain-affected-by-heartbleed.html.

[44] Matthias Payer. “HexPADS: a platform to detect “stealth” at-
tacks”. In: ESSoS. 2016.

[45] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

[46] Rui Qiao and Mark Seaborn. “A New Approach for Rowhammer
Attacks”. In: International Symposium on Hardware Oriented Se-
curity and Trust. 2016.

[47] Inc. Qualcomm Technologies. Qualcomm Snapdragon 600E Pro-
cessor APQ8064E: Recommended Memory Controller and Device
Settings. 2016.

[48] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano
Giuffrida, and Herbert Bos. “Flip Feng Shui: Hammering a Needle
in the Software Stack”. In: USENIX Security Symposium. 2016.

[49] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM
rowhammer bug to gain kernel privileges”. In: Black Hat Brief-
ings. 2015.

[50] X. Shen, F. Song, H. Meng, S. An, and Z. Zhang. “RBPP: A
row based DRAM page policy for the many-core era”. In: IEEE
ICPADS. 2014.

[51] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLK-
SCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement”. In: USENIX Security Symposium. 2017.

[52] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh Razavi. “Throwhammer:

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc
https://www.netcup.eu/professional/dedizierte-server/
https://news.netcraft.com/archives/2014/04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed.html
https://news.netcraft.com/archives/2014/04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed.html
https://news.netcraft.com/archives/2014/04/24/certificate-revocation-why-browsers-remain-affected-by-heartbleed.html

References 223

Rowhammer Attacks over the Network and Defenses”. In: USENIX
ATC. 2018.

[53] Chee Hak Teh, Suryaprasad Kareenahalli, and Zohar Bogin. Dy-
namic update adaptive idle timer. 2006.

[54] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer,
Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos,
Kaveh Razavi, and Cristiano Giuffrida. “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms”. In: CCS. 2016.

[55] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodor-
escu. “One Bit Flips, One Cloud Flops: Cross-VM Row Hammer
Attacks and Privilege Escalation”. In: USENIX Security Sympo-
sium. 2016.

[56] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX
Security Symposium. 2014.

[57] Thomas M. Zeng. The Android ION memory allocator. 2012. url:
https://lwn.net/Articles/480055/.

[58] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. “CloudRadar:
A Real-Time Side-Channel Attack Detection System in Clouds”.
In: RAID. 2016.

Appendix
A. Kernel Accesses for Network Packets
Table 7.2 shows the results of the funccount script of the perf framework
for functions with udp in their name while the targeted system is flooded
with UDP packets.

https://lwn.net/Articles/480055/

224 Chapter 7. Nethammer

Table 7.2.: Results of funccount on the victim machine for functions with
udp in their name while the system is flooded with UDP pack-
ets.

Function Number of calls

__udp4_lib_lookup 2 000 024
__udp4_lib_rcv 1 000 012
udp4_gro_receive 1 000 012
udp4_lib_lookup_skb 1 000 012
udp_error 1 000 012
udp_get_timeouts 1 000 013
udp_gro_receive 1 000 013
udp_packet 1 000 012
udp_pkt_to_tuple 1 000 012
udp_rcv 1 000 012
udp_v4_early_demux 1 000 012

8
Practical Keystroke Timing Attacks

in Sandboxed JavaScript

Publication Data
Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine
Maurice, and Stefan Mangard. “Practical Keystroke Timing Attacks in
Sandboxed JavaScript”. In: ESORICS. 2017

Contributions
Main author.

225

226 Chapter 8. Keystroke Timing Attacks

Practical Keystroke Timing Attacks in Sandboxed
JavaScript

Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner,
Clémentine Maurice, Stefan Mangard

Graz University of Technology

Abstract

Keystrokes trigger interrupts which can be detected through software
side channels to reconstruct keystroke timings. Keystroke timing attacks
use these side channels to infer typed words, passphrases, or create user
fingerprints. While keystroke timing attacks are considered harmful, they
typically require native code execution to exploit the side channels and,
thus, may not be practical in many scenarios.

In this paper, we present the first generic keystroke timing attack in sand-
boxed JavaScript, targeting arbitrary other tabs, processes and programs.
This violates same-origin policy, HTTPS security model, and process iso-
lation. Our attack is based on the interrupt-timing side channel which
has previously only been exploited using native code. In contrast to pre-
vious attacks, we do not require the victim to run a malicious binary
or interact with the malicious website. Instead, our attack runs in a
background tab, possibly in a minimized browser window, displaying a
malicious online advertisement. We show that we can observe the exact
inter-keystroke timings for a user’s PIN or password, infer URLs entered
by the user, and distinguish different users time-sharing a computer. Our
attack works on personal computers, laptops and smartphones, with dif-
ferent operating systems and browsers. As a solution against all known
JavaScript timing attacks, we propose a fine-grained permission model.

1. Introduction

Keystroke timing attacks are side-channel attacks where an adversary
tries to determine the exact timestamps of user key presses. Keystroke
timings convey sensitive information that has been exploited in previous
work to recover words and sentences [39, 49]. More recently, microarchi-
tectural attacks have been demonstrated to obtain keystroke timings [15,

1. Introduction 227

25, 32, 36] in native code. In particular, the interrupt-timing side channel
leaks highly accurate keystroke timings if an adversary has access to a
cycle-accurate timing source [36].

JavaScript is the most widely used scripting language and supported by
virtually any browser today. It is commonly used to create interactive
website elements and enrich the user interface. However, it does not
provide access to native instructions, files, or system services. Still, the
ability to execute arbitrary code in the JavaScript sandbox inside a web-
site can also be exploited to perform attacks on website visitors, e.g.,
timing attacks [12].

JavaScript-based timing attacks were first presented by Felten et al. [12],
showing that access times to website elements are lower if a website has
recently been visited. Besides attacks on the browser history [12, 21, 46],
there have also been more fine-grained attacks recovering information on
the user or other websites visited by the user [8, 16, 22, 40, 41]. Vila and
Köpf [43] showed that shared event loops in Google Chrome leak timing
information on other browser tabs that share worker processes responsible
for rendering or I/O.

Previous work has shown that timing side channels which are introduced
on the hardware level or the operating system level, can be exploited from
JavaScript. Gruss et al. [14] demonstrated page deduplication attacks,
Oren et al. [30] demonstrated cache attacks to infer mouse movements
and network activity, and Booth [6] fingerprinted websites based on CPU
utilization. Gras et al. [13] showed that accurate timing information in
JavaScript can be exploited to defeat address-space layout randomization.
Schwarz et al. [37] presented a DRAM timing covert channel in JavaScript.

In this paper, we present the first generic keystroke timing attack in
sandboxed JavaScript. Our attack is based on the interrupt-timing side
channel which has previously only been exploited using native code. We
show that this side channel can be exploited from JavaScript without
access to native instructions. Based on instruction throughput variations
within equally-sized time windows, we can detect hardware interrupts,
such as keyboard inputs. In contrast to previous side-channel attacks in
JavaScript, our channel provides a more accurate signal for keystrokes,
allowing us to observe exact inter-keystroke timings. We demonstrate
how this information can be used to infer URLs entered by the user, and
distinguish different users time-sharing a computer.

Our attack is generic and can be applied to any system which uses in-

228 Chapter 8. Keystroke Timing Attacks

terrupts for user input. We show that our attack code works both on
personal computers and laptops, as well as modern smartphones. An
adversary can target other browser tabs and browser processes, as well
as arbitrary other programs, circumventing same-origin policy, HTTPS
security model, and both operating system and browser-level process iso-
lation. With a low impact on the overall system and browser performance,
and a code footprint of less than 256 bytes of code, the attack can easily
be hidden in modern JavaScript frameworks and malicious online adver-
tisements. Our attack code utilizes new JavaScript features to run in the
background, in a background tab, or on a locked phone. Hence, we can
spy on the PIN entry used to unlock the phone.

To verify our results, we implemented our attack also in Java without ac-
cess to native instructions and only low-accuracy timers. We demonstrate
that the same timing measurements as in JavaScript can be observed
in our Java implementation with a lower noise level. Furthermore, we
demonstrate that in a cross-browser covert channel two websites can com-
municate through network interrupts. These observations clearly show
that the source of the throughput differences is caused by the hardware
and not specific software implementations.

Our attack works in two phases, an online phase running in JavaScript,
and an offline phase running on the adversary’s machine. In the offline
phase, we employ machine learning techniques to build accurate classifiers
trained on keystroke traces gathered in the online phase. These classi-
fiers enable an adversary to infer which website a victim opens and to
fingerprint different users time-sharing the same physical machine (e.g.,
a family sharing a computer).

Our results show that side-channel attacks are a fundamental problem
that is not restricted to local adversaries. We propose a fine-grained per-
mission model as a solution against all known JavaScript timing attacks.
The browser restricts access to specific features and prompts the user to
grant permissions per domain.

Our key contributions are:

• We show the first generic keystroke timing attack in JavaScript,
embedded in a website, targeting arbitrary other tabs, processes
and programs.

• We demonstrate our attack on personal computers, laptops and
smartphones, with different browsers and operating systems.

2. Background 229

• We demonstrate that our attack can obtain the exact inter-keystroke
timings for a user’s PIN or password, infer URLs entered by the
user, and distinguish different users time-sharing a computer based
on their input.

Outline. The remaining paper is organized as follows. In Section 2, we
provide background. We describe our attack in Section 3. In Section 4, we
present the performance of our attack on personal computers and smart-
phones. We discuss countermeasures in Section 5. Finally, we conclude
in Section 6.

2. Background

2.1. Keystroke Timing Attacks

Keystroke timing attacks acquire accurate timestamps of keystrokes for
input sequences. These keystroke timestamps depend on several factors
such as bigrams, syllables, words, keyboard layout, and typing experi-
ence [33]. An adversary can exploit these timing characteristics to learn
information about the user or the user input. Existing attacks use ma-
chine learning to infer typed sentences or recover passphrases [38, 39, 49].
Idrus et al. [19] showed that key press and key release events can be used
to fingerprint users.

The Linux operating system exposes information that allows compiling
accurate traces of keystroke timings [39, 49]. Zhang et al. [49] demon-
strated that instruction and stack pointer, interrupt statistics, and net-
work packet statistics can be used as side channels for keystroke tim-
ings. While Song et al. [39] demonstrated that SSH leaks inter-keystroke
timings in interactive mode, Hogye et al. [17] showed that network la-
tency in networks with significant traffic conceals these inter-keystroke
timings in practice. Kamran et al. [3] showed that it is possible to de-
tect keystrokes and classify the typed keys using Wi-Fi Signals. Jana
and Shmatikov [20] showed that CPU usage is a much more reliable side
channel for keystroke timings than the instruction pointer, or the stack
pointer. Diao et al. [11] demonstrated high-precision keystroke timing
attacks based on /proc/interrupts. Mehrnezhad et al. [27] used the
JavaScript sensor API to detect touch, hold, scroll, and zoom actions on
mobile devices using built-in sensors such as accelerometer and gyroscope.

230 Chapter 8. Keystroke Timing Attacks

Algorithm 1: Online phase of an interrupt-timing attack
input : threshold
now ← get_timestamp();
while true do

last ← now ;
now ← get_timestamp();
if now − last > threshold then

report(now , diff);
end

end

0.2 0.4 0.6 0.8 1 1.2 1.4

·1010

0

1

2
·105

p a s s w o r d

Runtime [cycles]

D
el

ta
[c

yc
le

s]

Figure 8.1.: Native interrupt-timing attack: The difference between con-
secutive timestamps is measured while a sentence is typed.
Every keystroke leads to a significant deviation as the mea-
suring program is interrupted by the keyboard.

Cache attacks have also been used to obtain keystroke timings. In a
cache attack, the adversary observes effects of the victim’s operation on
the cache and can then deduce what operations the victim performed.
Ristenpart et al. [34] demonstrated a keystroke timing attack using a
Prime+Probe cache attack. Gruss et al. [15] demonstrated that Flush+Reload
cache attacks can be used for keystroke timing attacks.Similarly, Pessl et al.
[32] showed a keystroke timing attack on the Firefox address bar using
the DRAM as a side channel.

Recently, it was shown that keystroke interrupt timings can be obtained in
a timing attack which continuously measures differences between consec-
utive rdtsc calls [36]. However, this is not possible if the adversary only
controls a website that is visited by the victim. Sandboxed JavaScript
running on a website cannot utilize any native instructions such as rdtsc.

2. Background 231

2.2. Interrupt-timing Attacks

Interrupt-timing attacks have recently been demonstrated in native code
to recover keystroke timings [36]. The basic idea of interrupt-timing at-
tacks is to continuously acquire a high-resolution timestamp and to mon-
itor differences between subsequent timestamps, i.e., how much time has
passed since the last measurement, as outlined in Algorithm 1. Signif-
icant differences occur whenever the measuring process is interrupted.
The more time the operating system consumes to handle the interrupt,
the higher the measured differences are. Especially interrupts triggered
by I/O devices—such as keyboards—lead to clearly visible peaks in the
measured trace. Figure 8.1 shows a trace from a native attack implemen-
tation while a user typed in a sentence. The exact timestamp where the
user pressed a key is clearly visible and can be distinguished from other
events. However, the trace does not only contain keyboard interrupts
and, thus, allows spying on user input but also on every other event that
causes one or more interrupts, e.g., network traffic or redraw events. An
adversary can filter relevant peaks by means of post-processing algorithms
to monitor entered keystrokes.

2.3. Timing Attacks in Sandboxed JavaScript

JavaScript has evolved to be the most widely supported scripting lan-
guage, notably because it is supported by virtually every modern browser.
With highly-optimized just-in-time compilation, modern JavaScript en-
gines deliver a performance that can compete with native code implemen-
tations. The timestamp counter provides a cycle-accurate timestamp to
user programs in native code, but it is not accessible from JavaScript. In-
stead, JavaScript provides the High Resolution Time API [44] (performance.now)
for sub-millisecond timestamps.

Based on this timing interface, various attacks have been demonstrated.
Van Goethem et al. [41] were able to extract private data from users
by measuring the differences in the execution time from cross-origin re-
sources. Stone [40] showed that the optimization in SVG filters intro-
duced timing side channels. He showed that this side channel can be
used to extract pixel information from iframes. Booth [6] fingerprinted
websites based on CPU utilization—interfering with the execution time
of a benchmark function—when loading and rendering the page.

Gruss et al. [14] showed that page deduplication timing attacks can be

232 Chapter 8. Keystroke Timing Attacks

performed in JavaScript to determine which websites the user has cur-
rently opened. Oren et al. [30] showed that it is possible to mount cache
attacks in JavaScript. They demonstrated how to perform Prime+Probe
attacks in the browser to build cache covert channels but also to spy
on the user’s mouse movements and network activity through the cache.
This attack caused all major browsers to decrease the resolution of the
performance.now method [1, 7, 10]. The W3C standard now recom-
mends a resolution of 5µs while the Tor project reduced the resolution in
the Tor browser to a more conservative value of 100ms [28]. Gras et al.
[13] showed that accurate timing information in JavaScript can be ex-
ploited to defeat address-space layout randomization. Vila and Köpf [43]
showed that shared event loops in Google Chrome leak timing information
about other browser tabs sharing worker processes for rendering and I/O
operations. They exploit this side channel to identify web pages, to build
a covert communication channel, and to infer inter-keystroke timings.

Recently, several works investigated timing primitives in JavaScript that
allow recovering highly accurate timestamps [13, 24, 37]. We use these
timing primitives to build highly accurate keystroke timing attacks in
sandboxed JavaScript.

3. Sandboxed Keystroke Timing Attacks without
High-resolution Timers

Our attack follows the same idea as interrupt-timing attacks in native
code [36]. It consists of an online phase where timing traces are acquired
on a victim machine and an offline phase for post-processing and evalua-
tion.

Online phase. In the online phase of our attack, we run an interrupt-
timing attack in sandboxed JavaScript. Interrupt-timing attacks have
only minimal requirements, most importantly access to the x86 rdtsc in-
struction [36]. Consequently, keystroke interrupt-timing attacks have only
been demonstrated in native code. We face several challenges to perform
keystroke interrupt-timing attacks from remote websites, as JavaScript
can neither execute this instruction nor run endless loops on websites.

There is no high-resolution timestamp available in JavaScript, as the res-
olution of performance.now is limited to 5µs to mitigate side-channel

3. Sandboxed Keystroke Timing Attacks without High-resolution
Timers 233

attacks [44]. Therefore, we implement a counter to simulate a monotonic
clock by constantly incrementing a value [13, 24, 37, 47]. The number
of increments, i.e., the instruction throughput, is proportional to the
time the counter function is scheduled. Thus, any interrupt reduces the
instruction throughput and, therefore, leads to a lower number of incre-
ments within a fixed time frame. Consequently, we can read the counter
value at fixed time intervals and deduce from the number of increments
since the last interval whether the counter function was interrupted.

As JavaScript is based on a single-threaded event loop, browsers usually
do not allow websites to use endless loops and inform the user when
detecting such a construct. The usual solution is to either use setTimeout
or setInterval to constantly trigger execution of the loop body after a
specified number of milliseconds have passed. However, these functions
enforce a minimum pause of 4ms before scheduling the same code again,
yielding a resolution that is significantly lower than the resolution of
performance.now.

To work around this limitation, we introduce a new variant of previously
published timing primitives [13, 24, 37] called cooperative endless-loop
slicing. The idea is to slice the endless loop into smaller finite loops where
every loop slice has an execution time of approximately 4ms. Before
running this loop, we schedule the next loop slice using setTimeout with
a timeout of 4ms. Thus, in the optimal case, the next slice of the endless
loop is executed immediately after the current slice, giving the impression
of an actual endless loop. However, as higher priority events, such as
user inputs, can still be processed between the loop slices, the browser
is responsive and will not stop the endless loop. Algorithm 2 illustrates
how we use this construct to continuously schedule our counter to obtain
continuous timing traces.

The instruction throughput per loop slice, i.e., the counter increments,
varies depending on how often and how long the thread was interrupted
during this loop slice. Within one loop slice, we achieve on average 72 764
increments of the counter, resulting in a resolution of approximately 69 ns
(σ =3ns, n = 4000) on an Intel i5-6200U. This resolution is three orders
of magnitude higher than the result of Vila and Köpf [43] who achieved
a resolution of only 25µs to 100µs. On ARM, we achieve on average
5038 increments on the Google Nexus 5 and 17 454 increments on the
OnePlus 3T, yielding a resolution of 994 ns (σ =55ns, n = 4000) and
287 ns (σ =4ns, n = 4000) respectively.

234 Chapter 8. Keystroke Timing Attacks

Algorithm 2: Interrupt-timing attack implemented in JavaScript
Function measure_time(id):

setTimeout(measure_time, 0, id+ 1);
counter ← 0;
begin ← window.performance.now();
while (window.performance.now() - begin) < 5 do

counter ← counter + 1;
end
publish(id, counter);

0.1 0.15 0.2 0.25 0.3 0.35

1.26

1.28

1.3

·105

y a h o o . c o m

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 8.2.: Interrupt-timing attack in JavaScript: The lower peaks indi-
cate that the measured script has been interrupted, allowing
to infer single keystrokes.

A further limitation of JavaScript is that once the user switches the tab
or minimizes the browser, the default minimum timeout value of 4ms is
reduced to 1000ms. Increasing the loop slices to 1000ms is not practical
since it would make the browser unresponsive again. In order to circum-
vent this issue, we utilize the Web Worker API which explicitly allows
JavaScript code to be executed in the background [45]. We discovered
that the minimum timeout is not reduced for web workers and we can
still measure interrupt timings with a high frequency. This allows us to
monitor keystrokes when the victim is visiting a different page or even a
different application.

Figure 8.2 shows a measured trace while a user typed the URL yahoo.com
into the browser bar. If no interrupt occurs, the counter variable has been
incremented for the full time window of 4ms, defining the baseline. If an
interrupt disrupts the measuring JavaScript, the counter variable is not
incremented as often in the same time window, yielding to downward-
facing peaks. Thus, the typed letters leave clear marks in the measured

4. Practical Attacks and Evaluation 235

trace, which allows inferring single keystrokes.

Offline phase. In the offline phase of the attack, the measurements gath-
ered from the online phase are processed and analyzed. Over time, an
adversary can gather thousands of traces in order to learn about the in-
dividual typing behavior of the victim or to derive an entered passphrase
or PIN code. Depending on the goal of the adversary, different methods
to evaluate the gathered data can be applied. In order to detect single
keystrokes in a measured trace, we filter the measured trace in order to
reduce noise and to deduce threshold values for keystrokes by manually
inspecting one recorded trace of the target device. Using this threshold,
we can further reduce the number of points in recorded traces to a min-
imum and, thus, increase the performance of further computations. We
build a classifier by calculating the correlation between our training set
and the queried trace. In order to classify entered words, we need to take
into account that the points in time where a character has been entered
can vary in time in our trace. Therefore, we use k-nearest neighbors
(k-NN) classification [4] and calculate the correlation of the trace with
every other trace in the training set using different alignments. We chose
the alignment that yields the highest correlation and decide on the class
giving the best match. While more computational expensive methods
working with time series [5, 35] to build classifiers exist [9, 23, 48], we
show that the features of the recorded measurements are strong enough
such that also simpler techniques allow to build an efficient and accurate
classifier.

4. Practical Attacks and Evaluation

In this section, we demonstrate the significant attack potential of our
JavaScript interrupt-timing attack. Our attack does not depend on any
specific browser or operating system and can therefore be performed on
personal computers, laptops and smartphones. We show that it is possible
to infer which website a user has entered into the browser’s address bar
and to profile different users sharing the same computer. Furthermore,
we show that the attack can be utilized to obtain the exact timings of
every digit of the PIN that is used to unlock the phone while the attack
code is executed in the web browser running in the background.

236 Chapter 8. Keystroke Timing Attacks

4.1. URL Classification
In our first experiment, we demonstrate that using our JavaScript keystroke
timing attack on a personal computer in combination with machine learn-
ing techniques, we can infer URLs that a user has entered into the address
bar of the browser. We train a classifier to successfully label measurement
traces of user input sequences for the URLs of the top 10 most visited
websites [2]. For this experiment we used an Intel i7-6700K CPU and
Firefox 52.0 running on Linux.

Every single trace consists of timestamps with a corresponding counter
value (cf. Section 3) and the corresponding URL. As there are small tim-
ing variations when the user starts typing the URL and whenever the
user pressed a key, the length of the trace as well as the position of the
features, i.e., the characteristics in the measured values describing a key
stroke, within the trace varies. Thus, we need to build our classifier in
a way that overcomes those difficulties. In a preparation step, we deter-
mine the maximum trace length as well as the timestamp resolution. The
resolution can be obtained from the greatest common divisor of all mea-
sured timestamps of all samples. Finally, we create a linear interpolation
of every sample based on the actual resolution.

The classifier assigns a class label to an unlabeled trace where each class
corresponds to one URL that we train our classifier with. In order to
classify a new trace, we compute the correlation of the new trace with a
fixed number of randomly chosen samples for every class. As the times-
tamps where the user started entering the URL vary, we need to compute
the correlation of two traces for different alignments. Thus, we shift one
trace within a fixed time window back and forth in order to find an align-
ment where the correlation reaches its maximum. The average of the five
highest correlations for each class decides which class the trace belongs
to, i.e., we choose the highest average correlation.

We evaluate our classifier by using k-fold cross-validation. We first ran-
domly draw 20 samples as training set from our collected 100 measure-
ments from every class. We then test the classifier on a randomly drawn
set of the remaining 800 samples (80 per class), the test set. We cross-
validate our classifier by performing this evaluation multiple times with
randomly selected training sets.

Figure 8.3 shows the confusion matrix. Every cell shows the probability
that the classifier labels a sample of a class specified by the row into a
certain class specified by the column. We can clearly see that for every

4. Practical Attacks and Evaluation 237

am
az
on
.c
om

ba
id
u.
co
m

fa
ce
bo
ok
.c
om

go
og
le
.c
o.
in

go
og
le
.c
o.
jp

go
og
le
.c
om

qq
.c
om

w
ik
ip
ed
ia
.o
rg

ya
ho
o.
co
m

yo
ut
ub
e.
co
m

youtube.com

yahoo.com

wikipedia.org

qq.com

google.com

google.co.jp

google.co.in

facebook.com

baidu.com

amazon.com

0.00 0.03 0.00 0.00 0.02 0.08 0.05 0.00 0.09 0.73

0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.92 0.03

0.02 0.04 0.10 0.06 0.05 0.02 0.02 0.69 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.02 0.96 0.00 0.01 0.01

0.00 0.00 0.03 0.00 0.01 0.86 0.06 0.00 0.02 0.02

0.00 0.01 0.00 0.09 0.73 0.08 0.00 0.06 0.02 0.01

0.03 0.04 0.02 0.67 0.06 0.03 0.02 0.07 0.02 0.04

0.04 0.02 0.72 0.02 0.00 0.05 0.01 0.10 0.04 0.00

0.00 0.84 0.03 0.05 0.02 0.00 0.03 0.01 0.00 0.02

0.81 0.04 0.01 0.04 0.02 0.03 0.03 0.02 0.00 0.00

Predicted URL

A
ct
u
al

U
R
L

Figure 8.3.: Confusion matrix for URL input. The user input can be
correctly predicted with a probability of 67% in the worst
case and 96% in the best case. The probability of random
guessing is 10%.

domain the classifier proposes the correct class with a higher probability
than an incorrect one, and a significantly higher probability than random
guessing (10%). The identification rate of qq.com in comparison with
other domains is also very high as the domain contains only a small
number of characters to be typed. The overall identification rate of our
classifier is 81.75%.

4.2. User Classification

As a second experiment, we evaluate whether it is possible to distinguish
different users in order to determine who is actually sitting in front of the
personal computer. In order to do so, we have collected only 5 traces of
the input of the top 10 most visited websites [2] of 4 different persons to
train the classifier. The results with 2 training set and 3 test set traces
for each user are illustrated as a confusion matrix in Figure 8.4. While it
is much harder to determine the user responsible for the given trace, our

238 Chapter 8. Keystroke Timing Attacks

P
1

P
2

P
3

P
4

P4

P3

P2

P1

0.30 0.03 0.23 0.43

0.37 0.00 0.53 0.10

0.27 0.47 0.17 0.10

0.47 0.13 0.20 0.20

Predicted User
A
ct
u
al

U
se
r

Figure 8.4.: Confusion matrix for input by different users. The user can
be correctly predicted with a probability of 43% in the worst
case and 53% in the best case. The probability of random
guessing is 25%.

Table 8.1.: Mobile test devices.
Device SoC Keystrokes Screen lock
Google Nexus 5 Qualcomm MSM8974 Snapdragon 800 3 -
Xiaomi Redmi Note 3 Mediatek MT6795 Helio X10 3 3
Homtom HT3 MediaTek MTK6580 3 3
Samsung Galaxy S6 Samsung Exynos 7420 - 3
OnePlus One Qualcomm MSM8974AC Snapdragon 801 3 3
OnePlus 3T Qualcomm MSM8996 Snapdragon 821 - -

classifier is with an overall identification rate of 47.5% still better than
random guessing.

4.3. Touchscreen Interactions

In our third experiment we show that interrupt-timing attacks also work
on modern smartphones and on different web browsers. Although battery
saving techniques should make attacks harder, the attack can still be
applied if the measuring program is executed in a different tab or if the
browser app is running in background. Furthermore, we show that the
attack can be used to detect when the screen is locked and unlocked.

Mobile phones usually use a soft-keyboard that is displayed on the screen.
Every tap on the screen causes a redraw event that is clearly visible in the
measured trace, making it easier to detect when a user touches the screen.
While the redraw event is sufficient to monitor taps on the keyboard, we
want to be able to identify any tap on the device, whether it causes a
redraw event or not. Therefore, our test website implemented a custom

4. Practical Attacks and Evaluation 239

touch area imitating a PIN pad.This touch area does neither register any
events nor does it change its appearance. Thus, a touch onto this PIN
pad should not issue any event at all, eliminating all events from the trace
that are not caused by the touch interrupt itself. We provide the code for
this experiment online.1

To cross-check whether we actually observe hardware events and not some
browser-internal events, we implemented the same interrupt-detection al-
gorithm in a native Android app. To achieve comparable results for the
recorded traces, we reduced the timer resolution to 5µs in the same way
as Firefox and Chrome.

For our experiments, we used a Google Nexus 5 with a Qualcomm MSM8974
Snapdragon 800 SoC running Android 6.0.1 with Chrome 44.0.2403.133
and Firefox 54.0a1. Our second testing device is a Xiaomi Redmi Note 3
with a Mediatek MT6795 Helio X10 running Android 5.0.2 with Chrome
57.0.2987.132 and Firefox 52.0.2. In addition, we used all the device listed
in Table 8.1 to record traces using the JavaScript implementation for vi-
sual inspection. Table 8.1 also shows whether we could detect keystrokes
and screen locks without machine learning just by visual inspection.

Keystroke detection. Figure 8.5 shows the keystroke timing attack in
a native Android app on a Google Nexus 5 where a user tapped the
screen twice, before swiping once and tapping it again. The individual
interrupts, caused by tapping on the phone, can easily be identified by
the two following peaks representing the touch and release event. If the
user swipes over the screen, many interrupts are triggered, one for every
coordinate change. This results in many visible peaks and, thus, swipes
and taps can be distinguished.

Our JavaScript implementation of the keystroke timing attack runs suc-
cessfully in Chrome and allows distinguishing taps from swipes as illus-
trated in Figure 8.6. While in contrast to the native implementation,
the measurements in JavaScript contain much more noise, the exact tap
timings can easily be extracted and allow further, more sophisticated at-
tacks.

Figure 8.7 shows the same trace of two taps, one swipe and one additional
tap on the Xiaomi Redmi Note 3. Surprisingly, the peaks caused by the
interrupts face upwards instead of downwards as one might expect. We

1https://github.com/IAIK/interruptjs

https://github.com/IAIK/interruptjs

240 Chapter 8. Keystroke Timing Attacks

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

2,000

3,000

4,000

tap tap swipe tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 8.5.: Keystroke timing attack running in a native app on the
Google Nexus 5.

0.4 0.6 0.8 1 1.2 1.4
0

1,000

2,000

tap tap swipe tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 8.6.: Keystroke timing attack running in Chrome on the Google
Nexus 5.

observed that the Xiaomi Redmi Note 3 increases the CPU frequency
whenever the screen is touched. Consequently, although the interrupt
will consume some CPU time, the counter as described in Section 3 can
be incremented more often due to the significantly higher CPU frequency.
We have verified this behavior by running a benchmark suite on the Xi-
aomi Redmi Note 3. The benchmark suite has been up to 30% faster,
when swiping over the screen while the benchmark is executed. While
this feature may be useful to handle touch interrupts more efficiently and
to appear more responsive, it also opens a new side channel and allows
detecting tap and screen events easily. We also verify the same behavior
in our native Java implementation with higher peaks which allows de-
tecting tap and swipe events even more reliably. On the OnePlus 3T we
were not able to detect keystrokes at all. We suspect that this is due
to the big.LITTLE architecture, which moves the CPU-intensive browser
task to a high-performance ARM core, while the interrupts are handled
by smaller cores. Thus, the browser is not interrupted if a hardware
interrupt occurs.

4. Practical Attacks and Evaluation 241

0.1 0.2 0.3 0.4 0.5 0.6 0.7

7,000

7,500

8,000

tap tap swipe tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 8.7.: Keystroke timing attack running in Chrome on the Xiaomi
Redmi Note 3. The peaks face upwards instead of downwards
as with other devices.

Spying on other applications and PIN unlock. While the attack of
Vila and Köpf [43] is limited to spy on tabs or pop-ups opened by the
adversary, our attack is not restricted and can be used to monitor any
other application running on the system. Indeed, the attack of Vila and
Köpf relies on the timing difference caused by the event loop of the render
process, thus only tabs or windows sharing the same rendering process
can be attacked. In contrast, our interrupt-timing attack is not restricted
to the browser and its child processes as it allows monitoring every other
event triggering interrupts on the target device. Moreover, our attack
also provides a much higher resolution, which allows detecting interrupts
triggered by user input more reliably.

Figure 8.8 shows a trace of a victim opening a website running the mea-
surement code in Chrome on the Xiaomi Redmi Note 3. In addition, the
victim opens a tab in incognito mode and taps the screen multiple times.
We can even detect these user interactions in different tabs as the attack
takes advantage of web workers which are not throttled when running in
the background. Thus, the incognito mode offers no protection against
our attack.

In the next scenario, we show that our attack is not restricted to pro-
cesses of the browser application but can be used to spy on every other
application as well. The victim visits the website running the measuring
application in the Firefox app on the Xiaomi Redmi Note 3 and continues
using the phone, switching to other tabs or applications, and later locks
the screen. After some time the victim turns on the screen again, where
the lock screen prompts the victim for the PIN code. Finally, the victim
enters the PIN code, unlocking the phone. Figure 8.9 shows a trace of this
scenario. We can clearly observe when the screen is turned off as the CPU

242 Chapter 8. Keystroke Timing Attacks

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5,000

10,000
tap menu

redraw

new tab

redraw

tap swipe tapswitch tab

redraw

select tab

redraw

activate tab

redraw
incognito tab

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 8.8.: Keystroke timing attack running while switching to a differ-
ent tab in the Chrome browser on the Xiaomi Redmi Note 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5,000

10,000

screen off

redraw

slide 1 2 3 4

redraw

tap

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 8.9.: Keystroke timing attack running in the Firefox browser on
the Xiaomi Redmi Note 3. While the user locked the screen,
the application still detects keystrokes as long as it is executed
on the last used tab. The application extracts the exact inter-
keystroke timings for the PIN input used to unlock the device.

frequency is lowered to save battery, as well as when the screen is turned
on again. Furthermore, we can extract the exact timestamps where the
victim entered the 4-digit PIN and the subsequent redraw event.

4.4. Covert Channel

In our fourth experiment, we implement a covert communication channel
based on our attack. This allows us to estimate the maximum number
of interrupts we can detect. We establish a unidirectional communica-
tion with one sender and one receiver. The receiver simply mounts the
interrupt-timing attack to sense any interrupts. The sender has to issue
interrupts to send a ‘1’-bit or idle to send a ‘0’-bit. There is no JavaScript
API which allows to explicitly issue interrupts, thus we require an API
that implicitly issues an interrupt.

We use XMLHttpRequests to fetch a network resource from an invalid

5. Countermeasures 243

URL. Every XMLHttpRequest which cannot be served from the cache will
create a network connection and therefore issue I/O interrupts. Even
if the URL cannot be resolved, either because there is no Internet con-
nection, or the URL is invalid, we are able to see the I/O interrupts.
Such a covert channel based on hardware interrupts circumvents several
protection mechanisms found in modern browsers.

Cross-tab channel. Using the covert channel across tabs breaks two se-
curity mechanisms. First, the same origin policy—which prevents any
communication between scripts from different domains—does not apply
anymore. Thus, scripts can communication across domain borders. Sec-
ond, due to the security model of browsers, there is no way a HTTPS
page is able to load HTTP content. For the covert channel, this security
model does not hold anymore.

Cross-browser channel. As the interrupt-timing is not limited to a pro-
cess, the covert channel circumvents policies such as proccess-per-site or
process-per-tab which prevent sites or tabs from sharing process resources.
The covert channel can even be used as a cross-browser communication
channel. We tested a transmission from Firefox to Chrome and achieved
the same transmission rate as in the cross-tab scenario. The communica-
tion channel can also be established with a browser instance running in
incognito mode.

In all scenarios, the receiver uses a constant sampling interval of 40ms per
bit, resulting in a raw transmission rate of 25 bps. Thus, we are also able
to spy on 25 interrupts per second in all those scenarios which is sufficient
to monitor keystrokes of even the fastest typists [33]. To reliably transmit
data over the covert channel, we can apply the techniques proposed by
Maurice et al. [26].

5. Countermeasures

5.1. A Fine-grained Permission Model for JavaScript

In order to impede and mitigate our interrupt-timing attack and other
similar side-channel attacks in JavaScript, we propose a more fine-grained
permission model for JavaScript running in web browsers. For instance,
the existing permission system of Firefox only allows managing the access

244 Chapter 8. Keystroke Timing Attacks

control to a limited number of APIs. However, as many websites do not
require functionality such as web workers. The user should be capable
to allow on a per-page level such features. If an online advertisement
running potential malicious code requests for permissions to uncommon
APIs, the fine-grained permission system prevents its further execution.

5.2. Generic Countermeasures
Myers [29] evaluated how various user-mode keylogging techniques in mal-
ware on Windows are implemented and suggested to generate random
keyboard activity by injecting phantom keystrokes that will be inter-
cepted by the malware. Furthermore, Ortolani [31] analyzed the statisti-
cal properties of noise necessary to impede the detection of real keystrokes
in a noisy channel. While both do not protect against the interrupt-timing
attack, Schwarz et al. [36] published a proof-of-concept countermeasure
that aims to protect against this type of attacks. The countermeasure
injects a large number of fake keystrokes that propagate through the ker-
nel driver up to the user space application. We have verified that the
countermeasure successfully injects fake keystrokes that cannot be distin-
guished from real interrupts by our implementation. Figure 8.10 shows a
trace measured on the Google Nexus 5 with the countermeasure enabled.
While this countermeasure appears to prevent this attack on personal
computers as well, it remains unclear whether it closes the side channel
on the Xiaomi Redmi Note 3 where the CPU gets overclocked for every
touchscreen input. As the implementation of the countermeasure only
supports the touchscreen of the Google Nexus 5 and the OnePlus 3T, we
could not evaluate it against our attack on the Xiaomi Redmi Note 3.
Therefore, we were unable to verify whether the fake keystrokes injected
by the countermeasure also trigger the CPU overclocking and, thus, if
the countermeasure protects against this attack on devices with such a
behavior.

Kohlbrenner and Shacham [24] implemented the fuzzy time concept [18,
42] in order to eliminate high-resolution timers. While this would prevent
our attack in its current implementation, we could use the experimental
SharedArrayBuffers as suggested by Schwarz et al. [37] and Gras et al.
[13] in order to obtain a resolution of up to 2 ns and, thus, to re-enable
our attack.

6. Conclusion 245

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

3,000

4,000

5,000

Runtime [s]

D
el
ta

[c
o
u
n
te
r]

Figure 8.10.: Measurement of the keystroke timing attack running in the
Chrome Browser on the Google Nexus 5. The red rectangles
show when the user tapped the screen. In the gray area,
we enabled the countermeasure [36], making it infeasible to
distinguish real keystrokes from fake keystrokes.

6. Conclusion

In this paper, we presented the first JavaScript-based keystroke timing
attack which is independent of the browser and the operating system.
Our attack is based on capturing interrupt timings and can be mounted
on desktop machines, laptops as well as on smartphones. Because of its
low code size of less than 256 bytes, it can be easily hidden within mod-
ern JavaScript frameworks or within an online advertisement, remaining
undetected by the victim. We demonstrated the potential of this attack
by inferring accurate timestamps of keystrokes as well as taps and swipes
on mobile devices. Based on these keystroke traces, we built classifiers
to detect which websites a user has visited and to identify different users
time-sharing a computer. Our attack is highly practical, as it works while
the browser is running in the background, allowing to spy on other tabs
and applications. As the attack is also executed when the phone is locked,
we demonstrated that we can monitor the PIN entry that is used to un-
lock the phone. Finally, as a solution against our attack and other similar
side-channel attacks in JavaScript, we proposed a fine-grained permission
model for browsers.

Acknowledgments

We would like to thank our anonymous reviewers for their valuable feed-
back. This project has been supported by the COMET K-Project DeSS-
net (grant No 862235) conducted by the Austrian Research Promotion

246 Chapter 8. Keystroke Timing Attacks

Agency (FFG) and the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant
agreement No 681402).

References
[1] Alex Christensen. Reduce resolution of performance.now. 2015.

url: https://bugs.webkit.org/show_bug.cgi?id=146531.
[2] Alexa Internet, Inc. The top 500 sites on the web. Dec. 2016. url:

http://www.alexa.com/topsites.
[3] Kamran Ali, Alex X. Liu, Wei Wang, and Muhammad Shahzad.

“Keystroke Recognition Using WiFi Signals”. In: Proceedings of
the 21st Annual International Conference on Mobile Computing
and Networking. MobiCom’15. 2015.

[4] N. S. Altman. “An Introduction to Kernel and Nearest-Neighbor
Nonparametric Regression”. In: The American Statistician 46.3
(1992), pp. 175–185. doi: 10.1080/00031305.1992.10475879.

[5] Donald J. Berndt and James Clifford. “Using Dynamic Time
Warping to Find Patterns in Time Series”. In: Proceedings of the
3rd International Conference on Knowledge Discovery and Data
Mining. 1994.

[6] Jo Malcolm Booth. Not So Incognito: Exploiting Resource-Based
Side Channels in JavaScript Engines. Bachelor Thesis, Harvard
School of Engineering and Applied Sciences. 2015.

[7] Boris Zbarsky. Reduce resolution of performance.now. 2015. url:
https://hg.mozilla.org/integration/mozilla-inbound/
rev/48ae8b5e62ab.

[8] Andrew Bortz and Dan Boneh. “Exposing private information by
timing web applications”. In: WWW’07. 2007.

[9] Wendy Chen and Weide Chang. “Applying hidden Markov models
to keystroke pattern analysis for password verification”. In: Pro-
ceedings of the 2004 IEEE International Conference on Informa-
tion Reuse and Integration. 2004.

[10] Chromium. window.performance.now does not support sub-
millisecond precision on Windows. 2015. url: https://bugs.
chromium.org/p/chromium/issues/detail?id=158234#c110.

[11] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. “No
Pardon for the Interruption: New Inference Attacks on Android
Through Interrupt Timing Analysis”. In: S&P’16. 2016.

https://bugs.webkit.org/show_bug.cgi?id=146531
http://www.alexa.com/topsites
https://doi.org/10.1080/00031305.1992.10475879
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110

References 247

[12] Edward W Felten and Michael A Schneider. “Timing attacks on
web privacy”. In: CCS’00. 2000.

[13] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the
MMU”. In: NDSS’17. 2017.

[14] Daniel Gruss, David Bidner, and Stefan Mangard. “Practical
Memory Deduplication Attacks in Sandboxed JavaScript”. In: ES-
ORICS’15. 2015.

[15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches”. In: USENIX Security Symposium. 2015.

[16] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz,
and Jörg Schwenk. “Scriptless attacks: stealing the pie without
touching the sill”. In: CCS’12. 2012.

[17] Michael Augustus Hogye, Christopher Taddeus Hughes, Joshua
Michael Sarfaty, and Joseph David Wolf. Analysis of the Feasibility
of Keystroke Timing Attacks over SSH Connections. Tech. rep.
School of Engineering and Applied Science University of Virginia,
2001.

[18] Wei-Ming Hu. “Reducing timing channels with fuzzy time”. In:
Journal of Computer Security (1992).

[19] Syed Idrus, Estelle Cherrier, Christophe Rosenberger, and Patrick
Bours. “Soft Biometrics for Keystroke Dynamics: Profiling Indi-
viduals While Typing Passwords”. In: Computers & Security 45
(2014), pp. 147–155. issn: 0167-4048.

[20] Suman Jana and Vitaly Shmatikov. “Memento: Learning Secrets
from Process Footprints”. In: S&P’12. 2012.

[21] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham.
“An empirical study of privacy-violating information flows in
JavaScript web applications”. In: CCS’10. 2010.

[22] Yaoqi Jia, Xinshu Dong, Zhenkai Liang, and Prateek Saxena. “I
know where you’ve been: Geo-inference attacks via the browser
cache”. In: IEEE Internet Computing 19.1 (2015), pp. 44–53.

[23] Pawel Kobojek and Khalid Saeed. “Application of Recurrent Neu-
ral Networks for User Verification based on Keystroke Dynamics”.
In: Journal of Telecommunications and Information Technology 3
(2016), p. 80.

[24] David Kohlbrenner and Hovav Shacham. “Trusted Browsers for
Uncertain Times”. In: USENIX Security Symposium. 2016.

248 Chapter 8. Keystroke Timing Attacks

[25] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. “ARMageddon: Cache Attacks on Mo-
bile Devices”. In: USENIX Security Symposium. 2016.

[26] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and
Kay Römer. “Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud”. In: NDSS’17. 2017.

[27] Maryam Mehrnezhad, Ehsan Toreini, Siamak F Shahandashti, and
Feng Hao. “Touchsignatures: identification of user touch actions
and pins based on mobile sensor data via javascript”. In: Journal
of Information Security and Applications (2016).

[28] Mike Perry. Bug 1517: Reduce precision of time for Javascript.
2015. url: https://gitweb.torproject.org/user/mikeperry/
tor-browser.git/commit/?h=bug1517.

[29] Mike Myers. “Anti-Keylogging with Random Noise”. In:
PoC|GTFO. Vol. 0x14. 2017.

[30] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications”. In: CCS’15. 2015.

[31] Stefan Ortolani. “NoisyKey: Tolerating Keyloggers via Keystrokes
Hiding”. In: USENIX Workshop on Hot Topics in Security – Hot-
Sec. 2012.

[32] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

[33] Svetlana Pinet, Johannes C. Ziegler, and F.-Xavier Alario. “Typ-
ing Is Writing: Linguistic Properties Modulate Typing Execution”.
In: Psychon Bull Rev 23.6 (Apr. 2016), pp. 1898–1906.

[34] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. “Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds”. In: CCS’09. 2009.

[35] David E. Rumelhart, James L. McClelland, and CORPORATE
PDP Research Group, eds. Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1: Foundations.
MIT Press, 1986. isbn: 0-262-68053-X.

[36] Michael Schwarz, Moritz Lipp, Gruss Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Mangard.
KeyDrown: Eliminating Keystroke Timing Side-Channel Attacks.
2017.

https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517

References 249

[37] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. “Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript”. In: FC’17.
2017.

[38] Laurent Simon, Wenduan Xu, and Ross Anderson. “Don’t Inter-
rupt Me While I Type: Inferring Text Entered Through Gesture
Typing on Android Keyboards”. In: Proceedings on Privacy En-
hancing Technologies (2016).

[39] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. “Timing
Analysis of Keystrokes and Timing Attacks on SSH”. In: USENIX
Security Symposium. 2001.

[40] Paul Stone. “Pixel perfect timing attacks with HTML5”. In: Con-
text Information Security (White Paper) (2013).

[41] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. “The
clock is still ticking: Timing attacks in the modern web”. In:
CCS’15. 2015.

[42] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. “Elimi-
nating fine grained timers in Xen”. In: CCSW’11. 2011.

[43] Pepe Vila and Boris Köpf. “Loophole: Timing Attacks on Shared
Event Loops in Chrome”. In: USENIX Security Symposium. 2017.

[44] W3C. High Resolution Time Level 2. 2016. url: https://www.
w3.org/TR/hr-time/.

[45] W3C. Web Workers - W3C Working Draft 24 September 2015.
2015. url: https://www.w3.org/TR/workers/.

[46] Zachary Weinberg, Eric Y Chen, Pavithra Ramesh Jayaraman,
and Collin Jackson. “I still know what you visited last summer:
Leaking browsing history via user interaction and side channel
attacks”. In: S&P’11. 2011.

[47] John C Wray. “An analysis of covert timing channels”. In: Journal
of Computer Security 1.3-4 (1992), pp. 219–232.

[48] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and
Chotirat Ann Ratanamahatana. “Fast Time Series Classification
Using Numerosity Reduction”. In: Proceedings of the 23rd Inter-
national Conference on Machine Learning. 2006.

[49] Kehuan Zhang and XiaoFeng Wang. “Peeping Tom in the Neigh-
borhood: Keystroke Eavesdropping on Multi-User Systems”. In:
USENIX Security Symposium. 2009.

https://www.w3.org/TR/hr-time/
https://www.w3.org/TR/hr-time/
https://www.w3.org/TR/workers/

9
PLATYPUS

Software-based Power Side-Channel
Attacks on x86

Publication Data
Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. “PLATYPUS: Software-
based Power Side-Channel Attacks on x86”. In: IEEE S&P. 2021

Contributions
Main author.

251

252 Chapter 9. PLATYPUS

PLATYPUS: Exploiting Software-based Power Side
Channels on x86

1Moritz Lipp, 1Andreas Kogler, 2David Oswald, 1Michael Schwarz,
1Catherine Easdon, 1Claudio Canella, 1Daniel Gruss

1 Graz University of Technology 2 The University of Birmingham, UK

Abstract
Power side-channel attacks exploit variations in power consumption to
extract secrets from a device, e.g., cryptographic keys. Prior attacks
typically required physical access to the target device and specialized
equipment such as probes and a high-resolution oscilloscope.

In this paper, we present PLATYPUS attacks, which are novel software-
based power side-channel attacks on Intel server, desktop, and laptop
CPUs. We exploit unprivileged access to the Intel Running Average Power
Limit (RAPL) interface that exposes values directly correlated with power
consumption, forming a low-resolution side channel.

We show that with sufficient statistical evaluation, we can observe varia-
tions in power consumption, which distinguish different instructions and
different Hamming weights of operands and memory loads. This enables
us to not only monitor the control flow of applications but also to infer
data and extract cryptographic keys. We demonstrate how an unprivi-
leged attacker can leak AES-NI keys from Intel SGX and the Linux kernel,
break kernel address-space layout randomization (KASLR), infer secret
instruction streams, and establish a timing-independent covert channel.
We also present a privileged attack on mbed TLS, utilizing precise ex-
ecution control to recover RSA keys from an SGX enclave. We discuss
countermeasures and show that mitigating these attacks in a privileged
context is not trivial.

1. Introduction
The concept of extracting data from a computer system by monitoring
side-channel information, such as its power consumption or electromag-
netic emissions, is known since World War II [1]. Power analysis at-
tacks were first presented in an academic context by Kocher et al. [49]

1. Introduction 253

for attacks on cryptographic implementations in smart cards. Subse-
quent research applied these attacks to different devices and algorithms,
particularly to supposedly side-channel-resistant encryption-scheme im-
plementations [23, 25]. However, until recently, power analysis attacks
had two limitations. First, they primarily targeted small embedded mi-
crocontrollers rather than more complex high-performance desktop and
server CPUs. Second, software-based attacks relying on the available in-
terfaces [55, 68, 87] were so far not successfully applied on x86 to leak
fine-grained information, e.g., cryptographic key bits.

Software-based power side-channel attacks have been demonstrated on
mobile devices for website [68] and app fingerprinting [87], UI infer-
ence [87], password length guessing [87], and geolocation estimation [87].
More recently, O’Flynn [63] recovered secrets processed in the secure
world on an ARM TrustZone-M platform using an onboard ADC, and
Mantel et al. [55] distinguished different RSA keys by measuring the
power consumption on Intel desktop machines. The experimental results
of Mantel et al. on RSA demonstrated that certain multiply operations of
the square-and-multiply implementation can be detected, but no full key
recovery was achieved. Similarly, Fusi [19] tried to recover RSA-16384
keys but concluded that the sampling rate of the interface is too low to
mount an attack.

In this work, we present PLATYPUS1 attacks which are novel software-
based power side-channel attacks on Intel servers, desktops, and laptops
by abusing unprivileged access to Intel’s RAPL interface. By observing
changes in power consumption with a resolution of up to 20 kHz, we show
that different executed instructions and features of their operands can be
distinguished. Furthermore, we observe that when a register is filled with
data from a cache line, the Hamming weight, i.e., the number of bits set to
one, of the loaded value measurably influences the power consumption.
We show how these power differences between different operands and
load values enable the inference of inputs and intermediate values used
for multiplications or masks in an encryption algorithm. We present the
building blocks to enable the creation of power traces at instruction-level
granularity and develop novel techniques for RAPL power analysis attacks
on enclaved and non-enclaved execution.

To demonstrate the applicability of these attacks, we successfully recover
AES-NI keys from an SGX enclave and the Linux kernel in 26 hours. In

1Power Leakage Attacks: Targeting Your Protected User Secrets

254 Chapter 9. PLATYPUS

a privileged attack context, we recover RSA private keys from mbed TLS
within 100 minutes by inferring the instructions executed inside SGX
from a power trace with instruction-level granularity. We derandomize
the kernel address space within 20 seconds by observing that accesses
to valid and invalid kernel addresses from user space expose a different
power consumption footprint. Furthermore, we demonstrate that RAPL
enables victims to be observed at sub-cache-line granularity and use this
to establish a timing-independent covert channel with a transmission rate
of 18.7 bit/s. While an unprivileged attack can be prevented by restrict-
ing access to the interface, mitigating privileged attacks is not trivial.
We discuss different countermeasures and mitigation strategies for the
presented attacks.

To summarize, we make the following contributions:

1. We improve software-based power side-channel attacks to distin-
guish instructions, operands, and data.

2. We show that the RAPL interface provides sufficient resolution for
practical attacks on Intel CPUs.

3. We demonstrate an attack on a cryptographic implementation run-
ning in Intel SGX, recovering RSA private keys from mbed TLS
within 100 minutes.

4. We show that an unprivileged attacker can use Correlation Power
Analysis to recover keys from an AES-NI implementation in an SGX
enclave and the Linux kernel within 26 hours (when minimal I/O
noise is present) to 277 hours (under real-world conditions).

5. We break kernel address space layout randomization (KASLR) from
user space within 20 seconds, observe intra-cache-line accesses, and
demonstrate a timing-independent covert channel.

Responsible Disclosure. We responsibly disclosed our findings to Intel
on November 16th, 2019. Intel acknowledged our findings and verified
our experiments. The issues are tracked under CVE-2020-8694 and CVE-
2020-8695 and were held under embargo until November 10th, 2020. We
responsibly disclosed our findings to AMD on June 6th, 2020, who tracked
this issue under CVE-2020-12912.

2. Background 255

Outline. Section 2 provides background. Section 3 analyzes the informa-
tion leakage induced by the Intel RAPL interface. Section 4 presents the
threat model, attack overview, and building blocks. Section 5 evaluates
these building blocks and constructs concrete attacks with them. Coun-
termeasures and related work are discussed in Section 6 and Section 7,
respectively. We conclude in Section 8.

2. Background
In this section, we provide background on power analysis, Intel RAPL,
and Intel SGX.

2.1. Power Analysis
Power analysis attacks are built upon the observation that the power
consumption of CMOS digital circuits is data-dependent by design. Each
bit flip requires one or more voltage transitions from 0 to high (or vice
versa). Different data values typically entail differing numbers of bit flips
and therefore produce distinct power traces. Equation (9.1) presents the
primary sources of power consumption, where α is the probability of a
voltage transition, C is the load capacitance, Vdd is the supply voltage,
F is the clock frequency, Isc is the short-circuit current (when NMOS
and PMOS transistors are active simultaneously) and Ileak is the leakage
current [13].

P = (Pswitching) + (Pshort−circuit + Pleakage)

= α · C · V 2
dd · F + Isc · Vdd + Ileak · Vdd

(9.1)

Crucially, Pswitching with its data-dependent α value is significantly larger
than the other terms. Therefore, any circuit not explicitly designed to be
resistant to power attacks has data-dependent power consumption. How-
ever, in a complex circuit, the differences can be so slight that they are
difficult to distinguish from a single trace, particularly if an attacker’s
sampling rate is limited. Therefore, it is necessary to use statistical tech-
niques such as Differential Power Analysis and Correlation Power Analysis
across multiple power traces.

Simple Power Analysis (SPA). In SPA attacks [49], secret-dependent
power consumption differences during an operation, e.g., a cryptographic

256 Chapter 9. PLATYPUS

signature computation, are directly analyzed from power traces to deter-
mine the underlying secret. For example, there may be a detectable spike
in power consumption when the key bit multiplied is 1 versus when it is
0 because the implementation executes a different instruction sequence
in each case. Using SPA, the secret can be extracted with only a small
number of traces. However, this is only possible if the secret has a sig-
nificant impact on the power consumption of the device, and the traces
are relatively noise-free. Noise can be averaged out by aligning the traces
and computing the mean of the collected traces.

Differential Power Analysis (DPA) and Correlation Power Analysis
(CPA). DPA attacks [49] are based on a statistical analysis of a large
number of traces with varying input data. Rather than analyzing indi-
vidual power traces along the time axis as in a typical SPA attack, DPA
analyzes how the power consumption at fixed moments in time is a func-
tion of the secret data being processed [54]. DPA is significantly more
powerful than SPA, as small secret-dependent biases can be detected even
in the presence of noise. In our measurement context for power attacks
against the CPU, this is relevant for the analysis of operand-dependent
power consumption, as these differences are much smaller than the power
differences between instructions and can be hidden by measurement error
and noise. However, using DPA, these differences can still be identified
and used to recover the underlying secret data. CPA [10] is an exten-
sion of DPA, which examines the correlation between variations in the
set of traces and a leakage model depending on the value of intermediate
values [48]. We further explain the inner workings of CPA in Section 5.2.

2.2. Intel RAPL

The Intel Running Average Power Limit (RAPL) mechanism was intro-
duced with the Sandy Bridge microarchitecture to ensure the CPU re-
mains within desired thermal and power constraints [26]. Since Haswell,
it has provided three distinct capabilities for controlling average power
over timescales of multiple seconds, ~10ms, and <10ms (PL1, PL2, and
PL3, respectively). These three control loops dynamically adjust the CPU
frequency to maximize performance while ensuring the running power av-
erage is within each of their (configurable) limits. By design, this modifies
the voltage and power consumption. To implement these control loops,
it is necessary to provide power-measurement feedback [26]. This can be

2. Background 257

done with an analog circuit, e.g., voltage regulator current monitoring, or
estimating the energy consumption in the core, as done in Sandy Bridge
and Ivy Bridge [26].

Intel defines four different domains for RAPL [39]: package (PKG), power
planes (PP0 and PP1), and DRAM. The package domain estimates en-
ergy consumption for the entire socket. PP0 contains the energy con-
sumption estimates of the cores while, on client systems, the PP1 domain
refers to a specific device’s power plane in the uncore. In this work, PP0
is subsequently referred to as the core domain. On Skylake, Intel has
introduced the PSys domain covering the entire SoC.

Intel CPUs also provide other functionality for dynamic frequency and
voltage scaling (DFVS). For example, they support configurable processor
performance states (P-states), as defined in the Advanced Configuration
and Power Interface (ACPI) specification [78]. Each state specifies a
frequency and voltage operating point [15]. When enabled, the Intel
Turbo Boost feature adjusts each core’s P-state automatically.

2.3. Intel SGX

Intel SGX (Software Guard Extensions) is an instruction set extension
that provides a mechanism for confidentially executing code on a system,
isolated from other software on the CPU [39]. The SGX threat model
assumes that even privileged software such as the operating system, ad-
ministrative users, and peripheral hardware may be compromised and
behave maliciously. An application using SGX is split into two distinct
parts, an untrusted part (which launches enclaves as needed to process
secrets) and a trusted part (within an enclave). Each enclave operates
within an encrypted and isolated memory region to protect application
secrets from hardware attackers. As neither the operating system nor any
other application is trusted under the SGX threat model, the processor
guarantees that the enclave’s memory cannot be accessed by anything but
the enclave itself. Additionally, encryption ensures that enclave memory
cannot be read directly from the DRAM module, as even peripheral hard-
ware may be malicious. Intel generally considers physical side-channel
attacks on SGX out of scope. Side channels [8, 73], race conditions [72,
85], and memory-safety violations [50] are not in the threat model, and
it is the developer’s responsibility to defend against these.

258 Chapter 9. PLATYPUS

Table 9.1.: RAPL register update intervals if accessed directly in the ker-
nel or via the powercap driver.

Register Measurement Unit Kernel Driver

MSR_PKG_ENERGY_STATUS µJ 1000µs 1000µs
MSR_DRAM_ENERGY_STATUS µJ 1000µs 1000µs
MSR_PP0_ENERGY_STATUS µJ 50µs 50 µs
MSR_PERF_STATUS (core voltage) V 150µs -

3. Intel RAPL Leakage Analysis
In this section, we analyze the power side-channel information leakage
from Intel RAPL data, considering both user-space and SGX-enclave
targets. We experimentally evaluate that we can distinguish and finger-
print both individual instructions (Section 3.3) and the influence of their
operand values (Section 3.4). Furthermore, we evaluate the influence of
concrete data values on energy consumption (Section 3.5) as well as the
influence of the cache status of a memory address in a load operation
(Section 3.6).

While energy-consumption interfaces also exist on non-Intel CPUs, we
focus on Intel’s RAPL implementation and briefly discuss other architec-
tures in Section 7.2.

Note that while we primarily refer to runtime energy consumption rather
than power consumption throughout this work, these are directly related,
as power = energy ÷ time.

3.1. RAPL Interface
RAPL provides an interface both for controlling the core frequency and
voltage and for monitoring the power consumption of the socket and mem-
ory domain (see Section 2.2). To date, Intel RAPL has typically been used
to model energy consumption on a system level [67] or in benchmarks [46].

We can read the RAPL register values to measure energy consumption,
i.e., the cumulative power consumption over a sampling period, in two
ways:

• Unprivileged Access: On Linux, the power capping framework powercap
provides unprivileged access to Intel RAPL by exposing the MSRs
through the sysfs interface. This allows an unprivileged attacker

3. Intel RAPL Leakage Analysis 259

to directly read the value of the individual packages from a file
located in the /sys/devices/virtual/powercap tree.

• Privileged Access: A privileged attacker targeting Intel SGX can
load a kernel module to read the RAPL MSRs.

While measuring the update intervals of the values provided by both the
Linux RAPL user-space driver and by accessing the MSRs directly, we
observed that several values update faster than the documented RAPL
update rate of 1ms. We observe that the MSR_PP0_ENERGY_STATUS (core
energy consumption) and MSR_PERF_STATUS (core voltage) values update
substantially faster, at 50µs and 150µs intervals, respectively. The results
of this evaluation are shown in Table 9.1. These rates were consistent
across the different tested microarchitectures.

3.2. Experimental Setup

Throughout this work, we tested on Intel mobile, desktop, and server
CPUs. Table 9.2 provides details of each Intel CPU used in our experi-
ments. In the mobile setting, we tested on a Lenovo Thinkpad T480s and
T495s, both using Core i7-8650U CPUs, on a Lenovo Thinkpad T460s
with a Core i7-6600U and an Intel NUC7I3BNH using a Core i3-7100U.
For the desktop setting, we evaluated a system using a Core i5-3230M,
a Core i7-6700K, and a Core i9-9900K. Finally, for the cloud server set-
ting, we evaluated 3 systems, with Xeon E3-1240 v5, Xeon E3-1275 v5,
and Xeon Silver 4214 CPUs. All tested devices run Ubuntu Linux, with
versions from Ubuntu 16.04 to Ubuntu 20.04, and kernels 4.15.0 to 5.4.0.
Different Ubuntu versions and kernels did not appear to influence the re-
sults, and we would only expect this to occur if there were a substantial
update to the behavior of the powercap driver.

Unless stated otherwise, all systems were using the default system config-
uration, and all mobile systems were connected to an AC power source.
For example, we did not fix the CPU frequency or disable Intel Turbo
Boost.

3.3. Distinguishing Instructions

With our first experiment, we demonstrate that Intel’s RAPL interface
enables distinguishing different instructions via their energy consump-
tion. To measure the energy consumption of an instruction, we record

260 Chapter 9. PLATYPUS

Table 9.2.: CPU type, model, and microarchitecture for each device under
test, and whether it leaks data of operands, type of instruc-
tions, and the target of memory loads.

Type CPU Microarchitecture Leakage
Data Instr. Target

Mobile Core i7-6600U Skylake 3 3 3

Mobile Core i3-7100U Kaby Lake 3 3 3

Mobile Core i7-8650U Kaby Lake-R 3 3 3

Desktop Core i5-3230M Ivy Bridge 7 3 3

Desktop Core i7-6700K Skylake-S 3 3 3

Desktop Core i9-9990K Coffee Lake-R 3 3 3

Server Xeon E3-1240 v5 Skylake 3 3 3

Server Xeon E3-1275 v5 Skylake 3 3 3

Server Xeon Silver 4214 Cascade Lake 3 3 3

1,020 1,040 1,060 1,080 1,100 1,120 1,140 1,160 1,180 1,200 1,220 1,240 1,260 1,280

500

1,000

Energy [pJ]

N
u
m
b
er

o
f
ca
se
s clflush

mov r64,mem

fscale

rdrand

rdtsc

Figure 9.1.: A histogram of the power consumption of various instructions
on the i7-6700K (desktop) system.

its energy consumption over 10 000 consecutive executions and take the
median value to eliminate system-level noise, e.g., erroneous high values
caused by interrupt handling or the process being descheduled. We ob-
serve the energy consumption across the entire CPU package to ensure
that non-core activity, e.g., DRAM access, is included.

Table 9.3 lists the measured energy consumption of different instructions
on our i7-6700K (desktop), Xeon Silver 4214 (server), and i7-8650U (mo-
bile) systems. We can clearly observe inter-instruction differences in en-
ergy consumption. This enables an attacker to identify which instructions
are executed, provided they can profile the energy consumption of the
victim microarchitecture. For instance, the rdtsc instruction consumes
0.1189 nJ on the i7-6700K, versus 0.1864 nJ on the Xeon Silver 4214 and
0.0848 nJ on the i7-8650U. As illustrated in Figure 9.1, this clearly dis-
tinguishes it from rdrand and clflush, which have much lower average
energy consumption. However, as some instructions have similar energy

3. Intel RAPL Leakage Analysis 261

Table 9.3.: Average observed energy consumption (package domain) of
different instructions on our i7-6700K (desktop), Xeon Silver
4214 (server), and i7-8650U (mobile) systems.
Instruction Xeon Silver 4214 i7-6700K i7-8650U

nop 0.1795 nJ 0.1189 nJ 0.0843 nJ
inc r64 0.1795 nJ 0.1208 nJ 0.0858 nJ
xor r64, r64 0.1795 nJ 0.1209 nJ 0.0849 nJ
mov r64, mem 0.1868 nJ 0.1247 nJ 0.0840 nJ
imul r64, r64 0.1798 nJ 0.1169 nJ 0.0887 nJ
fscale 0.1867 nJ 0.1182 nJ 0.0877 nJ
rdrand r64 0.1797 nJ 0.1129 nJ 0.0982 nJ
rdtsc 0.1864 nJ 0.1189 nJ 0.0848 nJ
clflush mem 0.1865 nJ 0.1129 nJ 0.1018 nJ
aesenc xmm, xmm 0.1794 nJ 0.1188 nJ 0.0946 nJ

900 950 1,000 1,050 1,100 1,150

100

200

Energy [pJ]

N
um

be
r

of
ca

se
s clflush

mov r64,mem
fscale

rdrand

Figure 9.2.: A histogram of the power consumption of various instructions
inside an SGX enclave on our i7-8650U (mobile).

consumption, this method may identify multiple instruction candidates.
For example, on the Xeon Silver 4214, nop, inc, and xor are indistin-
guishable at this measurement granularity. While the table only shows
the values for when the mobile system (i7-8650U) is connected to an AC
power source, we also observed these differences when running on bat-
tery power. As not every instruction sequence has the same probability,
it may be possible to recover individual instructions using heuristics for
typical instruction sequences or by leveraging existing research regarding
distinguishing x86 code sequences from data bytes [84].

These results align with those of prior work, in which the different energy
consumption of instructions was identified using either Intel RAPL [19,
30, 35, 58] or dedicated hardware [6, 74, 77, 82].

Differing power consumption can also be observed for instructions exe-
cuted inside SGX enclaves, as shown in Figure 9.2. The enclave’s isolation

262 Chapter 9. PLATYPUS

0.234 0.236 0.238 0.240 0.242 0.244 0.246 0.248 0.250 0.252
0

50
100
150

Energy [J]

D
en

si
ty

0x00 0xFF

0x0F 0x3F

0x03

Figure 9.3.: Measured energy consumption of the imul instruction with
one operand fixed to 8 and the other varying in its Hamming
weight.

5 5.1 5.2 5.3 5.4 5.5
0

2

4

Energy [J]

D
en

si
ty

0x00 0xFF

0x0F 0x3F

0x03

Figure 9.4.: Measured energy consumption of the shr instruction with a
register set to different Hamming weights.

is no protection here: just like with execution outside the enclave, instruc-
tions can be clearly distinguished. Interestingly, energy consumption for
the clflush instruction is higher inside an SGX enclave, which we at-
tribute to the transparent memory encryption. With other instructions,
we do not observe such a difference.

3.4. Distinguishing Operands

In addition to the energy-consumption differences of instructions, the en-
ergy consumption of some instructions further depends on their operand
value. Intuitively, e.g., integer multiplication should use more energy if
more operand bits are set. We measure the imul instruction with differ-
ent operand values in user space on our Xeon E3-1240 v5 system with a
fixed core frequency. For the 64-bit operand, we used Hamming weights
of 0, 16 (a quarter of the bits), 32 (half of the bits), 48 (three-quarters of
all the bits), and 64 (all of the bits). The second operand remains fixed
to the value 8. In Figure 9.3, it can be seen that the power consumption
differs based on the Hamming weight. While we cannot deduce the exact
value of the operand, it reduces the range of potential values, and it can
be used in CPA attacks (cf. Section 5.2).

3. Intel RAPL Leakage Analysis 263

0 20 40 60 80 100 120 140 160 180 200 220 240

−2 · 105

0

2 · 105

Byte-value (ordered by HW)

E
n
er
g
y
[n
J
]

Figure 9.5.: Energy consumption of the movb instruction for all byte val-
ues, ordered by Hamming Weight (HW) and value. The circle
marks values where the most-significant bit is set.

The distinction is not limited to the imul instruction. Figure 9.4, for
example, shows the differences in power consumption for shr on our i7-
8650U system with a clear difference in power consumption depending on
the Hamming weight of the shifted register. We reproduced these results
on an i7-6600U, i7-6700K, and i9-9900K and Xeon 4214 CPU. For the
vpand instruction, the distributions of the energy consumption differ if
one of the operands is zero or not. Ivy Bridge and Sandy Bridge estimate
the power consumption [26] and do not rely on hardware probes. Thus,
we cannot distinguish operands and data, as we verified on an i5-3230M
(cf. Table 9.2).

3.5. Distinguishing Data

We showed that it is possible to fingerprint different instructions and
the Hamming weight of their operands. In the third experiment, we
evaluate the influence of data values loaded from the cache on the energy
consumption. We set up a cache line with alternating 1 and 0 bits to
achieve an even Hamming weight. We then set the value of the first byte
in the cache line and measure the energy consumption of a memory load of
that specific byte, using the movb instruction for all 256 value possibilities.
To prevent a possible measurement side-effect introduced by the order of
the different values measured, we set the value in a pseudo-random order.

We performed the experiment on our Intel Xeon E3-1240 v5 (server) sys-
tem, collecting measurements for all possible byte values for 627 hours.
While the obtained measurements show a trend of increasing energy con-
sumption with increasing value, a power model was not observable. When
sorting the values based on their Hamming weight and value, as illustrated

264 Chapter 9. PLATYPUS

400 420 440 460 480 500 520 540 560 580
0

500

1,000

Energy [nJ]

N
u
m
b
er

o
f
ca
se
s

cache hit cache miss

Figure 9.6.: Using RAPL to distinguish whether the target of a memory
load is cached (cache hit) or not (DRAM access).

in Figure 9.5, the increasing power consumption is clearly visible. How-
ever, one can measure a different power consumption within values of the
same Hamming weight (separated in the plot by the white background or
gray pattern). These spikes correlate to exactly those values where the
most-significant bit is set (data points with circle marks).

To verify the results on other microarchitectures, we performed a reduced
experiment with fewer different Hamming Weights (Section 3.4). On the
i7-6600U (mobile) system set to a fixed frequency, we observed a similar
increasing energy consumption with the Hamming Weight of the byte
being read after measuring for 5 minutes.

While we cannot deduce the exact data value that is loaded, one can
clearly infer information about the Hamming weight and whether the
most-significant bit is set by measuring its energy consumption. Similarly
to the varying power consumption we observed with instruction operands.
This allows us to constrain the range of potential values.

3.6. Distinguishing Load Targets
To get an even finer granularity when distinguishing instructions, we
demonstrate further that it is possible to distinguish the cache status
of a load destination. When a memory load accesses data that is already
cached, DRAM consumes significantly less energy than when a data ac-
cess misses the cache and must be first fetched from the main memory.

We evaluated this experiment on several CPUs, as shown in Table 9.2.
Figure 9.6 shows a histogram of data fetched from the cache and DRAM
on our i7-8650U (mobile) system. When recording power consumption
using RAPL on the DRAM domain, there is a clear difference in power
consumption for cache hits and cache misses, both when connected to

4. Attack Overview & Building Blocks 265

a power supply and when running on a battery. Hence, code sequences
which are vulnerable to cache attacks can also be exploited using power
measurements. This allows an attacker to build a timer-free cache attack,
similar to the timer-free attacks presented by Diesselkoen et al. [17] and
Gruss et al. [27].

4. Attack Overview & Building Blocks

In this section, we introduce the basic concept of PLATYPUS attacks
based on the observations from Section 3. We describe the necessary
building blocks and their applicability in various scenarios and attacker
models before demonstrating several attacks in Section 5.

4.1. Attack Scenarios & Attacker Model

We consider two different attacker models for our attacks: an unprivileged
user-space attacker and a privileged kernel-space attacker. For all our
attacks, we assume native code execution on an Intel CPU and no software
bugs or hardware vulnerabilities.

Unprivileged User-space Attacker. A user-space attacker can run na-
tive unprivileged code. Hence, the user-space attacker only has access to
power interfaces provided by kernel drivers, e.g., the RAPL sysfs inter-
face from powercap. In addition, the user-space attacker can communi-
cate with other interfaces, e.g., ioctl, to the kernel, and interfaces ex-
posed by other applications, e.g., sockets. Furthermore, the user-space at-
tacker could, to some extent, influence other running applications, e.g., by
attempting to slow down another process by exhausting its resources [2].

Privileged Kernel-space Attacker. The kernel-space attacker can exe-
cute native privileged code. Hence, the kernel space has direct access to
Intel RAPL’s MSRs. The privileged kernel-space attacker has full con-
trol over the operating system and, thus, direct access to the memory of
running applications. Therefore, we assume an attack on SGX enclaves
(see Section 2.3) where the memory is encrypted and cannot be inspected
by the operating system. For the SGX enclave, a malicious operating
system is in the threat model [16].

266 Chapter 9. PLATYPUS

4.2. Building Blocks

In this section, we describe the necessary building blocks. We describe
how a privileged attacker can achieve precise execution control, enabling
them to overcome the low sampling rate faced by an unprivileged attacker.
We characterize the documented power interfaces we use for our attacks.

4.2.1. Power Information

To mount PLATYPUS attacks, it is necessary to obtain a power con-
sumption measurement within the software. While throughout this work,
we focus on Intel RAPL, these attacks are, in general, not restricted to
the Intel platform. We discuss other microarchitectures and interfaces
in Section 7.2.

One inherent challenge of software-based power analysis is the low update
rate of power data sources in contrast to the frequency of the execution
stream under attack (see Section 5). When attempting to reconstruct a
signal, it is crucial to sample at a sufficiently high rate. While measuring
the PP0 MSR directly from kernel space, the sample rate is a bit higher; it
is still suboptimal. For other attacks, the relevant values are from other
domains, e.g., PKG and DRAM, which do update at the documented slower
rate (e.g., Section 3.3).

In general, undersampling means that we cannot obtain samples at a
sufficient number of points over the time axis, e.g., because the time axis
is very short when sampling only for a few nanoseconds. However, if
the attacker can conduct repeated attacks, then multiple traces can be
combined to recover an averaged but more complete trace.

Moreover, note that Intel RAPL does not provide the energy consump-
tion per core but per processor package. Thus, code executed on other
cores have a direct influence on the measurement of a specific piece of
code running on one core, and, thus, the number of overall measurements
increases to average out the noise introduced by the other cores. In the
case of a privileged attacker, the noise introduced by other cores can be
limited as the attacker can disable them or control what code is executed
on which core. In contrast, AMD’s implementation of RAPL provides
per-core counters (cf. Section 7.2).

Note that while factors such as frequency and P-state do influence the
raw energy consumption values measured, it is not necessary to fix them,

4. Attack Overview & Building Blocks 267

as the data-dependent differences which our attacks exploit remain ob-
servable.

4.2.2. Alignment and Execution Control

In the attack scenario where the attacker measures power consumption in
parallel to the victim’s execution, the attacker needs to align the recorded
traces. The trace needs to contain a distinctive feature, e.g., a distinct
peak in power consumption, so that traces can be shifted into alignment
with each other. While a privileged attacker can precisely control the vic-
tim’s execution and interrupt it at will, an unprivileged attacker cannot.
However, if the attacker can control when the execution of the attacked
code begins, or use a trigger signal such as a cache-based side channel [72],
then the collected traces can be aligned based on that timing information.

Precise execution control is the capability to control the victim’s execution
at instruction-level granularity. To achieve precise execution control of
SGX enclaves, we repurpose previously published techniques for microar-
chitectural attacks and apply them in our software-based power analysis
attack.

Single-Stepping. With SGX-Step, Van Bulck et al. [81] introduced the
concept of single-stepping SGX enclaves. They achieve this by configur-
ing the local APIC timer interrupt interval so that the interrupt arrives
during execution of the first instruction after eresume. This triggers an
Asynchronous Enclave Exit and execution of an attacker-controlled inter-
rupt handler, where attack-specific code can be executed. This process
can be repeated, resuming the enclave to execute precisely one instruction
each time. The SGX-Step framework enables these APIC timer interrupts
to be configured from user space, along with user-space modification of
page table entries. Single-stepping has since been used in a range of mi-
croarchitectural attacks. For example, it was used in the Foreshadow
attack [79] to extract key material from SGX enclaves to bypass enclave
launch control and to forge local and remote attestation. It was further
used with LVI [80] to mount a transient fault attack on AES-NI.

Zero-Stepping. If the local APIC timer is configured such that the in-
terrupt arrives within eresume, the enclave instruction pointer will not

268 Chapter 9. PLATYPUS

advance, and so a single instruction can be repeatedly executed for mea-
surements. Zero-stepping can also be achieved by revoking the execute
permissions of an enclave’s code pages triggering a page fault on the first
instruction after eresume. Thus, no enclave instruction is actually exe-
cuted [81]. MicroScope [75] provides an additional technique to replay an
enclave instruction repeatedly using a memory access instruction trigger-
ing the page fault handler as a replay handle.

Zero-stepping provides us with a powerful attack primitive to measure the
power consumption of a single instruction repeatedly. We can advance to
the desired instruction using single-stepping as described above and then
sample the instruction an arbitrary number of times with zero-stepping.
Crucially, it enables us to take this arbitrary number of samples even if
we are only able to trigger a single execution of the algorithm under attack
in the enclave. Taking a large number of samples in this way allows to
overcome the limited sampling rate and resolution of RAPL.

5. Evaluation
In this section, we combine our attack primitives to build concrete PLATY-
PUS attacks. We demonstrate that we can recover an RSA key used inside
an SGX enclave using mbed TLS (Section 5.1). We use CPA attacks to
extract AES keys from the Linux kernel and from an SGX enclave, both
utilizing the AES-NI instruction extension (Section 5.2). Furthermore,
we exploit Intel RAPL to observe victims at sub-cache-line granularity
(Section 5.3), to derandomize the kernel address space (Section 5.4), and
to establish a timing-independent covert channel (Section 5.5).

5.1. RSA Key Recovery
In this attack scenario, we consider a privileged attacker targeting an In-
tel SGX enclave performing RSA signatures. As the threat model of SGX
considers the operating system to be untrusted, the attacker is allowed
to load arbitrary kernel modules. We consider two different target imple-
mentations. First, we will show a toy example imitating a square-and-
always-multiply RSA implementation that allows to visually illustrate the
leakage observable through the RAPL domain and the core voltage us-
ing precise execution control. Second, we will demonstrate an attack on
mbed TLS [4] to extract RSA private keys from the SGX enclave. Fur-
ther, we will discuss scenarios where the code executed within the enclave

5. Evaluation 269

is unknown, as well as scenarios where the implementation of the enclave
is known by the attacker, thus enabling the attacker to target specific
instructions within the enclave’s execution.

Setup. In our experiment, the victim provides an API for signing or
decrypting user-provided data inside an SGX enclave, making it secure
against direct attacks from the operating system, other enclaves, and
user space. For simplification and evaluation purposes, we first imitate a
square-and-always-multiply RSA implementation that performs the same
instructions with different operands based on the value of the currently
processed key bit. In our second scenario, we attack the RSA implemen-
tation of mbed TLS inside an enclave.

We use SGX-Step [81] and hook the local APIC interrupt apic_irq han-
dler to record the values of the timestamp counter TSC, the current energy
consumption for the desired domain (MSR_PP0_ENERGY_STATUS), and the
current P-state and core voltage (MSR_PERF_STATUS). Further, we hook
the Asynchronous Exit Pointer (AEP) to decide if we want to zero-step
the current instruction or advance to the next instruction (single-step),
as described in Section 4.2.2.

5.1.1. Toy Example

For our toy implementation the number of instructions executed is in-
dependent of the bit processed. The key insight here is that even an
implementation with these defensive properties against side-channel at-
tacks can still be successfully attacked via the RAPL power side-channel.
Specifically, for a 1 bit, we execute two vpmuludq instructions, one for a
square operation and one for multiplication. For a 0 bit, we execute a
vpmuldq instruction for the square operation and an additional one using
a dummy output register with no architectural effect.

Evaluation. We evaluated this attack scenario on our Xeon E3-1275 v5
(server) system and the i9-9000K (desktop) system. For each execution
run of the victim, we single-step to each instruction and measure it over
188 zero steps, i.e., the number of zero steps that need to be executed such
that the RAPL counter is updated. We measured over 96 000 execution
runs, yielding an overall attack time of 8.11 h on the E3-1275 v5. The re-
sult is illustrated in Figure 9.7. One cannot only clearly see the difference

270 Chapter 9. PLATYPUS

1.500

1.600

1.700
P
ow

er

[W
]

PKG

1.646

1.648

1.650

P
ow

er

[W
]

PP0

0.650

0.660

0.670

P
ow

er

[W
]

DRAM

62 68 74 80 86 92 98 104 110 116 122

841.7
841.8
841.8

Executed Instruction

V
o
lt
a
g
e

[m
V
] VCORE

Figure 9.7.: Energy consumption and core voltage per executed instruc-
tion of a victim enclave. The attacker uses single-, and zero-
stepping to precisely measure single instructions of the vic-
tim, allowing to distinguish between them to leak the single
key bits. Highlighted areas with red markers indicate mea-
surements for instructions executed for a 1-bit, blue markers
indicate a 0-bit.

in power consumption for every instruction measured but also distinguish
whether the key bit was set to 1 (highlighted areas with red markers) or
0 (areas with blue markers) by examining the instructions depending on
the key bit. This allows recovering the secret key successfully. Further-
more, as shown in Figure 9.7, these differences are not only clearly visible
in the different RAPL domains (package, PP0, DRAM) but also in the
core voltage.

Under the assumption that the attacker knows which set of instructions
needs to be sampled for each key bit, the attacker does not need to zero-
step every single instruction. In our example, it would be sufficient just
to sample every seventh instruction to recover every single key bit. Even
if different instructions are executed depending on the key-bit value, the
attacker can advance directly to the instruction responsible for the next
key bit after recovering the current key-bit value. To correctly distinguish
between these two instructions, we require at least 350 measurements over

5. Evaluation 271

255 zero steps when observing the core voltage to recover 99.4% of the
key bits correctly. The number of zero steps is required to obtain an
updated power measurement from the RAPL MSRs (see Section 2.2).
For the different RAPL domains, we require more traces, e.g., at least
40 000 traces over 188 zero steps to recover 99.5% of the key bits. Thus,
with a runtime of 1.35ms per trace for each key bit, a 2048-bit RSA attack
can be successfully recovered within 16.5 minutes when observing the core
voltage. With RAPL and a runtime of 0.99ms per trace for each key
bit, we can successfully recover the key within 23.3 hours. This number
highly depends on how many measurements are required to distinguish
both cases with a high probability and, thus, can be different in other
scenarios.

5.1.2. Attack on mbed TLS

In our second scenario, we extract RSA keys from the mbed TLS [4] (ver-
sion 2.13.0) implementation with a fixed window length of 1 (MBEDTLS_MPI_WINDOW_SIZE
1). In order to distinguish the key bits, we do not directly target the
branch instruction of the fixed-window exponentiation. Instead, we aim
at an instruction with a more distinct energy consumption inside the
branch. In SGX, Intel’s fast_memset implementation replaces the stan-
dard libc memset implementation called inside the mpi_montmul function
with AVX instructions. AVX instructions are located at a given offset
n from the branch instruction if the key bit is set. If the key bit is 0,
a different (non-AVX) instruction is executed with the same instruction
offset, i.e., the nth instruction following the branch is not an AVX in-
struction. Thus, we can directly reconstruct the key bit by measuring
the energy consumption at the instruction executed with the instruction
offset after the branch.

However, the implementation of mbed TLS skips leading zeroes of the
exponent and, therefore, has a setup phase depending on the key. Addi-
tionally, depending on whether the key bit is 1 or 0, a different number
of instructions is executed for each key bit. In order to recover the full
private key, we first need to determine the number of zero bits to find
the instruction leaking the first key bit correctly. Second, we need to
calculate the offset of the next key bit instruction to zero-step based on
previously reconstructed key bits.

272 Chapter 9. PLATYPUS

0 8 16 24 32 40 48 56
995

1,000

1,005

1,010

Leading Zeroes

V
o
lt
a
g
e

[m
V
]

Figure 9.8.: Measured core voltage of all 63 possible leading zero offsets.
The spike at offset 35 marks the first set key bit.

Determining the number of zero bits. The mbed TLS implementation
skips the leading zeroes of the exponent. Therefore, the offset of the first
instruction executed after the key-bit branch depends on the number of
leading zeroes. In order to overcome this challenge, we note that the maxi-
mum number of leading zeroes relies on the size of the mbedtls_mpi_uint
data type, which is either 32 or 64 bits. Hence, we assume a possible max-
imum of 63 leading zeroes. For each possibility, we calculate the offset
of the targeted AVX instruction (a 1-bit) under the assumption that we
have n leading zero bits. We target each calculated instruction offset
and record the core voltage when zero-stepping this instruction. For each
measurement, we reset the current energy consumption to a known state
by executing multiple hlt instructions. Then, we measure each instruc-
tion 3 times and use the median of the measured values as a classifier and
illustrate the observed measurements in Figure 9.8. The distinct peak,
and, thus, the first set key bit gives away the number of leading zeroes.

Offset Oracle. In order to find the instruction to zero-step for the next
key bit, we create an oracle that predicts the offset of the next key bit in-
struction based on previously reconstructed key bits. The oracle receives
the known-plaintext input, the public modulus, the number of leading
zeroes as well as the current key bit. Using this information, the ora-
cle calculates the next instruction offsets that need to be zero-stepped in
order to recover the next key bit.

In our attack, we implemented the oracle utilizing the same enclave im-
plementation for demonstration purposes. We inject the current key hy-
pothesis into the enclave to automatically find the next instruction offset
using single stepping. While this increases the runtime of the attack, it
allows to predict the next offset without having to analyze the enclave on
an instruction-level basis.

5. Evaluation 273

Evaluation. We evaluated our attack on a Xeon E3-1275 v5 server CPU.
In order to profile the instruction at the calculated offset, we measure
the observed core voltage 3 times over 256 zero steps. For a 1-bit, the
instruction at and after the given offset are AVX instructions and, thus,
we measure both to increase the signal. We used an RSA key pair with
a 512-bit modulus for evaluation purposes. In 211 minutes (n = 5,σx̄ =
7.2), we were able to reconstruct the 509 key bits without any error.
Figure 9.13 in Section B illustrates one of the recorded traces. Note
that the slow implementation of the oracle compensates for 52 minutes
(n = 4, σx̄ = 6.73) of the attack. In addition, we successfully recovered
the key without any error in 100 minutes, even when we measured each
instruction only once.

5.2. Correlation Power Analysis Attacks

The SPA attack in Section 5.1 exploits the comparatively strong change
in leakage in the energy consumption or core voltage due to the different
instructions executed. In contrast, in this section, we focus on differen-
tial attacks (see Section 2.1) that apply to implementations with secret-
independent control flow, e.g., symmetric ciphers like AES, targeting the
data-dependent leakage of single instructions. We show that Correla-
tion Power Analysis can be applied to exploit the small, data-dependent
leakage of single instructions even when capturing one aggregate leakage
sample for the whole cryptographic algorithm.

To this end, we demonstrate key recovery attacks against AES-NI, an
x86 instruction-set extension designed to mitigate timing and cache side-
channel leakage [31] in two different settings. First, we will recover the
AES key processed inside an SGX enclave and second, from a Linux kernel
module.

In contrast to the RSA signature generation from Section 5.1, a single
run of our target algorithms has a very short runtime (on the order of
tens to hundreds of cycles). Hence, the overall energy consumption is
below the resolution of the RAPL interface (a single invocation usually
reads as a zero energy consumption difference). We, therefore, gener-
ally measure the aggregate energy consumption of R invocations of our
target cipher (typically 16M) to obtain a single leakage sample p. Our
attacks, therefore, apply to situations where an adversary can trigger
the encryption/decryption of many blocks of data, e.g., disk and file en-
cryption, encrypted network protocols like TLS, or (un)sealing of large

274 Chapter 9. PLATYPUS

enclave state. In the case of a privileged attacker, the attacker model
allows the alternative approach of using zero-stepping to only repeat the
target instruction in the scenario of Intel SGX. Moreover, differential at-
tacks like CPA make use of many leakage samples pn (traces) for different
inputs (plaintexts) xn for n < N . Depending on the scenario, we used N
between 2M and 16M.

5.2.1. Key extraction with CPA

To recover a secret value, we compute the correlation ρ (p, h) between
the observed power consumptions pn and hypothetical leakage values hn
over all N traces. The choice of h depends on the targeted operation and
the leakage characteristics of the target implementation and processor.
For example, for recovering byte 0 of the round key in the final round of
AES, a common choice (given a key candidate k) is:

hkn = HW
(
SBox−1

(
c0n ⊕ k

))
(9.2)

where c0n is byte 0 of the n’th ciphertext, and HW denotes the Hamming
weight. Computing ρk

(
p, hk

)
for all candidates k = 0 . . . 255, the correct

key candidate can be identified as the one with maximum correlation.
This process is repeated for each byte. Other choices of h are possible,
e.g., when targeting the XOR in the first round of AES:

hkn = HW
(
x0n ⊕ k

)
(9.3)

For a given number of traces N , the noise level is [54]:

ρnoise =
4√
N

(9.4)

Only correlations ρ ≥ ρnoise are considered significant. Assuming an
ideal correlation ρexp that captures only the correlation between the tar-
get value and a noise-free trace and a Signal-to-Noise Ratio (SNR), the
observed correlation ρ can be computed as:

ρ =
ρexp√

1 + 1/SNR
(9.5)

5. Evaluation 275

5.2.2. SGX Enclave

In the first setting, we will demonstrate AES-NI key recovery on an SGX
enclave.

Setup. We implement an enclave that exposes an ecall to encrypt a
buffer using an in-enclave secret key. It deploys a full AES implemen-
tation from Intel’s Integrated Performance Primitives (Intel IPP) [41]
ippsAESEncryptECB function that uses the AES-NI instruction set. While
the SGX scenario enables a privileged attacker (Section 4.1), we assume
an unprivileged attacker.

We further considered two scenarios:

1. Minimal I/O noise: The unprivileged attacker records the accu-
mulated power consumption of 16 384 calls to ippsAESEncryptECB,
each encrypting 16 kB, within a single ecall.

2. Real-world conditions: The unprivileged attacker records the accu-
mulated power consumption of 64 ecall invocations, each encrypt-
ing 4MB with a single call to ippsAESEncryptECB.

Profiling. To better understand the leakage behavior of the AES-NI
implementation on the processor under attack, we compute the AES state
after every round. Further, we compute the correlation between different
power models and our observed traces.

We recorded 2M traces (thus ρnoise = 0.0028284) for scenario 1 in 26 h
and 16M traces (thus ρnoise = 0.001) for scenario 2 in 277 h. Table 9.4
shows the Hamming weight’s correlations for each round and the Ham-
ming distance between rounds on our Xeon E3-1240 for scenario 1.

As discussed in Section 5.2.1, bold entries highlight significant entries
with an exploitable statistical dependency (ρ ≥ ρnoise). In addition, the
Significance Factor (SF) is computed as ρ/ρnoise, i.e., |SF| ≥ 1 indicates
a significant correlation. For instance, the Hamming weight of the input
and output leak, as well as the Hamming weight of the 128-bit state
after the initial XOR of round key 0 to the plaintext (correlation ρ =
0.05032280). In addition, the Hamming distance between the input and
output of each AES round leaks, which is crucial for subsequent key
recovery attacks.

276 Chapter 9. PLATYPUS

Table 9.4.: Profiling correlations after 2M traces for AES-NI in scenario 1
for the Hamming weight (HW) for each round and Hamming
distance (HD) between rounds. Bold entries and a |SF| ≥ 1
highlight significant statistical dependencies.
HD ρρρ SF HW ρρρ SF

00 → 01 0.03675729 13 00 0.06885782 24
01 → 02 0.02006421 7.1 01 0.05032280 18
02 → 03 0.03676030 13 02 0.00145256 0.51
03 → 04 0.03728021 13 03 0.00181104 0.64
04 → 05 0.03754657 13 04 0.00188247 0.66
05 → 06 0.03739362 13 05 0.00186131 0.66
06 → 07 0.03804800 13 06 0.00204561 0.72
07 → 08 0.03790153 13 07 0.00151157 0.53
08 → 09 0.03810117 13 08 0.00250208 0.88
09 → 10 0.03967649 14 09 0.00272294 0.96
10 → 11 0.01820413 6.4 10 -0.00045022 -0.16

11 0.08859152 31

For scenario 2, we similarly observed Hamming weight and Hamming
distance leakages for the AES rounds, albeit with a lower magnitude
of the correlations. For example, for the final round, the correlation is
ρ = 0.00532594 in scenario 2, compared to ρ = 0.01820413 in scenario 1.
Therefore, for key recovery in scenario 2, a larger number of traces is
required. The respective profiling results are given in Table 9.6 in Sec-
tion C.

Key Recovery. To recover the key, we build a CPA attack using the
Hamming distance between the input and the output of the final round of
AES. As observed in the profiling phase, the correlation of the Hamming
distance of the final round 10 → 11 yields ρ = 0.01820413 in scenario 1.
In this case, we successfully recovered all 16 bytes of the final round key
using 2M traces, and hence also the actual AES key due to the reversible
key schedule of AES.

In scenario 2, the respective correlation for the Hamming distance of the
final round 10→ 11 is ρ = 0.00532594. We performed a CPA key recovery
using 16M traces and successfully recovered 12 of the 16 bytes of the full
key. The remaining four bytes of the key can then be found in negligible
time through exhaustive search with 232 AES invocations. Incidentally,
we note that the key recovery specifically fails for key bytes 0, 4, 8, and

5. Evaluation 277

12, i.e., the first byte of each 4-byte word. This implies that these bytes
might exhibit a different leakage behavior than the other (successfully
recovered) bytes. Hence, with an appropriate leakage model, it might
be possible to also directly recover those four bytes without exhaustive
search. We leave this aspect for future work.

5.2.3. Kernel Module

Likewise, to our attack on the SGX enclave (Section 5.2.2), we evaluate
the CPA attack on a Linux kernel module, processing an AES-NI key.

Setup. We implemented a kernel module encrypting data using AES-
NI accelerated encryption. Therefore, we made use of the Intel AES-NI
Sample Library [22] that claims to be some of the most efficient AES
assembler code implementations [38]. The kernel module provides an
ioctl interface to user space where data to be encrypted can be passed
to.

Profiling. For the attack on the kernel module, we recorded 4M traces
(ρnoise = 0.0002) in 50 h on the Xeon E3-1240 v5 (server) system. Each
leakage sample corresponds to 16 384 encryptions of 16 kB in a loop inside
the ioctl handler, similar to scenario 1 for SGX above. As for SGX, we
observe statistically significant leakage for the AES rounds using both the
Hamming weight and Hamming distance models. The profiling results are
given in Table 9.8 in Section C.

Key Recovery. For the attack on the kernel module, we performed a
CPA key recovery using the 4M traces, again targeting the final round
of AES. We successfully recovered 15 of the 16 bytes of the full key. Note
that the correct candidate for the remaining byte was the second-best
candidate.

5.2.4. Limitations

We showed that it is possible to recover secrets from AES-NI, both from
implementations in the kernel and from an Intel IPP function using AES-
NI in Intel SGX. These attacks are feasible, and the number of traces is
also well in the threat model. For example, previous side-channel attacks

278 Chapter 9. PLATYPUS

on AES-NI with physical access required recording a large number of
traces for 17 days using an EM probe [70]—longer than the time required
for our method. Furthermore, as input to the NISTIR 8214A draft [7],
Rijmen and Svetla [69] recommend considering an adversary that can
collect up to 100M traces.

While we note that our attacks might succeed with fewer traces using
algorithms designed to perform a CPA-guided exhaustive search [83], we
did not evaluate that in our attacks. Still, whether our CPA attacks are
practical depends on the target, as we require large amounts of data to
be processed with a fixed or known plaintext. In the case of Intel SGX,
as a privileged attacker, it might be possible to alleviate this issue using
zero-stepping (see Section 4.2.2). Instead of repeating the whole algo-
rithm, it is possible to repeat only the target instruction (which should
also result in a better SNR). However, in our experiments so far, we
could not successfully apply CPA in this case. This might be due to the
noise introduced by the zero-stepping logic, combined with long measure-
ment times, which prevent the acquisition of a sufficient number of traces.
Finally, determining the appropriate leakage model depends on the spe-
cific implementation of the algorithm under attack and also the targeted
CPU—e.g., we observed substantial differences for AES-NI between our
i3-7100U and Xeon E3-1240 v5 systems, with the i3-7100U exposing less
leakage (see Section C). We leave a more in-depth study of the behavior
for future work.

5.3. Observing Intra-Cacheline Activity

A common assumption for side-channel-secure software was that an at-
tacker can only observe victim operations at a cache line granularity [9].
For instance, to protect against cache attacks that observe access pat-
terns at a cache line granularity, such as Flush+Reload and Prime+Probe,
scatter-gather [24] is a constant-time programming technique for RSA.
However, recent work [59, 88] showed that this assumption does not hold
when an attacker shares a hyperthread with a victim. Consequently, the
attacker can infer the cryptographic key used by an implementation that
has sub-cache-line variations in the control flow or data accesses.

However, for our attack, we assume a scenario where the victim and
attacker do not share a hyperthread. Consequently, previous attacks [59,
88] cannot obtain this information.

5. Evaluation 279

In our experiment, the victim performs a secret-dependent branch within
a cache line, executing instructions with different power consumption. If
the bit at a given offset of a secret byte is set, a fscale instruction is
executed. Otherwise, rdrand is executed. We assume an unprivileged at-
tacker that can trigger the code executed by the victim through an API
passing the offset to it. We evaluated the experiment on our i7-8650U and
i7-6600U (mobile) systems, both running on battery and connected to an
AC power supply, both desktop machines (i7-6700K and i9-9000K) as well
as on the 3 servers (E3-1240 v5, E3-1275 v5, Silver 4214). The attacker
records the power consumption when triggering the victim. As illustrated
in Figure 9.9, one can clearly distinguish jump-target locations within a
cache line due to the difference in power consumption. Hence, constrain-
ing control-flow variations in cryptographic operations to a cache line
cannot be considered secure anymore, even in scenarios where victim and
attacker do not share a hyperthread. This allows breaking cryptographic
implementations, which are currently considered secure in the scenario
we investigate [31].

In addition, an extreme approach suggested to impede cache timing at-
tacks is to disable caching for the PRM range in SGX [16]. In a second
experiment, we mark pages of our victim as uncacheable. Thus, the code
cannot leak through cache timings anymore. Still, with our power side-
channel, we can observe the leakage.

5.4. Kernel Address Space Derandomization

In this section, we show that an unprivileged attacker can derandomize
the kernel address space using RAPL. As there is no distinction between
committed and non-committed instructions at the voltage regulator level,
the power consumption also changes for transient instructions. Transient
instructions are instructions that have been executed by an out-of-order
processor but are never committed to the architectural state, e.g., in-
structions causing a fault [52] or instructions following a misspeculated
branch [47]. The general concept of derandomizing the kernel address
space is to distinguish between the transient access of mapped and un-
mapped kernel addresses via differences in power consumption. The cur-
rent KASLR implementation randomly chooses one out of 512 2MB-
aligned virtual addresses as the base address for the entire kernel [71].
Hence, as the kernel binary itself does not support fine-grained random-
ization, knowing the base offset of the kernel allows to calculate the loca-

280 Chapter 9. PLATYPUS

0
20
40
60 bit 0 bit 1

0
20
40
60 bit 2 bit 3

0
20
40
60 bit 4 bit 5

800 850 900 950
0

20
40
60 bit 6

800 850 900 950

bit 7

N
u
m
b
er

o
f
C
a
se
s

Energy [µJ]

Figure 9.9.: Our attack clearly distinguishes different jumps within the
same cache line. In this figure, leaking the byte 0x4d (ASCII
‘M’) (01001101 in binary) bit by bit by inspecting the power
consumption. Values below that threshold are interpreted as
‘1’s, values above as ‘0’s.

-16 -8 0 8 16 24 32 40
160
180
200
220
240
260

Kernel offset [MB]

E
n
er

g
y

[µ
J
]

Figure 9.10.: Power consumption when transiently accessing kernel ad-
dresses. If a kernel page is not mapped, the access triggers
an entire page-table walk, consuming more power.

tion of kernel code and data [11, 28, 36, 45, 71]. The same approach can
also be applied to dynamically loadable kernel modules [71].

Transiently accessing mapped and unmapped kernel addresses show dif-
ferences in timing [28, 36, 45] and store-forwarding behavior [11, 71].
Hence, the assumption is that there is also a measurable difference in
power consumption.

Figure 9.10 shows the power consumption when transiently loading a
kernel address while suppressing faults using Intel TSX. The power con-
sumption differs for mapped and unmapped kernel pages. The differences
in power consumption correlate with the differences in access times re-
ported by Jang et al. [45]. As unmapped kernel pages cannot be cached

5. Evaluation 281

in the TLB, accessing these pages triggers a page-table walk, which con-
sumes more power than accessing mapped kernel pages, which are cached
in the TLB.

In our experiments, we used our i7-8650U (connected to a power sup-
ply and running on battery), i7-6600U, i9-9900K, and Xeon Silver 4214
systems with PTI (Page Table Isolation) disabled. Note that both, the
i9-9900K and the Silver 4214, contain hardware mitigations against Melt-
down; thus, PTI can be disabled. To evaluate the success rate, we execute
the KASLR break 500 times for known KASLR offsets. On average, we
successfully derandomize the KASLR offset in 100% (n = 500, σx̄ = 0.00)
of the runs. The average time to find the KASLR offset is 20 s. Hence,
while not being the fastest KASLR break, it is still practical. Moreover,
in contrast to previous microarchitectural KASLR breaks [11, 12, 28, 36,
45, 71], our KASLR break using power consumption is the first microar-
chitectural KASLR break, which does not require any timing primitive.
Even with the microcode patch on the i9-9900K, there is no significant
change in the success rate of the KASLR break. This is in line with Intel’s
statement that attacks on KASLR are not mitigated by this update [40].

In addition, we evaluated the influence of system activity using stress-
ng on the success rate of the KASLR break on the i9-9900K running
Ubuntu 18.04. These tests are designed to stress the CPU and do not
represent a realistic workload, e.g., compilation task, rendering process,
or office workload. However, the tool allows us to vary the load on each
core. By default, it will cycle through all stress tests unless a specific
one is specified. With a load below 10% on the entire system, there is
no change in the success rate. With a moderately high load of 50%, it
decreases to 22% (n = 100, σx̄ = 4.34). However, as system noise is
statistically independent from the measured signal, increasing the num-
ber of measurements (and thus the runtime) increases the success rate.
Especially as system activity only increases the power consumption, and
mapped pages have a lower power consumption than unmapped pages,
noise does not lead to false positives, but only to not being able to detect
the kernel (false negative). A simply increase of the measurements by a
factor of 10 already results in a success rate of 46% (n = 100, σx̄ = 4.75).

5.5. Timing-Independent Covert Channel

In this section, we describe how unprivileged access to power consumption
can be utilized to establish a timing-independent covert channel. The

282 Chapter 9. PLATYPUS

0
5

10
15

11

0

11

000

11

Time [cycles]

E
ne

rg
y

[n
J]

Figure 9.11.: Transmission of bits 1101100011 using the time-less covert
channel.

basic idea of the covert channel is to encode the information by varying
the power consumption of the device. To send a 1-bit, the sender increases
the power consumption by executing more energy-consuming instructions.
To transmit a 0-bit, the sender idles. The receiver monitors the power
consumption of the device through the RAPL interface and decodes the
transmitted information by observing the changes in power consumption.

Figure 9.11 illustrates the transmission of the bits 1101100011 over the
power-based covert channel. We transmitted 1 kB of random data be-
tween two unprivileged processes running on different cores of the i7-
8650U, either battery-powered or connected to a power supply. We
achieved a transmission rate of 18.7 bit/s with a bit error rate of 0.89%.

While the transmission rate of our covert channel is significantly lower in
contrast to other state-of-the-art covert channels [29, 53, 57], our covert
channel has the benefit that it does not rely on high-resolution timers.
Furthermore, our proof-of-concept covert channel is not optimized and
strictly working only with binary decisions. However, we can transmit
not just one bit per symbol but rather several bits by using modula-
tion techniques, such as amplitude modulation, phase-shift keying, or
frequency modulation. While Maurice et al. [57] found that these meth-
ods are infeasible for cache covert channels due to the unreliable clock,
they are applicable to a power-based covert channel. Thus, we believe
that the performance of our covert channel could be drastically improved
using these techniques.

6. Countermeasures

In this section, we discuss different countermeasures and mitigation strate-
gies for the presented attacks.

6. Countermeasures 283

Restricting Access. To obtain the Intel RAPL counters, kernel privi-
leges are required to read the corresponding MSRs. However, the power
capping framework powercap on Linux provides unprivileged access to
these MSRs through the sysfs interface. While the purpose of the
driver is to expose RAPL for user-space consumption [65], unprivileged
access could be directly prevented by respecting the access level similar
to kernel.perf_event_paranoia for the perf interface. While these
interfaces may be required for existing functionality, limiting user-space
access is necessary to mitigate at least unprivileged attacks. However, as
a privileged attacker has direct access to these MSRs, attacks on Intel
SGX are not prevented. Thus, access to these MSRs needs to be blocked
via a microcode update. Furthermore, trusted computing base recovery
is required to allow remote verifiers to re-establish the trust that these
MSRs have been deactivated.

Limiting Resolution. The RAPL interface has a µJ resolution. While
reducing the counter’s granularity does not completely mitigate our at-
tacks, the number of traces for some scenarios might become impractical.
However, even without the RAPL interface, it may still be possible to use
other limited-resolution sources of energy data, e.g., battery monitoring,
to conduct a software-based power side-channel attack, e.g., identifying
running applications [87].

Limiting Precise Execution Control. Restricting the user-space access
to the RAPL counters only impedes unprivileged attackers, as a privileged
attacker has direct access to these MSRs. In addition, the attacker can
make use of precise execution control (cf. Section 4.2.2) to zero step an
enclave. This primitive gives an attacker the possibility to execute a single
instruction within an SGX enclave arbitrarily often, enabling sampling of
the instruction’s energy consumption (cf. Section 5.1). Introducing a
counter inside SGX that increments every time an enclave is executed
from the same instruction pointer could limit the number of zero steps.

Application Hardening. Software computing on particularly sensitive
values, e.g., cryptographic algorithms, could deploy state-of-the-art coun-
termeasures against power analysis, e.g., masking, to make these attacks
more difficult. However, using zero stepping (Section 4.2.2) and the pos-
sibility to observe the Hamming weight of bytes (Section 3.5), masking is

284 Chapter 9. PLATYPUS

insufficient against our attacks on SGX enclaves.

Intel’s Mitigation. To address the presented issues, Intel released mi-
crocode updates that help ensure that the reported energy consumption
by the RAPL interface hinders the ability to distinguish same instruc-
tions with different data or operands if SGX is enabled [40]. In addition,
an update to the Linux powercap driver restricts the unprivileged access
to the RAPL MSRs.

7. Related Work & Discussion
In this section, we present related and future work and discuss other
microarchitectures.

7.1. Related Work

Hardware-based Power Analysis. Eisenbarth et al. [18] reconstructed
control-flow and program code from power consumption on a small mi-
crocontroller. Strobel et al. [76] distinguish instructions on a microcon-
troller using an oscilloscope sampling at 2.5GHz. Park et al. [66] use
an oscilloscope with 2.5GHz combined with machine learning to extract
the instruction stream (opcodes and operands) from a microcontroller.
Msgna et al. [61] measured differences in power consumption during the
execution of single instructions on a microcontroller using an oscilloscope
with a sampling rate of 5GHz. Saab et al. [70] extracted an AES-NI key
from an Intel i7 after collecting traces for 17 days with an EM probe.

Guri et al. [32], as well as Islam and Ren [44] demonstrated that current
and voltage, respectively, can be monitored and influenced to build covert
channels, e.g., in cloud environments. However, both works assume an
attacker with hardware equipment connected to the device.

Undersampling. Molka et al. [60] used a physically-connected power
meter to record a victim system’s power consumption at a rate of 10Hz,
distinguishing loops of nops and other instructions. Attacks with similar
sampling rates to ours were shown by Genkin et al. [21], who recovered
4096-bit GnuPG RSA keys and program code via acoustic cryptanalysis,
and Lifshits et al. [51], who inferred sensitive data, including keystrokes,

7. Related Work & Discussion 285

via a malicious battery storing power traces. These works sampled at
≈24 kHz (mobile phone attack) and 1 kHz, respectively.

Our work shows that this can similarly be done from software at even
higher sampling rates, and our attacks demonstrate the security ramifi-
cations of this. While prior attacks require either physical proximity or
physical access to the device, they support this work’s finding that a low
sampling rate can still achieve fine-grained information leakage.

Software-based Power Analysis. Fusi [19] used RAPL to attack RSA-
16384 but concluded that the sampling rate of RAPL is too low to mount
an attack, showing that it is only observable whether branches are taken,
and accessed data is cached. Mantel et al. [55] distinguish RSA keys with
different Hamming weights using RAPL but do not try to extract keys or
perform other concrete attacks. Gao et al. [20] use RAPL in containers to
infer information about the host environment, e.g., co-location of multiple
containers.

Power Analysis on Mobile Devices. Yan et al. [87] monitor system
power information on mobile devices to acquire voltage and current, ob-
serving a correlation with keystrokes, enabling them to infer password
lengths and also distinguish different applications. Qin et al. [68] use the
same interfaces to fingerprint websites on mobile devices. We instead use
RAPL on regular laptops, desktops, and servers that have more subtle
variation in power consumption and voltage.

On-die Power Analysis. O’Flynn [63] recorded power measurements us-
ing an on-board ADC from the non-secure world to recover secrets pro-
cessed in the secure world on TrustZone-M. Zhao and Suh [89] use an
FPGA to observe a CPU’s power consumption on the same SoC to break
RSA.

7.2. Other Microarchitectures

While we focus on Intel’s RAPL implementation throughout this work,
other microarchitectures offer different interfaces to obtain the energy
consumption of the core.

286 Chapter 9. PLATYPUS

For instance, since the Zen microarchitecture, AMD CPUs also provide a
RAPL interface [3]. In contrast to Intel, their counters even allow to mea-
sure the energy consumption even per individual core. However, as the
powercap driver does not support AMD’s implementation, an attacker
requires kernel privileges to read the corresponding MSRs. In Section A,
we show that AMD’s RAPL interface allows to distinguish different in-
structions executed on an AMD Ryzen CPU. This could allow similar
attacks on AMD CPUs, e.g., against AMD’s SEV-SNP, where a privi-
leged kernel-space attacker is conceivable.

Other CPU manufacturers, e.g., ARM, NVIDIA, IBM POWER, Ampere,
Hygon, or Marvell, provide different power interfaces as well. We briefly
discuss them in Section A and leave the investigation of them to future
work.

7.3. Enclave Inspection

While Intel SGX provides integrity and confidentiality of data and in-
tegrity of code at runtime, it does not provide confidentiality of code in
the binary file stored offline. However, with the Intel Software Guard
Extensions Protected Code Loader (Intel SGX PCL) [43], the enclave
shared object is encrypted at build time and decrypted during the load
phase. This enables intellectual property within SGX enclave code to be
protected from inspection by untrusted parties, as reverse-engineering of
the encrypted enclave is not possible [5]. Furthermore, encrypting the
memory used by the enclave [16] prevents runtime inspection, provided
the enclave is built in release mode [42].

Using zero-stepping, we can now measure the energy consumption of ev-
ery single instruction executed within an SGX enclave. This allows to
classify different instructions by evaluating their power consumption, as
shown in Section 3. Further, differences depending on the values of their
operands and loaded data from the cache can be observed. This enables
us to not only recover the control flow of the executed program but also to
directly disclose sensitive information, as we demonstrate in Section 5.1.

For enclave inspection, the idea is to retrofit the power-side-channel-
based disassembler by Eisenbarth et al. [18] with PLATYPUS to infer
the control flow of the enclave. While our results are promising for a cer-
tain set of instructions (see Table 9.3), the general case is very complex
due to the complex instruction-set architecture. In total, there are more

8. Conclusion 287

than 3684 x86-64 instruction variants (combining mnemonics and operand
types) [34] that need to be profiled on the microarchitecture under attack
first. Thus, the set of instructions with similar power consumption, es-
pecially with the influence of different operand values, is currently too
large. We leave further exploration to future work.

8. Conclusion

In this work, we show that software-based power side-channel attacks are
particularly powerful against Intel SGX due to the zero-stepping capabil-
ities of a privileged attacker. We showed how instructions and operand-
level differences can be observed, enabling recovery of an RSA key from
mbed TLS inside an SGX enclave. We demonstrated that with sufficient
statistical evaluation, even user space attackers can exploit unprivileged
access to the Intel RAPL interface to extract AES-NI keys from SGX en-
claves or kernel space. Moreover, we demonstrated that this side channel
enables an attacker to break KASLR, observe sub-cache-line-granularity
activity, and establish timing-independent covert channels.

While unprivileged attacks can be impeded by restricting access to the
sysfs interface, mitigating privileged attacks in order to protect Intel
SGX enclaves is not trivial. We, therefore, propose limiting precise exe-
cution control and, while it, unfortunately, breaks backward compatibility
and support for software-based thermal management, removing access to
these interfaces in general.

Acknowledgments

We want to thank Peter Pessl (Infineon Technologies), Martin Hauben-
wallner, Martin Schwarzl (Graz University of Technology) and Stefan
Mangard (Graz University of Technology).

The research presented in this paper was supported by the Austrian Re-
search Promotion Agency (FFG) via the K-project DeSSnet, which is
funded in the context of COMET - Competence Centers for Excellent
Technologies by BMVIT, BMWFW, Styria, and Carinthia. It was also
supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 681402). It has also been supported by the Austrian Research

288 Chapter 9. PLATYPUS

Promotion Agency (FFG) via the project ESPRESSO, which is funded by
the province of Styria and the Business Promotion Agencies of Styria and
Carinthia. It is partially funded by the Engineering and Physical Sciences
Research Council (EPSRC) under grants EP/R012598/1, EP/S030867/1
and by the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 779391 (FutureTPM).

Additional funding was provided by generous gifts from Intel, ARM, Ama-
zon, and Red Hat. Further, we would like to thank Equinix Metal for
providing us access to bare metal instances to run our experiments.

Any opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect the
views of the funding parties.

References
[1] National Security Agency. TEMPEST: A Signal Problem. 1972.
[2] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van

de Pol, and Yuval Yarom. “Amplifying Side Channels Through
Performance Degradation”. In: ACSAC. 2016.

[3] AMD uProf User Guide. 3.2. Advanced Micro Devices Inc. 2019.
[4] ARM. mbed TLS. 2020. url: https:///tls.mbed.org.
[5] Jean-Philippe Aumasson and Luis Merino. “SGX Secure Enclaves

in Practice: Security and Crypto Review”. In: Black Hat Briefings.
2016.

[6] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam.
“Power struggles: Revisiting the RISC vs. CISC debate on contem-
porary ARM and x86 architectures”. In: HPCA. 2013.

[7] Lús TAN Brandão, Michael Davidson, and Apostol Vassilev. To-
wards NIST Standards for Threshold Schemes for Cryptographic
Primitives: A Preliminary Roadmap. Tech. rep. National Institute
of Standards and Technology, 2019.

[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kos-
tiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. “Software
Grand Exposure: SGX Cache Attacks Are Practical”. In: WOOT.
2017.

[9] Ernie Brickell. Technologies to Improve Platform Security. CHES.
2011.

https:///tls.mbed.org

References 289

[10] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation
Power Analysis with a Leakage Model”. In: CHES. 2004.

[11] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss,
Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens,
Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom.
“Fallout: Leaking Data on Meltdown-resistant CPUs”. In: CCS.
2019.

[12] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. “KASLR: Break It, Fix It, Repeat”.
In: AsiaCCS. 2020.

[13] A. P. Chandrakasan and R. W. Brodersen. “Minimizing power con-
sumption in digital CMOS circuits”. In: Proceedings of the IEEE
(1995).

[14] Ampere Computing. Ampere AltraTM Linux Kernel Porting
Guide. 2020. url: https : / / github . com / AmpereComputing /
ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-
Porting-Guide.

[15] Intel Corporation. What exactly is a P-state? (Pt. 1). 2015.
[16] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In:

Cryptology ePrint Archive, Report 2016/086 (2016).
[17] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean

Tullsen. “Prime+Abort: A Timer-Free High-Precision L3 Cache
Attack using Intel TSX”. In: USENIX Security Symposium. 2017.

[18] Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. “Build-
ing a Side Channel Based Disassembler”. In: Transactions on com-
putational science X. Springer, 2010.

[19] Matteo Fusi. Information-Leakage Analysis Based on Hardware
Performance Counters. 2017.

[20] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis,
and Haining Wang. “ContainerLeaks: Emerging Security Threats
of Information Leakages in Container Clouds”. In: DSN. 2017.

[21] Daniel Genkin, Adi Shamir, and Eran Tromer. “Acoustic Crypt-
analysis”. In: Journal of Cryptology (2017).

[22] Gladman, Brian. Intel AESNI Sample Library. 2013. url: https:
//software.intel.com/content/www/us/en/develop/article
s/download-intel-aesni-sample-library.html.

[23] Jovan D Golić and Christophe Tymen. “Multiplicative Masking
and Power Analysis of AES”. In: CHES. 2002.

[24] Vinodh Gopal, James Guilford, Erdinc Ozturk, Wajdi Feghali, Gil
Wolrich, and Martin Dixon. “Fast and Constant-Time Implemen-

https://github.com/AmpereComputing/ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-Porting-Guide
https://github.com/AmpereComputing/ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-Porting-Guide
https://github.com/AmpereComputing/ampere-centos-kernel/wiki/Ampere-AltraTM-Linux-Kernel-Porting-Guide
https://software.intel.com/content/www/us/en/develop/articles/download-intel-aesni-sample-library.html
https://software.intel.com/content/www/us/en/develop/articles/download-intel-aesni-sample-library.html
https://software.intel.com/content/www/us/en/develop/articles/download-intel-aesni-sample-library.html

290 Chapter 9. PLATYPUS

tation of Modular Exponentiation”. In: Embedded Systems and
Communications Security (2009).

[25] Louis Goubin and Jacques Patarin. “DES and Differential Power
Analysis: The “Duplication” Method”. In: International Workshop
on Cryptographic Hardware and Embedded Systems. 1999.

[26] Corey Gough, Ian Steiner, and Winston Saunders. Energy Efficient
Servers. Apress, 2015.

[27] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Ist-
van Haller, and Manuel Costa. “Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory”. In:
USENIX Security Symposium. 2017.

[28] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR”. In: CCS. 2016.

[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In:
DIMVA. 2016.

[30] Amina Guermouche and Anne-Cécile Orgerie. Experimental anal-
ysis of vectorized instructions impact on energy and power con-
sumption under thermal design power constraints. 2019.

[31] Shay Gueron. Intel Advanced Encryption Standard (Intel AES)
Instructions Set – Rev 3.01. 2012.

[32] Mordechai Guri, Boris Zadov, Dima Bykhovsky, and Yuval Elovici.
“PowerHammer: Exfiltrating Data from Air-Gapped Computers
Through Power Lines”. In: arXiv:1804.04014 (2018).

[33] Andreas Herrmann. Kernel driver fam15h_power: The Linux Ker-
nel documentation. 2019. url: https://www.kernel.org/doc/
html/v5.4-preprc-cpu/hwmon/fam15h%5C_power.html.

[34] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken.
“Stratified Synthesis: Automatically Learning the x86-64 Instruc-
tion Set”. In: PLDI. ACM, 2016.

[35] Mikael Hirki, Zhonghong Ou, Kashif Nizam Khan, Jukka K Nur-
minen, and Tapio Niemi. “Empirical study of the power consump-
tion of the x86-64 instruction decoder”. In: USENIX CoolDC. 2016.

[36] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical Tim-
ing Side Channel Attacks against Kernel Space ASLR”. In: S&P.
2013.

[37] IBM. POWER9 Processor User’s Manual. 2.0. 2018.
[38] Intel. Advanced Encryption Standard (AES) Crypto Performance

Analysis Project. 2013.

https://www.kernel.org/doc/html/v5.4-preprc-cpu/hwmon/fam15h%5C_power.html
https://www.kernel.org/doc/html/v5.4-preprc-cpu/hwmon/fam15h%5C_power.html

References 291

[39] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019.

[40] Intel. Intel-SA-00389. 2020. url: https://www.intel.com/c
ontent/www/us/en/security-center/advisory/intel-sa-
00389.html.

[41] Intel. Intel® Integrated Performance Primitives. 2020. url: https:
//software.intel.com/content/www/us/en/develop/tools/
integrated-performance-primitives.html.

[42] Intel Corporation. Intel SGX: Debug, Production, Pre-release –
What’s the Difference? Jan. 2016.

[43] Intel Corporation. Intel Software Guard Extensions (Intel SGX)
Protected Code Loader (PCL) for Linux. May 2018.

[44] Mohammad A Islam and Shaolei Ren. “Ohm’s Law in Data Cen-
ters: A Voltage Side Channel for Timing Power Attacks”. In: CCS.
2018.

[45] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX”. In: CCS.
2016.

[46] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurmi-
nen, and Zhonghong Ou. “RAPL in Action: Experiences in Using
RAPL for Power Measurements”. In: ToMPECS (2018).

[47] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
“Spectre Attacks: Exploiting Speculative Execution”. In: S&P.
2019.

[48] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi.
“Introduction to Differential Power Analysis”. In: Journal of Cryp-
tographic Engineering (2011).

[49] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential
Power Analysis”. In: CRYPTO’99. 1999.

[50] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
Byunghoon Kang. “Hacking in Darkness: Return-oriented Pro-
gramming against Secure Enclaves”. In: USENIX Security Sym-
posium. 2017.

[51] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel
Philipose, Mohit Tiwari, and Mark Silberstein. “Power to peep-all:
Inference Attacks by Malicious Batteries on Mobile Devices”. In:
Proceedings on Privacy Enhancing Technologies 2018.4 (2018).

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://software.intel.com/content/www/us/en/develop/tools/integrated-performance-primitives.html
https://software.intel.com/content/www/us/en/develop/tools/integrated-performance-primitives.html
https://software.intel.com/content/www/us/en/develop/tools/integrated-performance-primitives.html

292 Chapter 9. PLATYPUS

[52] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. “Melt-
down: Reading Kernel Memory from User Space”. In: USENIX
Security Symposium. 2018.

[53] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In:
S&P. 2015.

[54] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards. Springer
Science & Business Media, 2008.

[55] Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich
Weber. “How Secure is Green IT? The Case of Software-Based
Energy Side Channels”. In: European Symposium on Research in
Computer Security. 2018.

[56] Marvell. tx2mon. 2020. url: https://github.com/Marvell-
SPBU/tx2mon.

[57] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and
Kay Römer. “Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud”. In: NDSS. 2017.

[58] Abdelhafid Mazouz, David C Wong, David Kuck, and William
Jalby. “An Incremental Methodology for Energy measurement and
Modeling”. In: ACM ICPE. 2017.

[59] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. “Mem-
Jam: A False Dependency Attack against Constant-Time Crypto
Implementations in SGX”. In: CT-RSA. 2018.

[60] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S
Müller. “Characterizing the Energy Consumption of Data Trans-
fers and Arithmetic Operations on x86-64 Processors”. In: Inter-
national Conference on Green Computing. IEEE. 2010.

[61] Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes.
“Precise Instruction-Level Side Channel Profiling of Embedded
Processors”. In: International Conference on Information Security
Practice and Experience. 2014.

[62] NVIDIA. Jetson TX2: Thermal Design Guide. 2017.
[63] Colin O’Flynn and Alex Dewar. “On-Device Power Analysis Across

Hardware Security Domains”. In: CHES (2019).
[64] Open-Source Register Reference For AMD Family 17h Processors

Models 00h-2Fh. 3.03. Advanced Micro Devices Inc. July 2018.

https://github.com/Marvell-SPBU/tx2mon
https://github.com/Marvell-SPBU/tx2mon

References 293

[65] Jacob Pan. RAPL (Running Average Power Limit) driver. 2013.
url: https://lwn.net/Articles/545745/.

[66] Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, and Mark
Tehranipoor. “Power-based Side-Channel Instruction-level Disas-
sembler”. In: DAC. 2018.

[67] James Phung, Young Choon Lee, and Albert Y Zomaya. “Modeling
System-Level Power Consumption Profiles Using RAPL”. In: NCA.
IEEE. 2018.

[68] Yi Qin and Chuan Yue. “Website Fingerprinting by Power Es-
timation Based Side-Channel Attacks on Android 7”. In: Trust-
Com/BigDataSE. 2018.

[69] Vincent Rijmen and Svetla Nikova. Threshold Cryptography
Against Physical Attacks. 2020. url: https : / / www . esat .
kuleuven . be / cosic / events / tis - online - workshop / wp -
content/uploads/sites/6/2020/07/Vincent_Rijmen.pdf.

[70] Sami Saab, Pankaj Rohatgi, and Craig Hampel. “Side-Channel
Protections for Cryptographic Instruction Set Extensions”. In:
IACR Cryptology ePrint Archive (2016).

[71] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
“Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs”. In: arXiv:1905.05725 (2019).

[72] Michael Schwarz, Daniel Gruss, Moritz Lipp, Maurice Clémentine,
Thomas Schuster, Anders Fogh, and Stefan Mangard. “Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features”. In: AsiaCCS (2018).

[73] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. “Malware Guard Extension: Using SGX
to Conceal Cache Attacks ”. In: DIMVA. 2017.

[74] Yakun Sophia Shao and David Brooks. “Energy Characterization
and Instruction-Level Energy Model of Intel’s Xeon Phi Proces-
sor”. In: ISLPED. 2013.

[75] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read
Sprabery, Josep Torrellas, and Christopher W. Fletcher. “Micro-
Scope: Enabling Microarchitectural Replay Attacks”. In: ISCA.
2019.

[76] Daehyun Strobel, Florian Bache, David Oswald, Falk Schellenberg,
and Christof Paar. “SCANDALee: A Side-ChANnel-based Dis-
AssembLer using Local Electromagnetic Emanations”. In: DATE.
2015.

https://lwn.net/Articles/545745/
https://www.esat.kuleuven.be/cosic/events/tis-online-workshop/wp-content/uploads/sites/6/2020/07/Vincent_Rijmen.pdf
https://www.esat.kuleuven.be/cosic/events/tis-online-workshop/wp-content/uploads/sites/6/2020/07/Vincent_Rijmen.pdf
https://www.esat.kuleuven.be/cosic/events/tis-online-workshop/wp-content/uploads/sites/6/2020/07/Vincent_Rijmen.pdf

294 Chapter 9. PLATYPUS

[77] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. “Power Analysis
of Embedded Software: A First Step towards Software Power Min-
imization”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (1994).

[78] Unified Extensible Firmware Interface (UEFI) Forum. Advanced
Configuration and Power Interface (ACPI) Specification, Version
6.3. 2019.

[79] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. “Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Ex-
ecution”. In: USENIX Security Symposium. 2018.

[80] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. “LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection”. In: S&P. 2020.

[81] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Con-
trol”. In: Workshop on System Software for Trusted Execution.
2017.

[82] Evangelos Vasilakis. “An Instruction Level Energy Characteriza-
tion of ARM Processors”. In: FORTH-ICS/TR-450 (2015).

[83] Nicolas Veyrat-Charvillon, Benôt Gérard, Mathieu Renauld, and
François-Xavier Standaert. “An Optimal Key Enumeration Algo-
rithm and its Application to Side-Channel Attacks”. In: SAC. 2012.

[84] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantar-
cioglu, and Bhavani Thuraisingham. “Differentiating Code from
Data in x86 Binaries”. In: ECML PKDD. 2011.

[85] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger
Kapitza. “AsyncShock: Exploiting Synchronisation Bugs in Intel
SGX Enclaves”. In: ESORICS. 2016.

[86] Pu Wen. Add support for Hygon Fam 18h (Dhyana) RAPL. 2019.
url: https://patchwork.kernel.org/patch/11123607/.

[87] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. “A Study
on Power Side Channels on Mobile Devices”. In: Symposium on
Internetware. 2015.

[88] Yuval Yarom, Daniel Genkin, and Nadia Heninger. “CacheBleed:
A Timing Attack on OpenSSL Constant Time RSA”. In: JCEN
(2017).

https://patchwork.kernel.org/patch/11123607/

References 295

0.91 0.92 0.92 0.93 0.93 0.94 0.94
0

20
40
60
80

Energy [pJ]

D
en

si
ty

0x00 0xFF

0x0F 0x3F

0x03

Figure 9.12.: Measured energy consumption of the shr instruction with
different Hamming weights (AMD Ryzen 5 3600).

[89] Mark Zhao and G Edward Suh. “FPGA-based Remote Power Side-
Channel Attacks”. In: S&P. 2018.

Appendix
A. Other Microarchitectures
While we focus on Intel’s RAPL implementation throughout this work,
other microarchitectures offer different interfaces to obtain the energy
consumption of the core.

AMD. Since the Zen (family 17H) microarchitecture, AMD CPUs have
provided a RAPL interface [3]. However, little documentation is available
regarding its implementation. Power consumption values for the core and
package domains are provided respectively in the CORE_ENERGY_STAT and
PKG_ENERGY_STAT MSRs [64]. A notable difference from Intel RAPL is
that the core domain is accessible per-core rather than across all cores of
the CPU, which substantially reduces measurement noise.

An attacker targeting AMD currently requires root privileges to read the
MSRs, as the Linux powercap driver only establishes a user-accessible
sysfs RAPL interface on Intel CPUs. While they lack the RAPL inter-
face, earlier AMD family 15h and 16h CPUs also have power MSRs which
provide consumption estimates based on platform activity levels [3]. Un-
fortunately, none were available to us for evaluation purposes. However,
we believe systems with these CPUs may be vulnerable to user-space at-
tacks because if the fam15h_power driver is loaded, power values can be
read from user space via sysfs [33].

Table 9.5 lists the measured energy consumption of different instructions
on AMD Ryzen 7 Pro 3700U, AMD Ryzen 7 3700X, and AMD EPYC

296 Chapter 9. PLATYPUS

Instruction Ryzen 7 Pro 3700U Ryzen 7 3700X EPYC 7401P

nop 0.0886 nJ 0.1052 nJ 0.1571 nJ
inc r64 0.1241 nJ 0.1144 nJ 0.1800 nJ
xor r64, r64 0.1246 nJ 0.1144 nJ 0.1785 nJ
mov r64, mem 0.0978 nJ 0.1266 nJ 0.1571 nJ
imul r64, r64 0.0930 nJ 0.0930 nJ 0.1586 nJ
fscale 0.0892 nJ 0.0991 nJ 0.1571 nJ
rdrand r64 0.0669 nJ 0.0564 nJ 0.0991 nJ
rdtsc 0.0885 nJ 0.0896 nJ 0.1296 nJ
clflush mem 0.0671 nJ 0.0503 nJ 0.0991 nJ
aesenc xmm, xmm 0.0890 nJ 0.0854 nJ 0.1571 nJ

Table 9.5.: Average observed energy consumption (package domain) of
different instructions on an AMD Ryzen 7 Pro 3700U mobile
CPU, an AMD Ryzen 7 3700X desktop CPU, and an AMD
EPYC 7401P server CPU.

7401P. On the mobile and desktop CPU, we disabled processor boost and
set the cores to a fixed frequency. To measure the energy consumption of
an instruction, we record its energy consumption over 10 000 consecutive
executions and take the median value to eliminate system-level noise (e.g.,
erroneous high values caused by interrupt handling or the process being
descheduled). On both AMD and Intel (see Section 3), we observe the
energy consumption across the entire CPU package to ensure that non-
core activity (for example, interactions with DRAM) is included. We can
observe inter-instruction differences in energy consumption. This enables
identification of executed instructions, provided the attacker can profile
the energy consumption of the victim microarchitecture. Furthermore, as
shown in Figure 9.12, the Hamming weight of the register influences the
energy consumption of the shr instruction.

ARM. The ARM Energy Probe, a 3-channel USB voltmeter which can
be attached to a targeted platform, requires physical access to the device.
However, different development boards using ARM CPUs contain on-
board energy meters like the ARM CoreTile Express A15x2. The odroid
XU+E used by Vasilakis [82] to characterize the energy consumption of
instructions on ARM contains 4 ina23 power sensors. The SAML11
running a Cortex-M23 processor used by O’Flynn and Dewar [63], grants
access to an onboard ADC.

References 297

NVIDIA. NVIDIA’s JetsonTX2 module has 3-channel INA3221 moni-
tors [62] exposing current (mA), voltage (mV), and power (mW) used of
different power rails. These include the CPU and GPU and are exposed
to unprivileged access in the sysfs.

IBM POWER. The POWER9 processor contains a dedicated on-chip
microcontroller that allows to analog sample various voltage rails. Note,
however, that the POWER9 does not include per-core power estimation
circuitry [37].

Marvell. For the ThunderX2, Marvell provides a kernel driver [56] ex-
posing readings from hardware sensors, among other things, voltages and
power measurements. Similar to Intel RAPL, measurements can be ob-
served for all cores on the System on Chip, the SRAM, memory, and
miscellaneous peripherals.

Ampere. For the Ampere Altra SoC, the APM X-Gene SoC hardware
monitoring driver gives unprivileged access to the temperature and power
sensors and, thus, allows to read the current power consumption of the
CPU or the IO [14].

Hygon. Recently, RAPL support for the Hygon Dhyana CPU family
has been added to the Linux perf interface and, likewise to AMD, allows
to read the per-core energy consumption [86].

B. mbed TLS Attack
Figure 9.13 illustrates the minimum core voltage measurements for each
key bit instruction of the mbed TLS attack described in Section 5.1.

C. Additional Profiling Results for AES-NI
Table 9.6, Table 9.7 and Table 9.8 present additional profiling correlations
for AES-NI of the attacks described in Section 5.2.

298 Chapter 9. PLATYPUS

Table 9.6.: Profiling correlations (for Xeon E3-1240 v5) after 16M traces
for AES-NI in scenario 2 for the Hamming weight (HW) for
each round and Hamming distance (HD) between rounds.
Bold entries and a |SF| ≥ 1 highlight significant statistical
dependencies.
HD ρρρ SF HW ρρρ SF

00 → 01 0.01412518 14 00 0.06653038 66
01 → 02 0.00674140 6.7 01 0.01389394 14
02 → 03 0.01182713 12 02 0.00045177 0.45
03 → 04 0.01159959 12 03 0.00106697 1.1
04 → 05 0.01144089 11 04 0.00073025 0.73
05 → 06 0.01069259 11 05 0.00058525 0.58
06 → 07 0.01142695 11 06 0.00114676 1.1
07 → 08 0.01158716 12 07 0.00068475 0.68
08 → 09 0.01102899 11 08 0.00077455 0.77
09 → 10 0.01114280 11 09 0.00094852 0.95
10 → 11 0.00532594 5.3 10 -0.00041563 -0.41

11 0.05861710 58

Table 9.7.: Profiling correlations (for i3-7100U) after 4M traces for AES-
NI in scenario 1 for the Hamming weight (HW) for each round
and Hamming distance (HD) between rounds. Bold entries
and a |SF| ≥ 1 highlight significant statistical dependencies.
HD ρρρ SF HW ρρρ SF

00 → 01 0.00429156 2.1 00 0.00957385 4.8
01 → 02 0.00256447 1.3 01 0.00550198 2.7
02 → 03 0.00441708 2.2 02 0.00056316 0.28
03 → 04 0.00404454 2 03 0.00003843 0.01
04 → 05 0.00388573 1.9 04 0.00048580 0.24
05 → 06 0.00512078 2.6 05 0.00081453 0.41
06 → 07 0.00418470 2.1 06 -0.00057528 -0.29
07 → 08 0.00454403 2.3 07 -0.00040692 -0.2
08 → 09 0.00477473 2.4 08 -0.00005976 -0.03
09 → 10 0.00488921 2.4 09 0.00085888 0.43
10 → 11 0.00269663 1.3 10 0.00021935 0.11

11 0.01133641 5.7

References 299

0 50 100 150 200 250 300 350 400 450 500

1,000

1,005

1,010

Key Bit

V
o
lt
a
g
e

[m
V
]

Figure 9.13.: Core voltage per measured instruction for each key bit off-
set in the fixed window length implementation of mbed TLS
inside an SGX enclave on the Xeon E3-1275 v5. The blue
marks represent 1 bits, while the red marks represent 0 bits.
Using a threshold (dashed line), they can easily be distin-
guished.

Table 9.8.: Profiling correlations (for Xeon E3-1240 v5) after 4M traces
for AES-NI in the Linux kernel for the Hamming weight (HW)
for each round and Hamming distance (HD) between rounds.
Bold entries and a |SF| ≥ 1 highlight significant statistical
dependencies.

HD ρρρ SF HW ρρρ SF

00 → 01 0.063436878 32 00 0.092565061 46
01 → 02 0.029847718 15 01 0.075098846 38
02 → 03 0.056173544 28 02 0.0022803663 1.1
03 → 04 0.057817586 29 03 0.0033372879 1.7
04 → 05 0.057572691 29 04 0.0030430309 1.5
05 → 06 0.057020521 28 05 0.0034340331 1.7
06 → 07 0.058405015 29 06 0.0038034749 1.9
07 → 08 0.05697378 28 07 0.0022000058 1.1
08 → 09 0.057203062 29 08 0.0033568495 1.7
09 → 10 0.05837099 29 09 0.0031144225 1.6
10 → 11 0.027001464 13 10 -0.0008108201 -0.16

11 0.12527739 63

10
KASLR is Dead: Long Live KASLR

Publication Data
Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine
Maurice, and Stefan Mangard. “KASLR is Dead: Long Live KASLR”.
in: ESSoS. 2017

Contributions
Large parts of the text and experiments.

301

302 Chapter 10. KASLR is Dead: Long Live KASLR

KASLR is Dead: Long Live KASLR

Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice Stefan Mangard

Graz University of Technology

Abstract

Modern operating system kernels employ address space layout randomiza-
tion (ASLR) to prevent control-flow hijacking attacks and code-injection
attacks. While kernel security relies fundamentally on preventing ac-
cess to address information, recent attacks have shown that the hardware
directly leaks this information. Strictly splitting kernel space and user
space has recently been proposed as a theoretical concept to close these
side channels. However, this is not trivially possible due to architectural
restrictions of the x86 platform.

In this paper we present KAISER, a system that overcomes limitations
of x86 and provides practical kernel address isolation. We implemented
our proof-of-concept on top of the Linux kernel, closing all hardware
side channels on kernel address information. KAISER enforces a strict
kernel and user space isolation such that the hardware does not hold
any information about kernel addresses while running in user mode. We
show that KAISER protects against double page fault attacks, prefetch
side-channel attacks, and TSX-based side-channel attacks. Finally, we
demonstrate that KAISER has a runtime overhead of only 0.28%.

1. Introduction

Like user programs, kernel code contains software bugs which can be
exploited to undermine the system security. Modern operating systems
use hardware features to make the exploitation of kernel bugs more dif-
ficult. These protection mechanisms include making code non-writable
and data non-executable. Moreover, accesses from kernel space to user
space require additional indirection and cannot be performed through
user space pointers directly anymore (SMAP/SMEP). However, kernel
bugs can be exploited within the kernel boundaries. To make these at-
tacks harder, address space layout randomization (ASLR) can be used to

1. Introduction 303

make some kernel addresses or even all kernel addresses unpredictable for
an attacker. Consequently, powerful attacks relying on the knowledge of
virtual addresses, such as return-oriented-programming (ROP) attacks,
become infeasible [14, 17, 19]. It is crucial for kernel ASLR to withhold
any address information from user space programs. In order to eliminate
address information leakage, the virtual-to-physical address information
has been made unavailable to user programs [13].

Knowledge of virtual or physical address information can be exploited
to bypass KASLR [7, 22], bypass SMEP and SMAP [11], perform side-
channel attacks [5, 15, 18], Rowhammer attacks [6, 12, 20], and to attack
system memory encryption [2]. To prevent attacks, system interfaces leak-
ing the virtual-to-physical mapping have recently been fixed [13]. How-
ever, hardware side channels might not easily be fixed without changing
the hardware. Specifically side-channel attacks targeting the page trans-
lation caches provide information about virtual and physical addresses to
the user space. Hund et al. [7] described an attack exploiting double page
faults, Gruss et al. [5] described an attack exploiting software prefetch
instructions,1 and Jang et al. [10] described an attack exploiting Intel
TSX (hardware transactional memory). These attacks show that current
KASLR implementations have fatal flaws, subsequently KASLR has been
proclaimed dead by many researchers [3, 5, 10].

Gruss et al. [5] and Jang et al. [10] proposed to unmap the kernel address
space in the user space and vice versa. However, this is non-trivial on
modern x86 hardware. First, modifying page table structures on con-
text switches is not possible due to the highly parallelized nature of to-
day’s multi-core systems, e.g., simply unmapping the kernel would in-
hibit parallel execution of multiple system calls. Second, x86 requires
several locations to be valid for both user space and kernel space during
context switches, which are hard to identify in large operating systems.
Third, switching or modifying address spaces incurs Translation Looka-
side Buffer (TLB) flushes [8]. Jang et al. [10] suspected that switching
address spaces may have a severe performance impact, making it imprac-
tical.

In this paper, we present KAISER, a highly-efficient practical system for
kernel address isolation, implemented on top of a regular Ubuntu Linux.
KAISER uses a shadow address space paging structure to separate kernel

1The list of authors for “Prefetch Side-Channel Attacks” by Gruss et al. [5] and this
paper overlaps.

304 Chapter 10. KASLR is Dead: Long Live KASLR

space and user space. The lower half of the shadow address space is
synchronized between both paging structures. Thus, multiple threads
work in parallel on the two address spaces if they are in user space or
kernel space respectively. KAISER eliminates the usage of global bits in
order to avoid explicit TLB flushes upon context switches. Furthermore,
it exploits optimizations in current hardware that allow switching address
spaces without performing a full TLB flush. Hence, the performance
impact of KAISER is only 0.28%.

KAISER reduces the number of overlapping pages between user and ker-
nel address space to the absolute minimum required to run on modern
x86 systems. We evaluate all microarchitectural side-channel attacks on
kernel address information that are applicable to recent Intel architec-
tures. We show that KAISER successfully eliminates the leakage in all
cases.

Contributions. The contributions of this work are:

1. KAISER is the first practical system for kernel address isolation. It
introduces shadow address spaces to utilize modern CPU features
efficiently avoiding frequent TLB flushes. We show how all chal-
lenges to make kernel address isolation practical can be overcome.

2. Our open-source proof-of-concept implementation in the Linux ker-
nel shows that KAISER can easily be deployed on commodity sys-
tems, i.e., a full-fledged Ubuntu Linux system.2

3. After KASLR has already been considered dead by many researchers,
KAISER fully restores the former efficacy of KASLR with a runtime
overhead of only 0.28%.

Outline. The remainder of the paper is organized as follows. In Sec-
tion 2, we provide background on kernel protection mechanisms and side-
channel attacks. In Section 3, we describe the design and implementation
of KAISER. In Section 4, we evaluate the efficacy of KAISER and its per-
formance impact. In Section 5, we discuss future work. We conclude in
Section 6.

2We are preparing a submission of our patches into the Linux kernel upstream. The
source code and the Debian package compatible with Ubuntu 16.10 can be found
at https://github.com/IAIK/KAISER.

https://github.com/IAIK/KAISER

2. Background 305

2. Background

2.1. Virtual Address Space

Virtual addressing is the foundation of memory isolation between differ-
ent processes as well as processes and the kernel. Virtual addresses are
translated to physical addresses through a multi-level translation table
stored in physical memory. A CPU register holds the physical address of
the active top-level translation table. Upon a context switch, the register
is updated to the physical address of the top-level translation table of the
next process. Consequently, processes cannot access all physical memory
but only the memory that is mapped to virtual addresses. Furthermore,
the translation tables entries define properties of the corresponding vir-
tual memory region, e.g., read-only, user-accessible, non-executable.

On modern Intel x86-64 processors, the top-level translation table is the
page map level 4 (PML4). Its physical address is stored in the CR3 register
of the CPU. The PML4 divides the 48-bit virtual address space into 512
PML4 entries, each covering a memory region of 512GB. Each subsequent
level sub-divides one block of the upper layer into 512 smaller regions until
4 kB pages are mapped using page tables (PTs) on the last level. The CPU
has multiple levels of caches for address translation table entries, the so-
called TLBs. They speed up address translation and privilege checks. The
kernel address space is typically a defined region in the virtual address
space, e.g., the upper half of the address space.

Similar translation tables exist on modern ARM (Cortex-A) processors
too, with small differences in size and property bits. One significant
difference to x86-64 is that ARM CPUs have two registers to store physical
addresses of translation tables (TTBR0 and TTBR1). Typically, one is
used to map the user address space (lower half) whereas the other is used
to map the kernel address space (upper half). Gruss et al. [5] speculated
that this might be one of the reasons why the attack does not work on
ARM processors. As x86-64 has only one translation-table register (CR3),
it is used for both user and kernel address space. Consequently, to perform
privilege checks upon a memory access, the actual page translation tables
have to be checked.

Control-Flow Attacks. Modern Intel processors protect against code
injection attacks through non-executable bits. Furthermore, code exe-
cution and data accesses on user space memory are prevented in kernel

306 Chapter 10. KASLR is Dead: Long Live KASLR

mode by the CPU features supervisor-mode access prevention (SMAP)
and supervisor-mode execution prevention (SMEP). However, it is still
possible to exploit bugs by redirecting the code execution to existing
code. Solar Designer [23] showed that a non-executable stack in user pro-
grams can be circumvented by jumping to existing functions within libc.
Kemerlis et al. [11] presented the ret2dir attack which redirects a hijacked
control flow in the kernel to arbitrary locations using the kernel physical
direct mapping. Return-oriented programming (ROP) [21] is a generaliza-
tion of such attacks. In ROP attacks, multiple code fragments—so-called
gadgets—are chained together to build an exploit. Gadgets are not entire
functions, but typically consist of one or more useful instructions followed
by a return instruction.

To mitigate control-flow-hijacking attacks, modern operating systems ran-
domize the virtual address space. Address space layout randomization
(ASLR) ensures that every process has a new randomized virtual address
space, preventing an attacker from knowing or guessing addresses. Sim-
ilarly, the kernel has a randomized virtual address space every time it
is booted. As Kernel ASLR makes addresses unpredictable, it protects
against ROP attacks.

2.2. CPU Caches

Caches are small memory buffers inside the CPU, storing frequently used
data. Modern Intel CPUs have multiple levels of set-associative caches.
The last-level cache (LLC) is shared among all cores. Executing code
or accessing data on one core has immediate consequences for all other
cores.

Address translation tables are stored in physical memory. They are
cached in regular data caches [8] but also in special caches such as the
translation lookaside buffers. Figure 10.1 illustrates how the address
translation caches are used for address resolution.

2.3. Microarchitectural Attacks on Kernel Address Information

Until recently, Linux provided information on virtual and physical ad-
dresses to any unprivileged user program through operating system in-
terfaces. As this information facilitates mounting microarchitectural at-
tacks, the interfaces are now restricted [13]. However, due to the way the

2. Background 307

Core 0 TLB Paging
Structure Cache

Core 1 TLB Paging
Structure Cache

LLC DRAM

Figure 10.1.: Address translation caches are used to speed up address
translation table lookups.

processor works, side channels through address translation caches [4, 5,
7, 10] and the branch-target buffer [3] leak parts of this information.

Address Translation Caches. Hund et al. [7] described a double page
fault attack, where an unprivileged attacker tries to access an inaccessible
kernel memory location, triggering a page fault. After the page fault
interrupt is handled by the operating system, the control is handed back
to an error handler in the user program. The attacker measures the
execution time of the page fault interrupt. If the memory location is
valid, regardless of whether it is accessible or not, address translation
table entries are copied into the corresponding address translation caches.
The attacker then tries to access the same inaccessible memory location
again. If the memory location is valid, the address translation is already
cached and the page fault interrupt will take less time. Thus, the attacker
learns whether a memory location is valid or not, even if it is not accessible
from the user space.

Jang et al. [10] exploited the same effect in combination with Intel TSX.
Intel TSX is an extension to the x86 instruction set providing a hardware
transactional memory implementation via so-called TSX transactions. If
a page fault occurs within a TSX transaction, the transaction is aborted
without any operating system interaction. Thus, the entire page fault
handling of the operation system is skipped, and the timing differences are
significantly less noisy. In this attack, the attacker again learns whether
a memory location is valid, even if it is not accessible from the user space.

Gruss et al. [5] exploited software prefetch instructions to trigger address
translation. The execution time of the prefetch instruction depends on
which address translation caches hold the right translation entries. Thus,
in addition to learning whether an inaccessible address is valid or not, an
attacker learns its corresponding page size as well. Furthermore, software
prefetches can succeed even on inaccessible memory. Linux has a kernel

308 Chapter 10. KASLR is Dead: Long Live KASLR

physical direct map, providing direct access to all physical memory. If the
attacker prefetches an inaccessible address in this kernel physical direct
map corresponding to a user-accessible address, it will also be cached
when accessed through the user address. Thus, the attacker can retrieve
the exact physical address for any virtual address.

All three attacks have in common that they exploit that the kernel address
space is mapped in user space as well, and that accesses are only prevented
through the permission bits in the address translation tables. Thus, they
use the same entries in the paging structure caches. On ARM archi-
tectures, the user and kernel addresses are already distinguished based
on registers, and thus no cache access and no timing difference occurs.
Gruss et al. [5] and Jang et al. [10] proposed to unmap the entire kernel
space to emulate the same behavior as on the ARM architecture.

Branch-Target Buffer. Evtyushkin et al. [3] presented an attack on the
branch-target buffer (BTB) to recover the lowest 30 bits of a randomized
kernel address. The BTB is indexed based on the lowest 30 bits of the
virtual address. Similar as in a regular cache attack, the adversary oc-
cupies parts of the BTB by executing a sequence of branch instructions.
If the kernel uses virtual addresses with the same value for the lowest 30
bits as the attacker, the sequence of branch instructions requires more
time. Through targeted execution of system calls, the adversary can ob-
tain information about virtual addresses of code that is executed during
a system call. Consequently, the BTB attack defeats KASLR.

We consider the BTB attack out of scope for our countermeasure (KAISER),
which we present in the next section, for two reasons. First, Evtyushkin et al.
[3] proposed to use virtual address bits > 30 to randomize memory loca-
tions for KASLR as a zero-overhead countermeasure against their BTB
attack. Indeed, an adaption of the corresponding range definitions in
modern operating system kernels would effectively mitigate the attack.
Second, the BTB attack relies on a profound knowledge of the behavior
of the BTB. The BTB attack currently does not work on recent architec-
tures like Intel Skylake, as the BTB has not been reverse-engineered yet.
Consequently, we also were not able to reproduce the attack in our test
environment (Intel Skylake i7-6700K).

3. Design and Implementation of KAISER 309

User memory Kernel memory

0 −1
context switch

(a) Regular OS

context switch

User memory not mapped

0 −1
context switch

not mapped Kernel memory

0 −1

switch address space

(b) Stronger kernel isolation

context switch

User memory not mapped

0 −1
context switch

SMAP + SMEP Kernel memory

0 −1

switch address space

(c) KAISER

Figure 10.2.: (a) The kernel is mapped into the address space of every user
process. (b) Theoretical concept of stronger kernel isolation.
It splits the address spaces and only interrupt handling code
is mapped in both address spaces. (c) For compatibility with
x86 Linux, KAISER relies on SMAP to prevent invalid user
memory references and SMEP to prevent execution of user
code in kernel mode.

3. Design and Implementation of KAISER
In this section, we describe the design and implementation of KAISER3.
We discuss the challenges of implementing kernel address isolation. We
show how shadow address space paging structures can be used to separate
kernel space and user space. We describe how modern CPU features
and optimizations can be used to reduce the amount of regular TLB
flushes to a minimum. Finally, to show the feasibility of the approach,
we implemented KAISER on top of the latest Ubuntu Linux kernel.

3.1. Challenges of Kernel Address Isolation

As recommended by Intel [8], today’s operating systems map the kernel
into the address space of every user process. Kernel pages are protected
from unwanted access by user space applications using different access
permissions, set in the page table entries (PTE). Thus, the address space
is shared between the kernel and the user and only the privilege level is
escalated to execute system calls and interrupt routines.

The idea of Stronger Kernel Isolation proposed by Gruss et al. [5] (cf.
3Kernel Address Isolation to have Side channels Efficiently Removed.

310 Chapter 10. KASLR is Dead: Long Live KASLR

Figure 10.2) is to unmap kernel pages while the user process is in user
space and switch to a separated kernel address space when entering the
kernel. Consequently, user pages are not mapped in kernel space and
only a minimal numbers of pages is mapped both in user space and kernel
space. While this would prevent all microarchitectural attacks on kernel
address space information on recent systems [5, 7, 10], it is not possible
to implement Stronger Kernel Isolation without rewriting large parts of
today’s kernels. There is no previous work investigating the requirements
real hardware poses to implement kernel address isolation in practice. We
identified the following three challenges that make kernel address isolation
non-trivial to implement.

Challenge 1. Threads cannot use the same page table structures in user
space and kernel space without a huge synchronization overhead. The
reason for this is the highly parallelized nature of today’s systems. If a
thread modifies page table structures upon a context switch, it influences
all concurrent threads of the same process. Furthermore, the mapping
changes for all threads, even if they are currently in the user space.

Challenge 2. Current x86 processors require several locations to be valid
for both user space and kernel space during context switches. These
locations are hard to identify in large operating system kernels due to
implicit assumptions about the omnipresence of the entire kernel address
space. Furthermore, segmented memory accesses like core-local storage
are required during context switches. Thus, it must be possible to locate
and restore the segmented areas without re-mapping the unmapped parts
of the kernel space. Especially, unmapping the user space in the Linux
kernel space, as proposed by Gruss et al. [5], would require rewriting large
parts of the Linux kernel.

Challenge 3. Switching the address space incurs an implicit full TLB
flush and modifying the address space causes a partial TLB flush [8]. As
current operating systems are highly optimized to reduce the amount of
implicit TLB flushes, a countermeasure would need to explicitly flush the
TLB upon every context switch. Jang et al. [10] suspected that this may
have a severe performance impact.

3. Design and Implementation of KAISER 311

3.2. Practical Kernel Address Isolation

In this section we show how KAISER overcomes these challenges and thus
fully revives KASLR.

Shadow Address Spaces. To solve challenge 1, we introduce the idea
of shadow address spaces to provide kernel address isolation. Figure 10.3
illustrates the principle of the shadow address space technique. Every
process has two address spaces. One address space which has the user
space mapped but not the kernel (i.e., the shadow address space), and
a second address space which has the kernel mapped but the user space
protected with SMAP and SMEP.

The switch between the user address space and the kernel address space
now requires updating the CR3 register with the value of the corresponding
PML4. Upon a context switch, the CR3 register initially remains at the old
value, mapping the user address space. At this point KAISER can only
perform a very limited amount of computations, operating on a minimal
set of registers and accessing only parts of the kernel that are mapped both
in kernel and user space. As interrupts can be triggered from both user
and kernel space, interrupt sources can be both environments and it is not
generally possible to determine the interrupt source within the limited
amount of computations we can perform at this point. Consequently,
switching the CR3 register must be a short static computation oblivious
to the interrupt source.

With shadow address spaces we provide a solution to this problem. Shadow
address spaces are required to have a globally fixed power-of-two offset
between the kernel PML4 and the shadow PML4. This allows switching
to the kernel PML4 or the shadow PML4 respectively, regardless of the in-
terrupt source. For instance, setting the corresponding address bit to zero
switches to the kernel PML4 and setting it to one switches to the shadow
PML4. The easiest offset to implement is to use bit 12 of the physical
address. That is, the PML4 for the kernel space and shadow PML4 are
allocated as an 8 kB-aligned physical memory block. The shadow PML4
is always located at the offset +4 kB. With this trick, we do not need to
perform any memory lookups and only need a single scratch register to
switch address spaces.

The memory overhead introduced through shadow address spaces is very
small. We have an overhead of 8 kB of physical memory per user thread

312 Chapter 10. KASLR is Dead: Long Live KASLR

CR3 Pair

CR3 + 0x1000

CR3

User

Kernel

PGD User

PGD Kernel

C
R
3
[1
2
]
=

1

C
R
3
[1
2
]
=

0

Figure 10.3.: Shadow address space: PML4 of user address space and
kernel address space are placed next to each other in physical
memory. This allows to switch between both mappings by
applying a bit mask to the CR3 register.

for kernel page directorys (PDs) and PTs and 12 kB of physical memory
per user process for the shadow PML4. The 12 kB are due to a restric-
tion in the Linux kernel that only allows to allocate blocks containing 2n

pages. Additionally, KAISER has a system-wide total overhead of 1MB
to allocate 256 global kernel page directory pointer tables (PDPTs) that
are mapped in the kernel region of the shadow address spaces.

Minimizing the Kernel Address Space Mapping. To solve challenge 2,
we identified the memory regions that need to be mapped for both user
space and kernel space, i.e., the absolute minimum number of pages to
be compatible with x86 and its features used in the Linux kernel. While
previous work [5] suggested that only a negligible portion of the interrupt
dispatcher code needs to be mapped in both address spaces, in practice
more locations are required.

As x86 and Linux are built around using interrupts for context switches,
it is necessary to map the interrupt descriptor table (IDT), as well as
the interrupt entry and exit .text section. To enable multi-threaded
applications to run on different cores, it is necessary to identify per-CPU
memory regions and map them into the shadow address space. KAISER
maps the entire per-CPU section including the interrupt request (IRQ)
stack and vector, the global descriptor table (GDT), and the task state
segment (TSS). Furthermore, while switching to privileged mode, the
CPU implicitly pushes some registers onto the current kernel stack. This
can be one of the per-CPU stacks that we already mapped or a thread

3. Design and Implementation of KAISER 313

stack. Consequently, thread stacks need to be mapped too.

We found that the idea to unmap the user space entirely in kernel space
is not practical. The design of modern operating system kernels is based
upon the capability of accessing user space addresses from kernel mode.
Furthermore, SMEP protects against executing user space code in kernel
mode. Any memory location that is user-accessible cannot be executed
by the kernel. SMAP protects against invalid user memory references in
kernel mode. Consequently, the effective user memory mapping is non-
executable and not directly accessible in kernel mode.

Efficient and Secure TLB Management. The Linux kernel generally
tries to minimize the number of implicit TLB flushes. For instance when
switching between kernel and user mode, the CR3 register is not updated.
Furthermore, the Linux kernel uses PTE global bits to preserve map-
pings that exist in every process to improve the performance of context
switches. The global bit of a PTE marks pages to be excluded from im-
plicit TLB flushes. Thus, they reduce the impact of implicit TLB flushes
when modifying the CR3 register.

To solve challenge 3, we investigate the effects of these global bits. We
found that it is necessary to either perform an explicit full TLB flush, or
disable the global bits to eliminate the leakage completely. Surprisingly,
we found the performance impact of disabling global bits to be entirely
negligible.

Disabling global bits alone does not eliminate any leakage, but it is a
necessary building block. The main side-channel defense in KAISER is
based on the separate shadow address spaces we described above. As the
two address spaces have different CR3 register values, KAISER requires
a CR3 update upon every context switch. The defined behavior of cur-
rent Intel x86 processors is to perform implicit TLB flushes upon every
CR3 update. Venkatasubramanian et al. [25] described that beyond this
architecturally defined behavior, the CPU may implement further opti-
mizations as long as the observed effect does not change. They discussed
an optimized implementation which tags the TLB entries with the CR3
register to avoid frequent TLB flushes due to switches between processes
or between user mode and kernel mode. As we show in the following sec-
tion, our evaluation suggests that current Intel x86 processors have such
optimizations already implemented. KAISER benefits from these opti-
mizations implicitly and consequently, its TLB management is efficient.

314 Chapter 10. KASLR is Dead: Long Live KASLR

4. Evaluation
We evaluate and discuss the efficacy and performance of KAISER on a
desktop computer with an Intel Core i7-6700K Skylake CPU and 16GB
RAM. To evaluate the effectiveness of KAISER, we perform all three
microarchitectural attacks applicable to Skylake CPUs (cf. Section 2).
We perform each attack with and without KAISER enabled and show
that KAISER can mitigate all of them. For the performance evaluation,
we compare various benchmark suites with and without KAISER and
observe a negligible performance overhead of only 0.08% to 0.68%.

4.1. Evaluation of Microarchitectural Attacks

Double Page Fault Attack. As described in Section 2, the double page
fault attack by Hund et al. [7] exploits the fact that the page translation
caches store information to valid kernel addresses, resulting in timing
differences. As KAISER does not map the kernel address space, kernel
addresses are never valid in user space and thus, are never cached in user
mode. Figure 10.4 shows the average execution time of the second page
fault. For the default kernel, the execution time of the second page fault
is 12 282 cycles for a mapped address and 12 307 cycles for an unmapped
address. When running the kernel with KAISER, the access time is 14 621
in both cases. Thus, the leakage is successfully eliminated.

Note that the observed overhead for the page fault execution does not
reflect the actual performance penalty of KAISER. The page faults trig-
gered for this attack are never valid and thus can never result in a valid
page mapping. They are commonly referred to as segmentation faults,
typically terminating the user program.

Intel TSX-based Attack. The Intel TSX-based attack presented by
Jang et al. [10] (cf. Section 2) exploits the same timing difference as the
double page fault attack. However, with Intel TSX the page fault handler
is not invoked, resulting in a significantly faster and more stable attack.
As the basic underlying principle is equivalent to the double page fault
attack, KAISER successfully prevents this attack as well. Figure 10.5
shows the execution time of a TSX transaction for unmapped pages,
non-executable mapped pages, and executable mapped pages. With the
default kernel, the transaction execution time is 299 cycles for unmapped
pages, 270 cycles for non-executable mapped pages, and 226 cycles for

4. Evaluation 315

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

unmapped

mapped

12,307

12,282

14,621

14,621

Execution time in cycles

KAISER

KAISER

Figure 10.4.: Double page fault attack with and without KAISER:
mapped and unmapped pages cannot be distinguished if
KAISER is in place.

executable mapped pages. With KAISER, we measure a constant timing
of 300 cycles. As in the double page fault attack, KAISER successfully
eliminates the timing side channel.

We also verified this result by running the attack demo by Jang et al.
[9]. On the default kernel, the attack recovers page mappings with a
100% accuracy. With KAISER, the attack does not even detect a single
mapped page and consequently no modules.

Prefetch Side-Channel Attack. As described in Section 2, prefetch side-
channel attacks exploit timing differences in software prefetch instruc-
tions to obtain address information. We evaluate the efficacy of KAISER
against the two prefetch side-channel attacks presented by Gruss et al.
[5].

Figure 10.6 shows the median execution time of the prefetch instruction
in cycles compared to the actual address translation level. We observed
an execution time of 241 cycles on our test system for page translations
terminating at PDPT level and PD level respectively. We observed an
execution time of 237 cycles when the page translation terminates at the
PT level. Finally, we observed a distinct execution times of 212 when
the page is present and cached, and 515 when the page is present but
not cached. As in the previous attack, KAISER successfully eliminates
any timing differences. The measured execution time is 241 cycles in all
cases.

Figure 10.7 shows the address-translation attack. While the correct guess

316 Chapter 10. KASLR is Dead: Long Live KASLR

0 50 100 150 200 250 300

unmapped

mapped
executable

mapped
non-executable

299

226

270

300

300

300

Execution time in cycles

KAISER

KAISER

KAISER

Figure 10.5.: Intel TSX-based attack: On the default kernel, the status
of a page can be determined using the TSX-based timing
side channel. KAISER completely eliminates the timing
side channel, resulting in an identical execution time inde-
pendent of the status.

can clearly be detected without the countermeasure (dotted line), KAISER
eliminates the timing difference. Thus, the attacker is not able to deter-
mine the correct virtual-to-physical translation anymore.

4.2. Performance Evaluation

As described in Section 3.2, KAISER has a low memory overhead of 8 kB
per user thread, 12 kB per user process, and a system-wide total overhead
of 1MB. A full-blown Ubuntu Linux already consumes several hundred
megabytes of memory. Hence, in our evaluation the memory overhead
introduced by KAISER was hardly observable.

In order to evaluate the runtime performance impact of KAISER, we ex-
ecute different benchmarks with and without the countermeasure. We
use the PARSEC 3.0 [1] (input set “native”), the Kaiserpgbench [24] and
the SPLASH-2x [16] (input set “native”) benchmark suites to exhaus-
tively measure the performance overhead of KAISER in various different
scenarios.

The results of the different benchmarks are summarized in Figure 10.8 and
Table 10.1. We observed a very small average overhead of 0.28% for all
benchmark suites and a maximum overhead of 0.68% for single tests. This
surprisingly low performance overhead underlines that KAISER should
be deployed in practice.

4. Evaluation 317

PDPTE PDE PTE Page
(cached)

Page
(uncached)

200

300

400

500

241 241 237 212

515

241 241 241 241 241

Mapping level

E
x
ec
u
ti
on

ti
m
e

in
cy
cl
es

default
KAISER

Figure 10.6.: Median prefetch execution time in cycles depending on the
level where the address translation terminates. With the
default kernel, the execution time leaks information on the
translation level. With KAISER, the execution time is iden-
tical and thus does not leak any information.

Table 10.1.: Average performance overhead of KAISER.

Benchmark Kernel Runtime
Average

Overhead

1 core 2 cores 4 cores 8 cores

PARSEC 3.0
default 27:56,0 s 14:56,3 s 8:35,6 s 7:05,1 s

0.37%
KAISER 28:00,2 s 14:58,9 s 8:36,9 s 7:08,0 s

pgbench
default 3:22,3 s 3:21,9 s 3:21,7 s 3:53,5 s

0.39%
KAISER 3:23,4 s 3:22,5 s 3:22,3 s 3:54,7 s

SPLASH-2X
default 17:38,4 s 10:47,7 s 7:10,4 s 6:05,3 s

0.09%
KAISER 17:42,6 s 10:48,5 s 7:10,8 s 6:05,7 s

4.3. Reproducibility of Results
In order to make our evaluation of efficacy and performance of KAISER
easily reproducible, we provide the source code and precompiled Debian
packages compatible with Ubuntu 16.10 on GitHub. The repository can
be found at https://github.com/IAIK/KAISER. We fully document how
to build the Ubuntu Linux kernel with KAISER protections from the
source code and how to obtain the benchmark suites we used in this
evaluation.

https://github.com/IAIK/KAISER

318 Chapter 10. KASLR is Dead: Long Live KASLR

0 20 40 60 80 100 120
0

100

200

300

Page offset in kernel direct map

M
in

im
u

m
la

te
n

cy
in

cy
cl

es

default
KAISER

Figure 10.7.: Minimum access time after prefetching physical direct-map
addresses. The low peak in the dotted line reveals to which
physical address a virtual address maps (running the default
kernel). The solid line shows the same attack on a kernel
with KAISER active. KAISER successfully eliminates the
leakage.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

CPU threads

R
u
n
ti
m
e
ov
er
h
ea
d
[%

]

pgbench
PARSEC 3.0
splash2x

Figure 10.8.: Comparison of the runtime of different benchmarks when
running on the KAISER-protected kernel. The default ker-
nel serves as baseline (=100%). We see that the average
overhead is 0.28% and the maximum overhead is 0.68%.

5. Future Work 319

5. Future Work
KAISER does not consider BTB attacks, as they require knowledge of the
BTB behavior. The BTB behavior has not yet been reverse-engineered
for recent Intel processors, such as the Skylake microarchitecture (cf. Sec-
tion 2.3). However, if the BTB is reverse-engineered in future work, at-
tacks on systems protected by KAISER would be possible. Evtyushkin et al.
[3] proposed to use virtual address bits > 30 to randomize memory lo-
cations for KASLR as a zero-overhead countermeasure against BTB at-
tacks. KAISER could incorporate this adaption to effectively mitigate
BTB attacks as well.

Intel x86-64 processors implement multiple features to improve the per-
formance of address space switches. Linux currently does not make use of
all features, e.g., Linux could use process-context identifiers to avoid some
TLB flushes. The performance of KAISER would also benefit from these
features, as KAISER increases the number of address space switches.
Consequently, utilizing these optimization features could lower the run-
time overhead below 0.28%.

KAISER exploits very recent processor features which are not present on
older machines. Hence, we expect higher overheads on older machines if
KAISER is employed for security reasons. The current proof-of-concept
implementation of KAISER shows that defending against the attack is
possible. However, it does not eliminate all KASLR information leaks,
especially information leaks that are not caused by the same hardware
effects. A full implementation of KAISER must map any randomized
memory locations that are used during the context switch at fixed offsets.
This is straightforward, as we have already introduced new mappings
which can easily be extended. During the context switch, kernel memory
locations are only accessed through these fixed mappings. Hence, the
offsets of the randomized parts of the kernel can not be leaked in this
case.

6. Conclusion
In this paper we discussed limitations of x86 impeding practical kernel ad-
dress isolation. We show that our countermeasure (KAISER) overcomes
these limitations and eliminates all microarchitectural side-channel at-
tacks on kernel address information on recent Intel Skylake systems. More
specifically, we show that KAISER protects the kernel against double page

320 Chapter 10. KASLR is Dead: Long Live KASLR

fault attacks, prefetch side-channel attacks, and TSX-based side-channel
attacks. KAISER enforces a strict kernel and user space isolation such
that the hardware does not hold any information about kernel addresses
while running user processes. Our proof-of-concept is implemented on top
of a full-fledged Ubuntu Linux kernel. KAISER has a low memory over-
head of approximately 8 kB per user thread and a low runtime overhead
of only 0.28%.

Acknowledgments
We would like to thank our anonymous reviewers, Anders Fogh, Rodrigo
Branco, Richard Weinbeger, Thomas Garnier, David Gens and Mark
Rutland for their valuable feedback. This project has received funding
from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No
681402). This work was partially supported by the TU Graz LEAD
project ”Dependable Internet of Things in Adverse Environments”.

References
[1] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD

thesis. Princeton University, Jan. 2011.
[2] Rodrigo Branco and Shay Gueron. “Blinded random corruption

attacks”. In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST’16). 2016.

[3] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Jump over ASLR: Attacking branch predictors to bypass ASLR”.
In: International Symposium on Microarchitecture (MICRO’16).
2016.

[4] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the
MMU”. In: NDSS’17. 2017.

[5] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. “Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR”. In: CCS’16. 2016.

[6] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
“Rowhammer.js: A Remote Software-Induced Fault Attack in
JavaScript”. In: DIMVA’16. 2016.

References 321

[7] Ralf Hund, Carsten Willems, and Thorsten Holz. “Practical
Timing Side Channel Attacks against Kernel Space ASLR”. In:
S&P’13. 2013.

[8] Intel. “Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3 (3A, 3B & 3C): System Programming Guide”.
In: 253665 (2014).

[9] Yeongjin Jang. The DrK Attack - Proof of concept. https://
github.com/sslab-gatech/DrK. Retrieved on February 24, 2017.
2016.

[10] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Ker-
nel Address Space Layout Randomization with Intel TSX”. In:
CCS’16. 2016.

[11] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. “ret2dir: Rethinking kernel isolation”. In: USENIX Se-
curity Symposium. 2014, pp. 957–972.

[12] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping bits in memory without accessing them: An experimen-
tal study of DRAM disturbance errors”. In: ISCA’14. 2014.

[13] Kirill A. Shutemov. Pagemap: Do Not Leak Physical Addresses
to Non-Privileged Userspace. https://git.kernel.org/cgit/
linux/kernel/git/torvalds/linux.git/commit/?id=ab676b
7d6fbf4b294bf198fb27ade5b0e865c7ce. Retrieved on November
10, 2015. Mar. 2015.

[14] Jonathan Levin. Mac OS X and IOS Internals: To the Apple’s
Core. John Wiley & Sons, 2012.

[15] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and
Kay Römer. “Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud”. In: NDSS’17. to appear. 2017.

[16] PARSEC Group. A Memo on Exploration of SPLASH-2 Input
Sets. http://parsec.cs.princeton.edu. 2011.

[17] PaX Team. Address space layout randomization (ASLR). http:
//pax.grsecurity.net/docs/aslr.txt. 2003.

[18] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

[19] Mark E Russinovich, David A Solomon, and Alex Ionescu. Win-
dows internals. Pearson Education, 2012.

https://github.com/sslab-gatech/DrK
https://github.com/sslab-gatech/DrK
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
http://parsec.cs.princeton.edu
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

322 Chapter 10. KASLR is Dead: Long Live KASLR

[20] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM
rowhammer bug to gain kernel privileges”. In: Black Hat 2015
Briefings. 2015.

[21] Hovav Shacham. “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86)”. In: 14th ACM
CCS. 2007.

[22] Hovav Shacham, Matthew Page, Ben Pfaff, EuJin Goh, Nagendra
Modadugu, and Dan Boneh. “On the effectiveness of address-space
randomization”. In: CCS’04. 2004.

[23] Solar Designer. Getting around non-executable stack (and fix). ht
tp://seclists.org/bugtraq/1997/Aug/63. Aug. 1997.

[24] The PostgreSQL Global Development Group. pgbench. https://
www.postgresql.org/docs/9.6/static/pgbench.html. 2016.

[25] Girish Venkatasubramanian, Renato J. Figueiredo, Ramesh Il-
likkal, and Donald Newell. “TMT: A TLB Tag Management
Framework for Virtualized Platforms”. In: International Journal
of Parallel Programming 40.3 (2012).

http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
https://www.postgresql.org/docs/9.6/static/pgbench.html
https://www.postgresql.org/docs/9.6/static/pgbench.html

Exploiting Microarchitectural
Optimizations from Software
Moritz Lipp PHD THESIS

With abstraction layers, the implementation details of software and
hardware components are hidden away to deal with the complexity of
modern computer systems. While the Instruction Set Architecture (ISA)
serves as an interface between the CPU and the software running on it,
the computer microarchitecture is the actual hardware implementation of
the ISA. The clearly defined interfaces do not only cover up the com-
plexity but also allow different variants of the microarchitecture to be
built. While they all fulfill the contract defined by the ISA, they can
differ in other aspects, such as performance, security, energy efficien-
cy, or other physical properties. Microarchitectural attacks exploit
these variations occurring on the microarchitectural level of modern
CPUs. With side-channel attacks and fault attacks, there are different
ways that allow learning from and tampering with the actual implementa-
tion. These attacks allow adversaries to extract sensitive information
processed on the system, e.g., cryptographic keys or user behavior.

In this thesis, we expand the landscape of software-based microarchi-
tectural attacks and defenses. By exploring the security implications
of different optimizations, we identify previously unknown attack vec-
tors, allowing us to circumvent the most fundamental security guaran-
tees of modern processors. We combine traditional physical side-channel
analyses with software-based microarchitectural attack techniques to
leak sensitive information processed on the CPU. We enlarge our un-
derstanding of which settings and circumstances facilitate different
existing attacks and give new insights into developing effective and
efficient mitigations.

Graz University of Technology
Faculty of Computer Science
Institute for Applied Information Procesing and Communications

	Affidavit
	Abstract
	Acknowledgements
	Contents
	Exploiting Microarchitectural Optimizations from Software
	Introduction and Contribution
	Background
	State of the Art
	Conclusion
	References

	Publications
	Take A Way
	Meltdown
	Nethammer
	Keystroke Timing Attacks
	PLATYPUS
	KASLR is Dead: Long Live KASLR

