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Abstract

Remote exploration, also known as tele-exploration, is an important application scenario of telep-

resence. It allows users to discover a remote environment, at the comfort of their own place

and securely away from potential harms of the remote location. The range of applications can

stretch from surveillance and rescue operations to space exploration. However, being remote to an

environment, but yet still performing a task as if present, is a challenging problem. In order to ease

the problem of tele-exploration and to reduce a user’s cognitive load, in this thesis, we introduce a

set of visualization and interaction methods.

We present a photo-realistic rendering method by adapting and improving Image-Based Modeling

and Rendering (IBMR) techniques for real-time performance. Specifically, we demonstrate a novel

view planning method for real-time memory management. In addition, we improve the rendering

quality with our spatio-temporally coherent inpainting method. We inpaint 3D regions where a 3D

reconstruction system couldn’t perform as intended and created holes in the model.

Despite having a crucial role in remote exploration, visualization alone is not sufficient to address

the needs of every tele-exploration scenario. For scenarios where interactions are also desirable, on

top of our IBMR system, we showcase our novel interaction techniques with drones.
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Kurzfassung

Fernerkundung, auch bekannt als Tele-Erkundung, ist ein wichtiges Anwendungsszenario von

Telepräsenz.

Es erlaubt Anwendern eine entfernte Umgebung wahrzunehmen, ohne sich dabei eventuellen

Sicherheitsrisiken an einem entfernten Ort auszusetzen. Darüber hinaus kann der entfernte Ort von

überall aus erkundet werden, wie zum Beispiel bequem vom eigenen Heim aus.

Das potentielle Spektrum von Anwendungen reicht von Überwachung und Rettungsoperationen bis

hin zur Erkundung des Weltraums. Eine Aufgabe mittels Telepresenz durchzuführen, ohne dabei

selber physisch am Zielort anwesend zu sein, stellt allerdings eine Herausforderung dar. Diese

Arbeit stellt verschiedene Visualisierungs- und Interaktionsmethoden vor, die der Verringerung der

kognitiven Belastung des Anwenders bei der Durchführung einer solchen Tele-Operation dienen.

v





Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared

sources/resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented doctoral thesis.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und

inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Dissertation identisch.

Ort Datum Unterschrift





Acknowledgments

First and foremost I would like to thank Prof. Dr. Dieter Schmalstieg for giving me the opportunity

and financial support to write my thesis with him. Throughout my thesis, his continued guidance

and support made this thesis possible. Also I would like to thank him for giving me the freedom to

choose my research topics. A special thanks goes to Dr. Denis Kalkofen for always providing me

with needed related work, no matter what topic I was talking about. His support during my first

publication played a crucial role in my PhD.

I also would like to thank Dr. Peter Roth and Dr. Clemens Arth for supporting me with all my

computer vision related questions.

Most importantly, this thesis wouldn’t have been possible without continued motivational support

of my family: Seyit Erat, Elif Erat, Ozan Erat. Not to forget my in-law Dr. Melissa Erat and dearest

nephews Miles and Mus.

Finally, I would like to thank my colleagues Dr. Shohei Mori, Markus Hoell, Dr. Peter Mohr, David

Mandl and Dr. Christian Pirchheim for their collaboration.

ix





Contents

1 Introduction 1

1.1 Telepresence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Brief History of Telepresence . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Tele-Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Improving and Adapting IBMR Systems for Tele-Exploration . . . . . . 4

1.4.2 Assisting Interactions with IBMR . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Real-Time View Planning for Unstructured Lumigraph Modeling . . . . 7

1.5.2 InpaintFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.3 Drone-Augmented Human Vision . . . . . . . . . . . . . . . . . . . . . 10

1.6 Collaboration Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 13

2.1 Image-Based Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Multi-View Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Video Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Image and Depth Inpainting . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Drone Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Egocentric Drone Control . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Exocentric Drone Control . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



xii

2.3.3 Visualization of Remote or Occluded Information . . . . . . . . . . . . . 23

3 View Planning and Rendering 25

3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Basic Lumigraph Blending . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 View Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 View Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 View Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Coverage Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Trade-off Between Positional and Directional Coverage . . . . . . . . . . 38

3.2.3 Cell Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Distance of Views and Cells . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.5 View Store Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.6 Influence of Per-Cell View References on Quality . . . . . . . . . . . . . 42

3.2.7 Influence of Refinement on Quality . . . . . . . . . . . . . . . . . . . . 42

3.2.8 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.9 Quality Comparison to Reference Methods . . . . . . . . . . . . . . . . 44

3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 InpaintFusion 49

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 The Problem of Depth Inpainting . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3 Scene Scanning Using Simultaneous Localization and Mapping (SLAM) 54

4.1.4 Object Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.5 Keyframe Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.6 Keyframe Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.7 Keyframe Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.8 Keyframe Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.9 View-dependent Keyframe Blending . . . . . . . . . . . . . . . . . . . . 61

4.1.10 AR Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



xiii

4.2.2 Inpainting Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Drone-Augmented Human Vision 79

5.1 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Pick-and-Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.2 Gaze-to-See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.3 Overview-and-Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Drone Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.2 Flight Management Control . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.3 Control of Drone Movements . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.4 Precomputed Path Planning . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.5 Joypad Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.6 Head-mounted Display . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.7 X-ray Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Physical Viewpoint Study . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Virtual Viewpoint Study . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusions 103

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.2 Future Work and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A List of Acronyms 107

B Videos 109

B.1 Related to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.2 Related to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



xiv

B.3 Related to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 111



1
Introduction

Contents
1.1 Telepresence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Brief History of Telepresence . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Tele-Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1.1 Telepresence

Telepresence allows a person to virtually experience a feeling of presence at a remote location by

utilizing a set of technologies such as robotics, computer graphics and computer vision. A precise

definition and quantification of sensory feedback required to be considered telepresent somewhere

is still under discussion by the scientific community.

Telepresence has a range of applications that can even include live television broadcasting, phone or

video conferencing, depending on the definition. Therefore, this thesis assumes a stricter definition

and expects at least visual sensory information to be present from a distant location with the

flexibility of changing the viewpoint.
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1942, Waldo
1949, Raymond Goertz invented 

first master-slave arm. 

1959, Brother Assasin
1980, Term Telepresence coined.

1992, Virtual Fixtures

2016, Holoportation

Figure 1.1: Major milestones in Telepresence.© Dan McCoy/Rainbow, © Argonne National Laboratory.
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1.2 A Brief History of Telepresence

Potential applications of telepresence are not only evaluated by scholars, but started to be conceptu-

alized much earlier by the science fiction community, including novelists and movie makers (Figure

1.1). The earliest mention of a telepresence system can be attributed to the novel titled Waldo.

Written by Robert A. Heinlein in 1942, Waldo presents the fundamental idea of a telepresence

system. In the novel, the main character who is living off earth and wearing special hand gloves,

trains and controls factory workers on the earth via the counterparts of the hand gloves. The earliest

implementation of the idea of Waldo can be traced back to 1949, to the robotist Raymond Goertz.

Goertz developed the first mechanical slave-master manipulator in order to allow scientist to safely

experiment on nuclear materials behind protected walls and glass [39]. This mechanical coupling

of hand motions with the distant actuator created a major milestone in force feedback sensation,

therefore this work differentiates itself from teleoperation. Later, Goertz changed his mechanical

design and coupled a master-slave system with electrical communication, where both sides had

a sensory mechanism. By 1969, the author Fred Saberhagen described the complete idea of a

telepresence system in his novel Brother Assassin. Saberhagen describes a full robotic body that is

controlled immersively by a remote operator. Despite the wide range of existing applications, it

wasn’t until 1980 that the word telepresence was used. The term is first coined by the American

scientist Marvin Minsky in an effort to emphasize the immersive nature of this new technology and

to differentiate it from remote control tools known as teleoperator and telefactor.

In contrast to teleoperation, telepresence may or may not involve physical interaction with the

remote environment, while it must receive at least one sensory information from a remote location.

In 1992, the first complete telepresence system was developed by the US Air Force, known as virtual

fixtures [113]. It is considered complete, as it involved all sensory inputs; sound, image, force-

feedback from remote location. Thanks to the developments in visual computing and increasing

computation power, by the early 2000s, it became possible to reconstruct the remote environment

and render it from a desired viewpoint of the user [100, 101, 120]. The user’s viewpoint became

independent of the remote camera, and this eliminated motion sickness related to network lag. As

a further development, some research work also involved Image-Based Modeling and Rendering

(IBMR) techniques to create a more realistic telepresence experience [103]. However due to

memory and computation demand, previous to the writing of this thesis, IBMR techniqes were

never applied for a tele-exploration task, which is an application of telepresence.

Reference:

Goertz, Raymond C (1953)
Remote-control manipulator

Reference:

Rosenberg, Louis B (1992)
The Use of Virtual Fixtures as Perceptual Overlays to Enhance Operator Performance in Remote Environments.

Reference:

 ()


Reference:

Orts-Escolano, Sergio and Dou, Mingsong and Tankovich, Vladimir and Loop, Charles and Cai, Qin and Chou, Philip and Mennicken, Sarah and Valentin, Julien and Pradeep, Vivek and Wang, Shenlong and Kang, Sing and Rhemann, Christoph and Kohli, Pushmeet and Lutchyn, Yuliya and Keskin, Cem and Izadi, Shahram and Fanello, Sean and Chang, Wayne and Kowdle, Adarsh and Degtyarev, Yury and Kim, David and Davidson, Philip and Khamis, Sameh (2016)
Holoportation: Virtual 3D Teleportation in Real-time
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Figure 1.2: Andritz remote assistance tool. © Andritz AG

1.3 Tele-Exploration

As a special application of telepresence, tele-exploration allows users to remotely discover an

environment with a feeling of presence and flexibility to change their viewpoint in the environment.

Traditionally, data is collected from the remote enviroment progressively via a remote controlled

robot, just like in a teleoperation task. Tele-operated robots can easily access locations which are

impassable or too dangerous for humans to reach. Using remotely operated robots allows exploring

such areas from a safe distance, providing essential data for diverse applications, such as rescue

missions, infrastructure inspection or just photographic exploration.

In contrast to teleoperation, tele-exploration also allows data to be collected using any kind of

camera device operated in the remote location by a person. Therefore, it can be used for remote

assistance applications or simply coordinating a group of workers in a remote factory (see Figure

1.2).

1.4 Problem Statement

Tele-exploration tasks, just like any other telepresence application, can be implemented with or

without granting the remote operator physical interaction abilities. Hence, this thesis will also

consider exploration scenarios where physical interaction could be required. In particular, we

identified 2 main problems with in the remote exploration problem: (1) Improving and adapting

IBMR systems for the requirements of the exploration task; (2) assisting interactions with IBMR.

1.4.1 Improving and Adapting IBMR Systems for Tele-Exploration

Advanced Simultaneous Localization and Mapping (SLAM) can obtain geometric reconstructions

in real time. In particular, mobile RGB-D sensors make it easy to obtain dense geometry. The
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reconstructed scene can be rendered in real-time with free viewpoint control by the user. Free-

viewpoint rendering can instantly be used on incomplete scenes, even while the reconstruction

is still ongoing. Apart from feedback for the camera operator, instant reconstruction enables a

tele-exploration system to be free from the on-board camera’s viewpoint [117].

However, instant reconstruction is still an emerging technology and requires further technical

improvements. Among these required improvements of tele-exploration enabling technology, we

have identified two areas that we consider particularly important:

(1) Photometric reconstruction. Acquiring surface colors and textures is often only treated as a

byproduct of geometric reconstruction. A typical approach storing only a single, averaged color per

scene point cannot preserve high-quality scene appearance.

(2) Spatio-temporally coherent inpainting. Novel views generated from incomplete scenes can

contain seams and holes. Artifact-free, dense scanning can be difficult and time-consuming, if

the scene contains hard-to-reach locations. Moreover, users of tele-exploration applications may

want to remove objects or replace them with others. For example, a user of an interior design

application may wish to try out new furniture without having to physically remove existing furniture

first [140]. In these cases, we would like a spatiotemporally coherent inpainting to fill in the blanks

or unwanted areas.

Many techniques in these areas exist, but most are designed for offline use. Approaches that

run for minutes or hours [4, 6, 48, 133] and require unbounded memory are not compatible with

tele-exploration requirements. In particular, global methods depend on scene complexity, making it

extremely difficult to maintain strictly bounded computation times and memory use.

1.4.2 Assisting Interactions with IBMR

Discovering a remote environment is a complex and sometimes a dangerous task, which often

involves teleoperation robots. Introducing IBMR into this particular task allow remote operators to

control the robot from their own independent viewpoint, while maintaining the telepresence feeling

thanks to IBMR.

Depending on the situation, a tele operator may choose between two principal modes of control. In

either mode, a conventional handheld controller is used to navigate the robot, but the viewing differs

between modes: In exocentric viewing mode, the operator observes the robot from a stationary

viewpoint while steering. In egocentric viewing – or first-person – mode, video from the robot’s on-

board camera is streamed to the operator to inform the steering. Recently, wearing a Head-Mounted

Reference:

Schmalstieg, Dieter and Höllerer, Tobias (2016)
Augmented Reality - Principles and Practice

Reference:

Zhang, Edward and Cohen, Michael F and Curless, Brian (2016)
Emptying, Refurnishing, and Relighting Indoor Spaces

Reference:

 ()
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Display (HMD) to watch the streaming video has become a popular enhancement of the egocentric

mode.

Obviously, controlling a robot in exocentric mode is difficult in the presence of significant occlu-

sions, and it becomes impossible when the robot is exploring the inside of a building. In this case,

the operator is forced to use an egocentric mode based on streaming the image from the on-board

camera. But navigation in a narrow environment, while relying exclusively on an on-board camera

with a potentially limited field of view, can be difficult.

In such a difficult situation, the operator may substantially benefit from an autopilot system, which

enables indirect control. The operator specifies a destination, and the autopilot steers the robot

there autonomously. State-of-the-art autopilots stabilize the robot’s pose during motion and prevent

crashing into obstacles, but cannot perform path-planning or way-finding. The operator must still

maintain the overview and guide the robot step by step.

Precisely this overview is lacking if only an egocentric view is available, making robot control more

difficult than necessary. An exocentric view, showing the robot’s surrounding from the operator’s

rather than the robot’s point of view, would clearly be preferable.

Virtual Reality (VR) can provide a synthetic exocentric view by combining the live video with a

3D model of the occluded environment from any viewpoint, independent of the user’s physical

viewpoint. Using image-based rendering of the robot’s video stream delivers a realistic impression

with live updates [99].

In addition to supporting a virtual viewpoint, Augmented Reality (AR) also allows users to

investigate the scene from their physical viewpoint and spatially relate occluded geometry with the

visible world. In case of a disaster scenario, a rescue team can quickly locate an imminent danger,

such as a fire or explosion behind an occluder, and proceed with caution.

1.5 Contributions

In this thesis, a framework is presented for instant (i.e., real-time and incremental) lumigraph

modeling, rendering and inpainting of incomplete scenes obtained with an RGB-D sensor. In

addition, we present novel interaction techniques powered by image-based rendering to approach the

tele-exploration problem as a whole. In the remainder of this section, we explain these contributions

in more detail.

Reference:

Neumann, Ulrich and You, Suya and Hu, Jinhui and Jiang, Bolan and Lee, JongWeon (2003)
Augmented Virtual Environments (AVE): Dynamic Fusion of Imagery and 3D Models
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Table 1.1: Stages of an image-based rendering pipeline

Stage Sub-stage Time unit Number of views considered
Modeling View capturing Per input image Infinite

View planning Per input image Fixed upper bound
View refinement Per novel view Fixed upper bound

Rendering View selection Per stored view Only views “close” to novel viewpoint
View blending Per fragment Only views with non-zero weight

1.5.1 Real-Time View Planning for Unstructured Lumigraph Modeling

For photometric reconstruction of appearance, we harvest the rich input image stream and organize

it in a sensible way. IBMR provides methods for using image collections directly in an appearance

model. For best results in larger scenes, IBMR is usually combined with a dense geometric model,

yielding a variant of a lumigraph [41]. Table 1.1 summarizes a typical IBMR pipeline, which can

roughly be divided into two stages, modeling and rendering.

The objective of the modeling stage is to obtain an IBMR model. This stage is mostly run offline,

in particular, when executed jointly with geometric reconstruction. Conceptually, IBMR consists

of up to three sub-stages: View capturing obtains the input images. View planning decides which

views (images annotated with camera pose) from an input image stream are kept. If a view is kept,

view refinement tries to rectify any shortcomings of the view data, such as improving the spatial

registration or correcting color artifacts.

The rendering stage always runs at the target frame rate. Its purpose is to generate, per frame, a

novel view for a user-specified viewpoint. Rendering consists of two sub-stages, view selection and

view blending. View selection is concerned with finding appropriate views for sampling, guided by

the novel viewpoint. It can operate per frame or per rendered fragment. View blending determines

the weights given to individual views for a rendered fragment.

Throughout this pipeline, the number of views considered must be reduced continuously, to make

the computational effort of subsequent stages tractable. However, for a basic IBMR system, only

capturing and blending are mandatory, while the intermediary stages (planning, refinement and

selection) are optional. Many systems assume that a reasonable set of views has been captured

in advance and concentrate only on the rendering stage, i.e., selection and blending. Another

family of techniques attempts to synthesize the best possible view-independent texture map from

the available views using offline optimization, concentrating on refinement and selection. In this

case, the blending trivially reduces to conventional texture mapping, assuming only diffuse surface

reflectance [6, 36, 133]. There are also end-to-end systems, which consider the entire pipeline, but
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they typically assume sufficient storage for all desired views. Hence, they have no need for view

planning.

We propose an IBMR pipeline that can operate in real time, which implies that the input stream

must be processed immediately to obtain a photometric reconstruction. Even if we allow a small

delay, such as a few seconds or even tens of seconds, for new photometric data to become available,

we cannot afford to unconditionally cache all images from an input stream and process them later,

since we will never catch up. Instead, we must be able to process them at frame rate. For this

purpose, view planning becomes mandatory [120].

We are not the first to consider IBMR view planning, but previous work in this area has been

limited and not suitable for tele-exploration tasks. Early work [33, 131] only intended to cover

each scene primitive (i.e., each triangle or each surface point) once. Some later work considered

interactive feedback for view planning [21, 57], but most IBMR systems to date only enforce a

minimal distance between views and tend to store a large number of redundant views [58]. In

contrast, we propose to carefully select optimal views to build an unstructured lumigraph [9] that

meets the following requirements:

1. Consider coverage of every primitive in every view

2. Operate on an input stream in a strictly incremental fashion [21]

3. Stay within bounded memory

We will address these requirements by incrementally filling a view store of bounded size. We will

organize the scene using a regular discretization [48]. However, since our plan must be constructed

online and in bounded memory, we cannot rely on any global optimization procedures. Instead,

for each new view, we propose to derive a scene coverage score that anticipates the needs of view

selection at runtime to chose the right views during planning.

Our lumigraph view planning is designed to run at interactive rates and deliver quality comparable

to using an unbounded number of views. Thus, our work is the first to solve a general view

planning problem for IBMR at interactive rates and in bounded memory while rendering real-time,

as explained in Chapter 3.

1.5.2 InpaintFusion

Inpainting is required for completion of partially scanned scenes and for Diminished Reality (DR), a

variant of Mixed Reality (MR) which allows removing objects from the user’s perspective view [94]

and uncovering otherwise hidden structure in the user’s physical environment [66]. Occluded
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pixels can be restored from multi-view observations, but not in unobserved areas. Inpainting

overcomes this problem by using pixels in the vicinity of a Region of Interest (ROI) and, therefore,

does not require additional cameras or pre-recorded observations. If “hallucinated” pixels are

acceptable, inpainting has considerable benefits over observation-based methods, in particular,

when reconstruction is still ongoing or performed without much preparation.

Conventional inpainting in image space has difficulties to ensure temporal and spatial coherence

between frames, such as when rendering stereoscopic images or relighting the background, which

requires access to object-space data. For this reason, some inpainting systems heuristically assume

an object space by estimating a dominant plane and performing inpainting on a plane embedding.

If the dominant plane can be tracked throughout a sequence of frames, the inpainted images can be

projected back into the user’s view. Such an approach is sufficient for plausible DR, but only if

the scene is flat and occlusions can be safely ignored. There are attempts to deform the inpainted

result [71], but deformation changes the appearance only in the inpainted plane and never fits the

geometry.

In this thesis, we implement a novel approach that inpaints both color and depth. Our method

simultaneously searches in the color and depth channel, while minimizing a cost function which

combines a color and spatial term in image space with a novel spatial term in object space, which

ensures spatiotemporal consistency.

The spatiotemporal inpainting can literally fill in the gaps left by lumigraph modeling:

1. A DR mode allows a user to remove or replace a user-specified ROI from a view of a scene

explored with a live camera. In this case, the live video stream directs the virtual camera,

and free choice of viewpoint is not needed; the video stream is used to represent the scene

outside of the inpainted area.

2. Exploring areas of the scene that have not yet been observed requires scene completion

through inpainting. In this use case, the user employs free-viewpoint navigation, and the

inpainting ROI is implicitly given by the presence of unexplored locations.

Both modes rely on the same inpainting framework, although they address the needs of different use

cases and applications. The inpainting framework will directly re-use the IBMR framework, so that

either inpainting mode can be combined with view-dependent texture mapping and free-viewpoint

navigation. More details of this technique are explained in Chapter 4.
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1.5.3 Drone-Augmented Human Vision

As mentioned in Section 1.5.3, IBMR can greatly contribute to the tele-exploration task, even

when interactions are needed. In order to show this impact, in this thesis, we demonstrate the first

proof-of-concept implementation of drone-augmented human vision. A system to give new abilities

to users with IBMR powered interactions and visualization.

In particular, we focus on drones because of their proven contributions to tele-exploration in recent

years. In particular, their high degree of maneuvering capabilities makes them ideal robots for

exploring hard to reach areas.

We couple an indoor drone with a HMD to deliver an exocentric perspective on the drone, letting

the pilot control the drone via gaze direction. The drone carries an autopilot, but relies on external

tracking, since we wanted optimal flight stability for our prototype. We present a first experiment

showing how virtual exocentric visualization supports spatial understanding and thus enables

exploration and natural interaction with the drone. In a second experiment, we use VR for its virtual

viewpoint nature and compare it with the physical viewpoint that is additionally provided by AR.

VR provides a synthetic exocentric view by combining the live video with a 3D model of the

occluded environment from any viewpoint, independent of a user’s physical viewpoint. Using image-

based rendering of the drone’s video stream delivers a realistic impression with live updates [99].

By coupling the drone autopilot to the user’s gaze direction, the experience is redefined from

remotely piloting a drone to perceiving the occluded world with drone-augmented human vision.

As a special case of VR, AR additionally adds the illusion of X-ray vision: A pilot wearing a

see-through display can make the walls or other occluders partially transparent to reveal the area

currently observed by the drone. More detail of this technique is explained in Chapter 5.

1.6 Collaboration Statement

The contributions mentioned in this thesis have been peer-reviewed and published as part of the

papers listed below. We provide information on the collaborations which occurred during the

work on these publications. For all papers, the author contributed to the development work, which

involves design, implementation and analysis, as well as to the publication work. In particular:

• Okan Erat, Alexander Isop, Denis Kalkofen and Dieter Schmalstieg, "Drone-Augmented Hu-

man Vision: Exocentric Control for Drones Exploring Hidden Areas," in IEEE Transactions

on Visualization and Computer Graphics, vol. 24, no. 4, pp. 1437-1446, April 2018
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The author created user interactions and implemented image-based rendering in an HMD.

In addition, the author prepared the user study. Dr. Werner Alexander Isop assembled a

lightweight indoor drone, created APIs to communicate with it and he helped setting up the

enviroment for the user study. Prof. Dr. Dieter Schmalstieg and Dr. Denis Kalkofen provided

guidance with development, user study, writing the publication and introduced ideas through

out the project.

• Okan Erat, Markus Hoell, Karl Haubenwallner, Christian Pirchheim and Dieter Schmalstieg,

"Real-Time View Planning for Unstructured Lumigraph Modeling," in IEEE Transactions on

Visualization and Computer Graphics, vol. 25, no. 11, pp. 3063-3072, Nov. 2019

The author implemented the per-voxel view planning algorithm and keyframe pose and

intensity optimization. Markus Hoell contributed to the shader programming and Unity 3D

development. He also presented valuable ideas. Karl Haubenwallner supported the project

by implementing a testbed enviroment and Hilbert curve generator. Dr. Christian Pirchheim

helped with the dataset processing. Prof. Dr. Dieter Schmalstieg provided guidance on

methods, development, ideas and publication.

• Shohei Mori, Okan Erat, Wolfgang Broll, Hideo Saito, Dieter Schmalstieg, Denis Kalkofen

"InpaintFusion: Incremental RGB-D Inpainting for 3D Scenes." IEEE Transactions on

Visualization and Computer Graphics 26.10 (2020): 2994-3007.

The author and Dr. Shohei Mori both contributed to development and publication, while the

other authors contributed in varying degrees. In Particular: The author implemented a pipeline

to render 3D skeletal animation and to have physics interactions with the inpainted point

cloud. In addition, the author created a data set using new depth cameras and implemented an

experimental keyframe selection pipeline. Most notably, the author combined IBMR system

with DR for scene completion results. Dr. Mori implemented the core of the inpainting

engine. Prof. Dr. Wolfgang Broll, Prof. Dr. Hideo Saito, Prof. Dr. Dieter Schmalstieg and

Dr. Denis Kalkofen provided guidance on methods, development, ideas and publication.
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In this chapter, we first provide a context to our research work by summarizing the state of the

art of tele-exploration. Later, in the following subsections, we analyze related work separated by

subject area, in regards to tele-exploration.

In order to visually inspect a remote environment in real-time, a minimum requirement is to

have at least one sensor at the remote location that can stream images or sensory information to

reconstruct and render the environment. For the sake of the exploration task, the sensor has to be

mobile. According to these requirements, we aggregated related work for tele-exploration under

the following two headings:

Image streaming from teleoperated robots. According to Lichiardopol [85], teleoperated

robots can be grouped according to their application as: Military/Defense robots [8], Security

robots [20, 51], Underwater robots [87] and Telesurgery robots. One common problem with these

systems is the lack of flexibility concerning the viewpoint. A remote user’s ability to change the

viewpoint at the remote location is restricted by the degrees of freedom of the robot and the network

speed. In order to overcome this problem, scene reconstruction techniques were utilized.

Scene reconstruction. Structure-from-motion algorithms can provide a sparse [74] or dense point

cloud [29] or a 3D mesh [97]. Later this 3D information with the captured per-point colors can be

13
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used to render the scene from any viewpoint. Recently, collaborative approaches using multiple

drones soared in popularity. Schmuck et al. constructed individual Simultaneous Localization

and Mapping (SLAM) maps of the environment at each drone and later unified them in the server

[118]. There also exists research to construct environment maps using multiple handheld devices

[34, 95, 102, 129]. However per-point coloring is not intuitive enough for the tele-exploration

scenario given that remote users want to have feeling of telepresence. Also, despite providing a

flexible viewpoint, these techniques do not fully take advantage of a reconstructed enviroment,

which could be used to interact with the remote scene from user’s own viewpoint.

2.1 Image-Based Rendering

Reconstructed models can be organized according to the amount of geometric and photometric

data they contain. Pure geometric models do not contain any photometric information, while

pure lightfields [82] do not contain any geometry. Popular real-time reconstruction methods, such

as volumetric fusion from RGB-D sensors [101], deliver detailed geometry (e.g., as a Truncated

Signed Distance Function (TSDF)), but only minimal photometric data, usually consisting of

averaged colors, either per voxel or, if a mesh is extracted, per surface vertex. Averaging often leads

to a loss of contrast and a blurry appearance, even if colors are cached densely on the surface [26].

Offline reconstruction. Offline methods which assume that detailed geometry has already

been recovered concentrate on extracting an optimal texture map from a set of input images

(views) [6, 36, 133, 141]. However, even with perfect registration of views to geometry, baking the

image information from multiple views into a single texture map destroys view-dependent aspects.

Image-based rendering. Image-Based Modeling and Rendering (IBMR) gives a stronger em-

phasis to photometric information by subsampling a view-dependent plenoptic function [12]. For

small objects or scenes, pure IBMR methods rely exclusively on densely sampled views, while

replacing detailed scene geometry with crude proxy geometry (e.g., a single plane or a sphere). For

such outside-in scenes, the possible viewpoints are typically restricted to an orbit around the object

or even a narrow zone inside such an orbit.

Pure IBMR would have excessive storage requirements for larger scenes, where free-viewpoint

navigation is most desirable. For such inside-out scenes, better storage efficiency can be obtained

by combining more detailed geometry with sparser views.

Geometry-based IBMR, such as the lumigraph [41], combines a (semi-)dense proxy geometry
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with sampled views. With view-dependent texture mapping [24], we can an build an unstructured

lumigraph [9] and render new views directly from sparse, irregular views. However, poorly

registered views may lead to blurriness and ghosting artifacts.

A lot of research has addressed better registration, e.g., by using floating textures [28] or resampling

views into a surface lightfield [15] indexed per surface point instead of per viewpoint. With surface

lightfields, one can either render view-dependent appearance convincingly [89, 104], or attempt

inverse rendering [64, 111]. Intrinsic image decomposition is even possible in real time for small

scenes [43, 91], allowing interactive relighting [90]. If real time is not needed, reconstructions can

be automatically corrected and completed [59] or even redesigned [140].

Forward-projection IBMR is an alternative to geometry-based IBMR which creates distinct geometry

per input view, for example, from superpixels [11, 13] or local structure from motion [48]. These

methods can better suppress artifacts caused by sparse or incomplete geometry.

View planning. Besides registration, a second challenge for geometry-based IBMR is that it does

not trivially scale to a large number of views. This implies that the view planning deserves specific

attention in IBMR. If a finite number of targets views is known in advance, view planning can aim

to optimally cover these views [54, 142]. If the target views can be assumed to lie within a bounded

“walking” range, view planning can be reduced to the art gallery problem, aiming to cover every

surface point in the scene with at least one view [33, 131]. Unfortunately, texturing with a single

view is not sufficient for high quality IBMR. It is more meaningful for modern IBMR to consider a

reprojection error between sampled views, to decide if additional views should be acquired [21].

For instance, recent work [48] has proposed offline view planning for larger scenes by subdividing

the scene into parts and establishing an explicit mapping between views and scene parts. However,

this work does not place an upper bound on the size of the view cache, and does not run in real

time. This makes it unsuitable for interactive reconstruction [21] or telepresence [27, 37, 103].

View planning for outside-in scenes has been demonstrated at interactive rates to guide a user’s

acquisition with a handheld camera [21, 57]. In robotic surveying, there exists the related problem

of “next best view planning”.

Our view planning has the additional requirement that it needs to consider surrounding geometry

of an inside-out scene and not only the orbital space around an outside-in scene. We show how

lumigraph modeling can be cast as a local, incremental problem, which can be solved online. Hence,

our method fills a texture store of configurable size with the best views. The resulting model can be

instantly used for free-viewpoint rendering.
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Figure 2.1: Illustration of the notation used in inpainting. The transformation function f maps target region

T being inpainted to source pixels S .

Table 2.1: Qualitative comparison of inpainting/Diminished Reality (DR) literature.

Literature Scene Object detection Object tracking AR Depth
Siltanen [122] Plane Marker region 6DoF (Marker) No
Korkalo et al. [77] Plane Marker region 6DoF (Marker) No
Herling and Broll [49] Plane Interactive drawing (one-view) 3DoF (Contours) No
Herling and Broll [50] Plane Interactive drawing (one-view) 3DoF (Contours) No
Kawai et al. [72] Planes User drawing (multi-views) 6DoF (SLAM) No
Siltanen [123] Planes User drawing (one-view) 6DoF (SLAM) No
Kawai et al. [71] Curved plane Marker region 6DoF (Marker) No
Proposed method 3D scene Interactive drawing (one-view) 6DoF (SLAM) Yes

2.2 Inpainting

The simplest form of DR, using only a single image, replaces pixels in a target region T , T ∈ I, of

an image I with pixels from sources S ∈ I. Therefore, we need to find the transformation f : T → S

that preserves consistency in the appearance between the target region T and the remaining image

T = I \T (see Figure 2.1). Furthermore, DR methods need to support motion in 3D space with Six

Degree of Freedom (6DoF). This implies that, after inpainting, T and T need to be consistent under

arbitrary motion of the camera. Previous DR methods mainly differ in how the function f is defined

and which sources S are considered. Therefore, in this section, we review previous approaches (see

Table 2.1).
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2.2.1 Multi-View Approaches

One direction of research has focused on rendering occluded pixels from multiple different live

video observations of the hidden area, while another direction first captures the scene from multiple

camera positions using a single camera. An early example of the former case is the multi-view

paraperspective projection model proposed by Zokai et al. [143] that uses an additional calibrated

cameras as S to search for background patches in T with a similar appearance. Meerits and

Saito [88] use additional RGB-D frames from a Microsoft Kinect sensor as S to observe the

background with depth information. The work of Cosco et al. [18] creates DR from multiple images

that have been captured over time. They propose a system recording images as S , before the object

to be diminished is placed in the scene. While Cosco et al. use the multi-view data immediately

after capturing, Li et al. [84] use older images from Internet photo collections, registered in 3D

space as S .

The above methods assume calibrated multi-view cameras to define the mapping f under epipolar

constraint [46]. This enables a fast pixel search in S at the price of relying on dense observations,

which may have to be generated in advance or at runtime using additional cameras. Either restriction

makes these approaches difficult to apply to mobile applications.

2.2.2 Video Inpainting

A more flexible approach for DR is inpainting, which can be defined as the global optimization of

the transformation function f : T → S in which S ≡ T , i.e., f : T → T [50].

Inpainting for DR originates from research on video restoration. The primary difference between

image and video inpainting is that video inpainting makes use of the pre-recorded image sequence

as an inpainting source S [61], instead of just a single frame. Thus, it can be defined as a global

optimization problem of finding the best transformation function f : T → S where S ≡ T i at frame

Fi.

Wang et al. [134] presented pioneering work in this area. They separate the pre-recorded scene into

several layers using dominant optical flow, and showed that rendering all layers except one results

in a scene without the selected object. Lepetit et al. [81] take pixels from T j in frame F j, i , j, to

inpaint Ti by reprojection via a reconstructed background triangle mesh. Shen et al. [121] find a

linearly moving foreground object in a geometrically aligned temporal texture space and propagate

non-occluded pixels in T j to the occluded pixels in Ti. Klose et al. [76] use a point cloud for

inpainting, where point reconstructions from T j are sampled through pre-defined filters to fill in Ti.
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Although video inpainting methods generate plausible results, they cannot be used in DR applica-

tions, since they rely on costly global optimizations and consider both past and future frames. DR

must be able to react instantaneously to changes in the user’s viewpoint, using only past information,

while maintaining coherent visual appearance over time. Furthermore, usage of past frames is

typically limited to the previous frame or a small number of frames.

2.2.3 Image and Depth Inpainting

In contrast to video inpainting, image inpainting takes pixel information only from a single image.

The most popular image inpainting approaches are based on the idea of searching for patterns in

the image which are similar to a region placed over the boundary of T and T [19]. The creators

of the PatchMatch method [3, 4] report on two key insights for finding a near optimal f : They

use randomized searching for corresponding patches in T , and they make use of propagation of

the searched offsets to the adjacent pixels in T . These two insights enable generating consistent

reconstructions.

However, PatchMatch is not designed for predictable real-time performance, and does not consider

temporal coherence over image sequences. Therefore, Herling and Broll [49] proposed PixMix,

a method relying on frame-to-frame propagation of patches to accelerate the search and ensure

temporal coherence. Later, they improved image quality and runtime of their method [50] by

applying a homography transformation (estimated between an earlier keyframe and the current

frame) to the reference map f : T → T
′
, where T

′
represents T transformed by the homography.

Kunert et al. [78] extended the method by combining it with observed background pixels. Kawai

et al. [72] and Siltanen [123] also extended this strategy to enable processing of several planes in

parallel. Kawai et al. [71] furthermore proposed an inpainting algorithm that deforms inpainted

results using feature point tracking.

All these attempts assume that the scene is locally planar. While this notion makes it easier to obtain

real-time performance, it cannot recover depth information in T . Advanced AR rendering typically

requires the evaluation of lighting, occlusion and other view-dependent phenomena [23, 112], as

well as image synthesis for stereoscopic displays [31]. Without restoring proper depth information

in the inpainted area, such rendering methods cannot be properly supported.

Our work is also conceptually related to depth densification. Unlike offline structure-from-motion

methods, AR requires densification to operate in real-time. State-of-the-art methods densify sparse

SLAM maps [56] or perform real-time short-baseline stereo matching [130]. We could use such

methods as alternative forms of reconstruction, but, of course, they cannot deal with unobserved
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Figure 2.2: Mirk and Hlavacs created a virtual tourist application providing a stereo view.

areas.

Recently, Generative Adversarial Network (GAN) methods [40], have shown great promise for

complex image synthesis [60, 105, 138, 139]. Inpainting based on GAN essentially uses a database

of trained feature as S . Such approaches have also been shown to be able to generate depth maps

from color images [38, 80] or inpaint RGB-D images [25]. However, GAN typically requires

images to be resized before feeding them into the network, and, again, on the output side. These

implicit resampling steps make the results prone to aliasing problems, when the inpainted area

changes with perspective distortion (another resampling step), as the camera pose changes from

frame to frame. In contrast, our approach inpaints color and depth using a conventional patch

representation, which does not have to be scaled or resampled. It also has the advantage that it

works instantaneously without requiring extensive training databases to be collected and processed.

2.3 Drone Control

Existing work on occluded or remote space discovery with drones proposes a variety of interaction

techniques to steer the drone and visualize the data coming from its sensors. Depending on

the visualization of the sensor data, mostly from cameras, related work can be categorized into

egocentric control and exocentric control. Moreover, our work is related to remote visualization

techniques involving live video.
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Figure 2.3: Hansen et al. let users control a drone by gazing at the camera view streamed from the drone.

2.3.1 Egocentric Drone Control

Egocentric control techniques visualize camera images from the first-person view of the drone and

immerse the user into the remote location currently occupied by the drone. Using a Head-Mounted

Display (HMD) to display video from a drone, Mirk and Hlavacs [93] created a virtual tourist

application (see Figure 2.2). However, the user was not given full control of the drone to prevent

crashes; only the user’s head movements were translated into the yaw rotation of the drone. Hansen

et al. [44] capture eye gaze, while the drone pilot is looking at the camera stream (see Figure 2.3).

The 2D vector formed between the screen center and the point gazed at on the screen is mapped to

speed and rotation around a 3D axis in the drone’s local frame. As humans tend to rapidly change

their gaze direction, this technique may be problematic for flight control whenever the pilot looses

concentration.

Higuchi et al. [52] synchronize head movements of the user with a drone, except for pitch and roll

rotations (see Figure 2.4). While this gives an intuitive control, the latency between the pilot’s

movements and response of the drone can quickly create motion sickness. In addition, the motion

dynamics of the drone make it impossible for the drone to exactly replicate the path taken by the

pilot’s head, negatively affecting the spatial understanding of the human. As summarized by Chen

et al. [14], egocentric robot control presents the user with several problems, the most severe ones

being narrow Field of View (FOV), orientation and altitude misjudgement, and a general lack of

scene understanding.

Reference:

"Mirk ("2014")
"Using Drones for Virtual Tourism"

Reference:

Hansen, John Paulin and Alapetite, Alexandre and MacKenzie, I Scott and Møllenbach, Emilie (2014)
The use of gaze to control drones

Reference:

Higuchi, Keita and Rekimoto, Jun (2013)
Flying head: a head motion synchronization mechanism for unmanned aerial vehicle control

Reference:

Chen, Jessie YC and Haas, Ellen C and Barnes, Michael J (2007)
Human performance issues and user interface design for teleoperated robots



2.3. Drone Control 21

Figure 2.4: Higuchi et al. synchronize head movements of the user with a drone.

Figure 2.5: Kashara et al. allow users to control the drone with a touch screen device in their own reference

frame and map control commands into the drone’s local coordinates.

2.3.2 Exocentric Drone Control

In contrast to egocentric control, an exocentric control technique steers the drone while the user is

observing it directly. As discussed by Cho et al. [16], exocentric drone control is prone to accidents

due to left-right confusion between user’s and drone’s local coordinate frames. Kashara et al. [69]

tackle this problem by allowing users to control the drone with a touch screen device in their own
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Figure 2.6: Saakes et al. use drone camera to observe a ground robot from a third person view and control it.

reference frame and mapping control commands into the drone’s local coordinates automatically.

However, the users had to observe the drone with the device’s camera for pose estimation and move

it on the 2D screen, which is not possible in the presence of occlusions. In addition, 2D gestures

do not allow for an intuitive interface for generating a motion vector that is a combination of axes.

Similar to Kashara et al., Hashimoto et al. [47] also provides a touch screen based control, but they

place a camera at a fixed viewpoint to observe the robot (see Figure 2.5). This is not feasible during

an investigation of an occluded scene. Saakes et al. [114] uses a drone camera to observe a ground

robot from a third-person view (see Figure 2.6). In an unknown occluded environment, using

another robot just increases the complexity. Sugimoto et al. and Hing et al. [53, 126] provide a

visualization to observe the robot from an exocentric point of view. However, their system limits the

freedom of the viewpoint and makes it hard to relate surrounding colliders to the robot. Karanam et

al. [68] use WiFi signals transmitted by drones to monitor them behind the occluding structures.

Zollmann et al. [144] focuses on the spatial understanding problems that arise when the drone is

far away from the user (see Figure 2.7). They use an exocentric Augmented Reality (AR) display

based on the backfacing camera of a handheld tablet. The drone’s altitude over the terrain and

distance to the user is visualized in 3D on top of the video. However, if the drone faces dense

obstacles in close proximity, this technique does not provide a detailed enough visualization for

accurate control. Bergé et.al. [5] create a synthetic point cloud resembling a 3D reconstruction
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Figure 2.7: Zollmann et al. visualize drone’s altitute over the terrain and distance to the user in 3D.

obtained by a drone and visualize it in immersive VR. They also develop a method to evaluate the

difficulty of finding a target.

All these techniques demonstrate the potential of using an exocentric viewpoint for drone control,

but do not allow for easy and intuitive navigation. Introducing direct manipulation for this purpose

is the main contribution of our work.

2.3.3 Visualization of Remote or Occluded Information

Simulating X-ray vision for the purpose of revealing hidden infrastructure has been a goal of AR

research for a long time [32]. Most of the X-ray vision techniques compose a video image with

purely virtual information or simulate a cutaway of the occluder [17].

Our work also relates to research on visualizing and interacting in a distant environments and,

by extension, to telepresence systems. For example, remote visualization at real-world scale was

presented by Kasahara et al. [70]. The system provides omnidirectional remote visualization,

enabling a user to participate in the remote user’s application. While the system allows to decouple

orientation, it does not provide control over the user’s position.

Neumann et al. [99] proposed the idea of surveillance based on augmented video environments,

which rely on projective texture mapping of live video to a reconstruction of an outdoor environment.

For indoor surveillance, presenting the video streams in the context of a spatial model rather than

via a more conventional multi-windowing display was explored by Wang et al. [135].

These systems assume an observer in a control room, but similar ideas have been explored for

mobile users. Kameda et al. [67] report on a mobile AR system displaying registered video streams

from remote cameras. Avery and Sandor [2] use ghosted-view X-ray vision to look through walls.

Their system shows videos received from a remote robot controlled by the user via joystick [1].
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Sandor et al. [116] later proposed a “melting” metaphor to disocclude buildings. Sandor et al. [115]

show a method for X-ray rendering using salient features of occluders.

Another aspect of remote information display is camera navigation. For example, Mulloni et

al. [96] describe how to transition between the video from multiple cameras placed in an outdoor

environment without loosing spatial context. Hoang et al. [55] investigate remote viewpoint manip-

ulation for close-up observation. We draw inspiration from all of these methods, but additionally

control the flight path of a drone indirectly by introducing interaction techniques for the interactive

definition of the desired viewpoint.
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In this chapter we introduce a novel Image-Based Modeling and Rendering (IBMR) pipeline to

answer the requirements of tele-exploration applications. We are not the first to design an IBMR

system, however, we adapt IBMR for the online nature of the problem which requires real-time

performance and memory management for unknown scene sizes (see Figure 3.1 and 3.2).

We voxelize a scene and make sure to keep images that best cover parts of the scene with different

viewing angles and distances from the geometry. When considering a new image we aim for

keeping images that have as unique information as possible for the scene, while removing images

that are less valuable for the scene.

We additionally minimize pose errors related to the Simultaneous Localization and Mapping

(SLAM) system before registering any image into our system. Images are further optimized for

their intensity consistency.

3.1 Method

For building an IBMR pipeline, we take advantage of the inherent multi-threading of SLAM [75].

SLAM typically uses a tracking task running at full frame-rate and a slower mapping (i.e., geometric

25
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Figure 3.1: Progression of real-time view planning: unseen parts of the scene are black, and brighter colors

(purple to yellow) mean more views covering a portion of the scene. Gray color indicates the surface has

been seen but could not be textured.

reconstruction) task. We introduce additional tasks for photometric registration and novel view
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Figure 3.2: Images rendered using the unstructured lumigraph.

synthesis, which run at their own, independent rates.

Figure 3.3 shows an overview of our system architecture: White boxes belong to the existing SLAM

system, which fills the geometry store. Red boxes describe our novel photometric registration.
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Figure 3.3: We extend SLAM with lumigraph modeling and rendering including a novel real-time view

planning approach. This diagram shows existing components in white and new components in orange.

Every input frame is considered by the view planning component as a potential novel view to be

placed in the view store, which is also associating novel views with the scene geometry.

A lumigraph rendering component is responsible for generating novel views. Using the information

from the geometry and view stores, this component performs view selection and blending to

generate a novel view to display. The framerate of the rendering component is decoupled from the

lumigraph modeling, and rendering can even run remotely in a telepresence environment.

We begin by reviewing a basic unstructured lumigraph (Section 3.1.1), as described by Buehler

et al. [9]. Then, we explain our core contribution, the real-time view planning algorithm for the

lumigraph (Section 3.1.2). We also discuss how the views selected for the lumigraph can be refined

in real time (Section 3.1.3), and, finally, how the runtime view selection works (Section 3.1.4).

3.1.1 Basic Lumigraph Blending

Basic lumigraph blending creates novel views by sampling views from a view store F = {Fi}. Each

view Fi = (Mi,Ci,Di) consists of a camera pose Mi, decomposed into camera position p(Mi) and

viewing direction d̂(Mi), as well as a color image Ci(u) and a linear depth imageDi(u).

Lumigraph blending selects, for each sample position p, the best n views (collected in Fn) according

to a weighting function wi, and blends them into a new view Fo = (Mo,Co,Do). Using a projection
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operator π(p,Fi) from world space to image space and an inverse projection operator π′(u,Fo) from

image space to world space, we obtain Co as follows:

Co(u) =
∑

Fi∈Fn

Ci(π(π′(u,Fo),Fi)) ·
wi(u)∑

r∈Fn wr(u)
(3.1)

The weights wi are obtained by combining terms that describe the geometric (i.e., directional and

positional) similarity of a reference view to the novel view. The directional term wd̂
i is described

using a clamped cosine of the angle between the reference view and the novel view.

wd̂
i (u) = max(0,

p(Mo)−π′(u,Fo)
‖p(Mo)−π′(u,Fo)‖

·
p(Mi)−π′(u,Fo)
‖p(Mi)−π′(u,Fo)‖

) (3.2)

The position term wp
i is described as the ratio of distances to the camera center:

wp
i (u) = max

(
0,1−

|p(Mi)−π′(u,Fo)|
|p(Mo)−π′(u,Fo)|

)
(3.3)

In addition to the geometric similarity, the weight must also ensure that a sample is valid. Buehler

et al. [9] only consider that a sample p must be within the field of view covered by Fi (assumed to

have an opening angle of 2α). This suffices if the geometric model is very simple, but, for complex

geometric models, we must additionally take care that a sample p is not occluded in Fi and that p
is not closer than ∆xy to a depth discontinuity larger than ∆z [103], which would make p unreliable.

We combine these constraints in a validity function v(p,Fi) as follows:

v(p,Fi) =



0, if |p− p(Mi)| >Di(π(p,Fi))

0, if p−p(Mi)
‖p−p(Mi)‖

· d̂(Mi) < cosα

0, if max
∆xy∈{±2}2

|Di(π(p,Fi))−Di(π(p,Fi) +∆xy)| > ∆z

1, otherwise

(3.4)

The final weight is obtained by linearly combining the geometric similarity and multiplying by the

validity function using a parameter λ:

wi(u) = v(u,Fi) · (λ ·wd̂
i + (1−λ)wp

i ) (3.5)
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Figure 3.4: (left) By dividing the area of a unit sphere, 4π, by the number of views, we obtain a maximum

area per view. The area assigned to one view has as an upper bound of the area of a sphere cap, 2π(1− cosθ).

(right) Example for angular coverage of bk observed by six views c1, . . . ,c6. The angular coverage weight is

related to the ratio of the minimal observed angle between two cameras, ϕmin
d̂

, and the maximum possible

angle between two cameras, ϕmax
d̂

.

3.1.2 View Planning

The above description of basic lumigraph blending assumes that F is small enough so all views

can be stored and searched at runtime. The key contribution of our paper is the introduction of

a real-time solution for view planning, which addresses two requirements not handled by basic

lumigraph blending: first, choose views from the incoming image stream to store in F, second,

obtain a pre-selection so view blending can be done with a constant effort that is independent of the

chosen size of F.

Our view planning approach extends the frame store used in lumigraph blending with an additional

view-independent data structure: We organize the scene into a regular grid B = {bk}, which sub-
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Figure 3.5: Illustration of cell grid representation of an example scene geometry. One single cell is chosen

for demonstrating keyframe store F referencing from cells. Cells are randomly colored for visual contrast in

the illustration.

divides the scene geometry G into cells G(bk). Per cell bk, we store a set of Rmax references to F,

denoted as R(bk) = {Fi
k,r},1 ≤ r ≤ Rmax (see Figure 3.5).

The cell structure has a number of advantages: It reduces the overall effort compared to processing

surface geometry explicitly, it exploits spatial locality, and it decouples the lumigraph from the

detailed surface geometry reconstruction. Only during the final rendering are the views associated

with individual surface points through indirect texture lookups. The geometric and photometric

reconstructions can evolve independently, making our approach robust to variations in computa-

tional load and other unforeseen challenges that may occur in a real-time system. For example, new

views can be incorporated to refresh the view store after changes to scene geometry or incident

illumination. Moreover, cells naturally correspond to blocks of a sparse volumetric data structure,

which is now commonly used for large scenes [65].

Coverage metric In order to fill the view store with the best views, we define a coverage metric

that expresses the benefit of a new view in covering the lumigraph. We weight two quality criteria,

each expressed by a factor in the range [0,1], which can be seen as a view-independent variant of

the directional and positional similarity described above:
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• Directional coverage ϕd̂: Views observing a cell should be well-distributed in the cell’s

orientation space, so that every new view covers a portion of the scene from a new angle.

• Positional coverage ϕp: Views should have the desired pixel density (neither too dense nor

too sparse). Moreover, the view should see as much as possible of the surface inside the cell.

We compute the overall coverage ϕ for a frame Fi as a weighted sum of directional and positional

coverage:

ϕ(Fi,bk) = λ ·ϕd̂(Fi,bk) + (1−λ) ·ϕp(Fi,bk) (3.6)

Directional coverage. We determine the minimum angular deviation ϕmin
d̂

to all views F j already

selected for a particular cell (represented by its centroid, p(bk)):

γ = max
F j∈R(bk)

p(Mi)− p(bk)
‖p(Mi)− p(bk)‖

·
p(M j)− p(bk)∥∥∥p(M j)− p(bk)

∥∥∥ (3.7)

ϕmin
d̂

(Fi,bk) = δ(|R(bk)|,0) + (1−δ(|R(bk)|,0)) ·γ (3.8)

Here, δ denotes the Kronecker delta function. If more views are stored in R(bk), the angle between

them must become smaller. For Rmax views (all references are filled), the Tammes number denotes

the maximum angle θ(Rmax) between views [79]. We can estimate an upper bound (Figure 3.4, left)

to the cosine of the Tammes number as ϕmax
d̂

= cos(θ(Rmax)) = 2 · (1−2/Rmax)2−1. Therefore, we

obtain an approximate angular coverage ϕd̂ from the minimal observed angle between views and

the largest possible angle between views (Figure 3.4):

ϕd̂(Fi,bk) = min

1, 1−ϕmin
d̂

(Fi,bk)

1−ϕmax
d̂

 (3.9)

Positional coverage. Positional coverage combines a term judging the resolution of I with respect

to bk and a term describing what fraction of bk is visible. The distance of a cell to the view is given

by d:

d(Fi,bk) = |p(Mi)− p(bk)| (3.10)

We express how well the distance of a view matches an ideal distance dmax using a Gaussian g with

variance σ2, centered around the ideal distance dmax.

g(Fi,bk) = exp
(
−

(d(Fi,bk)−dmax)2

2σ2

)
(3.11)
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Figure 3.6: A view’s contribution to a cell is weighted by the relative fraction of the cell’s visible surface in

the view.

The second term, the visible fraction of a cell (in pixel area units Apx), is determined as the ratio

of the visible pixel count, ψvis, to the total pixel count. The visible pixel count is obtained by

rendering a position buffer P(u) and obtaining a cell id bID. The cell id is generated by quantizing

P with a factor q which is the chosen cell dimension and computing a spatial hash, such that

k = bID
i (u) = h(bPi(u) · 1

qc) if u ∈ bk. Using bID, we can easily determine a visible pixel count ψvis

per cell, i.e., the visible pixels inside bk:

ψvis(Fi,bk) =
∑
u∈Fi

δ(bID
i (u),k) (3.12)

The total pixel count is obtained by projecting the total surface area A(bk) of the scene geometry

contained in cell bk from world space into Fi (Figure 3.6). To avoid an exaggerated influence of

very densely or very sparsely populated cells, we constrain the value to lie in the interval from

one pixel, Apx to the projection of a cell face area Acell into the view. Then, we convert from

world-space area into pixel area units by normalizing with Apx to obtain a total pixel count ψtotal.

ψtotal(Fi,bk) =
1

Apx
·max

(
min(A(bk),Acell)

d2(Fi,bk)
,Apx

)
(3.13)
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Now we weight the pixel count by distance quality and cell coverage to obtain the positional

coverage

ϕp(Fi,bk) = g(Fi,bk) ·
ψvis(Fi,bk)
ψtotal(Fi,bk)

(3.14)

Candidate view evaluation. We use the coverage metric ϕ to decide if we add a candidate view

Fi to F or not. To this end, we seek to increase the summed coverage τsum over all views and cells.

Per cell, the coverage is clamped by a constant τmax to avoid a bias towards cells covered by many

views.

τ(F,bk) =
∑
Fi∈F

ϕ(Fi,bk) (3.15)

τsum(F) =
∑

k

min(τ(F,bk), τmax) (3.16)

We keep a candidate image I, if it improves the coverage by at least ∆τsum , i.e., τsum(F∪ I)> τsum(F)+

∆τsum . When the view store is full, I must replace a victim v. By replacing every existing view Fi

with I and finding the optimal coverage, we determine the victim v = argmaxFi∈F τsum(F ∪ I \Fi).

For efficiency, we keep the views in a list sorted by coverage, and only consider victims that are

among the lowest-ranking views. If no victim v can be found such that τsum is increased by at least

∆τsum , I is not kept.

3.1.3 View Processing

Before we store a candidate frame I, we must match its exposure to the existing views and ensure

that its viewpoint is as accurate as possible, so that ghosting artifacts resulting from reprojection

errors are minimal (compare images in Figure 3.7).

Using a subset of surface points p j with v(p j, I) = 1 as sample points [42], we determine an exposure

correction factor EI . The exposure correction scales a new view I such that it best agrees with

the median value of the other views Fi ∈ F (each scaled with an exposure correction factor Ei)

according to a robust metric m (such as the Tukey estimator). We use the median for robustness

against outliers that come from observing specular reflections. The energy function J(I) describes

the agreement among measurements:

J(I) =
∑

j

m
(
EI · CI(π(p j, I))−median

i
(Ei · Ci(π(p j,Fi))

)
(3.17)

By minimizing J(I), we obtained the desired exposure factor EI = argminEI
J(I). After obtaining

Reference:

Gruber, Lukas and Richter-Trummer, Thomas and Schmalstieg, Dieter (2012)
Real-time Photometric Registration from Arbitrary Geometry
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Figure 3.7: Quality comparison of “city wall” scene, from top to bottom: ground truth, lumigraph rendering

with view processing (pose and exposure refinement), lumigraph rendering without view processing. In the

latter case, blurriness and exposure differences reduce image quality.
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Figure 3.8: Before a new view is accepted into the view store, exposure and viewpoint are refined in an

alternating optimization.

an initial estimate for the exposure correction of I, we rectify small errors in the viewpoint

associated with I by making small changes to the external camera parameters, p(MI) and d̂(MI)

and recomputing J(I). A search for a local minimum of J(I) using the method of Farnebäck [30]

determines the optimal camera pose MI = argminMI
J(I). We optimize exposure compensation

and pose correction until convergence [111] (Figure 3.8). If the geometric reconstruction used as

input contains views with pose outliers, the optimization can get stuck in a local minimum that can

be detected by thresholding the residual error; such outlier views are discarded.

3.1.4 View Selection

View selection is composed of two parts, a pre-selection part computed every time a new view is

accepted into the view store, and a final selection part executed in the fragment shader during view

blending.

Pre-selection fills the references R(bk) when a new view I arrives. We add I to R(bk) if the cumulative

coverage per cell is at least increased by ∆τ, i.e., we make sure that τ(R(bk)∪ I) > τ(R(bk)) + ∆τ. If

R(bk) is full, we determine a victim to be replaced with I in R(bk) as vk = argmaxFi∈R(bk) τ(R(bk)∪

I \Fi). If R(bk) is not yet full, ∆τ = 0.

During view blending, the fragment shader iterates over the R(bk) and uses the validity function to

determine if a particular view should contribute to the lumigraph at the given location or not. Out

of the remaining views, the n = 3 best ones are used to determine the color of a pixel as described

in section 3.1.1.

3.2 Evaluation

We integrated a prototype view planner into the Unity3D game engine on a desktop computer (CPU:

Intel i7-5820K 3.30GHZ, GPU: Nvidia GTX 1080Ti). For best performance, the entire pipeline is

Reference:

Farnebäck, Gunnar (2003)
Two-frame Motion Estimation Based on Polynomial Expansion

Reference:

Richter-Trummer, Thomas and Park, Jinwoo and Kalkofen, Denis and Schmalstieg, Dieter (2016)
Instant Mixed Reality Lighting from Casual Scanning
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executed directly on the GPU, using HLSL shaders, while interface programming was done in C#

for easy testing. The implementation expects a triangle mesh and an image sequence, annotated

with camera poses, that can come from any (real-time or non-real-time) reconstruction algorithm.

This allows us to conveniently test our system with a variety of reconstruction engines. We acquired

the following four test scenes:

1. Viking village: synthetic scene with mostly diffuse materials

2. Apartment: synthetic scene with specular materials

3. City wall: real scene reconstructed using the multi-view stereo algorithm of Fuhrmann et

al. [35]. Reconstruction software and the Darmstadt city wall dataset created by Fuhrmann et

al. [35] is used to generate camera poses and proxy geometry.

4. Lab: real scene scanned with an RGB-D camera and geometrically reconstructed using

InfiniTAM [137] [65]. Camera poses and proxy geometry are generated using implementation

from Weilharter et al. [137].

For the synthetic scenes, we generated 5000 input images by rendering at poses densely sampled

from a camera trajectory H(i), i ∈ [0,1], created by a 2D Hilbert curve as shown in Figure 3.9. For

the real scenes, we used the original image sequences as input to our view planning algorithm.

We used this setup to analyse how various system parameters influence the results. We evaluate

visual quality by comparing rendered views to reference images, reporting image quality as mean

SSIM [132, 136], or MSSIM, for 200 test views taken with random camera poses. Reference

images are generated using ground truth poses and geometry using synthetic datasets. Finally,

we compare image quality of our method to a state-of-the-art real-time method and a commercial

offline method.

3.2.1 Coverage Computation

Our first evaluation of the view planning method focuses on the coverage computation. Ideally,

view references of a cell should already be full, before we run out of space in the view store.

To understand how much geometry is often (or never) seen in any view, we implemented an in-

engine visualization tool which color-codes various aspects of the cells or the contained geometry

(Figure 3.9), such as the number of views observing the cell, the number of registered views, the

average coverage per registered views and the directional coverage. For example, it distinguishes

geometry that is not seen by any input view from geometry that is seen in an input view, which is

not selected for the view store. Additionally, to assess spatial behavior of our per-cell view planning,

Reference:

Fuhrmann, Simon and Langguth, Fabian and Goesele, Michael (2014)
MVE-A Multi-View Reconstruction Environment.

Reference:

Fuhrmann, Simon and Langguth, Fabian and Goesele, Michael (2014)
MVE-A Multi-View Reconstruction Environment.

Reference:

Weilharter, Rafael Jakob and Schenk, Fabian and Fraundorfer, Friedrich (2018)
Globally Consistent Dense Real-Time 3D Reconstruction from RGBD Data

Reference:

Kahler, O. and Prisacariu, V. A. and Ren, C. Y. and Sun, X. and Torr, P. H. S and Murray, D. W. (2015)
"Very High Frame Rate Volumetric Integration of Depth Images on Mobile Device"

Reference:

Weilharter, Rafael Jakob and Schenk, Fabian and Fraundorfer, Friedrich (2018)
Globally Consistent Dense Real-Time 3D Reconstruction from RGBD Data

Reference:

 ()
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Figure 3.9: By using a trajectory following a Hilbert curve for generating the input image sequence in the

apartment scene, we achieve a progressive, but homogeneous coverage (Top left). The coverage per cell is

visualized (Top right). The homogeneous color indicates that all cells receive a relatively equal coverage in

the view store. Note that to increase visual contrast at low scoring cells, scores have been clamped at 0.3.

Coordinate glyphs mark the camera poses of the views referenced by the blue cell in the middle (Bottom

left). The number of references stored per cell is visualized (Bottom right). Most cells fill all their references

(yellow), while only a few inaccessible areas do not get covered properly (dark purple).

we visualize the selected and rejected views as small coordinate axis icons around a particular cell

(Figure 3.9 and 3.10). These visualizations are generated in real-time and could be used during

actual scanning, for example, with a handheld RGB-D sensor.

3.2.2 Trade-off Between Positional and Directional Coverage

We studied how blending of directional and positional coverage terms affects our rendering quality

over two different types of trajectories. Using viking village, we compared a Hilbert curve fly-over

trajectory (simulating a drone) to a walking-like trajectory with images taken at human eye-level.

Each trajectory consisted of 5000 images overall.

Unlike the fly-over, occlusion varies significantly during the walking trajectory. One view may look

down an entire street, while another one is complete occluded by a building. The walking trajectory

benefits more from an increased weight given to positional coverage (Figure 3.11).
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Figure 3.10: Image at the top visualizes an arbitrary input camera trajectory. Under the camera trajectory

image, series of images side by side show progression of the key frame selection in the cache of a single cell

(blue cube) and the image rendered using the cashed images.



40 Chapter 3. View Planning and Rendering

0 0.2 0.4 0.6 0.8 1
0.795

0.8

0.805

0.81

0.815

M
S

S
IM

Walking Trajectory

0 0.2 0.4 0.6 0.8 1

0.82

0.83

0.84

0.85

0.86

M
S

S
IM

Aerial Trajectory

Figure 3.11: Effect of changing the weight of directional and positional coverage on MSSIM. The walking

trajectory has more occlusions and requires careful choice of positional coverage (e.g., λ = 0.4).

3.2.3 Cell Dimension

We systematically varied the cell dimension and investigated how it influences the quality. Quality

was measured as SSIM between images rendered using our system and reference views, averaged

over 200 randomly chosen camera poses per test scene. Consequently, we report MSSIM over all

views. We varied cell dimension depending on the overall scene size and plotted the results in

Figure 3.12.

We observed an optimal cell dimension that depends on the size of the scene. Too small cell

dimensions can cause a lower SSIM, since the views only have finite resolution, and varying views

across very small cells encourages mosaicing artifacts. If the cell dimension gets too large (larger

than 30-100 cm for the tested scenes), many views will not cover the entire area inside the cell and,

in unfortunate situations, parts of the geometry are not properly covered. A heuristic based on the

(expected) scene diameter is therefore a good solution.

3.2.4 Distance of Views and Cells

The parameters dmax and σ define the ideal distance of a view from a cell, such that the view covers

the cell at the desired resolution. As can be seen in Figure 3.13, the choice of these parameters

is not very sensitive in the apartment scene, which has a small overall diameter, so that even the

furthest parts of the scene are covered with good resolution in every view. In contrast, the much

larger viking village scene slightly benefits from an appropriate parameter choice. Here, a choice

of σ = 20m yields the best distribution of views with respect to the obtained image quality.
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Figure 3.12: Effect of cell size on MSSIM. We observe the optimal cell distance depends on the scene

diameter, in our examples, 30-100cm.

0 10 20 30 40 50 60
0.87

0.88

0.89

0.9

0.91

M
S

S
IM

Apartment

DMax=0 m

DMax=3 m

DMax=5 m

0 10 20 30 40 50 60

0.858

0.86

0.862

0.864

0.866

M
S

S
IM

Viking Village

DMax=0 m

DMax=3 m

DMax=5 m

(m) (m)

Figure 3.13: Effect of view-cell distance parameters σ and dmax on MSSIM.

3.2.5 View Store Size

We wanted to find out how the number of stored images (a few hundred 2 MPix images fit in GPU

memory) influences quality. We processed the images using various cache sizes and plotted results

for both datasets in Figure 3.14. Obviously, a larger cache contains more information and can yield

a better image quality if used properly. Nonetheless, we observed that cache sizes above 100-200

images (again, dependent on scene characteristics) yield diminishing returns, implying that a finite

number of views is sufficient, and a view store of reasonable size can be filled and maintained

incrementally.
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Figure 3.14: Diminishing returns in terms of image quality can be observed at reasonable caches sizes of

100-200 frames. MSSIM above 80% typically indicates that rendered images are subjectively highly similar

to the ground truth images rendered from the same viewpoints.

3.2.6 Influence of Per-Cell View References on Quality

We studied how image quality changes with varying number of references per cell as shown in

Figure 3.15. Note that all lumigraph renderings were produced by blending only three views per

pixel, but chosen from the all references stored in a cell. More references per cell increase the

chance that views with good coverage of a sample within that cell are found. However, an increasing

number of references exhibits diminishing returns after 15-20 references, implying that cells can

be properly covered with a small number of views, if chosen carefully. This insight is of practical

importance, since the rendering speed depends on the reference number that must be searched in

the fragment shader (Table 3.1). A reference number of 16 appears to be the best trade-off.

3.2.7 Influence of Refinement on Quality

We investigated the influence of view refinement on quality by computing the difference between

lumigraph rendering results with refinement, without refinement, and the reference images. We

present side by side images of before and after image pose refinement in Figure 3.7. As expected,

image quality is significantly increased by the refinement. This result is consistent with observations

made by other authors [89, 111]. However, our work demonstrates that a refinement carried out in

real time (i.e., without extensive global search and optimization) is feasible.

Reference:

 ()
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Figure 3.15: Effect of number of view references per cell on MSSIM. Diminishing returns can be observed

after 15-20 view references.

Table 3.1: Performance overview. The left block of columns lists model name, primitive count (in million

triangles) and input image resolution (in mega-pixels). The block with title “Model” gives timings of the

modeling stage, and the block “Render”, of the rendering stage, both in milliseconds. Column “Refine” is

the average time for refining an input view. Columns labeled “ref” list timings for 8, 16, 32 or 60 references

per cell, for either modeling or rendering.

Dataset Model (ms)
Name Tris Res. Refine 8 ref 16 ref 32 ref 60 ref
Viking village 6.1M 2.1MP - 4.2 4.5 6.3 22.7
Apartment 1.6M 2.1MP - 3.1 3.1 8.7 16.9
City wall 10.3M 3.0MP 350 37.5 53.5 70.4 104.2
Lab 1.6M 0.3MP 60 2.1 15.2 44.2 63.3

Dataset Render (ms)
Name 8 ref 16 ref 32 ref 60 ref
Viking village 16.6 29.6 61 101.8
Apartment 16.5 19 43 89.3
City wall 23.6 37.3 69 109
Lab 16.6 17.7 29.8 45.9

3.2.8 Speed

We measured the performance of our algorithm by means of view selection speed and rendering

speed. Specifically, we investigated performance impact of number of references as shown in Ta-

ble 3.1. The performance reported in the table is obtained while rendering at 1080p resolution along

a trajectory through the scene. Performance depends on both the geometric complexity of the scene



44 Chapter 3. View Planning and Rendering

(which is out of scope of our work) and the number of references. At the recommended number

of 16 references, we observe between 3-54 ms per input image for view planning (considering a

new frame for the view store) and 18-37 ms for rendering. There is ample room for optimizations,

but we already achieve interactive performance that would be suitable, for example, for viewing a

remote scene in a telepresence application.

3.2.9 Quality Comparison to Reference Methods

We visually compare our method to two reference methods on the same input data: The first method

is KinectFusion, which accumulates depth images in a volume tabulating a Truncated Signed

Distance Function (TSDF) and extracts a mesh with per-vertex averaged colors. It represents

the class of real-time methods. The second method used for comparison is 3DF Zephyr 1, a

leading commercial photogrammetry software. It represents the class of offline methods, which

can perform arbitrary global optimizations. Zephyr delivers noticeably higher precision geometry

than KinectFusion, but required 40 min of compute time on the Lab dataset. Texture quality is

optimized as well; however, Zephyr combines texture extracted from multiple images into one final

surface texture, which is not view-dependent like ours. For a fair comparison, our method used the

geometry delivered by KinectFusion under real-time constraints as input, and not the more precise

geometry of Zephyr.

Side-by-side image comparisons can be seen in Figure 3.16. Informally, our method performs on

par with 3DF Zephyr, while our method clearly outperforms the result delivered by KinectFusion

in the same instant timeframe. KinectFusion’s per-vertex coloring exhibits blurry rendering due

to lack of high frequencies in its textures. While Zephyr utilizes textures much better, it has no

intensity correction or view-dependent representation and shows significant mosaicing artifacts.

Visual inspection of magnified details reveals that Zephyr’s advantage of more precise geometry is

lost if mosaicing cannot be suppressed.

To demonstrate the influence that the view planning method alone has on visual quality, we tested

the image quality that our incremental view planning delivers compared to a globally optimal

version of the same planning. We chose the 250 best out of 5000 keyframes by global optimization

over all 5000 keyframes simultaneously, and compare the resulting image quality to the online

method (which considers the views in strict sequence, one at a time, and not simultaneously). The

globally optimal version of our algorithm results in an MSSIM increase of 1.3% compared to online

version. Visual differences are only visible when looking carefully, as can be seen in Figure 3.17.

1 http://www.3dflow.net
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Figure 3.16: Comparation of our method to per-vertex colored KinectFusion model and to an offline-

reconstruction rendering using a leading commercial photogrammetry software (3DF Zephyr).

3.3 Limitations

Despite the eye pleasing rendering of our work, we have identified a few limitations of our

algorithm where it may not behave as expected. In this section we present these problems and

possible solutions to it.

Mosaicing problem When completely different sets of keyframes are used by neighboring cells,

this may cause the neighboring geometry to be rendered with slightly different intensity. Despite

our algorithm adjusting intensity between keyframes, it does so globally not locally. As a future

work, local patch based adjustment of the keyframe intensities could be implemented.

Pose correction Our algorithm corrects the poses of the keyframes in relation to the previous

keyframes. Therefore, error can accumulate over time. This could be more problematic if the first

keyframe’s pose is already wrong. Future work can address this problem by readjusting the poses

once the SLAM system detects a loop and updates the poses.
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Figure 3.17: Rendering results with our incremental view planning algorithm (top) and the globally optimal

version of our algorithm (bottom) are shown. Subtle differences can be realized only in a careful examination.

Keyframes with small field of view As an expected limitation, in datasets where no two

keyframes observe the same part of a geometry, our algorithm won’t be able to use the direc-

tional coverage criterion.
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Scene dependent parameters We experimented with a limited number of datasets, but more

complicated datasets such as indoor scenes with lots of object clutter, streets with narrow field of

view or aerial drone footage with possible occlusions by mountains are possible. The parameters

used in our algorithm have to be adjusted depending on the scene type. As a solution, the algorithm

could recognize the type of scene using the visibility information in the keyframes and adjust the

parameters dynamically instead of using predetermined ones.

3.4 Summary

We have described a new method for online view planning in reconstruction applications that builds

an unstructured lumigraph. The views for the lumigraph are selected such that they cover the entire

scene well without having to revisit older views, which are not longer available in the view store.

Such an approach has previously only been explored in next-best view planning in robotics, but

with the difference that our algorithm has no control over where the human operator will move

the camera to. As far as we know, we are the first to explore this situation, although it is highly

relevant for mobile Mixed Reality (MR) applications. In Chapter 4 we will introduce our inpaint

fusion method to fill in the 3D holes that are present in the reconstructions we have. Also we will

demonstrate how it can be utilized for removing unwanted graffiti and objects as well.
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Figure 3.18: Visualization of view planning over time at Viking village dataset. Hx denotes the images

rendered by sampling the Hilbert curve generated trajectory H(i), i ∈ [0,1] at regular intervals such that
∆i
∆x = 1

|Hx |−1 and Hx ∈ [H(0),H(1)]
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In this chapter, we introduce our InpaintFusion algorithm, which is a state of the art algorithm

in the field of Diminished Reality (DR). Traditionally, DR is implemented using a very coarse

assumption over the object space. Assuming the inpainted region in the scene is sufficiently planar,

previous work finds the dominant plane and renders it from different view points for inpainting.

However, this approach is vulnerable to occlusions, which can easily exist even in a moderately

complex scene. To overcome this limitation, our approach not only inpaints the RGB images, but

also the depth. The depth map can be directly used to inpaint on top of Image-Based Modeling and

Rendering (IBMR) generated images.

As covered in Section 1.5, using DR allows us to complement missing details of 3D reconstructions

and hence facilitates the tele-exploration tasks. In addition to filling unobserved or unreconstructed

parts of the scene, our algorithm also can remove unwanted details such as graffiti or 3D objects

from IBMR results (Figure 4.1). At the end of this chapter, we show additional results to guide the

reader through how InpaintFusion complements our IBMR system.

49
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Figure 4.1: 3D diminished reality followed by augmented reality rendering. Our system, InpaintFusion,

is able to remove objects and inpaint color and depth information. While previous attempts for real-time

inpainting are limited to color channel inpainting only, InpaintFusion supports arbitrary depth channel

inpainting as well. As it provides depth information, 3D augmented reality rendering in the inpainted

environment becomes possible. This example shows a real white horse in front of a set of houses (left). We

inpaint the color and depth values of the horse (right). This enables us to add a virtual car with head lights to

illuminate the inpainted regions, together with white balls which can interact with the inpainted region by

bouncing of the walls.

4.1 Method

In this section, we give an overview of our method, beginning with a concise problem statement.

4.1.1 The Problem of Depth Inpainting

Previous inpainting methods rely on homography warping and thus assume planar scenes [50, 123].

Once a keyframe F0 is selected, the system inpaints the Region of Interest (ROI) as specified by the

user. Given a homography relationship between F0 and the current frame Fi, F0 is transformed

into the current frame as F′0, and the system overlays F′0 onto Fi. Since all the pixels in target

region T0 of F0 are potentially visible in F′0, the system can refine F′0 using new pixel samples

in F′i with strong constraints on the patch appearance, in order not to break the texture [50], or

progress with pixel searching in F0 [72]. In other words, assuming the pixels’ spatial relationship

will be preserved by a homography transformation, these approaches can improve the inpainting

over time regardless of viewpoint changes (see Figure 4.2).

For 3D inpainting, both update rules do not work. The 3D structure of the scene induces occlusions

between the projected pixels of F0 to Fi, causing new missing pixels to appear in Fi. These

Reference:

 ()


Reference:

Herling, Jan and Broll, Wolfgang (2014)
High-Quality Real-Time Video Inpainting with PixMix

Reference:

Kawai, Norihiko and Sato, Tomokazu and Yokoya, Naokazu (2016)
Diminished Reality Based on Image Inpainting Considering Background Geometry



4.1. Method 51

Not-inpaintedInpainted

Object of interest

(b) Fusion-based
keyframe Inpainting

(a) Homography-based
keyframe inpainting

Fi
rs

t 
ke

yf
ra

m
e

 F
0

U
p

c
o

m
in

g
 f

ra
m

e
/k

e
yf

ra
m

e
s

Observed in F0 
Newly observed

Figure 4.2: Comparison between homography-based keyframe inpainting and our multi-keyframe inpainting.

(a) Assuming all pixels in a keyframe are visible, a homography to a single keyframe may be sufficient.

This approach can even further update the keyframe over time by warping it. (b) Assuming a non-planar

background, we fuse multiple keyframes. If the spatial relationship of the pixels changes due to occlusion, it

is difficult to refine the pixels using the projected keyframe. We cannot project the current frame back to one

of the keyframes, either, since currently visible pixels may not be visible in the keyframe anymore.

additional missing pixels needs to be inpainted in the projected keyframe F′0.

Refining such hallucinated pixels does not work, since they have been collected from various

sources, which are not necessarily consistent beyond the originally copied pixels. For this reason,

previous work has resorted to manual labeling for additional constraints [50] or indirectly infering

additional structure by decomposing the scene into multiple planes [72]. Refining F0 does not

resolve the problem, either, since the newly found missing pixels are mostly invisible at F0 due to

occlusion. Figure 4.2 depicts this problem.

Consequently, we need a novel approach for 3D inpainting, which incrementally fills in background

Reference:

Herling, Jan and Broll, Wolfgang (2014)
High-Quality Real-Time Video Inpainting with PixMix

Reference:

Kawai, Norihiko and Sato, Tomokazu and Yokoya, Naokazu (2016)
Diminished Reality Based on Image Inpainting Considering Background Geometry
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Figure 4.3: Overview of our InpaintFusion framework. Our method operates on an RGB-D frame. We first

align the input frame in the world coordinate system by estimating the camera pose (a). This enables us to

map pixels from the input frame to the 3D model and to a keyframe (b). Once the user labels the object of

interest on a screen (c), the system preserves a keyframe (d) and inpaints the keyframe. We use previous

inpainting results in keyframes to coherently map pixels over time (e). Subsequently, we search for an

optimal set of pixel values which fill in the remaining unknown RGB-D values (f). To generate consistent 3D

information, we fuse the inpainted depth map into a surfel map G (g). Finally, we blend available keyframes

on the inpainted surfaces (h) and apply rendering effects to the 3D model (i).

3D structure without destroying previously inpainted color and structure. To this end, we propose

to combine fusion from Simultaneous Localization and Mapping (SLAM) with multi-keyframe

inpainting. A novel fusion method merges structural information of all inpainted keyframes into

one consistent global map. We also present a rendering scheme to synthesize multiple inpainted

color frames relying on labels from the SLAM system to minimize inpainted regions and to use

observed background regions instead, if available.

4.1.2 System Overview

Our system supports per-pixel recovery of color and depth information in the unobservable region

T in real time. For a frame F, it performs exemplar-based inpainting of a region T by copying

information from T , in both color and geometry domains, on top of a SLAM system [73]. Figure 4.3

illustrates our system architecture. Our system pipeline has the following stages:

Scene scanning using SLAM. We rely on a SLAM system to obtain an RGB-D frame Fi =

(Ci,Di,Vi,Ni,Mi), consisting of a color buffer Ci, a depth bufferDi, a vertex bufferVi, a normal

Reference:

Keller, Maik and Lefloch, Damien and Lambers, Martin and Izadi, Shahram and Weyrich, Tim and Kolb, Andreas (2013)
Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion
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buffer Ni, and a 6DOF camera pose Mi, expressed as an SE3 transformation matrix. The frame

Fi is fused over time into a global map G represented as a collection of surfels [107], i.e., the

measurement Fi updates G in accordance with the previous work [73].

Object labeling. While SLAM runs, the user interactively labels a ROI in 2D screen space, which

will be preserved in G and generate 2D target regions when projected.

Keyframe insertion. For stable inpainting over frames, we utilize keyframes. Our goal is to fill

in all missing pixels in every novel viewpoint. Therefore, our system inserts a new keyframe when

the pose diverges too much from the closest keyframe, while pixels remain missing in the ROI.

Since the inpainting process is too costly to be completed before the next frame arrives, inpainting

is performed in an asynchronous background thread.

Keyframe propagation. For visual consistency among inpainted keyframes, the transformation

function fk−m used for inpainting (see Section 2.2) the closest keyframe Fk−m is projected to a newly

selected keyframe Fk to initialize the transformation function fk. Here value of m is determined

by the spatially closest keyframe’s index. Instead of inpainting a surfel using only one keyframe,

using pixels from other keyframes and blending them ensures a view dependent coloring. For the

first keyframe F0, as there are no other keyframes, the transformation function f0 is initialized with

random values (Figure 4.6).

Keyframe inpainting. An inpainted keyframe F̂k = (Ĉk,D̂k,V̂k,N̂k,Mk) is computed for the new

keyframe Fk by minimizing a cost function over all pixels u ∈ Tk with the given fk, or, otherwise,

from a random guess.

Inpainted keyframe fusion. The inpainted keyframe is passed to the SLAM system and fused

with existing surfels. To avoid interference with tracking, inpainted keyframes are fused only in the

ROI.

View-dependent keyframe blending. Labeled surfels are projected to the current frame Fi at Mi

to obtain the ROI Ti, which is filled with pixels from multiple inpainted keyframes. The keyframes

are projected to Fi via the fused inpainted surfels and blended depending on the viewpoint.

Augmented Reality (AR) rendering. Our system can provide the inpainted RGB-D frame or the

inpainted global world model for additional AR rendering. In the following sections, we describe

each of these stages in detail.

Reference:

Pfister, Hanspeter and Zwicker, Matthias and van Baar, Jeroen and Gross, Markus (2000)
Surfels: Surface Elements As Rendering Primitives

Reference:

Keller, Maik and Lefloch, Damien and Lambers, Martin and Izadi, Shahram and Weyrich, Tim and Kolb, Andreas (2013)
Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion
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4.1.3 Scene Scanning Using SLAM

We use the dense map and device pose provided by the SLAM system of Keller et al. [73] to analyze

the scene color and geometry, but extract some additional data from the global map G. Each point

in our global map G is represented as a surfel which contains a 24-bit RGB color c = [R,G,B]T,

a 3D position p = [X,Y,Z]T, a normal n = [nx,ny,nz]T, a radius r, a depth confidence value conf ,

an index to distinguish a surfel among the rest of the surfels, and a label l ∈ {LO,LIP,LROI}, which

classifies scene points as observed (LO), inpainted (LIP), or belonging to the ROI (LROI).

We smooth the sensor depth map Di using a bilateral filter [128] and derive a vertex map Vi

and a normal map Ni. Subsequently, we estimate the pose Mi using an iterative closest point

algorithm [86], aligningDi with a virtual depth map, which we generate by reprojecting the global

scene map G fused over time, into frame Fi−1. The inpainted region is not tracked; only surfels

with LO or LROI are used for generating the virtual maps. The vertex mapVi is derived from the

smoothed depth map, and the normal map Ni is fused into the global map G using weights derived

from the observed timing and the estimated confidence [73]. Initially, all the surfels are assigned

the value LO, until the user categorizes a surfel as LROI .

4.1.4 Object Labeling

One application of DR is removing undesirable objects, such as markers [71, 77, 122], pedestri-

ans [84], cars [110], or any other category of objects that can be pre-trained [98]. Another type of

application lets the user specify the ROI, e.g., by painting coarse strokes [50], and then segmenting

and tracking these objects using image gradients. Gradient-based segmentation is fast and tends to

work well on a planar background and a planar object of interest. In more complex environments,

such as the multi-plane inpainting of Kawai et al. [72], interaction gets more complicated – the user

must not only encircle the object, but also trim the segmentation when the view has changed too

much, since the 3D object shape cannot be determined with sufficient accuracy from a sparse map

from a visual SLAM system.

Since we have access to a dense map, our method can directly label the map by projecting the

user’s 2D input onto the depth map. Figure 4.4 shows an example of our labeling result. Inspired

by incremental 3D segmentation [83], our system first encodes label information in pixels and then

fuses the 2D label map into the global map. For this purpose, the user coarsely traces the object

on a 2D screen to provide the input uuser. Our system defines a 3D bounding disc with a center

V(uuser), a radius rROI , and a thickness dROI along a surfel normal. Pixels that have vertices within

Reference:
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Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration

Reference:

Keller, Maik and Lefloch, Damien and Lambers, Martin and Izadi, Shahram and Weyrich, Tim and Kolb, Andreas (2013)
Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion
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High-Quality Real-Time Video Inpainting with PixMix

Reference:

Kawai, Norihiko and Sato, Tomokazu and Yokoya, Naokazu (2016)
Diminished Reality Based on Image Inpainting Considering Background Geometry

Reference:
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Figure 4.4: Labeling the 3D object of interest with 2D user interaction. The system translates user’s pointing

into a 2D label map, and fuses the label map into the global surfel map G. Projecting such labeled surfel

map to the tracked frame results in 2D registered label map for (a) a plane, or (b) a more complex object. (c)

Our system allows users to label multiple objects.

the disc are labeled as LROI , and the rest, as LO.

L(u) =


LROI , if ||uuser −u||2 < rROI ∧ (V(uuser)−V(u)) ·N(u) < dROI

LO, otherwise
(4.1)

The 2D label map L is fused with the 3D global map G. To give safe margins for the ROI, the

system dilates the region where such surfels are projected to the screen. The user can set a value for

rROI that corresponds to the effective range of the labeling on the screen. For dROI , one may set a

sensor depth uncertainty [73] that describes in which range the specified depth should cover surfels

in the global map.

4.1.5 Keyframe Insertion

DR requires inpainting to be temporally coherent, which is usually addressed by using

keyframes [50, 72, 123]. One can inpaint a frame as a keyframe and preserve it for future frames

by warping the inpainted frame to the current frame. In the case of planar scenes, homography

warping is sufficient as a geometric representation, as long as the ROI is tracked [72, 123] and

pixel colors are referenced from visible regions within the frame [50]. In other words, pixel

searching by inpainting need not to be repeated after inpainting the initial keyframe, and this

strategy significantly reduces the processing time. In a planar scene, all inpainted keyframe pixels

are potentially visible from any viewing angle.

In a scene with 3D structure, occluded pixels will occur within the ROI, as the camera moves

Reference:

Keller, Maik and Lefloch, Damien and Lambers, Martin and Izadi, Shahram and Weyrich, Tim and Kolb, Andreas (2013)
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away from the keyframe; those pixels need to be inpainted (Figure 4.2). Our system inserts a

new keyframe when the absolute pose difference from the closest keyframe Fk to the current

frame Fi exceeds a threshold. The difference has been formulated as a Frobenius norm, i.e.,

Fnorm(i,k) = ||I−M−1
i Mk||F. Given that our scale is in meters, we set the threshold to 0.7 which can

be interpreted as in meters in case of neglegable rotation between Mi and Mk (Figure 4.1).

Additionally, our system checks the number of invalid pixels l′, which do not have any labels,

i.e., l′ < {LO,LIP,LROI}. We denote regions of such pixels l′ as Tl′ . If |Tl′
⋂

T |/|T | > ε for a threshold

ε (e.g., 0.1), the frame is selected as a new keyframe. In this way, we collect spatially distributed

keyframes and safely exclude frames that do not observe target pixels to be inpainted.

4.1.6 Keyframe Propagation

When a keyframe Fk is inserted, we must ensure that inpainting at Fk is consistent among previous

keyframes Fk−m. We address this requirement by initializing the transformation function fk for Fk

using the transformation function fk−m associated with a keyframe Fk−m. We start with the closest

keyframe, i.e., the keyframe with the minimum absolute pose difference and m is found by

argmin
m

Fnorm(k−m,k), (4.2)

where Fnorm is the Frobenius norm function to calculate pose difference between two keyframes.

Figure 4.5 shows such an example keyframe propagation. Since keyframes remain stable over time,

reusing the inpainted keyframes in the current frame generates temporally coherent results even for

shaky camera motion, as long as the tracking works reliably. To bootstrap the mapping from Fk−m

to Fk, we project G into Fk to provide an initial set of inpainted depth values for Mk. Therefore, Fk

contains mappings of LIP and LO in T and LO in pixel sources S used for inpainting (see Section

2.2).

We transform Fk−m into Fk via geometric reprojection (i.e., forward warping), with the goal of

reusing the pixel mapping stored in fk−m on pixels in Tk. However, we avoid using the mapped

pixel itself from the fk−m. We are rather interested in the corresponding pixel in fk as the inpainting

in each image has to be consistent with the rest of the image. In addition, mixing pixel values from

different images causes mosaicing problem. Therefore, we use G to calculate the transformation of

image coordinates uk ∈ R
2 of Fk into image coordinates uk−m ∈ R

2 of Fk−m. These transformations

are illustrated in Figure 4.6. We start by unprojecting the depth mapDk to 3D space,

p = K−1[uT
k |1]TDk(uk), (4.3)
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The 1st keyframe: Fk-m

The 2nd keyframe: Fk Projection

For non-
inpainted ROI

fk-m
For the 

ROI

fk

Figure 4.5: Spatio-temporally coherent keyframe inpainting. (a) The system selects a keyframe and (b)

inpaints the keyframe. (c) Such an inpainted keyframe is projected to the newly inserted keyframe, where (d)

non-inpainted regions may be revealed (magenta pixels). (e) Those pixels are newly inpainted to complete

the inpainting in the new keyframe.

where p = [X,Y,Z]T is a point in the scene, and K is the 3× 3 camera intrinsic matrix. After

projecting a pixel into 3D space, the resulting point is further projected into the keyframe Fk−m:

uk−m = π([K|0]Mk−mM−1
k [pT|1]T), (4.4)

where π([X,Y,Z]T) = [X/Z,Y/Z]T. Furthermore, we look up the inpainting results within the

keyframe Fk−m. Thus, in Fk−m, we use the transformation fk−m at the pixel located at uk−m. The
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Figure 4.6: Keyframe propagation. As color of a surfel is view dependent due to light and matter interaction,

we avoid inpainting surfels from one single keyframe. In addition, inpainting neighboring surfels using a mix

of different keyframes, are also unacceptable as this creates a mosaicing problem. Therefore, for each new

view point, namely the new keyframe, we inpaint surfels using the pixels of that keyframe. The mapping

fk (blue arrow) from uk to the reference point u′k is defined by a series of transformations (black arrows).

(1) First, we project uk to the world coordinate point p (2), before we project p into the other keyframe,

which identifies uk−m. (3) At uk−m, we look up fk−m to find u′k−m, and (4) we project u′k−m back to the world

coordinate systems onto p′. (5) Projecting p′ back into the current frame identifies u′k.

result is the reference position u′k−m from which the pixel value was taken to inpaint the keyframe.

u′k−m = fk−m(uk−m) (4.5)

This provides a good guess for color and depth values based on the keyframe data Fk−m. However,

to ensure intra-frame consistency, we are interested in selecting pixel values from the new keyframe

Fk rather from the previously preserved keyframe Fk−m. Therefore, we cannot directly take the

pixel values at position u′k−m. Instead, we are looking for the corresponding pixel position of u′k−m

in Fk. We compute the projection of u′k−m into Fk, denoted as u′k. We derive this transformation by

unprojecting the pixel to 3D space, followed by a projection of the corresponding 3D point into Fk.

The complete series of transformations required to map a 2D coordinate uk to u′k in Fk is given in

Equation 4.6. Our approach is applied to all pixels within the ROI Tk.

fk : uk
Eq. 4.3
→ p

Eq. 4.4
→ uk−m

Eq. 4.5
→ u′k−m

Eq. 4.3
→ p′

Eq. 4.4
→ u′k (4.6)
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Figure 4.7: Comparison of similarity metrics. From left to right: original, linear combination of texture and

geometry similarity, and multiplicative combination of texture and geometry similarity (our approach). The

linear combination requires three parameters to be adjusted for inpainting, while the multiplicative approach

requires one parameter.

If a projected point u′k is exceeding the bounds of frame Fk, we assign a random 2D coordinate

as the output of fk(uk). For multiple keyframes, we repeat the above mapping from the closest

keyframe to the furthest one, until all the pixels in Tk are processed, or a pre-determined number of

keyframes have been processed.

4.1.7 Keyframe Inpainting

Frame pre-processing. There might be missing pixels in a single depth map due to the limitations

of the depth sensor, even though the depth map is projected from the global map. Since pixels

without depth cannot be used as sources for inpainting, we require sufficiently dense depth to obtain

plausible results. Thus, we first fill in missing pixel depth using convolutions [119] for edge-aware

inpainting. After this densification,Vk and Nk are calculated again from the the depth map.

Finding reference pixels. The initial projection of G into Fk may leave some pixels in Tk

uninitialized, so we need to fill in these unmapped pixels from scratch. We find the transformation

f ∗ of the remaining pixels by using the PatchMatch algorithm [3] for minimizing the cost function

in Equation 4.7. Similar to previous examplar-based inpainting, we model the overall cost ρ as a

weighted sum of color (texture) similarity, ρt, spatial similarity, ρs, and a novel geometric similarity

term, ρg:

f ∗ = argmin
f

∑
u∈T

wρt( f ,u)ρg( f ,u) + (1−w)ρs( f ,u) (4.7)

The texture cost (Equation 4.8) minimizes the appearance difference between pixels to be inpainted

in T and pixels referenced in T , while the spatial cost function forces pixels in the area surrounding

a target pixel to cluster, so that spatial continuity can be maintained (Equation 4.9).

ρt( f ,u) =
∑

v∈{±1,±2}2
||C(u + v)−C( f (u) + v)|| (4.8)

Reference:

Schöps, Thomas and Oswald, Martin R. and Speciale, Pablo and Yang, Shuoran and Pollefeys, Marc (2017)
Real-Time View Correction for Mobile Devices

Reference:

Barnes, Connelly and Shechtman, Eli and Finkelstein, Adam and Goldman, Dan B. (2009)
PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing
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ρs( f ,u) =
∑

v∈{±1}2
|| f (u) + v− f (u + v)|| (4.9)

In addition to texture and spatial similarity, we model a cost function ρg for the geometric appear-

ance. In Equation 4.7, the geometric appearance term modulates the texture similarity ρt, acting

like a weight that forces both texture and normals to agree. Adding ρg as another linear term to sum

of ρt and ρs works as well [50], but it introduces one more additional weighting parameters that

must be adjusted as three linear terms are combined. The resulting subtle differences are illustrated

in Figure 4.7.

Since directly using depth bufferD would suffer from the perspective and view-dependent nature of

a depth map, we use the normal map for inpainting instead. We derive a normal map from the depth

values by using a gradient estimator. However, since the raw depth map suffers from noise and

incomplete areas, the derived normal map will be affected as well. Therefore, we use NG derived

from the projection of the world space depth to the keyframe frame Fk, i.e., NG→Nk.

ρg( f ,u) =
∑

v∈NG

1/max(κ,NG(u + v) ·NG( f (u) + v)) (4.10)

Here, κ is a lower bound to avoid division by zero. Pixels having similar normals are clustered

naturally. In other words, ρg provides a geometrical labeling that limits pixel search to geometrically

similar surfaces, overcoming the need for manual labeling used in previous work [50].

The transformation map is randomly initialized when the first keyframe is registered to the sys-

tem. From the second keyframe on, the closest keyframes’ results are propagated as outlined in

Section 4.1.6. We also take a coarse-to-fine approach to find f ∗ in reasonable time.

Generating pixel values. After finding references for all pixels in the ROI, we are able to copy

the corresponding pixel values. To inpaint the color Ĉ, we simply copy the values according to f ∗.

Ĉ(u)←C( f ∗(u)) (4.11)

Since we cannot simply copy view-dependent depth values, we use the normal map N̂ for inpainting

3D structure. The normals at reference pixels can simply be copied like color values.

N̂(u)←NG( f ∗(u)) (4.12)

Reference:

Herling, Jan and Broll, Wolfgang (2014)
High-Quality Real-Time Video Inpainting with PixMix
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Herling, Jan and Broll, Wolfgang (2014)
High-Quality Real-Time Video Inpainting with PixMix
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For the depth values in the ROI, we compute ∇D̂, a gradient field [106] (depth gradient map) of

the sampled depth values. We minimize

min
u∈T

∑
(∇D̂∗(u)−∇D̂(u))2 (4.13)

to calculate the inpainted depth map D̂∗. Note that directly sampling pixels from f ∗ will introduce

inconsistencies: Consider a pixel at u and its right neighbor at u + v. A naive horizontal gradient

∇D̂(u) = d( f ∗(u))−d( f ∗(u) + v). (4.14)

will usually not match the sampled depth gradient of the adjacent pixel, d( f ∗(u+v))−d( f ∗(u+v)−

v). Therefore, we minimize

min
u∈T

∑
(∇D̂∗(u)−∇Ê(u))2, (4.15)

where Ê(u) is the mean bi-directional depth gradient sample:

∇Ê(u) =(d( f ∗(u))−d( f ∗(u) + v) + d( f ∗(u + v)−v)−d( f ∗(u + v)))/2 (4.16)

After recalculating the vertex and normal maps, V̂ and N̂ , from the inpainted depth D̂∗, we obtain

an inpainted keyframe F̂k = (Ĉk,D̂
∗
k,V̂k,N̂k,Mk). Figure 4.8 shows an example of inpainting.

4.1.8 Keyframe Fusion

An inpainted keyframe F̂k is fused into the global map to obtain a uniform, consistent representation

G. While the user is presented with inpainted frames, the SLAM tracking should not see the

inpainting results containing hallucinated data. Therefore, we fuse the inpainted keyframe F̂k only

with surfels bearing the LIP label, or we insert new surfels labeled LIP, if the unprojected space is

vacant. Such newly generated surfels are given a high conficdence value, to ensure that they appear

immediately in the next frame. The SLAM tracking only sees surfels with LO and LROI .

4.1.9 View-dependent Keyframe Blending

Basic blending function. We fill-in the ROI at the current frame Fi only from completely

inpainted keyframes F̂k. As the surfel resolution in the current view may deviate significantly from

the keyframe pixel resolution, calculating a blending weight per surfel can be computationally

inefficient, since multiple pixels of F̂k can be projected onto a single surfel, or one projected pixel

can spread onto multiple surfels.

Reference:

Pérez, Patrick and Gangnet, Michel and Blake, Andrew (2003)
Poisson Image Editing
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Figure 4.8: A complete 3D inpainting for a keyframe. (Left) Given an RGB-D frame where depth image

is calculated using global map G, the proposed method finds globally optimized pixels in the color and

normal maps calculated from the depth map. (Right) The proposed method also calculates a depth map

using sampled depth according to the optimized transformation map. The observable dithering effect on the

calculated depth map is due to the different orientations of the neighboring surfels.

To avoid the expensive weight calculation at each point of the dense geometry proxy [10, 22],

we calculate weights for the M closest keyframes instead and blend the M keyframes with the

following weights for projected surfels of label LIP and LO:

wk =
exp(−(dAPD

k )2)∑
m∈

∑M
m=1

exp(−(dAPD
m )2)

(4.17)

Combining observed and inpainted pixels. We always prefer observations over inpainted pixels

by giving higher blending weights to such pixels. We distinguish between pixels that have been

observed before, pixels that have been inpainted, and pixels in the ROI. As described in Section 4.1.3,

we assign the corresponding labels, LO, LIP, and LROI . The label information is already available in

each keyframe when it is projected before inpainting. For each pixel u, we check if it is projected

to the ROI in a new keyframe Fk:

Reference:

 ()
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Labels

lk-m = LO li = LROI lk = LIP

lk-m = LIP li = LROI lk = LIP

lk-m = LIP,     li = LO lk = LO

Weights

w’k-m > w’k

w’k-m < w’k

w’k-m = w’k = 0

Fk

Fk-m Fi

Figure 4.9: Distinguishing observed surface and inpainted surface by blending weights in the keyframe

blending.

w′k(u) =
exp(−(dAPD

k wo(u,0))2)∑
m∈M

exp(−(dAPD
m wo(u,m))2)

(4.18)

wo(u,m) = δ(lk−m(π(Mk−mM−1
i Vi(u))),LIP),

where δ is the Kronecker delta function. Figure 4.9 illustrates our categorization of pixel-wise

rendering based on global map labels. First, the red and black regions of Fi are inpainted in Fk−m,

and surfels are labeled as LIP. The blue region remains labeled as observed LO. Then, the ROI

of Fk is inpainted, i.e., the red and blue regions, using the rendering of Fk−m in the blue region.

However, the label of the blue region is set to LIP, since it is synthetic. Therefore, only the red

region is inpainted, receiving information from Fk−m as the initial guess for the inpainting. When

rendering Fi, pixels in the blue and red regions must be inpainted. In our example, we have two

keyframes and need to calculate their blending weights.

In the blue region, w′k−m > w′k, even though Fi is closer to Fk, since Fk−m is based on a sensor

observation. In the red region, we only have surfels with LIP labels. Therefore, the blending
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weights depend on how close Fi is to the keyframes, i.e., w′k−m < w′k in this case. The black region

is a direct observation of Fi and is out of the range of keyframe blending. This procedure combines

inpainting-based DR with observation-based DR, while minimizing the inpainting area.

4.1.10 AR Rendering

Since a full resolution color and geometry map F̂i = (Ĉi,D̂i,V̂i,N̂i,Mi) from a global map is

accessible at each frame, we can use various AR rendering methods for the frame after the inpainting.

All the geometry-related maps correspond to G-buffers; therefore, InpaintFusion lends itself to any

kind of deferred rendering. Figure 4.1 shows an example of relighting in the inpainted AR space.

4.2 Evaluation

We evaluate InpaintFusion concerning performance and quality in 3D scenes. Therefore, we

implement three different types of geometry proxies on top of InpaintFusion to demonstrate how

typical geometry proxies used in previous work affect the quality of the resulting 3D inpainting,

while InpaintFusion can maintain its quality in various scenes without explicitly defining geometry

proxies.

4.2.1 Quality Assessment

As inpainting has no ground truth, previous work in Table 2.1 does not present quantitative measures

and typically relies on subjective preference. In fact, quantitative assessment in inpainting is an

open research problem, as discussed by Isogowa et al. [62]. They propose an automated evaluation

for inpainting methods that significantly reduces manual labor in the training step. Such automated

quality assessment, however, will not be able to truly reflect human judgement. In addition, spatio-

temporal consistency cannot be judged from individual images. For these reasons, we perform a

study with human subjects.

The goal of our assessment is to demonstrate that InpaintFusion surpasses existing work in terms

of subjective quality. To this end, we compared InpaintFusion to two other popular approaches,

which are based on a geometry proxy. In particular, we compared results of InpaintFusion to those

generated using a single plane [49, 50, 71, 77, 122] and a multi-plane approach [72, 123]. In the

single and multi-plane approach, only one keyframe is inpainted, such that the resulting image

looks plausible. Therefore, the quality in subsequent frames only depends on the warping of the

inpainted keyframe to the current frame.

Reference:

Isogawa, Mariko and Mikami, Dan and Takahashi, Kosuke and Iwai, Daisuke and Sato, Kosuke and Kimata, Hideaki (2018)
Which is the Better Inpainted Image? Training Data Generation Without Any Manual Operations

Reference:

 ()


Reference:

 ()
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Figure 4.10: Comparison of different types of geometry proxies on the Crack dataset. (Top left) original,

(Top right) single plane, (bottom left) multi-plane, and (bottom right) InpaintFusion. The insets in the lower

left corner show depth encoded as greyscale values.

To generate the results with the single plane approach, we manually selected three points in the

keyframe to define a plane. The geometry for the multi-plane approach is generated using the

mean-shift plane estimator proposed by Kawai et al. [72]. For the estimated planes, we generated

the corresponding depth map and inpainted the color channels. We estimated the camera pose over

time with an RGB-D tracker that minimizes point to plane distances [101] in addition to color [124]

residuals in image space, as implemented in OpenCV.

Hereafter, we refer to the contender methods as Single Plane and Multi-Plane, respectively. Note

that these planes inpaint the depth before the color channels are inpainted. Also, such explicit

geometry gives enough constraints in Equation 4.10 to inpaint each plane from geometrically

separate pixels without the need for separate inpainting in each plane [72] or manual labeling [50].

For fair comparison in the quality assessment, we used the same tracker and mask images in all

three methods including InpaintFusion.

Reference:

Kawai, Norihiko and Sato, Tomokazu and Yokoya, Naokazu (2016)
Diminished Reality Based on Image Inpainting Considering Background Geometry

Reference:

Newcombe, Richard A. and Izadi, Shahram and Hilliges, Otmar and Molyneaux, David and Kim, David and Davison, Andrew J. and Kohli, Pushmeet and Shotton, Jamie and Hodges, Steve and Fitzgibbon, Andrew (2011)
KinectFusion: Real-time Dense Surface Mapping and Tracking

Reference:

Steinbrücker, Frank and Sturm, JÃ¼rgen and Cremers, Daniel (2011)
Real-time visual odometry from dense RGB-D images

Reference:

Kawai, Norihiko and Sato, Tomokazu and Yokoya, Naokazu (2016)
Diminished Reality Based on Image Inpainting Considering Background Geometry

Reference:

Herling, Jan and Broll, Wolfgang (2014)
High-Quality Real-Time Video Inpainting with PixMix
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4.2.2 Inpainting Quality

Figure 4.11 shows inpainting results in selected frames and fusion results of InpaintFusion in

three scenes that have reasonable 3D structures: Rock, Leaves, and Crack. In Rock, we inpainted

the handkerchief on a rock. The system generated a seamless but fake surface in 3D. Owing to

the image-space color and depth inpainting and subsequent fusion of those images, the inpainted

structure fits the 3D structure of the real rock even under significant viewport changes. In Leaves,

we inpainted the dead leaf among the green leaves to replace the dead leaf with green leaves

hallucinated by the proposed system. Note that real leaves are occluded by the generated leaves,

and partially observable real leaves from different viewpoints retain their shape and color in each

view. In Crack, we inpainted a crack on a rock to virtually fix the crack. Note how the inpainting

kept the geometric edge of two surfaces.

We also compare inpainted color and depth maps of all types of geometry proxies. Here, for lack of

space, we show results of only the Crack dataset as a typical case (Figure 4.10). More results are

provided in the accompanying video. Note that all inpainting results have a different appearance

in each trial due to the randomized initial transfer map and the different geometry proxy. Besides,

none of the methods in Table 2.1 explicitly provide depth, although approaches that use AR markers

or SLAM as a tracker coud provide depth from the marker position or SLAM points. Even though

single frame appearance may be plausible, in motion, wrongly fitted planes reveal the ROI due to

the inconsistent disparities. This effect is best observed in the accompanying video.

We specified three points on the top surface for Single Plane, defining an infinite plane. Con-

sequently, the inpainted region on the side surface floats when the camera moves. Multi-Plane

estimated two dominant planes for the top and the side surfaces. Nevertheless, this method always

selects the closest plane distance from the camera; the shape of the scene resembles a concave wall-

and-floor geometry. This geometry is not correctly representing the scene, leading to inconsistent

inpainting results in all views except at the keyframe. In contrast, InpaintFusion plausibly estimates

two surfaces that fit the real geometry well, resulting in seamless and consistent inpainting from

various viewpoints (Figure 4.11).

4.2.3 User Study

Design We designed a repeated measures within-subjects study to compare the inpainting quality

of different inpainting methods. Therefore, we introduced the indepenedent variable “inpainting

method” with three conditions: Single Plane (S), Multi-Plane (M), and InpaintFusion. As dependent

variables, we collected ratings for image and video results, sI and sV, respectively. To analyze how



4.2. Evaluation 67
Ro

ck
Le

av
es

Cr
ac

k

Raw images with ROI (top) our results (bottom) Color and normal maps of raw image data (left) and

results after inpainting (right)

Figure 4.11: InpaintFusion in three different scenes.
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Figure 4.12: Additional results. Raw images with ROI (left) our results (right). As we discuss in Sec-

tion 4.2.3, static images do not clearly show the advantages of our method. Therefore, we strongly recommend

readers to watch the results in motion in the provided supplemental video.

different geometry proxies impact inpainting results under camera motions, we also calculate the

differences, sV− sI scores.

Task We designed a task for rating image and video inpainting results on a 10-point Likert scale,

using nine scenes including the scenes in Figure 4.11, Figure 4.12 and Figure 4.13.
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Figure 4.13: Additional results. Raw images with ROI (left) our results (right).

Provided textual information, the participants were instructed to understand the purpose of the

inpainting process in each scene, e.g., the inpainting is used to hide logos in the scene. Later

we asked the participants to evaluate how well each inpainting method achieved the purpose1.

For image results, we chose corresponding frames from each of the videos showing the different

inpainting methods.

1 For further details, we provide a supplemental video.
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Apparatus We used a web-based survey system, SurveyMonkey, to collect responses from people

of different expertise and nationalities, after email invitation. The participants were instructed to

use at least a 13" screen to ensure reasonable viewing conditions.

Procedure After receiving textual instructions and signing an informed consent form, participants

evaluated a series of inpainted images, followed by evaluation of inpainting videos. In each rating,

three still images or videos were presented side-by-side, showing the original with and without the

highlighted interest region and the inpainted image. 55 participants (six female, age X̄ = 31.7, SD

= 7.8 years old) volunteered for the study. On a scale from one to five, where five means the best,

the mean self-rated experience concerning inpainting was 2.4 (SD= 1.1). The participants scored

the nine inpainting test cases in random order. A session took approximately 17 minutes. With 55

participants, nine repetitions and three inpainting methods, we collected a total of 55×9×3 = 1,485

ratings for image results and the same number of ratings for video results.

Hypotheses We did not expect significant differences in still image results where no motion

disparities appear (H1). However, due to the fused 3D geometry proxy of the proposed method, we

expected InpaintFusion to have significantly higher scores in video results than single plane and

multi plane (H2). Moreover, we expected InpaintFusion to have significantly fewer deteriorations

of the sV− sI score than single plane and multi plane (H3).

Results The score data was analyzed using a non-parametric Friedman test followed by pairwise

Wilcoxon signed rank tests with Bonferroni correction. The reported p-values have been Bonferroni

corrected to reflect a significance level of 0.05. The statistical analysis was performed using R

software.

Friedman tests revealed significant differences in image results (χ2(2)=852.02, p<0.001), in video

results (χ2(2)=1018.00, p<0.001), and in sV − sI scores (χ2(2)=1018.00, p<0.001). Figure 4.14

summarizes the study results. For Post-hoc test results refer to Table 4.1.

Discussion InpaintFusion is scored one unit higher in the median than the others in image results.

Therefore, we reject our pessimistic hypothesis H1, as InpaintFusion performed better than expected.

One possible explanation could be that the geometry term of InpaintFusion constrains the search

range to a proper region, while single plane must search pixels only using colors. We observed that

multiplane tends to leak colors in wrong plane regions, when it fails to estimate planes correctly.

For video, InpaintFusion scored even one unit higher than for still images, clearly outperforming
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Figure 4.14: Study results in image evaluation (a), video evaluation (b), and deteriorations from image to

video (c). Looking at the median values (orange lines), we can conclude that InpaintFusion outperforms

Single Plane and Multi-Plane approaches.

both Single Plane and Multi-Plane. We explain this by the well-maintained temporal and spatial

coherence of InpaintFusion under 6DOF motions. InpaintFusion gave the participants better

impressions than in image results, while scores for Single Plane and Multi-Plane were lowered due

to geometrical misalignments. Single plane repeatedly failed when there were multiple objects

of interest at different depths or when the region had varying depth. Also, we observed that,

when multiplane fails to estimate the right planes, mismatched disparities in the video are created.

Figure 4.10 shows such typical cases. Overall, we accept our optimistic hypotheses H2 and H3.

We conclude that InpaintFusion can maintain the quality even in scenes where planar inpainting

approaches fail.

4.2.4 Runtime Performance

We implemented InpaintFusion on a notebook computer (Intel Core i7-6567U with 3.3 GHz, 16

GB RAM, external NVIDIA GeForce GTX1080Ti connected via Thunderbolt 3) running Windows

10. As RGB-D sensor, we either used a Microsoft Kinect v1 or an Intel RealSense SR300, running

at 30 Hz in 640× 480 resolution. We implemented our system in two threads, one performing

keyframe inpainting and another one for the rest of the processing, including Graphics Processing

Unit (GPU) tasks (using OpenGL and GLSL), SLAM, rendering, and passing selected keyframes to
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Table 4.1: Post-hoc tests, methods in rows compared against methods in columns. Post-hoc tests indicated

that InpaintFusion scores (Mdn=6) were statistically higher than Single Plane scores and Multi-Plane

scores in image results. Results indicated that all combinations in video results have significant differences;

InpaintFusion scores (Med=7) were statistically higher than Single Plane scores and Multi-Plane scores, and

Single Plane scores were statistically higher than Multi-Plane scores. Also, in sV− sI scores, post-hoc tests

indicated that all combinations have significant differences; InpaintFusion scores (Med=1) were statistically

higher than Single Plane scores and Multi-Plane scores, and Single Plane scores were statistically higher

than Multi-Plane scores.
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Z=-5.540
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r=0.249

Mdn=5
Z=-4.66
p<0.001
r=0.209
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Mdn=3
Z=-16.589
p<0.001
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Z=-17.775
p<0.001
r=0.799

S V −S I

Mdn=−1
Z=-15.071
p<0.001
r=0.677

Mdn=−2
Z=-16.251
p<0.001
r=0.730

the inpainting thread.

Table 4.2 and 4.3 summarize the performance in milliseconds in the main and inpainting threads,

respectively. Overall, InpaintFusion operates approximately at 31.16 Hz. Although the first

keyframe inpainting is most expensive and finishes in 4.4 sec., it runs in the background without

interfering with tracking, and it takes less in the following keyframes due to keyframe propagation.

In comparison with existing methods using a similar hardware setup, InpaintFusion performs equal

or even faster, even though it is capable of full 3D inpainting that has never been achieved before

(please see the accompanying video).
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Table 4.2: Average time (ms) spent in each stage of the main thread.

Component Runtime [ms]
Tracking (OpenCV / GPU ICP) 128.16 / 21.44
SLAM fusion 4.60
Inpainted KF fusion 8.00 / KF
View-dependent KF blending 1.93
Misc (Frame pre-processing & data handling) 3.20
Total (OpenCV / GPU ICP) 137.88 / 31.16

Table 4.3: Average time spent in each stage of the inpainting thread, which runs in parallel to the main

thread and therefore does not stall the application.

Component Runtime [ms]
KF propagation 19.75
Transformation map optimization 4288.33
(50 raster-scans at each of a six level pyramid)
Depth estimation from depth samples 96.67
Mask ratio 17.02 %
Total 4385.00

4.3 Limitations and Future Work

While InpaintFusion generalizes the inpainting-based DR methods, some points need to be ad-

dressed to further improve the quality.

Integer space transformation map propagation The transformation map f represents pixel-

to-pixel offsets, i.e., f ∈ Z2. Therefore, propagating such a map to the next keyframe leads to

nearest-neighbor interpolation in image space. Such an approach is prone to aliasing, as seen in

Ck( f ∗k (u)) of Figure 4.5 (e). A potential solution to this problem in our system is to set fairly large

thresholds discussed in Section 4.1.5. We could re-optimize the propagated transformation map

using the warped color map from the closest keyframe as a constraint with higher weight in the

appearance costs minimization [50]. However, once the optimization finds better pixel-to-pixel

relationships than the current ones, the resulting appearance of the inpainting will differ substantially

from the other keyframes. Planar inpainting avoids this problem, since it does not have to handle

occlusions. To mitigate the aliasing problems, we can use view-dependent keyframe blending, as

described in Section 4.1.9, to compose multiple keyframes to render the current inpainted region.

Reference:

Herling, Jan and Broll, Wolfgang (2014)
High-Quality Real-Time Video Inpainting with PixMix
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Occlusion handling with real and inpainted depths In case our system reconstructs a poten-

tially observable background, and the user perfectly labels an object of interest before inpainting

starts, our system can safely project the reconstructed surfels belonging to LO to exclude ones

with LROI from inpainting. However, in practice, the surfel-wise colors are not precise enough to

fill in LROI as they are. This issue is demonstrated in an existing attempt [98], and surfels with

view-dependent properties could mitigate this problem [104]. Therefore, we chose to inpaint the

entire ROI in the first keyframe. This means that, in case a real background is observed after

inpainting, that inpainted depth and real depth may disagree, leading to discontinuities at the ROI

border. To minimize such discontinuities, we can use automatic segmentation, using the manually

specified ROI as seed, to obtain a better labeling that supresses problems at borders.

Bundle inpainting using all keyframes Adding more constraints in the transformation map

optimization will lead to more robust inpainting, but it will also further restrict the pixel search

range. This can lead to a lack of pixel sources. One could search pixels in all preserved keyframes

to optimize a single transformation map, but this would require another term in the optimization to

represent pixel continuities across keyframes. One good example we could find projects multi-view

images to common planes to use available pixel sources for the inpainting [108], although the

authors stress the difficulties to apply the strategy for non-planar regions. We find such an extension

an interesting avenue of future research.

4.4 Summary

We presented a novel approach for interactive image inpainting in 3D. We have shown how the

integration of fusion and multi-keyframe inpainting delivers globally consistent and appealing

results. Our system ensures frame-to-frame coherence of the inpainted results by considering a 3D

geometric term in addition to texture in image space. This ability improves the range of possible

use cases for interactive DR applications, for instance, we can target multi-view rendering for

stereoscopic display devices. Furthermore, our system supports image editing by its ability to add

3D visual effects to inpainted images. This enables quickly adding 3D visual effects to images and

videos, providing a tool for previewing image and video editing operations.

InpaintFusion also opens up possibilities for AR effects after the inpainting. For example, we

demonstrated relighting from virtual car headlights and physical animation of snowballs in the

inpainted region (Figure 4.1). We also made real objects virtually interactive by replacing the

real object with a scanned model after removing the real object. In case the user could scan the
2 https://www.gcc.tu-darmstadt.de/home/proj/mve/

Reference:

Nakajima, Yoshikatsu and Mori, Shohei and Saito, Hideo (2017)
Semantic object selection and detection for diminished reality based on SLAM with viewpoint class

Reference:

Park, Jeong Joon and Newcombe, Richard and Seitz, Steve (2018)
Surface light field fusion

Reference:

Philip, Julien and Drettakis, George (2018)
Plane-based multi-view inpainting for image-based rendering in large scenes
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Figure 4.15: Scene completion using InpaintFusion. Our approach is able to complete 3D reconstructions.

In this example, it completes CityWall dataset provided by TU Darmstadt2 and rendered by our IBMR

pipeline. InpaintFusion generates the missing geometry and color information (right), which is highlighted

by white circles in the image on the (left).
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backgrounds in advance, our system can erase frontally occluding objects for X-ray vision. In this

case, surfels belong to the ROI are replaced with observed ones. Most importantly, InpaintFusion

supplies RGB-D inpainting for scene completion, filling holes in a point cloud corresponding to

unobserved areas in the scene or reconstruction failures, which has a crucial role in tele-operation

task. (Figure 4.15). In addition to scene completion, inpainting further improves the tele-exploration

experience by removing unwanted objects (see Figure 4.17) or graffiti (see Figure 4.16) from the

scene. In Chapter 5, we will present how interactive remote exploration scenarios can benefit from

IBMR.
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Figure 4.16: Removing unwanted graffiti on the well from IBMR result. Noticeable misalignment of the tile

grid is the result of a trade off between spatial similarity versus texture similarity. While increased spatial

similarity constraint would alleviate the problem by copying group of pixel together from source, reduced

texture similarity can cause a visual difference between inpainted region versus the rest of the image.
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Figure 4.17: Removing a historical cannon ball from a city wall, rendered using our IBMR pipeline.
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In this chapter we demonstrate that the use of Image-Based Modeling and Rendering (IBMR)

also facilitates tele-exploration scenarios where physical interaction with the remote enviroment is

needed (Figure 5.1). Especially, we demonstrate that rendering from an exocentric point of view

with the flexibility to change viewpoint reduces cognitive load of the user. In addition, our flexible

viewpoint rendering gives the user the ability to move in the scene virtually as desired.

To better show this impact, we used an indoor camera drone and streamed its images to an IBMR

pipeline. An interactive and highly mobile application scenario which lets the user move physically,

is enabled by using a mixed-reality device, namely the HoloLens from Microsoft (see Figure 5.2).

Due to the performance limitations of the device, in contrast to a full IBMR pipeline, we only used

the most recent image streamed from the drone’s camera in our visualization to introduce novel

interaction techniques to tele-exploration tasks.

79
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Figure 5.1: This image was captured live with a second HoloLens on a tripod. The drone-augmented

human is interacting with the drone in an exocentric view. The human is steering the camera drone via gaze

direction and perceives an X-ray-like vision into occluded areas. The brick pattern is a physical wallpaper.

The lower part of the mannequin is applied as a perspectively correct texture and extends the user’s perception

of the visible upper part of the mannequin.

5.1 Interface Design

Our drone-augmented human vision system lets the pilot control a drone inside an occluded space

indirectly, via an exocentric visualization provided in a see-through Head-Mounted Display (HMD)

(Microsoft HoloLens). While the drone travels in the remote environment, the video frames

streamed from the on-board camera are projectively texture-mapped onto a geometric model of

the scene. The scene is rendered from the user’s current perspective, as measured by the built-in

self-localization of the HMD (see Figure 5.3).

In addition, a virtual representation of the drone is rendered at the position reported by the physical

drone, to give the pilot an overview of the physical configuration of the occluded space. The interior

scene with partial texture mapping is made to appear inside a “cutaway” magic lens that appears as

a hole in the occluding wall structure.

For flight control and navigation in the occluded space without hitting obstacles, we introduce two

interaction techniques, called pick-and-place and gaze-to-see. Moreover, we introduce overview-
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Figure 5.2: HoloLens. © Microsoft

Figure 5.3: System set up overview. A user with a HMD looks through a wall to see the occluded object of

interest (blue cube). Using the Optitrack motion tracking system, mounted to the metal frame, drone’s pose

is calculated and streamed to HMD together with the images obtained from on-board drone camera. Entire

system communicates through WiFi network.

and-detail, a transitional interface [7] to reveal details on demand.

5.1.1 Pick-and-Place

This interaction technique allows users to pick a drone by looking at it and applying a pinch gesture.

After picking the drone, moving one’s hand repositions the drone in 3D space, as illustrated in

Reference:

Billinghurst, Mark and Kato, Hirkazu and Poupyrev, Ivan (2001)
The MagicBook - Moving Seamlessly between Reality and Virtuality
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Figure 5.4. The hand movement is scaled proportionally to the distance of the picked object, as in

the scaled-world-grab technique proposed by Mine et al. [92]. More formally, the displacement

vector ~Ddrone of the drone’s position Pdrone in R3 is calculated as

~Ddrone =

∥∥∥Pdrone−Peye
∥∥∥∥∥∥Phand −Peye
∥∥∥ · ~Dhand (5.1)

where Peye and Phand represent the positions of the eye and the hand, respectively, while ~Dhand

indicates the hand’s motion vector in R3 (Figure 5.4). Peye and Phand are directly provided by

HoloLens, whereas Pdrone is received from the drone tracking system. Note that, depending on

factors like dominant eye, HMD position on the head or the distance of the currently focused object,

Peye may be subject to brittle calibration. However, during our experiments, users did not indicate

that they needed (re-)calibration.

5.1.2 Gaze-to-See

Using the view vector and eye position provided by HoloLens, one can calculate the point of

interest Pgaze a user is gazing at by intersecting the viewing ray with the scene model. Knowing

gaze position allows to predict which part of the occluded scene a user is interested in. Therefore,

in this interaction technique, the drone focuses on the high level goal of the user and automatically

repositions to observe the area around the user’s point of interest with its on-board camera. Let
~Ng be the normal vector at Pgaze, and let ~Z = {0,0,1} denote the up-axis of the scene. The drone is

positioned at

Pdrone = Pgaze +
~Ng− (~Ng · ~Z) · ~Z∥∥∥∥(~Ng− (~Ng · ~Z) · ~Z)

∥∥∥∥ · x if
∥∥∥∥~Ng · ~Z

∥∥∥∥ < ∥∥∥∥~Ng

∥∥∥∥ ·0.9 (5.2)

Unless we are looking at a horizontal surface, the drone will reposition x meters away from the

point of interest along a displacement vector corresponding to the surface normal projected to a

horizontal plane (Figure 5.5). If the user is looking at a horizantal surface then no target position

will be set for the drone.

In our experiments, we set x = 0.5 meters for ensuring a close-up view of the surface. The drone’s

yaw orientation is adjusted to align with the negative displacement vector. In case the user looks at

a horizontal surface, the drone is positioned between the user and the point of interest, mimicking

the user’s view vector in the horizontal plane. If the calculated position is not inside the safe flight

zone, the repositioning terminates at the nearest border of the permitted flight zone.

Reference:

Mine, Mark R and Brooks Jr, Frederick P and Sequin, Carlo H (1997)
Moving objects in space: exploiting proprioception in virtual-environment interaction
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Figure 5.4: Pick-and-place – the user picks and places the drone, as if the drone is at the reach of the user’s

arm.

5.1.3 Overview-and-Detail

By visualizing the occluded scene and the drone from a user’s perspective, our system allows a

drone pilot to better understand the spatial relationships between scene geometry, drone and the
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Figure 5.5: Gaze-to-see – the user looks at a point as shown by the red arrows and steers the drone to a

position where the drone observes the point of interest and ensures a close up view.

pilot’s body. However, this visualization lacks details, as the drone can be far away and both camera

and display suffer from a rather limited field of view. Therefore, we introduced an overview-and-

detail technique, which fills the gap between egocentric and exocentric drone control modes in the

form of a transitional interface [7] using image-based warping [127]. After steering the drone to a

Reference:

Billinghurst, Mark and Kato, Hirkazu and Poupyrev, Ivan (2001)
The MagicBook - Moving Seamlessly between Reality and Virtuality

Reference:

Tatzgern, Markus and Grasset, Raphael and Kalkofen, Denis and Schmalstieg, Dieter (2014)
Transitional AR Navigation for Live Captured Scenes
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point of interest, users are given the option to either virtually move closer to the drone or to the

currently gazed-at surface point in the occluded scene, by selecting the corresponding interface

hotspot. During the detail visualization, we apply the occluding wall structure to clip the zoomed

detail geometry in order to avoid confusion between real and occluded virtual geometry (Figure 5.6).

Zooming in is achieved by positioning the virtual hole in front of the gazed point while preserving

the relative transformation between the virtual hole and the user’s camera view. The position of the

virtual hole is computed in the same way as the positioning of the drone in gaze-to-see interaction.

5.2 Implementation

A detailed overview of our experimental system architecture, including hardware and software

components and data flow between them, is shown in Figure 5.7. The system builds on the drone

design described by Isop et al. [63] and is based on six main components:

We use an (1) Optitrack motion tracking system consisting of a server system with 12 cameras to

externally localize the drone. The Optitrack is connected to (2) a ground-station, which further

communicates to (3) the drone’s on-board computer, an Odroid XU3, and (4) the HoloLens via WiFi.

For our user study, we complemented the system with a remote control user interface including (5)

a joypad for steering and (6) a visualization station. All components communicate via Ethernet or

WiFi.

The software components are integrated via Robot Operating System (ROS) [109] nodes. We

use Unity 3D for visualization on the HoloLens and the ROS tool RViz for monitoring on the

ground-station.

The motion capturing node on the ground-station relays User Datagram Protocol (UDP) packages

from the Optitrack system, which describe timestamped poses of the tracked objects, to the Odroid.

The Odroid transforms the poses into local coordinates of the drone and forwards them to the

MAVROS node, a ROS wrapper to communicate with the Pixfalcon autopilot via publish/subscribe

messages. It is responsible for acquiring Inertial Measurement Unit (IMU) data, pose updates,

target coordinates (setpoints), internal pose estimates, etc.

The drone controller node on the HoloLens maps gestures into target drone position and visualizes

the drone’s current position and target positions in the mixed-reality view. Setpoints, target values

for the drone positions, can be generated either by the HoloLens interface or by the joypad interface.

Reference:

W. A. Isop and J. Pestana and G. Ermacora and F. Fraundorfer and D. Schmalstieg (2016)
Micro Aerial Projector - stabilizing projected images of an airborne robotics projection platform

Reference:

Morgan Quigley and Ken Conley and Brian P. Gerkey and Josh Faust and Tully Foote and Jeremy Leibs and Rob Wheeler and Andrew Y. Ng (2009)
ROS: an open-source Robot Operating System
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Figure 5.6: Overview-and-detail – when a far point in the scene is investigated, the user can virtually fly

close to the point of interest and have a virtual viewpoint in the scene. However, all virtual scene elements

remain behind the wall to avoid confusing depth perception.
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Figure 5.8: Experimental drone setup including the main components. The camera (Logitech Camera) is

mounted facing forward and captures the images needed for visualization of occluded space. Inside the

frame, the autopilot (Pixfalcon FMU) is located which ensures drone reaches a given position. The battery

is mounted on the bottom to balance weight distribution. The onboard computer (ODROID XU3 SBC) is

located on top and communicates with the ground station and do the necessary commanding of drone.

5.2.1 Drone Setup

The drone (Figure 5.8), which has a frame with 25 cm diameter and weighs 450 g, uses a semi-

customized design with rotors and frame taken from a Parrot Bebop 2 platform. The flight time is

about 11-15 minutes, while running all relevant components and tasks. We added a PX4 Pixfalcon

autopilot as a low-level flight control unit and an Odroid XU3 single-board processor computer.

The forward-looking camera captures image data at 30 Hz with 640×480 resolution and delivers

it to the Odroid via USB. The video is streamed to the HoloLens in MJPEG format, annotated

with timestamp and camera poses to allow precise image-based rendering. All high-level tasks,

including processing of image data, estimated poses from the motion tracker and control commands

received from the pilot run on-board and are implemented in the ROS framework.
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5.2.2 Flight Management Control

For localization of the drone, we use the external Optitrack system with 12 ceiling-mounted tracking

cameras, covering an area of roughly 5×4×3m. The Optitrack system provides pose estimations

at 120 Hz, which are delivered over WiFi to the Odroid at a latency of ~25 ms. The serial link

from the Odroid to the Pixfalcon autopilot adds another ~10 ms of delay. The system time between

Optitrack server, ground-station and Pixfalcon autopilot is synchronized based on Network Time

Protocol (NTP) using the Chrony service.

Designing a drone for autopilot-controlled flight at low heights in small confined spaces is challeng-

ing, because of the imminent danger of hitting obstacles. We combined several measures to ensure

safe operation. Since high flight speed was not a primary goal, we used low-thrust engines (taken

from a Bebob 1 platform) and soft materials for the propellers. This produces less turbulences

when flying close to walls and around objects. We further relied on the ability of the Pixfalcon

autopilot to use pure inertial navigation for short periods, when the measurements from the motion

capture system are noisy or intermittent. Such a noise can arise from the ambient lighting changes

and reflections emitted from metallic surfaces. The pose updates are buffered on the Odroid to

minimize the occasions where the Pixfalcon autopilot switches unintendedly from autonomous

flight mode into manual mode if the Wifi link stalls or drops position updates from the Optitrack.

5.2.3 Control of Drone Movements

Control of the drone is based on measuring its Six Degree of Freedom (6DoF) pose by the motion

capture system in world coordinate representation. We make use of the Pixfalcon autopilot inertial

estimator to fuse the motion capture data with the inertial sensors of the Pixfalcon autopilot, deriving

3D position [x,y,z] and the yaw θ required for the drones’s position control. These measurements,

obtained at discrete times i = 0 . . .n, are denoted as Yi.

For position control, we use the internal linear control approaches of the Pixfalcon autopilot. The

methods consist of an inner attitude rate PID (proportional/integral/derivative) controller with pitch,

roll and yaw angular velocities as inputs. This control loop is enclosed by an attitude P-controller

with attitude setpoints for roll, pitch and yaw angles and throttle as reference input. The inner

control loop is nested in a position control loop, which takes 3D position [x,y,z] and yaw θ as

reference inputs Hi, which can, for example, be derived from the HoloLens interaction. The yaw



90 Chapter 5. Drone-Augmented Human Vision

reference is directly fed into the inner attitude control loop.

Yi = {xi,yi,zi, θi} (i = 0...n) (5.3)

Hi = {xi,yi,zi, θi} (i = 0...n) (5.4)

Ei = Hi−Yi (5.5)

The derived position error, given in Equation 5.5, is calculated in every iteration i and fed into the

control structure of the Pixfalcon autopilot. We use aggressive controller gains, which are based

on the default gains of the more heavyweight DJI F330 model, to establish fast response times

and accept slight overshooting of approximately 5%, when the drone’s actual position converges

towards the given setpoint.

5.2.4 Precomputed Path Planning

For our experiments, we wanted to relieve the pilot as much as possible from path planning,

providing the illusion of augmented vision without concerns about flight safety. However, fully

featured path planning is computationally expensive and can be brittle. Since we track the drone

externally, rather than by Simultaneous Localization and Mapping (SLAM), we can pre-compute

the necessary path planning information from the floor plan. In our test environment, we divided

the space into three regions: two rooms connected by a corridor.

If the pilot issues a repositioning command that requires changing the region, the path planning first

approaches a predefined waypoint at the boundary before progressing to the neighboring region.

Overall, our path planning is simplistic, but works instantaneously and reliably prevents accidents

due to hitting obstacles or walls of the scene. A more realistic path planning based on SLAM would

run an A* algorithm on a map of the environment that has already been explored by the drone.

5.2.5 Joypad Control

Alternatively to the path planning, the drone can be controlled via a joypad. In this case, a custom

ROS node integrates the inputs from four axes of the joypad and converts them into a 3D position

and yaw of the drone. We derive the position reference commands by integration of the joypad’s

linear axis commands Ji over the time intervals between discrete times i. The position error Ei in

this case is given as Ei = Ji−Yi.

To enable a fair comparison between the exocentric interaction techniques introduced in Section

3 and the joypad interface, we added advanced features to the joypad interface, which go beyond
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what is conventionally available in commercial drone control.

First, we provide drift-free stabilization of the Micro Aerial Vehicle (MAV) position during

navigation in the scene. This kind of stabilization is not available when using off-the-shelf drone

technology. Conventional tracking and stabilization, especially in the x-y plane, is usually based on

opticalflow or inertial sensors, which suffer from drift over time. With the drift-free tracking, we

also enable a basic level of disturbance rejection against turbulences which occur during flight in

narrow parts of the scene.

Second, we chose Mode-2 axis mapping on the joypad, which is a well-known and widely accepted

mapping for drone control. It is also the default configuration in a variety of off-the-shelf drone

products, e.g., the Parrot AR Drone 2.0, the Parrot Bebop 1/2, and the DJI Marvic. Mode-2 mapping

employs the left joystick for commanding vertical velocity and velocity around the rotational z-axis

of the drone. No direct thrust control is required by the user, reducing cognitive load. The right

joystick controls the translational velocity in X and Y direction.

Third, we created a safe-guard for the use by introducing artificial boundaries inside the scene, so

the user is not able to crash the drone into walls or hit obstacles. Before each experiment, the user

was informed that crashing the MAV is not possible. We presented visual feedback when the user

hits the artificial boundaries via warning message, and we visualized the valid flight areas inside

a 3D perspective view with green bounding boxes (Figure 5.9). If the user hits the boundaries,

the drone did not fully stop, but continued movement along the boundary with the resulting speed

vector. Thus, the user was able to “slide along” the artificial boundaries. Another safety mechanism

allowed the joypad user a simple and safe transition between the rooms. Once the user approached

the narrow corridor between the rooms, the drone was automatically transported to the other room.

We did not impose any limit in z-direction, so the user was able to safely transit between the rooms

at any flight height.

5.2.6 Head-mounted Display

The pilot interface runs on the HoloLens. Its tinted visor holds transparent combiner lenses, in

which projected images are shown to the user. We rely on the built-in SLAM system of the HoloLens

to provide continuous self-localization. In order to register the localization data reported by the

HoloLens with the Optitrack coordinates (OC), we use a Vuforia tracking target. The tracking

target is placed on the floor in front of the occluding wall, which corresponds to the plane Z = 0 in

OC. The transformation between OC and tracking target was calibrated offline. Using the Vuforia

SDK for HoloLens, we obtained the transformation from the origin of the HoloLens SLAM tracking
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to the tracking target at startup time and concatenated to the OC transformation. Thus, a drone pose

reported in OC can transformed into HoloLens coordinates.

5.2.7 X-ray Vision

We apply Augmented Reality (AR) X-ray vision while providing the user with an exocentric

interface for nearby remote scenes. We use the Unity 3D game engine for rendering the scene

geometry on the HoloLens. A stencil masking technique is applied to render X-ray visualization

only where the virtual geometry is observed through the virtual hole in the wall.

Images for first-person view are streamed from the drone-mounted camera as MJPEG, annotated

with the drone’s pose when the frame was taken. The MJPEG is decoded and uploaded as a texture

to the Graphics Processing Unit (GPU) of the HoloLens to generate the Mixed Reality (MR) view.

For each fragment displayed on the HoloLens, the texture is sampled during the shading process

by projecting fragment positions in world space with the view projection matrix of the drone’s

camera. To eliminate virtual geometry from being rendered between the occluding wall and the

user, fragments with world coordinates that are located behind the wall plane are discarded.

5.3 User Study

We conducted two user studies to collect quantitative and qualitative data on the performance and

scalability of our system.

5.3.1 Physical Viewpoint Study

First, we were interested in users’ spatial awareness using the exocentric viewing interface and

X-ray vision, compared to a standard egocentric interface that lets the pilot control the drone with a

joypad. Specifically, we studied the case in which the user is in-place investigating the occluded

scene, which is close (e.g. behind a wall), but cannot be reached from the current viewpoint. To

ensure a fair comparison, we supported the joypad user not only with the live egocentric video from

the drone, but also with a screen-based 3D visualization of the hidden space, showing real-time

updates of the drone’s position. We formulated our hypotheses as follows:

H1: “Steering a drone for collecting information in distant spaces is faster with the exocentric

interface than using a common joypad interface.”

H2: “Steering a drone for positioning in distant 3D spaces is faster with the exocentric interface

than using a common joypad interface.”
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Figure 5.9: The first-person view and two additional views of the flight space were available for EGO user

during both tasks. The red zone in the middle of the 3D model indicates a restricted flight zone, where the

drone’s position is confined to remain inside boundary, while the green zone delimits the allowed flight

space. (a) The user’s view while engaged in the screen-reading task. The model shows three screens with red

borders, but only two of them are active per user. (b) The user’s views during the drone positioning task.

Cubes in the 3D model indicate the target positions to be reached by the drone with a tolerance of 10 cm.

H3: “Steering a drone for collecting information and positioning in distant 3D spaces is more

intuitive with the exocentric interface than using a common joypad interface.”

Study design and tasks To test our hypotheses, we chose the interaction mode as an independent

variable with two conditions: Exocentric interface (EXO) and egocentric interface (EGO). In

addition, we selected completion time as a dependent variable. Workload was measured using the

NASA Task Load Index (TLX) [45], and overall preferences of the users were assessed via semi-

structured interviews. Based on a within-subjects design, participants were given two instances of a

search-and-explore task to be accomplished with either of the interaction methods, in randomized

order.

Reading text on monitors We asked subjects to steer the drone with both interfaces and report

random texts displayed on two monitors positioned in different places of the occluded space. The

monitors showed different background colors (red and green) to uniquely identify them from an

Reference:

Hart, Sandra G and Staveland, Lowell E (1988)
Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research
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Figure 5.10: By altering the position of the green monitor, two different flight paths are generated per user.

arbitrary distance. During the training, users were informed with the positions of the red and

green monitors in the 3D environment model. The environment model contains three physical

monitors, but only two of them were active at any time in order to necessitate different flight

paths (Figure 5.10). The time spent to read from each monitor was recorded as soon as the user

reported the text correctly. We asked participants to use the gaze-to-see interaction technique, and

we suggested to additionally use the overview-and-detail technique in EXO.

Positioning of the drone In this task, participants were expected to position the drone at three

known target locations, which were visualized as boxes in the 3D models shown in both interfaces

(Figure 5.9b and Figure 5.11). We logged the time spent to visit the target locations, whenever the

system reported that the drone approached a target to within 10 cm tolerance. As the task involved

accurate and fast positioning of the drone for this tasks, we suggested to the EXO users to use the

pick-and-place technique.

Participants Ten participants (0 female, X =23.1 (sd=2.07) years old) volunteered in our ex-

periment. All of them had extensive experiences with mobile devices, none was a regular drone

pilot.
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Figure 5.11: As part of positioning the drone task, target positions are visualized as yellow boxes in the

EXO interface.

Experimental setup Participants performed the tasks while standing in front of a wall completely

occluding the flight zone. In the EXO condition, participants wore a HoloLens for seeing through

the wall. In the EGO condition, a joypad was used to steer the drone, while a monitor (19 inch)

was used to display the video stream delivered by the camera of the drone. EGO users were also

provided with 3D views of the flight zone from different perspectives (top and top-side view),

displayed on a second monitor (15 inch) (Figure 5.9). A laptop was used to record the participants’

qualitative and quantitative input during the experiment.

Procedure Participants were brought to the participant zone and informed about the setup of

the experiment environment without giving detailed information about the flight zone. After the

briefing, we assessed their demographics and explained how to use both interfaces. Participants

were allowed to practice both interfaces, until they expressed confidence to use them.

Participants were asked to accomplish the tasks in randomized order, to eliminate training effects.

For the text reading task, the position of the green monitor was changed to alter the flight path from

the first to the second condition. After finishing each task with one interface, participants filled

in the NASA TLX. Upon the completion of all tasks for both interfaces, participants filled out a
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preference questionnaire, and a semi-structured interview was conducted. Sessions lasted 50 min.

Results The task completion time was evaluated using paired t-tests, and the TLX data was

analyzed using pairwise Wilcoxon signed-rank tests. The t-tests revealed significant differences

between HoloLens and Joystick interface for both, the reading task (p=0.0013) and the reaching

positions task (p=0.0024), in terms of task completion time. On average, task completion time of

EXO was less than half of the average time required by the EGO (Figure 5.12a). In the text reading

task, EXO took 19.85 seconds on average (standard error 2.2 seconds) to read the texts on both

monitors, whereas EGO took 39.1 seconds on average (standard error 6.3 seconds). For reaching

the given 3D positions, EXO users completed the task on average in 34.2 seconds (standard error

2.3 seconds). EGO took 73.4 seconds on average (standard error 9.57 seconds).

According to the overall scores of the NASA TLX forms, for both of the tasks, users found EXO

to have a slightly better usability than EGO. For the first task, users gave an average score of

24 for EXO and 32 for EGO, whereas, for the second task, EXO scored 25 and EGO scored 30

(Figure 5.12b). Probably due to the small number of participants, the TLX data did not show

significant differences between the interfaces. However, we found a noticeable trend in the TLX

data towards the HoloLens interface for the reading task (Z=1.68, p=0.105).

Relatively high deviations in task completion time of EGO suggest that EGO requires a good 3D

interpretation or experience with joypad control. In contrast, EXO seems to efficiently leverage

human abilities, resulting in consistent performance, specifically for pick-and-place.

In the informal feedback during the post-interview, users commented on their preferences. All the

participants stated that they would prefer EXO for the given tasks or similar task for investigation

of the occluded space. Verbal feedback from the interviews for both conditions included:

• I felt more confident of being precise when using EXO, specifically using pick-and-place.

• I was feeling inside the scene with EXO.

• Depth feeling was amazing with EXO.

• I confused my orientation with EGO.

• I couldn’t decide which view to concentrate on with EGO.

• Pick-and-place was cool, natural and accurate.

• Observing the drone from a distance, but still being able to get close to it, was pleasant.
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Time Measurements NASA TLX scores

Figure 5.12: Task completion times and scores using EGO and EXO interfaces. a) Average time spent

on the tasks with our two interfaces. EXO users performed much faster in both of the tasks, with similar

performance, as indicated by the standard error. b) NASA TLX scores of the both interfaces for the given

tasks. Results indicate that the time to complete a given task and the demanded cognitive load using EXO

interface is less than EGO interface.

On EGO, several users commented that the joypad axis confusion between drone’s local frame and

global frame during steering was difficult. They also sometimes confused buttons, a problem that

may be overcome with longer training. Nonetheless, the direct manipulation in EXO was more

easily adopted. Users also criticized the limited field of view of EGO and reported a confusion

of heights. Finally, they found that they could not easily decide which view (camera image or

perspective views) to concentrate on.

On EXO, one user stated he preferred the precision of the joypad interface for collecting boxes,

and several users found the HoloLens pick gesture inconvenient. However, both comments were

likely caused by the unreliable gesture detection provided on the HoloLens. We hope that a future

update of the HoloLens SDK will include a more stable gesture detection, which directly will make

our pick-and-place interface appear more convenient and more precise. In summary, the results of

our experiment allow to accept H1 and H2. Furthermore, we partially accept H3 based on the trend

towards EXO provided by the user comments and the data retrieved from TLX questionnaires.
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5.3.2 Virtual Viewpoint Study

The physical viewpoint experiment demonstrated the use of exocentric interaction techniques

at close distances. If the drone is further away from the user, drone control by hand gestures

obviously becomes increasingly sensitive to fine-motor control of the hand and to tracking errors.

We empirically verified that, indeed, satisfactory drone control with gestures is not possible at

distances of 20 m or more.

However, since our exocentric (X-ray) interface uses the physical environment – the brick wall –

only to provide relative motion cues to the user, a Virtual Reality (VR) interface using the same

setup is also possible. In VR, the HMD is operated in a non-see-through mode, and the user is

placed in a purely virtual environment, with the exception of the texture-mapped remote video

stream. This setup can always place the user’s virtual viewpoint in convenient proximity to the

drone to allows direct manipulation. The VR interface is also necessary if physical proximity to the

drone is not possible, for example, in dangerous environments.

We speculated that the virtual viewpoint interface would perform similar to the physical viewpoint

interface (the latter is essentially the same as EXO in the previous experiment). We formulated our

hypotheses as follows:

H4: “Users will perform similar in terms of execution time for a virtual viewpoint as for a physical

viewpoint”

H5: “A virtual viewpoint does not affect how a user completes the tasks, while being away from the

scene”

We tested these hypotheses by repeating the previous experiment with virtual viewpoint and physical

viewpoint conditions, as follows.

Procedure In virtual viewpoint, participants performed the tasks while standing completely

away from the occluded space. The visor of the HoloLens was entirely covered with a blinder

to disable its see through display nature and turn it into a VR device. At the beginning of the

experiment, virtual viewpoint users witnessed an animated camera transition from their current

physical viewpoint to the virtual viewpoint at the remote location. The animation gave them the

impression of flying to the target zone and landing where they had to perform the experiment.

In contrast, physical viewpoint users were standing just behind the occluding brick wall like in the

physical viewpoint study. Compared to the first study, we had a slightly larger flight space with

the same floor plan characteristics. In the virtual viewpoint study, again ten participants (0 female,
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X =27.5 (sd=2.33) years old) volunteered in our experiment. All of them had extensive experiences

with mobile devices, none was a regular drone pilot (different subjects from the physical viewpoint

study).

Results In the text reading task, the physical viewpoint condition took 48.62 seconds on average

(standard error 2.5 seconds) to read the texts on both monitors, whereas the virtual viewpoint

condition took 43.37 seconds on average (standard error 2.9 seconds). For reaching the given 3D

positions, physical viewpoint users completed the task on average in 44.03 seconds (standard error

3.72 seconds). virtual viewpoint took 41.21 seconds on average (standard error 1.53 seconds).

It should be noted that flight times are slightly increased compared to the first study due to the

enlarged space and longer paths.

According to the overall scores of the NASA TLX forms, for both of the tasks, users found physical

viewpoint to have a slightly better usability than virtual viewpoint. For the first task, users gave an

average score of 23 for physical viewpoint and 26 for virtual viewpoint, whereas, for the second

task, physical viewpoint scored 25 and virtual viewpoint scored 27. While users commented to

perceive both systems as almost identical for completing the tasks, they reported to prefer the

physical viewpoint condition more due to its see-through visualization capability.

The results let us accept H4 and H5.

5.4 Discussion

We propose using real-scale interactions for steering remote drones. This enables simple control of

the drone with low cognitive effort. Based on the feedback of users and the quantitative results of

our experiments, we believe that pick-and-place interaction is useful for quickly positioning the

drone when fully automatic navigation is not enough. While wearing the HMD, users have stereo

vision to perceive depth. In addition, users can quickly change their viewpoint by simply moving

around in a natural way to understand where an object is located in 3D. In contrast, a traditional

desktop interface requires several scene manipulations to understand the 3D position of an object

in the scene, especially when the object is floating in the air. Simple and natural exploration of

the position of the drone in 3D space enables quick understanding of spatial relations, which is a

fundamental requirement for navigating the drone in 3D.

Our pick-and-place technique uses a single target point to position the drone. While we could

continuously sample points along a path defined by the user, we restrict the number of waypoints to

a single start point and end point to ensure a precise placement and to avoid unnecessary drone
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motion. Mapping any user motion directly to the position of the drone would not allow the user to

search for the final position, while the drone follows the user’s hand motion.

While pick-and-place can be used to precisely place a drone in 3D space, the gaze-to-see technique

can be used to continuously explore and search the environment. Gaze-to-see is a high-level,

goal-oriented interaction between drone and human with low cognitive requirements. It provides a

tool for quickly observing a region of interest without dealing with positioning the drone.

Both of our interaction techniques outperform the traditional egocentric interface for controlling a

drone. Note that the significant time difference observed between our experimental conditions are

not the result of different reaction times, such as the time spent on moving the head when wearing

an HMD versus pressing a button on joypad. The differences can rather be largely attributed to

the user’s efforts towards fine-tuning the position of the drone to solve the task. For example,

finding the correct pose for the drone to read a small text, while experiencing motion blur during

the movement phase, takes more time with EGO. In contrast, EXO users can easily assume a

convenient pose thanks to the gaze-to-see technique.

Apart from the motion blur, no text rendering artifacts were disturbing the EGO users, as can be

seen in Figure 5.9a. In contrast, the EXO users experienced both motion blur and slight artifacts

due to the limited resolution of the HMD (Figure 5.6). We expect that with better HMD, quality

the advantages of EXO may even become more pronounced.

Similarly, during the positioning drone task, EGO users had difficulties understanding if the drone

was at the correct position from the given perspective views, whereas EXO users quickly identified

the right position by virtue of the stereoscopic view.

Despite the good performance of EXO, we noticed a number of limitations during the experiments,

which we describe in the following, along with recommendations for overcoming them based on

our experience with the system.

Limited resolution. Our placement precision depends on the distance. As the drone moves away

from the user, the increased distance affects the precision of pick-and-place. In addition, when the

surface is far away from the user, it is hard to gaze at it. This provides a challenge for selecting

the drone with pick-and-place interaction, and it makes it harder to position the drone in front of

the right surface during gaze-to-see interaction. This limitation arises from the fact that humans

cannot keep their head stable at millimeter-level accuracy. These limitations are solved when

the user is virtually teleported to a viewpoint close to the drone, as demonstrated by our virtual

viewpoint study. In fact, the virtual viewpoint technique can be seen as a generalization of the
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overview-and-detail technique. The user can always use the virtual viewpoint mode to virtually

move closer to the drone and thus increase the precision. The blinder on the visor may not even be

necessary, as implied by users’ preferences.

Projection error. When the outside in tracking is not precise enough, misregistration causes the

projected images to not line up properly with the 3D model. In addition, if the poses are not

synchronized with the camera images, the error is further increased. However, these problems can

be overcome by better tracking, ideally incorporating dense reconstructions obtained in real time

from a drone equipped with suitable sensors, such as structure-from-light sensors or stereo cameras.

Tracking error. Depending on the tracking accuracy of the system, the drone may position itself

slightly off the target destination, although the results would still be visualized as if the drone was

at the correct location. During tasks requiring accurate spatial positioning, such as drilling a hole at

the right spot, the user may be misled. A hybrid interface showing both the exocentric synthetic

view and the egocentric video stream side by side may partially alleviate this problem.

Reconstruction error. Gaze-to-see can be strongly affected by a wrongly estimated surface

normals, if the 3D model is automatically reconstructed using structure from motion algorithms.

However, many exploration tasks do not require photorealistic rendering and tolerate heavy low-pass

filtering of normals to suppress unwanted outliers.

Eye calibration error. Like any ray-picking technique, pick-and-place performance is affected

by eye calibration. Without a good estimation of the eye position, any deviations of physical eye

and virtual camera will be magnified by the projected distance, letting the picked virtual position

drift from the hand after some displacement. During our experiments, we noticed that users coped

with such situations by simply releasing their grip and quickly re-picking the drone, essentially

improvising a form of clutching to minimize the aggregation of unwanted drift.

3D interaction. The mathematics of scaled-world-grab [92] imply that when the user moves an

object away from the body, movement precision will drop quickly. As a remedy, users can re-adjust

their virtual viewpoint to move closer to the target location or look at the drone from a different

perspective to control the drone more precisely. Likewise, if surfaces face away from the user,

gaze-to-see requires first assuming a rotated virtual viewpoint to look at the target position.

Aerodynamic restrictions. A drone’s aerodynamics restrict it from quickly adapting into a new

given position. Therefore, gaze-to-see interaction technique had to be limited to a fixed number of

position commands instead of continuous ones where a new position command is sent each time

the user looks to a different surface point.

Reference:

Mine, Mark R and Brooks Jr, Frederick P and Sequin, Carlo H (1997)
Moving objects in space: exploiting proprioception in virtual-environment interaction
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Selecting the remote scene. A virtual viewpoint is natural for immersive VR users, while AR user

must switch from their physical viewpoint to a virtual one. This can lead to confusion between

real and virtual objects. The overview-and-detail technique mostly avoids such confusion, but

introduces the restriction that users can only move closer to a point they are already gazing at.

While this is sufficient for a number of tasks, choosing a new viewpoint relative to gaze has clear

limitations. In particular, gazing becomes less precise and more difficult at larger distances.

However, common techniques such as world-in-miniature [125] (WIM) can be used to overcome

this limitation. Using a gesture, users can obtain a miniaturized copy of the scene in front of them,

in the same orientation as their current viewpoint. It is straightforward to apply scene manipulation

techniques from traditional desktop interfaces to a WIM. Users can rotate the WIM towards the

desired view and apply clipping or transparency to expose interior structures. They can apply

exocentric selection of movement targets in the WIM rather than in the egocentric perspective. In

case of a rescue operation, the use of a WIM naturally extends towards a remote control center

overview of multiple drones and rescuers from an exocentric perspective.

5.5 Summary

We have developed a prototypical system to discover a remote or occluded scene in an intuitive

way by visualizing live imagery streamed from a camera drone in a three-dimensional, exocentric

context. To control the exploration, we have implemented experimental high-level interaction

techniques that control the drone indirectly, by relating to the enclosing space in which the drone

is flying rather than the drone’s own local coordinate system and flight parameters, such as speed

or altitude. This gives the user the impression of being present next to the drone, or having X-ray

vision when using a see-through display. Our experiments confirm that this style of interaction is

efficient compared to conventional remote piloting and that it is attractive for users.

Reference:

Stoakley, Richard and Conway, Matthew J. and Pausch, Randy (1995)
Virtual Reality on a WIM: Interactive Worlds in Miniature
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6.1 Summary

In this thesis, we presented a set of Image-Based Modeling and Rendering (IBMR) techniques

and novel user interactions powered by IBMR for remote exploration problem. Our techniques

contribute to the field of tele-exploration from a user-centered perspective. Specifically, we aimed

to reduce the cognitive load of users by presenting them a photorealistic rendering. In addition,

depending on the remote exploration scenario, the users may be given interaction capability with the

remote environment. Hence, we also combined IBMR with a set of intuitive interaction techniques

to minimize the cognitive load. We further contribute to remote exploration field by enhancing

IBMR with our spatio-temporally coherent inpainting method.

When combined with an existing Structure from Motion (SfM) algorithm, our techniques can run

as a whole pipeline which addresses all the needs of a tele-exploration task: remote data acquisition

and interaction, SfM, texturing and inpainting of the incomplete geometry (see Figure 6.1).

Remote data acquisition and interaction In a tele-exploration task data has to be acquired

remotely, preferably using highly mobile and easy to control robots. Sensory data collected from

such robots can be used by SfM algorithms and forwarded into our IBMR algorithm as proxy

geometry and images with pose information for texturing. To achieve this, our Drone-augmented
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IBMRDrone-Augmented 
Human Vision SfM InpaintFusionCamera Stream

Keyframes

Keyframe Poses

Proxy Geometry
Rendered RGB-D 

Images

Inpainted 
Geometry

User

Target drone position Rendered Image

Inpainted Images

Inpainting Mask 

Figure 6.1: By adding an existing structure from motion (SfM) algorithm (gray colored), our components

(orange colored) can be combined to create a whole tele-exploration application pipeline. Order of events:

(1) User sets a target position using our interactions for the drone, (2) drone streams camera images from the

target position, (3) an existing SfM algorithm generates needed input for our IBMR system, (4) user receives

rendered image by IBMR, (5) User marks pixels for inpainting and creates a mask, (6) InpaintFusion inpaints

the depth and RGB images within the masked region, (7) IBMR imports the new geometry and inpainted

images, (8) user observes updated rendering.

human vision work can be utilized to provide data for SfM algorithms. Despite Drone-augmented

human vision also providing an image based rendering, the rendering is limited only to the latest

image acquired from onboard camera. Therefore, combining it with our IBMR system would ensure

texturing all parts of the discovered geometry. In addition, considering the remote exploration

problem as a whole, we introduce novel interactions powered by IBMR. IBMR gives users the

flexibility to change their viewpoint independent of the sensor at the remote location. We utilized

this to the full extent and let users control a drone from an exocentric point of view using a

Head-Mounted Display (HMD). As discussed in Chapter 5, an exocentric point of view helps users

position a drone more accurately and in a timely manner which is essential for data acquisition.

Texturing Despite abundance of various IBMR algorithms, none of the existing methods targets

a remote exploration scenario. Their lack of memory management and computational expense
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makes them rather suitable for offline applications. Telepresence applications, especially the tele-

exploration task, require real-time feedback from the remote location, which only can be achieved

with an online system that can be coupled with a SfM algorithm. In addition, as the name asserts,

exploration applications require no prior knowledge of the scene being investigated. Therefore,

spatial distribution of available memory to the scene in advance is not an option. Our system

handles this problem by a novel online view planning algorithm. On the fly, it selects the required

images needed for texturing. Moreover, it optimizes their color intensity and poses before projecting

them into the scene, such that the resulting rendering has minimal to no color tone difference or

blurring.

Inpainting Due to the lack of a perfect reconstruction system, 3D scans can have holes of

various sizes in their resulting 3D model. For a good user experience, having holes in a remote

exploration scenario is not desirable. Our spatio-temporally coherent inpainting method can process

the rendering results of our IBMR pipeline and fill in the holes in 3D space (see Figure 4.16 and

4.17). Resulting inpainted geometry can be forwarded into our IBMR pipeline. Existing inpainting

techniques either inpaint in 2D image space or introduce a dominant plane to cover the holes, which

is not suitable for handling occlusions or for integrating into an IBMR pipeline.

6.1.1 Contributions

Previous to the writing of this thesis, IBMR techniques were never applied for a tele-exploration

task. Therefore, online photorealistic rendering of the discovered environment was not possible.

Operators of the tele-exploration robots had to switch to first person camera view for seeing details

and to per vertex colored 3D reconstruction view to have a 3D understanding of the scene. We

combined these two views into one by photorealistic rendering and reduced the cognitive demand

of switching and relating between two different views. In addition, operators were limited to control

the robots using interaction techniques such as joystics that have high cognitive demands. Training

such skilled operators is time intensive, costly and yet still has a higher risk of failing during and

exploration mission due to high cognitive demand. Furthermore, we let users inpaint parts of the

scene while discovering the remote environment. Online editing of the scene would be necessary to

decide if further images has to be captured from the scene while still on the mission.

6.1.2 Future Work and Limitations

As future work, missing SfM component in our pipeline can be implemented from an existing SfM

algorithm. To combine Drone-augmented human vision system with our desktop powered IBMR
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system, HMD can directly use desktop computation power and we can eliminate the use of a 2D

display in our IBMR system. In the current implementation, target region mask to inpaint on an

image can only be labeled in 2D image space. This introduces a limitation to HMD usage. To allow

labeling from a HMD, users could define voxel regions to be inpainted using their hand gestures like

pointing as in pick-and-place interaction. IBMR system would be configured to receive mesh and

keyframe updates from InpaintFusion. Finally, limitations of each of our individual components

discussed in chapters could be addressed.

6.2 Outlook

With the rapid progress of computer vision research and availability of new hardware, in the near

future, 3D reconstructions will require only a few modifications by the inpainting techniques to fill

in the missing geometry. Using improved artificial intelligence techniques, inpainting will complete

the scene in a semantic and more realistic manner. Camera pose errors will be decreased to a lesser

extent. Therefore, we will see blur-free blending of the images on the geometry. Thanks to faster

video cards, it will be possible to simultaneously process more images from multiple input sources.

Superior features of offline IBMR techniques could be also implemented in our online method.

With the advancements in HMD technology, it will be possible to blend multiple textures for the

rendering purposes.

Summarizing the findings of this thesis, we conclude that IBMR techniques contribute to the

remote exploration field by offering photorealistic renderings. It still remains as an open and

interesting research field that can contribute to important applications, like search and rescue

scenarios, surveillance and space exploration.
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Glossary

6DoF Six Degree of Freedom

AR Augmented Reality

DR Diminished Reality

FOV Field of View

GAN Generative Adversarial Network

GPU Graphics Processing Unit

HMD Head-Mounted Display

IBMR Image-Based Modeling and Rendering

IMU Inertial Measurement Unit

MAV Micro Aerial Vehicle

MR Mixed Reality

NTP Network Time Protocol

ROI Region of Interest

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping
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TLX Task Load Index

TSDF Truncated Signed Distance Function

UDP User Datagram Protocol

VR Virtual Reality
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