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Abstract

Gradient-echo based magnetic resonance imaging (MRI) sequences are widely employed

for T1-weighted morphological and functional imaging. When acquiring multiple

gradient-echo images with different echo times, the T ∗2 decay allows insight into the tissue

microstructure. Examples of different investigations include the T ∗2 anisotropy in white

matter nerve fibers, the determination of the water compartment in the myelin sheaths,

or the visualization of abnormally high iron concentrations in deep gray matter.

Despite the improvement of MRI systems in the essential components, such as the main

magnetic field, the shim and the gradient systems, macroscopic inhomogeneities of the

magnetic field remain a major source of errors in the quantification of R∗2 (=1/T ∗2 )

relaxation rates. In 2D slice-selective measurement techniques, the signal dephasing is

particularly pronounced in slice-direction because the slice thickness is usually much

larger than the in-plane dimensions; consequently, the signal dephasing is strongly

influenced by the excitation profile. All in all, this makes the exact quantification of

tissue-specific parameters considerably more difficult.

To minimize the influence of these macroscopic field inhomogeneities, a signal model

is presented, which allows for the description of macroscopic field inhomogeneities on

the 2D multi-echo gradient-echo (mGRE) signal for arbitrary radiofrequency excitation

pulses. The longer repetition time in 2D mGRE measurements with an interleaved slice

acquisition than in 3D measurements is particularly suitable to reduce the influence of

longitudinal relaxation. This is especially important in multi-compartmental analyses

of the signal decay, such as the determination of the myelin water fraction (MWF). To

benefit from an increased signal-to-noise ratio (SNR) at optimized flip angles, the model

uses a numerical solver for the Bloch equations. Its advantage is that it is not limited to

small flip angles compared with the analytical solution. It has been shown that applying

the model leads to less influence of macroscopic field gradients on R∗2 and MWF values

in comparison with signal models that do not account for macroscopic field variations.

In a second approach, an adaptive, slice-specific “z-shimming” method was developed,

which uses slice-specific compensation moments between the gradient-echo acquisitions.

The compensation moments remarkably reduce the influence of macroscopic field

gradients compared with conventional mGRE sequences. Moreover, an improved SNR

compared with a slice-independent “z-shimming” approach could be achieved.

The presented signal model, in combination with the new adaptive “z-shimming”

approach, led to substantial improvements in the quality of R∗2 maps, assessed by the

median and the interquartile range in different deep gray matter and white matter regions.

Keywords: field inhomogeneities, myelin water fraction, R∗2, z-shimming, relaxometry
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Kurzfassung

Gradientenecho-basierte Magnetresonanztomographie (MRT) Sequenzen werden für die

Darstellung von T1-gewichteten Bildern und in der funktionellen Bildgebung verwendet.

Bei der Aufnahme von mehreren Gradientenechos mit unterschiedlichen Echozeiten

erlaubt der T ∗2 -Zerfall Rückschlüsse auf die Gewebsmikrostruktur. Beispiele dafür sind

die T ∗2 -Anisotropie in den Nervenfasern der weißen Substanz, die Bestimmung des

wasseranteiligen Signals in den Myelinscheiden oder die Visualisierung von abnormal

hohen Eisenkonzentrationen in bestimmten Gewebetypen.

Trotz der Verbesserung der MRT-Systeme in den wesentlichen Komponenten wie dem

Hauptmagnetfeld, dem Shim- und dem Gradientensystem, bleiben makroskopische

Inhomogenitäten des Magnetfeldes eine wesentliche Fehlerquelle bei der Nutzung

der R∗2-Relaxationsrate (=1/T ∗2 ). In schichtselektiven 2D-Messtechniken ist die

Signaldephasierung in Schichtrichtung ganz besonders ausgeprägt, da die Schichtdicke

normalweise viel größer ist als die orthogonalen Voxelbreiten innerhalb der Schicht.

Dadurch beeinflusst das Anregungsschichtprofil die Signaldephasierung ganz erheblich.

In Summe wird dadurch die genaue Quantifizierung von gewebespezifischen Parametern

deutlich erschwert.

Um den Einfluss dieser makroskopischen Feldinhomogenitäten zu minimieren, wird in

der vorliegenden Arbeit ein Signalmodell vorgestellt, das es ermöglicht, den Einfluss von

makroskopischen Feldinhomogenitäten auf das 2D-multi-Echo-Gradientenecho (mGRE)

Signal für beliebige Hochfrequenz-Anregungspulse zu beschreiben. Die bei 2D-Messungen

mit verschachtelter Schichtaufnahme längere Repetitionszeit als bei 3D-Messungen eignet

sich besonders dazu, den Längsrelaxationseinfluss zu reduzieren. Das ist insbesondere

bei Multi-Kompartimentanalysen des Signalzerfalls wichtig, wie zum Beispiel bei der

Bestimmung der
”
Myelin Water Fraction“ (MWF).

Um von einem erhöhten Signal-zu-Rauschverhältnis bei dafür optimierten Kippwinkeln zu

profitieren, verwendet das Modell einen numerischen Löser für die Blochgleichungen und

ist nicht wie die analytische Lösung auf kleine Kippwinkel beschränkt. Es konnte gezeigt

werden, dass dieses Modell zu genaueren R∗2- und MWF-Werten führt im Vergleich zu

Signalmodellen, welche den Einfluss von makroskopischen Feldern nicht berücksichtigen.

In einem zweiten Ansatz wurde eine adaptive, schichtspezifische
”
z-Shimming“-Methode

entwickelt, welche schichtspezifische Kompensationsmomente zwischen den Gradi-

entenechoaufnahmen verwendet. Die Kompensationsmomente reduzieren, verglichen

mit konventionellen mGRE-Sequenzen, deutlich den Einfluss von makroskopischen

Feldgradienten. Des Weiteren konnte eine Verbesserung des Signal-Rausch-Verhältnisses

im Vergleich zu einem schichtunabhängigen
”
z-Shimming“-Ansatz erzielt werden.

Das hier vorgestellte Signalmodell, in Kombination mit dem neuen adaptiven

”
z-Shimming“-Ansatz, führten in Summe zu einer substantiellen Verbesserung der

Qualität von R∗2 in der Gradientenechobildgebung, welche mit dem Median und dem

Interquartilsabstand in unterschiedlichen Hirnregionen der grauen Substanz und der

weißen Substanz evaluiert wurde.

Schlüsselwörter: Feldinhomogenitäten,
”
Myelin Water Fraction“, R∗2,

”
z-Shimming“,

Relaxometrie
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1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Introduction

Parallel to the invention of computed tomography (CT), another imaging methodology

based on the nuclear magnetic resonance (NMR) was developed [180]. From the first

NMR experiment in the 1930s, it took several years until Damadian performed the first

successful NMR experiments in healthy and malignant tissue in 1971 [41]. He reported

differences in the T1 and T2 relaxation times between healthy and malignant tissue, push-

ing the development of magnetic resonance imaging (MRI). Two years later, Lauterbur

published the first 2D imaging experiment of two water probes [126], followed by the first

in vivo image of a finger by using spatial encoding gradients [149]. Starting from the

early experiments in the 1970s, MRI as an imaging method became popular because of

its excellent soft tissue contrast without exposure to ionizing radiation.

Nowadays, MRI technology is indispensable with widespread applications in the medi-

cal field. A reason for the success of MRI is the continuous improvement of hardware

and imaging techniques. One exciting field of ongoing MRI research is the development of

quantitative magnetic resonance imaging (qMRI) methods that aim to improve limitations

such as reproducibility and comparability of the clinically, more widely applied qualitative

methods. In most clinical applications, T1-, T2-, or proton-density-weighted images are

acquired based on the clinical question. Although these images provide excellent contrast

for a particular question, the numeric values in a voxel provide only qualitative informa-

tion. This hinders their meaningfulness for interpretation in longitudinal or cross-sectional

studies. In contrast to that, qMRI addresses this issue by assigning a physically mean-

ingful number to each voxel based on an underlying signal model. Quantitatively derived

MRI parameters are ideally tissue-specific and independent of the sequence parameters or

other external factors. However, there are still many challenges that need to be resolved

1



2 Chapter 1. Introduction

before qMRI can replace qualitative images. A major challenge is to build a reasonable

signal model that accurately describes the observed signal with all accompanying factors

influencing it.

The present thesis deals with the challenge of estimating quantitative parameters of the

gradient-echo (GRE) signal decay with a focus on 2D acquisitions. In contrast to 3D acqui-

sitions, a much larger repetition time (TR) can be chosen in 2D acquisitions with an inter-

leaved slice acquisition. This brings that advantage that T1 effects in multi-compartment

relaxometry can be reduced [198]. Compared with spin-echo (SE) sequences, the missing

refocusing pulse allows faster image acquisition and leads to low specific absorption rate

(SAR), which makes GRE sequences especially preferable for ultra high field (UHF) MRI

systems.

One of the biggest advantages and disadvantages of GRE imaging at the same time is

the sensitivity to magnetic field variations. In the ideal case, the GRE signal changes are

caused by magnetic field variations within a voxel and thus providing unique microstruc-

tural tissue information. A famous example is the blood oxygenation level dependent

(BOLD) effect in functional magnetic resonance imaging (fMRI) based on magnetic sus-

ceptibility difference between oxygenated and deoxygenated blood [162]. The difference

leads to magnetic field variations on the mesoscopic scale, which refers to a scale much

bigger than the atomic scale but much smaller than the voxel size [246]. In fMRI , the

difference can be measured as a signal change and provides important information of neu-

ronal activity [163]. Similar, but on a scale much larger than the voxel size, for instance,

susceptibility difference between air and tissue lead to an inhomogeneous magnetic field.

These macroscopic field variations contain no tissue-relevant information, but they cause

additional signal dephasing, which can mask tissue-associated changes, and additionally

the field variations lead to distortions in the images. If the presence of macroscopic field

variations are not accounted for in GRE approaches, the estimated quantitative values

become inaccurate.

The methods described in the present PhD thesis improve quantitative values obtained

with 2D radio frequency (RF)-spoiled GRE sequences such as R∗2 and myelin water fraction

(MWF) in the presence of macroscopic field variations.

1.2 Outline of the Thesis

Chapter 2 describes the basics of the free induction decay (FID) with different relaxation

mechanisms, followed by a brief introduction to GRE imaging. Further, it reviews the

relation between quantitative parameters and the underlying tissue microstructure. To

point out the motivation of this work, the last section shows the impact of macroscopic

field variations on R∗2 estimation.

Chapter 3 provides a general overview of different methods that aim to reduce the effect

of macroscopic field variations in MRI . The first section discusses basic and advanced

shimming methods for improving magnetic field homogeneity during image acquisition.



1.2. Outline of the Thesis 3

The following section reviews various signal models that take into account field

inhomogeneities in the modeling of the signal decay. The last sections discuss methods

that modify the GRE sequence by using tailored RF pulses or z-shimming gradients.

Chapter 4 summarizes the practical MRI aspects such as RF excitation pulses and

navigator echoes that were necessary to accomplish the objectives described in this thesis.

Chapter 5 introduces a signal model for 2D multi-echo gradient-echo (mGRE) sequences

in the presence of macroscopic field variations, which was published in Magnetic

Resonance in Medicine (MRM) [202]. The proposed signal model accounts for large flip

angles to benefit from the signal-to-noise ratio (SNR) improvements in an interleaved 2D

slice acquisition. The method was applied to R∗2 and MWF estimation.

Chapter 6 gives a comparison between 2D and 3D mGRE acquisition for R∗2 mapping.

For the 2D data, the developed signal model was applied; for the 3D data, the voxel

spread function (VSF) [250] was implemented.

To refine R∗2 mapping in the presence of macroscopic field variations, Chapter 7 presents

a method that combines 2D z-shimming and signal modeling. The adaptive slice-specific

approach was published in MRM [206].

Chapter 8 discusses the results and limitations of the methods presented in this thesis. It

furthermore gives an outlook of promising future applications.
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This chapter provides a general overview of quantitative MRI relaxation parameters

with an emphasis on parameters obtained from RF -spoiled mGRE sequences. The first

part reviews relaxation mechanisms, followed by the basic MRI sequences. The second

part discusses the relationship between transverse relaxation parameters and the brain’s

microstructure in the context of potential clinical applications. The last part points out

the challenges of estimating tissue-specific parameters with spoiled mGRE in the presence

of macroscopic B0 field variations.

2.1 Basic Principles of Signal Relaxation

2.1.1 FID and Relaxation Rates R2, R
′
2, and R∗2

A simple form of an NMR experiment is the measurement of the signal from a homoge-

neous sample containing, for example, hydrogen nuclei in a static magnetic field B0. The

hydrogen nuclei within the sample precise at the Larmor frequency ω0, which is given by

the product of B0 and the gyromagnetic ratio γ. By applying an RF hard pulse at the

Larmor frequency with amplitude B̂1 and duration Tpulse, the longitudinal magnetization

rotates towards the transverse plane by the flip angle α = B̂1Tpulse. The free precision of

the transverse magnetization induces a signal in the receiver coil and is called FID [76].

The signal S(t) of the FID is commonly described in the literature by an exponential

decay:

S(t) ∝ sin(α) exp(−R∗2t), (2.1)

5
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where R∗2, or T ∗2 = 1/R∗2, is the effective relaxation rate of the FID . R∗2 can be decom-

posed in a reversible relaxation rate R′2 (T ′2 = 1/R′2) and an irreversible relaxation rate

R2 (T2 = 1/R2):

R∗2 = R2 +R′2. (2.2)

In R2 relaxation the phase coherence between the spins is lost, caused by rapid random

fluctuations in the magnetic field, leading to an irreversible reduction of the transverse

magnetization [74]. In tissues, R2 increases with field strengths. In the corpus callosum,

for instance, from 4T to 11.7T an increase in R2 from 17.3s−1 to 32.6s−1 was reported

[44]. The T2 value of solids is in the order of milliseconds and approaches the longitudinal

relaxation time T1 in liquids. At 3T, examples of R2 values in human tissues are: 23.8s−1

in the liver, 10s−1 in gray matter (GM), 14.9s−1 in white matter (WM), and 2s−1 in

cerebrospinal fluid (CSF) [173, 210].

In contrast to R2, R′2 dephasing is reversible and the signal can be recovered with a SE by

applying a 180◦ refocusing pulse [77]. Changes in R′2 are associated with magnetic field

inhomogeneities that can occur at different scales with respect to the imaging voxel. For

instance, paramagnetic particles, such as ferritin, cause field changes on the mesoscopic

scale that affect R∗2. Similarly, but much larger than the voxel size, macroscopic field

variations caused by the subject’s geometry and magnetic susceptibility influence R∗2.

In the literature, a common assumption in Equation 2.1 is that the reversible relaxation

of the FID can be described by an exponential decay with rate constant R′2. However,

this is only valid under certain circumstances [74] that will be discussed briefly.

Suppose that the spin density ρ(x) along a direction x is Lorentzian distributed with:

ρ(x) = N0
2b

b2 + 4π2x2
, (2.3)

where N0 is the total number of spins, b = 2π∆x, and 2∆x is the full width half

maximum (FWHM) of the distribution. Then, in the case of a constant field gradient with

magnitude G′x, the reversible part of the signal at echo time (TE) is given by integration

of the volume:

ρ̃(TE) =

∫ ∞
−∞

ρ(x) exp(−γG′xxTE)dx = N0 exp(−R′2TE), (2.4)

with R′2 = γ∆x|G′x|. By introducing an averaged field inhomogeneity ∆B = |G′x|∆x,

we can rewrite the equation for R∗2:

R∗2 = R2 + γ|∆B|. (2.5)

Thus, this equation provides a simple relationship between R∗2 and the field inhomo-

geneity ∆B.

Another explanation, more realistic compared with the previous hypothetical case, is ar-
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rived at by thinking of randomly distributed magnetic spheres in a medium. Each sphere

has a susceptibility difference ∆χ with respect to the medium, which causes a dipole field.

Then, the sum of contributions of the magnetic dipoles to the signal decay is exponential

in time in the static dephasing regime (Section 2.1.5) [24].

2.1.2 Magnetic Susceptibility

The magnetic susceptibility χ is a dimensionless quantity that describes the ability of

a material to become magnetized. When placing a material in a magnetic field H, the

magnetic induction B inside the material in Tesla (T ) is given by:

B = µ0(H + M), (2.6)

where µ0 is the magnetic permeability of free space in Tm/A (µ0 = 4π·10−7Tm/A), and

M the magnetization in A/m. in the case of non-ferromagnetic materials with isotropic

magnetic properties, M relates to H by the constant χ:

M = χH. (2.7)

and for B in Equation 2.6 as follows:

B = µ0(1 + χ)H. (2.8)

Based on the sign of χ, materials are differently classified. If χ > 0, the material is

paramagnetic and the magnetic field inside the material is strengthened. For χ < 0, the

material is diamagnetic and the field inside the material is weakened.

The human tissue susceptibility χtissue is largely diamagnetic because of its large water

content ranging from −11 · 10−6 to −7 · 10−6 [194]. In MRI , instead of vacuum, often the

susceptibility of water defines the reference for para- and diamagnetic tissues.

2.1.3 Longitudinal Relaxation Rate R1

The longitudinal relaxation rate R1, or relaxation time T1 = 1/R1, is a phenomenological

quantity that describes the return of the longitudinal magnetization to thermal equilib-

rium. After applying a 90◦ RF pulse at the Larmor frequency, the spins exchange energy

with their surrounding environment (“spin-lattice”), which can be described by [19, 74]:

Mz(t) = M0(1− e−R1t), (2.9)

where M0 is the equilibrium magnetization and Mz(t) the longitudinal magnetization at

a certain time t. R1 decreases with magnetic field strength. For instance, in the corpus

callosum a decrease of R1 from 0.91s−1 (4T) to 0.48s−1 (11.7T) has been reported [44].

The difference in R1 between tissues can be explained by the rotational correlation time τc
[20]. τc describes the time it takes a molecule to rotate about 1 radiant. Small molecules
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have a short τc and large molecules follow a long τc. The highest probability for energy

transfer is given when ω0τc = 1, which leads to the highest R1 [20]. Below (ω0τc � 1) and

above (ω0τc � 1) less energy transfer occurs, leading to a decrease in R1.

At 3T, typical R1 values in tissues range from 1.2s−1 in the liver, 0.92s−1 in WM , 0.55s−1

in GM , to 0.26s−1 in CSF [173, 210].

2.1.4 Scale of Field Inhomogeneities

Section 2.1.1 discusses the reversible signal decay R′2 caused by magnetic field inhomo-

geneities, but so far, the scale of these field inhomogeneities has not been considered.

Following the definition by Yablonskiy et al., field inhomogeneities can be divided into

macroscopic, mesoscopic, and microscopic field inhomogeneities with respect to the voxel

size [246].

The microscopic scale describes field inhomogeneities that appear on the atomic/molecular

scale, and these field inhomogeneities are responsible for the irreversible R2 relaxation. In

contrast to that, the macroscopic scale refers to field variations much larger than the voxel

size. These field disturbances originate from magnetic imperfections, poor shimming of

the static magnetic field, or because of large susceptibility differences between air/tissue

interfaces. Thus, signal changes caused by macroscopic fields provide no information and

they mask tissue-specific information. The mesoscopic scale is between the macroscopic

and microscopic scale and is much larger than the microscopic scale, but smaller than the

voxel size. In contrast to the macroscopic scale, field variations on the mesoscopic scale

contain tissue-specific information.

Figure 2.1 shows an example for the scale of macroscopic field variations. The field map

(Figure 2.1A) indicates smooth macroscopic field variations associated with field distor-

tions caused by the air tissue interfaces. Additionally, mesoscopic field variations can be

detected, but their magnitude is much lower. For instance, a small difference between

deep GM and WM tissue can be observed.



2.1. Basic Principles of Signal Relaxation 9

(A) Field map (B) Mag. TE=7ms (C) Line plot

Figure 2.1: Example of field inhomogeneities in the brain. (A) illustrates a field map ∆B0

estimated from mGRE data, (B) the magnitude image at TE = 7ms, and (C) the line plot of the
red line in (A). The field map and line plot show macroscopic field variations much larger than the
voxel size.

2.1.5 Motional Averaging and Static Dephasing Regime

To get insight into susceptibility-induced R∗2 changes on the mesoscopic/microscopic scale,

different relaxation theories have been introduced [22, 66, 234, 247]. This section gives an

overview following the notation of de Haan [46].

When placing magnetic particles into a medium the magnetic field inside the volume

changes. The question is how this affects the effective relaxation rate R∗2. For a single

particle with radius R and magnetization M , the magnetic dipole field is given by:

B =
µ0M

3

R

r

3 (
3 cos(θ)2 − 1

)
, (2.10)

where r is the distance from the center of the particle, µ0 the permeability of free space,

and θ the angle with respect to the dipole axes. In the medium, depending on the location,

spins accumulate a different phase ∆φ = γB∆t in a time interval ∆t.

Suppose that N particles, each with a volume v, are placed in a medium with volume V

then the volume fraction f is given by f = Nv
V . To describe the effects of relaxation, a

characteristic separation between particles can be defined [46]:

l =

(
4
3π

f

)1/3

R. (2.11)

If we now assume that water protons cannot move over time, each proton experiences

the same magnetic field. In this case, an analytic solution for R∗2 is given by [24, 247]:

R∗2 =
2π

3
√

3
f∆ω0, (2.12)

where ∆ω0 describes the Larmor frequency shift caused by the magnetic field at the
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equator of the magnetic particle. For a spherical particle, ∆ω0 is given by [24, 247]:

∆ω0 =
γµ0M

3
. (2.13)

This equation holds for protons that diffuse a minimal distance RD, as long as RD is

much smaller than l. If RD/l� 1, a single proton that travels from one place to another

experiences virtually the same magnetic field and thus is independent of diffusion. This

regime is referred to as static dephasing regime [247].

In contrast to that, in the motional averaging regime, diffusion cannot be neglected any-

more because the traveled distance by the proton RD is much larger than l (RD/l � 1).

In this regime, the protons diffuse a large distance where they experience different phase

shifts which average out. In this regime R∗2 is calculated with [23]:

R∗2 =
16

45
f∆ω2

0τd, (2.14)

where τd is the diffusion time calculated with the diffusion coefficient D and R:

τd =
R2

D
. (2.15)

Here the two extreme cases of nearly static protons and protons which diffuse a large

distance are discussed. For intermediate cases, the reader can refer to [22, 46].

2.2 Overview of Gradient- and Spin-Echo Sequences

2.2.1 Gradient-Echo Imaging

The following section reviews the fundamentals of GRE imaging. It starts with the basic

principles of a GRE and summarizes the different GRE sequences with an emphasis on the

RF -spoiled GRE sequence. The last section briefly introduces the SE and the asymmetric

spin-echo (ASE) sequence.

2.2.1.1 The Gradient-Echo

Figure 2.2 illustrates the GRE formation. The plot in Figure 2.2A shows the FID os-

cillating at the Larmor frequency and its decay with T ∗2 . The GRE is formed by two

gradients, the prephasing gradient and the rephasing gradient (Figure 2.2B). Suppose

that a gradient with arbitrary shape Gx(t) is applied along the spatial direction x leading

to a position-dependent phase change. At time T , the accumulative phase φ(x, t) is given

by integration:

φ(x, t) = γ

∫ T

0
Gx(t)xt dt (2.16)
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The prephasing gradient leads to phase dispersion, resulting in an accelerated decay.

Assuming a duration Tp and a magnitude Gp of the prephaser, the phase φp(x) is given by

φp(x) = −GpTpx. In the next step, a rephasing gradient is applied with opposite polarity,

which successively reverses the accumulated phase φp(x). As soon as the areas between

the prephasing and rephasing gradient are equal, the accumulative phase φ(x, t = TE)

becomes zero, and the GRE is formed at TE . After TE , the signal again decays faster

caused by induced phase dispersion of the rephasing gradient.

Figure 2.2: Illustrative example of the GRE formation. (A) shows the FID signal |SFID| and
(B) the formation of a GRE . The negative part of the gradient Gx (prephasing gradient) dephases
the signal and the positive rephases it again. The GRE is formed when the accumulative phase φ
is zero (blue line).

2.2.1.2 Gradient-Echo Sequences

The above section discusses the GRE formation from a single RF pulse. However,

standard MRI sequences typically apply a repetitive pattern of pulses with a TR. In

1958 Carr described the steady-state free precession (SSFP) in an NMR experiment

where phase-coherent pulses with a spacing of TR are applied [26]. From this basic

experiment, different types of fast GRE based imaging sequences were developed.

Suppose that TR � T2 ≤ T1, then between two successive pulses the magnetization

does not have sufficient time to reach equilibrium. After a certain number of pulses, the

magnetization reaches a steady-state, leading to an identical signal for each repetition.

The different GRE sequences are distinguished by different steady-state signals that are

obtained by manipulating gradients or the RF phase between the pulses. Figure 2.3

shows a generic GRE sequence from which the different subtypes can be derived. In

general, all these rapid GRE sequences can be summarized as SSFP sequences [193].

Figure 2.4A illustrates the balanced steady-state free precession (bSSFP) sequence in

which the net moment is zero in all gradient directions between two RF pulses [168].

The contrast of bSSFP sequences is given by T2/T1 [193]. One main limitation of bSSFP

is the periodic variation of the signal profile as a function of the off-resonance frequency
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[63]. The profile is relatively constant for a wide range of phase values, but at an

accumulated phase of ±π within one TR the signal abruptly drops to zero. This results

in zero magnitude images along the off-resonance frequency, which is known as banding

artifacts. To minimize banding artifacts, TR should be between 3 − 6ms [193]. Another

option, but this comes with a prolonged scan time, is the constructive interference in

steady-state (CISS) sequence [193]. In CISS two sets of bSSFP images are acquired with

different pairs of α. In the first run images are acquired using ±α, and in the second

run with constant α. This leads to a spatial shift of the banding artifacts and an image

without banding artifacts can be reconstructed by performing a maximum intensity

projection (MIP), for instance.

One application of bSSFP is cardiac imaging where the fast acquisition and the T2/T1

ratio offers a better contrast between muscle and blood than T1-weighted images [193].

Moreover, the bSSFP leads to higher SNR. Another application is angiography where

the ratio T2/T1 of the blood and of the surrounding tissue provides an excellent contrast

[193].

In contrast to bSSFP , non-bSSFP have a residual moment before the next RF pulse is

applied. In the gradient-spoiled sequence (Figure 2.4B), a spoiler gradient is applied

after the readout gradient, which results also in T2/T1 contrast. Another non-balanced

bSSFP is the reversed gradient-spoiled echo (Figure 2.4C). Here, the spoiler gradients are

applied before k-space acquisition. The contrast is again T2/T1-weighted, but because

the spoiler destroys the FID , the sequence is stronger T2-weighted.

With none of these sequences a pure T1 contrast can be achieved. A T1 contrast is

desired, for example, in contrast-enhanced imaging. Paramagnetic contrast agents such

as a gadolinium-based agents reduce T1 and T2, but the ratio T2/T1 is similar. To get a

T1 weighting, RF -spoiled gradient-echo sequences are used, which are discussed in the

next section.

RF/ADC

Gslice

TE

TR

Gy

Gx

αj+1

θj θj+1

αj

gradient
spoiling

RF 
spoiling

Figure 2.3: A generic GRE sequence that allows to build the basic SSFP sequences. Depending
on the gradient spoilers and the phase cylce θj of the jth RF pulse, different contrasts are obtained.
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(A) Balanced SSFP
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(B) Gradient Spoiled Sequence (C) Reversed Gradient Spoiled Seqeunce 

Figure 2.4: Overview of SSFP sequences. (A) shows a bSSFP in which the moment is balanced
between the pulses. The gradient-spoiled sequence (B) applies a spoiler after the readout, and in
the reversed gradient-spoiled sequence (C) the spoiler is applied before the readout.

2.2.1.3 RF-Spoiled Gradient-Echo Imaging

To obtain a T1 contrast, TR must be smaller than T1 (TR < T1) and the transverse

magnetization prior to every pulse has to be completely spoiled. Zur et al. [260] showed

that this condition cannot be achieved if the same spoiling gradient is applied at between

each RF pulse. Also, varying the amplitude between the repetitions does not allow perfect

spoiling because spins at different positions experience different phase values. Therefore,

the spoiling efficiency varies across the image [36]. To vary the phase of the transverse

magnetization, the phase of the RF pulse [36] or the frequency of the RF synthesizer can

be changed for a fixed period of time before the next excitation [259].

Applying a certain scheme of phase shifts to the B1 field of the jth pulse is referred to

as RF -spoiling. In numerical simulations, Zur et al. determined a phase increment of

θ0 = 117◦ for the phase shift θj as the optimal spoiling condition [259]:

θj = θj−1 + jθ0, j = 1, 2, 3... (2.17)

By applying this phase cycling to the RF pulses, it is possible to achieve a purely

T1-weighted image.

The contrast of the RF -spoiled GRE can be explained by the steady-state equation.

Assuming ideal spoiling of the transverse magnetization prior to the next RF pulse and

that a steady-state is reached, the signal Sspoil(TE) is given by [58]:

Sspoil = M0 sin(α)
1− e−TR/T1

1− cos(α)e−TR/T1
e−TE/T

∗
2 (2.18)

where M0 is the equilibrium magnetization. The choice of the sequence parameters

TR, TE , and α defines the weighting of the image. Generally, all images are

proton-density (M0)-weighted and the susceptibility contrast (T ∗2 ) increases with TE .

The T1 weighting increases by shortening TR or increasing α.
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2.2.2 The Spin-Echo

This section briefly reviews the SE as one of the basic MRI sequences. Further, it in-

troduces the ASE as a hybrid version of SE and GRE , which is especially interesting for

studying the relations between R2, R∗2, and R′2.

Figure 2.5A shows a basic 2D SE sequence. After the 90◦ excitation pulse, the FID decays

with T ∗2 and after TESE/2 a 180◦ slice-selective refocusing pulse is applied. The refocusing

pulse rotates the spin assemble by 180◦, causing the spins to rephase and to form a SE at

TESE [77]. In contrast to the GRE , the SE sequences recover the reversible part of the

FID . Before and after the refocusing pulse, a pair of crusher gradients is usually applied.

The crusher on the right side of the refocusing pulse has the purpose to spoil a potential

FID arising from an imperfect refocusing pulse. This might occur because of B+
1 field

variation or a flip angle variation along the excited profile. The left crusher balances the

phase accumulation caused by the right crusher.

In a conventional SE the timing of the readout gradient is chosen so that φ(x, t) = 0 when

the SE is formed. However, it is also possible to shift the readout with a certain time ∆

relative to the center of the spin-echo (Figure 2.5B). This is known as ASE and allows

additionally to measure the reversible signal component as a function of ∆ [52, 242].

90°

RF/ADC

Gslice

TR

Gy

Gx

180°

TESE

90°

TESE

90°

RF/ADC

Gslice

TR

Gy

Gx

180°
90°

∆

(A) Basic spin-echo (B) Asymmetric spin-echo

Figure 2.5: A basic 2D multi-slice SE sequence (A) and an ASE sequence (B). In the ASE
sequence, the readout is shifted by a certain time ∆ to acquire a GRE at TESE + ∆.

2.3 Relating Transverse Signal Relaxation to Tissue Mi-

crostructure

With the advent of UHF MRI systems GRE sequences have been extensively used to

link the observed signal decay to cellular structures in recent years. The following section

gives an overview of quantitative GRE imaging with a focus on transverse relaxation

parameters. It discusses applications ranging from iron quantification in deep GM with

R∗2, over R∗2 anisotropy in WM to quantification of myelin with myelin water imaging

(MWI).
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2.3.1 Cell Types in the Nervous System

The brain is part of the central nervous system (CNS) and is divided into the hindbrain

(the medulla, pons, and cerebellum), midbrain, and forebrain (diencephalon, and cerebral

hemispheres). The two major cell types in the CNS are the nerve cells (neurons), which

are responsible for information propagation, and the glial cells (glia) involved in various

vital supporting functions [109]. Compared with neurons, glia cells occur about 10 to 50

times more frequently in the CNS [209].

The three major types of glia cells are the oligodendrocytes, Schwann cells, and

astrocytes. The oligodendrocyte and Schwann cells elaborate the myelin sheath around

the axons in different parts of the nervous system. In the CNS a single oligodendrocyte

envelops an average of 15 axonal internodes, whereas Schwann cells occur in the

peripheral nervous system enveloping only one internode of one axon. Among glia cells,

the largest number are the irregular star-shaped astrocytes making up about 20% to 50%

of brain volume. They are involved in a variety of functions, such as nutrition supply or

forming the blood-brain barrier [109].

Neurons are excitable cells and the signal units of the nervous system. Each neuron

has a cell body (soma), which contains the metabolic center with a nucleus and the

endoplasmic reticulum. From the cell body, a single long axon extends to a variable

number of short dendrites responsible for signal receiving. The action potential is

conducted along the axon to other cells [109]. The propagation speed, which is

important for rapid communication, is determined by the diameter of the axon and

the myelin sheath. In bare axons, the speed is proportional to the square root of the

diameter. Therefore, a substantial increase in speed would require a large diameter

occupying a substantial amount of space. In vertebrates, this limitation could be

resolved through evolution of the fatty insulating myelin sheath, which is wrapped

around the axon. This allows to increase the propagation speed of the nerve impulse by

about 10 to 100 times [209]. Along the axon, the myelin sheath is interrupted by the

nodes of Ranvier where the action potential is regenerated. The end of the axon is di-

vided into fine branches where the signal is transmitted via synapse to other neurons [109].

2.3.2 Iron Quantification

2.3.2.1 Iron and its Association with Neurodegenerative Diseases

The trace element iron is involved in many biological processes such as oxygen trans-

port, mitochondrial respiration, myelin synthesis, and neurotransmitter synthesis and

metabolism [37]. In the case that iron homeostasis is disrupted and iron level exceeds

the capacity of storage proteins or other molecules, it might lead to oxidative damage and

cell death [117]. In the healthy brain, iron accumulates rapidly in the f irst two decades

of life, followed by a slower increase [79]. Besides the iron accumulation with age, iron ac-
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cumulation is further associated with different neurodegenerative diseases. In Parkinson’s

disease, the total iron concentration in specific regions of the substantia nigra increases

with disease severity [50, 96, 184]. For the neurodegenerative and inflammatory disease

multiple sclerosis (MS), iron decreases in normal-appearing WM [80], while in deep GM

regions iron increases with the disease’s duration and severity [78, 189]. In Alzheimer’s

disease, the characteristic amyloid plaques and neurofibrillary tangles have elevated con-

centrations of zinc, copper, and iron [34, 142, 185], leading to oxidative stress [192].

2.3.2.2 Iron-Sensitive MRI Methods

The non-invasive assessment of iron with MRI is of great interest because of the close

relationship between various diseases and iron. About 70% of the iron in the human

body is found in hemoglobin and the rest in non-heme compounds. In the human brain,

most of the non-heme iron is stored in the proteins ferritin and hemosiderin. These are

the only two proteins considered having enough iron concentration to affect MRI signal

[195]. Ferritin is built up with 24 proteins arranged symmetrically to form a hollow

shell with a 8nm diameter cavity, which allows to store up to 4500 Fe(III) iron atoms

making up to 30% of its molecular mass [60, 88]. In contrast to highly-structured ferritin,

hemosiderin is heterogeneous with considerable variations in size; the stored iron is

thought to originate from degraded ferritin [243].

In the literature, a sensitivity of all relaxation parameters (e.g., R1, R2, R′2, and R∗2) for

iron has been reported. This section summarizes different iron-sensitive MRI methods.

It focuses on relaxation parameters, but methods targeting the phase of the signal such

as quantitative susceptibility mapping (QSM) [137] and susceptibility-weighted imaging

(SWI) [75, 182] are also employed. For more information on phase-related methods, the

reader can refer to [73, 121, 164].

R2: The effect of iron on T2-weighted images has been reported first in animal models

in the liver in 1983 [211]. In this study, Stark et al. investigated differences between

hepatitis, fatty liver, and hepatic iron overload.

The relationship between iron-associated T2 shortening has been studied in vitro

experiments with ferritin. In these experiments a linear dependency of R2 on loading

factor and the applied field strength has been reported [226, 228]. The loading factor

describes the number of iron atoms stored within ferritin. Consequently, R2 depends

only on the number of iron atoms independently of the number of ferritin proteins and

loading factor. Interestingly, the linear field dependency of the relaxation is contrary to

the quadratic dependency predicted by the outer sphere theory (OST) [66]. The OST

describes the relaxation of solvent water protons caused by the magnetic nanoparticle.

In this theory, water protons diffuse through the magnetic field gradients leading to

an irreversible relaxation. To resolve the quadratic relation between R2 and field

strength, Gossuin proposed a model based on proton exchange between bulk water and

exchangeable protons located at the surface of proteins [70]. The adapted model leads
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to a linear dependency of R2 on field strength [70]. Further, it is closely related to

the static dephasing regime [247], which also predicts a linear relationship. However,

interpreting these results for in vivo application is still challenging mainly because of the

inhomogeneous distribution in tissue [69].

In vivo, the relation between R2 and iron has been investigated by comparing estimated

R2 values in brain regions [65, 89, 95, 225, 227] with the iron concentrations estimated

by Halgren et al. [79] or by plotting R2 as a function of age [196]. All these results show

a good correlation between iron and R2 in subcortical GM over the entire physiological

range. However, these results provide only a qualitative description, as the actual iron

content cannot be assessed in vivo. To bridge this gap, studies have been performed with

MRI on post-mortem tissue followed by chemical analyses of the tissue for quantifying

the iron concentration [120, 230]. These studies confirmed a linear relation between iron

and R2 in subcortical GM .

FDRI: The field-dependent R2 increase (FDRI) approach investigates the change of R2

by acquiring R2 maps at two different field strengths [7]. The method has been used to

study the effects of iron in Alzheimer’s and Huntington’s disease and in normal aging

[8–10, 10]. While this approach offers the possibility of using the field dependency for

the relaxometry, FDRI has the disadvantage that it requires a second MRI system.

Compared with SWI and QSM , a greater specificity for detecting non-heme iron-rich

regions was found for the FDRI [15, 172].

R′2 : Ordidge et al. proposed to estimate R′2 with an ASE sequence that acquires a train

of GRE after the SE [169]. By performing an additional measurement with a different

TE of the SE , but with the same echo timings of the readout gradients, R′2 and R2 can

be calculated. Additionally, the approach applies z-shimming gradients to compensate

for macroscopic field gradients [169]. With this method, higher R′2 and R∗2 were reported

in the substantia nigra for Parkinson’s disease compared with controls, whereas for R2

no significant differences were found [68].

To accelerate the approach, in the partially-refocused interleaved multiple echo (PRIME)

sequence, a second refocusing pulse is included [153]. The sequence allows to estimate

R′2 in a single acquisition. Similar to previous results, differences of R′2 and R∗2 were

reported in the substantia nigra for Parkinson’s diseases [71].

The gradient-echo sampling of FID and echo (GESFIDE) sequence acquires GREs

before and after the refocusing pulse, which allows to estimate R′2 and R2 from a single

measurement [147]. In several GM regions and from frontal cortical WM , a higher iron

specificity for R′2 was reported [65] compared with the results from Halgren et al. [79].

It is argued that R′2 is more specific for paramagnetic particles compared with R2. As

mentioned above, R2 is related to diffusion whereas R′2 contributions are reversible,

independent of the diffusion coefficient of the water protons [169]. Hikita et al. compared

GESFIDE with a multiple spin-echo (MSE) sequence in 13 healthy subjects. They

concluded that R2 seems better suited because macroscopic field variations contribute to

a large extend to R′2 [95].
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R∗2: From an MRI perspective, measuring R∗2 by a mGRE has some clear advantages

compared to MSE sequences. For instance, GRE sequences lead to a lower SAR and

a shorter echo spacing is possible. In MSE sequences, one of the major challenges

are stimulated echoes. If not properly compensated for, stimulated echoes lead to

an undesired T1 dependency of the estimate R2 [175]. Although advanced modeling

approaches for the signal pathways are promising (e.g. [12]), applications in UHF MRI

systems are limited because of SAR issues.

Besides the technical advantages of mGRE sequences, a higher correlation for R∗2 in

GM and WM than for R2 was found in an in situ study [120]. In this study, the iron

concentration was chemically determined in different regions after MRI . This finding was

also confirmed in another study with deceased MS patients [230].

In summary, various MRI approaches based on the characterization of the relaxation rates

have been investigated for iron estimation in the brain. All these methods show a good

correlation, but choosing the most sensitive based on the current literature is difficult.

2.3.3 R∗2 and Phase Anisotropy

The anisotropy of certain MRI parameters with respect to the main magnetic field B0

has been reported in various tissues [93]. A prominent example for the signal dependency

with respect to B0 in SE sequences is the magic angle effect. These signal variations

are caused by dipolar interactions of collagen-bound water in collagen-rich tissues such

as tendons, ligaments, nerves, and menisci [27, 64, 156]. Another well known example is

diffusion tensor imaging (DTI) to study the orientation of whiter matter fibers [157]. In

principle, water mobility in the direction of the fiber is higher than perpendicular to it,

which allows reconstructing the main orientation by acquiring diffusion-weighted images

in different directions [54].

In recent years, the anisotropy of R∗2 and the phase signal in WM fiber has been extensively

studied. This chapter summarizes these findings and reviews different signal models that

try to explain the anisotropy.

2.3.3.1 R∗2 and Fiber Orientation

The feasibility of studying anatomical details on a much finer scale increased with UHF

MRI sytems. In one of the first high-resolution experiments (0.2x0.2x0.5mm3), Li et

al. reported a large heterogeneity between WM fibers in 2006 [138]. At 3T, a combined

analysis of R∗2 and DTI showed that fibers running along the anterior posterior direction

have larger R∗2 than fibers in superior-inferior direction [30]. The authors attributed the

difference between the directions to structural differences between the fibers or to the fiber

orientation with respect to B0. In a similar investigation by Denk et al., variations of the

phase and R∗2 could be confirmed [47]. Additionally, measurements with different head

orientations showed that tissue orientation rather than tissue composition is responsible
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for the observed phase and R∗2 changes. By performing experiments with two different

head orientations, Wiggins et al. demonstrated in a macaque model (7T) that fiber orien-

tation unambiguously is a major contribution of WM heterogeneity [238]. This was later

confirmed by Bender and Klose by performing in vivo measurements with normal and

tilted head position [13]. Further, their results indicate an orientation dependency of R∗2
on the angle θ towards B0 with sin(θ)2. This is in accordance with the predicted solution

of Yablonskiy et al. in the static dephasing regime for a parallel set of cylinders [247].

Aforementioned works are inherently restricted by the range of possible head orientations

within the scanner. To get better insight into the angular dependency of R∗2 in WM fibers,

Lee et al. performed measurements with a formalin-fixed post-mortem sample at different

orientations [134]. They evaluated the variation of R∗2 as a function of the angle with

two models. The first model assumes that sources of microscopic susceptibility such as

iron and myelin are highly aligned with the axon leading to orientation-dependent decay.

Based on the solution of Yablonskiy et al. for parallel cylinders [247] and sufficiently long

TEs, Lee et al. modeled R∗2 with:

R∗2 = c0 + c1χ sin θ2 (2.19)

Their results indicate a clear dependency of R∗2 on θ, but Equation 2.19 could only

partly explain the observed signal variation. In the model in Equation 2.19, an isotropic

susceptibility difference between cylinders and surrounding medium is assumed. However,

fiber bundles show anisotropic behavior with respect to the B0 orientation. In 2010, Liu

observed an anisotropic susceptibility in the CNS of an ex vivo mouse brain with a 7T

small-bore scanner [141]. By performing measurements with different orientations of the

brain, Liu reconstructed an apparent susceptibility tensor (AST). Around the same time,

in a post-mortem experiment Lee et al. [132] suggested an anisotropic susceptibility for

fiber bundles. In these experiments a section of the corpus callosum, which reflects highly

aligned fiber bundles, was cut into five sections. By rotating every second section by 90◦,

the authors could study the effect of the microstructure while minimally affecting the

macroscopic structure. They explained the difference in resonance frequencies between

aligned and 90◦-rotated fiber bundles by an anisotropic susceptibility.

To account for anisotropic susceptibility, Lee et al. extended Equation 2.19 by introducing

an isotropic χiso and an anisotropic component χaniso that depends on the angle θ [134]:

χ = (χiso + χaniso) sin θ2

=
(
χiso + χ⊥ + (χ⊥ + χ‖) sin(θ + ε)2

)
sin θ2

(2.20)

where χ⊥ and χ‖ are the relative volume susceptibilities when the cylinders are

perpendicular or parallel to B0. ε accounts for potential phase offset by the distribution

of perturbers and the susceptibility anisotropy that results from the perturbers’ molecular

structure [134]. By applying Equation 2.20 to the measured R∗2 variations, Lee et al.

could achieve a better representation. These results further suggest that susceptibility
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anisotropy contributes to the observed WM heterogeneity. Further, with the observed

angular dependency of R∗2 they could reconstruct WM fiber orientation maps that were

closely related to DTI derived orientations [134].

2.3.3.2 Biophysical Signal Models

To explain the observed heterogeneity in WM , various biophysical signal models have been

proposed. The generalized Lorentzian approach (GLA) by He and Yablonksiy takes tissue

architecture and its orientation to B0 into account [91]. In this work, the concept of the

Lorentzian sphere for calculating the magnetic field created by structures within the sphere

was translated to a more general case: the Lorentzian cylinder. By applying this approach

to highly anisotropic structures, such as an axon, a sin θ2 dependency on the frequency

shift can be predicted. Luo et al. validated the theory in an isolated optical nerve, which

closely resembles the circular geometry, by measuring the phase variation as a function

of θ [144]. Their results show that the GLA is better suited than the Lorentzian sphere

approximation. However, the theoretical concept has been a matter of debate [57, 248].

The hollow cylinder model of Wharton and Bowtell [236] represents a volume of fibers

with an infinite long hollow cylinder where the inner of the hollow cylinder models the

myelin sheath. To describe the orientation dependency of fibers, they modeled the myelin

sheath with an anisotropic susceptibility tensor. Furthermore, the authors considered

the fast signal decay of the myelin water within the myelin sheath [148] and additionally

they accounted for a chemical exchange of protons between the water and macromolecules

[199, 258]. Simulations and experiments indicate that with the hollow cylinder model

observed magnitude and phase variations in fibers can be accurately described [236].

The relationship between observed complex signal decay and its relation to fiber orienta-

tion has been further investigated by Sati et al. [191]. In the experiments, they performed

measurements with human and marmoset brain tissue parallel and perpendicular to B0

at 7T. The measured signal decay was fitted to a complex signal model S(t) with three

compartments:

S(t) =
3∑
i=1

Ai exp(−R∗2,it) exp(−2πi∆fi) (2.21)

where Ai is the signal amplitude at t = 0 for the ith compartment, R∗2,i the relaxation

rate, and ∆fi the frequency shift with respect to the local mean resonance frequency. The

three compartments are associated with intracelluar, extracelluar, and the myelin water

trapped in the lipid bilayers. Their results are in accordance with Hwang et al. [101],

who reported three distinct compartments and different frequency offsets depending on

fiber orientation. Additionally, Sati et al. performed simulations on the microscopic scale

where they modeled fibers with small infinite long hollow cylinders with varying radii and

constant g-ratio (ratio between the inner radius of the cylinder over the outer radius).
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Further, they carried out simulations with different fractions of interstitial water, axonal

water, and myelin water, and they described the field shift by an anisotropic susceptibility

tensor. In contrast to the hollow cylinder model, no exchange between protons has been

considered, but diffusion effects were included. Interestingly, Sati et al. found that the

best description of the observed signal decay is given when diffusion is accounted for [191].

Following the idea of Sati et al. [191] of microstructural based signal modeling, Chen et al.

performed forward simulation with a geometrical model built up on literature values for

the g-ratio, axon packing, diameter, and susceptibility [29]. Again, three compartments

representing interstitial water, axonal water, and myelin water were incorporated, and

the susceptibility differences of the axonal and myelin water with respect to interstitial

water have been considered. They calculated the frequency shifts associated with these

compartments with the analytic solution for an infinite cylinder [74]. In terms of phase

evolution with respect to B0 orientation, the authors found that the geometrical model

can resemble the observed phase compared with the predicted sin θ2 dependency by the

GLA [91] and susceptibility anisotropy [132]. For R∗2, Chen et al. measured a sinusoidal-

shaped increase with θ for the experimental data that could be quite well explained by the

model. When comparing fits of the experimental data with sin θ2 and the sin θ4, which

is attributed to myelin magnetic anisotropy [134], a sin θ2 relation leads to statistically

better results. The results suggest that isotropic modeling of the susceptibility is sufficient.

However, Chen et al. conducted the measurements at 3T, which might be less sensitive

compared with the 7T measurements of Lee et al. [134]. Another interesting finding is

that compared with the simulation of Sati et al. [191] diffusion effects on signal evolution

were negligibly small.

Based on the findings of anisotropic susceptibility, Yablonskiy and Sukstanskii proposed

the generalized Lorentzian tensor approach (GLTA) as an extension of the GLA [249]. In

this phenomenological model, a relation between the phase as well as the structural and

magnetic anisotropy of the underlying microstructure including multi-compartment tissue

structure was derived by applying Maxwell’s equations and a statistical approach.

2.3.4 Myelin Water Imaging

2.3.4.1 Introduction

In the previous section, it was already mentioned that the measured signal from WM

results from several compartments. Relatively early, compared to the first in vivo reports

of myelin water images, Vasilescu et al. did identified three distinct compartments in the

signal decay from the sciatic nerve of a frog in NMR experiments [222]. They speculated

that the fastest component with a T2 of 17ms was related to proteins and phospholipids,

the intermediate component with 70ms to axoplasmic water, and the slow component

with 310ms to extracellular water. The T2 time of the fast component reveals that one of

the main challenges in MWI with MRI is to capture the short component.

In 1994, MacKay et al. [148] acquired the first in vivo myelin water images using a
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single-slice MSE sequence with hard refocusing pulses. With this setup, the TE and the

influence of stimulated echo could be reduced for measuring the short component. They

have associated the short component to water molecules trapped within the lip bilayers of

the myelin sheath. As a measure of the myelin content, the authors introduced the term

MWF .

To estimate the MWF , the measured data with MSE sequence can be fitted to a sum of

M exponential functions with a non-negative least squares (NNLS) algorithm (Equation

2.22). Figure 2.6 shows an example of a multi-compartment fit in a fixed post-mortem

sample. The plotted T2 spectrum reveals three different compartments (Figure 2.6C). To

estimate the MWF , MacKay et al. defined a T2 cut-off. The signals from all sj below the

cut-off are attribute to myelin water and the MWF is estimated by the sum of the myelin

components over to whole signal.

Stissue =

M∑
j=1

sj exp

(
−TE
T2,j

)
(2.22)

Figure 2.6: Example of the MWF estimation in formalin-fixed brain tissue. (A) shows the brain
tissue with a rectangular region of interest (ROI) in red, and the plot (B) shows the measured
signal from the ROI with the NNLS multi-compartment fit. The fitted T2 spectrum (C) reveals
three different compartments. The data was measured with a MSE sequence with hard refocusing
pulse and Poon spoiling [175]

2.3.4.2 Validation

The relation between myelin water and microstructure has been validated in several stud-

ies. Webb et al. analyzed T2 spectra of an injured and normal peripheral nerve over the

time course after injury in an animal model [232].Additionally, the authors compared re-

sults histomorphometrics. The results indicate that the short myelin component is a good

measure of total myelin content. Further validation studies of formalin-fixed MS brains

show that the MWF correlates well with myelin sensitive staining [122, 124]. These find-

ings suggest that the MWF can be used to monitor demyelination and remyelination. Also

in the spinal cord, a good correlation between staining and the MWF in GM and WM

was found [116]. However, an important assumption in the multi-compartment model is
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the slow inter-compartmental water exchange. In a study of formalin-fixed spinal cords of

rats, Dula et al. found differences in MWF values of different healthy fiber tracts, but with

approximately the same myelin content. Their results point out that inter-compartmental

water exchange is an important factor [56]. In a followup study with anesthetized rats,

these results could be confirmed and explained by including water exchange in numerical

simulations [86].

2.3.4.3 Clinical Applications

MWI has been applied for studying mainly demyelinating diseases such as MS . One char-

acteristic of MS is the formation of demyelinated regions in the CNS , mostly referred

to as lesions or plaques. Visual assessment of lesions with MRI is standard for clinical

diagnosis, but its quantification with MRI is still challenging. MWI is a potential MRI

method for indirectly measuring the myelin content. In a study with MS patients, Laule

et al. reported a decrease in MWF and an increased water content compared with nor-

mal appearing white matter (NAWM) of controls [123]. They attributed the changes to

the loss of myelin. Similar results were obtained by estimating the MWF from mGRE

data at 7T. In a study by Li et al., they found a significant decrease of the MWF in

enhancing and non-enhancing lesions, but not between the lesion types [139]. With the

multi-comparment driven-equilibrium single-pulse (mcDESPOT ) sequence, Kittzler et al.

observed also drop of MWF in lesions [111]. Additionally, the authors found a correlation

between the extended disability status scale (EDSS) in MS patients with the deficient

MWF volume fraction [111]. The deficient MWF volume is a voxel-based marker derived

from MWF and image segmentation. Besides lesions, in diffusive-appearing white matter

(DAWM) a reduction of MWF was reported [125, 154]. The DAWM is a transient region

between lesions and NAWM with intermediate signal intensity.

For more insights into clinical applications of MWI , the reader can refer to the recent

review of Lee et al. [131].

2.3.4.4 Sequence and Signal Modeling

As already mentioned, the reference method by MacKay et al. [148] applies hard pulse

for refocusing in the MSE . Hence, the method is restricted to single-slice acquisition and

requires long TR to allow sufficient T1 recovery. Since then, various modifications of the

original sequence and new sequences were developed to allow a more efficient acquisition.

In this thesis the focus of MWI is on spoiled GRE , but additionally a brief overview of

other sequence types is given. For in-depth comparison between different MWI methods,

the reader can refer to the technical review of Alonso-Ortiz et al. [3].

Compared with a standard MSE the gradient and spin-echo (GRASE) sequence enables

a faster acquisition of the k-space [170]. To accelerate imaging, the GRASE sequence

acquires additional GREs before and after the SE . Prasloski et al. proposed a 3D version

for whole brain MWI in 15 minutes [177]. Another type of sequences for MWI are T2
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preparation methods [165, 166]. Apart from these T2 methods, the mcDESPOT approach

[49] is based on driven-equilibrium single-pulse observation of T1 (DESPOT1) and driven-

equilibrium single-pulse observation of T2 (DESPOT2) [32, 48].

A promising alternative to the reference MSE approach are spoiled mGRE sequences.

Because of the missing non-selective refocusing pulses, an interleaved multi-slice acquisi-

tion is possible, increasing the covered volume by measuring multiple slices within a TR.

This also leads to much less SAR compared with the MSE , which makes it especially

favorable for UHF . Further, a shorter echo spacing is possible because of the missing refo-

cusing pulses and crushers, and consequently the first echo of the echo train TE1 can be

decreased. For example, in an MSE sequence designed for MWI the minimal achievable

TE1 is approximately 10ms, while for mGRE values of 2ms are possible.

In 2007, Du et al. reported the first MWF maps obtained with a spoiled mGRE in

formalin-fixed brains of a deceased patient with MS and non-MS [55]. The MWF maps

were estimated from a fit of the magnitude data to a three-compartment model. Later,

Hwang et al. demonstrated the feasibility for in vivo MWF mapping with a 2D mGRE

sequence [101]. In this study, they acquired eight slices with a slice thickness of 4mm and

1.1x1.1mm2 in-plane resolution in 8.5min [101]. With a 3D mGRE sequence, Lenz et al.

demonstrated whole brain coverage in less than 10min [135]. Compared with previous

works, Lenz et al. applied a NNLS approach for fitting the data instead of assuming a

fixed number of three compartments [135]. The fitted spectrum of the T ∗2 decay indicated

two distinct compartments, one myelin water and one intracellular/extracellular compart-

ment [135].

Van Gelderen et al. further investigated the multi-exponential decay at 3T and 7T [221].

To increase SNR, they measured a single slice with 50 repetitions and 19 echoes. More-

over, the authors evaluated the dependency of the signal decay on fiber orientations by

averaging the signal in three different ROIs. In the ROIs, fibers were oriented perpendic-

ular, parallel, and mixed with respect to B0. For evaluation of the magnitude data of the

ROIs, van Gelderen et al. assumed a three-compartment model:

|S(t)| =
3∑

k=1

Ak exp(−R∗2,kt) exp(−2πifk). (2.23)

Each compartment k has an amplitude Ak, effective relaxation rate R∗2,k, and a fre-

quency component fk. In this model, the second component f2 is set to zero because

it is assumed that it is on resonance. In this work, van Gelderen et al. confirmed the

appearance of a short component [221]. Their results indicate that a model with fre-

quency components explains the observed variations of amplitude and frequency of the

short component with respect to B0 better than using only the magnitude et al. [101, 221].

In addition, based on the R2 of the fit, they concluded that a two-pool model in equation

2.23 is better suited for 3T [221].

Given these findings, Nam et al. [161] proposed a complex three-compartment model
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for MWF estimation from the complex data rather than using only the magnitude data

(equation 2.23):

|S(t)| = (Amy exp(−R∗2,myt) exp(−2πi∆fmy+mac) +Aex exp(−R∗2,ext) exp(−2πi∆fex+mac)

+Aax exp(−R∗2,axt) exp(−2πi∆fax+mac)) exp(ϕ0),

(2.24)

with my denoting the myelin component, ax the axonal water compartment, ex the

extracellular water compartment, and ϕ0 an initial phase term. Each of the compartments

has an additional phase term that describes the frequency shift of the macroscopic field

fmac and the compartment-specific shift (e.g. ∆fmy+bg = fmy + fmac). The authors

compared their model approach at 3T with a magnitude only method of Hwang et al.

[101] and the magnitude and frequency model of van Gelderen et al. [221]. They found

that their model fits the data better. By comparing different numbers of fitted echoes

ranging from 16 to 32, Hwang et al. suggested that 16 echoes are sufficient to fit the

model parameters.

Apart from the advantages, many challenges are associated with mGRE sequences, which

need to be considered for a reliable quantification. The first one are macroscopic field

variations that lead to a faster signal decay and thus to a mis-quantification [101]. Different

approaches for dealing with this problem have been proposed based on postprocessing of

mGRE , or the usage of z-shimmin gradients in combination with postprocessing [2, 128,

130, 198]. A detailed overview of these approaches is given in Chapter 3. Another issue

are phase errors arising from physiological noise and the system itself. For example, the

respiratory cycle can induce slight variations in B0 leading to phase encoding errors [220].

The acquisition of a navigator echo allows to measure the relative phase fluctuations

[100], which is essential for accurate MWF estimation [130, 160, 198]. More information

on implementation of a navigator echo and the phase correction is given in Chapter 4.

Another source of phase errors is related to the MRI system itself. If a bipolar readout

gradient is used, timing errors and eddy currents can lead to phase shifts between even and

odd echoes. Recently, Shin et al. proposed gradient pairing to overcome these effects by

acquisition of two images. After the first acquisition, the polarity of the readout gradient,

phase encoding, and the slice encoding is switched for the acquisition of the second image.

[198]. Further, flow compensation with saturation pulses or compensation gradients has

been shown to be beneficial [130, 160, 198].
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2.4 Challenge: Macroscopic Field Variations

Figure 2.7 shows an example of the impact of macroscopic field variations on R∗2 quantifi-

cation. In areas of the frontal lobe and the corpus callosum, the field map (Figure 2.7B)

shows macroscopic field variations caused by the air/tissue interfaces of the frontal and

nasal cavities. By estimating the gradient of the field map in the slice-direction, the field

gradients gz reveal values from −100µT/m to 150µT/m.

The field gradients affect the signal decay (Figure 2.7 A) and they lead to a bias in the esti-

mated R∗2 values (Figure 2.7D) if not accounted for. To reduce the influence of gz, Chapter

5 introduces a numerical signal model, and Chapter 7 proposes an adaptive z-shimming

approach that compensates gz by applying compensation gradients.
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Figure 2.7: Example of macroscopic field variations on R∗
2 estimation with a monoexponential

signal model. (A) shows the magnitude images at five different TEs, (B) the field map ∆B0, (C)
the field gradient map in the slice-direction, and (D) the estimated R∗

2 map. The red errors indicate
areas with large macroscopic field variations. In these areas the signal dephases faster, leading to
a bias in R∗

2 if they are not accounted in the signal model.
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This chapter reviews approaches for reducing the effects of macroscopic B0 field vari-

ations in MRI . In general, one of the overall goals in MRI is to achieve a homogeneous

magnetic field within the imaged volume to ensure that spins precise at the same Larmor

frequency. If that is not achieved, an inhomogeneous field, depending on the strength, will

lead to geometric distortion in the slice-selection and readout directions in SE and GRE

sequences [143], and additionally to a signal loss in GRE sequences caused by intravoxel

dephasing [5, 176, 183].

3.1 Shimming

Shimming refers to the process of achieving a homogeneous field within the MRI scanner

by applying additional magnetic fields that compensate unwanted field variations.

The shimming methods can be distinguished between active and passive shimming. In

active shimming, a current running through a coil generates the magnetic field and in

passive shimming, the field originates from magnetic particles placed along the scanner.

3.1.1 Passive Shimming

Field inhomogeneities of the main magnetic B0 field arise because of a non-perfect manu-

facturing process of the coils, steel rods in concrete walls, or with the magnetic shielding

from the scan room [105, 229]. Therefore, before commissioning a new MRI system on a

facility, vendors perform passive shimming to achieve the promised field homogeneity. In

this context, an important quantity to assess the field quality is the peak-to-peak variation

27
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of the magnetic field at the diameter of spherical volume (DSV) in the iso-center. For ex-

ample, a vendor guarantees within 45cm DSV a variation of 5 parts per million (ppm) for

3T system, so the greatest variation on the sphere is 0.6µT (3T/(5·106)). The requirement

in terms of field uniformity is about 10 ppm on a DSV with 50cm [146]. However, before

the passive shimming up to hundreds ppm can occur [25].

In passive shimming, the vendors measure the field variations on the DSV by collecting

the FID with a coil. Based on the theory that the magnetic field can be described with

spherical harmonics [188], it is possible to homogenize the field by inserting steel bars

around the bore of the magnet [99].

3.1.2 Active Shimming

Active shim coils can be divided into superconductive coils in the cyrostat and resistive

coils. Besides the passive shim, some vendors use superconductive coils to shim the

magnet to the demanded specifications [229]. However, the main application of active

shim coils is to compensate for magnetic field variations caused by the subject itself. If

a subject is moved into the bore of the MRI system, the magnetic field gets distorted

depending on the subject’s geometry and the susceptibility differences between air and

the various tissue types. Active shimming reduces or should ideally compensate subject

induced field variations.

The resistive shimming coils are located around the bore of the scanner and they are

designed to generate spherical harmonic field patterns. In MRI , the shim order refers to

the order of spherical harmonics that can be provided by the coils. Depending on the

field strength, MRI systems are equipped with a different shim order. A first order

shim is provided for field strengths smaller 3T, for ≥ 3T second order shim coils are

included, and for 7T third order shim coils are additionally available [229]. Development

of higher order shim coils has been restricted to limited space within the bore. However,

higher order shim coils would be necessary to correct higher-order field inhomogeneities,

for instance, near the nasal cavities [112, 114]. An alternative to overcome this is issue

is dynamic shim updating (DSU). DSU uses the relation that the required spherical

harmonic order decreases with the image volume [43]. Thus, a slice in a 2D acquisitions

requires a lower shim order acquisitions than the same volume in 3D acquisitions. The

first DSU approaches applied linear slice-specific shim gradients [18, 158], which later

have been extended to higher orders [45, 108, 113]. Nonetheless, the DSU relies on

spherical harmonics and is therefore limited by the shim coil order of the MRI system [112].

3.1.3 Local Passive Shimming

To overcome the limited number of spherical harmonics in active shimming, different

approaches with locally placed magnetic shim pieces have been proposed. Wilson et al.

created a local passive shim to compensate field inhomogeneity in the inferior frontal
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cortex [240]. By placing a block of pyrolotic graphite, which is highly diamagnetic with

an anisotropic susceptibility, they could show that the field inhomogeneity noticeably

diminished. The method was further refined by using different mouth shims [241], and it

was evaluated in a different study [38]. A limitation of this approach is that the optimal

shim device dependents on the subject and evaluated brain region [241]. Similar, Yang et

al. proposed a passive shimming method in which the shim material Niobium was mounted

adjustable at the head coil [253]. They calculated the position of the four Niobium probe

with an optimization algorithm that used the acquired field map to find the optimal

position.

3.1.4 Local Active Shimming

In the last two decades, promising approaches beyond the large active shim coils based on

spherical harmonics have been developed. Addressing the limited order of spherical har-

monics terms, Juchem et al. proposed to place electrical shim coils arranged on the head

coil to compensate field inhomogeneities in the prefrontal cortex [108]. They extended

the multi-coil (MC) concept to an array with 48 coils showing remarkable improvements

compared with a static spherical harmonic shim [107, 108]. When comparing dynamic

MC approach with DSU , an improved field homogeneity in areas such as the prefrontal

cortex can be achieved because the dynamic MC is not restricted by MRI system’s shim

order [108]. Additionally, eddy currents are negligibly small [108].

A drawback of the original proposed dynamic MC shimming is the additional space re-

quired by the shim coils next to RF coils. To reduce the overall space of RF and shim

coils, recent efforts have focused on integrating the RF and shim coils in a single unit

[82, 213, 219].

Harris et al. proposed a different concept for local active shimming [87]. Rather than

using coils with a fixed shape, Harris et al. suggested controlling the magnetic field by

adjusting distinct current pathways on a mesh by solid-state switches [87].

3.2 Signal Modeling

The approaches discussed in the previous section aim to achieve a more homogeneous

magnetic field. Apart from promising methods such as integrated RF and shim coils

[82, 213, 219], current state-of-the-art MRI systems use active shimming with spherical

harmonics. Even in the case of good shim, some field inhomogeneities remain, particu-

larly in regions with severe field inhomogeneities such as in the prefrontal cortex or the

temporal lobe. These field inhomogeneities influence the signal decay leading to quantifi-

cation errors. By incorporating theses macroscopic field variations in a signal model, their

influence on quantitative MRI can be noticeably reduced.

This section starts with a general model for signal encoding in the presence of macroscopic

field variations and reviews approaches for 2D and 3D acquisition.
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3.2.1 General Signal Equation

Based the notation of Yablonskiy et al. [250], the signal encoding S̃(k, TE) of a spoiled

GRE can be described as:

S̃(k, TE) =

∫
ρ(r, TE) exp(−2πikr + i∆ω(r, TE + t) + iϕ0(r))dr, (3.1)

where ρ(r, TE) is the ideal signal as function of the TE at position r = [x, y, z] that

depends on the tissue properties and MRI system parameters.

For example, in tissues the signal depends on the proton density and the relaxation

properties, which might be a monoexponential decay with R∗2 or a multi-exponential decay

as proposed for WM [55, 148]. System related changes of ρ(r, TE), to name a few, can be

caused by the RF excitation pulse, 2D or 3D acquisitions, the type of sequence (spoiled

GRE versus balanced GRE ) and the sequence settings, or the coil sensitivities.

In Equation 3.1, the first exponential describes the ideal signal encoding. The two ad-

ditional phase terms account for the frequency ∆ω(r, TE + t) of the macroscopic field

variations and a phase offset ϕ0(r) caused by, for instance, by the phase of B+
1 field. The

time t during GRE acquisition is zero at the center of the readout. The k-space encoding

is defined by:

2πkx = γGxtx

2πky = γGyty

2πkz = γGslicet,

(3.2)

where Gx and Gy are the phase encoding gradients with duration tx and ty, and Gslice
is the readout gradient in z-direction. Starting from this forward model, the influence of

ω(r, TE + t) on the signal dephasing can be described. For the following considerations

for 2D and 3D acquisitions, it is assumed that the readout gradient is much bigger than

macroscopic field gradients [250]. Therefore, potential geometric distortions caused by the

phase accumulation during t are considered to be negligible small.

3.2.2 Modeling Approaches for 2D mGRE

2D acquisitions require only one phase encoding direction because of the slice-selective

excitation. Consequently, in Equation 3.2 kz = 0, and in the case of Cartesian sampling,

the readout is performed in either x or y direction. A common assumption in 2D acqui-

sitions is that intravoxel dephasing predominantly occurs in slice-selective direction and

in-plane dephasing is often neglected. This is justified by the usually larger slice-thickness

∆z than the in-plane resolution. Therefore, intravoxel dephasing predominantly occurs in

slice-selective direction.

With these assumptions, the signal S(TE) of a 2D spoiled GRE in a voxel can be expressed

as:
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S(TE) =

∫
ρ(z, TE) exp(iω(z)TE)dz

S(TE) =

∫
Stissue(TE)Mxy(z, TE = 0) exp(iω(z)TE)dz,

(3.3)

where Stissue(TE) describes the ideal signal from the tissue assuming a homoge-

neous voxel, Mxy(z, TE = 0) the complex transverse magnetization at TE = 0, and

exp(iω(z)TE) accounts for the phase dispersion caused by the macroscopic field ω(z).

Starting from this equation, various approaches for modeling the signal decay in the pres-

ence of ω(z) were developed. In one of the first approaches, Fernandez-Seara and Wehrli

describe the signal S(TE) in the presence of a macroscopic field gradient gz by a sinc-

funtion [59]. To derive the signal model, two additional assumptions are necessary. First,

the macroscopic field is slow varying in space compared with ∆z. Hence, ω(z) can be

approximated by a linear function along the slice [246]:

ω(z) ≈ ω0 + γgzz (3.4)

where ω0 is the magnetic field offset in the slice and gz a constant macroscopic field

gradient. Second, the shape of the slice profile is an ideal rectangular function. With these

assumptions, we can rewrite Equation 3.3:

S(TE) =

∫
Stissue(TE)Mxy(z, TE = 0) exp(iω0(z)) exp(iγgz)dz

=

∫
Stissue(TE)rect

(
z

z0

)
exp(iω0(z)) exp(iγgz)dz

= Stissue(TE)sinc
(γ

2
gzTEz0

)
,

(3.5)

where rect( zz0 ) is a rectangular function defined in Equation B.1. Equation 3.5 reveals

the important relationship between TE, z0, and gz. For example, given a constant gz,

the signal attenuation can be strongly reduced by decreasing z0, or TE. Using Equa-

tion 3.5, Fernandez-Seara and Wehrli estimated R∗2 and gz iteratively from the measured

data assuming a monoexponential signal decay (Stissue(TE) = S0 exp(−R∗2TE)) [59]. A

drawback of this approach is that fitting is challenging because Equation 3.5 has several

local minima and maxima [59]. To improve the fitting procedure, Dahnke and Schaeffter

estimated an initial value Gz,init from the field map gained in an additional scan [39].

Rather than assuming a linear varying field in slice-direction, Yang et al. extended the

model to a quadratic varying field [254]. However, deviations from the ideal slice profile

lead to a deviation from the sinc-shaped signal decay, resulting in a bias of the estimated

parameters.

Addressing the variations of the slice profile, Preibisch et al. proposed an analytic solu-

tion for arbitrary RF excitation pulses [178]. They assume that steady-state effects can be

neglected (TR� T1) and that a small flip angle is used. By applying the small tip angle
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approximation, Mxy(z) can be estimated with the inverse Fourier transform of the RF

excitation pulse envelope B1(t) [98]. Then, the integral along z in Equation 3.3 represents

another Fourier transform. Thus, the signal dephasing of gz has the same shape as B1(t).

By substituting t with gz
Gslice

TE, for S(TE) follows [178]:

S(TE) = B1

(
gz

Gslice
TE

)
Stissue(TE), (3.6)

with Gslice being the amplitude of the slice-selection gradient.

Figure 3.1A illustrates an example for two sinc-Hanning-windowed pulses with different

pulse duration Tpulse and time bandwidth product (TBP) (Figure 3.1A). The short pulse

(Tpulse = 1ms) results in a broad slice profile, while the long pulse (Tpulse = 4ms) leads to

a narrower profile (Figure 3.1B). In the presence of gz the signal dephases with the shape

of the excitation pulse (Figure 3.1C) as described by Equation 3.6 for small flip angles.

The analytic solution is an elegant way to correct for the effect of gz for an arbitrary

RF excitation pulse. However, a downside of the method is that it might not allow the

full SNR benefit in 2D acquisitions with long TR because of the restriction to small flip

angles. Therefore, in this thesis a numerical solution for arbitrary pulses and flip angles

was developed [202]. The proposed approach is covered in Chapter 5.

Figure 3.1: Examples of signal dephasing in the presence of a field gradient gz = 100µT/m for
two different slice-selective RF excitation pulses. (A) shows the RF pulse envelopes for the sinc-
Hanning-windowed pulses with TBP= [2, 8] and pulse duration Tpulse = [1ms, 4ms] to achieve a
flip angle α = 30◦ in the center of the slice. (B) plots the magnitude of the transverse magnetization
|Mxy| and (C) illustrates the signal dephasing |F | caused by gz as a function of TE .

3.2.3 Modeling Approaches for 3D mGRE

To describe the influence of macroscopic field variations on signal dephasing in 3D acqui-

sitions, Yablonskiy proposed the VSF [250]. To solve the general signal Equation 3.1, a

few assumptions are necessary. First, the phase ϕ0(r) and the macroscopic field b(r) at

position r = (x, y, z) can be described by a linear function in the nth voxel:
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ϕ0,n(r) = ϕ0,n + ϕnx(x− xn) + ϕny(y − yn) + ϕnz(z − zn)

bn(r) = bn + gnx(x− xn) + gny(y − yn) + gnz(z − zn),
(3.7)

where ϕn and gn describe the gradients of the phase and the macroscopic field in

all three spatial directions x, y, and z. Second, the continuous signal ρ(r, TE) can be

substituted with the averaged signal ρn(TE) within the nth voxel.

With these assumptions, we can rewrite the measured k-space signal from Equation 3.1.

This involves several steps and for the sake of simplicity, all steps are elaborated for the

1D case (x-direction). In addition, Figure 3.2 illustrates the different steps in an example.

In the first step, ρ(r, TE) is split up in a sum of Nx integrals, in which each voxel with

size ax is integrated separately:

S̃(kx, TE) =

∫
ρ(x) exp(−2πikxx+ iγb(x)TE + iϕ0)dx

=

Nx∑
n=1

∫
rect((x− xn)/ax)ρ(x) exp(−2πikxx+ iγb(x)TE + iϕ0(x))dx,

(3.8)

where rect((x− xn)/ax) is a rectangular function that restricts the integration to the

size of a voxel from xn − ax/2 to xn + ax/2 (Equation B.1). Then, by substituting ρ(x)

with ρn, and b(x) and ϕ0(x) with the linear approximations (Figure 3.2A-D), the measured

signal in the kx-space becomes1:

S̃(kx, TE) =

Nx∑
n=1

ρn exp(γbn + ϕ0n) exp(−2πikxxn)ax sinc(ax(kx − kn)). (3.9)

Extending Equation 3.9 to all three spatial dimensions gives:

S̃(k, TE) =
∑
n

σn(TE) exp(iγbnTE + iϕ0,n) exp(−2πikrn)

sinc[(kx − knx)ax]sinc[(ky − kny)ay]sinc[(kz − knz)az],
(3.10)

where σn = V ρn = axayazρn is the signal from the nth voxel and V denotes the voxel

volume. The shift in k-space knj caused by the field and phase gradients is given by:

2πknj = γgnjTE + ϕnj , j = x, y, z. (3.11)

The sinc functions in Equation 3.10 describe the effects of the discrete sampling and

the shift because of the macroscopic field, approximated with gnj and ϕnj in each voxel.

1A complete derivation of Equation 3.9 can be found in the Appendix B.2.
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The overall goal defined in Equation 3.10 is to reconstruct an image σn(TE) without con-

tributions of the sinc functions. However, in a standard image reconstruction of Cartesian

sampled data an inverse fast Fourier transform (IFFT) is performed to estimate Sn(TE).

By applying an IFFT in a single direction, the signal Sn(kx, TE) in the image domain is

given by:

Sn(TE) =
1

Nx

∑
kx

S̃(kx, TE) exp(−2πkxxn). (3.12)

Substituting in Equation 3.10 yields:

Sn(TE) =
1

N

∑
m

σm(TE) exp(iγbmTE + iϕ0,m)
∑
q

sinc(q − qm) exp(2πiq(n−m)),

(3.13)

with q = kxax and qm is the 1D phase dispersion:

2πqm = (γgmxTE + ϕmx)ax. (3.14)

Equation 3.13 explains the relation between σm and the reconstructed signal Sn(TE).

It shows that the original σm is convoluted with sinc functions that describe the phase

dispersion and the finite sampling. The example in Figure 3.2F illustrates the estimated

signal Sn(TE) from the kx-space data (Figure 3.2E) with an IFFT . Compared with σm
(Figure 3.2B), the signal Sn(TE) dephases with TE and additional Gibb’s ringing occurs,

especially near sharp transitions.

With the forward model proposed by Yablonskiy et al. in Equation 3.13, it is possible to

account for these effects [250].

By introducing the VSF ψnm, Equation 3.13 can be simplified to:

Sn(TE) =
∑
m

ψnm(TE)σm(TE). (3.15)

where ψnm is:

ψnm(TE) = η(n,m, qm(TE)) exp(iϕ0,m + iγbmTE), (3.16)

with

η(n,m, qm(TE)) =
∑
q

sinc(q − qm(TE)) exp(2πiq(n−m)). (3.17)

Thus, ψnm describes the spreading of an ideal voxel σm(TE) caused by the macroscopic

field and the sampling. To estimate ψnm(TE) in the 2D or 3D case, the variables m, n,

and q are substituted with vectors for the spatial directions (e.g. for 3D m = (mx,my,mz),

n = (nx, ny, nz), and q = (qx, qy, qz)).
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To solve Equation 3.16, the unknown parameters of gnj , ϕnj , ϕ0,m, and bm have to be

estimated. This can be achieved with the measured signal Sn(TE), which can be described

by:

Sn(TE) = |Sn(TE)| exp(iϕn(TE))

= |Sn(TE)| exp(i(ϕ0,n + γbnTE)).
(3.18)

Consequently, ϕ0,n and bn can be obtained by fitting a linear equation to the phase

signal of the echoes. Then, a numerical gradient of the ϕ0,n and bn maps in all three

spatial directions can be calculated to estimate ϕnj and gnj .

To reduce the computational complexity of Equation 3.15, Yablonskiy et al. proposed a

similarity approximation that exploits the property that signals from neighboring voxels

are similar [250]:

σm(TE) = σn(TE)
|Sm(TE = 0)|
|Sn(TE = 0)|

. (3.19)

Thus, Equation 3.15 can be reduced to:

Sn(TE = 0) = σn(TE)Fn(TE)

=
1

|Sn(TE = 0)|
∑
m

ψnm(TE)|Sm(TE = 0)|, (3.20)

where Fn(TE) summarizes the influence of the macroscopic field variations. In Equa-

tion 3.20, the sum is estimated for each voxel n over all neighboring voxels m. However,

a smaller number of neighboring voxels Nneigh might be sufficient for the estimation of

Fn(TE) [250].

Figure 3.3 shows an example of the estimated Fn(TE) with a different number of neighbors

Nneigh of the example signal ρ in Figure 3.2. Further, the reconstructed signal Sn(TE) was

corrected for the macroscopic field variations with the different Fn(TE) functions (Figure

3.3 (parts B and D)). Both functions reduce the influence by correcting Sn(TE), but with

Nneigh = 32 it captures also the Gibb’s ringing. A drawback is that increasing Nneigh is

computational intense. To speed up computation, Yablonskiy et al. proposed to filter the

measured data with a Hanning filter to reduce Gibb’s ringing and the number of Nneigh

[250]. To adapt the signal model, the Hanning filter is incorporated in Equation 3.17. A

detailed evaluation between filtering and non-filtering of the data can be found in Chapter

6.
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~

(A) (B)

(C) (D)

(E) (F)

Figure 3.2: Steps involved for describing the signal of a 3D GRE signal in the presence of
macroscopic field variations with the VSF [250]. The continuous signal ρ(x) (A) along the x
direction is averaged in each voxel denoted with σn (B) and the macroscopic field ω(x) (C) is
approximated by a linear function in each voxel ω(x) = γb(x) (D). Using Equation 3.10, the k-
space signal (E) is estimated for different TEs. Then, the signal Sn(TE) (F) is reconstructed
performing an IFFT , which reveals increasing signal decay with TE and additional Gibb’s ringing.
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Figure 3.3: Estimated Fn as function of TE for the example in Figure 3.2 for different number
of neighbors Nneigh = 1 and Nneigh = 32 (A,C) and the corrected signal Sn(TE)/Fn(TE) (B,D).
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3.3 Tailored RF Pulses

Another approach for reducing with macroscopic field variations in GRE imaging focuses

on the design of tailored RF pulses. Conventional RF pulses are usually designed to

achieve a constant phase variation through the slice. In tailored RF pulses, the phase varies

along the slice to compensate intravoxel dephasing. In one of the first publications on this

topic, Cho and Ro optimized the RF pulse to achieve a quadratic phase variation through

the slice [31]. Because of the quadratic variation of the phase, the signal dephasing reduces

for a constant gz. The pulse design was further refined by measuring phase evolution in

a specific ROI , which allows to design the phase of the RF pulse such that the signal

rephases at a certain TE [28]. However, a drawback of these approaches is that in the

case of a homogenous field (gz ≈ 0) the measured signal is much smaller than the signal

obtained with a conventional pulse. Therefore, more recent pulse design approaches aim

to compensate phase dispersion locally with 3D tailored RF pulses [85, 212, 256].

3.4 Z-Shimming with Compensation Gradients

To compensate intravoxel signal dephasing caused by macroscopic field gradients,

z-shimming approaches apply compensation moments before image acquisition.

Figure 3.4 illustrates the basic concept introduced by Frahm et al. [62]. By changing

the area of the slice-selection refocusing gradient, the additional moment compensates

a certain gz. From these first z-shimming experiments various approaches were

proposed, which can be roughly divided into 2D and 3D approaches with multi- or

single-scan acquisition. The focus in the following section is on GRE sequences, but

compensation moments can also be applied in echo planar imaging (EPI) acquisition

[35, 92, 140, 151, 208].

α

RF/ADC

Gslice

TE

gz

Gctc

gz

(A) (B)
α

RF/ADC

Gslice

TE

Figure 3.4: Basic principle of z-shimming demonstrated by Frahm et al. [62]. (A) shows a
standard GRE sequence where the field gradient gz is superimposed with the slice-selection gradient
Gslice. The measured image at TE shows faster signal decay close to the nasal cavities and
tympanic cavity. By changing the amplitude of the slice-selection rephasing gradient, the effect of
gz is reversed (B), and the signal recovers in areas with a field gradient value of gz. In other areas,
divergent from gz, the signal is dephased because of the additional gradient.
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3.4.1 2D z-Shimming

Yang et al. extended the original work of Frahm et al. [62] and proposed the 2D

multi gradient-echo with magnetic susceptibility inhomogeneity compensation method

(MGESIC) sequence [251]. Figure 3.5A illustrates the MGESIC sequence diagram. Rather

than varying the area of Gslice, the method applies three identical compensation moments

between the readout gradients. Therefore, the first echo image is a standard GRE with-

out compensation, followed by three echoes with increasing accumulative compensation

moments. The final image is reconstructed by summing up the individual images. To

avoid a potential T ∗2 bias, the echo spacing should be as short as possible in the MGESIC

approach [251].

Another way for describing the effect of gz is to interpret it as a shift in the frequency

domain kz from the center [252]:

I2D
vox(kz) = F{Mxy(z, TE = 0) exp(−iγgzTEz/2π)} = Mxy(kz − kz,0), (3.21)

where kz,0 = γgzTE/2π describes the k-space shift.

The gradient-echo slice excitation profile imaging (GESEPI) method acquires N images

with different slice refocusing gradient offsets (Figure 3.5B) [252]. The offsets are chosen

such that N increments of ∆Gc within an interval of a maximum compensation gradient

±Gmaxc are compensated. By measuring the N images, each image has a different kz value,

and thus the images represent the solution of Equation 3.21. Then, in each voxel of the N

images, the signal in each voxel varies depending on gz, and the maximum signal is given

for an ideal compensation when kz = kz,0. By performing an inverse Fourier transform

(FT) in kz direction, an image series with the excitation profile is obtained [252]:

I3D
vox(z) = F−1{I2D

vox(kz)} = M(z) exp(−iγgzTEz/2π). (3.22)

Equations 3.22 shows that gz only has an influence on the phase and not on the

magnitude |M(z)|. Extending the approach to multi gradient-echo slice excitation profile

imaging (mGESEPI), the effect of gz on R∗2 mapping minimizes (Figure 3.5C) [255].

However, a disadvantage is that it requires a large number of images (16 in the original

publication for in vivo imaging [252]). To increase efficiency, Truong et al. proposed the

blipped multi gradient-echo slice excitation profile imaging (bmGESEPI), which applies

additional compensation moments between the acquisition of M echoes (Figure 3.5D)

[218]. This reduces the scan time by a factor of M compared with the mGESEPI approach.

Figure 3.6 shows the first single scan R∗2 mapping method based on z-shimming pro-

posed by Wild et al. [239]. In a mGRE sequence, they inserted a repetitive block of

three compensation gradients with identical duration between successive echoes. The first

compensation gradient has a magnitude ηGc, the second −2ηGc, and the last ηGc, with
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Figure 3.5: Schematic sequence overview of different z-shimming approaches. The MGESIC
method (A) applies compensation moments in-between echo acquisition [251]. The GESEPI
method acquires multiple images with different compensation moments by varying the slice-
selection rephasing gradient [252], and the mGESEPI (C) acquires several echo images [255]. The
bmGESEPI approach (D) adds additional compensation moments in-between echo acquisition to
reduce the required number of images [218].

η being a scaling factor. Hence, the sequence acquires in each block an image without a

compensation moment, one compensation moment for negative gz, and one for positive

gz. By assuming an ideal slice profile, a combined image is calculated by taking the root

mean square of the individual images of one block. Then, Wild et al. estimated R∗2 from

the combined images using the first TE of each block for the calculations. A drawback of

the method is that the echo spacing should be as short as possible because it neglects T ∗2
decay for image combination. Furthermore, it assumes an ideal slice profile, which might

lead to an additional bias depending on the type of excitation pulse.

Figure 3.6B shows another single scan method proposed by Meng and Lei for R∗2 map-

ping [152]. In this approach, they estimated R∗2 from the first echo without compensation

gradient and from a combined image of the successive echoes. For the combined image, a

strong compensation gradient is applied with Gc,max and duration ∆. This strong gradient

is stepwise compensated by applying small gradients with amplitude Gs and duration δ

in-between the echoes. The gradients are designed such that the moment of the largest

gradients is compensated at the image number P/2 where P is the total number of ac-

quired echo images. As in the GESEPI approach, Meng et al. combined the individual

gradients with the Fourier transform (Equation 3.22).

Previous methods for R∗2 mapping have in common that they assume an ideal slice pro-

file, and that the echo images of a certain interval can be combined neglecting T ∗2 decay.

However, as discussed in Section 3.2, Preibisch et al. proposed a solution to calculate

the signal decay in the presence of gz with the RF excitation pulse envelope for small tip

angles [178]. Given this relation, Nam et al. proposed to use the solution to describe the

effect of z-shim gradients on the signal decay [159]. For each TE , the signal is calculated

with the solution in Equation 3.6 [178], but instead of the moment of gz the sum of the
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gz moment and the accumulated compensation moment of the z-shim gradients is used.

Further, Nam et al. proposed a method that compensates linear increasing positive and

negative gz. They applied the compensation gradients alternatingly with linear increasing

amplitude (Figure 3.6C) [159]. After compensation of a single positive or negative gz, the

moment is balanced by applying the same gradient moment with opposite polarity. Hence,

the sequence acquires additional standard mGRE images with zero z-shim moment.

Later, Lee et al. proposed a similar approach for MWF mapping, which also takes into

account the slice profile for minimizing the effects of gz on MWF [128]. It differs from

the z-shim pattern proposed by Nam et al. in two aspects. First, Lee et al. do not apply

z-shim gradients in the first echoes to avoid signal crushing in homogeneous regions. Sec-

ond, the method only compensates a positive gz because they argue that in most brain

regions gz is positive.

3.4.2 3D z-Shimming

Similar to the 2D multi-scan approach [252], Glover proposed a 3D z-shim method that

acquires additional images with different increments of the slice refocusing lobe [67]. In

3D acquisitions additional phase encoding steps ∆kz are acquired:

∆kz =
1

Nslice∆z
, (3.23)

where Nslice is the number of slices and ∆z the slice thickness. The maximum k-space

encoding is given by kmax,3 = 1/(2∆z). In the case of a field gradient gz, the phase

offset ∆koff = γgzTE/(2π) might be shifted outside the sample space depending on the

magnitude of gz and TE (kmax,3 < ∆koff ) leading to a signal loss. By varying the slice

refocusing lobe, it is possible to shift the window of the acquired k-space samples. To

sample the phase offset ∆koff , the maximum phase encoding has to be moved towards

kmax,3′ assuming that most regions have the same polarity of gz, and that the window is

shifted towards one direction of kz:

kmax,3′ = kmax,3 + |∆koff | (3.24)

Given that kz < kmax,3′ , the required number of encoding steps Nk,3 is:

Nk,3 = Nslice + |∆koff |/∆kz = Nslice(1 +
|koff |∆z

2π
) (3.25)

Consequently, it requires Nk,3/Nslice additional acquisitions compared without

z-shimming and Nz,3 = Nk,3 − Nslice + 1 images can be reconstructed. To get a single

image from the Nz,3 z-shim images, a maximum intensity projection or sum of squares

combination can be used. In conjunction with a field map ∆B0 map another possibility

is to calculate ∆koff and choose for each voxel the corresponding z-shim image that fits

∆koff .
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Figure 3.6: Schematic single-scan z-shimming sequences for R∗
2 mapping. The method by Wild

et al. (A) applies a repetitive pattern of z-shim gradients (dashed gray boxes) [239]. Composite
images are calculated for all blocks, which are then used for R∗

2 estimation. The approach by
Meng et al. (B) applies a strong compensation gradient after the first echo followed by small
compensation moments with opposed polarity between each echo [152]. The P images are used
to obtain a composite image at TE2. From the first echo image and the composite image, R∗

2 is
estimated. In (D), Nam et al. apply linear increasing compensation moments to compensate a
positive and negative gz. R∗

2 is obtained by fitting a signal model accounting for the slice profile
to the measured signal, gz, and the compensation moments [159].

Han et al. [81] proposed a method to improve R∗2 mapping for 3D acquisition in

a single-scan z-shim approach. The approach applies an alternating pattern of

compensation moments between the echo acquisition. Therefore, echo images with an

even echo number are standard mGRE images and odd images are compensated images.

To estimate R∗2, Han et al. added the z-shim moments in the modeling of the VSF [250].

The adapted VSF model allows describing the signal for each TE and to fit R∗2 from the

measured signal. An essential step for the VSF is an accurate estimation of gz in each

voxel, which is especially challenging in areas with large gz. For that reason, the authors

additional used an algorithm to estimate the field map including the z-shim images [83].

Apart from R∗2 mapping, Oh et al. proposed a sequence for improved susceptibility
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weighted imaging [167]. Instead of two images, they acquire an additional image with

a compensation gradient. By using information of all three images, Oh et al. achieved

improved image quality in the vessels in the frontal lobe compared with standard

acquisition.
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A large part of the present thesis focuses on the development of a signal model for

describing the 2D mGRE signal in the presence of a macroscopic field gradient gz. The

following chapter summarizes the various adaptations from the vendor’s standard mGRE

sequence that have been implemented on the 3T MRI system (Magnetom Prisma, Siemens,

Erlangen, Germany). The first part describes the implementation of the different 2D RF

excitation pulses and the measurement of the slice profile. The second part deals with

the measurement of physiologically induced B0 variations with navigator echoes. This

has been found to be an essential prerequisite to allow accurate signal modeling. Further,

it explains the phase correction and coil combination of the raw data to reconstruct the

image from the raw data.

4.1 RF Excitation Pulse

In the case of a nonadiabtic excitation pulse, the variation of the flip angle α(ω) can be

approximated by the modulus of the inverse Fourier transform of the RF excitation pulse

envelope B1(t) in center of the slice [14, 98]:

sin(α(ω)) ≈ α(ω) ≈ ±γ|
∫ t

0
B1(t′) exp(iωt′)dt′|. (4.1)

Consequently, a short hard pulse results in a broad sinc-shaped spectrum, whereas a

long sinc pulse leads to a narrow rectangular shaped spectrum. To control the width of

the excited slice, a slice-selection gradient is turned on with an amplitude Gslice, which

frequency encodes the slice direction z by the frequency ω(z) = γGslicez. Given that the

RF pulse has a bandwidth of ∆ω, then for the slice thickness ∆z follows:

∆z =
∆ω

γGslice
(4.2)
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Hence, ∆z is controlled either by varying Gslice or by changing the RF pulse to

achieve a different ∆ω. To allow a reasonable comparison between different pulses, it

is desirable that all pulses have similar ∆z at a certain α. Then, the shape of the slice

profile dominates the signal dephasing and not variations in ∆z. In one of the first

experiments, we used the vendor’s standard pulses and amplitudes of Gslice, but these

pulses lead to different ∆z caused by Gslice. Figure 4.1 shows the results of the measured

slice thickness ∆zmeas compared with the nominal slice thickness ∆z for two RF pulses.

It shows that ∆zmeas is larger than ∆z and different for the two pulses. For a better

comparison, four different RF pulses with a similar ∆z for all pulses at a certain α were

designed. To achieve this, the amplitude of Gslice was estimated with a numerical Bloch

solver [1] such that ∆z matches the simulations for α = 30◦ for each pulse. The first

three pulses were sinc-Hanning-windowed pulses, each with a different pulse duration

Tpulse and TBP , and a Gaussian pulse. The pules shapes of the sinc-Hanning-windowed

pulses were calculated with Equation 4.3 and for the Gauss pulse with Equation 4.4.

B1,sinc−Hanning(t) =
1

2
sinc

(
TBP t

Tpulse

)
(1 + cos(2πt/Tpulse)) (4.3)

B1,Gauss(t) = e
−t2

2Tpulseσ
2

(4.4)

Figure 4.2 shows the measured slice profile for the three sinc-Hanning-windowed

pulses and the Gaussian pulse acquired at three different flip angles α. The slice

profiles were obtained by switching the frequency encoding to the slice-selection

direction. Table 4.1 lists the estimated ∆zmeas from the measured data. In

contrast to the vendor’s pulses, ∆zmeas corresponds now to the nominal ∆z for

α = 30◦. When comparing the four pulses, the sinc-Hanning-windowed pulses with

Tpulse = 1ms and Tpulse = 2ms and the Gaussian pulse lead to a similar slice

profiles. The increase of zmeas with α is explained by the solution of the Bloch

equations. While the Fourier approximation results in a constant ∆z independent of α,

the solution with the Bloch equations allows describing the slice profile accurately for all α.

4.2 Navigator for Physiological Noise Compensation

4.2.1 Physiological Noise and Navigator Echoes

A prerequisite for an accurate description of the GRE signal in the presence of gz is

that contributions from physiologically induced field fluctuations are minimized. During

k-space acquisition, it is usually assumed that the resonance frequency is constant over

the acquisition period. However, apart from the system’s B0 drift and bulk motion, field

variations can be caused by physiologically induced fluctuations due to the cardiac or
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Figure 4.1: Comparison between the measured slice thickness ∆zmeas versus the nominal slice
thickness ∆z for three different flip angles. Each plot shows results for two standard sinc-Hanning-
windowed RF excitation pulses of the vendor’s GRE sequence. For both pulses, ∆zmeas is larger
than ∆z and different between the pulses.

Figure 4.2: Measured signal along the slice for the four RF pulses each acquired with three flip
angles. The first three plots show results for sinc-Hanning-windowed pulses with increasing TBP
and Tpulse (from left to right) and the last plot illustrates the results using a Gaussian pulse. Table
4.1 summarizes the corresponding measured slice thickness ∆zmeas.

Table 4.1: Measured slice thickness ∆zmeas of the implemented RF pulses using three different
flip angles α. By setting Gslice to the value estimated with the Bloch solver, comparable ∆zmeas

are obtained.

Pulse ∆zmeas(mm)

α = 90◦ α = 60◦ α = 30◦

sinc-Hanning, TBP = 2, Tpulse = 1ms 4.61 4.20 3.96
sinc-Hanning, TBP = 2.7, Tpulse = 2ms 4.51 4.15 4.01
sinc-Hanning, TBP = 8, Tpulse = 4ms 4.09 4.02 3.97
Gauss σ = 200µs 4.58 4.17 4.02

respiratory cycle [174, 245]. These field variations lead to phase error in the k-space

encoding. For respiratory fluctuations, a strong correlation between phase fluctuation

and a respiratory belt was observed. The amount of phase fluctuations highly depends

on the subject [220]. Versluis et al. reported that the contributions from physiologically

induced B0 fluctuations are four times larger than movement artifacts in Alzheimer’s

patients [223]. An explanation for these variations is given by the movement of the
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chest, causing magnetic field variations that range up to the brain. To describe these

variations, Raj et al. proposed a simplified model, which is illustrated in Figure 4.3

[181]. The model mimics the head and upper torso by a cylinder containing water. The

cylinder contains a spherical cavity with a radius R and susceptibility difference ∆χ with

respect to the water. The spherical cavity produces a dipole field ∆B(x, y, z) given by

Equation 4.5 [194]. Depending on R and ∆χ, field variations in the imaging plane can be

modeled. Raj et al. validated the model by changing ∆χ with the oxygen concentration

in the cavity. Although variations in ∆χ can induce field variations, they concluded that

changes in R via the lung volume are more likely responsible variations in ∆B(x, y, z) [181].

∆B(x, y, z) =
1
3∆χB0R

3(2z2 − x2 − y2)

(x2 + y2 + z2)5/2
(4.5)

Figure 4.3: Simple model for describing the physiologically induced B0 changes in an imaging
slice proposed by Raj et al. [181]. They model the head and upper torso with a water containing
cylinder and a cavity with susceptibility difference ∆χ and radius R for the lungs. The magnetic
field variations caused by the cavity are described by the dipole field in Equation 4.5.

To measure these phase variations, Hu et al. proposed to use navigator echoes [100].

For each phase encoding step, a navigator echo acquires an additional echo, but without

phase encoding (ky = 0). Figure 4.4 shows two different options for the acquisition. In the

original work they acquired the navigator echo before k-space acquisition (Figure 4.4A)

[100], but it is also possible to measure it after phase encoding by rewinding the phase

encoding gradient before echo acquisition (Figure 4.4B) [235].

Figure 4.5 illustrates an example of the estimated phase fluctuations during repetitive

measurements in a single slice. The left plot shows a periodic variation of the phase signal

with some smaller higher frequency variations. By performing a fast Fourier transform

(FFT), a frequency of about 13 cycles/minutes can be assigned to the prominent slow

variations. Based on the literature [100, 220, 223], this frequency corresponds to respira-

tory induced fluctuations. The higher frequency content in the signal might be addressed

to pulsation [127], but no distinct peak is observable in the frequency spectrum.
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Figure 4.4: Two different approaches for acquiring a navigator echo to estimate physiologically
induced B0 variations at the echo time TEnavi. In (A), the navigator echo is acquired before image
acquisition and in (B) after image acquisition and rewinding of the phase encoding.
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Figure 4.5: Example of the estimated phase fluctuations from the navigator echo in a single slice
from a continuous measurement (25 measurements, TEnavi = 47ms, TR = 50ms with 208 phase
encoding lines). The left image shows the phase in a time frame of 30s, and on the right the FFT
from the entire acquisition is plotted. The plots show a clear respiratory induced fluctuation with
a frequency around 13 cycles/minute.

4.2.2 Estimation of Phase Fluctuations from Navigator Echoes

Figure 4.6 shows the processing steps for estimating the phase fluctuations φcorr[nphase,m]

from the navigator signal from nth phase encoding line nphase,m. The steps are the same

for both approaches in Figure 4.4. For each coil channel m, from the complex raw data

(Figure 4.6A) an IFFT in read-out direction is performed to estimate the projection for

each nphase,m (Figure 4.6B). The resulting phase signal ∠Snavi,B can be decomposed in a

signal that is equal for all lines nphase,m, such as a channel specific phase offset or object

related phase variations, and in phase fluctuations that vary from line to line. To remove

the line independent phase, a reference line is chosen, which is subtracted from all lines.

The subtraction is achieved by multiplying all nphase,m lines with the complex conjugate of

the reference line (Figure 4.6C). By taking the mean of the resulting signal Snavi,C for each

nphase,m line, φcorr[nphase,m] is obtained (Figure 4.6C). This step is repeated for all coils

(Figure 4.6D). By comparing Figure 4.6C and Figure 4.6D similar noise like fluctuations

are measured in all coils.
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Figure 4.6: Processing steps of the navigator echo Snavi for correction of physiologically induced
B0 fluctuations. First, for each navigator echo nphase,m (A) an IFFT is performed for each coil m
(B). Next, the constant phase of the object itself is removed by multiplying all nphase,m lines by
the complex conjugate of a reference line (e.g., first acquired line nphase,m = 1) (C). To estimate
the phase correction φcorr[nphase,m] (D), the mean is calculated from the complex signal (C).
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4.2.3 Coil Combination and Image Reconstruction

After the estimation of φcorr[nphase,m], the raw data has to be corrected with φcorr[nphase,m]

for each echo. Figure 4.7 illustrates the different steps exemplary shown for the fourth

echo image Sm(TE4). Assuming that φcorr[nphase,m] from the time of excitation until the

echo time TEnavi increases linearly, the corrected raw data is obtained for each channel

m [235]:

Scorrm (kread,m, TE) = Sm(kread,m, TE) exp

(
−i
φcorr[nphase,m]

TEnavi
TE

)
, (4.6)

where the ratio TE
TEnavi

describes the linear scaling of the navigator phase. In the next

step the M coil images have to be combined to a single image, which is referred to as

coil combination. An overview of various coil combination methods can be found in [186].

In phased array coils, the signal of the phase at a position r for the mth coil can be

decomposed in [186]:

φm(r, TE) = φ0,m(r) + ∆ω(r)TE, (4.7)

where φ0,m(r) is a channel dependent phase offset and ∆ω(r)TE describes the channel

independent phase accumulation caused by the magnetic field. To avoid destructive inter-

ference in the combined images caused by different φ0,m(r) by simple complex summation

of the individual images, the coil dependent phase term has to be removed. Compared

with single echo acquisition, multi-echo acquisition offers the advantage that φ0,m(r) can

be estimated or eliminated before coil combination. Luo et al. proposed a method that

combines the images Scomb(TEi) of the ith echo as follows [145]:

Scomb(TEi) =
1

M

M∑
m=1

λmS̄
corr
m (TE1)Scorrm (TEi) (4.8)

by multiplying all images of the same coil m with the complex conjugate S̄corrm (TE1) of

the first echo TE1 before summation, it eliminates the coil dependent φ0,m(r). To account

for different noise levels in the coil images, the data is weighted with the factor λm [145]:

λm =
1
M

∑M
l=1 σ

2
l

σ2
m

, (4.9)

where σm is the noise amplitude in a channel m estimated in a noisy ROI in the

magnitude image.
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Figure 4.7: Example of the coil combination proposed by Luo et al. for multi-echo data [145].
The first two blocks of images show the magnitude and phase of the first echo with TE1 and the
fourth echo with TE4 for coils m = [1, 2, 3] out of M = 16 coils. The results of the multiplication
of the fourth echo Sm(TE4) with the complex conjugate of the first echo S̄m(TE4) are illustrated
in the third block. The images on the right side show the combined image Scomb(TE4), obtained
by the weighted summation with σm of the third block. The phase variation along the red line in
the phase images is plotted on bottom.

4.2.4 Example Phase Correction

Figure 4.8 shows an example of the signal decay with and without phase correction. In

Figure 4.8A, echo images were reconstructed including the phase of the navigator echo

while in Figure 4.8B this variation was not considered. The difference between the echoes

(Figure 4.8C) reveals spatial and temporal artifacts. Additionally, the signal decay in

two ROIs is plotted indicating the temporal variations deviating from a monoexponential

signal decay.
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Figure 4.8: Example of a signal decay reconstructed from a 2D mGRE acquisition with (A) and
without considering the phase of the navigator (B). Every second echo starting from TE1 = 2.98ms
to TE15 = 56.43ms is shown. The difference between the images of row (A) and (B) is illustrated
in (C).
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5.1 Introduction

Section 3.2 reviews different signal modeling approaches for the RF -spoiled GRE sequence.

For 2D acquisitions, the signal in the presence of a macroscopic field gradient gz is given by

the analytic solution of Preibisch et al. [178]. Based on the small tip angle approximation,

the signal dephasing is described by the shape of the RF excitation pulse B1(t) [178]. In an

interleaved slice acquisition, the TR is usually rather large to allow multi-slice acquisition

(TR > 1s), leading to an Ernst angle that might be beyond the limit for the small tip

angle approximation. Therefore, the potential increase in SNR for larger flip angles is

limited by the maximum possible angle which fulfills the small tip angle approximation.
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To overcome this limitation, we propose a numerical model for solving the signal dephasing

in the presence of gz for an arbitrary RF excitation pulse and flip angle. Extending the

model from Hernando et al. [94], we also investigate variations of the transmit RF field B+
1

and the effect of scaling of the slice profile caused by the superposition of gz and the slice-

selection gradient Gslice. We further demonstrate with phantom and in vivo measurements

that, depending on the RF pulse shape, the polarity of Gslice has to be considered for larger

flip angles to account for through-slice phase variations. The proposed model substantially

improves the quality of R∗2 maps and MWF maps acquired with arbitrary excitation pulses

and flip angles.

5.2 Methods

5.2.1 Theory

In the presence of macroscopic field variations ∆ω(z) the signal S(t) of a 2D RF -spoiled

GRE is proportional to the integral over the complex transverse magnetization Mxy(z) =

|Mxy|eiϕxy(z) weighted with ∆ω(z) along the slice-selective direction z. Thus, depending on

Mxy(z) and ∆ω(z), additional signal dephasing is observed in contrast to the theoretical

monoexponential signal decay with R∗2. If ∆ω(z) is smooth and slowly varying in space,

∆ω(z) can be approximated with a linear function ∆ω(z) = ∆ω0 +γgzz in each slice [246].

By assuming the origin of z being in the center of the slice, the equation for S(t) reads as:

S(t) = e−R
∗
2t

∫ ∞
−∞

Mxy(z, αξ, λ,E1)ei∆ω(z)tdz

≈ e−R∗2t
∫ ∞
−∞

Mxy(z, αξ, λ,E1)ei∆ω0teiγgzztdz,

(5.1)

where gz denotes the field gradient and ∆ω0 the field offset. Mxy(z) depends on several

factors (including ξ, λ, and E1) discussed in detail subsequently. Depending on the ratio

of TR to the longitudinal relaxation time T1, which is included in the exponential term

E1 = e−TR/T1 , and the effective flip angle αeff (z) through the slice, the solution for

|Mxy(z)| changes according to the steady-state equation for GRE sequences [58]:

|Mxy(z, αξ, λ,E1)| = S0 sin (αeff (z, αξ, λ))
1− E1

1− cos (αeff (z, αξ, λ))E1
. (5.2)

When TR is much larger than T1, Equation 5.2 simplifies and |Mxy(z)| is obtained by

the sine of αeff times the equilibrium magnetization S0.

|Mxy(z, αξ, λ,E1 = 0)| = S0 sin (αeff (z, αξ, λ)) . (5.3)

Here, αeff (z) is obtained for a certain slice-selection gradient Gslice and the applied

excitation pulse with a certain shape and amplitude. For small flip angles, the slice

profile αeff (z) can be estimated for an RF pulse envelope B1(t) with the small flip angle
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approximation [98]. However, larger flip angles require solving the Bloch equations for

|Mxy(z)| and ϕxy(z).

Extending previous studies, the factors ξ and λ were added to describe two effects that

affect αeff (z) and thus signal dephasing. First, variations of the active transmit field B+
1

cause a deviation from the nominal flip angle α, which can change the effective flip angle

profile αeff (z) and therefore requires α to be scaled with ξ, obtained from the normalized

B1 map. Second, gz is superimposed with Gslice leading to either broadening or narrowing

of the slice profile described by the factor λ [183] as follows:

λ =
Gslice

Gslice + gz
. (5.4)

To investigate the impact of the described parameters on signal dephasing in the

presence of gz, four different models have been studied. Summarizing Equation 5.1 in a

tissue-specific signal component Stissue(t) (e.g., Stissue(t) = S0e
−R∗2t) and a component

Fi(t) describing the signal dephasing due to ∆ω(z), the model Si(t) can be written as

Si(t) = Stissue(t)Fi(t). The four models are defined as follows:

S1(t) = Stissue(t)F1(t) = Stissue(t) (5.5)

S2(t) = Stissue(t)F2(t)

= Stissue(t)

∫ ∞
−∞
|Mxy|(z, α, λ = 1, E1 = 0)eiγgzztdz (5.6)

S3(t) = Stissue(t)F3(t)

= Stissue(t)

∫ ∞
−∞
|Mxy|(z, α, λ = 1, E1 = 0)eϕxy(z,α,λ=1,E1=0)eiγgzztdz (5.7)

S4(t) = Stissue(t)F4(t)

= Stissue(t)

∫ ∞
−∞
|Mxy|(z, αξ, λ,E1 = 0)eϕxy(z,αξ,λ,E1=0)eiγgzztdz. (5.8)

The model S1(t) serves as an uncorrected reference without modeling Mxy(z) and

∆ω(z). Then, for S2(t), only the magnitude along the slice |Mxy(z)| was considered

neglecting ϕxy(z). In S3(t), ϕxy(z) was included, and in S4(t) the model was extended by

additionally incorporating B+
1 and λ variations.

5.2.2 Numerical Implementation

Signal dephasing caused by gz was estimated numerically for F2 to F4 assuming E1 = 0.

In the first step, Mxy was estimated for a certain RF excitation pulse and Gslice with

a freely available numerical Bloch solver using MATLAB (MathWorks, Natick, MA) [1].

Simulations were carried out with temporal resolution of 2µs and spatial resolution of

80µm with 2501 spatial points. The normalized envelope B1(t) was scaled to achieve
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αeff (z = 0) = αξ in the center of the slice. Rather than estimating Mxy for each voxel

with ξ and λ, calculations were accelerated by estimating Mxy in steps of ∆ξ = 0.05

followed by linear interpolation to ∆ξintp = 0.005. Variations of λ were incorporated by

multiplying the sampling points along z with λ, to scale the thickness of the slice. In the

last step, the integral along z for given gz was solved by numerical integration.

5.2.3 Simulations

To investigate the influence of the Gslice polarity and flip angle α on F3, simulations for

α = 30◦ and α = 90◦ with negative and positive polarity of Gslice were performed. Based

on the vendor’s standard GRE pulse, a sinc-Hanning-windowed excitation pulse with a

pulse duration Tpulse of 2ms and a TBP product of 2.7 was chosen for the experiments.

A Gslice of 8.29mT/m was determined with the Bloch solver to achieve a slice thickness

∆z of 4mm, as defined by FWHM of |Mxy|, for α = 30◦. Based on the observed field

gradients in phantom measurements, gz was set to 100µT/m for all simulations. In the

in vivo measurements of the brain, field gradients up to 300µT/m have been reported in

areas such as orbitofrontal cortex or inferior temporal lobe [233].

Exploiting the relevance of individual parameters for modeling F4, a sensitivity analysis

was performed for ϕxy, B
+
1 , and λ with the same sinc-Hanning-windowed excitation pulse.

To estimate the relevance of ϕxy, simulations with gz = 100µT/m were carried out for F4

with varying α from 10◦ to 90◦, each with positive and negative Gslice polarity. Results

were compared with simulations for model F2 considering only the magnitude |Mxy| of

the slice profile (ϕxy = 0). For evaluation, root mean squared error (RMSE) over time for

each α between F4 and F2 was calculated.

The sensitivity to B+
1 was simulated by scaling B+

1 for each flip angle (α = 30◦ and

α = 90◦) with a factor ξ (ranging from 0.6 to 1.4) for gz = 100µT/m. The results for

F4 obtained for different ξ were compared with those for ξ = 1 by plotting the RMSE .

The same steps as for B+
1 were carried out for λ by changing the value from 0.8 to 1.2.

A crucial assumption of the proposed models is that for a given α, TR is long enough to

avoid changes of |Mxy| due to incomplete T1 relaxation (E1 = e−TR/T1 6= 0). Hence, the

steady-state solution in Equation 5.2 was included to estimate signal dephasing FT1 in the

presence of gz = 100µT/m for different E1:

FT1 =

∫ ∞
−∞

Mxy(z, αξ, λ,E1)eϕ(z,αξ,λ,E1)eiγgzztdz. (5.9)

For each TR/T1 (ranging from 1 to 5) the Ernst angle αErnst was calculated and

simulations with the sinc-Hanning-windowed RF pulse (Tpulse = 2ms and TBP= 2.7)

were carried out by setting α = αErnst, α = 0.8αErnst and α = 0.6αErnst. Obtained

results were compared by calculating the RMSE over time between FT1 and F3.
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5.2.4 Phantom Experiments

To validate the results from the simulations of dephasing effects for different α and Gslice
polarity, phantom measurements have been performed. For the phantom, a plastic cylinder

(ø = 12cm and length = 20cm) was filled with agarose gel (5g/L), which was doped with

110µmol/L Magnevist R© to shorten T1.

The phantom was scanned on a 3T MRI system (Magnetom Prisma, Siemens, Erlangen,

Germany) twice by a mGRE sequence with α = 30◦ and α = 90◦ each with alternating

polarity of Gslice. The same sinc-Hanning-windowed excitation pulse (Tpulse = 2ms and

TBP= 2.7) as for the simulations and |Gslice| = 8.29mT/m was used to achieve ∆z = 4mm

for α = 30◦. Other sequence parameters were: field of view (FOV)= 128x128mm2, in-

plane resolution = 1x1mm2, 32 monopolar echoes with bandwidth (BW)= 500Hz/px,

TE1 = 4ms, ∆TE = 5ms, TR = 3s, 25 slices with 0% interslice gap. For B1 mapping, a

Bloch-Siegert sequence with the same resolution was used [190].

The gz map was obtained by using the central difference from the field map ∆B0 to

estimate the gradient in the ith slice:

gz(x, y, zi) = 0.5
∆B0(x, y, zi+1)−∆B0(x, y, zi−1)

∆z
. (5.10)

Single side difference was used for the first (i = 1) and last slice (i = N). ∆B0 was

estimated from a linear fit of the first six echoes of the unwrapped phase (PRELUDE

unwrapping [103]). From the measured data, R∗2 maps were estimated in MATLAB with

the lsqnonlin() function with models S1 to S4.

As indicated in Figure 5.1, when varying Gslice amplitude slightly within the model, it

was found that results could be further improved when using Gslice = 8.5mT/m for all

analyses.
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Figure 5.1: Coronal R∗
2 maps from the phantom measurements (α = 90◦) estimated for a varying

slice-selection gradient Gslice within the model. The most homogeneous map was obtained with
Gslice = 8.50µT/m.
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5.2.5 Influence of TR/T1

Phantom measurements with different TR = [125ms, 250ms, 500ms, 1s, 1.5s, 2s, 3s, 5s]

and α = [30◦, 60◦, 90◦] were carried out with the mGRE sequence to investigate steady-

state effects for modeling. A Bloch-Siegert sequence was used for B1 mapping [190]. In

addition, T1 was measured with 0.5x0.5mm2 in-plane resolution by changing the readout

direction to the slice direction. Results were evaluated by estimating R∗2 with model S4

for each TR and α.

5.2.6 In Vivo R∗2 and MWF experiments

To evaluate the proposed modeling for in vivo application, R∗2 and MWF mapping ex-

periments were performed on the same 3T MRI system with 10 subjects (age range =

26-50 years). The study was approved by the local ethics committee and all subjects

gave written informed consent. In addition, subjects were scanned with an anatomical

magnetization-prepared rapid gradient-echo (MPRAGE) sequence with 1mm3 isotropic

resolution for regional evaluation of R∗2 and MWF maps.

For R∗2 mapping, subjects were scanned twice with a mGRE sequence with alternat-

ing Gslice polarity using a sinc-Hanning-windowed excitation pulse (Tpulse = 2ms and

TBP= 2.7) with α = 85◦ (Ernst angle assuming T1 = 1s). Other sequence parame-

ters were: FOV = 256x208mm2, in-plane resolution= 1x1mm2, |Gslice| = 11.05mT/m

to achieve ∆z = 3mm, 17 monopolar echoes with BW = 500Hz/px, TE1 = 2.87ms,

∆TE = 3.59ms, TR = 2.5s, 30 slices with 0 % interslice gap. The last echo was a naviga-

tor echo at TEnavi = 65.4ms to correct for physiologically induced field variations [100].

Then, for each channel, the nth phase encoding line Sn(kx, TE) was corrected as described

by Wen et al. [235] and the coil images were combined with the method proposed by Luo

et al. [145]. A detailed description about the navigator echo and the coil combination can

be found in Chapter 4.

For B1 mapping, a highly accelerated method based on the Bloch-Siegert shift was used

[136]. The field map for calculating gz was obtained from the difference of the unwrapped

phase of the first and third echo divided by TE difference. From the data, R∗2 maps

were obtained using the models S1, S3, and S4. The difference between the models was

regionally assessed by calculating the mean and standard deviation of R∗2 in all subjects

in GM and global WM masks. GM masks were segmented from the MPRAGE images

with FMRIB software library (FSL) FIRST [171] and the global white matter masks with

SIENAX [201], part of FSL [200]. All masks were affinely registered to mGRE -space with

FSL FMRIB’s linear image registration tool (FLIRT) [102, 104].

For MWF mapping, all subjects were scanned with a slightly adapted mGRE sequence to

account for the fast decaying myelin water component. Short echo spacing (∆TE = 2.2ms)

was achieved with a bipolar readout gradient, which was inverted in a second acquisition

to compensate for phase errors between even and odd echoes. Other sequence param-

eters were: sinc-Hanning-windowed excitation pulse with Tpulse = 1ms and TBP= 2,
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α = 85◦, Gslice = 14.15mT/m, FOV = 255x105mm2, in-plane resolution = 1.14x1.14mm2,

∆z = 4mm, 27 bipolar echoes BW = 500Hz/Px, TE1 = 2.37ms, ∆TE = 2.2ms,

TR = 2s, TEnavi = 63.8ms, 25 interleaved slices with 0% interslice gap, total scan time

12 minutes. Again, a highly accelerated B1 map was acquired [136].

After correction of the data with the navigator echoes, the two mGRE images were regis-

tered using FSL FLIRT [104] before averaging. MWF estimation was based on a multi-

exponential T ∗2 relaxation times model [237] with M = 200 water components:

Stissue =
M∑
j=1

sj exp

(
−TE
T ∗2,j

)
. (5.11)

Evaluation of data was performed by estimating MWF maps using models S1, S3 and

S4 with the NNLS algorithm of the MERA toolbox [53] and a cut-off for myelin water

T ∗2,my < 25ms [135]. For S3 and S4, the measured signal S was corrected with F3 and F4,

respectively, before parameter estimation.

Regional evaluation of MWF maps was performed in WM tracts with the JHU WM atlas

[155]. The atlas was nonlinearly registered with FSL FNIRT to the MPRAGE images and

transformed to the mGRE space using FSL FLIRT [102, 104]. Before evaluation, masks

were manually checked and adjusted with ITK-SNAP [257].

In a single scan session, eight mGRE data sets were acquired from one subject (male, age

= 29) using four different excitation pulses with α = 30◦ and α = 85◦ for each pulse.

The first pulse was a 2ms-long Gaussian-pulse with σ = 280µs (B1(t) = e−
t

2σ ) and

the other three were sinc-Hanning-windowed pulses with different TBP= [2, 2.7, 8] and

Tpulse = [1ms, 2ms, 4ms]. Gslice = [10.56, 18.87, 11.05, 15.65]mT/m was estimated with

the Bloch solver for ∆z = 3mm and α = 30◦. Other sequence parameters, as well as B1

mapping, were as described for in vivo R∗2 mapping. The differences between the pulses

were assessed by estimating R∗2 maps with S4.

5.3 Results

5.3.1 Simulations

Figure 5.2 shows simulation results for sinc-Hanning-windowed excitation pulse with posi-

tive and negative Gslice polarity for α = 30◦, and α = 90◦. It reveals that the polarity has

no influence on |Mxy(z)| of the slice profile (Figure 5.2A-B), whereas ϕxy(z) is inverted

when flipping polarity (Figure 5.2C-D). Consequently, F3 depends on the polarity of Gslice
(Figure 5.2E-F), an effect which is stronger pronounced for α = 90◦.

The sensitivities of the model parameters ϕxy(z), B
+
1 , λ and TR/T1 are illustrated in

Figure 5.3. When neglecting ϕxy(z) in Figure 5.3A, the RMSE substantially increases

for α > 40◦ with larger RMSE for negative Gslice. For α = 90◦, the RMSE is 5.5% for

negative polarity and 4.5% for positive polarity, respectively.

The sensitivity to B+
1 variations in Figure 5.3B strongly depends on the nominal flip angle
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α. For α = 30◦, the RMSE was below 0.5% for all simulated values of ξ (αeffective = αξ)

with a moderate increase for α = 60◦ to 1% for ξ = 1.3. With 2.9% the RMSE was three

times higher for α = 90◦. The influence of λ on the signal is relatively small compared

with B+
1 and ϕxy(z) with an RMSE of 0.8% for a strong gz with 500 µT/m and minimal

dependency on α (Figure 5.3C).

The simulated error due to neglecting T1 for different TR/T1 in Figure 5.3D shows an ex-

ponential decrease of the RMSE with increasing TR/T1 for all simulated flip angles. For

all TR/T1 ratios, the highest RMSE was estimated when using the Ernst angle αErnst and

declines non-linearly for 0.8αErnst and 0.6αErnst. For example, for TR/T1 = 1 the RMSE

decreases from 2.8% to 1.8% to 1.2% for all simulated flip angles while for TR/T1 = 2 the

RMSE reduces from 1.2% to 0.8% to 0.5%.

When comparing the simulated errors by neglecting ϕxy in Figure 5.3A with T1 effects in

Figure 5.3D, the RMSE of ϕxy becomes dominant with increasing TR/T1 ratio. Given

that TR/T1 > 2, which results in αErnst > 82◦, then the RMSE is smaller than 1.2%,

whereas the RMSE due to neglecting ϕxy is at least higher than 3.3% depending on Gslice
polarity.

Figure 5.2: Simulation results for magnitude |Mxy| (A-B) and phase ϕxy (C-D) of the slice
profile, and the resulting dephasing F3 (E-F) with a macroscopic field gradient gz = 100µT/m for
a sinc-Hanning-windowed excitation pulse (pulse duration Tpulse = 2ms, TBP= 2.7). For each α
(top α = 30◦, bottom α = 90◦), simulations were performed with positive (red dotted line) and
negative (solid blue line) Gslice polarity. There is no difference in the magnitude (A-B) but the
mirrored phase for α = 90◦ (D) causes different F3 (F).
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Figure 5.3: Sensitivity analysis of the numerical model parameters. (A) compares the effect of
including phase in F4 versus the magnitude model F2 for positive and negative Gslice polarity and
gz = 100µT/m. Effects of B+

1 variations on F4 are shown in (B) with a macroscopic field gradient
gz = 100µT/m and the influence of gz on the slice encoding described with λ are illustrated in (C).
In (D), the RMSE for neglecting T1 for different TR/T1 ratios is plotted assuming gz = 100µT/m.
For each TR/T1, the RMSE was estimated between the F4 and FT1

for αErnst, 0.8αErnst and
0.6αErnst.

5.3.2 Phantom Experiments

R∗2 values estimated with the monoexponential model S1 are plotted as a function of gz for

α = 30◦ and α = 90◦ with positive and negative Gslice polarity in Figure 5.4. R∗2 increases

proportional with gz for α = 30◦ (Figure 5.4A) with up to eight times higher R∗2 values for

gz = 150µT/m than for gz = 0µT/m. For α = 30◦, negligibly small differences between the

polarity of Gslice and the sign of gz were found, whereas for α = 90◦ (Figure 5.4B) positive

and negative gz yielded different R∗2 values and a dependency on the polarity of Gslice.

Moreover, Figure 5.4 shows the normalized averaged signal decay for |gz| = 100µT/m

plotted with positive and negative gz, explaining the difference in estimated R∗2 values.

For α = 90◦ with positive Gslice and gz > 0 (blue line), the signal decays faster than for

gz < 0 (red) and vice versa when switching Gslice polarity.

Figure 5.5 compares R∗2 maps obtained from fits using models S2, S3, and S4 for α = 30◦

(Figure 5.5A) and α = 90◦ (Figure 5.5B), each with positive and negative Gslice polarity.

In addition, the gz-map and B1 map are illustrated in Figure 5.5C. While results for

α = 30◦ are comparable for all models, considerable differences for α = 90◦ between the

models and Gslice polarity were found. When using only the magnitude |Mxy| in model S2
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to estimate R∗2 for α = 90◦, it was not possible to recover R∗2 without the influence of gz.

R∗2 values for gz > 0 were overestimated for positive Gslice and underestimated for gz < 0,

and switching to negative Gslice polarity inverted the results. Extending the model S2

by adding ϕxy in S3 yielded better maps, which are less influenced by the Gslice polarity.

Additionally, including B+
1 and λ in S4 substantially improved R∗2 maps, with minimal

differences between Gslice polarities. Further, estimated R∗2 maps using S4 with α = 90◦

are comparable with maps estimated from α = 30◦ for both Gslice polarities.

Figure 5.6 illustrates the effects of neglecting T1 for signal modeling. Estimated R∗2 maps

with S4 (Figure 5.6A) indicate an overestimation of R∗2, depending on TR and α in the

presence of gz (Figure 5.6B). For α = 30◦, increased R∗2 values are observable only up to a

TR of 500 ms while for α = 90◦ these effects extend up to a TR of 1.5s. These TR values

correspond to a TR/T1 ratio of 0.67 and 2.01 for the estimated T1 = 740ms. The origin

for the R∗2 overestimation is shown in (Figure 5.6C), where the averaged measured signal

along the slice profile is plotted. Depending on α and TR, the steady-state solution changes

causing a modeling error in the presence of gz. Between different TRs for α = 30◦, the

profiles show less variations compared with α = 90◦, leading to different signal dephasing

for the same gz. Besides T1 effects, for TR > 2s, SNR benefits can be observed for maps

acquired with α = 90◦ compared with α = 30◦.

Figure 5.4: Comparison of R∗
2 values estimated from the phantom experiments with the mono-

exponential model S1 are plotted as function of gz for α = 30◦ (A) and α = 90◦ (B) with positive
and negative slice-selection gradient Gslice. Additionally, the averaged normalized signal decay
is plotted for |gz| = 100µT/m. The dotted red line represents a positive gz and the solid blue
line a negative gz. For α = 30◦, no relevant differences between the polarity of Gslice and gz are
observed, whereas for α = 90◦, a flipped Gslice polarity substantially affects R∗

2.
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Figure 5.5: Coronal and axial slices of estimated R∗
2 maps from the phantom measurements for

different signal models (S2-S4). Although all correction models yield relatively comparable R∗
2

values for α = 30◦ (A), the high flip angle results for α = 90◦ (B) highlight the effect of B+
1 and λ

correction. Full modeling with S4 also eliminates the influence of the polarity of the slice-selection
gradient Gslice at α = 90◦. The corresponding gz maps and B1 maps are shown in (C).
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Figure 5.6: Experimental evaluation of TR/T1 dependency for R∗
2 modeling in phantom mea-

surements. Coronal R∗
2 maps were estimated using S4 for different TR and α (A). The minimum

TR required for avoiding T1 effects increases with the magnitude of gz (B) and α. T1 = 740±86ms
was estimated with an inversion recovery sequence. In addition, the measured signal along the slice
for each α and TR is plotted (C) showing the different steady-state solutions.
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5.3.3 In Vivo Experiments

In-vivo results of R∗2 maps obtained with model S1 and S4 are illustrated in Figure 5.7

for both Gslice polarities. When comparing S1 (Figure 5.7A-B) with S4 (Figure 5.7D-E),

much higher R∗2 values are observed in maps using S1 compared with S4. In addition, the

difference map between positive and negative Gslice polarity for each model reveals strong

variations of R∗2 values with up to 10s−1 for S1 in areas with strong gz (Figure 5.7C). In

contrast, maps estimated with S4 substantially suppressed the impact of Gslice polarity

with difference values below 1 s−1 (Figure 5.7F).

In Table 5.1 the regional evaluation of R∗2 values with the corresponding mean |gz| across all

subjects is presented. Compared with the other models, highest R∗2 values were obtained

with S1 in all anatomical regions. In addition, the difference between Gslice polarities

increased with the mean |gz| value in each region for S1. For example, in the caudate

nucleus, where the smallest |gz| was observed with 20µT/m, the difference between polar-

ities was below 0.1s−1, whereas in the brainstem it was 7.46s−1 at a mean |gz| of 89µT/m.

R∗2 values generally decreased when using S2, but the difference between polarities was

slightly increasing compared with S1. Applying models S3 and S4 reduced the discrepancy

between Gslice polarities to a maximum of 2.01s−1 and 1.25s−1 in the brainstem. In all

other regions, the difference was much smaller with values below 0.8s−1. Between models

S3 and S4, rather small changes could be observed generally.

The difference between R∗2 estimation with S3 and S4 is shown in Figure 5.8, pointing

out the effect of modeling B+
1 and λ in S4. When visually comparing the difference maps

in Figure 5.8A and Figure 5.8B, a strong correspondence between the magnitude of gz
(Figure 5.8C) and B+

1 (Figure 5.8D) can be observed for both Gslice polarities.

The R∗2 maps from data acquired with four different excitation pulses and two different

flip angles are shown in Figure 5.9. Visually, only minor differences between all maps are

observable. Higher SNR can be observed in maps with α = 85◦ compared with α = 30◦.

Mean regional R∗2 values were in good agreement after applying models S3 and S4 (Table

5.1). For example, in global WM , the largest standard deviation of R∗2 between the ac-

quisitions was found for S1 with 1.59s−1, due to the different pulses and flip angles. By

using S2, it decreased to 0.82s−1 and for S3 and S4, the estimated values were 0.19s−1

and 0.2s−1, respectively.

Figure 5.10 shows representative slices of MWF maps from five subjects obtained with

models S1, S3, and S4. It shows that with S1, in areas with strong gz, such as in the

frontal and temporal lobe, the MWF estimation was not feasible because of the fast signal

decay, whereas the proposed approaches allowed a reconstruction in these areas. Between

maps with models S3 and S4, no considerable differences were found indicating that B+
1

and λ had a negligible small influence.

As shown in Figure 5.10, the MWF in the genu of the corpus callosum is underestimated

with S1 because of gz. Using S3 and S4 enabled us to recover MWF values in these areas

with a median of 12.09 % and 12.66%, respectively. Our MWF results are within the
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range of reported values: For the genu of the corpus callosum, Lee et al. [133] reported

approximately 12% for their postprocessing approach, and Alonso-Ortiz et al. [2] around

16%. Furthermore, in the body of the corpus callosum the proposed models yielded to

an increase of MWF from 3.7% with S1 to 6.65% and 6.67% for S3 and S4, respectively.

Interestingly, this analysis demonstrated that rather small |gz| with around 10µT/m in

the body of the corpus callosum severely effects MWF estimation when using the simple

model S1. Table 5.3 summarizes the median MWF values in all 10 subjects in different

WM regions for models S1, S3, and S4.

Figure 5.7: Comparison of coronal and axial R∗
2 maps obtained from monoexponential model

S1 (A-B) with maps from the proposed numerical model S4 (D-E) for positive and negative slice-
selection gradient Gslice. The difference map between Gslice polarities for each model is illustrated
in (C) and (F). The S1 model shows R∗

2 overestimation and substantial impact of the Gslice polarity
(C), which were mitigated using S4 (F).
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Figure 5.8: Difference between R∗
2 maps estimated with S4 (which includes B+

1 and λ variations)
and S3 for positive (A) and negative slice-selection gradient Gslice (B). Coronal (upper row) and
axial (lower row) views are shown. Additionally, the B1 map (C) and gz map (D) are illustrated.
Depending on Gslice polarity, R∗

2 varies in areas with higher B+
1 and gz variations.
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Figure 5.9: R∗
2 maps estimated with model S4 from mGRE data acquired with four different

excitation pulses (A-D) for α = 30◦ (top row) and α = 85◦ (bottom row). Regional evaluation of
R∗

2 can be found in Table 5.1.
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Figure 5.10: Representative MWF maps from five subjects obtained by using models S1 (A), S3

(B), and S4 (C). The proposed models S3 and S4 allow to recover MWF values in areas strongly
affected by the field gradient gz (e.g., in frontal areas).

Table 5.1: R∗
2 values (s−1) from models S1 to S4 in different brain regions for 10 subjects with

the corresponding |gz| values for positive and negative Gslice. R∗
2 and |gz| values are shown as

mean (standard deviation).

Region Gslice S1 S2 S3 S4 |gz|(µT/m)

Global WM
pos. 26.34 (1.16) 21.11 (0.61) 20.10 (0.58) 19.63 (0.62) 43.06 (8.81)
neg. 23.72 (0.97) 18.17 (0.58) 19.89 (0.54) 20.17 (0.50) 43.68 (8.40)

Caudate Nucleus
pos. 23.36 (1.53) 21.46 (1.47) 21.81 (1.40) 21.82 (1.40) 20.47 (3.57)
neg. 23.41 (1.61) 21.58 (1.32) 21.58 (1.28) 21.52 (1.27) 20.42 (3.22)

Pallidum
pos. 39.83 (2.78) 36.56 (2.58) 35.60 (2.65) 34.85 (2.71) 34.38 (8.75)
neg. 36.86 (2.75) 33.50 (3.08) 35.07 (2.85) 35.61 (2.81) 34.03 (8.73)

Putamen
pos. 29.11 (2.14) 25.78 (1.70) 25.02 (1.76) 24.49 (1.80) 32.69 (5.84)
neg. 26.97 (2.06) 23.52 (2.05) 24.91 (1.90) 25.28 (1.87) 32.90 (5.87)

Thalamus
pos. 25.84 (1.80) 22.34 (0.64) 21.33 (0.62) 20.34 (0.84) 33.65 (8.75)
neg. 22.61 (0.97) 18.80 (1.24) 20.50 (0.87) 21.22 (0.74) 34.41 (8.83)

Brainstem
pos. 35.15 (7.97) 20.34 (2.07) 17.58 (1.77) 15.10 (1.60) 88.61 (35.73)
neg. 27.70 (6.99) 11.21 (1.96) 15.08 (1.53) 16.45 (1.55) 89.90 (34.79)
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Table 5.2: Influence of pulse shape and flip angle for modeling R∗
2. R∗

2 values (s−1) were estimated
with models S1 to S4 from mGRE data acquired with four different pulses and α = 30◦ and α = 85◦.
It shows a flip angle and pulse shape dependency for S1 in all regions. By applying S2, differences
decrease, but R∗

2 values remain larger for α = 85◦ than for α = 30◦. With S3 and S4 the flip angle
dependency can be improved, leading to minimal differences of R∗

2 between the pulses. In S4, B+
1

and λ have a small additional effect on R∗
2 estimation, compared with S3.

Global WM

Pulse α S1 S2 S3 S4

Gauss
30◦ 26.62 (9.00) 19.94 (4.26) 19.85 (4.29) 19.85 (4.28)
85◦ 28.41 (10.07) 21.46 (4.44) 19.80 (4.03) 19.27 (4.26)

sinc-Hanning BWT=2
30◦ 25.46 (8.25) 19.50 (4.07) 19.71 (4.07) 19.69 (4.07)
85◦ 27.33 (9.46) 21.12 (4.64) 20.07 (4.18) 19.59 (4.28)

sinc-hanning BWT=2.7
30◦ 25.28 (8.55) 19.47 (4.03) 19.61 (4.03) 19.61 (4.03)
85◦ 26.94 (8.74) 20.84 (4.19) 19.71 (3.90) 19.26 (4.03)

sinc-Hanning BWT=8
30◦ 23.40 (6.64) 19.46 (3.84) 19.43 (3.85) 19.41 (3.84)
85◦ 24.89 (7.06) 20.83 (4.02) 19.81 (3.76) 19.49 (3.83)

Mean (standrad dev.) 26.04 (1.59) 20.33 (0.82) 19.75 (0.19) 19.52 (0.20)

Caudate Nucelus

Pulse α S1 S2 S3 S4

Gauss 30◦ 25.32 (3.76) 23.13 (3.38) 23.15 (3.36) 23.14 (3.37)
85◦ 25.70 (3.95) 23.42 (3.58) 23.49 (3.18) 23.41 (3.15)

sinc-Hanning TBP=2 30◦ 24.87 (3.32) 22.95 (3.18) 23.07 (3.14) 23.07 (3.14)
85◦ 25.24 (3.90) 23.18 (3.67) 23.42 (3.30) 23.36 (3.27)

sinc-hanning TBP=2.7 30◦ 24.75 (3.41) 22.89 (3.32) 23.00 (3.28) 23.00 (3.28)
85◦ 25.30 (3.72) 23.37 (3.53) 23.53 (3.17) 23.46 (3.15)

sinc-Hanning TBP=8 30◦ 24.14 (2.94) 22.98 (2.89) 23.00 (2.88) 22.99 (2.88)
85◦ 24.38 (3.31) 23.12 (3.42) 23.30 (3.04) 23.28 (3.03)

Mean (standrad dev.) 24.96 (0.52) 23.13 (0.19) 23.24 (0.22) 23.21 (0.19)

Thalamus

Pulse α S1 S2 S3 S4

Gauss 30◦ 26.95 (3.85) 19.70 (4.37) 19.58 (4.40) 19.50 (4.41)
85◦ 29.35 (4.47) 22.31 (4.15) 20.22 (4.33) 18.63 (4.60)

sinc-Hanning TBP=2 30◦ 25.64 (3.61) 19.03 (4.19) 19.29 (4.18) 19.19 (4.19)
85◦ 28.06 (4.16) 21.42 (4.05) 20.00 (4.19) 18.57 (4.42)

sinc-hanning TBP=2.7 30◦ 25.50 (3.63) 19.08 (4.20) 19.24 (4.20) 19.17 (4.20)
85◦ 28.03 (4.19) 21.54 (4.16) 20.02 (4.31) 18.62 (4.53)

sinc-Hanning TBP=8 30◦ 23.17 (3.43) 18.89 (3.96) 18.83 (3.96) 18.75 (3.96)
85◦ 25.51 (3.90) 21.35 (4.13) 19.94 (4.23) 18.91 (4.36)

Mean (standrad dev.) 26.53 (1.96) 20.41 (1.38) 19.64 (0.49) 18.92 (0.34)

Putamen

Pulse α S1 S2 S3 S4

Gauss 30◦ 30.90 (4.84) 25.27 (4.22) 25.19 (4.22) 25.16 (4.22)
85◦ 32.49 (5.51) 26.98 (4.24) 25.44 (3.97) 24.74 (3.91)

sinc-Hanning TBP=2 30◦ 29.98 (4.56) 24.82 (4.08) 25.05 (4.07) 25.01 (4.07)
85◦ 31.85 (5.01) 26.62 (4.06) 25.59 (4.03) 24.94 (4.03)

sinc-hanning TBP=2.7 30◦ 29.71 (4.39) 24.69 (4.04) 24.84 (4.03) 24.81 (4.02)
85◦ 31.39 (5.10) 26.34 (4.10) 25.23 (3.89) 24.61 (3.82)

sinc-Hanning TBP=8 30◦ 27.91 (4.02) 24.55 (3.88) 24.50 (3.87) 24.46 (3.87)
85◦ 29.49 (4.56) 26.21 (4.12) 25.14 (3.90) 24.66 (3.84)

Mean (standrad dev.) 30.46 (1.48) 25.69 (0.96) 25.12 (0.34) 24.80 (0.23)
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Table 5.3: MWF values (%) with models S1, S3, and S4 in different WM regions for 10 subjects.
MWF values are shown as median (IQR). In addition, corresponding |gz| values are listed as mean
(standard deviation).

Region S1 S3 S4 gz(µT/m)

Genu corpus callosum 4.37 (3.93) 12.09 (5.91) 12.66 (5.98) 54.53 (10.84)
Body corpus callosum 3.70 (3.15) 6.65 (1.90) 6.67 (2.00) 9.81 (3.41)
Splenium corpus callosum 14.10 (2.32) 14.23 (2.24) 14.03 (2.06) 4.93 (1.41)
Superior corona radiata 7.06 (2.04) 8.20 (1.72) 8.22 (1.69) 5.28 (1.96)
Posterior corona radiata 7.14 (1.41) 7.34 (1.55) 7.34 (1.53) 3.28 (1.25)
Superior longitudinal fasciculus 8.71 (1.19) 8.94 (0.91) 8.93 (0.92) 4.58 (1.10)
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5.3.3.1 Navigator Echo

Figure 5.11 shows two examples MWF maps reconstructed with and without the phase

of navigator. The phase has substantial influence on the quality of the estimated MWF

maps.
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Figure 5.11: Two examples, (A) and (B), of obtained MWF maps without and with the phase
of the navigator echo.

5.4 Discussion

In this work we have introduced a numerical model for the signal dephasing of 2D mGRE

sequences for arbitrary excitation pulses in the presence of a macroscopic field gradient

gz. In contrast to existing analytical solutions, our model is based on solving the Bloch

equations numerically, which allows to estimate signal dephasing for any given flip angle

α. We have shown that it is indispensable to consider the phase along the slice profile ϕxy
and the polarity of the slice-selection gradient Gslice for describing the signal dephasing

for higher α. In our experiments, the threshold was approximately 60◦, but this may also

vary with the RF pulse shape.

Compared to existing models [2, 11, 39, 59, 97, 129, 178], which include the slice profile and

assume linear varying macroscopic field variations, with the proposed model it is possible

to explain different signal decays for different signs of gz observed when using larger flip

angles. As illustrated in Figure 5.2, this mismatch is explained by the phase variation ϕxy
along the slice profile causing either a faster dephasing or a short period of rephasing fol-

lowed by dephasing. Consequently, depending on the pulse shape and effective flip angle,

the polarity of the gradient Gslice must be included for modeling, as switching polarity

inverts ϕxy and thus signal dephasing.

In addition to the polarity dependency of Gslice, the effects of B+
1 variations and scaling

of the slice profile with λ have been investigated in model S4. However, changes of R∗2
due to B+

1 and λ were relatively small compared with S3 (Table 5.1). Evaluation has been

performed under assumption that with an ideal model the estimated R∗2 map should be
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independent of Gslice polarity. For the models S1 and S2, strong differences between Gslice
polarities were found, primarily due to ϕxy and by using S3 it was substantially reduced.

However, the main challenge for validation of the models was that, in vivo, no ground

truth was available.

Another important aspect is the assumption that TR for a given α is sufficiently long to

avoid T1 influence in the presence of gz. The experimental results in Figure 5.6A are in

accordance with simulation results in Figure 5.3D, where the error decreases with TR/T1

and the minimum TR/T1 required enlarges with α. To gain SNR, it is desirable to use

αErnst, but care should be taken on potential errors due to T1 and B+
1 . By increasing

TR/T1, both αErnst and the overall SNR increase; however, the errors due to B+
1 magni-

fied. For example, as illustrated in Figure 5.3, when TR/T1 = 2 the error when neglecting

T1 is about 1.2% for α = αErnst = 77◦. By comparing errors caused by B+
1 variation,

a deviation of ξ = 1.15 leads to errors in a similar range. Thus, without knowing T1 it

is not possible to separate these effects, but it can be adjusted by the RF pulse shape.

For instance, to estimate R∗2 more accurately, longer RF pulses can be used to obtain a

slice profile closer to the ideal, rectangular shape. This would have the advantage that

signal dephasing is influenced less by B+
1 and TR/T1, but it would lead to stronger ϕxy

variations and zero crossings because of the sinc-shaped signal decay in the presence of gz.

However, for MWF estimation very short pulses are needed, which will be more sensitive

to these factors. Optimization of the RF pulses for specific applications was beyond of

the scope of this work, but different pulses and their effects can be included and studied

with the provided framework.

When comparing different modeling approaches, we can distinguish between models that

fit parameters of F (t) from the signal decay [59, 254] and models that use information from

the pulse and field map to calculate F (t) [11, 97, 178]. Approaches fitting F (t) are more

flexible in terms of model deviations from the ideal slice profile. For example, the sinc

function used in the model approach by Fernandez-Seara and Wehrli [59] is well suited to

model a variety of signal decays observed with different excitation pulses. Similarly, when

modeling the macroscopic field as a quadratic function, the effects of non-ideal slice profile

are inherently compensated for [254]. However, in these models, the parameter estimation

is often challenging because of the multiplication of F (t) with Stissue(t), thereby requiring

the acquisition of many echoes. In contrast, with the analytical solution or our proposed

numerical approach for F (t), only the parameters of the tissue model Stissue need to be

estimated. Thus, if the properties of the RF pulse are available, a detailed description of

F (t) is possible, favoring a closed or numerical solution. To select an appropriate model

for a certain RF pulse and flip angle, the provided framework can be used to evaluate the

expected error of different modeling approaches. If ϕxy might be neglected for a specific

RF pulse and flip angle, then an analytic solution yields a faster solution of F (t).

This work has similar limitations as other related postprocessing approaches [2, 11, 39,

59, 94, 97, 97, 178]. The assumption of a linear varying magnetic field in slice direction

might not hold in some areas with large susceptibility changes, which is especially pro-
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nounced at higher field strengths. However, as we have solved the dephasing along the

slice direction by numerical integration, the model can be easily adapted to describe the

dephasing also for a quadratic varying magnetic field. Furthermore, in-plane dephasing

effects are neglected. In 2D acquisitions the slice thickness is usually much larger than

the in-plane resolution, but this might reduce accuracy in areas where the macroscopic

in-plane field variations are high. A possible solution to account for in-plane dephasing

could be to calculate the VSF in-plane as proposed by Yablonskiy et al. [250] and multiply

the result with F3 or F4, respectively. Given that gz is rather strong and that the signal

dephasing is mainly driven by gz, a reliable parameter estimation is difficult to achieve due

to the fast signal decay. To overcome this issue, for MWF and R∗2 it has been shown that

z-shim gradients between echoes can improve maps by rephasing the signal with appro-

priated compensation gradients [81, 128]. Therefore, future work will focus on extending

our model by including the moment of the z-shim gradients in the modeling to describe

the signal dephasing accordingly for every echo.

In addition to variations of the macroscopic field, variation of the phase offset ϕ0 at TE = 0

could potentially influence signal dephasing. Contributions to ϕ0 in phased array coils can

be divided into receive coil-dependent (B−1 ) and receive coil-independent (e.g., B+
1 phase)

[186]. To reconstruct the navigator corrected raw data, a multi-echo approach was used

to combine the individual coil data [145]. In this approach, for each coil, images from all

echoes are multiplied with the complex conjugate of the first echo, which removes inher-

ently all components of ϕ0 of the coil combined data. The development of the proposed

models pointed out that the use of navigator echoes is highly recommended to compen-

sate for phase errors from physiologically induced B0 fluctuations. As illustrated in Figure

5.11, depending on the subject’s reconstruction of parameter maps, not having the navi-

gator echoes caused similar artifacts, as reported by Nam et al. [161]. If variations of ϕ0

should be included for example a ROEMER [187] or SENSE [179] reconstruction could be

applied.

The scan time of the here proposed applications is about 6 minutes for R∗2 maps and 12

minutes for MWF maps. This is clinical acceptable for whole brain investigations, but

further investigations will also focus on combination with accelerated imaging methods

such as 2D controlled aliasing in volumetric parallel imaging (CAIPIRINHA) [21].

5.5 Conclusion

Proper modeling of the signal dephasing in the presence of gz for larger flip angles requires

the consideration of |Mxy| and ϕxy with correct Gslice polarity. Furthermore, B+
1 and λ

variations can potentially lead to a bias in the estimated model parameters, depending on

the excitation pulse. Consequently, the proposed model allows to minimize effects of gz,

which is highly relevant for accurate R∗2 and MWF mapping of the entire brain based on

2D mGRE .
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6.1 Introduction

The main sequence differences between 2D and 3D acquisitions in MRI are the RF pulse,

which excites a volume instead of slice, and the second phase encoding gradient for en-

coding the volume. There are two basic types of pulses, the non-selective RF excitation

and the slab-selective RF excitation. The slab-selective excitation restricts the excited

volume by applying an RF pulse with a small slice-selection gradient Gslice. The name

slab refers to the excited volume. Slab-selective excitation brings the advantage that the

excited volume is reduced and consequently wrap-around artifacts outside the FOV are

minimized. In contrast to that, non-selective excitation RF pulses excite the whole volume

by applying a short hard-pulse.

In terms of slice thickness, 3D acquisitions allow acquiring much thinner slices compared

with 2D acquisitions. In 2D, the slice-thickness results from the bandwidth of the RF ex-

citation pulse ∆f and the amplitude of the slice selection gradient Gslice (Equation 4.2).

Hence, increasing Gslice gives thinner slices, but this is limited by the gradient system.

Another option is to use longer RF pulses to decrease ∆f . In contrast to 2D, the slice

thickness in 3D acquisitions is given by:

∆z3D =
1

Nphase,2∆kz
(6.1)

Therefore, ∆z3D decreases by increasing the number of phase encoding steps Nphase,2,

or by decreasing the k-space step size ∆kz.

The acquisition time TA results for 2D acquisitions from the number of phase encoding

75
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steps Nphase,1 times the number of slices Nslices and the TR (TA2D = Nphase,1NslicesTR).

In 3D acquisitions, Nslices is replaced by the Nphase,2 (TA3D = Nphase,1Nphase,2TR).

In terms of SNR efficiency, 3D acquisitions are superior to 2D by the factor of
√
N phase,2

if we assume that the same voxel volume and TR is used [14].

However, in 2D measurements, we can increase TR and this allows to acquire a single

k-space line of several slices within TR. If TR is chosen long enough, a k-space can be be

measured for each slice. This acquisition scheme is referred to as multi-slice or interleaved

slice acquisition. Compared with 3D acquisitions with short TR, the longer TR enables

using larger α to increase the signal.

In general, the SNR for 2D and 3D acquisitions is proportional to [14]:

SNR2D ∝ S0,2D(TR2D/T1, α2D)∆x∆y∆z
√
Nphase,1NexTacq ,

SNR3D ∝ S0,3D(TR3D/T1, α3D)∆x∆y∆z
√
Nphase,1Nphase,2NexTacq ,

(6.2)

where ∆x, ∆y, and ∆z are the voxel dimensions in all three spatial directions, Nphase,1

and Nphase,2 the number of phase encoding steps, Tacq the acquisition time, and Nex the

number of averages. Tacq is the time during the readout. S0,2D and S0,3D describe the

steady-state signal for the spoiled GRE sequences, which depend on the ratio TR/T1 and

α. Using the steady-state equation for the 3D and 2D acquisition and assuming equal

voxel size, Nphase1 , Nex, and Tacq, the SNR ratio is given by [14]:

SNR3D

SNR2D
=
S0,3D

S0,2D

√
Nphase,2

=
(1− exp(−TR3D/T1)) sinα3D)(1− exp(−TR2D/T1)) cos2D)

(1− exp(−TR2D/T1)) sinα2D)(1− exp(−TR3D/T1)) cosα3D)

√
Nphase,2 .

(6.3)

Therefore, the SNR ratio between 3D over 2D acquisitions is given by
√
Nphase times

the ratio S0,3D to S0,2D. As TR2D and α2D are usually much larger in an interleaved

slice acquisition, the ratio between the signals is < 1. Thus, the smaller ratio counteracts√
Nphase .

Using the Ernst angle, Johnson et al. showed that often a similar or equal SNR efficiency

can be achieved between 2D and 3D acquisitions [106].

Apart from the basic properties of 2D and 3D spoiled gradient-echo sequences [14, 25],

relatively little attention has been given to the comparison between different signal decays

in the presence of macroscopic field variations. In the case of 2D acquisitions, the signal

decay results from the shape of the slice profile and the variations of the macroscopic field

along the slice [39, 59, 94, 178, 202, 254]. For 3D acquisitions, the signal decay depends

on the macroscopic field variations, the k-space trajectory, potential k-space filters, and

the number of k-space samples. To describe these effects on signal dephasing, Yablonskiy

et al. proposed the VSF [250].

In the following chapter we describe a comparison between 2D and 3D spoiled GRE ac-

quisitions, focusing on signal dephasing and modeling of the signal decay in the presence
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of macroscopic field variations. For signal modeling of the 3D data, we applied the VSF

[250] and for the 2D data we used the signal model developed in this thesis [202]. The

methods were evaluated with phantom and in vivo measurements in terms of R∗2 mapping.

In addition to the advanced signal models, the R∗2 maps were estimated with a monoex-

ponential signal model without incorporating macroscopic field variations.

This study shows that within the same acquisition time similar results can be achieved

with 2D and 3D approaches if an adequate signal model is used.

6.2 Methods

To asses the differences in signal dephasing in the presence of macroscopic field variations

for 2D and 3D acquisitions, phantom and in vivo measurements have been performed.

Except for TR and α, acquisition parameters between 2D and 3D acquisitions were

the same. In the 2D acquisitions, a larger α and longer TR was used because of the

interleaved slice acquisition. Thus, both acquisitions had the same voxel size and

acquisition time, allowing a reasonable comparison between 2D and 3D. To study the

impact of macroscopic field variations on signal dephasing, a monoexponential signal

decay model for R∗2 was used. To account for macroscopic field variations, in the 3D

acquisitions the VSF [250] model and for 2D acquisitions, the signal model of Soellrald

et al. was applied [202].

6.2.1 Phantom Measurements

For the phantom measurements, a homogeneous agar phantom was built. This phan-

tom should ideally have a constant R∗2 in the absence of macroscopic field variations. It

was made of 5g/L agar and, to reduce T1, the liquid agar was doped with 110µmol/L

Magnevist R©before solidification. Imaging was preformed with 3T MR imaging system

(Magnetom Prisma, Siemens, Erlangen, Germany) using an 8-channel knee coil. For the

3D acquisitions, the sequence parameters of the mGRE were: FOV = 128x128x144mm3,

matrix size 128x128x48, slab-selctive excitation with flip angle α = 21◦, TR = 51ms,

BW = 500Hz/pixel, 20 echoes acquired using bipolar acquisition with an echo spacing

∆TE = 2.18ms starting from the first echo time TE1 = 3.5ms and a navigator echo

at TENavi = 48.38ms. For the 2D acquisitions, a slice-selective sinc-Hanning-windowed

RF excitation pulse with a pulse duration Tpulse = 2ms and TBP = 2.7 was used with

α = 60◦. In total, 48 slices with a slice thickness ∆z = 3mm were acquired in an inter-

leaved slice acquisition with a TR of 2430ms. All other parameters were the same as for

the 3D acquisitions.
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6.2.2 In Vivo Measurements

The head of a male subject (30 years) was scanned with a 2D and 3D mGRE sequence.

The sequence parameters for the 3D acquisitions were: FOV = 224x128x144mm3, ma-

trix size 224x128x48, slab-selective excitation with flip angle α = 21◦, TR = 51ms,

BW = 500Hz/pixel, 20 echoes acquired with bipolar acquisition with an echo spacing

∆TE = 2.22ms, TE1 = 2.87ms, and a navigator echo at TENavi = 48.72ms. For the

2D acquisitions, the same slice-selective excitation pulse as for the phantom with α = 60◦

was used. 48 slices with ∆z = 3mm were acquired with an interleaved slice acquisition

using a TR of 2430ms. The acquisition time for both sequences was 7min and 28s. Be-

sides the mGRE sequences, an anatomical MPRAGE scan with a voxel size of 1mm3 was

performed.

6.2.3 Data Processing and Evaluation

Physiologically induced phase fluctuations were first corrected in the raw data using the

navigator echos. Then the individual coil images were combined. Both steps are described

in Section 4.2. Before coil combination, the 3D data was reconstructed in two different

ways. First, the raw data was reconstructed without filtering and second, as proposed by

Yablonskiy et al. [250], a 3D Hanning filter was applied to reduce Gibb’s ringing. In addi-

tion, the in vivo data was reconstructed without the navigator echoes to study the impact

of physiologically induced fluctuations between 2D and 3D acquisitions. Afterwards, for

all acquisitions, the field gradient maps gx, gy, and gz were estimated by calculating the

gradient of field map ∆B0 in all three spatial. To calculate the gradient, the gradient()

function in MATLAB was used, which is based on finite differences. After the phase un-

wrapping using PRELUDE [103], the field map was obtained by fitting a linear equation

to the first 4 echoes of the unwrapped phase.

Then, for the non-filtered and filtered 3D data, the signal dephasing F3D(TE,Nneigh) and

F3D,filt(TE,Nneigh) was estimated for a different number of neighbors Nneigh with the

VSF . For the 2D data, the signal dephasing in the slice-direction F2D was estimated as

described for the signal model F3 in Soellradl et al. [202]. For all three cases, R∗2 maps were

estimated by non-linear fitting the following equations to the the reconstructed signal:

S3D(TE) = S0 exp(−R∗2 TE)F3D(TE,Nneigh), (6.4)

S3D,filt(TE) = S0 exp(−R∗2 TE)F3D,filt(TE,Nneigh), (6.5)

S2D(TE) = S0 exp(−R∗2 TE)F2D(TE), (6.6)

where S0 describes the signal at TE = 0. For each acquisition, the estimated R∗2 values

from the different acquisitions were evaluated within global WM and GM masks. The
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subcortical GM masks were obtained from the MPRAGE images using FSL FIRST [171]

and global WM masks were derived from the MPRAGE images with SIENAX [201] which

is part of FSL [200]. Afterwards, the masks were affinely registered to the mGRE images

using FSL FIRST [171].

6.3 Results

6.3.1 Phantom Measurements

Figure 6.1 compares the measured normalized signal decay with the estimated signal de-

phasing (Figure 6.1A). For the 3D, the 3D filtered, and the 2D data the signal was averaged

in two ROIs with different field gradient values (Figure 6.1B). The signal decay shows vari-

ations depending on the acquisition and magnitude of the field gradients.

The 2D and the filtered 3D data show both a smooth decay, but the filtered data decays

much faster than the 2D data. The signal of the non-filtered 3D data decays relatively slow

and, depending on the field gradient, the signal decays faster after a certain TE. Further,

the signal of the non-filtered 3D shows a signal overshoot at approximately TE = 20ms

caused by Gibb’s ringing. By applying a Hanning window, the overshoot vanishes, and the

signal is smoothed. The filtering further results in a faster signal decay. When comparing

the 2D signal with the non-filtered 3D signal, the signal decays smoother but it reaches

roughly the same signal amplitude at the last echo (ROI 1). The filtered 3D signal decays

faster than the non-filtered 3D and the 2D data approximately for TE > 10ms.

Besides the signal decay, Figure 6.1A illustrates the averaged estimated dephasing func-

tion for the non-filtered 3D (F3D), filtered 3D (F3D,filt), and the 2D data (F2D). For the

3D data, the plots show additionally the influence of Nneigh. The largest difference in the

curves is given for the non-filtered data, whereas for the filtered data no visual difference

can be observed.

Figure 6.2 shows obtained R∗2 maps with Smono for the three investigated cases. Similar

to the different signal decays in Figure 6.1, different R∗2 maps are observable. For the

non-filtered 3D data (Figure 6.2A), local variations are present because of Gibb’s ringing.

The filter removes these variations in the filtered R∗2 maps, but the R∗2 values are much

more affected by the field gradients. For example, in slice 16 the 3D filtered data shows

R∗2 values about a factor five larger than for the non-filtered case. When comparing the

3D non-filtered data with the 2D data, a similar overestimation in R∗2 is observed. The

reference R∗2 value of the phantom was 6.4s−1, which was estimated in a ROI in the center

of the phantom (field gradients are approximately 0).

Figure 6.3 illustrates the estimated R∗2 when including the macroscopic field variations

in the signal models. In contrast to a conventional monoexponential signal model, the

overestimation of R∗2 (Figure 6.2) can be reduced for all analyzed cases. However, de-

pending on the acquisition type, with and without filtering, and Nneigh different R∗2 maps

are obtained. To better characterize these differences, Figure 6.4 plots the median of R∗2
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against the field gradient gz in averaged intervals of 20µT/m. For the non-filtered 3D,

R∗2 depends on Nneigh with the most homogeneous map obtained with Nneigh = [5, 5, 5].

Apart from errors caused by the field gradients, in all maps Gibb’s ringing related artifacts

can be observed. In contrast to that, in the filtered 3D R∗2 maps the ringing is removed.

Additionally, the results of the filtered 3D data indicate only a minor dependency on the

number of Nneigh. From Nneigh = [1, 1, 1] to Nneigh = [2, 2, 2], an improvement was found

in the R∗2 maps (e.g. 6.3B slice 36) whereas from Nneigh = [2, 2, 2] to Nneigh = [5, 5, 5]

no visual difference can be observed. Thus, Nneigh = [2, 2, 2] seems to be sufficient to

describe the signal dephasing of the filtered data. The visual assessment of R∗2 maps

and R∗2 as a function of gz further reveals that in a large range of field gradient values

(gz ≈ ±100µT/m) the original R∗2 value can be recovered (6.4−1). When comparing 2D

with the 3D R∗2 maps, a good performance for negative values up −200µT/m was found,

but an underestimation of R2 for increasing positive gz is visible (Figure 6.4).
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Figure 6.1: Comparison of the measured normalized signal decay magnorm (red line with squares)
with the estimated signal dephasing for non-filtered 3D F3D, filtered 3D F3D,filt, and 2D data F2D.
(A) shows the averaged normalized signal decay and the estimated signal dephasing function from
two ROIs. For F3D and F3D,filt, the dephasing functions were estimated for a different number of
neighbors Nneigh. (B) shows a coronal slice of the field gradient maps gx, gy, and gz and the two
ROIs for the evaluation.
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Figure 6.2: R∗
2 maps estimated from the non-filtered 3D, filtered 3D, and 2D data using the

monoexponential signal model Smono in the homogeneous phantom. Depending on the acquisition,
R∗

2 is differently overestimated.
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Figure 6.3: Estimated R∗
2 maps from the phantom measurements with the signal models that

account for macroscopic field gradients in the non-filtered 3D (A), filtered 3D (B), and 2D data
(C). For the both 3D data sets, additional results are shown with different numbers of neighbors
Nneigh for estimating the VSF .
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g g g

Figure 6.4: R∗
2 as a function of the field gradient gz from the non-filtered 3D, filtered 3D, and

2D data in the phantom. For the 3D data, different numbers of neighbors Nneigh were used for
calculation of the VSF . Values were averaged in an interval of 20µT/m from the slice number 5 to
43.
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6.3.2 In Vivo Measurements

Figure 6.5 shows R∗2 maps obtained by fitting the non-filtered 3D (Figure 6.5A), the

filtered 3D (Figure 6.5B), and the 2D data (Figure 6.5A) to the monoexponential signal

model Smono. Additionally, Figure 6.6 illustrates the field gradient map gz in z-direction.

Depending on the data and field gradients strength, R∗2 is differently overestimated. The

weakest influence of the field gradients on R∗2 shows the non-filtered 3D data, followed by

the 2D data with a slightly larger sensitivity. Compared with the non-filtered 3D and the

2D data, by far the strongest impact of the field gradients on R∗2 is given for the filtered

3D data. Even in relatively homogeneous slices with small field gradients, such as slice

37, the filtering leads to a much larger R∗2.

The results with the VSF model for the 3D data are illustrated in Figure 6.7 for the non-

filtered and in Figure 6.8 for the filtered data. In both Figures, the R∗2 maps in (A) were

obtained with Smono and these are compared in (B-D) with the R∗2 maps estimated with

different numbers of neighbors Nneigh. The Figures show that applying the VSF yields

improved R∗2 maps. In contrast to the filtered data, a dependency on Nneigh can be seen

for the non-filtered data as indicated by the red arrows in Figure 6.7. A visual comparison

of the maps shows sharper edges and more details in the non-filtered maps.

Figure 6.9 compares R∗2 maps estimated from the non-filtered 3D data (Figure 6.9A)

with the filtered (Figure 6.9B) and the 2D data (Figure 6.9C). As indicated by the red

arrows Figure 6.9, the filtered R∗2 tends to overestimate R∗2 more than the non-filtered

data and the non-filtered data underestimates R∗2 in areas with strong field gradients. The

2D R∗2 maps are similar to the non-filtered 3D R∗2 maps, but with a tendency to an R∗2
underestimation.

Table 6.1 lists quantitative R∗2 values of the different approaches. The results are in

accordance with the visual observations. When comparing the R∗2 values estimated with

Smono and the results from VSF of the non-filtered 3D, only minor difference in R∗2 can be

observed for different Nneigh. By applying the 3D Hanning filter, the R∗2 values obtained

with Smono are are nearly doubled. For instance, in the brainstem R∗2 is 18.68s−1 for the

non-filtered 3D and 39.81s−1 for the filtered 3D data. For the 2D data R∗2 (with Smono)

are slightly higher than the non-filtered 3D data, but much smaller than the filtered 3D

data. When applying the VSF to the filtered data, the overestimation of R∗2 caused by the

filtering and the field gradients decreases. Nonetheless, the values in all evaluated regions

are elevated compared to the non-filtered 3D data. When comparing the effect of Nneigh,

it shows that for the non-filtered data Nneigh > [2, 2, 2] has an impact on R∗2, whereas for

the non-filtered data only minor changes are observable. Generally, the 2D median values

estimated with S2D are in a similar range to the values from the 3D filtered data with

Nneigh = [5, 5, 5]. Interestingly, the interquartile range (IQR) is smaller in all evaluated

regions with S2D than for the non-filtered 3D data, suggesting lower R∗2 variations in 2D

data set.
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Table 6.1: Regional R∗
2 (s−1) evaluation (represented as median (IQR)) of non-filtered 3D, the

filtered 3D, and the 2D data in one subject.

data Global WM Global GM Cudate Nucelus Pallidum Putamen Thalamus Hippocampus Brainstem

3D

Smono 19,89 (3,47) 17,91 (5,86) 20,59 (3,60) 33,73 (8,76) 23,66 (4,45) 20,17 (4,38) 19,12 (9,80) 18,68 (4,19)
Nneigh = [1, 1, 1] 19,48 (3,39) 16,16 (5,77) 20,33 (4,07) 32,16 (9,31) 23,17 (4,43) 19,71 (4,54) 11,24 (8,35) 16,49 (5,51)
Nneigh = [2, 2, 2] 19,99 (3,46) 17,08 (5,42) 20,07 (3,91) 32,85 (8,43) 23,92 (4,65) 20,73 (4,22) 15,34 (6,57) 19,04 (5,28)
Nneigh = [5, 5, 5] 19,40 (3,30) 16,44 (5,17) 19,88 (3,86) 32,10 (8,34) 23,11 (4,61) 19,85 (4,19) 14,69 (5,85) 17,73 (4,94)

3D filtered

Smono 30,42 (11,71) 31,31 (17,19) 24,49 (5,46) 48,36 (7,84) 35,51 (9,71) 33,74 (6,20) 53,52 (23,05) 39,81 (8,78)
Nneigh = [1, 1, 1] 21,40 (3,13) 19,28 (4,96) 21,39 (3,02) 34,45 (6,83) 24,97 (3,81) 22,20 (3,78) 17,35 (4,89) 20,98 (4,36)
Nneigh = [2, 2, 2] 20,62 (2,85) 18,41 (4,88) 21,14 (2,91) 33,36 (7,15) 24,08 (3,52) 21,19 (3,81) 14,80 (5,83) 19,24 (4,26)
Nneigh = [5, 5, 5] 20,77 (2,88) 18,56 (4,87) 21,19 (2,92) 33,56 (7,17) 24,27 (3,54) 21,39 (3,80) 15,15 (5,81) 19,53 (4,26)

2D
Smono 22,87 (4,78) 21,33 (7,49) 21,66 (3,02) 37,39 (5,37) 27,00 (5,13) 24,36 (3,78) 28,86 (11,91) 24,85 (5,42)
S2D 19,27 (3,24) 16,74 (4,52) 20,36 (2,70) 32,78 (6,19) 23,03 (3,85) 19,92 (3,52) 14,97 (4,87) 17,81 (15,57)
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6.3.2.1 Influence of Navigator Echo

Figure 6.10 demonstrates the effect of the acquired navigator phase on the resulting R∗2
maps for the non-filtered 3D (Figure 6.10A), the filtered 3D (Figure 6.10B), and the 2D

data (Figure 6.10C). Independent of the acquisition, in all three R∗2 maps similar R∗2
variations are observable if the phase of the navigator is not incorporated into the model

(left). When including the phase in the image reconstruction, the resulting R∗2 maps

(middle) clearly improve. The difference images (right) on the right show R∗2 variations of

about ±5s−1.
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Figure 6.10: Comparison of R∗
2 maps estimated without and with phase correction using the

navigator echo for the non-filtered 3D data (A), the filtered 3D data (B), and the 2D data (C).
For all three cases, the phase correction improves the quantification of the R∗

2 maps.

6.4 Discussion

In this chapter, the difference in signal dephasing in the presence of macroscopic field

variations between 2D and 3D spoiled GRE sequences was investigated. To model the

signal dephasing of the 3D data, the VSF was used [250] and for 2D the signal model

developed in this thesis was applied [202]. Compared with the 3D acquisitions, the

results show that a regional similar IQR of R∗2 can be obtained with 2D acquisitions in

all regions except in the brainstem, using a proper signal model in combination with an

appropriate choice of TR and α. In addition, the results for the filtered 3D data show
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slightly elevated R∗2 values compared with the 2D data and suggests a small bias in the

modeling.

The similarity between the estimated R∗2 maps from 2D and 3D data can be explained by

two essential things: first, the data-sets have a similar SNR and second, both approaches

use an adequate signal model that include macroscopic field variations.

6.4.1 SNR

By increasing the TR2D of 2D acquisitions and the flip angle, the SNR benefit of 3D

acquisitions over 2D acquisitions can be decreased. For example, assuming WM tissue

with a T1 = 800ms [231] and the given sequence parameters for the in vivo measurements,

the ratio in Equation 6.3 becomes:

SNR3D

SNR2D
=
S0,3D

S0,2D

√
Nphase,2

=
0.19

0.96

√
48 = 1.46

(6.7)

Given these results, the SNR benefit for the 3D acquisition would be expected to

be 1.46. For GM signal (T1 = 1300ms [231]), the benefit becomes even smaller with a

ratio of 1.17. Thus, depending on the tissue type, 3D acquisitions is only slightly more

efficient. In the 3D acquisitions the volume was excited with a slab-selective pulse, which

results in flip angle variation through the excited volume. Hence, the comparison is only

valid in the central part of the slab while for 2D acquisitions every slice is excited with

the same flip angle (except B+
1 field variations).

The difference between 2D and 3D SNR could be further decreased by using larger α for

the 2D in vivo measurements because α is smaller than the Ernst angle αErnst. However,

it would increase the sensitivity for potential errors in R∗2 caused by B+
1 and T1. Section

6.4.4 discusses this issue in detail.

6.4.2 Signal Dephasing and Modeling

Besides the SNR as a prerequirement, the next important aspect is the influence of

macroscopic field gradients on the signal dephasing. In 2D acquisitions, the signal

dephasing caused by a macroscopic field gradient gz is given by integration of the phase

dispersion due to the field gradient along complex transverse magnetization (neglecting

in-plane dephasing) until the TE . Assuming TR >> T1 and a small α, the shape of the

signal decay is given by the shape of the RF excitation pulse for a constant gz along the

slice [178]. Thus, a sinc-Hanning-windowed pulse results in a sinc-Hanning-windowed

shaped signal decay. In 3D acquisitions, the shape of the signal decay depends on the

k-space trajectory, the number of sampling points, and potential k-space filters such as
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the Hanning window, which was used in this chapter for the 3D filtered data. The VSF

[250] includes all these effects and was validated in this chapter.

When comparing the non-filtered 3D data with the 2D data, two major observations

can be seen that led to deviation from the simply monoexponential signal model

Smono. First, Gibb’s ringing causes artifacts and leads to bias in R∗2, which is most

pronounced in the phantom measurements in the slice-direction (Figure 6.2). Gibb’s

ringing is a phenomena that can be explained by the effects of discrete sampling and

truncation of the ideal continuous infinite k-space [25]. The amplitude of the ringing

itself is independent of the number of k-space samples, but the oscillations increase their

frequency for a fixed FOV [25]. The signal model of the VSF accounts for the ringing,

which can be seen in the phantom (Figure 6.1). However, estimating R∗2 with the model

S3D results in a remaining bias associated with Gibb’s ringing (Figure 6.3A). A possible

explanation might be that the number of neighbors of a voxel Nneigh, used for estimating

the VSF , were too small to properly represent the ringing. In the original publication

eight neighbors were used for calculating the VSF [250]. Therefore, a larger number of

Nneigh might improve the results of the non-filtered data. However, this comes at the

cost of extremely large computation time. For example, for the in vivo data set the

calculation for the VSF with Nneigh = [5, 5, 5] took about 12h with 12 central processing

unit (CPU) kernels. To reduce the Gibb’s ringing and the required numbers of neighbors,

a Hanning filter has been suggested by the authors [250]. This filter was incorporated

into the calculations of the VSF . The results are in accordance with [250] and show that

Gibb’s ringing is reduced and that less numbers of neighbors Nneigh are required if a

Hanning filter is used. The phantom and in vivo results suggest that Nneigh = [2, 2, 2]

are sufficient to estimate the VSF , whereas for the non-filtered data differences between

Nneigh = [2, 2, 2] and Nneigh = [5, 5, 5] are clearly visible. Consequently, the computation

time for calculating the VSF can be reduced because a smaller Nneigh is required.

However, an obvious disadvantage of the Hanning filter is that it smooths the point

spread function (PSF) leading to blurring in the image. Hence, fine structural details

might be lost. Further, the filtering has a large impact on the signal decay of the GRE

signal in the presence of macroscopic field variations. Because of the convolution of

the broader PSF with the ideal image, the overall signal decay is increased, leading to

a stronger sensitivity of the signal to field gradients. Therefore, when fitting R∗2 with

Smono, a much larger dependency on the field gradients can be observed. The results can

be improved by accounting for the filtering directly in the VSF . However, a small bias in

estimated R∗2 values appears compared with the non-filtered and 2D data (Table 6.1).

Further investigations have to be performed to assess this difference.
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6.4.3 Quantitative Interpretation of R∗2 Values

Besides the small bias in the filtered 3D data, a very good agreement between the in vivo

estimated R∗2 values of the 3D non-filtered data and the 2D data was found (Table 6.1).

In all evaluated gray matter regions (cudate nucleus, pallidum, putamen, and thalamus)

the R∗2 values lie within the 95% interval a comparable large age study [197]. On the

other hand, for the 3D filtered data all these regions lie above the confidence interval

except for the pallidum. For example, in the thalamus Sedlacik et al. reported a R∗2 of

19.9 (18.8–21.0)s−1. In contrast to that, a median value of 21.19s−1 was obtained with

the non-filtered 3D data and of 19.85s−1 for the 2D data. In general, the non-filtered

3D data and the 2D data show a good agreement. Another interesting finding is that in

the investigated regions only minor differences between R∗2 values with Smono and S3D

were found for the 3D data. This can be explained by the sensitivity of S3D to field

gradients. Figure 6.4 shows that for S3D, R∗2 is over a wide range of gz values not affected

(approximately |gz| < 80µ/T ). After that, for larger gz, R
∗
2 abruptly increases.

6.4.4 Limitations

The results further show that the signal modeling in the presence of macroscopic field

gradients for 2D and 3D have common limitations. Both methods require accurate field

gradient maps for estimating the VSF for 3D acquisitions or the signal dephasing along

the slice profile for 2D acquisitions. Therefore, any error in the field gradient maps,

for example caused by noise or missing field map values close to air/tissue interfaces,

propagates into the F3D, F3D,filt, or F2D. Another common problem of conventional

mGRE sequences is that in areas with strong gradients the signal decays too fast to

allow a reliable parameter estimation. This can be seen in in vivo R∗2 maps in Figure 6.9.

Here, with none of the approaches an accurate R∗2 estimation close to the nasal cavities

could be achieved. A possible solution in these areas would be to decrease the voxel

size in the slice-direction to reduce signal dephasing. Apart from conventional mGRE

sequences, z-shimming approaches, which compensate the effect of the field gradients by

applying compensation moments in between the acquisitions could solve this issue. An

overview of different approaches can be found in section 3.4.

In terms of modeling, the VSF is more complex to estimate because of the convolutions

performed for a single voxel. In contrast to that, 2D aquisitions require only the complex

transverse magnetization along the slice-direction. Another advantage of 2D acquisitions

is that for small flip angles an analytic solution is given by the RF excitation pulse

envelope [178]. A potential drawback in 2D acquisitions are B+
1 effects and changes

of transverse magnetization because of T1 that might lead to bias in R∗2 [202]. If the

performance in terms of SNR should be similar to 3D, S0,2D needs to be increased for

a given T1 (Equation 6.3). The optimal signal strength is given by the Ernst angle

αErnst. However, this has the drawback that variations caused by B+
1 become larger.

Depending on the RF excitation pulse, B+
1 leads to a bias in F2D if not accounted for
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[202]. Similarly, if the assumption TR >> T1 is not fulfilled the transverse magnetization

along the slice-direction changes according to the steady-state equation [58] that might

influence F2D [202]. To decrease these effects, α = 60◦ and TR = 2.45s have been

used for the in vivo measurement, but with the downside of a smaller S0,2D because

α < αErnst for WM tissue (T1 = 800ms, αErnst = 87◦).

In 3D acquisitions, the problems associated with B+
1 and T1 in terms signal dephasing

are negligible. In 3D the volume is excited with a slab-selective RF excitation pulse

or with a short hard-pulse and the whole volume is encoded with two phase encoding

gradients and one readout gradient. The flip angle profile along the excited volume

changes because of B+
1 and thus only the signal intensity varies along the profile.

Similarly, T1 might lead to a change of the signal along the profile depending on TR/T1

and α. However, the type of excitation pulse has an impact on the SNR and therefore on

the quality of the estimated R∗2 maps. In these experiments the same FOV was used for

2D and 3D acquisitions to allow a reasonable comparison. The slab-selective excitation

with a sinc-Hanning pulse leads to signal variations throughout the slab caused by the

shape B1(t) of the RF pulse. The profile is given by the FT of B1(t) for small flip

angles [98]. To reduced this variations and to achieve a homogeneous excitation, a phase

oversampling of about 10% would be necessary. This would affect the acquisitions time

and the SNR and was therefore not applied for the comparison here.

In addition to the signal dephasing associated with macroscopic field variations, the

impact of phase variations resulting from physiologically induced fluctuations on 2D and

3D acquisitions were investigated. Independent of the acquisition type, similar artifacts

were observed for 2D and 3D methods (Figure 6.10). By measuring the phase with a

navigator echo [235], the image quality of R∗2 could be drastically improved. Therefore,

before accounting for macroscopic field variations, it is recommended to use a navigator

echo as well.

6.4.5 Applications 2D

An aspect where 2D acquisitions might be favorable over 3D acquisitions is quantitative

multi-compartment imaging such as the estimation of the MWF . As reviewed in section

2.3.4, in the brain several signal compartments associated with the myelin water, the

intracelluar, and extracelluar comparment exist. For the myelin water compartment, a

longitudinal relaxation time T1,my < 400ms and for the intracellular and extracellular

a T1,intra/extra = 800ms have been reported [131]. Therefore, the myelin compartment

recovers at rates larger than the intracellular/extracellular compartment. If a short TR is

used, which is common for 3D acquisitions, the steady-state solutions of the compartments

differs. Consequently, depending on the choice of TR and α, a bias in the MWF can be

introduced [198]. Shin et al. performed experiments using different TR and α for 2D

and 3D acquisitions [198]. In 3D acquisitions, the authors used a short TR = 70ms and
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two flip angles, α = [20◦, 40◦] and in 2D acquisitions they used long TR = 2000ms with

α = [45◦, 85◦]. Shin et al. found a significant difference in the MWF between the 3D

acquisitions, whereas for the 2D acquisitions no significant difference were found. These

results suggest that 2D acquisitions with long TR lead to a smaller T1 bias in multi-

compartment imaging.
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7.1 Introduction

In the last two chapters advances in the modeling of the 2D mGRE signal in the pres-

ence of macroscopic field variations could be achieved. However, a major issue of any

postprocessing approach that accounts for macroscopic field variations is the faster sig-

nal dephasing with increasing field gradients. As a consequence, a reliable estimation of

quantitative parameters becomes challenging, or is even not possible if the signal dephases

before the acquisition window. As mentioned in Section 3.4, one way to overcome this

restriction are z-shimming approaches. These methods compensate the effect of macro-

scopic field gradients by applying additional compensation moments. Recently, Nam et

al. proposed a single scan mGRE sequence with z-shimming gradients, combined with a

95
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signal model [178] for R∗2 mapping [159]. A similar approach was proposed by Lee et al.

for MWF mapping [130], but instead of applying z-shimming gradients starting from the

first echo, they applied z-shimming gradients after the sixth echo to avoid signal crushing

the myelin water signal.

A common limitation of the aforementioned approaches is that the compensation gradients

are fixed for the entire FOV (global z-shim). Consequently, a misbalance with the actual

field gradient leads to an incomplete rephasing or even spoiling of the signal.

To overcome this limitation, we propose an adaptive slice-specific z-shimming approach to

address spatial variations of gz in different slices. The corresponding slice-specific compen-

sation gradients are estimated for each slice individually from a fast prescan. Additionally,

a more effective z-shimming pattern is introduced, where six gz values are successively

compensated between echo acquisitions. By adapting a signal modeling approach for 2D

spoiled mGRE sequences [202], we compare this novel approach, in terms of R∗2 map-

ping, with a global z-shim approach with linearly increasing moments [130, 159] and a

conventional mGRE sequence without z-shim gradients. Furthermore, to highlight the

importance of adequate signal modeling in the presence of gz, R
∗
2 is also estimated from

the conventional mGRE data with a more widespread utilized monoexponential signal

model.

7.2 Methods

7.2.1 Signal Modeling

Signal dephasing caused by a field gradient gz can be compensated at an TE by applying

a short compensation gradient with duration tc and amplitude Gc, which results in a

compensation moment mc = Gctc = −gzTE. In the case of a train of k compensation

gradients, each with the amplitude Gc[k] and identical tc, the accumulated moment Mc[i]

for the ith echo at TEi is given by:

Mc[i] =
i∑

k=1

mc[k] =
i∑

k=1

Gc[k]tc = Ḡc[i]TEi. (7.1)

The sum of all applied compensation moments mc[k] is equal to a single theoretical

mean compensation gradient Ḡc[i] applied over the entire duration TEi. This allows to

superimpose gz and Ḡc[i] for signal modeling independent of the shape and duration of the

applied compensation gradients. Assuming a mono-exponential signal decay with R∗2, the

signal S(TEi) of the spoiled gradient-echo is given by integration of the complex transverse

magnetization Mxy(z) weighted with the phase dispersion induced by both gradients along

the z-direction:
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S(TEi) = S0e
−R∗2TEi

∫ ∞
−∞

Mxy(z)e
iγ(gz+Ḡc[i])zTEidz

= S0e
−R∗2TEiFz−shim(TEi),

(7.2)

where S0 describes the signal S(TE = 0) and Fz−shim(TEi) summarizes the net effect

of gz and Ḡc[i]. In the case of small flip angles, the resulting signal decay is described by

the pulse envelope of the RF excitation pulse [178]. Otherwise, the integral in Equation

7.2 can be solved numerically, where Mxy(z) is obtained by numerical solution of the Bloch

equations [94, 202].

7.2.2 Sequence

Figure 7.1 shows a 2D RF -spoiled mGRE sequence (Figure 7.1A) and a combination of

the global z-shimming patterns proposed by Nam et al. and Lee et al. [128, 159] (Fig-

ure 7.1B) along with the proposed slice-specific pattern presented in this work (Figure

7.1C). In addition, Table 1 lists the corresponding compensation gradients Ḡc[i] for the

z-shimming approaches for each echo.

The compensation moments for the global z-shimming method (Figure 7.1B) are calculated

for a single positive Ḡ+
c and negative Ḡ−c value alternating. The first applied gradient mo-

ment after the fourth echo (mc[5] = Ḡ+
c TE5 = −g−z TE5) compensates effects of negative

g−z followed by nulling the accumulative moment via inverting mc[5] (mc[6] = −mc[5]).

This step is repeated for a positive g+
z by applying a negative compensation moment

(mc[7] = Ḡ−c TE7 = −g+
z TE7). To avoid crushing of the signal in the first echoes, z-shim

gradients are not applied for the first echoes as proposed by Lee et al. [128] .

Our work extends the compensation pattern in Figure 7.1B by two novel contributions.

First, instead of using global Ḡ
+/−
c for all slices, slice-specific compensation gradients

Ḡ
+/−
c [n] are applied for each slice n. These Ḡ

+/−
c [n] values are estimated from a field

map measured with a fast prescan. Second, instead of a single Ḡ+
c [n] and Ḡ−c [n], the

coverage of compensated g
+/−
z values is increased by a successive application of three

positive and three negative compensation moments. Based on the estimated Ḡ
+/−
c [n], the

moments between echoes are scaled such that [1
3 ,

2
3 ,

3
3 ]Ḡ

+/−
c [n] are compensated for three

consecutive echoes, which is followed by a nulling of the total moment for the subsequent

echo. To give an example, the moments mc[n, 5] to mc[n, 7] in the proposed pattern (Figure

7.1C) are calculated as follows, assuming equal echo spacing ∆TE:

mc[n, 5] =
1

3
Ḡ+
c [n]TE5

mc[n, 6] = Ḡ+
c [n](

1

3
TE5 +

2

3
∆TE)

mc[n, 7] = Ḡ+
c [n](

1

3
TE5 +

4

3
∆TE)

(7.3)

Moreover, to allow a more effective rephasing, the non-zero value is split up into
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[1
5 ,

2
5 ,

3
5 ,

4
5 ,

5
5 ]Ḡ+

c [n] or [1
5 ,

2
5 ,

3
5 ,

4
5 ,

5
5 ]Ḡ−c [n] if either Ḡ+

c [n] or Ḡ−c [n] is zero. In addition to

the inserted z-shim gradients, for all variants in Figure 7.1, a navigator echo is acquired

after the last echo to compensate for physiologically induced field variations [100].

α

RF/ADC

...TE1 TE4 TE5 TE6 TE15 TE16 TEnaviTE14

Gslice

(A)

(B)

(C)

z-shim 
off

global z-shim 

...

proposed z-shim 
slice specific

& different pattern

Gslice

Gslice

mc[5] mc[7] ...mc[13] mc[15]

Figure 7.1: Schematic overview of the compared sequences. (A) shows a spoiled mGRE sequence
without z-shimming. In the global z-shim approach (B), moments are applied through alternating
pairs (same color) with a linear increase along TE . The first moment in each pair is calculated based

on a single positive or negative Ḡ
+/−
c and the second moment balances the compensation moment

to acquire a gradient-echo image with zero net-moment. The proposed slice-specific approach (C)

applies slice-specific Ḡ
+/−
c [n], which are estimated from a prescan individually for each slice n. In

addition, Ḡ
+/−
c [n] is split up with factors [ 13 ,

2
3 ,

3
3 ]Ḡ

+/−
c [n] (dashed boxes) followed by compensation

of all moments. To correct for physiologically induced fluctuations, a navigator echo is acquired at
TEnavi.

7.2.3 Simulations

7.2.3.1 Sensitivity for Fz−shim

To assess the sensitivity of Fz−shim in Equation 7.2 to variations caused by B+
1 changes,

λ, and incomplete T1 relaxation, simulations were carried out for a standard mGRE se-

quence. Assuming R∗2,sim = 30s−1, the signal in Equation 7.2 was simulated with varying

parameters (B+
1 , λ, and TR/T1). The simulations have been performed using the same

echo times and excitation pulse as used in the in vivo measurements. Next, R∗2,est was esti-

mated from the simulated signal by nonlinear fitting without varying the parameters. The

results were evaluated by calculating the error between the estimated R∗2,est and R∗2,sim.

To simulate B+
1 variations, the flip angle was scaled with a factor ξ = [0.6, 0.8, 1, 1.2, 1.4]

(αsim = αξ). Variations in Mxy(z) due to λ were simulated by scaling the spatial co-

ordinates along the slice direction with λ. To account for incomplete T1 relaxation, the
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steady-state equation for spoiled GRE sequences was included to calculate Mxy(z). Sim-

ulations were performed using TR/T1 = 2 and TR/T1 = 5.

7.2.4 R∗2 Estimation

For all measurements, the complex-valued raw data was first corrected with the phase of

the navigator echo as described by Wen et al. [235] followed by a coil-combination using

the method proposed by Luo et al. [145]. Then, Fz−shim(TEi) was calculated as described

in [202] for the model F4(t) (Equation 5.5). In this model, Mxy(z) is estimated for a certain

RF pulse shape and Gslice with a numerical Bloch solver [1]. Additionally, two potential

factors that might affect Mxy(z) were included: First, nominal flip angle deviations due

to the transmit RF field B+
1 and second, gz is superimposed with Gslice, which leads to a

change of the spatial encoding from z to z′ = zλ with λ = Gslice/(gz +Gslice) [183]. Thus,

depending on the sign and amplitude of gz, the nominal slice thickness ∆z is changed to

∆z′, which is given by ∆z′ = ∆zλ.

After the estimation of Mxy(z), Fz−shim(TEi) was calculated for each echo by substituting

Gz,input[i] with Gz,input[i] = gz+Ḡc[i] to include the z-shim gradients. Using Fz−shim(TEi),

R∗2, and S0 were estimated by nonlinear fitting of the reconstructed magnitude data to

Equation 7.2 using the lsqnonlin() function in MATLAB (MathWorks, Natick, MA).

7.2.5 Sequence and Model Evaluation

The differences between the investigated sequences and the proposed signal modeling

were assessed by calculating four different R∗2 maps: From the measured data of all three

sequences, R∗2 was estimated with the signal model described above. Additionally, R∗2
maps were calculated by fitting the standard spoiled mGRE data to a monoexponential

signal decay (Smono(TEi) = S0e
−R∗2TEi).

7.2.6 Phantom Experiments

All experiments have been carried out on a whole body 3T MRI system (Magnetom

Prisma, Siemens, Erlangen, Germany) using an 8-channel knee coil. To evaluate the

proposed z-shim pattern, a homogenous phantom (5 g/L agar doped with 110µmol/L

Magnevist R© to shorten T1) was built. Measurements with a spoiled 2D mGRE (Figure

7.1A), a global z-shim pattern (Figure 7.1B), and the proposed slice-specific z-shimming

approach (Figure 7.1C) were performed. To allow a comparison between the acquisition

methods for the estimation of R∗2, all sequence parameters were set identically – except

the amplitudes of the z-shim gradients. A sinc-Hanning-windowed RF excitation pulse

(pulse duration Tpulse = 2ms, TBP = 2.7) with flip angle α = 60◦ was used. In total,

20 echoes with a monopolar readout and a BW = 500Hz/Px were acquired. The ∆TE

was 3.4ms for the first four echoes without z-shim gradients, starting with TE1 = 2.8ms

up to TE4 = 12.9ms. For the subsequent echoes with z-shim gradients (tc = 2ms) ∆TE
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was increased to 5.4ms (TE5 = 18.2ms to TE20 = 98.8ms). After the 20th echo, phase

encoding was rewound to acquire a navigator echo at TEnavi = 103.4ms. A total of

26 slices with a spatial resolution of 1x1x4mm3 (FOV = 128x128mm2) were acquired

in an interleaved slice acquisition scheme with a TR of 3 seconds. For all z-shimming

approaches, z-shim gradients were applied with tc = 2ms starting after the fourth echo.

For the measurements with the global z-shim pattern (Figure 7.1B), Ḡ
+/−
c was set to

±100µT/m. This value was approximately half of the maximum magnitude of the observed

field gradients gz in the phantom. In addition to the mGRE sequences, a B1 map was

acquired using a Bloch-Siegert approach [190].

7.2.6.1 Contributions of Fractioning Ḡ
+/−
c [n]

In the proposed z-shim pattern (Figure 7.1C) two modifications of the global z-shim (Fig-

ure 7.1B) are introduced. The first one is that a slice-specific averaged compensation

Ḡ
+/−
c [n] is estimated from the field gradient map gz. The second one is that the gradients

are split up in 3 factions of positive and negative [1
3 ,

2
3 ,

3
3 ]Ḡ

+/−
c [n] (or in five if one is zero).

In order to assess the contribution of fractioning of Ḡ
+/−
c [n], measurements with an inter-

mediate approach have been performed. The intermediate approach uses the same pattern

as for the global z-shim (Figure 7.1B) but with slice-specific compensation gradients.

7.2.7 Prescan to Estimate Ḡ
+/−
c [n]

For the proposed z-shim approach, a prescan was done to estimate Ḡ
+/−
c [n]. The prescan

acquisition was performed with the same slice thickness (4mm), an in-plane resolution

of 2x2mm2 (FOV = 64x64mm2), three echoes with TE = [2.7ms, 4.8ms, 6.9ms] and

generalized autocalibrating partial parallel acquisition (GRAPPA) acceleration of 2. The

phase data of the prescan was then processed to estimate the positive Ḡ+
c [n] and negative

Ḡ−c [n] for each slice as follows: The phase data was unwrapped using PRELUDE [103] and

the field map was estimated by dividing the phase difference by the echo time difference

between the third and first echo. For evaluation, a mask was created by thresholding

the magnitude image, which then was eroded with disk elements (radius of 5 pixels) to

eliminate outliers close to the border. To estimate the field gradient map Gz,pre, the

gradient in z-direction of the field map was calculated in regions within the mask and

smoothed with a 3D Gaussian filter (standard deviation of 1). Then, the Gz,pre map was

quantized with an interval of 10µT/m. For each slice, Ḡ+
c [n] was set to the minimum of

negative Gz,pre[n] values (Ḡ+
c [n] = min(Gz,pre[n] < 0)) and for Ḡ+

c [n] to the maximum of

Gz,pre[n] (Ḡ−c [n] = max(Gz,pre[n] > 0)). Prior to scanning with the proposed z-shimming

approach, the specific inter-echo compensation moments were calculated based on the

pattern listed in Table 1.
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Ḡ
+ c

a
n

d
n

eg
a
ti

v
e
Ḡ
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Ḡ
− c

0
Ḡ
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Ḡ
− c

[n
]

2 5
Ḡ
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7.2.8 In Vivo Experiments

The proposed slice-specific z-shimming approach (Figure 7.1C) was evaluated for in vivo

R∗2 mapping by comparing the results with the global approach (Figure 7.1B) and the

approach without z-shimming (Figure 7.1A). In total, 3 subjects were scanned on the

same 3T MRI system using a 20-channel head coil. The study was approved by the local

ethics committee and all subjects gave written informed consent. For all experiments

the same RF excitation pulse as in the phantom measurements was used. 16 echoes and

one navigator echo were acquired with TE1 = 3ms to TE4 = 9.7ms (without z-shim

gradients, ∆TE = 2.2ms), TE5 = 13.9ms to TE16 = 60.6ms (with z-shim gradients

tc = 2ms, ∆TE = 4.2ms) and TEnavi = 64.8ms. Further sequence parameters included a

bipolar readout with BW = 500Hz/Px, TR= 2.5s, 35 slices with a voxel size of 1x1x3mm3

(FOV = 256x176mm2). As proposed by Nam et al. [159], the value of Ḡ
+/−
c was set to

±220µT/m for the global approach. The slice-specific compensation gradients Ḡ
+/−
c [n]

were estimated from a prescan as described for the phantom measurements, except that

the mask was generated with the brain extraction tool BET, part of FSL [200]. Sequence

parameters of the prescan were: 35 slices with a voxel size of 2.3x2.3x3mm3 (FOV =

96x78mm2), three echoes with TE = [2.7ms, 4.8ms, 6.9ms] and a GRAPPA acceleration

factor 3 with 20 reference lines, TR = 344ms, α = 20◦. The acquisition time was 15

seconds for the prescan and 7 minutes 20 seconds for each of the three mGRE sequences. In

addition to the mGRE sequences, an MPRAGE sequence with 1mm3 isotropic resolution

was acquired for anatomical segmentation. Further, B1 mapping was performed with a

highly accelerated approach based on the Bloch-Siegert shift [136].

The different methods were compared by calculating the median and IQR of R∗2 values

in global WM and GM masks. The global WM masks were obtained from MPRAGE im-

ages using SIENAX [201], part of FSL [200] and subcortical GM masks using FSL FIRST

[171]. Regional R∗2 evaluation (median; IQR) was performed after affine registration to

mGRE -space with FSL FLIRT [102, 104].

7.3 Results

7.3.1 Simulations

7.3.1.1 Sensitivity for Fz−shim

Figure 7.2 shows the influence of B+
1 , λ, and TR/T1 on Fz−shim. For TR/T1 = 5 the

relative error is negligible when including B+
1 and λ for all simulated flip angles because

of complete T1 relaxation. Thus, the influence of T1 can be neglected. Without B+
1 and

λ, for α = 30◦, the error is relatively small and mainly driven by λ. For larger α, the

B+
1 related error increases and becomes the dominant factor. In contrast, for TR/T1 = 2,

substantial errors due to incomplete T1 relaxation can be observed in both models.
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TR/T1 =2

TR/T1 =5

α=30° α=60° α=90°

gz gz gz gz gz gz
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with B1
+, λ  without B1

+, λ  with B1
+, λ  without B1

+, λ  with B1
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+, λ

Figure 7.2: Simulation results for the sensitivity of B+
1 , λ, and TR/T1 in Equation 7.2 for a

spoiled mGRE sequence. The plots show the relative error (%) of the estimated R∗
2 for three

different flip angles α. For each α, simulations were carried out for TR/T1 = 2 and TR/T1 = 5
once by including B+

1 and λ in the model and once without B+
1 and λ. The curves show results

for different ξ values accounting for B+
1 variations αsim = αξ.

7.3.2 Phantom

Figure 7.3 shows the signal decay of the three investigated pulse sequences within one slice.

To demonstrate effects of varying gz, three ROIs (Figure 7.3B) with different gz intervals

were defined and their normalized averaged signal decay Snorm (Figure 7.3C) and averaged

Fz−shim (Figure 7.3D) were plotted. The standard spoiled mGRE sequence reveals a faster

decay of Snorm with increasing magnitude of gz, whereas for the z-shim approaches Snorm
is differently rephased or dephased. For the global z-shim, the best signal rephasing was

achieved in ROI 2 where Ḡ+
c ≈ −gz = 100µT/m followed by ROI 3. In ROI 1 on the other

hand, with a gz interval of gz = [−70,−65]µT/m, only a small portion of the signal was

rephased. In contrast to the global z-shim, the prescan estimated compensation gradients

for the proposed approach were Ḡ+
c [n = 4] = 125µT/m and Ḡ−c [n = 4] = 0. Thus, only

positive compensation gradients were applied in 5 fractions ([25, 50, 75, 100, 125]µT/m).

Depending on the gz interval of each ROI , the best compensation varied with echo time

for the proposed approach.

In Figure 7.4 Snorm and Fz−shim are plotted as function of the echo time for three

different slices. In each slice, the values were averaged within ROIs of different gz interval.

Similar to Figure 7.3, with the global approach the best signal rephasing was achieved

when Ḡ−c ≈ −gz = −100µT/m (Figure 7.4B). In contrast to that, with the proposed

approach the signal was gradually rephased for all slices for each block of compensation

gradients (Ḡ+
c [n = 18, 21, 24] = 0). Compared with the global approach, the estimated

Ḡ−c for the depicted slices were Ḡ−c [18] = −55µT/m, Ḡ−c [21] = −105µT/m, and Ḡ−c [24] =

−175µT/m, which are close to the range of gz values within the ROIs. Therefore, after each

fifth compensation gradient, the signal is nearly ideally compensated in each block. This

is indicated when comparing Snorm of the echoes TE9 = 39.7ms and TE15 = 71.9ms with
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Figure 7.3: Comparison of the measured signal decay and the estimated dephasing functions
Fz−shim(TE) within one slice. (A) shows the magnitude images of TE10 to TE20 and in (B)
ROIs were defined within different field gradients intervals gz. In these ROIs, the measured
averaged normalized Snorm(TEi) = S(TEi)/S(TE1) (C) and the averaged Fz−shim(TE) (D) were
estimated. The lines in (C) and (D) show the results from a spoiled mGRE sequence without

z-shim gradients in blue, with the global z-shim approach (|Ḡ+/−
c | = 100µT/m) in red, and with

the proposed slice-specific z-shimming in yellow. Note: The interpolation between echoes is solely
for illustration purpose.

Fz−shim. Here, the dephasing functions Fz−shim ≈ 1 suggesting an ideal compensation of

gz. Further, when comparing Snorm between the slices, Snorm is approximately equal for

these echoes independent of gz.

Figure 7.5 shows the estimated gz map (Figure 7.5A) and the obtained R∗2 maps

(Figure 7.5B-F). The R∗2 map from the monoexponential fit of the standard spoiled mGRE

(Figure 7.5B) reveals a strong overestimation proportional to |gz|, which can be drastically

decreased by accounting for gz in the signal model (Figure 7.5C). Nonetheless, compared

with the R∗2 value of 6.4s−1 in the center of the phantom (gz is close to zero), R∗2 becomes

underestimated with increasing |gz|. Applying a global z-shim (|Ḡ+/−
c | = 100µT/m)

improved the results, especially in areas with |gz| around 100µT/m (Figure 7.5D, e.g.

slice 5 and slice 20). Figure 7.5E demonstrates that the proposed slice-specific approach

yielded more homogenous R∗2 maps over a wide range of gz values (e.g. slice 2 and 23).

Figure 7.6 shows the averaged R∗2 values of the phantom with a bin size of gz = 10µT/m as
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Figure 7.4: Comparison of the measured averaged normalized Snorm(TEi) = S(TEi)/S(TE1)
(middle) and the averaged estimated dephasing functions Fz−shim(TE) (right) in 3 slices (A, B,
and C). In each slice, averaging was performed in a ROI defined by different intervals of field
gradients gz (left). The lines in the plots show the results from a spoiled mGRE sequence without

z-shim gradients in blue, with the global z-shim approach (|Ḡ+/−
c | = 100µT/m) in red, and with

the proposed slice-specific z-shimming in yellow. Note: The interpolation between echoes is solely
for illustration purpose.

a function of gz and demonstrates the difference between the proposed approach and the

global z-shimming. While the global z-shim approach (|Ḡ+/−
c | = 100µT/m) corrected R∗2

values at around |gz| = 100µT/m to the expected value of 6.4s−1 (R∗2 value at gz ≈ µT/m),

the proposed approach yielded constantR∗2 values over a broad range of gz from−150µT/m

to 125µT/m. Furthermore, the results from the monoexponetial fit of the standard spoiled

mGRE data clearly showed the strong increase of R∗2 with |gz|.
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Figure 7.5: Comparison of estimated R∗
2 maps of a homogenous phantom. (A) shows the field

gradient map gz. In (B), the R∗
2 maps were calculated from the spoiled mGRE data by assuming

a monoexponential signal model neglecting gz (Fz−shim = 1). The other R∗
2 maps were calculated

with the proposed signal model using the data of the spoiled mGRE (C), from the global z-shim

(|Ḡ+/−
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Figure 7.6: R∗
2 values obtained from the phantom experiments as a function of the field gradient

gz (bin size 10µT/m) with different scaling of the R∗
2 axes (A, B). From the spoiled mGRE data,

R∗
2 values were first estimated assuming a monoexponential signal model (blue line) neglecting

gz (Fz−shim = 1) and second, by using the proposed model (red line). Further, R∗
2 values from

the global z-shim approach (|Ḡ+/−
c | = 100µT/m) (yellow) and the proposed slice-specific method

(purple) are plotted. R∗
2 values are shown as median and 25th and 75th percentiles (whiskers).
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7.3.2.1 Contributions of Fractioning Ḡ
+/−
c [n]

Figure 7.7 shows the results obtained from a standard mGRE without z-shim, with a

global z-shim, with the intermediate approach, and with the proposed z-shim approach

for one slice. Figure 7.7A shows the magnitude echo images in this slice starting from the

echo TE10 = 45.1ms up to TE20 = 98.8ms for the different approaches. Using the forward

model for the signal decay S(t) in Equation 7.2, the R∗2 maps (Figure 7.7B) were estimated.

In general, all z-shim approaches perform superior compared with the standard mGRE

sequence. However, when closely comparing the intermediate z-shim with the proposed

slice-specific z-shim, differences can be observed close to the border of the phantom (blue

arrows). Here, the R∗2 values were underestimated in all cases except for the proposed z-

shim. This can be explained by comparing the signal decay in the individual ROIs (Figure

7.7D) with the field gradient map gz (Figure 7.7C). In ROI 1 the median of gz = 104µT/m

is close to the estimated Ḡ−c = −115µT/m (Ḡ−c [n] = 0), which explains especially the good

performance of the slice-selective z-shim, since a substantial amount of signal is rephased

by the compensation gradients. In contrast, in ROI 2 the median gz = 69µT/m is smaller

than Ḡ−c [n] and consequently the signal decay differs. The slice-specific approach with a

single compensation gradient (intermediate z-shim) rephases a small portion of the signal.

However, in the proposed z-shim, the signal is maximally rephased after the third moment

in each block (out of 5), which corresponds to 3
5Ḡ
−
c [n] = −3

5115µT/m = −69µT/m.

Thus, fractioning the compensation gradients Ḡ
+/−
c [n] is advantageous if a larger range of

gz values is present in a slice.
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Figure 7.7: Phantom results obtained when extending the global z-shim pattern (Figure 7.1B)
by a slice-specific (intermediate) pattern. (A) shows the magnitude images from TE10 to TE20

and (B), the R∗
2 maps. The differences of the methods in two ROIs with different mean gz (C)

are assessed by comparing the measured signal decays (D). With the estimated single Ḡ−
c [n] =

−115µT/m a nearly ideal compensation can be achieved when Ḡ−
c [n] ≈ −gz (ROI 1). In the case

of heterogenous gz values, a more robust compensation can be achieved when fractioning Ḡ−
c [n]

(ROI 2). Note: The interpolation between echoes is solely for illustration purpose.

7.3.3 In Vivo

Figure 7.8 shows representative mGRE images for the three investigated sequences (12th

to 16th echo). For the spoiled mGRE sequence (Figure 7.8A), a faster signal decay in areas

with strong gz, e.g. close to the nasal cavities, can be observed. For all sequences, the

12th echo images as well as the 16th echo images were equal because of a zero net-moment

(Mc,12 = 0 and Mc,16 = 0). Between these two echoes, the signal in various brain areas

was differently rephased and dephased depending on the z-shim approach and gz. The

global z-shim pattern with |Ḡ+/−
c | = 220µT/m shows that negative gz values and positive

gz values were rephased at the 13th and 15th echo, respectively (Figure 7.8B). Instead of

single positive and negative gz, a larger range of gz values can be covered by the proposed

approach (Figure 7.8C) (red arrows). R∗2 maps in Figure 7.5 demonstrate improvements

in areas with strong gz from the global z-shim pattern using constant |Ḡ+/−
c | = 220µT/m

(Figure 7.5C) over the spoiled mGRE (Figure 7.5B and 7A), which are most pronounced

in the temporal lobe and cerebellum (slice 3) or close to the sinuses (slice 9). Further

improvements and additionally increased SNR are observed in the R∗2 maps obtained with

the proposed adaptive z-shim (Figure 7.5D).



7.3. Results 109

T
a
b

le
7
.2

:
R

eg
io

n
al
R

∗ 2
(s

−
1
)

p
re

se
n
te

d
a
s

m
ed

ia
n

(I
Q

R
)

o
b

ta
in

ed
w

it
h

th
e

4
ev

a
lu

a
te

d
a
p

p
ro

a
ch

es
in

3
su

b
je

ct
s.

z-
sh

im
G

lo
b
a
l

C
a
u
d
a
te

G
lo

b
u
s

P
u
ta

m
en

T
h
a
la

m
u
s

B
ra

in
st

em
m

et
h
o
d

W
h
it

e
M

a
tt

er
N

u
cl

eu
s

P
a
ll
id

u
s

z-
sh

im
o
ff

m
o
n
ex

p
.

2
2
.1

2
(4

.2
6
)

2
0
.8

7
(3

.9
7
)

4
0
.3

4
(8

.3
3
)

2
5
.4

9
(5

.1
1
)

2
3
.4

4
(3

.4
7
)

2
5
.9

1
(6

.8
8
)

su
b

je
ct

1
z-

sh
im

o
ff

1
9
.2

5
(3

.3
1
)

1
9
.7

7
(3

.1
7
)

3
6
.0

3
(8

.5
5
)

2
2
.7

4
(4

.0
6
)

1
9
.9

6
(3

.7
8
)

1
6
.9

9
(7

.0
7
)

(m
3
3

y
ea

rs
)

g
lo

b
a
l

z-
sh

im
1
9
.2

0
(3

.1
9
)

1
9
.6

2
(2

.9
6
)

3
6
.0

5
(8

.0
9
)

2
2
.7

3
(4

.1
6
)

1
9
.8

7
(3

.7
1
)

1
7
.0

7
(5

.9
3
)

p
ro

p
o
se

d
z-

sh
im

1
9
.2

0
(2

.9
2
)

1
9
.7

4
(2

.9
5
)

3
5
.9

8
(7

.3
4
)

2
2
.7

7
(3

.8
5
)

1
9
.8

9
(3

.2
9
)

1
7
.8

0
(3

.7
6
)

z-
sh

im
o
ff

m
o
n
ex

p
.

2
3
.7

4
(4

.8
9
)

2
2
.3

7
(3

.9
3
)

3
8
.3

0
(6

.5
5
)

2
8
.5

5
(5

.9
9
)

2
6
.0

5
(3

.6
6
)

2
5
.4

0
(5

.6
5
)

su
b

je
ct

2
z-

sh
im

o
ff

1
8
.7

5
(3

.6
5
)

1
9
.8

5
(3

.3
1
)

3
1
.5

0
(6

.9
1
)

2
2
.3

3
(4

.5
3
)

1
8
.8

7
(4

.8
9
)

1
7
.0

1
(5

.9
6
)

(m
3
0

y
ea

rs
)

g
lo

b
a
l

z-
sh

im
1
8
.8

1
(3

.4
7
)

1
9
.7

2
(3

.0
9
)

3
1
.2

6
(6

.3
0
)

2
1
.9

7
(4

.3
2
)

1
8
.7

7
(4

.3
0
)

1
6
.8

1
(5

.6
7
)

p
ro

p
o
se

d
z-

sh
im

1
8
.8

4
(3

.0
5
)

1
9
.7

8
(2

.8
4
)

3
1
.7

8
(5

.7
5
)

2
2
.3

4
(4

.0
8
)

1
8
.9

3
(3

.7
5
)

1
7
.4

1
(3

.9
6
)

z-
sh

im
o
ff

m
o
n
ex

p
.

2
2
.1

2
(4

.8
7
)

2
3
.8

8
(5

.1
7
)

4
0
.7

4
(1

4
.0

8
)

2
9
.6

4
(7

.3
1
)

2
2
.9

5
(4

.1
5
)

3
1
.6

7
(1

2
.4

6
)

su
b

je
ct

3
z-

sh
im

o
ff

1
9
.5

6
(3

.5
8
)

2
2
.3

5
(3

.8
9
)

3
7
.8

7
(1

4
.9

8
)

2
7
.1

0
(6

.7
3
)

2
0
.6

0
(3

.9
4
)

1
8
.2

2
(7

.8
7
)

(m
5
1

y
ea

rs
)

g
lo

b
a
l

z-
sh

im
1
9
.6

0
(3

.4
4
)

2
2
.1

2
(3

.3
2
)

3
7
.3

5
(1

4
.2

7
)

2
7
.1

2
(6

.2
6
)

2
0
.5

3
(3

.7
9
)

1
8
.6

0
(5

.8
1
)

p
ro

p
o
se

d
z-

sh
im

1
9
.7

3
(3

.2
2
)

2
2
.1

4
(3

.8
3
)

3
7
.3

8
(1

3
.7

3
)

2
7
.1

2
(6

.1
8
)

2
0
.8

6
(3

.8
1
)

1
8
.6

9
(4

.4
0
)



110 Chapter 7. Adaptive Slice-Specific z-Shimming for R∗2 mapping

T
a
b

le
7
.3

:
R

eg
io

n
al
R

∗2
(s −

1)
p

resen
ted

as
m

ed
ia

n
(IQ

R
)

o
b

ta
in

ed
w

ith
th

e
4

eva
lu

a
ted

m
eth

o
d

s
in

3
su

b
jects.

V
alu

es
w

ere
estim

ated
w

ith
ou

t
in

clu
d

in
g

variatio
n

s
o
f

th
e

n
om

in
al

fl
ip

a
n

g
le

d
u

e
to

B
+1

a
n

d
sp

a
tia

l
b

ro
a
d

en
in

g
or

n
arrow

in
g

of
M

x
y (z

)
w

ith
λ

cau
sed

b
y

th
e

su
p

erp
o
sition

of
g
z

an
d
G

s
lic

e
in

th
e

m
o
d

el
fo

r
E

q
u

a
tio

n
7
.2

.

z-sh
im

G
lo

b
a
l

C
a
u
d
a
te

G
lo

b
u
s

P
u
ta

m
en

T
h
a
la

m
u
s

B
ra

in
stem

m
eth

o
d

W
h
ite

M
a
tter

N
u
cleu

s
P

a
llid

u
s

z-sh
im

o
ff

m
o
n
ex

p
.

2
2
.1

2
(4

.2
6
)

2
0
.8

7
(3

.9
7
)

4
0
.3

4
(8

.3
3
)

2
5
.4

9
(5

.1
1
)

2
3
.4

4
(3

.4
7
)

2
5
.9

1
(6

.8
8
)

su
b

ject
1

z-sh
im

o
ff

1
9
.3

3
(3

.3
1
)

1
9
.7

9
(3

.1
4
)

3
6
.3

7
(8

.4
7
)

2
2
.9

2
(4

.1
2
)

2
0
.2

9
(3

.6
8
)

1
7
.9

0
(6

.7
4
)

(m
3
3

y
ea

rs)
g
lo

b
a
l

z-sh
im

1
9
.2

7
(3

.1
8
)

1
9
.6

1
(2

.9
4
)

3
6
.3

2
(8

.0
5
)

2
2
.8

8
(4

.1
9
)

2
0
.1

4
(3

.6
6
)

1
7
.7

5
(5

.7
8
)

p
ro

p
o
sed

z-sh
im

1
9
.2

4
(2

.9
2
)

1
9
.7

3
(2

.9
4
)

3
6
.2

2
(7

.3
3
)

2
2
.8

9
(3

.9
3
)

2
0
.1

1
(3

.2
9
)

1
7
.9

7
(3

.8
1
)

z-sh
im

o
ff

m
o
n
ex

p
.

2
3
.7

4
(4

.8
9
)

2
2
.3

7
(3

.9
3
)

3
8
.3

0
(6

.5
5
)

2
8
.5

5
(5

.9
9
)

2
6
.0

5
(3

.6
6
)

2
5
.4

0
(5

.6
5
)

su
b

ject
2

z-sh
im

o
ff

1
9
.0

1
(3

.6
3
)

2
0
.0

3
(3

.3
6
)

3
2
.2

2
(6

.7
6
)

2
2
.7

9
(4

.5
0
)

1
9
.6

6
(4

.6
7
)

1
8
.0

2
(5

.6
8
)

(m
3
0

y
ea

rs)
g
lo

b
a
l

z-sh
im

1
9
.0

2
(3

.4
7
)

1
9
.8

8
(3

.1
2
)

3
1
.7

7
(6

.2
0
)

2
2
.3

7
(4

.3
6
)

1
9
.4

0
(4

.1
7
)

1
7
.6

2
(5

.5
5
)

p
ro

p
o
sed

z-sh
im

1
8
.9

5
(3

.0
7
)

1
9
.8

7
(2

.8
5
)

3
2
.1

5
(5

.7
0
)

2
2
.6

3
(4

.1
4
)

1
9
.3

5
(3

.7
5
)

1
7
.7

5
(4

.0
5
)

z-sh
im

o
ff

m
o
n
ex

p
.

2
2
.1

2
(4

.8
7
)

2
3
.8

8
(5

.1
7
)

4
0
.7

4
(1

4
.0

8
)

2
9
.6

4
(7

.3
1
)

2
2
.9

5
(4

.1
5
)

3
1
.6

7
(1

2
.4

6
)

su
b

ject
3

z-sh
im

o
ff

1
9
.7

5
(3

.5
7
)

2
2
.2

4
(3

.8
7
)

3
8
.1

4
(1

4
.9

8
)

2
7
.2

5
(6

.8
4
)

2
0
.9

0
(3

.9
3
)

1
9
.7

6
(7

.5
7
)

(m
5
1

y
ea

rs)
g
lo

b
a
l

z-sh
im

1
9
.7

5
(3

.4
3
)

2
2
.0

3
(3

.3
4
)

3
7
.7

0
(1

4
.0

5
)

2
7
.2

8
(6

.3
1
)

2
0
.8

0
(3

.8
0
)

1
9
.4

4
(5

.7
5
)

p
ro

p
o
sed

z-sh
im

1
9
.8

5
(3

.2
2
)

2
2
.0

8
(3

.8
3
)

3
7
.7

4
(1

3
.7

1
)

2
7
.2

6
(6

.3
3
)

2
1
.1

2
(3

.8
1
)

1
9
.2

1
(4

.4
6
)



7.3. Results 111

7.3.4 Results without Considering B+
1

Table 7.4 summarizes the contributions of B+
1 and λ variations on R∗2 obtained with the

proposed signal model. The relative change of R∗2 was estimated from R∗2 values obtained

without and with incorporating B+
1 and λ variations in the signal modeling. In the brain-

stem, which corresponds to the region with largest gz values of the evaluated regions, the

biggest change of R∗2 was observed for the standard mGRE data without z-shim, ranging

from −5.35% to −8.44%. Both z-shimming techniques reduced the difference, but the

proposed lead to the smallest relative change, ranging from −0.92% to −2.74%, in the

brainstem.

Table 7.4: Relative change (%) of R∗
2 (s−1) values estimated with (Table 2) and without including

B+
1 and λ variations (Table 7.3) for modeling Fz−shim.

z-shim Global Caudate Globus Putamen Thalamus Brainstem
method White Matter Nucleus Pallidus

subject 1 z-shim off -0.42 -0.08 -0.95 -0.81 -1.64 -5.35
(m 33 years) global z-shim -0.41 0.05 -0.76 -0.66 -1.34 -3.96

proposed z-shim -0.24 0.03 -0.66 -0.50 -1.12 -0.92

subject 2 z-shim off -1.37 -0.92 -2.27 -2.10 -4.19 -5.93
(m 30 years) global z-shim -1.09 -0.84 -1.63 -1.83 -3.36 -4.87

proposed z-shim -0.59 -0.48 -1.15 -1.27 -2.26 -1.90

subject 3 z-shim off -0.95 0.49 -0.73 -0.54 -1.45 -8.44
(m 51 years) global z-shim -0.77 0.41 -0.95 -0.60 -1.32 -4.51

proposed z-shim -0.61 0.27 -0.97 -0.50 -1.25 -2.74
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TE 12 TE 13 TE 14 TE 15 TE 16

Mc,12=0

proposed
z-shim 

global
z-shim.

(A)

(C)

(B)

z-shim
off

TE13

Mc,16=0

Figure 7.8: Last five gradient-echo images from TE12 to TE16 acquired with a spoiled mGRE
sequence without z-shimming (A), with the global z-shim (B), and with the proposed slice-specific
z-shimming approach (C). At TE12 as well as at TE16 the sum of the compensation moments
(Mc,12, Mc,16) is zero for all sequences. With the proposed approach, the signal can be rephased
also in areas where it has already been completely dephased (arrows).
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Detailed views

Figure 7.9: Axial views of estimated in vivo R∗
2 maps (left) with detailed views of the blue

rectangular regions (right). (A), the R∗
2 maps were directly calculated from the spoiled mGRE

data by assuming a monoexponential signal model neglecting gz (Fz−shim) = 1). The other R∗
2

maps were calculated using the proposed signal model for the spoiled mGRE (B), the global z-shim

(|Ḡ+/−
c | = 220µT/m) (C), and the proposed slice-specific approach (D) data. An increase in SNR

can be observed from (C) to (D) due to higher signal recovery.
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7.4 Discussion

We have introduced an adaptive slice-specific z-shimming approach that allows minimizing

effects of macroscopic field gradients in slice selection direction in 2D mGRE sequences.

For each slice n, a maximum positive and negative compensation gradient Ḡ
+/−
c [n] is

obtained from a fast prescan. In order to increase the coverage of compensated gz values,

Ḡ
+/−
c [n] is split into three fractions ([1

3 ,
2
3 ,

3
3 ]Ḡ

+/−
c [n]). Based on these gradient values, a

pattern of compensation moments between the echoes is calculated (Figure 7.1C).

Our novel adaptive slice-specific z-shimming was compared with a conventional spoiled

mGRE sequence and a global z-shimming approach that applies a positive and negative

Ḡ
+/−
c (Figure 7.1B) independent of the slice position [128, 159]. In contrast to modeling

of the standard spoiled mGRE , the global z-shim enables to recover R∗2 values in areas

with strong gz, which is in line with the results of Nam et al. [159]. By performing slice-

specific z-shimming with more compensated gz values, the proposed approach results in

SNR improvements (Figure 7.5). Quantitatively, the measured values are within the range

of reported values in the literature at 3T. The z-shim approach by Nam et al. yielded

a R∗2 of 20.77s−1 for the putamen and 34.22s−1 for the globus pallidus [159], which is

close to the mean values of our 3 subjects with 24.08s−1 and 35.05s−1. When considering

the age of the subjects, our R∗2 values are in good correspondence with a study reporting

different age ranges [197]. Subjects’ regional R∗2 values in the caudate nucleus, thalamus,

and brainstem are within the 95% confidence interval of this study [197]. For subjects 1

and 3 the R∗2 values in the globus pallidus are slightly above the 95% confidence interval as

well as in the putamen for subject 3. For example, in the putamen of subject 3 (51 years)

R∗2 is 27.12s−1 compared with Sedlacik et al. who reported a R∗2 of 24.3(22.1 − 26.6)s−1

[197].

During the optimization process of selecting the optimal Ḡ
+/−
c [n] from the prescan field

gradient map Gz,pre[n], splitting of the compensation gradients into different magnitudes

was performed. When using a single value (e.g. maximum and minimum of positive and

negative Gz,pre[n]) improvements were only observed in areas with gz values close to the

specific compensation gradient. To demonstrate this relation, additional measurements

with a slice-specific approach but with a single Ḡ
+/−
c [n] were performed. As shown in

Figure 7.2, splitting Ḡ
+/−
c [n] led to a more robust compensation over a wide range of

gz values. A further refinement of our approach could be made by passing the desired

compensation gradient for each echo Ḡ
+/−
c [n, TEi] to the sequence. This comes with

the advantage that the compensation gradients can be individually selected based on the

distribution of gz values in each slice.

Z-shim approaches mainly aim to avoid signal dephasing in areas with large gz. In this

context, a rather unexpected finding was that also areas with relatively low field gradients

(|gz| < 50µT/m) yielded higher SNR inR∗2 maps by applying small compensation gradients

compared with postprocessing-only methods (e.g. Figure 7.5, slice 24). This SNR increase

might be especially promising for combined applications with acceleration methods such
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as parallel imaging [21, 72, 179].

The proposed approach has some limitations. First, a prescan with a duration of 15

seconds is necessary to the estimate Ḡ
+/−
c [n]. However, this additional scan time is short

compared with the fully sampled z-shim acquisition (7 minutes 20 seconds) itself and the

increase in SNR compensates the prolonged scan time. Another issue, especially in vivo, is

the estimation of a reliable field gradient gz map from the prescan, which is used to define

Ḡ
+/−
c [n]. Here, we focused on a robust implementation and avoided potential gradient

errors due to missing field map values in the skull by eroding the gz map. Nevertheless, it

might result in non-optimal compensation gradients in these areas. An alternative might

be to match the slice position to a template gz map instead of performing a prescan [224].

This work focuses on z-shimming because the signal dephasing is primarily along the

slice-selective (z-)direction compared with the orthogonal directions. In addition, strong

in-plane field gradients can be considered by calculating additional compensation moments

in in-plane directions or, as proposed by Yablonskiy et al. [250], by modeling the signal

dephasing with the VSF .

We have recently introduced a signal modeling approach for an arbitrary excitation pulse

and gz [202], which has been adapted in the current work to describe signal dephasing

Fz−shim due to gz and the compensation gradient Ḡc. Because R∗2 is estimated from the

measured data by nonlinear fitting of Equation 7.2, any modeling error in Fz−shim will

propagate into the R∗2 estimate. Here, B+
1 and λ have been considered for modeling,

but additionally the ratio TR/T1 can affect Fz−shim. If the assumption TR � T1 is not

fulfilled, Mxy(z) changes according to the steady-state equation for spoiled gradient-echo

sequences [58] and might bias Fz−shim. To better assess the contributions of B+
1 , λ, and

TR/T1 to Fz−shim, additional simulations were carried out for different gz values (Figure

7.2). For a ratio of TR/T1 = 5, T1 effects are negligibly small while errors due to B+
1

increase with α. Compared with B+
1 , the estimated errors caused by λ are similar for each

α. In contrast, for TR/T1 = 2, a bias because of T1 relaxation can be observed, which is

small compared with the B+
1 error. To investigate the influence of B+

1 and λ in vivo, in

Table 7.3 the results without considering B+
1 and λ are shown. It reveals that the greatest

relative change of R∗2 for the proposed approach was 2.7% for subject 3 in the brain stem

(Table 7.4). These small changes in R∗2 suggest that B1 mapping might not be necessary

for the regions evaluated. However, when increasing α or when evaluation regions with

stronger gz, accounting for B+
1 might be beneficial. Based on the simulation results, a

potential small T1 effect cannot be excluded with the TR = 2.5s used in vivo.

Other sources for model deviations in Fz−shim are the input parameters gz and Ḡc. As

for the prescan, gz estimation is challenging if the field map values from adjacent slices

are missing. For Ḡc it is assumed that it is ideally characterized by the actual applied

gradient moment of the MRI system. Thus, errors might occur in the case of gradient

imperfections or when a different MRI system is used. Here, a good correspondence

between the signal dephasing Fz−shim and the measured signal Snorm (Figure 7.3 and

Figure 7.4) was observed indicating a reasonable accurate Ḡc for the proposed approach.
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7.5 Conclusion

A new adaptive slice-specific z-shim approach in combination with signal modeling for

2D mGRE data was introduced to minimize effects of macroscopic field gradients. The

proposed approach allows a more robust correction of R∗2 maps over a broad range of field

gradients and additionally provides a higher SNR.





8
Discussion and Outlook

The methods presented in this thesis lead to substantial advances in the modeling and

compensation of macroscopic field variations in quantitative GRE imaging with a focus

on 2D acquisitions. First, a numerical signal model to describe the signal decay in the

presence of a macroscopic field gradient gz was proposed [202]. The work revealed that

for larger flip angles signal phase along the slice profile ϕxy becomes crucial for signal

dephasing. By applying the model to R∗2 and MWF mapping, the influence of gz on

the parameters could be improved. Nonetheless, with increasing field gradients signal

modeling becomes challenging because of the fast signal decay. To resolve this issue, an

adaptive slice-specific z-shimming sequence was proposed and combined with the signal

model [206]. The approach outperforms signal modeling of conventional mGRE data

and leads to better results than a global z-shim with slice-independent compensation

moments for each slice.

A detailed discussion about the developed methods can be found in the dedi-

cated chapters. This section discusses open issues and suggests refinements for further

work. It additionally gives an outlook about future directions and applications.

Navigator Echo

In the first experiments of this work, quantitative R∗2 analysis was carried out based

on data obtained from the vendor’s standard mGRE sequence. Although the proposed

modeling approach in Chapter 3 worked well in the phantom measurements, a strong

intrasubject variability in the estimated in vivo R∗2 maps was observed. These variations

were later assigned to physiologically induced fluctuations of the phase signal during k-

space acquisition [100]. As explained in Chapter 4, after implementation of a navigator

echo [100], these artifacts could be substantially reduced. Based on literature and our

findings, the use of navigator echoes is highly recommended when performing quantitative

analyzes of GRE data. Further, the results of the 2D versus 3D comparison support that

navigator echoes are also beneficial for 3D acquisitions.

117
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Gradient and Field Maps

A critical parameter for the presented signal model and others [178, 250] are the macro-

scopic field gradients gx, gy, and gz. The gradient maps were obtained by numerical

differentiation of the field map ∆B0. Thus, any error in ∆B0 propagates into the field

gradient maps.

In this work ∆B0 was obtained from the spatially unwrapped phase data using PRELUDE

[103]. However, ∆B0 becomes larger in regions close to air/tissue interfaces such as the

frontal sinuses or nasal cavities, leading to a faster signal decay that results in a noisy

signal or in the worst case in a loss of signal. In these areas unwrapping might fail, and

consequently ∆B0 cannot be estimated in this region. To improve ∆B0 in voxels with

short T ∗2 due to macroscopic fields, decreasing the echo time is an option, if possible, or

by measuring ∆B0 with an ASE acquisition [6, 240]. The ASE sequence has the advan-

tage that a small shift ∆ (Figure 2.5) between the SE and GRE readout gradient allows

measuring signal decay in areas with strong inhomogeneities.

Besides the challenge of estimating ∆B0 in areas with larger field variations, the border

regions of the brain are an additional error source. For instance, estimating a reliable

field gradient in the cortex is not a trivial task. When moving from cortex towards the

meninges the signal becomes noisy or lost. Therefore, when calculating the through-slice

or in-plane gradients, wrong ∆B0 values lead to errors in the field maps.

A possible solution for the aforementioned problems might be to create a model for ∆B0

that uses the measured data and to combine it with a forward model for ∆B0, which is

based on the subject’s geometry and susceptibility [33, 115, 150]. Given that it is possible

to describe ∆B0 by a function, it would improve gradient estimation and the quality of

the estimated parameters.

Model Validation

Apart from gz, the influence of B+
1 , λ, and TR/T1 for 2D acquisitions was investigated.

All these parameters can change Mxy(z), and thus they affect signal dephasing in the

presence of gz.

In the phantom experiments in Chapter 5, Figure 5.6 illustrates the dependency of the

signal dephasing on TR/T1 and gz. Further, it shows that with increasing α the B+
1 field

has an impact on R∗2. One unresolved issue is the challenge of separating changes of R∗2
caused by B+

1 and TR/T1 to quantify their individual contributions. When comparing

results between 2D and 3D acquisitions in Chapter 6, a remarkable similarity between R∗2
values estimated in global WM and GM was found. In these experiments B+

1 was ne-

glected (α = 60◦), showing that B+
1 and TR/T1 have only minor contributions. However,

to assess the individual influence, a better experimental setup is required to clarify the

relation between B+
1 and TR/T1.

One possibility might be to perform phantom measurements in an area with a homoge-

neous field (gz ≈ 0). In this region a field gradient gz,shim could be superimposed using
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the first order shim coil. This would lead to a relatively controlled environment for study-

ing different dephasing effects. By varying the nominal flip angle, B+
1 changes can be

simulated, and by repeating the measurements with different TR, it allows studying the

impact of TR/T1.

The results from the adaptive slice-specific z-shimming approach in Chapter 7 provide fur-

ther insights into the sensitivity of R∗2 estimates to these parameters. Apart from the signal

rephasing caused by the additional compensation gradients, the sensitivity for parameters

that change Mxy(z) decreases. In an ideal GRE imaging experiment, a homogeneous field

without field gradients (gz ≈ 0) is desired. In this case, the signal decay rate in Equation

7.2 is independent of the Mxy(z). By applying proper z-shimming gradients, this condition

can be partially fulfilled. Consequently, the sensitivity for parameters that affect Mxy(z)

decreases. This relation can be seen in the regional comparison between estimated R∗2
with and without considering B+

1 and λ in Table 7.4. Here, the greatest change was found

in the conventional mGRE data, suggesting that the sensitivity for these parameters can

be decreased by z-shimming.

A parameter that strongly influences the sensitivity for B+
1 and TR/T1 is the shape of

RF excitation pulse. Here, non-optimized sinc-Hanning-windowed pulses were utilized

that are based on the vendor’s standard GRE pulses. Hence, one of the next steps is to

design tailored RF pulses for specific applications. For example, the measurement of R∗2
in deep GM regions does not require necessarily a fast RF pulse, which enables designing

pulses closely to an ideal rectangular shape with a constant phase. An ideal shape has

the advantage that the sensitivity for B+
1 and TR/T1 would be decreased in the presence

of field gradients. Although B+
1 changes result in signal changes, the sinc-shaped signal

decay is not affected, allowing signal modeling independent of α and B+
1 , respectively.

Similar holds for the effect of TR/T1. With an ideal slice profile, α is constant along the

slice and depending on TR/T1, the signal changes according to the steady-state equation

[58], but independent of shape.

Future Directions and Applications

The focus in the present thesis was on quantitative GRE imaging in the brain, but

the methods developed here can be extended to different tissue types. An interesting

application is the measurement of the hepatic iron concentration with R∗2 [84, 244]. To

allow R∗2 quantification outside the brain, the chemical shift of fat has to be accounted

for in the signal model. Similar as proposed by Hernando et al. [94], additional

compartments, including the amplitudes and frequency shifts of the fat components,

need to be added in the signal model.

Another potential application could be the assessment of R∗2 in the heart for studying

myocardial iron overload [4, 51, 61]. The typical protocols for cardiovascular MRI

have a slice thickness of 10mm [90], which makes it extremely sensitive to macroscopic

field variations. It would be interesting to investigate the impact of macroscopic field
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variations on R∗2 estimation and to apply the proposed adaptive slice-specific z-shimming

[206].

Another future project will be to extend the signal model for spoiled GRE to ASE -based

sequences. As discussed in Chapter 2, the ASE allows studying R2 and R∗2 with the same

sequence. Depending on the shift ∆ between SE and GRE , the ASE sequence is equally

sensitive to macroscopic field variations. The proposed signal model can be adapted

for the ASE by replacing the time t with ∆. Further, it would be possible to include

z-shimming gradients in the sequence and in the modeling.

The developed adaptive slice-specific z-shimming approach was designed for 2D

acquisitions. However, the sequence also works for 3D acquisition, which allows applying

variable z-shim gradients for each kz line proving a great flexibility for potential

applications. In the future, the sequence might be extended to the 3D R∗2 mapping

approach by Han et al. [81]. By applying alternating z-shim gradients between the

echoes, the proposed sequence acquires z-shimming images and standard mGRE images

(z-shim moment is zero). Similar as proposed in Chapter 7, an adaptive approach

could be implemented based on the field gradient values from a prescan. With these

gradients, echo images with different compensated field gradients could be acquired and

by modeling the signal with the VSF [250] R∗2 can be estimated more accurately.

This work did not accelerate acquisition time with parallel imaging methods mainly to

avoid potential changes of the PSF caused by the undersampled k-space. For future

clinical applications, it would be of great interest to investigate the effect of macroscopic

field variations for certain acceleration methods to allow a faster image acquisition. A

promising direction might be to incorporate the proposed approaches in model-based

image reconstruction [215, 216]. In these methods, quantitative MRI parameters are

estimated by solving an inverse problem with iterative reconstruction techniques such as

the non-linear conjugate gradient (CG) method [40]. This potentially speeds up image

acquisition and the quality of estimated parameters such as R∗2 or the MWF for clinical

applicability.
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List of Acronyms

ASE asymmetric spin-echo

AST apparent susceptibility tensor

bmGESEPI blipped multi gradient-echo slice excitation profile

imaging

BOLD blood oxygenation level dependent

bSSFP balanced steady-state free precession

BW bandwidth

CAIPIRINHA controlled aliasing in volumetric parallel imaging

CG conjugate gradient

CISS constructive interference in steady-state

CNS central nervous system

CPU central processing unit

CSF cerebrospinal fluid

CT computed tomography

DAWM diffusive-appearing white matter

DESPOT1 driven-equilibrium single-pulse observation of T1

DESPOT2 driven-equilibrium single-pulse observation of T2

DSU dynamic shim updating

DSV diameter of spherical volume

DTI diffusion tensor imaging

EDSS extended disability status scale

EPI echo planar imaging

FDRI field-dependent R2 increase

FFT fast Fourier transform

FID free induction decay

FLIRT FMRIB’s linear image registration tool

fMRI functional magnetic resonance imaging

FOV field of view

FSL FMRIB software library

FT inverse Fourier transform

FWHM full width half maximum
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GESEPI gradient-echo slice excitation profile imaging

GESFIDE gradient-echo sampling of FID and echo

GLA generalized Lorentzian approach

GLTA generalized Lorentzian tensor approach

GM gray matter

GRAPPA generalized autocalibrating partial parallel acquisition

GRASE gradient and spin-echo

GRE gradient-echo

IFFT inverse fast Fourier transform

IQR interquartile range

MC multi-coil

mcDESPOT multi-comparment driven-equilibrium single-pulse

mGESEPI multi gradient-echo slice excitation profile imaging

MGESIC multi gradient-echo with magnetic susceptibility inho-

mogeneity compensation method

mGRE multi-echo gradient-echo

MIP maximum intensity projection

MPRAGE magnetization-prepared rapid gradient-echo

MRI magnetic resonance imaging

MRM Magnetic Resonance in Medicine

MS multiple sclerosis

MSE multiple spin-echo

MWF myelin water fraction

MWI myelin water imaging

NAWM normal appearing white matter

NMR nuclear magnetic resonance

NNLS non-negative least squares

OST outer sphere theory

ppm parts per million

PRIME partially-refocused interleaved multiple echo

PSF point spread function

qMRI quantitative magnetic resonance imaging

QSM quantitative susceptibility mapping

RF radio frequency

RMSE root mean squared error

ROI region of interest

SAR specific absorption rate

SE spin-echo

SNR signal-to-noise ratio

SSFP steady-state free precession

SWI susceptibility-weighted imaging
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TBP time bandwidth product

TE echo time

TR repetition time

UHF ultra high field

VSF voxel spread function

WM white matter





B
Definitions and Derivations

B.1 Rectangular Function

rect

(
x

x0

)
=

{
1 if | xx0

| ≤ 1
2

0 if| xx0
| > 1

2

. (B.1)

B.2 VSF k-Space

The integral in Equation 3.8 can solved as follows:

S̃(kx, TE) =

Nx∑
n=1

∫
rect(

x− xn

ax
)ρ(x) exp (−2πikxx+ iγb(x)TE + iϕ0(x)) dx

=

Nx∑
n=1

ρn

∫ xn+ax
2

xn−ax2
exp (−2πikxx+ iγ(bn + gnx(x− xn))TE) + i(ϕ0,n + ϕnx(x− xn))) dx

=

Nx∑
n=1

ρn exp(i(γbnTE + ϕ0,n))

∫ xn+ax
2

xn−ax2
exp (−2πikxx+ (iγgnxTE + iϕnx)(x− xn)))dx

=

Nx∑
n=1

ρn exp(i(γbnTE + ϕ0,n))
1

i(−2πkx + γgnxTE + ϕnx)

exp(−2πikxx+ (iγgnxTE + iϕnx)(x− xn))

∣∣∣∣∣
xn+ax

2

xn−ax2

=

Nx∑
n=1

ρn exp(i(γbnTE + ϕ0,n))
1

i(−2πkx + γgnxTE + ϕnx)(
exp(−2πikx(xn +

ax
2

) + (iγgnx + iϕnx)
ax
2

)− exp(−2πkx(xn −
ax
2

) + (iγgnxTE + iϕnx)
−ax

2
)

)
=

Nx∑
n=1

ρn exp(i(γbnTE + ϕ0,n)) exp(−2πikxxn)
1

i(−2πkx + γgnxTE + ϕnx)(
exp(−2πikx

ax
2

+ (iγgnxTE + iϕnx)
ax
2

)− exp(−2πikx(−ax
2

) + (iγgnxTE + iϕnx)
−ax

2
)

)
.

(B.2)
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The two exponential functions can be summarized to a sinc function (sinc(u) = sin(πu)
(πu) )

by:

1

id
(exp(i

ax
2
d)− exp(−iax

2
d)) =

ax
i2ax2 d

(exp(i
ax
2
d)− exp(−iax

2
d))

= ax
sin(ax2 d)

axd
2

= axsinc(
axd

2π
)

= axsinc(ax(−kx +
γgnx + ϕnx

2π
)) = axsinc(ax(−kx + kn))

= ax sinc(ax(kx − kn))

(B.3)

with d = −2π + γgnxTE + ϕnx. Then, for Equation B.4 follows:

S̃(kx, TE) =

Nx∑
n=1

ρn exp(i(γbnTE + ϕ0,n)) exp(−2πikxxn)axsinc(ax(kx − kn)). (B.4)
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