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Abstract

Severely motor impaired persons are substantially limited in their daily life routine. De-
pending on their grade of motor impairment, even tasks of daily routine like eating,
drinking or personal hygiene are not viable without the help of a permanent caregiver.
Up to this point, this group is waiting for an intervention, making regaining grasp func-
tions their priority choice. A possible way for restoring their basic independence would
be via a brain-computer interface (BCI) to control assistive devices, e.g. an upper limb
motor neuroprosthesis or a robotic arm. The BCI circumvents damaged parts of the cen-
tral nervous system by directly recording and processing brain signals from the scalp.
The goal of this thesis was to evaluate whether brain patterns of natural grasp/reach-and-
grasp movements can be identified and decoded from the electroencephalogram (EEG)
and further used in a non-invasive EEG-based BCI.
In several consecutive experiments in able bodied study participants, EEG correlates of
grasp/reach-and-grasp actions could be identified in EEGs’ low frequency time domain
(LFTD) signals and decoded against each other and a rest condition. In addition, it
could further be shown that these correlates could be used online in a non-invasive BCI,
where able bodied study participants gained control over a virtual robotic arm in a sim-
ulation environment.
Further investigations were conducted incorporating bimanual movements. Results ob-
tained from an able bodied population indicated that these movements were not only
significantly different to their unimanual counterparts, but also decodable. Finally, a
single case study performed in one tetraplegic end user could show that unimanual and
bimanual executed reach-and- attempted grasp actions could be successfully decoded.
This thesis shows that natural grasp/reach-and-grasp movements can be identified and
decoded from the low frequency time domain and used to drive a BCI. However, further
research is necessary to improve inter alia the decoding performance, before a successful
transfer to motor impaired end users is feasible.
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Kurzfassung

Menschen mit schwerer Bewegungsbeeinträchtigung, wie beispielsweise Personen mit ei-
ner hohen Querschnittlähmung, haben einen beträchtlichen Teil Ihrer persönlichen Frei-
heit eingebüßt und sind in ihrer täglichen Routine vollkommen auf die externe Hilfe einer
Pflegekraft angewiesen. Abhängig vom Grad der Beeinträchtigung sind oft alltägliche
Dinge wie Nahrungsaufnahme, Trinken oder auch die persönliche Hygiene nicht mehr
alleine zu bewerkstelligen. Diese Personengruppe hofft und wartet auf vielversprechende
Ansätze, um zumindest einen Teil ihrer persönlichen Freiheit wiederzugewinnen, wobei
deren Hauptaugenmerk auf der Wiedererlangung der Greiffunktion liegt. Eine durchaus
vorstellbare Herangehensweise bietet sich via Brain-Computer-Interface (BCI): Es bietet
einen alternativen Kommunikationskanal zum (beschädigten) zentralen Nervensystem im
Rückenmark, indem es direkt Hirnsignale mit Hilfe des Elektroenzephalogramms (EEG)
auf dem Skalp erfasst und interpretiert.
Das Ziel der vorliegenden Dissertation war es festzustellen, ob designierte Gehirnmuster
für Greifbewegungen aus dem EEG identifiziert und mittels moderner Machine-learning
Methoden auch dekodiert werden können. Des Weiteren wurde untersucht, ob diese Ge-
hirnmuster geeignet sind, um in einem BCI eingesetzt werden zu können.
In mehreren aufeinanderfolgenden Experimenten konnte nicht nur die Existenz solcher
Gehirnmuster im niederfrequenten Zeitbereich des EEG gezeigt werden, sondern auch
dass diese Muster sowohl untereinander als auch gegen eine Ruhe Kondition dekodiert
werden können. In einem weiteren Experiment mit gesunden, nicht bewegungsbeein-
trächtigten Studienteilnehmern wurden diese Gehirnmuster dazu benutzt um mittels
eines BCIs in Echtzeit die Kontrolle eines virtuellen Roboterarms zu übernehmen.
Basierend auf den Erfahrungen mit Personen mit hohem Querschnitt, wurde das For-
schungsfeld um die Identifikation und Dekodierung von Gehirnmustern beruhend auf
bimanualen Greifbewegungen erweitert. Die gewonnenen Resultate zeigen, dass auch bi-
manuale Bewegungen individuelle Gehirnmuster erzeugen, die sich nicht nur von ihren
unimanualen Gegenstücken signifikant unterscheiden, sondern auch also solche, erfolg-
reich dekodiert werden können.
Im letzten Versuchsaufbau dieser Dissertation wurde der konzeptionelle Beweis für die
Übertragbarkeit der vorliegenden Resultate auf einen Versuchsteilnehmer mit hohem
Querschnitt angetreten: Es konnte erfolgreich gezeigt werden, dass die Gehirnmuster
der ausgeführten und versuchten Greifbewegungen des Versuchsteilnehmers kombiniert
und dekodiert werden können. Dementsprechend konnte in dieser Dissertation gezeigt
werden, dass designierte Gehirnmuster für Griff und Greifbewegungen aus dem EEG
identifiziert und mittels moderner Machine-learning Methoden auch dekodiert werden
können. Jedoch muss festgestellt werden, dass unter anderem, aber vor allem die Leis-
tung und Genauigkeit der EEG basierenden Dekodierung noch zu unzuverlässig sind, um
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gefahrlos im Alltag verwendet zu werden. Dementsprechend ist eine weitere Erforschung
des Themas vonnöten.
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1 Introduction

1.1 Severe motor impairment - causes and intervention

Chronic motor impairment has a critical impact on a person’s daily life routine. De-
pending on the severity of the impairment, tasks and chores of daily routine, such as
personal hygiene, eating and drinking or getting dressed present a serious challenge. In
the worst case, these tasks cannot be performed without external help anymore. Poten-
tial reasons for motor impairment can be trauma to the spinal cord [1,2], stroke [3,4] or
neuropathological conditions such as cerebral palsy (CP) [5], multiple sclerosis (MS) [6]
or amyotrophic lateral sclerosis (ALS) [7, 8].
Naturally, all affected persons seek intervention to regain and retain the maximum of vol-
untary motor control and to cushion the effect of stroke, neuropathological conditions or
trauma. Stroke patients undergo an intensive period of physiotherapeutic rehabilitation
to regain lost functions such as inter alia aphasia, neglect motor functions - often with
notable success [9,10]. Persons suffering from neuropathological diseases such as ALS or
MS attempt to delay the degradation of motor functions and cushion its effects [7, 11].
Trauma to the spinal cord, also known as spinal cord injury (SCI) is another cause
for motor impairment. Depending on the lesion location and the extent of the damage
to the spinal cord (e.g. complete or incomplete interruption), persons may be affected
by impairment of body functions from waist to feet (sacral and lumbar sections), while
damage of thoracic and cervical sections can lead to severe limitations of vegetative func-
tions as well as chronic paralysis of both, lower and upper limb functions (also known
as tetraplegic condition) [1]. Trauma to the spinal cord is not uncommon: according
to numbers published by the AUVA in Austria 2018, there were overall more than 4000
reported cases of persons with SCI with around 200 new incidents per year [12]. Main
causes for a SCI trauma are downfalls and motor vehicle injuries (MVI) [13]. While not
all SCI injuries result in severe chronic motor impairment conditions, roughly 51% of
the traumatic injuries occur on cervical level (C-level), causing paraplegic or tetraplegic
conditions [14].
Especially for tetraplegic persons, the impact of the motor impairment on their daily and
social routine is severe: in most cases, personal assistance is required all times, limiting
their independence and personal intimacy. Unsurprisingly, when asking them which of
the lost body functions they would like to regain most, more than three quarters of them
report their arm/hand function as their priority choice - even before dysreflexia or sexual
functions [15–17].
For a small tetraplegic population, basic arm/hand function can be restored through
muscle and tendon transfers within the limb. In this surgical intervention, rewiring of
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still voluntary controllable muscles (and tendons) is performed to allow basic arm/hand
functions such as elbow flexion or regaining functional grasping function. It has been
shown that persons using this technique are able to operate their urine catheters, use
cutlery or can even open bottle caps [18]. However, inclusion criteria such as lesion height
(C6 and below) and MRC scales [19] of the designated muscles (4 or more) significantly
limit the target population of this procedure. When surgical or physiotherapeutic in-
terventions reach their limits, technical interventions, called assistive technologies (AT),
target to assist motor impaired persons in their daily life routine.

“AT include any devices and technologies whose primary purpose is to maintain or
improve an individual’s functioning and independence .” [20,21]

AT devices can be highly generalizable and based on low technology such as walk-
ing cans or crutches, but also highly individualized with high technology items such
as electric wheelchairs, text-to-speech communication devices or motor neuroprosthetic
devices [22,23]. One can state that the more severe the (motor) impairment of a person
becomes, the higher the need for a more individualized and often complex solution gets.
Some technologies are still on prototype level and have not emerged from the research
lab towards broad public applicability yet. The following sections discuss one of these
technologies, the so-called brain-computer interfaces (BCIs) and their applicability for
severe motor impaired, which is this thesis’ main field of research.

1.2 Brain-computer interfaces

Brain-computer interfaces (BCIs) enable its users to interact with their environment
only by thought [24]. They circumvent the central nervous system (CNS) by recording
brain activity in real time and interpreting it using machine learning methods [25–27].
In this way, users are able to directly interact with their environment or control any
(assistive) devices. The scientific BCI community has identified five application scenarios
for BCIs [28]:

1. BCIs can replace lost functions of the CNS e.g. for communication or controlling
assistive devices [29–32].

2. BCIs can restore lost functions of the CNS e.g. by circumventing the CNS to
address muscle stimulation in a paralysed person using an upper limb motor neu-
roprosthesis [33–35].

3. BCIs can improve functions of the CNS e.g. as a tool for rehabilitation in stroke,
thus generally increasing the chance of recovery of stroke patients. [36–42].

4. BCIs can enhance functions e.g. through monitoring stress or attention levels.
These so called passive BCIs (pBCI) do not provide active control, rather they
enhance the (e.g. environmental) conditions for optimizing the interaction between
human and machine [43–46].
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5. BCI technology can be used as a research tool, thus providing further insights in
the functionality of the brain.

Classic BCIs operate as closed loop systems, meaning that users receive direct feedback
based on a specific action. Figure 1.1 depicts the head components of a typical BCI
system. In the following sections, these components are further discussed.

Figure 1.1: Closed loop structure of a standard brain computer interface. Signal acquisition:
Brain signals can be recorded invasively or non-invasively, however, the most common
approach is using electroencephalography (EEG), which is a non-invasive method. Feature
extraction: Signals are preprocessed to optimize the ratio between useful brain patterns
and noise. Depending on the mental strategy, decodable brain patterns are extracted.
Feature translation: Machine learning methods are applied to decode the brain patterns
and translate them into a command signal. Application: the generated control signal is
processed by the application. The application gives feedback, e.g. the application performs
the designated action if the command was recognized correctly, or an error notification in
case of a wrong detection.
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1.2.1 BCI signal acquisition

There are several methods available for the acquisition of brain signals, roughly dividable
in non-invasive and invasive methods [47]: In general, non-invasive approaches record
brain signals without penetrating the scalp of the individual, while invasive measurement
methods usually rely on surgical interventions.

1.2.1.1 Non-invasive signals

The electroencephalogram (EEG) is one of the most commonly applied techniques to
record brain signals. Developed by Hans Berger in the early 1920’s, Berger recorded for
the first time human EEG [48]. The EEG measures potential differences between elec-
trodes, originating mainly from the sum of excitatory postsynaptic potentials (EPSPs) of
large populations (scaling 104 to 107) of neurons with the same perpendicular alignment
to the cortex surface. The intensity (voltage) of this effect is dependent on the alignment
of the firing neurons as well as on the distance of the firing neurons to the electrode. A
perpendicular alignment to the cortex surface intensifies the effect (summation), while a
random alignment attenuates it (deletion). Since the voltage potential spreads by means
of volume conduction, the effect decreases with the square of the distance [49–51].
EEG is widespread in medical use, it is one of the main diagnostic tools for epilepsy or
sleeping disorders. It is also one of the main acquisition tools for neuroscience research
due to its comparatively low cost and mobility. It provides sufficient temporal reso-
lution for real time applications, which makes it a good candidate for time dependent
analysis or real time operations for BCIs. Recent advances in EEG hardware research
and miniaturization technology allowed the construction of compact and mobile EEG
recording systems which can provide a dense grid of electrodes for high resolution mea-
surements [52].
Other non-invasive measurement techniques for BCIs include inter alia magnetoen-
cephalography (MEG), which measures changes in the magnetic field caused by electrical
currents that occur in the brain [53]. These changes are measured by highly sensitive
magnetometers. Though it can be successfully used as a signal acquisition tool for a
BCI [54,55], current MEG recording devices are large and stationary devices and there-
fore more suitable for research purposes than for mobile BCIs at end users’ homes.
Contrary to EEG and MEG, which measure brain activity based on electrical activity,
functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imag-
ing (fMRI) rely on metabolic changes in the brain tissue, which are caused on neuronal
activity. Neuronal activity is linked to the oxygenation/deoxygenation level of the local-
ized blood flow (neurovasular coupling), which is also called hemodynamic response or
blood oxygen level dependent (BOLD) response. This response can be measured using
light emitters and detectors in the near infrared level mounted on the scalp which mea-
sure the blood oxygenation level. Due to the nature of the BOLD response, measurable
changes in the signal can take up to several seconds. Nevertheless, it has been shown
that signal acquisition using fNRIS can successfully be applied for BCIs [56–60]. In the
case of fMRI, the BOLD activity is mapped on an image of the user’s brain, which is
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recorded in advance using magnetic resonance imaging (MRI). The fMRI is mainly used
in brain research however it is highly suitable to supplement EEG measurements [61].

1.2.1.2 Invasive signal acquisition

Invasive signal acquisition requires surgical intervention and close-mesh follow up mon-
itoring. It can be performed on different spatial scales ranging from the electrocor-
ticogram (ECoG) over multi unit activity (MUA) using microelectrodes arrays to single
unit activities (SUA) which measure neuronal spikes of a single neuron using a single
microelectrode. The ECoG uses an electrode grid, usually consisting between 4 and
256 electrodes, and is placed either outside (epidural) or under (subdural) the dura
mater. The ECoG electrodes record directly electrical potentials associated with brain
activity from the cortex [62]. ECoG recordings are performed for advanced diagnosis
of epilepsy and is considered the “gold standard” for defining epileptogenic zones. It
has also been shown that ECoG is an excellent signal acquisition tool for BCIs [63–65].
From the technical point, ECoG offers significantly improved signal-to-noise ratio and is
less prone to external artefacts, thus allowing the decoding of signals such as individual
finger movements [66]. Even more invasive is the direct insertion of microelectrodes into
the cortex to measure single activity, which are able to measure neuronal spikes [62,67]
or local field potentials (LFP). Microelectrodes can also be bundled to microelectrode
arrays [68] and used to measure the activity of multiple units (MUA). Recordings from
microelectrode/array level benefit from extraordinary signal-to-noise ratio (SNR) and
spatial resolution, allowing the decoding of movement intentions with high accuracy [69].

1.2.2 Modulatable brain signals

In general, feature extraction targets to find a suitable representation of the designated
brain pattern and process it for a machine learning algorithm. There exist quite a
variation of different brain activities suitable as features for a BCI.
BCIs for control usually rely on the intentional control of the user. As such, users must
choose to perform a mental task, with the goal of sending a message or a command
each time they want to use the BCI [24].These tasks may be an internal process such
as an imagination of a mental task (e.g. imagining repetitive squeezing a stress ball, or
subtraction of numbers) or elicited by an external stimulus (e.g. focusing on a blinking
light source). Both examples would lead to changes in brain patterns which eventually
could be detected by a BCI.

1.2.2.1 Event-related desynchronization/synchronization

Brain activity contains recurrent rhythmic activity, so called oscillations. They can be
quantified in frequency, power and also phase. These oscillations occur with reference
to a certain event (time-locked), but with arbitrary (random) phase characteristic (non-
phase-locked). Pfurtscheller et al. have shown that voluntary movement execution or the
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imagination of mental tasks [70], lead to increased brain activity and a desynchronisation
of neural activity when compared to baseline [71–73]. This desynchronisation is reflected
by a relative decrease of power in µ (8-13Hz) and beta band (18-24Hz), also known as
event-related desynchronisation (ERD). In a similar way, a conscious state of resting
entails synchronisation in brain activity and leads to a relative power increase in said
bands, known as event-related synchronisation (ERS) (see Figure 1.2).
Pfurtscheller’s work is especially associated with motor imagery (MI), which describes
the mental imagination of movements of hands or feet, e.g. hand opening and closing or
plantar flexion/extension of both feet [74, 75]. However, also other mental imagination
tasks lead to power modulations such as repetitive mental subtraction, auditory imagery
(imagine singing a song) or spatial navigation [70,76].

Figure 1.2: Time-Frequency (ERD/S) Maps for mental imagery of both feet (80 trials)
for channels C3, Cz and C4 (international 10/20 system). Recording of the data
followed the GRAZ-BCI paradigm [74]. The reference period for calculation was deter-
mined with 2.5 to 1 second before presenting the instructions to the participant (t = 0s).
Maps were calculated using methods as described [77]. Colored patches represent signifi-
cant differences with respect to the reference period (non-parametric, t-percentile bootstrap
significance test, alpha= 0.05). As can be seen over channel Cz, a significant desynchroni-
sation occurs in the beta range (hot colors). Simultaneously over both channels C3 and C4
a relative power increase could be observed (ERS, cold colors). Taken and modified from
Schwarz et al. 2015 [78].

MI-based BCIs are widely known and have been used to establish communication [79]
and control of operate assistive devices [33, 35, 80]. There is general agreement that
the use of MI-based BCIs is a skill, which means the user must be properly trained to
achieve successful BCI control. If the user cannot correctly perform the desired mental
commands, even the most advanced signal processing algorithm could not properly iden-
tify them. Studies such as performed by Müller-Putz and colleagues have shown, that
an extended training period (in this case 53 consecutive training sessions) could lead to
stable BCI control higher than 90% [80]. Nevertheless, other studies have also shown
that about 15-30% of the population can not operate a MI-based BCI [81].
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1.2.2.2 Event-related potentials (ERP)

Contrary to the oscillation based brain activities, ERPs are not only time, but also the
phase-locked responses in brain activity. They describe transient reflections of a sensory,
cognitive or motor process in the brain [82,83].
Depending on the stimuli (e.g. internally driven, or excited externally by a paradigm),
ERPs consist of a series of positive and negative amplitude deflections over time which
are categorized based on the sign and the latency with respect to the stimulus, e.g. a
N100 means a negative deflection 100ms after the stimulus presentation [83] (see Figure
1.3).
ERPs can be successfully used for BCI control [24], since features based on the positive
and negative amplitude deflections, are considered robust and stable at the user level.
Moreover, due to the time and phase locked property of the signal, each elicited potential
can be reliably attributed to a certain stimulus. The most prominent BCI use of ERPs
are certainly P300 BCIs which utilizes external stimuli to elicit discriminable brain ac-
tivity. A common strategy for P300 based BCIs is to utilize an oddball paradigm: Users
are instructed to concentrate on a single stimulus (target stimulus) in a series of stimuli
(non-target stimulus) presented with high pace, whereas the ratio of target to non-target
stimulus is about 20% targets to 80% non-targets. In contrast to the non-target stimuli,
whenever the target stimulus is presented to the user, a positive deflection around 300ms
after stimulus presentation can be observed, which is pronounced strongest in central
parietal regions (see Figure 1.3 [84].

Figure 1.3: Event-related potentials: P300. Average of 400 target and 1200 non-target trials form
one participant operating a matrix speller (as described in [85]). Singular components of
the ERP such as the P2, N2 and N4 are visible. The P300 elicited by the oddball paradigm
is significantly larger in target than in non target trials.

This difference between target and non-target stimuli can eventually be decoded by
a classification algorithm [27]. P300 BCIs were initially designed for communication
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purposes [85–88], e.g. between a completely paralyzed person and its environment. Re-
cent advances however have shown that this approach would also allow severely motor
impaired persons tasks beyond communication - e.g. regaining the ability for painting
or composing music [30,89].
ERPs also occur as a reaction when persons make or witness an error [90–92]. The so-
called error-related potential (Errp) is localized over fronto/central and parietal central
regions and consists of two components: the error-related negativity which describes
a negative deflection 50-100 ms after the perceived error and the error-related positiv-
ity which occurs directly afterwards. The morphology is dependent on the erroneous
task/perceived error [93, 94]. In the context of BCI research, studies have shown that
Errps can be exploited to correct BCI based misclassifications [95–100] by detection of
the occuring Errp and thus could potentially contribute to BCI stability.
The contingent negative variation (CNV) represents another phenomenon in the context
of ERPs: it describes a negative deflection elicited by a warning stimulus (e.g. “Be
Ready!”) in preparation of an imperative stimulus (“GO!”). It has been shown that
voluntary modulation of these slow cortical potentials can be trained [101] and also used
for BCIs [102].
ERPs also reflect motor processes in the brain. This type of ERPs are commonly known
as movement-related cortical potentials (MRCPs) and can manifest not only after a
certain event, but also before and during the event, e.g. the movement onset of the
hand [82, 103] [104–107]. MRCPs contain a number of sub components, whereas the
Bereitschaftspotential (BP) is probably the most known and best investigated subcom-
ponent of MRCPs. It was discovered in the early 1960ies by Prof. Hans Kornhuber and
his doctoral student at that time, Lüder Deecke who investigated voluntary hand and
feet movements using EEG. They found a ”langsam ansteigendes oberflächen-negatives
Hirnpotential von 10-15µV”, which they called the Bereitschaftspotential [105,106]. Pre-
movement components of the BP can already be found up to 2 s before the movement
onset (early BP component) over supplementary motor areas (SMA) and are character-
ized as a negative deflection in EEG. Around 0.5 - 0.25 s before the movement onset,
this deflection becomes a much steeper negative gradient (late BP component) and is
strongest over central/contra lateral premotor and primary motor areas. Maximum peak
negativity occurs around the movement onset (BP) and is strongest over the central mo-
tor cortex. Measuring the exact timing of the movement onset is not trivial and often
introduces a systematic measuring error (e.g. a delay). Thereafter positive deflections
occur (e.g. reafferent potential around 0.25 -0.3 s after movement onset, see Figure
1.4) before returning the EEG back to baseline [103, 108]. A detailed review on MRCP
components can be found in [103].

Studies have shown that different movement tasks elicit changes in the morphology
of MRCPs, even before the designated movement is executed [110–112] and as well as
information about movement force and speed [108,113].
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Figure 1.4: Movement-related cortical potentials (schematic drawing). Around 2s before the
actual movement onset a negative deflection can already be observed (early BP). This de-
flection increases becomes a much steeper gradient around 0.5 to 0.25s before the movement
onset (late BP). The strong negative deflection at time = 0s (movement onset) represents
the Bereitschaftspotential. [108]. Taken and modified from [109].

1.2.2.3 Slow Cortical potentials (SCP)

Slow cortical potentials (SCPs) are positive or negative electrical shifts in the cortical
activity. They can last from several hundred milliseconds up to several seconds with
regards to the eliciting event [114]. Importantly, they can be externally triggered or self-
triggered. While negative deflections are assumed to occur in states of behavioural or
cognitive preparation [115], positive deflections indicate a reduction in cortical activity,
e.g. during behavioural inhibition [114] [116].

1.2.2.4 Steady-state evoked potentials

When presenting a stimulus with a steady frequency, a sinusoid brain response is elicited
with the same frequency as the stimulus frequency, called steady-state evoked potential
(SSEP) [117]. This brain feature is elicited by visual, auditory and somatosensory stimuli
and thus can be exploited for a BCI, e.g.: When presenting users three lights with
different flickering frequencies, they can focus on a specific light (target) which elicits
a measurable, oscillatory brain response with the target frequency. It has already been
shown that SSEPs can be used to drive BCIs using visual (SSVEP) [118–120], auditory
(SSAEP) [121–123] or somatosensory stimuli [124–126]. However this type of BCIs
strictly rely on an external stimulus source thus the control signal cannot be initiated
internally.
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1.2.3 BCI feature translation

The main goal of any BCI system is to translate brain patterns (e.g. as described in the
previous section) to control commands with a minimum of erroneous translations. The
most popular approach for this task is the use of classification algorithms [27].
The classification algorithm is a function which attempts to label each incoming observa-
tion into a set of categories. In a supervised training approach, the basis for identifying
the correct label is a training data set of observations, where the categories are already
known [25,127].
In terms of BCI use, an observation would be features such as amplitude or power values
of brain pattern generated by a single action of a user, whereas the category indicates
the type of action, e.g. a reach-and-grasp action towards a glass. Naturally there could
be more categories which are also called classes or conditions (e.g. reach-and-grasp of a
spoon, or a no-movement condition). Hence, the classification algorithm would attempt
to identify the reach-and-grasp action as such and would attempt to categorize correctly
as a reach-and-grasp action of a glass.
The performance of a classification algorithm is strongly dependent on the suitability of
the algorithm to interpret the provided features of an observation as well as the number
and the quality of the observations of the training set. While the first can be tuned
using a priori knowledge about the data and its provided features, the latter is prone to
unfathomable trade offs and practical necessities.
In general, EEG-based BCI experiments lack training data. The main reason for this
is that training data is usually not transferred or accumulated through different BCI
sessions due to the significant decrease in signal to noise ratio by changes in sensor posi-
tion and the conducting impedance between sensors and skin (reattaching the cap leads
inevitably to EEG nonstationarities). Additionally, one needs to keep in mind that for
training classification algorithms involving more than one condition (which is usually the
case) hundreds of observations requiring an action (e.g. reaching and grasping a glass)
from the user. Hence only the minimum amount of training data is recorded per session
to avoid user fatigue and decrease in user compliance. This fact further limits the se-
lection of classification algorithms to a set, capable of dealing with comparatively small
amounts of training data. Most popular classification methods are still the linear dis-
criminant analysis (LDA) [128,129], support vector machines (SVM) [130] or nonlinear,
decision tree based algorithms such as random forests [131–133]. Lotte and colleagues
provided a review of classification algorithms currently used for BCIs [27].

1.2.4 Application interface and application

The application interface transforms the output of the classification stage to a suitable
control signal for the designated application. In the best case, each BCI control com-
mand maps to one unique application command. For instance, a single BCI command
can operate a toggle switch [134–137]. Whereas a direct control modality is desired, the
number of conditions a BCI is trained on is usually limited (each condition needs their
own set of training data).
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However, indirect control modalities allow access to a large set of application commands
with comparatively few or even only one BCI command available. Application com-
mands are organized in subsets, which can be selected by navigating through individual
layser of subsets. Though the selection process for an application command takes longer,
this trade-off is made deliberately in exchange for limited BCI control commands. Scan-
ning paradigms are certainly the most commonly used indirect control strategies used
for BCIs (which can actually be operated by a toggle 1 condition switch) [31,138,139]: A
scanning line sequentially highlights each command for a fixed time. When the scanning
line reaches the desired command, the user can select it with the help of the BCI (e.g.
MI of both feet) and eventually the command is selected. Naturally this selection pro-
cedure strongly relies on BCI control with high accuracy. To further support stable BCI
control performance, Scherer et al. introduced evidence accumulation to a row-column
based indirect scanning procedure. Here the designated application command had to be
selected 2 out of 3 times to be ultimately acknowledged as command. Though this puts
further strains on the time needed to make a selection (and eventually the information
transfer rate (ITR)), they could achieve stable BCI control [140–142].

1.2.5 Closed loop BCI feedback

When humans interact with their environment, they usually receive feedback. For in-
stance, when grasping a glass of water, there is a vast sensoric spectrum of impressions
to deal with, like the surface structure of the glass itself, its temperature or the overall
weight just to name a few.
Per definition, a BCI operates in a manner of closed loop, which means that users need
to receive feedback based on their actions [24]. In order to provide meaningful feedback,
it has to be in context to the designated action. While the first is a technical issue
which has to be addressed, the human mind is able to adapt to the latter, e.g. when
reversing a car and one has no direct line of sight, a reversing assistant gives auditory
feedback with increasing frequency the smaller the distance to an obstacle is. Here the
human mind adapts to the lack of visual feedback and accepts feedback based on audi-
tory information. In any case, the type of feedback presentation for BCIs strongly relies
on the application. It can be given visually [143–145], auditory [121, 146] even through
tactile feedback [147–151]. However, also combinations of different feedback modalities
are possible. For instance, in case of a BCI driven upper limb neuroprosthesis, it is
quite conceivable that users receive feedback by observing his enhanced arm grasping an
object while they receive feedback of the grasp force via vibrotactile feedback presented
on a shoulder actuator [152].

1.3 Non-invasive BCIs for motor control: State-of-the-art

Besides communication , restoring voluntary motor control for humans with paralyzed
limbs is one of the most prominent use cases of a BCI [28]. The BCI hereby acts as a
bridge to overcome the incapacitated part of the central nervous system (e.g. a lesion
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at the cervical level of the spinal cord): it attempts to decode the movement intention
of the user and eventually generates a control signal for an assistive device such as a
prosthesis, an orthesis or an upper limb motor neuroprostheses. Motor neuroprosthe-
ses [153, 154] are generally based on the principle of functional electrical stimulation
(FES): electrodes which can either be placed on the skin surface or implanted on muscle
motor points apply short constant-current pulses which depolarize the nerve and elicit an
action potential. This leads to contractions of still innervated muscle fibres. Depending
on the electrode placement, various upper limb/hand movements as well as basic grasps
can be formed [155–157].
Over the last two decades a number of BCI groups have made attempts to realize BCIs for
motor control. In another proof-of-concept study including one tetraplegic participant
(lesion height C5), Heasman et al. achieved BCI control of an implanted neuroprosthesis
via toggle switch [158]. The participant was able to voluntarily modulate his occipital
alpha rhythm (8-13 Hz) by opening and closing his eyes, which eventually triggered the
switch to either open or close the hand via neuroprosthesis. In a series of 13 trials, the
tetraplegic end user completed 10 trials successfully.
Notably, the group of Pfurtscheller and especially Müller-Putz have been continuously
pursuing BCIs for motor control over the years. Their initial proof-of-concept study
involved BCI control of an electrically driven hand orthosis (left hand) which supported
a tetraplegic end user (lesion height C4) to open and close the hand [80]. Their single
study participant performed different kinds of motor imagery (MI) tasks to modulate his
brain patterns. These MI tasks led to power changes especially in the alpha (8-12 Hz)
and beta band (18-30 Hz) and could eventually be classified using a linear discriminant
analysis classifier (LDA). Over the course of 53 experimental sessions (160 trials per
condition (TPC) each), they identified mental strategies with the most discriminable
features, which were ultimately the MI of both feet versus right hand. Eventually the
study participant achieved a stable performance of 95%. Relying on the same study
participant as well as the same feature space for BCI control, they could show the feasi-
bility of their so called MI-BCI also when using a FES-based upper limb neuroprosthesis
(left hand) [35]. Furthermore, the group could show that the MI-BCI is also applica-
ble when using an invasive upper limb motor neuroprosthesis such as the FreeHandTM

system [159]. In three days training, the study participant was able to switch between
different neuroprosthesis modes (e.g. switching between palmar and lateral grasp) using
the BCI. In this case, the study participant performed motor imagery of the left hand
to switch between grasping patterns of the neuroprosthesis, which was implanted in the
right hand [33].
In a later study, the Müller-Putz et al. investigated the feasibility of SSVEP based BCI
control of a two axis electrical lower arm prosthesis [160]. The prosthesis had attached
four LEDs which flickered with different frequencies (6,7,8 and 13 Hz). Each study par-
ticipant (n=4) had to perform a series of commands (e.g. rotate the wrist) which were
triggered by focusing on the designated flickering light which could be decoded from the
EEG. Study results indicated that for this four condition approach, classification accu-
racy ranged between 44% and 88% (160 TPC, probability threshold 25%). A follow up
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study by Ortner et al. in 6 healthy participants applied the concept on a hand orthosis
with comparable results [161].
One of the major problems of using BCIs for motor control was the limited number of
derived control signals for actual control. Müller-Putz and colleagues eventually could
show in a cohort of able bodied participants that with a temporal coding approach,
the control modalities of their initially 2 class MI-BCI could be increased. With the
additional temporal coding, e.g. short MI of right hand movements vs long MI of right
hand movements, their system could provide enough control modalities to successfully
operate both hand (open/close) and elbow (flexion/extension) control [162].
In a first approach to provide a more intuitive form of control for the user, Tavella et
al. provided a proof-of-concept study in healthy participants (n=4): their asynchronous
MI-BCI approach involved MI of the hand to which the neuroprosthesis was attached
to. Previous studies refrained from this approach for the fear of incorporating artefacts
in their analysis or introducing a confounder due to feedback observation (the end user
performs the MI of the hand, which then performs the movement and the observation
has a potential effect on the MI) [163]. They could show that their study participants
were able to grab a pen and write words or short sentences incorporating only a com-
paratively small set of erroneous attempts.
In a later attempt Rohm and Kreilinger picked up the concept of the hybrid BCI [164,165]
to control an hybrid neuroprosthesis via both MI-BCI based switch and a shoulder oper-
ated joystick [166,167]. This study also included the temporal coding approach described
in [162]. As an additional control modality, the shoulder operated joystick allowed ana-
logue control of elbow flexion/extension as well opening/closing of the hand. The study
was conducted over a whole year and included 415 single BCI sessions. Unfortunately,
the authors could not determine any improvements in performance as could be shown
by [80], rather their participant scored on average around 70% accuracy with the BCI.

1.4 Current limitations in BCIs control modalities for motor
control

The previous section has shown the development of BCIs intended for motor control
with an intentional focus on the action/control strategy of the user. In general, one
can say that these strategies were rather abstract and did not often have any intuitive
association to the intended movement at all. Pfurtscheller and Müller-Putz used in their
proof-of-concept study MI of foot movement to control the participants’ neuroprosthe-
sis [80]. In follow up studies, Müller-Putz included the opposite hand to allow BCI
control the FreeHandTM system [33], or required even staring at flickering lights to elicit
a control command [160]. Some approaches required the closing of both eyes to induce
changes in alpha rhythm, which is not only unpractical in daily life, but can potentially
lead to dangerous situations [158].
Although initial attempts by Tavella et. al. were made to adjust the control modality to
a more natural form by using MI of the same hand as a toggle switch, it is still a form of
repetitive imagination of a task to elicit a brain pattern which can be decoded [163]. In a
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real application scenario, these control modalities are too abstract and counterintuitive
to allow meaningful control of an assistive device e.g. a neuroprosthesis. In a potential
hazardous situation, where people rather react by instinct, this might even lead to re-
duced control performance.
Therefore, decisive investigations towards a more natural form of BCI based upper
limb/hand motor control are necessary. Moreover, an approximation towards natu-
ral grasping as it is performed by non-impaired persons is desirable. A future control
strategy ideally consists of one non-repetitive task which is similar to the task that has
to be performed by the assistive device. In case of upper limb/hand movements, this
inevitably leads to the use of different grasps as control modalities. For instance, a
tetraplegic end user attempts or imagines a palmar grasp with the right hand, the BCI
correctly decodes this intention and instructs the neuroprosthesis (attached also on the
right hand) to form a palmar grasp.
The human hand has 27 degrees of freedom, hence a large amount of different hand
gestures and grasps are possible to interact with the environment. However, in case of
controlling assistive devices such as an upper limb motor neuroprosthesis, this range is
limited to the capabilities of the device and its potential control interface. A selection
for the most used and practical grasping options is required. Most actions of daily life
can be handled using palmar, pincer and lateral grasps [168], hence a restriction to these
grasp types would seem feasible.
On close inspection however, most of the time it is not enough to include only grasp-
ing. In most cases, a grasp towards an object implies a reaching movement. Prehension
experiments initiated by Jeannerod and colleagues show that there is a direct synergy be-
tween reaching and grasping [169–171] (see for a review [172]): they could quantify that
the hand already preshapes during the reaching movement towards the object. Here,
the maximum grip aperture between thumb and index finger (tips) occurs around 70%
of movement completion. This indicates not only that a substantial part of the grasping
procedure already happens during the reaching movement: From a neurophysiological
aspect, grasping information might be already encoded during preparation and reaching
movement.
Nevertheless, it still remains to be seen whether neural correlates for grasp or reach-
and-grasp actions can be found and decoded from human EEG. So far, invasive studies
using ECoG measurements performed by Pistohl and colleagues indicate that there is
discriminative information for detection of grasps and their classification in amplitude
modulations of frequencies below 6 Hz [173–175]. This frequency range coincides to
the full extent with the low frequency time domain (LFTD), where MRCPs are promi-
nent [103]. EEG studies investigating LFTD could already confirm that continuous
decoding of reaching movements is possible [176–178], using center out tasks. Recently,
Agashe and colleagues showed that EEG based LFTD signals of various reach-and-grasp
hold synergies with their designated movement kinematics. They report correlation co-
efficients (r) of 0.3 to 0.6 between the predicted movement kinematics extracted from the
LFTD and the actual movement kinematics [111]. Furthermore, initial investigations of
Jochumsen et al. could show that MRCPs hold information about the force and the
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speed when performing a palmar grasp [113].
These studies indicate that the LFTD and the occuring MRCPs potentially could hold
discriminative information to decode grasping or reach-and-grasping actions from hu-
man EEG. Hence, this thesis targets further investigations on the EEG based decoding
of grasp and reach-and-grasp actions from MRCPs.

1.5 Aims of this thesis

Summarizing the current limitations, BCIs for upper limb motor control rely on rather
abstract control modalities, which are often counterintuitive and do not reflect the actual
task at hand. A more natural form of control is required, ideally an approximation
towards natural grasping, as it is performed by non-impaired persons. Hence the main
goals of this thesis are to

1. Identify EEG correlates which are associated with natural grasp and reach-and-
grasp actions as they are performed in daily life. Recent studies suggest that
LFTD and MRCPs potentially hold discriminable information for detection and
decoding of grasps and reach-and-grasp actions. Hence the focus of the investiga-
tions presented in this thesis will be on examining EEG correlates of this frequency
range.

2. Investigate whether these EEG correlates can be successfully decoded on a single
trial basis and

3. Assess their feasibility in a noninvasive online BCI.

1.6 Organization of this thesis

So far, Chapter 1, Introduction, has provided an overview of the BCI research field.
It gives an overview over the most relevant neurophysiological signals and defines the
components of a standard BCI. Furthermore it provides an outline of the current state-
of-the art BCIs used for (upper limb/hand) motor control and shows the limitation of
the current BCI control modalities. In conclusion, the section identifies and defines the
goals for this thesis. Chapter 2, Methodology and results, summarizes all relevant
experiments and studies performed in context of this thesis. Chapter 3, Discussion,
discusses the findings of this thesis and compares it to other work in the literature. Fur-
thermore it critically assesses its limitations and explains future prospects to overcome
these limitations. Chapter 4, Appendix A, lists the author contributions to the in-
cluded publications. Appendix B holds all publications which were conducted in the
course of this thesis. Appendix C provides an overview of all publications of the author
of this thesis.
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2 Methodology and results

The following chapter summarizes all studies and methodologies conducted with respect
to this thesis. The underlying journal and conference publications can be found in
Chapter 4, Appendix. Figure 2.1 depicts the findings within the timeline of the thesis.

Figure 2.1: Core publication overview of the thesis. Investigations have already started with
the start of the PhD in March 2015. Studies for Core publications 2 and 3 were done in
parallel.
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2.1 Decoding reach and reach-and-grasp actions from human
EEG

2.1.1 Decoding natural reach-and-grasp actions from human EEG

Schwarz Andreas, Ofner Patrick, Pereira Joana, Sburlea Andreea and Gernot
Müller-Putz, “Decoding natural reach-and-grasp actions from human EEG.”,
Journal of Neural Engineering, Feb 2018; 15(1):016005, https://doi.org/10.
1088/1741-2552/aa8911, [179]

2.1.1.1 Summary

This study analyzed whether EEG correlates of executed reach-and-grasp actions could
be found and discriminated from each other and from a no-movement condition. Follow-
ing the practical approach described by Popovic et al [168], the conditions investigated
were restrained to palmar, pincer and lateral grasp on objects of daily life (see Figure 2.2)
as well as a no-movement condition for a comparative baseline. Following a cue-guided
experiment (see Figure 2.3), 15 abled participants performed 72 reach-and-grasp actions
using palmar, pincer and lateral grasps each. Additionally 72 trials were recorded where
they performed no-movement at all.

Figure 2.2: Experimental setup, Left: Participant is seated on the table and focuses her gaze on a
fixation cross presented on the in-built screen. Center: Objects for grasping (i) a glass,
a key, a needle, and an empty plexiglass retainer which represents the no grasp condition.
Right: 61 electrodes were used to record EEG over frontal, central and parietal regions
using a 5 percent grid.

2.1.1.2 Contribution to the PhD thesis

This initial study laid the foundation for all upcoming investigations within this PhD
thesis. We could successfully identify EEG correlates in the LFTD (0.3-3 Hz), namely
MRCPs, which represented the executed palmar, pincer and lateral reach-and-grasp ac-
tions. The MRCPs were characterized by a strong negative deflection at the movement
onset (Bereitschaftspotential, [108]) followed by a reafferent positive potential around
300ms. Thereafter, a second positive deflection occured before returning to baseline (see
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Figure 2.3: Experimental paradigm, sequential view. At trial start participants focus their gaze
on the cross shown on the screen (1). After 2 seconds, one of the four objects is highlighted
in white. Participants are instructed to focus on the white tile (3). Once the tile turned
green (variable time), participants immediately reached-and-grasped for the designated
object until the green highlighting vanished. Thereafter the returned to starting position
(4) and the inter trial interval started (2-3 seconds).

Figure 2.4: Movement-related cortical potentials (MRCPs) of cue-guided reach-and-grasp ac-
tions (colored) and the no-movement condition (grey) for channels FCz, C1, Cz and C2
(bidirectional filtered, 4th order, 0.3-3 Hz). The shaded areas represent the 95% confidence
interval, calculated using non-parametric t-percentile bootstrap testing (alpha = 0.05).
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Figure 2.4). We could show that on group level, the correlates of the movement con-
ditions were significantly different before and during the reach-and-grasp actions to the
movement condition. Additionally, significant differences between movement conditions
could be found in the first second after movement onset.

The goal of this study was not only to assess the decodability of the investigated
conditions, but also to determine tunable parameters to boost decoding accuracy. In this
work we could show that on average, the highest decoding accuracy could be reached by
extracting features from the first second after the movement onset. With respect to the
performed behavioural analysis, this period fully reflects the reaching and preshaping
of the hand before the grasp is finished. Binary decoding of reach-and-grasps versus
the no-movement conditions yielded on average around 93.5% STD +/- 4.2%. Even
for participants with movement versus movement decoding accuracies close to chance
level, movement versus rest achieved around 85%. Binary movement versus movement
decoding, e.g. lateral versus palmar grasp, yielded on a grand average basis of 72.4%
STD +/- 5.8%.

Figure 2.5: Offline cross-validated (10x5) multiclass classification performance using a
1000ms feature window. Left: Grand average over all study participants. The col-
ored markers represent calculation points for underlying confusion matrices. The confusion
matrices underwent row-wise normalization. Right: Participant specific peak accuracy is
higher in general than the global grand average due to participant specific time variation
in reaching peak accuracy.

In a multiclass decoding setting, where we included all three reach-and-grasp con-
ditions as well as the no movement conditions, we could reach 65.9% STD +/- 8.1 %
(see Figure 2.5). We also investigated how the performance changed when reducing the
electrode setup to a smaller configuration. Our analysis showed that when reducing the
electrode grid from 61 channels distributed over the whole scalp to only 25 channels
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located primarily over sensorimotor areas, the previously mentioned multiclass perfor-
mance dropped only by less than 3 %.
This suggested for future endeavours including e.g. a motor impaired end user popula-
tion that a trade-off between performance and electrode density and hereby mobility is
well within reach.
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2.1.2 Decoding hand movements from human EEG to control a robotic arm
in a simulation environment

Schwarz Andreas, Maria Katharina Höller, Joana Pereira and Gernot Müller-
Putz, “Decoding hand movements from human EEG to control a robotic arm
in a simulation environment.”, Journal of Neural Engineering, 17(3):030610,
2020. https://doi.org/10.1088/1741-2552/ab882e, [180]

2.1.2.1 Summary

In this study we investigated whether EEG-based decoding of two different grasps and
one wrist supination condition can be done in real time by a BCI. Fifteen abled bodied
participants took part in the experiment. They were immersed in a desktop based sim-
ulation environment and gained control of the robotic arm of an avatar in a wheelchair.
The avatar was seated in front of a desk and had to perform actions of daily life, e.g.
grasping a glass of water (palmar grasp) or a spoon (lateral grasp) or turning on a big
radio knob on a vintage radio (wrist supination). Although the simulation environment
mimicked a setting of daily life, the paradigm was implemented in a cue-based way: The
robotic arm of the avatar reached towards the interacting object, but stopped shortly
before it. The study participants were asked to finish the designated task, e.g. in case
of the glass, they had to execute a palmar grasp, in case of the spoon, a lateral grasp
(see Figure 2.6).

Based on the parameters investigated in section 2.1.1, we defined a calibration phase
where we recorded 60 TPC for each condition without giving feedback. Thereafter, a
regularized linear discriminant classifier [129] was trained on the best performing time
point within the trial with respect to the real movement onset. In the subsequent
evaluation phase (45 TPC), participants controlled a robotic arm and interacted with
the virtual objects in case of a correct classification. In case of an incorrect classification,
the virtual robotic arm performed a shaking movement on the horizontal plane.

2.1.2.2 Contribution to the PhD thesis

We could show for the first time in a large population of gender balanced, abled partici-
pants (n=15) that executed, single hand/wrist movements could be successfully decoded
online from EEG using features extracted from the LFTD. In the online experiment, 14
out of 15 participants scored significantly higher than chance with 48% of correctly clas-
sified movement trials (3 condition scenario, adjusted chance level 40%, [181, 182] (see
Figure 2.7).

Underlying EEG correlates of the initial calibration data in the LFTD showed signif-
icant differences between conditions in the first 0.5 s after the movement onset. These
differences were found mainly over sensorimotor areas contralateral to the executing
hand at channel locations C1 and C3. Importantly, we could show that these differences
were retained to a large extent in the evaluation phase, where participants received feed-
back based on their actions (see Figure 2.8).
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Figure 2.6: Simulation environment, paradigm and experimental setup. (A) Study partici-
pants were immersed in a desktop-based simulation environment and were asked to interact
with three different objects of daily life via a motor impaired avatar with a robotic arm.
At the start of each trial, the robotic arm of the avatar reached for an object, but stopped
shortly before interacting with it. (B) The study participants were instructed to complete
the movement. In case of a correct classification, the robotic hand interacted with the ob-
jects on the table (evaluation phase only), e.g the robotic hand turned on the vintage radio.
Thereafter we introduced a break for 2 to 3 seconds (random length). (C) the experiment
was subdivided in the calibration phase for data gathering (4 runs á 15 TPC, no feedback)
and the evaluation phase (3 runs á 15 TPC).
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Figure 2.7: Participant-specific performance of the online evaluation. In total 135 correct
trials could be achieved. To score significantly higher than chance, 54 trials out of 135
trials had to be correctly classified (alpha = 0.05, adjusted Wald interval [181,182]).

In this study we applied a novel paradigm to instruct and interact with the users. The
desktop based simulation environment not only allowed us to recreate daily life situa-
tions, e.g. grasping a glass or a spoon. Moreover, we designed the simulation environ-
ment in a way so that we could avoid brisk cue presentation and its inevitably accompa-
nying elicited visually evoked potentials (VEP). This is of particular importance since
they can potentially mask and contaminate motor potentials.
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Figure 2.8: Movement related cortical potentials (causal filtered, 4th order, 0.3-3Hz). Top
and central row show the grand average and the bootstrapped confidence interval (alpha
= 0.05) for all conditions for channels C1, Cz and C2 (0.3-3Hz, causally filtered). Time
= 0s represents the movement onset. The bottom figure depicts differences between the
conditions on a topographical scale, on a grand average basis. Black dots on the scalp
represent channels which showed significant differences between conditions (calculated using
non-parametric paired sample two-tailed permutation tests based on t-statistics, alpha =
0.05).
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2.2 Decoding unimanual and bimanual reach-and-grasp actions
from human EEG

2.2.1 Unimanual and Bimanual Reach-and-Grasp Actions Can Be Decoded
From Human EEG

Schwarz Andreas, Pereira Joana, Kobler Reinmar, Gernot Müller-Putz,
“Unimanual and Bimanual Reach-and-Grasp Actions Can Be Decoded From
Human EEG.”, in IEEE Transactions on Biomedical Engineering (TBME),
09/2019, vol. 67, no. 6, pp. 1684-1695, June 2020, https://dx.doi.org/10.

1109/TBME.2019.2942974, [183]

2.2.1.1 Summary

During our work with tetraplegic spinal cord end users (see [152]) we came to under-
stand that single limb control is not enough to provide meaningful control in daily life
situations. The second hand is often used in a supporting or stabilizing function. Hence
with this study, we investigated the EEG correlates in the LFTD for both unimanual
and bimanual reach-and-grasp actions. The aim was to find significant differences which
eventually could be used for subsequent decoding between unimanual and bimanual
tasks, as well as against a rest condition. Fifteen able bodied participants performed self
initiated reach-and-grasp actions on objects of daily life (see Figure 2.9). Unimanually,
with both left and right hand, they reached and grasped for a glass (palmar grasp) or a
spoon (lateral grasp).

As for bimanual tasks, they either reach-and-grasped a pot on its handles (double
lateral grasp) or a jar with a spoon attached (mixed grasping of palmar and lateral
grasp). Additionally we recorded periods of resting, where participants sat comfortably
and relaxed. In this way, we recorded 80 trials for 7 different conditions, 4 unimanual
(left/right, palmar/lateral), 2 bimanual (double lateral/mixed palmar/lateral) and 1 rest
condition.

2.2.1.2 Contribution to the PhD thesis

In this study we could show that unimanual and bimanual reach-and-grasp actions can be
decoded from the LFTD of human EEG. Our multiclass classification approach consisted
of all 6 movement conditions and one rest condition. It was evaluated on a (unseen) test
set consisting of one third of the gathered data. On average, participants performed at
38.6% +/- STD 6.6% peak performance approximately 1 s +/- STD 200 ms after the
movement onset (see Figure 2.10). This confirms our findings from section 2.1.1, where
the most discriminable features could be found in the first second after the movement
onset [179].

Underlying EEG correlates of paired conditions ‘Left Hand’, ‘Right Hand’ and Biman-
ual showed significant lateralization effects already occur around one second before the
movement onset but also during and shortly after the movement onset (see Figure 2.11).
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Figure 2.9: Experimental paradigm. Though self-initiated, we instructed the participants to fixate
their gaze on the object they want to grasp for 1-2 s before initiating the reach-and-grasp
action. Once they grasped the object, they were tasked to hold the object for at least 1-2
seconds, before returning to their starting position. For unimanual conditions, participants
grasped a glass (palmar grasp) or a spoon (lateral) grasp with both left and right hand.
For the bimanual conditions they grasped the handles of a pot (double lateral grasp) or a
jar with a stuck spoon (left hand palmar grasp for support, right hand lateral grasp on the
spoon).

Figure 2.10: Multiclass decoding performance of the unseen test set for all participants.
Left: The evaluation was performed within a window of interest of [-2 3] s whereas time
= 0s refers to the movement onset. The bold black line shows the grand average over all
participants. Grey lines indicate the participant specific performances, red dots represent
their peak accuracy. Peak accuracies are spread over the time course of one second, indi-
cating a considerable inter participant variability. Nevertheless, all participants performed
significantly better than chance (adjusted chance level at 24.2%, alpha = 0.05, [181,182].
Right: Grand average, row-wise normalised confusion matrix of participant specific peak
accuracies. As can be seen, true positive rates (TPR) for the rest condition exceed any
other movement condition TPRs by more than 20 percent. Discrimination between bi-
manual conditions as well as same hand conditions yield higher false positive and false
negative rates while parings involving different hands have considerably lower true positive
or false positive rates.
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For the bimanual conditions no distinct lateralization effect could be observed. Investi-
gations on the scalp topographic level showed these differences mainly over sensorimotor
areas (see Figure 2.12).

Figure 2.11: Movement-related cortical potentials of unimanual and bimanual reach-and-
grasp actions (bidirectional filtered, order 4, 0.3-3Hz). Grand average over all
participants of grouped unimanual and bimanual conditions (e.g. all left hand conditions
together). Additionally, colored shaded areas show the 95% confidence interval calculated
using non-parametric t-percentile bootstrap statistics (alpha =0.05) for channels C1, Cz
and C2.

Results of this study indicated that a discrimination between unimanual and biman-
ual movements is not only possible but the occurring lateralization effect even fosters
discrimination between unimanual and bimanual conditions.
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Figure 2.12: Topographical plots showing the difference between grouped conditions
(groupA-groupB) of left hand, right hand and bimanual tasks. The time range
depicted ranges from one second before the movement onset (time = -1s) to 1.5 s after the
movement onset. Small dots represent channels which have been significantly different
between groups (determined using non-parametric paired sample two-tailed permutation
tests based on t-statistics, alpha = 0.,05).
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2.2.2 Case study: Unimanual and Bimanual Reach-and-Grasp Actions Can
Be Decoded From Human EEG of a tetraplegic end user

The following chapter describes an unpublished single case study which is considered for
future publication.

”Unimanual and Bimanual Reach-and-Grasp Actions Can Be Decoded
From Human EEG of a tetraplegic end user”, in preparation1

2.2.2.1 Introdcution

In section 2.2.1, we could show in an abled bodied population (n=15) that unimanual and
bimanual reach-and-grasp actions could be decoded from the EEG LFTD. In a single-
trial multiclass classification approach consisting of 6 unimanual and bimanual movement
conditions as well as one rest condition, participants reached peak accuracies of 38.6 %
+/- STD 6.6% on a previously unseen test data set. Underlying EEG correlates indicated
significant differences of movement-related cortical potentials between conditions from
around 1s before to 1.25 s after the movement onset. However, it still remained unclear
whether these results could be transferred to e.g. users without voluntary hand/finger
control - a condition not uncommon in people with high spinal cord injury [152]. In such a
scenario, a combination of both executed and attempted movements, respectivley, would
come to bear: While the reaching movement towards an object can still be executed, the
grasp is attempted by the end user. Recent findings have suggested that the attempted
movements provide a similar neural representation to executed movements and can also
be decoded [184,185].
In the current single case study, we investigated in one high spinal cord injured end user,
whether the combination of executed and attempted unimanual and bimanual reach-and-
grasp actions can be decoded from the LFTD of EEG. Additionally we were interested,
whether significant differences of MRCPs could be found.

2.2.2.2 Methods

Study Participant This study was approved by the local ethical commission of the
Medical University of Graz (EK: 30-439 ex 17/18). The study participant SCI1 was a
31 year old tetraplegic male participant. He suffered a traumatic injury at cervical level
4 (C4) after a motor vehicle incident (MVI). Clinical assessment performed according to
the ASIA impairment scale (AIS) file him as sensory incomplete B. [186]
Regarding residual voluntary motor functions, the study participant has no voluntary
lower limb, hand or wrist control, however he still retains shoulder and elbow function
for both arms (MRC [19], grade 4-5). His predominant hand is the right hand which he
uses to operate most assistive devices in daily life (leather wrist bands, customized pens
and cutlery, also touch screens). The study participant was informed about the study
procedure and the scientific goals of the study and he also gave written consent.

1Schwarz Andreas, Pereira Joana, Zube Marcel, Gernot Müller-Putz
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Experimental setup The recording was conducted in a secluded room at the home of
the study participant. In front of the participant, we placed a customized table with an
in built monitor. On the monitor, we placed objects of daily life for reach-and-attempted
grasping. For unimanual conditions (performed with both left and right hand) we placed
a jar (palmar grasp) and a jar with a spoon (lateral grasp on the spoon). For bimanual
conditions, we used a pot to be grasped at both handles (double lateral grasp) and the
jar with the spoon (right hand lateral grasp on the spoon, left hand palmar grasp on
the glass for stabilization). Table 1 lists all conditions performed in the experiment.
In unimanual runs, both unimanual objects were placed on the table in a comfortable
reaching and grasping position for the participant. We also switched positions (left or
right) of the objects regularly, so that each object was on each side of the table the same
often. For bimanual runs we put only one object at a time on the table, since the range
of motion of the study participant was limited.
The participant was then tasked to reach and attempt to grasp the designated objects
in front of him. At the start of each trial, his hand(s) were located on pressure plates
directly in front of him (for unimanual conditions, one pressure plate was placed in the
centre). In a self initiated manner, the participant focused his gaze first on the object
for 1 to 2 seconds before he started the reaching and attempted grasping movement (see
Figure 2.13). While it was evident that he could not perform a fully functional grasp
on the objects before him, he attempted the designated grasp (see Figure 2.14). After a
period of 1 to 2 seconds, the participant released position and went back to the starting
position. Thereafter, he paused for at least 4 seconds before initiating the next trial.
In this way, we recorded 80 trials per condition (TPC) in runs á 20 TPC. As for the
bimanual conditions we recorded 40 trials alternating for each object.

Figure 2.13: Experimental paradigm: In a self-initiated manner, the participant was tasked focusing
his gaze for 1-2 s on the designated object before initiating the reach and attempted grasp.
Although the participant was not able to perform a fully functioning grasp on any object,
he still attempted the grasp and touched them. After 1-2 seconds, the participant returned
his hand(s) back on the pressure plates.
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Additionally, we recorded at the start, half time and end of the experiment 3 minutes
of resting data as well as 2 minutes of eye movements following the protocol already
described in [183].

Figure 2.14: The study participant performs unimanual and bimanual reach and grasp
actions. (A) attempted palmar grasp, (B) attempted lateral grasp, (C) attempted
double lateral grasp, (D) attempted mixed grasping action (left hand palmar grasp, right
hand lateral grasp).

Data recording and preprocessing Data recording and preprocessing was performed
identical to the processing steps described in section 2.2.1, [183], section A-F. Sum-
marizing, we used 58 active electrodes (g.tec medical engineering GmbH) positioned
over frontal, central and parietal regions of the scalp. Additionally, we recorded the
electrooculogram (EOG) using 6 additional active electrodes at locations superior and
inferior to the left and right eye as well as the outer canthi. All signals were sampled
with 256 Hz and bandpass-filtered (0.01-100Hz) using a 8th order Chebyshev filter. Ad-
ditionally, we placed a notch filter at 50Hz to suppress the power line noise.
For recording the movement onset as well as the grasp onset (the moment the participant
touched the designated object), we used force-sensing resistors. All datastreams were
synchronized using the TOBI signal server [187,188].
We applied a 4th order, zero-phase highpass Butterworth filter at 0.3 Hz on all recorded
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Table 2.1: Experimental Conditions

TYPE OBJECT GRASP TYPE

Unimanual
(performed w. left or
right hand separately)

Jar Palmar

Spoon Lateral

Bimanual
Pot with Handles Double Lateral

Jar with Spoon
Palmar (left Hand)

Lateral (right Hand)

Rest Cross on Screen No movement performed

Eye Movement
Instructions

on screen
-

data. To correct the recorded data for ocular based artefacts, we trained a subspace
subtraction algorithm [189–191] on the recorded eye movements and applied it on the
movement and rest data. Thereafter we defined a window of interest (WOI) of -2s to 3s
with respect to the movement onset for each trial. We epoched the recorded rest data
to extract 81 trials as an additional condition.
We further rejected trials with potential artefact contamination using statistical param-
eters between 0.3 and 35 Hz (see [183] for parameters) from the subsequent analysis
(12% of all trials were rejected).

Movement-related cortical potentials Calculation of the MRCPs follows closely the
approach described in [183], section G. We initially applied a common average reference
filter (CAR) and resampled the all data to 16 Hz to save computational load. Thereafter
we applied a 4th order zero-phase highpass filter (Butterworth) with a cut-off frequency
of 3 Hz to attenuate higher signal components. To ease comparison to the findings
in [183], we calculated the global field power over all channels and normalized all data
by the average GFP of the rest condition [192].
We eventually epoched all data according to the WOI and calculated the mean over all
trials for each condition. We also calculated a 95% confidence interval for each condition
using non-parametric t-percentile bootstrap statistics.
Additionally, we pooled all conditions for each left hand, right hand and bimanual and
calculated mean and bootstrapped confidence interval.

Single trial classification Single trial classification was performed identically to the
approach described in [183] section H (see Appendix for further details). In summary,
we resampled all data to 16 Hz and applied a 4th order zero-phase highpass filter (But-
terworth) with a cut-off frequency of 3 Hz. Thereafter, we divided all available data
(all movement trials as well as all extracted rest trials) into a calibration set (the first
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recorded 66% of all movement trials) and an unseen test set (the last 33% of the recorded
data). Using the calibration data, we determined the best performing (in terms of accu-
racy) classification model. We epoched all trials of the calibration data set according to
the WOI and calculated an individual classification model for each time point within the
WOI: For each time point, we applied 10 times 5 fold cross validation and divided the
calibration data in training and validation set. Thereafter, we trained a shrinkage based
linear discriminant classification model [129] with features extracted from the training
set. These features were taken from all 58 EEG channels in 0.125s steps from a causal
1 s window [-1:0.125 0] s, whereas time = 0s is the investigated time point in the WOI.
In this way, we extracted 9 features per channel, in total 522 features per observation.
This approach was repeated for every time point within the WOI (n= 80). To determine
the best performing classifier, we took the means of the accuracies of the cross-validated
results for each time point and chose the one with the highest mean accuracy. We also
determined a normalized confusion matrix for the best performing classification model.
For this, we row-wise normalized the confusion matrix (CM) so that every row sums
up to 1. Hence, reported true positive (TPR) and false positive rates (FPR) were also
subject to this normalization step. Finally, we applied the best performing classification
model on the unseen test data set (33% of all recorded data).

2.2.2.3 Results

Behavioural deviation from the experimental protocol in bimanual tasks It was not
possible for the study participant to simultaneously reach with both hands (forwards)
towards the object: This would have led to an unstable torso position resulting in tilting
forwards. Instead he eventually performed the bimanual tasks in a slightly sequential
order as can be seen in Figure 2.15.

Movement-related cortical potentials Figure 2.16 depicts the average MRCPs for the
pooled conditions of left hand, right hand and bimanual conditions for channels C1,
Cz and C2 over the central motor cortex. Already 1s before the movement onset, a
strong negative shift occurs which reaches its peak around the movement onset (“Bere-
itschaftspotential“, [106, 108]). This negative peak is larger for left hand conditions on
the right side, and for right hand conditions on the left side, indicating a distinct lat-
eralization effect. For the bimanual conditions, no distinct lateralization effect at time
= 0s can be observed. Around 300ms after the movement onset, a positive peak for all
conditions can be observed, which corresponds in timing to the ”reafferent potential”.
Around 1 to 1.5 s after the movement onset a second positive peak can be observed for
the conditions before returning to baseline.

Figure 2.17 shows the MRCPs for same hand and bimanual conditions for channels
C1, Cz and C2 located over the central motor cortex. Again a strong negative shift can
be observed culminating around the movement onset followed by the positive potential
around 300ms after the movement onset. For left hand conditions (Figure 21, 1st row) the
negative peak at the movement onset is stronger pronounced on the right side (C2) while
for right hand conditions on the left side (C1) (Figure 22.16, 2nd row). A pronounced
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Figure 2.15: Behavioural deviation from experimental protocol in bimanual tasks. (A, B)
show the trial time course. Due to torso instability the study participant was unable to
simultaneously reach with both arms forward towards the object. Instead he performed
sequential reach-and- attempted grasp actions. (A) bimanual reach and attempted grasp
towards the pot (double lateral grasp). (B) bimanual reach and attempted grasp towards
the jar with the spoon.

Figure 2.16: Movement-related cortical potentials for Left hand, right hand and bimanual
conditions (pooled): Averages and 95% confidence intervals of left hand, right hand
and bimanual conditions (pooled) for channels C1, Cz and C2. The black perpendicular
line represents the movement onset.
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Figure 2.17: Movement-related cortical potentials for same hand and bimanual condi-
tions.Averages and 95% confidence intervals for all conditions for channels C1, Cz and
C2. MRCPs are time locked to the movement onset (time = 0s, black perpendicular line).
The first row shows the MRCPs for left hand conditions, the second row for right hand
conditions. The last row depicts the MRCPs for the bimanual conditions.
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difference in MRCP morphology can be observed between both bimanual conditions,
since timing for both conditions is different due to sequential handling of the reach and
grasp actions.

Figure 2.18: Calibration set, mean of the cross-validated classification results.
(Top)Accuracy averages (%) over all tested timepoints within the WOI (black crosses).
Peak performance is reached around 900ms after the movement onset (black vertical line).
(Bottom) Confusion matrices for 3 points of interest within the WOI (row-wise normal-
ized): 1s before the movement onset (red), at time of the movement onset (green) and
when reaching peak performance (yellow). Condition abbreviations: rest (Rest), l-pal
(left palmar), l-lat (left lateral), r-pal (right palmar), r-lat (right lateral), bi-dlat (biman-
ual double lateral, Pot), bi-mix (bimanual mixed palmar/lateral).

Single trial multiclass classification For the single trial multiclass classification we ini-
tially determined the best performing classification model (in terms of accuracy) within
the WOI. Figure 2.18 (top) depicts the results for each time point within the WOI (av-
eraged over all cross validated results). The best performing classification model was
found 0.875 s after the movement onset with a peak accuracy of 71.1% (adjusted chancel

36



level 20.9%, [181, 182]). Figure 2.18 (bottom) shows the row-wise normalized confusion
matrices for 3 points of interest within the WOI. It can be seen that around 1 s before
the movement onset (bottom left, highlighted red), all entries of the confusion matrix are
around chance level (with the exception of the rest class). At the point of movement on-
set (bottom center, highlighted green), better than chance TPR rates can already be seen
for all conditions, especially for the rest and bimanual conditions. Highest false positive
rates (FPR) and false negative rates (FNR) can be observed for unimanual same hand
conditions. At the point of peak accuracy at 0.875 ms, TPR for all conditions are sig-
nificantly better than chance level and, above all, the rest and the bimanual conditions.
FPR and FNR for same hand unimanual conditions are lower compared to the point of
movement onset. We eventually applied the best performing classification model onto
the unseen test data set (see Figure 2.19, left). The participant specific peak accuracy
was reached again 0.875 s after the movement onset with 57.6% (adjusted chancel level
25.6%, [181, 182]). The row-wise normalized confusion matrix shows highest TPR for
the rest condition and the bimanual double lateral (pot) condition. Highest FPR and
FNR can be found between unimanual same hand conditions (see Figure 2.19, right).

Figure 2.19: Test set performance results. (Left) Performance of the best performing classifi-
cation model applied on the previously unseen test set (black line). (Right) Confusion
matrix calculated at the point of peak performance (row-wise normalized). Condition
abbreviations: rest (Rest), l-pal (left palmar), l-lat (left lateral), r-pal (right palmar),
r-lat (right lateral), bi-dlat (bimanual double lateral, Pot), bi-mix (bimanual mixed pal-
mar/lateral).

2.2.2.4 Discussion

In this single case study, we could successfully show that unimanual and bimanual ex-
ecuted reach-and-attempted grasp actions can be successfully decoded from the EEG’s
low frequency time domain. We were able to decode six movements and one rest condi-
tion with a peak accuracy of 57.6% (adjusted chance level (25.6%) [181,182]). Underlying
EEG correlates show significant differences between same and bimanual conditions in
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the first second after the movement onset which is the same time window used for feature
extraction of the classification model.

Movement-related cortical potentials The EEG correlates for unimanual conditions
of the study participant show similar characteristics and are comparable to our previous
findings in able bodied populations [179, 183] - though with a higher variation. Start-
ing almost 1 s before the movement onset a negative deflection starts, peaking at the
movement onset (“Bereitschaftspotential”, [105]) followed by a positive rebound around
300ms after the movement onset, before returning to baseline. When pooling left hand
and right hand conditions, a lateralization effect can be observed (lateralized, readiness
potential, see [193, 194], whereas the MRCPs are pronounced always strongest on the
contralateral side to the executing hand. As for bimanual conditions, the study par-
ticipant deviated from the initial experimental instruction of simultaneous grasping for
fear of tilting forwards. This slightly sequential execution order of both hands is also
visible in the EEG correlates: While the initial Bereitschaftspotential around the move-
ment onset is still present, the reaching phase is contaminated by additional positive and
negative deflections, most likely induced by the second hand, which changed the mor-
phology of the MRCPs. Moreover, since the bimanual movements were also different in
timing against each other, these changes in morphology lead to pronounced significant
differences not only against the unimanual conditions, but also against each other.

Single-trial multiclass classification For the multiclass approach, we initially deter-
mined the best performing classification model on the calibration data set (the 66% of
all recorded data (chronological)) within the WOI. Here, we found the best performing
classification model 0.875 s after the movement onset with a mean accuracy over all
folds of 71.7%. This coincides with the time period where significantly different EEG
correlates in the LFTD were found. While the timing is similar to the able bodied study
participants in [183], the performance of the tetraplegic study participant exceeds their
best calibration results by 29%. A close look at the confusion matrices calculated for
the classification model shows that for the bimanual classifications, TPR of more than
80% could be reached. Moreover, the TPRs for rest versus any movement conditions
exceeded 95%. While the first can be explained by the deviation in the execution of
the bimanual reach and attempted grasp actions, the latter exceeds the average TPR
of able bodied in [183] by more than 38%. A potential explanation for this might be
that the study participants reaching movement is considerably different from able bodied
persons: The reaching movement includes more movement of the shoulder, since he had
to compensate for missing voluntary wrist and finger control. This leads inevitably to
additional confounders such as (i) the shoulder movement represents an additional move-
ment which changes the morphology of the MRCP itself. (ii) Moreover, the additional
shoulder movement could introduce potential muscular-based artefact contamination of
the EEG. This has to be taken into consideration when evaluating these results.
When applying the best performing classification results on the unseen test dataset, the
classification accuracy yielded 57.6%. Though a performance drop from calibration data
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to an unseen test set can be expected, it is higher than in the abled bodied population
in [183]. When looking at the calculated confusion matrix for the point of peak accuracy,
it can be seen that the classification model was not able to discriminate between the
bimanual mixed condition and the lateral grasp of the left hand in the same way any-
more. This could be the result of a behaviroural change in timing of the execution of the
bimanual condition (the discrimination between lateral left hand and other unimanual
conditions still was in the same range). Similar to the calibration data set, rest condition
and the second bimanual condition (double lateral) performed overly well. Nevertheless,
the results indicate that single-trial decoding of executed reach-and-attempted grasp
actions is possible.

Study Limitations In the current study, the study participant deviated from given in-
structions for performing the bimanual reach and attempt to grasp conditions. Instead
of reaching with both hands simultaneously, he performed the task in a slightly sequen-
tial manner. This was because he was afraid of tilting forwards due to lack of sufficient
torso stability (due to SCI level).
Due to this deviation, the morphology of the EEG correlates for bimanual conditions
changed considerably in comparison to that of able bodied persons shown in [183]. More-
over, due to these different task executions, the differences between unimanual and
bimanual tasks increased, which lead to increased decoding performance. Nevertheless,
these deviations brought further insights not only for the design of follow up experiments,
but also for future application in real world scenarios: Future experimental setups need
to take torso instability into account. This could be done by e.g. fixating the torso to
the wheelchair with a belt, or redesigning the experimental setup to account for this
instability. The first allows a better comparison to studies in abled bodied populations
such as [183, 195], the latter reflects a scenario more realistic to a daily life situation of
an SCI end user.
The study participant compensated for the lack of voluntary wrist and hand control with
overly pronounced elbow and shoulder movements when reaching for the designated ob-
jects presented on the table. In this way he did not reach for the object on a plane
level parallel to the table, rather he approached them at a slightly sharp angle, whereas
the elbow was elevated. In this way it was possible for him to reach and attempt the
grasp as well as making contact with the objects. However, these overly pronounced
movements, especially the shoulder movements, can have a potential influence on EEG
by causing muscle induced artefacts and lead to an increase percentage of rejected trials
due to artefact contamination (16%). Hence, for any future experimental setup or online
application, causal state of the art EMG correction algorithms such as [196] could come
to bear.

2.2.2.5 Conclusion

We showed that unimanual and bimanual executed reach-and-attempted grasp actions
can be decoded from the low frequency time domain of a tetraplegic end user. We were
able to decode six movements and one rest condition against each other with a peak
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accuracy of 57.6% on unseen data. EEG correlates showed significant lateralization ef-
fects between unimanual condition of the left and the right hand. The correlates further
revealed that significant differences between all conditions were pronounced within the
first second after the movement onset, which is the same window used for feature ex-
traction of the classification model. Further, we could identify and discuss parameters
such as torso stabilisation during tasks as well as a difference in reaching patterns to
able bodied persons, which need to be addressed thoroughly in future experiments.
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2.2.3 Combining frequency and time-domain EEG features for classification
of self-paced reach-and-grasp actions

Schwarz Andreas, Pereira Joana, Lindner Lydia, Gernot Müller-Putz, “Com-
bining frequency and time-domain EEG features for classification of self-
paced reach-and-grasp actions.”, Proc. of the 41st Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Berlin, Germany. https://doi.org/10.1109/EMBC.2019.8857138 [197]

2.2.3.1 Summary

This study was performed on data which was previously recorded for [183] (see section
2.2.1). While we could show in our previous studies [179, 183] that singular reach-and-
grasp actions can be decoded from the low frequency domain of human EEG, one has to
recognize that the decoding performance was insufficient to provide meaningful control.
In the current study we attempted to increase decoding performance by also including
band power based features from alpha and beta bands. We arbitrarily selected 10 data
sets of self-initiated unimanual (right hand) reach-and-grasp actions (80 TPC) on a glass
(palmar grasp) and on a spoon (lateral grasp) from the data sets recorded in [183] (see
Figure 2.20 for paradigm). We also included the rest condition where participants sat
on a chair in a relaxed state.

Figure 2.20: Experimental paradigm. Though self-initiated, we instructed the participants to
fixate their gaze on the object they want to grasp for 1-2 s before initiating the reach-
and-grasp action. Once they grasped the object, they were tasked to hold the object for
at least 1-2 seconds, before returning to their starting position. Participants grasped a
glass (palmar grasp) or a spoon (lateral) grasp with the right hand.

2.2.3.2 Contribution to the PhD thesis

We could show that the overall classification significantly improved for all study par-
ticipants (Wilcoxon rank sum test, alpha = 0.05) when including features from alpha
and beta band for decoding. On average, the peak decoding performance increased by
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more than 10% from 65% +/- STD 6.5% to 75% STD +/- 5.8%. Further analysis of the
confusion matrix of the grand average peak accuracies revealed that the discrimination
between movement classes and rest class benefited the most from the extended feature
set (see Figure 2.21).

Figure 2.21: Single trial, multiclass based classification performed using time domain fea-
tures only (top row) and time domain combined with power features from the
frequency domain (bottom row). The left column shows all evaluated classification
algorithms (regularized linear discriminant algorithm models (sLDA) [129]) within the
window of interest (WOI) of [-2 3] s whereas time = 0 s represents the movement onset.
The middle column depicts the performance of the best performing classification algo-
rithm. The third column shows the grand averages of the row-wise normalized confusion
matrices of the participant specific peak accuracies.

We also evaluated the feature ranking provided by Fisher’s score [198] (see Figure
2.22): The quantification attempt showed that for movement versus movement condi-
tions, the most discriminable features can still be found in the LFTD range (0.3-3 Hz).
However, for movement versus rest discrimination, especially features from the alpha
range not only over the contra lateral motor cortex (to the executing right hand) but
also features from the occipital cortex contributed to increased discrimination perfor-
mance. The contribution of the occipital cortex can be explained by increased alpha
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activity typically associated with resting conditions ( [48,51]). However, scores achieved
from the high beta range over frontal and lateral regions indicate the presence of residual
muscular artefacts, hence one must take this into consideration when interpreting the
results.
Summarizing, we could state that the combination of both LFTD features and power
based features from alpha and band lead to significantly increased performance, espe-
cially for movement versus rest decoding, and could effectively contribute to improving
BCI control for assistive devices.

Figure 2.22: Topographical overview of Fisher’s Score on both time domain and frequency
domain based features. The first column shows the time domain, columns 2-7 the
frequency domain. Hot colors represent higher contribution, cold colors minimal or none.
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3 Discussion

The goal of this thesis was to evaluate whether natural grasp/reach-and-grasp move-
ments can be decoded from EEG and have the potential to act as a control modality in
an non-invasive BCI. In [179], it could show in able bodied study participants that the
most used grasp actions of daily life (palmar, lateral and pincer grasp) can be decoded
from EEG’s low frequency time domain against each other and a resting condition. In
a follow up study [180], palmar and lateral grasp together with a wrist supination could
be decoded online and able bodied study participants could control a robotic arm in a
simulation environment.
Experiences with high spinal cord injured persons have shown that single limb control
is not enough to provide meaningful control in daily life situations. The second hand is
imperative to them at least in a supporting or stabilizing role. Hence, in [183], investiga-
tions towards decoding of grasp/reach-and-grasp actions were extended to also include
bimanual grasp/reach-and-grasp actions. Further offline investigations were conducted
to boost decoding performance by including features from the frequency domain of alpha
and beta band [197].
Lastly, a single case study including a high spinal cord injured end user was done who
performed unimanual and bimanual executed reach-and-attempted grasps on objects of
daily life. It could be shown that both unimanual and bimanual movements could be
decoded from each other as well as a rest condition.

3.1 EEG-based decoding of executed grasp/hand movements

3.1.1 Offline - Analysis of EEG correlates and identifying hyperparameters

In section 2.1.1, it was assessed whether EEG correlates of 3 executed reach-and-grasp
movements most prominent in daily life (palmar, lateral and pinch grasp, see [179]) can
be identified in the LFTD and eventually discriminated against each other and a rest
condition. Offline analysis of the data revealed that the morphology of MRCPs in the
LFTD significantly changed to a rest condition already 1.5 s before the actual movement
onset. In addition, significant differences between MRCPs between grasp conditions (es-
pecially between palmar and lateral grasp) could be observed 1 s before the movement
onset. These differences concerning the pre-movement phase (movement intention) go in
line with findings described by Jochumsen et al. who assessed the decoding of grasping
intention in the preparation phase [199] as well as findings from Gu et al. [104] or Oda et
al. [200]. However, the main differences in morphology were found in the first second af-
ter the movement onset: Starting with the Bereitschaftspotential around the movement
onset [108] occurring over the central motor cortex at channel Cz, followed by a positive
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reafferent potential around 300ms after the movement onset [103]. This reafferent po-
tential has only been found in this form when performing a combination of movements,
in this case a reach-and-grasp. For instance, Ofner et. al, who investigated a broader
range of upper limb movements in EEG’s LFTD, but also included conditions similar to
grasping (e.g. “hand closing”) did not report any pronounced reafferent potential 300ms
after the movement onset [201]. The same goes for findings presented in [180], where the
investigated grasping conditions were performed with a preceding reaching movement.
Further analysis of the reaching phase revealed a second positive rebound after 1 s after
the movement onset, before returning to baseline. Additionally, a lateralization effect
could be observed meaning that MRCPs were pronounced stronger on the contralateral
side to the executed hand. Analysis of the behavioural data (kinematic data analysis
of a data glove) showed that the average duration from the movement onset to finally
grasping the objects took on grand average around 1.1 to 1.25 s. This window fully
covered the time span where the majority of the differences between conditions could
be found. From that, one can also conclude that information regarding the designated
grasp can already be extracted from the reaching phase. This goes in line with initial
studies conducted by Jeannerod et al in the 1980s [202,203] investigating (reaching and)
grasping kinematics, especially the preshaping of the hand: They attempted to quantify
the preshaping of the hand during the reaching movement by constantly measuring the
distance between thumb and index finger tip. They could show that the maximum aper-
ture between both is reached around 60-70% of the duration of the reaching movement.
A summary review can be found in [172].
The single trial classification approach allowed to test a series of hyperparameters such
as the size and location of the time window for feature extraction, or the number of EEG
sensors, while avoiding overfitting of the data. It could be shown that the best window
for extracting features is within the first second after the movement onset, although
better than chance classification could already be reached before the movement onset
(which additionally confirms presented findings by Jochumsen et al [199] regarding the
pre movement phase). Binary classification results yielded accuracies around 70% for
grasp versus grasp classification (adjusted chance level 63.2%, [181, 182]), however for
grasp versus a rest condition, accuracies of over 90% could be reached. In the mean-
time, several studies conducted in able bodied populations have shown similar decoding
results [111,204,205], although a direct comparison is often not possible since experimen-
tal setup, paradigm and approach differ. In Randazzo and colleagues’ experiment [204],
study participants (n=4) were instructed to grasp an u-bracket with either palmar or
precision grasp in a self initiated manner. They could confirm that for movement versus
rest classification, better than chance classification of on average 70% could be reached
already before the movement onset. This increased to almost 80% during the reaching
movement within 1s after the movement onset. In a follow up study incorporating the
same experimental setup, Iturrate et al. [205] achieved similar classification results in an
able-bodied population of 10 study participants. Using source localization techniques,
they were also able to identify patterns associated with grasping in bilateral regions of
the motor and parietal cortex in the time domain (range 1-40 Hz). In another experi-
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ment, Agashe et al. [111] investigated reach-and-grasp actions on six different objects in
a narrower frequency band between 0.1 and 1 Hz. Contrary to the findings described in
section 2.1.1, [179], as well as findings by Randazzo and Iturrate and colleagues, they re-
port that the average peak accuracy of their decoding attempt happened already 250ms
after the movement onset. Though a direct comparison between studies is not possible
due to fundamental different approaches in methodology, it can be surmised that the
information content in the LFTD of reach-and-grasp actions is not only limited to 0.1-
1Hz - a fact that has been also underlined by the source analysis performed by Iturrate
et al. in [205].
Nevertheless, a still open issue was whether these findings can be successfully transferred
for application in a non-invasive BCI.

3.1.2 Online - Controlling a robotic arm in a simulation environment using
a BCI

Relying on findings and parameters investigated in section 2.1.1, [179], we initiated a
second study which aimed to test the feasibility of MRCPs as features for grasp/hand
movements in a non invasive BCI (section 2.1.2, [180]): While this study was still con-
ducted in a population of able-bodied study participants, it was already designed as a
precursor for investigations incorporating severly motor impaired end users. Therefore,
the study relied on a desktop based simulation environment for presenting instructions
and feedback (paradigm) to the study participants. The main idea for this was to reduce
the experimental setup to an ecologically valid environment, which is compact enough
to be applied at end users’ homes. Additionally, we concentrated foremost on the EEG
analysis and discrimination of different grasps (palmar and lateral) and one additional
hand movement (wrist supination).
EEG analysis of both the recorded calibration data as well as the online data of the
BCI was performed using causal filters and showed a negative deflection around the
movement onset. This deflection reached its peak shortly after the movement onset.
Thereafter a strong positive deflection could be observed before returning to baseline.
Contrary to findings presented in [179,183,197], no reafferent positive potential 300 ms
after the movement onset could be found, which can be attributed to the non-existing
reaching movement. On average, the EEG correlates shown in this study are prone to a
higher variability, especially after finishing the grasp/hand movement. This can be cred-
ited to (i) the additional visual input and its accompanying brain activity as well as (ii)
participant expectations when presenting feedback based on their actions. Significant
differences between conditions were mainly found in the first 0.5 s after the movement
onset on the sensorimotor areas contralateral to the executing (right) hand (locations
C1, C3). Interestingly, during feedback presentation significant differences could also be
found over the frontal area (Fz) for grasping conditions.
Calibration of the BCI followed closely the approach described in [179]. The single
trial classification approach yielded classification performances similar and comparable
to the findings presented in [179], yielding on average around 60% accuracy for the
3 class problem (adjusted chance level at 44%, [181, 182]) around 1 s after the move-
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ment onset. However when transferring the calculated classification model to the online
scenario, where participants received feedback based on their actions, a significant per-
formance loss of more than 10% was encountered. Though a decrease in performance is
not uncommon when applying a calibrated classification model on unseen data, post hoc
analysis of the data revealed that the gross of the performance loss could be attributed
to the estimation of the movement onset in the online part as well as additional activity
in frontal regions attributed to user expectation and feedback presentation.
Eventually, discrete online classification results yielded on average around 48% (adjusted
chance level at 40.2%, [181,182]) or 65 out of 135 trials for the 3 class approach.
So far, only Ofner et al. have shown in a proof-of-concept study in one participant with
SCI asynchronous online decoding of hand movements (hand opening, hand closing) us-
ing MRCPs as a feature [184]. Unfortunately, a direct comparison between study is not
possible due to substantial differences in approach and protocol. Hence, the findings and
the implications of this study stand for themself.
Nevertheless, a feasibility study in a group of tetraplegic end users has already been
initiated, where their capabilities of controlling an upper limb motor neuroprosthesis is
assessed (see “The MoreGrasp feasibility study”, [152]). Initial findings have shown that
decoding is possible even when end users only attempt the movements (see also [184]).
However, these results will be published elsewhere and are not part of this thesis.

3.1.3 EEG based decoding of unimanual and bimanual reach-and-grasp
movements

3.1.3.1 Decoding in able bodied study participants

During the work with high spinal cord injured persons (lesion height at cervical level,
C4) within the H2020 project ‘MoreGrasp’ (htttp://www.MoreGrasp.eu) we saw that
unimanual grasping support would not be enough to provide effective support in daily
life. In most cases, the second hand is used in a supporting function for stabilisation
or even in a more active role when an object has to be grasped with both hands. As a
consequence, in [183] (see section 2.2.1), we investigated EEG correlates of self-initiated
unimanual and bimanual reach-and-grasp actions in the LFTD and whether these corre-
lates were suitable for decoding not only against a rest condition, but also against each
other.
EEG analysis of unimanual reach-and-grasp conditions was similar in shape and mor-
phology to findings already presented in Core publication 1 [179]. A strong negative
deflection started already up to 1 s before the movement onset and peaked around the
movement onset [105,108]. In addition a reafferent positive potential around 300 ms after
the movement onset could be identified. A second positivity could be observed between
1s and 1.5s second after the movement onset before the potential returned to base-
line. The MRCPs were also significantly stronger expressed on the contralateral side to
the executing hand. Interestingly, it could be shown that for the bimanual conditions,
the “Bereitschaftspotential” was pronounced stronger than for unimanual conditions.
Though this difference was not significant on group level, it could be observed for two
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thirds of the study participants (n=15). No significant lateralization effects could be
found, which proved to beneficial when it came to decoding between unimanual and bi-
manual conditions: While binary classification results between unimanual conditions of
the same and or between both bimanual conditions yielded results around 68%, combina-
tions involving a unimanual and a bimanual condition yielded results between 74% and
77% (61.4%, adjusted Wald interval [181,182]). Against the rest condition, all movement
conditions yielded decoding accuracies between 80% and 90% whereas decoding accura-
cies for bimanual conditions yielded best results around 87%). Findings on unimanual
level go in line with previous findings already presented in this thesis [179] and from
other groups [199, 204, 205]. However, the investigations of bimanual reach-and-grasp
actions in the LFTD, especially towards objects of daily life, represents a unique feature
which has not been assessed in literature.
When compared to the field of MI-based BCIs, where control is often established by
repeated mental imagery of a movement task (e.g. unimanually squeezing a training
ball, plantar flexion/extension of BCI feet) not only unimanual conditions have been in-
vestigated [24,206,207], but also bimanual control modalities were tested: Probably best
known and popular approach is the experiment by LaFleur and colleagues, who showed
the successful control of a quadcopter along a predetermined flight plan in three dimen-
sional space [208] using unimanual and bimanual repetitive movement for control. In a
similar approach from the same group, Meng et al. utilized continuous repetitive motor
imagery of left hand, right hand and both hand movements as well as relaxation (rest)
to control a robotic arm in 3 dimensional space [209]. The 4 conditions corresponded to
left, right, up and down movements. Using these commands, study participants (n=13)
were able to perform reach-and-grasp actions with the robotic arm. Recently, Vuckovic
and colleagues investigated unimanual and bimanual hand movements (slowly waving
the designated hand(s) for 3 s) and incorporating analysis of brain oscillations in alpha,
beta and gamma range for both executed and imagined movements [195]. Their decoding
attempt based on common spatial patterns (CSP) [210] and linear discriminant analysis
(LDA) [129] yielded binary classification results between 63% and 75%.
Though MI-based BCIs show promising decoding results and are within the same range
of the studies presented in this thesis, they do still rely on repetitive movement exe-
cutions/imaginations which often do not represent the task at hand. In this way the
relation to a natural/intuitive movement control is lost and the command eventually
feels unnatural for the user.

3.1.4 Decoding of unimanual and bimanual reach-and-attempted grasp of
an tetraplegic end user

In an attempt to transfer the findings of [183] to motor impaired end users, a proof-of
concept study in one tetraplegic end user was initiated (see section 2.2.2). Aware that the
study participant was able to move shoulder and arms but had no voluntary wrist/hand
function anymore, the study protocol was adapted accordingly: He was instructed to per-
form self-initiated executed reaching-and-attempted grasp movement towards the objects
presented on the table. Though this combination of executed and attempted movements
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has not been evaluated or reported in literature, findings by Blokland et al. [185,211] as
well as Rastogi et al. [212] confirmed that attempted movements provide a similar neural
representation to that of executed movements. In this context, also Ofner et al. [184] not
only investigated attempted arm and hand movements of tetraplegic SCI end users and
could show that discriminative information between 5 hand/grasping movements (hand
open, palmar grasp, lateral grasp, pronation/supination) can be found in the LFTD: In
additional proof-of-concept study they could show that even decoding of self-paced hand
open versus hand closing is possible.
In the current study, the EEG correlates of unimanual reach-and-attempted grasp con-
ditions of the tetraplegic study participant were similar in morphology and location
to those of able bodied shown in this thesis [179, 183]. However, unlike the findings
presented in section 2.2.1, EEG correlates of the bimanual conditions were not compa-
rable to previous findings because of significant differences in morphology. The most
obvious explanation for this could be the study participants deviation from the given
protocol: Instead of simultaneously reaching and attempting to grasp the designated
objects with both hands, the study participant performed the task in a slight sequen-
tial order. The reason for this deviation was that the tetraplegic study participant
did not possess enough torso stability to simultaneously reach forward with both arms
without risking tilting forwards. As an additional effect, EEG correlates of bimanual
conditions bore more discriminable information against unimanual reach-and-attempted
grasp movements than anticipated, thus leading to favourable multiclass classification
results. Hence, overall decoding results (single trial, multiclass) exceeded participant
specific results reported in [183] by almost 30% for the calibration set and at 8% for the
test set.
Additionally, the study participant compensated the lack of voluntary wrist/hand move-
ment capabilities by overly pronouncing elbow and shoulder movements. Hence, despite
rigorous artefact handling identically to [183], one cannot rule out that these movements
had an additional effect on the movement decoding and one needs to take this into ac-
count when interpreting these results.
Nevertheless it could be successfully shown that the combination of an executed reaching
with attempted grasping movement can be decoded using features of EEGs LFTD. The
findings presented in this proof-of-concept stand on their own, so far no similar attempts
involving reach-and-attempted grasp action can be found in literature. The next logical
step would be to implement a study on a larger scale of tetraplegic end users including
a closely tailored setup based on the end users capabilities.

3.2 Boosting decoding performance

To assess whether features on the frequency domain would help increasing decoding accu-
racies, an offline study on the unimanual data presented in section 2.2.1 was performed:
The primary hypothesis was that an extension of the features to include power based
features of the frequency domain of alpha and beta range significantly improves overall
decoding performance (see section 2.2.3, [197]). Investigations performed by Jochum-
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sen and colleagues have already shown that the inclusion of similar features lead to
an increased decoding performance for grasp intention [199]. Results shown in section
2.2.3 [197] could not only confirm the findings of Jochumsen and colleagues for the pre
movement phase. Moreover, they also showed for the movement conditions and the rest
condition significantly better decoding performance than with the LFTD features only.
In fact, the combination of both feature spaces increased the average decoding perfor-
mance by almost 10%. The biggest benefactor was the rest condition with an increased
TPR of more than 13%. This is of particular importance, since in a continuous decoding
scenario, e.g. it is imperative first to discriminate between movement versus rest rather
than decoding movement versus movement. Eventually, decoding performance reached
on average 75% for the 3 class scenario (2 grasp, 1 rest condition, adjusted chance level
38.9%, [181,182]). Analysis of the Fischer score [198] performed on the extracted features
revealed that for the LFTD features the majority discriminable information is located
over the central motor cortex. For the frequency domain features, large contributions
could also be found again over the motor cortex. Notably for alpha band based features,
strong contributions could be found over the occipital cortex, especially for movement
versus rest conditions which can be attributed to increased alpha oscillations during
rest periods [83]. The findings of Jochumsen et al as well as the results of this offline
study confirm that additional discriminable information can be found in the frequency
domain, especially from alpha and beta bands. Though an increase of almost 10% is
already notable, it seems possible that further investigations incorporating state of the
art processing methods [210,213–215] could further improve performance.
Findings shown in sections 2.1.2 and 2.2.1 indicated a significant performance loss when
transferring classification models from offline to an unseen (online) data set. Possible
reasons for this are ranging from EEG based nonstationarities elicited through e.g. fa-
tigue, user expectations when receiving feedback or even through feedback presentation
itself.
Especially in [180], where study participants attempted to gain online control over a
robotic arm in a simulation environment [180], drop in performance was higher than
10%. Though in this particular case an additional confounder was the use of a virtual
movement onset rather than a real movement onset, post hoc analysis showed that this
accounted only 50% of the performance loss. A possible future solution to minimize
this loss could be found in the use of a co-adaptive classification approach [216–218]:
When utilizing a co-adaptive training approach, both machine and user are engaged in
a mutual learning environment. The user receives feedback based on his actions already
minutes after start of BCI use, while the machine is trained/adapted in recurrent train-
ing intervals based on the additional data of the user - even during online use. In this
way the BCI is not only finitely capable to adjust and contradict EEG nonstationari-
ties such as fatigue or changes in channel impedance, but also eases the offline-to-online
transition. Strictly speaking, through the continuous adaptation including real time
feedback, this transition is omitted. Studies by Vidaurre et al. as well as Faller et al.
have successfully shown in ERD based BCIs and motor imagery the feasibility of the
concept in both abled and motor impaired populations [219,220]. In addition, this con-
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cept has also been applied and improved by Schwarz and colleagues [78] and extended
by an semi-supervised approach, where the BCI is able to perform recurrent updates
even with unlabeled data [221]. Efforts should be made to assess the feasibility of the
combination of co-adaptive BCIs and MRCP based features.

3.3 Limitations of this thesis

3.3.1 On the decoding performance

This thesis primary goal was to identify EEG correlates in the LFTD which are associated
with grasp/reach-and-grasp actions of daily life and evaluate their decoding potential on
a single trial basis. Although EEG correlates could be identified and eventually decoded,
the decoding performance is rather low. In the previous section, it was already discussed
on how to boost this performance by extending the feature space, or as a future prospect,
introducing co-adaptive training approaches. However, decoding approaches conducted
within this thesis rarely exceed peak performances of 75-80% on a single subject basis
and are comparable with current findings from other groups [111, 199, 205]. They are
also within the same range as performances reported of MI-based BCIs [74, 206, 222].
Hence the prospects for enabling an tetraplegic end user to BCI control e.g. an upper
limb motor neuroprosthesis, on a direct control basis are rather wanting. Moreover,
current decoding performances would at least fail to recognize the intended command in
one fourth of a time, or even worse, put the end user in a potential dangerous situation
(e.g. spilling hot coffee over his body). Additionally, results from Ofner and colleagues’
study regarding asynchronous decoding of attempted hand movements suggests not only
an even lower decoding performance ( 68%) but also a false positive detection rate of
around 4 false detections per minute [184].
Therefore, the approach presented in this thesis still contains considerable challenges
regarding boosting performance to overcome, before a direct BCI control of assistive
devices is conceivable.

3.3.2 On the Suitability of MRCPs

MRCPs are a time-locked and phase-locked response in brain activity to an internal or
external cue. The experiments presented in this thesis were time-locked to the move-
ment onset, which was determined with external sensors (e.g. pressure button, data
glove, force sensor). As such, a successful detection and decoding always relied on an
external reference point and not solely on EEG data. In this way a narrow decoding
window could be defined which the classification model used to come to a decision. How-
ever, when one attempts to develop a decoder for asynchronous online use, this approach
is not feasible anymore: An asynchronous decoder continuously evaluates users’ brain
signals and attempts to predict their intention. As such, it cannot rely on a reference
point anymore, which represents an additional challenge to this approach which is not
yet solved [184].
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The morphology of MRCPs is influenced by factors such as the level of intention, the
preparatory state, movement force and speed (investigated by [113, 223]) or the type of
movement - e.g. lower limb movements elicit stronger MRCPs than upper limb move-
ments (see [108] for a detailed list of influencing factors). As such, these influences on
MRCPs pose additional challenges to any decoding approach: For instance, based on
the findings described in [108, 113] it is conceivable that a decoder trained on executed
reach-and-grasp actions decreases in performance or is even unusable anymore if these
actions are performed with a different speed or state of user attention.
In this thesis, MRCPs were extracted from the LFTD, concretely within the range of 0.3-
3Hz. Consequently, they are easily masked/contaminated by evoked potentials elicited
by external stimuli (auditory, visually, tactile) or ocular based artefacts such as saccades
or blinks. While careful experimental planning and state-of-the-art rejection and cor-
rection methods (e.g. EOG subspace subtraction or outlier rejection based on statistical
parameters [191,219]) can minimize masking/contamination, it is still unknown on how
to transfer this to an end users’ daily life setting. Especially correction of ocular based
activity usually requires sensors positioned near the eyes which represents a challenge
for both practical and aesthetic reasons in daily life.

3.4 Conclusion

This thesis identified and evaluated EEG correlates which are associated with natural
grasp/reach-and-grasp actions as they are performed in actions of daily life. It could
further be shown that these correlates could be decoded against each other and against
a rest condition. In addition, their decoding potential has been assessed online using
a non-invasive brain-computer interface, where able bodied study participants gained
control over a virtual robotic arm in a simulation environment.
Based on the experiences with tetraplegic spinal cord injured end users, who also strongly
rely on their second hand in supporting functions, investigations were extended towards
bimanual reach-and-grasp actions. It could further be shown that EEG correlates of
bimanual reach-and-grasp actions are significantly different from their unimanual coun-
terparts and as such also decodable. Lastly, a non-published proof-of-concept study in
one tetraplegic SCI study participant could show that unimanual and bimanual exe-
cuted reach-and-attempted grasp actions show en grosse similar EEG correlates to those
of able bodied participants and were decodable. Though results of this proof-of-concept
study need to be confirmed in a larger population, a successful transfer to end users
might one day be possible.

3.5 Outlook - Towards a successful transfer to end user

Based on the findings of this thesis, the main focus for future investigations clearly lies
on further developing a BCI-based motor control for severely motor impaired users. A
suitable device would be an upper limb motor neuroprosthesis [22], since it naturally
supports all investigated conditions and can be closely tailored to end users’ needs.
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Furthermore the combination between a BCI which is able to decode grasp/reach-and-
grasp actions combined with the neuroprosthesis which enables end users basic grasping
with their own (paralysed) arm is both natural and intuitive. However, for a successful
transfer to end users, several challenges have to be taken into account:
(i) Although the potential target group for this technology are tetraplegic SCI end users,
their movement capabilities have to be assessed, since residual upper limb functions vary
(see “The MoreGrasp feasibility study, [152]). For a successful appliance, end users are
required not only to be able to generate discriminable brain patterns, but also need to
be able to fulfill the requirements for the designated motor neuroprosthesis. As such,
voluntary control of the elbow and the shoulder to execute aimed reaching movements
would be required.
(ii) In section 2.2.2, it was already shown that the combination of executed reach-and-
attempted grasp movements (both unimanual and bimanual) can be successfully decoded
from the EEG of a tetraplegic end user. However further investigations in a larger
population are necessary to confirm these findings. In addition, additional steps have
to be made to increase the decoding performance (as described previously), before a
successful transition to an end user can be made. As a first step, the neuroprosthesis
could be fitted with an additional immersive measurement unit (IMU), which in turn
supports the BCI with a reference point for a movement onset.
(iii) State-of-the-art EEG recording devices are mobile enough to allow usage outside
the lab, even at end users’ home on a daily life basis [52, 152]. Advances within the
MoreGrasp project ( [152, 224] http://www.MoreGrasp.eu), which investigated a the
appliance of a multimodal neuroprosthesis for spinal cord injured end users could already
show that all required hardware (EEG recording, computational unit, user interface
(tablet) and neuroprosthesis) could be mounted on a wheelchair. However, state-of
the art smartphones already provide enough performance to process and decode EEG
data in real time which allows an even greater degree of miniaturization [225]. The
simulation environment used in the experimental setup of 2.1.2 was already designed
to be operable on mobile devices [180], and can be closely tailored to the movement
capabilities of end users. Another benefit of the simulation environment is that users
are already interacting with objects of daily life rather than reacting to abstract cues.
Hence it will allow a smoother transition between training and real life application.
iv.) Lastly, it is imperative that end users are compliant and satisfied with the technology
provided. While this goes along with high performance and reliability of the assistive
device, appearance of and appealing to end users are factors not to be underestimated.
It has already been shown in section 2.1.1, [179], that there is no significant difference
in decoding performance between recording 64 EEG sensors distributed over the whole
scalp and 25 channels located over sensorimotor areas. As such, future EEG sets intended
for end user motor control could be designed in a less prominent fashion, and even be
appealing to end users.
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[65] B. Graimann, J. E. Huggins, A. Schlögl, S. P. Levine, and G. Pfurtscheller, “De-
tection of movement-related desynchronization patterns in ongoing single-channel
electrocorticogram,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, pp. 276–281,
Sept. 2003.

[66] W. Wang, A. D. Degenhart, J. L. Collinger, R. Vinjamuri, G. P. Sudre, P. D.
Adelson, D. L. Holder, E. C. Leuthardt, D. W. Moran, M. L. Boninger, A. B.
Schwartz, D. J. Crammond, E. C. Tyler-Kabara, and D. J. Weber, “Human motor
cortical activity recorded with Micro-ECoG electrodes, during individual finger
movements,” Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2009, pp. 586–589,
2009.

[67] E. E. Fetz, “Operant conditioning of cortical unit activity,” Science, vol. 163,
pp. 955–958, Feb. 1969.

59



[68] E. M. Maynard, C. T. Nordhausen, and R. A. Normann, “The utah intracortical
electrode array: a recording structure for potential brain-computer interfaces,”
Electroencephalogr. Clin. Neurophysiol., vol. 102, pp. 228–239, Mar. 1997.

[69] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H.
Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue, “Neuronal ensem-
ble control of prosthetic devices by a human with tetraplegia,” Nature, vol. 442,
pp. 164–171, July 2006.

[70] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. Lopes da Silva, “Mu rhythm
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Introduction

When asking a tetraplegic spinal cord injured (SCI) person, 
from which lost function they would benefit most, three quar-
ters make regaining arm/hand function their priority choice  
[1, 2] (2nd elimination of Dysreflexia, 3rd sexual function). 

Yet up to this point this population is waiting for an interven-
tion that will improve their functional ability [3].

Neuroprosthesis based on functional electrical stimula-
tion (FES) may present a technical solution. Small electric 
pulses stimulate still innervated paralysed arm muscles. In 
this way, the neuroprosthesis is able to restore hand func-
tions, especially different grasps [4, 5] on demand. Studies 
from the early 2000s show that neuroprosthetic control can 
be achieved with non-invasive brain–computer interfaces 
(BCI) [6, 7].
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These non-invasive BCIs enable its users to interact with 
their environment by means of changes in brain activity cap-
tured by the electroencephalographic signals (EEG). BCI con-
trol strategies usually rely on focused attention to an external 
stimuli [8–11] or on specific mental strategies [12–14].

Pfurtscheller et al [15] applied combined BCI-FES tech-
nology to restore left hand functions of a tetraplegic end user 
(complete SCI, lesion height C5, neither hand nor finger 
function, residual elbow function). After ten months of FES 
muscle training (five times a week, 45 min each session) and 
a period of four months of BCI training, the end user was able 
to perform a palmar grasp and use a glass using motor imagi-
nation (MI) of repeated foot movement as a control signal. In 
later studies [16, 17], Rohm et al refined the approach by also 
including functional control of the elbow. They extended BCI 
control by introducing new mental tasks and temporal coded 
[18] BCI commands.

So far, BCI-based neuroprosthesis control has strongly 
relied on the (repeated) imagination of basic motor tasks e.g. 
repeated planar extension/flexion of both feet [15], or repeated 
MI of opening/closing left or right hand [16, 17]. From a user’s 
perspective it seems rather unnatural to perform specific foot 
MI for controlling one’s hand functions. Even contralateral 
hand MI [6, 16, 17, 19] feels unnatural and does not support a 
natural feeling of control.

We believe that for a more natural and intuitive control 
of an upper limb neuroprosthesis it is essential to focus on 
the successful decoding of more complex and natural hand/
arm movements, such as different grasp actions. In most daily 
life scenarios, a grasp is combined with a reaching movement 
towards an object. Studies investigating grasp kinematics 
imply that the hand preshapes already during the reaching 
phase, whereas maximum grip aperture occurs within 70% 
of movement completion [20, 21]. Although the human hand 
incorporates a large amount of degrees of freedom, yet only 
three main grasps—palmar, pincer and lateral grasp—are nec-
essary to perform most daily life actions [22].

Previously, it has been shown that it is possible to detect 
and discriminate different reach-and-grasp actions from 
human electrocorticogram (ECoG) [23, 24]. Results indicated 
that discriminative information for movement detection and 
classification can be found in the amplitude modulations of 
frequencies below 6 Hz.

In the time domain, cortical activations in this frequency 
range are known as movement-related cortical potentials 
(MRCP). They are described by a negative shift in ampl-
itude during movement preparation, reaching its max-
imum negativity imminently to the actual movement onset 
(Bereitschaftspotential). Thereafter a positive rebound occurs 
which ultimately returns to a baseline level [25]. The shape of 
these potentials may vary depending on various factors, such 
as the movement task [26–28], force [29, 30] or movement 
speed [31].

EEG based studies investigating MRCPs [25] indicate that 
this information can also be exploited non-invasively, not only 
for directional information [26], but also for the analysis of 
hand shape during a grasping movement [32], to study the 
effects of grasp force [33] and ultimately to discriminate 

different grasps [31, 34–36]. The intention of movement has 
been investigated in palmar, pincer and lateral grasps [31].

Of particular interest are two studies from Agashe et  al  
[32, 37] who attempted low-frequency reach-to-grasp decoding 
and classification incorporating palmar and lateral-precision 
grasp on various objects. In a follow-up multi-session study 
incorporating two amputee end users controlling a robotic 
hand, they show the feasibility and success of their efforts.

In our current study we want to add up to their prior work 
and further investigate the whole reach-and-grasp process in a 
daily life setting using common objects of daily life.

In our experimental setup we chose three different reach-
and-grasp actions most commonly used in daily life: (i) 
palmar grasp, (ii) pincer grasp and (iii) lateral (key) grasp. We 
hypothesize that these executed reach-and-grasp actions can 
be discriminated significantly better than chance (I) against 
each other and (II) against the no-movement condition, based 
on low frequency EEG activity. We test our hypothesis in 15 
healthy volunteers using binary and multiclass classification 
approaches and also show the difference between the low fre-
quency neural correlates of the movements. Finally we discuss 
the potential of our results for online application to facilitate 
artificial control.

Methods

Subjects

The study was approved by the ethics committee of the 
Medical University of Graz (ek28-108 15/16). Fifteen right-
handed subjects, seven male, eight female, aged between 23 
and 37 years, participated in the experiment. Subjects were 
without any known medical conditions and had normal or 
corrected-to-normal vision. Each subject was explained the 
aim of the study, signed an informed consent and was paid for 
participating in the study.

Experimental task

Recordings took place in an electromagnetic and noise 
shielded room to facilitate consistent measurement conditions 
over all subjects. Subjects were seated in a comfortable chair. 
Right in front of them we placed a table with a built-in 22 inch 
screen. Subjects were asked to place their right hand on a pres-
sure button located on the desk between them and the screen. 
We positioned four objects on pre-defined positions in a semi-
circle on the screen so that the distance to the right hand of the 
user was equidistant for all four objects (figure 1). The objects 
were (i) a glass (for palmar grasp), (ii) a needle (for pincer 
grasp), (iii) a key (for lateral grasp) and (iv) an empty plexi-
glass tile (for no-movement condition). Both the needle and 
the key were placed in plexiglass retainers not only to facili-
tate comfortable grasping conditions but to incorporate them 
in positions of everyday use: the key was placed in a keyhole 
ready to be turned, the needle was stuck at a 45 degree angle in 
the plexiglass retainer, ready to be picked up (figure 1).

In this setup we used a cue-based paradigm as shown in 
figure  2. At second 0, the subjects were presented with a 
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fixation cross located in the center of the screen, together 
with an auditory beep. Subjects were instructed to look at the 
cross. After 2 s, one of the objects was randomly highlighted 
by illuminating the underneath tile in white. Subjects were 
instructed to focus their gaze on the highlighted object. After a 
varying time period of 1–1.75 s, the white illumination turned 
green for 3 s. Subjects were instructed to reach, grasp and hold 
the object for as long as the underneath tile was illuminated in 
green. Thereafter, subjects released the object and returned the 
hand to the starting position on the pressure button. In case the 
empty tile was illuminated, subjects were asked to focus on 
the tile and avoid any eye or body movement. After each trial 
we introduced a break for 2–3 s.

We recorded 72 trials for each condition over eight con-
secutive runs. After each run, objects were repositioned clock-
wise, so that every object was located on each position equally 
often. Furthermore we recorded a three times 1 min of rest as 
well as 1 min of eye-movements at the beginning, half-time 
and end of the session.

Data recording

For EEG recording we used four biosignal amplifiers with 
61 active electrodes (g.tec medical engineering, Austria). 
Electrodes were positioned over frontal, parietal and temporal 

lobes (see figure  1, right). For reference we used the right 
earlobe and for ground the AFz channel. EEG was sampled 
with 512 Hz and pre-filtered between 0.01 and 200 Hz using 
an 8th order Chebyshev filter. To remove power line noise, 
we applied a notch filter at 50 Hz. Electrode positions were 
captured using a ELPOS system by Zebris (Zebris Medical 
GmbH, Germany).

In addition we used three active electrodes for recording 
electrooculographic signals (EOG). We positioned them 
above the nasion and below the outer canthi of the eyes to 
form a rectangular triangle [39], and used the same recording 
settings as for the EEG data. To record hand and finger move-
ments during the experiments, we used a 5DT data glove 
(5DT, USA). For movement onset detection we used a pres-
sure button. Data recording and synchronization was per-
formed using MATLAB R2012b (Mathworks, Massachusetts, 
USA) and TOBI SignalServer [40].

Movement detection

For detecting the movement onset of each reach-and-grasp 
condition we used the rising flank (button release) of the 
pressure button. Time-locking the no-movement condition to 
the onset of the green cue would make the comparison with 
the reach-and-grasp conditions unfair. A cue-related visually 

Figure 1. Experimental setup. Left: the subject is seated at the prepared table. Center: objects of the reach-and-grasp tasks: glass (palmar 
grasp), key including lock in a plexiglass retainer (lateral grasp), needle (pincer grasp) and a plexiglass tile for the no-movement condition. 
Right: electrode layout of the experiment. The center electrode (black ringed) is located at position Cz.

Figure 2. Experimental paradigm, sequential view. At trial start subjects focused on the cross shown on the screen (1), thereafter, the tile 
underneath one of the objects was highlighted in white and subjects switched their focus to the highlighted object (2). Once the highlighting 
turned green (3) subjects grasped the designated object and held it until the highlighting vanished. Thereafter they moved the hand back to 
the starting position (4). This figure was created and designed with friendly assistance of nu-art [38].
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evoked potential could increase classification accuracies above 
chance-level not because of any motor potential involved, but 
because of the presence of the cue-related event.

Therefore, we calculated mean and standard deviation of 
the reaction time of each subject based on the period between 
the onset of the green cue and the movement onset indicated 
by the pressure button. Thereafter we added the mean plus a 
random percentage of the standard deviation to the onset of 
the green cue. In this way we allow fair comparison between 
movement and no-movement conditions.

In addition to the movement onset we were interested in 
the timing when subjects finished their grasps. For this matter, 
we investigated the data collected using the data glove. In 
this experiment we used 15 sensors of the data glove which 
were located at the joints of the finger phalanxes. To reduce 
the dimensionality of the movement data collected with the 
glove, we performed principle component analysis (PCA) for 
each reach-and-grasp condition. We used only the first PCA 
component for further analysis. We epoched the component 
according to movement onsets and calculated a subject- 
specific mean for each reach-and-grasp condition. We deter-
mined the timepoint of the peak in the variance as the point 
where subjects finished their grasp. In a similar way, we deter-
mined the timepoint when subjects released their grasp, after 
holding the object.

Artefact avoidance and rejection strategies

EEG analysis, especially in the low frequency range is highly 
vulnerable to ocular based artefacts [41]. Our strategy in 
dealing with artefacts, especially eye movements, was based 
on artefact avoidance and trial rejection based on statistical 
parameters. To avoid unnecessary eye-movement during trial 
execution, we aligned the cue presentation and the target into 
the same field of view. In this matter we introduced the ‘white 
phase’ into our paradigm (see figure 2, step 2). Subjects were 
specifically asked to focus on the object above the tile high-
lighted in white. This procedure allowed the participants to 
maintain their focus on the designated object and to execute 
the designated task once the highlighting turned green (figure 
2, step 3). We also repositioned each object clockwise after 
each run to minimize the impact of the position itself.

Preceding further analysis, we discarded all trials in which 
subjects did not lift their hand within 2 s after start of the 
green highlighting. We filtered EEG between 0.3 and 35 Hz 
using a zerophase 4th order Butterworth filter. Thereafter, we 
rejected artefact contaminated trials using statistical param-
eters: (1) amplitude threshold (amplitude exceeds  ±125 µV), 
(2) abnormal joint probability (3) and abnormal kurtosis. As 
threshold for the last two we used four times the standard 
deviation (STD). Using similar statistics, we also performed 
channel based rejection. On average we rejected 12% of the 
the recorded trials and kept 59 EEG channels. Rejected chan-
nels were mainly located on the edges of the electrode grid on 
the right side. Our approach has no need for additional meas-
urement channels and has already been used successfully in 
both offline [35] and online BCI scenarios [42–44].

Binary single trial classification

The aims of performing binary single trial classification were 
twofold. First, we were interested in the discriminability 
between reach-and-grasp actions. Second, we wanted to dis-
criminate individual reach-and-grasp actions from the no-
movement condition.

We common average referenced (CAR) the EEG to increase 
the signal to noise ratio and resampled the signal to 16 Hz to 
facilitate computational performance. Thereafter the signal 
was bandpass filtered from 0.3 to 3 Hz using a 4th order zero-
phase Butterworth filter. We epoched our trials based on the 
movement onset captured by the pressure button to define 
our time region of interest (tROI). The tROI started 2 s before 
and ended 3 s after movement onset. Using 10 times 5 fold 
cross-validation, we divided the recorded trials into test and 
training data. For further classification we used all available 
channels. For training the shrinkage based linear discriminant 
analysis classifier (sLDA) [45], we used a time window of 1 s 
taking amplitude values in 125 ms steps as features. In steps 
of 1/16 of a second we moved this window over the defined 
tROI of training and test trials. This means, that we trained 
and tested a classification model every 1/16 of a second in the 
tROI (in total 80 models over the whole tROI). In each cross- 
validation fold, the classifier was trained based on training data 
and evaluated on the test data. We repeated the 5 fold cross val-
idation 10 times and report the mean of the accuracies. Based 
on these accuracies, we also calculated the information transfer 
rate (ITR) according to Wolpaw’s bit rate [46, 47]. On average 
6.7 trials were shown to each participant per minute.

For the binary classification strategy we performed this 
procedure for each possible class combination (6 in total).

Multiclass single trial classification

Our approach for multiclass classification was similar to the 
binary classification methodology, but we used a multiclass 
sLDA model instead [48]. Furthermore we investigated how 
the window size for feature extraction impacts on the overall 
performance. Here we analyzed four time-window sizes: one 
sample, 500 ms, 1000 ms and 1500 ms. Table 1 describes the 
windows and their features in detail.

Since our classification approach resulted in its own clas-
sification model every 1/16 of a second, we were also able to 
investigate time point specific confusion matrices. Therefore 
we calculated them for each subject for each time point and in 
grand average within the tROI. We also performed row-wise 
normalization so that for each row the sum of all predicted 
class rates adds up to 100%.

Additionally to the implications of the window size, we 
were interested in the classification performance when 
reducing electrodes. Therefore we performed multiclass clas-
sification not only with our full setup of 61 electrodes but also 
with three reduced setups (see also figure 9):

 • 5 channel layout: (Fz, C1, Cz, C2, CPz)
 • 15 channel layout: (FC3, FC1, FCz, FC2, FC4, C3, C1, 

Cz, C2, C4, CP3, CP1, CPz, CP2, CP4)
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 • 25 channel layout: F3, F1, Fz, F2, F4, FC3, FC1, FCz, 
FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, 
CP4, P3, P1, Pz, P2, P4).

For each setup we calculated the multiclass performance 
as already described using the 1000 ms feature window. 
Additionally, we statistically compared the layouts with 
respect to subjects peak performance using a one-way repeated 
measure ANOVA.

Movement-related cortical potentials (MRCPs)

Apart from classification we were also interested to analyze the 
underlying differences in the MRCP neural correlates of grasps.

To analyse MRCPs we used the CAR-filtered EEG data 
and resampled it to 16 Hz to ease computational effort. 
Thereafter we bandpassed the signal using a 4th order zero-
phase Butterworth filter between 0.3 to 3 Hz and epoched data 
from  −2 s to 3 s with respect to the movement onset. For each 
condition we calculated the confidence interval (alpha  =  0.05) 
across all trials of all subjects using nonparametric t-percentile  
bootstrap statistics. MRCP calculations were done for each 
channel separately, however we only show a selection of 
channels located primarily over the motor cortex.

In addition, we performed sample-wise statistical testing 
using the nonparametric Wilcoxon Rank Sum Test. We 
applied the false discovery rate (FDR) procedure to correct 
for multiple comparisons.

Results

Behavioural analysis

In figure 3 we show a summary of the behavioural analysis of 
all subjects for each reach-and-grasp condition. All scaling is 
done relative to the movement onset of each subject, whereas 
the reach-and-grasp phase as well as the hold and release 
phase were calculated using data from the 5DT data glove. 
We observed similar timings for the reach-and-grasp-phases, 
as well as for the hold and release phases. We calculated a 
repeated-measures one-way ANOVA with the reach-and-
grasp time as factor (three levels) for palmar, pincer and lat-
eral grasp onset. Mauchly’s test indicated that the assumption 
of sphericity was not violated. There was no significant effect 
for the grasp onsets F(2.28  =  1.473, p  >  0.24).

Movement-related cortical potentials (MRCPs)

Figure 4 shows the confidence interval (alpha  =  0.05) of the 
MRCPs for each condition for channels FCz, C1, Cz and C2 
with respect to the movement onset (second 0). A broader 
selection of channels can be viewed in the supplementary 
material (stacks.iop.org/JNE/15/016005/mmedia).

In the top left quadrant, all conditions are plotted together. 
For all grasping conditions a strong negative shift can be 
observed starting around 250 to 350 ms before the movement 
onset. Imminent to the movement onset the negative shift 

Table 1. Window sizes investigated for the multiclass classification approach. Features were extracted in steps of 125 ms starting from the 
actual sample to the designated window size.

Window size
Number of features per channel (taken 
in 125 ms steps from the window)

Average number of 
features extracted per trial Trial-to-feature ratio

1 sample 1 59 4.88
500 ms 5 295 0.97
1000 ms 9 531 0.54
1500 ms 13 767 0.37

Figure 3. Behavioural analysis. Subject-specific behavioural analysis with respect to the movement onset. Darker colors represent the time 
taken from movement onset to the final grasp position. Lighter colors indicate the phase from hold to release. Horizontal lines indicate the 
median over all subjects for the reach-and-grasp (bold) and the hold and release (dashed).
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reaches its maximum at around  −4 µV. After 200 ms, all grasp 
conditions show an intermediate strong positive rebound fol-
lowed by a second positive rebound which is different for each 
grasp condition. For all grasp conditions, significant differ-
ences can be observed against the no-movement condition 
starting from 2 s before the cue.

Significant differences can be observed up to 3 s after the 
cue for all electrodes over the central motor cortex. Most 
pronounced differences can be observed at Cz and C1. The 
remaining three quadrants show all possible pairings of grasps. 
In all comparisons between reach-and-grasp conditions, sig-
nificant differences can be observed from  −1 s seconds before 
until 1.5 s after the movement onset. Moreover, at the occur-
rence of the second positive rebound at around second 1, differ-
ences are most pronounced. These differences are the smallest 
in the palmar versus pincer comparison and only significant 
ipsilaterally at C2 (see top right quadrant). For the comparison 
of pincer and palmar grasp conditions versus the lateral grasp 
condition significant differences over C1, Cz and C2 can be 
observed. Moreover, a time difference between the positive 
peak of the second positive rebound can be observed among 
conditions, especially at central electrode Cz. The lateral grasp 
condition reaches peak rebound almost ~250 ms earlier than 
the pincer and the palmar grasp condition. In both cases this 
difference is significant in all central electrodes.

Binary classification approach

As a first step we performed one versus one classification of 
all task pairs. Figures 5 and 6 display classification results for 
all subjects and their grand average over all tasks pairs. We 
defined the time region of interest (tROI) from 2 s before to 3 s 
after the movement onset. The subject-specific chance level 
for binary classification is 63.3% (alpha  =  0.05, adjusted 
Wald-interval) and is Bonferroni corrected for multiple com-
parisons of the sample-wise classification approach (see  
[49, 50]). For the grand average over all subjects chance level 
is 53.5%. For this classification approach we used features 
from a time window of one second.

In figure 5 we show the subject-specific peak accuracies 
of the tROI. Grasps versus no-movement achieve average 
peak accuracies of 94.5%, while grasps versus grasp peak 
performance average at 75.8% (palmar versus pincer, blue), 
75.9% (lateral versus palmar, red) and 72.3% (lateral versus 
pincer, green). Only the classification results of two subjects 
(S6: Lateral versus Palmar; S10: Palmar versus Pincer, Lateral 
versus Pincer) were below the subject-specific chance level in 
a grasp versus grasp condition.

In table  2 we show the peak performance of the grand 
average of each class combination percent and bits per minute 
as well as its time of occurrence relative to the movement onset.

Figure 4. Grand average of all trials of the movement-related cortical potentials (MRCPs) with respect to the movement onset for all the 
conditions. Colored shaded areas show the mean confidence interval of the designated grasp (alpha  =  .05). In the top left panel MRCPs of 
all grasp conditions and the no-movement condition are plotted together. The other panels show the MRCPs for every pair of grasps. Below 
each channel we marked significantly different (p  <  0.05) timepoints resulting from the Wilcoxon Rank Sum Test. In the top left panel, this 
is shown for every reach-and-grasp condition (in their designated colors) against the no-movement class. In the other three panels, we show 
the significant differences for the grasp versus grasp conditions each.
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Figure 6 shows the subject-specific classification performance 
and the grand average performance over the tROI. All grasps 
show similar classification behaviour against the no-movement 
condition (as shown in the top left plot). Better-than-chance 

classification performance could already be reached 1.4 s 
before the actual movement onset. Performance of at least 
90% remained stable over the first second after the movement 
onset. Grand average peak performance was 93.5%. For grasp 

Figure 5. Binary classification results—peak accuracies over all trials. The first bar group displays the average peak accuracies of all 
subjects (grand average). Bar group S1 to S15 display subject-specific peak accuracies. Notice that only the accuracy of S6 and S10 are 
below the single subject significance threshold (dashed green line) of 63.2%.

Figure 6. Binary classification results. Subject-specific and grand average classification accuracies with respect to the movement onset. 
The black perpendicular line at second 0 marks the movement onset. Textboxes indicate the grand average peak accuracy. Top left plot 
shows the grand average for all investigated grasps versus the no-movement condition including its standard deviation. Plots on top right 
corner and on the bottom indicate the performance of grasp versus grasp evaluations.
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versus grasp conditions better-than-chance performance could 
be achieved on grand average up to 1 s before movement onset 
for palmar versus pincer, respective 400 ms and 300 ms for 
palmar versus lateral and lateral versus pincer. Grand average 
peak accuracies occurred after movement onset between 
1.125 s and 1.375 s. Grand-average peak accuracy culminates 
at 73.7% (palmar versus pincer), 69.8% (lateral versus pincer) 
and 73.5% (lateral versus palmar).

Multiclass classification approach

Similar to the binary classification approach, we defined the 
time region of interest from 2 s before to 3 s after the move-
ment onset. The subject-specific chance level for the multiclass 
approach lies at 33.5% (alpha  =  0.05, adjusted Wald-interval, 
Bonferroni corrected for multiple comparisons). For the grand 
average, chance level lies at 27.1%. Figure 7 shows the grand 

average performance of the multiclass classification for the 
four different time windows tested. We were interested to eval-
uate the impact of window size on the overall performance. 
For all approaches better-than-chance classification was 
already possible in a time range between  −0.5 s to 1 s relative 
to the movement onset (see figure 7, left plot). There is also 
almost no difference between the 1000 ms and the 1500 ms 
window in terms of performance. However, peak accuracy 
and its timing shifted with increasing window size as shown 
in table 3. We also investigated the subject-specific peak accu-
racies for each time window as shown in figure 7 (right plot). 
We conducted a one way repeated-measures ANOVA over 
the peak accuracies of all subjects per window size (4 levels). 
Mauchly’s test for sphericity indicated correction of the 
p-values. Correction was done using the Greenhouse–Geisser 
criterion. Their differences between peak accuracies for each 
time window were significant (F(3, 42)  =  84.6, p  <  0.001). 

Table 2. Grand average peak performance in percentage and bits per minute for all class combinations and their corresponding time point.

Task combination Peak accuracy (%)
Peak performance  
(bits min−1)

Time point relative to 
movement onset (s)

Grasps versus no-movement 93.5 STD  ±  4.2 4.37 +0.875
Palmar versus pincer 73.7 STD  ±  6.1 1.13 +1.125
Palmar versus lateral 73.5 STD  ±  6.6 1.12 +1.375
Lateral versus pincer 69.8 STD  ±  4.8 0.78 +1.125

Figure 7. Multiclass classification results based on different time windows. The figure on the left side displays the grand average of the 
multiclass performance for each investigated time window (colored bold lines). The green dashed line shows the significance threshold at 
27.4%. With increasing size of the time window, peak accuracy for the classification delays in time. The boxplots on the right show the 
range of peak accuracies for all subjects in each time window evaluation.

Table 3. Grand average peak performance in percentage and bits per minute for different window sizes and their corresponding time point.

Window size Peak accuracy (%) Peak performance (bits min−1) Time point (s, relative to movement onset)

1 sample 50.3, STD  ±  6.6 1.42 +0.06
500 ms 61.8, STD  ±  8.7  2.92 +0.62
1000 ms 65.9, STD  ±  8.1 3.57 +1.0
1500 ms 65.8, STD  ±  7.5 3.56 +1.43
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Post–hoc test for multiple comparison using the Tukey–
Kramer criterion revealed that window-based performance 
is significantly better than the one sample approach. We also 
found that the 1000 ms and the 1500 ms perform significantly 
better (p  =  0.02) than the 500 ms window.

For the rest of the analysis we chose the classification 
approach using the time window of 1000 ms. Figure 8 displays 
multiclass-classification results for all subjects using the 1000 ms 
time window. We attained the grand average peak accuracy of 
65.9%. As shown in figure  7 better-than-chance classification 
was already possible more than 1 s before movement onset.

Apart from the classification results for participants S6 and 
S10, all peak accuracies exceeded 60%. In figure 8 top right, 
we show the subject-specific peak accuracies which result on 
average in 66.9%. This value differs from the grand average 
due to the variance in peak time per subject.

Since our method incorporates its own classification model 
every 1/16 of a second, we were able to show condition 
specific confusion matrices at several timepoints of interest 
(figure 8, bottom). In this case we chose 1 s before move-
ment onset (i, red), movement onset (ii, green) and 1 s after 
the cue (iii, yellow). While the true positive rate is similar for 
all contributing classes in (i), the true positive rate of the no-
movement condition is almost twice as high in (ii) and almost 
a third higher in (iii). This resembles the results we presented 
previously in the binary classification approach (grasp versus 
no movement) and the underlying MRCPs, in which distinct 
differences between grasping movements and no movement 
could be seen on a broad time interval (−1 to 1 relative to the 
movement onset). However, in (iii) true positive rates for the 
grasp classes also reached values of almost 60%.

Incorporating the 1000 ms window for feature extraction, 
we also investigated three additional electrode setups with 
reduced number of electrodes, as can be seen in figure 9. For all 
tested layouts better than chance accuracies could be achieved. 
With increasing number of electrodes, performance increased 
for all subjects. We conducted a one-way repeated-measures 
ANOVA over the peak accuracies of all subjects per channel 
layout (four levels). Mauchly’s test for sphericity indicated no 
need for correction. The differences between peak accuracies 
for each channel layout were significant (F(3, 42)  =  78.505, 
p  <  0.001). Post–hoc test for multiple comparison using the 
Tukey–Kramer criterion revealed that all channel-layouts are 
significantly different from each other.

Discussion

In this paper we show that it is possible to discriminate three 
executed reach-and-grasp actions prominent in everyday life 
using their EEG neural correlates. Furthermore, we show that 
these actions can be discriminated against no-movement with 
high accuracy. In the binary classification scenario, perfor-
mance for grasp versus grasp conditions peaked on average 
at 72.4% (STD  ±  5.8%), for grasps versus the no-movement 
peak performances of 93.5% (STD  ±  4.6%) could be reached. 
For the multiclass classification scenario which incorporated 
all reach-and-grasp conditions and the no-movement condi-
tion, maximum performance (65.9%, STD  ±  8.1%) could 
be reached using a feature window of 1000 ms. Underlying 
MRCPs of the reach-and-grasp actions investigated over the 
primary motor cortex showed significant differences starting 
from approximately 800 ms to 1200 ms after the movement 

Figure 8. Multiclass classification results for a 1000 ms time-window. Top left plot displays the grand average classification performance 
including its standard deviation and subject-specific results. Colored marker represents calculation time points for the subjacent confusion 
matrices. Confusion matrices are normalized by row and display rates in percentage. The right plot shows subject-specific peak accuracies 
over all trials. Notice that the green dashed line represents the significant threshold in both plots (left plot for grand average over all 
subjects, right subject-specific level).
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onset which is the same time frame where classification per-
formance reached its maximum.

Movement-related cortical potentials

Analysis of the MRCPs for each reach-and-grasp condition 
showed the maximum negative shift imminent to the move-
ment onset, as previously described by Shibasaki et al in [25] 
and presented also in other studies that investigate the neural 
correlates of upper limb movements such as Gu et al [51, 52], 
Jochumsen et al [30, 53] or Oda et al [54]. Our analysis shows 
that the maximum negative shift occurs over the central motor 
cortex (Cz) imminent to the movement onset and is more 
pronounced on the contralateral side (C1) than on the ipsilat-
eral side (C2). This effect can be seen further in the extended 
MRCPs analysis provided as supplementary material.

Comparisons between all conditions reveal that all reach-
and-grasp conditions show significant differences to the no-
movement condition over the whole tROI.

In all grasp-versus-grasp conditions we found significant 
differences ( p  <  0.05) emerging around one second before 
the movement onset, howevers most pronounced differences 
are found around 0.8 s ms to 1.2 s after the movement onset.

Interestingly we found a time shift in the peaks of this 
positive rebound potential for the reach-and-grasp conditions. 
This time shift is pronounced strongest in condition combina-
tions involving the lateral grasp. This potential produced by 
the lateral grasp appears the earliest of all reach-and-grasp 
conditions. It can be seen not only at contralateral, but also at 
central and ipsilateral sides.

The behavioural analysis indicate that subjects finished 
grasping objects on average between 1.1 s and 1.25 s after the 
movement onset. This falls in the same time frame where the 
significant differences between the MRCPs can be found.

Single trial classification

Binary single trial classifications show high classification 
results for movement versus no-movement conditions with 
subject-specific accuracies over 90%. Even for subjects (S6, 
S10) with unfavourable grasp versus grasp classification per-
formance detection rates reach performances of 85% and 
more. Peak accuracies were reached within the first second 
after the movement onset. The movement intention could be 
detected before the actual movement with performance rates 
exceeding 80% in grand average over all subjects. These per-
formance results are similar to the findings reported by other 
studies regarding the detection of upper limb movement inten-
tion [31, 34, 55] and [56] (online).

Binary grasp versus grasp classification performance 
ranged from ~70% to 73% on grand average. Subject-
specific accuracies were usually higher (~+3%) due to vari-
ances in peak timing. Only for two subjects (S6, S10) any 
grasp versus grasp combination scored lower than chance 
(S6: Lateral versus Palmar; S10: Palmar versus Pincer, 
Lateral versus Pincer). We could also observe significant 
classification performance imminently before the move-
ment onset ranging from 57%–59%. These results are in 
line with the findings of Jochumsen et al [31] who investi-
gated strategies for discriminating grasp intentions. Using 

Figure 9. Multiclass evaluation of different electrode layouts using the 1000 ms time-window. Top left plot displays the multiclass 
classification accuracy for all four layouts (color-coded). The boxplots on the right show the range of peak accuracies for all subjects for 
each electrode layout. In the bottom part of the figure we visualize the four different electrode layouts.
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temporal features in the range of 0.01–5 Hz, they obtained 
similar performance results. However, the focus of their 
study was only on the movement intention and it does not 
reflect the whole movement process including reaching. We 
obtained grand average peak accuracies around 1–1.5 s after 
movement onset.

Peak accuracies correspond to changes in amplitude in the 
neural correlates in which we observed significant differences 
regarding the emerging of a positive rebound potential of the 
reach-and-grasp conditions as well as in their time shift.

Regarding the multi-class classification approach sig-
nificant classification results could also be reached up to 1 s 
before the movement onset. In the multi-class classifica-
tion approach confusion matrices reveal a disproportionate 
contrib ution to the true positive rate by the movements versus 
no-movement condition. Despite true-positive rates being sig-
nificantly higher than chance level for all movement versus 
movement conditions, the movement versus no-movement 
condition contribute almost twice as high to the overall per-
formance at movement onset. In the multiclass scenario, peak 
accuracy of 65.9% was reached one second after the move-
ment onset. Again, confusion matrices show high contrib-
ution of movement versus no-movement conditions, however 
also grasp versus grasp conditions contributed equally to the 
overall performance (~ two third ratio).

With respect to the previously mentioned findings of Agashe 
et al [32], a direct comparison of performance results is diffi-
cult due to differences in the methodological approach and in 
the experimental setup. We also investigated the no-movement 
condition in the multiclass scenario, which was not incor-
porated in their study. However, in their study, participants 
reached peak accuracy for classification already 250 ms after 
the movement onset which is approximately 750 ms earlier 
than we report in our findings (1 s after movement onset). This 
suggests that they find their most discriminant information 
already within the early reaching phase to the object, while our 
results indicate peak accuracy during the grasping itself.

Implications of the window size and electrode setup

Regarding our investigations on different window sizes in 
the multiclass approach we show that all window-based 
approaches could outperform single sample based classifica-
tion significantly (p  <  0.001).

Interestingly, we also found a significant difference in 
performance (p  =  0.02) between 500 ms and the 1000 ms 
window, which suggests that discriminative information for 
different reach-and-grasp actions is spread over a longer 
period of time than 500 ms. Our behavioural analysis also 
shows that all reach-and-grasp actions are on average slightly 
longer than 1000 ms (1100 ms to 1250 ms) which also implies 
that the 1000 ms window allows better coverage of the whole 
reach-and-grasp action than a shorter one. We also tested 
a 1500 ms window, though performance compared to the 
1000 ms window was almost identical and no significant dif-
ferences could be found (p  >  0.86). However, we observed a 
delay in peak performance of around 400 ms.

Our investigation towards different electrode setups clearly 
showed that with increasing number of electrodes also peak 
performance increases. This effect is present for each subject 
and lead to the significant (p  <  0.05) differences between all 
evaluated electrode setups. However, by reducing the number 
of electrodes (and therefore the feature space for the classi-
fier) by almost two thirds to 25 electrodes, peak performance 
decreases by less than 3%, which suggests a possible trade-off 
between performance and usability in e.g. an out-of-the-lab 
scenario incorporating potential end users.

Limitations

In this study we used a cue-based protocol and conducted an 
offline analysis. In this regard we used zero-phase bandpass 
filtering EEG to compensate for the group delay. In an online 
scenario, non-causal filtering is not possible.

To allow a fair comparison between movement and no-
movement conditions we time-locked the no-movement 
condition according to a virtual onset calculated from the 
subject’s reaction time. In our opinion, these no-movement 
epochs are not comparable to real resting periods since these 
epochs are interspersed in a cue guided experiment setting 
which demands the subjects attention and action. In an online 
scenario, a real resting period would persist over a longer 
period or during a phase in which subjects intentionally do 
not attempt any form of control (e.g. while watching a movie).

With increasing window size the increasing number of 
features becomes an issue. The larger the number of features 
included the more unfavourable the trial to feature ratio, which 
ultimately results in an increased validation error. Empirical 
evaluation of this issue was already performed by Blankertz 
et al [45]. With a linear increase of features used, the dimen-
sionality of the feature space grows exponentially. This results 
in a poor estimation of the covariance matrix for the classifi-
cation model and has a high negative impact on classification 
performance (‘curse of dimensionality’).

One possibility to overcome this issue would be to use a fea-
ture reduction technique to keep only features containing high 
discriminative information, such as sequential forward selec-
tion (SFS, already applied in [31]) or the smooth and decima-
tion approach used in [57]. In our experimental setup we used a 
causal sliding window for extracting features for classification. 
In an online scenario, any window based approach will intro-
duce a delay with regard to the reach-and-grasp action of the 
subject. Although this is a static delay, increasing window size 
will also increase the delay and introduce an offset time in any 
BCI control scenario. However, this applies to any causal online 
scenario and is not solely a limitation of this specific experiment.

Transfer to online control and future work

So far we showed in offline analysis that three reach-and-
grasp movements towards different objects can be discrimi-
nated from low-frequency EEG time domain features.

Our offline analysis showed better-than-chance perfor-
mance in single trial classification, however the generation 
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of robust motor commands needs to be investigated further 
in online setups. Our results show peak accuracies around 
75% on grand average, which suggest that at best three out 
of four reach-and-grasp commands could be decoded cor-
rectly. In previous sensori-motor rhythm (SMR) based BCI 
studies [58–60] incorporating cerebral palsy end users, we 
investigated possibilities to accumulate multiple control com-
mands for one single decision. This evidence accumulation 
strategy demanded three ‘correct’ commands out of e.g. five 
to finally trigger the correct action. Though the whole process 
of decision making is prolonged, erroneous commands are 
less probable.

Another idea for boosting BCI performance would be to 
incorporate error-related potentials (ErrP) into the decision 
process, as already briefly introduced by Kreilinger et al [61] 
using motor imagery tasks (MI). The idea here would be to 
use a hybrid combination of EEG based detectors for grasps 
and ErrP. Whenever a misclassification of the designated 
grasp happens, the triggered ErrP could be used for undo. 
We hypothesize that this combination could lead to increased 
overall performance, however data collection for calibration 
will require a more complex paradigm since not only grasps, 
but also ErrP data has to be collected.

In this study we rejected on average around 12% of trials 
due to artefact contamination which would affect at least every 
tenth grasp attempt in an online scenario. Though artefacts 
may not be avoided completely, we believe that with proper 
end user training this percentage can be decreased. Still, for 
robust grasp control these contaminated attempts need to be 
handled accordingly e.g. by signaling the end user to repeat 
the current action.

For this experiment we used a high density electrode grid 
of 61 electrodes placed on frontal, central and parietal areas 
over the scalp. Our investigations show that this grid can be 
reduced by almost two thirds to 25 electrodes, while still main-
taining similar performance. This factor might become critical 
when attempting to leave a controlled laboratory environ ment 
and, for instance, when working together with end users in 
their own homes.

Successful online control requires reliable movement inten-
tion detection since the exploited MRCPs are time-locked to 
the movement onset. In this study, we showed high detection 
accuracies for movements versus no-movement conditions. In 
an online scenario, a hierarchical classification model could 
be used to detect the movement intention of the user and rely 
on this detection point as a timelock for grasp versus grasp 
discrimination. This approach has already been used offline 
in several studies incorporating complex hand movements  
[31, 33, 62].

Further studies incorporating high spinal cord injured 
end users will finally assess whether our current results can 
be translated to the targeted end user group. The command 
strategy in our study relied on executed movements and it is 
still unknown whether similar classification results could be 
achieved in end users. Studies from Blokland et al [63, 64] 
and Verbaarschot et  al [65] indicate that attempted move-
ments may present a better command strategy than imagined 

movements. Also Lacourse et  al [66] indicated higher cor-
relations between attempted and imagined movements of 
tetraplegic end users than between executed and imagined 
movements of a healthy control group. Our first experiments 
incorporating high SCI end users performing attempted com-
plex hand movements confirm [67] that attempted grasps of 
end users can be discriminated better than chance.

Conclusion

In this study we showed that it is possible to discriminate 
three executed reach-and-grasp actions prominent in people’s 
everyday use from non-invasive EEG. Based on their neural 
correlates, we could show differentiation against each other 
and also against a no-movement condition. Furthermore we 
could identify significant differences in the underlying move-
ment-related cortical potentials.

This findings will eventually contribute to our attempt of 
controlling a neuroprosthesis in a natural and intuitive way 
and a step closer to a successful and reliable intervention for 
end users with high spinal cord injury.
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Abstract
Objective. Daily life tasks can become a significant challenge for motor impaired persons.
Depending on the severity of their impairment, they require more complex solutions to retain an
independent life. Brain-computer interfaces (BCIs) are targeted to provide an intuitive form of
control for advanced assistive devices such as robotic arms or neuroprostheses. In our current
study we aim to decode three different executed hand movements in an online BCI scenario from
electroencephalographic (EEG) data. Approach. Immersed in a desktop-based simulation
environment, 15 non-disabled participants interacted with virtual objects from daily life by an
avatar’s robotic arm. In a short calibration phase, participants performed executed palmar and
lateral grasps and wrist supinations. Using this data, we trained a classification model on features
extracted from the low frequency time domain. In the subsequent evaluation phase, participants
controlled the avatar’s robotic arm and interacted with the virtual objects in case of a correct
classification.Main results. On average, participants scored online 48% of all movement trials
correctly (3-condition scenario, adjusted chance level 40%, alpha = 0.05). The underlying
movement-related cortical potentials (MRCPs) of the acquired calibration data show significant
differences between conditions over contralateral central sensorimotor areas, which are retained in
the data acquired from the online BCI use. Significance.We could show the successful online
decoding of two grasps and one wrist supination movement using low frequency time domain
features of the human EEG. These findings can potentially contribute to the development of a
more natural and intuitive BCI-based control modality for upper limb motor neuroprostheses or
robotic arms for people with motor impairments.

1. Introduction

Motor impairment has a significant effect on a per-
son’s daily life. Depending on the severity of their
impairment, persons may not be able to walk, eat,
drink or even brush their teeth without the help of
a caregiver anymore. Motor impairment can have a
broad variety of causes ranging from severe trauma
to the spinal cord (SCI) and neuropathological condi-
tions to stroke. Naturally, affected persons seek inter-
vention to cushion the resulting effects such asmuscle
and tendon transfers for tetraplegic SCI persons
[1–4], extensive stroke rehabilitation [5] or in the case

of motor neuron diseases, delay and reduce its symp-
toms [6, 7].When surgical or physiotherapeutic inter-
ventions reach their limits, assistive devices attempt
to bridge the gap towards a comparatively independ-
ent life. Themore severe the grade of impairment, the
higher the need for more customized assistive devices
become.

Non-invasive brain-computer interfaces (BCIs),
though still in a prototype stage, can potentially
provide a customized control modality for even the
most severe cases ofmotor impairment. They attempt
to decode brain signals acquired in real time (‘online’)
by using the electroencephalogram (EEG).Using state

© 2020 The Author(s). Published by IOP Publishing Ltd
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of the art machine learning methods [8, 9], a con-
trol signal can be generated for controlling assistive
devices [10], e.g. a robotic arm [11] or an upper limb
motor neuroprosthesis [12–15].

So far, BCIs intended for control of assistive
devices often relied on repetitivemental imagery (MI)
and oscillation based features for generating control
signals [12–15].

Recent studies however have shown that
movement-related cortical potentials (MRCPs)
[16–18], extracted from the low frequency time
domain (LFTD), hold sufficient information for
decoding singular, non-repetitive movements: They
have been shown to encode information about both
singular lower limb [19–22] as well as upper limb
movements [23–28] including grasp force and speed
[26, 29] and even directional information from reach-
ing movements [30].

In the field of stroke rehabilitation, Mrachacz-
Kersting et al already successfully integrated an
MRCP-based BCI in lower limb rehabilitation for
stroke survivors: the BCI decodes in real-time EEG
correlates of stroke patients performing lower limb
movements, which in turn activates non-invasive
transcranial magnetic stimulation (TMS). Their res-
ults show in both chronic and subacute patients
neuroplastic changes and further significant improve-
ments in regaining movement functionality (clinical
scales) [31–34]. In the same field of research, this
approach is already investigated for upper limbmove-
ments [35].

MRCPs are also investigated for the purpose of
control. Especially in the case of persons with high
spinal cord injury, BCIs are primarily intended to
control artificial limbs, such as robotic arms [11]
or upper limb motor neuroprosthesis [36]. Studies
conducted in non-disabled populations have shown
offline that MRCPs hold sufficient information to
decode upper limb movements [25] including com-
plex reach and grasp movements [23, 24, 37]. How-
ever, to our knowledge only one proof-of concept
study with one participant has applied this online
in a BCI [38]. Recently, Ofner et al showed off-
line that MRCPs of tetraplegic end users (n = 10)
still retain sufficient information for decoding upper
limb movements [38]. Additionally, they showed in a
proof-of-concept study asynchronous online decod-
ing of hand open vs. palmar grasp attempts in one
participant with tetraplegia.

Their offline analysis further revealed that the
EEG potentials associated with the motor task in
a cue-locked paradigm are contaminated by poten-
tials which are related with the processing of the cue
itself. This effect can be problematic: if one wants
to develop an online classifier for asynchronous use,
the EEG potentials around the movement onset in a
cue-free scenario consist solely of the MRCPs itself,
without time-locked influences of visual cues (see
also [25, 39]). It is therefore imperative to study new

possibilities to gather calibration data that is equally
properly labelled, but in which movement-related
features are not masked by the presentation of cues.

Hence, the aims of our current study were two-
fold: First, while most studies have investigated
MRCPs for upper limb decoding rely on offline ana-
lysis, we wanted to assess the feasibility of MRCPs in
an online system, i.e. allowing for BCI control. Our
second goal was to minimize the influence of discrete
visual cues in the EEG signals, since such cues could
mask discriminable information in the low-frequency
time-domain.

Therefore, we measured 15 healthy participants
that performed three different hand movements of
daily life: (i) palmar grasp, (ii) lateral grasp and (iii)
wrist supination. We presented the instructions in a
realistic simulation environment, engaging study par-
ticipants in daily life actions (e.g. grasping a glass with
a palmar grasp). After recording data for a calibra-
tion (calibration phase), we used features extracted
from the LFTD to train a classification model. In a
subsequent evaluation phase, we gave discrete feed-
back based on the participants’ hand movements and
evaluated the performance of the three-class online
classifier.

2. Methods

2.1. Participants
Fifteen healthy participants aged between 21 and
35 years (median 26, eight male, seven female) took
part in the experiment. The study was approved by
the local ethics committee of the Medical Univer-
sity of Graz. Participants were briefed about the aims
of the study and gave written informed consent to
participate. They also received monetary compensa-
tion for their efforts. To evaluate their handedness,
we performed the three stage hand dominance test
developed by Steingrübler [40]. The test assesses the
individual hand dominance quantifying the results of
three exercises: (i) draw a line within a prescribed
path, (ii), dot unaligned circles and (iii) dot hori-
zontally aligned squares. Results show that 13 parti-
cipants were right-handed and two left handed (see
stacks.iop.org/JNE/17/036010/mmedia supplement-
ary table 1 for detailed results).

2.2. Experimental setup and
paradigm—simulation of daily activities
We conducted all recordings at the BCI-Lab of the
Institute of Neural Engineering at Graz University
of Technology. Participants were seated in a noise
and electromagnetically shielded room to facilitate
a stable measurement environment. A monitor was
placed in front of them which showed the paradigm.
Participants positioned their right hand in an upright
position comfortably on the armrest of the chair.

We designed a simulation environment for
presenting instructions in a daily life setting: A motor
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Figure 1. Simulation environment and experimental setup. (Top (A)) Simulation Environment and the designated objects of
interaction. The top row shows the stopping point where the animation ended and the user had to complete the movement with
his own hand. The bottom row shows part of the feedback animation. (Center (B)) Experimental paradigm. Each trial started with
the robotic arm moving towards the presented object in the center of the screen (2 s duration). Shortly before the hand interacted
with the presented object (0 s), it stopped (CUE) and the study participant was tasked to finish the interaction (e.g. grasping the
glass in the palmar grasp condition) and to hold the final position until the inter trial interval (second 3, Break). In case of trials
with feedback (evaluation phase), feedback designated to the object was given. However, for an incorrect classification, the robotic
arm performed a waving movement in the horizontal plane. (Bottom (C) Experimental timeline: Starting with a practice run we
recorded 4 runs á 15 trials per conditions (TPC) without giving feedback. After the break, we evaluated the classification model in
3 runs á 15 TPC. In total, each experiment lasted for about two hours. The simulation environment is used with permission from
the Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria.

impaired avatar with a robotic right arm reaches for
objects of daily life presented on a table. In front of
the avatar we showed one of three objects in ran-
dom order, (i) a glass, (ii) a bowl of soup with a
spoon and (iii) a radio with knobs (figure 1(A)).
At the beginning of each trial the robotic right arm
of the avatar started moving towards the desig-
nated objects, but stopped shortly before interaction
(CUE). We instructed the participants to finish the
designatedmovements with their own right hand (see
figure 1(B)). For the (i) glass, a palmar grasp, for the
(ii) bowl of soup, a lateral grasp and for the (iii) radio,
a wrist supination. Participants held the movement
until the end of the trial time = 3 s and went back
to the starting position (start of inter trial interval).
The object on the desk vanished (time = 3 s) and an
inter-trial-interval of random length between 2 and
3 s followed. Before the start of the actual record-
ing, each participant performed a practice run for
performing the movements correctly and to avoid
artifacts in subsequent runs. This training run was
not part of any subsequent analysis.

We organized the experiment in two consecutive
phases: calibration and evaluation (see figure 1(C).
For the calibration phase no feedback was given to the
participants and the trial ended 3 s after the robotic
arm of the avatar stopped before the object. How-
ever, in the evaluation phase participants received
feedback based on their actions online. Whenever a
participant’s movement was recognized correctly, the
avatar’s robotic arm completed the designated move-
ment. In case of the (i) glass, and (ii) spoon the
hand grasped them and brought them towards the
avatars mouth, in case of the (iii) radio, the robotic
arm turned the knob on the radio. In the case of
an incorrect recognition, the avatar’s arm performed
a repetitive shaking movement in the horizontal
plane.

In this manner we recorded 4 runs with 15 trials
per condition (TPC) for the calibration phase (in total
60 TPC). At the beginning, half time and end of cal-
ibration phase we recorded 3 min of rest as well as
2 min of eye movements or blinks using a cue-guided
paradigm presented in [41, 42].
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Using the data acquired in the calibration phase,
we trained a classification model. In the subsequent
evaluation phase, we recorded 3 runs á 15 TPC, where
we gave feedback to the participants.

2.3. Data recording
We recorded EEG with 57 active electrodes covering
frontal, central, parietal and temporal areas accord-
ing to the 5% layout described by Oostenfeld and
Praamstra [43]. Additionally, 6 electrodes positioned
at the outer canthi, infra and superior orbital to
left and right eye were used for recording ocular
activity (EOG). However, EOG recordings were not
part of the analysis described in this work. EEG and
EOG were recorded using four biosignal amplifiers
(g.USBamp) and a g.GAMMAsys/g.LADYbird active
electrode system (g.tec medical engineering GmbH,
Austria). Signals were recorded with a sampling rate
of 512 Hz and prefiltered using an 8th order Cheby-
shev filter in the range of 0.01 to 200 Hz. A pho-
todiode was positioned on the screen to measure
the exact cue onset (the stopping of the hand). In
addition, we recorded hand movements during the
experiment using a data glove (5DT Technologies,
Orlando, CA, USA). Data recording and synchron-
ization was achieved via TOBI Signal Server [44]
and MATLAB 2015b (Mathworks, Natick, MA, USA)
. The online evaluation was implemented in Sim-
ulink (Mathworks, Natick, MA, USA). For sending
commands and receiving timed triggers between the
online evaluation and the paradigm, we used a cus-
tomized protocol based on TCP/IP.

2.4. Movement detection and artefact avoidance
and rejection strategies
For determining a reliable single trial movement
onset, we used the participant-specific movement
data recorded by the data glove. We evaluated
15 sensors positioned at the joints of the finger
phalanxes. We epoched all movement trials of the
calibration dataset from −3 to 3 s with respect to
the movement onset. To reduce the dimensionality of
the data, we performed principal component analysis
(PCA) on the movement data for each condition and
used the first component to extract the movement
onset.

To avoid movement-related artifact contamina-
tion of the calibration data, our strategy in this experi-
ment was twofold: First, we carefully instructed parti-
cipants to fixate their gaze on the object presented on
the table and to avoid any unnecessary body and eye
movements during the trial phase. As a second step
we performed steps to exclude potential artifact con-
taminated trials from the calibration set [45–47]. We
rejected contaminated trials using statisticalmethods.
Concretely, we filtered all available EEG data between
0.3–35 Hz and epoched each trial from [−1 2] s with
respect to themovement onset. Thereafter we rejected
trials based on amplitude threshold (exceeding limits

of± 125µV), channel variance, abnormal joint prob-
ability and abnormal kurtosis. For the latter three, we
used four times the standard deviation as a threshold
for trial rejection. On average we retained 52 trials per
condition of the calibration data.

2.5. Offline single-trial multiclass classification
and calibration
We used the data of the calibration phase to train a
classification model for the subsequent online evalu-
ation. After excluding any potential artifact contam-
inated trials, we causally filtered the raw EEG using a
4th order Butterworth filter in the range between 0.3
and 3 Hz. Additionally we applied common average
reference (CAR) filtering and resampled the signal to
16 Hz to ease computational load. Previous studies
[24, 25, 46, 48] have shown that the most discrimin-
ant features for decoding upper limb movements in
the low frequency time domain can be found within
the first second after the movement onset. Therefore,
we defined for each trial a window of interest (WOI)
from [0 2] s with respect to the movement onset cal-
culated from the data of the data glove (For offline
analysis, we extended the WOI to [−1 2] s). For each
participant we epoched trials according to the WOI
and divided them in a training and evaluation set
using a 5 × 5 cross validation procedure. For each
timepoint within the WOI we calculated a shrink-
age linear discriminant analysis classification model
(sLDA) [49] using the training set and evaluated its
performance on the evaluation set. As features, we
used the amplitude values from each channel extrac-
ted in steps of 0.125 s of the preceding second with
respect to the actual investigated time point [−0.975:
0.125:0] s. In this way, we extracted 8 features per
channel resulting in a total of 8 × 57 = 456 features
per trial (observation). As a measure of performance,
we used the average accuracy on the evaluation folds
of the cross validation. The classificationmodel of the
time point yielding the highest classification accuracy
was then further used in the online BCI evaluation.

2.6. Online evaluation
The online BCI model was implemented in Sim-
ulink (Mathworks, Natick, MA, USA). Communica-
tion between BCI and the Unity based paradigm was
done via a customized protocol based on TCP/IP. The
incoming EEG was causally filtered using a 4th order
Butterworth bandpass filter in the range of 0.3–3 Hz
and resampled to 16 Hz. Thereafter, we applied CAR
filtering on the signal. Features were again extrac-
ted in 0.125 s steps from the preceding one second
[−0.975: 0.125:0] s (whereas 0 s is the actual sample).

The previously calculated sLDA classification
model was used to continuously discriminate the
input between conditions. Shrinkage based LDA is
widely used in the field of BCI research [9, 49]. How-
ever, so far it has not been applied in combination
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withMRCPs as features to decode singular armmove-
ments online on a large population.

Final discrimination between conditions was
achieved by averaging the linear distances of the last
three classified samples and selecting the condition
with the maximum distance. Eventually, we determ-
ined the condition by using a discrete time point in
the trial. To determine this time point we deliberately
did not use any movement data potentially provided
by the data glove to detect the movement onset.
Instead we used the time point where the robotic arm
of the avatar stopped its movement (CUE) as a ref-
erence. Additionally, we appended a participant spe-
cific delay which was calculated from the calibration
data: With respect to the CUE we added (i) the mean
difference between the movement onset and the CUE
onset, (ii) network delay and (iii) the time of max-
imum performance of the classification model.

We gave immediate feedback based on the output
of the classifier of this time point. In correct classified
trials the avatar completed the movement, otherwise
the avatars hand performed a shaking movement in
the horizontal plane.

Additionally, we implemented this BCI also as an
offline simulation. Using the Evaluation Data set we
replaced the estimated onset point with the actual
movement onset extracted from the data glove data
and compared the achieved performances between
real and estimated movement onset.

2.7. Analysis of the movement-related cortical
potentials (MRCPs)
We analyzed the low-frequency EEG correlates of
both calibration and evaluation datasets. We filtered
the EEG using a causal 4th order Butterworth band-
pass filter in the range between 0.3–3 Hz and res-
ampled it to 16 Hz to reduce computational load.
Thereafter we applied CAR filtering and epoched the
EEG into trials starting from [−2 2] s with respect to
the movement onset acquired by data from the data
glove. We were interested in the differences between
conditions as well as the differences between the data
acquired from calibration and the evaluation phase
(non-feedback vs. feedback). For each participant, we
calculated the participant specific averages for each
condition and its 95% confidence interval using t-
percentile bootstrap statistics (alpha= 0.05).We then
calculated the group average over all participants.

Additionally, we calculated topographicalmaps of
the grand averages for each condition and their dif-
ferences. This approach closely follows the analysis
described in [46]: differences were calculated by sub-
traction (e.g. cond(A)–cond(B)) and visualized using
the EEGLAB toolbox [50]. To assess significant dif-
ferences between conditions we used non-parametric
paired sample two-tailed permutation tests based on
t-statistics (alpha = 0.05) [51]: in steps of 0.125 s we
performed individual tests per time point and chan-
nel. In 5000 permutations, we applied t-statistics,

extracted the maximum t-statistic (t-max) for each
permutation and generated a t-max reference distri-
bution which is already adjusted for false discover-
ies [52, 53]. We eventually visualized significant dif-
ferent channels in the topographical difference plots
between conditions.

3. Results

3.1. Single trial classification
The analysis of the single trial classification results fol-
lowed two consecutive steps: First, we evaluated for
each participant the results of the 5 × 5 cross valida-
tion on the calibration set. Second, we evaluated the
online results (evaluation set). Figure 2 (left) shows
the grand average of the best performing classifica-
tion mode) and its time point of maximum accuracy,
which was 56.5% at around 1 s after the movement
onset. The confusion matrix in figure 2 (middle)
depicts the grand average of the participant-specific
peak accuracy (row-wise normalized). On average,
true positive rates (normalized true positives in per-
cent, TPR) are between 54% and 64% (supination
highest with 63.8%). False positive and false negative
rates (normalized false positives/negatives in percent,
FPR/FNR) between grasps (finger joints versus fin-
ger joints) yield around 25% whereas they are lower
for grasp versus wrist supination comparisons (fin-
ger joints versus wrist joints), with around 19%. On
the right side of figure 2 we show the confusion mat-
rix for the performance of the BCI. In comparison
to the calibration phase the TPRs decreased lead-
ing to a decreased classification performance for all
conditions—most notably for the lateral grasp con-
dition which decreased by more than 20% in TPR.

Table 1 illustrates all classification results of both
calibration and evaluation phase on the participant
level. As for the calibration phase, all participants
scored better than chance level which was at 44.4%
(adjusted Wald interval, alpha = 0.05 [54, 55], cor-
rected formultiple comparisons, n= 48). Peak accur-
acy was in the range from 47% (e.g. participant S13)
to up to 76.5% (participant S05) and were achieved
in the first second after the movement onset (STD ±
0.35 s, table 1, 2nd column). For the online classi-
fication of the evaluation phase we did not rely on
the movement onset anymore, rather than a combin-
ation of visual stopping cue of the paradigm, the par-
ticipants individual reaction time and a technical net-
work delay. The overall delay (participants’ reaction
time to the CUE plus the technical delay) and final
classification time point for the online evaluation can
be found in columns 4 and 5 of table 1. While the
technical delay was 0.11 s ± 0.01 s, the reaction time
to the cue was participant dependent for each parti-
cipant. The last two columns of table 1 show the res-
ults of the online evaluation. With the exception of
S13, all participants scored significantly better than
chance (chance level 40.4% adjusted Wald interval,
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Figure 2. Grand average classification results for all participants, calibration & evaluation set. (Left): Grand average of the best
performing classification (CFR) timepoint. Peak performance was reached around 1 s after the movement onset (red) at 56.5%
accuracy (chance level 44.4%, adjusted Wald interval, alpha 0.05 [54, 55],). (Middle): Grand average confusion matrix (row-wise
normalized) of the grand average of the participant specific peak accuracy. (Right): Online evaluation. Grand average confusion
matrix (row-wise normalized). Abbreviations: Pal (palmar grasp) Lat (lateral grasp), Sup (wrist supination).

Table 1. Participant specific classification results for the calibration phase and the corresponding evaluation phase. Offline calibration
(Columns 2–5): Participant specific peak accuracy (accuracy including standard deviation, Acc± STD) of the 5× 5 cross validated
(CV) results. The fifth column shows the best time point for online classification (CFR TP) in seconds. Columns 6 to 7 show the correct
classified trials in the evaluation phase as well as their designated overall accuracy (Acc) in percent. The last line displays the grand
average over all subjects (AVG).

Calibration phase Cross validated (5 x 5) Evaluation phase

Offline Acc± STD
(%) Chance: 44%

Offline Acc
Time (s)

Overall delay
std (%)

Online
CFR TP (s)

Correct trials (max.
135) Chance: 54

Online Acc (%)
Chance:40.4%

S01 63.6± 8.4 1.19 0.35 1.54 63 46.7
S02 59.5± 10.4 0.75 0.42 1.17 71 52.6
S03 70.9± 5.9 0.56 0.34 0.90 78 57.8
S04 55.7± 7.7 1.31 0.52 1.83 66 48.9
S05 76.5± 5.5 0.94 0.46 1.40 65 48.1
S06 57.5± 6.9 1.13 0.45 1.57 74 54.8
S07 64.5± 7.4 1.06 0.17 1.23 63 46.7
S08 49.1± 8.9 1.06 0.28 1.35 64 47.4
S09 53.5± 6.8 0.69 0.87 1.56 63 46.7
S10 61.6± 8.1 0.5 0.49 1.00 63 46.7
S11 56.9± 1.9 1.69 0.19 1.88 67 49.6
S12 56.5± 7.7 1.5 0.49 1.99 67 49.6
S13 47.6± 6.5 0.81 0.53 1.34 47 34.8
S14 51.8± 8.1 1.63 0.63 2.26 62 45.9
S15 67.8± 7.8 0.69 0.35 1.04 63 46.7
AVG 59.55± 7.2 1.0± 0.35 0.43 1.4 65.01 48.2

alpha= 0.05).On average participants scored 65 (cor-
rect trials) out of 135 trials (min. 47 (S13), max. 78
(S03)).

In an additional analysis we created an offline
BCI simulation and used as time-locking point not
the estimated movement onset as in the online BCI
rather than the real movement onset calculated from
the data glove data. Results indicate that when time-
locking on the real movement onset a significant
(Wilcoxon rank sum test, p < 0.05) performance
increase of about 4.5% could be reached. Detailed res-
ults can be found in the supplementary section 3.

3.2. Movement-related cortical potentials (MRCPs)
Figure 3 depicts the MRCPs in the low frequency
range from 0.3 to 3 Hz. We show the grand average

MRCPs for each condition over all participants as well
as the 95% confidence interval of the mean calculated
using non-parametric t-percentile bootstrap tests.We
show the MRCPs on the channels over the central
motor cortex (C1, Cz, C2). We defined the time win-
dow of interest as [−2 2] s with respect to the move-
ment onset for both calibration and evaluation data
sets. Furthermore, we investigated the evaluation data
set further when time-locking to the visual CUE, with
a time-window of interest [−2 2] s.

For both data sets and time-locking points, a
negative deflection (Bereitschaftspotential) [17], can
be observed starting before the movement onset
(strongest for lateral grasp condition) followed by a
positive rebound around 1 to 1.5 s after the move-
ment onset. This rebound is pronounced stronger

6



J. Neural Eng. 17 (2020) 036010 A Schwarz et al

Figure 3.Movement-related cortical potentials, on the calibration and evaluation data set. Grand average and corresponding
bootstrapped confidence interval (alpha= 0.05) shown for channels C1, Cz, C2 (according to the international 10–20 system).
The first row depicts the MRCPs of the calibration data, time-locked to the movement onset. Rows 2 and 3 show the MRCPs for
the evaluation data, once time-locked to the movement onset, and once to the visual CUE of the paradigm.

on the evaluation set. On a grand average basis,
no significant differences between conditions can be
observed. Apart from that, we found a strong later-
alization effect towards the contralateral side (left) to
the executing hand (right).

Especially for the evaluation data set (figure 3,
rows 2 & 3), the confidence intervals for all condi-
tions are broader, especially around 0.8 s after the
movement onset which falls in line with the time
period where feedback was presented to the parti-
cipants. When time locking on the visual CUE rather
than the real movement onset, the negative deflection
of the Bereitschaftspotential shifts by 0.3–0.4 s, which
is explained by the reaction time of the participants,
but also its intensity is diminished by around 1 µV.
The positive rebound effect remains the same.

Figure S1 (see supplementary material) shows
the grand average for each condition on the
topographical level for the Calibration and Eval-
uation data set. Time = 0 s represents the move-
ment onset acquired using data of the data
glove.

Additionally, we investigated both calibration
and evaluation data sets for differences between
conditions on a topographical level. We calculated
this difference by subtraction of two conditions
(e.g. cond(A)–cond(B)). Figures 4 and 5 show these
condition based differences for the calibration and
evaluation data sets in the range from [−0.5 1.5] s
with respect to the movement onset. Black dots
on the topographical plots notate channels which
show significant differences between conditions
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Figure 4.Movement-related cortical potentials of the calibration data Set (60 trials per class (TPC)): Differences between
conditions (cond(A)–cond(B)) represented on the topographical level between−0.5–1.5 s (w.r.t. movement onset). The black
dots on the scalp represent channels which show significant differences between conditions.

Figure 5.Movement-related cortical potentials of the evaluation data set (45 trials per class (TPC)): Differences between
conditions (cond(A)–cond(B)) represented on the topographical level between−0.5–1.5 s (w.r.t. movement onset). The black
dots on the scalp represent channels which show significant differences between conditions.

(assessed using permutation tests based on t-statistics,
p < 0.05 [51],). We also analysed each condition on
a topographical level separately (see supplementary
figure S1).

For the calibration data set, significant differences
can be found in all condition combinations, especially
between the palmar and lateral grasp conditions (row
1): Before the movement onset (−0.25 s) significant
differences emerge on central-parietal areas (chan-
nels CCp3 h, CP2). After the movement onset (0.125
to 1 s), a lateralized pattern emerges at the primary
motor cortex at channel locations C1 and C3. For
combinations between both grasps and wrist supina-
tion, we found a pattern around 0.5 s after the move-
ment onset over central/central parietal areas. These
differences become significant for both grasping con-
ditions versus wrist supination on the contralateral
side at location CP3 h.

When looking at the topographical difference
plots of the evaluation data set, in general, the
difference patterns are similar to the calibration data-
set, but less pronounced.Hence, for palmar versus lat-
eral grasp differences, the differences in the contralat-
eral areas of themotor cortex turn out not to be signi-
ficant anymore. Contrary, for grasp conditions versus
wrist supination, the differences found in the evalu-
ation set are similar to the findings in the calibration
set in both distinction and timing. For palmar grasp
versus wrist supination additional significant differ-
ences in central frontal channels (Fz, FFC2 h) can be
found.

4. Discussion

In this study we could show the successful online
decoding of three upper-limb movements (palmar
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grasp, lateral grasp and wrist supination), using
low frequency time domain features of the human
EEG. For all 15 study participants we gathered a
set of calibration data to determine the best per-
forming time point and classification model. Off-
line analysis of this data yielded a peak accuracy
of about 60% (± 7.2%) (three condition prob-
lem, adjusted significance threshold 44%) about 1 s
after the detected movement onset. When using
the obtained classification model in the subsequent
online BCI scenario, 14 out of 15 participants could
retain better than chance performance with an aver-
age of 65 correctly classified trials out of 135 tri-
als (48% correct trials, adjusted chance level 40%,
alpha = 0.05). Underlying movement-related cor-
tical potentials show no indications of being masked
by VEPs at the movement onset. Moreover, signi-
ficant differences in the calibration data between
conditions in the first 0.5 s after the movement
onset are mainly located over contralateral sensor-
imotor areas. These differences are retained to a
large extent when looking at the data gathered from
the evaluation phase. In either case, these differ-
ences lie within the same time period which was
used to train the participant specific classification
models.

4.1. Movement-related cortical potentials
Contrary to our initial approaches [24, 25, 46, 48],
we refrained in this study from using non-causal
(zero-phase) filtering approaches to be homogenous
in preprocessing for both offline and online applic-
ation. However, when plotting the EEG potentials,
one needs to be aware that this processing does not
account for additional filter effects such as e.g. phase
shifts, which have a potential influence on the signal.

Analysis of the grand average of theMRCPs shows
similar morphology for all three investigated condi-
tions: Shortly before the movement onset a negative
deflection from the baseline starts, culminating in a
negative peak which is characteristic for the Bereit-
schaftspotential [16, 17]. In this case, the negative
peak happens after the movement onset rather than
before, which we attribute to a delayed onset detec-
tion of the data-glove.

The peak negative deflection is lateralized (later-
alized readiness potential (LRP)) [46, 56], meaning
that the negative deflection is stronger on the con-
tralateral side of the executing (right) hand. Follow-
ing the negative deflection, a strong positive swing can
be observed, which peaks around 1 s after the move-
ment onset and is more pronounced on both grasp
conditions (see supplementary figure 1) than the
wrist supination condition. Furthermore, this posit-
ive swing is stronger pronounced in the evaluation
data set than in the calibration data set.

Though we did not encounter this positive swing
in previous works [24, 25, 46], we attribute this as an

effect of the visual paradigm and feedback present-
ation as well as the causal filtering approach. When
looking at figure 3, 2nd row, the confidence interval
becomes considerably broader around 1 s after the
movement onset, especially for channels Cz and C1
which we also attribute to feedback presentation.

We were also interested in changes in the MRCP
morphology when time locking on the CUE (the
robotic arm stops before the interaction with the
objects) rather than the calculated movement onset
from the data glove (see figure 3 rows 2 and 3 for com-
parison): our analysis shows, apart from a delayed
negative peak of the Bereitschaftspotential (due to
reaction time to the CUE), that the morphology of
the MRCPs is still preserved, with only a minimal
decrease in grand average amplitude.

Naturally, we were also interested in the differ-
ences between conditions. Our analysis of the cal-
ibration data in channel space shows that the main
differences can be found within the first 0.5 s after
the movement onset, mainly over the contralateral
primary motor cortex (locations C3, C1). Only for
the grasp versus grasp comparison, significant differ-
ences can already be found 0.25 s before the move-
ment onset. These findings go in line with the res-
ults shown in Ofner et al [25] and Itturate et al [23]
who both report similar findings regarding effect tim-
ing and location. Moreover, we could show that these
differences are also still present in the online experi-
ment, though the patterns are diminished. Especially
for the grasp versus grasp comparison, no signific-
ant differences can be found. On the other hand, we
see additional differences over the frontal area (Fz),
for grasp conditions versus supination around 0.5 s
after the movement onset. Though they only become
significant for palmar grasp versus supination, these
differences can also be observed in the lateral versus
supination comparison.

Summarizing, we found significant differences
between different grasp conditions within the first
0.5 s after the movement onset, mainly over the con-
tralateral sensorimotor areas. This finding goes in line
with the findings of Agashe et al [28] in grasps (five
grasping tasks, information content peaks around
250 ms), as well Ofner et al [25] who investigated a
set of upper limb movements (six movements).

4.2. Single trial classification
Our offline results for the calibration data show
that the movement decoding performance was about
60% over all participants (chance level ~44%, adjus-
ted Wald interval, alpha = 0.05). These findings are
within the same range as the performances achieved
in [23–25, 46, 57, 58]. However a direct comparison
is difficult since the number of conditions, trials per
condition and especially the paradigm greatly differ.

Peak accuracieswere found on average one second
after the movement onset. Our classification model
was trained using features of the preceding 1 s time
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window, which includes the time frame where we
found significant differences over the contralateral
sensorimotor areas between conditions. Analysis of
the offline grand average confusion matrix of the
participants peak accuracy showed that false positive
and false negative rates between grasps (finger joints
versus finger joints)were higher than for grasps versus
wrist supination (finger joints versus wrist joints).
This confirms the findings made by Ofner et al [25]
who also found these error rates highest for condi-
tions involving the same joint (e.g. hand open vs hand
close; wrist pronation vs. wrist supination).

In the online evaluation, participants scored on
average 65 out of 135 trials correctly (~48%, adjus-
ted chance level 40%, alpha = 0.05). Fourteen out of
fifteen participants scored higher than chance, how-
ever compared to the offline results, performance
decreased by about 11%. When looking at the TPR
of the confusion matrix, we see that the TPRs for the
lateral grasp and supination conditions have dropped
by 10% to 20%. Furthermore, true positive and false
negative rates for all conditions are now in the same
range. When transferring an offline calibrated classi-
fication model to online use, a certain drop in per-
formance is to be expected [59]. However, in this cue-
based online scenario, several additional factors have
to be taken into account:

(i) MRCPs are a time and phase-locked phe-
nomenon [16, 17]. For the online BCI scenario, we
estimated this time point using participant specific
behavioural data (timing between the stopping point
of the robotic arm and the participants actual move-
ment onset on the calibration data), which is afflic-
ted with a certain variance. Although we attempted to
compensate by smoothing the classification output,
the classification output is still prone to deviations in
the exact timing of the task execution.

To fully understand the impact of using this
estimated onset, we performed an offline BCI simu-
lation using the evaluation data set (see supplement-
ary chapter 3 and table S2): We replaced the estim-
ated onset with the real movement onset extracted
from the data glove and recalculated the classification
accuracy using the same classification model: Results
indicate that the overall classification improved signi-
ficantly (Wilcoxon rank sum test, p < 0.05) from pre-
viously 65 to 71 out of 135 (45 TPC) correctly clas-
sified trials, which represents a performance increase
on average of about 4.5%. We realize that this offline
simulation cannot account for feedback-dependent
effects such as e.g. showing more positive feedback
due to improved classification or improved motiv-
ation, however, it underlines the importance of an
adequate time-locking point for BCI classification.

(ii) With the presentation of feedback to the
participants, we introduced an additional variable
potentially influencing the performance of the par-
ticipant specific classification model. The analysis of
the MRCP for the evaluation data set shows that

the positive deflection starting around 0.5 s after the
movement onset is more pronounced than in the
calibration phase. Additionally, channels in central
frontal areas (Fz, FFC2 h) show increased activity
which are both factors potentially influencing the
classification performance. Further studies need to
investigate whether this effect can be attributed to e.g.
a change in state ofmind (excitement, pressure to per-
form) or feedback presentation.

In either case, the BCI implemented in this study
relies on a fixed classification model based on the
calibration set data. Studies have shown that there
is evidence that co-adaptive training approaches can
potentially remedy the performance loss from offline
to online BCImodels [45, 47, 60–62]. In a co-adaptive
BCI concept not only themachine learning algorithm
is acknowledged as a ‘learner’ but the users operating
the BCI too: both parties are engaged in a closed loop
mutual learning environment: A co-adaptive BCI col-
lects data online and adapts its classification models
in operative use, while users adapt to the feedback
received by the BCI. In this way, performance loss due
to changes in brain patterns (e.g. by feedback present-
ation or EEG nonstationarities) could be attenuated
due to the co-adaptive training [63, 64]. However,
to our knowledge, the co-adaptive training approach
has only been applied on BCIs using non-phase
locked, oscillation based features and it remains to be
seen if this concept can be translated using MRCPs
seamlessly.

So far, only few non-invasive EEG studies have
successfully shownonline decoding attempts of upper
limb movements/grasps using MRCPs as features for
discrimination.

Ofner et al [38] could show in a self-paced proof-
of-concept online approach in one SCI end user
to successfully discriminate between opening and
closing the hand. Unfortunately a direct compar-
ison is not possible due to substantial differences
in the approach and paradigm (e.g. self-paced vs.
cue paced). When comparing in general with the
online performances of BCIs, e.g. oscillation based
approaches based on repetitive mental tasks presen-
ted in [63, 65–67], the results of this study are
below the average of 75% peak for two conditions
(see [59]).

4.3. Study limitations
In our current study, we show in a cue-based scenario
that online decoding of grasp and handmovements is
possible. However, the approach still contains consid-
erable constraints and challenges before a stable BCI
control for robotic arms or upper limb motor neuro-
prostheses conceivable.

For training the classification model, we still
relied on the real movement onset, a parameter which
is not necessarily available for the targeted end user
population. While we compensated for this in the
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evaluation phase by using the CUE as time-locking
point, this contributed to a decreased performance.

Themain challenge still remains in improving the
decoding performance of the BCI, especially when
exploiting the low frequency time domain for dis-
criminable features. Though the results in this study
confirm that discriminable information can be found
in MRCPs and transferred to an online BCI, its per-
formance is rather low. Various studies by Itturate
et al [23], Vuckovic et al [68] and Jochumsen et al
[26, 37] have already shown by offline analysis that
additional discriminable information between grasp
and hand movements can also be found in alpha and
beta range [69]. We have investigated the combina-
tion of time domain features extracted from MRCPs
with frequency domain features from alpha and beta
range [48]. Though it did not have a substantial
effect on grasp versus grasp classification, it led to an
increased decoder performance in movement detec-
tion against the rest condition. In the current study,
we used a cue-guided protocol which allowed us to
have a fixed time-locking point rather than detecting
the occurrence of the grasp in an asynchronous way.
In a scenario of daily life, these reference points would
be absent, and any classificationmodel applied would
continuously process the data for detecting any upper
limbmovement intention (e.g. a continuous classific-
ation of movement versus rest). However this was not
subject to the actual study since our goal was to show
the feasibility of grasp discrimination using EEG
signals.

4.4. Transfer to end users
We conducted this study as a precursor for investigat-
ing MRCP-based BCIs for control for severely motor
impaired end users (e.g. users with high spinal cord
injury). Therefore one of our main interests in this
study was to determine whether the discrimination of
hand/arm movements can be done on an online BCI
control scenario in healthy participants. Now that we
showed the feasibility of the approach in healthy par-
ticipants, we want to discuss its transfer to the final
target population.

Firstly, it is imperative to assess the movement
capabilities of the potential neuroprosthesis users,
since their residual upper limb functions vary [36].
In case of no residual grasp function, we believe that
using low-frequency time-domain EEG as a control
signal could offer a possibility for an intuitive robotic
arm or neuroprostheses control.

Secondly, while in our study we instructed the
participants to execute the movements, this is not
possible for the targeted end user group. Recent
findings suggest that executed movements provide
a similar neural representation to that of attemp-
ted movements and can as well be decoded from
EEG [38, 70, 71]. So, it is necessary to evaluate
the performance of the online decoder while end-
users attempt to perform the upper-limbmovements.

Additionally, combinations of movement execution
and movement attempts, depending on the residual
functions of the user, could be explored. For instance,
combining non-functional hand/grasp movements
with a movement the end user is still capable of, e.g.
a reaching movement. A number of studies in healthy
participants have already shown offline that different
reach-and-grasp actions can be discriminated using
EEG [23, 24, 26, 46, 58]. In this way, end users would
execute the reach and could attempt to perform the
designated grasp/supination.

Thirdly, the simulation environment presented
in this study can be useful for the end-users since
it allows a smoother transition between the virtual
and the daily-life scenarios, when compared to the
presentation of abstract cues. In the simulation envir-
onment, participants interact with virtual objects to
perform daily life actions, which we consider to be
more immersive. While we did not investigate the
effect of training over several sessions, it would be
interesting to use this simulation environment for
training over multiple sessions with end-users and
test whether such training has an impact in the overall
performance on a free-control of, e.g. a neuropros-
theses. It is also relevant to mention that the simu-
lation is not exclusive to the 3 movements investig-
ated in this study, and it encompasses more objects
for a larger set of upper-limb movements (includ-
ing additional grasps and elbow movements), which
allows adaptation according to the users’ own needs
and final application.

Despite these challenges and limitations, we have
already started to assess the feasibility of our find-
ings in a group of tetraplegic participants: Within the
MoreGrasp (www.moregrasp.eu) feasibility study, we
assess their capabilities of using a BCI to control an
upper limb motor neuroprosthesis in several stages
[36, 40, 72]. Analogue to the current study, they per-
form singular, attempted hand movements to gener-
ate control signals for the BCI. In the last stage, study
participants are going to train with their mobile, cus-
tomized BCIs at their homes using a tablet version
of the simulation environment evaluated in the cur-
rent study. Our initial findings so far confirmed that
also attempted movement can be used for decoding
([36, 72], analogue to Ofner et al [38]).

5. Conclusion

In this study we have successfully shown the online
decoding of two grasps and one wrist supination
movement using low frequency time domain fea-
tures of the human EEG. In the BCI scenario, 14 out
of 15 healthy participants achieved decoding accur-
acy higher than chance level (three conditions, 40%,
adjusted Wald interval, alpha = 0.05 [54, 55]), with
an average accuracy of 48%. Underlying EEG correl-
ates of the acquired calibration data show significant
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differences over the contralateral central sensorimo-
tor areas, which are retained to a large extent for the
data acquired fromonline BCI use. These findings can
potentially contribute to the development of a more
natural and intuitive BCI-based control modality for
assistive devices such as upper limbmotor neuropros-
theses for people with motor impairments.
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Unimanual and Bimanual Reach-and-Grasp
Actions Can Be Decoded From Human EEG

Andreas Schwarz , Joana Pereira , Reinmar Kobler, and Gernot R. Müller-Putz

Abstract—While most tasks of daily life can be handled
through a small number of different grasps, many tasks re-
quire the action of both hands. In these bimanual tasks, the
second hand has either a supporting role (e.g. for fixating
a jar) or a more active role (e.g. grasping a pot on both
handles). In this study we attempt to discriminate the neu-
ral correlates of unimanual (performed with left and right
hand) from bimanual reach-and-grasp actions using the
low-frequency time-domain electroencephalogram (EEG).
In a self-initiated movement task, 15 healthy participants
were asked to perform unimanual (palmar and lateral grasps
with left and right hand) and bimanual (double lateral, mixed
palmar/lateral) reach-and-grasps on objects of daily life. Us-
ing EEG time-domain features in the frequency range of
0.3-3 Hz, we achieved multiclass-classification accuracies
of 38.6 ± 6.6% (7 classes, 17.1% chance level) for a com-
bination of 6 movements and 1 rest condition. The grand
average confusion matrix shows highest true positive rates
(TPR) for the rest (63%) condition while TPR for the move-
ment classes varied between 33 to 41%. The underlying
movement-related cortical potentials (MRCPs) show signif-
icant differences between unimanual (e.g left hand vs. right
hand grasps) as well unimanual vs. bimanual conditions
which both can be attributed to lateralization effects. We be-
lieve that these findings can be exploited and further used
for attempts in providing persons with spinal cord injury a
form of natural control for bimanual neuroprostheses.

Index Terms—Unimanual reach-and-grasp action, bi-
manual reach-and-grasp action, movement-related cortical
potential, grasp decoding, brain-computer interface, elec-
troencephalogram (EEG).

I. INTRODUCTION

P ERSONS with high spinal cord injury (SCI) have lost a
substantial part of their motor functions. In contrary to

a paraplegic person, also upper limb function is critically af-
fected, making fundamental actions of daily life like personal
hygiene, eating and drinking not accomplishable without help.
Unsurprisingly, surveys with tetraplegic persons show that im-
proving hand function is their top priority [1], [2]. If surgical
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rehabilitation, such as tendon and muscle transfers are not pos-
sible or feasible [3], [4], there are still possibilities to restore or
replace lost hand and arm functions. This includes the use of
exoskeletons [5]–[7], or even to utilize muscles of the paralysed
arm itself. The latter can be accomplished by an upper limb
motor neuroprosthesis based on functional electrical stimula-
tion (FES), in which the innervated muscles are stimulated by
periodic small electrical impulses to form basic grasps [8].

It has been shown that FES-based grasp neuroprostheses can
be controlled via brain-computer interfaces (BCI), in which
brain activity is recorded using EEG [9]–[11]. While these first
attempts relied on an abstract form of control, e.g. users would
repeatedly imagine a plantar flexion/dorsiflexion of both feet to
open/close the hand, we have recently proposed [12]–[14] to
use more natural control strategies: Our future goal is to use the
actual movement attempted by the user e.g. a palmar grasp or a
hand rotation, for control of a upper limb motor neuroprosthe-
sis. Initial studies in healthy participants have shown that sev-
eral non-repetitive upper limb movements, as well as combined
reach and grasp actions of palmar, lateral and pincer grasps can
be decoded from the low frequency domain of the EEG and po-
tentially used for control of a neuroprosthesis [15], [16]. In these
studies, movement-related cortical potentials (MRCP) [17], [18]
in the low frequency band from 0.3 to 3 Hz were extracted as
features to classify several executed upper-limb movements.
These findings go along with Pistohl et al., who achieved sim-
ilar results using ECoG [19], [20], Agashe et al. who analyzed
grasp kinematics [21] or Jochumsen et al., who discriminated
different levels of grasp force, speed and eventually different
grasps in the low frequency band [22], [23]. Itturate et al. con-
firmed recently, in a self-initiated task (the movement initiation
was not cued by means of visual or auditory stimulus), that the
most discriminable features for decoding can be found in the
frequency range from 0.3 to 6 Hz [24].

While the previous studies were conducted on a population
of participants without motor disabilities, MRCPs can also be
detected and classified offline in SCI participants: In [25], [26],
participants were not able to execute the screened movements
anymore, and therefore they were instructed to attempt perform-
ing the cued movements. Very recently, in a proof-of-concept
study in one person with SCI, Ofner et al. showed for the first
time that it is possible to discriminate movement attempts of
hand open vs. palmar grasp online using low-frequency time-
domain features. [25].

While our research focuses on enabling people with motor
impairments to control assistive devices using a BCI, MRCPs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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also have an impact in a multitude of applications in rehabili-
tation engineering [27]: Most prominently, Mrachacz-Kersting
et al., showed that their EEG (MRCP) assisted stroke rehabilita-
tion induces neural plasticity and thus has measurable positive
impact in regaining functionality of lower limbs [28], [29].

During our work with end users we came to understand that
unimanual upper-limb neuroprostheses control is necessary but
not sufficient: Self-care tasks (such as eating, drinking, personal
hygiene) often demand bimanual hand control. In some cases,
the second hand plays a supporting role, e.g. when getting jam
out of a glass with a spoon, a palmar grasp is executed with
one hand to stabilize the glass while the other hand performs
a lateral grasp to operate the spoon. In other situations, it has
a more active role, e.g. when lifting up a cooking pot by its
handles (in which a double lateral grasp is necessary).

In this work, we present the first steps to overcome this obsta-
cle and investigate the possibility of bimanual natural control.
For that, we conducted an experiment in which healthy partici-
pants (n = 15) performed self-initated reach-and-grasp actions
on objects of daily life suitable for unimanual and bimanual
grasps.

Our hypothesis is that MRCPs hold enough discriminable
information not only for decoding unimanual reach-and-grasp
actions (executed with left or right hand), but also for discrimi-
nating unimanual from bimanual conditions.

We then discuss the contribution of our findings for a possible
application in bimanual grasp neuroprostheses.

II. METHODS

A. Participants

This study was approved by the local ethics committee of
the Medical University of Graz (EK: 30-439 ex 17/18). Fif-
teen healthy participants aged between 21 and 30 years (me-
dian 26) participated in the study. They reported to be right
handed and without any known medical condition. To confirm
the handedness, each participant performed a three stage Hand-
Dominance-Test first described by H.J. Steingrüber [30]. This
gender specific, pen and paper test assesses the hand dominance
in three exercises performed by each hand individually: (i) draw
a line within a prescribed path, (ii) puncture unaligned circles
and (iii) puncture horizontally aligned squares. Each participant
was informed about the procedure and scientific aims of the
study. All gave written informed consent and received monetary
compensation for their participation.

B. Experiment Setup and Paradigm

All recordings were conducted at the BCI-Lab of the Institute
of Neural Engineering of the Graz University of Technology.
Participants were seated on a chair in an electromagnetic and
noise shielded room. In front of them there was a table with
a built-in monitor. On the monitor we placed real objects of
everyday use for reach-and-grasping. Table I lists the objects,
the associated grasps and the experimental conditions. For the
unimanual conditions, we placed an empty jar (for the palmar
grasp) and a spoon (for the lateral grasp). For the bimanual con-
ditions, we placed a pot (double lateral grasp on the handles) and

TABLE I
EXPERIMENTAL CONDITIONS

Fig. 1. Paradigm for unimanual and bimanual tasks. For all tasks, par-
ticipants were asked to focus their gaze on the object they wanted to
grasp for 1 to 2 s before performing the movement. Thereafter, partic-
ipants performed the suitable reach-and -grasp and held the object for
1 to 2 s before moving back to the starting position. This grasp could be
an unimanual lateral grasp or palmar grasp, or a bimanual task combi-
nation of palmar grasp (executed with the left hand, holding the jar) with
a lateral grasp (right hand) or double lateral grasp (holding the handles
of the pot).

the jar with the spoon (mixed grasping of palmar (left hand) and
lateral (right hand)). The objects and associated reach-and-grasp
actions are shown in Fig. 1. Depending on the run type (i.e. uni-
manual or bimanual), we positioned the two designated objects
on the table on predefined positions. In unimanual runs the par-
ticipants’ hand (either left or right) was positioned centered on
a pressure plate to detect the movement onset in a comfortable
reaching distance in front of the objects. For bimanual runs, both
hands were located on two pressure plates equally distant to the
center to capture the movement onsets of both hands. After each
run we switched the positions of the objects so that each object
was on each location equally often.

The participants were asked to perform the reach-and-grasp
actions in a self-initiated manner (i.e. decide freely when to
start the movement and also which object to grasp), however
in a preceding instruction run we introduced them to some task
requirements: We instructed them to first fixate their gaze on
the object for 1-2 s before they started the movement (Fig. 1).
Each object had its own fixation point, e.g. the pot had a small
black dot inside and for the spoon, participants focused on its
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tip. Thereafter, participants performed the reach-and-grasp and
held the object for 1 to 2 s before moving back to the starting
position. Once they returned to the starting position, a small
insert on the bottom of the screen informed them about the
number of times they grasped the object in the current run (e.g.
Spoon 5/20). Before the next trial, participants were asked to
perform a break of at least 4 s.

One run consisted of 20 trials per condition. After each run we
introduced a short break. In total we recorded 80 trials for each
condition, which results in 80 * 2 (grasps) * 3 (movement types,
unimanual left, unimanual right, bimanual) = 480 reach-and-
grasp actions per participant. Data recorded in the instruction
run was not part of the analysis. At the beginning, half time
and the end of experiment we recorded 3 min of rest as well
as 2 min of eye movements or blinks for potential removal
of artefacts based on blinks or eye movements. We recorded
this data according to a visually guided paradigm also shown
in [31], [32]: In 6 trials á 10 s, participants had to follow a
white dot moving horizontally or vertically across the built-in
screen (deprived of any real objects). In 3 additional trials á 10 s
participants performed eyeblinks.

C. Data Recording

We measured EEG with 58 active electrodes covering frontal,
central, parietal and temporal areas. In addition, we measured
the electrooculogram (EOG) using 6 active electrodes posi-
tioned at the outer canthi, infra and superior orbital to the left and
right eye. The reference electrode was placed on the right ear-
lobe, ground on position AFF2h. The EEG layout corresponds to
the 5% layout described by Oostenveld et al. [33]. We recorded
the EEG and EOG using four biosignal amplifiers (g.USBamp)
and a g.GAMMAsys/g.LADYbird active electrode system (g.tec
medical engineering GmbH, Austria). Signals were sampled at
256 Hz and band-pass filtered from 0.01 Hz to 100 Hz (8th order
Chebyshev filter). Power line interference was suppressed with
a notch filter at 50 Hz.

We used isolated force-sensing resistor (FSR) sensors to
record the movement onset from the starting position and also
the grasping time point (with FSR sensors attached to the ob-
jects). Sensor output was digitized using a battery operated Ar-
duino microcontroller. Time synchronization with the EEG and
EOG was made via the galvanic decoupled TTL input of the
master g.USBamp amplifier.

D. Behavioural Analysis

We analyzed the behaviour of the participants during the
executed reach-and-grasp actions. Concretely, we analyzed
the duration of the reach-and-grasp action for each grasp type.
The time information provided by the force sensitive resistors
was extracted from all trials. Then, for each participant and each
condition the average duration was calculated. To check for sig-
nificant differences in duration among conditions, a repeated
measures ANOVA with 6 levels (conditions) was performed.
We also tested the repeated measures model for sphericity using
Mauchly’s test.

E. Artefact Avoidance, Correction, and Rejection
Strategies

Our procedure to deal (i.e. avoid, correct, and reject) with
artefacts [34] consisted of three parts:

1) Avoidance: We carefully instructed the participants and
created gaze fixation points, so that during the movement task
itself, no eye movements would occur: The participants were
instructed to focus their gaze on the object 1-2 s before the
movement. Moreover, we explained the general importance of
reducing blinks and eye movements to a minimum, and avoid-
ing any other movement not associated with the task. Lastly,
inter-trial as well as inter-run breaks were introduced, in which
participants could have a break.

2) Correction: EEG in the low frequency range can easily get
contaminated with ocular artefacts. Therefore, after the record-
ings, we applied a subspace subtraction algorithm [35] to atten-
uate ocular artefacts related to eye movements and eye blinks.
The algorithm corrects ocular artefacts in a three step procedure.
First, it finds the subspaces that maximally explain the variance
during horizontal and vertical eye movements and blinks. The
subspaces are estimated by computing an unmixing matrix that
linearly combines all channels. Second, a mixing matrix that
defines the contribution of each artefact subspace to the EEG
channels is estimated. Third, the subspace that contains the oc-
ular artefacts is subtracted from the raw signals [31], [32].

3) Rejection: Subsequent to EOG correction we rejected po-
tential artefact contaminated trials using statistical parameters.
We therefore filtered the EEG between .3 and 35 Hz and rejected
trials by (1) amplitude threshold (amplitude exceeds ±125 µV),
(2) abnormal joint probability and (3) abnormal kurtosis by
threshold of 4 times the standard deviation. This approach had
already been used in several studies ([36]–[38]). On average,
11% of the trials were rejected due to artefact contamination.

F. Data Preprocessing

EEG, EOG, and sensor data were processed using MATLAB
R2017b. EEG and EOG data were high pass filtered using a
zero-phase 4th order high pass Butterworth filter with the cut-
off frequency set at 0.3 Hz. Incorporating the recorded rest and
eye movement runs, we calculated and applied the artefact sub-
space filter for removing ocular based artefacts. Preceding any
further step we analysed the synchronized sensor data of the
force-sensing resistors and excluded any trials in which partici-
pants did not meet the instructions given with respect to timing.
Exclusion parameters were set to: (i) more than 3s from move-
ment onset to finalizing the grasp at the object, (ii) less than one
second holding the object, (iii) more than 3s from the holding
position back to the starting position. Thereafter we defined a
window of interest (WOI) for each trial with 2s before and 3s
after the movement onset [−2 3]s, with 0 referring to the move-
ment onset. In the case of bimanual trials, in which we recorded
movement onsets from both hands, we defined the movement
onset for analysis as the first onset detected, regardless the hand.
Additionally, we extracted 81 rest trials from the rest runs. The
rest trials had a duration of 5s (i.e., similar to the WOI duration)
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with a 1s gap between consecutive rest trials. Thereafter we ap-
plied the statistical outlier rejection mentioned above [36], [38]
on the trials. Trials marked for rejection were excluded from
subsequent analysis.

G. Low Frequency Correlates: Movement-Related
Cortical Potentials (MRCPs)

For obtaining the low frequency EEG correlates of the move-
ment conditions, we applied common average reference (CAR)
filtering and resampled the preprocessed EEG to 16 Hz to ease
computational effort. Thereafter, we applied a 4th order zero-
phase lowpass Butterworth filter at the cut-off frequency of 3 Hz.
We calculated the global field power (GFP) as the standard-
deviation across channels [39]. The participant-specific scalp
potentials were then normalized by the average GFP during the
rest condition. Thereafter, we epoched the data for each condi-
tion from −2 s to 3 s with respect to the movement onset and
calculated the average over epochs for each condition, for each
participant individually. To obtain the grand-average MRCP, we
calculated the mean over the participant-specific average and its
respective confidence interval using non-parametric t-percentile
bootstrap statistics (alpha = 0.05).

Naturally we were interested in the differences among condi-
tions. For the sake of clarity we decided in a first step to group
conditions of the same hand as well as both bimanual condi-
tions. The new resulting conditions were: ‘Left Hand,’ ‘Right
Hand’ and ‘Bimanual’. For each condition, we calculated the
grand-average MRCPs as well as their differences in channel
space, by simply subtracting the grand-averages (condition(A)-
condition(B)). Concretely, the following differences between
conditions were calculated: i.) left minus right, ii.) left minus
bimanual, iii.) right minus bimanual, iv.) all movement trials
minus rest.

In a second step we calculated the differences of the grand-
averages of the same hand conditions (e.g. left hand palmar mi-
nus left hand lateral) and of the bimanual conditions (bimanual
double lateral (pot) minus bimanual mixed palmar/lateral (jar)).
These differences were then observed on topographical plots
in which the channel locations were extracted from a template
(obtained from [33]) using the EEGlab toolbox [40].

Differences between the MRCPs for each condition were
assessed using nonparametric paired-sample two-tailed permu-
tation tests based on t-statistics (alpha = 0.05) on the [−1 1.5]
s window with respect to the movement onset [41]. Concretely,
individual tests at each time point and channel were performed
(steps of 125 ms). For each permutation, t-statistics were ob-
tained and the maximal t-statistic (t-max) was extracted. After
all 1000 permutations, a t-max reference distribution was ob-
tained, and the p-values of each comparisons were derived from
this reference distribution, which is adjusted to reflect the chance
of false discoveries [42], [43]. For visualization, we marked the
significantly different channels over the topographical plots rep-
resenting the difference between conditions.

H. Single Trial Classification

We performed both binary (1 versus 1 condition) as well as
multiclass classification on the recorded data (7 conditions).

Both approaches were conducted in the same manner but with
a different number of conditions. For the multiclass single trial
classification approach we used all available conditions, includ-
ing 81 rest trials extracted from the recorded rest runs (7 condi-
tions in total), for the binary version we compared all possible
2 condition combinations (yielding in 21 binary combinations).
Our approach consisted of two main steps: First, find the time-
point of the best performing classification model in terms of
accuracy within the designated window of interest (WOI) from
−2 s to 3 s through cross-validation. Second, use this classifi-
cation model associated to that time-point, and test its perfor-
mance on a previously unseen set of test data. For that we split
the data in two independent data sets. The first 66% of all trials
(Calibration set, on average 52 TPC) were used for finding and
calibrating the best performing classifier while the remaining
34% (Evaluation set, on average 23 TPC) were used to evaluate
this classification model.

Initially, we resampled all preprocessed EEG signal to 16 Hz
and applied CAR filtering. We used a zero-phase, 4th order low-
pass Butterworth filter with a cut-off frequency of 3 Hz to filter
the EEG signal. For finding the best classification model we
epoched all trials of the calibration set according to the WOI.
For each time point within the WOI, an individual classifica-
tion model was calculated as follows: Using a 10 times 5-fold
cross-validation evaluation procedure, we divided the trials into
training and validation sets. We trained a shrinkage based linear
discriminant analysis (sLDA) classifier [44] with features ex-
tracted from the training set. The features corresponded to the
amplitudes of all 58 EEG channels extracted in 125 ms steps
of a causal 1 s window (e.g. for the classification model trained
on the time point t = 1 s, 9 amplitude values at [0: 0.125:1] s
(w.r.t. movement onset) were used). For each trial on the train-
ing set, we extracted 9 features per channel, yielding in total
522 features. We tested the resulting classification model on the
validation trials selected by the cross-validation. We repeated
this procedure for each point within the WOI, thus obtaining 80
different classification models for the whole WOI. As a measure
of performance we analysed the mean of the accuracies result-
ing from the validation sets of each fold and its corresponding
confusion matrices.

Thereafter we selected the best performing classification
model and applied it on the previously unseen trials of the Eval-
uation set (using the same preprocessing as before). We report
the mean of the accuracies of all trials within the Evaluation
set within the WOI. We additionally calculated the informa-
tion transfer rate (ITR) according to Wolpaw’s Bit rate [45],
[46]. We estimated that each participant performed on average
6 reach-and-grasp actions per minute.

III. RESULTS

A. Movement-Related Cortical Potentials (MRCPs)

1) Unimanual vs. Bimanual: We analysed the MRCPs
as the low-frequency EEG correlates of unimanual and bi-
manual reach-and-grasp conditions. Fig. 2, shows the grand-
average MRCPs and respective bootstrapped confidence interval
(alpha = 0.05) for conditions ‘Left Hand,’ ‘Right Hand’ and ‘Bi-
manual’ over channels C1, Cz and C2, located over the central
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Fig. 2. Movement-related cortical potentials of unimanual and bi-
manual reach-and-grasp actions. Grand-average and respective boot-
strapped confidence interval (alpha = 0.05) for conditions ‘Left Hand,’
‘Right Hand’ and ‘Bimanual’ for channels C1, Cz and C2. Time = 0 s
represents the movement onset.

motor cortex. Time = 0 s represents the movement onset within
the window of interest [−2 3] s. For these three conditions, a pos-
itive peak is observed around 0.5 s before the actual movement
onset. Thereafter a strong negative shift (Bereitschaftspotential,
[17], [18]) imminent to the movement onset can be observed.
For both positive and negative peaks the absolute amplitude is
significantly stronger (Wilcoxon rank sum test (WRS), p < 0.05)
on electrodes contralateral to the executing hand for unimanual
conditions. For the bimanual condition, the positive peak in the
preparation phase is not lateralized and occurs on both hemi-
spheres with almost equal amplitude. The negative peak (Cz,
−7.3 µV) in the bimanual condition is more pronounced than
in both unimanual conditions (Cz, −6 µV), however, not sig-
nificant throughout the population of participants (WRS, p =
0.104). In both unimanual and bimanual conditions, the strong
negative peak is followed by a second intermediate negative
peak of smaller amplitude around 250 ms after the movement
onset, before returning to a positive level.

Fig. 3 shows the differences between conditions plotted as
topographical maps in a time window from [−1 1.5]s with re-
spect to the movement onset. Differences between conditions
were calculated by subtraction (cond(A) - cond(B)). Black dots
on the topographical maps represent the significantly different
channels (permutation tests based on t-statistics, p < 0.05, [41])
between conditions. Most prominent between movement condi-
tions are the differences between ’Left Hand’ and ’Right Hand’
grasp conditions (Fig. 3, first row). Starting around 1 s before the
movement till around movement onset, significant differences
emerge at central/central-parietal channels (at −1 s: CCP4h; at
-0.5 s: FCC3h, C3, C1, C2, C4, CCP4h) on the left and the
right hemispheres. At -0.5 s two significant areas over the motor
cortex on both hemispheres can be identified (FCC3h, C3, C1
and C2, C4, CCP4h). Polarities of both regions are opposite
to each other, which is in consistency to the MRCPs depicted
in Fig. 2. Most pronounced differences between conditions can
be observed imminently to the movement onset (0 s). Signif-
icant differences occur again in two separate areas over the
central/central parietal motor cortex (FCC3h, CCP3h, C1, CP2,
CP4, CCP4h, CCP6h).

We also investigated the differences between both uniman-
ual (left or right) and the bimanual conditions (Fig. 3, rows 2

and 3 respectively). Significant differences emerge already in
the preparation phase and are most prominent around move-
ment onset and thereafter (till 0.5 s after movement), however,
there are fewer significant electrodes. For both comparisons
(i.e. left vs. bimanual and right vs. bimanual) these differences
emerge only on one hemisphere mainly over central/parietal re-
gions: For left hand vs. bimanual, significant differences can
be seen on the channels located over the left motor cortex
(at 0 s: C1; at 0.125 s FCC3h FCC1h C1), whereas for right
hand vs. bimanual significant differences are found mainly
over the right motor cortex (at −0.5 s: C2, CCP4h; at 0 s:
C2, CCP2h CCP4h, CP2). For the last row of Fig. 3 we av-
eraged all movement conditions and calculated the differences
to the rest condition. Again significant differences emerged in
the preparation phase mainly over the central electrodes over
the motor cortex (especially C1, Cz and C2 and adjacent chan-
nels). Imminently to movement onset and thereafter, significant
differences were localized mainly over central/central parietal
areas.

2) Inner Conditions: Naturally we were also interested in
the differences between grasp types (i.e. lateral vs. palmar with
right or left hands, and lateral vs. mixed bimanual conditions.
Hence we calculated the grand-average over participants and the
confidence interval (alpha = 0.05) of each condition (see Fig. 4).
Fig. 4 shows the grand-average MRCPs for each of the reach and
grasp conditions. For better understanding we grouped them per
performing hand, and both bimanual conditions. As with Fig. 4,
we show channels C1, Cz and C2. Similar to Fig. 2, we observe a
lateralization and higher negative peak around movement onset
in the bimanual conditions. However, differences between grasp
conditions are found scarcely: While pre-movement and reach-
ing phases seem almost identical within all pairs (left palmar
vs. left lateral; right palmar vs. right lateral; palmar bimanual
vs. mixed bimanual), the positive rebound [1.25 1.5]s for the
lateral conditions is stronger over the central position (Cz). A
similar effect can be observed for bimanual conditions: Here
the positive double lateral rebound around 1.5 s after movement
onset exceeds the mixed palmar/lateral grasp combination. A
similar effect can be observed for bimanual conditions: Here
the positive double lateral rebound around 1.5 s after movement
onset exceeds the mixed palmar/lateral grasp combination in
amplitude by approximately 1 µV. In both cases the stronger
rebound for the lateral conditions turned out to be not significant
(alpha = 0.05, see Fig. 4).

Fig. 5 shows the differences between conditions represented
as topographical maps in the time-window [−1 1.5]s with re-
spect to the movement onset. Again, differences between condi-
tions were calculated by subtraction (cond(A) - cond(B)). Black
dots on the topographical maps represent channels considered
significantly different (assessed using permutation tests based
on t-statistics, p < 0.05, [41]) between conditions. For the same
hand unimanual conditions, no clear topographical difference is
observed. Between the bimanual conditions, few sparsely dis-
tributed channels are significantly different (e.g. at −0.125 s:
Fz), however, as expected from Fig. 4 no striking pattern can be
identified in the channel space.
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Fig. 3. Topographical plots representing the difference between conditions (cond(A)-cond(B)) for time-points between [−1 1.5] s with respect to
the movement onset. Black dots over the maps represent the significantly different channels between conditions (assessed used permutation tests
based on t-statistics, p < 0.05 [41]).

Fig. 4. Movement-related cortical potentials of same hand and bi-
manual reach-and-grasp actions. grand-average and respective boot-
strapped confidence interval (alpha = 0.05) for conditions palmar and
lateral grasps and bimanual conditions for channels C1, Cz and C2.
Time = 0 s represents the movement onset.

B. Single-Trial Classification

Single trial classification followed two approaches, a binary
(1 vs. 1 condition, in total 21) and multiclass approach. We show
the results of the grand average of the participant-specific peak
accuarcies of the Calibration and Evaluation set (see Table II).
All binary results were better than chance level (61.4%, adjusted

Wald interval, alpha = 0.05) for all participants. Highest per-
formances could be reached between unimanual and bimanual
movement conditions (70-80%) or movement versus rest condi-
tions (80-90%). Also unimanual left versus right combinations
scored in the range between 70 and 80%. Condition combina-
tions of the same hand (e.g. l-lat vs. l-pal) or bimanual versus
bimanual conditions reached performances in the range of 66-
70%. More detailed results regarding binary classification can
be found in the supplementary Figure S3.

For the multiclass classification we discriminated all 6 move-
ment classes as well as rest trials extracted from the rest runs.
Figure 6 illustrates the determination of the best classification
model (Calibration set). We show the grand-average over all
participants of the classification accuracy when evaluating each
time-point within the window of interest with a different clas-
sification model. The best performing classification time-point
was (on average) at 1 s after the movement onset with peak
accuracy of 42.7%. The chance level lies at 20.7% (alpha =
0.05, adjusted Wald-interval [47]) and is Bonferroni corrected
for multiple comparisons (80 calculated classification models).
Additionally we calculated the grand average of the individual
confusion matrices for each subject at the point of peak accu-
racy and at the point of the movement onset (Fig. 6, bottom). For
both shown confusion matrices, unsurprisingly, the true positive
rate (TPR) of the rest condition exceeds TPRs of any movement
classes by 20 to 25%. TPRs of movement conditions at the
point of peak accuracy are higher by 10-15% compared to TPRs
at movement onset. In general, false positive rates (FPR) of
same hand conditions (e.g. Left Palmar, Left Lateral) as well
as for both bimanual conditions are considerably higher than
when compared to opposite hand or unimanual versus bimanual
conditions.

Fig. 7 (left) shows the results of the best performing classifi-
cation model applied on the unseen data of the Evaluation set.
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Fig. 5. Topographical plots representing the difference between grasp conditions (cond(A)-cond(B)) for time-points between [−1 1.5]s with respect
to the movement onset. Black dots represent channels with significant differences (assessed using permutation tests, p < 0.05).

TABLE II
BINARY CLASSIFICATION RESULTS, PARTICIPANT-SPECIFIC PEAK

ACCURACIES IN PERCENT FOR CALIBRATION AND EVALUATION SET. THE
UPPER TRIANGLE MATRIX SHOWS THE RESULTS FOR THE EVALUATION SET

(HIGHLIGHTED GREEN), THE LOWER TRIANGLE MATRIX SHOWS THE
RESULTS FOR THE CALIBRATION SET (HIGHLIGHTED RED). CONDITION

ABBREVIATIONS: rest (REST); l-pal (LEFT PALMAR); l-lat (LEFT LATERAL);
r-pal (RIGHT PALMAR); r-lat (RIGHT LATERAL); bi-dlat (BIMANUAL DOUBLE

LATERAL); bi-mix (BIMANUAL MIXED PALMAR/LATERAL)

We show the grand average over all participants (black bold line)
as well as participant specific performances (thin gray lines).
Again all participants scored significantly higher than chance
level (24.2%, adjusted Wald-interval [47], Bonferroni corrected
for 80 comparisons). Both peak accuracy (38.6%) and timing
(1.1 s) are within the same range when compared to the results
of the Calibration set (see Table III for detailed comparison).
Due to the participants’ variation in time-course of accuracy,
the peak of the grand-average accuracy is understandably lower
(38.6%) than when performing the average of the individual
peak accuracies (31.3%). Fig. 7 (right) shows the associated
confusion matrix of the grand average of the participant spe-
cific peak accuracies. Again the TPR for the rest condition is
higher than for all movement conditions. TPRs for the move-
ment conditions range between 30 and 41%. As could already
be seen in for the results of the Calibration set, the false posi-
tive rates (FPR) of same hand conditions (e.g. Left Palmar, Left
Lateral) as well as for both bimanual conditions are higher than
when compared to opposite hand or unimanual versus bimanual

Fig. 6. Calibration set, offline classification results for all participants
(n = 15), Top: Grand Average of the best performing classification time
point. Peak performance is reached at 1 s after the movement onset (red
dot), which incorporates time domain features from [0 1]. Bottom: C: Row-
wise normalized confusion matrices of the grand-average calculated over
the timepoints of movment onset (time = 0 s) and participant-specific
peak performance. Condition abbreviations: rest (Rest); l-pal (Left Pal-
mar); l-lat (Left Lateral); r-pal (Right Palmar); r-lat (Right Lateral); bi-dlat
(Bimanual double Lateral); bi-mix (Bimanual mixed Palmar/Lateral).

conditions. For the Evaluation set results we also calculated the
information transfer rate (ITR) using Wolpaw’s Bit rate (see
Table III. On average participants scored 1.6 +/−0.8 bits/min.
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TABLE III
PARTICIPANT-SPECIFIC PEAK ACCURACIES FOR CALIBRATION AND
EVALUATION SET. THE LAST COLUMN SHOWS THE INFORMATION

TRANSFER RATE (ITR) ACCORDING TO WOLPAW’S BIT RATE
CALCULATION (EVALUATION SET ONLY)

Fig. 7. Evaluation set, offline classification results for all participants
(n = 15). Left: Grand average over all participants of the best performing
classification model applied on the unseen data of the Evaluation set
(black line). Red dots indicate the participant-specific peak accuracies.
The green dotted line marks the task-related chance level. Right: Row-
wise normalized confusion matrix of the grand average of the participant-
specific peak accuracies.

C. Behavioural Analysis

Results from the Hand-Dominance-Test confirmed that all
participants were right handed (see Supplementary Figure S1).
The reach-and-grasp durations of all participants are shown in
Figure 8 as boxplots, separated by condition. We performed
a repeated measures one-way ANOVA to test for significant
differences in the reach-and-grasp time among the conditions
(6 levels). Mauchly’s test indicated that the assumption of
sphericity was not violated. There was a significant effect for
the reach-and-grasp duration F(5,70 = 9.16, p < 0.01). Post
hoc pairwise multiple comparison tests using the Tukey-Kramer

Fig. 8. Behavioural analysis. Box-plots of the reach-and-grasp dura-
tions of all participants. The reach-and-grasp duration is calculated from
lifting the hand off the pressure sensor until triggering the pressure sen-
sor on the object.

criterion showed that bimanual conditions were performed sig-
nificantly slower than unimanual conditions with the exception
of lateral grasping with the left hand. For all the significant
differences the effect size was between 110 and 140 ms. For
the bimanual trials we also calculated the median difference
between the movement onset between the left and right hand.
The time difference between these movement onsets resulted at
32 ms ± 10 ms. Detailed results can be found in the supplemen-
tary material (Figure S2, right).

IV. DISCUSSION

In this study, we could show that unimanual and bimanual
reach-and-grasp actions can be successfully decoded against
each other using the low-frequency time-domain features of
the EEG. Our multiclass classification approach, which incor-
porated all six reach-and-grasp movements and a rest condi-
tion resulted in a peak performance on average of 38.6 ±
6.6%(achieved on the unseen data of the Evaluation set, chance
level at 24.2%). Peak accuracy was reached on average within
the first second after the movement onset. Low frequency EEG
correlates which were exploited by the classifier show signif-
icant differences between unimanual and bimanual conditions
already preceding the movement onset.

A. Movement-Related Cortical Potentials

In general, MRCPs of all the reach-and-grasp conditions in-
vestigated in this work are similar in morphology to our previous
study described in [16], [48]: Imminently to the movement on-
set, a strong negative deflection occurs, which we associate to
the Bereitschaftspotential described in [17], [18] and in other
EEG based studies on MRCPs such as [15], [22], [49]–[51].



1692 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 6, JUNE 2020

Around 250 ms after the movement onset a reafferent poten-
tial emerges, which was already identified in previous experi-
ments [16], [48], [52] and seems to be characteristic of reach
and grasp movement tasks. When comparing combined condi-
tions of ‘Left Hand,’ ‘Right Hand’ and ‘Bimanual,’ significant
lateralization effects can be observed not only in direct MRCP
comparison but also in the difference topoplots for ‘left-right,’
as well as ‘left-bimanual’ and ‘right-bimanual’. In all difference
plot combinations lateralized effects already occur from 1 s be-
fore the actual movement over the motor cortex and culminate
prominently at or shortly after the movement is initiated (move-
ment onset). No distinct lateralization effect can be observed in
the bimanual conditions. Here both hands are actively engaged
in the task and show similar MRCP morphology. However when
looking at the difference topoplots between unimanual and bi-
manual conditions, significant differences emerge ipsilateral to
the involved unimanual condition (e.g. for ‘right-bimanual sig-
nificant differences can be found on the right side since the left
hand is only engaged in the bimanual task, while the right hand is
active in both unimanual and bimanual tasks). While lateraliza-
tion effects are known since the first experiments of Kornhuber
and Deecke in 1965, [18] and have been subsequently inves-
tigated in some movement tasks [53]–[54], we show that this
effect is also observable in the context of reach-and-grasp move-
ments. As for comparison between same-hand conditions, we
did not find significant differences in any combinations. How-
ever, when comparing unimanual to the bimanual conditions, a
stronger negativity of the Bereitschaftspotential at second 0 can
be observed (about −1.3 µV) for bimanual conditions. Similar
to our previous study [16], we observed a stronger rebound ef-
fect for the lateral grasp conditions, when compared to palmar
grasp, regardless of the hand. This is visible between 1 to 2 s
after the movement onset, over central position Cz (this occurs
when the grasping is already finished and the hand is in the
holding phase). This effect is also visible in the bimanual con-
ditions whereas the condition pot (double lateral grasp) is more
pronounced than the condition jar (mixed, palmar/lateral grasp).

The analysis of the reach-and-grasp durations show that in
general, bimanual tasks were performed significantly slower
(110–140 ms.) than unimanual grasps, with the exception of
the left-hand lateral grasp condition. We surmise that this in-
creased duration reflects the additional effort for a coordinated
bimanual movement and in the case of the left lateral grasp,
the unfamiliar activity. Interestingly, the timing from our previ-
ous experiment [16] and its cue guided paradigm yielded similar
reach and grasp timings (1.1–1.125 s). Nevertheless no apparent
differences regarding the timing with respect to the morphology
of the EEG correlates of the unimanual conditions can be ob-
served.

B. Single-Trial Classification

Our classification approach targeted to simulate a BCI online
scenario, therefore we initially split our data in a Calibration set
for calculating a classification model and an Evaluation set of
unseen data.

Results from the binary approach achieved on the Evalua-
tion set show that same hand condition combinations as well as
the bimanual versus bimanual combination resulted on average
in accuracies between 66 and 70%. Condition combinations in-
volving a mixture of unimanual and bimanual conditions and es-
pecially involving the rest condition yield highest performance
results, on average between 74% to 90%. For most condition
combinations, subject specific peak accuracies were achieved
around 1 s after the movement onset. However for same hand,
respective bimanual versus bimanual condition comnbinations,
timings are more divers which is reflected in grand average (see
supplementary Figure S3).

Calibration set results generally yielded about 3-4% higher
peak performances, but are still in the same range as for the
Evaluation set. Notable, these results are comparable to binary
results achieved [15], [16], since analysis and number of trials
are similar.

For the multiclass approach, our participants achieved on av-
erage 38.6 ± 6.6% accuracy on the unseen data of the Evaluation
set exceeding chance level by more than 18% (7 conditions).
Participant specific peak accuracies were achieved around 1 s
+/−200 ms after the movement onset.

Our classification approach used the preceding window of 1 s
to extract the features, e.g. the classification model obtained at
1 s used features from the movement onset [0:0.125:1] s. This
goes in line with the significant differences found between the
low frequency EEG correlates of all conditions. With regards to
the length of our feature extraction window of 1 s, this means
that these classification models were trained exclusively on the
reach-and-grasp movement towards the object.

Analysis of the multiclass based confusion matrices of indi-
cate that the true positive rates (TPRs) for the rest condition
exceeds any other movement related TPRs by more than 20-
25%. This effect was expected and has also been observed by
our previous experiment series [16], [48] and can be attributed
to the significant differences of the low frequency EEG corre-
lates observed between rest and movement conditions. We also
see that discrimination between conditions of the same hand as
well as discrimination between bimanual conditions yield high-
est false positive and false negative rates within the confusion
matrix (17–25%). However, condition combinations involving
different types of movement, e.g unimanual versus bimanual or
unimanual left versus unimanual right, false positive and false
negative rates are lower (4–12%). This was also expected since
their low frequency EEG correlates showed an increased number
of significantly different channels due to lateralization effects.

Our analysis on the data of the Calibration set indicated in
general higher peak performances per participant, however the
timing was in the same range. Better than chance classification
could already be reached 1 s before the actual movement onset
which is also in line with previous studies [15], [16], [22].
Unfortunately, direct performance comparison to other grasp
decoding studies in the field such as Itturate et al. [24], Randazzo
et al. [55] or Jochumsen et al. [22] and Agashe et al. [21] are
difficult due to varying numbers of conditions or fundamental
differences in experimental setup and paradigm design.
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Our findings in this study show that unimanual and bimanual
reach-and-grasp actions can be successfully decoded from low-
frequency EEG and hence implementation in assistive devices
for tetraplegic end users seems imminent. Nevertheless, there
are still issues to be solved which could potentially put this idea
in the dim future.

MRCPs used in this work for decoding are a time and phase-
locked phenomenon. They are time-locked to an event, e.g. the
finishing of a grasp [24], [55] or, as in the present study and [15],
[48] to the movement onset [56]–[58]. While time-locking to
executed movements is a feasible approach for people without
motor disabilities, an accurate time-locking event can become
difficult to obtain in tetraplegic persons who often do not have a
measurable movement onset, not to mention an actual grasping
trigger. Brisk visual or auditory cues could also be applied, how-
ever they usually elicit potentials which might mask the MRCP
(see [14]). Recently, new paradigm approaches were proposed
in [25], [59] in which continuous visual input is presented to the
participants, in an attempt to avoid such potentials.

As we have seen in the classifcation results of the current
study, applying the classification model over a larger window of
interest leads to a good discrimination limited to a 1 s window on
which the model was trained on. Outside this 1 s window, mean
classification results are at chance level. This also applies for
the rest condition which is trained on the same 1 s window. This
suggests that if the timing of the reach and grasp action differs
(e.g. slower movement or different distance for reaching the
object), discrimination performance would be greatly reduced.

It is important to point out that our classification approach
relied solely on low-frequency time-domain features. However,
state-of-the-art BCIs based on mental imagery strategies rely on
event-related desynchronization (ERD) phenomena to create a
signal for control. In these studies, the participants imagine inter
alia repetitive hand or feet movements, to generate a control sig-
nal [60]–[64]. Aside from unimanual movements, also bimanual
tasks have been investigated, leading to a notable control [65]–
[67]. While those BCIs usually provide a satisfying degree of
control, they depend on strategies which feel unnatural to the
users, since there is often a mismatch between the intended
movement (e.g. repetitive feet MI) and the actual movement
executed by the control device (e.g. hand open command for a
neuroprosthesis). While we could already show, for a set of uni-
manual reach-and-grasp movements, that the performance asso-
ciated with the rest condition could be boosted and stabilized by
incorporating features from alpha and beta band EEG, this did
not significantly improve the discrimination between different
grasp types [48]. Additionally, Iturrate et al. have shown, for
precision and power grasps, that discriminable information for
reach-and-grasp decoding can be found in higher bands, despite
the highest decoding performances being achieved using fea-
tures from 1-6 Hz [24], [48], [68]. Future work should therefore
consider the possibility of using a combination of time-domain
and frequency features and, eventually, a participant-specific
tuning of the relevant frequency bands. Since the classifica-
tion of movement vs. rest is boosted by frequency-domain fea-
tures, it might be beneficial to implement other classification
approaches, like the hierarchical approach described in [69].

Furthermore, we still face the challenge of transferring these
results to actual end users: It is still unclear whether combined
reach-and-grasp actions can be decoded from a person without
voluntary hand/finger control: While the reaching towards an
object can still be executed the grasp itself is only attempted
(due to lack of voluntary finger control). Future investigations
- in close cooperation with tetraplegic end users - will show
whether this combination of executed and attempted movement
can be detected.

Naturally, the task becomes even more complex when tar-
geting a population without any voluntary upper limb control
left. So far, it has already been shown that unimanual attempted
hand movements can be decoded [25], [26], [70] in principal,
as well as MRCPs from imagined movements [59]. However,
further studies on a larger population are necessary to evaluate
the decoding performance and thus control possibilities.

V. CONCLUSION

We show that unimanual and bimanual reach-and-grasp
actions can be decoded from the low frequency EEG. Significant
lateralization effects were identified in the EEG neural corre-
lates for left versus right unimanual hand conditions, whereas
bimanual conditions elicited bilaterally with no perceivable lat-
eralization. We believe, that despite issues such as asynchronous
classification performance and transfer to end users, which still
need addressing, our findings can potentially lead to an EEG-
driven bimanual control of neuroprostheses.

ACKNOWLEDGMENT

The authors thank R. Rupp for fruitful discussions that in-
spired this work, S. Wriessnegger for the discussions on the ex-
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Combining frequency and time-domain EEG features for classification
of self-paced reach-and-grasp actions
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Abstract— Brain-computer interfaces (BCIs) might provide
an intuitive way for severely motor impaired persons to operate
assistive devices to perform daily life activities. Recent studies
have shown that complex hand movements, such as reach-
and-grasp tasks, can be decoded from the low frequency of
the electroencephalogram (EEG). In this work we investigated
whether additional features extracted from the frequency-
domain of alpha and beta bands could improve classification
performance of rest vs. palmar vs. lateral grasp. We analysed
two multi-class classification approaches, the first using features
from the low frequency time-domain, and the second in which
we combined the time-domain with frequency-domain features
from alpha and beta bands. We measured EEG of ten par-
ticipants without motor disability which performed self-paced
reach-and-grasp actions on objects of daily life. For the time-
domain classification approach, participants reached an average
peak accuracy of 65%. For the combined approach, an average
peak accuracy of 75% was reached. In both approaches and for
all subjects, performance was significantly higher than chance
level (38.1%, 3-class scenario). By computing the confusion
matrices as well as feature rankings through the Fisher score,
we show that movement vs. rest classification performance
increased considerably in the combined approach and was
the main responsible for the multi-class higher performance.
These findings could help the development of BCIs in real-life
scenarios, where decreasing false movement detections could
drastically increase the end-user acceptance and usability of
BCIs.

I. INTRODUCTION

Brain-computer interfaces (BCIs) enable its users to inter-
act with their environment by deliberate or evoked changes
in brain activity. One possible target group would be per-
sons with high spinal cord injury (SCI): while their upper
limb function is critically impaired, a BCI might enable
them to control an robotic arm [1] or a upper limb motor
neuroprosthesis [2] just by thought. BCI control strategies
for such applications typically rely on repetitive imagination
of mental tasks, e.g. motor imagination of repeated hand or
foot movements [3], [4] [5]. In recent years, we have focused
our research [6]–[10] in finding new control strategies [10]:
We investigated the possibility of using the actual (single)
movement intended by the user, e.g. reaching for a glass or
grasping a spoon. Our studies have shown that the electroen-
cephalographic (EEG) correlates of movement in the low
frequency range hold sufficient information to discriminate
up to three different grasps. The EEG neural correlate which
amplitude is modulated by the different types of grasps is

*This work was supported by EU Horizon 2020 Project ‘MOREGRASP’
(643955) and partly by ERC consolidator Grant No ’681231’

1Institute of Neural Engineering, Stremayrgasse 16/ IV, Graz, Uni-
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a slow cortical potential measured around the movement
onset and known as movement related cortical potential
(MRCP) [11]. MRCPs manifest as a negative deflection of
the amplitude before an actual movement onset, reaching
its maximum peak negativity imminently to the movement
onset, then followed by a positive rebound. They have been
found to provide information regarding force and speed
[12] as well as different reach and grasp actions in non-
motor impaired participants [6], [13], [14]. In our recent
project, (Horizon 2020, “MoreGrasp”) we are transferring
these findings to actual end users with SCI, who perform
single movement attempts like a palmar or lateral grasp to
control an upper limb neuroprosthesis by means of a BCI
[15]. Our findings indicate that these potentials are also
present in individuals with SCI, however the initial decoding
performances are rather low. Hence we keep investigating
means for increasing BCI performance.
So far, we have restricted our feature space to the low
frequency time-domain signals for discriminating between
different executed or attempted reach and grasp actions. In-
vestigations by Jochumsen et al. on grasp intention decoding
[12] have shown that an inclusion of spectral feature com-
ponents could lead to increased classification performance.
Hence in the current study, we investigate the effects of
combining time-domain features with additional frequency
features from alpha and beta ranges. We hypothesize that
combining frequency and time-domain features significantly
improves the classification performance of rest vs. palmar
vs. lateral grasps. We measured the EEG of ten right
handed participants without motor disability during a self-
paced reach-and-grasp experiment which included inter alia
palmar (grasping a glass) and lateral (grasping a spoon)
grasps. Finally, we discuss the contribution of both types
of features using a topographical ranked metric for feature
quality through the Fisher score [16].

II. METHODS

A. Participants, Experimental setup and Paradigm

This study was approved by the local ethics committee
of the Medical University of Graz (EK: 30-439 ex 17/18).
Ten right handed participants took part in this study. Each
participant was informed about the study goals and gave
written informed consent. At the beginning of each session,
we tested their handedness using the Hand-Dominance-Test
described in [17]. Participants were seated in an electro-
magnetically shielded room and we placed a table with an in-
built monitor in front of them. On the horizontally positioned
screen we placed two objects, an empty jar and a jar with



a spoon (fixed within the jar). During rest and breaks, the
participants’ right hand laid on a pressure sensor centrally
positioned between the objects, in comfortable reaching and
grasping range, as illustrated in Figure 1.

Fig. 1. Paradigm for self-paced reach-and-grasp actions. Participants
were asked to focus on the object for at least one second before initiating
the reach-and-grasp action. They grasped and held the object eventually for
1-2 seconds.

Our participants were instructed to reach and grasp the
objects in a self-paced manner, however we instructed them
to first focus their gaze on the object they wanted to grasp for
at least 1 second. Thereafter, they performed a steady reach
and grasp towards either a spoon (with a lateral grasp, see
Figure 1 A), or the glass (with a palmar grasp, see Figure 1,
B), followed by an holding period of at least 1 second. Aside
from these two movement conditions, additional conditions
were recorded in which participants were asked to perform
grasps with both hands. These results are not the target of
this paper, and will be published elsewhere. Participants were
then asked to move their hand back on the pressure plate.
On completion, a small insert showed them the amount of
grasps they performed on the object. Between these reach-
and-grasp actions we asked them to perform a break for
at least 4 seconds. We recorded 80 trials per class (TPC)
distributed over 4 runs á 20 TPC. After each run, we switched
the positions of the objects so that each object was positioned
left or right equally often. Additionally, we recorded at the
beginning, halftime and end of the experiment 3 minutes of
rest where participants were asked to focus their gaze on
a dot shown on the center of the screen. Other than that,
we also recorded eye movements and blinks by moving this
dot horizontally and vertically on the screen, on a paradigm
described in [18]. We measured EEG and EOG with 58 and 6
active electrodes (g.tec medical engineering GmbH, Austria),
respectively. For recording the movement onset we used a
pressure plate, localized centrally between both objects and
synchronized its data to the EEG. EEG was recorded with a
sampling frequency of 256 Hz and prefiltered using an 8th
order Chebyshev filter between 0.01 and 100Hz. Power line
interferences were dampened using a notch filter at 50Hz.

B. Single Trial Multiclass Classification

We performed single trial multiclass classification in-
corporating two different approaches: The first approach
(time-domain-only) relied solely on using features from the
low frequency time-domain, while the second (combined
model) relied on features extracted from the time-domain as
well as from the frequency-domain. For both classification

approaches we preprocessed the data using a 4th order zero-
phase high pass filter at 0.3 Hz. To counter any influence of
eye-movements we used the eye movement and blink runs
and applied the EOG-subspace method described in [18].
Thereafter, we excluded remaining artefact contaminated
trials based on statistical parameters (amplitude threshold,
kurtosis, probability density function) as described in [6],
[19]. For both grasp conditions we defined a window of
interest (WOI) of [-2 3]s with respect to the movement onset.
For the rest condition we epoched the recorded rest runs
in trials of 5 second length (1 second interval) and hence
extracted 81 rest condition trials.

1) Time Domain Feature Classification: The time-
domain-only classification follows closely our initial ap-
proach described in [6]: For each participant, we resampled
the preprocessed EEG signal to 16 Hz and applied common
average reference filter (CAR). Thereafter we low-pass fil-
tered the signal with a cut-off frequency of 3 Hz to retain
only its desired low frequency components and epoched it
into trials according to the previously defined WOI. Using
a 10 times 5 fold cross validation technique we divided
each participants’ trials into training and testing sets. We
trained a shrinkage based linear discriminant analysis (sLDA)
classifier [20] on features extracted from a 1 second window.
Concretely, on this 1 second window, we took 9 amplitude
values as features in 125ms steps per channel, i.e. we took
522 features in total per observation. For every sample, we
moved this 1-second window over the WOI. This means that
for every point within the WOI, we trained and tested an
individual classification model. In this way, we were able to
determine the best performing classification model within the
WOI. For each fold, we evaluated the accuracy of the best
performing classification model on the testing set throughout
the WOI and averaged over all testing folds. We report the
grand-average over all participants.

2) Combined model: Time Domain / Frequency Domain
Feature Classification: For each participant we resampled
the EEG to 128 Hz and applied CAR filtering. The WOI
as well as the 10 times 5 fold cross validation procedure
were the same as described above. Additionally to the 522
time-domain features extracted from the 1 second window,
we calculated its power spectral density estimate (PSD),
yielding for every frequency from 1 to 64 Hz a power value.
We took the mean of 7 overlapping power bins covering
alpha [8:12 Hz; 10:14 Hz;] and beta frequency ranges [14:19
Hz; 17:22Hz; 20:25 Hz; 23:28Hz; 26:31 Hz] and therefore
extracted 7 new features per EEG channel (406). After
normalization and calculation of the base 10 logarithm, these
features were concatenated with the time-domain features
from the same extraction window. In total we extracted 928
features (522 time-domain + 406 frequency domain) per
observation. Again these features were classified using an
sLDA classifier.

C. Power Spectral Density Estimate and EEG correlates

We also performed analysis of the frequency-domain using
the power spectral density estimate (PSD) as well as the



low frequency EEG correlates of all available conditions.
Following the same artefact correction steps, we resampled
the signal to 128 Hz and applied CAR filtering. For each
participant, we epoched trials form [-1 0]s with respect
to the time point of peak performance in the combined
classification model and calculated their PSD. Thereafter, we
calculated the PSD mean of each condition. Additionally, we
report the grand average PSD of all subjects per condition.
As for the time-domain based low-frequency correlates,
we resampled the EEG to 128 Hz, applied CAR filtering
and bandpass filtered the signal between .3 and 3 Hz (4th
order, zero-phase Butterworth). We calculated the global field
potential using the rest data [21] to normalize the signal. For
each subject we calculated the average for each condition
over the WOI [-2 3] and calculated the 95% confidence
interval (alpha = 0.05) using non-parametric t-percentile
bootstrap statistics. We report the grand averages over all
subjects per condition.

D. Feature rating

We were also interested in a global rating of the features
extracted from the time-domain as well as the frequency-
domain, especially for the newly applied combined model.
We used all available trials and conditions for this analysis.
For each participant, we epoched trials from [-1 0]s with
respect to the time point of peak accuracy and calculated both
time domain and frequency-domain features (see combined
model). The subsequent feature rating was performed using
the basic Fisher score approach described in [16]. For the
time-domain features we summed up all scores per channel
and calculated the grand average over all participants; for the
frequency-domain features we calculated the grand average
over all participants per frequency band.

III. RESULTS

Figure 2 shows the single trial classification performance
achieved solely with features extracted from the time-domain
(top) as well as from the combined classification approach
(bottom). The left column shows the grand average classifica-
tion performance of all subjects for each classification model
calculated within the WOI. The red vertical line shows the
grand average point of peak performance. The green dashed
line depicts the chance level with 38.9% ( alpha = 0.05,
adjusted Wald interval, corrected for multiple comparisons
[22]). The center column displays performance when the
best performing classifier is applied over the whole WOI.
Grey traces show the individual subject performances, and
peak accuracies are marked with red dots. The matrices in the
right column show the grand average of the individual subject
confusion matrices, calculated at the point of peak accuracy
for both classification approaches. We applied row-wise
normalization. It can clearly be seen that the true positive
rate of the rest conditions is higher than for movement
classes while the error rate for false positives and false
negatives is considerably lower. Table I depicts the subject
specific peak accuracies for both classification approaches.

On average, the combined approach shows an increase in per-
formance by 10%. Statistical comparison between both peak
accuracies and standard deviation revealed this difference to
be significant (Wilcoxon rank sum test p<0.05). Figure 3
shows the low frequency correlates of all conditions with
respect to the movement onset (second 0). We observe an
overlap between the confidence intervals (CI) of the move-
ment classes. Significant differences (p<0.05) between grand
averages of movements versus the rest condition emerge on
the electrodes covering contralateral areas before and after
the movement onset (see non overlapping areas). Regarding
the PSD analysis (Figure 4) distinct differences between
movement and rest conditions can be observed, especially
in the alpha and beta frequency ranges.
Finally, we evaluated the results from the feature ranking
provided by the Fisher Score (see Figure 5). Here we show
the grand average over all participants. The first column
shows scoring results of the time-domain features for all
possible binary combinations. Distinct higher scores can be
observed between movement classes over the whole motor
cortex, especially around C3, Cz and C2. However, for move-
ment vs. rest the highest scores are obtained on more central
and contralateral areas within the motor cortex (Cz, C1, C3).
As for the frequency-domain based ratings (column 2 to 7),
no distinct scores can be observed between movement vs.
movement comparisons. For movement conditions vs. rest,
distinct scores can be seen on the channels over contralateral
motor areas, most distinctively in alpha band (e.g. 9-13 Hz)
but also in the beta band (21-26Hz, 24-29Hz). The rating
for the frequency range additionally shows scoring on some
peripheral electrodes when comparing movement conditions
vs. rest. Concretely, these corresponded to increased scores
on occipital areas for the alpha range, and increased scores
for the frontal ipsilateral areas for the beta range.
We also investigated the reach-and-grasp duration for both
conditions. On average, it took participants 1.1 ± 0.2 s from
the movement onset to grasp any object.

IV. DISCUSSION

In this paper we could confirm that different reach and
grasp actions can be decoded from the low frequency-
domain incorporating MRCPs as a primary neural correlate
for discrimination. Our results go in line with previous
findings [6] [14], [23] and notably [24]. For both approaches,
all participants could score peak accuracies significantly
higher than chance level (38.09%) at 65.03 % +/- STD
6.51 for the time-domain-only approach and 75.09 %+/-
STD 5.76 for the combined approach. Participant specific
peak accuracies occur on average 1 to 1.3 seconds after
the movement onset for both investigated approaches which
corresponds to the reach-and-grasp duration for both condi-
tions. This means that peak accuracy is reached within the
final stages of grasping the designated object, which is in
accordance with previous findings [6]. Such timings would
allow in an online scenario for a sufficient close to real time
control. Regarding the combined approach, we could show
that overall classification performance significantly improves



Fig. 2. Single trial classification performance based on time domain features (Top Row) and combined time domain and frequency domain
features (Bottom Row). (Left Column): Grand average classification performance within the WOI. (Center Column): Grand average of the best performing
classifier applied over the WOI. Grey lines represent individual subject performance, red dots their peak performances (Right Column): Row-wise normalized
confusion matrix of the grand average calculated over the individual peak performance per subject.

Fig. 3. Low frequency EEG correlates of grasp and rest conditions
of channels C1, Cz and C2. Colored shaded areas show the confidence
interval, bold lines the grand average of the designated reach-and-grasp-
action. The thin perpendicular line at second zero represents the movement
onset.

when extending the feature space to the frequency-domain
incorporating alpha and beta band from the same WOI. Our
results show that a significant average peak performance
increase of 10% could be reached. The confusion matrices

Fig. 4. Grand average PSD of the peak accuracy feature window for
channels C1, Cz and C2. Bold lines show the condition specific PSDs.

calculated at the point of peak accuracy reveal that this
performance boost is due to a considerable improvement in
classifying movements vs. rest condition. In comparison to
the time-domain-only classification model, the true positive
rate of the rest condition increases by more than 20% while
the rates for false positives and false negatives with regards



Fig. 5. Topographical overview of the feature ranking provided by the fisher score. The first column summarizes the time domain features, columns
2 to 7 show scoring for the different frequency bands.

TABLE I
SUBJECT SPECIFIC PEAK ACCURACIES (ACC) INCLUDING STANDARD

DEVIATION (STD) AND TIME OF OCCURRENCE (WITH RESPECT TO THE

MOVEMENT ONSET) FOR BOTH TIME-DOMAIN AND COMBINED

CLASSIFICATION APPROACHES.

# time-domain-only combined
ACC±STD (%) (s) ACC±STD (%) (s)

S1 69.34 ± 5.9 0.94 76.14 ± 5.9 1.4
S2 63.63 ± 6.2 0.88 77.02 ± 5.3 1.3
S3 69.27 ± 6.4 0.88 83.10 ± 4.9 1.5
S4 68.09 ± 6.3 0.81 75.57 ± 5.2 1
S5 63.95 ± 6.6 1.1 74.28 ± 5.4 1.82
S6 61.26 ± 7.6 1 65.81 ± 7.1 1.4
S7 68.72 ± 6.0 0.88 81.26 ± 5.0 1.6
S8 57.78 ± 7.2 0.88 72.27 ± 5.4 0.81
S9 62.75 ± 6.8 0.81 7.23 ± 6.5 1
S10 65.50 ± 6.1 1 74.23 ± 6.9 1.4

AVG 65.0 ± 6.5 0.92 ± 0.1 75.1 ±5.8 1.2 ± 0.3

to the movement conditions decrease from 10-12% to 2-4%.
Furthermore, the combined model results for movement vs.
movement conditions increased true positive rates of about
9%, however their false positive and false negative rates
are almost identical to the time-domain-only classification
model. This indicates that the actual performance gain was
achieved mainly by the increased classification performance
of movement conditions vs. rest rather than between move-
ment conditions. We also see that for the combined model,
accuracies are already elevated above chance level two
seconds before the movement onset, contrary to results for
the time-domain-only model. The classification accuracy 2
s before the movement onset indicates that the true positive
rates for the rest condition are responsible for this effect. This
goes in line with findings of Pfurtscheller [25] [26] and their

research on event-related desynchronization who showed that
already 2 seconds preceding the movement power changes
happen in alpha and beta ranges.
The results of the Fisher score ranking show that for move-
ment vs. movement and the time-domain, high score features
are mainly located at the motor cortex, whereas for the
frequency-domain, no distinct high scores are obtained. As
for movement vs. rest discrimination, in both time-domain
and frequency-domain, the highest scores are obtained for
central and contralateral channels over the motor cortex. For
the frequency-domain the largest contribution is on the alpha
frequency range, but high scores are also observed on the
lower beta frequencies. High scores were additionally found
on other channels in the alpha and high-beta ranges: For
the alpha range, also occipital channels seem to be relevant,
which can be explained by increased alpha activity typically
associated with resting conditions. However, for the high-
beta range, higher scores on the frontal lateral channels
are most likely associated with the presence of muscular
artifacts, especially since the associated channels are located
ipsilaterally with respect to the movement. While we applied
a trial-based artefact rejection, this result indicates that not
all artefact contaminated trials could be successfully removed
with our procedure. One must therefore take this point
into consideration when interpreting the results, since this
effect could have partially contributed to an increase in
classification performance of movement vs. rest.
The PSD analysis performed on the time window of peak
performance shows higher power values for the rest condition
than for both movements, especially in alpha and beta range
which adds further strength to our hypothesis. Ultimately,
we investigated the low-frequency correlates of all condi-
tions. The movement vs. movement conditions show distinct
MRCPs, which were characterized by a negative deflection
around the movement onset followed by a reafferent potential
which occurred about 300 ms after the peak negativity.



Thereafter a second positive rebound occurs before the EEG
returns back to baseline. This second positive rebound is on
average stronger for the condition involving the lateral grasp
when comparing to the palmar grasp condition, which is in
consistency with our previous findings [6]. When comparing
the confidence intervals of both movement classes to the rest
condition, significant differences around the movement onset
on central and contralateral electrodes can be found.
We are aware that the target population is not able to execute
grasping movements, however they are able to execute the
reach (which allows us to detect the movement onset) and
attempt grasping. Preliminary results have already shown
that movement attempts lead to similar neural correlates in
SCI [15]. Therefore, we expect that our methods can be
successfully validated in end users eligible for an upper limb
grasp neuroprosthesis.

V. CONCLUSION

In this work, we could show that a combined classification
model of time-domain and frequency-domain features leads
to significantly higher classification performances for mul-
ticlass classification of reach-and-grasp and rest conditions.
While the contribution of the frequency-domain features for
the classification of movement vs. movement classification is
minimal, these additional features considerably boost move-
ment vs. rest classification. This could be used to decrease
false positive rates and therefore the system reliability. We
believe that these findings will effectively contribute to our
research on BCI-controlled neuroprosthesis for persons with
high spinal cord injury.
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