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Abstract

Numerous problems in computer vision and medical imaging can be cast as inverse
problems. The variational approach robustly estimates solutions of an inverse problem
byminimizing an energy composed of a data fidelity term and a regularizer.While the
data fidelity term is utilized to incorporate knowledge about the underlying physical
process of the inverse problem, the regularizer typically encodes a-priori statistical
properties of the desired solutions. Classically, handcrafted regularizers motivated
by first-order statistics of images are used, which are frequently outperformed by
state-of-the-art purely data-driven deep learning models. In this thesis, we develop
novel methods combining variational methods and deep learning that lead to state-
of-the-art results on various imaging tasks and allow a rigorous mathematical
analysis.

First, we introduce variational networks (VNs) to explore links between well-studied
incremental variational methods and deep learning — specifically residual neural
networks (ResNets). In its core, a VN consists of several parametric incremental
proximal gradient steps, which can be flexibly adapted to learn proximal gradient
schemes, incremental proximal gradient schemes, and ResNet-like models. The
flexibility ofVNsallowsus to study the limitations of convexity for these schemes in the
context of image restoration.Our numerical results on imagedenoising anddeblurring
suggest that variational models utilizing convex regularizers cannot represent all
aspects of natural images and are outperformed by non-convex regularizers. In
contrast, we can improve the results for both convex and non-convex regularizers
by facilitating parametric incremental proximal methods. In all experiments, we
observe the phenomenon that the different VN types require only a few steps to yield
reasonable results.

We further investigate the effect that in variational methods the best image quality is
frequently observedwhen the associated gradient flow is stopped before converging to
a stationary point. We argue that this phenomenon originates from a tradeoff between
optimization and modeling errors and remains valid even if highly expressive deep
learning-based regularizers are employed. We analyze this paradox by considering a
variational method featuring a parametric regularizer and by introducing an optimal
stopping time in the corresponding gradient flow. This optimal stopping time as well
as the parameters of the regularizer are determined by a mean-field optimal control
approach, where the gradient flow defines the state equation. Moreover, we propose
a novel data-driven general-purpose regularizer called total deep variation (TDV),
which exploits recent architectural design patterns from deep learning to overcome
the limited expressiveness of the fields of experts (FoE) regularizer advocated in
VNs. The TDV regularizer is a convolutional neural network (CNN) that extracts
local features on multiple scales and in successive blocks to assign an energy to
every image pixel. The combination of the mean-field optimal control training
problem and the highly expressive TDV regularizer leads to state-of-the-art results on
various image restoration and reconstruction problems and simultaneously enables
a rigorous mathematical analysis. We prove the existence of solutions of the mean-
field optimal control problem in the time-continuous and time-discrete setting and
characterize the stability with respect to initial value and parameter variations. Finally,
we experimentally verify the robustness against adversarial attacks and numerically
derive upper bounds for the generalization error.

Keywords. Convolutional neural networks, gradient flow, image restoration, inverse
problems, mean-field optimal control problem,medical imaging, variational methods,
variational networks



Kurzfassung

Zahlreiche Probleme in der Bildverarbeitung und der medizinischen Bildgebung
können als inverse Probleme formuliert werden. Variationsmethoden bieten die
Möglichkeit die Lösungen eines inversen Problems robust zu schätzen, indem sie
eine Energie minimieren, die aus einem Datenterm und einem Regularisierer besteht.
Während der Datenterm verwendet wird um Wissen über den zugrunde liegen-
den physikalischen Prozess eines inversen Problems zu modellieren, codiert der
Regularisierer typischerweise statistische Eigenschaften der gewünschten Lösungen.
Klassischerweise werden manuell modellierte Regularisierer verwendet, die auf
Gradientenstatistiken von natürlichen Bildern basieren. Diese werden häufig von
rein datengesteuerten Deep-Learning-Modellen übertroffen. In dieser Doktorarbeit
entwickeln wir neue Methoden, die Variationsmethoden und Deep Learning kom-
binieren und zu herausragenden Ergebnissen bei verschiedenen Problemen in der
Bildverarbeitung führen und eine detaillierte mathematische Analyse ermöglichen.

Zuerst definieren wir VNs um Zusammenhänge zwischen inkrementellen Varia-
tionsmethoden und Deep Learning und im Speziellen ResNets zu untersuchen. In
ihrem Kern bestehen VNs aus mehreren parametrischen inkrementellen proximalen
Gradientenschritten, die flexibel angepasst werden können, um proximale Gradien-
tenschemata, inkrementelle proximale Gradientenschemata und ResNet-ähnliche
Modelle zu lernen. Die Flexibilität von VNs ermöglicht es uns, die Grenzen der
Konvexität für diese Schemata im Kontext der Bildverarbeitung zu untersuchen.
Unsere numerischen Ergebnisse für das Entrauschen und Entzerren von Bildern mit
Variationsmodellen legen nahe, dass konvexe Regularisierer nicht alle Aspekte natür-
licher Bilder darstellen können und von nicht konvexen Regularisierern übertroffen
werden. Im Gegensatz dazu können die Ergebnisse sowohl für konvexe als auch für
nicht konvexe Regularisierer verbessert werden, indem parametrische inkrementelle
proximale Methoden verwendet werden. In all unseren Experimenten beobachten
wir das Phänomen, dass die verschiedenen VN-Typen nur sehr wenige Schritte für
vernünftige Ergebnisse benötigen.

Darüber hinaus untersuchen wir den Effekt, dass bei Variationsmethoden häufig die
beste Bildqualität beobachtet wird, wenn der zugehörige Gradientenfluss gestoppt
wird, bevor er zu einem stationären Punkt konvergiert. Wir argumentieren, dass
dieses Phänomen auf einem Kompromiss aus Optimierungs- und Modellierungs-
fehlern beruht und auch dann gültig bleibt, wenn auf Deep Learning basierende
Regularisierer verwendet werden. Wir analysieren dieses Paradoxon, indem wir
Variationsmethoden mit parametrischen Regularisierern betrachten und eine op-
timale Stoppzeit in den entsprechenden Gradientenfluss einführen. Die optimale
Stoppzeit sowie die Parameter des Regularisierers werden durch ein Mean-field
optimales Steuerungsproblem bestimmt, bei dem der Gradientenfluss die Zus-
tandsgleichung definiert. Außdem schlagen wir einen neuartigen datengesteuerten
Allzweck-Regularisierer namens TDV vor, der die jüngsten architektonischen En-
twurfsmuster von Deep Learning nutzt, um die begrenzte Ausdruckskraft des in
VNs verwendeten FoE Regularisierers zu überwinden. Der TDV Regularisierer ist
ein CNN, das lokale Merkmale auf mehreren Skalen und in aufeinanderfolgenden
Blöcken extrahiert, um jedem Bildpunkt eine Energie zuzuweisen. Die Kombination
des Mean-field optimalen Steuerungsproblems und des ausdrucksstarken TDV Regu-
larisierers führt zu Ergebnissen auf dem neuesten Stand der Technik bei zahlreichen
Problemen in der Bildverarbeitung und ermöglicht gleichzeitig eine genauemathema-
tische Analyse. Unter anderem zeigen wir die Existenz von Lösungen des Mean-field
optimalen Steuerungsproblems in der zeitkontinuierlichen und zeitdiskreten Variante
und charakterisieren die Stabilität bezüglich Anfangswert- und Parametervariationen.
Schließlich verifizieren wir experimentell die Robustheit gegenüber ‘adversarial’
Angriffen und leiten numerisch Obergrenzen für den Generalisierungsfehler ab.
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Various applications in imaging target the robust estimation of unknown scalar-
or vector-valued images given noisy and indirect observations. These so-called
inverse problems are typically hard to solve because the observations often do not
cover all relevant aspects of the unknown image, and small modeling, numerical, or
measurement errors frequently lead to heavily corrupted results. Variational methods
address these issues by solving approximate problems that utilize prior knowledge
about the structure of solutions. These solutions are characterized as minimizers
of an energy typically composed of a data fidelity term and a regularizer. While
the data fidelity term models the application-specific knowledge of the acquisition
process, the regularizer is used to incorporate knowledge about the regularity or
statistical properties of the desired solution. In the last decades, variational methods
have been used to tackle numerous computer vision and medical imaging problems
such as denoising [1], deblurring [2], segmentation [3], optical flow [4], positron
emission tomography [5], single photon emission computed tomography [6], and
magnetic resonance imaging (MRI) reconstruction [7] due to their simplicity and
solid theoretical foundations. The recent success of deep learning [8] in numerous
fields has led to a paradigm shift in the computer vision and imaging community,
though. The research focus has shifted from modeling appropriate data fidelity and
regularization terms towards developing suitable parametric functions in the form of
networks that can be adapted to solve specific tasks by adjusting their parameters.
The underlying idea is that these networks learn a meaningful solution strategy by
extracting relevant statistical information from training data, which can be transferred
to later process unseen instances of the same problem. In this thesis, we establish
connections between both approaches and combine variational methods and deep
learning to get the best of both worlds — theoretically well-understood models and
state-of-the-art numerical results.

In the following sections, we first define inverse problems and discuss some proto-
typical examples in imaging. Then, the variational approach to robustly estimate
their solutions is explained and various recent data-driven extensions are reviewed.
Finally, we conclude this chapter by stating the contributions and the outline of this
thesis.

1.1 Inverse Problems in Imaging

Numerous applications and scientific disciplines rely on the stable estimation of
an unknown quantity by observing and measuring its effects. This identification
task of the unknown quantity given possibly noisy and incomplete observations
is frequently called an inverse problem. The associated forward problem (“predict the
observations given an estimate of the unknown quantity”) is often simple to solve
and is determined by the underlying physical process. In contrast, inverse problems
are typically hard to solve and ill-posed according to Hadamard [9], which means
that one of the following conditions does not hold:

I The solution exists.
I The solution is unique.
I The solution continuously depends on the observations.

Thus, the solutions of ill-posed inverse problems are usually sensitive tomeasurement
errors, i.e. small errors in the measurements may induce large errors in the resulting
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Figure 1.1: Illustration of the observation (first row) and desired target (second row) of four prototypical linear inverse problems in imaging. First
column: image denoising for a sample from the DIV2K dataset [11] corrupted by 20% Gaussian noise. Second column: the monarch image of the
Set14 dataset (bottom) along with the 2-fold downsampling result. Third column: a sample from the Mayo dataset [12] (bottom) along with an
8-fold angular undersampled sinogram (top). Fourth column: a knee image from the fastMRI dataset [13] (bottom) and the corresponding 4-fold
undersampled k-space data (top).

estimate of the unknown quantity, or multiple estimates explain the observations
equally well. Therefore, it is important to account for the ill-posed nature of inverse
problems to enable a reliable decision process upon their solutions. For instance,
medical diagnosis frequently relies on imaging techniques such as X-ray, computed to-
mography (CT), or MRI that are based on solving inverse problems. Likewise, various
applications in computer vision such as localization and autonomous driving heavily
depend on depth or motion estimation, which also define inverse problems [10].

Many inverse problems in digital imaging relate the unknown target H ∈ Y, which
may represent a discrete image, video, volume or vector field, and the possibly noisy
observation I ∈ Zutilizing the linear forward model

I = �H + �. (1.1)

Here, Yand Zare finite-dimensional vector spaces and the linear forward operator � :
Y → Z describes the physical process mapping a target to the corresponding
noise-free observation. The measurement noise is represented by � ∈ Ξ, where Ξ is
also a finite-dimensional vector space. Throughout this thesis, we assume that we
have detailed knowledge about the forward operator � and the distribution TΞ of
the measurement noise �. Then, inverse problems determine the target H that best
explains the measurement I. In the following, we present some prototypical inverse
problems.

In digital image processing, we often encounter image restoration problems, which
aim at estimating a target image H given a degraded image I. One of the simplest
image restoration problems is image denoising. Here, the observed image I is equal to
the target image subject to additive noise � ∼ TΞ, as illustrated in the first column of
Figure 1.1. Thus, the forward operator in (1.1) is equal to the identity mapping A = Id
and the target image space coincides with the degraded image space, i.e. Y= Z. The
noise � is in the easiest case assumed to be independent and identically distributed
(i.i.d.) Gaussian (� ∼N(0, �2 Id)). However, this assumption is often too restrictive.
Realistic noise is frequently a mixture of Gaussian and Poisson noise [14], which
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can be approximated by a heteroskedastic Gaussian distribution. This is a spatially
varying Gaussian distribution whose standard deviation is a function of the unknown
target image H.

A different restoration task in image processing is single image super-resolution (SISR).
In this task,wewould like to increase the resolution of a low-resolution image I ∈ Z ⊂
ℝ; by a factor B ∈ ℕ. The linear forward model typically relates the high-resolution
target image H ∈ Y⊂ ℝ;B2 with the observation by an B-fold downsampling operation
that involves a 2-dimensional interpolation kernel. Thus, the linear operator � in (1.1)
implements a convolution with the interpolation kernel utilizing a stride of length B.
A sample pair of the SISR task consisting of a low-resolution observation and a
high-resolution target is depicted in the second column of Figure 1.1 using a super-
resolution factor B = 2. There are many possible solutions for the SISR inverse
problem since high-frequency information is lost due to the downsampling operation.
Moreover, the higher the downsampling stride is, the less high-frequency information
is available in the low-resolution image I, which results in a more complicated
restoration problem. SISR restoration problems with stride B = 1, i.e. Y= Z, are also
called deconvolution problems if the interpolation kernel is known. If the interpolation
kernel is in addition unknown, the resulting problems are called blind deconvolution
problems.

Various inverse problems in medical imaging are reconstruction problems such as
computed tomography (CT) or magnetic resonance imaging (MRI) reconstruction.
Here, the target space Y and observation space Z do not coincide, in contrast to
restoration problems. The task of CT is to reconstruct amapwhose elements reflect the
X-ray attenuation of the underlying matter from a sequence of X-ray measurements
acquired around the scanned object. These X-ray projections are aggregated in the
so-called sinogram. The sinogram of a sample scan is depicted at the top in the
third column of Figure 1.1, while the corresponding attenuation map is shown at the
bottom. The elements of the sinogram can be computed by integrating the attenuation
map in the area spanned by the X-ray source and the corresponding detector element.
Hence, the linear operator � in (1.1) approximates many area integrals to relate the
attenuation map with the sinogram measurements. To account for the different noise
sources in the acquisition process, the noise distribution of � is typically modeled
as a heteroskedastic Gaussian [15, 16]. In medical CT, we aim at reducing the X-ray
dose exposed to patients during a CT scan while maintaining the reconstruction
quality. There are different dose reduction techniques, which we discuss in detail in
Section 5.2.2 and Section 6.6.

Another important imaging technique in medical imaging is MRI. A receiver coil in
an MRI scanner measures complex-valued k-space data I, whose elements reflect
changes in the magnetism of atomic nuclei excited by different frequencies [17]. Thus,
each k-space entry represents a Fourier coefficient of the imaged volume and the linear
forward operator in (1.1) is given by the discrete 2-dimensional Fourier transform. To
reduce the typically rather long acquisition time of MRI scans, compressed sensing
(CS) [18] and parallel imaging techniques [19, 20] are frequently adopted. In this case,
a scanner simultaneously acquires incomplete k-space data of multiple receiver coils
that are sensitive in overlapping areas of the imaged object. Accelerated clinical MRI
scans often utilize a Cartesian undersampling to acquire only a fraction of the k-space
data columns or rows. The incomplete k-space data of a receiver coil used in a four
times accelerated parallel scan is illustrated in the fourth column of Figure 1.1 along
with its target image. Clearly, there are multiple possible images that explain the
observed k-space data equally well since a large fraction of the data is missing. As in
the SISR image restoration task, higher undersampling results in a more ambiguous
inverse problem.

In this section, we have demonstrated thatmany practically relevant tasks in computer
vision and medical imaging are inverse problems. The discussed problems are just a
small subset of inverse problems arising in imaging. Further inverse problems are, for
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instance, optical flow estimation [4, 10], ultrasound imaging [21], or positron emission
tomography [5].

1.2 From Variational Methods to Data-driven Models

In the following, we provide a short overview of solution approaches to inverse
problems starting from classical variational methods to data-driven models. First,
we define variational methods and elaborate on their statistical interpretation. Then,
we briefly review classical handcrafted regularizers and provide a summary of
parametric regularizers and associated parameter identification methods in image
processing. A short discussion of fully-learned reconstruction models motivated by
deep learning concludes this section.

To account for the ill-posed nature of inverse problems, numerous regularization
techniques evolved from the pioneering work of Tikhonov [22] and Phillips [23]. The
fundamental idea of regularization techniques is to transform an ill-posed inverse
problem into an approximate well-posed problem [24], whose unique solution exists
and continuously depends on the observation [9]. Hence, Tikhonov [22] proposed to
compute approximate solutions of a linear inverse problem by solving the variational
problem

min
G∈X

1
2 ‖�G − I‖2 + �

2 ‖G‖2 ,
where the first term penalizes the quadratic deviation of the forward model �G
from the measurement I ∈ Z, the second term enforces the regularity of the
solution G ∈ X, and � > 0 is a scalar balancing parameter. The underlying idea of
Tikhonov regularization is to avoid degenerated solutions by ensuring that its solution
is bounded. This penalization approach was extended to variational methods [25, 26],
which aim at solving variational problems of the form

inf
G∈X
{E(G, I) B D(G, I) + R(G)} . (1.2)

Here, the data fidelity term D : X×Z→ ℝ typically uses the forward operator � to
penalize deviations of the noise-free observation �G from the measurement I ∈ Z,
while the regularizer R : X→ ℝ imposes knowledge about the solution by penalizing
undesired properties. The energy E : X×Z→ ℝ combines both terms and determines
a scalar value that characterizes the quality of the solution. In the case of Tikhonov
regularization, the regularizer R(G) = �

2 ‖G‖2 implies that the solution has a bounded
norm, i.e. ‖G‖ < ∞. However, this penalization of the amplitude of the solution is
not suitable for many image processing tasks since it favors dark images. A very
popular regularizer avoiding this issue is the total variation (TV), which assumes
that the gradient of images has small variation and is sparse. It was introduced
to the image processing community by Rudin, Osher, and Fatemi in their seminal
paper [1]. The TV regularizer became a driving force in the development of modern
regularization techniques in imaging [24] and was extended in various ways [27–
30]. The flexible choice of the regularizer and the data fidelity term is a particular
advantage of variational methods that enables the formulation of reconstruction
problems specifically tailored for the application at hand.

There is also a statistical interpretation that links variational methods with probability
theory [31]. This statistical viewpoint provides a rigorous framework to account for
uncertainties that arise in inverse problems due to measurement errors or loss of
information. According to Bayes’ theorem, the posterior probability density ?(G |I)
of an estimate G ∈ X that approximates the unknown target H ∈ Y given the
observation I ∈ Z following (1.1) is defined as

?(G |I) = ?(I |G)?(G)∫
X
?(I |G′)?(G′)dG′ ,
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where ?(I |G) is the data likelihood and ?(G) the prior. The data likelihood ?(I |G)
specifies howwell a solution G explains the observed data I and is often characterized
by the forward model (1.1) and the probability density of the noise �. In contrast,
the prior ?(G) encodes all knowledge about the structure of a solution and thus
represents the belief in the solution itself. As a result, the belief in a certain solution G
given the observations I is quantified by the posterior probability. Usually, we are
interested in the solution that maximizes the posterior probability, which is known
as the maximum a-posteriori (MAP) estimator [32]

Ĝ ∈ argmax
G∈X

?(G |I).

Taking the negative logarithm results in the equivalent problem

Ĝ ∈ argmin
G∈X

− log ?(I |G) − log ?(G).

If we compare this variational minimization problemwith the variational formulation
of inverse problems (1.2), we see that the data fidelity term D can be identified with
the negative data log-likelihood − log ?(I |G) and the regularizer R with the negative
log-prior − log ?(G). Thus, regularizers allow to incorporate statistical knowledge
about the solution into variational methods.

One of the earliest works that combine the variational approach with the statistical
modeling of image properties is due to Geman and Geman [33]. They related image
restoration problems with finding low-energy states of a configuration of gray-values
over a discrete pixel grid determined by a Markov random field (MRF) [34]. Their
MRF formulation defines an energy consisting of a data likelihood and a prior term
that penalizes the differences of local pixel neighbors using a potential function.
Motivated by the statistics of natural images, Geman and McClure [6] advocated
non-convex potential functions that match the high kurtosis and long exponential tail
distribution of local pixel differences [35, 36]. Driven by results from robust statistics
numerous potential functions have been proposed to regularize pixel differences [6,
37–43]. It became apparent that natural image priors should incorporate higher-order
information of larger pixel neighborhoods. However, modeling the statistical relations
of higher-order pixel neighborhoods is challenging due to their complexity [43, 44],
and the large dimensionality of images. Therefore, Zhu and Mumford suggested
learning regularizers from natural image samples [45, 46].

The need to incorporate higher-order statistical information of natural images into
regularization models throve the development of parametric regularizers whose
parameters are identified by learning from data. Inspired by the patch-based product
of experts machine learning model of Hinton et al. [47–49], Roth and Black [50, 51]
proposed the fields of experts (FoE) regularizer. It is one of the most successful
parametric regularizer models in imaging and can be considered as a generalization
of the TV regularizer. The FoE regularizer uses several pairs of convolution filters
and simple parametric potential functions to assign a local regularization energy to
every pixel. The sum of the pixel-wise energy defines the FoE regularizer.

In the last decade, various learning approaches have been proposed that determine
the parameters of the FoE regularizer from data. While the FoE regularizer was
originally trained in a generative way using contrastive divergence [48], Samuel and
Tappen [52] and Chen et al. [53] showed that discriminative learning using bilevel
optimization to adapt the regularization parameters such that the MAP estimator is
close to a target leads to a performance increase. To avoid solving the computationally
intensive lower-level problems in bilevel optimization, Domke [54] proposed to unroll
a gradient scheme to compute approximate MAP estimates using only a fixed number
of iteration steps. Allowing the parameters of the FoE regularizer to additionally
adapt in each iteration step results in trainable nonlinear reaction diffusion (TNRD)
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models [55], which can be interpreted as incremental gradient methods and are a
special case of variational networks (VNs) [56].

To rigorously analyze such truncated iterative schemes,we framed the training process
as an optimal control problem of a gradient flowwith finite time horizon using the FoE
regularizer [57]. Later, we formulated the learning of regularizer parameters by early
stopping gradient flows as a mean-field optimal control problem [58] and proposed
a deep learning inspired regularizer called total deep variation (TDV) [59, 60]. This
combination enabled a detailed analysis of the learned FoE and TDV regularizers
by means of stochastic stability bounds, nonlinear eigenfunctions and worst-case
estimates. Moreover, the truncated iterative training approach in conjunction with
the TDV regularizer leads to state-of-the-art results on numerous imaging tasks.

Recently, further approaches were introduced that determine the parameters of deep
learning motivated regularizers in a discriminative way. Lunz et al. [61] proposed
to learn the parameters of a deep learning inspired, feed-forward regularizer such
that its energy discriminates the distributions of target samples and corrupted
samples motivated by theWasserstein formulation of generative adversarial networks
(GANs) [62]. In contrast, Li et al. [63] defined a data-driven regularizer by applying a
coercive potential function to the features of a convolutional neural network (CNN).
Here, the CNN is the encoding part of an encoder-decoder CNN that is trained to
predict the residual error, i.e. the difference of (non)-corrupted input images and their
associated target images. All the aforementioned regularizers maintain a variational
structure, i.e. they characterize the image quality by an energy, which can be used in
gradient-based algorithms to estimate the solution.

An alternative approach to combine iterative methods and deep learning is to directly
learn a proximal reconstruction scheme. One of the first methods is due to Gregor
and LeCun [64]. They observed that iterative algorithms resemble recurrent neural
networks (RNNs) and proposed to learn all parameters of the iterative shrinkage
and thresholding algorithm including the step sizes and the linear operators from
data, which resulted in computationally more effective sparse coding schemes. This
idea was also transferred to other first-order proximal methods. Vogel and Pock [65]
proposed to learn the step sizes, convolution operators and the thresholds of nonlinear
point-wise proximal operators of an unrolled primal-dual hybrid gradient (PDHG)
method [66] with iteration-dependent parameters inspired by TNRD [55]. This idea
was extended by the learned primal-dual networks of Adler and Öktem [67]. They
suggested to replace the primal anddual proximal gradient steps in the PDHGmethod
by iteration dependent CNNs that operate on a history of primal/dual variables
and use the forward operator and its adjoint to link the primal and dual sequence.
The resulting feed-forward network defines a mapping from the observation and an
initial estimate to its output reconstruction.

In parallel, so-called plug-and-play priors [68] or regularization by denoising [69]
methods have been developed. The fundamental idea of these approaches is to replace
the proximal mapping in an iterative proximal algorithm such as PDHG [66] or
alternating direction method of multipliers (ADMM) [70, 71] by an existing denoising
algorithm. Initially, classical denoising methods such as non-local means [72] or
BM3D [73] were advocated to replace the proximal mapping. Later, these ideas were
combined with deep learning-based denoising methods [74, 75]. For a more detailed
evaluation of recent data-driven models in imaging, we refer the interested reader to
the excellent review papers [76, 77].

The recent success of deep learning methods in the field of inverse problems in
imaging was driven by three major effects. First, large and diverse datasets [13, 78]
provide enough samples to approximate the distribution of real-world problems
well. Second, there has been an incredible boost in the computing power of graphics
processing units (GPUs), which are the backbone of modern deep learning methods.
The high-performance computing power of Nvidia’s GPUs increased by a factor of 9
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1: This is the geometric mean over differ-
ent high-performance computing appli-
cations according to https://bit.ly/

2G527S4 accessed September, 2020.

within the last four years1, which enables faster training and inference. Moreover,
the available memory on GPUs strongly increased, which has paved the way to
learn deeper and larger models also for memory-intensive inverse problems such as
3-dimensional CT reconstruction, where the raw measurements alone require giga
bytes (GBs) of memory. Finally, machine learning and in particular deep learning
methods are easily accessible due to well documented, open source frameworks such
as TensorFlow [79] and PyTorch [80]. These frameworks simplify the development of
machine learning models by providing fundamental tools such as data loading and
preprocessing, automatic differentiation, and various optimization algorithms.

1.3 Contribution and Outline

Since 2015, the field of data-driven methods designed to solve inverse problems has
strongly evolved. At that time the TNRD models of Chen and Pock [55] yielded
state-of-the-art results on many image restoration tasks and we were interested in
developing its theoretical foundations. Therefore, we proposed to view the parametric
TNRDmodels as incremental methods [81] that perform proximal gradient steps on a
cyclic sequence of parametric energy functions, which resulted in variational networks
(VNs) [56]. It turned out that also residual neural networks (ResNets) [82] can be
interpreted as incremental proximal methods provided that the residual functions
are gradients. Using the VN framework, we investigated the role of convexity in
the context of parametric energy functions for image denoising and deblurring. In
addition, we applied VNs to reconstruct low-dose 3-dimensional helical CT clinical
scans and compared tube-current dose reduction with SparseCT [83]. Later, we
formulated the training of truncated parametric gradient schemes as an optimal
control problem of time-continuous gradient flows including the stopping time in the
trainable parameters [57]. Here, we proved the existence of solutions of the optimal
control problem and derived first- and second-order optimality conditions for the
stopping time using the FoE regularizer. To overcome the limited expressiveness
of the FoE regularizer, we proposed the total deep variation (TDV) regularizer [59]
designed by recent deep learning principles, which resulted in state-of-the-art results
on various image restoration and reconstruction tasks. To determine the parameters
of the TDV regularizer and the stopping time of the gradient flow, we phrased the
training problem as a mean-field optimal control problem [60], which enables a
rigorous mathematical analysis. We showed the existence of solutions of the time-
continuous and time-discrete optimal control problem in the mean-field setting using
a semi-implicit discretization scheme. Moreover, we developed stochastic upper
bounds for the stability w.r.t. input and parameter variations of the learned gradient
scheme. Additionally, a nonlinear eigenfunction analysis of the learned parametric
regularizers enables insights in their local behavior. Finally, we numerically validated
stability bounds for the proposed optimal control problem and estimated an empirical
upper bound for the generalization error.

The remainder of this thesis is structured as follows:

Chapter 2 provides a brief overview of mathematical concepts and results from
functional analysis, measure theory, probability theory, ordinary differential equa-
tions, and optimization that are used throughout the thesis. Then, we discuss basic
learning types, elaborate on the difference between generative and discriminative
learning, and define the concept of generalization in the context of machine learning
in Chapter 3. In addition, we define neural networks (NNs) in Chapter 3 and illustrate
recent architectural design patterns successfully applied in deep learning.

In Chapter 4, we first analyze the statistics of natural image gradients and 2 × 2
image patches and later review classical regularizers motivated by image statistics.
Then, we present the parametric FoE and TDV regularizers and discuss different
parameter estimation approaches. Chapter 5 is devoted to VNs, which establish

https://bit.ly/2G527S4
https://bit.ly/2G527S4
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connections between incremental proximal gradient methods and ResNets. VNs can
be used to learn unrolled gradient schemes, incremental proximal schemes or TNRD
methods [55]. We show numerical results of all different schemes for image denoising
and deblurring, and extend VNs to 3-dimensional low-dose CT. Finally, in Chapter 6
we advocate a mean-field optimal control problem of early stopped gradient flows
to determine the parameters of learnable regularizers such as the FoE and the TDV
regularizer. We prove the existence of solutions of the mean-field optimal control
problem in the time-continuous and time-discrete setting using a semi-implicit
time-discretization. In addition, we derive stability estimates to numerically quantify
the robustness of the proposed approach and we demonstrate the broad applicability
to various image restoration and reconstruction problems.
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In this chapter, we review basic mathematical concepts and important theorems of
functional analysis, ordinary differential equations, probability theory, and optimiza-
tion that are used throughout the thesis.

2.1 Basic Functional Analysis

In this section, we recall basic results from analysis, topology, measure theory, and
functional analysis. For a detailed discussion of the different topics, we refer to [26,
84–87].

Here and in the remainder of this thesis, we consider a field K, which is either given
by the set of real numbers, i.e. K = ℝ, or by the set of complex numbers, i.e. K = ℂ.
For any 
 ∈ K, we denote its absolute value by

|
 | B
√


 with 
 B

{
ℜe(
) − ℑm(
) if K = ℂ


 if K = ℝ
.

2.1.1 Vector Spaces

In general, a vector space is a collection of vectors that defines the addition of pairs of
vectors and the scalar multiplication of a vector and a scalar. The following definition
provides a detailed explanation of the properties of vector spaces.

Definition 2.1.1 (Vector Space) A vector space V over a field K is a set of vectors such
that the following holds:

1. Let G, H ∈ V. We denote by + : V × V → V , (G, H) ↦→ G + H the summation of two
vectors, satisfying the following properties:

a) G + H = H + G for all G, H ∈ V.
b) G + (H + I) = (G + H) + I for all G, H, I ∈ V.
c) There exists a unique vector 0 ∈ V such that G + 0 = G for any G ∈ V.
d) For every G ∈ V there exists a vector −G ∈ V such that G + (−G) = 0.

2. For any scalar 
 ∈ K and any G ∈ V the scalarmultiplicationK×V → V , (
, G) ↦→

G satisfies the following properties:

a) 
(�G) = (
�)G for any 
, � ∈ K, G ∈ V.
b) 1G = G for all G ∈ V.

3. The combination of the summation and scalar multiplication operations are distribu-
tive, i.e.

a) 
(G + H) = 
G + 
H for any 
 ∈ K, G, H ∈ V.
b) (
 + �)G = 
G + �G for any 
, � ∈ K, G ∈ V.
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For example, the set of =-dimensional column vectors with real components ℝ= is a
vector space, where the summation and scalar multiplication are defined as

©­­­­«

G1
G2
...
G=

ª®®®®¬
+

©­­­­«

H1
H2
...
H=

ª®®®®¬
=

©­­­­«

G1 + H1
G2 + H2

...
G= + H=

ª®®®®¬
, 


©­­­­«

G1
G2
...
G=

ª®®®®¬
=

©­­­­«


G1

G2
...
G=

ª®®®®¬
for G = (G1 G2 · · · G=)> , H = (H1 H2 · · · H=)> ∈ ℝ= and 
 ∈ ℝ. Another important
vector space is the space of real-valued matrices ℝ<×= of size < × = with binary
operations

� + � = (
�8 9 + �8 9

) 9=1,...,=
8=1,...,< , 
� = (
�8 9)9=1,...,=

8=1,...,<

for � = (�8 9)9=1,...,=
8=1,...,< , (�8 9)

9=1,...,=
8=1,...,< ∈ ℝ<×= and 
 ∈ ℝ.

2.1.2 Inner Product

An inner product defined on a vector space V assigns to each pair of vectors G, H ∈ V
a number

〈
G, H

〉 ∈ K in the underlying field.

Definition 2.1.2 (Inner Product) Let V be a vector space over the field K. We call the
map (G, H) ↦→ 〈

G, H
〉
V
from V × V to K inner product if it satisfies the properties:

(S1)
〈
G, H

〉
V
=

〈
H, G

〉
V
for any G, H ∈ V.

(S2)
〈

1G1 + 
2G2 , H

〉
V
= 
1

〈
G1 , H

〉
V
+ 
2

〈
G2 , H

〉
V
for any 
1 , 
2 ∈ K and all

G1 , G2 , H ∈ V.
(S3) 〈G, G〉V ≥ 0 for any G ∈ V and 〈G, G〉 = 0 if and only if G = 0.

A vector space V equipped with an inner product 〈 · , · 〉V is called an inner product
space (V , 〈 · , · 〉V). The most frequently used inner product on ℝ= is the dot product
defined for any G, H ∈ ℝ= by

〈
G, H

〉
=

=∑
8=1

G8H8 .

Throughout this thesis we equip the vector space ℝ= with the dot product unless
otherwise stated. The standard inner product on ℝ<×= is given by

〈�, �〉 = tr
(
�>�

)
=

<∑
8=1

=∑
9=1

�8 9�8 9

for �, � ∈ ℝ<×= . Note that ℝ<×= is isomorphic to ℝ<= (denoted by ℝ<×= � ℝ<=)
with an isomorphism defined by a lexicographic ordering of the matrix elements into
a vector.

2.1.3 Norm

A norm is a mapping from a vector space to the nonnegative real numbers that is
positive definite, absolutely homogeneous, andobeys the triangle inequality.

Definition 2.1.3 (Norm) Let V be a vector space over the fieldK. A norm on V is defined
as a function ‖ · ‖ : V → ℝ+ satisfying the properties:

(N1) ‖G‖ ≥ 0 for any G ∈ V and ‖G‖ = 0 ⇐⇒ G = 0 (positive homogeneous).
(N2) ‖
G‖ = |
 | ‖G‖ for any G ∈ V and 
 ∈ K (absolutely homogeneous).
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? =
1

? =
2

? =
5

? = ∞

Figure 2.1: Unit spheres of ℓ ? -norms
in ℝ2.

(N3)


G + H

 ≤ ‖G‖ + 

H

 for all G, H ∈ V (triangle inequality).

The pair (V , ‖ · ‖) is called a normed vector space. The finite-dimensional real vector
space ℝ= equipped with an inner product 〈 · , · 〉 is called a Euclidean space if it is
endowed with the norm ‖G‖ =

√
〈G, G〉 induced by the inner product. This induced

norm is also called the Euclidean norm.

A function ‖ · ‖ : V → ℝ is called a seminorm if it fulfills (N2), (N3), and (N1) without
the property (G = 0 =⇒ ‖G‖ = 0).

For a given center vector H ∈ V and a radius A > 0, we denote the open ball as

B‖ · ‖ (H, A) = {G ∈ V :


G − H

 < A}

and the closed ball
B‖ · ‖ (H, A) = {G ∈ V :



G − H

 ≤ A}
for a norm ‖ · ‖ .
Next, we present some important norms on K= and K<×= .

For 1 ≤ ? ≤ ∞ the ℓ ?-norm on K= is defined as

‖G‖? B



(
=∑
8=1
|G8 |?

) 1
?

if 1 ≤ ? < ∞

max
8=1,...,=

|G8 | if ? = ∞

for G = (G1 G2 · · · G=)> ∈ K= . Figure 2.1 visualizes the unit spheres S‖ · ‖ B {G ∈
ℝ= : ‖G‖ = 1} for different ℓ ?-norms in ℝ2. For ? = 1 the unit sphere is shaped like
a rhombus while for ? → ∞ it is a square. The values in between can be used to
interpolate between these two shapes. For ? = 2 the ℓ ?-norm is equal to the usual
Euclidean norm.

An important family of matrix norms called induced matrix norms is based on the
ℓ ?-norm of vector spaces. Let ‖ · ‖0 and ‖ · ‖1 be two vector norms onK= andK< . For
a matrix � ∈ K<×= the induced matrix norm is defined as

‖�‖0,1 B max
G∈K= :‖G‖0≤1

‖�G‖1 = sup
G∈K=\{0}

‖�G‖1
‖G‖0

.

This definition immediately implies that for any G ∈ K= the inequality

‖�G‖1 ≤ ‖�‖0,1 ‖G‖0
holds. The choice ‖ · ‖0 = ‖ · ‖1 = ‖ · ‖2 defines the spectral norm

‖�‖2 = ‖�‖2,2 =
√
�max(�>�) = �max(�),

where � ∈ K<×= , �max(�>�) denotes the maximal eigenvalue of the matrix �>�
and �max(�) the maximal singular value of the matrix �. If ‖ · ‖0 = ‖ · ‖1 = ‖ · ‖1 the
induced matrix norm of a matrix � ∈ K<×= is given by

‖�‖1 = ‖�‖1,1 = max
9=1,...,=

<∑
8=1
|�8 9 |,

which amounts to the maximal absolute column sum. Likewise, if ‖ · ‖0 = ‖ · ‖1 =
‖ · ‖∞, the induced matrix norm of a matrix � ∈ K<×= is given by

‖�‖∞ = max
8=1,...,<

=∑
9=1
|�8 9 |,
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which is the maximal absolute row sum.

Another class ofmatrix norms accounts for the individualmatrix entries. The Frobenius
norm of a matrix � ∈ K<×= is defined as the ℓ 2-norm of all matrix elements, i.e.

‖�‖� B
√

<∑
8=1

=∑
9=1
|�8 9 |2.

The ℓ 2,1-norm of a matrix � ∈ K<×= is defined as

‖�‖2,1 B
=∑
9=1

√
<∑
8=1
|�8 9 |2.

It is essentially the sum of the ℓ 2-norms of the columns of a matrix. Later in this
thesis, we will use this norm to define the isotropic discrete total variation (TV).

2.1.4 Basic Topology

In this section, we briefly recall the basic concepts of topology and define the notation
used throughout this thesis.

Let (V , ‖ · ‖) be a normed vector space. Then, a set S⊂ V is

I bounded if there exists a radius A > 0 such that S⊂ B‖ · ‖ (0, A).
I open if for all G ∈ S there exists � > 0 such that B‖ · ‖ (G, �) ⊂ S.
I closed if V \ S is open.
I compact if every open cover of Shas a finite subcover, i.e. for every family of

open sets S8 ⊂ V, 8 ∈ ℕ, with S⊂ ⋃
8∈ℕ S8 , there are finitely many S81 , . . . ,S8#

such that S⊂ ⋃#
9=1 S8 9 .

Theorem 2.1.1 Let V = K= and S⊂ V. The following statements are equivalent:

I S is compact.
I S is bounded and closed.
I Every sequence in Shas a convergent subsequence whose limit is in S.

Proof. See [85, Section 4.6, 4.7, Heine-Borel Theorem].

Let (V , ‖ · ‖) be a normed vector space and S⊂ V.

I A point G ∈ S is an interior point if there exists an open set U ⊂ S such that
G ∈ U. The interior of S (denoted by int(S)) is the set of all interior points of S.

I A point G ∈ V is a point of closure of S if for every open set U ⊂ V with G ∈ U

there exists B ∈ Ssuch that B ∈ U. The closure of S (denoted by () is the set of
all points of closure of S.

I The boundary of S is the set %SB S\ int(S).

2.1.5 Convergence and Continuity

Here, we define the basic concept of convergence of sequences and relate it to the
notion of completeness of a space. Then we show how the continuity of a function
relates a converging sequence of its argument to a converging sequence of the
corresponding images.

Let (V , ‖ · ‖) be a normed vector space. A sequence is a map G : ℕ → V, which we
denote by the shorthand G= B G(=).



2 Mathematical Preliminaries 14

Definition 2.1.4 (Convergence) A point G0 ∈ V is the limit of a sequence G= if for all
� > 0 there exists an # ∈ ℕ such that for every 8 ≥ # the inequality



G 8 − G0


 < � holds

true. Then, we say that the sequence G= converges to G0 and write G= → G0 as = →∞ or

lim
=→∞ G

= = G0.

To relate the completeness of a space to converging sequences, we characterize Cauchy
sequences in the next definition.

Definition 2.1.5 (Cauchy Sequence) The sequence G= is a Cauchy sequence if for
every � > 0 there exists an # ∈ ℕ such that for all 8 , 9 ≥ #

G 8 − G 9

 < �

holds true.

Thus, a Cauchy sequence is a sequence in which the distance in terms of the
norm ‖ · ‖ between its elements becomes arbitrarily small as the sequence progresses.
If G= is a sequence in V, then a point G ∈ V is called a cluster point of G= if there
exists a subsequence G= 8 , i.e. a sequence = 8 in ℕ with = 8 → ∞ as 8 → ∞, such that
G = lim8→∞ G=

8 . Consequently, a Cauchy sequence can have at most a single cluster
point and thereby has at most a single converging subsequence.

Definition 2.1.6 (Completeness) The space (V , ‖ · ‖) is complete if every Cauchy
sequence converges to an element of V.

A Hilbert space is an inner product space which is complete w.r.t. the induced
norm ‖ · ‖ : V → ℝ+ , G ↦→

√
〈G, G〉. In analogy, a Banach space is a normed space that

is complete w.r.t. its norm.

Let (V , ‖ · ‖V) and (W , ‖ · ‖W) be two normed vector spaces. To state the next theorem,
we first have to define continuous functions.

Definition 2.1.7 (Continuity) A function 5 : V →W is continuous at a point G0 ∈ V if
for all � > 0 there exists a � > 0 such that ‖G − G0‖V < � implies



 5 (G) − 5 (G0)



W
< �.

The function 5 is continuous on V if 5 is continuous for all G0 ∈ V.

The following theorem links the continuity of a function with the convergence of the
images of a sequence.

Theorem 2.1.2 Let 5 : V →W be a function. The following statements are equivalent:

1. The function 5 is continuous.
2. For every set S⊆ W, which is open inW, the set 5 −1(S) is open in V.
3. For every G0 ∈ V and every sequence G= ∈ V such that G= → G0 in V the sequence

5 (G=) converges to 5 (G0) inW as = →∞.

Proof. See [85, Section 2.17].

A generalization of the concept of continuity is given by Lipschitz continuity, which
will be frequently used in this thesis.

Definition 2.1.8 (Lipschitz Continuity) A function 5 : V → W is called Lipschitz
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continuous with Lipschitz constant ! > 0 if

 5 (G) − 5 (H)


W
≤ ! 

G − H



V
∀G, H ∈ V.

2.1.6 Dual Space

To characterize the dual space of a vector space, we first need to define a linear
transform.

Definition 2.1.9 (Linear Transform) Given two vector spaces V ,W over a field K, a
function A : V →W is called a linear transform if for all G, H ∈ V and 
, � ∈ K

A(
G + �H) = 
A(G) + �A(H)

holds.

Note that on a finite-dimensional vector space all linear transforms A : K= → K<

are uniquely described by a matrix � ∈ K<×= , i.e. A(G) = �G for all G ∈ K= .

Definition 2.1.10 (Dual Space) A linear functional on a vector space V is a linear
transformation that maps from V to K. The set of all linear functionals on V defines the
dual space denoted by V∗.

Along with the dual space, we define the dual norm by means of the duality
pairing.

Definition 2.1.11 (Dual Norm) Let ‖ · ‖ be a norm on the vector space V. The corre-
sponding dual norm ‖ · ‖∗ : V∗ → ℝ+ is defined as

H

∗ B max

G∈V:‖G‖≤1

〈
G, H

〉
,

where
〈
G, H

〉
B H(G) denotes the duality pairing.

On a finite-dimensional vector space K= the dual norm of the ℓ ?-norm is given by
the ℓ @-norm with 1

? + 1
@ = 1 for ?, @ ∈ [1,∞] using the convention 1

∞ = 0. Thus, the
ℓ 2-norm is self-dual (? = @ = 2) and the dual norm of the ℓ 1-norm is the ℓ∞-norm
(? = 1, @ = ∞) and vice versa.

A fundamental representation theorem of functional analysis that links the dual
space with its associated vector space is due to Riesz.

Theorem 2.1.3 (Riesz’ Representation) Let V be a Hilbert space. Then, for any linear
functional H ∈ V∗ there exists a unique E ∈ V such that

H(G) = 〈G, E〉V ∀G ∈ V ,

where 〈 · , · 〉V denotes the inner product on V. In particular, we have


H

∗ = ‖E‖ and V∗

is isomorphic to V (V∗ � V).

Proof. See [87, Section 7.3, Theorem 7.26].

Due to this relation, the dual space V∗ of a vector space V is also a vector space. The
dual space of the dual space is the so-called bidual space V∗∗, which is equal to the
original space for finite-dimensional vector spaces. Moreover, it follows that the bidual
norm ‖ · ‖∗∗ is the same as the original norm ‖ · ‖ in the finite-dimensional setting.
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Finally, we define the adjoint transform of a linear transformation on Hilbert
spaces.

Definition 2.1.12 (Adjoint Transform) Let (V , 〈 · , · 〉V) and (W , 〈 · , · 〉W) be two
Hilbert spaces and A : V →W a linear transform. Then the adjoint linear transform A∗ :
W∗ → V∗ is defined via 〈

A(G), H〉
W
=

〈
G,A∗(H)〉

V∗ .

Let V ,W be Hilbert spaces. Then the adjoint linear transform has the properties:

1. (
A1(G)+A2(G))∗ = 
A∗1(G)+A∗2(G) for all 
 ∈ K and linear transforms A1 ,A2 :
V →W.

2. A∗∗ = A for any linear transform A : V →W.
3. (A1A2)∗ = A∗2A∗1 for all linear transforms A1 ,A2 : V → V.

As an example, let us consider V = K= and W = K< both equipped with the
dot product. Hence, every linear transform A : K= → K< is represented by a
corresponding matrix � ∈ K<×= such that A(G) = �G. Then, the adjoint transform is
given by 〈

�G, H
〉
=

〈
G, �∗H

〉
,

where �∗ = �> if K = ℝ or �∗ = �> if K = ℂ. In this thesis, we frequently
denote a linear transform as a linear operator and its adjoint linear transform as the
corresponding adjoint operator.

2.1.7 Extended Real-valued Functions and Closedness

In this section, we define extended real-valued functions as functions over the entire
underlying space that can attain any real value including −∞ and ∞. Thus, their
range isℝ B ℝ∪{−∞,∞}. For this general class of functions, we define the notion of
closedness and relate it to the continuity of the function. We conclude this section by
presenting two theorems that ensure the existence of minimizers of closed extended
real-valued functions.

Let V be a Banach space over a field K.

Definition 2.1.13 (Proper) An extended real-valued function 5 : V → ℝ is proper if 5
never takes the value −∞ and is not identical to∞.

Since we are mostly interested in computing minimizers of extended real-valued
functions, almost all functions of interest are proper. Next, we define the (effective)
domain of an extended real-valued function as the set of arguments that are not
mapped to∞.

Definition 2.1.14 (Domain) The domain of a proper extended real-valued function 5 :
V → ℝ is defined as

dom( 5 ) B {G ∈ V : 5 (G) < ∞}.

One of the simplest non-trivial examples of extended real-valued functions are
indicator functions. For a given subset S ⊂ V, we denote by �S : V → (−∞,∞] its
indicator function, which is defined as

�S(G) B
{

0 if G ∈ S
∞ if G ∉ S

. (2.1)

Clearly, the domain of an indicator function is given by dom(�S) = S.
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epi( 5 )

Figure 2.2:Visualization of the epigraph
of 5 (G) = 1

2 G
2 + cos(4�G).

To link the notion of closedness of functions with its equivalent for sets, we define
the epigraph of an extended real-valued function.

Definition 2.1.15 (Epigraph) The epigraph of an extended real-valued function 5 :
V → ℝ is defined as

epi( 5 ) B {(G, H) ∈ V ×ℝ : 5 (G) ≤ H}.

Figure 2.2 illustrates the concept of an epigraph. Note that if (G, H) ∈ epi( 5 ), then
G ∈ dom( 5 ).

Definition 2.1.16 (Closedness) A function 5 : V → ℝ is closed if its epigraph is
closed.

A property of a function that is equivalent to closedness is lower semicontinuity as
we will see in the subsequent theorem.

Definition 2.1.17 (Lower Semicontinuity) A function 5 : V → ℝ is lower semicon-
tinuous at G ∈ V if

5 (G) ≤ lim inf
=→∞ 5 (G=)

for any sequence G= ∈ V for which G= → G as = →∞. A function 5 : V → ℝ is lower
semicontinuous if it is lower semicontinuous at every point in V.

In this definition, we use the limes inferior which is the smallest cluster point of a
sequence and defines the largest lower bound. For a sequence G= , the limes inferior is
formally defined as

lim inf
=→∞ G= B sup

=∈ℕ
inf
:≥=

G: .

Theorem 2.1.4 (Closedness) Let V be a normed vector space and 5 : V → ℝ. Then the
following claims are equivalent:

1. 5 is closed.
2. 5 is lower semicontinuous.
3. For any 
 ∈ ℝ, the level set defined as

Lev( 5 , 
) B {
G ∈ V : 5 (G) ≤ 


}
is closed.

Proof. See [84, Section 2.1, Theorem 2.6].

In the next theorem, we establish a relationship between continuous functions defined
over a closed domain and the property of closedness.

Theorem 2.1.5 (Continuity implies Closedness) Let 5 : V → (−∞,∞] be an extended
real-valued function that is continuous over its domain and suppose that dom( 5 ) is closed.
Then, 5 is closed.

Proof. See [84, Section 2.2, Theorem 2.8].
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Note that closedness of a function does not require that it is continuous, cf. indicator
functions.

Based on the previous definitions, we can state Weierstrass’ theorem that ensures the
existence of minimizers of a closed function over a compact set.

Theorem 2.1.6 (Weierstrass’ Theorem for Closed Functions) Let 5 : V → (−∞,∞]
be a proper closed function and assume that S is a compact set satisfying dom( 5 ) ∩S≠ ∅.
Then

1. 5 is bounded from below over S,
2. 5 attains its minimal value over S.

Proof. See [84, Section 2.2, Theorem 2.12].

IfSis not compact, thenWeierstrass’ theorem does not hold. However, we can replace
the compactness of Sby the coerciveness of 5 to show the attainment of a minimizer
over an arbitrary closed set.

Definition 2.1.18 (Coerciveness) A proper function 5 : V → (−∞,∞] is called
coercive if

lim
‖G‖→∞

5 (G) = ∞.

Theorem 2.1.7 (Attainment under Coerciveness) Let 5 : V → (−∞,∞] be a closed,
proper and coercive function and let S ⊆ V be a non-empty closed set satisfying S∩
dom( 5 ) ≠ ∅. Then 5 attains its minimal value over S.

Proof. See [84, Section 2.2, Theorem 2.14].

2.1.8 Space of Continuous and Differentiable Functions

In this section, we introduce the infinite vector space of continuous functions as well
as the space of :-times continuously differentiable functions.

In the following, let S ⊂ K= be an open and bounded set and (S′, ‖ · ‖) a Banach
space for S′ ⊂ K< .

Definition 2.1.19 (Space of Continuous Functions) We denote by �0(S,S′) the set
of continuous functions mapping from S to S′. Then, �0(S,S′) equipped with the
supremum norm 

 5 

�0(S,S′) B sup

G∈S



 5 (G)


becomes a Banach space.

To define the space of continuously differentiable functions, we first need to define
the partial derivative w.r.t. a multi-index. A multi-index 
 = (
1 · · · 
=)> ∈ ℕ=

0 of
order : is an =-dimensional vector of non-negative integers such that

: = |
 | B
=∑
8=1


8 .



2 Mathematical Preliminaries 19

For a multi-index 
 ∈ ℕ=
0 we define the partial derivative of 5 : S→ S′ at G ∈ Sas

%
 5 (G) B %|
 | 5
%G
1

1 · · · %G
==
(G).

For ; ∈ ℕ0, we define the number of possible multi-indices of order ; and up to order ;
as

N(;) B |{
 ∈ ℕ=
0 : |
 | = ;}|, N(;) B |{
 ∈ ℕ=

0 : |
 | ≤ ;}|,
respectively. To sort the set of multi-indices ℕ=

0 , we use a total ordering defined in
the following manner: 
 < � if either |
 | < |� |, or if |
 | = |� |, then there exists an
index 1 ≤ : ≤ = such that 
8 = �8 for 1 ≤ 8 < : and 
: < �: .

Using the concept of multi-indices, we define the ;th-order gradient of a :-times
differentiable function 5 : S→ S′ as the vector-valued function

� ; 5 B (%
 5 )|
 |=; : S→ KN(;)×< ,

where the 9th component of � ; 5 is the 9th partial derivative of order ; of 5 w.r.t. the
ordering on ℕ=

0 defined above.

Definition 2.1.20 (Space of Differentiable Functions) For an order : ∈ ℕ, we denote
by �:(S,S′) the set of all :-times continuously differentiable functions mapping from
S to S′. Then, �:(S,S′) equipped with the norm

 5 

�: (S,S′) B ∑

|
 |≤:



%
 5 

�0(S,S′)

becomes a Banach space.

Throughout this thesis, we use the shorthand �:(S,S′) = �0(S,S′) ∩ �:(S,S′). The
vector space of infinitely differentiable functions from S to S′ is defined as

�∞(S,S′) B
⋂
:∈ℕ

�:(S,S′).

Another class of continuous functions that are frequently required for solving
dynamical systems are given by Hölder function spaces.

Definition 2.1.21 (Hölder Spaces) We define the Hölder space of order : ∈ ℕ and
exponent B ∈ (0, 1] as

�:,B(S,S′) B { 5 ∈ �:(S,S′) :


 5 

�:,B (S,S′) < ∞}, (2.2)

where the Hölder norm reads as



 5 

�:,B (S,S′) B ∑
|
 |≤:



%
 5 

�0(S,S′) +
∑
|
 |=:

sup
G,H∈S
G≠H



%
 5 (G) − %
 5 (H)



G − H

B . (2.3)

Every Hölder space is a Banach space.

In contrast to the space of :-times continuously differentiable functions, the Hölder
space additionally ensures that the :th derivative is Hölder continuous with pa-
rameter B. In particular, if B = 1, the Hölder continuity is equivalent to Lipschitz
continuity.
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2.1.9 Measure Theory

In this section, we briefly recall relevant concepts and properties frommeasure theory
in order to develop the space of Lebesgue integrable functions and lay the basis for
the probability theory in the next section.

In the following, we consider an arbitrary non-empty set Sand denote by 2S = {A :
A⊂ S} its power set consisting of all subsets of S.

Definition 2.1.22 (Classes of Sets) A class of sets A ⊂ 2S is called

I ∩-closed (closed under intersections) if A∩B ∈ A for any A,B ∈ A.
I �-∩-closed (closed under countable intersections) if

⋂
8∈ℕ A8 ∈ A for any choice of

countably many sets A1 ,A2 , . . . ∈ A.
I ∪-closed (closed under unions) if A∪B ∈ A for any A,B ∈ A.
I �-∪-closed (closed under countable unions) if

⋃
8∈ℕ A8 ∈ A for any choice of

countably many sets A1 ,A2 , . . . ∈ A.
I \-closed (closed under differences) if A\B ∈ A for any A,B ∈ A.
I closed under complements if A� B S\A ∈ A for any A ∈ A.

Here, the term ’countable’ means either finite or countably infinite.

A particularly interesting class of sets is given by the �-algebra, which will be later
used to define observable random events.

Definition 2.1.23 (�-algebra) A class of sets A ⊂ 2S is called a �-algebra if it fulfills
the following conditions:

I S ∈ A
I A is closed under complements.
I A is closed under countable unions.

The next theorem states that for a given class of sets one can generate a corresponding
�-algebra.

Theorem 2.1.8 (Generated �-algebra) LetE ⊂ 2S. Then there exists a smallest �-algebra
�(E) such that

�(E) B
⋂

A⊂2S:E⊂A,A is a �-algebra
A.

�(E) is called the �-algebra generated by E.

Proof. See [87, Section 1.1, Theorem 1.16].

The pair (S,A) consisting of a non-empty set S and a �-algebra A ⊂ 2S is called
a measurable space and the sets A ∈ A are called measurable sets. Let (S, ‖ · ‖) be a
metric space. The �-algebra B(S) that is generated by all open sets is called the Borel
�-algebra on Sand its elements A ∈ B(S) are called Borel measurable sets.

To quantify an element of a class of sets, we introduce set functions.

Definition 2.1.24 (Set Functions) LetA ⊂ 2S and let � : A→ [0,∞] be a set function.
We say that � is

I monotone if �(A) ≤ �(B) for any A,B ∈ A with A⊂ B.
I additive if �(⋃=

8=1 A8) =
∑=
8=1 �(A8) for any mutually disjoint A1 ,A2 , . . . ,A= ∈

A with
⋃=
8=1 A8 ∈ A.
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I �-additive if�(⋃8∈ℕ A8) = ∑
8∈ℕ �(A8) for any choice of countably manymutually

disjoint A1 ,A2 , . . . ∈ A with
⋃
8∈ℕ A8 ∈ A.

I subadditive if for any finite choice of sets A1 ,A2 , . . . ,A= ∈ A with
⋃=
8=1 A8 ∈ A,

we have �(⋃=
8=1 A8) ≤

∑=
8=1 �(A8).

I �-subadditive if for any countable choice of setsA1 ,A2 , . . . ∈ Awith
⋃
8∈ℕ A8 ∈ A,

we have �(⋃8∈ℕ A8) ≤ ∑
8∈ℕ �(A8).

Definition 2.1.25 (Measure) Let A ⊂ 2S be a �-algebra. We call a function � : A→
[0,∞] a measure on A if �(∅) = 0 and � is �-subadditive.

A measure is called �-finite if there exists a sequence of sets S= ∈ A with �(S=) < ∞ for
= ∈ ℕ such that S=

⋃
=∈ℕ S= .

As an example let S= ℝ= , we denote the semiring of half open cuboids by

A = {(0, 1] : 0, 1 ∈ ℝ= , 0 < 1} ,

which are sets of the form

(0, 1] B {G ∈ ℝ= : 08 < G8 ≤ 18 for 8 = 1, . . . , =}.

Here, for 0, 1 ∈ ℝ= , we write 0 < 1 if 08 < 18 for 8 = 1, . . . =. Then the measure
accounting for the volume of a cuboid is defined as

� ((0, 1]) = �

(
=�
8=1
(08 , 18]

)
B

=∏
8=1
(18 − 08).

with the value being ∞ if 18 = ∞ or 08 = −∞ for any 8 = 1, . . . , =. The extension
theorem of measures [87, Section 1.3, Theorem 1.53] yields the well-known Lebesgue
measure:

Theorem 2.1.9 (Lebesgue Measure) There exists a uniquely determined measure L= on
(ℝ= ,B(ℝ=)) with the property that

L= ((0, 1]) =
=∏
8=1
(18 − 08)

for all 0, 1 ∈ ℝ= with 0 < 1. L= is called the Lebesgue measure on (ℝ= ,B(ℝ=)).

The combination of a measurable space with a measure results in a measure space,
as the following definition states.

Definition 2.1.26 (Measure Space) Let Sbe an arbitrary set, A ⊂ 2S a �-algebra and
� a measure on A. We denote by (S,A, �) the correspondingmeasure space.

Next, we define the completeness property of a measure space by means of �-null
sets.

Definition 2.1.27 (�-null Set and Completeness) Let (S,A, �) be a measure space. A
set # ∈ A is called a �-null set or null set if �(#) = 0. We denote by #� the class of all
subsets of �-null sets. A measure space (S,A, �) is complete if #� ⊂ A.

The following remark presents a general concept to complete a measure space by
including all subsets of �-null set to its underlying �-algebra.
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Remark 2.1.1 (Completion of a Measure Space) Let (S,A, �) be a �-finite measure
space. There exists a unique smallest �-algebra A∗ ⊃ A and an extension �∗ of � to
A∗ such that (S,A∗ , �∗) is complete. This completion of (S,A, �) is given by

A∗ = �(A ∪ #�), �∗(A∪ #) = �(A)

for any A ∈ A and # ∈ #�.

Hence, the resulting �-algebra depends on the used measure.

Let �(G) be a property that a point G ∈ Smay have or not. We write that � holds
�-almost everywhere (a.e.) if there exists a �-null set # such that �(G) holds for all
G ∈ S\ # .

In the following, we consider a complete measure space (S,A, �) for a set S ⊂
ℝ= and �-algebra A ⊂ 2S to introduce measurable functions and their image
measure.

Definition 2.1.28 (Measurable Functions) Let (S,A) and (S′,A′) be measurable spaces.
A function 5 : S→ S′ is called measurable if 5 −1(A′) B {

5 −1(A′) : A′ ∈ A′} ⊂ A,
that is if

5 −1(A′) ∈ A
for any A′ ∈ A′.

Every measurable function introduces an induced image measure according to the
subsequent definition.

Definition 2.1.29 (Image Measure) Let (S,A) and (S′,A′) be measurable spaces and
let � be a measure on (S,A). Further, let 5 : (S,A) → (S′,A′) be measurable. The image
measure of � under the map 5 is the measure � ◦ 5 −1 on (S′,A′) and is defined as

� ◦ 5 −1 : A′→ [0,∞], A′ ↦→ �( 5 −1(A′)).

In the remainder, we only consider real numbers K = ℝ to develop the space of
integrable functions mapping from ℝ= to ℝ< . However, if one considers complex-
valued functions defined over a complex domain, all integrals have to be performed
entry-wise and separate for the real and imaginary parts.

To define the space of integrable functions, we first need to define the Lebesgue
integral in analogy to [87, Section 4]. To this end, we start by introducing simple
functions as a weighted sum of indicator functions. For an arbitrary set A ∈ A ⊂ 2S,
the associated indicator function 1A(G) : S→ ℝ is defined as

1A(G) B
{

1 if G ∈ A
0 if G ∉ A

. (2.4)

Hence, indicator functions are binary functions that indicate if their argument is in
the associated set or not. We use the notation 1A to highlight the difference to the
indicator function �A previously defined in Equation 2.1. Using indicator functions
of the form (2.4), simple functions are defined as follows:

Definition 2.1.30 (Simple Function) Let (S,A) be a measurable space. A map 5 : S→
ℝ is called a simple function if there exist ; ∈ ℕ, mutually disjoint sets A8 ∈ A, and real
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Figure 2.3: Visual comparison of the
Riemann (top) and Lebesgue (bottom)
integral.

vectors 08 ∈ ℝ< for 8 = 1, . . . , ; such that

5 (G) =
;∑
8=1

081A8 (G).

If 5 , 6 : S→ ℝ< with 68(G) ≤ 58(G) for 8 = 1, . . . , < and any G ∈ S, then we write
6 ≤ 5 . Likewise, we write the weaker condition 6 ≤ 5 a.e. if there exists a �-null set
# such that 6(G) ≤ 5 (G) for any G ∈ #� .

We denote by S the vector space of simple functions on (S,A) and by S+ B
{ 5 ∈ S : 5 ≥ 0} the space of nonnegative simple functions. Then, we define the
mapping � : S+ → [0,∞]< by

�( 5 ) =
;∑
8=1

08�(A8)

if the simple function 5 is represented by 5 =
∑;
8=1 081A8 . Compared to the simple

functions, this mapping accounts for the measure � of the associated set instead of
the indicator function.

Next, we can define the Lebesgue integral for nonnegative functions based on simple
functions and the previous mapping �.

Definition 2.1.31 (Lebesgue Integral) If 5 : S→ [0,∞]< is measurable, we define the
Lebesgue integral with respect to � by∫

S

5 d� B sup
6∈S+:6≤ 5

�(6).

Figure 2.3 compares the classical definition of an integral due to Riemann with the
Lebesgue integral. While the Riemann integral partitions the x-axis into equally
spaced bins, the Lebesgue integral partitions the y-axis into equally spaced bins
and approximates the functions by means of simple functions. Despite the different
definition of the Riemann and Lebesgue integral, both integrals coincide in the limit
for smooth functions integrated over a compact set [87, Section 4.3, Theorem 4.23]. In
contrast, the non-smooth indicator function of the rational numbers 1ℚ is Lebesgue
integrable but not Riemann integrable [87].

Based on this definition of the Lebesgue integral for nonnegative functions, we
introduce the property of �-integrability and define the set of integrable func-
tions.

Definition 2.1.32 (Integral of Measurable Functions) Let (S,A, �) be a measure space
and (S′, ‖ · ‖) a Banach space for S′ ⊂ ℝ< . A measurable function 5 : S→ S′ is called
�-integrable if ∫

S



 5 

 d� < ∞.

We define the set of these functions as

L1(S,A, �) B
{
5 : S→ S′ : 5 is measurable and

∫
S



 5 

 d� < ∞
}
.

For any function 5 ∈ L1(S,A, �), we define the Lebesgue integral of 5 w.r.t. � by

∫
S

5 (G)�(dG) B
∫
S

5 d� B
©­­«

∫
S

max(0, 51)d�
...∫

S
max(0, 5<)d�

ª®®¬
−

©­­«

∫
S
−max(0,− 51)d�

...∫
S
−max(0,− 5<)d�

ª®®¬
.
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Finally, we are able to define the Lebesgue space of integrable functions for a real
number ?.

Definition 2.1.33 (Lebesgue Space) Let (S,A, �) be a measure space and let (S′, ‖ · ‖)
be a Banach space for S′ ⊂ ℝ< . For a real number 1 ≤ ? ≤ ∞, the corresponding
Lebesgue space is defined as

L?(S,A, �) B
{
5 : S→ S′ : 5 measurable and



 5 

L? (S,A,�) < ∞
}
,

with the norm defined for the case 1 ≤ ? < ∞ as



 5 

L? (S,A,�) B
(∫

S



 5 (G)

? d�
) 1
?

and for the case ? = ∞ as



 5 

L∞(S,A,�) B inf
# :#⊂S,�(#)=0

(
sup
G∈S\#



 5 (G)


)
.

We use the shorthand L?(S,S′) = L?(S,A, L=) to denote measurable and Lebesgue-
integrable functions 5 : S→ S′. If not specified otherwise, in this thesis we use the
Lebesgue measure � = L= on ℝ= and the shorthand dG = �(dG) = L=(dG).
The following theorem due to Fischer and Riesz shows that Lebesgue spaces are in
fact Banach spaces.

Theorem 2.1.10 (Fischer–Riesz) The Lebesgue space L?(S,A, �) for 1 ≤ ? ≤ ∞ is a
Banach space.

Proof. See [87, Section 7.3, Theorem 7.18].

The concept of duality can also be extended to Lebesgue spaces as the subsequent
theorem shows.

Theorem 2.1.11 (Lebesgue Dual Space) Let ? ∈ (1,∞) and assume 1
? + 1

@ = 1. Then,
the dual space (L?(S,A, �))∗ is given by L@(S,A, �).

Proof. See [87, Section 7.6, Theorem 7.50].

Using the Lebesgue integral, we can relate measures, measurable functions and
image measures in an integral equation.

Theorem 2.1.12 (Image Measure) Let (S,A) and (S′,A′) be measurable spaces, let �
be a measure on (S,A) and let - : S→ S′ be measurable. Let �′ = � ◦ -−1 be the
image measure (or induced measure) of � under the map -. Assume that 5 : S′→ ℝ is
�′-integrable, i.e. 5 ∈ L1(S′,A′, �′). Then, 5 ◦ - ∈ L1(S,A, �) and∫

S′
5 d�′ =

∫
S

( 5 ◦ -)d� =
∫
S

5 (-(G))�(dG).

Proof. See [87, Section 4.1, Theorem 4.10].
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Wewill use this integral correspondence in the next section about probability theory.

To develop the Radon–Nikodym derivative, which we later require to link the
cumulative distribution function with the density of a random variable, we first need
to introduce the concept of absolute continuity to relate two measures.

Definition 2.1.34 (Absolute Continuity) Let � and � be two measures on (S,A). The
measure � is called absolutely continuous w.r.t. �, denoted by � � �, if

�(A) = 0 =⇒ �(A) = 0

for all A ∈ A.

Finally, the Radon–Nikodym derivative follows from the next theorem.

Theorem 2.1.13 (Radon–Nikodym) Let � and � be �-finite measures on (S,A) and let
� be absolutely continuous w.r.t. � (� � �). Then, the function 5 : S→ S is measurable
in A and finite a.e. and we have

�(A) =
∫
A

5 d� =
∫
A

d�
d�

d�

for any A ∈ A. The function d�
d� is called the Radon–Nikodym derivative of � w.r.t. �

and we write 5 = d�
d� .

Proof. See [87, Section 7.4, Theorem 7.34].

As a result, the Radon–Nikodym derivative defines the density of the measure � w.r.t.
the measure �.

2.2 Probability Theory

In this section, we recall basic results from probability theory collected from [85,
87].

The underlying idea of probability theory is to use probability spaces (S,A,ℙ) to model
random experiments. A �-algebra A ⊂ 2S defines a class of sets whose elements
are called events of S. These events are observed by a random variable - which is a
measurable mapping fromSto a space of possible outcomes of a random experiment.
The probabilities of the random outcomes are described by the distribution of the
associated random variable, which is given by the image measure of ℙ under -.

2.2.1 Probability Space

LetSbe the space of elementary events, e.g.S⊂ ℝ= , and letA ⊂ 2Sbe a �-algebra that
defines the system of observable events � ∈ A. Then, this pair defines a measurable
space as we have seen in Section 2.1.9. To account for the likelihood of events, we
define the probability measure.

Definition 2.2.1 (Probability Measure) Let (S,A) be a measurable space and � : A→
[0,∞] a measure. Then, � is a probability measure if �(S) = 1.
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In the remainder, we denote probability measures by ℙ. Since probability measures
are nonnegative and the probability of the entire set of events is ℙ(S) = 1, we can
deduce that ℙ : A→ [0, 1].
A measurable space equipped with a probability measure defines a probability space,
as stated in the next definition.

Definition 2.2.2 (Probability Space) A triple (S,A,ℙ) is called a probability space if
(S,A) is a measurable space and ℙ is a probability measure.

In the following let (S,A,ℙ) be a complete probability space onS⊂ ℝ= and let (S′,A′)
be a measurable space with S′ ⊂ ℝ< .

2.2.2 Random Variables and their Characterization

Frequently, probabilistic events � ∈ A on S cannot be observed directly. However,
the effects of the underlying random events can be observed by means of measurable
mappings fromSto a spaceS′. These random observations are measurable mappings
and are called random variables.

Definition 2.2.3 (Random Variable) Let - : S→ S′ be measurable. Then, - is called
a random variable with values in (S′,A′).

For an event A′ ∈ A′, we denote by {- ∈ A′} = {B ∈ S : -(B) ∈ A′} B -−1(A′)
its pre-image of - and by ℙ[- ∈ A′] B ℙ[-−1(A′)] its image measure. Then, the
probability that the random variable - takes on values in the event A′ is given by

ℙ[- ∈ A′] =
∫
-−1(A′)

dℙ.

A random variable defines a distribution w.r.t. the probability measureℙ on its image
space.

Definition 2.2.4 (Distribution) Let - be a random variable. The probability mea-
sure ℙ- B ℙ ◦ -−1 is called the distribution of -. We write - ∼ TS if TS = ℙ- and
say that the random variable is distributed by TS.

Thus, the distribution is the image measure of ℙ under -. Next, we define the
cumulative distribution function to characterize the distribution of a random vari-
able.

Definition 2.2.5 (Cumulative Distribution Function) Let - be a random variable. The
map �- : S→ [0, 1], G ↦→ ℙ[- ≤ G] is called the cumulative distribution function of
-.

The cumulative distribution function is monotonically increasing and can be used to
identify areas of high probability density since a high probability density implies a
strong increase of the cumulative distribution function.

The pre-image of the cumulative distribution function �- : S→ [0, 1] is used to
define quantiles. Let @ ∈ (0, 1). The @th quantile of the cumulative distribution function
associated with the random variable - is defined as

�−1
- (@) ≔ min

{
G ∈ S : �(G) ≤ @} .

So, it is the smallest value G ∈ S such that @ percent of all values are below this
value.



2 Mathematical Preliminaries 27

Definition 2.2.6 (Density Function) If the cumulative distribution function �- : ℝ= →
[0, 1] is of the form

�-(G) =
∫
(−∞,G]

?(C)�(dC) =
∫ G1

−∞
. . .

∫ G=

−∞
?-(G1 , . . . , G=)�(dG1 , . . . , dG=)

for all G ∈ ℝ= and some �-integrable function ?- : ℝ= → [0,∞), then ?- is called the
density of the distribution of - w.r.t. the measure �.

In particular, let - : S→ S′ be a random variable with distribution ℙ- . Let ℙ- be
absolutely continuous w.r.t. the Lebesgue measure L= , i.e.ℙ- � L= . Then, the density
of - w.r.t. the Lebesgue measure is given by the Radon–Nikodym derivative

?- =
dℙ-
dL=

,

see Theorem 2.1.13. As a result, the probability that the random variable - takes in
values in the event A′ is given by

ℙ[- ∈ A′] =
∫
-−1(A′)

dℙ =
∫
A′
?- dL= .

As an example let us consider a random variable - that is defined over ℝ= and
normally distributed, i.e. - ∼ N(H,Σ) for a given mean H ∈ ℝ= and a covariance
matrix Σ ∈ ℝ=×= . Then, its density w.r.t. L= reads as

?-(G) = det (2�Σ)− 1
2 exp

(− 1
2 (G − H)>Σ−1(G − H))

and the cumulative distribution function is given by

ℙ[- ≤ G] = �-(G) = det (2�Σ)−1
∫
(−∞,G]

exp
(− 1

2 (B − H)>Σ−1(B − H)) L=(dB).

2.2.3 Independence of Random Variables

In many applications, we are interested in determining the probability of a family of
random observations. This can be achieved by defining the dependence structure
of the corresponding events and random variables. In this section, we discuss the
concept of independence of events and random variables that allows for an efficient
factorization of the joint probabilities.

To define the independence of a family of events, we have to ensure that for each
subfamily of events the associated probability factorizes, which is summarized in the
following definition.

Definition 2.2.7 (Independence of Events) Let I⊂ ℕ be an arbitrary index set and
let (A8)8∈I be an arbitrary family of events. The family (A8)8∈I is called independent if
for any finite subset J⊂ I

ℙ

[⋂
9∈J

A9

]
=

∏
9∈J

ℙ[A9]

holds true.

To develop the independence of random variables, let us first define their joint
distribution.
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Definition 2.2.8 (Joint Distribution) Let I⊂ ℕ be an arbitrary index set and for all
8 ∈ I, let -8 be a random variable. For any finite subset J ⊂ I, we define the joint
distribution function of the family of random variables (-9)9∈J as

�J B �(-9 )9∈J : ( |J| → [0, 1],

G ↦→ ℙ
[
-9 ≤ G 9 ∀9 ∈ J

]
= ℙ

[⋂
9∈J

-−1
9

((−∞, G 9])
]
.

The probability measure ℙ(-9 )9∈J on ℝ |J| is called the joint distribution of (-9)9∈J.

From a computational point of view, evaluating the joint distribution function
is challenging in high-dimensional spaces since the probability measure at the
intersection of all pre-image sets of each random variable needs to be determined.
However, for independent random variables, the cumulative distribution function
factorizes into the product of the individual cumulative distribution functions as we
see in the next theorem. This allows for a much more efficient evaluation of the joint
distribution.

Theorem 2.2.1 (Independence of Random Variables) A family of random vari-
ables (-8)8∈I for an arbitrary index set I ⊂ ℕ is independent if and only if for
every finite J⊂ I and every G = (G 9)9∈J ∈ ℝ |J|

�J(G) =
∏
9∈J

�{ 9}(G 9).

holds true.

Proof. See [87, Section 2.2, Theorem 2.21].

If we further assume that �� has a continuous density ?� = ?(-9 )9∈J, which is the joint
density of the family of random variables, then also the joint density factorizes such
that

?J(G) =
∏
9∈J

? 9(G 9)

holds for all G = (G 9)9∈J ∈ ℝ |J| .
To conclude this section, we define the notion of identically distributed random
variables.

Definition 2.2.9 (Identically Distributed) Let I ⊂ ℕ be an arbitrary index set. A
family of random variables (-8)8∈I is called identically distributed if

ℙ-8 = ℙ-9

for all 8 , 9 ∈ I.

As a shorthand we write that a family of random variables (-8)9∈I is independent
and identically distributed (i.i.d.) if (-8)9∈I is independent and ℙ-8 = ℙ-9 for all
8 , 9 ∈ I.

2.2.4 Moments

The statistics of random variables are typically characterized by means of moments
such as the expectation and variance.
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Definition 2.2.10 (Expectation) Let - ∈ L1(ℙ), we call

E[-] B
∫
S

- dℙ

the expectation or mean of -. Moreover, for a measurable and integrable function 6 :
S′→ S′′ we define the expectation of 6 w.r.t. - as

E[6 ◦ -] =
∫
S

6 ◦ - dℙ =
∫
S′
6 dℙ- C E-∼T( [6].

Thus, the expectation computes the mean of the entire space of elementary events
w.r.t. the probability measure.

Next, we define the variance to characterize the deviation of a random variable from
its expectation.

Definition 2.2.11 (Variance) Let - ∈ L2(ℙ). Then, the variance of - is defined as

Var[-] B E[-2] − E[-]2.

We denote by � B
√

Var[-] the standard deviation of -.

In the next theorem, we show important calculus rules regarding the expectation. In
fact, we will see that the expectation is linear.

Theorem2.2.2 (Calculus for Expectations) Let-,. ∈ L1(S,A,ℙ) be randomvariables
on (S,A,ℙ).
I If ℙ- = ℙ. , then E[-] = E[.].
I Let 2 ∈ ℝ. Then 2- ∈ L1(S,A,ℙ) and - + . ∈ L1(S,A,ℙ) as well as

E[2-] = 2E[-] and E[- + .] = E[-] + E[.].

I |E[-]| ≤ E[|- |].
I If -,. are independent, then (-.) ∈ L1(S,A,ℙ) and E[-.] = E[-]E[.].

Proof. See [87, Section 5.1 Theorem 5.3 and 5.4].

Let us conclude this section with some remarks on the computation of expectations
for absolutely continuous and discrete probability measures.

First, we consider a probability measure ℙ- � L= . Then, the expectation of a
measurable and integrable function 6 : S′→ S′′ can be computed by

�-∼TS[6] =
∫
S′
6 dℙ- =

∫
S

6(G)?-(G)L=(dG),

where ?- is the density of ℙ- w.r.t. the Lebesgue measure L= .

Second, we consider a discrete probability space. Let S = {B1 , . . . , B=} for = ∈ ℕ.
Then, we define the discrete probability space (S,A,ℙ) by using a �-algebra A ⊂ 2S
and the probability measure defined as

ℙ =
=∑
8=1


81{B8 }



2 Mathematical Preliminaries 30

for 
8 ∈ ℝ+ and ∑=
8=1 
8 = 1. Again we consider a random variable - : S→ S′ for

some measurable space (S′,A′). Then, the expectation of a measurable function 6 :
S′→ S′′ is simply given by

EG∼T( [6] =
∑
B8∈S

6(B8)ℙ(B8) =
=∑
8=1

6(B8)
8 .

2.2.5 Conditional Probabilities

Conditional probabilities are a concept to compute the probabilities of events associ-
ated with a random experiment given some partial knowledge of the experiment’s
outcome. Throughout this section, we consider a probability space (S,A,ℙ) and a
random variable - ∈ L1(S,A,ℙ)mapping to a measurable space (S′,A′). We denote
the generated �-algebra of - by �(-) = -−1(A′).
To define the conditional probability, we first need to introduce the conditional
expectation.

Definition 2.2.12 (Conditional Expectation) A random variable . is called a con-
ditional expectation of a random variable - given a �-algebra F ⊂ A, denoted
by . = E[- |F], if
I . is measurable w.r.t. F.
I For any � ∈ F, we have E[-1�] = E[.1�].

Therefore, all equations involving conditional expectations are understood as equali-
ties almost surely (a. s.), even if not explicitly stated. To interpret this rather abstract
definition of the conditional expectation,we present the following corollary.

Corollary 2.2.3 (Conditional Expectation as Projection) Let F ⊂ A be a �-algebra
and let - ∈ L2(S,A,ℙ) with E[-2] < ∞. Then E[- |F] is the orthogonal projection
of - onto L2(S,F,ℙ). That is, for any measurable random variable . ∈ L2(S,F,ℙ) we
have

E
[(- − .)2] ≥ E

[(- − E[- |F])2]
and equality holds if and only if . = E[- |F].

Proof. See [87, Section 8.2, Corollary 8.17].

Thus, the conditional expectation is the orthogonal projection of a square integrable
random variable onto the �-algebra F.

Theorem 2.2.4 (Existence and Uniqueness of Conditional Expectation) The condi-
tional expectation E[- |F] exists and is unique up to equality a. s.

Proof. See [87, Section 8.2, Theorem 8.12].

Based on this definition of the conditional expectation for events, we define the
conditional expectation given a random variable . as

E[- |.] B E[- |�(.)].

In analogy to the calculus rules of the expectation, we present fundamental calculus
rules for the conditional expectation in the following theorem.
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Theorem 2.2.5 (Calculus for Conditional Expectations) LetG ⊂ F ⊂ A be �-algebras
and . ∈ L1(S,A,ℙ). Then:
I E[
- + . |F] = 
E[- |F] + E[. |F] for any 
 ∈ ℝ.
I If E[|-. |] < ∞ and . measurable w.r.t. F, then

E[-. |F] = .E[- |F] and E[. |F] = E[. |.] = ..

I E[E[- |F]|G] = E[E[- |G]|F] = E[- |G]
I |E[- |F]| ≤ E[|- | |F].
I If �(-) and F are independent, then E[- |F] = E[-].

Proof. See [87, Section 8.2 Theorem 8.14].

Finally, we are able to define the conditional probability:

Definition 2.2.13 (Conditional Probability) Let A ∈ A. The conditional probability
of Agiven the �-algebra F is defined as

ℙ[A|F] B E[1A|F].

As a direct consequence of Theorem 2.2.5, we get that

ℙ[- |.] = ℙ- and ℙ[. |-] = ℙ.

if and only if -,. are independent random variables.

Next, we derive Bayes’ theorem for discrete and continuous probability spaces. First,
we consider the discrete set S= X×Ywith X= {G1 , . . . , G=} and Y= {H1 , . . . , H<}
for<, = ∈ ℕ. We define the discrete probability space (S,A,ℙ) for a �-algebraA ⊂ 2S
and the discrete probability measure

ℙ =
<∑
8=1

=∑
9=1


8 , 91(G 9 ,H8 )

for 
8 , 9 ∈ ℝ+ such that
∑<
8=1

∑=
9=1 
8 , 9 = 1. We consider two random variables -,. :

S→ S′ for some measurable space (S′,A′). The marginal probability measures of the
two random variables are given by

ℙ.[H8] =
=∑
9=1

ℙ[G 9 , H8] =
=∑
9=1


8 , 9 and ℙ-[G 9] =
<∑
8=1

ℙ[G8 , H9] =
<∑
8=1


8 , 9

for H8 ∈ Yand G 9 ∈ X. Then, the conditional probability measure of the event {- = G}
given the event {. = H} for any (G, H) ∈ S is given by

ℙ[- = G |. = H] ≔
{
ℙ[G,H]
ℙ.[H] if ℙ.[H] > 0,
0 else

and vice versa

ℙ[. = H |- = G] ≔
{
ℙ[G,H]
ℙ- [G] if ℙ-[G] > 0,
0 else.

Thus, we have that the joint probability of -,. factorizes such that

ℙ[G, H] = ℙ- |.[G, H]ℙ.[H] = ℙ. |-[H, G]ℙ-[G]

for any (G, H) ∈ Swith ℙ-[G],ℙ.[H] > 0 using the shorthand notation ℙ- |.[G, H] =
ℙ[- = G |. = H]. Dividing both sides byℙ.[H] results in Bayes’s theorem.
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Theorem 2.2.6 (Bayes’ Theorem — discrete) Let (S,A,ℙ) be a discrete probability
space and let the joint and marginal probability measures be defined as above. Then

ℙ- |. =
ℙ. |-ℙ-

ℙ.
.

Finally, we consider a continuous probability space over the set S ⊂ ℝ; . Let ℙ be
an absolutely continuous probability measure ℙ � L; and (S,A,ℙ) the associated
completeprobability space.Weagain consider two randomvariables- : S→ X⊂ ℝ=

and. : S→ Y⊂ ℝ< for somemeasurable space (X, �(-)) and (Y, �(.)) and denote
the joint density of these random variables by ?-,. : X× Y→ ℝ+. In analogy to the
discrete case, the marginal densities are given by

?-(G) =
∫
Y

?-,.(G, H)L<(dH) and ?.(H) =
∫
X

?-,.(G, H)L=(dG).

Then, the conditional densities are given by

?- |.(G |H) ≔
{
?(G,H)
?. (H) if ?.(H) > 0
0 else

and ?. |-(H |G) ≔
{
?(G,H)
?- (G) if ?-(G) > 0
0 else

for any (G, H) ∈ S. Consequently, the joint density factorizes into the conditional and
marginal density, i.e.

?(G, H) = ?- |.(G |H)?.(H) = ?. |-(H |G)?-(G)

for any (G, H) ∈ Swith ?-(G), ?.(H) > 0, which results in Bayes’s theorem.

Theorem 2.2.7 (Bayes’ Theorem— continuous) Let (S,A,ℙ) be a continuous prob-
ability space and let the joint and marginal probability densities be defined as above.
Then

?- |. =
?. |-?-
?.

.

2.3 Ordinary Differential Equations

In this section, we define ordinary differential equations (ODEs) and recall basic
results from ODE theory collected from [88].

Let (V , ‖ · ‖) be a Banach space, S ⊂ V an open subset, and let : ∈ ℕ. We consider
ordinary differential equations of the form

d:G
dC:

= 5

(
C , G,

dG
dC
, . . . ,

d:−1G
dC:−1

)

for the unknown function G ∈ �:(I,S), where I⊂ ℝ and

d9G
dC 9

denotes its 9th-order temporal derivative. We use the shorthand ¤G = dG
dC and ¥G = d2G

dC2
for the first and second temporal derivative. Here, 5 ∈ �0(ℝ×S: , V) and the time C is
frequently called the independent and G the dependent variable. The highest temporal
derivative of G written on the left hand side defines the order of the differential
equation. The ODE is called autonomous if the function 5 does not depend on the
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time C. A solution ofODEs of this form is a function � ∈ �:(I,S) for an intervalJ⊂ I

characterized by
d:�
dC:

= 5

(
C , �,

d�
dC
, . . . ,

d:−1�

dC:−1

)
∀C ∈ J.

Definition 2.3.1 (First-order Initial Value Problem) Let 5 ∈ �0(I× S, V) for open
sets I ⊂ ℝ and S ⊂ V. A first-order ODE with initial condition G(C0) = G0 ∈ S and
C0 ∈ I reads as

¤G = 5 (C , G), G(C0) = G0 (2.5)

and is called an initial value problem.

The integration w.r.t. C on both sides of Equation (2.5), yields the integral representation
of the first-order initial value problem given by

G(C) = G0 +
∫ C

C0
5 (B, G(B))dB.

2.3.1 Existence of Solutions

In this section, we elaborate on the existence of solutions for the first-order initial
value problem (2.5). First, we will show the local existence of solutions by the Picard–
Lindelöf theorem and state requirements that ensure a global existence of solutions
of the first-order initial value problem. Finally, we characterize the smoothness of the
associated solutions.

To develop local solutions of the initial value problem (2.5), we need the concept of
fixed points of a mapping.

Definition 2.3.2 (Fixed Point) A fixed point of a mapping  : S→ Sis an element G ∈
S⊂ V such that  (G) = G.

We use the notation  9(G) to indicate the recursive application of the mapping, i.e.
 9(G) =  ( 9−1(G)) with  0(G) = G. Next, we define a local Lipschitz constant as
a function of the time C, to estimate the maximal change of a solution due to the
right-hand side 5 .

Definition 2.3.3 (Locally Lipschitz Continuous) A function 5 ∈ �(I×S, V) is called
locally Lipschitz continuous in the second argument around the initial condition G0 if
for every C ∈ I there exists a � > 0 such that the number

!(C) = sup
G,H∈B(G0 ,�), G≠H



 5 (C , G) − 5 (C , H)



G − H


is finite.

Using the definition of the local Lipschitz constant, we can ensure the local existence
of solutions of the initial value problem (2.5) by the following theorem.

Theorem 2.3.1 (Picard–Lindelöf) Suppose 5 ∈ �0(I× S,ℝ=), where I ⊂ ℝ and
S⊂ ℝ= are open subsets. In addition, let 5 be locally Lipschitz continuous in the second
argument. For initial values C0 ∈ Iand G0 ∈ Schoose �, ) > 0 such that [C0 , C0+)] ⊂ I
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and B(G0 , �) ⊂ S. Set

"(C) =
∫ C

C0
sup

G∈B(G0 ,�)



 5 (B, G)

 dB,

!(C) = sup
G,H∈B(G0 ,�), G≠H



 5 (C , G) − 5 (C , H)



G − H

 .

Thus,"()) is non-decreasing and we define )0 via

)0 = sup {0 < C ≤ ) : "(C0 + C) ≤ �} .

Suppose

!1()0) B
∫ C0+)0

C0
!(C)dC < ∞.

Then, the unique local solution Ĝ(C) of the initial value problem (2.5) is given by

Ĝ = lim
8→∞

 8(G0) ∈ �1([C0 , C0 + )0],B(G0 , �))

for the operator  (G)(C) = G0 +
∫ C

C0
5 (B, G(B))dB, and the estimate

sup
C0≤C≤)0



Ĝ(C) −  8(G0)(C)


 ≤ !1()0)8

8!
exp(!1()0))

∫ C0+)0

C0



 5 (B, G0)


 dB

holds true. The same result holds true for C < C0.

Proof. See [88, Section 2.3, Theorem 2.5].

In addition to the local existence of solutions, the Picard–Lindelöf theorem states
that the local solution is unique and determined by a fixed point of the mapping  .
Computing the solution by iteratively applying is known asPicard iteration. However,
this scheme is frequently not feasible since the integral in the definition of  cannot
be solved in general.

To extend the existence of local solutions to all time values C ∈ ℝ, one needs to show
that the growth defined by the right-hand side of the ODE of the form (2.5) is at most
affine, as stated in the following theorem.

Theorem 2.3.2 (Extension of Local Solutions) Let 5 ∈ �0(ℝ × V , V) and for every
) > 0 there exist constants"()) and !()) such that

 5 (C , G)

 ≤ "()) + !()) ‖G‖
holds for all C ∈ [−), )] and G ∈ V. Then, all solutions of the initial value problem (2.5)
are defined for all C ∈ ℝ.

Proof. See [88, Section 2.6, Theorem 2.17].

The Picard–Lindelöf theorem ensures that for 5 ∈ �0(I× S, V) the solutions of
the initial value problem (2.5) have an additional degree of smoothness and are in
�1([C0 , C0 + )0 ,B(G0 , �)]) locally. In fact, frequently the right-hand side 5 is differen-
tiable, i.e. 5 ∈ �1(I× S, V). Then, the following lemma states that the local solution
of the initial value problem (2.5) has an additional degree of smoothness.
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Lemma 2.3.3 (Smoothness of Solutions) Let 5 ∈ �:(I× S, V) for : ≥ 1 and both
I⊂ ℝ and S⊂ V are open sets. Suppose C0 ∈ I and G0 ∈ S. Then, the local solution of
the initial value problem (2.5) is in �:+1(I,S).

Proof. See [88, Section 2.2 Lemma 2.3].

2.3.2 Dependence on the Initial Condition

In many applications, the initial value G0 ∈ V is degraded due to measurement
uncertainties. Thus, it is very important to analyze the effect of perturbations of the
initial value on the solution of an ODE of the form (2.5). Gronwall’s theorem provides
the necessary tools.

To develop Gronwall’s theorem, we need to define a local Lipschitz constant of 5 that
holds globally at any time C.

Definition 2.3.4 Let 5 ∈ �0(I× V ,ℝ=). 5 is called locally Lipschitz continuous in
the second argument, uniformly w.r.t. the first, if for every compact set J⊂ I and
U ⊂ V

! = sup
C∈J, G,H∈U, G≠H



 5 (C , G) − 5 (C , H)



G − H


is finite.

Using this definition, we can state Gronwall’s theorem, also known as Gronwall’s
inequality.

Theorem 2.3.4 (Gronwall) Let 5 , 6 ∈ �0(I× V ,ℝ=) and let 5 be locally Lipschitz
continuous in the second argument, uniformly w.r.t. the first. If G(C) and H(C) are the
respective solutions of the initial value problems

¤G = 5 (C , G), G(C0) = G0 and ¤H = 6(C , H), H(C0) = H0 ,

then


G(C) − H(C)

 ≤ 

G0 − H0



 exp (!|C − C0 |) + "!
(
exp (!|C − C0 |) − 1

)
holds true, where

! = sup
C∈J, G,H∈S, G≠H



 5 (C , G) − 5 (C , H)



G − H

 , " = sup
C∈J, G∈S



 5 (C , G) − 6(C , G)


with J⊂ I and S⊂ V being sets containing the graphs of G(C) and H(C).

Proof. See [88, Section 2.4, Theorem 2.8].

As a result, Gronwall’s theorem states that the deviation of two solutions of first-order
initial value problems is due to different initial conditions (first term) and due to
variations of the right-hand side (second term). Note the exponential influence of the
Lipschitz constant ! in both terms. Thus, the deviation of two solutions of the initial
value problem (2.5) depends to a large extent on the Lipschitz constant.
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2.4 Optimization

Optimization is an important mathematical discipline that is applied in numerous
fields ranging from physics, engineering, machine learning, computer vision, and
medicine to finance [84, 89, 90]. In addition, many natural systems seem to obey the
laws of optimization. For example, a rolling ball on a hill will always end up at the
bottom of the hill, which is the position with minimal potential energy. Due to the
ubiquitous applicability of optimization methods, this field has been studied well.
In this section, we review important concepts and results from optimization taken
from [84, 89–92].

From a mathematical point of view an optimization problem is formally defined as a
minimization problem of the form

inf
G∈S

5 (G), (2.6)

where S⊂ ℝ= is called the constraint set defining all feasible solutions and 5 : S→ ℝ

is the objective function which assigns an energy value to each feasible solution G ∈ S.
Since we aim to minimize the objective function, we are searching for a solution with
the smallest energy within the constraint set. Thus, an optimal solution G∗ ∈ Sof this
problem fulfills

5 (G∗) ≤ 5 (G)
for all G ∈ S.
The minimization problem (2.6) can be classified into different categories based on
the constraint set and the smoothness of the objective function. If the constraint set
is equal to the entire underlying space, i.e. S = V, (2.6) is called an unconstrained
optimization problem, while a constrained optimization problem implies that S( V. The
optimization problem (2.6) is called smooth if the objective function 5 is continuously
differentiable. If the objective function 5 is non-differentiable, problem (2.6) is called
a non-smooth optimization problem.

2.4.1 Optimality Conditions

In this section, we state optimality conditions that characterize minimal and maximal
points of a function. Throughout this chapter let (V , ‖ · ‖) be a Banach space over the
field ℝ.

Definition 2.4.1 (Global Minimum and Maximum) Let 5 : S→ ℝ be defined over a
set S⊂ V. Then

I G∗ ∈ S is called a global minimum (maximum) of 5 over S if 5 (G∗) ≤ 5 (G)
( 5 (G∗) ≥ 5 (G)) for all G ∈ S.

I G∗ ∈ S is called a strict global minimum (maximum) of 5 overS if 5 (G∗) < 5 (G)
( 5 (G∗) > 5 (G)) for all G ∈ S, G ≠ G∗.

In contrast to a global minimum/maximum the optimality for local extremal points
only holds in a local neighborhood, as we will see in the next definition.

Definition 2.4.2 (Local Minimum and Maximum) Let 5 : S→ ℝ be defined over a
set S ∈ V. Then
I G∗ ∈ S is called a local minimum (maximum) of 5 over S if there exists an & > 0

such that 5 (G∗) ≤ 5 (G) ( 5 (G∗) ≥ 5 (G)) for all G ∈ S∩B‖ · ‖ (G∗ , &).
I G∗ ∈ S is called a strict local minimum (maximum) of 5 over S if there exists an
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Figure 2.4: Visualization of different
minima types.

& > 0 such that 5 (G∗) < 5 (G) ( 5 (G∗) > 5 (G)) for all G ∈ S∩B‖ · ‖ (G∗ , &), G ≠ G∗.
To illustrate the difference between global and local minima of a function, we show a
plot of an example function in Figure 2.4. We analyze this one-dimensional function
in the interval S = [−1, 8] ⊂ ℝ. Within this interval, the plotted function has two
global minima (G = 3 and G = 6.5) and infinitely many local minima in the interval
[1, 2]. Note that the above definitions imply that every global minimum is also a local
minimum. However, the converse is not necessarily true.

To develop the first- and second-order optimality conditions, we first need to define
the gradient and the Hessian of a function. Let 5 ∈ �:(S,ℝ) for : ≥ 2 and S⊂ V a
subset of a finite-dimensional vector space. We define the gradient of 5 as

∇ 5 (G) =
©­­­«

% 5
%G1
(G)
...

% 5
%G=
(G)

ª®®®¬
for G = (G1 G2 · · · G=)> ∈ V. Then, we have that ∇ 5 ∈ �:−1(S,ℝ=). Intuitively, the
gradient ∇ 5 (G) ∈ ℝ=

at G ∈ Sdefines the direction which locally leads to the largest
increase of 5 . In analogy to the gradient, we define the Hessian of a function as

∇2 5 (G) =

©­­­­­­­«

%2 5
%2G1
(G) %2 5

%G1%G2
(G) · · · %2 5

%G1%G=
(G)

%2 5
%G2%G1

(G) %2 5
%2G2
(G) ...

...
...

...
. . .

...
%2 5

%G=%G1
(G) %2 5

%G=%G2
(G) · · · %2 5

%2G=
(G)

ª®®®®®®®¬
and obtain that ∇2 5 ∈ �:−2(S,ℝ=×=). While the gradient of a function can be used
to identify directions of maximal increase, the Hessian ∇2 5 (G) describes the local
curvature of 5 at G. Note that the Hessian ∇2 5 (G) ∈ ℝ=×= is a symmetric matrix
at every point G since the order of differentiation does not matter [93, Satz von
Schwarz].

The next theorem due to Fermat defines a necessary local optimality condition based
on a function’s gradient.

Theorem 2.4.1 (Fermat’s First-order Optimality Condition) Let 5 ∈ �1(S,ℝ) for
S⊂ V. Suppose that G∗ ∈ int(S) is a local optimum point. Then ∇ 5 (G∗) = 0.

Proof. See [90, Section 2.1, Theorem 2.6].

Unfortunately, this theorem only provides a necessary condition for local optimum
points and does not distinguish between minima, maxima, or saddle points (see
Definition 2.4.5). Therefore, we define points of vanishing gradient as stationary
points in the following theorem.

Definition 2.4.3 (Stationary Points) Let 5 ∈ �1(S,ℝ) for S ⊂ V. Let G∗ ∈ int(S).
Then G∗ is called a stationary point of 5 if ∇ 5 (G∗) = 0.

To check whether a stationary point is a minimum or maximum we need to evaluate
the local curvature encoded in the Hessian at the stationary point. Before we can
state the corresponding second-order optimality condition, we need to introduce a
classification of symmetric matrices based on their definiteness.
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Definition 2.4.4 (Definiteness of Matrices) Let � ∈ ℝ=×= be a symmetric matrix. A
matrix � is called

I positive semidefinite if G>�G ≥ 0 for all G ∈ ℝ= \ {0}, denoted by � < 0.
I negative semidefinite if G>�G ≤ 0 for all G ∈ ℝ= \ {0}, denoted by � 4 0.
I indefinite if there exist G, H ∈ ℝ=

such that G>�G > 0 and H>�H < 0.

We omit the prefix ‘semi’ if the inequalities are strict and remove the lower equality line in
the corresponding symbols, i.e � and ≺.

A practically more useful characterization of the definiteness of matrices is based on
their corresponding eigenvalues.

Theorem 2.4.2 (Eigenvalue Characterization of Matrices) Let � ∈ ℝ=×= be a matrix.
We denote by �(�)8 for 8 = 1, . . . , = its eigenvalues. Then � is

I positive semidefinite if and only if all its eigenvalues �(�)8 ≥ 0 for 8 = 1, . . . , =.
I negative semidefinite if and only if all its eigenvalues �(�)8 ≤ 0 for 8 = 1, . . . , =.
I indefinite if and only if it has at least one positive eigenvalue and one negative

eigenvalue.

As before we omit the prefix ‘semi’ if the inequalities are strict.

Proof. See [90, Section 2.2, Theorem 2.17].

Using this characterization of matrices, we state the second-order necessary condition
for local minima and maxima in the subsequent theorem.

Theorem 2.4.3 (Necessary Second-order Optimality Condition) Let 5 ∈ �2(S,ℝ)
for an open set S⊂ V. Suppose that G∗ ∈ S is a stationary point. Then the following holds:

I If G∗ is a local minimum of 5 over S, then ∇2 5 (G∗) < 0.
I If G∗ is a local maximum of 5 over S, then ∇2 5 (G∗) 4 0.

Proof. See [90, Section 2.3, Theorem 2.26].

Like Fermat’s first-order optimality condition, the latter theorem only provides a
necessary condition. However, we can state a second-order sufficient optimality
condition for strict local extremal points.

Theorem 2.4.4 (Sufficient Second-order Optimality Condition) Let 5 ∈ �2(S,ℝ)
for an open set S⊂ V. Suppose that G∗ ∈ S is a stationary point. Then the following holds:

I If ∇2 5 (G∗) � 0, then G∗ is a strict local minimum of 5 over S.
I If ∇2 5 (G∗) ≺ 0, then G∗ is a strict local maximum of 5 over S.

Proof. See [90, Section 2.3, Theorem 2.27].

Note that this condition is only sufficient to characterize strict local extremal points
but not necessary. For example, the function 5 (G) = G4 has a strict global minimum
at G = 0 but 5 ′′(G) = 12G2 vanishes at G = 0.

The following definition introduces saddle points to characterize all stationary points
that cannot be described by local minima or local maxima.
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Figure 2.5: Visualization of a convex set
(top) and a non-convex set (bottom).

Definition 2.4.5 (Saddle Point) Let 5 ∈ �1(S,ℝ) for an open set S⊂ V. A stationary
point G∗ ∈ S is called a saddle point of 5 over S if it is neither a local minimum nor a
local maximum of 5 over S.

We can use the curvature encoded in the local Hessian to state a sufficient condition
for a saddle point.

Theorem 2.4.5 (Sufficient Condition for a Saddle Point) Let 5 ∈ �2(S,ℝ) for an
open set S ⊂ V. Suppose that G∗ ∈ S is a stationary point. If ∇2 5 (G∗) is an indefinite
matrix, then G∗ is a saddle point of 5 over S.

Proof. See [90, Section 2.3, Theorem 2.29].

So far the first- and second-order optimality conditions only used local information
extracted from the gradient and Hessian at a single point and thus lead only to local
optimality conditions. As a consequence, optimality conditions that ensure global
optimality of points must be based on global information. For example, if the Hessian
of a function is positive semidefinite at all points, the curvature does not change
its sign, which implies that every stationary point is a global minimum. In the next
section, we call this property of a function convexity.

Theorem 2.4.6 (Global Optimality Condition) Let 5 ∈ �2(V ,ℝ). Suppose that
∇2 5 (G) � 0 for all G ∈ V. Let G∗ ∈ V be a stationary point of 5 . Then G∗ is a global
minimum point of 5 .

Proof. See [90, Section 2.3, Theorem 2.38].

Later, we will see that this optimality condition originates from the second-order
definition of convex functions.

2.4.2 Convex Optimization

As the last optimality condition in the previous section suggests, the convexity of a
function is an important property since every local minimum is a global minimum.
Therefore, we discuss the area of convex optimization in this section. We first define
convex sets and functions, then we introduce the concept of subgradients to deal
with non-differentiable functions, and finally we introduce the convex conjugate and
the proximal mapping.

2.4.2.1 Convex Sets

A fundamental building block of convex optimization are convex sets. They are
formally defined as:

Definition 2.4.6 (Convex Set) A set S⊂ V is called convex if


G + (1 − 
)H ∈ S

holds for any G, H ∈ Sand 
 ∈ [0, 1].
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Figure 2.6: Visualization of the secant
equation of a convex function.

This definition basically states that a convex set contains all line segments between its
elements. Figure 2.5 illustrates a convex and a non-convex set. For the non-convex
set, the black line depicts a counter-example, which does not fulfill the definition of a
convex set.

In the subsequent theorem we present basic convex sets:

Theorem 2.4.7 (Basic Convex Sets) Let 0 ∈ V and 1 ∈ ℝ. The following sets are convex:

I a hyperplane S= {G ∈ V : 〈0, G〉 = 1},
I a half-space S= {G ∈ V : 〈0, G〉 ≤ 1},
I the open ball B‖ · ‖ (0, 1) and the closed ball B‖ · ‖ (0, 1) for 1 > 0.

Proof. See [90, Section 6.3, Lemma 6.3, Theorem 6.4].

To effectively work with convex sets, it is essential to understand which operations
are convexity-preserving.

Theorem 2.4.8 (Convexity-preserving Operations) Let S8 ⊂ V be convex sets for any
8 ∈ I, where I⊂ ℕ is an index set.

I The intersection of convex sets
⋂
8∈IS8 is convex.

I Let 
8 ∈ ℝ for 8 ∈ I. Then theweighted sum of convex sets

∑
8∈I


8S8 B

{∑
8∈I


8G8 : G8 ∈ S8 for 8 ∈ I

}

is convex.
I Let � = {1, . . . , <}. Then the Cartesian product of convex sets

S1 × S2 × · · · × S< B {(G1 , G2 , . . . , G<) : G8 ∈ S8 for 8 ∈ I}

is convex.

Let A : ℝ= → ℝ< be a linear transform defined as A(G) = �G+1 for a matrix� ∈ ℝ<×=
and a vector 1 ∈ ℝ< .

I Let S⊂ ℝ= be a convex set. The image of a linear transform A(S) B {H ∈ ℝ< :
H = A(G) for G ∈ S} is convex.

I Let S⊂ ℝ< be a convex set. The pre-image of a linear transform A−1(S) B {G ∈
ℝ= : A(G) ∈ S} is convex.

Proof. See [92, Section 2.2.3, Theorem 2.2.8].

2.4.2.2 Convex Functions

Another building block of convex optimization are convex functions defined on top
of convex sets.

Definition 2.4.7 (Convex Function) A function 5 : S→ ℝ defined over a convex
set S⊂ V is called convex if

5 (
G + (1 − 
)H) ≤ 
 5 (G) + (1 − 
) 5 (H)

for all G, H ∈ Sand 
 ∈ [0, 1].
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Intuitively speaking, on any interval, a convex function is always below the secant
spanned by the function values at the boundary of the interval, as illustrated in
Figure 2.6.

This interpretation of convex functions motivates the following theorem that relates
convex sets and convex functions by means of the epigraph.

Theorem 2.4.9 (Convexity of Epigraph) A function 5 : S→ ℝ for S⊂ V is convex if
and only if its epigraph epi( 5 ) = {(G, H) ∈ V ×ℝ : 5 (G) ≤ H} is convex.

Proof. See [92, Section 3.1.1, Theorem 3.1.2].

An important class of functions in optimization are norms since they induce a
distance metric on a space. In the next proposition, we show that every norm is in
fact convex.

Proposition 2.4.10 (Norms are Convex) Let 5 (G) = ‖G‖ be any norm on V. Then 5 is
convex.

Proof. For any G, H ∈ V and 
 ∈ [0, 1]we have:

5 (
G + (1 − 
)H) = 


G + (1 − 
)H


≤ ‖
G‖ + 

(1 − 
)H

 = 
 ‖G‖ + (1 − 
) 

H


= 
 5 (G) + (1 − 
) 5 (H).

Let < ∈ ℕ. We call the weighted sum of points G1 , . . . , G< ∈ S

G =
<∑
8=1


8G8

a convex combination if 
 ∈ Δ< , where Δ< ⊂ ℝ< is the unit simplex defined as

Δ< B

{

 ∈ ℝ< :

<∑
8=1


8 = 1, 
8 ≥ 0 for 8 = 1, . . . , <

}
.

Then, the definition of convex functions states that the function value of a convex
combination of two (< = 2) points is below the convex combination of the corre-
sponding function values. Interestingly, this property can be extended to any finite
number of points leading to Jensen’s inequality.

Theorem 2.4.11 (Jensen’s Inequality) Let 5 : S→ ℝ be a convex function over a convex
set S and < ∈ ℕ. Then for any G1 , . . . , G< ∈ S and 
 ∈ Δ< , the following inequality
holds:

5

(
<∑
8=1


8G8

)
≤

<∑
8=1


8 5 (G8).

Proof. See [90, Section 7.1, Theorem 7.5].

Next, we state the first-order condition of convexity for continuously differentiable
functions.
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G

5 (G)
5 (H)

5 (G) +
〈 ∇ 5 (G), H − G

〉

Figure 2.7: Visualization of the first-
order condition of convexity.

Theorem 2.4.12 (First-order Condition of Convexity) Let 5 ∈ �1(S,ℝ) over a convex
set S⊂ V. Then 5 is convex if and only if

5 (H) ≥ 5 (G) + 〈∇ 5 (G), H − G〉 (2.7)

for all G, H ∈ S.

Proof. See [90, Section 7.2, Theorem 7.6].

This condition has the neat geometric interpretation that the function value of a
convex function always lies above any tangent, as depicted in Figure 2.7. Moreover, a
continuously differentiable convex function 5 can be globally bounded from below
by its first-order Taylor approximation.

If a function is twice continuously differentiable, the second-order condition of
convexity, defined in the following theorem, can be used to check whether it is
convex.

Theorem 2.4.13 (Second-order Condition of Convexity) Let 5 ∈ �2(S,ℝ) over an
open convex set S⊂ V. Then, 5 is convex if and only if

∇2 5 (G) < 0

for all G ∈ S.

Proof. See [90, Section 7.3, Theorem 7.12].

Thus, a function 5 ∈ �2(V ,ℝ) is convex if its Hessian is positive semidefinite at every
point in V.

We conclude this section on convex functions by showing that the positively weighted
sum of convex functions as well as a linear transformation of the argument of a
convex function are convexity-preserving.

Theorem 2.4.14 (Positively Weighted Sum) Let 51 , . . . , 5< : S → ℝ be convex
functions defined over a convex set Sand 
 ∈ ℝ<+ . Then, the function

5 (G) =
<∑
8=1


8 58(G)

is convex.

Proof. See [90, Section 7.4, Theorem 7.16].

Theorem 2.4.15 (Linear Transform) Let 5 : S→ ℝ be a convex function defined
over a convex set S ⊂ ℝ< . Let A : ℝ= → ℝ< be a linear transform. Then the
function 6 : ℝ= → ℝ defined as

6(G) = 5 (A(G))

is convex over the set �−1(S).

Proof. See [90, Section 7.4, Theorem 7.17].
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G I

5 (G)
5 (I)

5 (G) + 〈
∇ 5 (G), H −

G 〉 5 (I) + 〈
61 , G − I

〉5 (I)
+
〈 6 2,

G −
I
〉

Figure 2.8: Illustration of subgradients.

For an extended list of convexity-preserving operations, we refer the reader to [89, 90,
92].

2.4.2.3 Subgradients

Since many important convex functions such as the absolute function are not contin-
uously differentiable, we next introduce the subgradient. It generalizes the first-order
condition of convex functions (2.7) to arbitrary tangent vectors as the following
definition states.

Definition2.4.8 (Subgradient) Let 5 : V → ℝ be a proper function and let G ∈ dom( 5 ).
6 ∈ V∗ is called a subgradient of 5 at G if

5 (H) ≥ 5 (G) + 〈
6, H − G〉 (2.8)

holds for all H ∈ V.

Consequently, the subgradient is a linear functional in the dual space endowed
with the dual norm ‖ · ‖∗. We use Riesz’ representation theorem (Theorem 2.1.3) to
identify V and its dual space V∗, which implies that the duality pairing 〈 · , · 〉 can
be identified with the usual scalar product of V. Hence, the subgradient 6 can be
uniquely identified by a vector in V. However, its length is determined using the dual
norm ‖ · ‖∗ of V∗.
Geometrically a subgradient is defined as a linear tangent function that globally
underestimates the function as visualized in Figure 2.8. At the point I we see that
there are arbitrarily many possible subgradients, which are subsumed into the
subdifferential.

Definition 2.4.9 (Subdifferential) Let 5 : V → ℝ be a proper function and let
G ∈ dom( 5 ). The set of all subgradients of 5 at G is called the subdifferential of 5 at G
and defined as

% 5 (G) B {
6 ∈ V∗ : 5 (H) ≥ 5 (G) + 〈

6, H − G〉 ,∀H ∈ V}
.

Note that if 5 is differentiable at the point G, its subdifferential is uniquely determined
by the gradient, i.e. % 5 (G) = {∇ 5 (G)}. In fact, the subdifferential of a proper convex
function is non-empty everywhere on its domain as the next theorem shows.

Theorem 2.4.16 (non-emptyness of Subdifferential of Convex Functions) Let 5 :
V → ℝ be a proper convex function and suppose G ∈ int(dom( 5 )). Then, % 5 (G) is
non-empty and closed.

Proof. See [84, Section 3.2, Theorem 3.14].

This gives rise to a more general necessary and sufficient optimality condition for
convex functions.

Theorem 2.4.17 (Optimality Condition for a Convex Function) Let 5 : V → ℝ be a
proper convex function. Then

G∗ ∈ argmin
G∈V

5 (G)

if and only if 0 ∈ % 5 (G∗).
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Proof. Due to subgradient inequality (2.8) we have

5 (G) ≥ 5 (G∗) + 〈
6, G − G∗〉 6=0∈% 5 (G∗)

= 5 (G∗) ∀G ∈ V.

Thus, a point is a global minimum of a convex function if 0 is in its corresponding
subdifferential.

2.4.2.4 Convex Conjugate

The convex conjugate also known as conjugate function or Fenchel conjugate is a core
concept of convex analysis. The convex conjugate of a function defined on a vector
space is a function on the associated dual space. Formally, the convex conjugate is
defined as follows:

Definition 2.4.10 (Convex Conjugate) Let 5 : V → ℝ be an extended real-valued
function. The function 5 ∗ : V∗ → ℝ defined as

5 ∗(H) = sup
G∈V

〈
H, G

〉 − 5 (G)
for any H ∈ V∗ is called the convex conjugate.

As in the previous section, we use Riesz’ representation theorem to identify the
duality pairing with the scalar product of V. This definition of convex conjugate holds
for any extended real-valued functions including non-convex functions, indicator
functions, and non-closed functions. Yet, all convex conjugate functions are convex
and closed as stated in the following theorem.

Theorem 2.4.18 (Convexity and Closedness of Convex Conjugate) Let 5 : V → ℝ

be an extended real-valued function. Then the associated conjugate function 5 ∗ is closed
and convex.

Proof. See [84, Section 4.1, Theorem 4.3].

Another important property of convex conjugates is that they preserve the properness
of convex functions.

Theorem 2.4.19 (Properness of the Convex Conjugate) Let 5 : V → ℝ be a proper
convex function. Then 5 ∗ is proper.

Proof. See [84, Section 4.1, Theorem 4.5].

Frequently, we use the convex conjugate of a norm ( 5 (G) = ‖G‖ ), which is given by

5 ∗(H) = �
B‖ · ‖∗ (0,1)(H) =

{
0 if



H

∗ ≤ 1
∞ else

.

Hence, the convex conjugate of a norm is the indicator function of the closed unit
dual norm ball [84, Section 4.4.12].

Applying the convex conjugate operation twice results in the so-called biconjugate,
which is frequently used to derive dual optimization problems.
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Definition 2.4.11 (Biconjugate) Let 5 : V → ℝ be an extended real-valued function.
The function 5 ∗∗ : V → ℝ defined as

5 ∗∗(G) = sup
H∈V∗

〈
G, H

〉 − 5 ∗(H)
for any H ∈ V∗ is called the biconjugate.

Recall that in our finite-dimensional setting we have V∗∗ � V. The biconjugate of a
function is convex and closed due to Theorem 2.4.18. Additionally, the biconjugate
defines a lower bound on its associated function, as the next result proves.

Lemma 2.4.20 Let 5 : V → ℝ be an extended real-valued function. Then 5 (G) ≥ 5 ∗∗(G)
for all G ∈ V.

Proof. See [84, Section 4.2, Lemma 4.7].

A fundamental property of the biconjugate 5 ∗∗ is that if 5 is proper, closed, and
convex, then the biconjugate is not just a lower bound but in fact equal to 5 .

Theorem 2.4.21 Let 5 : V → ℝ be a proper, closed, and convex function. Then 5 ∗∗ = 5 .

Proof. See [84, Section 4.2, Theorem 4.8].

2.4.2.5 Proximal Operator

The proximal operator is used in many convex optimization methods to work with
non-smooth functions. Before we can define the proximal operator, we need to
introduce infimal convolutions.

Definition 2.4.12 (Infimal Convolution) Let 5 , 6 : V → ℝ be two proper functions.
The infimal convolution of 5 and 6 is given by

( 5�6)(G) = inf
I∈V

5 (I) + 6(G − I).

If the infimum is attained, then the infimal convolution is called exact.

The infimal convolution has the nice property that it preserves convexity under the
conditions stated in the next theorem.

Theorem 2.4.22 (Convexity of Infimal Convolution) Let 5 : V → ℝ be a proper
convex function and let 6 : V → ℝ be a real-valued function. Then 5�6 is convex.

Proof. See [84, Section 2.3.2, Theorem 2.19].

A very important function in convex analysis is the Moreau envelope. For a proper
convex and closed function 5 and � > 0 theMoreau envelope is defined as the infimal
convolution of 5 with the squared norm scaled by �, i.e.

5�(G) =
(
5� 1

2� ‖ · ‖2
)
(G).
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Figure 2.9: Illustration of the Moreau
envelope of 5 (G) = |G | with � = 1.
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Figure 2.10:Proximal operator of 5 (G) =
|G | with � = 1.

G

projS(G)

S

Figure 2.11: Visualization of the orthog-
onal projection of a point G onto the
convex set S.

The Moreau envelope has a smoothing effect and � is called the smoothing parame-
ter [84, Section 6.7]. Figure 2.9 visualizes this smoothing effect of theMoreau envelope
for the absolute function 5 (G) = |G |. The resulting smooth function is also known as
the Huber function [37] in robust statistics.

The proximal operator of a function 5 is then simply defined as the minimizing
argument of the corresponding Moreau envelope.

Definition 2.4.13 (Proximal Operator) Let 5 : V → ℝ be a proper, closed and convex
function and � > 0. The proximal operator of 5 is given by

prox� 5 (G) B argmin
I∈V

5 (I) + 1
2� ‖I − G‖2 .

for any G ∈ V.

Wewill frequently use the abbreviation prox to denote the proximal operator. Coming
back to the previous example 5 (G) = |G |, the proximal operator of 5 is given by the
soft shrinkage operator

prox�| · |(G) = max (|G | − �, 0) sgn(G),

which is illustrated in Figure 2.10.

Thenext theoremensures existence anduniqueness of theproximal operator.

Theorem 2.4.23 (Existence and Uniqueness of Prox) Let 5 : V → ℝ be a proper closed
and convex function. Then, prox 5 (G) exists and is unique for any G ∈ V.

Proof. See [84, Section 6.2, Theorem 6.3].

In optimization, we are frequentlyminimizing a function 5 : V → ℝ over a non-empty
closed and convex constraint set S⊂ V. One way to account for the constraint is to
incorporate its indicator function �S : V → ℝ, which is a proper closed and convex
function. Applying the proximal operator to an indicator function is equivalent to
applying the orthogonal projection [84, Section 6.4], i.e.

prox�S(G) = projS(G)

for all G ∈ V, where the orthogonal projection operator is defined as

projS(G) = argmin
I∈S

1
2 ‖I − G‖2 .

The next result shows that the existence theorem for the prox operator can be extended
to the orthogonal projection operator.

Theorem 2.4.24 (Existence and Uniqueness of Projection) Let V be a Hilbert space
and let S ⊂ V be a non-empty, closed and convex set. Then projS(G) exists and has a
unique optimal solution for every G ∈ V.

Proof. See [90, Section 8.3, Theorem 8.8].

This unique solution is characterized by the shortest distance to the set as depicted in
Figure 2.11.



2 Mathematical Preliminaries 47

1: In the convex case, all rates are w.r.t.
the function values if not stated other-
wise. For example, a rate O

(
1
:2

)
implies

that

5 (G: ) − 5 ∗ ≤ O

(
1
:2

)
,

where 5 (G: ) is the objective function
value of the :th iterate (sequence el-
ement) and 5 ∗ is the objective func-
tion value of the optimal solution. This
means that the difference of the objective
function values decrease proportionally
to 1

:2 if : iteration steps are performed.

2: In the non-convex case, convergence
rates are w.r.t. the first-order character-
ization. For example, a rate O

(
1√
:

)
en-

sures that


∇ 5 (G: )


 ≤ O

(
1√
:

)
.

Thismeans that the normof the gradient
of the :th iteration is proportional to 1√

:
.

2.4.3 First-order Methods

In this section, we elaborate on the efficient computation of solutions of the optimiza-
tion problem (2.6) and discuss suitable algorithms. In the following, we assume that
a minimizer of (2.6) exists, which could be shown, for instance, by Theorem 2.1.6 or
Theorem 2.1.7. Thus, we consider minimization problems of the form

min
G∈S

5 (G),

where 5 : S→ ℝ is an extended real-valued function over a convex set S⊂ ℝ= . In
fact, we can drop the constraint G ∈ S by adding the indicator function �S to the
objective function, as we have discussed in the previous section. Then, we end up
with the unconstrained problem

min
G∈ℝ=

5 (G) (2.9)

for an extended real-valued function 5 : ℝ= → ℝ. Here, we focus on first-order
optimization methods that generate a sequence G: ∈ ℝ= incorporating only gradient
information. The use of second-order methods such as Newton’s method [90, Section
5] is often not possible in typical imaging and machine learning applications due to
memory and time constraints.

Nemirovsky and Yudin [94] developed lower complexity bounds for any first-order
method for smooth convex objective functions. They showed that no first-order
method can in general converge faster than O

(
1
:2

)
1. On the other hand, if 5 is

convex and non-differentiable, then the lower complexity bound is O
(

1√
:

)
due to

Nesterov [92, 95].

For non-convex objective functions, we do not have these complexity bounds for first-
order methods. Moreover, we can only ensure converge to a stationary point G ∈ ℝ=

characterized by the first-order condition ∇ 5 (G) = 0, which can be a local/global
minimum/maximum or a saddle point. Therefore, the convergence rate is typically
stated w.r.t. the first-order condition2. In this general non-convex setting, the best
proven convergence rate w.r.t. the first-order condition is O

(
1√
:

)
[91, 96, 97], which is

actually a rather bad rate.

2.4.3.1 Gradient Methods

Gradientmethods assume that the objective function 5 ofproblem (2.6) is continuously
differentiable, i.e. 5 ∈ �1(ℝ= ,ℝ). The simplest gradient method is gradient descent,
which generates a sequence of points G: by following the negative gradient of the
objective function starting from an initial point G0 ∈ ℝ= . Hence, in every iteration
step : it follows the steepest descent direction, as listed in Algorithm 1. The step

Algorithm 1: Gradient Descent
Initialization :Set : = 0, choose a starting point G0 ∈ ℝ= and a step size

sequence �: .
1 while not converged do
2 G:+1 = G: − �:∇ 5 (G:)
3 : = : + 1

size �: can be selected in various ways and we refer the reader for an overview of
suitable step size selection methods to [90, Section 4.2]. Here, we assume that the
objective function has a Lipschitz continuous gradient with Lipschitz constant !, as
specified in Definition 2.1.8. Then, the gradient method converges for constant step
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sizes �: = � ∈ (
0, 2

!

)
[91]. If the objective function 5 is convex, one can show that

the function values converge with rate O
( 1
:

)
to the optimum [91]. In contrast, if the

objective function 5 is non-convex, one can show that gradient descent with constant
step size converges with rate O

(
1√
:

)
to a stationary point. Thus, gradient descent is

not an optimal method in the convex case since its convergence rate is an order of
magnitude slower than the optimal lower bound.

To close the gap to the optimal convergence rate for smooth convex objective functions,
Nesterov [98] proposed to extend gradient descent by incorporating an extrapolation
step in a smart way. The resulting algorithm is nowadays known as Nesterov’s
accelerated gradient method and is listed in Algorithm 2. Compared to gradient

Algorithm 2: Nesterov’s Accelerated Gradient Method
Initialization :Set : = 0, 
0 = 1, choose a starting point G0 ∈ ℝ= and a step

size sequence �: .
1 G−1 = G0

2 while not converged do

3 
:+1 =
1+
√

1+4(
: )2
2

4 �: = 
:−1

:+1

5 G̃: = G: + �: (
G: − G:−1)

6 G:+1 = G̃: − �:∇ 5 (G̃:)
7 : = : + 1

descent, this algorithmonly requires additionalmemory to store the previous iteration
point G:−1 and has almost no computational overhead. The step size �: can be selected
by similar considerations as before. If the objective function has a Lipschitz continuous
gradient with Lipschitz constant !, Nesterov’s method converges for �: = � ∈ (

0, 1
!

]
.

Nesterov showed in his seminal paper [98] that this method converges to the optimal
function value with the rate O

(
1
:2

)
for smooth convex objective functions. Recently,

Ghadimi and Lan [97] published a proof for smooth non-convex objective functions
and showed that Nesterov’s accelerated gradient method converges to a stationary
point with the rate O

(
1√
:

)
, which is the same rate as gradient descent.

2.4.3.2 Proximal Methods

The urge to optimize non-differentiable objective functions led to the development
of proximal methods. The majority of proximal methods assume that the objective
function canbedecomposed into a continuouslydifferentiable function 6 ∈ �1(ℝ= ,ℝ)
with Lipschitz continuous gradient and a proper and closed function ℎ : ℝ= → ℝ.
Then, the corresponding minimization problem reads as

min
G∈ℝ=

{
5 (G) = 6(G) + ℎ(G)} . (2.10)

In fact, many applications in computer vision, image reconstruction, and medical
imaging can be cast into this form [10]. We denote by ! the Lipschitz constant of ∇6.
If both 6 and ℎ are convex functions, Beck and Teboulle [99] proposed an algorithm
called fast iterative shrinkage and thresholding algorithm (FISTA) that converges to the
optimal function with the optimal rate O

(
1
:2

)
. They extended Nesterov’s accelerated

gradient method (Algorithm 2) by performing a proximal gradient step on the
composite function, see line 6 of Algorithm 3. The term shrinkage and thresholding
in the algorithm’s name originates from the soft shrinkage operator, which is the
proximal operator associated with the absolute function, see Section 2.4.2.5. In their
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Algorithm 3: Fast Iterative Shrinkage and Thresholding Algorithm
Initialization :Set : = 0, 
0 = 1, choose a starting point G0 ∈ ℝ= .

1 G−1 = G0

2 while not converged do

3 
:+1 =
1+
√

1+4(
: )2
2

4 �: = 
:−1

:+1

5 G̃: = G: + �: (
G: − G:−1)

6 G:+1 = prox 1
! ℎ

(
G̃: − 1

!∇6(G̃:)
)

7 : = : + 1

paper [97], Ghadimi and Lan also considered this composite problem and analyzed
its convergence rate for 6 being non-convex and reported refined rates.

2.4.3.3 Primal-dual Hybrid Gradient Method

In the previous section, at least one function of the composite problem (2.10) was
continuously differentiable. Here, we consider the composite problem

min
G∈ℝ=

5 ( G) + 6(G), (2.11)

where  ∈ ℝ<×= is the matrix representation of a linear operator and both 5 : ℝ< →
ℝ and 6 : ℝ= → ℝ are proper, closed and convex functions. Thus, both 5 and 6
might be non-differentiable. Since 5 is proper, closed and convex, we have 5 ∗∗ = 5 ,
see Theorem 2.4.21. Hence, we can rewrite (2.11) as

min
G∈ℝ=

max
H∈ℝ<

〈
 G, H

〉 − 5 ∗(H) + 6(G), (2.12)

where 5 ∗ : ℝ< → ℝ is the convex conjugate of 5 (Definition 2.4.10). Note that we
used Riesz’ representation theorem (Theorem 2.1.3) to identify the duality pairing
with the usual dot product on ℝ< . This saddle point formulation of (2.11) is called
the corresponding primal-dual problem since the objective function is a problem of
the primal variable G and the dual variable H. Chambolle and Pock [66] proposed
the primal-dual hybrid gradient algorithm to efficiently find a saddle point of (2.12).
The underlying idea is to alternate between a proximal gradient descent step on the
primal variable and a proximal gradient ascent step on the dual variable using the
extrapolated primal variable, see Algorithm 4. This algorithm converges if the step

Algorithm 4: Primal-dual Hybrid Gradient Algorithm
Initialization :Set : = 0, choose starting points G0 ∈ ℝ= , H0 ∈ ℝ< and step

sizes �, � > 0.
1 while not converged do
2 G:+1 = prox�6

(
G: − � ∗H: )

3 H:+1 = prox� 5 ∗
(
H: + � (

2G:+1 − G: ) )
4 : = : + 1

sizes are chosen such that
�� ‖ ‖2 < 1,

where ‖ ‖ is the induced norm of the matrix  . In this case, Algorithm 4 converges
with rate O

( 1
:

)
, which is optimal for non-smooth and convex problems [95].

The primal-dual hybrid gradient algorithm is widely used in convex optimization
due to its simplicity and flexibility. In recent years, it has been extended to support
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nonlinear operators [100] and stochastic sampling of operators [101]. In addition,
Malitsky and Pock [102] suggested to replace the fixed step size selection by a line
search alternative.

2.4.3.4 Methods for Additive Cost Problems

A ubiquitous optimization problem in machine learning is the minimization of an
additive cost function w.r.t. model parameters. Therefore, we consider in this section
optimization problems of the form

min
G∈S

<∑
8=1

58(G), (2.13)

where 58 : ℝ= → ℝ for 8 = 1, . . . , < are component functions and S⊂ ℝ= is a convex
set. Here, the objective function is given by the sum of all component functions
assigning a cost to each sample for given parameters G. Note that in this formulation
the data samples are included in the component functions and are thereby ‘hidden’
in the notation. We assume that < is very large, which is true for many modern data
sets in computer vision [103, 104], and medical imaging [13, 78]. In the remainder of
this section, we introduce incremental gradient and incremental proximal gradient
methods and discuss their convergence for convex and non-convex component
functions. We conclude this section by discussing the Adam optimizer, which can be
interpreted as an incremental method and is one of themost widespread optimization
algorithms in deep learning.

A class of optimization algorithms especially designed for additive cost problems
of the form (2.13) are incremental gradient methods [105, 106] and incremental
proximal methods [81, 107]. While incremental gradient methods assume that each
component function is differentiable, incremental proximal methods also allow
non-differentiable component functions. The basic idea of incremental methods is
to operate on a single component function 52 in each minimization step in order to
speed up the optimization procedure.

The basic incremental gradient method is also known as online backpropagation [108]
and has the form

G:+1 = projS
(
G: − �:∇ 52(:)(G:)

)
,

where �: defines the step size at iteration : and 2(:) : ℕ → 1, . . . , < selects the
component for the :th iteration. The basic differences between variants of this method
are the selection of the step size �: and how the components are distributed to each
iteration 2(:), which can be either random or deterministic. The convergence of all
these variants was proven under various conditions. For instance, Mangasarian and
Solodov [108] proved convergence for diminishing step sizes if 2(:) defines a cyclic
order.

To account for non-differentiable component functions, Nedić and Bertsekas [81, 109]
introduced incremental subgradient and proximal methods. The intuition behind
incremental proximal methods is that the component functions can be partitioned in
continuously differentiable functions 58 ∈ �1(ℝ= ,ℝ) and proper, closed and convex
functions ℎ8 : ℝ= → ℝ for 8 = 1, . . . , < such that problem (2.13) changes to

min
G∈S

<∑
8=1

58(G) + ℎ8(G). (2.14)

Then, each step of the incremental proximal gradient method [81] is of the form

G:+1 = prox�: ℎ2(:)
(
G: − �:∇ 52(:)(G:)

)
,
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where prox�: ℎ2(:) is the proximal step on a single component ℎ2(:) and ∇ 52(:) is the
gradient of a single component selected by 2(:). �: denotes the step size of the :th
iteration step. In the case that all functions 58 for 8 = 1, . . . , < of problem (2.14)
are convex, Bertsekas [81] showed that the corresponding incremental proximal
gradient method converges for cyclic and random component selection functions 2(:)
using a diminishing step size provided that all functions are Lipschitz continuous
and have a bounded gradient or subgradient, respectively. In addition, under the
same assumption he proved approximate convergence in the function value, i.e.
the sequence of the objective function converges to a ball around the optimal
value, for a fixed suitably small step size �: = � > 0 [81]. Later Sra [107] showed
approximate convergence of the incremental proximal gradient method without
assuming convexity of the differentiable component functions 58 ∈ �1(ℝ= ,ℝ) for 8 =
1, . . . , <. In this proof, he considered a single non differentiable function ℎ : ℝ= → ℝ

and assumed bounded gradients or subgradients, respectively. Then, the incremental
proximal gradient method also approximately converges in the function values for a
cyclic component selection function 2(:) and a fixed step size �: = � > 0.

Incremental gradient methods that select the component function randomly in each
step are also known as stochastic gradient methods. Probably the most famous
and widespread algorithm of this type of incremental methods is Adam (short for
adaptive moment estimation) by Kingma and Ba [110]. The Adam algorithm combines
incremental methods with the heavy ball method of Polyak [111] and a clever adaptive
preconditioning of the gradient, see Algorithm 5. Adam computes running statistics

Algorithm 5: Adam
Initialization :Set : = 0, <0 = 0 ∈ ℝ= , and E0 = 0 ∈ ℝ= . Choose a starting

point G0 ∈ ℝ= , & > 0, step size � > 0 and momentum
parameters �1 , �2 ∈ [0, 1).

Default :�1 = 0.9, �2 = 0.999, & = 10−8, and � = 10−3

1 while not converged do
2 6: = ∇ 52(:)(G:) (gradient of random component function)
3 <: = �1<:−1 + (1 − �1)6: (update first moment)
4 E: = �2E:−1 + (1 − �2)(6: � 6:) (update second moment)
5 <̂: = <:

1−�:1
(bias correction of first moment)

6 Ê: = E:

1−�:2
(bias correction of second moment)

7 G:+1 = G: − � <̂:√
Ê:+&

8 : = : + 1

of the first and second moment of the gradient and updates the iterate G: using the
first moment scaled by the second moment, which is a form of step size annealing.
In addition, Adam incorporates a bias correction step for each moment to account
for wrong initial estimates. In the last years, Adam has empirically proven that it
works very well in many machine learning problems. In fact, Adam is the standard
algorithm for training neural networks today although it may not converge [112].



Machine Learning 3

3.1Machine Learning Types . . 52

3.2Data, Generalization and

Model Complexity . . . . . . . 58

3.3Neural Networks . . . . . . . 60

Starting from the invention of the metal oxide semiconductor field-effect transistor
(MOSFET) in 1947 till up to 2018 it has been estimated thatmore than 13·1021 MOSFETs
have been produced1

1 : David Laws, 13 Sextillion & Count-
ing: The Long & Winding Road to the
Most Frequently Manufactured Human Ar-
tifact in History, Computer history mu-
seum, https://bit.ly/324cf68, ac-
cessed September, 2020.

. This makes the MOSFET the most frequently manufactured
human artifact in history. Moreover, by far more MOSFETs have been produced than
there are stars in our galaxy2

2 : According to ESA there are some-
thing like 1011 to 1012 stars in our
galaxy. https://bit.ly/3lWbwvy, ac-
cessed September 2020.

. Why? MOSFETs are the essential building blocks of
computer chips, which we require to process today’s never-ending stream of data.
In 2020 every day 220 · 109 emails are sent, 4PB (petabyte — 1015 bytes) of data is
generated on Facebook, including 350 · 106 photos and 105 hours of video, 5 · 109

search requests are posted and 28PB of data is generated from wearable devices such
as smart watches3

3 : Raconteur A Day in Data, http:
//rcnt.eu/un8bg, accessed September
2020.

. To analyze and extract meaningful information from this flood of
data, automated processing is inevitable.Machine Learning provides the necessary
concepts and tools. It is the study of data-drivenmethods that are capable of detecting
patterns in data and then using these extracted patterns to make predictions or
decisions on unseen data [34, 113].

In this chapter, we provide a brief introduction to machine learning. We first describe
the different types of machine learning and elaborate on the difference between
generative and discriminative learning. Then, we define neural networks (NNs) and
their building blocks. Finally, we review network architectures and design patterns
for NNs. For an in-depth analysis of the broad field of machine learning, we refer to
the excellent text books [32, 34, 113–116].

3.1 Machine Learning Types

From a classical point of view, machine learning approaches can be classified into
two main types [32, 34]. In supervised learning we are given a dataset consisting of
input/output pairs to learn a parametric mapping from the inputs to the outputs. In
contrast, in unsupervised learning we have a dataset consisting only of inputs and the
task is to detect and extract underlying patterns of the data. A third style of machine
learning that received more attention recently is reinforcement learning [116]. There, the
task is to determine a policy of an agent’s actions thatmanipulate a given environment
such that an occasional reward is maximized. In the following sections, we discuss
supervised/unsupervised learning andelaborate on thedifferencebetweengenerative
and discriminative learning approaches. We refer the interested reader to [116] for
more details on reinforcement learning.

3.1.1 Supervised Learning

Supervised learning is by far the most widespread machine learning approach [34,
115].Here,wedevelop supervised learning fromaprobabilistic point of view. Tomodel
the sampling of data points, we consider a complete probability space (Ω,F,ℙ),
where Ω denotes the sampling space, F the corresponding �-algebra and ℙ the
probability measure. The data points are generated by means of an input random
variable - : Ω → X and an output random variable . : Ω → Y, where X is
the input space and Y the output space. Both random variables follow the joint
distribution (-,.) ∼ T and a realization consists of an input G ∈ X and a target
output H ∈ Y. The input G describes essential features of the considered data. In the
case of spam detection, for instance, the input would be encoded features of an email

https://bit.ly/324cf68
https://bit.ly/3lWbwvy
http://rcnt.eu/un8bg
http://rcnt.eu/un8bg
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1: There are six types of chess pieces:
pawn, rook, knight, bishop, queen, and
king

including the message body and metadata, while in the case of image processing
the input is typically given by the intensity values of a discrete image. Thus, the
input space can frequently be modeled as a subset of the space of =-dimensional
feature vectors X⊂ ℝ= . In contrast, the output space Y is usually defined by the task.
For the spam detection example, the output space would be a binary set Y= {0, 1}
where 1 indicates that a message is spam, while 0 indicates that it is not. On the other
hand, the target output H for image processing is often of the same size as the input
space, e.g. image denoising or image deblurring. Based on the output space Ywe can
separate supervised learning methods into classification (|Y| < ∞) and regression
problems (|Y| = ∞).

In either case, the aim is to learn a parametric mapping

5 : X× Θ→ Y

called the model that transforms each input G ∈ X into an output 5 (G, �) ∈ Ygiven
the parameters of the model � ∈ Θ. The quality of a model is determined by a cost
function J : Θ → ℝ that assigns to each parameter value � ∈ Θ a real-valued cost
decreasing with increasing quality. The cost function is frequently of the form

J(�) = E(G,H)∼T
[
ℓ ( 5 (G, �), H)] , (3.1)

where ℓ : Y× Y→ ℝ is the loss function. We frequently call this cost function the
expected loss. Then, we call the process of determining the parameters � such that the
cost function J is minimal training or learning. In summary, in supervised learning, we
train the parameters of the model such that its output is close to the desired target
output according to the loss function for each sample of the data distribution.

3.1.1.1 Classification

Classification is the process of detecting features of objects that enable a categorization
into a set of classes [34]. To account for different classes, the output space is typically
a set of class labels C= {1, . . . , �}, where � denotes the number of possible classes.
If a task only considers two mutually exclusive classes (� = 2), it is called a binary
classification task. A simple binary classification task is the categorization of chess
pieces based on their color, which is either white or black (� = 2). On the other hand, a
task with multiple mutually exclusive classes (� > 2) is calledmulticlass classification.
If we extend our chess classification problem from before to also account for the type1
of a chess piece, we end up with a multiclass classification problem including � = 12
mutually exclusive classes.

Often we as humans have problems telling objects apart. For example, if we
look at a picture of a single chess piece colored in middle brown shades, we
cannot be sure whether it is actually white or black. To remove any doubt, we
would need the color information of the opponent player. Thus, it is reasonable
to equip a classification model with the possibility to express its uncertainty.
This can be done by relaxing the output space of the model to the unit sim-
plex Y = Δ� B

{
H ∈ ℝ� :

∑�
8=1 H8 = 1, H8 ≥ 0 for 8 ∈ C

}
. Then, the 8th entry of

each output of a classification model can be interpreted as the discrete conditional
probability density H8 = ?(2 = 8 |G). Using this probabilistic output space, we can use
the model output Ĥ8 B 5 (G, �) ∈ Δ� to determine the class label of the most favored
class by computing

2̂ ∈ argmax
8∈C

Ĥ8

for a certain input G ∈ X and model parameters � ∈ Θ, which yields the optimal
decision under the zero-one loss [113]. In addition, we can define the target output in
this representation. Let 2 ∈ Cdenote the target class label. Then, the corresponding
probabilistic representation is given by H ∈ Δ� such that H2 = 1 and H8 = 0 for
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Figure 3.1: Illustration of the cross en-
tropy loss function for a binary classifi-
cation problem � = 2. The blue curve
represents the loss if the target class la-
bel is 0 and the red curve the loss if the
target class label is 1, respectively.

Figure 3.2:Visualization of a binary clas-
sification task. The blue dots indicate the
first class, while the red crosses mark
samples of the second class. The space is
classified into two regions illustrated by
the background, where the blue region
is associated with class one and the red
region with class two, respectively. The
decision boundary between these areas
is indicated by the bright area.

Figure 3.3: Visualization of a sam-
ple from the MONUSAC-2020
dataset (https://monusac-2020.
grand-challenge.org, accessed
September, 2020.) Here, the task is to
detect and segment different types of
cells indicated by the green, red, blue,
and yellow regions.

8 ∈ C\ {G}. Probably the most used loss function for this probabilistic representation
of the classification problem is the cross entropy h : Y× Y→ ℝ. It is defined as

ℓ (H, Ĥ) = h(H, Ĥ) ≔ −
�∑
8=1

H8 log(Ĥ8).

The cross entropy is a robust loss function that exponentially increases along with
the distance to the target label, as illustrated in Figure 3.1.

As a first classification example we consider the classification of the so-called moons
dataset, depicted in Figure 3.2. This dataset consists of samples drawn from two arcs
that are intertwined in a two-dimensional plane. A blue dot indicates that a sample
stems from the first class, while a red crossmarks samples from the second class. Since
Y= Δ2 =

{(H1 , H2) ∈ ℝ2 : H1 , H2 ≥ 0, H1 + H2 = 1
}
, we can simplify the output space

for this binary classification task to Y= [0, 1]. Then, the output Ĥ B 5 (G, F) ∈ [0, 1]
of the model represents the probability that a sample corresponds to class 1. The
associated probability that the output corresponds to class 2 is then simply given
by 1 − 5 (G, F). In this case, the cross entropy loss changes to

h(H, Ĥ) = −H log(Ĥ) − (1 − H) log(1 − Ĥ),

which is known as the binary cross entropy loss. We used this loss to learn the
parameters � of a simple model, also called a classifier in this context, and visualized
its output for the entire 2-dimensional plane in the background of Figure 3.2. The
model output is color-coded such that 0 is represented by the blue color, 0.5 by the
white, and 1 by the red color. The learned classifier (actually the learned parameters �
along with the model 5 ) splits the entire plane into two distinct regions in the upper
left and lower right corner. Between these two regions is a transition area, which
indicates the uncertainty of the classifier.

As a second example, we consider the task of semantic image segmentation of
hematoxylin and eosin (H&E) stained tissue sections, which are typically used in
pathology to detect various types of cancer [117]. In general, the task of semantic
segmentation is defined as assigning to each pixel of an image a semantic class label.
In the case of tissue sections, these labels are associated with different cell types.
Figure 3.3 depicts a sample image from the MONUSAC-2020 challenge [118], where
four different cell types are highlighted. Epithelial cells are shown in red, lymphocytes
in yellow, macrophages in green, and neutrophils in blue. In this particular task,
we have to assign to each pixel a class label in {1, . . . , 5}, where the fifth label
indicates that the pixel corresponds to neither of the previously mentioned cell types.
Typically, a H&E stained image of size =1 × =2 with 3 color channels is represented
by a vector G ∈ X = ℝ= with = = 3=1=2. Then, a semantic segmentation model
predicts for each pixel a discrete probability distribution over all class labels. The
corresponding output space is given by

Y= Δ=� B

{
H ∈ ℝ=×� :

�∑
9=1

H8 , 9 = 1, H8 , 9 ≥ 0 for 8 = 1, . . . , =, 9 ∈ {1, . . . , �}
}
,

where the number of possible classes is � = 5 in this particular case. Since every pixel
needs to be classified, the cost function must account for all pixels. A typical choice
in semantic segmentation is to compute the cross entropy over all pixels. Hence, the
aggregated cost function w.r.t. the model parameters � reads as

J(�) = E(G,H)∼T

[
=∑
8=1

h( 5 (G, �)8 , H8)
]

where 5 (G, �) denotes the model output and H the target output both encoded in the
probabilistic output representation. The subscript 8 indicates that the cross entropy

https://monusac-2020.grand-challenge.org
https://monusac-2020.grand-challenge.org
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Figure 3.4: Illustration of a regression
task. Given data samples (blue dots),
the task is to fit the parameters � of a
polynomial (red line) such that it best
explains the data in the least squares
sense.

is computed for the discrete probability distribution over the class labels of the
8th pixel.

3.1.1.2 Regression

As we have seen in the previous section, many problems in real-world applications
are classification problems. In this section, we address the question: What happens
when the number of possible output classes of a task is infinite? In machine learning,
these tasks are called regression problems and are characterized by continuous output
spaces [32, 34]. They occur in various application fields, for instance, in finance we
would like to predict the stock price of certain shares given their history. Another
example from engineering is that we would like to mimic the dynamics of a physical
process by a parametric model that can be easily evaluated [119]. Also in medicine
regression problems appear frequently, for instance, consider the tasks of accelerated
magnetic resonance imaging (MRI) reconstruction [120] and low-dose computed
tomography (CT) reconstruction [67], where we would like to estimate an entire
image given measurements in the k-space or sinogram.

Clearly, for regression problems, it is challenging to infer a nonparametric probability
distribution over all possible outputs as before due to limited memory. Therefore,
we neglect the probabilistic representation of the model output and directly predict
the desired output, which is typically a real-valued vector H ∈ Y ⊂ ℝ< . Thus, the
output of regression models is in many cases a point estimate in a continuous vector
space.

Let us consider the simple one-dimensional regression problem depicted in Figure 3.4.
The blue dots indicate measurements I = H(G)+�, where H : ℝ→ ℝ is the functional
dependency of the input G ∈ ℝ that we would like to estimate, and � ∈ ℝ is additive
Gaussian noise with unknown variance �2, i.e. � ∼ N(0, �2). To approximate the
function H, we use the class of polynomials of degree 3. In detail, the model output
for an input G ∈ ℝ is computed by

5 (G, �) =
3∑
8=0

�8G 8 =
(
1 G G2 · · · G3

)
�, (3.2)

where � ∈ ℝ3+1 are the parameters of the polynomial. Assume that we have # ∈ ℕ
sample pairs (G8 , I8)#8=1. Then, the expected least squares loss over these samples
reads as

J(�) = 1
#

#∑
8=1
( 5 (G8 , �) − I8)2 = ‖-� − I‖22 ,

where the feature matrix - ∈ ℝ#×3+1 is given by

- =

©­­­­«

1 G1 G2
1 · · · G31

1 G2 G2
2 · · · G32

...
...

...
...

1 G# G2
# · · · G3#

ª®®®®¬
(3.3)

and the measurement vector I = (I1 . . . I# )> ∈ ℝ# represents all individual
measurements. Since J is a proper, smooth and convex function, its global minimum
is given by setting its gradient w.r.t. the parameters � to zero, which results in

� = (->-)−1->I. (3.4)

The thereby obtained polynomial of degree 3 = 3 is depicted as the red curve in
Figure 3.4. It describes the data samples well and also seems to correctly characterize
the underlying functional dependency H.
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Figure 3.5: The optical flow represents
the motion of each pixel from the ref-
erence image (top) to the target image
(middle). It is depicted at the bottom im-
age using a color code in the HSV color
space, where the hue specifies the mo-
tion direction and the value the motion
length of each pixel. This is a sample
from the Sintel dataset [122].
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Figure 3.6: Estimated density of the iris
dataset [126] in the petal width and petal
length plane using two components in a
Gaussian mixture model. The estimated
probability density function is depicted
using a contour plot where warm colors
indicate regions of high density.

Another regression task example from computer vision is the estimation of optical
flow [121]. The optical flow between two images of an image sequence is defined as the
apparent motion of pixels. Figure 3.5 depicts a sample from the Sintel dataset [122].
The optical flow (bottom) specifies for each pixel in the reference image (top) the
relative position to the corresponding pixel in the second image (middle). As a
result, the optical flow computes the linear motion (direction and speed) of pixels.
Since objects move freely and continuously in the real work, the optical flow is not
necessarily aligned with the pixel grid and thus is a prototypical regression task. Due
to the huge diversity of image sequences and the endless number of motion patterns,
computing the optical flow is a challenging nonlinear inverse problem. Hence, there
is no hope that such a simple linear model as in the previous example performs
well for arbitrary scenes. Therefore, a broad variety of parametric approaches has
evolved [123–125] in recent years.

3.1.2 Unsupervised Learning

In unsupervised learning, we only have single samples without any explicit targets,
while in supervised learningwe are given input and target output pairs.Due to the lack
of target data, the goal of unsupervised learning is to identify in some sense interesting
and useful properties of the data itself [32, 34]. This type of learning is usually
associated with humans and animals and more accessible than supervised learning
since no labeled data is required [34]. As before we model the sampling of the data
points by a complete probability space (Ω,F,ℙ).Ω denotes the underlying sampling
space, F the associated �-algebra and ℙ is the probability measure. We consider a
random variable - : Ω→ Xassociated with the distribution T, where Xdefines the
sample space, which is typically a =-dimensional vector space such as X⊂ ℝ= . Then,
each realization of the random variable - ∼ Tdefines a sample G ∈ X.

A prototypical example of unsupervised learning is density estimation. In this task,
we would like to develop a parametric model that approximates the probability
density function of the data such that we can either sample from the corresponding
distribution or quantify the probability of unseen data samples. In detail, let G
be a sample of the unknown distribution T. We would like to fit a parametric
model ? : X× Θ→ [0,∞) that best approximates the probability density function
associatedwith thedata.A commonapproach to estimate themodel parameters� ∈ Θ
is to maximize the likelihood of the data given the parameters, which amounts to
minimizing the negative log-likelihood

J(�) B EG∼T
[− log ?(G, �)] .

In contrast to supervised learning, there is no loss function involved that compares
the model output to a target output. Figure 3.6 depicts the estimated density of the
petal length and width of the iris dataset [126] using a Gaussian mixture model
(GMM) [32, Section 9.2] with 2 components. The density of the black data points can
be well approximated by the GMM and it is highest at the cluster in the lower left
corner.

Another characteristic example of unsupervised learning is clustering. Assume
we know that there are  clusters in the data. Then, clustering is the process of
partitioning the sample space X into  disjoint regions called clusters such that
the inter-point distance 3 : X× X→ ℝ between two samples within a cluster is
small. Frequently, the Euclidean distance 3(G, H) = 

G − H

2 is chosen to determine
the clusters. The result of the simple  -means clustering algorithm [127, 128] to
partition the space spanned by the petal length and width of iris flowers [126] is
illustrated in Figure 3.7. Each sample G (dot) is related to one of the  = 3 cluster
centers �9 (big X) based on the Euclidean distance to the cluster centers. Thus, the
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Figure 3.7: Result of applying the  -
mean clustering algorithm [127, 128] to
the iris dataset [126] for  = 3 cluster
centers. The cluster centers are indicated
by the large X markers, while the sam-
ples of the dataset are visualized by dots.
The colors indicate the cluster areas as a
function of the petal length and width.

cluster label I ∈ {1, . . . ,  } of a sample point G is determined by

I = argmin
9=1,..., 



G − �9

2 ,

given the cluster means �9 for 9 = 1, . . . ,  .

3.1.3 Generative and Discriminative Learning

Next, we elaborate on the difference between generative and discriminative learning
approaches. Let us consider a continuous, supervised learning problemdefined on the
underlying complete probability space (Ω,F,ℙ). The realizations of the input random
variable - : Ω→ Xare inputs G ∈ X⊂ ℝ= and the target outputs H ∈ Y⊂ ℝ< are
realizations of the target output random variable . : Ω→ Y. Both random variables
follow the corresponding joint distribution (-,.) ∼ Tand we denote by TX and TY

the marginal distribution of - and ., respectively.

Due to the definition of conditional probabilities, there are twoways to fit a parametric
model to the joint density of the inputs and outputs ?(G, H) [113]. The discriminative
model amounts to

?(G, H) ≈ ?dis(G, H, �dis) = ?. |-(H |G, �. |-)?-(G, �-),

where ?. |-(H |G, �. |-) is a parametric function that approximates the posterior
density ?. |-(H |G) and ?-(G, �-) approximates the density of the inputs ?-(G).
The parameters of both parts of the discriminative model are aggregated into
�dis = (�. |- , �-), which are frequently estimated by maximizing the joint likelihood,
resulting in the corresponding loss function

�(�dis) = E(-,.)∼T
[− log ?. |-( · | · , �. |-)

] + E-∼TX [− log ?-( · , �-)
]
.

Then, the optimization of the parameters decouples. While �- can be determined by
minimizing the negative log likelihood over the input data (unsupervised learning),
the parameters �. |- of the posterior model ?. |- are determined by supervised
learning. Consequently, the discriminative learning approach separates learning of
the input density from learning the posterior density. After learning its parameters,
the parametric posterior density ?. |- reflects the likelihood of an output H ∈ Y

given the input G ∈ X. The parametric posterior density is used to infer the best
output for a given loss [32, 34, 113]. For instance, the zero-one loss, which assigns a
constant penalization to every deviation from the true output and zero else, leads
to the maximum a-posteriori (MAP) estimate [32, 34] that maximizes the posterior
density

Ĥ(G) ∈ argmax
H∈Y

?. |-(H |G, �. |-).

As a result, the inference of the associated output for a given input G ∈ X is solely
determined by the parametric posterior distribution in the discriminative approach.
The advantage of the discriminative approach is that the estimator is just defined
using the parametric posterior, which is often simpler to learn [34, 113]. However,
incorporating domain knowledge, which is important in inverse problems, is typically
easier in generative approaches.

The generative model approximates the joint density by

?(G, H) ≈ ?gen(G, H, �gen) = ?- |.(G |H, �- |.)?.(H, �.),

where ?- |.(G |H, �- |.) is a parametric function that estimates the input likelihood
density ?- |.(G |H) and ?.(H, �.) approximates the density of the outputs ?.(H).
The parameters of both parts of the generative model are subsumed into �gen =
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(�- |. , �.). Then, the maximum likelihood estimation of the parameters leads to the
loss function

�(�) = E(-,.)∼T
[− log ?- |.( · | · , �- |.)

] + E.∼TY

[− log ?( · , �.)
]
,

which also decouples into a supervised learning problem of the input likelihood ?- |.
and an unsupervised learning problem over the output data of the prior density ?. .
Hence, generative learning separates the parameter estimation of the likelihood from
the prior. Once the parameters �- |. and �. are learned, we can deduce the posterior
density using Bayes’ Theorem 2.2.7 such that

?. |-(H |G, �64=) B
?- |.(G |H, �- |.)?.(H, �.)∫

Y
?- |.(G |H′, �- |.)?.(H′, �.)L<(dH′)

. (3.5)

The corresponding MAP estimate for a given input G ∈ X is then given by

Ĥ(G, �gen) ∈ argmax
H∈Y

?. |-(H |G, �64=) = argmax
H∈Y

?- |.(G |H, �- |.)?.(H, �.).

Consequently, the generative approach amounts to determining the input likelihood
and prior separately and using Bayes’ theorem to derive the posterior. The advantage
of the generative model is that the input likelihood ?- |. can be easily used to
incorporate domain knowledge about the problem, but the inference is based on the
associated posterior, whose parameters �gen have not been trained to discriminate
suitable outputs [34, 113].

Not all supervised learning methods can be strictly separated into generative and
discriminative approaches, there are also hybrid approaches [113]. For example, we
could use a parametric generative model and Bayes’ Theorem 2.2.7 to define the
associated posterior density, see (3.5). Instead of determining the parameters of the
input likelihood and prior separately as in generative learning, we could determine
the parameters of the generative model such that the MAP estimator best explains
the target outputs H ∈ Ygiven some loss ℓ : Y× Y→ ℝ. This results in the bilevel
optimization problem

min
�gen∈Θ

E(-,.)∼T
[
ℓ (Ĥ(G, �gen), H)

]
s.t. Ĥ(G, �gen) ∈ argmax

H′∈Y
?. |-(H′ |G, �gen),

where Θ is the space of feasible parameters. Hence, the parameters �gen of the
generative model are determined by discriminative learning of the corresponding
posterior density. A particular advantage of this approach is that the generative
model allows to incorporate domain knowledge into the input likelihood ?- |. , which
is of particular interest for inverse problems, and the discriminative learning of the
parameters directly targets the inference [113].

3.2 Data, Generalization and Model Complexity

In this section, we define the term generalization in machine learning and illustrate
its relation to the model complexity and the finite number of data samples.

3.2.1 Finite Data and Generalization

In many applications, we do not have the possibility to constantly draw samples from
the data distribution Tdue to time or budget constraints. For instance, let us consider
the task of cell segmentation of hematoxylin and eosin stained tissue sections. The
manual annotation of each sample requires intensive user interactions of an expert
pathologist, which comes along with high temporal and monetary costs. Thus, we
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cannot use the expected loss (3.1) to identify the model parameters. Nevertheless, we
are often able to collect a dataset D =

{(G1 , H1), . . . , (G# , H# )
} ⊂ X× Y consisting

of # ∈ ℕ sample pairs in this supervised case. Using this dataset we are able to
approximate the expected loss (3.1) by the empirical risk

Jemp(�, D) B 1
|D|

∑
(G,H)∈D

ℓ ( 5 (G, �), H), (3.6)

which is the average loss across the entire dataset. Then, the best parameters are
obtained by minimizing the empirical risk (3.6) for a finite dataset D, which can be
done for suitable models and loss functions, as we have seen in Section 2.4. From this
point of view, it seems like machine learning is just a special case of optimization.
However, in machine learning, we are not only interested in finding the optimal
parameters �∗ of amodel for a dataset D.We long formodels 5 : X×Θ→ Yand their
parameters � ∈ Θ that also work well on new unseen data samples G ∈ X, (G, · ) ∉ D.
This desired ability is called generalization [115].

In many real-world applications such as autonomous driving or cancer detection,
machine learning models have to be robust against all sorts of data variations in order
to generalize to unseen data samples. Following [129], we call the absolute difference
between the expected loss and the empirical risk the generalization error, i.e.

G(�, D) = |J(�) − Jemp(�, D)|.

If the generalization error is small, we can expect that our model works well on
unseen data. Since we cannot compute the expected loss J(�) in many cases, we
have to estimate the generalization ability of a model. This is frequently done by
partitioning the dataset D into disjoint train and test datasets [34, 115], such that

D= Dtrain ∪ Dtest and Dtrain ∩ Dtest = ∅.

Then, the model parameters are estimated by minimizing the empirical risk over the
training dataset, i.e.

�∗ = argmin
�∈Θ

Jemp(�, Dtrain).

Finally, we can compare some error measure (e.g. mean squared error, peak signal-to-
noise ratio, . . . ) on the train and test dataset to see if the model generalizes to the
unseen test data. We will see in the next section that the number of samples in the
train and test set #train = |Dtrain | and #test = |Dtest | must be rather large in order to
represent the distribution Tsufficiently well.

3.2.2 Model Complexity and Generalization

The complexity of amodel defines the range of functions that can bewell approximated
by suitable choices of its parameters [32]. Intuitively speaking, the more complex a
model, the richer are its representable functions. Models with low complexity may
not be able to explain the functional dependency between input and output samples,
while models with large complexity may focus on particular properties of samples.
The first effect is known as underfitting and the second as overfitting [115]. Clearly, we
have to avoid both effects in order to develop suitable models for a particular task.

In the following example, we illustrate the underfitting and overfitting effect
for a model of different complexity and show that these effects are tightly cou-
pled with generalization. We consider the supervised regression task of fitting a
polynomial of degree 3 ∈ ℕ as defined in (3.2). We estimate the parameters of
the polynomial � ∈ ℝ3+1 by minimizing the empirical risk (3.6) over the train



3 Machine Learning 60

−1.0 −0.5 0.0 0.5 1.0
G

−0.5

0.0

0.5

1.0

1.5
3 = 2

3 = 4

3 = 14

0 5 10
3

10−6

10−4

10−2

100

Jemp(�, Dtrain)
Jemp(�, Dtest)
Jemp(�, Dtrain ∪ Dtest)

102 103 104

#train

10−6

10−4

10−2

100

Jemp(�, Dtrain)
Jemp(�, Dtest)
Jemp(�, Dtrain ∪ Dtest)

Figure 3.8: The top plot depicts all
#train = 15 training samples (G, H) ∈
Dtrain (black dots) alongwith fitted poly-
nomial of degree 3 ∈ {2, 4, 14}. Themid-
dle plot depicts the empirical risk of the
train dataset Dtrain, test dataset Dtest,
and the entire dataset Dtrain ∪ Dtest as
a function of the polynomial degree 3
using #train = 15. The bottom plot illus-
trates the empirical risk as a function of
the number of training samples #train
for fitting a polynomial of degree 3 = 14.

dataset Dtrain = {(G1 , H1), . . . , (G#train , H#train)} using the quadratic loss function

ℓ (H, Ĥ) = (H − Ĥ)2.

The resulting quadratic training problem can be solved in closed form and its solution
is given by

� = (->train-train)−1->trainHtrain (3.7)

in analogy to (3.4). Here, Htrain ∈ ℝ#train denotes the vector whose elements are the
target outputs of all training samples and -train ∈ ℝ#train×3+1 is the feature matrix of
the training sample inputs as defined in (3.3).

First, we assume that the train dataset is limited to #train = 15 training samples,
which are illustrated as black dots in the top plot of Figure 3.8. For this rather small
train dataset, we fit polynomials of degree 3 ∈ {0, 1, . . . , 14} using (3.7). The degree
reflects the model complexity since the number of learnable parameters � ∈ ℝ3+1

increases along with the degree of a polynomial. If we choose a small degree such
as 3 = 2, our model can only approximate quadratic functions well. For the task
at hand, the quadratic polynomial (dashed blue line in the top plot of Figure 3.8)
describes the overall shape of the data samples but it is not able to reflect the peak
at 0. Moreover, for 3 = 2 we observe a high empirical risk for the train and test
dataset, see central plot of Figure 3.8. This is a typical case of underfitting because
the class of quadratic functions is not rich enough to approximate the target function.
Increasing the degree to 3 = 4 leads to a minimum of the empirical risk of both the
train and test dataset, see Figure 3.8 central plot. The minimal empirical risk on both
datasets indicates that this is the correct model complexity and the corresponding
polynomial is depicted as the green curve in the top plot. It describes all 15 training
points well without fluctuations between sample points. If we continue to increase
the model complexity, we are able to better fit the training samples, reflected by
the decreasing empirical risk of the train dataset (dashed blue curve in the central
plot). However, the empirical risk of the test dataset (dash-dotted red curve) strongly
increases. For instance, the polynomial of degree 3 = 14 (dash-dotted red curve in
the top plot) perfectly fits the training data but oscillates strongly between training
samples especially at the left and right boundary, which leads to a high error on
the test dataset. This is a prototypical example of overfitting. The polynomial of
degree 3 = 14 perfectly explains all training samples but does not generalize to
unseen test samples.

Second, we assume that the degree of the polynomial model is fixed to 3 = 14 but
we are free to draw more samples to increase the train dataset. The bottom plot of
Figure 3.8 shows the empirical risk of the train and test dataset as a function of the
number of training samples #train. Clearly, the empirical risks of the train and test
dataset do not agree for small #train, but for #train > 103 both errors seem to converge
towards 10−3. As a result, we are able to avoid overfitting for complex models by
increasing the train dataset size. Note that we have to increase the train dataset
size #train by two to three orders of magnitude for this simple example in order to
learn parameters of the polynomial of degree 3 = 14 that work equally well as the
ones identified for degree 3 = 4 using only #train = 15 training samples. Hence, it is
reasonable to adapt the model complexity for the particular task.

3.3 Neural Networks

In general, neural networks (NNs) are parametric functions that process an input
by sequentially applying ‘simple’ parametric and non-parametric functions [115].
In machine learning, we use these parametric NNs to approximate functions. For
example, a NN can be used to approximate a classifier assigning a class label to every
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input, or the density of a probabilistic process may be estimated by a NN. Thus,
NNs are widely used in many fields such as engineering, finance, and medicine.
In this section, we explain the concept of NNs, their building blocks, and motivate
state-of-the-art deep learning architecture designs.

We denote by X the input space of the NN and by Y its corresponding output space.
Likewise, Θ defines the space of admissible parameters of a NN. Then, a NN is
formally defined as a parametric mapping from the input and parameter space to the
output space [32, 115], i.e.

5 : X× Θ→ Y.

The NN 5 is typically highly structured and consists of a composition of simple
functions 58 : X8−1 → X8 for 8 = 1, . . . , ;

5 = 5; ◦ 5;−1 ◦ · · · ◦ 58 ◦ · · · ◦ 52 ◦ 51 ,

which we call building blocks or layers of NNs. The combination of the building blocks
defines the architecture of a NN and the length of the entire sequence of layers ; ∈ ℕ
is called the depth. Each layer 58 is a (non)linear and (non)-parametric function that
maps its input G8−1 ∈ X8−1 ⊂ ℝ=8−1 to the output G8 ∈ X8 ⊂ ℝ=8 via

G8 = 58(G8−1),

where the initial space X0 is defined by the input space X0 = X. The last layer 5; :
X;−1 → X= Yof the sequence is called the output layer, while the remaining layers
are called hidden layers. Each layer 58 typically maps into a vector space X8 ⊂ ℝ=8 and
the dimension =8 defines the width of a layer [115]. The resulting function is called
a neural network because it loosely resembles the synaptic connections within the
human brain [130].

So far, a NN 5 simply defines a mapping from inputs G and parameters � to outputs H.
In order to adapt a NN to a particular task, we need to learn its parameters �. In
supervised learning, for instance, we could determine them by minimizing a cost
function such as (3.1) using a suitable first-order method (Section 2.4.3) for given
task-specific samples from the input and output space.

3.3.1 Building Blocks

In this section, we introduce essential building blocks of NNs, where we distinguish
between linear and nonlinear functions.

3.3.1.1 Linear Layers

Let G8−1 ∈ X8−1 ⊂ ℝ=8−1 be an =8−1-dimensional real vector, which is the input
to the 8th layer. The output of a linear layer is computed by applying the affine
transform W; : X; → X8+1

G8 = W8(G 8) =, 8G8−1 + 1 8 ,

where X8 ⊂ ℝ=8 is the output space and the number =8 ∈ ℕ defines the width of the
layer. The parameters of the layer �8 are encoded in the weight, 8 ∈ ℝ=8×=8−1 and the
bias 1 8 ∈ ℝ=8 .

A linear layer is called a fully connected layer if all elements of the weight matrix, 8 =
(F 8

9 ,:) and the bias vector 1 8 = (1 ;9) for 9 = 1, . . . , =8 and : = 1, . . . , =8−1 are learnable.
Then, both the weight and the bias are entirely included in the layer’s parameters,
i.e. �8 = (, 8 , 1 8). In this case, =8 is also frequently called the number of neurons of a
layer.
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Figure 3.9: Visualization of the down-
and upsampling operation.We show the
pixel grids of three images. The black
dots visualize the pixel centers and the
gray lines the pixel outline. The red ar-
rows illustrate a 2-fold downsampling
of the upper image to the central im-
age while the blue arrows symbolize the
copying of the pixels from the central
image to the 2-fold upsampled bottom
image.

A very important class of linear layers that are frequently used in signal processing
are convolution layers. In contrast to the fully connected layer, not all elements of
the weight matrix, 8 and the bias vector 1 8 are learnable. Let us consider an input
image of size =1 × =2 with 28−1 feature channels, i.e. G8−1 ∈ ℝ=28−1 with = = =1 · =2.
The output of a convolutional layer G8 ∈ ℝ=28 is a signal with the same length and 28
feature channels. Then, the output is determined by applying 28 · 28−1 convolution
filters : 8D,E ∈ ℝB×B with spatial support B × B to the input plus a bias 1 8D ∈ ℝ for
D = 1, . . . , 28 and E = 1, . . . , 28−1. Let - 8−1,E ∈ ℝ=1×=2 represent the Eth channel of the
input image. The two-dimensional discrete convolution of this input channel with a
convolution kernel : 8D,E is defined as

(- 8−1,E ∗ : 8D,E);.< =
B∑
>=1

B∑
?=1

- 8−1,E
;−>+bB/2c ,<−?+bB/2c · (: 8D,E)(>,?) ,

where an appropriate boundary handling such as symmetric padding is applied if
0 < ; − > + bB/2c < =1 and 0 < < − ? + bB/2c < =2 do not hold. This convolution
operation can be represented by a matrix-vector product

- 8−1,E ∗ : 8D,E ⇐⇒  8D,EG
E
8−1 ,

where  8D,E ∈ ℝ=×= is a Toeplitz matrix [131] whose diagonal elements are determined
by the corresponding filter : 8D,E , and GE8−1 ∈ ℝ= is the vector representation of the Eth
input channel, see Section 4.1.1. Then, the resulting weight matrix and bias vector of a
convolution layer are given by

, 8 =

©­­­­«

 81,1  81,2 · · ·  81,2;
 82,1  82,2 · · ·  82,2;
...

...
. . .

...
 82;+1 ,1  82;+1 ,2 · · ·  82;+1 ,2;

ª®®®®¬
and 1 8 =

©­­­­«

1=1 81
1=1 82
...

1=1 82;+1

ª®®®®¬
,

respectively, where 1= ∈ ℝ= is a vector whose entries are equal to 1. The parameters of
a convolution layer are all convolution filters and bias weights �8 = (: 8D,E , 1 8D , for D =
1, . . . , 28 , and E = 1, . . . , 28−1).
Further important building blocks that are frequently linked with convolution layers
are down- and upsampling layers. These layers are used to decrease and increase the
spatial support of a signal. Hence, downsampling layers can be used to compress or
encode local information and upsampling layers are used for decoding. We again
consider an input image G8−1 ∈ ℝ=8−128−1 of size =8−1 = = 8−1

1 × = 8−1
2 with 28−1 channels.

The output of an B-fold downsampling layer has the same number of channels as the
input but the spatial size is reduced by copying only every Bth pixel in the horizontal
and vertical direction to the output G ∈ ℝ=8 28−1 , as illustrated by the red arrows in
Figure 3.9. Thus, =8 = =8−1/B2. In contrast, an B-fold upsampling layer computes
its output by copying every Bth pixel from the input image, while the remaining
pixels are set to 0, which is visualized by the blue arrows in Figure 3.9. Then, its
output is an image of size =8 = =8−1B2. As a result, all entries of the associated
weight matrices are either 0 or 1, i.e. , 8 ∈ {0, 1}=8 28−1×=8−128−1 , and the bias vector
vanishes: 1 ; = 0 ∈ ℝ=8 28−1 . Hence, there are no learnable parameters in a down- or
upsampling layer. Note that the combination of a convolution and downsampling
layer is called a strided convolution layer while the combination of a convolution and
upsampling layer is called a transposed convolution layer [79, 80].

There are many more linear layer types such as dilated convolution layers [132] and
padding layers, which are established in the machine learning community. We refer
the interested reader to the documentation of Tensorflow [79] and PyTorch [80] for a
recent list.
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Figure 3.10: Plot of typical nonlinear
activation functions used in neural net-
works.

3.3.1.2 Nonlinear Layers

Nonlinear layers are the essential ingredients that bring NNs up and running. In
fact, a NN without any nonlinear layer can only represent linear functions because
the resulting function is linear. However, many realistic problems discussed in the
previous sections can only be tackled by learning a nonlinear parametric function.

In contrast to linear layers, nonlinear layers are hardly used to reduce or increase
the width within a NN. Let G ; ∈ X; ⊂ ℝ=; represent the input of a layer. The
output G ;+1 ∈ X;+1 = X; of a nonlinear activation layer is computed by applying the
function

Φ : X; → X; , (G ;1 , . . . , G ;=) ↦→ ()(G ;1), . . . , )(G ;=))
to the input G ; , which amounts to a transformation of each input element by the
nonlinear activation function ) : ℝ→ ℝ. Figure 3.10 visualizes common activation
functions used in NNs. The hyperbolic tangent tanh and the logistic sigmoid

�(G) = 1
1 + exp(−G)

are frequently used in NNs since both functions are smooth and monotonically
increasing. However, the tanh and sigmoid activation functions saturate for |G | > 3.
This saturation can make gradient-based learning of the network parameters hard
because the gradient of the tanh and sigmoid function vanishes within the saturated
regions. The rectified linear unit [133, 134] defined as

ReLU(G) B max(G, 0)

does not saturate for positive inputs and leads to sparse features [135] since all negative
values are mapped to 0. The caveat of the ReLU function is its non-differentiability
at 0, which is often ignored in practice and the subgradient 0 ∈ %ReLU(0) is used.
Nevertheless, today it is the default nonlinear activation function applied in deep
neural networks [115].

Along with these nonparametric activation functions there also exist parametric
activation functions. He et al. [82] proposed the parametric ReLU (PReLU) function

PReLU(G) =
{
G if G > 0
0G ifG ≤ 0

where the slope 0 ∈ ℝ of the negative orthant is learnable. In addition, radial basis
functions

)RBF(G) =
#F∑
8=1

F8!(G − �8)

with !(G) = exp
(
−G2

2�2

)
have been used as activation functions in NNs [136]. Here, the

weights of the basis functions F8 ∈ ℝ, the centers �8 ∈ ℝ and the factor � ∈ ℝ can be
possibly learned and #F defines the number of radial basis functions.

So far, every nonlinear layer applied the same scalar activation function to all elements
of its input. Normalization layers are a class of nonlinear layers that combine all or a
fraction of the input elements to compute the output. Let G ∈ X⊂ ℝ= be the input
of a layer. The softmax layer maps an input G ∈ X to an output H ∈ Δ= on the unit
simplex Δ= and is defined as

H8 = softmax(G)8 = exp(G8)∑=
9=1 exp(G 9)

for 8 = 1, . . . , =. It canbeused to transforman input feature G into adiscrete probability
distribution with = possible outcomes [115]. Thus, it is frequently applied as the
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Figure 3.11: Illustration of a feed-
forward neural network. The input G
is processed by a sequence of layers
consisting of linear W8 and nonlinear
activation layers Φ. The final output is
generated by applying the nonlinear ac-
tivation layerΨ.

output layer of a NNdesigned for multi-class classification problems. Another variant
of normalization layers is called batch normalization [137], which was introduced to
reduce the internal variance in deep NNs such that their gradient-based training
becomes simpler. Later also instance normalization [138] and group normalization [139]
layers were introduced. All three layer types estimate the mean and variance of a
subset of the elements of the layer’s input in order to produce a normalized output.
For more details on these normalization layers, we refer the interested reader to the
corresponding papers [137–139].

3.3.2 Deep Learning Architectures

The combination of the building blocks introduced in the previous section defines
the architecture of a NN. In this section, we discuss basic architectures of NNs and
motivate state-of-the-art NN design patterns.

3.3.2.1 Feed-forward Networks

The feed0forward NNs architecture is the prototypical design of NNs. Such networks
are also known as multilayer perceptrons [32, 115] and basically consist of an
alternating chain of fully connected layers and nonlinear activation layers, i.e.

5 = Ψ ◦W; · · ·Φ ◦W2 ◦Φ ◦W1 ,

which is illustrated in Figure 3.11. Typically, all nonlinear hidden layers in a NN use
the same activation layer Φ. While the dimension of the input layer is defined by the
input space X ⊂ ℝ= , the choice of the width of the hidden layers is free and often
heuristically determined.

The dimension of the output layer and the output activation layer Ψ depend on
the specific problem. For the task of approximating a scalar-valued function, for
instance, the output space is Y = ℝ and a suitable output activation function is
the identity mappingΨ(G) = G, hence X; = ℝ. In the case of binary classification,
we frequently learn a NN to predict the posterior probability of a class given the
input. Thus, Y= [0, 1] and the output activation layer applies the sigmoid function,
i.e. Ψ(G) : ℝ → [0, 1], G ↦→ �(G). Finally, we can design a NN for a multi-label
classification problem. Here, the NN predicts for each input a discrete probability
distribution over the class label {1, . . . , �}. Then, the output space is Y= Δ� ⊂ ℝ�

and we can use the softmax function to map the output features G ; ∈ X; ⊂ ℝ� to the
�-dimensional unit simplex.

Next, we present a result from approximation theory of NNs. We consider a feed-
forward NN 5 : X⊂ ℝ= × Θ→ ℝ with a single nonlinear hidden layer, i.e.

5 (G, �) = W2Ψ(W1G), (3.8)

where G ∈ ℝ= , W1 : ℝ= → ℝ=1 and W2 : ℝ=1 → ℝ are linear layers, and Φ is a
nonlinear activation layer applying a nonlinear function ) : ℝ→ ℝ to every input
element. Then, the NN is parameterized by � = (,1 , 11 ,,2 , 12) ∈ Θ.
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Figure 3.12: Illustration of the basis prin-
ciple of a recurrent neural network. A
sequence of states GC is generated from
the current input IC and the previous
state GC−1. The output at time HC is a
nonlinear transformation of the current
state GC . The red arrow visualizes the
feedback of the output state towards the
input state.

Theorem 3.3.1 (Universal Approximation) Let X⊂ ℝ= be a compact set. Suppose 5 :
X × Θ → ℝ is a feed-forward NN as defined in (3.8) and let ) : ℝ → ℝ be a
nonconstant, bounded and monotonically increasing and continuous function. Then for an
arbitrary & > 0, there exist a width =1 ∈ ℕ and parameters � ∈ Θ such that

max
G∈X
| 5 (G, �) − 5̂ (G)| < &

for any 5̂ ∈ �0(X,ℝ).

Proof. See [140, Theorem 1].

Thus, a feed-forward NN can approximate any continuous function over a compact
set with arbitrary precision given a large enough width =1.

If all parametric linear layers within a NN are convolution layers, we call it a
convolutional neural network (CNN). One can think of a CNN as applying a
corresponding NN to the local neighborhood at every position of a signal. Thus,
CNNs can be used to process an entire signal of arbitrary length — only limited by
the amount of available memory. An input signal ℝ=2 of length = with 2 channels is
processed by alternatingly applying convolution and nonlinear activation layers. In
contrast to NNs, the width of a layer in a CNN is determined by the number of its
output feature channels. CNNs are translation invariant and widely used in imaging
to, for instance, semantically segment [141], denoise [142] or classify [143] images.

3.3.2.2 Recurrent Networks

In NNs and CNNs the information ‘flows’ from the input through each layer towards
the output and each layer transforms its input information only once. Thus, there is
no feedback from the output of a layer towards its input. Neural networks that include
feedback connections are called recurrent neural networks (RNNs) [115, 144]. While
CNNs can be used to extract meaningful information from entire signals, RNNs
are designed to process signals sequentially. Let IC ∈ Z ⊂ ℝ; for C = 1, . . . , ) be an
input signal of length ). An RNN can be interpreted as a dynamical system with a
state GC ∈ X⊂ ℝ= of the form

GC = 5 (GC−1 , IC , �),
HC = ℎ(GC , �),

where the state transition function 5 : X × Z × Θ → X computes the current
state GC ∈ Xbased on the previous state GC−1 ∈ Xand the current input IC . At every
time step C the output function ℎ : X× Θ → Y generates a single element of the
output sequence HC ∈ Y⊂ ℝ< , see Figure 3.12. RNNs of this form can compute any
function computable by a Turing machine [145]. There are various different types
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of RNNs such as LSTMs [146] and neural Turing machines [147]. Since RNNs are
specifically designed to process sequential data, they are successfully applied to
various realistic tasks that require the extraction of contextual information from a
data stream such as language translation [148] or speech recognition [149].

3.3.2.3 Residual Networks

A network architecture that in some sense combines feed-forward and recurrent NN
architectures are residual neural networks (ResNets) due to He et al. [150]. As in
feed-forward NNs the input information is fed into the network and transformed
by each consecutive layer once to extract the output information. Hence, there is
no feedback in ResNets but they do advocate skip connections to introduce shortcuts
in residual blocks, see Figure 3.13. He et al. [150] included these skip connections to
avoid a vanishing gradient problem [115] in deep feed-forward NNs and thereby ease
gradient-based training of the network parameters. The resulting ResNets could be
successfully trained with hundreds of layers, which led to a significant performance
increase for numerous problems [150].

Once more let us consider an input G ∈ X ⊂ ℝ= , which is transformed into initial
features G0 ∈ F⊂ ℝ= 5 by

G0 = Φ(WinG)
using a linear input layer Win : X→ Fand a nonlinear activation layer Φ : F→ F.
These initial features G0 are then processed by a sequence of residual blocks ℎC : F→ F

for C = 1, . . . , ), as illustrated in Figure 3.13. There are many different designs for
residual blocks [151]. A common one is of the form

GC = ℎC(GC−1) = Φ(GC−1 + 5C(GC−1)),

where Φ : F→ F can be a nonlinear activation layer or the identity mapping
and 5C : F→ F is the residual function. The residual function is frequently a small
feed-forward NN. For instance, in Figure 3.13 the residual function is a two-layer NN
with a linear output activation layer, i.e. 58 = W8 ,2 ◦Φ ◦W8 ,1. The output H ∈ Y⊂ ℝ<

of a ResNet is commonly computed by applying a linear layer Wout : F→ ℝ< in
conjunction with the output activation layerΨ : ℝ< → Y to the final state G) ∈ F.

If the last activation layer of each residual block in a ResNet is the identity mapping
(Φ = Id), the features GC ∈ Fevolve according to the discrete dynamical system

GC = GC−1 + 5C(GC−1).

E [152] as well as Haber and Ruthotto [153] suggested to interpret this ResNet
as a forward Euler discretization of the corresponding non-autonomous ordinary
differential equation (ODE)

GC − GC−1
ΔC

≈ ¤G = 5 (C , G).

This connection of ResNets and ODEs leads to various network architectures inspired
by stable ODE discretization schemes [153–155] and enables a theoretical analysis of
ResNets from the ODE and optimal control perspective [58, 156].

We conclude this section by introducing dense neural networks (DenseNets) [157],
which are a variant of ResNets. DenseNets extend the idea of skip connections and
include all previously computed features G8 ∈ Ffor 8 = 0, . . . , C − 1 as input to the
Cth dense block ℎC : FC → F, which results in the dynamical system

GC = 5C(GC−1 , GC−2 , . . . , G1 , G0).
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Figure 3.13:Visualization of the residual
neural network architecture. The initial
features are extracted from the input G
using a linear input layer Win and the
nonlinear activation layer Φ. These fea-
tures are then processed by a sequence
of residual blocks ℎ8 . The final output
is generated by a linear layer Wout and
the output layerΨ.
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Figure 3.14: Visualization of the dense
neural network architecture. Initial fea-
tures are extracted from the input G us-
ing the linear layer,in and the nonlin-
ear activation layerΨ as in the residual
architecture. These features are then pro-
cessed by a sequence of residual func-
tions ℎ8 that operate on the entire history
of features (G0 , . . . , G8−1) and increase
the number of features by concatenating
(symbolized by /) a nonlinear transfor-
mation (Ψ◦W2

8 ◦Ψ◦W1
8 ) to the previous

features. The increasing number of fea-
tures is symbolized by the increasing
width of the arrows. Finally, the output
is generated by a linear layer Wout and
the output layerΨ.

The structure of the DenseNet is rather similar to the ResNet architecture, as shown
in Figure 3.14. The major difference is that the output of the residual function is not
added to the input features but concatenated. This leads to a consistent increase of
the feature dimension from the input towards the output of a DenseNet. Therefore,
every dense block is able to extract relevant information from the entire history of
features, which results in a performance increase on various tasks [157] compared to
ResNets. Moreover, the memory footprint and the number of learnable parameters
of DenseNets is smaller compared to competing architectures due to the excessive
reuse of information encoded in intermediate features [157].
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1: This integral is not numerically
tractable in most realistic applications in
imaging. For example, consider a small
discrete image of size 8 × 8 and assume
each pixel can take values of the dis-
crete set {0, . . . , 255}. Then, the number
of all possible images is |X| = 25664 =
1.3408 · 10154. This is much more than
the estimate of the total number of pro-
tons in our observable universe, which
is around 1080 due to Arthur S. Edding-
ton [158].
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As we have seen in Chapter 1 various problems in computer vision and medical
imaging can be cast as inverse problems. The task for these problems is to estimate
an unknown image H given some observations I that often only partially capture
the underlying image and are subject to measurement uncertainties. To account
for this loss of information and measurement noise in the observations I, the
Bayesian approach to the statistical viewpoint of inverse problems can be used to
develop a rigorous framework [31]. In its essence the Bayesian approach advocates to
summarize all knowledge about the unknown solution G of an inverse problem using
the posterior distribution ?(G |I), which reflects the belief in a distinct solution G given
the observations I. According to Bayes’ theorem [34] the posterior probability ?(G |I)
is given by the product of the data likelihood ?(I |G) and the prior ?(G)weighted by
the evidence ?(I), i.e.

?(G |I) = ?(I |G)?(G)
?(I) .

Here, the likelihood ?(I |G) assigns a probability to the observations I given the
solution G using an underlying model of the acquisition process, while the prior prob-
ability ?(G) is determined by a prior model reflecting the general knowledge about
suitable solutions. The evidence, which is also known as the marginal likelihood,
defines the probability of the observations I and could be computed bymarginalizing
the joint probability over all possible images G ∈ X, i.e. ?(I) =

∫
X
?(I |G)?(G)dG 1. In

many applications modeling the likelihood is straight-forward due to the profound
physical knowledge about the acquisition process, e.g. low-dose computed tomogra-
phy (CT), accelerated magnetic resonance imaging (MRI), or image deconvolution.
However, the grand challenge in inverse problems for imaging is the development of
a prior model that captures the entire complexity of the statistics of natural images.
Later in this chapter, we discuss how complex and nonlinear the statistics of natural
images actually are.

Using the likelihood and prior model, a solution to an inverse problem is frequently
computed by maximizing the posterior probability

Ĝ B argmax
G

?(G |I) = argmax
G

?(I |G)?(G).

The solution Ĝ is known as the maximum a-posteriori (MAP) estimator [32, 34].
Note that the evidence ?(I) can be omitted since it does not affect the maximizing
argument. If we consider the objective function in a negative logarithmic domain, we
end up with the following equivalent minimization problem

Ĝ = argmin
G
− log ?(I |G) − log ?(G),

which can be linked with the variational formulation for inverse problems. The
variational formulation amounts to minimizing an energy E(G, I) composed of a data
fidelity term D and a regularizer R, i.e.

Ĝ = argmin
G
{E(G, I) B D(G, I) + R(G)} .

Thus, the data fidelity term corresponds to the negative log-likelihood − log ?(I |G)
and the regularizer can be identified with the negative log-prior − log ?(G). As a
result, the data fidelity termmodels detailed knowledge about the acquisition process



4 Regularizers in Imaging 70

2: In fact a negative attenuation makes
no sense from a physical point of view.

and associates the solution G with the observation I, while the regularizer reflects all
the general knowledge about the solution.

Let us consider the inverse problem of CT reconstruction to illustrate the variational
approach. Here, the task is to compute an attenuationmap G ∈ ℝ= given the observed
X-ray projection data I ∈ ℝ; , which consists of ; ray measurements. Let us assume
that the linear projection operator � ∈ ℝ;×= extracts the projection data for a given
attenuation map and further assume that the measurement uncertainty is due to
independent and identically distributed (i.i.d.) Gaussian noise with variance �2, i.e.
I ∼ N(�H, �2 Id), where H ∈ ℝ= is the ground truth attenuation map. Then, the
corresponding likelihood is given by

?(I |G) = det
(
2��2 Id

)− 1
2 exp

(
− 1

2�2 ‖�G − I‖22
)
.

Taking the negative logarithm and neglecting the constant terms results in the
corresponding data fidelity term

D(G, I) = 1
2�2 ‖�G − I‖22 .

Suppose the only piece of information we have about the unknown solution is that
each element of the attenuation map is positive2 and bounded from above by 1 due
to some physical limitations. A suitable prior distribution to reflect this circumstance
is given by the uniform distribution G ∼ U(0, 1)= . Then, the particular form of the
prior is defined as

?(G) =
=∏
8=1

1[0,1](G8)

with

1[0,1](G) =
{

1 for 0 ≤ G ≤ 1
0 else

.

Again taking the negative logarithm, we get the corresponding regularizer

R(G) =
=∑
8=1

�[0,1](G8)

for

�[0,1](G) =
{

0 for 0 ≤ G ≤ 1
∞ else

.

By denoting �[0,1]= as the indicator function of the set [0, 1]= , the regularizer is given
by '(G) = �[0,1]= (G). Thus, computing the MAP estimator for this CT reconstruction
problem is equivalent to minimizing the variational energy

Ĝ = argmin
G

1
2�2 ‖�G − I‖22 + �[0,1]= (G).

This simple problem already demonstrates that the likelihood and the corresponding
data fidelity term can be often directly deduced from the problem at hand, whereas
modeling the prior and the regularizer requires knowledge about the structure of the
solution.

In the remainder of this chapter, we introduce a matrix and vector representation
for discrete images and elaborate on the nonlinear and diverse structure of the
statistics of natural images. Then, we provide an overview of principles exploited to
design classical regularizers and finally present parametric regularizers which can be
adapted to specific tasks by learning their parameters from data.
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3

Figure 4.1: Illustration of the pixel
grid% ∈ ℝ=E×=ℎ of an image of size =E×
=ℎ . Each pixel has a quadratic shape
with edge length 3 and its center is lo-
cated at ?8 , 9 for (8 , 9) ∈ I.

4.1 Representation of Discrete Images

In this section, we define the representations of discrete images used throughout this
thesis. First, we define the matrix representation of discrete 2-dimensional images
and later link it to the vector representation of images. Finally, the discrete image
gradient representing the vertical and horizontal gradients is defined.

4.1.1 Discrete Images

Let 3 > 0 be the distance between two centers of adjacent image pixels and =E , =ℎ ∈ ℕ
the number of vertical and horizontal pixels of an image, respectively. Then, a discrete
image of size =E × =ℎ is given by the matrix - ∈ ℝ=E×=ℎ and its elements

G8 , 9 ∈ ℝ, for (8 , 9) ∈ IB {1, . . . , =E} × {1, . . . , =ℎ}

describe the intensity values of the image at the pixel locations

?8 , 9 =

(
83
93

)

within a regular rectangular pixel grid % ∈ ℝ=E×=ℎ , as illustrated in Figure 4.1. In this
formulation, we assumed for the sake of simplicity that the image pixels are quadratic.
In the case of rectangular pixels, the distances of the pixels in the horizontal and
vertical direction must be selected accordingly.

Beside the matrix representation of an image - ∈ ℝ=E×=ℎ , we frequently use its
vector representation G ∈ ℝ= for = = =E · =ℎ . The vector representation of a discrete
image is simply defined by the lexicographic ordering of the elements of the matrix
representation -, i.e.

G B

©­­­­­­­­­­­­­«

G1,1
G1,2
...

G1,=ℎ
G2,1
...

G=E ,(=ℎ−1)
G=E ,=ℎ

ª®®®®®®®®®®®®®¬

.

Further, we often use just a single index 8 = 1, . . . , = to identify the elements of the
vector representation G = (G1 . . . G=)> in order to simplify notation. To distinguish
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both representations, we use uppercase letters for the matrix representation and
lowercase letters for the vector representation.

4.1.2 Discrete Image Gradients

The gradient of discrete images is typically computed by means of finite differences.
Thus, we define at every pixel location ?8 , 9 with (8 , 9) ∈ I the discrete gradient of a
discrete image - ∈ ℝ=E×=ℎ by

1
3

(
G8 , 9+1 − G8 , 9
G8+1, 9 − G8 , 9

)
,

where we assume that the gradient vanishes on the boundary (Neumann boundary
conditions). In order to define this gradient in the matrix representation, we use
the horizontal and vertical gradient matrices �-ℎ , �-E ∈ ℝ=E×=ℎ with elements
computed by

(�-ℎ)8 , 9 =
{

1
3 (G8 , 9+1 − G8 , 9) for 1 ≤ 9 < =ℎ
0 for 9 = =ℎ

and

(�-E)8 , 9 =
{

1
3 (G8+1, 9 − G8 , 9) for 1 ≤ 8 < =E
0 for 8 = =E

,

respectively.

In analogy to the vector representation of images, we define the vector representation
of vertical and horizontal image gradients by the lexicographic ordering of the
associated matrix representations. Thus, the vector representations of the horizontal
and vertical image gradient are given by

�ℎG B
1
3

©­­­­­­­­­­­­­­­«

G1,2 − G1,1
G1,3 − G1,2

...
G1,=ℎ − G1,(=ℎ−1)

0
G=E ,2 − G=E ,1

...
G=E ,=ℎ − G=E ,(=ℎ−1)

0

ª®®®®®®®®®®®®®®®¬

�EG B
1
3

©­­­­­­­­­­­­­­­­­­«

G2,1 − G1,1
G2,2 − G1,2

...
G2,=ℎ − G1,=ℎ
G3,1 − G2,1

...
G=E ,=ℎ − G(=E−1),=ℎ

0
...
0

ª®®®®®®®®®®®®®®®®®®¬

.

These equations define the linear matrix operators �ℎ , �E ∈ ℝ=×= that extract the
horizontal respectively vertical gradient of an image represented by the vector G ∈ ℝ= .
In addition, we will frequently use the discrete gradient operator � : ℝ= → ℝ2×=
given as

�G B

((�ℎG)>
(�EG)>

)
.

The discrete gradient operator essentially concatenates the horizontal and vertical
image gradient vectors into a matrix with two rows.

4.2 Statistics of Natural Images

The pioneering study of neurons in the visual cortex conducted by Hubel and
Wiesel [159, 160] led to a deeper understanding of the visual perceptual systems
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Figure 4.2: Visualization of the loga-
rithmic joint density of the horizon-
tal and vertical image gradient in the
upper left corner log ?((�ℎG)1 , (�EG)1),
estimated using 14, 000, 000 patches of
size 2× 2 from the campus dataset [162].
The bottom-plane includes a contour
plot of the estimated density. The left
plane shows the estimated logarith-
mic marginal statistics of just the ver-
tical gradients log ?((�EG)1), while the
right plane shows its horizontal equiva-
lent log ?((�ℎG)1). Cool colors indicate
areas with low density, while warm col-
ors mark areas with higher density.

of mammals and showed that the visual stream is processed by a sequence of
transformations. Initially, Field [35] as well as Ruderman and Bialek [36] characterized
natural images and studied their statistics to better understand the evolution of the
mammalian visual system. Later, the computer vision community studied the statistics
of natural images to find more realistic priors and thereby regularizers in order
to improve the performance in various applications such as image reconstruction,
denoising, and compression. Therefore, Huang and Mumford [43], Simoncelli [44],
andGrenander and Srivastava [161] developed simple parametric probabilisticmodels
that well describe the statistics of natural images in the gradient domain and the
complex dependency of pairs of wavelet coefficients. Following their work, we
empirically analyze the statistics of gradients and image patches in this section.

4.2.1 Statistics of Gradients

We consider discrete images defined on a regular pixel grid and extract statistics
of the horizontal and vertical image gradients since they are invariant to intensity
shifts and capture the local structure of images. To this end, we consider 2 × 2 image
patches from a dataset of natural images. Throughout this chapter, we use the campus
dataset [162], which consists of 90 images of size 4, 284 × 2, 844 each stored with
a precision of 16bit, as a source for natural images that also include human-made
structures. We convert the images to floating-point precision and rescale them by
216 − 1 such that all intensities of an image are in [0, 1]. Then, we randomly extract #
patches of size 2 × 2 from all images of the campus dataset [162] and processed them
in the following manner. Let G8 ∈ ℝ4 represent a 2 × 2 image patch using the vector
representation defined in Section 4.1.1 for 8 = 1, . . . , # . We denote by �ℎ ∈ ℝ4×4

the horizontal finite difference operator and by �E ∈ ℝ4×4 its vertical equivalent
defined in Section 4.1.2. We use # = 14, 000, 000 patches of the campus dataset [162]
to empirically estimate the marginal density distribution of horizontal and vertical
gradients in the upper left corner ?((�ℎG)1 , (�EG)1) of the patches. The resulting
estimated density is depicted in Figure 4.2 in a logarithmic domain. The surface
plot of the estimated density indicates that the distribution has a high kurtosis, a
sharp apex at (�ℎG)1 = (�EG)1 = 0, and a long exponential tail. This means that the
majority of the image gradients is actually rather small, which reflects that images
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Figure 4.3: Estimated marginal dis-
tribution of the horizontal (left,
− log ?((�ℎG)1)) and vertical (right,
− log ?((�EG)1)) image gradients in a
negative logarithmic domain.

typically consist of objects with a distinct color, e.g. sky and street, or textured regions
with small color variations such as sand, grass, and soil. However, large gradients,
corresponding to sharp edges between objects in an image, are typically very sparse.
In addition, the contour plot at the bottom plane indicates that the density of the
vertical and horizontal gradients is not independent.

In order to link the statistics of image gradients with regularizers, we plot the negative
logarithm of the estimated marginal horizontal and vertical image gradient density
in Figure 4.3. The marginal distributions of the horizontal and vertical gradients
also have a high kurtosis, a sharp apex at zero, and a long exponential tail. Thus,
a regularizer for image gradients should assign a penalization energy that reflects
the strength of the gradient, since small gradients occur quite frequently while large
gradients are sparse. As a result, a good regularizer for image gradients describes
the statistics of natural images in the negative log-domain well. Further below in
this chapter, we discuss classical principle-based regularizers, their mathematical
properties, and how well they represent the statistics of natural images.

4.2.2 Statistics of 2 × 2 Image Patches

To analyze the local geometrical structure of 2 × 2 image patches, we follow the
approach of Lee et al. [163] and compute image statistics on the zero-mean and
normalized sphere in the discrete cosine transform (DCT) domain. In detail, let
G8 ∈ ℝ=2 for 8 = 1, . . . , # represent samples of = × = image patches as discussed in
Section 4.1.1. We transform a vector representation of a patch G8 into the DCT domain
by using the transformation matrix �=×= = (18 , 9)=2

8 , 9=1 ∈ ℝ=2×=2 , whose entries are
given by

1;=+<+1,8=+9+1 = 4
(;)
(<) cos
(
�;(28 + 1)

2=

)
cos

(
�<(29 + 1)

2=

)
(4.1)

for 0 ≤ ; , <, 8, 9 ≤ = − 1 with the scaling coefficients


(8) =


√

1
4= for 8 = 0,√
1

2= for 0 < 8 ≤ = − 1.

These entries are the coefficients of the inverse DCT-II transform [164] and the rows
of the transformation matrix �=×= hold the vector representations of the DCT filters
forming an orthonormal basis. Here, we are interested in the statistics of zero-mean
2 × 2 image patches (= = 2). Thus, the corresponding transformation matrix is given
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Figure 4.5: Illustration of the estimated
density of zero-mean and normalized
DCT coefficients of 2 × 2 image patches
on the unit sphere S2 as a function of
the lateral and longitudinal angles. The
estimated density is color-coded using a
logarithmic scale, where warmer colors
indicate higher densities.

Figure 4.4: Illustration of the estimated
density of zero-mean and normalized
DCT coefficients of 2 × 2 image patches
on the unit sphere S2. The estimated
density is color-coded using a logarith-
mic scale, where warmer colors indicate
higher densities.

by

�2×2 =
1
2
©­«
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

ª®¬
,

where we omitted the first row that computes the patch average. Then, the DCT
coefficients H8 ∈ ℝ3 are given by

H8 = �2×2G8

for 8 = 1, . . . , # . Finally, we project the DCT coefficients onto the unit sphere S2 B{
H ∈ ℝ3 :



H

2 = 1
}
by normalizing the coefficients

Ĥ =
H

H

2

.

The resulting density on S2 of the same 14, 000, 000 patch samples as in the previous
section is depicted in Figure 4.4 using a logarithmic color code, where warmer colors
indicate regions with higher density. To grasp the entire statistics of natural 2 × 2
image patches, we visualize the whole surface of the unit sphere S2 by parametrizing
its surface by longitudinal and lateral angles in Figure 4.5. The resulting estimated
density resembles a projection of a double helix with four distinct regions of maximal
density at the equatorial regions and diminishing densities at polar regions. Note
that the two poles correspond to the two possible checkerboard patches, while step
edges with all possible orientations are located along the equator. Further, the density
within the four rhombi is larger than outside and alternates from left to right. In the
first rhombus on the left, the density inside is larger in the northern region, while in
the second-left rhombus it is larger in the southern regions. This alternating pattern
continues in the third and fourth rhombus. In addition, the top and the bottom corner
of adjacent rhombi are connected by a small band that represents edge patches in
different orientations and intensities. As a result, the statistics of natural 2 × 2 image
patches clearly do not follow a Gaussian density distribution and the density does
not factorize along the DCT coefficients.

4.2.3 Statistics of DCT and Random Filter Responses

The DCT filters and the thereby extracted coefficients are widely used in computer
vision applications (e.g. JPEG compression [165]) and random filters are common
in machine learning [166, 167]. Thus, analyzing the statistics of their responses for
natural images is of high interest. To compute the DCT-II = × = basis filters, we first
compute the �=×= ∈ ℝ=2×=2 transformation matrix defined in Equation (4.1). Then,
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Figure 4.6: Statistics of responses of var-
ious filters applied to the considered
natural image dataset. The top row de-
picts the 24 DCT filters of size 5 × 5
along with the estimated density us-
ing a logarithmic scale, while the bot-
tom row depicts random filters, where
each coefficient is drawn from a normal
distribution N(0, 1), along with the es-
timated logarithmic density. Note that
each filter has zero-mean and is normal-
ized such that its ℓ2-norm equals one.
The density distributions have the same
support in each row. For the DCT re-
sponses, the support is [−1, 1], while we
used [−0.2, 0.2] for the random filters to
account for the smaller amplitudes of
the responses.

each row is the vector representation of an = × = DCT filter. The corresponding
2-dimensional filters for = = 5 are depicted in the top row in Figure 4.6. We omit
the constant filter since it just reflects the local average in the = × = neighborhood
of a pixel. The remaining basis filters all have zero-mean and are normalized such
that their ℓ 2-norm equals 1. These filters are sorted such that the high-frequency
components increase form top left to bottom right starting from low-frequency step
edge filters in the horizontal and vertical direction. Using these basis filters, we
compute the response of 14, 000, 000 image patches of size 5 × 5 sampled from the
campus dataset [162]. The estimated marginal densities across all considered patches
are depicted in Figure 4.6 below the DCT basis filters. The statistics of the first basis
filter responses are characterized by a high kurtosis, a sharp apex at zero, and a
long exponential tail, just as the marginal statistics of horizontal and vertical image
gradients, see Figure 4.3. The higher frequent the basis filters become, the smaller
becomes the tail of the associated marginal distribution and its peak at zero turns
sharper. However, the overall shape of the distribution remains unchanged. To sum
up, the statistics of DCT basis filter responses indicate that there are few patches with
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high-frequency components in natural images (smaller tails of the corresponding
density distributions) and the shape of all estimated density distributions is similar,
independent of the associated basis filter.

To ensure that the independence of the shape of the density distribution is a property
of natural images and not due to the particular structure of the DCT-II basis filters,
we evaluate the filter responses of random filters as suggested by Huang [168]. To this
end, we randomly sample coefficients :̂8 , 9 ∼ N(0, 1) for 1 ≤ 8 , 9 ≤ = from a normal
distribution and construct zero-mean and normalized filters  ∈ ℝ=×= by setting
their coefficients to

:8 , 9 =
:̂8 , 9 − �√

=∑
; ,<=1

(
:̂; ,< − �

)2

for 1 ≤ 8 , 9 ≤ = with

� =
=∑

8 , 9=1
:̂8 , 9 .

We show 24 of these random filters for = = 5 at the bottom in Figure 4.6 alongwith the
estimated density distributions of the corresponding responses for the natural image
patch dataset defined above. Clearly, the overall shape of the density distributions
does not change and is independent of the corresponding filter. As a result, it is
an intrinsic property of natural images that the logarithmic density distributions
of coefficient extracted by zero-mean and normalized filters have a high kurtosis, a
sharp peak at zero, and an exponential tail.

There are further aspects of the statistics of natural images such as their scale
invariance [35, 36, 169] or self-similarity [35, 170, 171] that can be exploited to improve
for instance image denoising [72]. However, for the sake of conciseness, we do not
provide further details.

4.3 First-principle-based Regularizers

Inverse problems are often ill-posed in the sense of Hadamard [9], i.e., their solution
is typically unstable with respect to perturbations of the observations (measurement
noise), numerical errors in the computation of the solution, or there is a whole
family of solutions that describe the observations equally well, e.g. accelerated
MRI or undersampled CT. Originally, regularization techniques were developed to
address these instabilities of ill-posed inverse problems and based on the works of
Tikhonov [22, 172] a broad field of literature on regularization techniques evolved in
the last six decades. In his original work Tikhonov considered linear inverse problems
of the form I = �G ∈ ℝ; with � ∈ ℝ;×= and proposed to solve

min
G∈ℝ=

1
2 ‖�G − I‖22 + �

2 ‖G − G0‖22

for � > 0 and an a-priori estimate of the solution G0 ∈ ℝ= to end up with a
stable solution G ∈ ℝ= . Since we typically do not know the solution a-priori, we
assume G0 = 0. The solution to the resulting problem is given by

G = (�∗� + � Id)−1�∗I,

where �∗ is the adjoint matrix as specified in Definition 2.1.12. For � > 0 the inverse
can be computed since �∗� + � Id is positive definite and symmetric for any �. The
stability of the solutionwith respect to perturbations of the observations then strongly
depends on the condition number of (�∗� + � Id)−1�∗, which can be controlled by
setting � properly.
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Figure 4.7: Original image of the water
castle Châteaud’Azay-le-Rideau by Jean-
Christophe Benoist (CC-BY-3.0).

PSNR = 20.20

Figure 4.8: Noisy water castle image.

PSNR = 24.86

Figure 4.9: Denoised water castle image
using quadratically penalized gradients.

While in many machine learning settings the penalization of the ℓ 2-norm of the
solution is beneficial (e.g. weight decay, support vector machines (SVMs)) [32, 34],
we typically avoid penalizing the image intensities in imaging problems since it
introduces a bias towards dark images with low intensities. Therefore, we follow the
idea of Phillips [23] and incorporate a prior concerning the smoothness of the solution
by penalizing the quadratic ℓ 2-norm of the image gradients. Then, the solution is
given by

min
G∈ℝ=

1
2 ‖�G − I‖22 + �

2 ‖�G‖2� ,
which is unique if the intersection of the null space of both operators only includes
the zero vector, i.e. ker (�) ∩ ker (�) = {0}, because only then the resulting linear
system of equations (�∗� + ��∗�)G = �∗I has a unique solution. Penalizing the
intensity of the gradients is better suited for imaging problems since the majority of
the gradient magnitudes in the horizontal and vertical direction are small as we have
seen in the previous section.

To numerically check this assumption and compare different regularizers, we consider
the Gaussian denoising problem throughout the next sections in this chapter. Let
H ∈ ℝ= be the ground truth image depicted in Figure 4.7 and I = H + � ∈ ℝ= the
observed image degraded by additive Gaussian noise � ∼N(0, �2 Id) with standard
deviation � = 0.1, as illustrated in Figure 4.8. The task is to compute an estimate Ĝ
that is as close as possible to the ground truth H by solving

Ĝ = argmin
G∈ℝ

1
2 ‖G − I‖22 + R(G) (4.2)

for different regularizers R : ℝ= → ℝ.

As a first regularizer we consider the quadratic gradient penalization

RQ(G) = �
2 ‖�G‖2�

motivated by Phillips [23]. In the Gaussian image denoising case the linear operator
is given by the identity operator (� = Id), hence the solution of (4.2) is unique
(ker (Id) = {0}) and given by

Ĝ = (Id+��∗�)−1I.

Figure 4.9 shows the restored image Ĝ for � = 0.5. We determined the value for � by
a grid search such that the PSNR score of the resulting solution is maximal. Although
the PSNR score increased by more than 4dB compared to the noisy image, the quality
of the image is not satisfactory. The image is still heavily degraded by noise and if �
was further increased, the noise along with the image edges would be smoothed out,
which would result in low-frequency noise and blurry image edges.

Tikhonov’s as well as Phillips’ approach amount to computing solutions of inverse
problems by solving a least squares problem, first defined by Carl Friedrich Gauss in
1795 and first published by Adrien-Marie Legendre in 1805 [173]. From a statistical
point of view, the quadratic penalization of the gradient implies that a Gaussian
distribution N(0, 1

� ) with variance 1
� of the horizontal and vertical image gradient

is assumed. However, the gradients of natural images are not Gaussian distributed
as we have seen in the previous section. In summary, the quadratic penalization
of image gradients can be solved efficiently in closed form but does not properly
account for the statistics of natural images.

4.3.1 Total Variation

Rudin pointed out in his PhD thesis [174] that the total variation (TV) norm, which
essentially accounts for the absolute gradient jumps within an image, should be used
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Figure 4.10: The solid blue curve shows
the estimated negative logarithmic den-
sity of thehorizontal gradients of natural
images as discussed in Section 4.2.1, the
dash-dotted red curve depicts �

2 (�ℎG)21
with � = 75 and the dashed green curve
depicts �|(�ℎG)1 | with � = 50. Note
that both � values were estimated in the
least squares sense.

in imaging to preserve sharp discontinuities such as step edges that frequently appear
between objects. Three decades after the publication of Tikhonov’s work, Rudin,
Osher, and Fatemi [1] applied the TV regularizer to Gaussian image denoising and
paved the way for a new flourishing research direction. In this section, we discuss
the TV regularizer and explore further TV-based regularizers.

The TV for discrete images G ∈ ℝ= considered in this thesis is given by

TV(G) B ‖�G‖2,1 , (4.3)

where � is the finite difference operator and the ‖ · ‖2,1 computes the ℓ 1-norm of the
ℓ 2-column norms. For an image G ∈ ℝ= , the isotropic TV can be computed by

TV(G) =
=∑
8=1

√
(�ℎG)28 + (�EG)28 .

Hence, it penalizes the absolute value of the gradient magnitude at each pixel. The
corresponding TV regularizer is then defined as

RTV(G) ≔ � ‖�G‖2,1 , (4.4)

where � > 0 is a parameter that defines the strength of the regularization. In contrast
to the quadratic penalization of gradients, the TV regularizer implicitly assumes that
the image gradients at each pixel follow a Laplace distribution Laplace(0, 1

� ) with
the corresponding probability density function

?Laplace(G) = �
2

exp
(−� ‖�G‖2,1) .

We depicted the associated Gaussian and Laplacian density functions in a nega-
tive logarithmic domain in Figure 4.10. Clearly, both the Gaussian and Laplacian
distribution do not describe the statistics of natural images well. Nevertheless, the
Laplacian distribution is a better model since it is closer to the empirically estimated
distribution of natural images. In fact, the absolute function associated with the TV
model is the best convex approximation of the estimated statistics. However, the
better approximation of the real density of image gradients of the TV regularizer
leads to the caveat that optimization is computationally more complex because the
absolute function is not continuously differentiable. This non-differentiability was
first addressed by smoothing the TV [27, 39, 175, 176] such that

TV�(G) =
=∑
8=1

√
(�ℎG)28 + (�EG)28 + �2

is continuously differentiability for � > 0. Later, Fenchel’s duality of TV

RTV(G) = max
H∈ℝ2×= :‖H‖2,∞≤�

〈
H, �G

〉
,

is used [177–179] to dualize the TV-ℓ 2 model for image denoising, which results in
the smooth dual problem. We show this by starting with the plain TV-ℓ 2 model for
image denoising

min
G

RTV(G) + 1
2 ‖G − I‖22 .

Since the TV is a convex function, it is identical to its biconjugate, see Theorem 2.4.21.
Thus, we have the equivalent problem

min
G

max
H∈ℝ2×= :‖H‖2,∞≤�

〈
H, �G

〉 + 1
2 ‖G − I‖22 .

Under mild conditions (Neumann’s minmax theorem [180]), we can swap the mini-
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PSNR = 25.97

Figure 4.11:Denoisedwater castle image
using the TV regularizer that penalizes
the magnitude of image gradients.

PSNR = 26.12

Figure 4.12: Denoised water castle im-
age using the TGV2 regularizer that does
not penalize constant image gradients.

Figure 4.13: Horizontal (upper right)
and vertical component (lower left) of
the resulting TGV2 vector field E dis-
played in the interval [− 1

4 ,
1
4 ]. Here, cool

and warm colors represent negative and
positive values, respectively.

mum and maximum to get

max
H∈ℝ2×= :‖H‖2,∞≤�

min
G

〈
H, �G

〉 + 1
2 ‖G − I‖22 ,

where the inner minimization problem is smooth in G with closed form solution

G = I − �∗H.

Plugging this result into the maximization problem yields the equivalent dual
problem

min
H∈

{
H∈ℝ2×= :‖H‖2,∞≤�

} 1
2



�∗H

2
2 −

〈
H, �I

〉
, (4.5)

which can be efficiently solved by for instance FISTA [99]. Building on the Fenchel
duality of TV, Chambolle and Pock proposed the primal-dual hybrid gradient
method [66] that does not require any smoothing, additionally accounts for a linear
operator � and has an optimal convergence rate.

If we apply the TV regularizer RTV to the Gaussian denoising problem (4.2) of the
water castle, we get the solution depicted in Figure 4.11. This solution was computed
by solving the dual problem (4.5) with � = 0.06 using FISTA [99], where � was
determined by a grid search such that the PSNR score of the resulting denoised image
is maximal. Compared to the previous result obtained by RQ, the image is actually
denoised and sharp edges are preserved and also the PSNR score increased by more
than 1 decibel. However, homogeneous regions of the image such as the sky, walls or
the water are not well restored and are in fact degraded by patchy step artifacts. This
issue originates from the fact that TV favors piecewise constant solutions, which is
known in the literature as the staircasing phenomenon of TV [27, 181].

To overcome the staircasing problem, the first-principle assumption on the image
gradients of TV has been extended to piecewise smooth images incorporating higher-
order image derivatives [27, 29, 182]. Chambolle and Lions [27] proposed to address
the staircasing effect by means of the infimal convolution problem

min
G1+G2=G

‖�G1‖2,1 +



�̃2G2





2,1
+ ‖�G − I‖22 ,

where the additional termpenalizes the TVof the image gradients and the operator �̃2

extracts the gradient of the image gradients. Later, Bredies, Kunisch, and Pock [29]
introduced the total generalized variation (TGV) as an extension of TV to regularize
and balance higher-order derivatives of images. TGV does not suffer from the
staircasing effect. The second-order TGV explicitly allows affine image intensity
profiles and is defined for discrete images as

'TGV2(G, E) B 
1 ‖�G − E‖2,1 + 
0


�2E




2,1 ,

where the operator �2 : ℝ2×= → ℝ3×= computes the symmetrized gradients of the
vector field E ∈ ℝ2×= and 
1 , 
0 > 0 are weights that balance the regularization
strength of the different derivatives. The underlying idea of this regularizer is that
the vector field E encodes the affine intensity profiles of the image such that they do
not affect the first TV term.

Figure 4.12 depicts the computed image of the TGV2 regularizer, where 
1 = 0.06 and

0 = 0.04 are adopted to the considered Gaussian image denoising problem. To solve
this problem, we used the primal-dual hybrid gradient algorithm [66] and as before
determined the values for 
1 and 
0 by a grid search maximizing the PSNR score
of the corresponding solution image. Compared to the result of the TV regularizer
(Figure 4.11) the PSNR score increased marginally by 0.15dB and the staircasing



4 Regularizers in Imaging 81

−0.5 0.0 0.5
(Dhx)1

0

5

10

15

Figure 4.14: The solid blue curve shows
the estimated negative logarithmic den-
sity of the horizontal gradients of
natural images as discussed in Sec-
tion 4.2.1, the dashed green curve de-

picts

(�ℎ G)21

1+(�(�ℎ G)1)2
with 
 = 878.38, � =

7.64, and the dash-dotted red curve de-
picts 
 log

(
1 + (�(�ℎG)1)2

)
with 
 =

3.84, � = 78.85.Note that in both cases

and �were estimated in the least squares
sense.

effect was reduced especially at the roof of the towers. In particular, the vector field E
depicted in Figure 4.13 indicates where the TGV2 regularizer accounts for the local
affine image structures to avoid staircasing. Nevertheless, the homogeneous regions
such as the sky or water are still degraded by patchy structures.

4.3.2 Non-convex Regularizers

In their seminal work Geman and Geman [33] link image restoration problems with
finding low-energy states of a corresponding physical system. The energy function
of the system defines an associated Gibbs distribution, which comes along with a
Markov random field (MRF) [34] image model due to the Gibbs distribution and
MRF equivalence. To account for the ill-posed nature of inverse problems, Geman
and Geman imposed a-priori knowledge about the solution by regularizing image
gradients. In MRFs penalization functions are typically called potential functions. As
we have seen in the previous section, a quadratic potential function is not well suited
for image restoration as it leads to over smooth solutions due to the underlying global
smoothness assumption. However, real images are typically composed of smooth
objects that are separated by sharp interfaces. Therefore, a more realistic model allows
outliers in the gradients, which correspond to image edges. Motivated by robust
statistics, a zoo of potential functions was proposed in the literature, which can be
roughly separated into convex [37–39] and non-convex [6, 40–43, 183–185] potential
functions. For an in-depth survey of different potential functions, we refer to [39,
186]. In this section, we elaborate on smooth and non-convex potential functions that
explain the statistics of natural images well.

One of the first non-convex potential functions that allows for edge preservation is
due to Geman and McClure [6] and defined as

#Ge(G) = 
G2

1 + (�G)2 ,

where 
, � > 0 are parameters to adjust the shape of the potential function. Later,
Hebert and Leahy [42] as well as Huang and Mumford [43] motivated the use of the
potential function

#C(G) = 
 log
(
1 + (�G)2)

in imaging for shape-defining parameters 
, � > 0. This potential function assumes
that the gradients of natural images follow a Student-t distributionwith the associated
probability density function

?C(G) = 1
/(
, �)

1(
1 + (�G)2)
 ,

where /(
, �) is a normalization factor. Figure 4.14 depicts both potential functions
along with the estimated density function of horizontal gradients of the campus
dataset [162]. Compared to the quadratic and absolute potential functions (see
Figure 4.10), both potential functions fit the gradient statistics better and the Student-t
potential function #C is the best fit. Thus, a suitable regularizer based on the Student-t
potential function is given by

RC(G) =
=∑
8=1

∑
3∈{ℎ,E}


 log
(
1 + �2(�3G)28

)
, (4.6)

which equally penalizes the horizontal and vertical image gradients.

Let us again consider the Gaussian denoising problem of the water castle to evaluate
the quality of RC . To optimize the adapted smooth non-convex problem, we use the
accelerated gradientmethod [98] withmomentum 1√

2
, which helps to escape spurious
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PSNR = 25.99

Figure 4.15: Denoised water castle im-
age using the Student-t potential func-
tion on the image gradients.

local minima. Figure 4.15 depicts the resulting image, where the parameters 
, �
were determined by a grid search such that the PSNR score of the associated solution
is maximized. The PSNR score has only marginally improved compared to the TV
solution (see Figure 4.11). The solution associated with RC is not degraded by the
staircasing effect but homogeneous regions are degraded by low-frequency noise.
Since this potential function describes the statistics of natural image gradients quite
well (see Figure 4.14), a straight forward approach to improve the performance is
the consideration of higher-order information of images. However, with increasing
number of higher-order information, identifying these parameters manually becomes
harder due to the curse of dimensionality. Therefore, a straight forward approach
is to consider higher-order parametric regularizers and identify its parameters by
means of learning [45, 46, 51, 53, 56, 57, 60, 61, 63, 187–189].

We conclude this section with some remarks on the optimization of these non-convex
energies. Geman and Geman [33] computed the solutions of the corresponding
MRFs using stochastic methods such as simulated annealing [190], which avoid
local minima by random permutations. This ensures convergence to global minima
in non-convex optimization problems, however the computational effort is very
high [33]. Later, Blake and Zisserman [41] proposed a deterministic algorithm called
graduated non-convexity, where the non-convex potential function is approximated
by a parametric function. Initially, this parametric approximation yields a convex
potential function and during the optimization, the parametric function is adapted
such that it eventually resembles the considered non-convex potential function.
Nowadays, classical optimization algorithms such as accelerated gradient method,
nonlinear conjugate gradient [191], or L-BFGS are used to solve these non-convex
problems [52, 53]. However, these only guarantee convergence to stationary points.

4.4 Parametric Regularizers

In the previous section, we saw that regularizers operating only on the first-order
statistics of natural images do not yield satisfactory results when used to denoise
complex structured images such as the water castle image. In addition, the results
were improved by penalizing second-order information using the TGV regularizer.
Thus, an obvious idea is to consider higher-order statistics of images. However,
modeling these higher-order statistics is challenging due to the large dimensionality
of images and the complex statistics of large pixel neighborhoods [43, 44]. Therefore,
parametric regularizers were developed whose parameters can be identified by
learning from data.

To simplify the learning process and account for properties of natural images, it is
reasonable to incorporate invariances in the parametric regularizer. Images capture
arbitrary scenes of the universe, thus spatial translation invariance should be reflected
in the regularizer design since objects are equally likely to appear at any image
location. Furthermore, diverse lighting conditions manifest in various shadings of
the same objects in different images. Hence, it is sensible to also consider radiometric
shift-invariance in the design of a regularizer.

One of the first approaches to learn parameters of higher-order regularizers is due to
Zhu and Mumford [45, 46]. They proposed a regularizer that penalizes images by
applying potential functions � 9 : ℝ→ ℝ to image features extracted by convolutional
filters represented by the linear matrix operator  9 ∈ ℝ=×= with the particular
structure

RZM(G) B
=∑
8=1

<∑
9=1

� 9(( 9G)8).

In their regularizer, they proposed to include horizontal and vertical derivative,
Laplacian, and Gabor filter candidates at different scales and advocated potential
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functions � 9 using piecewise constant interpolation on predefined bins. The interpo-
lation weights of each potential function are determined such that it reproduces the
statistics of the corresponding image feature. A filter pursuit algorithm determines
whether the corresponding feature is included in the final regularizer. Due to the use
of piecewise constant potential functions, this regularizer cannot be advocated in a
first-order optimization-based image reconstruction approach.

A bit later Hinton [47] proposed to model high-dimensional data distributions by a
product of experts 59 for 9 = 1, . . . , <, where each expert function can specialize on a
distinct feature of the data, i.e.

?(G |�1 , . . . , �<) = 1
/

<∏
9=1

59(G |�9).

Here, �9 for 9 = 1, . . . , < are the parameters of the individual experts and / is
a normalization constant that ensures proper scaling of ?(G |�1 , . . . , �<). Shortly
afterwards, the product of experts model was applied to imaging [49] by modeling
the statistics of B × B natural image patches G ∈ ℝB2 by a family of experts, each
following the Student-t model

59(G |�9) = 1(
1 + 〈

: 9 , G
〉2

)
 9 ,

where : 9 is the 9th row of the linear matrix operator  ∈ ℝ<×B2 and �9 = (
 9 , : 9)
denotes all parameters of the 9th expert, which are the weights 
 9 ∈ ℝ and the
coefficients : 9 ∈ ℝB2 . Note that< > B2 enables an over-complete representation of the
patch statistics. The parameters �9 were estimated using contrastive divergence [48],
whichwediscuss later in Section 4.4.3.1. In order to apply this patch-based priormodel
to full images, every overlapping patch of an image must be processed separately
and the resulting image is given by a pixel-wise average of the overlapping patches.
However, this approach is not suitable for most inverse problems since they typically
do not decouple along image patches.

4.4.1 Fields of Experts

Roth and Black [51] introduced the fields of experts (FoE) model to learn generic
image priors capturing the statistics of natural images by extending the product
of experts model [47] to convolutional filters. Their resulting prior model for an
image G ∈ ℝ= is given by

?FoE(G, �) = 1
/(�)

=∏
8=1

<∏
9=1

exp
(−)(( 9G)8 , F 9)

)
,

where each  9 ∈ ℝ=×= is a linear operator corresponding to a convolution filter of
size B × B with coefficients : 9 ∈ ℝB2 and the potential functions ) : ℝ ×ℝ#F → ℝ

are parameterized by the weights F 9 ∈ ℝ#F . In particular, this prior is translation
invariant. All model parameters are combined in � = (: 9 , F 9)<9=1 ∈ Θ, where Θ ⊂
ℝ<×B2×#F defines the space of feasible parameters. The associated FoE regularizer is
then defined as the sum of the pixel-wise energy rFoE : ℝ= × Θ→ ℝ= ,

RFoE(G, �) =
=∑
8=1

rFoE(G, �)8 =
=∑
8=1
Ψ( G,,)8 (4.7)
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Figure 4.16:Visualization of the fields of
experts regularizer. On the left an input
image is depicted and the resultingpixel-
wise energy rFoE is depicted on the right,
which is computed by extracting local
features using convolution kernels and
associated potential functions.

using the linear filter operator  = ( 1 . . .  <)> ∈ ℝ=<×= and the aggregated
potential functionΨ : ℝ=< ×ℝ<×#F → ℝ=

Ψ( G,,)8 =
<∑
9=1

)(( 9G)8 , F 9),

where , = (F1 . . . F<)> is a matrix aggregating the parameters of all poten-
tial functions. The computational structure of the FoE regularizer is visualized in
Figure 4.16.

Roth and Black [51] considered the convex potential function )(G, F) = F
√

1 + G2,
which is a smooth approximation of the absolute function due to Charbonnier [39] as
well as the non-convex potential function )(G, F) = F log(1 + G2). In both cases, the
potential functions are parameterized by a scalarweightF ∈ ℝ, which implies#F = 1.
To further increase the expressivity of the regularizer, Chen et. al [55] parameterized
each potential function by weighted radial basis functions motivated by [192]. In the
case of Gaussian radial basis functions, the altered potential function reads as

)(G, F) =
#F∑
;=1

F;!
( G − �;

�

)

for a weight vector F ∈ ℝ; , !(G) = exp(−G2), #F equidistantly placed centers �; in
the interval [−E, E] and � = 2E

#F−1 . Note that in this case, the interval specified by E > 0
should be large enough to capture the range of the filter responses. While in [51] the
norm of a filter determines the steepness of the Student-t distribution, the flexibility of
radial basis functions enabled [55] to fix the norm of the filter coefficients (



: 9

2 = 1)
and determine the maximal filter response for bounded images, which defines the
extent E. An additional zero-mean constraint on the filter coefficients ensures that the
filter response is approximately symmetric around zero and guarantees invariance
against intensity shifts.

The receptive field of the pixel-wise FoE energy rFoE is limited by the filter size B.
Moreover, to express a certain image feature a specific expert filter has to specialize
in detecting it since a convolution is essentially a correlation with a flipped filter. To
encounter these issues, it is reasonable to define an image regularizer by means of
deep learning principles, which enables a nonlinear combination of image features to
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Figure 4.17: Visualization of the to-
tal deep variation regularizer (TDV3

3).
On the highest level, the deep vari-
ation A(G, �) = Ψ(N( G)) assigns to
each pixel an energy value incorporating
the local neighborhood. The nonlinear
function N (blue) is composed of three
macro-blocks (gray), each representing
a CNN with a U-Net-type architecture.
Each macro-blocks consist of five micro-
blocks (blue) with a residual structure
on three scales.

build a richer local image regularizer with a larger spatial support (receptive field).

4.4.2 Total Deep Variation

To combine the mathematically well understood variational formulation with today’s
top-performing deep learning approaches, we proposed in [59, 60] the data-driven
general-purpose total deep variation (TDV) regularizer. In contrast to many deep
learning approaches that learn a direct mapping from a corrupted input image to the
restored output [142, 193–195], the TDV regularizer is a deep convolutional neural
network (CNN) that operates on multiple scales in successive blocks and assigns to
each pixel in an image a local energy r(G, �). This regularization energy can be used
in the variational formulation of inverse problems to incorporate prior knowledge in
the reconstruction process.

The TDV regularizer for an image G ∈ ℝ=� of size = = =E × =ℎ with � channels is
defined as

'TDV(G, �) =
=∑
8=1

r(G, �)8 =
=∑
8=1
Ψ(FN( G))8 , (4.8)

where  ∈ ℝ=<×=� is a linear operator that stacks < convolution operators  9 ∈
ℝ=×=� with filters of support 3 × 3. The mapping N : ℝ=< → ℝ=< is a multi-
scale CNN and F ∈ ℝ=×=< is a learned 1 × 1 convolution kernel. The nonlinear
functionΨ : ℝ= → ℝ= assigns an energy to every pixel and is defined as

(G1 , . . . , G=) ↦→ (#(G1), . . . ,#(G=)),

where # ∈ �2(ℝ,ℝ) is a potential function. We denote by � the entity of learnable
parameters, i.e.  , all parameters ofNandF. The computational structure of the TDV
regularizer is visualized in Figure 4.17. In detail, TDV10 for integers 0, 1 ≥ 1 consists of
1 blocks Bl1 , . . . , Bl1 (gray blocks in Figure 4.17), each of them has a U-Net [196] type
architecture, where on all 0 scales residual blocks R81,1 ,R

8
1,2 , . . . ,R

8
0−1,1 ,R

8
0−1,2 ,R

8
0,1
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(yellow blocks in Figure 4.17) are applied. To increase the expressiveness of the
network, residual connections are added between scales of consecutive blocks
whenever possible. Each residual block R89 ,: with 8 ∈ {1, . . . , 1}, 9 ∈ {1, . . . , 0}
and : ∈ {1, 2} exhibits the particular structure R89 ,:(G, �) = G +  89 ,:,2Φ( 89 ,:,1G) for
convolution operators  89 ,:,1 ,  

8
9 ,:,2 ∈ ℝ=<×=< of size 3 × 3 with < feature channels

and no bias. Following [43], the Student-t potential is a suitable model for the
statistics of natural images, that is why we choose the particular activation function
Φ : ℝ=< → ℝ=<

(G1 , . . . , G=<) ↦→ ()(G1), . . . , )(G=<))
using the component-wise function )(G) = 1

2 log(1+G2)with the properties )′(0) = 0
and )′′(0) = 1. Taking into account the work by Zhang [197], we use 3×3 convolutions
and transposed convolutions with stride 2 for downsampling and upsampling in
conjunction with a blur kernel to avoid aliasing.

Comparing the TDV (4.8) to the FoE (4.7) regularizer, we see that the TDV regularizer
allows for an additional nonlinear transformation of the features before applying
the potential function. Moreover, the inherent multi-scale architecture of the TDV
regularizer enables an efficient extraction of higher-order image features defined over
a large local neighborhood.

4.4.3 Parameter Identification

Before a parametric regularizer can be applied to a problem, its parameters �
need to be identified. While determining a suitable regularization weight of the TV
regularizer in the TV-ℓ 2 model can be done manually or via grid search, the curse of
dimensionality prevents this strategy if hundreds or thousands of parameters have
to be identified, as in the case of the FoE or TDV regularizer. Therefore, we review
various approaches that have been proposed in the literature to learn the parameters
of regularizers in this section.

4.4.3.1 Contrastive Divergence

A first approach to learn the parameters � ∈ Θ of a parametric regularizer is to
maximize its likelihood. Let (ℝ= ,FH ,ℙH) be a complete probability space for natural
images of size = = =E × =ℎ with �-algebra FH and probability measure ℙH . We
denote by H ∈ ℝ= a random sample from the distribution of natural images TH . The
associated probability density of the parametric regularizer R for this random sample
reads as

exp(−R(H, �))∫
ℝ= exp(−R(G, �))dG .

Then, the maximal likelihood estimator of the parameters � ∈ Θ over natural images
is equivalent to minimizing the expected negative log-likelihood:

min
�∈Θ

{
J(�) B EH∼TH

[
'(H, �)] + log

(∫
ℝ=

exp(−R(G, �))dG
)}
.

For suitably smooth regularizers [87, Section 6.3, Theorem 6.28], the gradient of the
expected negative log-likelihood w.r.t. � is given by

%J(�)
%�

= EH∼TH

[
%R(H, �)

%�

]
−

∫
ℝ=

exp(−R(G, �))∫
ℝ= exp(−R(Ĝ , �))dĜ︸                     ︷︷                     ︸

ℙM(G,�)

%R(G, �)
%�

dG

= EH∼TH

[
%R(H, �)

%�

]
− EG∼TM

[
%R(G, �)

%�

]
, (4.9)
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where the second expectation is over the distribution TM associated with the induced
probability space of the model (ℝ= ,FM,ℙM). Thus, the gradient is given by the
difference of the expected gradient of natural images and the expected gradient
of model samples. The caveat of this maximum likelihood formulation is that the
second expectation requires sampling from the model distribution, which is typically
computationally demanding using for instance Markov chain Monte Carlo Gibbs
sampling. Moreover, samples from the model distribution have in general high
variance as pointed out by Hinton [48], which frequently does not lead to meaningful
gradients. Therefore, Hinton proposed to approximate the gradient by contrastive
divergence

%J(�)
%�
≈ EH∼TH

[
%R(H, �)

%�

]
− EG∼T

M1

[
%R(G, �)

%�

]
,

where the second expectation is computed over the distribution TM1 defined by
a single Gibbs sampling step on the model distribution originating from the data
distribution TH . This yields a very efficient approximation of the gradient with little
computational overhead. The resulting gradient can be used by any suitable first-order
method in order to maximize the expected log-likelihood.

Recently, Lunz et al. [61] advocated learning adversarial regularizers by minimizing
the difference of the expected regularization energy over ground truth samples and
corrupted samples. Note that the gradient of their objective function w.r.t. the model
parameters has a similar structure as (4.9). The only difference is that in the second
term the expectation is computed over the distribution of corrupted samples instead
of the model distribution.

4.4.3.2 Bilevel Learning

Bilevel learning is a supervised learning approach to learn the parameters � of
a regularizer in a discriminative way [52, 53, 198], as discussed in Section 3.1.3.
Let (Y× Ξ,F,ℙ) be a complete probability space on Y× Ξ with �-algebra F and
probability measure ℙ. We denote by (H, �) a pair of independent random variables
modeling the data representing the ground truth image H ∈ Y⊂ ℝ= and additive
noise � ∈ Ξ ⊂ ℝ; with associated distribution denoted by T= TY×TΞ. Each ground
truth image H represents an image of size = = =E × =ℎ and is related to the additive
noise � by means of the observation

I = �H + �,

where � ∈ ℝ;×= is the fixed task-dependent linear operator of this linear inverse
problem. Then, bilevel optimization amounts to minimizing the distance of the
ground truth and the restored output defined by the minimizer of the lower-level
problem, i.e.

min
�

E(H,�)∼Tℓ (G∗(H, �) − H) s.t. G∗(H, �) = argmin
G

R(G, �) + 1
2 ‖�G − I‖22 , (4.10)

where ℓ is a differentiable loss function and R has to be twice continuously differen-
tiable. An equivalent optimization problem incorporating the first-order condition of
the lower-level problem reads as

min
�

E(H,�)∼Tℓ (G(H, �) − H) s.t. �1R(G(H, �), �) + �∗(�G(H, �) − I) = 0.

To account for the constraint, we introduce Lagrange multipliers ? ∈ !2(Y× Ξ,ℝ=)
and define the Lagrangian

L(G, �, ?) = E(H,�)∼Tℓ (G(H, �) − H) +
〈
�1R(G(H, �), �) + �∗(�G(H, �) − I), ?(H, �)〉
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?(G)

?(I |G)

?(G |I)

Figure 4.18: The top image depicts the
prior density ?(G) of 2×2 image patches,
as discussed in Section 4.2.2. The mid-
dle image illustrates the likelihood den-
sity ?(I |G) for a noisy patch I marked
by the black x. The bottom image shows
the associated posterior ?(G |I), where I
is again marked by the black x, and the
target H is marked by the black +.

for G ∈ !2(Y× Ξ,ℝ=). A strategy to compute the gradient of the Lagrangian w.r.t.
the model parameters by means of implicit differentiation is given by:

1. Draw a sample pair (H, �) ∼ T.
2. Solve the lower-level problem with high precision for each sample such that

%L
%?(H, �) = �1R(G(H, �), �) + �∗(�G(H, �) − I) = 0.

3. Then, compute for each sample the Lagrange multipliers ?(H, �) by solving the
equation

%L
%G(H, �) =

%ℓ (G(H, �) − H)
%G(H, �) + (

�2
1R(G, �) + �∗�)

?(H, �) = 0.

Finally, the gradient of the Lagrangian w.r.t. the parameters of the regularizer is given
by

%L
%�

= E(H,�)∼T
%

%�
�1R(G(H, �), �)?(G(H, �), �).

As before, this gradient can be used by any first-order method to estimate the
parameters. There also exists a second-order approach to bilevel learning due to
Kunisch and Pock [198] that is based on Newton’s method.

While contrastive divergence learns the parameters of the regularizer in an unsuper-
vised fashion by maximizing the likelihood over target images, bilevel learning is a
supervised learning method that adapts the parameters of the regularizer such that
the MAP estimator is close to the associated target. To compare these two approaches,
let us recall the 2 × 2 image patch statistics discussed in Section 4.2.2. Contrastive
divergence would learn the regularizer parameters � such that exp(−R( · , �)) ap-
proximates the prior density depicted in the first row of Figure 4.18. In contrast,
bilevel learning amounts to adapting the parameters � of the regularizer such that
the posterior density is maximal at the target, as shown in the last row of Figure 4.18.
Note that the posterior can be computed by multiplying the prior density with the
likelihood density and normalization according to Bayes’ Theorem 2.2.7. In this
particular example, we assumed a Gaussian denoising problem such that � = Id
in Equation (4.10), which results in the likelihood depicted in the middle row of
Figure 4.18. To sum up, the discriminative learning flavor of bilevel learning allows
to identify regularizer’s parameters for a specific task and leads to superior results
compared to generative learning approaches such as contrastive divergence [52, 53].
However, it requires to solve the lower-level problem with typically high precision.

4.4.3.3 Early Stopping and Backpropagation

Another approach to determine the parameters � of a regularizer is by means of
truncated optimization [54] also known as early stopping. This approach is motivated
by bilevel optimization but instead of solving the lower-level problem exactly, only a
certain number of iteration steps of a first-order method is performed to approximate
the solution of the lower-level problem. Thus, the objective of the bilevel problem (4.10)
changes to

min
�

E(H,�)∼Tℓ (G((H, �) − H)
s.t GB+1(H, �) = GB(H, �) − �

(
�1R(GB(H, �), �) + �∗(�GB(H, �) − I)

)
for B = 0, . . . , ( − 1 and a given initial image estimate G0. Here, � > 0 is a sufficiently
small step size. The particular advantage of this discriminative learning approach
is that the gradient of the loss function w.r.t. the regularizer’s parameters can be
directly computed by differentiation through the iterative scheme. Moreover, early
stopping in conjunction with backpropagation enables an efficient inference and
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PSNR = 27.25

Figure 4.19: Denoised water castle im-
age using the FoE regularizer using 48
filters of size 7 × 7 and radial basis func-
tions incorporating #F = 31 weights.
The parameters are determined by early
stopping and backpropagation.

PSNR = 27.75

Figure 4.20: Denoised water castle im-
age using the TDV3

3 regularizer. The pa-
rameters are determined by early stop-
ping and backpropagation.

training process. Recently, Mehmood and Ochs [199] showed that the gradient w.r.t.
the parameters of the truncated optimization problem converges to the gradient
w.r.t. the parameters of the bilevel problem under suitable assumptions. We provide
further details on this learning strategy in Chapter 6.

4.5 Conclusion

To conclude this chapter, let us apply the parametric FoE and TDV regularizers to the
Gaussiandenoisingproblemof thewater castle image. Figure 4.19depicts thedenoised
water castle image using the FoE regularizer trained by truncated optimization and
Figure 4.20 the corresponding result of the TDV regularizer. Compared to the results
of TV (Figure 4.11), TGV (Figure 4.12), and the Student-t-based first-order regularizer
(Figure 4.15), the image quality drastically improved. Both regularizers are able
to denoise the homogeneous sky region, while preserving sharp edges. The TDV
regularizer yields a smoother sky region and favors continuous edge lines, resulting
in a realistically restored image as can be seen at the rooftop of the castle. In addition,
the PSNR score increased by more than 1dB for the FoE regularizer and another
0.5dB for the TDV regularizer. Hence, image regularizers incorporating higher-order
image features yield excellent restoration results.
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In this chapter, we discuss variational networks (VNs) that were introduced to
study the connections between variational methods and today’s successful deep
learning approaches. The VNs are based on the solid theoretical foundations of
incremental proximal methods, which enable the exploration of theoretical properties
such as the limitations of convexity in the context of learning image regularizers for
image restoration.We empirically demonstrate that the solutions of convex variational
models for Gaussian image denoising and non-blind image deblurring are not capable
of describing all facets of natural images and are outperformed by non-convexmodels.
However, the results can be improved for convex and non-convex models by using
parametrized incremental proximal methods.

In addition, we present an approach on how to extend VNs to reconstruct low-
dose 3-dimensional helical computed tomography (CT) scans. For this task, we
consider two dose reduction methods: X-ray tube current reduction and X-ray beam
interruption also known as SparseCT. In the first case, we train a VN to denoise
a current-reduced reconstruction to account for the smaller signal-to-noise ratio,
whereas in the second case the VN learns a reconstruction scheme that suppresses
undersampling artifacts. The numerical results indicate that the proposed VNs
improve performance over state-of-the-art iterative model-based denoising and
sparse reconstruction techniques. Moreover, VNs for SparseCT compare favorably
to VNs for current reduction, particularly for reconstruction of small low-contrast
features.

This chapter is based on the publications:

Erich Kobler, Teresa Klatzer, Kerstin Hammernik, and Thomas Pock. “Variational Net-
works: Connecting Variational Methods and Deep Learning”. In: German Conference
on Pattern Recognition. 2017

Erich Kobler, Matthew J. Muckley, Baiyu Chen, Florain Knoll, Kerstin Hammernik,
Thomas Pock, Daniel K. Sodickson, and Ricardo Otazo. “Variational network learning
for low-dose CT”. In: Proceedings of the 5th CT Meeting. 2018

5.1 Connecting Variational Methods and Deep

Learning

There has been a long tradition of using variational methods to tackle computer
vision problems including denoising [1], deblurring [2, 201], segmentation [3, 202],
tracking [203, 204] and optical flow [4] due to their simplicity, performance and
profound theoretical foundations. In recent years, these approaches have been
outperformed by deep learning methods. Despite the success of deep learning in
computer vision [150, 205], it is unclear whether there exists a theoretical connection
between variational methods and deep learning. In this paper, we try to answer this
question by establishing relations between both worlds.
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Figure 5.1: Estimated log–probability
density of 2×2 image patches of the cam-
pus dataset [162] on the unit sphere in
the zero-mean and contrast-normalized
patch space for noisy patches (top),
patches denoised by the ROFmodel (5.1)
(middle), and ground truth patches (bot-
tom). Note that all 3 densities are scaled
identically.

Variational methods are based on minimizing an energy function. A famous convex
variational model (VM) for image restoration is the Rudin-Osher-Fatemi (ROF)
model [1]. In the discrete setting it is defined as

min
G∈ℝ=

{
E(G) B ‖�G‖2,1 + �

2 ‖G − G0‖22
}
, (5.1)

where G ∈ ℝ= represents an image with = pixels, G0 ∈ ℝ= the noisy observation and
� ∈ ℝ2=×= is the linear operator that computes the discrete horizontal and vertical
derivatives defined in Section 4.1.2. The solution set of (5.1) is characterized by the
first-order optimality condition, i.e. %E(G) 3 0 or ∇E(G) = 0 if E(G) is continuously
differentiable. Figure 5.1 visualizes the 2 × 2 patch statistics of this set along with
the associated statistics of noisy and clean images, as described in Section 4.2.2. The
solution set of (5.1) shows a significant difference to the true image statistics especially
towards the polar regions, which suggests that the solution set of (5.1) cannot capture
the diverse statistics of natural images.

A natural idea for improving the ROFmodel is to increase its flexibility by introducing
additional terms. Chambolle and Lions [27] increased the model complexity by
formulating image reconstruction as a convex infimal convolution problem. Another
convex VM is the total generalized variation (TGV) [29], which extends the ROFmodel
by modeling higher order statistics. However, Black and Anandan [186] demonstrated
that incorporating non-convex functions improves results because the applied non-
convex functions suppress outliers as known from robust statistics. They optimize
the non-convex VMs using the graduated non-convexity method [41], which solves a
sequence of VMs starting with a convex model that gradually becomes non-convex.

The idea of learning higher-order statistics to enhance the results of variational
methods for image reconstruction was introduced by Roth and Black [51]. They
proposed to learn a prior (regularization) consisting of an ensemble of filters together
with corresponding non-convex potential functions called fields of experts (FoE)
using contrastive divergence. Later, Kunisch and Pock [198] formulated the learning
of regularization parameters of a VM as a bi-level optimization problem, which
was extended in [53] to learn analysis operators of (non-)convex VMs including
the FoE model. Their results on image denoising indicate that non-convex models
perform best, confirming the findings of Zhu and Mumford [45]. Also, Domke [54]
enhanced the performance of the FoE model by discriminatively learning incomplete
energy minimization schemes that consist just of a few iterations inspired by [64].
The combination of

I unrolling a gradient descent scheme for the FoE model and
I abandoning energy minimization by parameterizing each step individually

led to the optimized nonlinear reaction-diffusion processes of Chen et al. [55], which
improved the state-of-the-art on many reconstruction tasks [120, 206, 207].

In contrast, the deep learning community pursues a completely different approach to
increase the model complexity to account for the diverse statistics of natural images.
Since the early convolutional neural networks [144, 208], advances in network training
and the use of more complex, deeper networks have led to remarkable results in many
areas of computer vision, including classification [143, 150], and restoration [142,
209]. Increasing the model complexity by stacking more and more layers works just
to some extent due to a degradation problem reported by He et al. [150]. To avoid
this problem, they introduced residual networks that have a simple computational
structure which eases the training of very deep models.

In this section, we introduce variational networks that originate from minimizing
a parametric energy utilizing proximal incremental methods [81]. The VNs have
the same computational structure as residual networks and thus are easy to train.
Moreover, the concept of VNs enables us to explore theoretical properties such as the
role of convexity in the field of natural image restoration. Therefore, we extend the
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VU2(B)

GB GB+1−∇E2(B)
(
GB , �2(B)

)
+ prox� G0

VN

VU1 · · · VU� G(
Figure 5.2: Illustration of our proposed
variational units (5.3) (left) and their
combination to a variational network
(right) for a cyclic scheme.

FoE regularization structure by fully parametrized potential functions that can be
trained either convex or non-convex.

5.1.1 Method

We propose VNs that are motivated by proximal gradient and proximal incremental
methods and yield the same computation structure as residual networks. The basic
structure of VNs evolves naturally by performing incremental proximal gradient
steps [81] to solve problems of the form

min
G∈ℝ=

{
E(G) B

�∑
2=1

E2(G, �2) +H(G)
}
, (5.2)

where � defines the number of components, G ∈ ℝ= represents some data, i.e. an
image, E2 : ℝ= → ℝ are smooth component functions parametrized by �2 and
H : ℝ= → ℝ is a convex, lower semi-continuous (l.s.c.) function. An incremental
proximal gradient step is defined as

GB+1 = prox�BH
(
GB − �B∇E2(B)(GB , �2(B))

)
, (5.3)

where �B is the step size of the B-th step. We fix the component selection function
2(B) = mod(B, �) + 1 to obtain a cyclic procedure as depicted in Figure 5.2. We call
the scheme (5.3) variational unit (VU) in analogy to residual units. The VU is the
basic building block of a VN. The output of the �th unit GB=� ends the first cycle. It is
also the output of a corresponding residual network [150]. Moreover, VNs generalize
the optimized nonlinear reaction-diffusion processes [55] as they can be interpreted
as a single cycle of a parametrized incremental scheme.

5.1.1.1 Relation to Incremental Methods

The formulation of VNs is based on incremental proximal methods, which were
proposed by Nedić and Bertsekas [81, 109]. These methods were designed to solve
large-scale energy minimization problems consisting of smooth and non-smooth
components. Such problems can be cast into the form

min
G∈X

{
E(G) B F(G) +H(G) =

�∑
2=1

E2(G) +H(G)
}
, (5.4)

where X⊂ ℝ= is a convex set, F is the sum of the smooth components E2 : ℝ= → ℝ

and H : ℝ= → ℝ accounts for the convex, l.s.c. and non-smooth parts. If the indicator
function of X is included in �(G), (5.4) becomes an unconstrained optimization
problem. In analogy to [81], an incremental proximal gradient step is defined as

GB+1 = prox�BH
(
GB − �B∇E2(B)(GB)

)
, (5.5)

where ∇�2(B)(GB) is the gradient of a single component selected by the function
2 : ℕ→ {1, . . . , �} and the proximal map is defined by

prox�H(Ĝ) B arg min
G∈ℝ=

H(G) + 1
2�
‖G − Ĝ‖22 .
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Figure 5.3: Visualization of the struc-
tural correspondence between (multi)
residual units [212] (left) and variational
units for image restoration (5.12) (right).
Note the data term gradient of the varia-
tional unit can be interpreted as a second
residual mapping in the data domain.
The multi-residual unit is turned into
a residual unit [150] by omitting the
dashed path.

If F only consists of a single component, i.e. F(G) = E1(G), the scheme (5.5) simplifies
to the proximal gradient method defined as

GB+1 = prox�BH (GB − �B∇E1(GB)) . (5.6)

First, we assume that all components E2 are convex. In this case, Bertsekas [81] showed
that the incremental proximal method (5.5) converges to a stationary point in the limit
for a diminishing step size, satisfying

∑∞
B=0 �B = ∞,

∑∞
B=0 �

2
B < ∞, for both cyclic and

random component selection 2(B). Moreover, he proved approximate convergence
for a constant step size (�B = � > 0). The assumptions of the proofs are fulfilled if all
components E2 are Lipschitz continuous on X.

If the components E2 are non-convex, one can still show approximate convergence
of (5.5) in the limit using the inexact non-convex proximal splitting algorithm of
Sra [107]. The requirements of Sra, i.e. all E2 have a Lipschitz continuous gradient on
X, imply that the component functions E2 are Lipschitz continuous on X since X is
compact. Then (5.5) approximately converges to a stationary point for a constant step
size �B = � > 0.

5.1.1.2 Relation to Residual Networks

Deep residual networks were proposed by [150] to alleviate a degradation problem
arising in deep neural network training, indicated by increasing training and test
error despite growing model complexity. Residual networks circumvent this problem
by stacking many simple residual units, which are characterized by

GB+1 = ?(GB + 6B(GB)), (5.7)

where GB ∈ ℝ= is the input and GB+1 ∈ ℝ= the output of the Bth layer, ? : ℝ= → ℝ= is
a point-wise scalar function (e.g. rectified linear unit (ReLU)) and 6B : ℝ= → ℝ= are
residual functions. Typically, these residual functions are defined as

6B(GB) =
#A∑
8=1

 2
B,80( 1

B,8GB), (5.8)

where the matrices  1
B,8 ,  

2
B,8 ∈ ℝ=×= model convolutions and #A defines the number

of convolution kernels. The function 0 : ℝ= → ℝ= is often the ReLU activation. The
resulting networks can be efficiently trained for more than 1000 layers. The combina-
tion of the individual residual units forms a powerful ensemble of networks [210],
yielding state-of-the-art results on challenging competitions, e.g. ImageNet [143] and
MS COCO [104].

By comparing the structure of variational units (5.3) and residual units (5.7), we see
that the proximal map in (5.3) corresponds to ?(G) = ReLU(G) in (5.7) if � is the
indicator function of the positive orthant. Ifwe assume �B = 1, then 6B(GB) corresponds
to −∇ 52(B)(GB). This is either true for B ≤ � or if a residual network shares parameters
in a periodic fashion [211]. To emphasize this structural resemblance, Figure 5.3
visualizes a residual and a variational unit. The residual function (5.8) corresponds



5 Variational Networks 94

to a gradient if  2
B,8 =  

1>
B,8 . If this relation is approximate ( 2

B,8 u  1>
B,8 ), 6B can still be

interpreted as a gradient with error. Consequently, this type of network fits into the
VN formulation and both networks have the same computational structure. Hence,
VNs combine the practical benefits of residual networks, i.e. avoid the degradation
problem, and the rich theory of incremental methods, including convergence and
convex optimization theory.

5.1.2 Variational Networks for Image Restoration

We formulate image restoration as a variational energy minimization problem with a
fully trainable regularization as well as data term and cast this problem into the VN
formulation.

5.1.2.1 Problem Formulation and Parametrization

A variational model for image restoration in the form of (5.2) is given by

min
G∈X

{
E(G) B

�∑
2=1

{
E2(G, �2) B R2(G, �2) +D2(G, �2)

}}
, (5.9)

where G ∈ X ⊂ ℝ= represents an image constrained on X = {G ∈ ℝ= : 0 ≤ G8 ≤
1, for 8 = 1, . . . , =} with 1 > 0. The vector �2 represents all parameters of each
component. The regularization term R2(G, �2) models prior knowledge, whereas
the data term D2(G, �2) models the data fidelity. The specific form of the FoE
regularization term variant is given by

R2(G, �2) =
#A∑
8=1

=∑
9=1

)28
(( 28 G)9 ) , (5.10)

where )28 (G) : Y→ ℝ are potential functions defined on Y = {H ∈ ℝ : |H | ≤ <},
their associated matrices  28 ∈ ℝ=×= model convolutions of the image G with kernels
:28 and #A defines the number of regularization functions. Some learned kernel-
function pairs are depicted in Figure 5.4. The convolution of an B: × B: kernel :28 can
also be expressed as a matrix-vector multiplication -:28 with the matrix - ∈ ℝ=×B2

:

and the vector :28 ∈ ℝB2
: .

We also parametrize the data term with kernel-function pairs to incorporate higher-
order statistics in the data domain, as motivated by [213]. It is defined as

D2(G, �2) =
#3∑
8=1

=∑
9=1

#2
8

((
 
2
8 (�G − G0)

)
9

)
, (5.11)

where G0 ∈ Xdescribes the degraded observation and � ∈ ℝ=×= models a linear
operator. As before, the matrices  

2
8 ∈ ℝ=×= model convolutions with kernels :

2
8 ,

#2
8 (H) : Y → ℝ are the corresponding potential functions and #3 specifies the

number of kernel-function pairs.

We define the VUs for image restoration akin to (5.3) as

GB+1 = projX(GB − �B∇E2(B)(GB , �2(B))), (5.12)

where the proximal operator of (5.3) simplifies to the projection onto X. The gradient
of a selected component E2(G, �2) is given by

∇E2(GB , �2) =
#A∑
8=1

 2>8 )′28
(
 28 GB

) + �∗ #3∑
8=1

 
2>
8 #′28

(
 
2
8 (�GB − G0)

)
. (5.13)
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Figure 5.4: Sample kernel-function pairs
(:28 , )

2
8 (H)) of the trained VNs. The left

three pairs are convex samples, whereas
the right three were extracted from non-
convex VNs.

Since we learn the influence functions )′28 (H) and #′28 (H), we can fix the step size
�B = 1, as it is reflected in the scale of both influence functions. Due to the above
parametrization, all the component functions E2 of the corresponding VN are smooth,
Lipschitz continuous functions over X with bounded and Lipschitz continuous
gradient over X as long as the functions )′28 (H) and #′28 (H) fulfill these constraints.
The proofs can be found in [56]. Note that the runtime and memory requirements of
the VNs resemble those of [55], since the basic operations are identical.

5.1.2.2 Training

To train the VNs for image restoration we parametrize the influence functions )′28 (H)
and #′28 (H) in analogy to [55, 192] with radial basis functions

)′28 (H) =
#F∑
9=1

exp
(
−(H − �9)

2

2�2

)
F2
89 , (5.14)

where F2
89 are the individual basis weights that correspond to a single radial basis

(�9 , �) and #F defines the number of basis functions. To shorten notation we group
the coefficients into F2

8 = (F2
81 , . . . , F

2
8#F
)>. The functions #′28 (G) are parametrized in

the same way by F2
8 . We group the parameters of a single component 2 into the vector

�2 = (:21 , F2
1 , . . . , :

2
#A
, F2

#A
, :

2
1 , F

2
1 , . . . , :

2
#3
, F2

#3
). The parameters of all components

are gathered into � = (�2 , 2 = 1 . . . �). We define the training cost functional for
# input-target pairs (G 80 , H 8) as

min
�∈Θ

{
J(�) B 1

#

#∑
8=1



G 8((�) − H 8

1

}
, (5.15)

where G 8( is the output after ( steps (5.12). We use the ℓ 1-norm because of its
robustness [214]. In addition, we constrain the parameters � to be in an admissible
set Θ. This set ensures that the kernels :28 and :

2
8 have zero mean and ℓ 2-norm one to

avoid a scaling problem as outlined in [55].Θ also allows us to incorporate constraints
on the functions )28 (H) and #2

8 (G) such as convexity by defining suitable conditions
for F2

8 and F
2
8 as shown below. Note that if all )28 (H) and #2

8 (G) are convex, the entire
energy (5.9) becomes convex [90].We optimize the non-convex training problem (5.15)
with the inertial incremental proximal method (IIPG) defined in Algorithm 6, where
�Θ(�) is the indicator function of the admissible set Θ.

For image restoration, we introduce the following constraints on the parameters. We
enforce that the convolution kernels :28 and :

2
8 have zero mean and are normalized,

i.e.

:28 , :
2
8 ∈ K=

{
: ∈ ℝB2

: : 1>: = 0, ‖:‖2 = 1
}
, (5.16)

in order to ensure that the domain Y= of the convolution result ( 28 G) is bounded and
symmetric around zero. The proximal map for the kernels in Algorithm 6 simplifies
to the projection on Kwhich can be simply computed by subtracting the mean
followed by normalization.
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Algorithm 6: Inertial incremental proximal gradient (IIPG) algorithm.
Input :Training set S, step size 
, number of epochs #� and number of mini

batches #�

1 Partition S into #� minibatches S=
⋃#�
1=1 B1

2 Choose initial parameters �0

3 �1 = �0

4 ; = 1
5 for 4 = 1 to #� do

6 for 1 = 1 to #� do

7 Perform over-relaxation
8 �̃ = �; + ;−1

;+2 (�; − �;−1)
9 Compute gradient on B1

10 6 ; = %!(�̃)
%�

11 Compute preconditioning % ; by (5.17) and (5.18)
12 Perform proximal gradient descent step
13 �;+1 = prox% ;


�(Θ)(�̃ − 
% ; 6 ;)
14 ; = ; + 1

To speed up Algorithm 6, we use a diagonal block-wise preconditioning matrix % ;
given by

% ; = diag
(
% ;
:1

1
, % ;

F1
1
, . . . , % ;

:�#:
, % ;

F�#:
, % ;

��

)
, (5.17)

where the diagonal matrices % ;? for the individual parameters are defined by

% ;? =





%!(�)%?






−1

2
Id, (5.18)

where ? ∈ {:28 , F2
8 ,�

2} and Id is the corresponding identity matrix.

Our goal is to investigate the limitations of convexity due to its property that each
local minimum is a global minimum. To this end, we need to learn convex potential
functions �28 (H). Their domain is a compact subset of Y⊂ ℝ because the input image
elements are bounded (G ∈ {G ∈ ℝ : 0 ≤ G ≤ 1}) and the kernels have norm one.
Thus, Y= {H ∈ ℝ : |H | ≤ 1} is a convex set. Since the potential functions are scalar, a
sufficient condition for convexity is

)2′′8 (H) ≥ 0 ∀H ∈ Y. (5.19)

Hence, we need to ensure that )2′′8 is positive over Y. Its is given by

)2′′8 (H) = −
#F∑
9=1

(H − �9)
�2 exp

(
−(H − �9)

2

2�2

)
F2
89 ,

which can be shortened in matrix-vector notation to

)2′′8 (H) = Φ2′′8 (H)F2
8 ,

where the matrix Φ2′′8 (H) ∈ ℝ=×#F holds coefficients for each radial basis. Since we
cannot test the convexity condition (5.19) for all elements in Y, we define control
points H? ∈ Y#? . In practice it turned out that #? = 2#F + 1 yields enough control
points to ensure convexity of )28 (H) on Ydue to the overlap of the individual radial
basis functions. Consequently, the weights F2

8 of an influence function )28 (H) have to
lie in the set

F2
8 ∈ W=

{
F ∈ ℝ#F : −Φ2′′(H?)F ≤ 0

}
.
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Type Corresponding scheme

VN1,C
# proximal gradient method (5.6) (energy minimization)

VN�,C
# proximal incremental method (5.5) (energy minimization)

VNC ,C
# single cycle proximal incremental method (5.5) (residual network)

Table 5.1: Overview of the VN types.
The subscript # defines the number of
used kernel-function pairs #A = # . The
superscript specifies the number of com-
ponents � and the step C for which the
VN was optimized.

We can easily incorporate this constraint in the proximal map of Algorithm 6 for
F2
8 :

F2,;
8 = prox��(W)(I) = arg min

−Φ2′′(H? )F≤0

1
2
‖F − I‖22 (5.20)

with I = F2,;−1
8 − 
% ;

F1
1

%!
%F28

. We add Lagrange multipliers ? ∈ ℝ#2 to transform (5.20)
into the saddle point problem

min
F∈ℝ#F

max
?≥0

1
2
‖F − I‖22 − ?>Φ2′′(H?)F. (5.21)

Its closed form solution w.r.t. F is

F = I +Φ2′′(H?)>?. (5.22)

By plugging this into (5.21) and rearranging terms, we get the quadratic problem

min
?∈ℝ#2

1
2


−Φ2′′(H?)>? − I

2

2 s.t. ? ≥ 0, (5.23)

which can be efficiently solved by FISTA [99]. The proximal gradient step of F8 (5.22)
can be performedwith the minimizer of (5.23). Note that the quadratic problem (5.23)
must be solved in every iteration of Algorithm 6. However, the problem can be easily
parallelized for all potential functions, which helps to keep the overhead for convex
functions minimal.

5.1.3 Experiments

We conduct three groups of experiments to show the versatility of VNs and to explore
the role of convexity. Table 5.1 defines all used VN types and outlines their relation to
the previously discussed methods. We conduct all experiments for denoising and
non-blind deblurring. In the case of denoising, the degraded input G0 is a noisy
observation and the linear operator � in (5.11) simplifies to an identity operation.
For non-blind deblurring, the input is a blurry and noisy observation, and the linear
operator � models a convolution with a known blur kernel. The denoising VNs
(N-VN) use just a single data term #3 = 1 and an identity kernel :

1
1, while the

deblurring VNs (B-VN) apply #3 = #A kernel-function pairs. To train VNs for both
problems, we use 400 training patches of size 180 × 180 extracted from the BSDS500
train and test sets [215]. We generate the noisy training inputs by adding white
Gaussian noise with � = 25 to the clean images. To generate the blurry training data,
we extract 11 × 11 motion blur kernels from [216], convolve them with the clean
training patches, and add 1% white Gaussian noise. The test sets are generated in
the same way for denoising and non-blind deblurring. We use 68 images from the
BSDS500 [215] validation set and the motion blur kernels from [2] to ensure that
neither the images nor the blur kernels are used during training.
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Figure 5.5:Average PSNR curves on the
test set of the trained VN types for Gaus-
sian image denoising alongwith the gra-
dient norm of the corresponding energy
E(GB ).
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Figure 5.6: Average PSNR values and
corresponding gradient norm on the
test set of the different VN types for
non-blind deblurring.

5.1.3.1 Energy Minimization with Variational Networks

In the first experiment, we set up VNs to perform energy minimization following
the proximal gradient method (5.6) by fixing the number of components to � = 1,
i.e. E(G) = E1(G). For both denoising and non-blind deblurring, we train convex and
non-convex VNs up to C = 100 steps. The resulting PSNR values and the ℓ 2-norm
of the gradients ‖∇E(GB)‖2 are depicted in green color in Figure 5.5 and 5.6. As
expected, the decreasing gradient norm with increasing steps C indicates that the
methods actually minimize an underlying energy.

The PSNR curves for denoising (Figure 5.5) differ for convex and non-convexN-VN1,B
24 .

The performance of the non-convex VNs increases initially and slowly declines with
increasing B, while the convex N-VN1,B

24 yields the best results after a single step. This
indicates that a convex regularization of the form (5.10) is not a good prior for natural
images because by approaching a minimizer (increasing C) the results become worse.
Surprisingly, the highly parametrized convex N-VN1,B

24 performs marginally better
than the ROF model for B > 10. Note that all convex schemes are local optima of the
non-convex training problem (5.15). In the case of non-blind deblurring the PSNR
curves (Figure 5.6) are similar for convex and non-convex B-VN1,B

24 . Both VNs require
more steps to yield satisfactory results since deblurring is a harder problem than
denoising. Nevertheless, the non-convex B-VN1,B

24 outperform the convex ones by a
large margin (1dB).

5.1.3.2 Incremental Minimization with Variational Networks

In a second experiment, we evaluate the performance of VNs that follow an incremen-
tal energy minimization scheme as in (5.5). We use � = 6 components and #A = 4
kernel-function pairs. Thus, the number of parameters of a cycle is approximately
the same as in the previous experiment. The resulting PSNR values as well as the
gradient norm for the trained convex and non-convex VN6,B

4 are depicted in red color
in Figure 5.5 for denoising and in Figure 5.6 for non-blind deblurring.

In contrast to the previous experiment, the PSNR curves for denoising and deblurring
are rather flat for both convex and non-convex VN6,B

4 . Thus, they manage to generate
good results after just a few steps andmaintain the quality with increasing C. However,
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ROF [1] convex non-convex BM3D [73] TNRD5
5×5 [55]

VN1,C
24 VN6,B

4 VNB,B
24 VN1,C

24 VN6,B
4 VNB,B

24

denoising 27.39 27.69 28.51 28.76 28.56 28.60 28.87 28.56 28.78
non-blind deblurring 28.35 29.26 29.66 30.16 30.31 30.56 30.76 - -

Table 5.2: Average PSNR values on the
test set for the VN types. The reported
PSNR values are computed using the
best performing depth C of each VN
type.

the results after 100 steps are far from approaching a stationary point, as indicated
by the rather slowly decreasing gradient norm ‖∇E‖2. This effect is very strong
for the convex N-VN6,B

4 because these VNs learn a sequence of components that
alternate between strong blurring and detail recovery from the data term, leading
to large gradients. In terms of PSNR values, this behavior yields superior results
compared to the first experiment. The decreasing PSNR value of the convex B-VN6,B

4
with increasing depth may originate from local optima of the learning problem.

5.1.3.3 Variational Networks in a Residual Setup

In the final experiment, we investigate the performance of VNs in a residual network
or trainable nonlinear reaction-diffusion setting [55], i.e. each step (5.12) has its own
parameter set �B (� = B). Hence, the number of parameters increases linearly with the
depth of the VNB,B

24 . These VN types can still be interpreted as incremental proximal
methods that apply each component just once.

The increasing model complexity with growing C leads to a steady increase of the
performance for theVNB,B

24 on both restoration tasks, depicted in Figure 5.5 and 5.6. The
gradient norm also grows along with the depth C due to the additional components.
Consequently, these VNs do not minimize a corresponding energy. However, they
yield the best performance on the image restoration tasks as shown in Table 5.2.
In contrast to Chen et al. [55], our findings on image denoising suggest that the
shape of the learned potential functions (Figure 5.4) is of little importance since the
convex and non-convex N-VNB,B

24 perform almost equally well, as shown in Table 5.2.
The convex N-VNs rather require the flexibility of incremental schemes in order to
yield satisfactory results. Still, convexity seems to be a limiting factor for non-blind
deblurring since all convex VNs perform worse than the non-convex ones.

To also qualitatively assess the performance of the proposed VNs, we depict the
resulting reconstruction for image denoising in Figure 5.7 and for deblurring in
Figure 5.8. In general, the non-convex models yield visually more pleasing results.
Especially, the convex VN trained as a truncated energy minimization suffers from
large residual noise artifacts.

5.1.4 Conclusion

In this section,we established a link betweenvariational energyminimizationmethods
and deep learning approaches by introducing variational networks. The VNs consist
of stacked parametrized incremental proximal steps that have the same favorable
computational structure as residual units. We demonstrated that the versatile VN
formulation can be used to learn proximal gradient schemes, incremental proximal
schemes as well as residual networks and optimized reaction-diffusion processes.
Moreover, our parametrization of the VNs for image restoration allows us to learn
corresponding convex energies.

We used this novel possibility to evaluate the limitations of convexity in the context
of natural image restoration. Our findings on denoising and non-blind deblurring
show that our convex formulations yield inferior results compared to non-convex
formulations. Additionally, the incremental VN types require just a few steps (layers)
to yield reasonable results even for the challenging task of non-blind deblurring.
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noisy target

convex VN1,6
24 non-convex VN1,6

24

convex VN6,12
24 non-convex VN6,48

24

convex VN100,00
24 non-convex VN100,100

24

Figure 5.7:Qualitative results of the var-
ious VN types for image denoising. Note
that the convex VNs generate artifacts
in smooth regions, whereas the non-
convex VNs avoid those.
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24 non-convex VN1,100
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convex VN6,18
24 non-convex VN6,18
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convex VN100,00
24 non-convex VN100,100

24

Figure 5.8:Qualitative results of the var-
ious VN types for non-blind image de-
blurring. Note that the results of the
convex VNs seem to be a bit more noisy
than the non-convex results.
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5.2 Application to Low-dose Computed Tomography

Reconstruction

The increasing utilization of CT scanners in clinical imaging examinations has
triggered the need to reduce the radiation dose, particularly for recurrent studies.
One of the most common approaches is to reduce the tube current, e.g., tube current
modulation [217], or lower tube currents in conjunction with iterative model-based
denoising methods [218]. These techniques have been successfully integrated in
commercial scanners, but they only offer moderate radiation dose reductions of
30-40% in practice due to compromises between denoising and smoothing.

The radiation dose can also bemitigatedwithout reducing the tube current by decreas-
ing the number of X-rays that penetrate a patient during a CT scan. The compressed
sensing (CS) theory [18] supports this approach, since CT images are compressible in
a transform domain and reducing the number of X-ray projections results in small
additive incoherent streaking artifacts. A simple way to omit projections is to perform
angular undersampling, i.e., just acquire projections for a fraction of the angular
views, as proposed by Chen et al. in [219]. The SparseCT method [83] extended this
idea by blocking a subset of X-rays in an incoherent way across the angular and slice
dimensions, which divides the overall undersampling alongmultiple dimensions and
thus increases the performance of CS for the reconstruction of the whole volume.

Recent low-dose CT reconstruction algorithms for low-current and/or undersampled
data are typically model-based iterative methods that incorporate prior knowledge to
increase image quality. These prior models are typically rather simple and model just
a small subset of the CT image statistics, e.g., the popular total variation (TV) prior
enforces sparsity in the image gradient domain. In addition, the balance between
a regularizing prior term and a data fidelity term has to be empirically tuned to
generate suitable reconstructions. In accelerated magnetic resonance imaging, deep
learning was introduced to overcome this empirical tuning and to learn imagemodels
that are tailored towards medical imaging, demonstrating significant improvements
over standard compressed sensing algorithms [120]. Likewise, recent work on deep
learning for low-dose CT demonstrated improved performance compared to standard
denoising and sparse reconstructions [193, 194, 220]. The U-net-like structures
advocated in [193, 220] as well as the residual encoding network introduced in [194]
learn a mapping from low-dose filtered back-projection images to reference images
that encodes and decodes the relevant information in contrast to the step-wise
refinement structure of [120].

In this work, we propose to learn variational networks for low-dose CT data acquired
with tube current reduction andSparseCT.We train theVNson four clinical abdominal
datasets and evaluate the reconstruction quality of the proposed VNs on a test dataset
and compare it to state-of-the-art model-based reconstructions.

5.2.1 Model-based CT Reconstruction

The process of acquiring CT data of a volume G ∈ ℝ= can be formalized as

I = �G + �, (5.24)

where I ∈ ℝ; is the post-log measured data of ; X-ray projections. Here, � ∈ ℝ;

models the effects of quantum and electronic noise and is assumed to be Gaussian
due to preprocessing. The linear forward operator � : ℝ= → ℝ; implements the
mapping from the volume to the measurement data that is defined by the scanner
geometry. For SparseCT � additionally implements the undersampling pattern.
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For a given noisy and possibly undersampled CT scan data I, the inverse problem of
recovering the volume G is usually defined by a variational minimization problem
such as

min
G∈ℝ=

{
E(G) B � ‖∇G‖1 +

1
2
‖�G − I‖22

}
. (5.25)

Here the scalar � ≥ 0 is used to balance the solution between smoothness, which is
enforced by the anisotropic TV, i.e., ℓ 1-norm of the image gradients, and data fidelity.
A suitable algorithm to solve (5.25) is the primal-dual approach with line search [102],
since it requires just a few evaluations of the operator � that are computationally
expensive.

5.2.2 Variational Networks for CT

Gradient-based optimization schemes of variationalmodels in imaging, such as (5.25),
can often be viewed as recurrent neural networks (RNNs). This observation, inspired
Chen and Pock [55] to train all parameters of a gradient descent scheme for variational
image reconstruction models, i. e. analysis operators, potential functions, weighting,
and step sizes, from data. VNs [56] connect this scheme, convolutional neural
networks and variational minimization. To adapt VNs for CT, we apply FoE-type
regularizers [51] of the form

R2(G, �2) =
#A∑
8=1

=∑
9=1

(
)28 (( 28 G)9)

)
(5.26)

that are parameterized by 3-dimensional convolution operators  28 : ℝ= → ℝ= and
corresponding potential functions )28 : ℝ → ℝ for 8 = 1, . . . , #A . These functions
are point-wisely applied to the associated filter response and are parameterized
by weighted radial basis functions facilitating the learnable weights F2

9 ∈ ℝ#F , as
defined in (5.14).

We use this prior model to construct a variational energy that fits into the VN
framework [56] and define it as

E{TCR,SCT} B
�∑
2=1

E2{TCR,SCT}(G), (5.27)

E2{TCR,SCT}(G) =R2(G) + �2
2

D{TCR,SCT}(G), (5.28)

where the data term �{TCR,SCT}(G) is adapted according to the dose-reduction
approach. In the case of tube current reduction (TCR) we learn to denoise initial
low-dose reconstruction, hence we use a simple ℓ 2-norm denoising data term

D)�'(G) = ‖G − G0‖22 . (5.29)

In the case of sparse computed tomography (SCT) we use the forward operator �
and the undersampled data I to enforce data consistency to the undersampled data
and facilitate the reconstruction scheme

D(�)(G) = ‖�G − I‖22 . (5.30)

For both low-dose VNs we use a cyclic component selection function, i.e., 2(B) =
mod (B, �), and follow [56] to define a variational unit (VU) as

GB = GB−1 − ∇E2(B){)�',(�)}(GB−1) , (5.31)
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�

· − I −�B

�∗
Figure 5.9: Illustration of the variational
units (VU) for CT denoising (left) and
CT reconstruction (right).

where the gradients of the energy components are given by

∇E2)�'(G) =
#A∑
8=1
( 28 )∗)2′8 ( 28 G) + �2(G − G0),

∇E2(�)(G) =
#A∑
8=1
( 28 )∗)2′8 ( 28 G) + �2�∗(�G − I).

The adjoint operator of  28 is denoted as ( 28 )∗ and it is defined as a convolution
with all 180° rotated filter kernels followed by a point-wise summation. Likewise,
�∗ denotes the adjoint operator of the forward operator �. Figure 5.9 illustrates the
computational structure of the building blocks of a VN for low-dose CT. The input
G0 is transformed into the output G( by applying ( steps of the form (5.31).

5.2.2.1 Training of VNs for CT

To train a VN for a set of training samples (G 80 , H 8)#8=1, we minimize the problem

min
�∈Θ

1
2

#∑
8=1



1B � (G 8( − H 8)

2
2 , (5.32)

where � = (F2
8 ,  

2
8 ,�2 , 2 = 1, . . . , �, 8 = 1, . . . , #A) encompasses all parameters of

the VN. Following [56], we constrain the parameters to an admissible set Θ that
enforces �2 ≥ 0 and that each convolution filter has zero mean and it’s ℓ 2-norm lies
on the unit ball. We are only interested in reconstructing the central scan regions
because of the missing ray density at border regions. Thus, we apply a binary mask
1B ∈ {0, 1}= that selects the 9 central slices where H ∈ [0, 1] and � indicates a
point-wise multiplication. Note that we rescaled the images such that the Hounsfield
units (HU) interval [−200, 280] is mapped to [0, 1] to ease training and account for
the desired HU range. We solve the constrained training problem (5.32) by using the
Adam optimizer [110] extended by an additional backprojection step onto Θ after
each gradient step. We perform 1000 gradient steps using the default moments of the
Adam optimizer and a step size of 10−2.

5.2.2.2 Experimental Setup

For the reconstruction of low-dose CT data we apply ( = � = 10 variational units
and use #A = 32 convolution filters of size 11× 11× 3. Their corresponding activation
functions are parameterized by #F = 31 Gaussian radial basis functions. We scaled
the volumes for both training and test data such that the interesting HU interval
[−200, 280] is mapped onto [0, 1] to ease the training of the parameters. We use 8
filter-function-pairs that are defined on the interval [−4, 4] to regularize the entire
HU range, whereas the remaining 24 filter-function-pairs are defined on [−1, 1] to
account for the details in the desired tissue interval. In total 126,090 parameters were
trained for each VN.

We used four clinical 3-dimensional in-vivo abdominal CT scans of different patients
of a Siemens Definition AS scanner. Table 5.3 shows the acquisition properties of the
train and test scans. In order to fit the CT data reconstruction onto a single GPU, we
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reference tube current tube voltage radiation dose gantry rotations
mAs kV CTDIvol -

train

240 120 21.19 16
240 120 19.01 26
240 120 22.26 19
350 120 29.63 20

test 320 100 12.90 17

Table 5.3: Training and test datasets for
CT.

SAFIRE [218] TV VN TCR VN SCT
17.75 ± 2.11 8.84 ± 1.20 7.91 ± 0.90 7.72 ± 0.82

Table 5.4: Quantitative comparison of
the different 1/4-dose CT methods by
means of RMSE to the target H, mea-
sured in HU.

split the data of each CT scan after a full gantry rotation and ended upwith 81 batches
for training and 17 test samples. For every sample, we reconstructed an imaged
volume of size 384× 384× 30. The target volumes H 8 were computed by solving (5.25)
with � = 1 using the primal dual algorithm with linesearch [102] on the full-dose
CT data. Likewise, the initial reconstructions G 80 were generated with � = 10−9 using
either simulated fully-sampled low-dose data [221] or binary subsampled full-dose
data for SCT. We apply the same W1S4 undersampling pattern as in [222] for a 4-fold
dose reduction.

5.2.3 Numerical Results

We used the test dataset to evaluate the reconstruction quality of the learned VNs for
both TCR and SCT for 4-fold radiation dose reduction. Table 5.4 depicts a quantitative
evaluation of the root mean squared error (RMSE) of the proposed VNs and state-
of-the-art model-based denoising and reconstruction approaches. In Figure 5.10, we
qualitatively compare representative abdominal slices reconstructed by the proposed
VNs to the full-dose reference, SAFIRE [218] and TV reconstruction.

In the case of tube current reduction, the proposed VN for TCR outperforms
SAFIRE [218] in terms of RMSE and also in reconstruction quality. The VN presents
a higher noise reduction of the imaged volume, while keeping the fine structures
of the vessels in the liver. The resulting images are slightly smoothed though. Since
SAFIRE applies an edge-enhancing kernel to highlight edges in the reconstructions,
we removed the skin region from the binary mask 1 in the evaluation process to
perform a fair comparison. Figure 5.11 depicts the difference to a corresponding
reference slice for the considered methods. Clearly, SAFIRE yields higher differences
at edge regions, but also the remaining regions are rather noisy.

In the case of SparseCT, the trained VN yields a lower RMSE than the TVmodel-based
reconstruction using 4-fold undersampled test data. The VN for SCT removes the
aliasing artifacts better than the TV reconstruction, while maintaining the fine vessels
in the liver. Moreover, the reconstructions of the VN for SCT present more details
than those of the VN for TCR and are also sharper, highlighting the advantages of
SparseCT over tube current reduction for the same dose reduction factor. In addition,
the reconstructions of a VN for SCT using 6-fold undersampling are shown on the
right in Figure 5.10. Despite the increased dose reduction, the VN for SCT is able to
reconstruct the fine details and remove aliasing artifacts and yield reconstructions
with similar quality.

5.2.4 Conclusion

In this section, we extended variational networks to reconstruct CT volumes from low-
dose data.We learnedVNs for two popular radiation dose reductionmethods, namely
tube current reduction and SparseCT. The proposed VNs yield reconstructions that
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outperform state-of-the-art denoising and sparse reconstruction methods for low-
dose CT. The VNs present a higher noise and artifact reduction while fine details such
as vessels are properly reconstructed. The learned reconstructions for undersampled
data (SparseCT) showmore details and are sharper than the learned denoising scheme
for reduced-current data. Our experiments suggest that the proposed VNs increase
the image quality for a given radiation dose and would enable higher radiation dose
reductions. Future work includes the extension of the binary undersampling masks
of SparseCT to more realistic undersampling masks as in [223].
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(a) full-dose (b) SAFIRE (c) TV (d) TCR (e) SCT (f) SCT

Figure 5.10: Representative slices for reconstruction of in vivo abdominal test data for low-dose CT. The purple boxes report RMSE values. (a)
Target: TV (� = 1) reconstruction of the fully-sampled high dose data, (b) SAFIRE [218] using 1/4 dose, (c) TV (� = 1.75) reconstruction using
4-fold undersampling, (d) VN for TCR reconstruction using ( = 10 steps and 1/4 dose, (e) VN for SCT reconstruction using ( = 10 steps and 4-fold
undersampling, and (f) VN for SCT reconstruction using ( = 10 steps and 6-fold undersampling.

(a) SAFIRE (b) TV (c) TCR (d) SCT (e) SCT

Figure 5.11: Error to the reference reconstruction H for the first two slices presented in Figure 5.10. (a) SAFIRE [218] using 1/4 dose, (b) TV (� = 1.75)
reconstruction using 4-fold undersampling, (c) VN for TCR reconstruction using ( = 10 steps and 1/4 dose, (d) VN for SCT reconstruction using
( = 10 steps and 4-fold undersampling, and (e) VN for SCT reconstruction using ( = 10 steps and 6-fold undersampling. Note that we mapped the
HU interval [−150, 150] to [0, 1] to ease visualization of the error.
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In this chapter, we investigate a well-known phenomenon of variational approaches
in image processing, where typically the best image quality is achieved when the
gradient flow process is stopped before converging to a stationary point. This paradox
originates froma tradeoffbetweenoptimization andmodeling errors of the underlying
variational model and holds true even if deep learning methods are used to learn
highly expressive regularizers from data. We take advantage of this paradox and
introduce an optimal stopping time into the gradient flow process, which in turn is
learned from data along with the regularizer’s parameters by means of a mean-field
optimal control approach, where a gradient flow on the underlying variational
energy defines the state equation. After a time-discretization of the gradient flow,
we obtain variational networks (VNs), which can be interpreted as a particular type
of recurrent neural networks (RNNs). We prove the existence of solutions of both
the time-continuous and time-discrete mean-field optimal control problem for a
class of regularizers, including the fields of experts (FoE) and total deep variation
(TDV) regularizer. We also derive a first-order condition to verify the optimality
of the stopping time. Moreover, we perform a stability analysis with respect to
the initial values and the parameters of the regularizers and experimentally verify
the robustness against adversarial attacks and numerically derive upper bounds
for the generalization error. Finally, using the general-purpose TDV regularizer we
achieve state-of-the-art results for numerous imaging tasks such as image denoising,
single image super-resolution (SISR), accelerated magnetic resonance imaging (MRI)
reconstruction, and undersampled computed tomography (CT) reconstruction.

This chapter is based on the publications:

Alexander Effland, Erich Kobler, Karl Kunisch, and Thomas Pock. “Variational
Networks: An Optimal Control Approach to Early Stopping Variational Methods for
Image Restoration”. In: J. Math. Imaging Vision 62.3 (2020)

Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. “Total Deep
Variation for Linear Inverse Problems”. In: IEEE Conference on Computer Vision and
Pattern Recognition. 2020

Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. “Total Deep
Variation: A Stable Regularizer for Inverse Problems”. In: IEEE Trans. Pattern Anal.
Mach. Intell. (2020). (submitted)

Erich Kobler, Baiyu Chen, Alexander Effland, Thomas Pock, Daniel K. Sodickson, and
Ricardo Otazo. “Total Deep Variation for SparseCT Reconstruction”. In: Proceedings of
the 6th CT Meeting. 2020

As in the previous chapters, we assume that the observations I are generated by a
linear inverse problem of the form

I = �H + �,

where H is the unknown ground truth, � is a known task-dependent linear operator
and � is additive noise. For example, � is the identity matrix in the case of denoising,
and it is a downsampling operator in the case of single image super-resolution. In
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analogy to Chapter 4, we aim at computing themaximum a-posteriori (MAP) estimate
by minimizing the energy

E(G, I) B D(G, I) + R(G),

which is composed of the data fidelity term D and the regularizer R. While the data
fidelity term is frequently straightforward to model, there has been much effort to
design a regularizer that captures the complexity of the statistics of natural images.

A classical and widely used regularizer is the total variation (TV) first utilized
in imaging by [1]. The TV is based on the first principle assumption that images
are piecewise constant with sparse gradients. A well-known caveat of the sparsity
assumption of TV is the formation of clearly visible artifacts known as staircasing
effect. To overcome this problem, the first principle assumption has later been
extended to piecewise smooth images incorporating higher-order image derivatives
such as infimal convolution-based models [27] or the total generalized variation [29].
Inspired by the fact that edge continuity plays a fundamental role in the human visual
perception, regularizers penalizing the curvature of level lines have been proposed
in [225–227]. While these regularizers are mathematically well-understood, the
complexity of natural images is only partially reflected in their formulation. For this
reason, handcrafted variational methods have nowadays been largely outperformed
by purely data-driven methods as predicted by Levin and Nadler [228] a decade
ago.

It has been recognized quite early that a proper statistical modeling of regularizers
should be based on learning [46], which has recently been advocated e.g. in [61, 63].
One of the most successful early approaches is the FoE regularizer [51], which can be
interpreted as a generalization of the total variation, but builds upon learnedfilters and
learned potential functions. While the FoE prior was originally learned generatively,
it was shown in [52] that a discriminative learning via implicit differentiation yields
improved performance. A computationally more feasible method for discriminative
learning is based on unrolling a finite number of iterations of a gradient descent
algorithm [54]. Additionally using iteration-dependent parameters in the regularizer
was shown to significantly increase the performance (TNRD [55], [229]). In [56], VNs
are proposed, which give an incremental proximal gradient interpretation of TNRD.
Interestingly, such truncated schemes are not only computationally much more
efficient but are also superior in performance with respect to the full minimization. A
continuous-time formulation of this phenomenon was proposed in [57] by means of
an optimal control problem, within which an optimal stopping time is learned.

The significance of stability for data-driven methods has recently been addressed
in [230], in which a systematical treatment of adversarial attacks for inverse problems
was performed. This issue has been studied in the context of classification by [231],
where adversarial samples have been introduced. These samples are computed
by perturbing input images as little as possible such that the attacked algorithm
predicts wrong labels. Incorporating adversarial samples in the training process
of data-driven methods increases their robustness as studied in [231]. In recent
years, several methods were proposed for generating adversarial examples such
as the fast gradient sign method [232], Deepfool [209], or universal adversarial
perturbations [233]. In the context of inverse problems, adversarial examples are
typically computed by maximizing the norm difference between the output of an
algorithm and the associated ground truth in a local neighborhood around an input.
Thus, the robustness w.r.t. adversarial attacks of an algorithm depends to a large
extent on the local Lipschitz constant of the mapping defined by the algorithm.

In this chapter, we minimize an energy composed of a data fidelity term and a
parametric regularizer using a gradient flow emanating from the corrupted input
image on a finite time horizon [0, )] for a stopping time ), where the terminal state
of the gradient flow defines the reconstructed image. Then, the stopping time and
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the parameters of the regularizer are computed by solving a mean-field optimal
control problem as advocated in [58], in which the cost functional is defined as the
expectation of the loss function with respect to a training data distribution. The
state equation of the optimal control problem is a stochastic ordinary differential
equation coinciding with the gradient flow of the energy, where the only source
of randomness is the initial state. We prove the existence of minimizers for this
optimal control problem using the direct method in the calculus of variations. A
semi-implicit time-discretization of the gradient flow results in a discretized optimal
control problem in the mean-field setting, for which we also prove the existence of
minimizers as well as a first-order necessary condition to automatize the computation
of the optimal stopping time. This training process is a form of discriminative learning
because we directly learn the functional form of the negative log-posterior [234], in
which the regularizer can be interpreted as a discriminative prior. In fact, the learned
regularizers adapt to the specific imaging task as we show in the eigenfunction
analysis. Moreover, the particular recursive structure of the discrete gradient flow
allows the derivation of a stability analysis with respect to the initial states and the
learned regularizer parameters. Both estimates depend on the local Lipschitz constant
of the regularizer, which is estimated in the mean-field setting. Several numerical
experiments demonstrate the applicability of the proposed method to numerous
image restoration problems, in which we obtain state-of-the-art results using the TDV
regularizer, defined in Section 4.4.2. In particular, we examine the robustness of this
approach against perturbations and adversarial attacks, and an upper bound for the
generalization error is empirically computed.

The major contributions are as follows:

I a rigorous mathematical analysis including a mean-field optimal control for-
mulation of the learning problem,

I a stability analysis of the proposed method, which is validated by numerical
experiments,

I a nonlinear eigenfunction analysis for the visualization and understanding of
the learned regularizer,

I numerical evaluation of the robustness against adversarial attacks and empirical
upper bounds for the generalization error,

I state-of-the-art results on a number of classical image restoration and medical
image reconstruction problems with an impressively low number of learned
parameters.

6.1 Early Stopping

The benefit of early stopping for iterative algorithms is examined in the literature
from several perspectives. In the context of ill-posed inverse problems, early stopping
of iterative algorithms is frequently considered and analyzed as a regularization
technique. There is a variety of literature on the topic and we therefore only mention
the selected monographs [25, 235–237]. Frequently, early stopping rules for inverse
problems are discussed in the context of the Landweber iteration [238] or its contin-
uous analog commonly referred to as Showalter’s method [239] and are based on
criteria such as the discrepancy or the balancing principle.

In what follows, we provide an overview of recent advances related to early stopping.
Raskutti et al. [240] exploit early stopping for non-parametric regression problems in
reproducing kernel Hilbert spaces (RKHS) to prevent overfitting and derive a data-
dependent stopping rule. Yao et al. [241] discuss early stopping criteria for gradient
descent algorithms for RKHS and relate these results to the Landweber iteration.
Quantitative properties of the early stopping condition for the Landweber iteration are
presented in Binder et al. [242]. Zhang andYu [243] prove convergence and consistency
results for early stopping in the context of boosting. Prechelt [244] introduces several
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Figure 6.1: Contour plot of the PSNR
score depending on the number of iter-
ation steps B and the regularization pa-
rameter � for ROF denoising. The global
maximum (31, 0.04) is marked with a
red cross.
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SA 3.0)

heuristic criteria for optimal early stopping based on the performance of the training
and validation error. Rosasco and Villa [245] investigate early stopping in the context
of incremental iterative regularization and prove sample bounds in a stochastic
environment. Matet et al. [246] exploit an early stopping method to regularize
(strongly) convex functionals. In contrast to these approaches, we propose early
stopping on the basis of finding a local minimum with respect to the time horizon of
a properly defined energy.

To illustrate the necessity of early stopping for iterative algorithms, we revisit the
established ROF (TV-!2) denoising functional [1], which amounts to minimizing the
variational problem

E(G) = � ‖�D‖1 + 1
2 ‖G − I‖22

among all images G ∈ ℝ= of size = = =1× =2, where� is the finite difference gradient
operator defined in Section 4.1.2, � > 0 is the regularization parameter and I ∈ ℝ=

refers to a corrupted input image. An elementary, yet very inefficient optimization
algorithm relies on a gradient descent using a smoothed regularizer (� > 0)

E�(G) = �
=∑
8=1

√
|(�ℎG)8 |2 + |(�EG)8 |2 + �2 + 1

2 ‖G − I‖22 , (6.1)

where�ℎ and�E denote the horizontal andvertical gradient operatorswithNeumann
boundary constraint, for details see Section 4.1.2. For a comprehensive list of state-of-
the-art methods to efficiently solve TV-based variational problems, we refer the reader
to [10]. Figure 6.1 depicts the dependency of the peak signal-to-noise ratio (PSNR)
score on the number of iterations and the regularization parameter � for the ROF
problem (6.1) using a step size 10−4 and � = 10−6, where the input image I ∈ [0, 1]=
with a resolution of 512 × 512 is corrupted by additive Gaussian noise with standard
deviation � = 0.1. As a result, for each regularization parameter � there exists a
unique optimal number of iterations where the signal-to-noise ratio peaks. Beyond
this point, the quality of the resulting image is deteriorated by staircasing artifacts
and fine texture patterns are smoothed out. The global maximum (31, 0.04) is marked
with a red cross. The associated image sequence for the considered image1 is shown
in Figure 6.2 at the top. In addition, a second image sequence for � = 0.001 is depicted
at the bottom. Both sequences yield similar PSNR scores for G31 (� = 0.04) and G1500
(� = 0.001). However, the first sequence requires only 31 steps and is thus much more
computationally efficient.

If the gradient descent is considered as a discretization of a time-continuous evolution
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process governed by a differential equation, then the optimal number of iterations
translates to an optimal stopping time.

6.2 Mean-field Optimal Control Approach to Early

Stopping

In this section, we derive a time-continuous analog of static variational networks
as gradient flows of an energy functional E composed of a data fidelity term D
and a parametric regularizer R. The resulting ordinary differential equation is used
as the state equation of a mean-field optimal control problem [58], in which the
cost functional incorporates the squared !2-distance of the state evaluated at the
optimal stopping time to the ground truth and the control parameters are given by
the learnable parameters of the regularizer.

Let (Y× Ξ,F,ℙ) be a complete probability space on Y× Ξ with �-algebra Fand
probability measure ℙ. We denote by (H, �) a pair of independent random variables
modeling the data representing the ground truth image H ∈ Y ⊂ ℝ=� and additive
noise � ∈ Ξ ⊂ ℝ; with associated distribution denoted by T= TY×TΞ. Each ground
truth image H represents an image of size = = =1 × =2 with � channels and is related
to the additive noise � by means of the observation

I = �H + �,

where � ∈ ℝ;×=� is a fixed task-dependent linear operator of this linear inverse
problem. In particular, we assume that both Yand Ξ are compact sets, which implies
that all observations are contained in a compact set Z ⊂ ℝ; .

To estimate the unknown ground truth image H from the observation I we pursue a
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variational approach, which amounts to minimizing the energy functional

E(G, I, �) B R(G, �) +D(G, I) (6.2)

among all G ∈ ℝ=� . Here, we consider the squared ℓ 2-data fidelity term

D(G, I) = 1
2
‖�G − I‖22

and for the parametric regularizer R we apply either the FoE [51] or TDV [59, 60]
regularizer, which both depend on learned parameters � ∈ Θ, where Θ ⊂ ℝ? is
compact and convex.

Let G̃ ∈ �1([0, )],ℝ=�) be an image trajectory, which evolves according to the gradient
flow equation [247] associated with (6.2) on a finite time interval (0, )) given by

¤̃G(C) = −�1E(G̃(C), I, �) = 5 (G̃(C), I, �) B −�1R(G̃(C), �) − �∗(�G̃(C) − I) (6.3)

for C ∈ (0, )) and G(0) = G0, where �8 is the gradient operator w.r.t. the 8th argument.
Here, the observation-dependent initial value G0 is computed as G0 = �initI for a fixed
task-dependent matrix �init ∈ ℝ=�×; , which could be, for instance, the pseudoinverse
of �. The proper choice of the stopping time ) ∈ [0, )max] for a fixed )max > 0 is
essential for the quality of the reconstruction G̃()) of H. Amore feasible, yet equivalent
gradient flow is derived from the reparametrization G(C) = G̃(C)), which yields for
C ∈ (0, 1)

¤G(C) = ) 5 (G(C), I, �) (6.4)

with the same initial value as before. We frequently write G(C , H, �, ), �) to highlight
the dependency of the image trajectory on the parameters (H, �, ), �) ∈ Y× Ξ ×
[0, )max] ×Θ for given C ∈ [0, 1]. In particular, G(1, H, �, ), �) is the computed output
image. We remark that in contrast to [153, 156], inverse problems for image restoration
rather than image classification are examined. Thus, we incorporate in (6.4) the
classical gradient flow with respect to the full energy functional in order to promote
data consistency, whereas in the classification tasks, only the gradient flow with
respect to the regularizer is considered.

In what follows, the training process is described as a mean-field optimal control
problem [58] with control parameters � and ). To this end, let ℓ ∈ �1(ℝ=� ,ℝ+0 ) be a
convex and coercive loss function. Then, we define the cost functional as

J(), �) B E(H,�)∼T
[
ℓ (G(1, H, �, ), �) − H)] ,

which results in the mean-field optimal control problem

inf
)∈[0,)max],�∈Θ

J(), �) (6.5)

subject to the state equation (6.4). The particular choice of the cost functional originates
from the observation that a visually appealing image restoration is obtained as the
closest point on the trajectory of the gradient flow (reflected by the !2-distance) to the
ground truth H, as motivated for the ROFmodel in Figure 6.2. In this example, we seek
the trajectory that is closest to the ground truth H in terms of the squared Euclidean
distance among all trajectories of the ordinary differential equation (6.4) emanating
from a constant initial value G0. Note that in this case the entire trajectory is uniquely
defined by the choice of the regularization weight �. In contrast, in the mean-field
optimal control problem (6.5) we seek the stopping time ) and the parameters � that
result in the smallest Euclidean distance of the state at the stopping time G(1) and
the ground truth H on average over the data distribution T. Also in this case, the
trajectory emanating from an initial value G0 is uniquely defined by the regularizer
and its parameters �.
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Remark 6.2.1 Themean-field optimal control formulation already encompasses the
sampled optimal control problem. In detail, given a finite training set (H 8 , �8)#8=1 ∼ T#

drawn from the data distribution we can define the discrete probability measure as
ℙ(H, �) = 1

#
∑#
8=1 �[H = H 8]�[� = �8], where �[B = C] = 1 if B = C and 0 otherwise.

This particular choice results in the sampled cost functional

J(), �) = 1
#

#∑
8=1

ℓ (G(1, H 8 , �8 , ), �) − H 8).

In this work, we consider parametric regularizers R : ℝ=� × Θ→ ℝ that aggregate
the local variation r : ℝ=� × Θ→ ℝ= , i.e.

R(G, �) =
=∑
8=1

r(G, �)8 (6.6)

with the particular structure

r(G, �) = Ψ( G, �Ψ),

where � = ( , �Ψ) denotes the entity of all parameters and

I  ∈ ℝ=<×=� is the matrix representation of a learned convolution kernel
for < feature channels with zero-mean constraint, i.e.

∑=�
9=1  8 , 9 = 0 for 8 =

1, . . . , =<, which implies a spatial and radiometrical shift-invariance,
I Ψ ∈ �2(ℝ=< × ΘΨ ,ℝ=) is a parametric twice continuously differentiable

function with parameters in a compact set �Ψ ∈ ΘΨ, where we assume that
‖�1Ψ‖�0(ℝ=< ) ≤ �Ψ(�Ψ).

The well-known FoE regularizer [51] aggregates the local energy of < convolution
kernels  9 ∈ ℝ=×=� and potential function ) ∈ �2(ℝ × Θ) ,ℝ) pairs by

RFoE(G, �) =
=∑
8=1

<∑
9=1

)(( 9G)8 , F 9),

where each potential function is parameterized by radial basis functions with
associated weights F 9 ∈ Θ), which lie in a compact set Θ) ⊂ ℝ#F . The FoE
regularizer can be cast into the form

RFoE(G, �) =
=∑
8=1
Ψ( G, �Ψ)8

as discussed in Section 4.4.1. The uniform boundedness assumption ‖�1Ψ‖�0(ℝ=< ) ≤
�Ψ(�Ψ) is fulfilled if the radial basis functions ) have compact support. In the remain-
der, we use the shorthand notation FoE:< for an FoE regularizer using < convolution
kernels each of size : × : and #F = 31 radial basis functions.

The TDV regularizer extracts local features and combines them on multiple scales
and in successive blocks in a convolutional neural network (CNN) and is defined
by

'TDV(G, �) =
=∑
8=1
Ψ(FN( G))8 ,

whereN : ℝ=< → ℝ=< is amulti-scaleCNN,F ∈ ℝ=×=< is a learned 1×1 convolution
kernel, andΨ : ℝ= → ℝ= , (G1 , . . . , G=) ↦→ (#(G1), . . . ,#(G=)) determines the energy
using the potential function # ∈ �2(ℝ,ℝ). We denote by TDV10 for integers 0, 1 ≥ 1
a TDV regularizer consisting of 1 blocks, where each of them has a U-Net [196]
type architecture operating on 0 scales. For further details and a visualization of its
computational structure, we refer to Section 4.4.2. The TDV regularizer also fits into
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the considered class of regularizers (6.6) by simply choosing

Ψ(G, �Ψ) = Ψ(FN(G)),

where �Ψ hold all the parameters of Nand F. Then,

‖�1Ψ(G, �Ψ)‖2 =



�N(G)F �Ψ(FN(G))





2

≤ ‖�N(G)‖2 ‖F‖2



�Ψ(FN(G))




2
≤ �Ψ(�Ψ),

where we require that



�Ψ




�0(ℝ= )
is uniformly bounded, which is the case for all

considered potential functions, and ‖�N‖�0(ℝ<= ) is uniformly bounded. In detail,
the CNN N in the TDV regularizer is a complex concatenation of residual blocks,
where the norm of the gradient of each of these blocks is given by


�1R89 ,:(G, �)





2
=




Id+( 89 ,:,1)∗�Φ( 89 ,:,1G) 89 ,:,2





2
(6.7)

for G ∈ ℝ=< . In particular, (6.7) can be uniformly bounded independently of G due to
supG∈ℝ |)′(G)| = 1

2 .

The existence of solutions to the mean-field optimal control problem for the particular
structure of the regularizer (6.6) is established in the next theorem.

Theorem 6.2.1 The minimum in (6.5) is attained.

Proof. The particular structure of the considered parametric regularizers results in
the estimate

‖�1R(G, �)‖2 = ‖ ∗�1Ψ( G, �Ψ)‖2
≤ ‖ ‖2 ‖�1Ψ( G, �Ψ)‖2 ≤ ‖ ‖2 �Ψ(�Ψ) C �R(�)

for all G ∈ ℝ=� and all � ∈ Θ, where we used that ‖�1Ψ‖�0(ℝ=< ) ≤ �Ψ(�Ψ). Then,
the right-hand side of the state equation can be bounded as follows:

) 5 (G, I, �)

2 ≤ )(‖�‖2 ‖I‖2 + �R(�) + ‖�‖22 ‖G‖2) (6.8)

for I ∈ ℝ; . This affine growth already ensures that the maximum domain of existence
of the state equation (6.4) coincides with ℝ [88, Theorem 2.17]. As a further result,
we obtain that G ∈ �1([0, 1], �0(Y× Ξ × [0, )max] × Θ,ℝ=�)) due to the smoothness
of the regularizer and

G(C , H, �, ), �) ∈ X
for all (C , H, �, ), �) ∈ [0, 1] × Y× Ξ × [0, )max] × Θ for a compact and convex
set X⊂ ℝ=� .

Let () 9 , � 9) ∈ [0, )max]×Θ be aminimizing sequence for Jwith an associated state G 9 B
G(·, ·, ·, ) 9 , � 9) ∈ �1([0, 1], �0(Y×Ξ,ℝ=�)). The compactness of [0, )max]×Θ implies
that there exists a subsequence (not relabeled) such that () 9 , � 9) → ()∗ , �∗) ∈
[0, )max] × Θ. In what follows, we prove that G 9 converges to G∗ B G(·, ·, ·, )∗ , �∗) ∈
�1([0, 1], �0(Y×Ξ,ℝ=�)) in �0([0, 1]×Y×Ξ). We denote by !G and !� the Lipschitz
constants of �1R w.r.t. G and �, i.e.

‖�1R(G, �) − �1R(G̃ , �)‖2 ≤ !G ‖G − G̃‖2 ,


�1R(G, �) − �1R(G, �̃)





2
≤ !�




� − �̃



2

for all G, G̃ ∈ Xand all �, �̃ ∈ Θ. Then, we can estimate for any (H, �) ∈ Y× Ξ and
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I = �H + � as follows:

)∗ 5 (G∗(C , H, �), I, �∗) − ) 9 5 (G 9(C , H, �), I, � 9)

2

≤|)∗ − ) 9 |
(
‖�‖22 max

G∈X
‖G‖2 + ‖�‖2 max

I∈Z
‖I‖2 + max

(G,�)∈X×Θ
‖�1R(G, �)‖2

)

+ )max!�


�∗ − � 9

2 + )max(‖�‖22 + !G)



G∗(C , H, �) − G 9(C , H, �)

2

C�) |)∗ − ) 9 | + ��



�∗ − � 9

2 + �G


G∗(C , H, �) − G 9(C , H, �)

2 .

Hence, since all state equations satisfy the initial condition G∗(0, I) = G 9(0, I) = �initI,
we can apply Gronwall’s inequality for initial value problems [88, Theorem 2.8] to
obtain



G∗(C , H, �) − G 9(C , H, �)

2 ≤
�) |)∗ − ) 9 | + ��



�∗ − � 9

2
�G

(
4�G C − 1

)
.

Thus, we can deduce the uniform convergence of G 9 to G∗ in �0([0, 1] × Y× Ξ) as
9 →∞, which implies lim9→∞ J() 9 , � 9) = J()∗ , �∗).

6.3 Time-discretization

In this section, we propose a numerical time-discretization scheme for the mean-field
optimal control problem discussed in the previous section. For an a-priori fixed
number of iteration steps ( ∈ ℕ, we propose a semi-implicit discretization of the
state equation (6.4), which yields

GB+1 = GB − )
(�
∗(�GB+1 − I) − )

(�1R(GB , �) ∈ ℝ=� (6.9)

for B = 0, . . . , ( − 1 and initial state G0 = �initI ∈ ℝ=� . This equation is equivalent to
GB+1 = 6(GB , I, ), �)with

6(G, I, ), �) B (Id+)(�∗�)−1(G + )
( (�∗I − �1R(G, �))).

We denote by ĜB(H, �, ), �) the state of this discretization at time B given the ground
truth H, the additive noise �, the stopping time ) and the parameters �. This
discretization is equivalent to proximal gradient descent, where a gradient step on
the regularizer and a proximal step on the data term is performed. Note that the
inverse involving the linear operator � can be solved efficiently in many applications.
The smoothness of the regularizer and the compactness of Y, Ξ, [0, )max] and Θ
directly imply that

Ĝ : Y× Ξ × [0, )max] × Θ→ X(+1 ⊂ (ℝ=�)(+1

for a compact and convex set X. Then, the discretized mean-field optimal control problem
is given by

inf
)∈[0,)max],�∈Θ

J((), �), (6.10)

where the discrete cost functional reads as

J((), �) B E(H,�)∼T
[
ℓ (Ĝ((H, �, ), �) − H)

]
.

Theorem 6.3.1 The minimum in (6.10) is attained.

Proof. Let () 9 , � 9) ∈ [0, )max] ×Θ be a minimizing sequence for J( with an associated
state Ĝ 9 B Ĝ(·, ·, ) 9 , � 9). As in the time-continuous case, the compactness of [0, )max]×
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Θ implies the existence of a subsequence (again not relabeled) such that () 9 , � 9) →
()∗ , �∗) ∈ [0, )max] × Θ, where the associated state is given by Ĝ∗ B Ĝ(·, ·, )∗ , �∗).
Then, we can estimate for any (H, �) ∈ Y× Ξ and B = 0, . . . , ( − 1 as follows:


Ĝ∗B+1(H, �) − Ĝ 9B+1(H, �)





2
≤ �) |)∗ −) 9 | + ��



�∗ − � 9

2 + �G



Ĝ∗B(H, �) − Ĝ 9B(H, �)


2

.

Note that the constants �) , �� and �G depend on �, (, !G , !�, )max, Θ and Z. An
induction argument reveals


Ĝ∗B+1(H, �) − Ĝ 9B+1(H, �)





2
≤ (�) |)∗ − ) 9 | + ��



�∗ − � 9

2)
1−�B+1

G
1−�G .

In particular,



G∗( − G 9(





�0(Y×Ξ)

→ 0 as 9 → ∞, which implies lim9→∞ J(() 9 , � 9) =
J(()∗ , �∗).

The existence of the discrete adjoint state is discussed in the subsequent theo-
rem:

Theorem 6.3.2 Let ()∗ , �∗) ∈ [0, )max] × Θ be a pair of control parameters for J( and
G∗ ∈ L B !2(Y× Ξ, (ℝ=�)(+1) the corresponding state. Then there exists a discrete
adjoint state ?∗ ∈ L given by

?∗B(H, �) = (Id−)∗( �2
1R(G∗B(H, �), �∗))(Id+)∗( �∗�)−1?∗B+1(H, �) (6.11)

for B = ( − 1, . . . , 0 with terminal condition ?∗((H, �) = −�ℓ (G∗((H, �) − H).

Proof. First, we define the functional � : L× [0, )max] × Θ → L representing the
constraints as follows:

�(G, ), �)(H, �) =
©­­­­«

G0(H, �) − �init(�H + �)
G1(H, �) − 6(G0(H, �), �H + �, ), �)

...
G((H, �) − 6(G(−1(H, �), �H + �, ), �)

ª®®®®¬
.

Then, the Lagrange functional L : L × [0, )max] × Θ × L → ℝ using L∗ � L

(Theorem 2.1.11) is given by

L(G, ), �, ?) B E(H,�)∼T

[
ℓ (G((H, �) − H) +

(∑
B=0

〈
?B(H, �), �B(G(H, �), ), �)

〉]
.

Following [248, Theorem 43.D], the Lagrange multiplier ?∗ ∈ L associated with
(G∗ , )∗ , �∗) exists if ℓ and � are (continuously) Frechét differentiable and the gradient
of � is surjective. The differentiability requirements are immediately implied by the
smoothness requirements of R. To prove the surjectivity of �1�, we first compute for
G ∈ L

�1�(G∗ , )∗ , �∗)(G)(H, �) =
©­­­­«

G0(H, �)
G1(H, �) − �16(G∗0(H, �), �H + �, )∗ , �∗)G0(H, �)

...
G((H, �) − �16(G∗(−1(H, �), �H + �, )∗ , �∗)G(−1(H, �)

ª®®®®¬
.

Thus, for any F ∈ L the solution G ∈ L of the equation �1�(G∗ , )∗ , �∗)(G) = F is
given by

G0(H, �) = F0(H, �),
GB(H, �) = FB(H, �) + �16(G∗B−1(H, �), �H + �, )∗ , �∗)GB−1(H, �)
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for B = 1, . . . , (, which proves the surjectivity and thus the existence of Lagrange
multipliers. Finally, (6.11) is implied by the optimality of L w.r.t. G.

Next, we derive an optimality condition for the stopping time, which can easily be
evaluated numerically.

Theorem 6.3.3 Let ()∗ , �∗) be a stationary point of J( with associated state G∗ and adjoint
state ?∗ as in Theorem 6.3.2. Then,

E(H,�)∼T

[
(−1∑
B=0

〈
?∗B+1(H, �), (Id+)

∗
( �
∗�)−1(G∗B+1(H, �) − G∗B(H, �))

〉]
= 0. (6.12)

Proof. Let us define �()) B Id+)(�∗� and observe that

d
d) (�())−1) = −�())−1 ( d

d) �())
)
�())−1.

The derivative of 6 w.r.t. ) reads as

d
d) 6(G, I, ), �)
= −�())−1 ( 1

(�
∗��())−1(G + )

( (�∗I − �1R(G, �))) − 1
( (�∗I − �1R(G, �)))

= − 1
) �())−1 (

G − �())−1(G + )
( (�∗I − �1R(G, �)))) .

Due to (6.9) the following relation holds true for the optimal G∗ ∈ L and B =
0, . . . , ( − 1:

�())G∗B+1 = G
∗
B + )

( (�∗I − �1R(G∗B , �)).
Hence, the optimality condition of L w.r.t. )∗ reads as

E(H,�)∼T

[
− 1
)∗

(−1∑
B=0

〈
?∗B+1(H, �), (Id+)

∗
( �
∗�)−1(G∗B+1(H, �) − G∗B(H, �))

〉]
= 0,

which proves this theorem.

In fact, the optimality condition of the stopping time (6.12) is fulfilled if the velocity
(difference of the states) is orthogonal to the adjoint states in themetric induced by the
semi-implicit discretization along the trajectory across the dataset. Further, as we have
derived in the proof, the first-order optimality condition is essentially the gradient of
the cost functional and thus can be efficiently computed using backpropagation.

6.4 Stability Analysis

Here, we examine the stability of the proposed method, which quantifies the changes
in the output caused by local perturbations of the observations and training param-
eters, respectively. The central assumption in both cases is that the distribution of
the test data coincides with the distribution of the training data in the mean-field
setting.

6.4.1 Stability Analysis w.r.t. Input

In what follows, we perform a stability analysis for the proposed algorithm, in
which we derive upper bounds along the trajectories for different noise instances
in the mean-field context. To this end, we first compute quantiles of the Lipschitz
constant of the explicit update for the proposed discretization scheme given the
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data distribution T. Then, upper bounds for the difference of trajectories associated
with one ground truth image and different noise instances drawn from the data
distribution are derived using a recursion argument.

Let G, G̃ ∈ ℝ=� , ) ∈ [0, )max], and � ∈ Θ. We define the local Lipschitz constant of
the explicit update step G ↦→ G − )

(�1R(G, �) as

!G(G, G̃, ), �) B


G − )

(�1R(G, �) − G̃ + )
(�1R(G̃ , �)

2

‖G − G̃‖2
,

where we set !G = 0 if the denominator vanishes. Then, the cumulative distribution
function �( of the local Lipschitz constant on the data distribution T for ! ∈ ℝ is
defined as

�((!) = ℙ

(
max
B=0,...,(

!G(ĜB(H, �, ), �), ĜB(H, �̃, ), �), ), �) ≤ ! : H ∼ TY, �, �̃ ∼ TΞ

)
.

Thus, the maximum local Lipschitz constant of the explicit update step along each
trajectory is bounded by �−1

( (1 − �)with probability 1 − �.

Theorem 6.4.1 (Stability w.r.t. input) Let (), �) ∈ [0, )max] × Θ be fixed control
parameters, H ∼ TY and �, �̃ ∼ TΞ. We denote by G, G̃ ∈ (ℝ=�)(+1 two solutions of the
state equation associated with I = �H+� and Ĩ = �H+ �̃, and corresponding G0 = �initI
and G̃0 = �init Ĩ, respectively. The discrete state equations are given by

GB+1 = 6(GB , I, ), �), G̃B+1 = 6(G̃B , Ĩ , ), �)

for B = 0, . . . , ( − 1. Let � ∈ [0, 1),


1(�) B


�−1




2 �
−1
( (1 − �), �1 B

)
(



�−1




2 ‖�‖2
for � B Id+)(�>�. Then,

1
=� ‖GB+1 − G̃B+1‖2 ≤ 1

=�

(

1(�)B+1 ‖�init‖2 + 1−
1(�)B+1

1−
1(�) �1

)
‖I − Ĩ‖2

holds true with probability 1 − �.

Proof. The definition of the semi-implicit scheme (6.9) implies that for any B =
0, . . . , ( − 1 the inequality

‖GB+1 − G̃B+1‖2 ≤


�−1




2
(
�−1
( (�) ‖GB − G̃B ‖2 + )

( ‖�‖2 ‖I − Ĩ‖2
)

holds true with probability 1 − �. By taking into account a recursion argument,
the geometric series formula

∑=
8=0 @

8 = 1−@=+1

1−@ , and the estimate ‖G0 − G̃0‖2 ≤
‖�init‖2 ‖I − Ĩ‖2 we obtain the desired result.

6.4.2 Stability Analysis w.r.t. Parameters

Next, we elaborate on the stability of the proposed approach w.r.t. variations of the
learned parameters � ∈ Θ. To this end, we estimate the local Lipschitz constants of
the TDV regularizer w.r.t. both of its arguments in the mean-field setting to derive
upper bounds along the trajectories emanating from the same initial state, but with
different parameters � and �̃. In detail, the perturbed parameters �̃ are drawn from
a uniform distribution supported on a component-wise relative &-ball around �. A
recursion argument involving the estimated Lipschitz constants results in computable
upper bounds for the norm difference along trajectories associated with � and �̃.
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Let �&(�) be the component-wise relative &-ball around � = ( ,  89 ,:,1 ,  89 ,:,2 , F) ∈ Θ
w.r.t the ℓ∞-norm, i.e.

�&(�) =
{
�̃ = ( ̃,  ̃ 89 ,:,1 ,  ̃ 89 ,:,2 , F̃) ∈ Θ :


 ̃ −  




∞
≤ & ‖ ‖∞


 ̃ 89 ,:,1 −  89 ,:,1





∞
≤ &




 89 ,:,1




∞
,


 ̃ 89 ,:,2 −  89 ,:,2





∞
≤ &




 89 ,:,2




∞
,

‖F̃ − F‖∞ ≤ & ‖F‖∞
}
.

Further, we denote by projΘ : ℝ? → Θ the orthogonal projection onto Θ, and
by U(() the uniform distribution for any bounded set ( ⊂ ℝ? . Then, the cumulative
distribution function �(,G of the local Lipschitz constant of the regularizer w.r.t. its
first component is given as

�(,G(!) = ℙ
(

max
B=0,...,(

!G(ĜB(H, �, ), �), ĜB(H, �, ), �̃), ), �) ≤ ! :

(H, �) ∼ T, �̃ ∼ U(projΘ(�&(�)))
)

for ! ∈ ℝ. Likewise, we define the local Lipschitz constant of TDV w.r.t. its second
argument as

�(,�(!) = ℙ

(
max
B=0,...,(

!�(ĜB(H, �, ), �̃), �, �̃) ≤ ! : (H, �) ∼ T, �̃ ∼ U(projΘ(�&(�)))
)

for ! ∈ ℝ, where

!�(G, �, �̃) B




�1R(G, �) − �1R(G, �̃)





2


� − �̃



2

.

Taking into account the above definitions we can state the stability theorem w.r.t. the
learned parameters as follows:

Theorem 6.4.2 (Stability w.r.t. parameters) Let ) ∈ [0, )max], � ∈ Θ and �̃ ∼
U(projΘ(�&(�))). We denote by I = �H + � an observation associated with (H, �) ∼ T,
and by {GB}(B=0 , {G̃B}(B=0 ∈ (ℝ=�)(+1 two states satisfying (6.9) with initial conditions
G0 = G̃0 = �initI and control parameters (), �) and (), �̃), respectively. Then, the
inequality

1
=�
‖GB+1 − G̃B+1‖2 ≤

1
=�

1 − 
2(�)B+1

1 − 
2(�) �2(�)



� − �̃




2
(6.13)

holds true with probability 1 − � for � ∈ [0, 1), where


2(�) =


�−1




2 �
−1
(,G(1 − �

2 ), �2(�) =


�−1




2
)
( �
−1
(,�(1 − �

2 )

for � B Id+)(�>�.

Proof. Again, using the definition of 6 yields

‖GB+1 − G̃B+1‖2 ≤ 
2(�) ‖GB − G̃B ‖2 + �2(�)



� − �̃




2
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with probability 1 − �, where we used


R(GB , �) − R(G̃B , �̃)





2
≤ �−1

(,G(1 − �
2 ) ‖GB − G̃B ‖2 + �−1

(,�(1 − �
2 )




� − �̃



2
.

By exploiting a recursion argument and noting that the initial states coincide the
theorem follows.

Hence, this theorem provides a computable upper bound for the norm difference
of two states w.r.t. perturbations of the TDV parameters. In particular, if (), �) is a
local minimizer of the cost functional (6.10), then the stability analysis quantifies the
robustness of the trajectories.

6.5 Numerical Results

In this section, we present numerical results for additive Gaussian denoising, medical
image reconstruction, and single image super-resolution. To get an intuition for
the local behavior of the learned regularizers, we pursue a nonlinear eigenfunction
analysis. Moreover, we perform a stability analysis including adversarial attacks
and worst-case generalization error estimates to demonstrate the robustness of the
proposed method.

6.5.1 Training Details

In all experiments,weuse the BSDS400dataset [215] for training,whichdetermines the
discrete probability measure according to Remark 6.2.1. Thus, the control parameters
(), �) are computed by minimizing the discretized sampled optimal control problem

min
)∈[0,)max],�∈Θ

1
#

#∑
8=1

ℓ (Ĝ((H 8 , �8 , ), �) − H 8),

where ℓ (G) = ‖G‖22 for Gaussian denoising and ℓ (G) = ∑=�
8=1

√
G2
8 + &2 for single image

super-resolution with & = 0.01. We augment data of patch size 93 × 93 by randomly
flipping the images horizontally or vertically, and by rotating the images by multiples
of 90◦. The ADAM optimizer [110] is employed with a mini batch size of 32 using 105

iterations, �1 = 0.9 and �2 = 0.999, where the initial learning rate is 5 · 10−3 for the
FoE regularizer and 4 · 10−4 for the TDV regularizer and the learning rate is halved
every 25 000 iterations. The noise � is drawn randomly in each training iteration.

6.5.2 Additive Gaussian Denoising

As a first task, we consider additive Gaussian denoising implying � = Id ∈ ℝ=�×=� ,
� ∼ N(0, �2 Id) and ; = =� for � = 1 (gray-scale images) or � = 3 (color images).
Thus, the data term specific for Gaussian image denoising is given by

D(G, I) B 

G − H

2
2 .

In the first experiments, we perform an ablation study of the number of blocks 1,
the number of scales 0, and the potential function of the TDV regularizer. To this
end, we evaluate the performance of the resulting TDV regularizers for additive
gray-scale Gaussian denoising by computing the expected PSNR value on the
BSDS68 dataset. Figure 6.3 depicts the expected PSNR values (top) and the optimal
stopping times (bottom) as functions of the depth ( for color-coded TDV regularizers
with 0, 1 ∈ {2, 3, 4} and FoE:< regularizers with < ∈ {8, 24, 48} filter kernels with
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Figure 6.3: Expected PSNR value and
optimal stopping time depending on (
for various regularizers (gray-scale
Gaussian denoising, � = 25).

# ln cosh(G) 1
2 log(1 + G2) G

PSNR 29.3596 29.3662 29.3722

Table 6.1: Different possible choices for
potential functions # of the TDV regu-
larizer evaluated on gray-scale Gaussian
denoising (� = 25).

support : ∈ {3, 5, 7}. In all cases, the performance increases until ( ≈ 10, beyond this
point the curves saturate. Thus, in all subsequent experiments, all regularizers are
trained for ( = 10. All considered variants of the TDV regularizer outperform the
FoE regularizers in terms of expected PSNR score by a large margin, which originates
from the ability of the TDV regularizer to combine image features in a nonlinear
manner. Moreover, the expected PSNR values increase with the number of learnable
parameters, which is correlated with the number of blocks and scales of the TDV
regularizer and the number of features and the kernel size used in the FoE regularizer.
However, beyond a certain complexity the performance increase saturates, that is why
we use the TDV3

3 and the FoE7
48 regularizer in all further experiments. In addition,

the optimal stopping time )∗ also converges for all considered regularizers and is
roughly 10-times higher for the FoE regularizer compared to the TDV regularizer.
This effect is probably due to the larger receptive field of the TDV regularizer that
enables a more effective processing of local information.

Table 6.1 lists the PSNR values for three possible choices of the potential functions# of
the TDV regularizer. It turns out that the simplest potential function #(G) = G, which
is neither bounded nor coercive, performs slightly better than the other potential
functions. For this reason, we use #(G) = G in all further experiments.

In what follows, we discuss the importance of the stopping time for the quality
of the output image in analogy to the introductory example for the ROF model in
Section 6.1. To this end, we plot the PSNR values of all BSDS68 test images and the
corresponding expected PSNR value (red line) as a function of the stopping time
(Figure 6.4) for the FoE (first row) and TDV regularizer (third row). In both plots, all
curves approximately peak around the optimal stopping time, which is )∗ = 0.476
for the FoE and )∗ = 0.017 for the TDV regularizer. The optimal stopping time is also
identified by the first-order condition of Theorem 6.3.3, which accounts for the zero-
crossing of the gradient of the loss function w.r.t. the stopping time. This is visualized
in Figure 6.4 for the FoE (second row) and the TDV (fourth row) regularizer. Further,
to visually verify the importance of the proper choice of the optimal stopping time,
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Figure 6.4: Depicted are the PSNR val-
ues over the BSDS68 dataset as a func-
tion of the stopping time ) for the FoE7

48
(first row) and TDV3

3 (third row) regular-
izer. The second and fourth row depict
the associated first-order condition for
the FoE7

48 and TDV3
3 regularizer, respec-

tively. Note that the red curves indicate
the expected values of the correspond-
ing quantity over the BSDS68 dataset,
while the black dashed lines correspond
to individual samples.

Figure 6.5 presents sequences of output images for gray-scale and color Gaussian
denoising trained for ( = 10. Starting from the noisy input image G0 (second column),
the noise level is gradually decreased until the output image G10 (fourth column) is
obtained. Beyond this point, the algorithm generates over smoothed images, and
details are lost. A qualitative comparison at the optimal stopping time )∗ of the FoE
and TDV regularizer in the sky/roof region of the water castle shows that the TDV
regularizer generates images with sharp edges between homogeneously denoised
regions, whereas the FoE regularizer generates ringing-like artifacts and smoother
edges. With increasing stopping time ) > )∗, the FoE regularizer smooths out image
details such as the small windows and the chimney stripes in the zoom, while the
prevailing structures of the image are preserved by the TDV regularizer. In addition,
small image details such as the vertical ornaments above the large window in the
zoom of the water castle are restored very well by the TDV regularizer compared to
the FoE regularizer. Further, the TDV regularizer preserves these details much longer
along the image trajectory.

Quantitative comparisons of expected PSNR values for additive gray-scale and
color Gaussian denoising for � ∈ {15, 25, 50} on various image datasets are listed
in Table 6.2 and Table 6.3. For TDV3

3,25, the PSNR values of our proposed TDV
regularizer with three macro-blocks on three scales solely trained for � = 25 are
presented. Likewise, the FoE7

48,25 column lists the PSNR values obtained by applying
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Figure 6.5: From left to right: Ground truth, noisy input with noise level � = 25 and resulting output of the learned regularizers for ((, )) ∈
{(5, 1

2)
∗), (10, )∗), (15, 3

2)
∗), (20, 2)∗)}. First row: FoE7

48 for gray-scale Gaussian denoising. Second row: TDV3
3 for gray-scale Gaussian denoising.

Third row: FoE7
48 for color Gaussian denoising. Fourth row: TDV3

3 for color Gaussian denoising. Note that the best images are framed in red and are
obtained at the learned optimal stopping time )∗.
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Table 6.2: Comparison of expected PSNR values for additive gray-scale Gaussian denoising for � ∈ {15, 25, 50} on various image datasets.

Dataset � BM3D [73] FoE7
48 TNRD [55] DnCNN [142] FFDNet [250] N3Net [251] FOCNet [249] TDV3

3,25 TDV3
3

Set12
15 32.37 32.30 32.50 32.86 32.75 - 33.07 32.93 33.02
25 29.97 29.79 30.05 30.44 30.43 30.55 30.73 30.68 30.68
50 26.72 26.59 26.82 27.18 27.32 27.43 27.68 27.52 27.59

BSDS68
15 31.08 31.26 31.42 31.73 31.63 - 31.83 31.76 31.84
25 28.57 28.75 28.92 29.23 29.19 29.30 29.38 29.37 29.37
50 25.60 25.80 25.97 26.23 26.29 26.39 26.50 26.42 26.45

Urban100
15 32.34 31.62 31.98 32.67 32.43 - 33.15 32.66 32.91
25 29.70 28.75 29.29 29.97 29.92 30.19 30.64 30.38 30.38
50 25.94 25.18 25.71 26.28 26.52 26.82 27.40 26.94 27.04

# Parameters 3 842 26 645 555 200 484 800 705 895 53 513 120 387 394 387 394

Dataset � BM3D [73] FoE7
48,25 CDnCNN [142] FFDNet [250] TDV3

3,25

CBSDS68
15 33.52 33.53 33.89 33.87 34.12
25 30.71 30.84 31.23 31.21 31.53
50 27.38 27.43 27.92 27.96 28.26

Kodak24
15 34.28 34.30 34.48 34.63 35.01
25 31.68 31.76 32.03 32.13 32.59
50 28.46 28.42 28.85 28.98 29.44

McMaster
15 34.06 33.50 33.44 34.66 34.55
25 31.66 31.33 31.51 32.35 32.47
50 28.51 28.07 28.61 29.18 29.41

# Parameters 8 546 668 803 852 108 387 970

Table 6.3: Comparison of expected
PSNR values for additive color Gaus-
sian denoising for � ∈ {15, 25, 50} on
various image datasets.

X-ray source

Γ8

8Cℎ detector element

Figure 6.6: Illustration of the triangle Γ8
spanned by the X-ray source and the 8Cℎ
detector element of the CT scanner. Note
that the measured X-ray intensity at the
8Cℎ detector element is proportional to
the matter in Γ8 .

a FoE regularizer with 48 kernels of size 7 × 7 only trained for � = 25. To apply
the FoE7

48,25 or TDV3
3,25 model to different noise levels, we first rescale the noisy

images Ginit = I = 25
� I, then apply the learned scheme (6.9), and obtain the results

via G( = �
25 G(. In the fourth and last columns of Table 6.2, the PSNR values of the

FoE and TDV regularizer–individually trained for each noise level–are listed. For color
Gaussian denoising we only present results obtained by FoE7

48,25 and TDV3
3,25 to

follow the evaluation standard of the related methods. We achieve state-of-the-art
results for gray-scale and color image denoising with the TDV regularizer compared
with models of similar complexity. Only FOCNet [249] performs slightly better for
gray-scale images at the expense of more than a hundred times more trainable
parameters. Additionally, the TDV regularizers yield higher PSNR values if their
parameters are individually optimized for each noise level, as the comparison of
the TDV3

3,25 and TDV3
3 columns shows. Note that the performance in terms of PSNR

of the FoE7
48 regularizer is rather good given the very small number of trainable

parameters.

6.5.3 Two-dimensional Computed Tomography Reconstruction

To demonstrate the broad applicability of the proposed TDV regularizer, we perform a
two-dimensional CT reconstruction using the TDV3

3,25 regularizer, which was trained
for gray-scale Gaussian image denoising and ( = 10. We stress that the regularizer is
applied without any additional training of the TDV parameters.

The task of CT is the reconstruction of an image given a set of projectionmeasurements
called sinogram, in which the detectors of the CT scanner measure the intensity
of attenuated X-ray beams. Here, we use the linear attenuation model introduced
in [252], where the attenuation is proportional to the intersection area of a triangle Γ8 ,
which is spanned by theX-ray source and a detector element as visualized in Figure 6.6,
and the area of an image element. In detail, the sinogram I of an image G is computed
by I = �'G, where �' ∈ ℝ;×= is the lookup-table based area integral operator
of [252] for ' angles and 768 projections implying ; = 768 · '. Typically, a fully
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Figure 6.7: Fully sampled reference im-
age (top left). Reconstruction results
for 4-fold undersampling ' = 576 (sec-
ond column) and 8-fold undersampling
' = 288 (third column). First row de-
picts the unregularized conjugate gra-
dient reconstructions, second row the
reconstruction results using the pre-
trained FoE7

48,25 regularizer, and third
row the reconstruction results using the
pretrained TDV3

3,25 regularizer.

sampled acquisition consists of 2304 angles. For this task, we consider the problem of
angular undersampled CT [219], where only a fraction of the angles are measured.
We use a 4-fold (' = 576) and 8-fold (' = 288) angular undersampling to reconstruct
a representative image of the MAYO dataset [12] with = = 768 × 768. To account for
an imbalance of regularization and data fidelity, we manually scale the data fidelity
term by � > 0, i.e.

D(G, I) B �
2
‖�'G − I‖22 .

The resulting smooth variational problem is optimized using accelerated gradient
descent with Lipschitz backtracking with 1000 steps as discussed in [10].

We present qualitative and quantitative results for CT reconstruction in Figure 6.7 for
a single abdominal CT image. The first row depicts from left to right the fully sampled
reference image, an unregularized reconstruction for 4-fold angular undersampling
(' = 576) and an unregularized reconstruction for 8-fold angular undersampling
(' = 288), which were both computed by performing 50 steps of the conjugate
gradient (CG) method on the data fidelity term. The corresponding reconstruction
results by incorporating the FoE7

48,25 or the TDV
3
3 regularizer are shown in the second

and third row, respectively. Note that both parametric regularizers were solely trained
for gray-scale Gaussian denoising and neither saw any medical images nor angular
undersampling artifacts during training. Interestingly, both regularizers are able to
suppress the undersampling artifacts while preserving, for instance, the fine vessels
in the liver. For both angular undersampling patterns the reconstructions using the
TDV3

3 have a larger PSNR value compared to the FoE7
48 regularizer. Moreover, using

the TDV3
3 regularizer for ' = 288, we are able to reconstruct a fine detail in the

spine (highlighted in the zoom), which is not visible in the associated reconstruction
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Figure 6.9: Reconstruction results for
acceleration factor ' = 4 (second col-
umn) and ' = 6 (third column). The
first row depicts from left to right the
fully sampled reference image, the zero
filling initialization for acceleration fac-
tors ' = 4 and ' = 6. The second row
shows the reconstruction results using
the pretrained FoE7

48,25 regularizer, and
third row the reconstruction results us-
ing the pretrained TDV3

3,25 regularizer.

Figure 6.8: Two-dimensional Cartesian
undersampling mask. The black rows
are not acquired to accelerate the MRI
acquisition process.

results using the FoE7
48 regularizer. This highlights that the learned regularizers can

be effectively applied as a generic regularizer for linear inverse problems without
any transfer learning, which is a particular benefit of the variational structure of the
proposed approach.

6.5.4 Magnetic Resonance Imaging Reconstruction

To further point out the flexibility of the proposed approach, we apply our pretrained
FoE7

48,25 and TDV3
3,25 regularizers, both learned for gray-scale Gaussian denoising

and ( = 10, to accelerated MRI without any further adaption of their parameters �.

In accelerated MRI, k–space data {I8}#�8=1 ⊂ ℂ= is acquired using #� parallel coils,
each measuring a fraction of the full k–space to reduce acquisition time [120]. Here,
we use the data fidelity term

D(G, {I8}#�8=1) =
�
2

#�∑
8=1
‖"'��8G − I8 ‖22 ,

where � > 0 is a manually adjusted weighting parameter, "' ∈ ℝ=×= is a binary
mask for '-fold Cartesian undersampling (see Figure 6.8), � ∈ ℂ=×= is the discrete
Fourier transform, and �8 ∈ ℂ=×= are sensitivity maps. For further details, we refer
the reader to [120]. We use 4-fold and 6-fold Cartesian undersampled MRI data to
reconstruct a sample knee image. Again, weminimize the resulting variational energy
by accelerated gradient descent with Lipschitz backtracking using 1000 steps [10].
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We perform an evaluation of the proposed approach on a representative slice of an
undersampled MRI knee acquisition. The slice has a resolution of = = 320 × 320 and
#� = 15 receiver coils were used during the acquisition. Figure 6.9 depicts qualitative
results and PSNR values for the reconstruction of 4-fold and 6-fold undersampled
k–space data. The first row shows the initial images obtained by applying the adjoint
operator to the undersampled data. The second row depicts the reconstructed images
using the FoE7

48 regularizer and the third row the corresponding results obtained by
TDV3

3,25. Although both regularizers were not trained to account for undersampling
artifacts, almost all artifacts are removed in the reconstructions and only some details
are lost. As in the CT reconstruction task, using the TDV3

3 regularizer results in
a higher PSNR value of the reconstructions. In addition, the TDV3

3 regularizer is
capable of correctly reconstructing the three diagonal lines highlighted in the zoom,
whereas the FoE7

48 regularizer removes one line for the acceleration factor ' = 6. This
highlights the versatility and effectiveness of the proposed TDV regularizer since
both CT and MRI reconstruction can be properly addressed without any fine-tuning
of the learned parameters.

6.5.5 Single Image Super-resolution

In this subsection, we present numerical results for SISR. Here, the linear operator� ∈
ℝ=�/�2×=� is given as a downsampling operator, where � ∈ {2, 3, 4} denotes the scale
factor. In detail, its adjoint operator coincides with MATLAB®’s bicubic upsampling
operator imresize, which is an implementation of a scale factor-dependent bicubic
interpolation convolution kernel in conjunction with a stride. Since this restoration
problem substantially differs from Gaussian image denoising, the parameters of the
TDV regularizer have to be optimized for this task individually.

Let =� be a multiple of �2 and H ∈ ℝ=� be a full resolution ground truth image
patch uniformly drawn from the BSDS400 dataset. The observations

I = �H + � ∈ ℝ=�/�2

used for training are corrupted by additive Gaussian noise � with � ∈ {0, 7.65}. For
the initialization we set �init = ��>. The proximal map (Id+)(�>�)−1 is efficiently
computed in Fourier space as advocated in [253]. Here, all results are obtained by
training a TDV3

3 regularizer for each scale factor individually.

We compare our SISR results with numerous state-of-the-art networks of similar
complexity and list expected PSNR values of the Y-channel in the YCbCr color space
over test datasets in Table 6.4. For the BSDS100 dataset, our proposed method using
the TDV3

3 regularizer achieves similar results as OISR-LF-s [254] with less than one
third of the trainable parameters. Also the FoE7

48 regularizer performs well given the
limited number of learnable parameters. Figure 6.10 depicts a restored sequence of
images for SISR with scale factor � ∈ {2, 4} using the FoE7

48 and TDV3
3 regularizers

for two representative sample images of the Set14 dataset. The first row shows the
image sequence using the FoE7

48 regularizer and a scale factor � = 2. The second
row illustrates the corresponding image sequence using the TDV3

3 regularizer. The
resulting sequences for a scale factor � = 4 are depicted in the third (FoE7

48) and the
fourth row (TDV3

3). In all cases, the sequences start from the low-resolution initial
image G0 = �initI, then interfaces are gradually sharpened and the best quality is
achieved at the learned optimal stopping time ) = )∗. Beyond this point, interfaces
are artificially intensified. Also in the SISR task, the TDV3

3 regularizer yields higher
quality in terms of PSNR values at the optimal stopping time )∗. In addition, the
images at the optimal stopping time generated by the TDV3

3 regularizer have sharper
interfaces. However, beyond the optimal stopping time )∗ the TDV3

3 regularizer
over-intensifies the interfaces much more than the FoE7

48 regularizer.
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Figure 6.10: From left to right: Ground truth, low resolution initial image G0 and resulting output of the learned regularizers for ((, )) ∈
{(5, 1

2)
∗), (10, )∗), (15, 3

2)
∗), (20, 2)∗)}. The first row shows the results using the FoE7

48 regularizer for � = 2 and the third row for � = 4. The second
row depicts the resulting trajectory using the TDV3

3 regularizer for � = 2 and the fourth row for � = 4, respectively. Note that the best images are
framed in red and are obtained at the learned optimal stopping time )∗.

Table 6.4: PSNR values of various state-of-the-art networks for single image super-resolution (� = 0) with a comparable number of parameters.

Dataset Scale FoE7
48 MemNet [255] VDSR [256] DnCNN-3 [142] DRRN [257] OISR-LF-s [254] TDV3

3

Set14
×2 32.77 33.28 33.03 33.03 33.23 33.62 33.35
×3 29.63 30.00 29.77 29.81 29.96 30.35 29.94
×4 27.89 28.26 28.01 28.04 28.21 28.63 28.41

BSDS100
×2 31.64 32.08 31.90 31.90 32.05 32.20 32.17
×3 28.64 28.96 28.82 28.85 28.95 29.11 28.96
×4 27.15 27.40 27.29 27.29 27.38 27.60 27.55

# Parameters 8 546 585 435 665 984 666 561 297 000 1 370 000 387 970
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6.5.6 Eigenfunction Analysis

To get a better understanding of the local behavior of the FoE and the proposed TDV
regularizer, we perform a nonlinear eigenfunction analysis [258]. To this end, we
compute nonlinear eigenfunctions by minimizing the variational problem

min
G∈[0,1]=�

1
2 ‖�1R(G, �) −Λ(G)G‖22 , (6.14)

where the generalized Rayleigh quotient defining the eigenvalues is given by

Λ(G) = 〈�1R(G, �), G〉
‖G‖22

.

Note that (6.14) enforces�1R(G, �) ≈ Λ(G)G for imageswith range space [0, 1].We use
Nesterov’s projected accelerated gradient descent [98] to perform the optimization
in (6.14). Due to the non-convexity of this minimization problem, the resulting
eigenfunctions strongly depend on the initialization.

Figure 6.11 depicts six central image patches from the BSDS400 dataset (first row),
which are used as the initialization, along with their eigenfunctions for gray-scale
denoising (second row, � = 25), color denoising (third row, � = 25) and SISR (fourth
row, � = 2 and � = 0). Note that each row shows the resulting eigenfunctions of
the FoE7

48 regularizer on the top and the corresponding eigenfunctions of the TDV3
3

regularizer on the bottom. For denoising (second and third row), the generated
eigenfunctions are composed of piecewise constant regions with smooth edges result-
ing in cartoon-like simplifications and contrast enhancement (see e.g. second/third
column). The FoE7

48 regularizer has a tendency to transform textured regions into
blocky structures that are axis-aligned, whereas the TDV3

3 regularizer transforms
textured regions of the initial image into more complex repetitive structures such
as stripes and dots. In contrast, the eigenfunctions for SISR (fourth row) exhibit
fine-scaled texture details, which explain the property of the learned regularizers
to recover high frequencies. Here, the FoE7

48 regularizer also generates piecewise
smooth regions and reduces contrast by favoring brown and green color shades
throughout all examples, while the TDV3

3 regularizer preserves the color to a large
extent and adds high-frequency details as, for instance, can be seen at the noise
and mouth region in the last column. These results clearly demonstrate that the
learned regularizers are discriminative priors as they adapt to the specific image
reconstruction tasks due to the discriminative learning approach.

6.5.7 Stability Analysis

In what follows, we elaborate on the stability of the proposed approach w.r.t. pertur-
bations of the initial image and the learned parameters of the parametric regularizers.
To this end, we numerically analyze the local structure of the regularization energy
and experimentally validate Theorem 6.4.1 and Theorem 6.4.2. In all experiments in
this subsection, we use the FoE7

48 and TDV3
3 regularizers. Let G ∈ ℝ=� be an image,

� ∼ N(0, �2 Id) Gaussian noise and � parameters trained for gray-scale Gaussian
denoising with � = 25. Figure 6.12 visualizes the surface plots of the point-wise deep
variation [−1, 1] 3 (�1 , �2) ↦→ r(�1G + �2�, �)8 as a function of the contrast �1 and
the noise level �2 for four prototypic pixels 8 marked in red. All surface plots exhibit
distinct global minima and no high-frequency oscillations can be observed. Moreover,
the point-wise deep variation strictly increases from the origin in all directions.

Motivated by the aforementioned surface plots, we can now conduct the stability
analysis w.r.t. perturbations of the input, as illustrated in Figure 6.13. For this purpose,
we estimate quantiles of the local Lipschitz constants !G and !� of both regularizers
by uniformly drawing 105 patches of size 128 × 128 from the BSDS400 dataset. To
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Figure 6.11: First row: initial images taken from BSDS400 dataset. Second row: eigenfunctions for gray-scale denoising (� = 25) of the FoE7
48,25 (top)

and TDV3
3,25 (bottom) regularizers. Third row: eigenfunctions for color denoising (� = 25) of the FoE7

48,25 (top) and TDV3
3,25 (bottom) regularizers.

Fourth row: eigenfunctions for single image super-resolution (� = 2, � = 0) of the FoE7
48 (top) and TDV3

3 (bottom) regularizers.
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Figure 6.12: Surface plots of the point-
wise deep variation [−1, 1] 3 (�1 , �2) ↦→
r(�1G + �2�, �)8 of four patches–each
evaluated at the red center pixel.
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Figure 6.13: Graphical illustration of
the effect of input (noise) variations for
Gaussian gray-scale denoising. Given
two noise samples �, �̃ and the learned
TDV3

3 regularizer, both corresponding
image trajectories originate from differ-
ent initial states G0 , G̃0 and evolve to-
wards the ground truth H during the
denoising process. At the top and bot-
tom the associated images of the TDV3

3
regularizer are depicted and on the right
the difference of the output images is
shown in the interval [−0.4, 0.4].

this end, we consider an image patch H randomly drawn from the BSDS68 dataset
and let �, �̃ be two noise instances independently drawn from N(0, �2 Id) for � = 25.
The associated observations are denoted by I = H + � and Ĩ = H + �̃, resulting in the
states GB and G̃B . Figure 6.14 depicts the normalized norm differences 1

=� ‖GB − G̃B ‖2
for all 68 patches (light blue curves), the corresponding mean curve (blue curve) as
well as the upper bounds obtained from Theorem 6.4.1 for � = 0.5 (orange curve)
and � = 0.05 (green curve) for gray-scale additive Gaussian denoising (first row) and
single image super-resolution as a function of B for the FoE7

48 (first column) and TDV3
3

(second column) regularizer. It turns out that the normalized norm differences along
the trajectories are only slightly overestimated for gray-scale Gaussian denoising
and both considered regularizers, see the first row of Figure 6.14. Furthermore,
the normalized norm differences strictly monotonically decrease for increasing B,
which is also reflected in the upper bounds due to 
1(�) < 1. In the case of single
image super-resolution (second row of Figure 6.14), the bounds are less tight due
to the inclusion of the non-trivial linear operators � with a non-empty nullspace.
Furthermore, �init with ‖�init‖2 = � strongly influences the bounds. Note that the
solutions of the single image super-resolution problem are not unique due to the
structure of�. Nevertheless, the actual bandwidth of the normalized normdifferences
for samples of the BSDS68 dataset is rather small.

Next, we elaborate on the stability analysis w.r.t. variations of the learned parameters.
Let H be a randomly drawn 128 × 128-patch from the BSDS68 dataset, which is
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Figure 6.14: First row: stability analysis w.r.t. input variations of the proposed approach for FoE7
48 (left) and TDV3

3 (right) both trained for gray-scale
Gaussian denoising with � = 25/( = 10. Second row: stability analysis w.r.t. input variations for FoE7

48 (left) and TDV3
3 (right) both trained for SISR

with � = 3/� = 7.65/( = 10.

corrupted by I = �H + �. We consider parameters � ∈ Θ of each regularizer that are
either optimized for gray-scale Gaussian denoising or single image super-resolution
with � > 0. The corrupted parameters �̃ satisfy �̃ ∼ U(projΘ(�&(�))) with & = 0.1.
Hence, �̃ is the element-wise sum of � and strong uniform noise in the relative &-ball
around �. We denote by GB and G̃B two states associated with � and �̃ emanating
from the same noisy observation I, as illustrated in Figure 6.15. Thus, we expect
that the normed difference of both trajectories increases with B. In Figure 6.16, the
normalized norm differences of the states GB and G̃B for 68 random patches of the
BSDS68 dataset (light blue curves), the corresponding mean curve (blue curve) as
well as the theoretical upper bounds derived in Theorem 6.13 for � = 0.5 (orange
curve) and � = 0.05 (green curve) are plotted as a function of B. The first row shows
the results for gray-scale Gaussian denoising with � = 25, while the second row
shows the results for single image super-resolution for � = 3/� = 7.65. Further, the
first column of Figure 6.16 presents the stability w.r.t. parameter variations of the
FoE7

48 regularizer and the second column the stability w.r.t. parameter variations
of the TDV3

3 regularizer. As expected, the normalized norm differences along the
trajectories increase on average in all cases, which is also reflected in the derived
upper bounds. The upper bounds for the FoE7

48 regularizer on both considered tasks
are rather tight due to the small number of trainable parameters. The upper bound
of the TDV3

3 regularizer for � = 0.5 and B = 10 is roughly four to five times higher
than the expected curve of the normalized norm differences, which reflects the large
variability of �̃.

To conclude, in all cases the normalized norm differences (blue curves) are almost
flat and the band width only slightly increases with B. This numerically validates
that the proposed method is robust w.r.t. variations of both the input observations
and the learned parameters.

6.5.8 Robustness against Adversarial Attacks

In what follows, we numerically check the robustness of the proposed method
against adversarial attacks using the FoE7

48 and the TDV3
3 regularizer both trained for

gray-scale Gaussian denoising with � = 25. Let H ∈ ℝ=� be a ground truth image
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H Figure 6.15:Graphical illustration of the
effect of parameter variations for gray-
scale Gaussian denoising. The state tra-
jectories associated with � and �̃ origi-
nate from the same initial state G0 and
evolve towards the ground truth H. At
the top and bottom the associated im-
ages of the TDV3

3 regularizer are de-
picted and on the right the difference
of the output images is shown in the
interval [−0.15, 0.15].

patch, � ∼N(0, �2 Id) Gaussian noise and I = H + � ∈ ℝ=� . The adversarial noise �̃
for & > 0 is computed via

max
�̃∈ℝ; :‖�̃‖2≤&




Ĝ((H, � + �̃, ), �) − H


2

2
.

Thus, we seek the noise structure that leads to the largest deviation from H within an
&-ball around I.

Figure 6.17 shows two different ground truth image patches, the corresponding
restored images using either the FoE7

48 or the TDV3
3 regularizer along with the

computed regularizer-dependent adversarial noise structures and the corresponding
output images for two radii & ∈ {1, 2}. As a result, with increasing radius & high-
frequency patterns are generated in the adversarial noise, which are emphasized
in the corresponding output images. The adversarial noise associated with the
FoE7

48 regularizer consists of locally concentrated irregular stripe patterns, while
the adversarial noise of the TDV3

3 regularizer admits more regular stripe and dot
patterns, which are typically difficult to reconstruct given just the noisy observation.
In summary, in all adversarial attacks, no new structures are hallucinated by the
regularizers, only existing patterns (either in the original image H or in the adversarial
noise �̃) are intensified in G((�̃). Hence, the adversarial noise has only a local influence
on the final reconstruction G((�̃), which numerically validates that both the FoE7

48
and the TDV3

3 regularizer are stable against adversarial attacks.

6.5.9 Empirical Upper Bound for Generalization Error

Next, we experimentally compute worst-case upper bounds for the generalization
error of the FoE7

48 and the TDV3
3 regularizer trained for gray-scale Gaussian denoising

with � = 25. As a starting point, let Y ⊂ [0, 1]= be the set of natural images with
distribution TY. Further, let Y′ ⊂ Ybe a collection of 105 ground truth image patches
of size 128 × 128 randomly drawn from the BSDS400 dataset, the BSDS68 dataset,
and the DIV2K validation set [11]. The uniform distribution on Y′ is denoted by TY′ .
Following [129], the empirical risk w.r.t. Y′ is defined as

�emp(Y′) B 1
|Y′ |

∑
H′∈Y′

ℓ (Ĝ((H′, �H′) − H′),

the expected loss of Y reads as

�(Y) B EH∼TY
ℓ (Ĝ((H, �H) − H),
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Figure 6.16: First row: stability analysis w.r.t. the learned parameters of FoE7
48 (left) and TDV3

3 (right) both trained for gray-scale Gaussian denoising
with � = 25/( = 10. Second row: stability analysis w.r.t. the learned parameters of FoE7

48 (left) and TDV3
3 (right) both trained for SISR with

� = 3/� = 7.65/( = 10.
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Figure 6.17: From left to right: ground truth image patch H (first column), noisy observation I = H + � (second column), reconstructed image
(third column), pairs of (adversarial) noise and resulting output for radii & = 1 (fourth/fifth column) and & = 2 (sixth/seventh column), where
G((�̃) = Ĝ((H, � + �̃, ), �). The first and third row depict results of the FoE7

48 regularizer and the second and fourth row the corresponding results of
the TDV3

3 regularizer, which both were trained for gray-scale Gaussian denoising with � = 25/( = 10. The adversarial noise �̃ is displayed in the
range [−0.5, 0.5].
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where the loss ℓ (G) = ‖G‖22 is the quadratic ℓ 2-norm, �H and �H′ are a-priori sampled
noise instances drawn fromN(0, �2 Id), and Ĝ((H, �) = Ĝ((H, �, ), �). In this case, the
generalization error for Y′ is defined as the absolute difference between the expected
loss and the empirical loss, i.e.

|�(Y) − �emp(Y′)|.

A worst-case upper bound for this generalization error is given by

max
H̃∈[0,1]=

ℓ (Ĝ((H̃ , �) − H̃) − �emp(Y′) (6.15)

for an a-priori sampled � ∼ N(0, �2 Id) since the expected loss is estimated from
above by its single worst realization.

To analyze the dependency between the loss and the regularization energy, we show
scatter plots of the plane spanned by ℓ (Ĝ((H′, �H′) − H′) and R(H′, �) in Figure 6.18
(first column) for all H′ ∈ Y′ and both regularizers. We observe a strikingly linear
dependency, which is reflected by an '2-value of 0.984 for the FoE7

48 regularizer
and 0.985 for the TDV3

3 regularizer of a linear regression with intercept. This linear
dependency gives rise to a probabilistic analysis of worst-case upper bounds for the
generalization error on quantiles of the corresponding regularization energy. For this
reason, we define the cumulative distribution function

�R(�) = ℙ
(
R(H′, �) ≤ � : H′ ∼ TY′

)
for� ∈ ℝ. Note that �−1

R (@) for @ ∈ (0, 1] defines the @Cℎ-quantile of the regularization
energy over Y′. Then, we derive an upper bound for the generalization error restricted
to the subset

Y′@ = {H′ ∈ Y′ : R(H′, �) ≤ �−1
R (@)}

for @ ∈ (0, 1]. In this setting, the expected loss of the @Cℎ-quantile is estimated from
above by ℓ (Ĝ((H̃@) − H̃@), where

H̃@ ∈ argmax
H∈[0,1]=

ℓ (Ĝ((H, �) − H) s.t. R(H) ≤ �−1
R (@). (6.16)

In detail, we try to identify the image patch H̃@ that leads to the worst-case loss ℓ
among all image patches in [0, 1]= such that their regularization energy R(H̃@) is at
most �−1

R (@). Hence, an upper bound for the generalization error on the set Y′@ is
given by

G(@) B ℓ (Ĝ((H̃@ , �) − H̃@) − �emp(Y′@).
To compute the worst-case ground truth image, we account for the constraint in (6.16)
by a quadratic barrier approach and solve the resulting minimization problem using
Nesterov’s accelerated gradient method [98] with Lipschitz backtracking starting
from a patch with uniform noise.

Figure 6.18 (second column) depicts the semi-logarithmic plots of the upper bound for
the expected loss (solid curve), the empirical risk (dashed curve), and the upper bound
for the generalization error (dash-dotted curve) on the set Y′@ for both regularizers as
a function of @. For convenience, the third plot in the top part of Figure 6.18 depicts the
corresponding PSNR curves measured in decibels. It highlights that the worst-case
generalization error is around 15dB for the FoE7

48 regularizer and around 10dB for
the TDV3

3 regularizer on the considered dataset Y′. We note that the upper bound for
the generalization error slightly increases with larger regularization energy values
for the TDV3

3 regularizer represented by larger @. We observe that the upper bound
is not tight, which originates from the minimization in (6.16) among all patches in
[0, 1]= . The computed worst-case patches H̃@ along with the reconstructed output
images Ĝ((H̃@ , �) are shown in Figure 6.19 in the center part for the FoE7

48 regularizer
and at the bottom part for the TDV3

3 regularizer. The worst-case ground truth patches
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Figure 6.18: The first column depicts a scatter plot in the ℓ (Ĝ((H, �H) − H) and R(H, �)-plane for the FoE7
48 (first row) and TDV3

3 (second row)
regularizer. The second column shows the corresponding semi-logarithmic plots of the upper bound for the expected loss (solid curve), the empirical
risk (dashed curve) and the upper bound for the generalization error (dashed dotted curve) restricted to Y′@ as a function of the quantiles @ for both
considered regularizers. The third column highlights the associated PSNR curves measured in decibels.

for the FoE7
48 regularizer basically consist of two noise patterns that differ in variance

and partition the image into distinct regions. In the output image, the low variance
noise pattern is smoothed out and the high variance patterns are smoothed and
turned into a stripe pattern. With increasing @ the fraction of the ground truth patches
covered by the high variance pattern increases. In contrast, the worst-case ground
truth patches for the TDV3

3 regularizer consist of high-oscillatory stripe patterns and
checkerboard artifacts for small @, whereas noise and texture patterns are dominant
for higher values of @. We emphasize that all generated patches are artificial and not
likely to be contained in any natural image. That is why the upper bound for the
generalization error tends to overestimate the actual generalization error.
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Figure 6.19: Pairs of worst-case ground truth H̃@ and corresponding output image Ĝ((H̃@ , �) of the FoE7
48 regularizer (first and second row) and the

TDV3
3 (third and fourth row) regularizer.
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Figure 6.20: Schematic sketch of Spar-
seCT undersampling, where the MSC
blocks the majority of the X-ray radia-
tion.

6.6 Application to SparseCT Reconstruction

In this section, we elaborate on how to extend the TDV regularizer to 3-dimensional
inverse problems such as SparseCT. First, we provide a brief overview of SparseCT.
Then, the TDV regularizer is applied to this task such that the training is time- and
memory-efficient. Finally, numerical experiments show the potential of the proposed
approach.

SparseCT is a technique for CT dose reduction in helical CT acquisition that im-
plements compressed sensing with a multislit collimator (MSC) (see Figure 6.20)
for undersampled projection data acquisition and iterative reconstruction with a
sparsity-enforcing regularizer [83]. The MSC is composed of several narrow slits
along the slice dimension (z) and can move linearly to change the z-undersampling
pattern along the gantry rotation, which improves incoherence for compressed sens-
ing reconstruction [259]. Ideally, SparseCT can result in a different z-undersampling
pattern for each gantry angle '. However, in practice, the focal spot at the X-ray source
has a finite size and creates penumbra on both sides of each undersampled beam. As
a result, each undersampled beam (the beam through one slit of the MSC) irradiates
several continuous detector rows. To avoid this overlap between adjacent under-
sampled beams the distance between two consecutive slits of the MSC needs to be
increased. An example of such an undersampling mask, the W4S16 sampling pattern,
is depicted in Figure 6.21, where 4 detector-rows are irradiated by each undersampled
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Figure 6.21: Illustration of the W4S16
undersampling mask using a width of
4 detector rows and a stride of 16 rows.
Here, the mask moves with collimator
speed E = 1 detector row per gantry
angle, which leads to a different under-
sampling pattern for each gantry angle.

beam and 16 is the distance between two consecutive slits (in detector-row units).
The figure also illustrates the temporal evolution of the undersampling pattern with
increasing gantry angle '.

In SparseCT, image reconstruction is performed by an iterative algorithm using a
sparsity-enforcing regularizer on image gradients [16]. The incorporated regularizer
is usually a very simple function, such as TV or total generalized variation (TGV),
which is not able to fully represent the complex nature of CT images, and might lead
to reconstruction artifacts, such as stair-casing, residual streaking artifacts, or image
blurring.

To overcome these problems, the new generation of image reconstruction techniques
is based on deep learning, where CNNs trained on several datasets are applied
in the reconstruction process. Deep learning has been extensively applied to the
low-dose CT case for denoising a filtered back-projection (FBP) reconstruction of
either low mA data [193–195] or undersampled data [260]. Later, deep learning
approaches were incorporated in model-based iterative reconstruction [63, 67, 200,
261], where data consistency is integrated by penalizing the deviation to the acquired
sinogram data using a well-knownmodel of the acquisition operator. Hence, the main
contribution of deep learning for model-based reconstruction is the improvement of
the regularizer.

6.6.1 Model-based SparseCT Reconstruction

Next, we outline the model-based reconstruction of the attenuation volume given the
measured sinogram data of a CT scanner using SparseCT undersampling. In detail,
we consider the scanned volume Ω ⊂ ℝ3, which is discretized by = = =z · =y · =x
voxels. The reconstructed volume is denoted by G ∈ ℝ= . Likewise, I ∈ ℝ< with
< = A · 0 · 32 · 3A represents the acquired sinogram data for A rotations of the gantry
each measuring 0 angles, 32 detector channels, and 3A detector rows. Here, we
consider a CT scanner with 0 = 2304 angles per gantry rotation and a detector using
32 = 736 channels and 3A = 64 rows. Each detector element measures a radiation
intensity �8 ∈ ℝ, which is determined by the attenuation � : Ω→ ℝ in the cone Γ8
spanned by the X-ray point source and the rectangular-shaped detector element,
i.e.

�8 = �0 exp
(
−

∫
Γ8
�(B)dB

)
.

The X-ray source intensity is denoted by �0 ∈ ℝ. A transformation into the negative
logarithmic domain yields

I8 = − log
(
�8
�0

)
=

∫
Γ8
�(B)dB ≈ 0)8 G,

where 08 ∈ ℝ= approximates the volumetric integral using lookup tables proposed
by [252]. Stacking all post-log sinogram measurements into a vector I yields

I = "(�G + �) (6.17)

with � = (01 , . . . , 0<)) ∈ ℝ<×= . We follow [15, 16] to account for the quantum
and electronic noise in the acquisition process and model the noise by a Gaussian
distribution � ∼ N(0,,−1), where, is diagonal with statistical weights that are
determined by the flux measurements,88 = �8 . To retrospectively apply SparseCT
undersamplingwe utilize a binary diagonalmask" ∈ {0, 1}<×< to the fully-sampled
sinogram data I, where the diagonal entries indicate if the corresponding detector
element was measured. Using this model, the regularized reconstruction problem is
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given by

min
G∈ℝ=

�R(G) + 1
2 ‖"(�G − I)‖2, , (6.18)

where � > 0 balances the ℓ 2-data consistency term and the regularization term R :
ℝ= → ℝ. Typical choices for the regularizer in medical imaging are TV, TGV,
or sparsity-promoting non-convex regularizers on image gradients [45, 262]. All
these regularization methods solely quantify local image statistics and are prone to
staircasing and blurring artifacts. To overcome these issues, we propose to learn a
multi-scale regularizer suitable in particular for CT reconstruction.

6.6.2 Learning a TDV Regularizer for 3D SparseCT

In the above sections, we have rigorously analyzed the TDV regularizer and showed
how to efficiently train its parameters � using early stopping and amean-field optimal
control formulation. Moreover, we showed that the TDV regularizer trained solely
for Gaussian denoising can be successfully applied to medical image reconstruction
tasks without any further training. In what follows, we adopt this TDV regularizer
to 3-dimensional CT reconstruction. As introduced above, we consider the TDV
regularizer defined by

R(G, �) =
=∑
8=1

A(G, �)8 , (6.19)

which is the sum of the voxel-wise deep variation r(G, �) = F)N( G) ∈ ℝ= . In detail,
 ∈ ℝ=<×= represents a learned 3D convolution kernel with zero-mean constraint.
As before, the non-linear function N : ℝ=< → ℝ=< is a CNN and F ∈ ℝ< is a
learned weight vector. However, all convolutions in the residual building blocks of
Noperate on 3D volumetric features. To enable an efficient implementation of the
regularizer, all 3D convolutions are computed by first applying a 2D convolution in
x/y-plane followed by a 1D convolution along the z-axis. The support of the resulting
convolution filter is 3 × 3 × 3. We use < = 16 feature channels, just a single block,
and three scales to reduce the memory footprint of the TDV regularizer.

To estimate the parameters � of TDV we again consider a sampled discrete optimal
control problem. To this end, let (G 80 , H 8)#8=1 be a collection of# training pairs consisting
of an initial degraded volume G 80 and a corresponding fully-sampled reference H 8 .
Then, the optimal control training problem is

inf
),�∈Θ

1
#

#∑
8=1
‖G 8( − H 8 ‖& (6.20)

subject to

G 8B+1 =
1

1 + )
(

(
G 8B +

)
(

(
G 80 − �1R(G 8B , �)

) )
(6.21)

for B = 1, . . . , ( − 1 and 8 = 1, . . . , # . Here ‖ · ‖& is the Huber-norm, ) ∈ ℝ+ is
the learned stopping time, and ( ∈ ℕ denotes the number of temporal steps. The
iterative scheme (6.21) is motivated by a semi-implicit discretization of a gradient
flow on the energy R(G, �) + 1

2 ‖G − G 80‖22, which is equivalent to a proximal gradient
method [99].

We use the sinogram data of 10 fully-sampled clinical 3D in-vivo abdominal CT scans
of different patients acquired by a Siemens Definition AS scanner using a routine
clinical dose. Two of these scans include metal artifacts. We select those two scans for
testing, while the remaining scans are used for training. Due to the limited memory
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of a single graphics processing unit (GPU), we split the fully-sampled sinogram data
of each scan into chunks consisting of 3 full gantry rotations that overlap by 1 rotation,
resulting in 133 training samples.We compute the reference volumes H 8 by solving the
regularized inverse problem (6.18) to account for the noise in the clinical sinogramdata.
In detail, we choose the commonly used regularizer R(G) = ∑3=

9=1
1

2
 log(1 + 
(�G)29 )
for 
 = 1000 and � = 0.0125 using the fully-sampled data (i.e. " is the identity
matrix) and an accelerated ordered-subset approach with 8 subsets. Here, � refers to
the voxel-wise finite difference operator. The initial reconstructions G 80 are computed
by performing 40 CG steps to solve (6.18) with � = 0 for the SparseCT data, where
" reflects the W4S16 undersampling with a collimator speed of E ∈ {1, 4} detector
rows between two gantry angles.

Given the training samples, we use the Adam optimizer [110] with step size 10−4,
�1 = 0.9 and �2 = 0.999 to estimate the 45 936 parameters of the TDV regularizer and
the stopping time ) by minimizing (6.20) with ( = 10. In each of the 50 000 training
iterations, 6 patches of size 18 × 96 × 96 are randomly sampled from the training
data.

The resulting TDV regularizer with fixed learned parameters � can be applied to
denoise an initial corrupted reconstruction by applying (6.21). Moreover, the varia-
tional structure of TDV enables an application in the model-based CT reconstruction
setting with balances parameter � > 0 as follows:

G' ∈ arg min
G∈ℝ=

�R(G, �) + 1
2 ‖"(�G − I)‖2, . (6.22)

6.6.3 Numerical Results

The reconstruction of abdominal data with 4-fold retrospective SparseCT undersam-
pling is presented in Figure 6.22 and Figure 6.23. The first columns in both figures
show the initial non-regularized CG reconstruction with undersampling artifacts,
the second columns depict the denoising results of the CG initialization utilizing the
TDV regularizer and (6.21), the third column displays the TDV reconstruction results
using (6.22), and the last columns show fully-sampled reference images. We present
two cases of SparseCT undersampling that correspond to two different collimator
speeds E of the MSC:

I E = 4 detector-rows per gantry angle (higher undersampling performance,
Figure 6.22) and

I E = 1 detector-rows per gantry angle (lower undersampling performance,
Figure 6.23).

In both cases, TDV reconstruction outperforms TDV denoising, and presents images
that are closer to the reference images— qualitatively and in terms of PSNR and SSIM.
While the TDV denoising results are degraded by blurring artifacts, the incorporation
of data consistency in TDV reconstruction enables to reinsert high-resolution features
from the raw data, which results in significant improvements of the image quality.
As expected, SparseCT with a faster collimator speed E = 4 outperforms E = 1 due to
its superior undersampling performance. However, the difference is lower in the case
of TDV reconstruction with respect to TDV denoising, which shows the ability of the
latter to adapt to situations with data of lower acquisition quality.
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41.93 0.951 47.56 0.990 49.10 0.993

38.72 0.913 47.33 0.988 47.68 0.989

42.05 0.954
CG initialization G0

46.01 0.990
TDV denoise G10

47.64 0.992
TDV reconstruction G' reference H

Figure 6.22: Reconstruction of 4-fold undersampled SparseCT sinogram data with collimator speed E = 4 detector-rows per gantry angle. From left
to right: unregularized CG initialization, TDV denoising, TDV reconstruction, fully-sampled reference. Images are displayed in the range 40± 200HU.
The PSNR scores w.r.t. to the reference H are depicted on the lower left corner and the SSIM score in the lower right corner.

39.81 0.923 46.45 0.988 47.77 0.991

37.67 0.891 46.21 0.985 47.13 0.988

42.05 0.919
CG initialization G0

46.01 0.986
TDV denoise G10

47.64 0.990
TDV reconstruction G' reference H

Figure 6.23: Reconstruction of 4-fold undersampled SparseCT sinogram data with collimator speed E = 1 detector-rows per gantry angle. From left
to right: unregularized CG initialization, TDV denoising, TDV reconstruction, fully-sampled reference. Images are displayed in the range 40± 200HU.
The PNSR scores w.r.t. to the reference H are depicted on the lower left corner and the SSIM score in the lower right corner.
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6.7 Conclusion

The proposed total deep variation regularizer is motivated by established deep
network architectures. Moreover, the inherent variational structure of our approach
presented in this chapter enables a rigorous mathematical understanding encom-
passing an optimality condition for optimal stopping, and a nonlinear eigenfunction
analysis. We have derived theoretical upper bounds for the stability analysis, which
led to relatively tight bounds in the numerical experiments. For image denoising
and single image super-resolution, our model generates state-of-the-art results with
an impressively low number of trainable parameters. To underline the versatility
of TDV for generic linear inverse problems, we successfully demonstrated their
applicability for the challenging CT and MRI reconstruction tasks without requiring
any additional training. In addition, we have conducted adversarial attacks and an
empirical worst-case generalization error analysis to demonstrate the robustness of
our approach.

We extended the TDV regularizer to 3-dimensional helical cone-beam CT reconstruc-
tion and proposed an efficient training approach that avoids the memory and time
consuming linear data consistency operators in the training process. The resulting
TDV regularizer can be used in a variational reconstruction setting, which leads to
superior results compared to using the same TDV regularizer to denoising an initially
corrupted reconstruction. To sum up, using the TDV regularizer for reconstruction
is a promising alternative to classical sparsity enforcing regularizers and/or deep
learning reconstruction schemes due to its variational structure and performance,
and can lead to high CT dose reduction with little impact on image quality.
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As outlined in the introduction, numerous tasks in computer vision and medical
imaging can be framed as inverse problems. To account for the ill-posed nature of
inverse problems and to derive robust estimates of their solutions, we have to combine
domain knowledge of the acquisition process with prior knowledge about properties
of the solution. For this task, variational methods provide a very flexible framework.
They amount to minimizing an energy functional composed of a data fidelity term
and a regularizer. While the data fidelity term is typically used to incorporate
knowledge about the acquisition process, the regularizer characterizes properties of
the solution itself. In fact, the statistical interpretation of inverse problems highlights
that the regularizer represents the negative log-likelihood of the prior distribution of
desired solutions. However, modeling this prior distribution by hand is challenging.
While the statistics of image gradients can be effectively modeled by Laplace or
Student-t distributions, higher-order statistics of local pixel neighborhoods such as
2× 2 image patches are much more complicated to capture — as we saw in Chapter 4.
This motivates the application of machine learning to extract higher-order prior
information from data to improve the estimation of solutions of inverse problems.

In this thesis, we have presented different approaches that combine effective data-
drivenmachine learningmodelswith the rich theoretical understanding of variational
methods to solve inverse problems. We first introduced variational networks (VNs)
that establish links between variational methods and deep learning. A VN stacks
several parametric incremental proximal gradient steps, which can be adapted to learn
proximal gradient schemes, incremental proximal gradient schemes, or trainable
nonlinear reaction diffusion (TNRD) models. In addition, VNs are equivalent to
residual neural networks (ResNets) if a gradient structure within the residual update
steps is assumed. The versatility of VNs enabled a detailed numerical comparison
of these schemes and allowed us to investigate the limitations of convexity in the
context of proximal gradient reconstruction schemes. Our findings for the inverse
problems of image denoising and deblurring show that schemes associated with a
convex energy yielded inferior results than their non-convex counterparts. Moreover,
VNs representing incremental schemes only require a few steps to yield reasonable
results even for the challenging tasks of non-blind deblurring and 3-dimensional
undersampled computed tomography (CT) reconstruction.

To analyze this phenomenon, we formulatedVNs as an early stopped time-continuous
gradient flowof an energy composed of a quadratic data fidelity term and a parametric
regularizer. We advocated the fields of experts (FoE) regularizer and introduced
the total deep variation (TDV) regularizer to overcome the limited complexity of
the FoE regularizer, which is essentially determined by a single convolution layer
in conjunction with a parametric nonlinear potential function. In contrast, the TDV
regularizer is a convolutional neural network (CNN) that extracts image features on
multiple scales and processes them in multiple blocks to determine a local energy
for each pixel within an image. The parameters of the regularizer as well as the
optimal stopping time of the gradient flow were learned from data by a mean-field
optimal control problem, which enabled a rigorousmathematical analysis. We proved
the existence of solutions of this mean-field optimal control problem in the time-
continuous and time-discrete setting utilizing a semi-implicit time-discretization.
Furthermore, a first-order optimality condition for the optimal stopping time as
well as stochastic upper bounds regarding the stability of input and parameter
variations of the proposed approach were derived. We numerically verified the first-
order condition and showed that the proposed stability bounds are fairly tight. Our
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proposed approach featuring the TDV regularizer yields state-of-the-art numerical
results for image denoising as well as single image super-resolution (SISR). The broad
applicability of the TDV regularizer was demonstrated by applying it to accelerated
magnetic resonance imaging (MRI) and 2-dimensional angular-undersampled CT
reconstruction. In addition, we presented an efficient training strategy to learn a
tailored TDV regularizer for 3-dimensional SparseCT reconstruction.

Due to the versatility of the proposed approaches, there are many possible future
research directions. First of all, extending our approach to learn the optimal stopping
time of non-autonomous gradient flows is interesting. This would enable the analysis
of gradient flows whose parameters are allowed to change over time. However, a
major issue related to this extension originates from the continuation of the stopping
time beyond its optimal point because it is not clear how to extrapolate the dynamic
model parameters.

Further possible research directions involve the development of parametric energies.
Nonlocal methods [72, 73] have proven to be particularly successful in the presence
of strong noise. Therefore, a promising research direction is to develop parametric
regularizers that determine a pixel-wise energy based on nonlocal information
extracted from a larger pixel neighborhood. An alternative approach is to determine
the pixel-wise energy of a parametric regularizer over a multi-scale representation of
an image, in analogy to the multi-scale correlation volume advocated in [125]. In this
thesis, we mainly assumed that the measurement noise is Gaussian and utilized a
quadratic data fidelity term. However, in many real-world applications we do not
know the exact distribution of the noise. Consequently, further development of the
data fidelity term is another promising research direction.

Other open research directions address the parameter identification of the proposed
TDV regularizer. In this thesis, we have presented a discriminative learning approach
todetermine the parameters of the TDV regularizer andwehavedemonstrated that the
resulting generic regularizers can be applied to different inverse problems. However,
the learned TDV regularizers emphasize task-specific properties since they are trained
in a discriminative way, as indicated by the nonlinear eigenfunction analysis. It is
not clear whether these effects can be avoided by advocating a generative learning
approach. Additionally, it would be interesting to further analyze the sensitivity of
the solution to different initial images and compare bilevel optimization with the
proposed training scheme in this regard.

Finally, a promising research direction is to utilize the statistical information encoded
in the associated posterior probability. So far, we have only computed the maximum
a-posteriori (MAP) estimator. Indeed, the variational structure of the proposed
approach allows us to draw samples from the posterior distribution [263]. Using
these samples, we could, for instance, estimate the expectation and variance of the
posterior to account for the uncertainty in the restoration process, as advocated
in [264].
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