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Abstract

A device that records and simultaneously translates brain activity into a control signal is

denoted brain-computer interface (BCI). A central research direction, namely, movement

control has already been pursued since the last century. One strategy to implement low-

level movement control is to design BCIs that directly decodemovement information from

brain activity and use it to control end-effectors rather than relying on potentially impaired

neuromuscular activity. This strategy has been explored in non-human primates and later

also in human patients and case-studies in paralyzed humans whose electrophysiological

brain activity was recorded with implanted electrodes. In these case studies, paralyzed

individuals could continuously control the trajectory of computer cursors and make

robotic arms or via neuroprostheses their paralyzed arms reach and grasp objects. Key to

these impressive results was the discovery that neural spiking and population activity

in motor cortex is tuned to the kinematics of executed and also intended movements.

For about a decade, increasing evidence suggests that population activity recorded non-

invasively in the form of electroencephalography (EEG) and magnetoencephalography

(MEG) encodes also kinematic information. Unlike invasively recorded brain activity,

EEG and MEG suffer from co-varying motion and eye artifacts which has so far impeded

their application in studying kinematics related effects in visuomotor tasks that require

eye-hand coordination.

This PhD thesis provides multiple contributions to functional neuroimaging tools that

can disentangle co-varying eye and other artifacts from kinematics-related effects in

low-frequency M/EEG. Using this new tools allowed us to corroborate and extend the

understanding of kinematics related effects in the low-frequency M/EEG in discrete and

continuous movement tasks. In discrete movements, we identified that sensorimotor

cortex (SMC) encoded directional information during a visuomotor task but not during an

oculomotor task. Whereas parieto-occipital cortex (POC) encoded directional information

in both tasks and consistent across participants. In continuous tracking movements,

similar large scale cortical networks were active. In the tracking task, we observed velocity

tuning in SMC (visuomotor task) and POC (visuomotor and oculomotor tasks). At the

same time, we found that SMC was additionally tuned to the length of the velocity vector

(i.e., speed) during the visuomotor task. The methodological and conceptual advances

were eventually combined to implement a proof-of-concept, EEG-based, kinematics

decoding BCI for continuous movement control. In two feasibility studies with healthy

users, we demonstrated that the proposed BCI can be used to control a robotic arm with

moderate accuracy. Further research is necessary to improve the accuracy and transfer

the system to paralyzed users.





Kurzfassung

Ein System, das Gehirnaktivität aufzeichnet und gleichzeitig in ein Steuersignal umwan-

delt, wird als Gehirn-Computer-Schnittstelle (Englisch: Brain-Computer Interface, BCI)

bezeichnet. Eine zentrales Thema in der BCI-Forschung ist die Steuerung von Bewe-

gungen. Eine Strategie besteht darin BCIs zu entwerfen, die Bewegungsinformationen

direkt aus der Gehirnaktivität dekodieren und diese zur Steuerung von Endeffektoren

wie Computer Cursorn oder robotischen Armen verwenden, anstatt sich auf potenziell

beeinträchtigte neuromuskuläreAktivität zu verlassen. Diese Strategiewurde an Primaten

und später auch an Patienten und in Fallstudien an gelähmten Menschen untersucht.

Mittels implantierter Elektroden wird elektrophysiologische Hirnaktivität aufgezeichnet

und in Steuersignale umgewandelt. In den Fallstudien konnten gelähmte Personen die

Trajektorie von Computer Cursorn kontinuierlich steuern und robotische Arme oder

mittels Neuroprothesen ihre gelähmten Arme dazu bringen nach Objekten zu reichen

und diese zu ergreifen. Die Grundlage für diese beeindruckenden Ergebnissen war die

Entdeckung, dass neuronale Aktionspotenziale und Hirnaktivität im motorischen Kortex

Information über die kinematischen Parameter ausgeführter und auch beabsichtigter

Bewegungen codieren. Seit etwa einem Jahrzehnt deuten zunehmende Studienergeb-

nisse darauf hin, dass nicht-invasiv, in Form von Elektroenzephalographie (EEG) und

Magnetoenzephalographie (MEG), aufgezeichnete Hirnaktivität auch kinematische Infor-

mation codiert. Im Gegensatz zur invasiv aufgezeichneter Hirnaktivität zeichnen EEG

und MEG gleichzeitige Bewegungs- und Augenartefakten auf, was ihre Anwendung

bei der Untersuchung kinematischer Effekte während visuomotorischer Aufgaben, die

Auge-Hand-Koordination erfordern, bisher behindert hat.

Diese Doktorarbeit präsentiert Methoden, die es ermöglichen kovariierende Augenarte-

fakte von kinematischen Effekten im niederfrequenten M/EEG zu trennen. Mittels der

neuenMethoden konnte diese Doktorarbeit zu einem besseren Verständnis kinematischer

Effekte imniederfrequentenM/EEGwährenddiskreter und kontinuierlicher Bewegungen

beitragen. In zielgerichteten, diskreten Bewegungen wurde festgestellt, dass der sensomo-

torische Kortex (SMC) Richtungsinformation während einer visuomotorischen Aufgabe,

jedoch nicht während einer okulomotorischen Aufgabe codiert. Der parieto-okzipitale

Kortex (POC) codierte Richtungsinformation in beiden Aufgaben. Bei zielgerichteten,

kontinuierlichen Bewegungen waren ähnliche kortikale Areale aktiv. Während dieser

Bewegungen codierte SMC (visuomotorisch) und POC (visuomotorisch und okulomo-

torisch) Information über die vektorielle Geschwindigkeit. Gleichzeitig stellten wir fest,

dass SMC zusätzlich Information über die Länge des Geschwindigkeitsvektors codierte.

Die methodischen und konzeptionellen Fortschritte wurden schließlich kombiniert,

um ein EEG-basiertes BCI für die Bewegungssteuerung zu implementieren. In zwei

Machbarkeitsstudien mit gesunden Menschen wurde gezeigt, dass das EEG-basierte

BCI zur Steuerung eines robotischen Arms mit mäßiger Genauigkeit verwendet werden

kann. Weitere Forschung ist erforderlich, um die Genauigkeit zu verbessern und die

Übertragbarkeit der Ergebnisse an gelähmten Menschen zu testen.
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1.1 The long-term Vision

Paralysis, defined as the loss of motor function in one or more muscles,

can be caused by stroke, by traumatic damages to the central nervous

system (CNS) like spinal cord injury (SCI) or by neurodegenerative

diseases like multiple sclerosis (MS) or amytrophic lateral sclerosis (ALS).

Nearly 1 in 50 persons live with some form of paralysis in the US [1],

rendering paralysis not only a challenge for the individual but also for

society.

Individuals with a permanent loss of upper-limb function are faced with

a dramatic loss in quality of life and independence. The primary cause for

a permanent loss of upper- and lower-limb function, denoted tetraplegia,

is SCI. The incidence rate of SCI ranges from 15million inWestern Europe

to 39 million per year in the US [2]. As of 2020, an estimated 294,000

persons with SCI live in the US with 47% diagnosed incomplete and

12% complete tetraplegia [3]. For individuals with high tetraplegia (i.e.,

spinal cord injury at cervical levels C1-C4), the average cost for health

care and living expenses are about 1,000,000 USD in the first year and

200,000 USD in each subsequent year. Their daily lives depend on the

assistance provided by their caregivers - often family members or friends

serve as their primary caregivers.

Assistive technology (AT) can help the individuals to regain some aspects

of independence. AT aims to replace or restore some of the lost function

to increase the ability to perform daily life activities. In the case of high

tetraplegia commonly used ATs are speech recognition systems, eye

trackers or head or tongue operated joysticks [4]. An alternative to using

residual muscular function is to directly interface with the brain - the

topic of this thesis. In fact, a survey among 156 persons with cervical

SCI in the US showed that they would be likely to adopt a technology

that uses brain activity to directly control upper-limb function, including

grasping and to some degree also reaching [5]. Other priorities were high

speed typing and fast robot arm control.

Now, picture the following: a person with tetraplegia would like to

reach and grasp towards an object; let’s assume an apple. Wouldn’t it

be great if she would just think or attempt to perform the action (of

reaching and grasping the apple) and a smart system that monitors her

brain activity detects her intention and translates it into commands for a

neuroprosthesis to move her own, paralyzed arm or for a robotic arm to

execute the action for her. Is this an engineering or neuroscience problem?

Well, it is both. It turns out that such a simple thought of reaching and

grasping an apple is not trivial to execute. Even in healthy peoplewho can

seamlessly put the thought into action, the brain needs to process amyriad

of information to accomplish the task. It has to identify movement goals

(e.g., the apple), their spacial location with respect to the body and hand,
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plan a trajectory, transform it into muscle activations, and incorporate

somatosensory and visual feedback. A symbiosis of engineering in the

form of developing tools that can measure and detect neural activity, and

movement neuroscience in the form of associating neural activity with

behavior has considerably advanced our understanding of how the brain

controls goal-directed movements. This multidisciplinary symbiosis has

moved the vision of restoring or replacing lost function closer to reality.

Within the last two decades we have seen case studies demonstrating

that paralyzed volunteers can use so called brain-computer interfaces

(BCIs) to replace [6, 7] or restore [8, 9] lost movement function.

1.2 Organization of the Thesis

The remainder of this chapter briefly outlines basic concepts to establish

the necessary background knowledge. Topics that will be covered are

the neurophysiological aspects of movement with a focus on the neural

substrates involved in the control of action, techniques to measure brain

activity within the body (invasive) and from outside the body (non-

invasive), the neural correlates of movement and a definition of the term

brain-computer interface (BCI).

The second chapter starts with an introduction of control strategies that

have been used to replace and restore lost upper-limb function in BCI

research. The chapter then continues with a review of related work in the

invasive and non-invasive domains. The focus of the review is set to non-

invasive approaches that decoded the kinematics of executed movement

trajectories – the primary research topic of this thesis. The chapter ends

with a brief account of the limitations of current non-invasive kinematics

decoding approaches.

In chapter three, the general and specific aims of this thesis as well

as the underlying encoding model are introduced and elaborated. The

chapter ends with a workplan that outlines the research activities and

key milestones.

Chapter four summarizes the methods and findings of primary and

secondary publications in the context of this thesis. The chapter covers

four topics (i) online artifact correction, (ii) neural correlates of movement,

(iii) improving decoding accuracy and (iv) a proof-of-concept direct

BCI.

The fifth chapter relates the findings reported in the primary and sec-

ondary publication with each other, explains how they contribute to

methodological and conceptual progress, and discusses the achievements

in the context of other works in the literature. The chapter ends with an

account of remaining limitations.

In the last chapter, the main achievements of this thesis are summarized

and future research directions are outlined.
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Figure 1.1: Hierarchy of the neural subsystems

involved in the control of movement. Four subsys-

tems make important and complementary contri-

butions. The lowermotor neurons and circuits are

the direct interface to muscles and sensory feed-

back. Descending pathways from upper motor

neurons in the motor cortex and brainstem drive

the local circuits in the brainstem and spinal cord.

The cerebellum and basal ganglia modulate the

activity of the upper motor neurons. Ascending

pathways that relay sensory inputs to the cortex

and cerebellum are not shown. Figure adapted

from [10].

1.3 Physiology of the Acting Brain

Movements like reaching towards an object require the participation of

four highly interactive subsystems of the CNS [10]. Figure 1.1 outlines

an overview of the involved subsystems and the major pathways. The

first subsystem is located within the gray matter in the spinal cord and

brainstem. These areas include the lower motor neurons which directly

innvervate the muscles and some local circuits. All movement commands

either reflexive or voluntary are transmitted to the muscles via the lower

motor neurons. The local circuits receive sensory input and commands

from higher centers. As such, the local circuits are mainly involved in the

coordination between different muscle groups.

The second subsystem comprises upper motor neurons which are located

in the brainstem and cortex. They either directly project to lower motor

neurons or more likely to the associated local circuits. The upper motor

neuron pathways which arise in the cortex are essential for initializ-

ing voluntary movements and to control complex sequences of skilled

movements [11, 12]. Particularly primary motor cortex (M1) and premotor

cortex (PM) are important for planning, initiating and directing voluntary

movements. Descending pathways from upper motor neurons located in

the brain stem are responsible for basic navigational movements (i.e., ori-

enting of eyes, head and body) and posture control. Ascending pathways

via the spinal cord, brain stem and thalamus relay sensory inputs and

feedback to the primary somatosensory cortex (S1) and the cerebellum.

The other two subsystems do not directly modulate the lower motor neu-

rons or associated local circuits. They control movement by modulating

the activity of upper motor neurons. One of these two subsystems is

the cerebellum. It has been implicated in the detection of discrepancies

between the intended movement and the actually performed one. This

information is used to mediate real-time and long-term reductions in

movement errors. The other subsystem is the basal ganglia. They are

located in the forebrain and have been implicated in the suppression of

undesired movements and priming of upper motor neurons to initiate

voluntary movements.

A hierarchic organization of the motor system is also supported by

the findings of lesion studies in mammals [13]. It seems incredible

that substantial parts of the CNS can be removed while significant

functionality is preserved. In spinalized preparations, the spinal cord

can control some multi-joint movements and integrate somatosensory

feedback in central pattern generators to generate repetitive movement

such as walking [14]. At the brain stem level much knowledge was

obtained from decerebration experiments. With an intact brainstem,

cats can retain the ability to walk spontaneously. At the subcortical

level, studies based on decortication (i.e., removal of the cortex without

damage to the basal ganglia) showed that cats, dogs an rodents exhibit

superficially normal behavior after a recovery period [15]. Upon closer

inspection of the behavior, clear deficits become apparent. They are

more dramatic in non-human primates (NHPs) that reach and exhibit

dexterous finger movements. Focal lesions in the motor cortex of NHPs

result in a transient paralysis, followed by substantial recovery except

for fine motor skills [16]. In humans, lesions in the motor cortex are

often followed by permanent paralysis or impaired movement of the
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Figure 1.2:Human brain regions implicated in ac-

tions. Lateral (left) and posterior (right) views

of the left hemisphere of the cortical surface.

Frontal and parietal areas involved in hand and

eye movement control are highlighted. Frontal ar-

eas include the primary motor cortex (M1), dorsal

premotor cortex (PMd), ventral premotor cortex

(PMv) and the frontal eye field (FEF). Parietal

areas include the superior parieto-occipital cortex

(SPOC), anterior intra-parietal sulcus (aIPS) and

parietal eye field (PEF). They form fronto-parietal

networks associated with reaching (SPOC and

PMd), grasping (aIPS and PMv) and oculomotion

(PEF and FEF). Figure adapted from [20].

contra-lateral limb [17]. This suggests that the cortex, in particular the

motor cortex, is critical in mediating sensory rich control to produce

dexterous movements and, in turn, renders the cortex the right area to

study the neural correlates of actions.

Cortical Control of Action

Although the motor cortex has been studied for more than a century,

it remains unclear how its activity reflects upper-limb movements and

how sensory information is integrated to produce movement [18]. From

a systems neuroscience perspective the primary- and premotor cortex,

containing upper-motor neurons, are regarded as the output hubs of

cortical networks involved in movement control [19, 20]. To produce

goal-directed movements in space, the cortex integrates high-level visual

information about movement goals and the end-effector (e.g., hand) with

other sensory information (e.g., proprioception), computes a movement

plan and transforms it into low-level control commands that can be

transmitted to the lower motor neurons.

Starting from vision, Ungerleider and Mishkin discovered that visual

processing diverges in the cortex into two large-scale networks denoted

ventral stream, sensitive to object features, and dorsal stream, sensitive

to spatial relationships [21]. The dominant role of the dorsal stream

is to mediate visually guided behavior, since it is sensitive to spatial

information that is required to specify the parameters of potential and

ongoing actions [22]. The posterior parietal cortex (PPC) is a central part

within the dorsal stream. Information from the spatial senses (vision and

proprioception) converges in PPC, where it is integrated and transformed

from high-level reference frames (e.g., eye- or head centered coordinates)

to motor relevant reference frames (e.g., body centered coordinates)

[23]. This information is transmitted to the premotor cortex where it is

integrated with information from prefrontal cortex about action goals

and the current contexts and together with the primary motor cortex

translated into low-level movement commands that are relayed via the

cortico-spinal tract [20]. As the movement commands are executed by

the muscles, somatosensory feedback is transmitted to S1, where it is

directly relayed to themotor cortex or indirectly via PPC,which integrates

somatosensory and visual feedback [24].

Anatomical and functional connectivity in NHPs [25–27] and humans

[19, 20, 28] suggests that the dorsal stream can be divided into three

partially overlapping pathways (Figure 1.2). The dorso-medial pathway,

also denoted dorsal reach system (DRS), includes superior parieto-

occipital cortex (SPOC) and dorsal premotor cortex (PMd), and has

been implicated in arm reaching and online corrections. The dorso-

lateral pathway, referred as lateral grasp system (LGS), includes anterior

intra-parietal sulcus (aIPS) and ventral premotor cortex (PMv), and has

been implicated in hand grasping and action understanding. The third

pathway, denoted oculomotor intention and attention system (OAS),

includes the parietal eye field (PEF) and frontal eye field (FEF), and has

been implicated in eye movement control.

All three systems are active during visuomotor tasks that require eye

hand coordination [28]. For natural and well learned manual tasks, the
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typical human behavior starts with a gaze shifts towards the target

and the hand moving to the target location [29]. Interestingly, the hand

attracts also visual attention. If the hand is present in field of view, visual

attention is biased towards it, resulting in lower reaction times to targets

close to the hand [30] and stronger activation of SPOC for targets within

reach [31].

In NHP neurophysiology studies, it has been shown that the dorsal

stream can represent multiple competing actions simultaneously, while

more information is accumulated to bias the competing actions until a

remaining action is initiated [12, 32]. This suggests that the preparation

of potential actions and deciding which action to initiate are parallel

processes and involve similar fronto-parietal networks [12] which are

biased towards specific actions by prefrontal cortex and the basal ganglia

[32]. Human movement behavior also indicates that movement prepa-

ration and initiation are parallel processes [33]. Goal-directed discrete

reaching movements are typically initiated between 200ms to 300ms

after a target has been presented. However, ongoing movements can

be adjusted within approx. 100 ms to compensate a target perturbation,

indicating the presence of additional mental processes, associated with

movement initiation, that delay the response in discrete movements.

In summary, the human cortex especially the dorsal stream specifies

potential and orchestrates ongoing actions. In anatomically and func-

tionally overlapping fronto-parietal networks hand and eye movements

are planned and executed. In parallel, the same networks contribute to

the decision process of which action to initiate among all potential ones.

Before specific neural correlates ofmovements are discussed in section 1.5,

the next section establishes how brain activity can be measured.

1.4 How to measure Brain Activity?

The primary cells that perform computations within the brain are neu-

rons [10, 34]. They form highly interconnected networks. The human

brain contains approx. 10
10

neurons with 10
14

connections or synapses in

between them. Within the networks, each neuron integrates information

from its inputs, denoted dendrites. If the integrated information exceeds

a threshold, the neuron elicits an action potential, which is transferred

via its axon to synapses. Synapses are directed links that connect a pre-

synaptic and a post-synaptic neuron. The transmission is implemented

via electrochemical processes that manipulate the post-synaptic neuron’s

membrane potential with respect to the extracellular space. Depending

on the synapse, the pre-synaptic neuron’s action potentials can either

depolarize or hyperpolarize the post-synaptic neuron’s membrane poten-

tial. These changes are termed excitatory (depolarization) and inhibitory

(hyperolarization) post-synaptic potentials (PSPs).

In this section, the focus is set to recording techniques that directly

measure the electric processes either directly in terms of action poten-

tials at the microscale or spatially integrated population activity at the

micro-, meso- or macroscale [35]. Another class of recording techniques

measures the neural activity indirectly either via a mechanism known
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as neurovascular coupling or via changes in metabolism. Each record-

ing technique has specific advantages and disadvantages in terms of

invasiveness, spatiotemporal resolution and cost – for reviews see [36,

37].

Micro-scale – Action Potentials and Local Field Potentials

Electrodes in the vicinity of the neurons can detect the action potentials

but also the extracellular potential changes due to the PSPs. The super-

position of both signals is denoted local field potential (LFP) [35]. Action

potentials and uncorrelated signals are quickly attenuated in neural

tissue. The spatial reach is typically below 20 cm [38]. To record action

potentials, the electrodes need to be inserted into the brain during a

surgical procedure. Within the LFP, the action potentials can be separated

in terms of their spectral properties. The action potential related activity

is mainly reflected in the higher frequencies above 300 Hz, while the PSPs

dominate the lower frequencies [35]. Action potentials or so called spikes

are typically detected by applying a high-pass filter (> 300 Hz) and a

threshold. The obtained spike traces are called multi-unit activity (MUA)

since an electrode can record the action potentials of a single or more

neurons. Knowing that the spikes of each neuron have a characteristic

shape [39], the spikes of specific neurons can be inferred via clustering.

This process is called spike sorting [40] and the resulting spike traces

per neuron are denoted single-unit activity (SUA). In the context of

movement control, small electrode arrays are typically inserted in M1

and other areas along the dorsal stream [41].

Macro-scale – Electroencephalography and
Magnetoencephalography

In 1924, Hans Berger was the first to record human brain activity with

electrodes placed at the scalp. He denoted the recorded signals electroen-

cephalogram (EEG) [42]. Within the EEG he described different neural

oscillations. He observed that the so called alpha rhythm - a prominent

oscillation at around 7Hz to 14Hz - is suppressed and substituted with

faster beta waves when the eyes are opened. In addition to the oscillatory

activity the EEG also captures transient responses [43]. The transient

responses are separated in evoked potentials (EPs) and event-related

potentials (ERPs). EPs are early responses that reflect the processing

of simple sensory stimuli, while ERPs reflect endogeneous responses

to more complex stimuli. The transient responses are typically masked

by the ongoing oscillatory activity and can be recovered by averaging

responses across repetitions or trials.

Genesis of EEG and MEG

The EEG is essentially a modified version of the LFP generated in the

brain [35]. Two effects dominate the modification. First, the electric

field decays with the square of the distance from the source. Second,

volume conduction of the head tissues (brain, cerebral fluid, skull, scalp)

have a smoothing effect over an area of approx 10 2<2
. The attenuation
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and smoothing effects limit the sensitivity of electrodes at the scalp to

detect only correlated activity of large brain areas. Due to the parallel

organization of pyramidal neurons in the cortex and their segregation in

apical and basal dendrites, correlated PSPs can result in the formation of

dipoles with similar orientation over large patches which are sufficiently

strong to project to the scalp [44]. The cortical alpha rhythm is a prominent

example.

The electric dipoles result in a current flow in the extracellular fluid,

giving rise to a magnetic field perpendicular to the current flow. The

magnetic field is also attenuated with the square of the distance to the

source. At the scalp the magnetic flux, denoted magnetoencephalogram

(MEG), can be measured with superconducting quantum inference

device magnetometers [45] or more recently also with optically pumped

magnetometers [46]. TheMEG is not distorted by the different conductive

properties of the tissue layers. Since the electric and magnetic fields are

perpendicular to each other MEG and EEG sensors are more sensitive to

different sources. EEG is more sensitive to radial sources (i.e., sources

located at the gyri), while MEG is more sensitive to tangential sources

(i.e., sources located in the sulci).

Linear mixture of sources model

The electric andmagnetic fields propagate from the sources to the sensors

via thevarious tissue layers instantaneously [44]. In essence, the bioelectric

processes during the propagation of the signals from = sources s[C] to
< sensors x[C] can be summarized with a linear transformation. Under

some assumptions, the linear transformation, can reasonably assumed to

be stationary during the course of an experiment and represented as a

< × = forward model A. At each time-point C the sensor activity is given

by a linear mixture of the active sources plus some measurement noise

n[C]:

x[C] = A s[C] + n[C] (1.1)

Reconstructing the source signals from the measurements forms an

ill-posed problem, since the number of sensors is much smaller than the

number of sources (= � <). There are two approaches to estimate the

source activity [47]. In the data driven approach, machine learning tech-

niques are used to disentangle the activity of specific or various sources

by their statistical properties either in an unsupervised or supervised

fashion. In the model driven approach, also known as M/EEG source

imaging [48] the forward model A is computed given measurements or

assumptions about the head geometry, sensor locations and the conduc-

tivity of various tissue layers. Using the forward model and assumptions

about the sources, an associated inverse model can be computed and

used to infer the source activity.

M/EEG and Artifacts

The sensors at the scalp are sensitive to all electric (magnetic) sources

that project to the sensor location. In this thesis, all sources that do
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not reflect brain activity are considered as artifacts. Potential artifact

sources are typically separated in technical and biological origin [43].

Prominent technical artifacts are power line noise at 50/60Hz, and elec-

trode pops or drifts. Among the biological artifacts, the most prominent

artifacts are caused by electromyography (EMG), electric activity of the

muscles, electrooculography (EOG), electric activity of the eyes, and

electrocardiography (ECG), electric activity of the heart.

M/EEG analysis is concerned to a great deal with strategies to cope with

artifacts because the temporal and spectral properties can considerably

overlap with the ones of typical M/EEG sources. This starts with the

experimental design where the experimenter asks participants to avoid

certain types of artifacts (e.g., eye movements), goes on to the recording

hardware that attenuates noise sources, and ends with dedicated artifact

removal or detection algorithms acting upon the recorded signals. In the

context of this thesis eye movement and motion artifacts are particularly

important because they can co-vary with the kinematics of goal-directed

movements.

Eye Movement Artifacts

Movements of the eye and eyelid create bioelectric potentials that are

commonly referred to as EOG, or eye artifacts in the case of M/EEG

analysis. There are three main physiological sources of eye artifacts

[49, 50]: the corneo-retinal dipole (CRD), the eyelid and the saccadic

spike potential (SP). The CRD models the potential difference between

the positively charged cornea with respect to the retina [51]. The CRD

orientation changes as the eyeball rotates, which introduces artifacts

the co-vary with the eye movements. Eyelid movements occur during

vertical eye movements and blinks. As the eyelid slides across the cornea,

a potential/field is introduced [52]. Contractions of the extraocular

muscles around the onset of eye movements give rise to the SP [53]: a

transient potential/field in the 20 - 90Hz range [50].

The exact effect of the eye artifacts to the potential/field at each sensor

depends on various factors such as the sensor location with respect to

the head, head geometry, conductances of the various tissue layers and

the scalp-electrode interface. As these factors inherently vary across

participants and sessions, the eye artifact related potential/field at each

sensor needs to be estimated for each experiment. Within a session and a

large visual workspace (visual angle ≤ 20°) it can be assumed that the

artifact contributions are linear [54] and time-invariant [55]. Eye artifact

correction approaches are typically based on independent component

analysis (ICA) [54, 56, 57] or linear regression [58–60].

Motion Artifacts

The term motion or movement artifacts is typically used to summarize

a class of artifacts related to sensor/cable/head movements [61]. First,

if the skin is pressed or streched, potential differences between the

inner and outer skin layers can introduce an artifact. This artifact can be

significantly reduced by abrasing the skin [62]. Second, motion of the

electrodes in relation to the skin alters the electrical double layer and
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thereby causes a voltage change. This can be reduced via minimizing

the impedance and the electrode movement velocity [63]. Third, cable

movements or movements in the participant’s vicinity can introduce

trielectric noise. In the case of cablemovements, it is caused by friction and

mechanical deformation of the insulator. Immediate pre-amplification

reduces this effect [64]. The introduced artifacts are typically linear for

small movements [65].

Motion artifacts can be problematic if they co-vary with the dependent

variables (e.g., arm movements). Philips et al. showed that they can

confound the results and lead tomisinterpretations [66]. The experimental

setup can greatly reducemotion artifacts. Active electrodes are suitable to

attenuate cablemotion artifacts, chin-clips reduce the artifacts during arm

movements compared to chest-belts and minimizing the electrode-scalp

impedance further attenuates potential motion artifacts. The best long-

term recording stability is achieved with sintered Ag/AgCl electrodes,

salty (Cl
−
) electrolytes and skin abrasion [67].

Meso-scale – Electrocorticography

If the recording electrodes are placed underneath the skull above or below

the dura mater the electric signals are denoted as electrocorticography

(ECoG) [43]. The electrodes are typically mounted on flexible stripes

or grids with distances below 2 cm. Compared to EEG, ECoG has a

higher spatial resolution, is less affected by volume conduction, and

depending of the choice of reference also by eye and motion artifacts.

These properties make ECoG a viable clinical tool to monitor and localize

epilliptic foci in epilepsy patients [68]. In a typical procedure the human

patients undergo two surgeries. In a first surgery the electrodes are

implanted and after some days the electrodes and pathological tissue are

removed. In the meantime the participants are invited to participate in

studies to address basic or applied research questions.

1.5 Neural Correlates of Movement

In the cortex, contra-lateral M1 and PM are regarded as central hubs in

the generation and control of upper-limb movements. Both areas have

direct connections to the spinal cord and their stimulation elicits complex

multi-joint movements [69, 70]. Generally, movements can be described

by two groups of parameters, namely kinetics (forces andmuscle activity)

and kinematics (motion in space). While there is not yet a consensus

on how the motor areas control movement [18], there is evidence that

they encode information about both groups of parameters [71, 72]. The

remainder of this section reviews kinematics-related effects.

Kinematics describe the spatial aspect of motion. Their neural correlates

are studied in discrete point-to-point movements with static direction of

motion, and continuous movements with varying position and velocity.

Unlike continuousmovements, discretemovements are also accompanied

with movement initiation processes.
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Direction of discrete Movements

In a classic center-out task, Georgopoulos et al. were the first to report

directional tuning of neural spiking activity in M1 neurons of NHPs

[71]. In the center-out task, the NHPs moved from a center location to

one of 8 equidistant target locations in a cue guided paradigm. They

observed that the neurons’ firing rates exhibited a cosine tuning curve -

with a maximal firing rate during movements in the neurons’ preferred

direction. Most of the tuned neurons reached their maximal firing rate

100ms before the movement onset. For each direction modulated neuron,

they created a vector that pointed in the preferred direction of the neuron;

the instantaneous firing rate defined the vector’s length. Summing all

these vectors they obtained the famous population vector [73] with which

they could reconstruct the arm movements. The population vector had

a high congruence to the hand movement trajectories [73], even if the

movements were made in different parts of the workspace [74]. Later

directional tuning effects have also been observed in other tasks [75, 76]

and cortical regions along the dorsal stream [77–80].

Apart from neural spiking activity, there is also evidence of directional

tuning effects in invasively recorded population activity. Mehring et al.

reported directional tuning in the low-pass filtered LFP activity [81] and

later also in power modulations in different frequency bands (<4Hz,

6-13Hz and >60Hz) [82]. The low-pass filtered LFP activity tuning started

100ms before and peaked 250ms after the movement onset. Human

ECoG studies, also showed directional tuning effects in low-frequency

time-domain (LFTD) activity in sensorimotor cortex (SMC) and power

modulations >60Hz [83, 84]. Ball et al. showed that in addition to M1

also PM and lateral prefrontal cortex encoded information in the LFTD

activity and power modulations (<2Hz and >50Hz) [85]. In both types

of features they observed the strongest tuning effects in motor cortex (M1

and PM); the tuning started around 250ms before and peaked 500ms

after the movement onset.

The direction related tuning effects in LFP and ECoG, raised the question

whether movement direction related effects can also be observed in

the EEG and MEG. In a study with simultaneously recorded EEG and

MEG, Waldert et al. showed that LFTD activity originating in SMC

indeed encoded information about movement direction [86]. Movement

direction was expressed strongest within the interval 0ms to 500ms after

the movement onset. At around the same time Hammon et al. reported

that the direction of the movement goal can also be detected from EEG

activity in the planning period before the movement onset [87].

Movement initiation

Apart from direction related effects, the largest response (≥ 50% of the

variance in spiking rates) of neurons in M1 and PMd is a condition (or

direction) independent response time-locked to movement initiation [88].

Kaufman et al. found that the response predicted the reaction times

of discrete reaching movements with high accuracy; approx. 150ms

before the movement onset, the firing rates suddenly increased. In

previous works that studied center-out tasks, the effect was reported as

omnidirectional [73] or speed-tuned [89]. The presence of a condition
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independent effect supports the idea that the decision to act is made

within the same sensorimotor circuits that are responsible for preparing

and executing the associated actions [12, 90]. However, initiating a

movement in response to a new goal takes about 200ms to 300ms, while

an ongoing movement can be adjusted to accommodate a perturbed

target within 100ms, suggesting thatmovement preparation is temporally

dissociated from the decision making process [33].

At the population level, prominent movement onset time-locked re-

sponses have been observed in LFP [91, 92], ECoG [83] and also non-

invasively in EEG [93, 94] and MEG [95]. In the case of EEG, voluntary

movements are accompanied with two time-locked phenomena. The

movement onset is accompanied with a phase-locked negative ERP de-

noted movement-related cortical potential (MRCP) [96–98]. Before the

movement onset, during the movement and after the movement offset

the relative band-power of neural oscillations is changed. These relative

power changes are denoted event-related de-/sychroniziation (ERDS)

[94, 99].

The MRCP was first described by Kornhuber and Deecke [93]. They

reported a negative ERP before the onset of hand and finger movements

and a series of shorter ERPs thereafter. The post movement onset ERPs

were similar to those of passivemovements. In subsequent studies several

components were identified [96, 97]. One prominent component is the

Bereitschaftspotential (BP). It starts around 2.0 s before the movement

onset and is bilaterally symmetric over pre- and post-central regions [100].

About 500ms before the movement onset the BP intensifies and becomes

stronger at contra-lateral motor areas [96]. The MRCP is modulated by

attention [93], briskness [97] or speed [100–102], force [100, 102, 103]

and the type of movement (finger, arm, foot) [104]. Apart from executed

movements, MRCPs can also be elicited by imagined [101, 105–107] and

attempted [108–110] movements.

Movements are also accompanied with relative power changes in neural

oscillations. In their original publication, Pfurtscheller and Aranibar

described a relative power decrease in the mu rhythm activity in central

areas starting 2 s prior to voluntary movements that was maintained

during the movement [94]. Mu rhythms typically display two distinct

event-related desychroniziation (ERD) patterns [111]. The lower mu

rhythm (8 - 10 Hz) ERD occurs during almost any kind of movement

and is widespread across SMC. The higher mu rhythm (10 - 13 Hz)

ERD is topographically and functionally specific. Typically, the mu ERD

is accompanied with a more localized beta rhythm (14 - 30 Hz) ERD

and broadband gamma (> 40 Hz) event-related sychroniziation (ERS)

in contra-lateral SMC [99]. After a movement, the mu rhythm power

returns to baseline. In the beta band often a rebound is seen in the first

post movement second [112]. A localized mu and beta ERD associated to

specific movements (e.g., right handmovement) is typically accompanied

with simultaneous ERS in neighboring cortical areas [113]. The focal-

ERD/surrounding-ERS phenomenonmight reflect a mechanism to direct

attention to a specific sensorimotor module or effector and inhibit others

[114]. The somatotopically organized ERD and ERS effects associated

to distinct limb movements allow to infer the type of movement from

the recorded EEG activity. What is more, mere imagination of distinct
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limb movements activates SMC in a similar fashion as during the pre-

movement phase of executed movements [115–117] even in participants

with impaired motor function [118].

Velocity and Position during continuous Movements

In the classic center-out task, position and velocity are highly correlated

which limits the chance to attribute directional effects to either kinematic

variable. Wang et al. studied consecutive reaches to random targets and

observed that the spiking activity of M1 neurons encoded information

about both position and velocity as well as about speed [119]. One

third of the studied neurons were tuned to velocity, about 10% to

position and about 20% to a mixture of both parameters. Paninski et al.

studied a pursuit tracking task (PTT) to identify position and velocity

related effects during continuous movements [120]. In their PTT, the

instantaneous position and velocity vectors were decorrelated. They

also observed tuning of M1 neurons to both velocity and position; the

majority of velocity tuned neurons predicted the upcoming velocity by

100ms. Human ECoG studies that studied consecutive movements to

random targets [121] or continuous movements [122–124] suggest that

SMC encodes velocity and position information in LFTD activity and

power modulations (> 50 Hz). Hammer et al. found that speed was more

clearly represented in SMC than velocity and position [124]. The authors

argue that the difference in encoding of velocity and speed between

neural spiking activity and the population activity recorded with ECoG

could be attributed to the spatial integration; speed tuned effects may be

summed up, while direction related effects could cancel each other.

In non-invasive recordings, the tuning characteristics are under debate

- mainly due to the potential presence of confounding eye and motion

artifacts [66] and the use of outdated methods to study encoding effects

[125]. Bradberry et al. were the first to infer velocity information from

MEG [126] and EEG [127]. In self-chosen, continuous movements, Ofner

et al. reported that information about both velocity and position could be

inferred [128]. Jerbi et al. found a coherent representation of movement

speed in the LFTD MEG activity generated in M1 [129]. Subsequent

studies could extend the coherence between LFTD MEG activity and the

magnitude of various other movement parameters [130, 131].

Many of the works that studied the neural correlates of upper-limb

kinematics during continuous and discrete movements, were driven by

the idea of decoding the trajectories of executed, imagined or attempted

movements in real-time. If possible, the decoded trajectories could be

used as control signal in a brain-computer interface (BCI). Before state of

the art approaches are reviewed in the next chapter, the remainder of this

chapter gives a formal definition of a BCI and the underlying concepts.

1.6 What is a Brain-Computer Interface?

This chapter started with a long-term vision that outlined a system that

detects the user’s intention and translates it into an action without the
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person moving. Such a system is denoted brain-computer interface (BCI)

or sometimes also brain-machine interface (BMI).

A BCI is formally defined as a system that measures CNS activity and converts
it into artificial output that replaces, restores, enhances, supplements or improves
natural CNS output and thereby changes the ongoing interactions between
the CNS and its external or internal environment [132]. A system that only

monitors brain activity or analyzes recorded brain activity is not a BCI.

In addition to monitoring brain activity in real-time, a BCI is required to

simultaneously translate the brain activity to an artificial control signal

for an application. The application can either directly provide feedback

about the brain activity to the BCI user [133] or indirectly in the case of

passive BCIs [134]. From the definition it also immediately follows that

a BCI is a closed-loop system; the feedback provided by an application

potentially influences the CNS activity which in turn influences the

application via the derived control signal. It also directly follows that

the user, who modulates his/her CNS activity, is an integral part of the

BCI.

The primary goal of BCI research and development is to support par-

alyzed people with severe disabilities that prevent them from using

conventional neuromuscular forms of communication or interaction with

the environment [133]. In this thesis we focus on interactions with the

environment, and in particular on EEG-based BCIs. From the previous

sections we know that the recorded neural activity and the signal to noise

ratio (SNR) differ in among recording modalities. However, from a BCI

perspective the underlying concepts are identical [132].

Building a BCI requires knowledge about two domains. First, one needs

to understand how a particular brain activity is modulated by the users

actions or intentions. Second, one needs technical knowledge about

how the brain signals can be measured, specific modulations detected

and finally transformed into a control signal for an application. The

previous section established how brain activity is modulated during

voluntary movements. The next chapter introduces the neural correlates

of intentions to act and how they have been used in BCIs. In the remainder

of this chapter, the focus lies on the technical aspects - particularly the

components of a BCI.

Components of a BCI

Figure 1.3 outlines the basic BCI design. The design distinguishes four

aspects, namely, the user, signal-acquisition, signal translation and the

application which provides feedback [132].

User

From the perspective of the user, BCIs can be categorized into active,

reactive and passive [133, 134]. Active BCIs use voluntary modulations

of spontaneous brain activity. They do not require any type of external

stimulus. Reative BCIs detect EPs and ERPs and, therefore, require the

user to focus their attention to external stimuli. Passive BCIs do not

require any active interaction of the user. They work implicitly in the

background with the aim to improve human-computer interaction.
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user

signal translation

application

signal acquisition

feedback

BCI
Figure 1.3:Components of a BCI.ABCI is a closed-

loop system. It consists of a user, whichmodulates

his/her brain activity, signal acquisition hard-

ware, which digitizes (electro-)physiological ac-

tivity, signal translation software, which extracts

features and detects control commands, and even-

tually an application, which provides feedback to

the user.

BCIs are also categorized according to how the user can control an

application. The control paradigms are categorized in synchronized, system-
paced, constantly engaged and self-paced [135, 136]. In a synchronized BCI,

the user can use the BCI periodically, however, there is no non-control

state. This is typically the case during training paradigms. A non-control

state is defined as periods during which the user willingly chooses not to

use the system. A system-paced BCI is periodically available and offers a

non-control state. In a constantly engaged BCI, the BCI is continuously

available; the user has to actively perform certain mental activity so that

the BCI does not trigger actions. Finally, a self-paced BCI is continuously

available and offers a non-control state.

Signal Acquisition

The first step during BCI operation is the acquisition and digitization

of the brain signals. EEG-based BCIs rely on electrodes placed on the

scalp - typically at standard locations [137]. The quality of the detected

signals depends considerably on the electrode-scalp interface. To date,

the best long-term recording stability is achieved with sintered Ag/AgCl

electrodes and salty (Cl-) electrolyte gels [67]. Electrodes are also typi-

cally categorized in active and passive. Active electrodes come with an

integrated pre-amplifier and are therefore less prone to motion artifacts

introduced by cable movements compared to passive electrodes. Via

the cables few or up to several hundreds of electrodes are connected

to biosignal amplifiers. The biosignal amplifier desgins belong to the

class of instrumentation amplifiers. They detect and amplify voltages

between each electrode and a dedicated reference electrode. A high input

impedance and a high common mode rejection ratio enable them to

attenuate environment noise common to all electrodes and to amplify

small voltages in the µV range.

Signal Translation

Once the brain activity is digitized the signals need to be translated to

control commands. This process is classically divided into pre-processing,

feature extraction and classification [133]. Due to advances in machine

learning, pattern recognition and the availability of larger datasets, the

signal translation problem starts to be seen as one integrated problem
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that can be addressed with deep learning methods [138]. Still, successful

deep learningmodels incorporate the domain knowledge of EEG analysis

in the network design. Moreover, for particular sub topics in BCI there is

only little data available, which necessitates manual pre-processing and

feature extraction.

As in many other electrophysiological signals, pre-processing typically

starts with high-pass filtering to attenuate drifts and notch filtering to

attenuate line noise [139]. Then spatial filtering is applied to counteract

the effects of volume conduction. Because of volume conduction, the

electrodes integrate activity of approx. 10 cm². Thus, neighboring elec-

trodes pick up activity of similar sources. The most basic spatial filters

are bipolar, Laplace and common average reference (CAR) filters [43].

Bipolar filters compute the difference between pairs of electrodes, and

Laplace filters between a center electrode and the surrounding electrodes

- typically 4 or 8. A CAR filter computes the average voltage across all

channels and subsequently subtracts this new reference signal. More

elaborate filters can further improve the SNR but need to be fitted to

recorded data. Examples are principal component analysis (PCA), inde-

pendent component analysis (ICA) and common spatial patterns (CSP).

Spatial filters extracted via ICA or regression algorithms are often used

to attenuate artifacts [140]. Given that the frequency range is adequate,

temporal filtering can further improve the SNR. Finite impulse response

(FIR) and infinite impulse response (IIR) filters are popular. Both have

advantages and disadvantages in online operation. IIR filters introduce

different delays across frequencies, causing distortions. They offer a

steep transition between the pass- and stop-bands for a given delay. FIR

filters do not introduce distortions at the cost of poor attenuation in the

stop-band.

Given the pre-processed signals, feature extraction describes the process

of isolating specific modulations in the brain activity that reflect a certain

task performed by the user. Commonmodulations in the EEG activity are

EPs, ERPs and ERDS. In the case of EPs and ERPs, epochs are extracted.

Epochs are segments of pre-processed EEG, time-locked to certain events.

The features for subsequent classification can be the signal during the

entire epoch or specific time points. In the case of ERDS, the power of

specific oscillations is modulated. Logarithmic bandpower featurs are the

most widespread type of feature used to detect ERDS. The features are

computed by squaring the signal and applying a moving average filter.

The resulting signal corresponds to the time-varying powerwhich follows

a "2
distribution. Many of the subsequently used classifiers assume that

the features are approximately Gaussian. To make the distribution of the

band-power features more Gaussian, they are log-transformed.

Classification describes the process of inferring the label of an observation

which is characterized by a set of features [141]. The labels can be up,

right, left and down for arm movements in these directions, for example.

A classifier assigns labels to observations based on its model parameters.

The model parameters are fit to calibration data so that the number

of errors in held out data is minimized. A classification model can

either linearly or non-linearly transform the features to infer the labels.

Various classifiers have been applied in a BCI setting [142]. Shrinkage

linear discriminant analysis (sLDA) is the gold standard in BCI due to

its simplicity and robustness [143]. If the features follow a Gaussian
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distribution and have the same covariance matrix for all classes, sLDA

is an optimal classifier in the sense that it minimizes the classification

error. Blankertz et al. showed that these two assumptions typically hold

for ERPs [143].

If the goal is to infer a continuous quantity given a set of features,

the problem is considered a regression problem [141]. The continuous

quantity can, for example, be the trajectory of an arm movement. As

before, a linear or non-linear regression model transforms the features

so that the errors between the observed data and the model’s predictions

are minimal. If the features consist of repeated measurements at a certain

rate up to the current time, the regression problem is also called filtering.

In the BCI literature it is common to use the term decoder instead of the

terms regression model or filter [144].

Feedback

The classifier or decoder output is mapped to control signals of an

application. Themappingdepends considerably on themode of operation

(synchronous, self-paced, etc.). Applications can be software like spelling

programs, assistive devices like wheelchairs or even neuroprostheses or

robotic arms. In either case, the application provides feedback, which

closes the BCI loop outlined in Figure 1.3. The feedback component is

of high relevance to facilitate learning or adaptation of the user [145,

146]. Feedback training has been demonstrated to increase the strength

of ERDS effects during various mental tasks [147]. To facilitate learning

the task should be intuitive and engaging for the user, which necessitates

clear instructions by the experimenter [145].
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This chapter starts with a brief overview of strategies that have been

used in BCIs to address the long-term vision of controlling end-effectors

like computer cursors, robotic arms and neuroprostheses. Then, BCIs for

movement control based on invasively and non-invasively recorded brain

activity are reviewed. Recently, the dominant control strategy of invasive

BCIs - the decoding of kinematics - has been successfully tested non-

invasively in several offline analyses. Advances and current limitations

in this research direction are summarized at the end of this chapter.

2.1 Control Strategies

The strategies used to control end-effector movements are categorized

as direct and indirect [148] or sometimes also as natural and artificial

[149].

In indirect movement control BCIs the user learns to perform one or

several mental tasks that result in distinct modulations of his/her brain

activity. In this context one also distinguishes between active and reactive

BCIs. An active BCI detects voluntary induced modulations and, upon

detection, changes the state of an end-effector. These state changes can

be opening or closing of an hand orthosis [150], advancing in a certain

direction [151] or changing the mode of control of a neuroproshtesis [152].

In active BCIs the mental tasks are arbitrarily mapped to movements of

the end-effector. For example, a user with SCI was trained to imagine feet

movements to close a hand orthosis [150]. Due to the arbitrary mapping,

the BCI user needs substantial training until the mapping becomes

intuitive [150, 151]. The reactive BCIs use external stimuli and covert or

overt attention shifts to establish a control signal. They offer system-paced

and incremental state transitions of an end-effector [153, 154] or a very

high-level forms of control [155]. For example, in a high-level form of

control a user could choose that his/her wheel-chair drives to the kitchen

or living room. In this case, the user would have no influence on the

path.

Direct motor control BCIs utilize the neural correlates of voluntary

movements to infer executed and intended movement trajectories [148,

149]. They are intuitive in the sense that the user does not need to perform

another mental task other than attempting to move the end-effector in

the desired fashion.

Due to a high SNR of neural correlates of movement, there is a preference

to use direct approaches in invasive recording techniques [7, 148, 156, 157].

However, there are some works that used indirect control strategies [84,

158]. Due to a limited SNR and only recent advances in the understanding

of the expression of kinematic information in non-invasive brain activity,
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indirect control strategies have been dominantly used in non-invasive

BCIs for movement control [149].

2.2 Invasive BCIs for Movement Control

Neural Spiking Activity

In the late 1960s Fetz and colleagues were the first to present a spiking

activity based BCI [159]. They showed that NHPs could learn to control

a meter needle to obtain a reward by modulating the spiking activity

of single neurons in M1. Breakthroughs in the area of multi-channel

neuronal recording technology in the 1990s allowed to simultaneously

record neural spiking activity from multiple cortical areas in rodents and

NHPs. At the end of the 1990s a BCI could reconstruct continuous lever

movements based on the spiking activity of several neurons [160]. The

authors observed that after the animals learned to operate the lever with

the BCI, the animals would occasionally not execute the conditioned

movement but still produce the neural activity to obtain a reward.

Later the same and other groups demonstrated that NHPs learned to

control computer cursors [161, 162] and robotic arms [78, 163]. Carmena

et al. also observed that after the BCI was used to control a cursor, the

arm and cursor movements became dissociated and eventually the NHPs

ceased to produce overt movements [78]. They also reported that the

transition from overt movement to BCI control altered the directional

tuning properties of approx. two thirds of the tuned neurons in all

considered fronto-parietal areas. This direct evidence of directional

tuning of neurons to movements of an artificial end-effector paved the

way for experiments with paralyzed humans.

Hochberg and colleagues demonstrated that a human study participant

with tetraplegia could control two-dimensional cursor movements [7].

They inserted an electrode array in the hand knob areas of M1 and

asked the participant to imagine a series of movements. The observed

modulations in firing rates were largely consistent with the ones ob-

served in NHPs and contained selective neurons that were modulated

by specific actions such as hand opening or closing and non-specific

neurons that coded the onset of any imagined action. Due to the lack of

overt movements, they fit the decoder to calibration data during which a

technician controlled a cursor and the participant imagined to manually

track the moving cursor. After training for several months, the user could

track the technician’s movements with high correlations (A2
= 0.5) and

perform center-out movements to specific target locations with high

accuracy (>75%, mean time to target 2.5 s). Based on this experimental

approach and recording technology, more recent works demonstrated

successful control of increasingly complex end-effectors like robotic arms

with multiple degrees of freedom [164, 165].

Unfortunately, the inserted electrode arrays suffer from bio-compatibility

issues [166, 167]. This can lead to tissue lesions and then into an encapsu-

lation of the electrodes with glia cells in an inflammatory reaction. The

whole process results in a reduction of detectable spiking activity over

time, making the system unusable to detect spikes after several months or
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years [168]. Due to a lack of systems with improved bio-compatibility the

electrode arrays have so far been used in the majority of human clinical

trials.

Among the potential areas, M1 is the most commonly used [7, 78, 164]

because a considerable fraction of the spiking activity is clearly correlated

with different movement parameters [71, 89]. In addition, PMd [78, 169]

and PPC [78, 170] have been targeted. Recall that they are important areas

within the fronto-parietal networks for upper-limb movement control.

The group around Andersen demonstrated that the intended movement

goals, types and even trajectories could be decoded from spiking activity

in human PPC [170].

Several algorithms have been proposed to decode executed and intended

movements [171]. The first decoding algorithm was the renowned popu-

lation vector method. The population vector is created in three simple

steps. First, the preferred direction of each neuron is identified. Second,

the unit vector, pointing in the preferred direction, is multiplied with the

current spiking activity. Third, the vectorial sum of all tuned neurons is

the population vector. Despite its theoretical importance in the under-

standing of neural tuning and success in simple repetitive movements,

the approach suffers from a number of limitations. The fitting procedure

does not consider any criterion to minimize errors, the neurons’ tuning

properties can differ across tasks and conditions, and themethod requires

time-consuming spike sorting to extract SUA.

The most widespread used decoder is the Wiener filter (WF) and its

regularized variants. The WF assigns weights to the features so that

the mean-squared error between the target signal and its prediction

are minimal [172]. The features are the spiking rates of several units

(SUA or MUA) during one or several preceding time-points, called lags.

Typical the preceding 300ms to 1000ms in steps of 50ms or 100ms are

considered. With an increasing number of units and lags compared to the

amount of data the risk of overfitting due to the curse of dimensionality

increases. Recentworks used regularizationmethods to reduce overfitting

to calibration data [164, 165, 170].

Another commonly used algorithm is the Kalman filter (KF) [173]. Simi-

larly to the WF, the KF transforms multiple features into predictions of

several outputs. In the KF, the outputs are denoted states that cannot be

directly observed and the features are denoted measurements. Once the

model is fitted to calibration data, the filter computes new estimates of

the states in two steps. In the first step, called prediction, the previous

state and a state transition model are used to provide an estimate of the

new state. In the second step, called update, the estimated state and an

encoding model are used to estimate the measurements (e.g., firing rates).

Then the error between the estimated measurements and the actually

observed ones is computed and the estimated state is adjusted resulting

in the final estimate of the new state. Knowing that spiking activity

exhibits tuning to direction and speed [89] and that they are nonlinearly

related, Li et al. [174] proposed to use an unscented Kalman filter (UKF),

a variant of the KF that can handle non-linear relations between the states

and/or the measurements [175]. They found that the UKF outperformed

a WF and KF in offline simulations and in BCI-based control of computer

cursors. A 10
Cℎ
-order UKF decoded 2D velocity trajectories with SNRs of
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1.15 dB (center-out task) and 1.46 dB (tracking task) and correlations of

0.5 (center-out task) and 0.55 (tracking task).

Population Activity

In addition to SUA and MUA, the intracortial electrodes also record

synaptic transmissions which are the primary sources in the lower

frequencies (<300Hz) of the LFP. Direct LFP-based BCIs for movement

control have been primarily evaluated in NHPs and offline simulations

[81, 82, 176].

In the same paper where Mehring et al. reported the tuning of time-

domain LFP activity to movement direction, they also reported the

results of offline decoding simulations [81]. In a 2D center-out task,

they reported average correlations of approx. 0.7 using LFP and slightly

higher correlations using MUA. O’Leary and Hatsopoulos reported that

the low-frequency (<10 Hz) time-domain LFP activity in M1 and PMd

was modulated strongest by the target direction [177]. Using the LFTD

features, they predicted the target in a 8 direction center-out task with

moderate accuracies (up to 50%). In amore recent offline study, Aggarwal

et al. compared the decoding performance of LFP and MUA in a reach

and grasp task [176]. The grand average correlations between the actual

and decoded kinematics were 0.76 for MUA, 0.61 for high-frequency

LFP power features (100Hz to 175Hz) and 0.58 for LFTD features. They

additionally found that LFP andMUApredicted the various stages during

the paradigm (baseline, reaction, movement and hold) with moderate

accuracies (73% MUA, 62% LFTD features and 59% power features).

The first successful demonstration of a direct LFP-based BCI in NHPs

was presented in a 2D random-target pursuit task [157]. In [157], the

NHPs used both LFP and MUA based BCI over several months without

recalibration.

Other studies in NHPs used ECoG to reconstruct movement trajectories.

The group around Fuĳi decoded goal-directed 3D arm movements in

offline simulations using subdural [178] and epidural [179] ECoG grids.

They studied power modulations and reported that the decoders utilized

modulations in higher-frequencies (>60Hz) and recent lags (<500ms).

The grand average correlations between the actual and decoded 3D

trajectories were 0.72 (subdural) and 0.57 (epidural).

Successful offline decoding of executed 2D and 3D arm and finger

movements has also been reported in human ECoG studies [84, 85, 121,

122, 124, 180, 181]. Several groups investigated which regions and features

were most informative. Overall, electrodes above SMC were most useful

for decoding trajectories. Regarding the features, power-modulations at

high frequencies (>60Hz) and LFTD features containedmost information

about the trajectories.

Using LFTD features, Schalk et al. predicted positions and velocities

with correlations of 0.49 in a 2D continuous tracking task [180]. Using

similar features, Pistohl et al. predicted cursor trajectories with a linear KF

(correlation = 0.33 for 6 participants; correlation = 0.43 for 3 participants

with ECoG grids covering hand/arm areas) in a 2D continuous random

target reaching task [121]. Nakanishi et al. studied a 3D continuous

reaching and grasping task in 3 participants [122]. They decoded wrist
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and elbow positions as well as elbow and shoulder joint angles with

moderate congruence. For example, the correlation for 3D wrist position

was 0.51. Ball et al. investigated self-paced center-out reachingmovements

[85]. They could predict the movement direction before the movement

onset with moderate accuracy (45% for 4 directions). Shorty after the

movement onset the accuracy peaked at 76%.

Most of the human ECoG studies reported here used decoders that

belong the class ofWFs. Although the offline simulation results indicate a

potential use of ECoG based direct BCIs for movement control, so far only

one feasibility study demonstrated online BCIs operation [182], while

the majority relied on indirect control strategies based on imagination of

distinctmovements [84, 158, 180].With the help of feedback trainingmany

of the indirect BCIs users could improve their motor imagery skill. After

successful training, they could continuously control computer cursors

with moderate accuracy in 1D [84], 2D [180] and 3D [158] environments.

2.3 Non-invasive BCIs for Movement Control

The vast majority of EEG and MEG based movement control BCIs used

indirect control strategies, and among them most utilized ERDS effects

in sensorimotor rhythms (SMRs) during motor imagery (MI) [132]. An

emerging alternative to the MI strategy is inspired by the success of

direct strategies in invasive BCIs for motor control. The remainder of

this section will review the progress of indirect, MI-based BCIs and their

limitations, while the next section summarizes the progress and state of

the art of direct approaches.

Motor Imagery

Feasibility studies in healthy people and people with SCI demonstrated

discrete control [8, 150] as well as continuous control [6, 151, 183, 184] of

various end-effectors.

In continuous control tasks, the strategy of continued mutual adapation

of the user to the BCI and the BCI to the user proved successful [151,

183]. Starting with user-specific SMR patterns during distinct MI tasks,

an initial BCI is calibrated. Based on this BCI, the user receives feedback

which supports him to gradually improve his/her SMR control. In a new

iteration, the new data is used to recalibrate the BCI. As this process

proceeds, the BCI usage becomes automatized much like a well-learned

skill, rendering the deliberate act of MI less important [6, 183]. Already in

1991, Wolpaw et al. described a mu rhythm based BCI used for 1D cursor

control [151]. The users reported a variety of MI strategies (running,

shooting baskets, etc.) to make a computer cursor move up or down. As

the cursor control improved, the imagery became less important for the

users.

Later it was demonstrated that people could learn to modulate two SMRs

simultaneously which allowed them to control 2D cursor movements

[6]. Remarkably, the reported control accuracy was comparable with the

accuracy reported in the first invasive, direct BCI that demonstrated 2D

cursor control [7]. More recently, it was demonstrated that three SMRs
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can be simultaneously modulated, enabling 3D cursor [183] and robotic

arm control [184].

Unlike SMR-based BCIs, the number of simultaneously controllable

degrees of freedom (DoFs) has drastically increased in direct, invasive

BCIs in recent years [164, 165]. This highlights the fundamental limitation

of the indirect, MI-based control strategy. Increasing the number of

mental tasks is feasible [185] but requires substantially more training time

to detect the patterns with reasonable accuracy. In addition, the coarse

spatial resolution of EEG andMEG limits the number of distinct patterns

that can be detected [149]. As a remedy, many non-invasive approaches

traded the continuous control of multiple DoFs for several sequential

operations with lower DoFs. Although this sequential operation strategy

was demonstrated to be feasible in 3D robotic arm [184, 186], orthosis

[150] and neuroprosthesis [8, 152] control, the time to complete complex

movements substantially increases.

2.4 Towards direct, non-invasive BCIs for
Movement Control

SMRs in the mu and beta band are associated with a general movement

activity [99], which is exploited in MI-based BCIs, but they have consis-

tently been reported to contain little information about the direction and

the trajectory of limb movements [85, 86, 124, 129].

From the previous sections we know that LFTD activity and high-gamma

power modulations (>50Hz) carry most information about movement

trajectories in invasively recorded population activity (LFP and ECoG).

Compared to the LFP and ECoG, the SNR of kinematics related effects can

be assumed to be lower in MEG and EEG [187]. The limited spatial extent

of sources in the gamma band and the low SNR of gamma oscillations in

the MEG and EEG render a single trial detection impractical. However,

there is a growing amount of evidence that the kinematics related effects

in LFTD are detectable at the single-trial level [86, 87, 126–128]. Still, the

sub field of decoding kinematics from M/EEG is relatively new with

many open questions to be answered before direct BCIs for movement

control can become an alternative to the traditional indirect, MI-based

BCIs. Central topics have been elimination of potentially confounding

motion and eye artifacts [66, 188], classification of movement direction,

decoding of entire movement trajectories and a transfer to imagined,

observed or attempted movements.

State of the Art

Classification of Movements in different Directions

Movements in discrete directions have been studied predominantly in

variants of the classical visually guided center-out task. The variants

include non-delayed executed movements [87, 189], delayed movements

after imperative go cues [190–192] or self chosen moments [86, 193] and

imagined movements [189]. Some studies analyzed the pre-movement

period after the appearance of direction cues [190, 191], others investigated
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effects in the peri-movement period around the movement onset [86,

192, 193] and some considered both aspects [87, 189]. The pre-movement

period contains activity associated with movement intention. Movement

intention can be defined as an early plan to move and represents a

high level state which specifies the goals of movements rather than the

low level details (e.g., exact muscle activations) required for execution.

Consequently, peri-movement activity is associated with the formation

and execution of low level movement plans. There is evidence that

the direction can be inferred from LFTD M/EEG activity during both

periods. For BCIs, the pre-movement period is particularly interesting

because effects related to the intended movement direction do not reflect

somatosensory feedback that is unavailable in persons with SCI.

Hammon et al. were the first to decode the intended movement direction

from EEG activity [87]. In 4 participants and 3 movement directions, they

observed a similar classification accuracy in the pre-movement period

(average accuracy of 59%) and movement period (63%). Their classifier

used LFTD and band-power features. The participants performed arm

and eye movements during the task, introducing eye andmotion artifacts.

They attenuated them with an extensive ICA cleaning procedure. Later,

Li et al. and Kuo et al. corroborated and extended their findings in

similar tasks with more participants [190, 191]. Both studies restricted the

analysis to the pre-movement period and LFTD features. They reported

moderate average accuracies of 65%, in two directions [190] and 60% in

three directions [191]. The discrimative sources were primarily located in

PPC, which is consistent with direction related effects in invasive studies

[80, 170].

In the peri-movement phase SMC has been implicated in the encoding of

information about movement direction. Waldert et al. investigated the

classification of directions fromMEG and EEG activity during self-paced

hand movements in 4 directions [86]. Using LFTD features they obtained

a peak accuracy of 60% (MEG) and 55.0% (EEG) about 500ms after

the movement onset. The primary discriminative sources were located

in contralateral and medial SMC. Robinson et al. 2013 also studied

reaching movements in 4 directions [192]. Using more sophisticated

feature extraction methods, classification algorithms and a ± 1-s window

around themovement onset, they obtained an average accuracy of 80% in

7 participants. The discrimnative sources were located in SMC and PPC

and had highest SNR around 500ms after themovement onset. In contrast

to the findings of [86, 192], Lew et al. reported a similar accuracy in the

pre-movement and post-movement periods in 5 participants (3 stroke

patients) and a delayed reaching task [193]. On a closer look, one cannot

rule out that their classifier was compromised by residual artifacts, since

their eye artifact correction approach attenuated the artifacts in fronto-

parietal channels only moderately [194]. Using MEG and a paradigm

that did not force the participants to delay movements, Wang et al.

could classify movements in four directions with an average accuracy

(5 participants) of 80% around 250ms after the movement onset and

67% shortly before the movement onset. They also asked the participants

to imagine the previously executed movements and analyzed the data

aligned to the direction cue. The average accuracy (63%) was comparable

to the pre-movement period of executed movements. In a second group

(4 participants), Wang et al. introduced a forced delay period with an
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imperative go cue. The obtained accuracy in this group was lower in

executed (62%) and imagined (50%) movements.

In summary, several groups have studied the decoding of (intended)

movement direction fromLFTDM/EEGactivity. Although the individual

studies contained fewparticipants, the combined findings suggest that up

to 4 directions can be inferred with moderate accuracy in pre-movement

and movement periods. In the pre-movement period PPC was repeatedly

reported to encode directional information, while in the movement

period SMC activity was reported. This suggests the presence of two

direction related effects in the LFTD M/EEG - one high-level effect

that reflects movement intention (pre-movement, mainly PPC) and one

low-level effect that reflects movement execution (movement, mainly

SMC). Moreover, the findings presented in [189] indicate that the time-

locking point might have a strong effect on the classification accuracy - in

particular if the movements are imagined rather than executed. To date,

this has not been systematically studied yet.

Decoding Movement Trajectories

Shortly after the first groups reported the successful classification of

movements into different directions, several groups tested whether

the LFTD activity encoded information about the movement trajectory

to the targets. The group around Contreras-Vidal were the first that

demonstrated a successful decoding of velocity trajectories during 2D

center-out reaching movements from MEG [126] and 3D center-out

reaching movements from EEG [127]. They obtained the best results with

a WF that considered the last 200ms (100ms in the EEG study) and

channels covering SMC and PPC. The congruence between the decoded

and recorded trajectories were higher in the MEG study (approx. 0.45, 5

participants) than in the EEG study (approx. 0.3, 5 participants). Toda

et al. studied 2D center-out movements in 8 directions without visual

feedback during the movement [195]. They analyzed LFTD MEG activity

around the movement onset (± 1 s) in source space and decoded position

and velocity trajectories with a regularized WF. In the source space,

they decoded position and velocity with correlations of 0.77 and 0.52

(5 participants). The decoding model accuracy dropped significantly if

the decoding model was fit and evaluated in sensor space. In a visually

guided 3D center-out task, Yeom et al. reported correlations of approx.

0.7 (9 participants) for a linear velocity decoder [196]. Their decoding

model did not use peripheral channels, which seemed to be affected

by movement and muscle artifacts during the movement task. Residual

movement and muscle artifacts could have contributed to the activity at

central channels, and in turn to the high decoder accuracy. Robinson et al.

studied EEG during a visually guided center-out task in two-dimensions

[197]. They reported average correlations of approx. 0.6 (7 participants)

for linear velocity and position decoders.

Antelis et al. challenged the significance of the previously presented

results [198]. They tried to decoded velocity trajectories from LFTD EEG

activity during a self-paced, 3D center-out task to 8 targets. Although

they used comparable pre-processing and decoding algorithms as the

works before, their simulation results revealed that the correlations

achieved with linear decoders were not significant. An important take
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homemessage from their work is the importance of a realistic significance

level estimation. The significance level for the correlation metric depends

on various parameters. For example, it is likely to observe high spurious

correlations for short time-windows and if both the true and decoded

kinematic signal have a low frequency. In their study the time-windows

were particularly short (1 s or less), which increases the probability of

observed high correlations due to chance. Taken together, short (center-

out) movements are not well suited to determine how well kinematics

can be decoded from LFTD activity.

Several groups have investigated kinematics decoding during continuous

movement tasks and reported moderate to high correlations between

the actually executed and decoded trajectories. Already in 2005, Geor-

gopoulos et al. reported that they inferred the position trajectories of

2D pentagon drawing movements from LFTDMEG activity with high

congruence (0.85 correlation, 10 participants) [199]. They did not provide

any results of the contributing sources, rendering a judgment whether

motion or eye artifacts contributed to the impressive results impossible.

Lv et al. decoded velocity trajectories of a 2D drawing task, which was

essentially a sequence of visually guided reaching tasks in 4 directions

[200]. They used LFTD EEG activity as well as power features in their

decoding model and reconstructed the trajectories with an average cor-

relation of 0.3 (5 participants). A feature importance analysis revealed

that the LFTD activity and power modulations in the 24Hz to 28Hz

band of central, parietal and occipital channels contributed most to the

results. Ofner and Müller-Putz studied executed continuous, 3D arm

movements with varying speed [128]. Using LFTD features, they decoded

3D position and velocity trajectories with high correlations of 0.7 on

average (5 participants, 3 dimensions). In another EEG study, Úbeda

et al. studied a continuous 2D tracking task [201]. They tested various

levels of difficulty and observed a strong effect of the tracking accuracy

(i.e., how accurately the participants could track a target stimulus) on the

decoding accuracy (i.e., correlation between the decoded and recorded

trajectories). When the participants could accurately track the target,

the correlations were moderate (0.4). As the difficulty increased, the

correlations decreased.

Apart from decoding executed movement trajectories, some groups

have also studied imagined movements. For example, Kim et al. asked

their study participants to make continuous 3D arm movements in

one condition and in another condition to imagine making the same

movements while they observed a robotic arm perform the movements

[202]. Using a WF, they obtained average (10 participants, 3 dimensions)

correlations of 0.4 and 0.3 during executed and imagined/observed

movements. They compared the decoding performance of the WF to a

nonlinear kernel ridge regression (KRR) decoder. The correlations of

the KRR decoder were on average 0.1 higher in both conditions, which

suggests that the EEG also encoded information that was non-linearly

related to the velocity trajectories. They also emphasized that although

the participants were instructed to avoid eye movements, there were

still residual eye movement artifacts present in the EEG activity. To rule

out the contribution of eye artifacts, Ofner and Müller-Putz came up

with a paradigm that avoided any visual stimuli that co-varied with

the imagined movement [188]. The participants imagined rhythmic arm
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movements either in the vertical or horizontal plane. The rhythm of the

movement was paced by a metronome (0.5Hz). They could infer the

single trial movement plane (vertical or horizontal) with an accuracy

of 64% and obtained correlations of 0.3 between the system paced

rhythm and the decoded trajectories. Despite the low performance, the

results demonstrated that even in the complete absence of any direction

stimuli and overt movement, the direction of the intended movement

can be inferred from LFTD EEG. Very recently Úbeda et al. studied

visually guided imaginations of 2D center-out movements to 8 targets

in 5 healthy participants [203]. They tried to decode the position and

velocity trajectories of a visual stimuli that guided the movements. They

could only decode the horizontal component of the velocity trajectories

with a low, yet significant correlation of 0.25. The results for the vertical

velocity component as well as for the position trajectories were not

significant. They also tried to classify between different targets, but were

only successful to discriminate between two targets (e.g., left vs. right

and up vs. down) with a low, yet significant classification accuracy of

approx. 60%.

Although most studies investigated whether information about the

intended/imagined movement direction can be inferred, Farina and

colleagues studied the expression of speed. They found that the MRCP is

modulated by the speed of imagined wrist movements [204]. Later they

also showed that the speed of an ensuring movement already modulates

the pre-movement part of the MRCP [102].

Altogether, the evidence presented by several groups suggests that

the LFTD M/EEG activity carries information about the movement

trajectories of executed and imagined/observed movements. In the case

of executed movements, it is not clear how well the trajectories can be

inferred. Some studies reported high correlations [128, 196, 199], while

others reported moderate correlations in comparable tasks [127, 200]. In

the case of imagined/observed movements, the reported correlations

were moderate to low [188, 201, 202].

Limitations

Due to the susceptibility of M/EEG activity to motion and eye artifacts,

the disagreement in the reported correlations between studies could be

at least partially be explained by residual artifacts that might have led

to overly optimistic results. For example, the usage of a chest band and

passive electrodes can introduce large motion artifacts in central channels

that co-vary with the movement kinematics [66]. While active electrodes

and chin clips can mitigate motion artifacts, they have no effect on eye

artifacts.

Avoiding eye movements does not seem to be a solution. This strategy

strongly limits the types of tasks that can be studied to either simple

discrete movements or repetitive continuous movements. Kim et al.

reported that even though the study participants were instructed to avoid

eye movements, they still moved their eyes slightly and the introduced

artifacts led to a higher decoder performance [202]. The potential BCI

users want to perform goal-directed actions and freely orient their

gaze, much like in direct BCIs based on spiking activity [5]. The best
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alternative strategy is to attenuate eye movements. Several methods have

been proposed. Some studies simply excluded pre-frontal and frontal

channels [198, 203], while others used artifact attenuation methods [87,

200, 202]. Each method has its advantages and disadvantages in terms of

attenuation quality and online applicability. A systematic evaluation is

missing.

A better understanding of the brain sources that encode kinematic infor-

mation in theM/EEG could help to disentangle the relevant brain sources

from artifact sources. While there seems to be a common understanding

that areas along the dorsal stream - particularly SMC and PPC - encode

kinematic information during discrete and continuous movements, many

studies investigated the decoder weights which are optimized for decod-

ing but should not be interpreted to infer the contributing sources [125].

A more detailed analysis of the sources utilized by the linear decoding

models could contribute to a better understanding of the involved areas

and their spatiotemporal dynamics.

Although linear decoders like Wiener and Kalman filters can be readily

interpreted, some recent works obtained a higher decoding accuracywith

non-linear models [202, 205]. This suggests that more information about

the movements is encoded than what linear position/velocity decoders

can extract. With sufficient taps, Wiener and Kalman filters can integrate

and differentiate positions and velocities and transform coordinate spaces

[149]. However, they cannot model non-linear relationships like between

velocity and speed. There is evidence that information about both is

encoded in the LFTDM/EEG activity. This could at least partially explain

why non-linear decoders outperformed linear ones.

Among all limitations of the sub-field, the most critical one is that it

remains unclear whether an M/EEG-based direct BCI can be used online.

There is a single study that reported continuous 2D cursor control based

on imagined arm movements [206]. However, later it was shown that a

randomly moving cursor could achieve similar performance [207]. All

the other previous works analyzed the data offline.
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The central aim of this thesis is to develop a direct BCI that decodes the

movement trajectories of healthy volunteers from LFTD EEG activity

during goal-directed movements. To complement the research towards

the central aim, this thesis also explores the neural correlates of move-

ments during different volitional states and tasks, ranging from discrete

center-out movements to continuous goal-directed hand and eye move-

ments. Since eye movements strongly contaminate the LFTD M/EEG

activity, a considerable part of the thesis will focus on the correction of

eye artifacts.

The correction of eye artifacts will allow us to study the neural correlates

of natural human movement behavior during actions, in contrast to

previous non-invasive works. In previous works, the dominant strategy

was to avoid eye movements with limited success in the suppression of

eye artifacts [202] and decoding performance [188]. Knowing that the

cortex is strongly involved in the control of goal-directed movements

and that M/EEG signals primarily detect cortical activity, we expect

that the decoding performance will be higher during natural movement

behavior.

In this thesis we will also use high density M/EEG recordings, which

provide access to the population activity of the whole brain. High-density

recordings during natural movement behavior will enable us to study the

tuning characteristics of LFTD activity to different kinematic variables

in a similar fashion as it has been done with neural spiking activity [71,

120] and invasive population activity [82, 85]. Although the SNR will be

lower compared to the invasive approaches, we will have access to all

relevant brain areas along the dorsal stream.

Another important difference to previous works is that in this thesis

we will conduct experiments during different volitional states. This will

allow us to identify cortical networks that encode kinematic information

in a specific volitional state (e.g., executed movements) and others that

encode kinematic information in multiple volitional states (e.g., executed

and observed movements).

3.1 A proof-of-concept direct BCI for
Movement Control

A direct BCI for movement control should be able to infer information

about the kinematics from the EEG activity in real-time so that the user

can control an end-effector to accomplish a certain task. With this clear

aim in mind, we specified several constraints that should be fulfilled:

I The BCI should allow the user to continuously control an end-

effector inmultiple dimensions over several tens of seconds. Longer
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periods of continuous control allow a more realistic estimate of the

decoder accuracy, since the chance of observing spuriously high

correlations is reduced. It is sufficient to demonstrate simultaneous

2D control. Nonetheless, an extension to 3D control should be

straightforward.

I The BCI user can use the system to make goal-directed movements.

We set the focus to tracking tasks. They are goal directed and

continuous. In such tasks, a target stimulus would be moving and

the user would try to follow the target with an end-effector.

I The direct BCI has to be invariant to eye and motion artifacts.

Residual eye and motion artifacts can result in spuriously high

decoder performance. It is critical to disentangle kinematics related

brain activity and the potentially co-varying artifacts. We will

rely on eye artifact correction and source analysis methods to

demonstrate that the decoding algorithms access brain activity.

I The BCI operation has to be safe. This seems to be trivially satisfied

in non-invasive BCIs. However, if the end-effector is a robotic arm,

the system must ensure that the robotic arm does not accidentally

collide with the user or objects. Large jerky robotic armmovements

could be the result of transient artifacts within the EEG activity.

To ensure safe operation and predictable end-effector movement

behavior, the system has to detect transient artifacts, ideally correct

them or if not possible return to a safe state.

I The processing delay introduced by the system should be low. Short

delays between the intended (and executed arm) movements and

the decoded movements that drive the end-effector are desirable

for two reasons. First, short delays allow the completion of move-

ments with higher accuracy, which seems to be also beneficial for

movement decoding [201, 208]. Second, the shorter the introduced

delay is the smaller is the temporal coupling between a movement

update and its consequence. Generally, a tight coupling between

actions and their consequences facilitates learning.

I Lastly, the proof-of-concept system should achieve a sufficient

decoding accuracy so that the BCI users are convinced that they

can improve the task performance with training.

3.2 Neurophysiology of executed and observed
Movements

As already pointed out, many of the previous studies analyzed the

decoder weights to identify sources that encoded information about

the kinematics. However the weights do not only extract the encoded

information they also suppress uninformative noise. Sources that encode

information about the kinematics can be identified by either fitting an

encoding model or computing the patterns associated to the weights [125,

209]. A combined extraction of the encoding sources and eye artifact

correction will make EEG and MEG suitable functional neuroimaging

techniques to study the dynamics of natural movement behavior. In this

thesis, we plan to use these tools to investigate three research questions:

I How is the LFTD activity spatiotemporally tuned to the kinematics

of executed upper-limbmovements? The results of previous studies
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1: The (� ∗ ")[C] operator indicates a convolution

of the signal "[C]with the filter % across time.

agree that kinematic information of different dimensions (e.g.,

horizontal, vertical) is encoded in similar cortical patches. In the

case of spiking activity the firing rates of neurons in SMC are

preferentially tuned to velocity rather than position [120]. Does this

transfer to the LFTD M/EEG activity?

I Howdo the kinematics-related tuning characteristics change across

volitional states? Does the LFTD activity originating in SMC encode

information about observed movements? How about other areas

along the dorsal stream?

I How similar/different are the kinematics-related tuning charac-

teristics of discrete and continuous goal-directed movements? Do

the same areas that encode information about the kinematics of

continuousmovements also encode information about the direction

of discrete movements? Previous studies classified the movement

direction time-locked to the movement onset [86] or to the cues [87,

190] and observed movement direction related effects in different

cortical areas. This raises the question whether the movement onset

or cue time-locked effects aremore similar to the kinematics-related

effects in continuous movements.

3.3 Encoding Model

Similar to previous works [81, 86, 126–128, 180] we assume that the kine-

matics k[C] (e.g., 2D position, 2D velocity or speed) during goal-directed

movements are linearly encoded in the LFTD M/EEG activity x[C]. As

defined in equation 1.1, x[C] contains a linear mixture of various sources

s[C]. Some of the brain sources encode kinematic information s(:)
1A08=
[C],

while others reflect non-task relevant brain and noise sources n[C]. Know-

ing that the sensors capture not only brain activity but potentially also

motion and eye artifacts n(:)0AC[C] that co-vary with the kinematics k[C], we

consider the model

x[C] = A s[C] + n[C] = B s(:)
1A08=
[C] + C n(:)0AC[C] + n[C] (3.1)

where the desired kinematics encoding brain sources s(:)
1A08=
[C] and un-

desired artifact sources n(:)0AC[C] are projected to the sensors x[C] with the

mixing matrices B and C. Similar to previous works that used linear

filters, we assume that the brain and artifact sources are a linear trans-

formed and filtered combination of the kinematic state k[C] at the current
C, previous C − � and future C + � time-points

s(:)
1A08=
[C] =

∑
�

D[�]k[C − �] = (D ∗ k)[C] (3.2)

n(:)0AC[C] = (E ∗ k)[C] (3.3)

summarized with the linear operators D and E with which k[C] is
convolved

1
. The central aim of this thesis it then to infer the kinematic

state (e.g., 2D position and velocity) k[C] online from the LFTD EEG x[C]
without using co-varying artifact sources n(:)0AC[C].



3 Aim of this Thesis 31

3.4 Workplan

Answering the stated research questions and reaching the central aim

will require to conduct several studies. The key milestones and our plan

to get there are outlined in the next paragraphs.

Online Eye Artifact Correction

To assure that the direct BCI relies on brain activity rather than artifacts

during goal-directed movements, the artifacts need to be removed before

the BCI is calibrated. We will test how well state of the art eye artifact

correction algorithms can estimate the artifact mixing matrix C and

sources n(:)0AC[C] from calibration data during which s(:)
1A08=
[C] are inactive.

During goal-directed movements, the corrected signals x2[C] are then

x2[C] = x[C] − Ĉ n̂(:)0AC[C] � B s(:)
1A08=
[C] + n[C] (3.4)

where the ^-modifier is used to indicate the estimates of the true, un-

known sources signal and mixing matrix. If current state of the art

algorithms are insufficient to attenuate the artifacts, we will develop and

test a new algorithm.

Neural Correlates of Movement

In a parallel line of research, we will explore the neural correlates of

movement in a series of EEG and MEG studies. In single experiments

we will study multiple conditions and tasks. In discrete movement tasks,

we will analyze whether and how strongly the MRCP is modulated

by movements in different directions. In continuous movement tasks,

we will analyze how kinematic information is encoded in the corrected

M/EEG activity x2[C], and howwell linear models can infer the kinematic

information. Following the approach of previous non-invasive decoding

studies, we will first investigate velocity and position related effects. Mo-

tivated by recent findings of several groups, we will later also investigate

effects related to the length of the velocity and position vectors, namely,

speed and distance.

Decoding Accuracy Improvement

If the results indicate that information aboutdirectional (velocity, position)

and non-directional (speed, distance) kinematics can be simultaneously

detected with linear decoders, we will explore ways to integrate the infor-

mation to improve the decoding accuracy. In the invasive domain, UKFs

have proven successful in combining directional and non-directional

information encoded in spiking activity [174].



3 Aim of this Thesis 32

Proof-of-concept direct BCI

We will evantually use the insights from the offline analyses to design

an EEG-based direct BCI to continuously control the movements of a

robotic arm. Similar to the tests of direct BCIs in NHPs, we will test

the EEG-based system in a group of healthy participants and executed

movements.
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4.1 Online Artifact Correction

Evaluation of Algorithms for online Eye Artifact
Correction

Reference # 210

A comparison of ocular artifact removal methods for block design
based EEG experiments
Kobler R.J., Sburlea A.I., and Müller-Putz G.R.

Proceedings of the 7th Graz Brain-Computer Interface Conference, 2017
DOI: 10.3217/978-3-85125-533-1-44

In accordance with the aims of this thesis, the first study was designed

to test how well state of the art correction algorithms could attenuate

eye artifacts in the LFTD EEG. In the LFTD EEG activity, eye movement

artifacts are mainly caused by blinks and displacements of the CRD

during gaze shifts [50]. The CRD and blink related artifact contributions

to the potentials at the EEG electrodes can be assumed to be linear [54].

However, during a visuomotor task, one cannot assume that the artifacts

introduced by the CRD are uncorrelatedwith the activity of brain sources

that encode directional information.

Figure 4.1: Eye artifact calibration paradigm. The

left panel visualizes the sequence of events during

a trial, directed by a blue stimulus on the screen.

The stimulus color andmovement guided the par-

ticipants eye movements. The right panel shows

the stimulus’ movement (blue traces) during the

first 5 s of condition specific tasks. The paradigm

considered four conditions: REST, HORZ, VERT

and BLINK. Additionally horizontal, vertical and

radial EOG derivatives for selected trials of a

study participant are plotted (black traces).

As in [60], we decided to temporarily disentangle the artifact and brain

sources by using a block based experimental design. Figure 4.1 displays

the visually guided paradigm that was used to record eye artifacts in a

controlled fashion. If the brain sources, encoding directional information

s(:)
1A08=
[C] , are "silent" during an eye artifact calibration block and suffi-

ciently distant from the eye artifact sources, one should be able to learn

spatial filters that remove the contribution of the eye artifact sources

and maintain brain activity during a visuomotor task. This approach

assumes time-invariant contributions of the eye artifacts to the potentials

at the electrodes. In this pilot study (5 participants), we used the data of

https://doi.org/10.3217/978-3-85125-533-1-44
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a second eye artifact block, recorded approx. 60 minutes after the first

one, to answer two questions:

I Is the time-invariance assumption reasonable?

I Which correction algorithm performs best in this block based

approach?

Contribution to the Thesis

Among the 5 algorithms that we compared, one algorithm based on

artifact subspace subtraction, achieved the best trade-off between attenu-

ating eye artifacts and maintaining resting brain activity - see Figure 4.2

for an example. In the evaluation data, recorded approx. 60 minutes after

the calibration data, the algorithm could still attenuate blink and CRD

related eye artifacts to chance level (|r| < 0.1). This result confirmed that

the calibration block based approach, suggested in [60], is a feasible ap-

proach for online eye artifact correction. Unlike the subspace subtraction

algorithm, the regression algorithm proposed in [60] could not effectively

attenuate the eye artifacts during blinks and vertical eye movements.

Figure 4.2: Representative examples for the eye

artifact correction on the second eye artifact block.

For each condition, the traces visualize short pe-

riods of the activity at 11 channels before (black

traces) and after correction with the best perform-

ing algorithm (red traces).
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Correction of CRD and Eyelid Artifacts in EEG and MEG

Reference # 211

Corneo-retinal-dipole and eyelid-related eye artifacts can be corrected
offline and online in EEG and MEG signals
Kobler R.J., Sburlea A.I., Lopes-Dias C., Schwarz A., Hirata M. and

Müller-Putz G.R.

NeuroImage, 218 (2020)

DOI: 10.1016/j.neuroimage.2020.117000

During the course of this thesis, we used the paradigm and correction

approachpresented in [210] in several studies. To testwhether the findings

in the small pilot dataset generalize to different EEG recording systems,

channel configurations or even MEG, we analyzed the data of 5 studies

which contained recordings of a total of 69 participants.

Based on the success of the subspace subtraction algorithm in [210], we

proposed a modified algorithmwhich we denoted sparse generalized eye

artifact subspace subtraction algorithm (SGEYESUB). The key differences

to its predecessor, denoted GEYESUB here, is that SGEYESUB removes

the minimal amount of subspaces that are necessary to correct CRD and

eyelid artifacts, and that it adds a sparsity constraint to the optimization

problem. The minimal number of artifact subspaces is 3 during eye

movements in a 2D workspace; blinks and the vertical and horizontal

CRD components have distinct topographies [54]. The sparsity constraint

pushes the solution to have few non-zero weights close to the artifact

sources. Hence, any source along the dorsal stream which was not active

during the eye artifact calibration paradigm would contribute negligibly

to the artifact subspace and consequently would not be removed during

(online) correction. As outlined in Figure 4.3, we fitted the parameters to

data of an eye artifact block recorded at the beginning of an experiment

and tested the performance with the data of a second block recorded

between 10 to 115 minutes later.

For the EEG data (Figure 4.3c), the results were generally similar to

[210]. Compared to state of the art ICA and regression based algorithms,

SGEYESUB achieved the best trade-off between correcting eye artifacts,

maintaining resting brain activity as well as event-related potentials. We

did not see any effect of time on the algorithms’ performance, validating

the feasibility of the block based approach in online artifact correction.

The results observed in the EEG data generally transferred to the MEG

data (Figure 4.3b). For MEG data SGEYESUBmarginally, yet significantly

improved the correction performance upon GEYESUB for vertical eye

movements. We also observed a marginal correction performance de-

crease with time, which could be attributed to small shifts of the head

position in relation to the sensors across time.

Contribution to the Thesis

In this publication we presented and thoroughly tested the tools to

correct eye artifacts in EEG and MEG in online experiments. After fitting

SGEYESUB to calibration data, the algorithm can correct the artifacts for

at least 1.5 hours. The method is fully data driven, tested with different

recording hardware and channel configurations, and does not require

https://doi.org/10.1016/j.neuroimage.2020.117000
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Figure 4.3: Eye artifact correction results. a, Out-

line of the block based approach. The parameters

(W and A) of linear correction algorithms are

fit to calibration data and used to subsequently

correct the M/EEG signals (x[C]). b, Topographic
plots summarize the performance metrics for the

MEG dataset. c, As in b for the EEG datasets.

d, Topographic distribution of the negative and

positive peaks of an error potential (ErrP) as well

as an MRCP at the movement onset. e, Exemplary

visualization of the stimulus (blue traces), EOG

and uncorrected EEG (black traces) and corrected

EEG (green traces) during BLINK, VERT, HORZ

and REST trials.

computationally expensive hyper-parameter tuning when applied in a

new experiment. It takes about 15 minutes to obtain a fitted model which

includes briefing of the participant, data acquisition and model fitting.

As we will see in the next sections, the novel tools enable an efficient

and effective (online) disentanglement of eye artifact and brain sources,

even if the artifacts co-vary with task relevant brain activity as defined in

equation 3.1.
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Online Detection and Correction of transient
high-variance Artifacts

Reference # 212

HEAR to remove pops and drifts: the high-variance electrode artifact
removal (HEAR) algorithm
Kobler R.J., Sburlea A.I., Mondini V. and Müller-Putz G.R.

Proceedings of the 41st Conference of the IEEE EMBC, 2019
DOI: 10.1109/EMBC.2019.8857742

Apart form eye and motion artifacts, M/EEG signals are also affected by

other types of artifacts [43, 140]. Transient, high-variance artifacts such

as pops, drifts and muscle artifacts strongly contaminate the M/EEG

signals and thereby also the decoded movement trajectory and feedback

received by a BCI user. Moreover, if the end-effector is a robotic arm the

transient artifacts could result in unpredictable and jerky movements

causing a safety risk. To assure safe robotic arm control based on LFTD

M/EEG activity, the transient, high-variance artifacts should be corrected

or at least detected. In the low-frequencies, electrode pops and drifts

have a large contribution. They typically affect single or few electrodes. In

[212], we proposed the high-variance electrode artifact removal algorithm

(HEAR)whichmonitors the variance of each channel.HEARcontinuously

computes the probability that a channel is currently affected by an artifact

via comparing the time-varying variance to the variance of previously

recorded resting data. This probability is then used to weigh the amount

of linear interpolation of the channel by its neighboring channels. If

multiple channels are affected, HEAR can at least detect that the artifact

cannot be corrected.

We compared the performance of HEAR to two state-of-the-art transient

artifact correction algorithms [213, 214]. In the case of simulated data,

where the ground truth is known, the application of HEAR and its online

variant oHEAR had little impact on the SNR during artifact-free periods

and could improve the SNR during pop and drift artifacts by 25 dB

(Figure 4.4). For real data, HEAR could also strongly attenuate pops

and drifts as well as detect transient muscle artifacts introduced during

swallowing – see Figure 4.5 for examples. As a consequence, significantly

fewer trails had to be rejected.
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Figure 4.4: Pop and drift artifact correction results

for simulated data. The plot shows the SNR of

the simulated EEG signals during pop and drift

artifact periods (x-axis) and artifact-free periods

(y-axis). HEAR and oHEAR were compared to

two other algorithms, namely, artifact subspace

reconstruction (ASR) and robust principal compo-

nent analysis (RPCA). The algorithms are color-

coded and the symbols indicate the performance

for different algorithm-specific hyper-parameters.

The SNR for uncorrected (gray) and perfectly

corrected (green) data are also indicated.

https://doi.org/10.1109/EMBC.2019.8857742
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Figure 4.5: Examples of pop, drift and muscle

artifacts (black traces) and the results after HEAR

was applied (red traces). Below the EEG traces,

the maximum artifact probability of all channels

is plotted as well as the confidence of HEAR. The

pop (left panel) and drift (central panel) could

be strongly attenuated with a high confidence.

HEAR failed to correct the muscle artifact (right

panel) and reported a confidence of 0.

Contribution to the Thesis

The objective of this publication was to drastically attenuate transient,

high-variance artifacts which can affect the LFTD activity based trajectory

decoders and pose a safety risk in robotic arm control. In simulated

data with pop and drift artifacts, HEAR outperformed state-of-the-art

methods. In a real EEG dataset, HEAR reduced the fraction of outlier

trials by half and maintained the waveform of event-related potentials.

In the case of BCI training, HEAR can improve the reliability of the

feedback a user receives through attenuating a potential negative impact

of transient artifacts. Moreover, if HEAR cannot sufficiently attenuate a

transient artifact because several neighboring channels are affected, it

reports low confidence in the correction result. The BCI can detect these

cases and return to a safe state if the EEG activity is used to control a

robotic arm.
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4.2 Neural Correlates of Movement

Discrete Movements in different Directions

Reference # 215

Distinct cortical networks for hand movement initiation and direc-
tional processing: an EEG study
Kobler R.J.

Y
, Kolesnichenko E.

Y
, Sburlea A.I. and Müller-Putz G.R.

NeuroImage, 220 (2020)

DOI: 10.1016/j.neuroimage.2020.117076

Previous studies investigated movement direction related effects in the

LFTD M/EEG time-locked to the movement onset or to the cues and

observed effects in different cortical areas. Aligned to the cues, PPC

was repeatedly reported to encode directional information during the

pre-movement period [87, 190]. Aligned to the movement onset, the

encoding of directional information in SMC peaked after the movement

onset [86, 189]. These time-locking-dependent observations suggest the

presence of two direction related effects in the LFTD M/EEG - one high-

level effect that reflects movement preparation (pre-movement period,

mainly PPC) and one low-level effect that reflects movement execution

(movement period, mainly SMC). The presence of two distinct networks

for movement preparation and execution (or initiation) is also suggested

by a recent behavioral study that investigated the response times during

non-forced and forced delay reaching movements [33]. In this study, we

had the aim to identify the two networks and test which one encodes

more information about the movement direction.

In a trial based paradigm, we studied center-out and tracking movements

in two conditions, denoted execution and observation (Figure 4.6). De-

pending on the condition, the participants either performed a visuomotor

(execution) or oculomotor (observation) task. In the execution condition,

they controlled a cursor in a virtual 2D environment via right arm move-

ments. In the observation condition, we replayed previous, matching

cursor trajectories so that the visual input and feedback would be similar

in both conditions. The participants were instructed to keep their gaze

fixated at a target stimulus in either condition. After a condition cue,

the target smoothly moved into one of four directions for 0.5 s and then

waited for the cursor. While the participants moved their eyes to keep

the moving target fixated in either condition, they also moved their right

arm in the corresponding direction in the execution condition. Once the

cursor hit the target, a 1-s fixation period elapsed before a tracking task

started. In this study, we analyzed the LFTD EEG activity of 15 healthy

participants during the center-out task.

As expected,we observed anMRCPphase-locked to the cursormovement

onset in the execution condition (Figure 4.7a). Using a general liner

model, we could identify condition and direction related effects. The

MRCP in execution condition was generated in SMC and marginally

affected by the eye artifact correction (Figure 4.7b). More interestingly,

we observed a consistent representation of direction in parieto-occipital

cortex (POC) that was maintained after eye artifact correction. When

we contrasted the direction encoding results between conditions, we

additionally observed that SMC encoded more information about the

https://doi.org/10.1016/j.neuroimage.2020.117076
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Figure 4.6: Experimental setup and paradigm to study discrete and continuous movements. a, Experimental setup. The participants used their

right hand to control a cursor in a virtual 2D environment. b, The trial based paradigm considered two conditions - execution and observation. In

execution condition trials, the participants controlled the cursor, while in observation condition trials, matching cursor movements were replayed.

We considered two tasks. In a center-out task, a target moved for 0.5 s in one direction and stopped. After the cursor reached and resided at the

target’s position for 1 s, a 16-s pursuit tracking task started.

direction in the execution condition (Figure 4.7c). The effect in SMC

was inconsistent in the sense that it was present at the level of voxel

norms (dipole orientations are ignored), but vanished at the level of voxel

components (dipole orientations matter). We furthermore found in a

classification analysis (Figure 4.7) that the movement direction could be

inferred with higher accuracy if the data was aligned to the cues rather

than the movement onset. We obtained the highest accuracy (55.9%) in

the execution condition and aligned to the cues.

Contribution to the Thesis

In this study we could demonstrate that the proposed eye artifact cor-

rection approach, defined in equation 3.4, is successful in disentangling

correlated brain and artifact sources. After correcting the artifacts, we

could classify themovement directionwith similar accuracies as previous

studies that used similar features and models [86, 87, 190]. We could

confirm the presence of two direction related effects during executed

movements. The movement onset-aligned effect in SMC was participant-

specific, peaked after the movement onset and specific to the execution

condition. Whereas, the cue-aligned effect in POC was consistent across

participants, peaked around the movement onset and present in both

conditions. The combined results suggest that the effect in POC encoded

significantly more information about the movement direction than the

effect in SMC; the difference in classification accuracy was on average

5.3%. This study shows that the time-locking strategy plays a critical role

in inferring the direction of discrete, goal-directed movements.
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Figure 4.7: Neural correlates of movements in

different directions. a, Grand average potentials

time-locked to the cues (left panel) and the cur-

sor movement onset (right panel). Shaded areas

indicate the confidence interval. The conditions

are color-coded. b, Source space plots visualize
the grand average encoding results of condition

and directionwithout (top) andwith (bottom) eye

artifact correction. For each alignment, the plots

show the average absolute condition or direction

related activity around the movements onset. The

strongest effect of condition was in SMC, phase

locked to the movement onset and marginally

affected by eye artifact correction. The strongest

effect of direction was in POC, phase locked to

the cues. The effect of eye artifact correction was

neglibile on the direction related activity in POC.

c, Source space plots that show differences in

the encoding of directional information between

conditions. A positive difference (red color) indi-

cates stronger encoding in the execution condition.

d, Grand average direction classification results

in terms of accuracy curves for both conditions

and alignments. Shaded ares indicate the confi-

dence interval. The conditions are color-coded.

A gray horizontal line indicates the significance

level. Boxplots summarize the difference in peak

classification accuracy between alignments (cue -

movement onset). The differenceswere significant

for both conditions.
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Continuous Tracking Movements

Reference # 216

Tuning characteristics of low-frequency EEG to positions and veloci-
ties in visuomotor and oculomotor tracking tasks
Kobler R.J., Sburlea A.I. and Müller-Putz G.R.

Scientific Reports, 8(1) (2018)
DOI: 10.1038/s41598-018-36326-y

The aim of this publication was to identify the spatiotemporal tuning

characteristics of LFTD EEG activity to arm movement position and

velocity. To avoid transient movement initiation related effects like an

MRCP, we decided to study a continuous tracking task. In the invasive

domain, tracking tasks proved suitable to identify position and velocity

related effects in neural spiking activity [120]. The tracking task was

part of the first EEG experiment and succeeded a center-out movement

in every second trial (Figure 4.6). As in [120], we implemented the

tracking task so that the position and velocity signals were decorrelated

at lag 0 – see Figure 4.8a. We targeted accurate smooth, two-dimensional

tracking movements and created the target trajectories accordingly. The

2D trajectories were created so that the kinematics of the horizontal

component were decorrelated with the ones of the vertical component.

Due to constraints inworkspace size and bandwidth, the cross-correlation

between position and velocity of the same component increased over

lags. (Figure 4.6b). As a consequence, we had to consider the auto-/cross-

correlation curves when we interpreted the decoding results.

We observed four effects in the tuning curves in Figure 4.8b. First, the

results were significantly higher than chance (A2ℎ0=24 ≤ 0.13) for all

kinematic variables, lags and conditions. POC encoded most information

about the movement trajectories in either condition - see Figure 4.8c.

Second, in the observation condition the tuning curves were modulated

according to the auto-/cross correlation with the target position, in-

dicating that the target position was most relevant in the observation

condition. We observed the third and fourth effect in the difference

between execution and observation condition tuning curves (dash-dotted

lines in Figure 4.8b). The difference was modulated according to the

auto-/cross-correlation with cursor velocity, suggesting that LFTD EEG

encoded more information about the cursor velocity (both dimensions)

in the execution condition. Looking at the differences in decoder patterns,

we could attribute the effect to stronger velocity related activity in SMC –

see Figure 4.8c. For the vertical component (right panel), we additionally

observed a smaller, constant effect of condition. The differences in vertical

velocity decoder patterns indicated that this effect could be explained by

PPC activity.

https://doi.org/10.1038/s41598-018-36326-y


4 Methods and Results 43

Figure 4.8: Neural correlates of cursor position

and velocity during continuous tracking move-

ments. a, Auto- and cross-correlation curves for

the cursor position (violet) and velocity (green).

b, Position and velocity decoder tuning curves for

execution (solid lines) and observation (dashed

lines) conditions. Each curve summarizes the

group level test set correlation between recorded

and decoded signals. Each decoder estimated the

kinematic variable at lag 0 using the LFTD EEG

activity at a single lag. The kinematic variables

are color-coded. The left and right panel present

the results for the horizontal and vertical compo-

nents. c, Source space plots of decoder patterns
forWiener filters that decoded the horizontal (left

panel) or vertical (right panel) cursor velocity us-

ing a 300-ms window of preceding LFTD EEG

activity.

Contribution to the Thesis

In this publication we could confirm that EEG can be used to detect

movement trajectory related effects during continuous goal-directed

movements. While POC predicted the 2D movement trajectories in both

conditions, SMC encoded significantly more information about the 2D

cursor velocity in execution condition. Using a regularized WF [188] to

decode the velocity trajectories, we obtained moderate correlations for

both components. They were 0.4 in the execution condition and 0.35 in

the observation condition. Furthermore, in this study we support and

generalize the presence of two cortical networks encoding directional in-

formation. As in discrete center-outmovements, we identified a condition

specific represenation in SMC and a condition invariant representation

in POC.
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Figure 4.9: Experimental setup and paradigm to

study continuous tracking movements in MEG. a,
Experimental setup. The participants used their

right index finger to control a cursor in virtual

2D environment, while they were lying inside an

MEG scanner. b, The trial based paradigm was

similar to the previous study.

Simultaneous Decoding of Velocity and Speed

Reference # 217

Simultaneous decoding of velocity and speed during executed and
observed tracking movements: an MEG study
Kobler R.J., Hirata M., Hashimoto H., Dowaki R., Sburlea A.I. andMüller-

Putz G.R.

Proceedings of the 8th Graz Brain Computer Interface Conference, 2019
DOI: 10.3217/978-3-85125-682-6-19

After two recent ECoG studies reported simultaneous decoding of arm

movement velocity and speed from LFTD activity [124, 181] and previous

M/EEG studies reported either speed or velocity related effects, we won-

dered whether speed and velocity information could be simultaneously

detected in non-invasive recordings as well. To address this question,

we conducted an MEG study during which 19 healthy participants per-

formed a tracking task (Figure 4.9). The paradigm and tracking task

dynamics were generally similar to the previous study. Due to the suscep-

tibility of MEG to motion artifacts, we switched from arm movements to

index finger movements. Our custom motion capture system introduced

a 200ms delay between the hand and cursor movements.

Offline, we computed the tuning curves for the horizontal and vertical

cursor velocity and cursor speed – see Figure 4.10. Since there were only

negligible cross-correlations between the individual kinematic variables,

we could study the tuning curves in isolation. As before, the 2D velocity

tuning curves were above the significance level in both conditions. We

could confirm our hypothesis because the speed tuning curve was also

above the significance level for all participants in the execution condition

and for the majority in the observation condition. Moreover, the cursor

speed tuning curve exhibited a distinct peak at the lags -0.3 s and -0.2 s

in the execution condition. The patterns revealed that the peak can be

attributed to speed related activity in contralateral SMC. Although speed

and velocity were uncorrelated, the velocity patterns were also stronger

in SMC in the execution condition – especially for the vertical component.

The differences between conditions indicate that the effect also peaked at

the lags -0.3 s and -0.2 s.

Contribution to the Thesis

This study shows that LFTD MEG activity can be used to simultane-

ously detect 2D velocity and speed information of continuous tracking

movements. The tuning curves and patterns confirm and extend the

previous observation that SMC encodes information about the velocity

and speed of executedmovements.We observed the tuning peaks in SMC

about -300ms to -200ms which suggests that the effects in SMC were

phase-locked to the finger rather than the cursor movement
∗
. Apart from

the execution condition specific effect in SMC, the patterns also suggest

that PPC and POC encoded velocity and speed information in both

conditions. In contrast to the previous EEG study, the representation of

velocity in PPC and POC was weaker than the one in SMC. The different

findings could be attributed to differences in the movement task (finger

∗
There was a 200ms delay between the finger and cursor movements

https://doi.org/10.3217/978-3-85125-682-6-19
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Figure 4.10:Neural correlates of 2D velocity and speed in LFTDMEG during continuous tracking movements. The plots in the top panel visualize

the tuning curves of velocity and speed in both conditions. The source space plots in the bottom show the patterns associated to the tuning

curves for negative lags.

vs. hand), delays between hand/finger and cursor movements and the

recording modality (EEGvs. MEG).
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4.3 Decoding Accuracy Improvement

Distance- and speed-informed Kinematics Decoding

Reference # 218

Distance- and speed-informed kinematics decoding improvesM/EEG
based upper-limb movement decoder accuracy
Kobler R.J., Sburlea A.I., Mondini V., Hirata M. and Müller-Putz G.R.

Journal of Neural Engineering, 2020
DOI: 10.1088/1741-2552/abb3b3

The LFTD M/EEG activity encodes information about directional (e.g.,

velocity) and non-directional (e.g., speed) kinematics [102, 129, 212].

Linear models that decode movement trajectories cannot integrate both

types of kinematics due to the inherent non-linear relationship. Studies

that compared linear and non-linear methods reported a higher decoder

accuracy for the non-linear methods [202, 205], suggesting that the

LFTD activity encodes information that is non-linearly related to the

velocity/position trajectories. A drawback of general purpose non-linear

methods is the lack of interpretability of the models. In this study we

surmised that the decoding accuracy can be improved and interpretability

retained if the non-linear relationship is explicitly modeled. This should

also alleviate the mismatch in amplitudes between the decoded and

recorded trajectories that several previous studies observed [198, 216,

219].

In this work we proposed to use an UKF. The state space model consid-

ered the directional kinematics as the hidden state and the LFTDM/EEG

activity as the noisy measurements that linearly encoded the directional

kinematics and the length of the position and velocity vectors, i.e. dis-

tance and speed. In the invasive domain, UKFs have proven successful

in combining directional and non-directional information encoded in

spiking activity [174].

In an offline analysis,we used the previously recordedEEGandMEGdata

during the continuous tracking tasks [216, 217], and compared the UKF

with two linear decoders, a KF and a WF. We used partial least squares

regression (PLS) as a supervised dimensionality reduction technique

[220] for the state space filters and to fit the regression coefficients of

the WF. Across experiments, the correlations of the recorded and UKF

decoded trajectorieswere 0.49 in the execution and 0.36 in the observation

condition. Compared to the linear KF, the UKF improved the decoder

accuracy qualitatively (Figure 4.11) and quantitatively (Figure 4.12) in

both conditions and experiments. Utilizing information about the non-

directional kinematics, encoded within the LFTD M/EEG activity, the

UKF could significantly improve the SNR upon the KF and at the same

time reduce the amplitude mismatch between recorded and decoded

trajectories to a minimum. Compared to the WF, the UKF achieved

significantly higher correlations, while the WF achieved the highest SNR

at the cost of a large amplitude mismatch. Both state space models (UKF

and KF) could significantly improve the correlations upon the WF.

Contribution to the Thesis

In this study, we could demonstrate that directional and non-directional

kinematic information is simultaneously detectable in LFTD M/EEG

https://doi.org/10.1088/1741-2552/abb3b3
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Figure 4.11: Qualitative distance- and speed-

informed decoding results. a, Experiment 1. Ex-

ample of test set trajectories (recorded and de-

coded) during the tracking task for a represen-

tative participant. Recorded target (yellow) and

cursor (gray) position trajectories for the horizon-

tal (top) and vertical (bottom) component. The

decoded cursor trajectories are plotted on top

of the recorded cursor trajectories (gray) and are

color-coded (WF in red, KF in green, UKF in blue).

b, As in a for the second experiment.
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Figure 4.12: Quantitative distance- and speed-

informed decoding results. The kinematics are

summarized by grouping them into directional

(horizontal position, horizontal velocity, vertical

position, vertical velocity) and non-directional

(distance, speed). The results for the first experi-

ment 1 (EEG, 15 participants) are summarizes in

the left panel. The top plot shows boxplots that

summarize the correlation between the recorded

and decoded kinematics for execution (left) and

observation (right) conditions. The algorithms

are color-coded. Each dot summarizes the av-

erage cross-validation test set correlation of a

participant. Significant differences between the

algorithms are highlighted. The middle plot sum-

marizes the results for the SNR, and the bottom

one for the DSSR. The DSSR quantifies the am-

plitude mismatch. A DSSR of 0dB is equivalent

to matching amplitudes. For the DSSR, all differ-

ences were significant. The right panel summa-

rizes the results for the second experiment (MEG,

19 participants).

signals. Moreover, movement trajectories could be reconstructed with

higher accuracy with a decoder that integrated both types of kinematics

compared to standard linear models. The obtained decoder correlations

were within the range of previously reported results of studies that

decoded executed movement trajectories from population activity in

comparable, continuous movement tasks [121, 122, 180, 202, 205].
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4.4 Proof-of-concept direct BCI

Online robotic Arm Control with a linear Decoder

Reference # 221

Continuous low-frequencyEEGdecodingof armmovement for closed-
loop, natural control of a robotic arm
Mondini V.

Y
, Kobler R.J.

Y
, Sburlea A.I. and Müller-Putz G.R.

Journal of Neural Engineering, 2020
DOI: 10.1088/1741-2552/aba6f7

After we could demonstrate that the LFTD can be used to decode the

movement trajectories of executed tracking movements with moderate

accuracy [216], we designed this study to explore to which degree the

results obtained offline translate to an online setting. Our strategy was

to record calibration data during which the study participants tracked

a moving target stimulus with a robotic arm – see Figure 4.13a. The

calibration data was used to fit a linear decoder. Subsequently, the robotic

arm control was gradually switched from the actual, and delayed hand

movements to the decoded hand movements (Figure 4.13b). We had to

delay the actual hand movements to accommodate the delays introduced

by the EEG processing pipeline (approx. 250ms). The robotic arm added

another approx. 350ms, resulting in a total delay of 600ms between

the hand and robotic arm movements. Still, the 10 participants could

complete the tracking task with reasonable accuracy in the calibration

data and shared control conditions (Figure 4.14c). In the 0% EEG control

condition, the correlation between the target stimulus and robotic arm

was on average 0.8 and 0.6 for the horizontal and vertical components,

suggesting that it was more difficult to control the vertical dimension.
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Figure 4.13: Overview of the online decoding experiment. a, Experimental setup. Each participant tracked a moving target stimulus, denoted

snake, with a robotic arm on a 2D surface. b, The experimental paradigm considered four conditions. In the first condition (0% EEG control) the

participant controlled the robotic arm via moving the right hand. After a decoder was calibrated, the manual control was reduced in three steps

up to 100% EEG control. c, Sample position trajectories of a representative participant in the 33% EEG control condition. In this condition, the

robotic arm trajectory was the weighted sum of the hand (66%, pink traces) and PLSKF decoded (33%, blue traces) trajectories. The gray traces

show the trajectories of a PLS based WF.

As in [218], we used PLS regression as a supervised dimensionality

reduction technique to compress the kinematic information, encoded in

the LFTD EEG activity within the last 300ms and compute regression

weights for a WF. A Kalman filter was then used to smooth the estimates

of the WF. The combined model is referred to as PLSKF. In the online

experiment the PLSKF model decoded the delayed hand movement

trajectories with moderate correlations of 0.27 for the positions and

https://doi.org/10.1088/1741-2552/aba6f7
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Figure 4.14: Results of the online, linear decoding
experiment. Only the results for the horizontal

component are displayed (a-c). The decoding re-

sults for the vertical component were generally

similar. a, Correlation between the recorded and

decoded position trajectories for each condition.

The results for the 0% EEG control condition were

estimatedofflinewith a cross-validation approach.

The algorithms are color-coded. Each dot marks

the result for one participant. b, As in a for the

velocity. c, Task performance across conditions

in terms of correlation between the snake and

robotic arm trajectories. e, Size of the recorded

(pink) and decoded (blue) hand movements for

each condition.

0.39 for the velocities during shared control (Figure 4.14a,b; 33% and

66% EEG control), and slightly lower correlations during 100% EEG

control (0.24 for the positions and 0.35 for the velocities). The moderate

correlations transferred to a low task performance in the 100% EEG-

based control condition (Figure 4.14c). Moreover, the PLSKF decoded

trajectories were consistently estimated too small by the PLSKF – see

Figures 4.13c and 4.14d. Offline, we simulated the experiment with the

WF; the accuracy was significantly lower (Δ correlation 0.05 for position

and 0.06 for velocity).

Contribution to the Thesis

Despite a low task performance, we could show that a LFTD EEG-based,

direct BCI for movement control is feasible. Yet, there was a mismatch

between the amplitudes of the recordedanddecodedmovements, limiting

closed-loop BCI operation.

We gained two critical insights. First, the PLSKF model could decode

the velocity trajectories nearly as well as in the previous offline study

[216]. If the same PLS based WF as in [216] was used, the difference

in terms of decoder correlations was on average 0.07. This difference

can be attributed to the EEG preprocessing pipeline. To achieve a delay

of 250ms, we had to reduce the order of the IIR filters, which in turn

reduced the SNR of the LFTD features. The PLSKF as a state space model

could almost compensate the drop in correlation. Second, the amplitude

mismatch of the linear decoders manifested as a critical limitation in the

online experiment. During the shared control conditions, the participants

made larger movements (Figure 4.14d) and could thereby compensate the

decoder output (Figure 4.14c). This issue needs to be overcome, before

feedback training with this type of BCI becomes feasible.
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Online robotic Arm Control with a non-linear Decoder

Reference # 222

Non-linear online low-frequency EEG decoding of arm movements
during a pursuit tracking task
Martínez-Cagigal V., Kobler R.J., Mondini V., Hornero R. andMüller-Putz

G.R.

Proceedings of the 42nd Conference of the IEEE EMBC, 2020
DOI: 10.1109/EMBC44109.2020.9175723

In this pilot study with 5 participants the focus was to test how an

UKF decoder that integrates directional and non-directional kinematic

information performs in an online experiment. Compared to the previous

online experiment we introduced two major changes:

I The linear PLSKFwas replacedwith anUKF that decoded positions,

velocities and integrated speed information.

I As in [218] the parameters of the UKF were fit to calibration data.

The paradigm was identical, while we made two small modifications in

the experimental setup. First, rather than using the robotic arm’s gripper

as end-point, we used a stick with a dedicated tip as end-point. This

reduced ambiguity of the end-point and occlusions caused by the robotic

arm. Second, hand movements were mapped to twice as large robotic

arm movements. In the previous experiment the mapping was 1:1.

In contrast to the previous experiment, where the recorded trajectories

were three times larger than the decoded ones, the grand-average ampli-

tude ratio was 1.07 in this experiment. In the 5 participants we obtained

moderate correlations in the 0% EEG condition – see Table 4.1. They were

on average 0.43 and 0.47 for the position and velocity, while the ones

of the previous experiment were 0.28 and 0.39 [221]. In this study, we

observed that the decoder accuracy declined as the EEG control increased.

This effect was small for the horizontal velocity (Δ correlation = 0.05) and

considerable for the horizontal position (Δ correlation = 0.15). The effect

was similar for the vertical component of 2 participants; for the other 3

participants the correlations declined below the significance level in the

100% EEG control condition.

Contribution to the Thesis

In congruence with the previous offline analysis [218], the UKF decoder

alleviated the amplitude mismatch that we observed in our previous

online experiment with a linear decoder [221] and the decoder accuracy

in terms of correlations were higher for the horizontal component.

The transition from hand manual control to EEG control had a negative

effect on the decoder accuracy. This suggests that the feedback provided

by the BCI alters the behavior and therefore also the brain signals. Since

the decoder was fit to another condition, a performance decrease can be

expected.A co-adaptive approach could help tomitigate this performance

decrease.

For three participants the negative effect was stronger for the vertical

component, especially in the 66% and 100% EEG control conditions,

resulting in correlations close to or below the significance level. This

https://doi.org/10.1109/EMBC44109.2020.9175723
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Table 4.1: Results for the online, non-linear decoding experiment. Each row summarizes the correlations between recorded and decoded

trajectories of a participant. The columns indicate the kinematic variable and the condition. The conditions are additionally color-coded.

variable horizontal position horizontal velocity vertical position vertical velocity
% EEG control 0 33 66 100 0 33 66 100 0 33 66 100 0 33 66 100

1 0.53 0.52 0.47 0.39 0.53 0.53 0.55 0.48 0.39 0.26 0.29 0.35 0.42 0.30 0.37 0.36

2 0.63 0.52 0.42 0.34 0.68 0.66 0.54 0.48 0.42 0.21 0.13 0.09 0.44 0.37 0.22 0.19

3 0.47 0.43 0.37 0.20 0.51 0.47 0.44 0.42 0.37 0.17 0.14 0.00 0.40 0.23 0.12 0.06

4 0.37 0.41 0.41 0.38 0.42 0.47 0.52 0.47 0.51 0.41 0.36 0.35 0.55 0.53 0.53 0.44

participant

5 0.27 0.22 0.11 0.22 0.33 0.24 0.24 0.32 0.38 0.23 -0.03 -0.04 0.41 0.32 0.16 0.09

mean 0.45 0.42 0.36 0.31 0.50 0.47 0.46 0.43 0.41 0.25 0.18 0.15 0.44 0.35 0.28 0.23

SD 0.14 0.12 0.14 0.09 0.13 0.15 0.13 0.07 0.06 0.09 0.15 0.19 0.06 0.11 0.17 0.17

stronger effect could be attributed to the experimental setup. As in the

previous experiment the 2D surface was tilted by approx. 45 degrees

to ease the movements of the robotic arm along the vertical dimension.

The end-point was additionally hovering above the screen with a safety

distance of a few centimeters. Theses differences made the perception

of the robotic arm’s movements along the vertical component more

ambiguous than along the horizontal one. It seems like the decoder

accuracy can be strongly affected by such ambiguities. Altogether, with

this study we have laid the foundation for direct, EEG-based BCIs for

movement control. Further longitudinal closed-loop studies are required

to explore and quantify the effects of feedback training.
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The central aim of this thesis was to develop a direct, LFTD EEG-based

BCI that decodes movement trajectories of goal-directed movements. To

do so, it was necessary to achieve progress towards de-/encoding tools

which are sensitive to movement trajectory related effects in the LFTD

EEG activity and invariant to co-varying eye artifacts. The availability of

such tools enables the application of M/EEG as functional neuroimaging

tools in a new class of tasks that require eye-hand coordination. In order

to explore and characterize movement trajectory related effects in this

class of tasks, we studied discrete and continuous movements in different

volitional states. In the following, the achievements of this thesis along

these two aspects are discussed.

5.1 Methodological Progress – towards an
EEG-based direct BCI for Movement
Control

Unlike invasive recording modalities, EEG and MEG suffer from po-

tentially co-varying (eye) artifacts, which have so far impeded their

application to study the neural correlates of goal-directed movements

which require eye-hand coordination. This work provides multiple con-

tributions towards decoding tools that suppress eye and other artifacts,

and combine the neural correlates of several kinematic parameters to

improve the accuracy of decoded movement trajectories.

Eye Artifacts

The strategy in this thesis was to first remove the potentially co-varying

eye artifacts and then analyze the remaining brain sources that co-varied

with the upper-limb movements. Based on previous work of our group

[60] we proposed to temporarily disentangle the eye artifact sources

from the brain sources [210]. At the beginning of each experiment, the

participants were asked to make repetitive eye movements according

to a visually guided paradigm. This approach assumes that the brain

sources, which are active in visuomotor control, are inactive during this

calibration block. We demonstrated that this assumption holds since

brain sources encoding directional information in SMC and PPC were

retained after eye artifact correction [215–217, 221, 222].

In [210, 211] we compared several state-of-the-art eye artifact correction

algorithms for their performance in this block based approach. The

regression-based algorithms, proposed in [58, 60] either removed too

little artifact activity or too much brain activity. Eye artifact specific [54,

223] and general purpose [224] artifact correction algorithms based on

ICA suffered from a poor decomposition into independent components
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because we restricted the calibration data; one eyeblock contained merely

5 minutes of data. Since ICA estimates up to as many sources as there are

channels, the decomposition algorithm needs to estimate more param-

eters which makes the curse of dimensionality more severe. We found

that for the limited amount of data, subspace subtraction algorithms -

in particular SGEYESUB - achieved the best performance in CRD and

eyelid artifact attenuation and preservation of brain activity in EEG and

MEG [211].

In the same work we showed that the eye artifacts can be assumed to

be stationary for at least 1.5 hours, extending the findings of previous

works [55] and validating that the proposed block based approach is

not only feasible for offline correction but also in BCI experiments. So

far our group has tested the practicality of the approach and algorithms

in several experiments [215–217, 221, 222, 225, 226]. Participant briefing

and data recording took on average 5 minutes each. Model fitting takes

another 5 minutes but can be done while other, task-specific data is

recorded. To facilitate further algorithmic improvements, we published

the algorithms
∗
and a large EEG dataset containing eye artifact data of

50 participants
†
.

Motion Artifacts

In this work we employed two strategies to avoid and minimize motion

artifacts. The first strategy concerned the hardware and recording tech-

niques. Active electrodes were used to attenuate cable swing artifacts [64].

The skin was abraded to improve the impedance and thereby attenuate

artifacts introduced by electrode movements [62]. Electrode caps were

fixed with a chip clip, since a previous study demonstrated that arm

movements can induce large movement artifacts if the electrode cap is

fixed with a chest belt [66]. The second strategy concerned the experimen-

tal tasks. Unlike previous decoding studies [126–128, 196, 198, 202], we

asked the participants to make small movements with radii ranging from

1.5 cm [217] to 15 cm [221]. The hand movements were mapped 1:1 [221],

1:2 [222] and 1:3 [216] to end-effector (cursor or robotic arm) movements

in the EEG experiments and 1:10 in the MEG experiment [217]. Moreover,

a 2D surface defined the movement plane and supported the hand and

arm, leading to little activation of shoulder and neck muscles to stabilize

the head.

Despite the two strategies, the hand/arm movement resulted in small

head movements in the EEG experiments, raising the question to which

extent motion artifacts contributed to the decoding results in the visuo-

motor tasks. Because the induced artifact at an electrode can be assumed

to be linearly related to the causing motion [65], we should have obtained

a higher decoding accuracy in the experiments with larger hand move-

ments. When we used similar pre-processing methods and decoding

algorithms, we did not observe any effect of the absolute movement size

on the decoder accuracy. Apart from demonstrating that motion artifacts

played a negligible role, this also suggests that the LFTD EEG encodes

little information about the absolute size of the hand movements.

∗ https://github.com/graz-bci/eyeartifactcorrection
† https://doi.org/10.17605/OSF.IO/2QGRD

https://github.com/graz-bci/eyeartifactcorrection
https://doi.org/10.17605/OSF.IO/2QGRD
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Transient high-variance Artifacts

As long as there are few transient high-variance artifacts, they have little

effect on the experimental findings, since the compromised trials can be

simply rejected. In a BCI experiment this is different - especially if the

participant receives feedback derived from the brain signals. The artifacts

can severely deteriorate feedback quality which impedes learning in

closed-loop BCI training and poses a safety risk in robotic arm control.

An alternative to detecting and rejecting compromised trials offline or

aborting trials online is to attenuate the artifacts. Previous works have

used PCA-based methods [216, 227, 228], specifically ASR [213] and

RPCA [214]. While RPCA is limited to offline analyses, ASR requires

high-pass filtered data at cut-off frequencies around 0.5Hz to 2Hz, ren-

dering it inapplicable for movement decoding from LFTD activity; in

continuous movements, frequencies at and slightly below 0.5Hz con-

tribute considerably to the decoding accuracy of linear decoders. In [212]

we proposed the HEAR algorithm and showed that it outperforms ASR

and RPCA in correcting single-electrode pops and drifts – the dominant

artifacts in LFTD activity. Due to its design, HEAR cannot correct arti-

facts that affect multiple neighboring electrodes simultaneously. Still, the

artifacts can be detected. In [221, 222], we decided to abort trials if HEAR

could not correct a transient artifact. As intended, the robotic arm did

not exhibit jerky, large amplitude movements during shared and EEG

control conditions, suggesting that HEAR was successful in attenuating

the transient single-channel artifacts. About 10% of the trials had to be

aborted, mainly due artifacts introduced by swallowing and sweating.

HEAR
‡
and the simulated dataset

§
as well as the code to generate the

dataset are open source and publicly available.

Decoding Algorithms

Due to concern in the field about whether and to which degree LFTD

EEG can be used to detect kinematics related effects in brain activity [66,

198], we decided to rely on linear decoders whose sources can be readily

interpreted [125, 209]. Based on the work of Ofner et al. [106, 188], we

combined decoder pattern analysis [125] and M/EEG source imaging

[48] which allowed us to attribute kinematics related effects within the

LFTD activity to cortical regions.

There is growing evidence that the SMC encodes speed and velocity

information at various spatial scales, starting from spiking activity [89,

229] via ECoG [181] up to M/EEG [217, 218]. The non-linear relation

between speed and velocity impedes linear decoders to extract and

integrate the neural correlates of both kinematic variables, explaining

the advantage of non-linear decoders over linear ones [174, 202, 218, 230,

231].

Rather than using general purpose, non-linear machine learning algo-

rithms to decode movement trajectories [202, 231], we explicitly modeled

the relation between the directional and non-directional kinematics,

and let a UKF non-linearly combine the linearly encoded information.

‡ https://github.com/graz-bci/hear
§ https://doi.org/10.6084/m9.figshare.7718966

https://github.com/graz-bci/hear
https://doi.org/10.6084/m9.figshare.7718966
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Previously, Li et al. demonstrated that directional and non-directional

kinematics, encoded in neural spiking activity, could be successfully

combined with a UKF [174]. In the non-invasive domain, Yeom et al.

separately decoded the direction and length (speed) of the velocity vector

with a linear Kalman filter and combined themnon-linearly to reconstruct

the velocity trajectory [230].

More sophisticated decoding algorithms and feature extraction tech-

niques might be able to further improve the decoder accuracy. In our

studies we used LFTD signals as features for the decoding algorithms.

Hammer et al. used time and frequency resolved phase and power

features derived from LFTD ECoG and reported approx. 0.1 higher

correlations compared to merely band-pass filtered LFTD signals [123].

Another ECoG study extended the PLS regression algorithm to incorpo-

rate a smoothness constraint of the decoded trajectories [232].

Comparison with the State-of-the-Art

The proposed UKF reconstructed the movement trajectories offline [218]

and online [222] with moderate congruence and negligible amplitude

mismatch. In [218], the grand average correlations between the decoded

and recorded position and velocity trajectories were 0.4 (EEG) and 0.56

(MEG) in the execution condition; the SNR was -0.8 dB (EEG) and 0.9 dB

(MEG). In the online pilot study [222], the manual control condition (=

0% EEG-based decoding) was most similar to the offline analysis. In this

condition, the correlationswere 0.45. Because the experimental taskswere

similar in both experiments, a comparison of the obtained correlations is

appropriate. They suggest that replacing zero-phase spectral filters with

low-order causal ones has little impact on the decoder accuracy. However,

the decoding results in [222] should be interpreted with caution since

the sample size was small in the pilot study (5 participants).

So far, other non-invasive works that decoded movement trajectories

during continuous upper-limb movements from LFTD activity were

limited to offline analyses. The EEG studies that used motion artifact

resistant setups (active electrodes, chin clips) could reconstruct the

continuousmovement trajectorieswithmoderate congruence; the average

decoder correlations ranged from 0.3 to 0.5 [200–202]. This suggests that

after eye artifact correction, the decoder accuracy obtained in this thesis

is within the range of previous studies.

Recent studies with implanted electrodes obtained higher decoder accu-

racies [233–235]. One study demonstrated BCI operation based on LFTD

features during a continuous random target task [233]. They recorded

LFTD LFP activity of two NHPs with intracortical electrode arrays in M1

and PMd.Analyzing the calibration period,when themonkeys controlled

the end-effector with their arm movements, the decoder correlations

were approx. 0.8. This corresponds to a higher accuracy compared to

non-invasive techniques; the gap in terms of correlation ranges from 0.24

to 0.4. When the monkeys used the BCI to control the end-effector, they

could acquire the random targets in almost all trials. Although the NHPs

controlled the end-effector with the BCI, they continued to move their

arms.
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Still, the task performance based on intracortical, direct BCIs is below

the one of manual control [233, 236]. Since the decoders do not perfectly

match the executed/intended movements, the NHPs typically adjust

their movement behavior, affecting the neural dynamics and thereby

rendering the fitted decoder parameters inefficient [237]. A successful

strategy to cope with this issue is to refit the decoder periodically on the

intended movement trajectories during BCI usage [238]. The intended

movement trajectories are assumed to be the shortest path from the

end-effector to the target [239]. These advances in intracortical decoder

designs can also aid the transition from manual control to EEG-based

control and thereby reduce the decline in decoder accuracy that we

observed in [222].

In this thesis, we studied executed and observed goal-directed move-

ments in a population of healthy volunteers. Towhich extent the obtained

results might transfer to individuals with tetraplegia remains an open

question. Since the participants did not move their arms in the obser-

vation condition, the findings could be used to anticipate a baseline

decoder accuracy in individuals with tetraplegia. If they use a movement

attempt strategy rather than mere observation, a similar performance to

execution condition should be within reach [240, 241]. Using intracortical

BCIs, individuals with tetraplegia achieved similar decoding accuracy in

attempted movements as NHPs in executed movements [7]. Nonetheless,

the moderate decoding accuracy obtained in this work is not sufficient to

accurately control an end-effector.

Learning via feedback training could be a strategy to improve the accuracy.

Using motor imagery of distinct movements and band-power features,

Wolpaw and McFarland demonstrated that 2D cursor control could be

significantly improved with feedback training [6]. After training for

several weeks, the study participants could control a cursor in a 2D

center-out task with average correlations of 0.63. Edelman et al. used a

similar control strategy and reported that the participants could improve

the control skill significantly faster in a 2D tracking task compared to

a center-out task [242]. After skill acquisition within 10 sessions, some

participants could track the target with moderate accuracy (average

correlation of 0.4). Although there is evidence that individuals can learn

to voluntarily modulate low-frequency activity with feedback training

[243], it remains unclear whether, how fast and to which degree the

kinematics decoding accuracy can be improved with feedback training.

5.2 Conceptual Progress – Neurophysiology of
executed and observed Movements

Apart from a proof-of-concept direct BCI, this thesis also focused on the

analysis of kinematics related effects in LFTD M/EEG activity during

goal-directed movements. Unlike previous M/EEG studies, we could

explore and characterize kinematics related effects isolated from co-

varying eye artifacts [215–217]. Previous invasive electrophysiology and

fMRI literature implicated contralateral SMC in particularM1 and PMd as

well as PPC in particular SPOC in the encoding of kinematic information

during goal-directed hand movements [27, 244, 245]. Using EEG source
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imaging, different volitional states and tasks with decorrelated kinematic

variables, we demonstrated that kinematics related effects in SMC and

PPC can be also detected in LFTD M/EEG activity.

Directional and non-directional Kinematics

Movements can be described in Cartesian (e.g., velocity) and polar

coordinates (e.g, direction and speed) and viewed fromdifferent reference

points (retina, head, body, etc.). To generate complex movements, the

brain needs to represent movements in various coordinate systems so

that it can transform and integrate visual and sensory feedback as

well as generate motor outputs. Previous works that studied executed,

goal-directed movements reported direction [71, 85, 86], speed [89, 129],

velocity [120, 126] and position [120, 128] effects.

In the continuous tracking tasks, we observed a consistent representation

of speed in contralateral M1 and S1 phase-locked to the hand and finger

movements [217, 218]. The speed-related activity was consistent across

participants in terms of source location and polarity. Contralateral SMC

simultaneously encoded information about 2D hand/finger velocity

[216, 217] in the tracking task and direction in the center-out task [215].

This effect was consistent in terms of location; the polarity varied across

participants. Since the spatial distribution of directionally tuned neurons

in SMC is subject specific and varies on a small scale [233, 246], it is

unlikely to observe consistent effects in the population activity with

sensors that integrate the activity of large cortical patches [124]. Recently,

it was shown that a large fraction of the neurons that are modulated by

velocity are also modulated by speed [229]. With increasing speed the

spike rates of the vast majority of modulated neurons increased as well.

This correlated encoding of speed in a large number of SMC neurons

renders the observation of speed related effects in LFTD M/EEG activity

likely.

Unlike in contralateral SMC, we found velocity and direction to be

consistently encoded in PPC across participants [215, 218]. In the EEG

experiments the sources were located in POC and in theMEG experiment

slightly anterior in the superior parietal lobule and intra-parietal sulcus.

Because POC forms a gyrus and MEG is more sensitive to sources in the

sucli, stronger source activity in EEG can be expected. POC has been

identified as the human homologe of V6 and V6a in NHPs [247]. It is

active during visual reaching [28, 248], pointing [248] and eyemovements

[28], modulated by movement direction [249, 250] and has a retinotopic

organization [251]. These properties support the detection of direction

related effects during visuomotor and oculomotor tasks in the LFTD

EEG.

Executed and observed Movements

The volitional state, namely, whether one executes, observes or attempts a

movement can considerably affect the neural representation of kinematic

information [240, 250]. In the healthy population that we studied in

this thesis, we considered executed (visomotor tasks) and observed

(oculomotor taks) movements. POC encoded directional information
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in both volitional states, whereas the effects in contralateral SMC were

specific to executed movements. A recent fMRI study observed similar

effects in reaching and saccadic movements [250]. They reported that

POC encoded movement direction during arm and eye movements,

indicating that POC plays a role in integrating goal information across

different effectors. Increasing evidence suggests that the spatial goal for

a movement is primarily encoded in POC, while more rostral, anterior

parietal regions encode reach vectors from the initial hand position

during reaching movements [252].

In a continuous tracking task, the changing spatial goal is determined

by the target’s velocity, if the participants try to keep the target foveated.

The model of POC would then suggest that the strongest direction

tuning effect should be phase-locked to the target velocity trajectories.

In our experiments, the target and cursor velocity trajectories were

tightly coupled because the participants could accurately track the target.

Consequently, we observed the predicted POC effects phase-locked to

the cursor velocity [218, 221].

Our findings show that LFTD M/EEG activity provides access to the

direction of goal-directed movements twofold. Activity in POC is modu-

lated by the direction of the movement goal in executed and observed

movements [215, 218]. The representation is consistent across participants.

Activity in SMC and more anterior, rostral PPC is modulated by the

directional kinematics of the moving hand and is participant-specific.

Continuous and discrete Movements

In this thesis, continuous and discrete goal-directed movements were

studied,mainlywith the aim to classify the direction of discrete center-out

movements anddecode the trajectories of continuous trackingmovements.

Previous non-invasive studies asked the participants to perform either

discrete or continuous movements in a single experiment. We studied

center-out and continuous tracking movements in a single experiment

[215, 216].

With regard to the representation of directional information, we ob-

served similar effects in the LFTD EEG activity. We found a consistent

representation in POC during the pre-movement and movement periods

time-locked to the cues and again later in the tracking task time-locked to

the cursor(/target) velocity trajectories. In the execution condition, ipsi-

and contralateral PMd encoded more information about the direction

around themovement onset and later in the tracking task about the cursor

velocity. Our findings suggest that directional effects during continuous

and discrete goal-directed movements share common neural represen-

tations, and that they are time-locked to the velocity in the continuous

case and direction cue in the discrete case. Cue aligned effects in POC

seem likely since POC is implicated in the encoding of the spatial goal

[252]. Moreover, POC and PMd are part of the dorsal reach system, with

direct projections from POC to PMd [26], indicating that POC provides

directional information that other PPC and motor areas transform into

low-level commands.

In discrete movements, bilateral SMC generated an MRCP phase-locked

to the movement onset [215]. Moreover, SMC was modulated by the
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time-varying movement speed during the continuous tracking task [218].

Recent neurophysiological findings suggest that movement initiation

related activity in PMd andM1 is modulated by the vigor (or speed) of an

ensuing movement [12, 253]. In the context of M/EEG, previous studies

demonstrated that the MRCPwaveform is modulated by speed [102, 204],

and that the time-varying speed of continuous movements is encoded

in SMC [129]. Our findings suggest that speed related effects in discrete

and continuous movements share a common neural representation.

5.3 Limitations

Directional Effects in SMC

Since the movements in different directions involved different sets of

joints and muscle groups in our experiments, and it was shown that

distinct joint movements modulate the LFTD EEG activity in SMC [106],

the participant-specific representation of direction, observed in this

thesis, could be attributed to joint angle or muscle synergistic effects.

Disentanglement of the co-varying kinematic and kinetic variables that

can describe movement poses a challenge. Still, it is now accepted that

kinematic information can be inferred from neural activity in SMC.

Decoder Accuracy

The proposed distance- and speed-informed trajectory decoder resolved

the amplitude mismatch, and decoded executed movement trajectories

with moderate accuracy offline and online. Still, correlations around

0.4 and SNRs around 0dB are insufficient for accurate, continuous end-

effector control. Moreover, feedback based on the decoder, which was

fitted to executed movements, resulted in a decline in decoding accuracy

[222]. Similar effects have been previously observed in NHPs and spiking

activity [237]. One strategy to improve the initiallymoderate performance

of direct BCIs is to facilitate neural adaptation. This strategy proved useful

in invasive direct BCIs inNHPs and impaired humans [237]. Using a fixed

decoder that predicts the movement trajectories initially with moderate

accuracy [254] or occasionally adapting the decoder [255] can help to

facilitate neural adaption and improve task performance across few

sessions. In [254] NHPs could considerably improve the control skill

within 10 recording sessions and retained a high-accuracy control in

subsequent sessions.

Decoder Calibration

At this stage, feedback training based on a LFTD EEG-based decoder is

limited by the lengthy calibration process. Recording calibration data

and fitting the model took on average two thirds of the recording time

[221, 222]. Ideally feedback training could be started right away with

a decoder that is transferred from previous sessions or even subjects

[254].
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A challenge in transferring decoders is that brain signals inherently vary

across time and subjects. In the case of EEG, these variations or drifts can

have physical or mental origin. Physical variations include misalignment

of the EEG electrodes across sessions, changes in the electrode scalp

interface within or across sessions, and different head shapes of subjects.

Mental variations are caused by non-task relevant brain activity due to

different mental conditions. The combined variations can considerably

deteriorate BCI performance. In indirect, motor-imagery BCIs, feature

normalization strategies were successfully used to reduce the perfor-

mance drop between sessions and subjects [256] and to implement a

plug-and-play BCI [257]. Whether and with which accuracy a LFTD

EEG-based decoder transfers across sessions and subjects remains an

open question. The consistent group-level representation of movement

direction in POC indicates that inter-subject transfer might be feasible.

The accuracy of a transferred decoder will likely be lower than a ses-

sion specific one, since the directional information encoded in SMC is

participant-specific.

Transfer to 3D Movements

The focus of this thesiswas on 2Dmovements alongwith the vastmajority

of invasive and non-invasive trajectory decoding studies – see [144, 245]

for recent reviews. Some LFTD activity decoding studies investigated

3D movements [127, 128, 258]. A transition from 2D to 3D movements

would require additional components in the decoding and eye artifact

correction algorithms. During eyemovements in depth, the eyeballsmove

in different directions, requiring an additional component to describe

corneo-retinal dipole artifact inM/EEG signals. The presented eye artifact

approach could be extended to correct this additional component, if

a depth condition is included in the experimental paradigm and the

associated artifact subspace is subtracted.
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At the beginning of this thesis, I outlined a long-term vision of BCI

research; a paralyzed individual makes dexterous movements with an

end-effector by simply attempting a desired action. A direct BCI would

detect the neural correlates of the attempted actions and transform them

into control commands for the end-effector. Although there are many

remaining challenges to overcome, I consider this thesis to make three

major contributions towards using non-invasive functional neuroimaging

techniques like EEG and MEG to implement this vision.

In several studies we showed that co-varying eye artifacts can be disen-

tangled from LFTDM/EEG activity that encodes directional information.

The achievements in artifact correction enabled the second contribution,

namely, whether and how the kinematics of goal-directed movements are

represented in LFTD M/EEG activity during different movement tasks

and volitional states. We corroborated and extended the findings of pre-

vious works by identifying and characterizing two cortical networks that

encode directional and non-directional kinematic information during

discrete and continuous movements. At last, the methodological and con-

ceptual advances were combined to implement a proof-of-concept, LFTD

EEG-based, direct BCI for movement control. In two feasibility studies,

we demonstrated that the direct BCI can decode executed movement

trajectories with moderate congruence in real-time.

6.1 Outlook

As already mentioned, there are many remaining challenges and open

questions. From the BCI perspective the most critical one is how the

decoder accuracy could be improved. We have seen that allowing eye

movements and removing the associated artifacts did not improve the

accuracy upon previous studies that asked the users to avoid eye move-

ments. I see three strategies that could contribute to improving the

accuracy.

First, I surmise that the user could learn to improve the accuracy during

longitudinal feedback training sessions. Kübler et al. demonstrated

that healthy and paralyzed volunteers can learn to modulate slow-

cortical potentials [243]. Moreover, accuracy improvements due to neural

adaptation have been reported in invasive, direct BCIs [237]. During BCI

operation, the provided feedback can alter the control strategy, rendering

a decoder which was fitted to executed movements suboptimal. Indeed,

we observed that the decoder accuracy declined once feedback was

provided by the direct BCI, a problem that has also been reported for

direct, invasive BCIs [161, 162] and addressed via intention estimation

methods [238, 239].

The second strategy concerns methodological aspects. To compensate

inter-session variations in electrode positioning andmontage, EEG source
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imaging could be used as a pre-processing step, ideally with a participant-

specific headmodel. Recently, Edelman et al. demonstrated for an indirect,

motor imagery-based BCI for movement control that a decoder fitted

in source space outperformed the same decoder fitted in sensor space

[242]. EEG source imaging also helped to identify power-modulations

in the beta band that were phase-locked to the movement rhythm [259],

length of the acceleration vector [131] and direction [219]. Combining the

LFTD and spectral features might further improve the decoder accuracy.

In an ECoG study, Hammer et al. transformed the LFTD activity into

a time-frequency representation and reported that phase features were

particularly informative [123].

The third strategy is motivated from the user perspective. To control an

end-effector, it seems irrational to exclude the information encoded in

the eye movement behavior. EEG and EOG activity could be combined

to implement a hybrid BCI [260, 261]. Unlike an eye tracker, a hybrid

BCI could detect if the user is merely moving the eyes to explore the

environment, or engaged in controlling an end-effector.

Beyond improving the decoder accuracy of executed movements, future

studies will also have to determine to which degree the results in healthy

volunteers transfer to paralyzed users. Attempted movements seem to

be the most promising mental strategy, since the decoder accuracy is

typically higher than in observed or imagined movements [240, 241].
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A B S T R A C T

Eye movements and blinks contaminate electroencephalographic (EEG) and magnetoencephalographic (MEG)
activity. As the eye moves, the corneo-retinal dipole (CRD) and eyelid introduce potential/field changes in the M/
EEG activity. These eye artifacts can affect a brain-computer interface and thereby impinge on neurofeedback
quality. Here, we introduce the sparse generalized eye artifact subspace subtraction (SGEYESUB) algorithm that
can correct these eye artifacts offline and in real time. We provide an open source reference implementation of the
algorithm and the paradigm to obtain calibration data. Once the algorithm is fitted to calibration data (approx. 5
min), the eye artifact correction reduces to a matrix multiplication. We compared SGEYESUB with 4 state-of-the-
art algorithms using M/EEG activity of 69 participants. SGEYESUB achieved the best trade-off between correcting
the eye artifacts and preserving brain activity. Residual correlations between the corrected M/EEG channels and
the eye artifacts were below 0.1. Error-related and movement-related cortical potentials were attenuated by less
than 0.5 μV. Our results furthermore demonstrate that CRD and eyelid-related artifacts can be assumed to be
stationary for at least 1–1.5 h, validating the feasibility of our approach in offline and online eye artifact
correction.

1. Introduction

Human eye movements and blinking activity carry rich information
about mental processes (Hoffman and Subramaniam, 1995; Kahneman
and Beatty, 1966; Wilson, 2002). Yet eye movements and blinks
contaminate electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) activity in the form of electrooculographic (EOG) and
magnetooculographic (MOG) artifacts (Gratton et al., 1983; Katila et al.,
1981). Given the relative strength of EOG and MOG artifacts - commonly
referred to as eye artifacts - compared to EEG and MEG activity, they can
severely confound experimental findings, clinical diagnosis, or neuro-
feedback in the case of brain-computer interfaces (BCIs).

There are three major physiological sources generating eye artifacts
(Keren et al., 2010; Picton et al., 2000). They comprise the corneo-retinal
dipole (CRD), the eyelid and extraocular muscles (Gawne et al., 2017;
Keren et al., 2010). The CRD models the positive charge of the cornea

with respect to the retina (Mowrer et al., 1935). As the eyeball rotates,
the dipole orientation changes, which in turn results in a potential/field
change at the M/EEG sensors. The CRD-related artifact’s amplitude de-
clines approximately with the square of the distance to the CRD (Croft
and Barry, 2000a). Eyelid movements occur during blinks and vertical
gaze shifts. As the eyelid slides across the positively charged cornea, a
high amplitude potential/field is introduced (Iwasaki et al., 2005).
Contraction of the extraocular muscles at a saccade onset results in the
saccadic spike potential (Riemslag et al., 1988): a transient potential in
the 20–90 Hz range (Keren et al., 2010).

At frequencies below 20 Hz, CRD and eyelid induced artifacts domi-
nate (Keren et al., 2010). Their exact effect on the potential/field at each
sensor depends on various factors such as the sensor location with respect
to the head, the head geometry, conductances of the various tissue layers
and the scalp-electrode interface. As these factors inherently vary across
participants and sessions, the eye artifact related potential/field at each
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sensor needs to be re-estimated for each experiment.Within a large visual
workspace (visual angle � 20�) it can be assumed that the artifact con-
tributions are linear (Pl€ochl et al., 2012). Offline, the eye artifacts are
commonly modeled to be linear and time-invariant within a recording
session (Croft and Barry, 2000a; Urigüen and Garcia-Zapirain, 2015). Eye
artifact correction approaches are typically based on independent
component analysis (ICA) (Jung et al., 2000; Mannan et al., 2016; Pion--
Tonachini et al., 2019; Pl€ochl et al., 2012; Winkler et al., 2014) or linear
regression (Croft and Barry, 2000b; Gratton et al., 1983). Regression ap-
proaches typically use pre-defined (bipolar) spatial filters to estimate the
eye artifact activity from EOG channels. This poses a limitation, since re-
sidual brain activity within the estimated eye artifact activity is removed.
Berg and Scherg introduced a subspace subtraction approach to address
this limitation (Berg and Scherg, 1994). The correction uses calibration
data to first estimate the eye artifact source from EEG and EOG channels
and then regress their contribution from the EEG channels (Lins et al.,
1993a).

In neurofeedback and brain-computer interface (BCI) studies, the eye
artifacts have to be corrected in real-time. Assuming a stationary eye
artifact model, Schl€ogl et al. proposed to record a short period of eye
movements and blinks at the beginning of an experiment (calibration
data), then fit parameters of a correction model to the calibration data,
and use the fitted model to correct EEG signals online (Schl€ogl et al.,
2007). Given that an experimenter aims to maximize the time of BCI or
neurofeedback operation, the time to record calibration data is typically
limited. We recently presented a 5-min paradigm to record eye artifact
calibration data in a controlled fashion and showed that CRD and
eyelid-related artifacts could be attenuated to the noise level up to 1 h
after calibration (Kobler et al., 2017).

Here, we present a new CRD and eyelid-related artifact correction
algorithm based on artifact subspace subtraction (Berg and Scherg, 1994;
Parra et al., 2005). We compare its performance in terms of attenuating
eye artifacts and preserving brain activity to four representative correc-
tion algorithms, using five datasets with 78 recording sessions in total.
For all datasets, we recorded at least two blocks containing 5 min of
resting and eye artifact activity. The two blocks were separated by up to

100min, allowing us to additionally investigate whether a time-invariant
model is sufficient to describe the eye artifacts in the M/EEG channels.

2. Materials and methods

We performed an offline analysis using 5 datasets which contain 78
recordings of 69 participants. Eye artifacts were recorded during 2–4
dedicated experimental blocks according to the paradigm presented in
Fig. 1a. The trial based paradigm distinguished 4 conditions, namely,
REST, HORZ, VERT and BLINK. Depending on the condition, the par-
ticipants were instructed to keep their eyes open and focus their gaze
(REST) on a stimulus located in the center of the screen, track the moving
stimulus along a horizontal/vertical axis (HORZ/VERT), or slide their
eyelid down and up once as if they would blink involuntarily whenever
the stimulus’ size reduces (BLINK). Fig. 1b displays the stimulu’s tra-
jectories and the behavior of a representative participant, inferred from
EOG activity, during the 4 conditions. The stimulus moved with a fre-
quency of 0.5 Hz during HORZ/VERT trials and reduced its size 8 times
during BLINK trials.

If not stated otherwise, each experimental block (eye block) consisted
of 27 trials (9 REST and 6 HORZ/VERT/BLINK), and lasted for approx. 5
min. We provide a reference implementation (Kobler et al., 2019) using
Matlab (Matlab, 2015b; Mathworks, USA), Psychtoolbox (Brainard,
1997; Pelli, 1997) and labstreaminglayer (Kothe et al., 2019).

The 5 datasets analyzed here were recorded at Graz University of
Technology (EEG datasets) and Osaka University (MEG dataset) to study
different aspects of neural correlates of M/EEG activity in behaving
healthy humans. In all datasets, the experimental procedure conformed
to the declaration of Helsinki and was approved by local ethics com-
mittees. After the participants were informed about the purpose and the
procedure of each study, they gave their written consent.

2.1. EEG dataset 1 (EEGDS1)

The dataset comprised 15 participants and was recorded to investi-
gate the expression of directional information in low-frequency EEG

Fig. 1. Experimental approach to correct eye artifacts in M/EEG signals. a, Experimental paradigm. Each trial started with a 1-s preparation period, followed by a 10-s
task depending on the condition and a short break. The position and size of a stimulus coded the four experimental conditions. Blue arrows indicate movement, or a
decrease in size during BLINK trials. b, Blue traces indicate the stimulus position and size during four consecutive trials. The behavior, inferred from EOG activity
(horizontal, vertical, radial), of a typical participant is displayed below. c, One eye block (27 trials) was used to fit eye artifact correction model parameters (A, W).
New samples of EOG and M/EEG activity (x[t]) were corrected by subtracting the eye artifact subspace. d, Uncorrected (black) and corrected (green) EEG activity for a
representative participant.
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activity during continuous tracking movements (Kobler et al., 2018) and
movement-related cortical potentials (MRCPs) during center-out move-
ments (Kobler et al., in revision). We extended the dataset by including 5
pilot measurements, which we presented in (Kobler et al., 2017). EEG
activity was recorded at 64 (58 in the pilot) electrodes placed according
to the 10-10 system, with the reference at the right mastoid and ground at
AFz. EOG activity was recorded at 6 electrodes placed next to the outer
canthi, infra orbital and superior orbital. EEG and EOG activity was
captured synchronously using active electrodes (actiCAP, Brain Products
GmbH, Germany) and a biosignal amplifier system (BrainAmp, Brain
Products GmbH, Germany). We recorded 2 eye artifact blocks - one at the
beginning of the experiment and one at the end. They were separated by
134 min, on average.

2.2. EEG dataset 2 (EEGDS2)

We recorded this dataset to study the online control of a robotic arm
using a low-frequency EEG-based kinematics decoder (Mondini et al., in
review). The dataset comprised 10 participants. We used the same EEG
and EOG setup and equipment as in EEGDS1, and recorded 2 eye artifact
blocks - one at the beginning of the experiment and another one
approximately 34 min later.

2.3. EEG dataset 3 (EEGDS3)

This dataset was recorded to study the online detection of error-
related potentials (ErrPs) during robotic arm control (Lopes-Dias et al.,
2019). It comprises 15 participants. The EEG and EOG recording equip-
ment was the same as in EEGDS1. The electrode layout differed slightly;
EEG and EOG signals were recorded with 61 and 3 electrodes respec-
tively. The 3 EOG electrodes were placed below the outer canthi and
above the nasion. We recorded 2 eye artifact blocks at the beginning of
the experiment. They were separated by 9 min on average.

2.4. EEG dataset 4 (EEGDS4)

In this dataset, we explored EEG correlates of unimanual and
bimanual reach and grasp actions (Schwarz et al., 2019). It contains re-
cordings of 15 participants. EEG activity was recorded with 58 electrodes
covering frontal, central, parietal and temporal areas according to the
layout described in (Oostenveld and Praamstra, 2001). The reference
electrode was placed on the right earlobe, ground on position AFF2h.
EOG activity was recorded with 6 active electrodes positioned next to the
outer canthi, infra orbital and superior orbital to the left and right eye.
EEG and EOG signals were recorded simultaneously using active elec-
trodes (g.GAMMAsys/g.LADYbird, g.tec GmbH, Austria) and four bio-
signal amplifiers (g.USBamp, g.tec GmbH, Austria). We recorded 3 eye
artifact blocks - one at the beginning of the experiment, one in the middle
and one at the end. Each block had 27 trials (18 REST, 3 HORZ, 3 VERT, 3
BLINK). They were separated by 60 min on average. In this dataset,
BLINK trials were indicated with the text ‘BLINK’ appearing on the
screen. The text stayed visible during the trial. We instructed the par-
ticipants to blink with a rate of 1–2 Hz. We excluded the data of one
participant due to large cross-talk between the vertical and horizontal
EOG derivatives, limiting the detection of upward/downward/leftwar-
d/rightward eye movements.

2.5. MEG dataset (MEGDS)

This dataset was recorded to study the joint decoding of upper-limb
movement speed and velocity from low-frequency MEG activity
(Kobler et al., 2019). It contains data of 19 participants. MEG activity was
recorded with 160 gradiometers. As in (Kobler et al., 2019), we used 129
channels for the analysis. EOG activity was recorded using 4 electrodes
placed next to the outer canthi of both eyes and inferior and superior
orbital to the left eye. The MEG and EOG signals were recorded

synchronously with an MEG system (MEGvision NEO, RICOH Ltd.,
Japan) and a biosignal amplifier (Neurofax EEG 1200, Nihon Koden
Corp., Japan). We recorded 4 eye artifact blocks - two at the beginning of
the experiment and two at the end. They were separated by 100 min on
average.

2.6. EEG pre-processing

The EEG datasets shared a common pre-processing pipeline imple-
mented with Matlab 2015b (MathWorks Inc., USA) and EEGLAB (version
14.1.1) (Delorme and Makeig, 2004). First, the EEG and EOG signals
were resampled at 200 Hz, then a notch filter (Butterworth filter, 2nd
order, 49 and 51 Hz cut-off frequencies) and a high-pass filter (Butter-
worth filter, 2nd order, 0.4 Hz cut-off frequency) were applied bidirec-
tionally to attenuate line noise and drifts. We visually inspected the data
for bad channels, which were spherically interpolated using spherical
spline interpolation in EEGLAB (Delorme and Makeig, 2004). Next, we
used the EOG channels to compute vertical, horizontal and radial EOG
derivatives. The horizontal EOG (HEOG) derivative was the difference
between the signals of the electrodes placed next to the outer canthi of
both eyes; the vertical EOG (VEOG) derivative was the difference be-
tween the superior and inferior orbital electrodes; the radial EOG de-
rivative was the average of all EOG electrodes. For EEGDS3 only three
EOG electrodes were available. As in (Schl€ogl et al., 2007), we set the
VEOG derivative to the mean of the differences between the electrode
above the nasion and the ones below the outer canthi. The EOG deriva-
tive signals were subsequently low-pass filtered (Butterworth filter, 2nd
order, 5Hz cut-off frequency, filter applied bidirectionally). We then
extracted 8s long epochs, starting 1s after the condition cue. Finally, we
visually inspected the epoched data and rejected epochs contaminated by
muscular artifacts or electrode pops and drifts. On average, 14% (1%
standard-error of the mean, SEM) epochs were rejected.

2.7. MEG pre-processing

As in (Kobler et al., 2019), we applied two additional pre-processing
steps to attenuate effects of small head movements and technical artifacts
in the MEG dataset. First, we spherically interpolated the MEG sensors to
their average position with respect to the participants’ head, using
Brainstorm toolbox (version 05-Jun-2018) (Tadel et al., 2011). Second,
we applied ICA to identify and reject technical and spatially stationary
artifacts introduced by the experimental equipment and other appliances
in the hospital. In detail, we applied the extended Infomax algorithm to
decompose the MEG signals into independent components (ICs) that
explained 99.9% of the variance. We visually inspected and marked on
average 8.6 (0.2 SEM) out of 63.5 (0.1 SEM) ICs for rejection.

2.8. Eye-movement and blink detection

We used the low-pass filtered EOG derivative signals to extract pe-
riods of eye-movements and blinks from the epoched data. In BLINK
epochs, a blink was detected if the vertical EOG derivative exceeded a
threshold of 75 μV for at least 25 ms. In VERT epochs, upwards/down-
wards eye movements were detected, if the vertical EOG derivative
exceeded �10 μV for at least 200 ms. In HORZ epochs, rightwards/left-
wards eye movements were detected, if the horizontal EOG derivative
exceeded �10 μV for at least 200 ms. If we detected a blink in REST,
HORZ, VERT epochs, the affected samples were considered as outliers. In
detail, a sample was considered as an outlier, if the V/HEOG derivative
exceeded 100 μV (150 μV for the VEOG derivative in VERT epochs) for at
least 200 ms.

For each block, we concatenated the periods during which we
detected rest/blink/right/left/up/down activity. Each sample within
these periods was assigned the corresponding label, resulting in an
nchannels � nsamples matrix X and an nchannels � 1 vector y containing the la-
bels.
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2.9. Proposed algorithm

Similar to (Kobler et al., 2017; Parra et al., 2005), the proposed al-
gorithm removes the subspaces that explain the variance introduced by
CRD and eyelid movements from the M/EEG activity. This is done in a
two step procedure. First, the subspace activity s½t� at each time-point t,
represented as an nsubspaces � 1 vector, is estimated from the M/EEG and
EOG activity, represented as an nchannels � 1 vector x½t�

s½t� ¼WT x½t� (1)

using an nchannels � nsubspaces unmixing matrix W. Second, the corrected
activity xc½t� is obtained by subtracting the contribution of the subspaces

xc½t� ¼ x½t� � As½t� (2)

using an nchannels � nsubspaces mixing matrix A. The mixing matrix A cor-
responds to the patterns associated with the unmixing matrix W (Haufe
et al., 2014). The least squares solution for A is

A¼Σx W Σ�1
s (3)

with covariance matrices Σx and Σs. The subspace signal covariance
matrix Σs can be computed using the channel covariance matrix Σx and
the unmixing matrixW:

Σs ¼WT Σx W (4)

We computed Σx using the samples and analytical shrinkage regula-
rization (Sch€afer and Strimmer, 2005). Fig. 1c summarizes the correction
approach.

The central difference to previous artifact subspace subtraction
methods (Kobler et al., 2017; Parra et al., 2005) lies in the computation of
the unmixing matrix W. Since each subspace, defined by an nchannels� 1
unmixing vector w, is associated with one artifact dimension (horizontal
eye movements, vertical eye movements or blinks), we split the matrix
estimation problem into nsubspaces ¼ 3 vector estimation problems. For
example, in the case of horizontal eye movements we used the samples
labeled as left and right to find the subspace that best separates them. We
modeled this classification problem as a logistic regression optimization
problem with weighted elastic net regularization. The optimization
problem is defined as

w*; b* ¼ arg min
w;b

X
t

log
�
1þ e�y½t�ðwT x½t�þbÞ �þ α

2
jj w jj 2

ΣðrestÞ
x

þ β jj w jj 1 (5)

with labels y½t� 2 f�1; 1g (representing left and right, for example),
regularization parameters α and β , and channel covariance matrix during

resting periods ΣðrestÞ
x . The L1 norm in (5) drives w to be sparse. The term

jj w jj 2ΣðrestÞ
x

denotes the weighted L2 norm of w defined as

jj w jj 2
ΣðrestÞ
x

¼ wT ΣðrestÞ
x w (6)

Minimizing (6) ensures minimal subspace activity during resting
periods, which is equivalent to maximizing the preservation of brain
activity during eye artifact free periods. Our motivation for the sparsity
constraint was mainly to improve the generalization to new data with
potentially different configurations of active brain sources. The sparsity
constraint forces the solution to have most of the weights equal to zero at
occipital, parietal and central channels and to have few nonzero weights
at prefrontal and anterior temporal channels because they are closest to
the artifact sources. Hence, activity of sources in occipital, parietal and
central areas that might not have been active in the calibration data
would contribute negligibly to the artifact subspaces, and, thereby,
would not be removed.

We solved the optimization problem in (5) with a Nesterov accelerated
proximal gradient descent algorithm (Beck and Teboulle, 2009). The

proposed artifact correction algorithm first removes the two subspaces
(Aeye WT

eye) related to horizontal and vertical eye movements, and then
removes from the residual signals the subspace associated with eye blinks
(ablink wT

blink). In detail, (5) is used to compute the unmixing vectors for
horizontal whorz and vertical wvert eye movements. Then they are combined
to form Weye. Using (3), Aeye is computed. Then (2) is used to remove the
two subspaces. The residual activity during blinks and resting data is used
in (5) to estimate wblink. As before, (3) and (2) are used to compute and to
correct the M/EEG signals. The pseudocode for fitting the artifact correc-
tion model is provided in Supplementary Listing 1. It outputs a one step
correction matrix C that combines equations (1) and (2) into a single
matrix multiplication, which is computationally inexpensive.

xc½t� ¼C x½t� (7)

with

C¼ �
I� ablink wT

blink

�
Ceye and Ceye ¼ I � Aeye WT

eye (8)

We additionally provide an open source and freely available reference
implementation in Matlab (Kobler, 2019). Using the open source
implementation, the process of recording the calibration data and fitting
the model took on average 10 min and up to 15 min if the briefing of
participants is included.

2.10. Algorithm evaluation

We compared the proposed algorithm to four representative correc-
tion algorithms. The first one was originally proposed by Schl€ogl et al.
and is denoted EYEREG here. EYEREG requires the horizontal and ver-
tical EOG derivative signals and solves a regression problem for each EEG
channel (Schl€ogl et al., 2007). The second algorithm, EYEEEG, works in
the independent component space. For each IC, the variance is computed
during eye artifacts (eye movements and blinks) and rest. If the variance
during eye artifacts is larger than the variance during rest, an IC is
classified as eye artifact related and rejected (Pl€ochl et al., 2012). Pl€ochl
et al. proposed to classify ICs as artifactual, if the respective variance
ratio was larger than 1.1. We tested a variety of thresholds (Supple-
mentary Figure 7) and found that a threshold of 2.0 resulted in the best
trade-off between eye artifact correction and preservation of brain ac-
tivity. The third algorithm is a representative of the subspace subtraction
algorithms and is publicly available as an EEGLAB plugin named EYE-
SUBTRACT (Zhou et al., 2005). We designed the fourth algorithm based
on the ideas of Parra et al. (2005) and presented it in (Kobler et al., 2017).
To distinguish it from EYESUBTRACT, we denote it here as generalized
eye artifact subspace subtraction (GEYESUB) algorithm. In contrast to
EYESUBTRACT, it also considers resting data in the optimization prob-
lem. This allows a trade-off between eye artifact correction and preser-
vation of brain activity.

We evaluated the correction quality of the algorithms with a causal
evaluation approach. All algorithms were fitted to the first eye block (first
and second for EEGDS4 and MEGDS), while the second (third for
EEGDS4; third and fourth for MEGDS) eye block was used to evaluate the
algorithms. Depending on the algorithm, the fitting procedure comprised
the computation of ICA or regression weights.

As in (Kobler et al., 2017), we computed 3 evaluation metrics. To
assess the CRD and blink artifact correction quality, we computed
Pearson correlation coefficients between the EOG derivative and the
corrected M/EEG channels; for the HORZ epochs, we used the HEOG
derivative, and for the VERT and BLINK epochs, the VEOG derivative. To
assess the preservation of brain activity, we computed the root mean
squared error (RMSE) between the corrected and uncorrected signal at
each M/EEG channel during REST epochs. To assess the impact on the
spectral domain, we computed the power spectral density (PSD) ratio
between corrected and uncorrected signals during REST trials. We used
Welch’s method with a 2-s window (1 s overlap) to compute the PSDs for
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frequencies in the range from 0 to 30 Hz.
We also computed MRCPs for EEGDS1 and ErrPs for EEGDS2 before

and after eye artifact correction, using data of the main experimental
blocks. The paradigms and pre-processing procedures to obtain the
MRCPs and ErrPs are described in (Kobler et al., in revision) and
(Lopes-Dias et al., 2019).

We tested for significant differences across algorithms with permu-
tation paired t-tests (Maris and Oostenveld, 2007; Nichols and Holmes,
2002) and controlled the false discovery rate (FDR) according to (Ben-
jamini and Yekutieli, 2001). We also computed confidence intervals
across recording sessions. The confidence intervals were estimated, from
the mean and standard error of the mean (SEM), with a confidence level
of 0.05, assuming a Student’s t distribution.

2.11. Hyperparameter estimation

The proposed algorithm (SGEYESUB) has two hyperparameters α and
β, defined in equation (5). We used a grid search to determine α and β
with the goal to minimize the RMSE during REST epochs and residual
correlations during HORZ/VERT/BLINK epochs of the second block on
EEGDS1 (20 participants). The set of candidate values was {0.001, 0.01,
0.1, 1, 10} for α and {0.00001, 0.0001, 0.001, 0.01, 0.1} for β. The
combination of α ¼ 1 and β ¼ 0.01 resulted in the best performance
across the participants within EEGDS1.

We fitted the hyperparameters of GEYESUBwith the same grid search
approach. GEYESUB has two hyperparameters. One weighs the L2 norm
in a penalized logistic regression classifier. It was varied in the range
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and fixed to 100. The second
hyperparameter was used to shrink the unmixing matrix towards iden-
tity. It was varied in the range {0.000001, 0.00001, 0.0001, 0.001, 0.01,
0.1, 1} and fixed to 0.001. Since both eye blocks of EEGDS1 were used to
fit the hyperparameters of GEYESUB and SGEYESUB, we excluded the
eye block data of EEGDS1 from the final evaluation.

2.12. Model evaluation

As a last analysis step, we investigated whether the assumption of a
stationary model in equations (1) and (2) holds for a 1–1.5 h long
experiment. If the contribution of eye artifacts to the M/EEG sensors
varied over time, the performance of the eye artifact correction algo-
rithms would decrease. To test whether a stationary model is sufficient,
we compared the performance of the correction algorithms between the
first and second block. To get an unbiased estimate of the evaluation
metrics for the first block, we applied a leave-one-trial-out cross-valida-
tion scheme. In detail, we fitted the correction algorithms to all but one
trial of the first block, and computed the evaluation metric for the held
out trial and a randomly selected trial with the same condition from the
second block. After each trial of the first block was tested once, we
computed the mean of the evaluation metrics across the trials of each
block.

We fitted a regression line with the difference in the evaluationmetric
between the first and second block as a dependent variable and the
duration between the first and second block as a predictor. We tested the
significance of the slope of the regression line with permutation tests
(Maris and Oostenveld, 2007; Nichols and Holmes, 2002). In 10,000
permutations, we randomly flipped the sign of the differences in the
evaluation metrics before fitting the regression model. We set the p-value
as the fraction of random models whose absolute value of the slope was
larger than the absolute value of the observed slope. Regarding multiple
comparisons, we controlled the false discovery rate (FDR) according to
(Benjamini and Yekutieli, 2001).

2.13. Data and code availability statement

Reference implementations of SGEYESUB, the other algorithms and
the experimental paradigm are provided on GitHub (Kobler, 2019). The

repository also provides code to demonstrate how the algorithms were
fitted and applied to M/EEG data.

The pre-processed EEG datasets are publicly available on OSF (Kobler
et al., 2020). The raw EEG datasets are available upon request to the
corresponding author and require a formal data sharing agreement. The
authors do not have the permission to share the MEG dataset (MEGDS).

3. Results

The grand average eye artifact correction results of the EEG datasets
are displayed in Fig. 2. The figure displays topographic plots (Fig. 2a–d)
and barplots for the average channel (Fig. 2e and f). The topographic
plots in the top row of Fig. 2a show the correlations of the EEG channels
with the eye artifacts for uncorrected data. Compared to uncorrected
data, all algorithms attenuated the CRD and eyelid-related artifacts. All
algorithms except EYEREG achieved a rather uniform attenuation to re-
sidual correlations below 0.1 across channels. EYEREG failed to correct
vertical eye movements; the residual correlations at pre-frontal, posterior
and occipital channels were considerably larger (approx. 0.2) compared
to the other algorithms. This effect was significant for the average
channel (Fig. 2e). The residual correlation with the VEOG derivative was
0.2 on average, compared to 0.1 for EYEEG and below 0.1 for the sub-
space subtraction algorithms. The differences between EYEEG and the
subspace algorithms was also significant. We did not observe any other
significant difference in the correction quality of the algorithms during
eye movement and blink epochs.

The topographic distribution of the RMSE during rest epochs is
summarized in Fig. 2b. We observed a gradient with largest RMSE at pre-
frontal channels and smallest RMSE at occipital channels. EYESUBTRACT
removed considerably more activity than EYEEEG, which in turn
removed more activity than EYEREG, GEYESUB and SGEYESUB. The
differences were significant for the average EEG channel (Fig. 2f). The
significance tests also revealed that EYEREG (1.2 μV) removed signifi-
cantly less activity than GEYESUB (1.5 μV) and SGEYESUB (1.5 μV). The
size of this effect was small (0.3 μV).

In addition to resting data, we also estimated the effect of the
correction approaches on ErrPs and MRCPs. The grand average topo-
graphic distributions of the positive and negative peaks of the ErrP, and
the MRCP at movement onset are displayed in Fig. 2c and d, respectively.
Compared to the uncorrected potentials, the application of EYE-
SUBTRACT not only resulted in a strong attenuation, but also in a change
of the topographic distribution. The other algorithms attenuated both
potentials slightly (Supplementary Figures 2,3). SGEYESUB attenuated
the ErrP peaks at electrode FCz and the MRCP at electrode Cz by 0.5 μV
(0.1 μV SEM) and 0.3 μV (0.1 μV SEM). Overall, the effects on the po-
tentials are in agreement with the effects on the RMSE during rest periods
(Fig. 2b).

Fig. 3 summarizes the PSD ratio during rest epochs for frontal, central
and parietal channels. Similarly to the RMSE during rest epochs (Fig. 2b),
we observed a gradient from frontal to parietal channels. For all algo-
rithms the attenuation was strongest for frequencies below 5 Hz. The
attenuation for frequencies above 10 Hz was negligible for all algorithms
except for EYESUBTRACT.

The causal evaluation results for the MEG dataset are summarized in
Fig. 4. The subspace subtraction algorithms achieved a rather uniform
attenuation of the eye artifacts to residual correlations below 0.1 across
channels (Fig. 4a). The residual correlations of EYEEEG and EYEREG at
fronto-temporal channels were considerably larger during vertical eye
movements (approx. 0.3). Theobservationsof the topographicdistributions
manifested in significant differences for the average channel (Fig. 4c). For
vertical eye movements, EYEEEG (0.12) and EYEREG (0.15) performed
significantly worse than the other algorithms. EYESUBTRACT (0.06) and
SGEYESUB (0.07) achieved significantly lower residual correlations than
GEYESUB (0.08). For horizontal eye movements, EYESUBTRACT achieved
significantly lower residual correlations (|correlation| ¼ 0.06) than the
other algorithms. For blinks, EYESUBTRACT (0.09) outperformed EYEREG
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(0.11) and GEYESUB (0.12). For the RMSE during rest epochs (Fig. 4b,d),
the resultswere generally similar to theEEGdataset results. EYESUBTRACT
removedmost resting activity (58 fT) across theMEG channels followed by
EYEEEG (31 fT), GEYESUB (18 fT), SGEYESUB (18 fT) andEYEREG (15 fT).
EYEREG outperformed all other algorithms in this regard.

The PSD ratio between the corrected and uncorrectedMEG signals are
summarized in Fig. 5 for frontal, central and parietal channels. The
confidence intervals indicate that EYESUBTRACT attenuated all fre-
quencies significantly stronger at frontal channels, while the attenuation
of EYEEEG, EYEREG, GEYESUB and SGEYESUB for frequencies above 5
Hz was negligible.

In addition to the causal algorithm evaluation, we also investigated
whether a stationary model was sufficient to attenuate eye artifacts
during the course of the experiments. Using leave-one-trial-out cross-
validation, we computed the evaluation metrics for the correction algo-
rithms on the first and second block. In Fig. 6, we show the differences
between the first and second block as a function of time (EEG datasets).
The timespan between the first and second block ranged from 8 to 72
min. We did not observe any significant slope. That is, the residual cor-
relations during eye movements and blinks, and the RMSE during rest
epochs did not change significantly as time progressed.

For the MEG dataset the timespan between the first and third block

Fig. 2. EEG datasets. Grand average test set eye artifact correction results. a, Topographic plots summarize the residual correlation between each EEG channel and the
associated EOG derivative during horizontal/vertical eye movements and blinks (columns) for all algorithms (rows) and the datasets EEGDS2 and EEGDS3 (25 re-
cordings). b, As in a for the RMSE during rest epochs. c, Topographic distribution of the negative and positive peak of the ErrP before and after correction for EEGDS3
(15 recordings). d, As in c for the MRCP at the movement onset for EEGDS1 (15 recordings). e, Average residual correlation for the EEG channels of EEGDS2, EEGDS3
and EEGDS4 (39 recordings). Error bars indicate the 95% confidence interval of the mean. Significant differences are highlighted (asterisks and horizontal line
connecting the two algorithms). f, As in e for the RMSE during rest epochs. Significant differences in e and f were identified with two-sided, paired permutation t-tests
(10,000 permutations, df ¼ 38). We controlled the false discovery rate for 40 tests at a significance level of 0.05, resulting in a critical p-value of 0.0032.
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ranged from 93 to 117 min (Fig. 7). The regression analysis revealed
significant slopes of the differences in residual correlations during hori-
zontal eye movements for all algorithms. For example, the slope for
SGEYESUB was 1.96e-4 min�1, corresponding to an increase in residual
correlation of 0.02 after 100 min. During vertical eye movements, the
slopes of GEYESUB and SGEYESUBwere significant, while the p-values of
EYEEEG, EYEREG and EYESUBTRACT were close to the critical p-value.
The slopes during blinks were significant for EYEEEG, GEYESUB and
SGEYESUB. Considering the results of all algorithms, a stationary eye
artifact model was insufficient to describe the artifacts. However, the
non-stationarity was low; for SGEYESUB, the increase in residual corre-
lation after 60 min would have been approximately 0.01.

In Figs. 8 and 9 we report the dependency of the algorithms on the
amount of calibration data. We fitted the algorithms to an increasing
amount of calibration data starting with 10% of the first block, and
evaluated their performance on the second block. For the EEG datasets,
the residual correlations and the RMSE of SGEYESUB declined quickly as
the amount of calibration data increased to 40% (Fig. 8). From 40 to
100% the performance improved gradually. For the MEG dataset, we
only observed a gradual improvement (Fig. 9).

4. Discussion

We have shown that the proposed algorithm (SGEYESUB) was suc-
cessful in attenuating CRD and eyelid-related artifacts for both EEG and
MEG data. Compared to the other algorithms, it achieved the best trade-
off between attenuating the eye artifacts and maintaining brain activity.
The grand average residual correlations between the corrected M/EEG

activity and the eye artifacts were below 0.1, the root mean squared error
between corrected and uncorrected resting activity was below 1.5 μV and
18 fT, and event-related potentials (ErrPs, MRCPs) were attenuated by
less than 0.5 μV. We could also show that a stationary model was suffi-
cient to effectively attenuate the eye artifacts for at least 1–1.5 h.

If eye artifacts were not corrected, eye movements and blinks would
contaminate the signal of all EEG channels (Fig. 2a, top row), while pa-
rietal and occipital MEG channels would be marginally affected (Fig. 4a,
top row). These MEG channels were likely to be affected less because the
MEG was acquired with axial gradiometers, which attenuate distant
sources (Taulu et al., 2014). For both modalities, the differences in
topography between horizontal and vertical eye movements were
apparent (Figs. 2a and 4a, top row), while the differences in topography
between vertical eye movements and blinks were subtle. For example, in
the EEG datasets (Fig. 2a, top row) the blink topography exhibited a
gradient from frontal to occipital electrodes. Whereas the topography of
vertical eye movements additionally exhibited a gradient from central to
lateral electrodes.

These three distinct topographies confirmed that the artifacts during
eye movements and blinks arise from 3 physiological sources (Lins et al.,
1993b; Pl€ochl et al., 2012; Schl€ogl et al., 2007). Thus, one source is not
sufficient to model CRD and eyelid-related artifacts during blinks and
vertical eye movements. Since EYEREG used only the horizontal and
vertical EOG derivatives (2 sources), it failed to correct CRD and
eyelid-related artifacts (Fig. 2a,e and Fig. 4a,c). This is consistent with
our previous findings in a smaller EEG dataset (Kobler et al., 2017).
GEYESUB, SGEYESUB and EYESUBTRACT estimate 3 to 4 sources, which
is sufficient to describe the CRD and eyelid-related artifacts in the M/EEG

Fig. 3. EEG datasets (EEGDS2, EEGDS3, EEGD4). Grand average attenuation of resting brain activity across frequencies at frontal (top), central (middle) and parietal
(bottom) electrodes. The attenuation is measured with the power spectral density (PSD) ratio, defined as the PSD of the uncorrected activity over the corrected
activity. A PSD ratio of 0 dB indicates that the correction did not attenuate resting brain activity. The algorithms are color coded. Solid lines summarize the mean
across the recordings and shaded areas its 95% confidence interval (39 recordings). The traces of GEYESUB (violet) and SGEYESUB (green) are overlapping in all of the
plots; they also overlap with the traces of EYEREG (orange) and EYEEEG (blue) for central and parietal channels.
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channels.
Croft and Barry introduced another regression algorithm, denoted

revised artifact-aligned average (RAAA) algorithm (Croft and Barry,
2000b). It uses the REOG derivative as a third component. Supplemen-
tary Figures 5 and 6 summarize its performance for the EEG and MEG
datasets. We observed that all regression algorithms were inferior to one
another in at least one performance metric (Supplementary Figures 5b
and 6b). The residual correlations of RAAA were lower than EYEREG
during horizontal and vertical eye movements but higher during blinks.
Compared to EYEREG, RAAA also removed slightly more resting activity.
This indicates the cost of using the REOG derivative; residual brain ac-
tivity within the REOG derivative is removed.

EYEEEG classified ICs as eye artifact-related based on the variance
ratio between periods of rest and eye movements. For a variance ratio
threshold of 2.0 we observed significantly higher residual correlations
during vertical eye movements and a higher RMSE during rest periods
compared to SGEYESUB (Figs. 2 and 4). At this threshold, EYEEEG
rejected on average 5.6 (2.3 standard-deviation, SD) ICs out of 46.6 (6.6
SD) ICs for the EEG dataset and 2.6 (0.7 SD) out of 63.5 (2.9 SD) ICs for
the MEG dataset. Pl€ochl et al. rejected on average 5.3 out of 64 ICs across
participants with a threshold of 1.1 (Pl€ochl et al., 2012). At this threshold
the RMSE during resting periods would have almost doubled for the EEG
and MEG datasets, while the residual correlations would have reduced
marginally (Supplementary Figure 7). With an increasing threshold more
brain activity could be preserved at the cost of lower artifact correction
performance (Supplementary Figure 7). Since EYEEEG works in IC space,
it also depends on the result of ICA. An ICA algorithm needs to estimate

O(nchannels2 ) parameters, while the other algorithms need to estimate only
O(nchannels ⋅ nsubspaces) parameters with the number of subspaces being 4
or less. When using little calibration data, the performance of EYEEEG
dropped (Figs. 8 and 9), indicating that the ICA estimates of the eye
artifact sources were likely not as close to the true sources as the other
algorithm ones.

EYESUBTRACT removed more than double of the resting brain ac-
tivity compared to the other algorithms (Fig. 1b,f, Fig. 2b,d, Figs. 3 and
4). This manifested in attenuated ErrPs (Supplementary Figure 1) and
MRCPs (Supplementary Figure 2) and altered topographic distributions
(Fig. 2c and d). The objective of EYESUBTRACT is to minimize CRD and
eyelid-related artifacts, while resting brain activity is not considered.
This resulted in excellent artifact correction performance at the cost of
removing a large amount of brain activity.

GEYESUB and SGEYESUB also consider the resting periods in their
objective criterions and could, therefore, maximize both the attenuation
of eye artifacts andpreservationof brain activity. SGEYESUBdiffered from
GEYESUB in three ways. First, SGEYESUB removed only 3 subspaces
compared to 4 for GEYESUB. Second, the objective function of SGEYESUB
in equation (5) contains two penalties that enforced sparsity (L1 penalty)
and orthogonality to resting data (weighted L2 penalty). Note that the L1
penalty pushed the solution to use few channels that carry most infor-
mation about the artifacts (mainly EOG channels). This means that it
pushed the solution closer to the ones of regression algorithms, which use
only EOG derivatives. The advantage of SGEYESUB over the regression
algorithms is that the additional weighted L2 penalty enforced orthogo-
nality to resting data. Third, GEYESUB and SGEYESUB differed in their

Fig. 4. MEG dataset. Grand average test set eye artifact correction results. a, Topographic plots summarize the correlation between each MEG channel and the
associated EOG derivative (19 recordings). b, As in a for the RMSE during rest epochs. c, Average residual correlation for the MEG channels. Error bars indicate the
95% confidence interval of the mean. d, As in c for the RMSE during rest epochs. Significant differences in c and d were identified with two-sided, paired permutation
t-tests (10,000 permutations, df ¼ 18). We controlled the false discovery rate for 40 tests at a significance level of 0.05, resulting in a critical p-value of 0.0324.
Significant differences are highlighted (asterisks and horizontal line connecting the two algorithms).
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fitting procedure. For SGEYESUB, we estimated the weight matrix W in
two steps. First, we corrected the artifacts during horizontal and vertical
eye movements and, subsequently, the residual artifacts during blinks. In
GEYESUB, logistic regression with a standard L2 penalty was used to es-
timate the initial weight vector u for each of the 4 subspaces. Next, the
mixing vector a associated with the weight vector u was computed. A
refined weight matrix V was then estimated via regularized least squares
based on the mixing matrix A (concatenated mixing vectors) and the
covariance during resting data. This procedure implicitly implemented
the weighted L2 penalty but added an additional level of complexity. We
surmised that the same or even better performance could be achieved by
directly specifying the orthogonality to resting data in the objective
function. The results suggest that the performance of SGEYESUB and
GEYESUB was similar for the EEG datasets (Figs. 2 and 3), while SGEYE-
SUB outperformed GEYESUB for vertical eye movements in the MEG
dataset (Figs. 4 and 5) by a small margin - the difference in residual cor-
relation was low (0.01). Taken together, SGEYESUB, which removes the
minimal number of subspaces, marginally improved the CRD and eyelid
correction performance upon GEYESUB.

Since GEYESUB and SGEYESUB do not explicitly require EOG chan-
nels/derivatives to estimate A and W, we investigated whether the per-
formance would drop, if the EOG channels were excluded from the fitting
procedure (Supplementary Figures 3,4). For both algorithms, the RMSE
during rest epochs would increase significantly from 1.5 μV to 3.9 μV in
the case of EEG (Supplementary Figure 3d) and from 18 fT to 34 fT in the
case of MEG (Supplementary Figure 4c). GEYESUB would also fail to
attenuate horizontal eye movements at frontal and central MEG channels
(Supplementary Figure 4a), resulting in significantly higher residual
correlations for the average MEG channel. The results suggest that if no
EOG channels were available, both algorithms would remove more brain

activity, but still less than EYESUBTRACT. Regarding the residual cor-
relations with the eye artifacts, SGEYESUB would be more robust to
excluding EOG channels in the experimental setup than GEYESUB.

In all experiments, we used sintered Ag/AgCl EEG electrodes and
salty gels. They provide good long term recording stability (Tallgren
et al., 2005). We did not detect any effect of time on the correction
performance within 1 h for the EEG datasets (Fig. 6), suggesting that the
CRD and blink-related artifacts were stationary. For the MEG dataset, we
observed a significant increase in residual correlations over time (Fig. 7).
This effect can be due to the MEG sensors not being attached to the
participants. It is likely that the relative position between the partici-
pants’ head and sensors varies over time. The slopes of the residual
correlations were low for SGEYESUB (Δ|correlation| � 0.01/hour),
indicating that the effect was negligible for approximately 1.5 h.

SGEYESUB is a plug-and-play method; it generalizes to new datasets
without any hyperparameter tuning or expert knowledge. Our results
show that the performance of SGEYESUB was robust to a reduction in the
amount of calibration data and the number of EOG channels. If half of the
calibration data were used to fit the algorithm, the performance decrease
was marginal (Figs. 8 and 9). A reduction in the amount of calibration
data would be highly desirable, since more time could be spent on BCI/
neurofeedback training.

Despite the promising results, there remain a number of limitations
that need to be addressed in future research. We have developed and
evaluated SGEYESUB particularly for BCI and neurofeedback applica-
tions. Beyond that, we envision its application in a clinical setting (e.g.,
epilepsy monitoring). Before SGEYESUB can become a viable tool in
clinical practice, further research is required - particularly its impact on
source imaging and dipole fitting methods needs to be assessed. Another
limitation of the current study is that the workspace was limited to two

Fig. 5. MEG dataset. Grand average attenuation of resting brain activity across frequencies at frontal (top), central (middle) and parietal (bottom) channels. The
attenuation is measured with the power spectral density (PSD) ratio, defined as the PSD of the uncorrected activity over the corrected activity. A PSD ratio of 0 dB
indicates that the correction did not attenuate resting brain activity. The algorithms are color coded. Solid lines summarize the mean across the recordings and shaded
areas its 95% confidence interval (19 recordings). The traces of EYEREG (orange), GEYESUB (violet) and SGEYESUB (green) are overlapping in all of the plots, they
also overlap with the trace of EYEEEG (blue) at central and parietal channels.
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Fig. 6. EEG datasets (EEGDS2, EEGDS3, EEGDS4). Eye artifact correction quality over time. The plots are arranged in rows (algorithms) and columns (conditions). The
condition specific evaluation metrics were computed using leave-one-trial-out cross-validation. Each dot corresponds to one recording. It summarizes the difference in
an evaluation metric between the first and second block. A positive difference indicates a larger value in the second block compared to the first one. The trend is
summarized with a regression line. Its slope β is displayed in the top right corner. We did not observe significant slopes (two-sided, permutation tests with 10,000
permutations, df ¼ 38, α ¼ 0.05, 20 tests, FDR correction).

Fig. 7. MEG dataset. Eye artifact correction quality over time. The plots are arranged in rows (algorithms) and columns (conditions). The condition specific evaluation
metrics were computed using leave-one-trial-out cross-validation. Each dot corresponds to one recording. It summarizes the difference in an evaluation metric between
the first and second block. The trend is summarized with a regression line. Its slope β is displayed in the top right corner. Significant slopes were identified with two-
sided, permutation tests (10000 permutations, df ¼ 18). We controlled the false discovery rate for 20 tests at a significance level of 0.05, resulting in a critical p-value
of 0.0217.
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dimensions (horizontal and vertical). Vergence eye movements allow us
to additionally focus our gaze in depth. During vergence eye movements,
the eyeballs, and thereby also the CRDs, move in different directions,
requiring an additional depth component to describe the CRD artifact in
M/EEG signals. The presented approach could be extended to correct this
additional component and, therefore, generalize to real-life scenarios, if a
depth condition is included in the experimental paradigm and the asso-
ciated artifact subspace is subtracted.

5. Conclusion

In a comprehensive analysis, including EEG and MEG data of 69
participants, we have evaluated 5 eye artifact correction algorithms with
regard to their attenuation of corne-retinal dipole (CRD) and eyelid-
related artifacts. We have showen that the proposed algorithm (SGEYE-
SUB) effectively attenuates both types of artifacts and at the same time
removes little brain activity from EEG and MEG signals. The other al-
gorithms were inferior to SGEYESUB in the sense that they either
removed more brain activity or failed to correct the artifacts in one or
both recording modalities. Moreover, our results indicate that a sta-
tionary model is sufficient to describe the CRD and eyelid artifacts for at
least 1–1.5 h, validating the feasibility of our approach in online eye
artifact correction. Once the model is fitted, the CRD and eyelid artifact
correction is reduced to a matrix multiplication. An effective and efficient
eye artifact correction approach will prove useful beyond neurofeedback
and brain-computer interface studies.
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A B S T R A C T

Movement preparation and initiation have been shown to involve large scale brain networks. Recent findings
suggest that movement preparation and initiation are represented in functionally distinct cortical networks. In
electroencephalographic (EEG) recordings, movement initiation is reflected as a strong negative potential at
medial central channels that is phase-locked to the movement onset - the movement-related cortical potential
(MRCP). Movement preparation describes the process of transforming high level movement goals to low level
commands. An integral part of this transformation process is directional processing (i.e., where to move). The
processing of movement direction during visuomotor and oculomotor tasks is associated with medial parieto-
occipital cortex (PO) activity, phase-locked to the presentation of potential movement goals. We surmised that
the network generating the MRCP (movement initiation) would encode less information about movement di-
rection than the parieto-occipital network processing movement direction. Here, we studied delta band EEG
activity during center-out reaching movements (2D; 4 directions) in visuomotor and oculomotor tasks. In 15
healthy participants, we found a consistent representation of movement direction in PO 300–400 ms after the
direction cue irrespective of the task. Despite generating the MRCP, sensorimotor areas (SM) encoded less in-
formation about the movement direction than PO. Moreover, the encoded directional information in SM was less
consistent across participants and specific to the visuomotor task. In a classification approach, we could infer the
four movement directions from the delta band EEG activity with moderate accuracies up to 55.9%. The accuracies
for cue-aligned data were significantly higher than for movement onset-aligned data in either task, which also
suggests a stronger representation of movement direction during movement preparation. Therefore, we present
direct evidence that EEG delta band amplitude modulations carry information about both arm movement initi-
ation and movement direction, and that they are represented in two distinct cortical networks.

1. Introduction

Whenever a reaching movement is made, a series of processes occur
in the brain that include cue processing, extraction of high level move-
ment goals, computation of low-level details (Battaglia-Mayer, 2018;
Kalaska and Crammond, 1992) and deciding to initiate the movement
(Cisek and Kalaska, 2010; Rizzolatti and Luppino, 2001). Recent evi-
dence from behavioral studies with humans and spiking activity in
non-human primates suggests that preparation and initiation of move-
ments are reflected by parallel neural processes (Carland et al., 2019;

Haith et al., 2016). Movement preparation involves a series of processes
related to cue perception, determination of high-level movement goals
(e.g., where to move), and their translation to low-level movement
commands, whereas movement initiation reflects decision processes
dealing with the commitment to move to a particular movement goal
(e.g., when to move) and the vigor of the ensuing movement (Carland
et al., 2019; Haith et al., 2016). Movement initiation is typically
accompanied with strong activity in sensorimotor areas and basal ganglia
phase-locked to the movement onset (Carland et al., 2019; Kaufman
et al., 2016; Pfurtscheller and Lopes Da Silva, 1999; Shibasaki et al.,
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1980), while movement preparation is associated with fronto-parietal
network activity, transforming high-level movement goals to low-level
commands (Cavina-Pratesi et al., 2018; Cisek and Kalaska, 2010; Fab-
bri et al., 2010; Ledberg et al., 2007; Perry and Fallah, 2017). It is
established that spiking activity in primary sensorimotor areas carries
information about movement direction at the movement onset (Geor-
gopoulos et al., 1982). It is not clear whether macroscopic activity in
terms of electroencephalographic (EEG) signals carry directional infor-
mation phase-locked to the movement onset.

Within the EEG activity, time-domain amplitude modulations in the
delta band that start prior to the movement onset have been reported to
be predictive for movement initiation (Bierbaumer et al., 1990; Deecke
et al., 1969; Shibasaki and Hallet, 2006). In the context of a motor task,
slow potentials in the EEG activity phase-locked to the movement onset
are known as movement-related cortical potentials (MRCPs) (Deecke
et al., 1969). MRCPs have been investigated in relation to lower-limb
movements, such as isometric dorsiflexion (Xu et al., 2014) or walking
(do Nascimento et al., 2005; Jiang et al., 2015; Sburlea et al., 2015), as
well as in upper-limb movements (Ib�a~nez et al., 2014; L�opez-Larraz et al.,
2014; Niazi et al., 2011). Several studies involving different types of
movement have shown that amplitude and phase information encoded in
the time-domain delta band are predictive of movement initiation
(Sburlea et al., 2017; Sun et al., 2017).

Apart from encoding the initiation of executed (Lew et al., 2012),
attempted (Ofner et al., 2019) and imagined (Pereira et al., 2018)
upper-limb movements, MRCPs have also been reported to encode in-
formation about goal-directedness (Pereira et al., 2017), speed (Gu et al.,
2009), force (Jochumsen et al., 2013), grasp types (Schwarz et al., 2018),
other movements of the upper limb (Ofner et al., 2019, 2017) and
movement direction (Li et al., 2012; Waldert et al., 2008). The repre-
sentation of directional information within the MRCP is typically studied
during center-out reaching tasks and aligned to the response (Robinson
and Vinod, 2016). The employed experimental paradigms often force the
participants to respond after a go cue which leads to considerable phase
locking between the direction cue and the response (Waldert et al.,
2008). Moreover, higher classification accuracies for movement direc-
tion can be obtained if the participants are allowed to move immediately
after target presentation rather than a forced random delay period (Wang
et al., 2010).

Since movement initiation and preparation are likely to be indepen-
dent processes in the brain (Haith et al., 2016), it is not clear if the
time-domain amplitude modulations encode information about move-
ment direction phase-locked to the movement onset (movement initia-
tion) or to the cue (movement preparation). Knowing that directional
processing is an integral part of movement preparation, we surmise that
delta band EEG activity has a stronger representation of movement di-
rection during movement preparation (i.e., phase-locked to the cue) than
during movement initiation (i.e., phase-locked to themovement onset). If
this is the case, a classifier should predict the movement direction with
higher accuracy in the cue aligned case compared to the movement onset
aligned case. To test our hypothesis, we conducted an EEG study with
healthy participants. Our experimental paradigm comprised a center-out
task to identify cortical regions encoding directional information, and
two experimental conditions to identify cortical regions generating the
MRCP associated with arm movements. In the first condition (observa-
tion), the participants moved their eyes; in the second condition
(execution), they also moved their right arm.

2. Materials and methods

2.1. Participants

Fifteen healthy participants were recruited for this study (23.8
(mean) � 2.8 (standard deviation, SD) years, 9 female). Eleven partici-
pants had already participated at least once in an EEG experiment before.
All participants had normal or corrected to normal vision, and self-

reported to be right handed. The study was carried out in accordance
with the Declaration of Helsinki and was approved by the ethics com-
mittee of the Medical University of Graz. All participants were instructed
about the purpose and procedure of the study, after which they signed an
informed consent form. All received monetary compensation for their
participation.

2.2. Experimental set-up

During the course of the experiment, the participants were sitting in a
comfortable chair, positioned 1.4 m away from a computer screen
(Fig. 1a). An armrest supported the left arm, while the right arm was
supported by a table at the same height. To reduce friction between the
right arm and the table, participants were asked to wear a sleeve and
place their hand on a circular pad. A LeapMotion controller (LeapMotion
Inc., San Francisco, USA), placed 20 cm above the hand, was used to
record the right hand’s palm position. After each participant found a
comfortable resting position, the palm position was mapped to the origin
of a virtual environment (center of the screen). In analogy to the inter-
action with a computer by using a computer mouse, we decided to map
rightward/forward hand movements to rightward/upward cursor
movements. We mapped a circle with a 5-cm radius around the resting
position to a circle with a 16-cm radius on the screen. The limits of the
circle on the screen were indicated by the bounds of a virtual grid. For
instance, a right hand movement 5 cm to the right would make the cursor
touch the grid on the right side.

2.3. Experimental procedure

The experimental procedure consisted of 4 blocks, and lasted 3 h in
total. In the first block, we asked the participants to familiarize them-
selves with the paradigm (approx. 10 min). In the second and fourth
blocks, eye artifacts (blinks and eye movements) and resting activity
were recorded (approx. 5 min each). The detailed procedure is described
in Kobler et al. (2017). In the third block, participants performed the
main experimental task according to the paradigm illustrated in Fig. 1b.
Each trial implemented a two dimensional (2D), visually guided
center-out reaching task (COT). In half of the trials, the COTwas followed
by a pursuit tracking task (PTT), which we used to study the tuning
characteristics of low-frequency EEG signals to end-effector positions and
velocities (Kobler et al., 2018).

A trial started if a target stimulus (large sphere) changed its color to
yellow. This triggered the participants to focus their gaze upon the target
and to keep their hand in the resting position and, thereby, the cursor
(small gray sphere) in the center of the screen. Our paradigm distin-
guished between two conditions: observation (obs) and execution (exe).
The conditions were indicated by a visual cue (change in target color;
pseudo-randomly distributed across trials). After a period of 0.5 s, the
target started to move in one of four directions (up, right, down, left;
pseudo-randomly distributed across trials). After the target moved for
0.5 s, it stopped at a distance of 5 cm and waited for the approaching
cursor. As soon as the distance to the cursor was smaller than a threshold,
the fixation period (1 s duration) started. In the execution condition
(green target), the participants tracked the target visually and controlled
the cursor by moving their right hand (visuomotor task). In the obser-
vation condition (blue target), the participants tracked the target only
visually while their right hand was resting (oculomotor task). We
replayed previous, matching cursor trajectories to obtain similar visual
dynamics during both conditions. The replay procedure was imple-
mented in an adaptive fashion that ensured similar cursor movements
within a participant, and that the participants could neither predict the
condition nor the direction of the next trial. The detailed procedure is
described in (Kobler et al., 2018).

We asked the participants to make a single smooth, continuous
reaching movement towards the target and stop at the target position
during the execution condition. If a participant did not move for 4 s after
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the direction cue the trial was aborted. A participant did not move, if the
distance between the cursor and the origin was smaller than a threshold
(1 cm). A trial was also aborted, if the threshold was exceeded while the
target was still moving, or during the entire COT in the observation
condition. Aborted trials were appended to a queue of trials. A total of
360 trials (180 per condition, pseudo randomly distributed) were
recorded in 20 runs with short breaks in between. We recorded only 192
trials for participant 1.

2.4. EEG recording

We placed 64 active electrodes (actiCAP, Brain Products GmbH,
Gilching, Germany) on the scalp according to the 10–10 system. The
reference and ground electrodes were positioned at the right mastoid and
AFz, respectively. Six additional active electrodes were placed at the
superior, inferior and outer canthi of the right and left eyes to record

electrooculographic (EOG) activity. Supplementary Fig. 1 visualizes the
locations of all 70 electrodes. After the electrodes were placed on the
scalp, their 3D positions and the positions of anatomical landmarks
(nasion, left-/right preauricular points) were recorded with an ultra-
sound based digitizer (ELPOS, Zebris Medical GmbH, Isny, Germany).
EEG and EOG signals were recorded at 1 kHz (BrainAmp, Brain Products
GmbH, Gilching, Germany). The paradigm was implemented in Python
2.7 based on the simulation and neuroscience application (SNAP) plat-
form (Kothe, 2012) and the 3D engine Panda3D (Goslin andMine, 2004).
The screen position signals of the visual stimuli (cursor, target) were
recorded at 60 Hz. All signals (EEG, EOG and stimuli) were recorded
using the lab streaming layer (LSL) protocol (Kothe et al., 2019) and
synchronized offline using a photodiode signal, which captured an im-
pulse on the screen at the start of each trial. All signals were then
resampled to 200 Hz.

Fig. 1. Experimental setup and paradigm. a, During the experiment, the participants sat in a comfortable chair in front of a computer screen. Both arms were
supported at the same height. Right arm movements were recorded with a LeapMotion controller. Forward/backward hand movements on the table were mapped to
upward/downward cursor movements on the screen. b, Diagram of the experimental paradigm. A visual cue indicated the condition, either execution (green target) or
observation (blue target), followed by a 2D center-out task in four directions. The direction was indicated by the target movement (0.5 s duration; arrows visualize
movement in the individual images). After 1 s of fixation, a pursuit tracking task was performed for 16 s (50% of the trials). In the execution condition the participants
controlled the cursor, while in the observation condition, the computer replayed a previously executed cursor trajectory that matched the current target trajectory.

Fig. 2. Pre-processing pipeline. After synchronization, EEG and EOG signals were resampled, high-pass and notch filtered; bad channels were spherically interpolated.
Next, eye artifacts were corrected. The corrected EEG signals were re-referenced to the common average reference. Then, HEAR was applied to remove transient, single
electrode outliers. A subsequent low-pass filter was applied to extract delta band EEG signals. After synchronization, the movement onset was detected using the
Euclidean distance between the cursor and the origin. Outlier trials were automatically detected based on the movement onsets and the epoched broadband EEG
signals. The final pre-processed dataset comprised the delta band EEG signals during non-outlier trials.
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2.5. Pre-processing

The recorded data was analyzed offline using Matlab (Matlab 2015b,
Mathworks Inc., Natick, USA) and the open source software EEGLAB
(Delorme and Makeig, 2004) version 14.1.1. Fig. 2 outlines the
pre-processing pipeline. The EEG signals were high-pass filtered (0.4 Hz
cut-off frequency, Butterworth filter, fourth order, zero-phase). Data
cleaning was initiated by a spherical interpolation of channels with poor
signal quality (visual inspection). We interpolated 2.1 channels on
average (Supplementary Table 1). Eye movements and blinks were
attenuated by applying the sparse generalized eye artifact subspace
subtraction algorithm (Kobler et al., 2020b). The algorithm was fitted to
calibration data, recorded during the experimental blocks 2 and 4. The
EEG channels were subsequently converted to a common average refer-
ence (CAR). We applied the high-variance electrode artifact removal
(HEAR) algorithm to attenuate occasional, single electrode pops and
low-frequency drifts (Kobler et al., 2019). HEARmonitors the variance of
each EEG channel. If the variance increases drastically (e.g., 3 times the
variance of calibration data), the probability of an artifact contaminating
the signal rises. This artifact probability is then used to weigh the amount
of linear interpolation by neighboring channels. Next, a low-pass filter
(3.0 Hz cut-off frequency, Butterworth filter, fourth order, zero-phase)
was applied to the broadband EEG signals to extract delta band activ-
ity, before the signals were resampled at 10 Hz.

The cursor position signal was used to detect the onset of the reaching
movements. For each trial, the cursor movement onset was calculated
based on the Euclidean distance between the cursor and the origin. A
distance equal to 0 corresponded to the origin (i.e., center position),
while a distance equal to 1 indicated the position of the circle bounded by
the virtual grid (Fig. 1). During the preparation period the distance was
not exactly zero because the resting position was controlled by the
participant (Fig. 1b). To remove these trial-to-trial fluctuations, we
subtracted the average distance during the last second of the preparation
period. The first time-point at which the cursor distance exceeded a
threshold of 0.05 served as an initial estimate for the movement onset. It
was refined using a window that captured the smoothed (moving average
finite impulse response filter, triangular window, 63 filter taps, zero-
phase) cursor distance of the preceding 1.75 s. For each time-point
within the window, the derivative was estimated by computing finite
differences. For the time-point with the maximal derivative, we
computed the tangent. We defined the time-point at which the tangent
intersected with the zero-line along the time axis as the final estimate of
the cursor movement onset.

We set the cursor movement offset to the time-point at which the
distance between the cursor and final target position became smaller
than 0.1 (corresponding to 1.6 cm on the screen). The movement dura-
tion was then the difference between the estimated offset and onset.
Trials with abnormal movement onset or duration were marked as out-
liers. Abnormal trials were detected if the cursor movement onset relative
to the start of a trial (i.e., target turned yellow) or the movement duration
were improbable (i.e., larger than 2.5 standard deviations around the
mean). The underlying distribution’s mean and standard deviation were
computed using robust estimates. In detail, the mean and standard de-
viation were estimated as the median and 1.4826 times the median ab-
solute deviation among all trials (Leys et al., 2013).

To detect outliers within the EEG signals, we epoched the broadband
(0.4–100 Hz) EEG signals according to two alignment cases: start of trial
aligned and cursor movement onset aligned. In the start of trial aligned
case, we extracted epochs in the [0.75, 4.75] s interval after the start of
the trial. Whereas in the cursor movement onset aligned case, we
extracted epochs in the [-2, 1.25] s interval around the cursor movement
onset. In either case, epochs were marked as outliers if the EEG signal of
any channel exceeded a threshold of �200 μV or had an abnormal
probability, kurtosis or variance (i.e., larger than x standard deviations
around the mean across trials, where x equals 6 in the case of probability
or kurtosis, and 5 in the case of variance). We applied the joint

probability, kurtosis and variance rejection criteria twice to detect gross
outliers in the first iteration, and subtle outliers in the second iteration.
Finally, the union of detected outlier epochs was rejected from the low-
pass filtered and epoched EEG activity.

2.6. Behavioral analysis

In order to understand behavioural dynamics of the participants and
eliminate differences of visual stimuli dynamics across conditions or di-
rections as confounds, we analyzed the cursor movement onsets and
movement durations. To identify group level effects of condition
(execution, observation) and direction (right, left, up, down) in the
cursor movement onset time-points, a two-way repeated measures
analysis of variance (ANOVA) was performed. The same two-way
repeated measures ANOVA was also performed for the cursor move-
ment duration. For both ANOVAs, we computed Mauchly’s tests to
identify if the sphericity assumption was violated; q-q-plots were used to
inspect if the cursor movement onset and duration followed a Gaussian
distribution.

In addition to the reach dynamics, we calculated the onsets of the eye
movements. Eye movements typically start with a catch up saccade, as a
target stimulus starts moving. To identify the catch up saccade timing,
vertical and horizontal EOG derivatives were calculated from the
broadband EEG data; the difference between right and left outer canthi
was computed for the horizontal EOG derivative, and the difference
between left/right superior and inferior electrodes was computed for the
vertical EOG left/right derivative. We then computed the average across
trials with the same direction. The threshold for the direction specific eye
movement onset was the time-point at which the EOG derivative, asso-
ciated with the direction, exceeded the trial baseline activity (1–1.5 s) by
3 standard deviations.

2.7. Encoding of condition and direction

To identify EEG activity that encodes information about condition
and direction, we fitted a general linear model (GLM) to the recordings of
each participant. The GLM contained the factors condition, direction and
intercept. We split the direction information into two orthogonal factors
(horizontal, vertical), equalized the number of trials per condition and
direction, and finally z-scored the factors. The factors were identical for
all time-points within a trial, and could be expressed as a 4 � ntrials matrix
S

S¼ ½scond ; sdir;horz; sdir;vert; 1� (1)

with 1 � ntrials vectors scond, sdir;horz and sdir;vert coding the factors and a
constant intercept term. For each time-point i, the GLM can be defined as

XðiÞ ¼ AðiÞ S þ EðiÞ (2)

with an nchannels � ntrials matrix XðiÞ reflecting the EEG activity, an
nchannels � 4 matrix AðiÞ reflecting the regression coefficients and an
nchannels � ntrials matrix EðiÞ containing the residuals which are assumed to
follow a Gaussian distribution. The regression coefficients for the inter-
cept term correspond to the average across all trials. The least squares
estimate of AðiÞ is

bA
ðiÞ ¼ CðiÞ

XS �C�1
SS (3)

with an nchannels � 4 cross-covariance matrix CðiÞ
XS between the pre-

processed EEG activity and the predictors, and a 4 � 4 covariance ma-
trix CSS between the factors. We used analytical shrinkage regularization
to estimate CSS(Sch€afer and Strimmer, 2005). The predicted EEG activity
is then
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bX
ðiÞ ¼ bA

ðiÞ
S (4)

Given (2) and (4), the residuals EðiÞ are

EðiÞ ¼ XðiÞ � bX
ðiÞ

(5)

We used them to inspect if the GLM assumptions were met. In detail,
we plotted the residuals of each channel against the predicted feature

activity bX
ðiÞ

to check whether the homoscedasticity and linearity as-
sumptions of the GLM were met; q-q-plots were used to check if the re-
siduals followed a Gaussian distribution.

2.8. EEG source imaging

We applied EEG source imaging (Michel et al., 2004) to map the EEG
signals from the channels to the cortical surface and, thereby, ease
neurophysiological interpretation. We used the ICBM152 template
boundary element (BEM) head model (Fonov et al., 2011). The BEM
comprised three layers (cortex, skull, scalp) with relative conductivities
(1, 0.008, 1). The cortex layer was modeled with 5011 voxels. We
co-registered the BEM and the digitized EEG electrode positions (Sup-
plementary Fig. 1b) using the three anatomical landmarks (nasion, left
and right preauricular points). To compensate deviations between
participant and template anatomy, we finalized the co-registration by
projecting floating electrodes to the scalp layer. OpenMEEG (Gramfort
et al., 2010) was used to compute the forwardmodel for 15033 sources (3
sources per voxel) on the cortical surface. sLORETA (Pascual-Marqui,
2002) was used to estimate the inverse solution. To reduce the effect of
sensor noise in the inverse solution, 3 min of resting data (similar pre-
processing as the reaching data; recorded during experimental blocks 2
and 4) were used to estimate a sensor noise covariance matrix (shrinkage
regularization with 10% of the average eigenvalue).

After we projected the subject specific EEG signals to the cortical
surface, we normalized them by the global field power (GFP) (Kobler
et al., 2020a). We estimated the GFP by randomly selecting a sample
from each trial, averaging these samples, and computing the standard
deviation across sources. This procedure was repeated 10,000 times. The
final subject-specific GFP estimate was set to the median of the 10,000
repetitions. After GFP normalization, we computed group level averages
of the activity and regression coefficients on the cortical surface.

We tested the regression coefficients for significant group level acti-
vation using permutation tests (Maris and Oostenveld, 2007; Nichols and
Holmes, 2002). We used 10,000 permutations to obtain a random dis-
tribution. In each permutation, we randomly sign flipped the regression
coefficients of the participants before the group averages of the 15,033
sources were computed and the norm for each of the 5011 voxels was
extracted. A voxel’s p value was then set to the percentage of random
voxel norms that were larger than the observed voxel norm.

To reduce the number of tests and obtain a single representation for
the direction factor, we added the voxel norms of the regression co-
efficients associatedwith the horizontal and vertical factors. This allowed
us to identify voxels that code information about the vertical and/or
horizontal factor. For the tests we considered the time-points within the
interval spanned by the cue associated with each factor (i.e., condition
cue for the condition factor) and the cursor movement offset. The number
of tests was 461,012¼ 3 (factors) * 2 (alignments) * 5011 (voxels) * 15.3
(average number of time-points).

We also investigated differences in the encoding of direction between
the conditions in 8 regions of interest (ROIs) along the dorsal reaching
system (Gallivan and Culham, 2015). The ROIs are displayed in Fig. 5a;
they covered parieto-occipital cortex (PO), superior parietal lobule (SPL),
premotor cortex (PM) and primary sensorimotor cortex (SM1) of both
hemispheres. Before the differences were computed and averaged across
participants, each voxel’s norm was extracted. In doing so, we identified
voxels which encoded more directional information in one condition,
irrespective of the participants’ dipole orientations. We used two-sided,

permutation (10,000), paired t-tests to identify significant differences.
The number of tests was 16 ¼ 8 (ROIs) * 2 (alignments). We controlled
the false discovery rate (FDR) at a significance level of 0.05 for a total of
461,028 tests (Benjamini and Yekutieli, 2001).

2.9. Classification of condition and direction

We used the pre-processed EEG signals to classify conditions
(execution vs. observation) using two-class shrinkage regularized linear
discriminant analysis (sLDA) (Blankertz et al., 2011). sLDA is an optimal
classifier in the sense that it minimizes the classification error, if the
features follow a Gaussian distribution and have the same covariance
matrix for all classes. Blankertz et al. showed that these two assumptions
typically hold for event-related potential data (Blankertz et al., 2011).
The pre-processed EEG signals were split into train and test sets using a
leave-one-trial-out cross-validation (CV) scheme. In this scheme, if N is
the number of trials, the classifier was trained on N-1 trials, and tested on
the held-out trial. The process was repeated over the N folds, so that each
trial was tested once.

We fitted and evaluated a classifier for each time-point using two
approaches: single time-point and windowed. In the single time-point
approach, we classified the activity of the 64 EEG channels, while in
the windowed approach we classified the activity of the 64 EEG channels
at the current and 5 preceding time-points (64 channels x 6 time-points
¼ 384 features). We computed classification accuracies to summarize the
performance on the held-out test sets.

For a balanced, two-class problem with an infinite amount of trials,
the theoretical chance level constitutes 50%. Due to the limited number
of trials, we estimated the significance level through a shuffling
approach. In 1000 repetitions, we randomly permuted class labels across
trials and applied the same leave-one-trial-out CV scheme. We set the
significance level to the 95 percentile of the test set classification
accuracies.

We further sought to determine if directional information can be
decoded from low frequency time domain EEG signals. For this purpose,
we fitted a 4-class sLDA classifier to discriminate between directions (up,
right, down, left). We applied the same leave-one-trial-out CV scheme as
for the condition classifier. To identify interaction effects, we repeated
the direction classification for each condition.

We used permutation tests to identify significant group level effects
(Maris and Oostenveld, 2007; Nichols and Holmes, 2002). As before, we
tested time-points within the interval spanned by the cue associated with
each factor (i.e., condition cue for the condition factor) and the cursor
movement offset. We first tested if the observed classification accuracies
were significantly different from chance, by computing one-sided, per-
mutation (10,000 permutations), paired t-tests between the observed
accuracies and the participant specific significance threshold (95
percentile of the shuffling results). The number of tests was 106 ¼ 4
(condition, direction, direction (exe), direction (obs)) * 2 (alignment) *
13.3 (average number of time-points). Next, we used two-sided, per-
mutation (10,000 permutations), paired t-tests to test if the direction
classification accuracy was significantly different between the condi-
tions. The number of tests was 24 ¼ 2 (alignment) * 12 (time-points).
Finally, we computed two-sided, permutation (10,000 permutations),
paired t-tests to identify differences in the peak classification accuracy
between the two types of alignments (start of the trial, cursor movement
onset) in both conditions (2 tests). The total number of tests was 132. We
controlled the false discovery rate at a significance level of 0.05 (Ben-
jamini and Yekutieli, 2001).

3. Results

3.1. Behavioral results

The distribution of cursor movement onsets and offsets are presented
in Fig. 3a,e and Supplementary Figs. 2 and 3. The grand average cursor
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movement onset with respect to the start of a trial was 3.23 s (0.18 s SD)
and the mean cursor movement duration with respect to cursor move-
ment onset was 0.49 s (0.13 s SD). The cursor movement onset and
duration were approximately normally distributed across participants.
For the cursor movement onset, Mauchly’s test indicated that the
assumption of sphericity had neither been violated for direction (W ¼
0.73, p > 0.05) nor the interaction of direction and condition (W ¼ 0.87,
p > 0.05). For the cursor movement duration, the assumption of sphe-
ricity had neither been violated for direction (W¼ 0.52, p> 0.05) nor the
interaction of direction and condition (W¼ 0.71, p> 0.05). The two-way
repeated measures ANOVA showed no significant main effect of condi-
tion on the cursor movement onset (F ¼ 3.43, p ¼ 0.085, df ¼ 1) and on
the cursor movement duration (F ¼ 1.29, p ¼ 0.27, df ¼ 1). There was
also no significant main effect of direction on the cursor movement onset
(F ¼ 1.58, p ¼ 0.208, df ¼ 3). We identified a significant main effect of
direction on the cursor movement duration (F¼ 4.99, p¼ 0.047, df¼ 3).
There was no significant interaction effect between condition and di-
rection on the cursor movement onset (F ¼ 1.09, p ¼ 0.365, df ¼ 3) and
on the cursor movement duration (F ¼ 0.56, p ¼ 0.643, df ¼ 3).

To further investigate the main effect of direction on the cursor
movement duration, post-hoc pairwise t-tests with Bonferroni correction

were performed. The mean cursor movement durations were 0.48 s (0.09
s SD) for the right direction, 0.51 s (0.10 s SD) for the left direction, 0.48 s
(0.08 s SD) for the up direction and 0.49 s (0.09 s SD) for the down di-
rection. The post-hoc tests revealed a significant difference in movement
duration between the right and left directions (p ¼ 0.0053), with a dif-
ference in means of 0.03 s. Despite the significant difference, the effect
size remains small. We concluded that condition had no effect on the
cursor dynamics, and direction had a negligible effect on the cursor
movement duration.

Regarding eye movement behavior, the average time for a catch-up
saccade to take place was 2.69 s (0.06 s SD). Since the target started to
move 2.5 s after the start of a trial, it means that it took on average 190
ms for the eyes to catch up with the moving target. This result is in line
with the typical timing of catch-up saccades (Purves et al., 2004).

3.2. Movement-related cortical potentials

To compare time-domain amplitude modulations in execution and
observation conditions, we computed grand average MRCPs for channel
C1 for start of trial aligned data and cursor movement onset aligned data
(Fig. 3b,f). In addition to the MRCP, we also compared the source space

Fig. 3. Condition specific grand average activity in channel and source space for start of trial aligned (left) and cursor movement aligned (right) data. a, Distribution
of the cues and cursor movement (CM) onsets/offsets for start of trial aligned data (t ¼ 0 s). A Gaussian smoothing kernel (0.04 s bandwidth) was used to estimate the
probability density from all trials and participants. The participant level distributions are summarized in Supplementary Fig. 2. b, Grand average MRCP for start of trial
aligned data at channel C1. The conditions are color-coded. Shaded areas summarize the confidence interval of the mean across participants. c, Grand average source
space activity for execution condition and time-points around the average cursor movement onset (t ¼ 3.2 s). d, As in c for observation condition. e-h, As in a-d for
cursor movement onset aligned data (t ¼ 0 s).
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activity in either condition for selected time points around the cursor
movement onset (Fig. 3c,d,g,h).

Looking at the results for the start of trial alignment (left panel in
Fig. 3), the activity before the condition cue at 2.0 s is fluctuating around
0 μV (Fig. 3b). Following the condition cue at 2.0 s and the direction cue
at 2.5 s, there are pronounced visually evoked potentials (VEPs) origi-
nating in occipital areas (Fig. 3c and d). After the second VEP, we
observed an MRCP in execution condition, with a steep negative ampli-
tude deflection (Fig. 3b) peaking in negativity at the average cursor
movement onset (�2.3 μV at 3.2 s). There was also a smaller but
noticeable negative amplitude deflection in the observation condition
(�0.7 μV at 3.2 s). As expected, the execution condition-specific MRCP
led to a stronger activation in contralateral and central motor areas
(Fig. 3c) in comparison to the observation condition (Fig. 3d).

For the cursor movement onset alignment (right panel in Fig. 3), the
cue-locked VEP effects faded at channel C1 (Fig. 3f). Within the interval
�1.0 s to �0.5 s, we observed a positivity in the execution condition.

Starting at �0.4 s, there was a prominent MRCP in the execution con-
dition. At channel C1, the MRCP amplitude peaked with a value of �2.3
μV at �0.1 s, corresponding to 100 ms before the cursor movement onset
(Fig. 3f). The negativity was generated in contralateral and central motor
areas (Fig. 3g). In the observation condition, the activation in central
motor areas was considerably lower (Fig. 3h). Generally, and as expected,
the MRCP related to the hand movement initiation (execution condition)
was phase-locked to the cursor movement onset.

3.3. Cortical sources encoding condition and direction

We used a GLM and EEG source imaging to identify cortical sources
encoding information about the condition and direction. The residuals of
the GLM generally followed a normal distribution and indicated that the
homoscedasticity and linearity assumptions were fulfilled. Fig. 4 displays
voxels with significant regression coefficients for the factors intercept,
condition and direction.

Fig. 4. Grand average source space condition and direction factor encoding results for start of trial aligned (a) and cursor movement onset aligned (b) data. Each plot
states the regression coefficients of the linear encoding model at the voxel level. I.e. the activity that is explained by each factor (intercept, condition, direction). The
rows summarize the factors and the columns the time-points. Only voxels with significant group level regression coefficients are shown (one-sided permutation tests,
critical p-value ¼ 0.0004, FDR corrected).
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The intercept term corresponds to the grand average activity across
all trials. For the start of trial alignment, it is equivalent to the average of
Fig. 3c and d. We observed significant group level activations in occipital,
parieto-occipital and sensorimotor areas (Fig. 4a, top row). Interpreting
the intercept term is not straightforward. If there is no condition- or
direction-related activity, the intercept indicates activity that is common
across all trials. At t¼ 3.1 s, for example, the significant intercept term for
voxels in parieto-occipital areas was due to similar activation in both
conditions (Fig. 3c and d). If there are condition and/or direction-related
effects, the intercept term represents the average. For example, at t ¼ 0.0
s in the case of cursor movement onset alignment, the intercept (Fig. 4b,
top row) and condition (Fig. 4b, middle row) terms of voxels in medial
central sensorimotor areas were significant. In this case, the intercept
does not reflect common neural activity; it is simply the average of both
conditions (Fig. 3g and h).

For the start of trial aligned condition factor (Fig. 4a, middle row), we
observed significant voxel activity in contralateral sensorimotor areas
from 2.3 s (300 ms after the condition cue) to 2.7 s, and from 3.0 s to 3.6
s. In the interval 3.1 s–3.4 s the activity intensified in central sensori-
motor areas with a peak close to the average cursor movement onset (t ¼
3.2 s). We additionally observed significant activity in occipital and pa-
rietal areas in the interval 2.0 s–2.8 s. For the cursor movement onset
alignment (Fig. 4b, middle row), we also observed condition related
activity in sensorimotor areas. The activity peaked in central

sensorimotor areas at the cursor movement onset (t ¼ 0.0 s). We did not
observe significant activity in occipital and parietal areas. Comparing the
sensorimotor activity between the start of trial (Fig. 4a, middle row, t ¼
3.2 s) and cursor movement onset (Fig. 4b, middle row, t ¼ 0.0 s)
alignments, we observed a stronger effect of condition in the cursor
movement onset alignment. This suggests that the sensorimotor activity,
generating the hand MRCP, had a stronger phase-locking to the cursor
movement onset.

For the start of trial aligned direction factor (Fig. 4a, bottom row), we
observed significant voxel activity in parieto-occipital areas from 2.8 s to
2.9 s, corresponding to 300 ms–400 ms after the direction cue and 100
ms–200 ms after the average eye movement onset. The parieto-occipital
cortex was again significantly activated from 3.2 s to 3.3 s, corresponding
to 0 ms–100 ms after the average movement onset and 300 ms–400 ms
after the target stimulus reached its final location. For the cursor move-
ment onset aligned direction factor (Fig. 4b, bottom row), we did not
observe significant activity. The lack of significant activity in the cursor
movement onset alignment indicates that the parieto-occipital activity
was phase-locked to the start of trial alignment.

3.4. Differences in direction encoding

We also investigated if the encoding of directional information varied
between conditions. We observed a tendency that areas along the dorsal

Fig. 5. Condition-specific direction encoding around the cursor movement onset. a, Regions of interest (ROIs). The ROIs covered parieto-occipital cortex (PO), su-
perior parietal lobule (SPL), primary sensorimotor cortex (SM1) and premotor cortex (PM) of both hemispheres. b, Start of trial alignment. Grand average difference in
direction-related activity between execution and observation condition. The average within the interval t ¼ [2.9, 3.4] s is displayed. Before the differences were
computed and averaged across participants and time-points, each voxel’s norm was extracted. As a result, voxels which encoded more directional information in one
condition, irrespective of the participants’ dipole orientations were identified. Red voxels indicate stronger direction related activity in the execution condition. c,
Boxplots summarizing b at ROI level. Each boxplot displays the difference in direction related activity. The ROIs are color coded. Each dot marks the result of one
participant. Two-sided, permutation, paired t-tests did not reveal significant differences (critical p-value ¼ 0.0004, FDR corrected). d-e As in b-c for cursor movement
onset alignment and the interval t ¼ [-0.3, 0.3] s. Significant differences are highlighted (*).
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stream encoded more information around the cursor movement onset in
the execution condition (Fig. 5b,d). For the start of trial alignment
(Fig. 5b and c), we observed a weak effect in PM of both hemispheres
(tleft ¼ 3.3, tright ¼ 4.6); the effect did not turn significant at the ROI level
(Fig. 5c). For the cursor movement onset alignment, all ROIs tended to
encode slightly more directional information (Fig. 5e). The t-test results
were not significant (except for PO-right) because of considerable vari-
ance across participants compared to the mean difference. This suggests
that EEG delta band activity that originated in sensorimotor areas tended
to encode more directional information in the execution condition. The
size of the effect (mean difference between conditions � 0.7) for the
activity in sensorimotor areas was small and less consistent across

participants compared to the parieto-occipital activity present in both
conditions (Fig. 4a, bottom).

3.5. Single time-point condition and direction classification

Fig. 6 shows accuracy curves (condition, direction) for single time-
point classifiers and both alignment methods. We compared accuracy
curves with the significance levels to identify group level effects
(Fig. 6a–c,d-f), while we identified interaction effects (condition � di-
rection) by comparing direction classifier accuracy curves across condi-
tions (Fig. 6c,f).

The condition classifier accuracy curves for start of trial (Fig. 6a) and

Fig. 6. Grand average condition and direction classification accuracy curves. For each time-point, an sLDA classifier was fit in a cross-validation scheme to predict
condition or direction from the EEG channels. All plots show the grand average test set accuracies and their confidence intervals across participants. a, Condition (exe
vs. obs) classification accuracy curve for start of trial aligned data. To identify significant group level effects, we computed one-sided permutation paired t-tests
(critical p value ¼ 0.0039, FDR corrected) between the test set accuracies (blue) and participant specific significance levels (gray). Significant differences are
highlighted (*). b, As in a for direction (right vs. up vs. left vs. down) classification accuracy curves. c, Condition specific direction classification accuracy curves. In
addition to one-sided tests against the significance level, we computed two-sided permutation paired t-tests between the exe and obs specific accuracy curves to
identify significant interaction effects between condition and direction. d-f, As in a-c for cursor movement onset aligned data.
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cursor movement onset aligned data (Fig. 6d) crossed the significance
level threshold of 56.0% (0.6% SD) following the condition cue. The start
of trial aligned accuracy reached its peak of 78.4% (9.2% SD) around the
average cursor movement onset (t ¼ 3.3 s); the cursor movement onset
aligned peak was 79.8% (8.2% SD) at t ¼ 0.0 s. In either alignment, the
accuracy declined within 1 s after the peak and eventually plateaued. We
observed significant group level accuracies from 2.3 s to 3.6 s for start of
trial (Fig. 6a) and from�0.9 s to 0.5 s for cursor movement onset aligned
data (Fig. 6d).

In Fig. 6b,e, we show accuracy curves for direction classifiers that
were fit to distinguish between the four movement directions (right, up,
left, down) irrespective of condition. We obtained significant group level
effects for both alignments (Fig. 6b,e). The accuracies exceeded the sig-
nificance level of 30.0% (0.46% SD) from 2.8 s to 3.4 s for start of trial
(Fig. 6b), and from�0.2 s to 0.0 s for cursormovement onset aligned data
(Fig. 6e). For each type of alignment, the accuracy peaked at 44.0%
(8.6% SD) at 2.9 s and 35.5% (5.7% SD) at 0.0 s, respectively.

Lastly, we report direction classifier accuracy curves for each condi-
tion (Fig. 6c,f). We compared the group level averages with a significance
level of 32.3% (0.8% SD) in execution and 32.0% (0.8% SD) in obser-
vation condition. For start of trial aligned data (Fig. 6c), the execution
condition curve was above the significance level from 2.9 s to 3.3 s, while
the observation condition curve was significant at 2.9 s, 3.1 s and 3.2 s.
There was no significant difference between conditions (two-sided

permutation paired t-tests, dir(exe) 6¼ dir(obs)). That is, there was no
interaction effect. For cursor movement onset aligned data (Fig. 6f), the
curves in observation condition were not significant, while in execution
condition we observed significant accuracies from �0.1 s to 0.2 s and at
0.5 s. There was also a significant difference between conditions at
similar time-points (two-sided permutation paired t-tests, dir(exe) 6¼
dir(obs)). These results suggest that direction could be inferred from the
EEG delta band activity for start of trial aligned data irrespective of
condition (Fig. 6c). Whereas for cursor movement onset aligned data,
information about direction could be inferred only in execution condition
(Fig. 6f).

3.6. Start of trial alignment vs. cursor movement onset alignment

We used the windowed classification approach to investigate the ef-
fect of alignment on direction classification in execution condition.
Fig. 7a,d shows the accuracy curves for both alignment types. The
windowed classifiers achieved peak accuracies of 55.9% (8.6% SD) at
3.4 s (0.2 s SD) for the start of trial and 50.6% (7.5% SD) at 0.3 s (0.3 s
SD) for the cursor movement onset aligned data. The confusion matrices
for the peak accuracies indicate no bias towards one of the 4 directions
for the start of trial alignment (Fig. 7f) and a small bias towards rightward
movements for cursor movement onset alignment (Fig. 7f). We observed
significantly higher peak accuracies for the start of trial alignment than

Fig. 7. Execution condition. Effect of alignment on direction classification accuracy. For each time-point, an sLDA classifier was fit to predict the direction from EEG
activity at the current and 5 preceding time-points (windowed classification). a, Windowed classification accuracy curve for start of trial aligned data. Shaded areas
indicate the confidence interval across participants. b, Boxplot summarizing the participants’ peak accuracy time-points. c, Confusion matrix at the peak accuracy. d-f,
As in a-c for cursor movement onset aligned data. g, Boxplot summarizing the paired difference in peak accuracy between the two alignments. The start of trial aligned
peak accuracy was significantly higher than the cursor movement aligned one (p ¼ 0.0036, critical p-value ¼ 0.0039, FDR correction for 132 tests).
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for the cursor movement onset alignment (Fig. 6g, average Δ peak ac-
curacy 5.3%, p ¼ 0.0036, two-sided, permutation, paired t-test). This
result suggests that the representation of movement direction within
delta band EEG activity was more consistent across trials if the data was
aligned to the cues, rather than to the cursor (hand) movement onset. The
same holds true for the observation condition (Supplementary Fig. 4).

4. Discussion

We have studied the relation of MRCPs and directional information in
the EEG delta band activity during center-out reaching movements. Our
results indicate that delta band amplitude modulations carry significantly
more directional information phase-locked to the direction cue compared
to the cursor movement onset. This suggests a functional dissociation
between the network generating the MRCP in the execution condition
(movement initiation) and the network processing directional informa-
tion (movement preparation). In addition to the functional dissociation,
we observed a spatial separation. The network generating the hand
movement-related MRCP in the execution condition comprised contra-
lateral and central sensorimotor areas, while the network processing
directional information in both conditions comprised medial parieto-
occipital areas.

In the start of trial alignment case, we could infer directional infor-
mation in both conditions, suggesting an effector (hand, eye) indepen-
dent representation that was consistently expressed in medial parieto-
occipital cortex. We found significant direction related activation
300–400ms after the direction cue and again 300–400ms after the target
reached its final location (Fig. 4a, bottom row). This is in agreement with
the results obtained from the PTT (Kobler et al., 2018). Using a regression
approach to decode directional kinematics (position and velocity) we
found that the medial parieto-occipital areas encoded directional infor-
mation in both conditions. The medial parieto-occipital cortex in humans
is functionally equivalent to V6/V6A in non-human primate areas (Pit-
zalis et al., 2015). V6 (Pitzalis et al., 2006) and V6A (Tosoni et al., 2015)
have a retinotopic organization in humans and are active in reaching and
eye movements (Fabbri et al., 2010; Fernandez-Ruiz et al., 2007; Filimon
et al., 2009; Magri et al., 2019). It is, therefore, unlikely that the direction
related activity in the parieto-occipital cortex simply reflects visually
evoked potentials.

For the cursor movement onset aligned data, significant directional
information was present from�100 to 200 ms in the execution condition
(Fig. 6f), suggesting a hand movement specific representation around the
cursor movement onset. We did not observe a consistent group level
representation of direction on the cortical surface during this interval
(Fig. 4b, bottom row). If the voxels’ dipole orientations were allowed to
vary across participants, we observed slightly higher direction related
activity in sensorimotor areas in execution condition in contrast to
observation condition (Fig. 5d and e). This suggests that hand movement
specific directional information, originating in sensorimotor areas, was
present in the delta band EEG signals and that its encoding varied across
participants. Other studies reported significant SM1 activity during
center-out movements (Bradberry et al., 2010; Waldert et al., 2008). If
single or few joint movements are used to control the cursor movement,
then muscle activity and direction are strongly correlated. Since, SM1 has
a somatotopic organization, different joint movements are spatially
separated and a classifier can extract this information from EEG activity
(Ofner et al., 2017). Despite that there is clear evidence from invasive
studies that directional information is present in SM1 (Ball et al., 2009;
Georgopoulos et al., 1982; Mehring et al., 2003). However, the spatial
distribution of preferred directions of SM1 neurons is approximately
random (Amirikian and Georgopulos, 2000; Ben-Shaul et al., 2003).
Hence, the probability of observing direction related effects at an elec-
trode becomes lower as the number of neurons, contributing to the po-
tential at the electrode, increases (Hammer et al., 2016). It is, therefore,
unlikely to obtain a strong group-level effect of direction in the EEG
activity generated in SM1.

Using the windowed approach to classify directions, we obtained
peak accuracies of 55.9% (8.6% SD) for the start of trial alignment.
Waldert et al. also investigated the classification of directions from EEG
activity for executed hand movements in 4 directions (Waldert et al.,
2008). They aligned the data to the movement onset and reported peak
classification accuracies of 55.0% (SD 8.4%) 500 ms after the movement
onset. Wang and Makeig used a similar paradigm to investigate move-
ment direction in a pilot study (4 participants). They reported that EEG
activity originating in PPC could predict direction (left vs. right)
200–300 ms after the direction cue with an accuracy of 80% irrespective
of hand, eye or hand þ eye movements (Wang and Makeig, 2009). Later
(Li et al., 2012), reported an accuracy of 65.4% for the same task with a
larger sample (10 participants). Wang et al. also studied a visuomotor
center-out task using wrist movements (Wang et al., 2010). They pre-
dicted 4 directions from delta band MEG signals, and reported higher
classification accuracies if the participants could move immediately after
target presentation rather than a forced random delay period. This is in
agreement with our finding that significantly higher classification accu-
racies could be obtained cue aligned compared to movement onset
aligned (Fig. 7, Supplementary Fig. 4).

The strongest difference in EEG activity between the two experi-
mental conditions can be attributed to the MRCP related to the hand
movement initiation (Fig. 3). The MRCP waveform (Fig. 3f) and cortical
activation in central sensorimotor areas (Fig. 3g) in the execution con-
dition agree with previous EEG studies which investigated upper-limb
movements (Jochumsen et al., 2013; Ofner et al., 2017). In the obser-
vation condition, we observed a slight negativity at electrode C1 (Fig. 3b,
f), which was more pronounced for the start of trial alignment (0.7 μV)
than for the cursor movement onset alignment (0.2 μV). The source space
activity (Fig. 3d,h) indicates that central sensorimotor areas were also
activated in the observation condition, but to a significantly weaker
extent than in the execution condition (see condition factor encoding in
Fig. 4a and b). The single-lag condition classifiers utilized this difference
and reached the highest classification accuracies at the movement onset
(Fig. 6a,d). We did not observe a difference in the peak accuracies be-
tween the two alignment methods.

In the classification analysis, we observed an interaction effect be-
tween the factors condition, direction and alignment. The direction
classifiers aligned to the cursor movement onset in the execution con-
dition had significantly higher accuracies around the cursor movement
onset than in the observation condition (Fig. 6f). Note that the cursor was
not controlled by the participant in the observation condition and,
therefore, not task relevant. This could explain why the classification
accuracies were at chance level in observation condition (Fig. 6f, yellow
curve). The execution condition classification accuracies were signifi-
cantly higher than chance level, indicating the presence of directional
information around the movement onset (Fig. 6f, green curve). As
pointed out above, we did not observe a consistent group level encoding
of direction in the cortex for the cursor movement alignment; however,
we observed a tendency that areas along the dorsal stream encoded more
information in the execution condition (Fig. 5d and e). The direction
classifiers utilized this participant, execution condition and cursor
movement onset specific representations to achieve significant accu-
racies (Fig. 6f).

Since the participants were moving their eyes and right arm, artifacts
could have contaminated the EEG signals. In the EEG delta band corneo-
retinal dipole and blink artifacts are the dominating eye artifacts (Keren
et al., 2010). Using a state of the art correction algorithm (Kobler et al.,
2020b) we could remove their contribution. Supplementary Figs. 7 and 8
show the encoding results without eye artifact correction. As expected,
we observed strong direction-related activity at cortical sites closest to
the eyes (e.g., prefrontal and anterior temporal areas). After correction,
we did not find such artifactual contributions (Fig. 4a and b; Supple-
mentary Figs. 5 and 6). Hence, it is unlikely that eye artifacts contributed
to the direction classification results. Regarding movement artifacts, the
activity of the shoulder/neck muscles at the start and stop of the arm

R.J. Kobler et al. NeuroImage 220 (2020) 117076

11



movement could have contaminated the EEG during the execution con-
dition. Indeed, activity in inferior temporal sites of the right hemisphere
before the cursor movement onset and at the cursor movement offset
(Fig. 4a and b; middle rows) could be explained by residual movement
artifacts. Alternatively, the activity at these sites could reflect the activity
of subcortical brain structures (e.g., cerebellum) that we did not include
in our head model. It was recently demonstrated that EEG signals also
contain brain activity originating in subcortical regions (Seeber et al.,
2019). In either case, the activity was clearly weaker than the central
sensorimotor cortex activity. Hence, we think that the hand movement
initiation related MRCP mainly contributed to the condition
classification.

Studying two experimental tasks could have been another potential
limitation. The center-out task was succeeded by the PTT in half the
trials. Since we gave the participants time to practice both tasks, and the
instructions across tasks were similar, we think that the confounding
effects on behavior and EEG activity were negligible. Lastly, despite using
state of the art methods to detect the movement onsets from the cursor
trajectories, it is not possible to detect the exact onset. This could have
introduced jitter that might have attenuated effects phase-locked to the
movement onset. To ensure that the jitter was minimal, we visually
inspected the automatically detected onsets and fine-tuned the
parameters.

In this study, we investigated delta band amplitude modulations
during center-out movements. In addition to the MRCPs in the delta
band, it is established that the EEG alpha and beta band power in
sensorimotor areas change during movements (Pfurtscheller and Lopes
Da Silva, 1999). In the last years, it has been shown that these power
changes also covary with upper-limb movement rhythmicity (Seeber
et al., 2016), Euclidean norm of acceleration (Marty et al., 2018) and
direction (Kobler et al., 2020a; Korik et al., 2018). It is not clear whether
the delta band amplitude modulations or alpha/beta band power mod-
ulations contain more directional information about executed move-
ments. Korik et al. studied a center-out task and reported that movement
direction could be decoded with moderate correlations (approx. 0.4)
from alpha and beta band power features and with low correlations
(approx. 0.15) from delta band amplitude features. In a circular arm
movement task, we observed the contrary; movement direction was
highly correlated (approx. 0.68) with delta band amplitude modulations,
while the correlations with beta band power modulations were moder-
ated (approx. 0.28). A key difference to (Kobler et al., 2020a) is that the
participants moved their eyes in this study. Although we corrected for
corneo-retinal dipole (CRD) and eyelid artifacts, the eye movements
introduce another type of artifact – the saccadic spike potential (SP)
(Keren et al., 2010). The SP reflects extraocular muscle activity, whose
contribution starts at about 10 Hz and dominates the CRD and eyelid
artifacts for frequencies above 20 Hz. The SP artifact also varies with eye
movement direction (Keren et al., 2010), which potentially confounds
direction decoding results from band-power features. Taken together,
further research is required to disentangle the SP artifact and direction
related band power changes.

5. Conclusions

Previous behavioral work gave indirect evidence that movement
initiation and movement preparation have distinct cortical representa-
tions (Haith et al., 2016). We found direct evidence that EEG delta band
amplitude modulations carry information about both arm movement
initiation and directional processing, as an integral part of movement
preparation, and that they are represented in two distinct cortical net-
works. Information about movement direction was primarily expressed
in parieto-occipital area activity and was phase-locked to the direction
cue. Whereas information about the arm movement initiation was re-
flected in the MRCP, a response phase-locked potential, originating in
central sensorimotor areas. Despite generating the MRCP, the sensori-
motor areas also showed a tendency to encode information about

movement direction; compared to the parieto-occipital area activity, the
direction-related activity in sensorimotor areas was less consistent across
participants and specific to the execution condition. Using a classification
approach, we demonstrated that significantly more information about
movement direction can be inferred from the EEG activity for cue aligned
data. This finding may prove useful in future non-invasive brain-com-
puter interface designs.
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Tuning characteristics of low-
frequency EEG to positions and 
velocities in visuomotor and 
oculomotor tracking tasks
Reinmar J. Kobler, Andreea I. Sburlea    & Gernot R. Müller-Putz   

Movement decoders exploit the tuning of neural activity to various movement parameters with the 
ultimate goal of controlling end-effector action. Invasive approaches, typically relying on spiking 
activity, have demonstrated feasibility. Results of recent functional neuroimaging studies suggest that 
information about movement parameters is even accessible non-invasively in the form of low-frequency 
brain signals. However, their spatiotemporal tuning characteristics to single movement parameters 
are still unclear. Here, we extend the current understanding of low-frequency electroencephalography 
(EEG) tuning to position and velocity signals. We recorded EEG from 15 healthy participants while they 
performed visuomotor and oculomotor pursuit tracking tasks. Linear decoders, fitted to EEG signals 
in the frequency range of the tracking movements, predicted positions and velocities with moderate 
correlations (0.2–0.4; above chance level) in both tasks. Predictive activity in terms of decoder patterns 
was significant in superior parietal and parieto-occipital areas in both tasks. By contrasting the two 
tracking tasks, we found that predictive activity in contralateral primary sensorimotor and premotor 
areas exhibited significantly larger tuning to end-effector velocity when the visuomotor tracking task 
was performed.

Access to neural activity through various recording modalities allowed us to study its tuning characteristics in 
upper-limb movements from microscale up to macroscale levels. At the microscale level, neural spiking activity 
in primary motor1 and premotor2 as well as posterior parietal3 areas is tuned to reach direction among other 
movement parameters4. By exploiting these tuning characteristics, non-human primates4,5 and selected humans6 
with spinal cord injuries have been able to control artificial end-effectors in a 3D world. At the macroscale level, 
in terms of non-invasively accessible neural activity, spatiotemporal tuning characteristics are not yet clearly 
understood with regard to upper-limb movements.

The results of functional Magnetic Resonance Imaging (fMRI) studies in humans have revealed a 
fronto-parietal reach network comprising dorsal premotor (PMd) and medial areas of the superior parietal 
lobule (SPL)7,8. This network is active during executed and observed reaching movements7,8 as well as during 
saccadic eye movements9 and exhibits directional tuning10. The fMRI findings, in conjunction with the success-
ful decoding of positions and velocities from low-frequency electrocorticography (ECoG) signals11, suggested 
that information about directional movement parameters might be accessible from outside the brain. Not much 
later, research groups reported successful classification of reach directions12, and regression of end-effector posi-
tions and velocities13 on the basis of low-frequency magnetoencephalographic (MEG) and electroencephalo-
graphic (EEG) signals. Since then, research in this context has focused on regression of end-effector positions and 
velocities or classification of reach direction in center-out tasks with linear models14. In this paper, we focus on 
the regression approach.

A general limitation of studying reaching movements with a regression approach in center-out tasks is that 
the 2D or 3D position and velocity vectors of the end-effector point always in the same direction - the direction 
of the target stimulus. As a consequence, the position and velocity signals are strongly correlated during the 
reaching movement. For this reason, it is difficult to identify the covariate (target position, end-effector position 
or velocity) to which the recorded neural activity is preferentially tuned15. Alternatively, by studying continuous 

Institute of Neural Engineering, Graz University of Technology, Graz, Austria. Correspondence and requests for 
materials should be addressed to G.R.M.-P. (email: gernot.mueller@tugraz.at)

Received: 11 June 2018

Accepted: 14 November 2018

Published: xx xx xxxx

OPEN



www.nature.com/scientificreports/

2SCIENTIfIC REPOrTS |         (2018) 8:17713  | DOI:10.1038/s41598-018-36326-y

movements in a pursuit tracking task (PTT), instantaneous position and velocity can be decorrelated15. In a PTT, 
the goal is to track a moving target with an end-effector. This requires the brain to visually monitor the moving 
target stimulus in relation to the end-effector so that the end-effector movement can be updated to achieve the 
goal. In such a visuomotor (VM) task, the eyes naturally track the moving target stimulus16. As a consequence of 
this natural tracking behavior, the oculomotor network, which also spans parietal and frontal regions17, is acti-
vated at the same time as the reaching network9.

To facilitate natural behavior and isolate the neural activity related to the involvement of the upper-limb, a 
control condition can be introduced. In the control condition, participants would perform an oculomotor (OM) 
task by tracking a target stimulus only with their eyes9,18. In the other condition (VM task), upper-limb movement 
is additionally involved in the tracking. By contrasting these conditions, it should be possible to infer whether 
low-frequency EEG carries more information about end-effector positions and velocities during the performance 
of the VM or OM task, and to identify where the differences are expressed at the cortical level. We hypothesized 
that contralateral, primary motor and premotor areas carry more information about end-effector positions and 
velocities when the VM task is being performed, and that activity in areas related to the reaching and oculomotor 
networks is tuned to positions and velocities in both tasks.

Here, we present the tuning characteristics of low-frequency EEG activity to positions and velocities during 
continuous tracking movements. In two conditions, participants were asked to track a pseudo-randomly mov-
ing target either visually (OM task) or by additionally controlling a cursor with their right arm (VM task). We 
evaluated our approach offline by examining the recordings of healthy participants. Our experimental results 
confirmed that low-frequency EEG carries information about target and cursor positions and velocities in both 
conditions. More interestingly, when contrasting conditions, we found that the low-frequency EEG carried more 
information about the instantaneous cursor velocity during the VM task rather than during the OM task. The 
differences were mainly reflected in the premotor and contralateral primary sensorimotor areas. The temporal 
tuning characteristics of these differences indicated that the predictive neural activity preceded cursor velocity 
with 150 ms. Therefore, we could show that low-frequency EEG activity, originating in premotor and primary 
sensorimotor areas, can at least offline be used to predict the velocities of executed upper-limb movements.

Results
To test our hypotheses, we recorded high-density EEG and electrooculography (EOG) from 15 healthy partici-
pants during a two-dimensional PTT. In every trial, the PTT was preceded by a short, visually guided, center-out 
reaching task. Here, we present our findings during the PTT. Figure 1 depicts the experimental setup and par-
adigm. The paradigm separated two conditions. In the first condition (execution, VM task), participants were 
asked to track a pseudo-randomly moving target with their gaze and right hand by manipulating a cursor 
(Fig. 1a). In the second condition (observation, OM task), participants were asked to track the moving target 
with their gaze, while keeping their right hand in a resting position. To obtain similar visual input and tracking 
dynamics in both conditions, we replayed the participant’s most recent, matching, executed cursor trajectory in 
observation condition trials. All results presented subsequently were determined after pre-processing, correcting 
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Figure 1.  Experimental setup and paradigm. (a) Participants sat in a comfortable chair positioned 1.4 m from a 
computer screen. Both arms were supported at the same height. The right arm rested on a table at a comfortable 
position. The friction between arm and surface was reduced by a sleeve and a circular pad positioned between 
hand and table. Palm position movements were recorded by a LeapMotion controller (LeapMotion Inc., USA) 
located 20 cm above the hand. Forward/backward hand movements on the table were mapped to upward/
downward cursor movements on the screen. (b) Each trial started with a 3–4 s break during which the target 
(large ball) resided in the center. A 2 s baseline period was initiated when the target turned yellow. During this 
period, participants were asked to keep their hand in the resting position and, thereby, the cursor in the center 
of the screen. A visual cue indicated the condition, either execution (green target) or observation (blue target), 
followed by a center-out task in four directions. The direction was indicated by the target movement (0.5 s 
duration; arrows visualize movement in the individual images). After 1 s of fixation, a pursuit tracking task was 
performed for 16 s. A colored target stimulus (yellow, green, or blue) instructed the participants to fixate and 
track the target with their eyes. In the execution condition the participants controlled the cursor, while in the 
observation condition, the computer replayed a previously executed cursor trajectory which matched to the 
current target trajectory. See Supplementary Video S1 for examples.



www.nature.com/scientificreports/

3SCIENTIfIC REPOrTS |         (2018) 8:17713  | DOI:10.1038/s41598-018-36326-y

for EOG artifacts19 and downsampling the recorded data to 10 Hz (see Methods). Throughout the text, grand 
average results are presented in the form of the mean value and its standard error.

Tracking analysis.  To analyze the tracking dynamics, we computed cross-correlations between the positions 
and velocities of both stimuli in execution and observation conditions. Figure 2a summarizes the grand average 
cross-correlations in the execution condition. The large cross-correlations (r > 0.7) observed between signals of 
the same movement parameter (e.g, target and cursor position) show that participants complied with the instruc-
tion to minimize the distance to the target. Cross-correlations between the position and velocity of the same stim-
ulus were negligible (|r| < 0.02; e.g, target position and target velocity), while we observed moderate (|r| ~ 0.4; e.g, 
target position and cursor velocity) cross-correlations across stimuli. Our target trajectory generation procedure 
ensured decorrelated horizontal and vertical components. Hence, cross-correlations observed with any signal 
from the other component were negligible (|r| < 0.05). Figure 2b summarizes the grand average cross-correlations 
in observation condition. We did not detect significant differences to the execution condition results (Fig. 2c).

To estimate the temporal dependencies among the four movement parameters (target position, target velocity, 
cursor position, cursor velocity) per component, we computed cross-correlations over lags in the interval [−0.5 s, 
0.5 s] in steps of 0.1 s. Figures 3a–d depict the results for the horizontal (a,b) and vertical (c,d) components. We 
aligned the individual figures based on the peak cross-correlations between pairs of movement parameters. For 
example, the origin in Figure 3b is shifted by −0.525 s compared to that in Figure 3a because the cursor velocity 
was maximally correlated with cursor position 0.525 s in the future. In the execution condition, the participants 
reacted with their hand movements (cursor trajectories) to the pseudo-random target trajectories. This means 
that the properties of the target trajectories (e.g, cross-correlation peak between target position and velocity) also 
determined the properties of the cursor trajectories.

The cross-correlation peak between target and cursor position can be used to infer information about the 
participants’ tracking behavior. We used the lag of the cross-correlation peak to estimate the latency between the 
target and cursor. In the execution condition, the latency reflected the duration that a participant took to adjust 
the cursor movement to the pseudo-random target movement. The cross-correlation between the target and cur-
sor position peaked at a delay of 153 ± 19 ms at group level. After accounting for a 55 ± 1 ms delay, introduced by 
our online processing system which transformed hand movements into cursor movements, the average latency of 
hand movements was approximately 100 ms. This result is in accordance with the findings of behavioral studies, 
which report that a minimum latency of 80–100 ms is needed for a visual or proprioceptive signal to influence an 
ongoing movement20,21.

Movement parameter tuning curves.  We estimated tuning curves for each movement parameter with a 
single sample, sliding-window, linear regression approach13,22. The regression approach is outlined in Figure 3e. 
At different lags, a partial least squares (PLS)23 estimator was used to decode each movement parameter from 
the EEG within the sliding window (one sample). This modelling approach implied that the relevant activity in 
the signal used for decoding (EEG) has to be in the same frequency range as the signal to be decoded (e.g, hori-
zontal cursor velocity)24. To extract the relevant activity in the frequency range (0.3 to 0.6 Hz) of the target and 
cursor trajectories, we bandpass-filtered the EEG (Supplementary Fig. S3 shows power spectral densities of the 
bandpass-filtered EEG and the movement parameters). In a cross-validation scheme, we computed correlations 
between the signals to be decoded (e.g, horizontal cursor velocity) and their estimates for each lag to generate the 
tuning curves.

Figure 2.  Group-level stimuli cross-correlations in both conditions. (a) Cross-correlations between the 
two-dimensional movement parameters (target position, target velocity, cursor position, cursor velocity) in 
execution condition. (b) Cross-correlations in observation condition. (c) P-values for paired Wilcoxon sign 
rank tests between conditions. P-values were adjusted55 for 28 comparisons to control the false discovery rate 
(FDR) at a level of 0.05.
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Figures 3f–i summarize the grand average tuning curves for both conditions. Due to the independence 
between the horizontal and vertical components (Fig. 2), the tuning curves in Figures 3f–i are complementary. 
For both components, the grand average correlations ranged from 0.2 to 0.4. We used a shuffling approach to 
estimate chance levels for each participant. The chance levels were similar across components, conditions and lags 
(target position rchance = 0.13 ± 0.003, target velocity rchance = 0.12 ± 0.002, cursor position rchance = 0.12 ± 0.003, 
cursor velocity rchance = 0.10 ± 0.002). Compared to chance level, the observed correlations were significant for all 
participants, components, conditions, movement parameters and lags. As in Figures 3a–d, we aligned the tuning 
curves (Fig. 3f–i) according to the peak cross-correlations between pairs of movement parameters. After the 
alignment, we observed three effects.

As a first effect, we found that in the observation condition the tuning curves in Figures 3f–i (dashed lines) 
were modulated by the auto-/cross-correlation with target position. That is, an increase in the tuning curve of 

Figure 3.  Grand average movement parameter auto-/cross-correlation curves, and movement parameter 
tuning curves. (a–d) Grand average stimuli auto- and cross-correlations. (a) Auto- and cross-correlation curves 
of horizontal components relative to the horizontal cursor position during execution (solid lines) and 
observation (dashed lines). Movement parameters are color-coded. Shaded areas represent the standard-error 
of the mean. Cross-correlations were evaluated for lags, ranging from −0.5 s (leading relative to cursor position) 
to 0.5 s (lagging) in 0.1 s steps. (b) Auto- and cross-correlation curves of horizontal components relative to the 
horizontal cursor velocity. (c), Auto- and cross-correlation curves of vertical components relative to the vertical 
target position. (d) Vertical target velocity. (e) Outline of the regression approach. After EEG preprocessing 
(including bandpass-filtering), a sliding window (one sample) was used to decode the movement parameters at 
different lags. (f–i) Grand average correlations between movement parameters and their estimates at different 
lags (tuning curves). (f) Tuning curves for the horizontal target position (blue) and velocity (orange). The mean 
and its standard error summarize the results for execution (solid lines), observation (dashed lines) and their 
paired difference (dash dotted lines). Cross-correlation peaks between target position and velocity were used 
to align the time-lag axes. Lags with significant differences between conditions (paired Wilcoxon sign-rank 
tests, FDR adjustment for 88 comparisons, 0.05 significance level) are highlighted (*). (g) Tuning curves for 
horizontal cursor position (violet) and velocity (green). (h) Tuning curves for vertical target position (blue) and 
velocity (orange). (i) Tuning curves for vertical cursor position (violet) and velocity (green).



www.nature.com/scientificreports/

5SCIENTIfIC REPOrTS |         (2018) 8:17713  | DOI:10.1038/s41598-018-36326-y

a movement parameter coincided with an increase in the absolute auto-/cross-correlation between the move-
ment parameter and the target position signal. We observed this effect for all movement parameters due to the 
dependencies between them. The dependencies are reflected in the auto-/cross-correlation curves (Fig. 3a–d). For 
example, the tuning curve of the vertical target position (Fig. 3h, blue dashed line) exhibited a similar waveform 
compared to the target position’s autocorrelation curve (Fig. 3c, blue line). The tuning curve of the horizontal 
cursor position (Fig. 3g, violet dashed line) and its cross-correlation curve with the target position (Fig. 3a, blue 
line) represents another example. The size of the effect was approximately 0.1 for both components and maximal 
for target position. In the execution condition (solid lines), we detected the same modulation. However, it was 
partially masked by the other effects.

The second effect observed concerns the vertical component (Fig. 3h,i). The paired differences between exe-
cution and observation conditions (dash-dotted lines) exhibited a positive effect on all movement parameters 
and lags. That is, in the execution condition, the low-frequency EEG contained significantly more information 
about the movement parameters of the vertical component. The effect was largest for vertical cursor position and 
velocity with an average difference in correlation of 0.05 (Fig. 3i, violet and green dash-dotted lines).

The third effect concerned the differences in tuning curves for both components (Fig. 3f–i, dash-dotted lines). 
The differences were modulated by the absolute auto-/cross-correlation between a movement parameter and cur-
sor velocity (Fig. 3a–d, green lines). The effect was prominent for the horizontal component and largely masked 
by the second effect for the vertical component. For example, the difference in tuning curves for the horizontal 
cursor position (Fig. 3g, violet dash-dotted line) resembled the absolute value of its cross-correlation curve with 
the horizontal cursor velocity (Fig. 3a, green line). The size of the effect was maximal (approx. 0.07) for the hori-
zontal cursor velocity at lag 0 (Fig. 3g, green dash-dotted line). Taken together, we inferred that the extracted 
EEG carried significantly more information about the instantaneous (lag 0 s) cursor velocity in the execution 
condition.

We were also interested in assessing which brain areas encoded more information in the execution condition 
than in the observation condition. To determine which brain areas contributed to the third effect, we selected 
the cursor velocity decoder models at a lag of 0 s as representatives and computed their associated activation 
patterns25. The patterns were subsequently mapped to the cortical surface by applying EEG source imaging26,27 
on a template head model. In source space, we computed pairwise differences between the conditions for the 
Euclidean norm of each voxel (see Methods).

Figure 4 depicts the grand average difference in pattern norms for the horizontal (Fig. 4a) and vertical 
(Fig. 4b) cursor velocities at lag 0. We defined eight anatomical regions of interest (ROIs) to span areas related to 
the fronto-parietal reaching network7,9. They are dorsomedial occipital cortex (DMOC), superior parietal lobule 
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Figure 4.  Grand average pattern activity difference between conditions in source space for single-lag (lag 0) 
cursor velocity decoder models. (a) Horizontal cursor velocity pattern. Voxel color indicates the sign of the 
difference in norms; positive (red) indicates larger pattern activity in execution. Voxels with a difference in 
norms less than half of the absolute maximum are shaded with gray to emphasize the sites with the largest 
effects. (b) Vertical cursor velocity pattern. (c) Anatomical regions of interest (ROI)s, covering dorsomedial 
occipital cortex (DMOC), superior parietal lobule (SPL), fronto-central (FC) and primary sensorimotor areas 
(SM) of both hemispheres. (d) Density estimates of the differences in ROI activity for participants for the 
horizontal cursor velocity. Each point represents one participant. Density curves follow the ROI color-coding 
scheme. (e) As in (d) for vertical cursor velocity.
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(SPL), fronto-central (FC) and primary sensorimotor areas (SM) of both hemisphere (Fig. 4c). We summarized 
the pattern activity of each ROI as the average of its voxels. Figures 4d,e depict the distribution of both horizon-
tal and vertical components for all participants. Regarding the horizontal component (Fig. 4d), we observed a 
positive effect in FC and left SM areas. For the vertical component (Fig. 4e), we observed positive effects in right 
SPL and both FC areas. Considering their positive sign, the results indicate that the activity in the areas contained 
more information about the instantaneous cursor velocity in execution condition.

In Figure 5 we show the difference in pattern norms for all single-lag models (Fig. 3f–i), to demonstrate how 
the differences in tuning curves are reflected on the cortical surface. Negative lags indicated leading brain activity 
(causal tuning), while positive lags indicated lagging brain activity (anti-causal tuning). The difference in acti-
vation patterns in fronto-central and contralateral sensorimotor areas was tuned to the horizontal and vertical 
cursor velocity in the [−0.5, 0.1] s interval and peaked around −0.1 to −0.2 s (Fig. 5b,d; bottom rows). As before, 
due to the temporal dependence between the position and velocity signals (Fig. 3a–d), we also observed tuning 
effects for the position signals. The difference in activation patterns was anti-causally tuned to cursor position for 
lags in the range [0, 0.5] s (Fig. 5a,c; bottom rows). Overall, the strength of the differences was more pronounced 
for the horizontal component. Similar to the cursor velocity pattern at lag 0 (Fig. 4b,e), we observed a positive 

Figure 5.  Grand average pattern activity differences between conditions for all single-lag decoder models. (a) 
Single-lag decoder patterns for the horizontal target (top) and cursor (bottom) positions for lags ranging from 
−0.5 s (brain activity leading relative to the position signals) to 0.5 s (brain activity lagging). As before, cross-
correlation peaks between the target and cursor positions were used to align the time-lag axes. The red color 
indicates larger voxel activity in the execution condition. (b) Single-lag decoder patterns for the horizontal 
target (top) and cursor (bottom) velocities. (c) As in (a) for the vertical positions. (d) As in (b) for the vertical 
velocities.
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effect in SPL only on the vertical component movement parameters (Fig. 5c,d). With respect to vertical cursor 
velocity (Fig. 5d; bottom row), the positive effect started in the right SPL at lag −0.3 s, peaked at lag 0 s, subse-
quently translated to the left SPL and faded at lag 0.3 s.

Multiple-lag cursor velocity prediction.  To exploit the tuning of neural activity over multiple lags, we 
extended the feature set by using multiple samples in the sliding window, linear regression approach. We evalu-
ated sliding windows covering the samples at lags [−0.1, 0] s to [−0.5, 0] s in 0.1 s steps to predict the horizon-
tal and vertical cursor velocities. The correlations between the recorded and decoded cursor velocities initially 
increased, but became saturated for windows exceeding [−0.3, 0] s (Fig. S4). For the [−0.3, 0] s window, the 
grand average test set correlations were rexe = 0.40 ± 0.02, robs = 0.36 ± 0.04 for the horizontal component and 
rexe = 0.41 ± 0.03, robs = 0.33 ± 0.03 for the vertical component.

To visualize the decoded cursor velocities, we selected a representative trajectory and summarized the results 
over participants. Figures 6a–c show the recorded target, cursor and the decoded cursor velocities for this par-
ticular trajectory in both conditions. The small standard-error around the recorded cursor velocities (green 
shaded area) demonstrates that the participants were tracking the target consistently. Compared to the recorded 
cursor velocities, the decoded cursor velocities exhibited more variance over participants than their neural pre-
dictions (Fig. 6c). Still, the grand average decoded cursor velocities were strongly correlated for both components 
and conditions. The grand average correlations were rexe = 0.83 ± 0.02, robs = 0.82 ± 0.02 on average for the 90 
trajectories on the horizontal component, and rexe = 0.85 ± 0.02, robs = 0.80 ± 0.03 on the vertical component. This 
reflects a 0.40 gain in correlation at the group level compared to the results at participant level.

As before, we computed activation patterns and projected them to the cortex. Figures 6d,e depict the grand 
average patterns (average over participants and lags), and Table 1 lists the p-values of non-parametric permuta-
tion paired t-tests for the eight ROIs. Compared to chance level, the pattern activity was significant in DMOC 
areas in both conditions. SPL pattern activity was significant in the execution and mainly in the observation 
condition; the effect on vertical cursor velocity did not reach significance in observation condition. FC pattern 
activity was generally larger in the execution condition (Fig. 6f,g). The differences observed between execution 
and observation conditions were in line with the single-lag results (Fig. 3f–i). They were significant in right FC 
and left SM for the horizontal component, and in right SPL for the vertical component. The effects on left FC (and 
right FC for the vertical component) did not reach significance.

Figure 6.  Grand average cursor velocity prediction for a [−0.3, 0] s estimation window. (a–c) Illustrations 
of executed and decoded cursor velocities for a specific target trajectory. (a) Grand average horizontal target 
(orange line), cursor (green line) and decoded cursor velocity in execution (gray solid line) and observation 
(gray dashed line) conditions. Shaded areas summarize the standard error of the mean. (b) As in (a) for 
the vertical component. (c) 2D representation for single time points. Dots indicate the group-level average. 
Dispersion over participants is summarized by the square root of the covariance matrix. (d–g) Grand average 
multiple-lag decoder patterns. (d) Horizontal cursor velocity patterns in the execution (left) and observation 
(right) conditions. Pattern activity norms were averaged over lags. The voxel color indicates strength of activity. 
(e) Vertical cursor velocity patterns in the execution (left) and observation (right) conditions. (f) Difference 
between lag-averaged pattern norms for the horizontal component. The voxel color indicates the sign and 
strength of the difference in the pattern activity. (g) As in (f) for the vertical component.
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Visual tracking analysis.  We examined the EOG signals to compare the visual tracking behavior between 
conditions by computing cross-correlations between the horizontal and vertical target position and the asso-
ciated EOG derivative signals. The cross-correlations peaked at lag 0 for both conditions, indicating that the 
participants’ gaze was focused on the target’s instantaneous position. By comparing the correlation values at lag 0,  
we detected significant differences among conditions and components (significance levels were Bonferroni cor-
rected from 0.05 to 0.01 for 5 two-sided paired Wilcoxon sign-rank tests). We found a slightly lower degree of 
correlation in the execution condition compared to the observation condition for the horizontal component 
(rexe = 0.88 ± 0.01, robs = 0.90 ± 0.02, p = 0.00537), while the degree of correlation was higher in the execution 
condition for the vertical component (rexe = 0.79 ± 0.02, robs = 0.70 ± 0.04, p = 0.00153). Within conditions, the 
degrees of correlation were higher for the horizontal component (pexe = 0.00012; pobs = 0.00006).

In the execution condition, the VM task required the processing of visual feedback about the cursor in relation 
to the moving target, while in the observation condition, the cursor was not task-relevant. Authors of previous 
behavioral studies have reported a reduced blink rate (BR) if more visual information was processed28,29. In our 
study, we detected blinks by thresholding the vertical EOG derivative19. As predicted, we found a significantly 
lower BR in terms of blinks per second (bps) in the execution condition as compared to the observation condition 
(BRexe = 0.019 ± 0.006 bps, BRobs = 0.028 ± 0.006 bps, p = 0.0015).

Discussion
We have presented a novel paradigm, which was tailored to study the tuning characteristics of human, 
low-frequency EEG to target and cursor (end-effector) positions and velocities in the presence of eye movements. 
Our paradigm allowed us to distinguish between two conditions with similar tracking dynamics, but with differ-
ent cursor-control origin. By not inhibiting eye movements during the PTT, we could study tracking movements 
in a natural fashion and focus on the effects related to the involvement of the upper limb. We presented evidence 
that this involvement indeed influences the spatiotemporal expression of information about end-effector posi-
tions and velocities in the low-frequency EEG activity.

In a PTT, participants typically manipulate an end-effector to minimize its distance to a target. Typically, 
task compliance results in high cross-correlations between movement parameters of the same type (e.g, posi-
tion). However, the cross-correlations between positions and velocities depend on the properties of the target 
trajectories. We created a trade-off between task difficulty, bandwidth and steepness of the increase in correlation 
over lags. By using the 0.3 to 0.6 Hz band, we could study EEG in a similar frequency range as those examined in 
previous studies13,22, and shift the peak in cross-correlation between target velocity and position to 0.55 s. After 
accounting for the dependence between the movement parameters by aligning the tuning curves, we determined 
one effect in both conditions and two effects in the difference between conditions.

The effect observed in both conditions and components concerned the modulation of the tuning curves by 
the amount of cross-correlation between a movement parameter and target position. This effect let us to infer 
that information about the instantaneous target position was encoded in the low-frequency EEG. In the obser-
vation condition, the effect was prominent, while it was partially masked by the other effects in the execution 
condition. The target position was particularly relevant during the PTT. In both conditions, the participants had 
to keep their gaze fixated on the target. The fact that a peak in the correlation between target position and EOG 
derivatives occurred at lag 0 confirmed that the participants were able to accomplish the task. This finding is in 
accordance with findings for human smooth pursuit behavior for a bandlimited pseudo-randomly moving stim-
ulus30. As a consequence, eye movement artifacts were also phase locked to the target position signal. To assess 
which sources contributed to the observed effect, we computed patterns for target position decoders at lag 0 and 
projected them to source space (Fig. S5). The grand average patterns for both conditions indicated that the con-
tributions originated from a combination of brain activity with the largest predictive activity in parieto-occipital 
areas and residual eye artifacts.

As with the modulation of the tuning curves with target position in both conditions, we observed a modu-
lation of the differences between conditions with cursor velocity. By mapping single-lag cursor velocity model 
patterns to source space and computing differences between conditions, we observed a stronger effect during 
the execution condition in both FC and contralateral SM ROIs (Fig. 5). The FC ROIs covered dorsal premotor 
(PMd) and supplementary motor areas (SMA). Their involvement in reaching is in accordance with the findings 

movement 
parameter condition

ROI

DMOC right DMOC left SPL right SPL left FC right FC left SM1 right SM1 left

horizontal cursor vel

exe 0.0270 0.0096 0.0373 0.0096 0.0373 0.13 0.49 0.15

obs 0.0096 0.0096 0.0096 0.0120 0.32 0.36 0.79 0.30

exe - obs 0.79 0.57 0.60 0.60 0.0224 0.067 0.25 0.0148

vertical cursor vel

exe 0.0096 0.0120 0.0096 0.0096 0.068 0.11 0.74 0.72

obs 0.0096 0.0096 0.068 0.094 0.79 0.14 0.79 0.53

exe - obs 0.82 0.49 0.0171 0.36 0.098 0.051 0.65 0.51

Table 1.  Significance of ROI activation for multiple lag cursor velocity decoders (exe vs. shuffled exe, obs vs. 
shuffled obs, and exe vs. obs). P-values were computed with two-sided non-parametric permutation paired 
t-tests (1000 permutations). Significant differences (FDR adjustment of p-values for 48 comparisons, 0.05 
significance level) appear in bold text.
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of imaging studies in humans31. The difference in activation patterns in FC and contralateral SM ROIs was sus-
tained over multiple lags, with its peak activity leading cursor velocity by approximately 150 ms. The delay can be 
reduced to about 95 ms by accounting for the 55 ms delay between the hand and cursor movement, introduced 
by the online processing system. The remaining 95 ms could be explained by motor output delays32. Estimating 
the actual motor output delay is not a straightforward task, since it depends on the task demands and the type 
of perturbation among other factors32. However, Paninski et al. studied the tuning of movement parameters in 
a comparable PTT15. They investigated M1 single unit activity in non-human primates and reported that neural 
activity was tuned to cursor velocity in a [−400, 400] ms lag range (peak at −100 ms; neural activity leading). 
Thus, a stronger degree of tuning of neural activity to cursor velocity in motor areas during the execution condi-
tion offers a plausible explanation. An alternative explanation would be offered by anti-causal tuning to the cursor 
position for lags in the range [0, 500] ms (Fig. 5a,c). Tuning to the cursor position peaked at 300 to 400 ms, which 
would reflect feedback processing (neural activity lagging). Experimental results on decoding movement parame-
ters in behaving non-human primate spiking activity1,4 and local field potentials33, together with results of studies 
on human MEG34 and ECoG35, show that tuning of SM activity to movement parameters yields peaking activity 
around 100 ms before the movement. Taken together, the differences in the activation patterns reflects more likely 
information about upcoming cursor velocities. Consequently, the observed effects for the cursor positions can be 
explained by the cross-correlations between the movement parameters (Fig. 3a–d).

The third effect observed concerned the vertical component alone. In the execution condition, we observed 
that the correlations of the tuning curves were generally higher (Fig. 3h,i), a 0.1 higher correlation between ver-
tical EOG derivative and target position and a decrease in blink rate. Moreover, the activation patterns were 
significantly stronger in the SPL (Fig. 5b,d, Table 1). Relative decreases in the blink rate have been shown to be 
related to the processing of more visual information28 and more demanding tasks29. This reflects the difference 
between visuomotor (VM) and oculomotor (OM) tasks studied here. Behavioral and decoding results combined 
indicate greater engagement in tracking vertical component signals in the VM task. We offer two non-exclusive 
explanations for this phenomenon. First, unlike the horizontal component, the vertical component mapping was 
not congruent; this means that forward hand movements were mapped to upward cursor movements. Therefore, 
the increase in SPL activity could be explained by the integration of incongruent proprioceptive and visual infor-
mation. Second, we studied two stimuli, moving in two uncorrelated dimensions, which meant that the oculo-
motor system had to keep track of both dimensions. The findings of behavioral studies30 and our results show 
that smooth pursuit is more accurate for the horizontal component. Accurate control of the upper-limb in the 
VM task could require the visual system to extract more information about the vertical component and, as a side 
effect, improve smooth pursuit. Since the SPL is involved in smooth pursuit control36, the increase in information 
about the vertical component could be explained.

By combining multiple lags to predict cursor velocities we could raise grand average decoder correlations 
by around 0.05 to 0.4 in the execution condition and to 0.35 in the observation condition. These correspond 
to correlations reported in previous EEG decoding studies in center-out13 and continuous movement tasks37,38. 
By averaging over participants, the correlations improved drastically to 0.8. The 2D plots in Figure 6c illustrate 
the reason for this effect. The grand average decoded cursor velocity is frequently in the same quadrant as the 
recorded cursor velocity; however, the variance among participants is considerable. Thus, the individual correla-
tions are substantially lower. We inferred that the signal to noise ratio could be drastically improved by averaging 
the response over participants and consequently that the low-frequency EEG strongly correlates with positions 
and velocities at the group level in both conditions.

The grand average multiple lag cursor velocity decoder model patterns (Fig. 6d,e) demonstrate that the con-
tributing sources were primarily of cortical origin in both conditions. Therefore, it is unlikely that the cursor 
velocity decoders relied on residual eye movement artifacts. It is also unlikely that arm or neck movement artifacts 
contributed, considered that there was no arm movement in the observation condition, and that the difference in 
decoder patterns (Fig. 6f,g) were primarily located in contralateral primary sensorimotor, fronto-central and pari-
etal areas. In both conditions and in both components, pattern activity was strongest in the parieto-occipital and 
parietal areas (Fig. 6d,e). The associated DMOC and SPL ROIs showed significantly stronger pattern activity com-
pared to the patterns of shuffled data (Table 1). This is in accordance with an increase in blood oxygenation level 
dependent (BOLD) activity in these areas during executed and observed reaching movements39. Moreover, the 
strong tuning of parieto-occipital and parietal areas in both conditions, reported here, is in accordance with the 
modulation of BOLD activity by movement direction in an fMRI adaptation study10. Since there was no signifi-
cant difference in the DMOC ROIs between conditions (Table 1; exe - obs), we inferred that the predictive activity 
in the parieto-occipital areas was not specific to the VM task. That is, the predictive activity in parieto-occipital 
areas did not require the involvement of the upper-limb.

In conclusion, we demonstrated that low-frequency EEG carries information about target and cursor posi-
tions and velocities, which is primarily encoded in fronto-parietal and parieto-occipital networks. By con-
trasting between the decoder patterns of the VM and OM tracking tasks, we found that the degree of tuning in 
fronto-central and contralateral primary sensorimotor areas to the instantaneous cursor velocity was significantly 
larger in the VM tracking task. The temporal tuning characteristics indicate that neural activity lead cursor veloc-
ity by approximately 150 ms (hand velocity by 95 ms). Altogether, the presented results on spatial and temporal 
tuning characteristics of the low-frequency EEG extend the findings of previous decoding studies. Moreover, 
we believe that it is possible to transfer our findings to individuals with tetraplegia, since the participants in this 
study moved their right arm only during the VM task, but the decoder correlations were clearly above chance 
level in both tracking tasks. Future closed-loop studies need to investigate whether the tuning characteristics of 
low-frequency EEG can be exploited to control an end-effector and whether the control skill can be improved.
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Methods
Participants.  Fifteen people, aged 23.8 ± 0.8 years, participated in this study. All received payment to com-
pensate for their participation. Nine of the participants were female. All participants self-reported to have normal 
or corrected-to-normal vision and to be right handed. Eleven participants had previously participated at least 
once in an EEG experiment. All signed an informed consent form after they had been instructed about the pur-
pose and procedure of the study. The experimental procedure conformed to the declaration of Helsinki and was 
approved by the ethics committee of the Medical University of Graz (approval number 29-058 ex 16/17).

Experimental set-up.  Figure 1a depicts the recording environment. Participants sat in a shielded room, 
positioned 1.4 m away from a computer screen. Their left arm was supported by an arm rest, while the right 
arm was supported by a planar surface at the same height. To reduce friction between the right arm and the 
surface, participants were asked to wear a sleeve and place their hand on a circular pad. A LeapMotion control-
ler (LeapMotion Inc., USA), placed 20 cm above the hand, was used to record the right hand’s palm position. 
After participants found a comfortable resting position, the right hand’s palm position was mapped to the origin 
(center of the screen) in the virtual environment. In analogy to the interaction with a computer by using a com-
puter mouse, we decided to map rightward/forward hand movements to rightward/upward cursor movements. 
In order to create a trade-off between movement range and movement/muscular artifacts in the EEG, we mapped 
a circle with a 5 cm radius around the resting position to a circle with a 16 cm radius on the screen. The limits of 
the circle on the screen were indicated by the bounds of a virtual grid. E.g. by moving their hand 5 cm to the right, 
the participants could make the cursor touch the grid on the right side.

Experimental procedure.  The experimental procedure consisted of 4 blocks, lasting 3 hours in total. In 
the first block, participants were asked to familiarize themselves with the paradigm (approx. 10 min). In the 
second and fourth block, eye artifacts (blinks and eye movements) and resting activity were recorded for 5 min. 
The detailed procedure is described in19. In the third block, participants performed the main experimental task 
according to the paradigm illustrated in Figure 1b. Each trial implemented a center-out reaching task followed by 
a PTT. A yellow target stimulus marked the beginning of a trial. It triggered the participants to fixate their gaze 
upon the target. The paradigm distinguished between two conditions. In the observation condition (blue target), 
participants merely tracked the moving target visually while the computer replayed a previous cursor trajectory. 
In the execution condition (green target), participants additionally had to minimize the distance between the 
target and cursor by moving their right hand and thereby the cursor. A total of 180 trials (90 per condition, 
pseudo randomly distributed) were recorded in 20 runs with short breaks in between. We additionally recorded 
180 short trials (90 per condition, pseudo randomly distributed with the other trials within the 20 runs). A 
short trial ended after the center-out task. The data recorded during short trials were not used in this analysis. 
Supplementary Movie S1 shows the tracking behavior of representative participants in both conditions during 
long (center-out + PTT) and short (center-out) trials.

Target trajectories were generated offline and were identical across participant. Twelve base target trajectories 
were sampled from pink noise, which was band-passed in the frequency range of 0.3 to 0.6 Hz according to the 
procedure described by Paninski et al.15. We sampled the horizontal and vertical components independently 
so that they were uncorrelated. The trajectory pool was extended by adding rotated (90°, 180° and 270°) and 
mirrored versions of the base target trajectories. This yielded a total of 96 trajectories; 90 of these were randomly 
distributed over the 180 trials (once per condition). This procedure ensured uncorrelated position and velocity 
signals at lag 0 (Fig. S1).

The results of pilot studies revealed that the tracking dynamics varied among participants and over time. To 
achieve similar and participant specific tracking dynamics between the conditions, we implemented an adaptive 
approach. In observation condition trials, the most recent cursor trajectory of all matching versions (original, 
rotated and/or mirrored) of the associated base target trajectory was selected for replay. Details about the cursor 
trajectory replay procedure are described in the supplementary methods.

Data recording and pre-processing.  All data was recorded using the labstreaming layer (LSL) protocol 
(https://github.com/sccn/labstreaminglayer). 64 active electrodes (actiCAP, Brain Products GmbH, Germany) 
were placed on the scalp according to the 10–10 system. The reference and ground electrodes were positioned at 
the right mastoid and AFz. Six additional active electrodes were placed at the superior, inferior and outer canthi 
of the right and left eyes to record EOG. Figure S2 visualizes the locations of all 70 electrodes. EEG and EOG 
data were recorded at 1 kHz (BrainAmp, Brain Products GmbH, Germany). The paradigm was implemented in 
Python 2.7 based on the simulation and neuroscience application (SNAP) platform (https://github.com/sccn/
SNAP) and the 3D engine Panda3D (https://www.panda3d.org). The screen position signals of the visual stim-
uli (cursor, target) were recorded via LSL at 60 Hz and synchronized offline with the EEG signals by means of a 
photodiode, which captured an impulse on the screen at the start of each trial. All signals were then resampled 
to 200 Hz.

The pre-processing pipeline is depicted in Figure 7 and was implemented in Matlab (Matlab 2015b, Mathworks 
Inc., USA) and the open source software EEGLAB40 version 14.1.1. EEG data were high-pass filtered (0.25 Hz 
cut-off frequency, Butterworth filter, eighth order, zero-phase). Data cleaning was initiated by a spherical interpo-
lation of channels with poor signal quality (visual inspection). We interpolated 2.1 channels on average (Table S1). 
Eye movements and blinks were attenuated by applying the artifact subspace subtraction algorithm (outline in 
subsection eye artifact correction). The EEG channels were subsequently converted to common average reference 
(CAR). We then applied robust principal component analysis (Robust PCA)41 to attenuate occasional electrode 
pops and low-frequency drifts. The motivation behind Robust PCA is to separate a data matrix X (raw EEG) into 
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a sum of a low rank matrix L (EEG) and a sparse matrix S (occasional single or few electrode outliers, e.g, pops). 
The optimization problem can be formulated as

+ λ . . = +⁎L S X L Smin s t (1)1

and solved iteratively41. We fixed the regularization parameter λ = .1 5
N

 with N being the number of samples. All 
subsequent processing steps were applied to the extracted low rank data matrix L. We epoched the data into 14 s 
trials, starting 1 s after tracking onset. Trials were marked for rejection if (1) the EEG signal of any channel 
exceeded a threshold of +/−200 µV or had an abnormal probability or kurtosis (more than 6 standard deviations 
beyond the mean), (2) the correlation of any EOG derivative (HEOG/VEOG) with the target position (horizon-
tal/vertical) was improbable (more than 4 standard deviations beyond the mean), and (3) if a tracking error 
appeared (i.e, if hand tracking was lost or jerky). We applied the joint probability and kurtosis rejection criteria 
twice to detect gross outliers in the first iteration, and subtle outliers in the second iteration. All criteria combined 
marked an average of 16% of the trials for rejection. Supplementary Table S1 lists detailed information for each 
participant. Before actually rejecting trials, a low-pass filter (0.8 Hz cut-off frequency, Butterworth filter, fourth 
order, zero-phase) was used to extract EEG signals in the frequency of the target and cursor movements.

Stimuli position signals were low-pass filtered at 5 Hz (cut-off frequency, moving average finite impulse 
response filter, 17 filter taps, zero-phase) before velocities were extracted by computing first order, finite differ-
ences. Thereafter, the brain and stimuli signals were merged and resampled at 10 Hz. Then, the previously marked 
trials were rejected. Optionally, samples at various lags were concatenated to extend the feature space before 
fitting a regression model.

Eye artifact correction.  The eye artifact correction approach is based on a block design19,42. We fitted a 
linear eye artifact model to the recordings of blocks 2 and 4 (eye artifacts and resting brain activity) and applied 
the correction to the data of block 3.

The eye artifact model assumes a linear and stationary mixing of eye artifact sources s (t)(a)  ( ×n 1artifact sources ) 
with brain activity, denoted as noise n(t) ( ×n 1artifact sources ). The activity at the EEG and EOG channels tx( ) 
( ×n 1channels ) is then

= +x A s n(t) (t) (t) (2)a( ) (a)

with a ×n nchannels artifact sources mixing matrix A a( ). The brain activity tx ( )c  can be recovered by subtracting the eye 
artifact activity at each channel

= − ≈ˆ ˆx x A s n(t) (t) (t) (t) (3)c
(a) (a)

if Â
a( )

 and ˆ ts ( )(a)  are good estimates of the unknown true mixing matrix and eye artifact sources. We applied the 
artifact subspace subtraction algorithm19,43 to compute the estimates. The algorithm estimates the source signals 
ˆ ts ( )(a)  by linearly combining all channels

=ŝ V x(t) (t) (4)(a) (a)

with a ×n nartifact sources channels unmixing matrix V(a). The correction in Equation (3) simplifies to

= − = −ˆ ˆ ˆx x A s I A V x(t) (t) (t) ( ) (t) (5)c
(a) (a) (a) (a)

Figure 7.  Signal pre-processing pipeline. After synchronization, brain signals were resampled, high-pass 
filtered and bad channels were spherically interpolated. Then, eye artifacts were attenuated19, followed by 
a conversion to a common average reference. Next, Robust PCA41 was applied to attenuate single electrode 
outliers. A subsequent low-pass filter was applied to extract the EEG signals in the frequency range of the target 
and cursor movements. Stimuli position signals were low-pass filtered before computing velocities and then 
concatenated to the EEG. After epoching, marked trials were rejected. Samples were optionally concatenated to 
extend the feature space for PLS regression.
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The eye artifact model parameters (Â
(a)

 and V(a)) were estimated in a two step approach19. First, penalized 
logistic regression was used to estimate each eye artifact source signal (e.g. horizontal eye movements) and its 
associated mixing coefficients (columns of Â

(a)
). Second, given the mixing matrix Â

a( )
 and the covariance matrix 

of the channels during resting brain activity Rn ( ×n nchannels channels), the unmixing matrix V(a) can be computed 
via regularized weighted least squares43:

Λ= + −ˆ ˆ ˆV A R A A R( ) (6)n n
(a) (a)T (a) 1 (a)T

with Λ being a ×n nartifact sources artifact sources diagonal regularization matrix. The original publication19 contains 
details about the model fitting procedure, choice of regularization parameters and a comparison to state of the art 
eye artifact correction approaches.

Movement parameter estimation.  As low-frequency EEG is strongly correlated over time and space, 
there is considerable multicollinearity among the extracted features. An application of the partial least squares 
(PLS) regression44 method is particularly suitable in this scenario. As in22, we fit one model per movement param-
eter, condition and participant.

Let X be a ×F N matrix of F predictor variables with N  samples (i.e, the EEG data), and let y be a × N1  
vector representing the dependent variable (i.e, a particular movement parameter). The predictor variables are 
modelled as

= +X PT E (7)

with T representing a ×D N  matrix of latent components and E, a ×F N  matrix of additive independent and 
identically distributed (iid) noise. P, representing a ×F D matrix, projects the latent components T to the 
observed predictors X. The goal of applying PLS regression is to find latent components T that have maximal 
covariance with the dependent variable y, while reducing the dimension from F to D. The dependent variable is 
then modelled as

= +y v T g (8)T

with v, representing a ×D 1 weight vector, and additive iid noise g. Here, we applied the SIMPLS algorithm23 to 
estimate P and v for =D 10 latent components. The estimates can be combined to a ×F 1 weight vector to 
directly estimate the dependent variable

=ˆ ˆy w X (9)T

from the predictor variables X.
The model was evaluated by applying 10 times a 5-fold cross validation (CV). That is, the data was randomly 

partitioned to 5 folds. Then model parameters were fit to 4 folds. Model prediction was tested on the held out fold 
by computing the Pearson correlation coefficient ˆryy between y and ŷ. This was repeated until each fold was tested 
once. Thereafter, the random partitioning was repeated another 9 times, resulting in 50 estimates of ˆryy.

Chance level performance was estimated by applying the 5-fold CV to shuffled data. We broke the association 
between X and y while maintaining the correlation structure by randomly exchanging y across trials. The shuf-
fling and 5-fold CV procedure was repeated 100 times.

To interpret the extracted models, we transformed weight vectors to activation patterns25. We scaled the 
unit-less patterns45 with the standard-deviation of ŷ to express the patterns in terms of voltages. The scaled pat-
tern associated with an estimated weight vector is then

σΣ= −ˆ ˆ ˆ ˆ ˆa w (10)X y
1

with empirical covariance matrix Σ̂X and standard-deviation σ̂ŷ of predictors and estimated dependent variable, 
respectively. Analytical shrinkage regularization46 was applied to compute the estimate Σ̂X. We then summarized 
the 50 CV models by computing the geometric median47 across their patterns. This procedure yielded a represent-
ative pattern per movement parameter, condition and participant. To summarize the patterns obtained from 
chance level models, we randomly picked 50 patterns associated with 10 out of all 100 repetitions and computed 
their geometric median.

Pattern source mapping.  We applied EEG source imaging26,27 to map the scaled patterns from channel 
space (i.e, scalp level) to source space (i.e, cortical surface). Head models were created by co-registering the 
ICBM152 boundary element model (BEM) template48 with recorded electrode positions (ELPOS, Zebris Medical 
Gmbh, Germany) using the open source software Brainstorm49 version 19-Jan-2018. The BEM comprised three 
layers (cortex, skull, scalp) with relative conductivities (1, 0.008, 1). The cortex was modelled with 5001 voxels. 
BEM and electrode positions were co-registered by three anatomical landmarks (nasion, left and right preau-
ricular points). Due to deviations between participant and template anatomy, we completed the co-registration 
by projecting floating electrodes to the scalp layer (Fig. S2b). OpenMEEG50,51 was used to compute the forward 
model; that is, to describe the propagation of the electric fields from cortex to scalp. sLORETA52 was applied to 
compute the corresponding inverse model for unconstrained sources. For unconstrained sources the activity at 
each voxel is described 3 components (x, y, z coordinates). We used three minutes of resting EEG, recorded during 
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blocks two and four, to estimate sensor noise. The pre-processing of resting EEG was conducted indentically as 
explained above. We then estimated the noise covariance matrix by applying analytical shrinkage regularization46.

Before mapping the regression model patterns to source space, we normalized them to alleviate 
participant-dependent scaling. Since the scaled patterns reflected the potential at the scalp, their magnitude 
reflected the magnitude of the recorded signals. However, in the EEG, the global field power can vary considera-
bly among participants. To compensate for this effect, we normalized the patterns by the average channel power. 
The average channel power was estimated by taking the median of the diagonal elements of the noise covariance 
matrix. The inverse scalar was then applied to scale participant-specific patterns. We then projected the final 
channel space patterns onto source space in Brainstorm, extracted the Euclidean norm of the three components 
(x, y, z coordinates) per voxel and optionally averaged over lags if the model comprised multiple lags.

Source space statistics.  Group level analysis was performed by computing paired differences between pat-
terns of a movement parameter in source space. Significance was assessed at eight regions of interest (ROI)s, 
which have consistently been associated with movement processing. The ROIs are depicted in Figure 4c and cover 
fronto-central, primary sensorimotor, parietal and parieto-occipital areas. Activity at each ROI was summarized 
by the mean of its voxels. Significant ROIs were detected by applying two-tailed non-parametric permutation 
paired t-tests53,54 with 1000 repetitions. Regarding multiple comparisons, we controlled the false discovery rate 
(FDR) at a significance level of 0.05 by adjusting the p-values55.

Code availability.  The codes used for data collection and analysis in this study are available from the corre-
sponding author upon request.

Data Availability
The data that support the findings of this study are available from the corresponding author upon request.
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Abstract
Objective. One of the main goals in brain–computer interface (BCI) research is the replacement or
restoration of lost function in individuals with paralysis. One line of research investigates the
inference of movement kinematics from brain activity during different volitional states. A growing
number of electroencephalography (EEG) and magnetoencephalography (MEG) studies suggest
that information about directional (e.g. velocity) and nondirectional (e.g. speed) movement
kinematics is accessible noninvasively. We sought to assess if the neural information associated with
both types of kinematics can be combined to improve the decoding accuracy. Approach. In an
offline analysis, we reanalyzed the data of two previous experiments containing the recordings of
34 healthy participants (15 EEG, 19 MEG). We decoded 2D movement trajectories from
low-frequency M/EEG signals in executed and observed tracking movements, and compared the
accuracy of an unscented Kalman filter (UKF) that explicitly modeled the nonlinear relation
between directional and nondirectional kinematics to the accuracies of linear Kalman (KF) and
Wiener filters which did not combine both types of kinematics. Main results. At the group level,
posterior-parietal and parieto-occipital (executed and observed movements) and sensorimotor
areas (executed movements) encoded kinematic information. Correlations between the recorded
position and velocity trajectories and the UKF decoded ones were on average 0.49 during executed
and 0.36 during observed movements. Compared to the other filters, the UKF could achieve the
best trade-off between maximizing the signal to noise ratio and minimizing the amplitude
mismatch between the recorded and decoded trajectories. Significance. We present direct evidence
that directional and nondirectional kinematic information is simultaneously detectable in
low-frequency M/EEG signals. Moreover, combining directional and nondirectional kinematic
information significantly improves the decoding accuracy upon a linear KF.

1. Introduction

Inferring movement parameters from electro-
physiological brain signals during different volitional
states has been a central topic in brain–computer
interface (BCI) research [1, 2]. BCIs potentially
allow individuals with tetraplegia to control com-
puter cursors, robotic arms or neuroprostheses and
thereby replace or restore lost or compromised func-
tion [3–6]. In nonhuman primates, intracortical

BCIs (iBCIs) typically decode kinematic and kin-
etic information of executed movements from neural
spiking activity in primary motor cortex (M1),
dorsal premotor cortex (PMd), primary somato-
sensory cortex (S1) and posterior parietal cor-
tex (PP) [7–10]. Decoding kinematic parameters
from attempted movements has allowed paralyzed
individuals, equipped with an iBCI, to control end-
effectors with a high accuracy [11–14]. Despite non-
invasive functional neuroimaging techniques such

© 2020 The Author(s). Published by IOP Publishing Ltd
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as electroencephalography (EEG) and magnetoen-
cephalography (MEG) have a lower spatial resolu-
tion and signal to noise ratio (SNR), they also carry
information about movement kinematics and kin-
etics [15–19]. In this context, low-frequency activity
in the range of the movement has been reported to
encode kinematic information during different voli-
tional states, such as executed [17, 19, 20], imagined
[21–23] and observed movements [20, 23]. Although
numerous studies reported that kinematic informa-
tion is encoded in M/EEG signals, it is not clear with
which accuracy a non-invasive BCI can infer move-
ment trajectories.

In studies that decode directional kinematics (e.g.
position and velocity) from low-frequency activity,
the accuracy of the decoded trajectories is typic-
ally quantified by computing correlations between
the recorded and decoded trajectories [15, 19, 24].
Correlation is invariant to amplitude mismatches,
rendering it insufficient to qualitatively evaluate
the accuracy [25]. In fact, linear regression based
decoders that minimize the mean squared error
(MSE) tend to exhibit amplitude mismatches in dis-
crete reaching [26, 27] and continuous movement
tasks [15, 20, 24, 28]. The decoded trajectories are
typically estimated too small, with the mismatch
increasing as the correlation decreases [29, 30]. Non-
linear methods reduce the amplitude mismatch [23],
indicating that the low-frequency activity could carry
kinematic information that is nonlinearly related to
the directional kinematics.

There is evidence that the neural activity carries
information about distance (length of the position
vector) and speed (length of the velocity vector) [31].
Distance and speed are inherently nondirectional and
nonlinearly related to position and velocity. They
are also uncorrelated to position and velocity dur-
ing commonly studied tasks (e.g. center out reach-
ing, pursuit tracking). The nondirectional kinematic
information is known to be encoded in neural spiking
activity in M1 [31, 32], in low-frequency local field
potentials [33] and electrocorticographic (ECoG)
activity [34]. Jerbi et al were the first to report speed
related tuning effects in low-frequency MEG activity
[16]. Using a continuous movement task, Hammer
et al demonstrated that low-frequency ECoG activ-
ity simultaneously carries information about velocity
and speed [34]. We recently corroborated their find-
ings in low-frequency MEG activity and a 2D pursuit
tracking task (PTT) [35].

Due to the nonlinear relationship between direc-
tional and nondirectional kinematics, a linear model
can not combine the information encoded in the
low-frequency M/EEG activity. We surmise that a
decoding algorithm that models their nonlinear rela-
tion should achieve superior decoding accuracy and
reduce the amplitude mismatch. Inspired by mod-
els used in iBCIs [32, 36], we use an unscented Kal-
man filter (UKF) [37] to combine the directional

and nondirectional information during a 2D PTT. In
an offline analysis, we compared the UKF decoding
accuracy with the one achieved by two linear mod-
els, a Kalman filter (KF) [38] and a Wiener filter
(WF) [39].

2. Methods

2.1. Participants
In this study we reanalyzed experimental data
obtained from two distinct groups of healthy human
participants during executed and observed move-
ments. The first group (experiment 1; 15 participants,
nine female, sixmale,mean age of 23.8 years) was pre-
viously published in [20, 40], and the second group
(experiment 2; 23 recruited participants, 18 male,
five female, mean age of 28.5 years) was previously
published in [35]. As reported in [35], the data of
four participants in the second group were excluded
because of incomplete recordings or incorrect posi-
tioning in the MEG scanner. In both groups, all par-
ticipants had normal or corrected to normal vision
and self-reported to be right-handed.

The experimental procedure conformed to the
Declaration of Helsinki and was approved by the
ethics committee of the Medical University of Graz
(group 1) and Osaka University Hospital (group 2).
After the study participants were informed about the
purpose and procedure of the study, they gave their
written consent.

2.2. Experimental paradigm
The participants of experiment 1 underwent two
experimental conditions (execution and observation)
while their EEG activity was recorded. The experi-
mental paradigm and setup have been described in
detail in [20]. Figure 1(a) illustrates the sequence of
events during a trial (top) and the virtual 2D envir-
onment displayed on a computer screen (bottom).
In 180 trials (90 per condition, pseudo-randomly
distributed), the participants completed a center-out
task and a 16-s long PTT. In this study, we analyzed
the PTT.

In the execution condition, we instructed the par-
ticipants to smoothly track a moving target stimu-
lus (large green ball) with a cursor (small gray ball)
and their gaze. In the observation condition (blue tar-
get), the participants tracked the target onlywith their
gaze; they lost control of the cursor and were instruc-
ted to maintain a resting position. In this condition,
the paradigm replayed a previous, matching cursor
trajectory.

The 2D target trajectories consisted of two inde-
pendent and identically distributed (iid) compon-
ents (horizontal and vertical). Each component
was sampled from band-limited pink noise (0.3 to
0.6 Hz). The target trajectories were generated offline
and were identical for all participants. The trajectory
generation procedure ensured that the positions and
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Figure 1. Overview of the experimental approach and methods. Data from two previous experiments was analyzed. In the first,
EEG was recorded during right arm movements. In the second, MEG was recorded during right index finger movements. (a),
Experimental paradigm. The sequence of events during a trial are displayed at the top. The paradigm distinguished two conditions
(execution and observation). In the execution condition, the participants controlled a cursor in a virtual 2D environment on a
screen. During a pursuit tracking task (PTT) they used the cursor to track a target stimulus for 16 s. In the observation condition,
their hand/finger was resting; the paradigm replayed a matching cursor trajectory. (b), Mapping of right hand movements
(experiment 1) and right index finger movements (experiment 2) to the 2D virtual environment. (c), Decoding algorithm
evaluation approach. Three algorithms, namely, a partial least squares (PLS) regression based Wiener filter (WF), a Kalman filter
(KF) and an unscented Kalman filter (UKF) were fit to decode cursor kinematics. (d), Experiment 1. Example of test set
trajectories (recorded and decoded) during the PTT for a representative participant. Recorded target (yellow) and cursor (gray)
position trajectories for the horizontal (top) and vertical (bottom) component. The decoded cursor trajectories (WF in red, KF in
green, UKF in blue) are plotted on top of the recorded cursor trajectories (gray). (e), As in (d) for the second experiment.

velocities of the horizontal and vertical components
were decorrelated, and in addition that the position
and velocity of the same component were decorrel-
ated at lag 0 [20].

In experiment 1, the participants controlled the
cursor with 2D right arm movements on a table.
Figure 1(b) illustrates how arm movements were
mapped to cursor movements in the virtual envir-
onment on the screen. If the palm of the right hand
moved forward (or rightward) by 5 cm from a pre-
registered resting position, the cursor moved upward
(or rightward) to the edge of the virtual environment
(50% of the workspace). The online transformation
of hand movements into cursor movements intro-
duced an average delay of 55 ms with a standard devi-
ation (SD) of 1 ms.

The participants of experiment 2 underwent a
similar experimental paradigm while their MEG
activity was recorded. In this experiment, the parti-
cipants were lying in an MEG scanner. The exper-
imental conditions, paradigm and setup have been
described in detail in [35]. The sequence of events
during a trial were identical to experiment 1, except
that we omitted the center-out task (figure 1(a)).
We recorded 160 trials (80 per condition, pseudo-
randomly distributed) per participant.

In experiment 2, the participants performed 2D
right index finger movements on a planar surface

to the side of their body. If the tip of the index
finger moved forward (or rightward) by 1.5 cm
from a pre-registered resting position, the cursor
moved upward (or rightward) to the edge of the
virtual environment (50% of the workspace). We
used a custom motion capture system, to trans-
form the index finger movements into cursor move-
ments [35]. The system introduced an average delay
of 190 ms.

2.3. Data acquisition
In experiment 1, we recorded EEG activity with 64
active electrodes (actiCAP, Brain Products GmbH,
Germany). The electrodes were placed according to
the 10–10 system; reference and ground were placed
at the rightmastoid andAFz.We recorded electroocu-
lographic (EOG) activity with six additional active
electrodes, placed next to the outer canthi and above
and belowboth eyes. EEG andEOG signals were amp-
lified and digitized at a rate of 1 kHz with a biosig-
nal amplifier (BrainAmp, Brain Products GmbH,
Germany).

In experiment 2, we recorded MEG activity with
a 160 channel whole-head MEG system (MEGvision
NEO, RICOH Ltd., Japan) housed in a magnetically
shielded room. EOG activity was recorded with four
electrodes placed at the outer canthi of both eyes,
and above and below the left eye. EOG signals were
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Figure 2. Graphical representation of the decoding algorithms for a first order model. (a), Partial least squares (PLS) regression
based Wiener filter. A first order model considers the M/EEG at the current xt and previous time point xt-1. The matrix L projects
the M/EEG activity to a latent subspace yt with fewer dimensions. In the latent subspace, the matrixW is used to predict the
kinematics kt. (b), First order state space model that infers kt from the previous state kt-1 with a state transition matrix F and
from the latent subspace yt with an observation matrix H. (c), First order state space model with linear state transition matrix F
and non-linear observations h(.). Distance and speed (norms of position and velocity) were modeled to be linearly encoded in the
latent subspace yt.

recorded with a biosignal amplifier (Neurofax EEG
1200, Nihon Koden Corp., Japan). The MEG and
EOG signals were recorded synchronously at a rate
of 1 kHz. Inside the MEG scanner, the participant’s
head was resting on a cushion. We asked the parti-
cipants to avoid head and shoulder movements dur-
ing the course of the experiment. At the beginning
of each run (16 trials), we additionally measured the
head position with five marker coils, attached to the
forehead.

Visual stimuli (60 Hz sampling rate) and motion
capture signals (experiment 1: 100 Hz sampling rate;
experiment 2: 60 Hz sampling rate) were recor-
ded with the labstreaming layer protocol [41]. The
paradigm was implemented in Python (version 2.7)
and the simulation and neuroscience application
platform [42].

2.4. Data preprocessing
Offline, we analyzed the data with a custom pipeline
implemented in Matlab (version 2015b; Mathworks
Inc. USA), EEGLAB toolbox (version 14.1.1) [43],
Brainstorm (version 5 June 2018) [44] and R [45, 46].
As a first step, we synchronized the M/EEG and
EOG signals with the visual stimuli by aligning
impulses captured by a photodiode with the associ-
ated markers. We resampled the synchronized signals
at a rate of 200 Hz, before we separately prepro-
cessed the cursor kinematics and the M/EEG sig-
nals. Supplementary figure 16 (available online at
https://stacks.iop.org/JNE/00/00000/mmedia) sum-
marizes the M/EEG preprocessing steps in both
experiments.

2.4.1. EEG preprocessing (experiment 1)
The EEG and EOG signals were first high-pass
(0.25 Hz cut-off frequency, Butterworth filter, eighth
order, zero-phase) and notch (49 and 51 Hz cut-off
frequencies, Butterworth filter, fourth order, zero-
phase) filtered to attenuate drifts and powerline noise.
We visually inspected the signals to detect bad chan-
nels. A channel was considered as bad, if it was
affected regularly by pops, drifts or muscle artifacts.
On average, 2.1 channels were marked as bad. The
signal of the bad channels was spherically interpol-
ated using EEGLAB. Next, we applied the sparse gen-
eralized eye artifact subspace subtraction algorithm
(SGEYESUB) to attenuate eye movement and blink
related artifacts [47]. SGEYESUB was fit to calibra-
tion data recorded at the start and end of the exper-
iment according to the paradigm presented in [48].
After the eye artifacts were attenuated, we excluded
the EOG and fronto-temporal channels (FPz, AF7,
AF8, AF8, FT9, F7, F8, FT10) from the further analysis
and re-referenced the remaining 57 EEG channels to
their common average.

2.4.2. MEG preprocessing (experiment 2)
We excluded 31 MEG channels at inferior tem-
poral locations because they were contaminated by
technical artifacts. To compensate for small head
movements across runs, we spherically interpolated
the MEG signals of the remaining 129 channels to
their average location across runs. The mean distance
of a channel to its average location across runs was
5 mm (0.4 mm SD). After concatenating the sig-
nals across runs, we also applied high-pass (0.25 Hz
cut-off frequency, Butterworth filter, eighth order,
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zero-phase) and notch (59 and 61Hz cut-off frequen-
cies, Butterworth filter, fourth order, zero-phase) fil-
ters. To further attenuate technical and spatially sta-
tionary artifacts, we applied independent component
analysis [49]. Using the extended Infomax algorithm,
we decomposed the MEG signals (high-pass filtered
at 0.4 Hz, instead of 0.25 Hz) into independent
components (ICs) that explain 99.9% of the vari-
ance. We marked 8.6 (0.9 SD) out of 63.5 (0.1 SD)
ICs (visual inspection). The marked ICs were then
removed from the 0.25 Hz high-pass filtered signals.
As in the EEG preprocessing, we applied SGEYESUB
to attenuate eye movement and blink related artifacts
and excluded the EOG and fronto-temporal channels
(RT21, RT22, RT31, RT32, RT33, LT11, LT21, LT22,
LT33) from further analysis.

2.4.3. Common M/EEG preprocessing steps
All subsequent processing steps were shared between
experiment 1 and 2. The first common step was to
attenuate transient drifts and pops in the continuous
M/EEG signals with the high-variance electrode arti-
fact removal algorithm [50].

Next, we detected bad epochs [51]. We first
epoched the continuous, broadband data into 14 s
epochs. Each epoch started 1 s after the beginning
of the PTT. An epoch was considered as bad, if the
broadband M/EEG activity of any channel exceeded
a threshold (±200 µV or ± 5pT), had an abnormal
probability, variance or kurtosis (more than 6 (prob-
ability), 5 (variance), 6 (kurtosis) SDs around the
mean), the correlation between the EOG and target
position signals were improbable (exceeding 4 SDs
around the mean), or a tracking error happened (e.g.
jerky or no cursor movement). We tested for abnor-
mal probability, variance and kurtosis twice, in order
to detect gross outliers in the first iteration and subtle
outliers in the second iteration. All criteria combined,
a total of 29.5 (9.8 SD) of 180.7 (2.8 SD) epochs were
marked for rejection in experiment 1, and 27.3 (8.9
SD) of 152.2 (13.1 SD) in experiment 2.

To extract low-frequency activity, we applied
a low-pass filter (2 Hz cut-off frequency, Butter-
worth filter, sixth order, zero-phase) to the con-
tinuous M/EEG signals and resampled the result at
10 Hz. In the last preprocessing step, we extracted the
14 s epochs and rejected the previously marked bad
epochs.

2.4.4. Cursor kinematics preprocessing
We used Savitzky–Golay filters [52] (finite impulse
response filter, third order polynomial, 21 filter taps,
zero-phase) to compute smoothed cursor positions
and velocities. The origin of the coordinate sys-
tem was the center of the virtual 2D environment
(figure 1(b)). Similar to the M/EEG signals, we res-
ampled the results at 10 Hz and extracted the 14-s
epochs.We computed distance and speed by comput-
ing the Euclidean norm of the 2D cursor position and

velocity vectors at each sample t. As a last step, we z-
scored the cursor kinematics (2D position, 2D velo-
city, distance and speed).

2.5. Encoding of cursor kinematics in
low-frequencyM/EEG activity
We fitted a general linear model (GLM) with the
cursor kinematics as predictors, to identify how
the cursor kinematics were expressed in the low-
frequency M/EEG activity at 11 lags l ∈ [−0.5s, 0.5s].
In detail, we fitted one GLM per experimental con-
dition and lag l. By concatenating all observations
(samples and trials) of one condition, the kinematics
could be expressed as a 6 × nobservationsmatrix K̃

K̃=
[
p(horz); v(horz); p(vert); v(vert); d; s

]
(1)

with 1 × nobservations vectors p(horz), v(horz), p(vert),
v(vert), d and s coding the horizontal position, hori-
zontal velocity, vertical position, vertical velocity, dis-
tance and speed. For each lag l, we defined theGLM as

X(l) = A(l) · K̃ + E(l) (2)

with an nchannels × nobservations matrix X(l) containing
the EEG activity at lag l, an nchannels × 6 matrix A(l)

reflecting the regression coefficients and an nchannels ×
nobservations noisematrixE(l). The least squares estimate
of A(l) is

Â(l) =ΣXK̃
(l) ·ΣK̃K̃

(l)−1 (3)

with an nchannels × 6 cross-covariance matrix ΣXK̃
(l)

between the low-frequency M/EEG activity and the
cursor kinematics, and a 6 × 6 covariancematrixΣK̃K̃

between the cursor kinematics. We used analytical
shrinkage regularization [53] to estimate ΣK̃K̃.

2.6. M/EEG source imaging
As in [20, 35], we applied M/EEG source imaging
[54, 55] to project the regression coefficients Â(l)to
the cortical surface of the ICBM152 template bound-
ary element (BEM) head model [56]. The BEM com-
prised three layers (cortex, skull, scalp) with rel-
ative conductivities (1, 0.008, 1) in experiment 1,
and(1, 0, 0) in experiment 2. The cortex layer con-
tained 5011 voxels. We co-registered the BEM and the
digitized head points (including EEG and EOG elec-
trode locations) using three anatomical landmarks
(nasion, left and right preauricular points). To com-
pensate deviations between participant and template
anatomy, we finalized the co-registration by pro-
jecting floating EEG electrodes to the scalp layer.
OpenMEEG [57, 58] was used to compute the for-
ward model for three orthogonal sources per voxel.
sLORETA [59] was used to estimate the inverse solu-
tion. To reduce the effect of sensor noise in the
inverse solution, resting data (similar preprocessing
as the M/EEG data; recorded at the start and end
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of the experiments) were used to estimate a sensor
noise covariance matrix (shrinkage regularization
with 10% of its mean eigenvalue).

After we projected the participant-specific regres-
sion coefficients to the cortical surface, we scaled
the voxel level regression coefficients with the inverse
global field power (GFP) [29]. We estimated the GFP
by randomly selecting one sample from all trials, aver-
aging across these samples, and computing the SD
across voxels. This procedure was repeated 10 000
times. The final participant-specific GFP estimatewas
set to the median of the repetitions.

2.6.1. Source space statistics
We first tested for consistent (effect with the same sign
across participants) expression of kinematic inform-
ation at the group level. In detail, we tested the regres-
sion coefficients at the voxel level using one-sided per-
mutation tests [60, 61]. We obtained the observed
voxel activation by first averaging over participants
and then computing the norm across the three voxel
components. To reduce the number of tests, we aver-
aged the voxel activations associated with either posi-
tion, velocity or amplitude (distance and speed) pre-
dictors. For example, the voxel activations of the
horizontal and vertical positions were averaged. In
doing so, we identified voxels that carried inform-
ation about the vertical and/or horizontal position.
Next, we used 10 000 permutations to obtain a ran-
dom distribution. In each permutation, we randomly
flipped the signs of a voxel’s regression coefficients
before averaging over participants. The p-value was
then the fraction of random voxel activations that
were larger or equal to the observed voxel activation.
We computed tests for all voxels (5011), lags (11), type
of kinematic signal (3; position, velocity and amp-
litude) and condition (2; execution and observation).

In a second test, we compared the two condi-
tions. We specifically tested for voxels with stronger
activation in either condition (i.e. consistently higher
voxel norm in one condition compared to the other).
We computed two-sided, permutation, paired t-tests
[60, 61] for all voxels (5011), lags (11) and type of kin-
ematic signal (3).

The total number of tests for consistent activation
and difference across participants was 496 089 in both
experiments. The significance level of 0.05was correc-
ted for multiple comparisons in both experiments by
controlling the false discovery rate (FDR) [62].

2.7. Cursor kinematics decoding
In a causal sliding window approach, we decoded the
cursor kinematics from the low-frequency M/EEG
activity. We compared three decoding algorithms,
namely, a WF, a KF and an UKF.

2.7.1. Decoding algorithms
figure 2 depicts the models underlying the three
decoding algorithms. In all algorithms, we combined

the M/EEG activity xt at the current time-point t
and previous time-points (= lags) as an nchannels ·
nlags × 1 feature vector x̃t = [xt; xt−1; ]. The number of
lags nlagsused to create the feature vector defined the
model order. For example, if only the previous lag was
used, the model order was 1. We then projected the
high-dimensional features x̃t to a latent subspace yt

yt = Lx̃t (4)

with an ndim × nfeatures projection matrix L. As in [20,
22], the SIMPLS algorithm [63]was used to estimateL
so that ytthe latent subspace yt contained the activity
of x̃t that maximally explained the variance of the z-
scored cursor kinematics k̃t

k̃t =
[
pt

(horz); vt
(horz); pt

(vert); vt
(vert); dt; st

]
(5)

In a nutshell, SIMPLS iteratively extracts the 1D
subspace that explains most of the variance of the
cross-covariance matrix between the predictor x̃t and
dependent variables k̃t. This can be done via iterative
singular value decomposition of the cross-covariance
matrix, extraction of the dominant singular value
and its associated projection vectors, Gram–Schmidt
orthogonalization with the previously extracted sub-
spaces and deflating the resulting subspace from the
cross-covariance matrix. These steps are repeated
until the desired stopping criterion is reached (e.g. a
fixed number of latent components ndim).

To reduce collinearity among the features and
also the computation time of the KFs, we set ndim ≪
nfeatures. We fixed ndim so that the latent subspace
would explain 70% of the variance in the features .
For a first order model, ndimwas on average 32 (4 SD)
in experiment 1 and 29 (2 SD) in experiment 2. The
SIMPLS algorithmwas also used to compute the coef-
ficientsWof theWF to predict k̃t from yt (figure 2(a)).

The second algorithmwas a KF [38].We used it to
infer the cursor kinematics (= state) from the latent
subspace yt and the previous state. Since a KF is a lin-
ear state space model (figure 2(b)), we only decoded
z-scored positions and velocities kt

kt =
[
pt

(horz); vt
(horz); pt

(vert); vt
(vert)

]
(6)

The KF treats the noise corrupting successive
observations yt as conditionally independent given
the hidden state kt. Combining M/EEG activity at
multiple lags x̃t into yt violates this assumption.
However, this assumption is already violated for the
M/EEG activity at a single lag xt because some noise
sources (e.g. brain sources that do not encode kin-
ematic information) are auto-correlated. In the next
steps we outline the fitting procedure for a first order
model. For higher order models (multiple previous
states), we refer to [36]. The 4× 4 state transition
matrix

F = Σkt,kt−1 Σ
−1
kt−1,kt−1

(7)
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can be estimated from the covariance matrix between
kt and kt−1 and the covariancematrix of kt−1.We used
analytical shrinkage regularization [53] to estimate
Σkt−1,kt−1 from calibration data. The covariance mat-
rix Σqt qt of the state transition error can be estimated
from the residuals

qt = kt − Fkt−1 (8)

The KF also relates the kinematic state kt with the lat-
ent subspace yt using a 4 × ndim matrix H. H can be
determined by minimizing the mean squared error
between yt and its prediction

H = argminH

n∑

t=1

||yt − Hkt ||2 (9)

After fittingH to calibration data with n observations,
we used the residuals rt defined as

rt = yt − Hkt (10)

to estimate the measurement noise covariance matrix
Σrt rt .

The third algorithm can be seen as an extension
of the KF. We used the linear state transition matrix
F from before (figure 2(c)). The key difference was,
that we explicitly modelled the nonlinear relationship
between position and distance or velocity and speed
or both with the function

ex(kt) =





[kt; zscore(| |pt| |2); zscore(| |vt| |2)]
[kt; zscore(| |pt| |2)]
[kt; zscore(| |vt| |2)]

(11)
If distance and speed are considered, the func-

tion essentially computes the extended kinematics k̃t,
defined in (5). Next, we utilized the linear encod-
ing of distance and/or speed information in the low-
frequency M/EEG signals to predict yt from ex(kt)

H = argminH

n∑

t=1

||Hex(kt) − yt ||2 (12)

Using H and (11), the estimated latent subspace ŷt is

ŷt = h(kt) = Hex(kt) (13)

As before, we used the residuals to estimate the meas-
urement noise covariancematrixΣrt rt . After the para-
meters of the state space models (figures 2(b),(c))
were fitted to calibration data, we used a square root
KF [64] to infer the kinematics in test data for the lin-
ear model, and a square root UKF [65] for the non-
linear model.

2.7.2. Algorithm evaluation
We fitted and evaluated the algorithms with a ten-
fold cross-validation scheme. The model order was
fixed to 3 (i.e. M/EEG activity and cursor kinemat-
ics of three previous lags). In ten iterations, we used
nine folds to fit the parameters, and the held-out fold
to test the performance. For the state space models,
we estimated the initial state covariance matrix from
the calibration data. We then applied the algorithms
to each trial within the test set. The KF and UKF
required an initial estimate of the state k0; we used the
recorded kinematics of the time-points before the first
sample in the tested trials. All algorithms decoded the
directional kinematics.We used equation (11) to infer
the nondirectional kinematics from the directional
ones in the test set.

Three metrics were used to test the performance.
We first computed Pearson correlation coefficients
between the recorded test set kinematics and their
decoded estimates. The second metric was the SNR
as defined in [36]. For a recorded kinematic signal zt
(e.g. horizontal position) and its decoded estimate ẑt
the SNR is defined as the ratio of the variance of zt
over the mean squared error (MSE):

SNR(zt, ẑt) = 10 log10

(
var(zt)

mse(ẑt, zt)

)
(14)

The third metric was the decoded signal to sig-
nal ratio (DSSR). We defined it as the variance of the
decoded signal over the variance of the recorded sig-
nal:

DSSR(zt, ẑt) = 10 log10

(
var(ẑt)

var(zt)

)
(15)

The DSSR captures the amplitude mismatch between
the decoded and recorded signal. A DSSR of 0 dB
indicates that the amplitude range of the recorded and
decoded signal match. A negative DSSR indicates a
bias of the decoder towards too small amplitudes.

2.7.3. Participant level significance
We assessed the significance of the correlation and
SNR metrics at the participant level using a shuff-
ling approach. To break the association between the
M/EEG activity and the kinematics, we randomly per-
muted the kinematics across trials, before we split
the data into two folds—one train fold with 90%
of the data and one test fold with 10% of the data.
The two folds were then used to fit and evaluate
the algorithms. The shuffling procedure was repeated
1000 times. We set the p-value to the fraction of
random results that were higher than the average
cross-validation result. We controlled the FDR for 2
(conditions) ∗ 3 (algorithms) ∗ 4 (kinematics) ∗ 2
(metrics)= 48 tests at a significance level of 0.05 [62].

2.7.4. Group level statistics
We compared the decoding accuracy of the
algorithms in terms of correlation, SNR and DSSR
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for each experiment, condition and type of kinematic
signal (directional, nondirectional). To identify sig-
nificant differences, we used two-sided, permutation,
paired t-tests (df= 14, 10 000 permutations, signific-
ance level = 0.05). The obtained p-values were FDR
adjusted for 3 (metrics) ∗ 3 (algorithms) ∗ 2 (condi-
tions) ∗ 2 (type of kinematic signal)= 36 tests.

3. Results

3.1. Tracking behavior
The tracking behavior during the PTTwas inferred by
computing cross-correlation curves between the tar-
get and cursor positions in the execution condition.
At the group level, the target led the cursor position
trajectory by 0.15 s (0.02 s SEM) with a correlation of
0.84 (0.02 SEM) in experiment 1. In experiment 2, the
target led the cursor trajectory by 0.23 s (0.01 s SEM)
with a correlation of 0.91 (0.01 SEM). In figures 1(d),
(e) we show target (yellow) and cursor (gray) traject-
ories for representative participants. The qualitative
and quantitative results indicate that the study parti-
cipants accurately tracked the target stimulus in both
experiments.

As reported in [20], the positions and velocities
were decorrelated at lag 0 s. For positive and negat-
ive lags, the cross-correlations increased and peaked
at the lags ±0.5 s (supplementary figures 14(b), (c),
(e), (f)) with average absolute correlations of 0.8 (0.77
in experiment 2). Since the horizontal and vertical
components were iid, the cross-correlations between
the kinematics of different components were negli-
gible (supplementary figures 14(b), (c), (e), (f)). The
cross-correlations between the directional (position
and velocity) and nondirectional kinematics (dis-
tance and speed) were also negligible (supplement-
ary figures 14(a), (d)). Speed and distance exhibited
moderate (below±0.5) cross-correlations that slowly
varied across lags (supplementary figures 14(a), (d)).

3.2. Neurophysiology
Weused the fitted regression coefficients of the GLMs
to identify cursor kinematics related effects in the
low-frequency M/EEG activity. The low-frequency
EEG signals encoded information about the cursor
kinematics during the right armPTT in experiment 1.
In figure 3, we show voxels whose activity was signific-
antly tuned to specific cursor kinematics at the group
level. Figure 3 displays only activity during negative
lags; for example, a significant effect at the lag −0.1 s
indicates that the EEG 100 ms ago predicted the cur-
rent cursor kinematics. Supplementary figures 1 and
2 also include positive lags.

In the execution condition, we observed sig-
nificant amplitude (distance/speed) related activity
(figure 3(a)) in contralateral motor and parietal areas
as well as parieto-occipital, occipital and temporal
areas of both hemispheres. There was a distinct
peak in contralateral primary- and premotor areas at

lags −0.1 to 0.0 s. Position (figure 3(b)) and velocity
(figure 3(c)) information were consistently expressed
in parieto-occipital areas. Due to the large cross-
correlations between positions and velocities across
lags (supplementary figures 14(b), (c)), we observed
similar effects in both kinematic variables at dif-
ferent lags. In the case of velocity, the activity was
strongest for the lags−0.1 to 0.0 s. Because the cross-
correlation between velocity and position peaked at a
delay of 500 ms (supplementary figures 14(b), (c)),
we observed a similar effect at the lags 0.4 and 0.5
for position (supplementary figure 1). For an effect
to be significant in figure 3, the dipole orientations
had to be consistent across participants. If the dipole
orientation was allowed to vary across participants,
M1, PMd, S1 and PP voxels encoded significant dir-
ectional information in execution condition (supple-
mentary figure 3).

In the observation condition, parieto-occipital
areas also expressed information about position
(figure 3(e)) and velocity (figure 3(f)). As before,
the effect peaked for velocity at the lags −0.1 to
0.0 s. In contrast to the execution condition, we also
observed significant activity at the lags −0.5 to −0.4
s. Regarding amplitude information (figure 3(d)), we
also observed significant activity in parieto-occipital
and occipital areas. Compared to the execution con-
dition, we neither observed sensorimotor activity at
lags−0.1 to 0.0 s, nor activity in temporal areas.

In experiment 2, we also found that low-
frequency MEG signals encoded information about
the cursor kinematics. Voxels with significant group
level activity at negative lags are summarized in
figure 4.

In the execution condition, we observed signific-
ant amplitude related activity (figure 4(a)) in con-
tralateral sensorimotor areas (peak at lag −0.2 s),
and to a weaker extent in occipital, parieto-occipital,
parietal and ipsilateral premotor areas. Position
(figure 4(b)) and velocity (figure 4(c)) information
was consistently expressed in contralateral motor and
parietal areas as well as parieto-occipital areas and
to a weaker extent in occipital areas. As mentioned
before, due to strong cross-correlations between pos-
itions and velocities across lags (supplementary fig-
ures 14(e), (f)), we observed similar effects in both
kinematic variables at different lags. For velocity, the
contralateral activity peaked at the lag −0.2 s (figure
4(c)) and consequently for position at lag 0.3 s (sup-
plementary figure 4).

In the observation condition, the kinemat-
ics related activity (figures 4(d)–(f)) was gener-
ally smaller compared to the execution condi-
tion (figures 4(a)–(c)). Amplitude information
(figure 4(d)) was expressed strongest in parieto-
occipital areas, followed by ipsi- and contralateral
sensorimotor areas. Position (figure 4(e)) and velo-
city (figure 4(f)) related activity was strongest in
PP areas.
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Figure 3. Experiment 1 (EEG, 15 participants). Grand average expression of the cursor kinematics in EEG activity. Only activity
negative lags (EEG activity leading the kinematics) are displayed; supplementary figures 1, 2 also include the activity at positive
lags. (a), Expression of nondirectional kinematic information (average of distance and speed) in the execution condition. (b), As
in (a) for position (average of horizontal and vertical position). (c), As in (a) for velocity (average of horizontal and vertical
velocity). (e)–(f), As in (a)–(c) for the observation condition. Only voxels with significant activity are shown (two-sided,
permutation tests, df= 14, 10 000 permutations, sig. level=0.05, FDR correction for 496 089 tests, sig. level (FDR)= 0.0092).

3.3. Cursor kinematics decoding
Figures 1(d),(e) displays recorded and decoded
test set trajectories for representative participants.
Qualitatively, the UKF decoded trajectories (blue)
matched the cursor trajectories (gray) best in terms
of time course and amplitude range in the execu-
tion condition. The decoded trajectories of the other
algorithms were either too small (red, WF) or too
large (green, KF). In the observation condition, the
congruence between the decoded and recorded tra-
jectories was lower than in the execution condition.

The quantitative participant-level results are lis-
ted in supplementary tables 1–6. All three decoding
algorithms directly decoded the directional kinemat-
ics. To quantify the goodness of fit for the nondir-
ectional kinematics, we converted the decoded pos-
ition and velocity trajectories into distance and speed

trajectories and compared them with the recorded
ones. The correlation and SNR between the recor-
ded and decoded directional kinematics were signific-
antly different from shuffled data for all participants
in the execution condition. There were some com-
binations of algorithm, kinematic signal and condi-
tion that were not significant for specific participants.
For two participants in experiment 1 the SNR of
all algorithms and kinematic signals was not signi-
ficantly different from chance in observation condi-
tion. The WF and KF correlations for distance and
speed, inferred from the decoded positions and velo-
cities, were not significantly different from chance for
the majority of participants in experiment 1 (exe-
cution: 11 participants, observation: 13) and obser-
vation condition in experiment 2 (13 participants).
Whereas the UKF correlations were not significant

9



J. Neural Eng. 0 (2020) xxxxxx R J Kobler et al

Figure 4. Experiment 2 (MEG, 19 participants). Grand average expression of the cursor kinematics in MEG activity. Only
negative lags (MEG activity leading the kinematics) are displayed; supplementary figures 4, 5 also include the activity at positive
lags. (a), Expression of amplitude (average of distance and speed) information in the execution condition. (b), As in (a) for
position (average of horizontal and vertical position). (c), As in (a) for velocity (average of horizontal and vertical velocity).
(e)–(f), As in (a)–(c) for the observation condition. Only voxels with significant activity are shown (two-sided, permutation tests,
df= 18, 10 000 permutations, sig. level= 0.05, FDR correction for 496 089 tests, sig. level (FDR)= 0.0103).

for the minority in experiment 1 (execution: 1 parti-
cipant, observation: 5) and observation condition in
experiment 2 (five participants).

The group level results are summarized in
figure 5. The figure shows the performance metrics
for each algorithm, condition and experiment. To
reduce the number of plots, we grouped the results
into directional (2D position, 2D velocity) and non-
directional (distance, speed) kinematics. The box-
plots in figures 5(a),(d) summarize test set correla-
tions between the recorded and decoded kinematics.
The UKF achieved the highest test set correlations
across experiments, conditions and kinematics. With
regard to the directional kinematics, the UKF cor-
relations in execution and observation condition in
experiment 1 were 0.40± 0.06 SD and 0.31± 0.08 SD
(figure 5(a)). The WF correlations were significantly

lower in execution (mean difference: 0.08 ± 0.02
SD) and observation (0.06 ± 0.02 SD) condition
compared to the correlations reached by the other
algorithms. The results were similar in experiment
2 (figure 5(d)); the UKF correlations in execution
(0.56 ± 0.05 SD) and observation (0.40 ± 0.08 SD)
condition were significantly higher than the WF cor-
relations. The difference in correlations between the
UKF and KF did not reach significance in either
experiment and condition. The difference in UKF
correlations between experiments was significant
(Wilcoxon rank sum tests, execution condition mean
difference = 0.16, p-value = 2.1 ∗ 10–7 ; observation
condition mean difference = 0.09, p-value = 3.4 ∗

10–3). With regard to the nondirectional kinemat-
ics, we observed a large gap (mean difference: ≥ 0.1)
between the UKF and the other algorithms in both
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experiments and conditions (figures 5(a),(d)). Recall
that the UKF was the only algorithm that incorpor-
ated distance and speed information, encoded in the
M/EEG signals, into the predictions of position and
velocity.

Figures 5(b), (e) summarize the performance
of the algorithms in terms of SNR. The SNR of
the UKF was always higher than the SNR of the
KF. For the directional kinematics, we observed the
highest SNR for the WF. It was on average 0.38 dB
(0.16 dB observation) in experiment 1 (figure 5(b))
and 1.08 dB (0.42 dB observation) in experiment 2
(figure 5(e)); it was significantly higher than the SNR
of the KF in both experiments and conditions. The
difference in SNR between the UKF and WF was
significant in experiment 1 (figure 5(b)), and in the
observation condition of experiment 2 (figure 5(e)),
while the UKF and WF were on a par in execution
condition. Regarding the nondirectional kinematics,
we observed a large gap (mean difference: ≥1 dB)
between the UKF and the other algorithms. The dif-
ferences were significant across experiments and con-
ditions. While there was no significant difference in
SNR between the KF and WF in experiment 1 (fig-
ure 5(b)), the KF achieved a significantly higher SNR
(mean difference: approx. 0.5 dB) in experiment 2
(figure 5(e)).

The DSSR results are summarized in figures 5(c),
(f). The differences in DSSR between the algorithms
were significant in call cases (kinematic groups, con-
ditions, experiments). Compared to the KF and UKF,
the WF DSSR was lower by at least 5 dB. This mis-
match in amplitude is clearly visible in figures 1(d),
(f). The UKF DSSR was closest to the target value of
0 dB in experiment 1, while in experiment 2 the KF
DSSR was closest to 0 dB.

The position, velocity, distance and speed specific
group level results are displayed in figure 6 (correla-
tion and SNR) and supplementary figure 11 (DSSR).
In experiment 1, the algorithm-specific correlation,
SNR and DSSR were generally similar across the dir-
ectional kinematics (figures 6(a), (b)), supplement-
ary figures 11(a)). In experiment 2, the correlation
and SNRwere higher for the vertical component (ver-
tical position, vertical velocity) than for the hori-
zontal component (figures 6(c), (d)). We addition-
ally observed that the UKF and KF correlations were
higher for the positions than for the velocities (figure
6(c)). The results for distance and speed were con-
sistently lower than the ones for position and velocity
(figure 6). Compared to distance, the correlations for
speed were similar (figures 6(a), (c)) while the SNR
was higher (figures 6(b), (d)).

Next, we evaluated the effect of including only
distance or speed or neither in the UKF model. In
figure 7, we show the results in terms of correlation
and SNR. If we did not consider speed or distance in
the UKFmodel, the associated test set correlation and
SNR declined. For example, if we excluded distance

in equation (11), the correlation and SNR for the test
set distance trajectories dropped and also to a smaller
extent for the position trajectories. If neither distance
nor speed was included, the UKF model was equi-
valent to the linear KF model and achieved a similar
accuracy as the KF. Taken together, using distance and
speed in (11) resulted in the highest decoder accuracy
for the UKF.

4. Discussion

We showed that the low-frequency EEG and MEG
activity encoded rich kinematic information during
the PTT. At the group level, PP and parieto-occipital
(both conditions) and contralateral premotor and
primary sensorimotor (execution condition) areas
encoded information about directional (position and
velocity) and nondirectional (distance and speed)
kinematics. Based on the low-frequency M/EEG
activity of the current and preceding time-points,
the three decoding algorithms could reconstruct the
cursor kinematics at the current time-point with
moderate congruence. Across experiments and direc-
tional kinematics, the correlations of the UKF were
0.49 (0.10 SD) in the execution and 0.36 (0.09 SD)
in the observation condition. They were on average
0.08 (0.02 SD) higher than the correlations of theWF
. A linear state space model (KF) was sufficient to sig-
nificantly improve the correlations upon the WF (∆
correlation = 0.06 ± 0.01 SD) at the cost of signific-
antly lower SNR (∆ SNR = −1.5 dB ± 0.6 dB SD).
Using information about nondirectional kinematics,
encoded within the low-frequency M/EEG activity,
the UKF could significantly improve the SNR com-
pared to the KF (∆ SNR = 0.6 dB ± 0.1 dB SD)
and at the same time reduce the amplitude mismatch
between recorded and decoded trajectories to a min-
imum (DSSR=−0.3 dB± 0.5 dB SD).

Despite we observed significantly lower correla-
tions for the WF compared to the state space models
(KF, UKF), its SNR was significantly higher for the
directional kinematics. The optimization criterion of
the WF was to minimize the MSE which is equivalent
to maximizing the SNR defined in (14). Whereas the
state spacemodels did not directlyminimize the SNR;
they learned the distribution of the kinematics in the
train set (e.g. the amplitude range), and thereby also
optimized the DSSR to be close to 0 dB. Intuitively,
correlation, SNR and DSSR are related. Since the WF
maximized the SNR of the directional kinematics, it
achieved the highest SNR at the cost of poor DSSR,
while the state space algorithms achieved a DSSR
close to 0 dB at the cost of lower SNR for the direc-
tional kinematics (figure 5). If the correlations were
high, as in experiment 2 (execution condition), the
UKF could maintain the same SNR as the WF and at
the same time a DSSR close to 0 dB (figures 5(d)–(f)).
Knowing that the KF and UKF essentially differed in
the sense that the UKF utilized the nondirectional
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Figure 5. Group level cursor kinematics decoding results for each experiment, condition and algorithm. The kinematics were
summarized by grouping them into directional (horizontal position, horizontal velocity, vertical position, vertical velocity) and
nondirectional (distance, speed). (a), Experiment 1 (EEG, 15 participants). Boxplots showing the correlation between the
recorded and decoded kinematics for execution (left) and observation (right) conditions. The algorithms are color-coded. Each
dot summarizes the average CV test set correlation of a participant. Significant differences between the algorithms are highlighted
(two-sided, permutation, paired t-tests, df= 14, 10 000 permutations, sig. level= 0.05, FDR adjusted p-values for nmetrics

∗

nalgorithms
∗ nconditions ∗ ngroups = 36 tests). (b), As in (a) for the signal to noise ratio. (c), As in (a) for the decoded signal to signal

ratio. All results were significant (p < 0.001). (d)–(f), As in (a)–(c) for experiment 2 (MEG, 19 participants). Significant
differences in (d) and (e) are highlighted (two-sided, permutation, paired t-tests, df= 18, 10 000 permutations, sig. level= 0.05,
FDR adjusted p-values for nmetrics

∗ nalgorithms
∗ nconditions ∗ ngroups = 36 tests). All results in f were significant (p < 0.001).

kinematic information, and that we observed a sig-
nificantly higher SNR for the UKF across all kin-
ematics, it follows that utilizing the nondirectional
information improved the decoder accuracy. In sum-
mary, the UKF achieved the highest qualitative (fig-
ures 1(d), (e)) and quantitative in terms of correlation
and DSSR (figures 5(a), (c), (d), (f)) decoding accur-
acy among the three algorithms. In terms of SNR, the
accuracy of the UKF was on a par with the WF in one
case (experiment 2, execution condition) and lower
in the other three cases (figures 5(b), (d)).

The UKF was the only algorithm that used
distance and speed information to improve the pos-
ition and velocity estimates. Using either speed or

distance in equation (11), had a negligible effect
on the decoder accuracy of the directional kinemat-
ics and a negative effect on the nondirectional kin-
ematics (figure 7). If neither distance nor speed were
included, the accuracy of theUKFdeclined to the level
of the KF. Yeom et al explored a different way to incor-
porate speed information into the velocity estimates
[66]. In an MEG study, they first decoded velocity
and speed during center-out movements, then nor-
malized the decoded velocity and multiplied the res-
ult with the decoded speed estimate. Compared to lin-
ear decoders, their two step approach could slightly,
yet significantly improve the accuracy. We also var-
ied the model order to identify how the number of
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Figure 6. Group level results for the individual kinematic variables in both experiments and execution condition. (a), Experiment
1. Boxplots summarize the correlation between the recorded and decoded kinematic signals for the algorithms. The algorithms
are color-coded. Each dot summarizes the average CV test set correlation of a participant. (b), As in (a) for the signal to noise
ratio. (c)–(e), As in (a)–(b) for the second experiment.

previous lags affected the decoder accuracy (supple-
mentary figure 13). Compared to the third order
model (figure 5), the correlations and SNRwere mar-
ginally smaller for a first order model (∆ correla-
tion=−0.01± 0.01 SD;∆ SNR=−0.1 dB± 0.1 dB
SD) and indifferent for a fifth order model (∆ cor-
relation = 0.0 ± 0.01 SD; ∆ SNR = 0.0 dB ± 0.1 dB
SD). As reported in [20], the WF accuracy increased
for higher orders (supplementary figure 13). Des-
pite the increase, the correlations (supplementary
figures 13(a), (d)) for a fifth order WF were still
lower compared to a fifth order UKF (∆ correla-
tion= 0.05± 0.02 SD for the directional kinematics).
Taken together, the UKF still outperformed the other
algorithms in terms of correlation as the model order
increased; higher order models did not improve the
accuracy upon a third order UKF.

Since the spectral filter characteristics have a
large impact on the performance of low-frequency
decoders [66], we tested three low-pass filter cut-
off frequencies 0.8 Hz, 2.0 Hz, 5.0 Hz. The res-
ults are summarized in supplementary figure
12. With increasing cut-off frequency, the cor-
relations decreased for the directional kinemat-
ics (supplementary figures 12(a), (d)); the differ-
ence (0.8 Hz–5.0 Hz) was negligible for the UKF
(∆ correlation = −0.02 ± 0.01 SD) and high
for the WF (∆ correlation = −0.10 ± 0.02 SD).

For the nondirectional kinematics, the correlations
increased, since frequencies above 0.8 Hz had a con-
siderable contribution to the power spectral density
of distance and speed (supplementary figure 15).
Increasing the cut-off frequency had a positive effect
on the UKF SNR (0.5 dB directional, 1 dB nondirec-
tional) and DSSR.

Previous works in the context of low-frequency
M/EEG kinematics decoding have mainly studied
center-out tasks [19, 27, 67–70]. Since correlation and
SNR are sensitive to various parameters (e.g. pre-
processing, statistical properties of the signals being
compared), a direct comparison across studies is not
straightforward [25]. Bradberry et al were the first
to show that velocity trajectories can be decoded
from low-frequency MEG [67] and EEG [19] activ-
ity during center-out reaching tasks. They decoded
2D velocity trajectories from MEG during a visuo-
motor adaptation experiment in [67]. Their pre-
exposure condition was closest to our execution con-
dition. They obtained average (five participants, two
dimensions) correlations of 0.4. In the EEG study
[19], they studied 3D self-paced center-out move-
ments and decoded velocities with average (five par-
ticipants, three dimensions) correlations of 0.3. Kim
et al decoded continuous, repetitive 3D arm move-
ment trajectories from low-frequency EEG activity
with multiple linear regression (MLR) and kernel
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Figure 7. Effect of the type of nonlinearity included in the UKF model on the execution condition decoder accuracy for both
experiments. The results are grouped by the type of kinematic signal (position, velocity, distance, speed). (a), Experiment 1. The
boxplots summarize the distribution across participants. Each dot summarizes the average CV test set correlation of a participant.
The tested nonlinear relationships included in the model are color-coded. (b), As in (a) for the signal to noise ratio. (c)–(d), As in
(a)–(b) for experiment 2.

ridge regression decoders [23]. After correcting for
eye artifacts, they obtained grand average (ten par-
ticipants, three dimensions) correlations of 0.5 (0.38
MLR) in executed movements and 0.4 (0.3 MLR)
in imagined (and observed) movements. Their cor-
relations were in a similar range, compared to our
findings in the PTT in experiment 2 (figures 5(d)–
(f)). In an even simpler task (rhythmic 2D circular
arm movements), Georgopoulos et al reconstructed
armmovement trajectories from low-frequencyMEG
activity with high congruence (correlation = 0.85)
[15]. Recently we reported slightly lower correla-
tions (correlation = 0.68) for low-frequency EEG
activity [29].

In the invasive domain, executed arm movement
kinematics have been decoded from ECoG activity of
humans [24, 28, 71–73]. Schalk et al reported that the
low-frequency ECoG activity contributed the most
to the decoding of trajectories in a simple, repet-
itive 2D PTT [24]. Using low-frequency and spec-
tral features, they predicted positions and velocities
with correlations of 0.49 (0.10 SD). Using similar fea-
tures, Pistohl et al predicted cursor trajectories with
a linear KF (correlation = 0.33 for six participants;
correlation = 0.43 for three participants with ECoG
grids covering hand/arm areas) in a more complex

2D continuous movement task [71]. Nakanishi et al
studied a 3D continuous reaching and grasping task
in three participants [28]. They decoded wrist and
elbow positions and elbow and shoulder joint angles.
The average correlation for the 3D wrist position was
0.51 and the average normalized root mean squared
error (nRMSE) was 0.29. In a follow up study with
three additional participants, they obtained average
correlations of 0.62 and a root mean squared error
(RMSE) of 55 mm [74]. That is, the M/EEG results
in terms of correlation reported here are within the
range of those using implanted ECoG grids during
continuous, goal-oriented movement tasks, whereas
the low nRMSE and RMSE confirm the higher SNR
of ECoG compared to M/EEG [75]

Expression of executed arm movement kinemat-
ics in neural spiking activity has been studied in non-
human primates (NHPs) [8, 31, 36, 76, 77]. An early
work by Paninski et al studied neural spiking activ-
ity during a comparable 2D PTT in three NHPs [77].
They decoded hand positions from the spike rates
of few M1 neurons (5 to 19 neurons) with a lin-
ear regression model and reported an SNR of 1.3 dB
(0.8 dB SD). Our execution condition results for the
UKF (−0.8 dB experiment 1; 0.9 dB experiment 2)
and WF (0.4 dB experiment 1; 1.1 dB experiment
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2) were lower. Later, Li et al used neural spiking
activity from M1, S1, PMd and PP neurons of two
NHPs to decode cursor kinematics during a simple
2D PTT and a center-out task [36]. They applied a
similar UKF that used distance and speed informa-
tion to decode positions and velocities. In the PTT,
they reported that a first order UKF decoded posi-
tions (correlation = 0.85, SNR = 5.1 dB) and velo-
cities (correlation = 0.52, SNR = 1.5 dB) with high
congruence. Our execution condition correlations for
velocity were in a similar range, while the correlations
for position and the SNRs were lower (figure 6). The
discrepancy in correlations could be explained by the
task difficulty. Their 2D trajectories were repetitive,
while ours were pseudo-random. They also reported
results for aWF. In their study, the UKF improved the
correlations upon theWF for the positions (∆ correl-
ation = 0.09) and velocities (∆ correlation = 0.06).
We also observed significantly higher correlations for
the UKF compared to theWF (∆ correlation= 0.06).
Recently Makin et al compared the UKF proposed by
Li et al to a recurrent exponential family harmonium
(rEFH) filter during a consecutive 2D reaching task
to multiple targets [78]. The rEFH filter achieved an
SNR of 6 dB compared to 4 dB for the UKF. In a
study with two NHPs, Stavitsky et al compared the
decoder accuracy between population and spiking
activity with a linear KF [79]. In a center-out reaching
task, they reported similar correlations for the low-
frequency population (0.78) and spiking (0.77) activ-
ity. Compared to M/EEG, the fine spatial resolution
of intracortical electrode arrays enables the recon-
struction of movement trajectories with a high accur-
acy in terms of correlation and SNR.

In both experiments, we studied the PTT in two
experimental conditions. Compared to the execution
condition, we observed a drop in performance in the
observation condition (figure 5). For the UKF the
average difference in correlation and SNR was 0.13
(0.08 SD) and 1.1 dB (0.6 dB SD). Kim et al also
reported lower correlations (∆ correlation = 0.1),
if the movements were observed and imagined [23].
Korik et al used spectral features to decode repetit-
ive 3D reaching movements from EEG activity [68].
They reported a stronger drop in correlations (∆
correlation = 0.2), if the reaching movements were
imagined rather than executed. Using low-frequency
EEG activity, Ofner et al reported correlations of
0.32 (0.22 SD) for rhythmic movement imaginations
[22]. They were substantially lower than the correl-
ations (0.70 ± 0.12 SD) reported earlier in executed
3D movements [80]. The drop in decoding per-
formance could be explained by the brain encod-
ing less kinematic information. A body of work has
investigated how cortical areas, involved in move-
ment control, modulate to different volitional states,
including executed, imagined, attempted or observed
movements [81–85]. In supplementary figures 3 and
6 we compared the group level kinematics related

voxel activations between conditions. In both experi-
ments, voxels in primary sensorimotor cortex (SM1),
supplementary motor cortex, PMd and PP encoded
significantly more kinematic information in exe-
cution condition. Executed movements have been
repeatedly shown to activate motor and sensory areas
stronger than observed movements [81, 82, 84].

The activity in SM1, PMd, PP and PO simultan-
eously encodes information about variousmovement
parameters in executed and observed movements
[8, 20, 33–35, 73, 86–88]. Our group level encoding
results (figures 3 and 4) indicate that directional
and nondirectional kinematics were expressed differ-
ently across cortical areas. We observed distinct peaks
in SM1 for the nondirectional kinematics in both
experiments (figures 3(a) and 4(a)), supplementary
figures 1, 4, 7, 9). The SM1 activity peaked between
lags −0.1 s and 0.0 s in experiment 1 and lags −0.3 s
to −0.2 s in experiment 2. Considering the delays
between hand/finger and cursor movements (55 ms
in experiment 1; 190 ms in experiment 2), the SM1
peak was phase-locked to the executed hand/finger
movements. Tuning effects of SM1 to nondirectional
kinematics have been reported in ECoG [34], MEG
[16, 35, 89] and EEG [18]. We observed that the dir-
ectional kinematics (position and velocity) were con-
sistently encoded in PO (figures 3(b), (c), (e), (f))
and PP (figures 4(b),(c),(e),(f)) in both conditions.
Voxels in contralateral SM1 and PMd also consist-
ently encoded directional information in the execu-
tion condition of experiment 2 (figures 4(b),(c)) but
not in experiment 1 (figures 3(b),(c)). In figures 3
and 4 we report consistent group level effects. That
is, for an effect to be significant, the dipole orienta-
tions have to be similar across participants. If only the
strength of the effect is considered (= dipole orient-
ations are allowed to vary across participants), SM1,
PMd and PP voxels encoded significantly more direc-
tional information in execution condition in experi-
ment 1 (supplementary figure 3). This means that the
directional information was consistently expressed in
PO and PP areas at the group level, and participant
specific in PMd and SM1. The less consistent effect
in SM1 during experiment 1 could to some degree
also be attributed to a lower spatial localization accur-
acy of EEG source imaging for template head models
compared to MEG source imaging [90].

In spite of similar task dynamics (supplement-
ary figure 14) and visual stimuli (figure 1(a)) in
both experiments, the movement tasks differed in
execution condition; we studied arm movements
in experiment 1 and finger movements in experiment
2 (figure 1(b)). The two movement types activate
fronto-parietal networks for reaching and grasping
[91]. Among the fronto-parietal networks, reaching
movements mainly activate the dorsal reach system
and graspingmovements mainly the lateral grasp sys-
tem [87, 92–94]. As expected, the kinematic inform-
ation was encoded strongest in medial areas along
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the dorsal stream in experiment 1 (figures 3(a)–(c),
supplementary figures 1, 3 and 7) and more lat-
eral areas in experiment 2 (figures 4(a)–(c), supple-
mentary figures 4, 6 and 9). Since the fingers and
hand have a stronger representation in SM1 than the
elbow and shoulder [95], more kinematic informa-
tion could have been expressed in experiment 2. This
could explain the higher decoding accuracy (∆ cor-
relation(UKF) = 0.16 ; ∆ SNR(UKF) = 1.7 dB) in
execution condition in experiment 2 (figure 5). In
the observation condition the hand/finger was rest-
ing. Nonetheless, the decoder accuracy was higher
in experiment 2 (∆ correlation(UKF) = 0.09 ; ∆
SNR(UKF)= 1.0 dB). This difference could be attrib-
uted to the recording modality (EEG in experi-
ment 1; MEG in experiment 2) or the spatial cov-
erage (64 channels in experiment 1; 129 channels in
experiment 2).

Despite the promising results, our study suf-
fers from a number of limitations that need to be
addressed in future research. The most critical one
is that we analyzed the data offline with non-causal
filters. Online, the spectral filters would introduce
large delays in the order of a second, rendering low-
latency control infeasible. If the filter characterist-
ics were relaxed, the decoding accuracy of the WF
would drop substantially (supplementary figure 12).
Fortunately, the results indicate that the accuracy of
the KF and UKF would be marginally affected . In
an exploratory closed loop BCI study, we recently
demonstrated that a KF decoded arm movements
online with low-latency so that healthy individuals
could track a target with a robotic arm during a PTT
[30]. In [30] we used the KF to smooth the estimates
of a WF. As a result we observed a similar amplitude
mismatch as for the WF in this study (figures 5(c),
(f)); the amplitudes of the decoded position traject-
ories were three to four times smaller than the ones
of the actual movements, rendering feedback train-
ing impracticable. We believe that at the start of feed-
back training, the BCI users prefer larger errors over
not being able to produce movements in the same
range as during manual control. A second limita-
tion, concerns the transfer to paralyzed individuals. In
this study, we decoded executed and observed move-
ments. As the participants were continuously moving
in the execution condition, the decoders had access
to a mixture of efferent (movement intention) and
reafferent (feedback) activity. The reafferent activity
is either completely or partially missing in para-
lyzed individuals. Nonetheless, the observation con-
dition decoding accuracy should transfer to paralyzed
individuals. Moreover, we think that if a movement
attempt strategy is used rather thanmere observation,
a similar performance to execution condition should
be feasible [84, 85]. Using intracortical BCIs, para-
lyzed individuals achieved similar decoding accur-
acy in attempted movements as NHPs in executed
movements [6, 96, 97]. Even if the offline results

can be transferred to online experiments, the moder-
ate decoding accuracy obtained here is not sufficient
to accurately control an end-effector. Using motor
imagery of distinct movements and band power fea-
tures, Wolpaw and McFarland demonstrated that 2D
cursor control could be significantly improved with
feedback training [4]. After training for several weeks,
the study participants could control a cursor in a
2D center-out task with average correlations of 0.63.
Edelman et al used a similar control strategy and
reported that their participants could improve the
control skill significantly faster in a 2D PTT com-
pared to a center-out task [98]. In another online
study, Bradberry and colleagues reported that they
could decode intended movement trajectories from
low-frequency activity with high congruence [99].
Within a single-session experiment the participants
could control an end-effector in a center-out move-
ment task. However, they did not report whether the
task performancewas significant, leading to an incon-
clusive debate [100, 101]. Although there is evidence
that individuals can learn to voluntarily modulate
low-frequency activity with feedback training [102],
it remains unclear how fast the kinematics decoding
accuracy can be improved.

There were also some potential confounding
factors that might have affected the presented results.
The first one concerns eyemovement artifacts. Allow-
ing eye movements enabled us to study similar visuo-
motor (and oculomotor) tasks as invasive studies.
However, they also give rise to prominent EOG arti-
facts in low-frequencyM/EEG signals [103, 104]. Due
to the nature of the PTT, they co-varied considerably
with the directional kinematics. We used a state-of-
the-art correction algorithm to attenuate these arti-
facts and maintain brain activity [47]. Although we
cannot rule out that residual eye artifacts contributed
to the decoding results, the encoding results indicate
that the brain activity dominated. If residual eye arti-
facts had dominated, we would have expected strong
activity in prefrontal and anterior temporal cortex
(cortical areas closest to the eyes). Across conditions
and experiments, the kinematics related activity at
prefrontal and anterior temporal areas was much
lower compared to cortical areas along the dorsal
stream (figures 3 and 4; supplementary figures 1, 2,
4, 5, 7–10). Movement artifacts could have also con-
founded the execution condition decoding results.
Significant activity at the inferior temporal lobemight
indicate the presence of an arm movement-related
artifact that was phase-locked to the nondirectional
kinematics in experiment 1 (figure 3(a)). Alternat-
ively, this activity could have originated in deeper
brain structures (e.g. thalamus, cerebellum) which
we did not consider in the source imaging model.
As in [24, 36], we decoded cursor trajectories and
ignored potential effects related to the target stimulus.
This raises the question to which extent target related
information was utilized by the decoders. During the
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PTT, the target and cursor trajectories were highly
correlated (figures 1(d),(e)), rendering a disentangle-
ment of cursor and target related effects impractic-
able. Studying multiple tasks with different dynamics
could help to disentangle cursor (arm/finger) and tar-
get related effects [105].

5. Conclusion

Previous work suggested that low-frequency EEG and
MEG signals encode information about directional
(position and velocity) and nondirectional (distance
and speed) armmovement kinematics.We found dir-
ect evidence that directional and nondirectional kin-
ematic information is simultaneously detectable in
low-frequency M/EEG signals. Moreover, movement
trajectories could be reconstructed with significantly
higher accuracy in terms of correlation and DSSR
using an UKF that explicitly models the nonlinear
relation between directional and nondirectional kin-
ematics than by using linear Kalman (KF) and WFs
which do not combine both types of kinematics. In
terms of SNR the UKF outperformed the linear KF
in all cases, while it was outperformed by the WF
in three out of four cases. Further research is neces-
sary to improve the decoder accuracy, particularly the
strengths of theUKF in terms of correlation andDSSR
and the WF in terms of SNR should be combined.
Apart from improving the algorithms, it is essential
to assess how the results transfer to attempted move-
ments in paralyzed individuals and to which extent
the accuracy can be improved with feedback training.
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[27] Úbeda A, Azorín J M, Chavarriaga R and Milĺan J Del R
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ABSTRACT: Eye movements and their contribution to
electroencephalographic (EEG) recordings as ocular arti-
facts (OAs) are well studied. Yet their existence is typi-
cally regarded as impeding analysis. A widely accepted
bypass is artifact avoidance. OA processing is often re-
duced to rejecting contaminated data. To overcome loss
of data and restriction of behavior, research groups have
proposed various correction methods. State of the art ap-
proaches are data driven and typically require OAs to be
uncorrelated with brain activity. This does not necessarily
hold for visuomotor tasks. To prevent correlated signals,
we examined a two block approach. In a first block, sub-
jects performed saccades and blinks, according to a vi-
sually guided paradigm. We then fitted 5 artifact removal
algorithms to this data. To test their stationarity regarding
artifact attenuation and preservation of brain activity, we
recorded a second block one hour later. We found that
saccades and blinks could still be attenuated to chance
level, while brain activity during rest trials could be re-
tained.

INTRODUCTION

In the last two decades extensive research on the neural
encoding of upper limb movement kinematics has been
carried out [1]. Experiments on kinematics decoding typ-
ically comprise visuomotor (VM) tasks [2–4]. Such tasks
inherently involve visual feedback e.g. the distance be-
tween a target and an end-effector. Naturally, subjects
would foveate between or track objects of interest [5].
This is typically avoided in laboratory conditions by in-
structing subjects to fixate their gaze to an arbitrary fixa-
tion point and reduce blinking to a minimum [2, 3, 6].
We want to emphasize that solely removing frontal chan-
nels from the analysis, while allowing eye movements is
not sufficient to attenuate ocular artifacts (OAs) [4]. Cen-
tral and parietal channels would nonetheless exhibit high
correlations with saccade directions [7].
If the protocol allows saccades and blinks, literature typ-
ically separates between three independent types of ar-
tifacts [7, 8]. (1) Corneo-retinal dipole (CRD) artifacts
cause signal changes that depend on eyeball rotation size
and direction [7]. (2) Eyelid artifacts emerge from blinks,
eyelid saccades and post-saccadic eyelid movements [7].
They elicit a large potential and are generated by the eye-
lid, whose displacement changes the impedance between

positively charged cornea and extraocular skin [8]. (3)
The saccadic spike potential (SP) is most prominent on
periorbital electrodes and believed to result from contrac-
tion of extra-ocular muscles [8].
In future, we plan to apply the methods developed here on
decoding kinematics from continuous visuomotor tasks.
Previous studies consistently reported significant decod-
ing information in low frequency components (<2 Hz)
[2, 3, 6, 9]. We therefore focus on CRD and eyelid move-
ments, since SP artifacts emerge in a frequency range
>20Hz [8].
An alternative strategy to OA avoidance is correction.
Literature provides numerous offline correction methods.
For a recent review see [10]. Most common methods are
either source estimation [7, 11, 12] or regression based
[13] or a hybrid variant [14]. They all assume a linear
mixing model:

x(t) = As(t) = A(b)s(b)(t) + A(a)s(a)(t) (1)

with the scalp recordings x(t) at time t being a mixture of
sources s(t). The mixing matrix A is unknown. It can be
separated into mixing coefficients A(b) for brain sources
s(b)(t) and A(a) for artifact sources s(a)(t).
Cortical control of an end-effector requires online re-
moval of OAs. One approach is to use adaptive algo-
rithms to iteratively estimate A(b) [14]. An advantage is
that they can track changes of mixing coefficients due to
i.e. a changing electrode scalp interface. However, they
assume uncorrelated brain activity and artifacts [10]. This
does not necessarily hold true for VM tasks. An alterna-
tive correction approach proposed in [13] is to use a block
based experimental design. In the first block subjects
perform voluntary eye artifacts. Thereupon a correction
model is learned and applied online in the main block,
during which subjects perform the actual task. Here time
invariant mixing coefficients are assumed. Consequently,
artifacts and brain activity can be correlated during the
actual experiment. If the correlated brain activity con-
tributes negligibly to the estimated eye artifact signals,
only the artifact fraction is removed.
To our knowledge literature lacks a thorough compari-
son of how the previously listed correction approaches
perform on the described block design. We selected five
representatives and assessed their artifact correction per-
formance on held out data. The algorithms are briefly
outlined in the remainder of this section.



EYE-REG: A regression based algorithm originally
proposed for block design [13]. It requires designated
EOG channels to compute vertical and horizontal esti-
mates of eye artifact source signal ŝ(a)(t). The model,
defined in equation 1, can be rewritten as

x(t) = A(a)s(a)(t) + n(t) (2)

with the brain activity considered as noise n(t). The au-
thors used the least squares solution to calculate an esti-
mate Â(a). The cleaned channels xc(t) are then:

xc(t) = x(t)− Â(a)ŝ(a)(t) (3)

If the empiric estimates Â(a) and ŝ(a) are close to the
unknowns, we can recover the brain activity by inserting
equation 2 in 3:

xc(t) = A(a)s(a)(t) + n(t)− Â(a)ŝ(a)(t) ≈ n(t) (4)

MARA1: Multiple Artifact Rejection Algorithm
(MARA) is an independent component analysis (ICA)
based algorithm [12]. ICA is used to estimate an unmix-
ing matrix V that transforms equation 1 into:

ŝ(t) = Vx(t) = VAs(t) ≈ s(t) (5)

and recovers independent components (ICs) ŝ(t). MARA
then applies a plug-and-play classifier to identify artifac-
tual ICs and rejects them [12].

EYE-EEG1: Here, artifactual ICs are rejected based on
a variance ratio metric [7]. An IC’s variance is computed
during designated saccade and fixation periods2. If their
ratio exceeds a threshold, the IC is rejected. In [7] an eye
tracker was employed to detect saccades and fixations.

REGICA1: Regression-ICA is a hybrid method [14].
The authors showed that artifactual ICs carry more ocular
and less brain activity than scalp channels. Hence, they
proposed to apply regression to artifactual ICs only.

EYE-SUB1: Artifact subspace subtraction is another
approach to correct equation 1 for eye artifacts. Instead of
using fixed linear combinations of EOG channels, like for
regression, an artifact unmixing matrix V(a) is computed.
It recovers an estimate of the eye artifact signals ŝ(a)(t):

ŝ(a)(t) = V(a)x(t) (6)

In combination with an estimated artifact mixing matrix
Â(a) equation 3 transforms to:

xc(t) = x(t)− Â(a)ŝ(a)(t) = (I− Â(a)V(a))x(t) (7)

The columns of Â(a) are computed by finding the sub-
space which is maximally different between two condi-
tions e.g. up vs. down saccades [11].

1We used the publicly available eeg-lab extension. Available online:
https://sccn.ucsd.edu/wiki/EEGLAB_Extensions

2Fixations are defined as periods during which no eye movements
happen [7].

MATERIALS AND METHODS

Participants: Five persons, aged 23.6±3.9 years, par-
ticipated in this study. Three of them were female. All
subjects had corrected to normal vision. They had al-
ready participated at least once in an EEG experiment
before. All signed an informed consent after they were
instructed about purpose and procedure of the study. The
experimental procedure conformed to the declaration of
Helsinki and was approved by the local ethics committee.

Stimulus Presentation: Subjects were seated in a
shielded room at 1.4m distance to a computer screen
(NEC Multisync 27” IPS TFT, 60Hz refresh rate, FullHD
resolution). Stimuli were restricted to a square of 0.32 m
x 0.32 m around the center of the screen (∼13° x 13° vi-
sual angle).

Data Acquisition: EEG and EOG were recorded with
a 64 channel ActiCap system connected to a BrainAmp
amplifier. It sampled the data at a rate of 1 kHz and ap-
plied a first order highpass filter with a cutoff frequency
of 0.016 Hz. 58 electrodes were placed at frontal, central,
parietal and occipital sites according to the extended 10-
20 system. The remaining 6 electrodes were placed on
the outer canthi, infra and superior orbital to the left and
right eye respectively. Ground and reference were placed
on AFz and the right mastoid, respectively.

Experimental Procedure: The paradigm is illus-
trated in Figure 1. It defines four conditions. REST:
subjects were instructed to fixate a blue sphere for 10 s.
HORZ/VERT: the sphere moved on a continuous hori-
zontal/vertical trajectory. Subjects were directed to ac-
curately follow it with their gaze. BLINK: The sphere’s
vertical diameter shrunk 8 times for 0.5 s instructing sub-
jects to blink once each time.
We decided to implement a visually guided paradigm to
have control over saccades and blinks. It simplifies split-
ting the data into corresponding epochs. An eye tracker,
originally required by EYE-EEG, was not necessary ei-
ther. Figure 5 (right) illustrates the accordance of the
stimulus with subject behavior (EOG derivatives).
The recording time was divided into 3 blocks. The first
and last followed the presented paradigm. Both consisted
of 27 trials (9 REST, 6 HORZ, 6 VERT and 6 BLINK).
The choice of 27 trials and their partition was motivated
by the requirements of the algorithms. Recordings of the
middle block, lasting roughly 60 minutes, followed a dif-
ferent paradigm and will be published elsewhere.

Preprocessing: The EEG data was first downsam-
pled to 250 Hz. To attenuate 50 Hz line noise, a 2nd order
Butterworth bandstop filter was applied. Slow drifts were
removed by a zero-phase 4th order Butterworth highpass
filter with 0.4 Hz cutoff frequency.
We visually inspected the data for bad channels and
flagged 1 to 3 channels across subjects. They were spher-
ically interpolated. We then extracted epochs of 7 s start-
ing 1 s after cue presentation and rejected 1.7±1.2 trials
per block by visual inspection.
Three of the five algorithms, that we compare, process



Figure 1: Experimental task. (left) The visual stimuli consisted of a 3D grid and a sphere, located in the center of the screen. Every trial
started with a break lasting 2 to 3 seconds (uniformly distributed). Thereupon the sphere color changed to blue. After 1 s a condition
dependent pattern was presented for 10 s. (right) First 5 s of the condition dependent patterns (blue). REST: the sphere remained in the
center of the screen. HORZ: it moved along the horizontal plane according to a windowed sinusoid with a frequency of 0.5 Hz. VERT:
the same movement but along the vertical plane. BLINK: the vertical diameter of the sphere changed, instructing the subject to blink.
Additionally horizontal, vertical and radial EOG derivatives for selected trials of subject 1 are plotted (black).

the data in IC space. Before computing ICA we applied
principal component analysis (PCA) on the 64 EEG/EOG
channels and retained components explaining 99.9% of
the variance. We then applied the extended Infomax al-
gorithm to compute the unmixing matrix V of equation 5.
The regression based algorithms require EOG compo-
nents as artifact sources ŝ(a)(t). The horizontal EOG
(HEOG) derivative was computed as the difference be-
tween right and left outer canthi, vertical EOG left/right
(VEOGL/R) as the difference between left/right superior
and inferior electrode, and the radial EOG (REOG) com-
ponent as the average of all six EOG electrodes.

Fixation, saccade and blink detection: EYE-EEG
required separating the data into fixation and saccade
periods. Since we asked subjects to avoid eye move-
ments during REST condition, we used REST trials as
fixation periods. For saccade detection the HEOG and
VEOG3 component were first lowpass filtered (zero-
phase Butterworth, 2nd order, 20 Hz cutoff frequency).
Horizontal/vertical saccade periods were extracted from
HORZ/VERT condition trials if the absolute value of
the H/VEOG component was above 10 µV for at least
200 ms. The sign was also used to split the data into
left/right and up/down saccades.
Blink detection is also based on the lowpass filtered
VEOG component. Samples during BLINK trials were
set to be blink related if the VEOG amplitude was above
200 µV. The limits of these periods were expanded by
75 ms to include blink on- and offset.

3VEOG is the arithmetic mean of VEOGR and VEOGL.

EYE-REG: In [13] the authors argue to omit the REOG
component, since it also captures considerable brain ac-
tivity. We, therefore, used only HEOG and VEOGL/R as
predictor variables for multiple linear regression.

EYE-SUB: First, penalized logistic regression (PLR)
[11] with a regularization factor of 10−3 was applied to
compute four artifact source signals ŝ(a)(t) (4x1) that
have a maximum magnitude difference between either
left/right, up/down, blink/up or blink/down conditions.
Similar to the regression approach, given ŝ(a)(t), Â(a)

(64x4) can be computed by the pseudo inverse. The rest
data was used to estimate a noise covariance matrix Rn

(64x64). Considering Rn, the unmixing matrix V(a)

(4x64) can be calculated by the regularized weighted
least squares solution [11]:

V(a) =
(
Â(a)TRnÂ(a) + Λ

)−1

Â(a)TRn (8)

with Λ = λI and regularization factor λ = 10−4.
EYE-EEG: Similar to the original paper we set the

threshold for the variance ratio to 1.1 [7].
REGICA: Precomputed ICs were flagged using the

correlation between each IC and HEOG, VEOG with a
threshold of 0.2. Multiple linear regression was applied
to flagged ICs only. We used H/V/REOG as predictor
variables.

Evaluation: All algorithms were fitted to the first block
of data i.e. computation of ICA, regression weights and
fitting of hyper parameters. The second block was solely
employed for testing.



To assess artifact attenuation, we computed absolute val-
ues of Pearson correlation coefficients |r| between EOG
derivatives and each EEG channel. HEOG was used
for HORZ, VEOG for VERT and blink periods during
BLINK condition, respectively. Bootstrapping was ap-
plied to estimate chance level for |r|. Thus, we first
merged the test trials of all subjects. We then randomly
sampled 5 trials4 of e.g. HORZ condition and computed
|r| with EEG channels of 5 random REST trials. The
shuffling was repeated 5000 times for each condition.
This yielded a 95%-quantile of 0.11 in every of the three
conditions.
Preservation of neural activity was assessed twofold.
Firstly, through computing the root mean squared error
(RMSE) between cleaned xc and uncleaned x signals
during REST condition trials [14].

RMSE(k) =

√√√√ 1

Ns

Ns∑

n

(x[k, n]− xc[k, n])2 (9)

with k being the channel index and Ns the total number
of samples in the test set.
Secondly, by computing the ratio between power spectral
density of cleaned (Pxxc) and uncleaned (Pxx) signals

Pxxratio(k, f) =
Pxxc(k, f)

Pxx(k, f)
(10)

for each EEG channel k and frequency bin f [13]. We
applied Welch’s method to estimate the power spectral
density for each trial and averaged across a subject’s test
trials.

RESULTS

Figure 2 depicts grand average topoplots of the 58 EEG
channels after correction. The plots summarize mean test
set performance for each metric and algorithm. The first
row represents the uncorrected EEG. We observed typical
eye artifact patterns for HORZ, VERT and BLINK con-
ditions. Table 1 complements Figure 2. It lists mean and
standard deviation across subjects for frontal, central and
parietal channel groups.
Regarding the RMSE during REST, all algorithms ex-
hibit a gradient from pre-frontal to occipital regions.
MARA and EYE-EEG removed most activity, whereas
EYE-REG and EYE-SUB achieve lowest RMSE across
channel groups.
Figure 2 and Table 1 also summarize the absolute corre-
lation |r| between EEG channels and EOG derivatives af-
ter correction. One can clearly see that MARA could not
identify ICs related to horizontal and vertical eye move-
ments. This results in correlation values of up to 0.28
for frontal regions, which are clearly above the estimated
chance level (0.11). The topoplots of the other algorithms
show consistent attenuation of horizontal eye movements
over scalp regions. Concerning vertical eye movements,

4Average number of trials in a subject’s test set after rejection.

Figure 2: Topoplots (58 EEG channels) summarizing the
average test set performance of the algorithms across sub-
jects. (left) RMSE between corrected and uncorrected sig-
nal during REST condition, (right) absolute correlation |r|
with HEOG/VEOG/VEOG during HORZ/VERT/BLINK con-
ditions.

EYE-SUB, EYE-EEG and REGICA could attenuate the
correlation to similar levels as for horizontal ones. We
also found that EYE-SUB and REGICA could attenuate
blinks to chance level for frontal/central and parietal re-
gions.
For visualization purposes, subsequent Figures show only
the four algorithms that could attenuate artifact correla-
tions to chance level, namely, EYE-REG, EYE-SUB, EYE-
EEG and REGICA.
To estimate their performance decrease, we calculated
group level means for train and test set. Figure 3 dis-
plays them for the average EEG channel. The barplots
indicate mean and 95%-confidence interval for each con-
dition and its associated metric. Non-overlapping train
and test set confidence intervals, indicate a significant
difference. The absolute correlation |r| increased signifi-
cantly for EYE-SUB (HORZ) and EYE-EEG (HORZ and
BLINK).
The power spectral density ratio Pxxratio between cor-
rected and uncorrected EEG revealed further differences
across algorithms. Group level mean and its 95%-
confidence interval are depicted in Figure 4 for frontal,
central and parietal regions. EYE-SUB had its mean clos-



Table 1: Group level summary of performance metrics for
frontal, central and parietal channel groups on the test set. Mean
and standard deviation across subjects are stated per metric. The
lowest value per metric and channel group is highlighted.

Condition REST HORZ VERT BLINK
Metric RMSE |r| |r| |r|
Unit µV - - -

Frontal (F3, Fz, F4)
EYE-REG 1.8±0.5 0.06±0.04 0.11±0.07 0.19±0.15
EYE-SUB 1.4±0.1 0.08±0.03 0.06±0.04 0.11±0.08
MARA 3.1±1.0 0.12±0.13 0.28±0.25 0.23±0.08
EYE-EEG 2.3±0.4 0.06±0.02 0.06±0.05 0.15±0.09
REGICA 2.0±0.2 0.07±0.02 0.07±0.04 0.10±0.04

Central (C3, Cz, C4)
EYE-REG 1.0±0.4 0.06±0.04 0.10±0.04 0.16±0.10
EYE-SUB 1.1±0.4 0.07±0.05 0.06±0.04 0.08±0.05
MARA 2.5±1.0 0.10±0.13 0.24±0.22 0.14±0.09
EYE-EEG 2.2±0.9 0.05±0.02 0.05±0.02 0.12±0.07
REGICA 1.3±0.3 0.05±0.03 0.04±0.03 0.08±0.04

Parietal (P3, Pz, P4)
EYE-REG 0.7±0.2 0.07±0.04 0.12±0.06 0.12±0.06
EYE-SUB 1.0±0.4 0.06±0.04 0.07±0.04 0.10±0.08
MARA 2.2±1.0 0.10±0.13 0.20±0.21 0.12±0.03
EYE-EEG 2.1±0.8 0.04±0.02 0.06±0.04 0.10±0.08
REGICA 1.2±0.4 0.05±0.02 0.04±0.03 0.09±0.03

Figure 3: Algorithm performance on the average EEG channel
for train (dashed) and test (solid) set. Mean and 95%-confidence
interval across subjects are plotted for RMSE (left) and absolute
correlation |r| (right). Significant differences between train and
test set are marked by *.

est to an ideal ratio of 1 and least variability of the mean
across frequencies. EYE-EEG showed similar behavior
for frontal, but larger attenuation in delta/theta frequency
bands for central and parietal areas. EYE-REG resulted in
largest mean attenuation in frontal areas, closely followed
by REGICA. This improved considerably for central and
posterior areas. We could also observe a larger variance
of REGICA for the beta frequency band. It peaked in
frontal channels.

DISCUSSION

In this work we compared five ocular artifact (OA) re-
moval algorithms with regard to their applicability in a
two step block design. We first trained the algorithms
on a 5 min block of recordings. We then assessed their

Figure 4: Mean and 95%-confidence interval of the group level
power spectral density ratio Pxxratio for frontal (F3/z/4), cen-
tral (C3/z/4) and parietal (P3/z/4) channels during REST condi-
tion. An ideal algorithm would yield a ratio of 1 for all frequen-
cies.

OA removal quality on a test block recorded 60 minutes
later. This approach implies a constant mixing matrix
A(a) for artifact sources. Our results, mainly Table 1 and
Figure 3, give evidence that it is a reasonable assumption.
We found that correlations for saccades and blinks could
be attenuated to chance level, even 60 minutes after train-
ing. We emphasize that the difference between train and
test set, displayed in Figure 3, captures not only the dif-
ference in time but also whether the data was used for
parameter estimation. Therefore, we can not rule out if a
significant difference was due to changing scalp projec-
tions or over-fitting on the train data.
As already pointed out in the introduction, allowing eye
movements while only removing frontal channels is in-
sufficient. Average correlations of up to 0.5 for uncor-
rected central and parietal channels (Figure 2) demon-
strate the necessity for correction.
Regarding the algorithms, MARA, which did not rely
on any label information, achieved lowest performance.
While EYE-SUB, which required most information (an-
notated saccade and blink events), could attenuate ar-
tifacts to chance level and maintain low RMSE dur-
ing REST condition. REGICA and EYE-EEG showed a
tendency to achieve better attenuation for saccades and
blinks in central and posterior areas but also to remove
more brain activity.
The visually guided paradigm allowed us to control arti-
fact occurrence. This simplified an automated annotation
of artifact types (e.g. up/down saccades). In general, all
algorithms tested here can be applied online. After arti-
fact rejection and model calibration, which takes around
5 minutes, the correction process itself involves only ma-
trix multiplications.



Figure 5: Representative examples in time domain for 2 s windows of selected trials. Displayed are 11 channels before (black) and after
correction with EYE-SUB (red).

CONCLUSION

Based on the average performance on the test set, we
found that MARA is not suitable for the investigated block
design. Our results indicate, that artifact subspace sub-
traction (EYE-SUB) could achieve the best trade-off be-
tween attenuating eye artifacts and maintaining rest brain
activity. Figure 5 depicts the difference between cor-
rected and uncorrected EEG for representative trials and
channels.
To complement our findings, we plan to analyze the effect
on a kinematics decoder. This is a necessary step, since a
significant performance drop was reported for a linear de-
coder after correction for OAs [6]. This demonstrates that
eye artifacts were correlated with the dependent variables
(x/y/z velocities). Our block design accounts for such a
scenario, which encourages further research in this direc-
tion.
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[13] Schlögl A, Keinrath C, Zimmermann D, et al.
A fully automated correction method of EOG ar-
tifacts in EEG recordings. Clinical neurophysiology.
2007;118(1):98–104.
[14] Klados MA, Papadelis C, Braun C, et al. REG-ICA:
A hybrid methodology combining Blind Source Separa-
tion and regression techniques for the rejection of ocu-
lar artifacts. Biomedical Signal Processing and Control.
2011;6(3):291–300.



HEAR to remove pops and drifts: the high-variance electrode artifact
removal (HEAR) algorithm

Reinmar J. Kobler1, Andreea I. Sburlea1, Valeria Mondini2 and Gernot R. Müller-Putz1

Abstract— A high fraction of artifact-free signals is highly
desirable in functional neuroimaging and brain-computer in-
terfacing (BCI). We present the high-variance electrode artifact
removal (HEAR) algorithm to remove transient electrode pop
and drift (PD) artifacts from electroencephalographic (EEG)
signals. Transient PD artifacts reflect impedance variations at
the electrode scalp interface that are caused by ion concentra-
tion changes. HEAR and its online version (oHEAR) are open-
source and publicly available. Both outperformed state of the
art offline and online transient, high-variance artifact correction
algorithms for simulated EEG signals. (o)HEAR attenuated PD
artifacts by approx. 25 dB, and at the same time maintained a
high SNR during PD artifact-free periods. For real-world EEG
data, (o)HEAR reduced the fraction of outlier trials by half
and maintained the waveform of a movement related cortical
potential during a center-out reaching task. In the case of
BCI training, using oHEAR can improve the reliability of the
feedback a user receives through reducing a potential negative
impact of PD artifacts.

I. INTRODUCTION

Electroencephalography (EEG) is a widespread non-
invasive functional neuroimaging technique to study elec-
trophysiological activity in the brains of humans [1]. EEG
signals are recorded by sampling the voltage between elec-
trodes and a reference electrode at the scalp. During this
process, not only brain signals, but also other physiological
and non-physiological signals are captured. Other physiolog-
ical signals such as electromyographic (EMG), electroocu-
lographic (EOG) and electrocardiographic (ECG) signals as
well as non-physiological signals such as power-line noise
or impedance variations at the electrode scalp interface are
typically undesired and classified as artifacts. The impedance
variations at the electrode scalp interface manifest as pops
and drifts (PD) in the recorded EEG signals. In EEG-based
brain-computer interfacing (BCI), transient, high-variance
PD artifacts can temporarily deteriorate the control signal
and, thereby, impede closed-loop control. It is, therefore,
desirable to remove or at least detect PD artifacts.

Key to reduce impedance variations is to properly attach
the electrodes to the scalp [2]. To date, the best long-term
stability is achieved with sintered Ag/AgCl electrodes and
a salty (Cl−) electrolyte [3]. In this case, the impedance
typically stabilizes after approximately 20 to 30 minutes.
Nonetheless, transient PD artifacts can arise due to fluctua-
tions of Cl− concentration in the electrolyte. The change

1Institute of Neural Engineering, Graz University
of Technology, Graz, Austria {reinmar.kobler,
gernot.mueller}@tugraz.at

2Department of Electrical, Electronic and Information Engineering,
University of Bologna, Bologna, Italy

in Cl− concentration can be caused by sweating, drying
electrolyte, or by liquefaction of a crust of dried electrolyte
that covers the electrode.

The variance of transient PD artifacts is typically much
higher than the variance of ongoing brain activity. Electrode
pops can be described with a step and a subsequent exponen-
tial decay. As such, they have a broad-band spectrum with
highest spectral power in the lower frequencies. Transient
electrode drifts can be described with band-limited, low-
frequency – typically ≤ 0.25Hz [4] – noise. As a conse-
quence, BCIs decoding slow processes such as movement
related cortical potentials (MRCP) [5] are most prone to PD
artifacts.

In recent years, many automatic artifact cleaning methods
have been introduced [6]. Some are particularly suitable
to remove transient, high-variance artifacts. Offline, it is
common practice to detect transient artifacts within trials by
visual inspection. Alternatively, outlier trials can be detected
automatically using thresholding or high-order statistics [7].
In case of PD artifacts, contaminated trials are rejected or
the signals of the affected electrodes interpolated [8].

Kothe and Jung introduced the artifact subspace recon-
struction (ASR) algorithm [9]. ASR is a variance-based
method and has been shown to improve the quality of
independent component analysis decompositions [10]. ASR
applies principal component analysis (PCA) in a sliding-
windowed approach. The variance of each principal com-
ponent (PC) is compared to a threshold which is derived
from calibration data. Since the orientation of the PCs can
change in each new data window, the thresholds are projected
to the new PCs. A PC is removed, if its variance is larger
than the variance during the calibration data multiplied by
a cutoff parameter k. The corrected EEG is computed by
back-projecting all clean PCs to the original electrode space.

Another suitable algorithm is robust PCA (RPCA). RPCA
was originally designed to partition surveillance videos into
transient and stationary segments [11]. A video represented
as an Nfeatures×Nsamples matrix X would be decomposed
into the sum of a sparse matrix S and a low-rank matrix L. S
and L can be estimated by solving the optimization problem

min ||L||∗ +
λ0√

Nsamples

||S||1 s.t. X = L + S (1)

with λ0 being a regularization parameter that trades-off
between the nuclear norm of L and the L1 norm of S. In
the context of BCIs, RPCA has been used to reduce session-
to-session [12] and trial-to-trial [13] variability, and recently
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also transient, high-variance artifacts [14]. RPCA is only
applicable offline, since it decomposes the entire data at once
into corrected EEG signals L and transient artifacts S.

The reported results seem to support the application of
ASR and RPCA to remove transient, high-variance artifacts.
However, literature lacks a thorough investigation of their
performance - specifically with regard to PD artifacts. In
this paper, we evaluated the performance of ASR and RPCA
on one simulated and one real-world EEG dataset. We
compared the results of ASR and RPCA with the high-
variance electrode artifact removal (HEAR) algorithm which
is introduced in the next section. Unlike ASR and RPCA,
HEAR was specifically designed to remove PD artifacts.
We hypothesized that all algorithms could improve the SNR
during PD artifacts, and that HEAR would be superior to
ASR and RPCA since it utilizes the structure of PD artifacts.

II. METHODS
A. High-variance Electrode Artifact Removal (HEAR)

The algorithm is based on two assumptions which are
typically met by PD artifacts. First, the variance of each
electrode signal can be used to detect periods of PDs.
Second, PDs typically appear at single or few electrodes.
For a sufficient spatial resolution, the neighboring electrode
signals can be temporarily used to estimate the signal of the
contaminated electrode.

The detection of PD artifacts based on the electrode vari-
ance requires a reference variance µ2 (i)

s for each electrode i.
The Nelectrodes × 1 vector µ2

s is computed as the average
variance during calibration (e.g., resting) data with no or
few PD artifacts. The HEAR algorithm uses an exponential
smoothing filter to estimate the instantaneous variances s2[n]
at time n as

s2[n] = λs2[n− 1] + (1− λ)x2[n] (2)

with the smoothing factor λ defined as

λ = (1− p)
1

test·fs (3)

so that the time window test receives p percent of the
weights at the sampling rate fs. In this paper, we used
p = 0.9.

Once the reference variances are computed, the HEAR
algorithm can be applied to correct new samples x[n].
The correction process is implemented in three steps. First,
equation (2) is applied to update the estimate of the electrode
variances s2[n]. Second, the probability that s(i)[n] was
caused by an artifact part(s(i)[n]) = p(art ≤ s(i)[n]) is
derived from a normal distribution

part(s
(i)[n]) ∼ N (φ · µ(i)

s , ξ2 · µ2 (i)
s ) (4)

with φ and ξ being hyper-parameters to scale the mean and
variance. The probabilities for all electrodes are combined to
a single diagonal matrix P [n]

P [n] = diag(part(s
(1)[n]), ..., part(s

(Nchannels)[n])) (5)

Third, the corrected signal xc[n] is computed via linear
interpolation. P [n] is applied to weigh the amount of linear
interpolation so that

xc[n] = P [n]Dx[n] + (I − P [n])x[n] (6)

with D containing the relative distances. The relative dis-
tances are the inverse Euclidean norm between the 3D
position of the target electrode and its k = 4 nearest
neighbors. They are normalized so that the rows of D sum
to 1.

In case of an offline analysis, the filter in (2) can be
applied bidirectionally during the calibration and correction
procedures. In this paper, we refer to the bidirectionally
filtered version as HEAR and the causally filtered ver-
sion as online HEAR (oHEAR). A reference implementa-
tion of (o)HEAR is publicly available at https://bci.
tugraz.at/research/software/#c218405

HEAR and oHEAR depend on three hyper-parameters
Θ = {ttest, φ, ξ}. All parameters are intuitive to interpret.
The variance estimation duration test trades-off between
smoothness of the estimate and responsiveness to fast events
such as pops. The scaling factors of the artifact distribution
{φ, ξ} define how often the reference variance has to be
exceeded so that the artifact probability is 50% (φ), and how
quickly the distribution increases (ξ). Hence, φ and ξ control
the sensitivity of the algorithm.

In this paper, we varied the sensitivity of all correction
algorithms by evaluating different hyper-parameter configu-
rations. ASR was evaluated for the cut-off parameter k =
{20, 40, 80} according to the recommendations in [15],
and the default window size (0.5 s). Based on [13, 14],
RPCA was evaluated for the regularization parameter λ0 =
{1.0, 1.5, 2.0}. We controlled the sensitivity of (o)HEAR by
setting φ = {2, 3, 4}. Using real data of pilot studies, we
set test = 0.25 , ξ = 1.

We validated the performance of (o)HEAR, RPCA and
ASR by applying them to one dataset of simulated EEG and
one real-world EEG dataset.

B. Simulated EEG dataset

We generated a simulated dataset specifically for this study
with the simulated event-related EEG activity (SEREEGA)
toolbox [16] and Matlab 2015b (Mathworks Inc., USA).
In detail, we simulated EEG signals at 64 electrodes as
linear mixtures of sources on the cortical surface of the
ICBM-NY head model template [17] and the EEG electrodes
themselves. The 64 electrodes were placed according to the
extended 10/20 system. The simulated sources comprised
oscillatory brain activity, an MRCP, and noise sources at the
electrodes. The noise sources were modeled as stationary
white measurement noise and transient PD artifacts.

We simulated 15 participants. For each participant, we
used the same head model template, while the source loca-
tions and signals were independent and identically distributed
(iid). If not explicitly stated, a uniform distribution within a
given range was used. For each participant, we simulated two
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experimental tasks. During the first task (rest) the oscillatory
brain and stationary electrode noise sources were active. We
simulated 12 trials, each lasting 15 s. During the second task
(reach) all sources were active. We simulated 60 trials, each
lasting 15 s.

We modeled the oscillatory brain activity with 40 pink
and 40 brown noise sources with amplitudes of 37.5µV
and 75µV respectively. The locations of the 80 sources
were picked randomly from 74382 available locations on the
template head model.

The location of the MRCP source was picked randomly
in a 10 mm radius around the coordinate [−25, 0, 80] mm,
which corresponded to the medial end of the pre-central
gyrus of the left hemisphere. The waveform of the MRCP
was modeled with radial basis function kernels so that the
waveform started with a slow negative deflection 7 s after the
start of each trial, intensified abruptly after 700 ms, peaked
with an amplitude of -120 µV after additional 300 ms and
subsequently faded within 200 ms. To introduce variability
across trials, we randomly varied the location (≤10 mm ra-
dius), latency (≤ ±200 ms) and peak amplitude (≤ ±20µV ).

The stationary electrode noise was modeled as white noise
at each electrode with a participant and electrode specific
amplitude within 0.5 to 1.5 µV .

We modeled pops as single electrode sources. The pop
waveform was modeled as a step with an amplitude of 100
± 10 µV and a subsequent exponential decay with a time-
constant of 0.25 ± 0.08 s−1. To allow multiple pops per trial,
we used 10 electrode pop sources that were iid. For each trial
every pop source could get active with a 2 % probability at
any electrode and time point within the interval [5, 10] s.

Electrode drifts were modeled as transient pink noise that
was limited to the [0.1, 0.3] Hz band. The band-limted pink
noise was weighted by a Tukey window so that the transient
drifts were limited to the interval [3, 12] s. Similar to the
pops, we used 10 iid drift sources. For each trial every drift
source would get active with a 2 % probability at one of the
64 electrodes.

We added the contribution of each source to the electrodes
and stored the result in an EEGLAB dataset [18]. For the
reach task, we also saved the clean EEG signals Xclean. I.e.,
the EEG signals without contributions from the noise sources
(electrode noise, pops and drifts). The simulated dataset and
the code to generate it are publicly available [19].

We evaluated the algorithms during the interval [5, 10] s
by computing the signal to noise ratio (SNR) defined as

SNR(M) =
||Xclean ◦M ||2

||Xclean ◦M −Xcorrected ◦M ||2
(7)

with Xclean and Xcorrected being
Nelectrodes × Nsamples × Ntrials arrays of clean
and corrected EEG signals. We computed the SNR for PD
artifact contaminated or non-artifact contaminated data by
applying a Nelectrodes × Nsamples × Ntrials mask M .
In case of PD artifact contaminated data, M indicated
whether an array element was contaminated by a PD artifact.

Applying M on X extracted a vector of all PD artifact
contaminated elements. Complementary to the SNR, we
estimated the MRCP by averaging the clean and corrected
EEG signals over trials.

C. Real-world EEG dataset

In addition to the simulation, we evaluated the algorithms
on one real-world dataset. The dataset consists of EEG
recordings of 15 participants, while they performed visuo-
motor and oculomotor tasks. The experimental conditions,
tasks and equipment is described in detail in [14]. Here, we
analyzed the EEG signals during a center-out reaching task.
The participants were asked to make a center-out movement
with a cursor after a target moved to a specific direction.
They operated the cursor by moving their right hand on a
2D surface. In each trial, the target started to move at 2.5 s
and stopped at one of four possible positions at 3.0 s. The
grand-average cursor movement onset was at 3.2 s.

As in [14], we pre-processed the EEG by resampling
the signals of 64 EEG electrodes at 200 Hz, applying a
high-pass filter (0.25 Hz cut-off frequency, Butterworth filter,
eighth order, zero-phase), a band-stop filter (49 and 51 Hz
cut-off frequencies, Butterworth filter, fourth order, zero-
phase), spherically interpolating bad channels, correcting eye
artifacts and re-referencing to the common average reference
(CAR).

The parameters of HEAR and ASR were calibrated to
resting data, that were recorded at the beginning of the
experiment according to the paradigm outlined in [20]. To
ensure clean calibration data, we applied automatic trial
rejection criteria. In detail, resting trials were rejected, if the
EEG signal of any electrode exceeded a threshold (±200µV )
or had a abnormal probability/variance/kurtosis (≥ (6/4/6)
standard-deviations beyond the mean).

We used two criteria to evaluate the correction al-
gorithms. First, as for the simulated data, we com-
puted the MRCP through averaging the trials during the
center-out reaching task. Second, we applied the above
defined automatic outlier trial detection criteria (thresh-
old/probability/variance/kurtosis) to the uncorrected and cor-
rected EEG signals. Assuming that the correction algorithms
improve the SNR, fewer trials should be marked as outliers
for the corrected EEG signals.

III. RESULTS

We present grand-average results which are summarized
by the mean across participants. Variability over participants
is summarized by the standard-error of the mean, if not
specified otherwise.

In the case of the simulated dataset, we had access to all
sources. This allowed us to compute the SNR according to
(7). Figure 1 depicts the SNR during PD artifact and PD
artifact-free periods before and after the correction algo-
rithms were applied. The SNR of the uncorrected signals
was -19±0.2 dB and 26.3±0.1 dB during PD artifact and
PD artifact-free periods, respectively. Both SNR metrics are
informative. If an algorithm overcorrects the signals, the SNR
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during artifact-free periods is low. If an algorithm under-
corrects the PD artifacts, the SNR during artifact periods
is low. The ideal correction algorithm would maximize the
SNR during both periods.

Regarding PD artifact periods, all algorithms increased
the SNR compared to the uncorrected EEG. The increase
depended strongly on the sensitivity parameters of the al-
gorithms. A higher sensitivity lead to higher SNR during
artifact periods at the cost of lower SNR during non-
artifact periods. For example, ASR (blue color) corrected
the PD artifacts almost as good as RPCA (yellow color), but
removed more activity during PD artifact-free periods for
comparable sensitivities. The best trade-off between over-
and under-correction was achieved by (o)HEAR with φ = 3,
RPCA with λ0 = 1.5 and ASR with k = 40.

Fig. 1. SNR during PD artifact and PD artifact-free periods for the
simulated EEG dataset. Each marker represents the mean across the 15
participants, while the shaded area summarizes the scatter over participants
(matrix square root of the covariance matrix). The color indicates the
algorithm and the marker the value of the sensitivity parameter (k for ASR,
λ0 for RPCA, and φ for (o)HEAR). For example, a blue circle identifies
the result for ASR with k = 20.

We were not only interested in the impact of the correction
algorithms on continuous EEG signals, but also on the
simulated MRCP. The grand-average MRCP is displayed
in Figure 2. The topographic plots at the peak negativity
demonstrate that all algorithms preserved the MRCP wave-
form. Compared to the MRCP of the clean data (blue
contour), RPCA attenuated the peak most (violet contour),
with a reduction in peak amplitude of approximately 1µV .
The other algorithms attenuated the peak only negligibly
(≤ 0.2µV ).

Figure 3 displays the grand-average MRCP for the real
EEG dataset. All algorithms preserved a clear MRCP wave-
form. We only observed negligible differences (≤ 0.2µV )
compared to the uncorrected EEG. The algorithm specific
averages were computed after outlier trials were auto-
matically detected and discarded according to the thresh-
old/probability/variance/kurtosis criteria. The fraction of tri-
als that were marked as outliers is displayed in Figure 4. In
the case of uncorrected EEG, a median of 18.7 % of the trials
were marked as outliers. The result did not significantly differ
for ASR, while for HEAR, oHEAR and RPCA significantly
fewer trials were marked as outliers. The fraction of outlier

Fig. 2. Grand-average MRCP at electrode C1 for the simulated EEG
dataset. The topographic distribution of the potential at the peak negativity
is summarized in the top row. The outline color indicates the algorithm.
A 100 ms triangular window (zero-phase) was used to smooth the signals
before they were plotted. The inset shows a closer view of the differences
at peak negativity.

trials did not significantly differ between HEAR (10.1 %) and
oHEAR (9.9 %). Compared to HEAR and oHEAR, RPCA
could sightly, yet significantly reduce the fraction to 9.0 %.

IV. DISCUSSION

PD artifacts can significantly reduce the number of avail-
able trials in an offline analysis, and deteriorate closed-loop
BCI control. We proposed HEAR - a simple, yet efficient
algorithm to correct transient PD artifacts. The presented
simulation results show that HEAR and oHEAR improved
the SNR during PD artifacts by approximately 25 dB, and at
the same time maintained a high SNR during PD artifact-free
periods. State of the art offline (RPCA) and online (ASR)
correction algorithms were clearly inferior to (o)HEAR.
Compared to uncorrected data, the application of (o)HEAR
to real-world EEG signals resulted in a significantly reduced
fraction of outlier trials, while slow potentials such as
MRCPs could be preserved.

Regarding RPCA, the simulated and real EEG dataset
results were not entirely consistent. While RPCA attenuated
the simulated MRCP peak considerably stronger than the
other algorithms, the difference to the other algorithms
was only negligible for the real EEG dataset. The SNR
performance of RPCA (Figure 1) was clearly lower compared
to HEAR for the simulated data. However, RPCA marginally
(1.1 %) but significantly reduced the fraction of outlier trials
(Figure 4) compared to HEAR for the real EEG dataset.
Taken together, it is difficult to generalize the influence of
RPCA on the desired brain activity across datasets.

In case of ASR, the SNR (Figure 1) could be only im-
proved at the cost of lower SNR druing PD artifact-free
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Fig. 3. Grand-average MRCP at electrode C1 for the real EEG dataset.
The topographic plots in the top summarize the distribution of the potential
at the peak negativity. The outline color indicates the algorithm. We used
a 100 ms triangular window (zero-phase) to smooth the signals before they
were plotted. The inset shows a closer view of the differences at peak
negativity.

Fig. 4. Boxplots summarizing the fraction of trials marked as outliers across
the participants of the real EEG dataset. Trials were automatically marked
as outliers according to threshold/probability/variance/kurtosis criteria. Two-
sided, paired Wilcoxon sign-rank tests were used to detect significant
differences between the algorithms. We controlled the false discovery rate
at significance level α = 0.05 for 10 tests (pcrit = 0.0203) [21].

periods. Also, the fraction of outlier trials (Figure 4) could
not be significantly reduced by ASR. Since ASR is based
on PCA on short time-windows (0.5 s), and PCA is sensitive
to drifts, we think that a longer time-window could have
improved the correction quality. However, we decided to
use the default window size because ASR introduces a
processing delay of 0.5 times the window size to achieve
the best online correction quality. For the considered window
size, ASR introduces a delay of 250 ms. In case of neuro-
modulation studies, adding more delay in the detection of
transient events such as the onset of movement can be critical
[22]. (o)HEAR uses an exponential smoothing filter which

belongs to the class of infinite impulse response filters. As
such, the processing delay is frequency specific. For oHEAR
with test = 0.25 s it is ≤ 105 ms and declines with rising
frequencies.

The correction quality of (o)HEAR depends on the spatial
resolution of the electrodes. The higher the spatial resolution
(i.e., number of electrodes), the better is the interpolation
quality. The presented results demonstrate that 64 equally
spaced electrodes were sufficient to outperformed state of
the art methods. The interpolation quality could be further
improved by using spherical splines instead of Euclidean
distances [8, 23].

Online, not only the correction quality, but also the com-
putational complexity matters. For a given electrode configu-
ration, the interpolation matrix D can be pre-computed for k
nearest neighbors (kNN). Then, the matrix multiplications in
(6) simplify to k element-wise multiplications, which can be
computed in O(k · Nchannels). This is considerably faster
compared to ASR whose run-time is mainly constrained
by PCA which can be computed in O(max{Nsamples ·
N2

channels, N
3
channels}).

We designed (o)HEAR to remove PD artifacts, which are
typically active at single electrodes. Other types of transient,
high-variance artifacts such as EMG and sweat artifacts
typically do not meet this assumption. In that case, the cor-
rection quality of (o)HEAR is certainly going to deteriorate.
Still, one can compute the probability that a transient, high-
variance artifact cannot be corrected by (o)HEAR. If D is
applied on P [n], the result is a vector of probabilities that
indicate how likely each kNN estimate is contaminated by
an artifact. If a threshold is applied, EMG and sweat artifacts
can be detected.
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CODE & DATA AVAILABILITY

We encourage a widespread use of (o)HEAR and,
therefore, provide an open-source reference implementation
of (o)HEAR (https://bci.tugraz.at/research/
software/#c218405). To support future improvements
and ease comparability of algorithms, we also provide the
dataset of simulated EEG signals and the code to generate it
[19].
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ABSTRACT: Brain signals carry rich information about
voluntary upper-limb movements. Accessing this infor-
mation to control an end-effector (upper-limb, robotic
arm, cursor) has been a central topic in brain-computer
interface (BCI) research. To date, non-invasive BCIs
based on kinematics decoding have focused on extract-
ing partial information (i.e, single or highly correlated
kinematic parameters). In this work, we show that low-
frequency magnetoencephalographic (MEG) signals si-
multaneously carry information about multiple kinematic
parameters. Using linear models, we decoded cursor ve-
locity and speed during executed and observed tracking
movements with moderate (0.2 to 0.4) correlation coeffi-
cients (CCs). Comparing the CCs between executed and
observed tracking movements, revealed that the MEG
signals carried more information (0.1 higher CCs) about
velocity and speed during the executed tracking move-
ments. The higher correlations were mainly explained by
increased predictive activity in primary sensorimotor ar-
eas. We could, therefore, show that non-invasive BCIs
have the potential to extract multiple kinematic signals
from brain activity in sensorimotor areas.

INTRODUCTION

Decoding voluntary movement from electrophysiological
brain signals has been a central topic in brain-computer
interface (BCI) research. In recent years, invasive ap-
proaches have demonstrated that individuals who lost
control of their upper-limb could successfully control a
robotic arm [1] or even regain control of their upper-limb
[2]. These invasive BCI systems typically decode vari-
ous movement parameters from spiking rates of neurons
in primary sensorimotor areas [3, 4]. It has long been
assumed that non-invasive functional neuroimaging tech-
niques such as electroencephalography (EEG) and mag-
netoencephalography (MEG) lack the spatial resolution
to decode the kinematics of voluntary movements. How-
ever, it has been shown otherwise by various studies in the
past decade [5–7]. However, the predicted end-effector
position of non-invasive decoders typically has a lower
signal to noise ratio (SNR) compared to the invasive de-
coders. We think that the combined decoding of multiple
kinematic signals could improve the SNR and, thereby,

elevate the performance of non-invasive decoders.
A myriad of non-invasive studies in this field of BCI re-
search has investigated either directional (e.g, velocity,
position) or non-directional (e.g, speed) kinematic sig-
nals in isolation [6, 8–10]. Bradberry et al. were the
first to show that low-frequency EEG signals carried in-
formation about positions and velocities during reaching
movements [11]. Complementary, Waldert et al. showed
that reach direction can be classified from low-frequency
EEG and MEG [12]. Jerbi et al. showed that low-
frequency MEG signals are coupled to hand speed dur-
ing a continuous visuomotor (VM) task [8]. Recent in-
vasive studies using Electrocorticographic (ECoG) sig-
nals demonstrated that velocity and speed can be decoded
simultaneously from low-frequency brain signals in pri-
mary sensorimotor areas [13, 14]. Taken together, we
surmise that velocity and speed can be jointly decoded
from non-invasive M/EEG signals.
We believe that a pursuit tracking task (PTT) is ideally
suited to investigate this question. A PTT is character-
ized by two stimuli - a traget stimulus moving along ran-
dom trajectories and an end-effector (e.g., cursor). The
end-effector is used to track the target stimulus. The
PTT has two favorable properties. First, the kinematics
vary continuously in a frequency range that can be con-
trolled by the experimenter. Second, the target trajecto-
ries can be designed so that specific kinematic signals are
jointly uncorrelated. Using a PTT, we showed that the
low-frequency EEG originating in premotor and primary
sensorimotor areas was preferentially tuned to cursor ve-
locity rather than cursor position [15].
In this study, we investigated the joint decoding of cur-
sor velocity and speed from low-frequency MEG activity
during a two-dimensional PTT. Our paradigm separated
two conditions. In the first condition (execution), partic-
ipants tracked the target with their gaze and a cursor. In
the second condition (observation), participants tracked
the target only with their gaze. This allowed us to ad-
dress two questions. First, can velocity and speed be de-
coded simultaneously from non-invasively acquired brain
activity during voluntary upper-limb movements? Sec-
ond, does the decoding performance change if the upper-
limb is not involved in the tracking task?
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MATERIALS AND METHODS
23 healthy people participated in this study. 5 were fe-
male and 18 male. They were 28.5 ± 2.4 (standard-error
of the mean; sem) years old, had normal or corrected to
normal vision, and self-reported to be right-handed. The
experimental procedure conformed to the declaration of
Helsinki and was approved by the ethics committee of the
Osaka University hospital. We could not complete the ex-
periment for three participants and identified that one par-
ticipant was positioned incorrectly inside the MEG scan-
ner during the offline analysis. These four participants
were excluded from the final offline analysis.
Figure 1a depicts the experimental setup. The partici-
pants were lying in a supine position, with the head rest-
ing on a cushion inside an MEG scanner. A projection
screen fixed in front of their face presented visual stimuli.
We used two visual stimuli, a target and a cursor. The cur-
sor could be controlled by the participants through mov-
ing their right hand’s index finger on a 2D surface. The
tip of the index finger was tracked with a custom optical
motion capture system.
After each participant found a comfortable position for
his/her right arm and hand, the position of the marker was
defined as the resting position. The resting position was
mapped to the center of the screen. Finger movements,
within a 1.5 centimeter radius around the resting position
were mapped to cursor movements within a circle con-
fined by the bounds of a virtual grid. Rightward/forward
finger movements were mapped to rightward/upward cur-
sor movements.
As in our previous study [15], the experimental procedure
consisted of 4 blocks, lasting for about 3 hours in total.
In the first block (10 minutes), the participants could fa-
miliarize themselves with the paradigm. In the second
block, we recorded eye artifacts and resting activity as
described in [16] for about 12 minutes (2 runs; each 6
minutes). During the third block, the main experimental
task was performed. The fourth block at the end of the
experiment was identical to the second one.
Figure 1b outlines the paradigm of the main experimental
task. We investigated a PTT in two conditions. A yellow
target stimulus indicated the beginning of a new trial. Af-
ter 2 s of preparation, the target changed its color to green
(execution condition) or blue (observation condition).
In the execution condition, the participants were asked
to track the target with their gaze and the cursor. In the
first experimental block, each participant trained to mini-
mize the distance to the target and to make smooth cursor
movements.
In the observation condition, the participants would only
track the target with their gaze and keep their finger in the
resting position. In order to achieve similar visual input
and tracking dynamics in both conditions, we replayed
matching cursor trajectories.
The target moved along pseudo-random trajectories,
which were generated from pink noise in the [0.3, 0.6]
Hz band. The horizontal and vertical components of the
target trajectories were independent and identically dis-

preparation cue trackingbreak
2 s 0.5 s 16 s3-4 s

participant controls cursorparticipant controls cursor

computer replays  cursor trajectory

execution

observation

target

cursor

legend

a c

b

Figure 1: Overview of the experiment. a, Experimental setup.
The participants were lying in a supine position inside an MEG
scanner. They moved their right index finger on a 2D surface
to control a cursor on the screen. b, Experimental paradigm.
Each trial started with a 2 s preparation period. The participants
were asked to keep the cursor in the center (i.e, the right index
finger in the resting position). After a condition cue, the tar-
get stimulus moved along a pseudo-random trajectory for 16 s.
In the execution condition (green), the participants tracked the
target with both their gaze and the cursor. In the observation
condition, they tracked the target only with their gaze. c, Topo-
graphic distribution of the 129 MEG sensors used in this study.

tributed. This required the participant to control the cur-
sor in 2 dimensions at the same time. The detailed target
trajectory generation and cursor trajectory replay proce-
dures are presented in [15].
The paradigm consisted of 160 trials (80 per condition;
pseudo-randomly distributed). They were presented in
10 runs (6 minutes each). In between runs, participants
could rest for about 2 to 3 minutes. During the experi-
ment, we tested if the finger was in the resting position
during the preparation (both conditions) and tracking pe-
riods (observation condition). If the position exceeded a
threshold, a trial was aborted. On average, 5.2 trials were
aborted, resulting in 154.8 complete trials.
Neuromagnetic activity was recorded with a 160 channel
whole-head MEG system (MEGvision NEO, Yokogawa
Electrip Corp., Kanazawa, Japan) housed in a magneti-
cally shielded room. For this study, we used the signals of
129 sensors (Figure 1c). Electrooculographic (EOG) sig-
nals were recorded with 4 electrodes placed at the outer
canthi (horizontal EOG) and above/below the left eye
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(vertical EOG). The EOG signals were recorded with a
128-channel EEG system (Neurofax EEG 1200, Nihon
Koden Corp., Tokyo, Japan). MEG and EOG signals
were recorded synchronously at rate a of 1 kHz.
We asked participants to keep their head and shoulder po-
sition fixed during the experiment (blocks 2 to 4). We
additionally monitored the head position inside the MEG
system with five marker coils, attached to the face. Their
position was measured at the beginning of each run.
The custom motion capture and visual stimuli signals
were recorded at 60 Hz using the labstreaminglayer
(LSL) protocol1. We implemented the paradigm in
Python 2.7 based on the simulation and neuroscience ap-
plication (SNAP) platform2. Using pilot experiments, we
determined the delay between the finger and the cursor
movement on the screen. The delays introduced by the
hard- and software added up to 190 ms.
We analyzed the recorded data offline with a custom-
made pipeline that we implemented with Matlab (Mat-
lab 2015b, Mathworks Inc., USA) and the open source
toolboxes EEGLAB [17] (version 14.1.1) and Brainstorm
[18] (version 05-Jun-2018). We first synchronized the
stimuli and MEG signals by aligning impulses captured
by a photodiode. After synchronization, all signals were
resampled to 200 Hz. We estimated the cursor veloci-
ties by applying a Savitzky-Golay finite impulse response
(FIR) differentiation filter (polynomial order 3, 21 filter
taps, zero-phase) to the cursor positions.
To compensate small head movements across runs, we
spherically interpolated the MEG sensors of all runs (10
tracking, 4 eye) to their average position in relation to
the participant’s head. If the maximal distance of any
channel to the average position was larger than 25 mm,
the run was discarded. We discarded 2 runs in total.
The grand-average maximal channel distance across ac-
cepted runs was 5±0.1 mm (sem). After merging the sig-
nals of the tracking runs, we applied high-pass (0.25 Hz
cut-off frequency, Butterworth filter, eight order, zero-
phase) and band-stop (59 and 61 Hz cut-off frequencies,
Butterworth filter, fourth order, zero-phase) filters. To
compensate technical and spatially stationary artifacts in-
troduced by equipment, we applied independent compo-
nent analysis (ICA). In detail, we applied the extended
infomax algorithm to decompose the MEG signals (high-
pass filter with 0.4 Hz cut-off frequency) into indepen-
dent components (ICs) that explained 99.9 % of the vari-
ance. We visually inspected and marked 8.6±0.2(sem)
of 63.5±0.1(sem) ICs for rejection. They were then re-
moved from the 0.25 Hz high-pass filtered signals. We
attenuated eye movement and blink artifacts by apply-
ing the artifact subspace subtraction algorithm [15, 16].
To extract the low-frequency MEG signals, we applied a
low-pass filter to the broadband MEG signals (2 Hz cut-
off frequency, Butterworth filter, sixth order, zero-phase)
and resampled all signals at 10 Hz.
We then epoched the continuous data into 14 s trials,

1https://github.com/sccn/labstreaminglayer
2https://github.com/sccn/SNAP

starting 1.5 s after the condition cue. Trials were marked
for rejection, if (1) the broadband MEG signal of any
sensor exceeded a threshold (±5 fT), (2) had a abnor-
mal probability, variance or kurtosis (≥ (6/4/6) standard-
deviations (stds) beyond the mean), (3) the correlation be-
tween the EOG and the target position signals were im-
probable (≥ 4 stds beyond the mean), or (4) a tracking
error happened (i.e., jerky or no cursor movement). All
criteria combined resulted in rejecting 26.6±0.4(sem) of
154.8 trials.
Cursor velocity and speed were estimated with a sliding-
window, linear regression approach [11, 15, 19]. At sin-
gle lags, a partial least-squares (PLS) estimator was used
to decode a single kinematic signal (horizontal velocity,
vertical velocity or speed) from the pre-processed MEG
signals. Similar to [15], the PLS estimator considered 10
latent components. The model was evaluated using a 10
times 5 fold cross-validation (CV) scheme with the evalu-
ation metric being Pearson correlation coefficients (CCs)
between the recorded kinematic signals and their neural
estimates. We estimated chance level performance by
shuffling the kinematic signals across trials of the same
condition. We then applied 5 fold CV to the shuffled data
and repeated the shuffling and CV evaluation 1000 times.
The weights of the linear regression model can be readily
transformed to patterns [20]. We computed scaled pat-
terns according to [15].
To ease neurophysiological interpretation, we projected
the scaled patterns to the cortical surface of the ICBM152
template boundary element (BEM) head model [21]. We
co-registered the template with the head of each partici-
pant (and the MEG sensors) by manually fitting the tem-
plate head model to digitized head points (50 to 60 points
per participant) in Brainstorm toolbox. OpenMEEG [22]
was applied to compute the forward model for 5011 vox-
els on the cortical surface. sLORETA [23] was used to
estimate the inverse solution for unconstrained sources
at the 5011 voxels. The noise covariance matrix was
estimated using 5 minutes of resting data (similar pre-
processing as the tracking data), recorded during exper-
imental blocks 2 and 4, and applying shrinkage regular-
ization (10% of its largest eigenvalue).

RESULTS
Grand-average results presented here are summarized by
the mean and its standard-error across the 19 participants.
We assessed the participants tracking behavior by com-
puting CCs between the target and cursor position sig-
nals in the execution condition. The CCs peaked at
0.22±0.01 s for the horizontal component and 0.23±0.01
for the vertical component. That is, the target signal lead
the cursor by approximately 225 ms on average. The CCs
at the peaks were 0.90±0.01 (horz) and 0.92±0.01 (vert).
We also assessed the visual tracking behavior in both con-
ditions by computing CCs between the horizontal/vertical
target position and horizontal/vertical EOG signals. In
the execution condition, the CCs were 0.94±0.01 (horz)
and 0.79±0.06 (vert). In the observation condition, they
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were 0.92±0.01 (horz) 0.70±0.06 (vert).
The auto-/cross-correlation curves in Figures 2a-c
demonstrate that during the PTT the three signals of
interest (horizontal/vertical cursor velocity and cursor
speed) were negligibly correlated. The grand-average
cross-correlations were below or equal to 0.1 in both
conditions. Similar auto-/cross-correlation curves in
both conditions show that the cursor trajectories in
observation condition (dashed lines) were similar to the
executed ones (solid lines).
Figures 2d-f show the grand-average CV test-set CCs be-
tween the decoded and recorded kinematic signals for
single-lag, sliding-window, linear regression models. We
decoded the cursor velocities and speed from the MEG
signals of all 129 sensors at lags ranging from [-0.5, 0.5] s
in steps of 0.1 s. The MEG sensor signals lead the cursor
signals for negative lags.
We used the CCs of the shuffled data to test if the ob-
served results were due to chance. We controlled the
false-discovery rate (FDR) at a significance level α =
0.05 for ncomparisons = nmetrics · nlags = 3 · 11 = 33 com-
parisons per subject [24]. The tables at the bottom of
Figures 2d-f list the results.
The horizontal cursor velocity decoding results are sum-
marized in Figure 2d. The decoding model performed
above chance level for all lags and participants in the
execution condition and almost all participants in the
observation condition. The execution condition CCs
were larger than the observation condition ones for all
lags. The paired difference between conditions (exe-obs)
peaked at lag -0.3 s.
The vertical cursor velocity decoding results are summa-
rized in Figure 2e. The CCs were above chance level
for all lags and participants. Compared to the horizontal
velocity results, we observed higher CCs in the execu-
tion condition and similar CCs in the observation condi-
tion. As a consequence, the paired difference was higher
(peaked at lag -0.1 s).
The cursor speed decoding results are displayed in Fig-
ure 2f. All CCs were above chance level in the execution
condition. In the observation condition, the results varied
across lags and ranged from 14 to 18 participants having
CCs above chance level. Compared to the velocities, the
CCs were lower by approx. 0.1 in both conditions. How-
ever, the effect size of condition was comparable to the
velocities (paired difference peak of 0.15 at lag -0.3 s).
To identify the spatiotemporal encoding of information
about cursor velocities and speed, we transformed the
model weights to patterns at the cortical surface. Fig-
ures 2g-i show the grand-average patterns at selected
lags for execution condition (top), observation condition
(middle) and the paired-difference (bottom). The paired-
differences for all three kinematic signals show that
the predictive pattern activity in contra-lateral primary-
sensorimotor (SM1) areas was larger in execution condi-
tion at negative lags. Thus, contra-lateral SM1 activity
carried information about the upcoming cursor velocities
and speed in the execution condition. The difference was

maximal at lags -0.3 to -0.2 s and varied across the signals
of interest (speed > vertical velocity > horizontal veloc-
ity).
We also observed that superior parietal and parieto-
occipital areas carried predictive information about the
three kinematic signals in both conditions (Figures 2g,h
top and middle row). The paired-differences indicate that
the activity in these areas was similarly predictive for
horizontal cursor velocity in both conditions (Figure 2g),
more predictive for vertical cursor velocity in execution
condition (Figure 2h), and less predictive for cursor speed
in execution condition (Figure 2i).

DISCUSSION
We have demonstrated simultaneous decoding of cur-
sor velocity and speed information by means of low-
frequency MEG signals during a PTT. The PTT allowed
us to study continuous, uncorrelated cursor velocity and
speed signals (Figures 2a-c). During executed index fin-
ger tracking movements, contra-lateral SM1 activity was
simultaneously predictive for cursor velocity and speed,
while superior parietal and parieto-occipital activity was
also predictive in observed tracking movements.
Linear, single-lag decoding model performance in terms
of CCs was above chance level for all participants dur-
ing execution condition, and almost all participants dur-
ing observation condition (Figures 2d-f). The range of
CCs is in agreement with the results of previous linear
M/EEG kinematics decoding studies [11, 15, 25].
Comparing the two conditions, we found that the MEG
signals contained more information about the cursor ve-
locities and speed in the execution condition (Figures 2d-
f). The average effect of condition was stronger for the
vertical cursor velocity than for the horizontal one. This
is in accordance with the findings of our previous EEG
study [15].
The differences in the decoder patterns (Figures 2g-i; bot-
tom row) indicate that the activity in contra-lateral SM1
carried more information about the uncorrelated velocity
and speed signals in the execution condition. The dif-
ferences peaked at lags -0.3 s (horizontal cursor velocity;
Figure 2,g), -0.2 s (vertical cursor velocity; Figure 2,h)
and -0.3 s (cursor speed; Figure 2,i) respectively. Since
the difference in decoder CCs in Figures 2d-f were mod-
ulated by these peaks, the activity in contra-lateral SM1
must have considerably contributed to the larger decoder
CCs in the execution condition.
Considered that the cursor movement was the 190 ms
delayed index finger movement, the observed peaks are
plausible in terms of neurophysiology [26]. Simultaneous
decoding of velocity and speed from contra-lateral SM1
has also been demonstrated by recent invasive studies
based on spiking activity [27] and low-frequency ECoG
signals [14]. Inoue et al. observed that the firing rates of
a large fraction of neurons in SM1 were simultaneously
tuned to speed and velocity [27]. Hammer et al. reported
a stronger encoding of end-effector speed compared to
velocity in low-frequency ECoG signals [14]. This in
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Figure 2: Grand-average results of the experiment. Shaded areas indicate the sem across the 19 participants. a, Auto-/cross-correlation
curves for the three metrics of interest relative to the horizontal cursor velocity. b,c, As in a for the vertical cursor velocity (b) and
cursor speed (c). d, CV Test-set correlations between the recorded horizontal cursor velocity and its decoded estimate for execution
condition (solid line), observation condition (dashed line) and their paired difference (dash-dotted line). MEG sensor signals lead the
horizontal cursor velocity signal for negative lags. The table below lists the number of participants whose single-lag decoder CCs were
above chance level. e,f, As in d for the vertical cursor velocity (e) and cursor speed (f). g, Horizontal cursor velocity decoder patterns
for selected lags. We projected the patterns to voxels of a template BEM head model and averaged their norms across participants. h,i,
As in g for the vertical cursor velocity (h) and cursor speed (i).

agreement with our results. I.e, in execution condition,
the speed decoder patterns in SM1 were larger than the
velocity decoder patterns.
The decoder patterns (Figures 2g-i; top and middle rows)
showed also common activity in execution and observa-
tion condition. In both conditions, superior parietal and
parieto-occipital areas were predictive. Their activation
in both conditions is in agreement with findings of our
previous study [15] and also fMRI studies on executed
and observed reaching movements [28, 29].

CONCLUSION AND FUTURE WORK
In this work we have shown that non-invasive MEG sig-
nals simultaneously carry information about velocity and
speed of executed and observed tracking movements.
Linear, single-lag decoders extracted more information
originating in contra-lateral SM1 during executed track-
ing movements. Whereas superior parietal and parito-
occipital areas were informative in executed and observed
tracking movements.

Despite the encouraging results presented here, further
research is imperative. It needs to be shown that a com-
bined decoding of velocity and speed indeed improves the
SNR of the predicted end-points offline and subsequently
online. Moreover, studies with humans who lost control
of their upper-limb will have to demonstrate whether non-
invasive, decoding of imagined body kinematics has the
potential to improve their quality of life.
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Abstract
Objective. Continuous decoding of voluntary movement is desirable for closed-loop, natural
control of neuroprostheses. Recent studies showed the possibility to reconstruct the hand
trajectories from low-frequency (LF) electroencephalographic (EEG) signals. So far this has only
been performed offline. Here, we attempt for the first time continuous online control of a robotic
arm with LF-EEG-based decoded movements. Approach. The study involved ten healthy
participants, asked to track a moving target by controlling a robotic arm. At the beginning of the
experiment, the robot was fully controlled by the participant’s hand trajectories. After calibrating
the decoding model, that control was gradually replaced by LF-EEG-based decoded trajectories,
first with 33%, 66% and finally 100% EEG control. Likewise with other offline studies, we
regressed the movement parameters (two-dimensional positions, velocities, and accelerations) from
the EEG with partial least squares (PLS) regression. To integrate the information from the different
movement parameters, we introduced a combined PLS and Kalman filtering approach (named
PLSKF).Main results.We obtained moderate yet overall significant (α = 0.05) online correlations
between hand kinematics and PLSKF-decoded trajectories of 0.32 on average. With respect to PLS
regression alone, the PLSKF had a stable correlation increase of∆r = 0.049 on average,
demonstrating the successful integration of different models. Parieto-occipital activations were
highlighted for the velocity and acceleration decoder patterns. The level of robot control was above
chance in all conditions. Participants finally reported to feel enough control to be able to improve
with training, even in the 100% EEG condition. Significance. Continuous LF-EEG-based
movement decoding for the online control of a robotic arm was achieved for the first time. The
potential bottlenecks arising when switching from offline to online decoding, and possible
solutions, were described. The effect of the PLSKF and its extensibility to different experimental
designs were discussed.

1. Introduction

One of the most recent focuses of brain-computer
interface (BCI) research is the reconstruction of
movement from neural recordings, to allow for an
intuitive and natural control of an actuator, like for
example a neuroprosthesis [1–3] or a robotic arm [4].
The ultimate goal of such an approach is the continu-
ous decoding of executed [5] or imagined [6] move-
ments, to use their neural correlates as input for the
neuroprosthetic device.

3 These authors contributed equally.

Neural tuning to movement direction has first
been shown in monkeys [7–9]. Later, both prim-
ate and human studies showed the possibility to
decode movement during different volitional states
from invasive intracortical [10–15] and electrocor-
ticographic [16–18] recordings. The possibility to
access this neural information non-invasively has
been proved just recently, first in magnetoencephal-
ographic [19–23] and lately electroencephalographic
(EEG) [5, 24–29] studies.

In the EEG, voluntary movement can be recon-
structed from the low-frequency (LF) band of the sig-
nal (< 3 Hz) [30] and through linear models [31].

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Experimental setup and paradigm. (a) The participants sat in a comfortable chair positioned ~1m from a reclined
screen. The participant’s right arm was supported by a planar board. The positions of the right hand were recorded with a
LeapMotion controller, mounted ~20 cm above the board. During the experiment, the screen displayed a moving object, i.e. the
snake. The participant’s goal was to control a robotic arm so to track the snake. The control signal of the robotic arm was a
mixture of hand kinematics (recorded by the LeapMotion) and EEG-based decoded trajectories. The proportion of the two
components was changing over the course of the experiment. (b) Each trial started with a break during which a yellow cross was
displayed, the robotic arm was still, and the participants were in control of a cursor. As a participant wanted to start a new trial,
s/he had to move the cursor to the center of the cross, and hold it still for 1 s (baseline). The moving trace (i.e. the snake) was then
displayed on the screen, marking the start of the tracking period, which lasted 23 s. (c) The experiment was conceptually divided
in two parts, corresponding to the calibration and online feedback operation of the EEG decoder. The main experimental
paradigm was implemented in the snakeruns, whose trials had the structure depicted in (b). Two eyeruns were added to record
blinks and eye movements. During online operation, the proportion of the EEG-based decoded trajectory was progressively
increased every two snakeruns, first with 33%, 66% and up to the final condition of 100% EEG control.

Since the first study from Bradberry et al [24], recon-
structing the three-dimensional velocities of hand
movements during center-out tasks, several groups
confirmed the possibility to decode the end-effector
positions [5, 28, 29] or velocities [24, 29] through lin-
ear regression models and from the low-pass filtered
EEG signals. Even though it has remained unclear
for a while whether positions or velocities were
best encoded in the EEG, a recent work from our
group [25] could clarify, using a pursuit-tracking-
task (PTT) [32] the spatiotemporal tuning of the EEG
to each movement parameter.

Although previous studies indicated the possibil-
ity to non-invasively reconstruct the movement from
LF-EEG, so far, this type of decoding has only been
performed offline. In this work, we present a first
attempt to translate linear LF-EEG decoding from an
offline to an online scenario, and use it for the con-
tinuous closed-loop control of a robotic arm.

Since this was the first attempt of EEG-based
online decoding, we limited our study to two-
dimensional movements, and designed the paradigm
to be able to best separate the information of each
movement parameter. We therefore designed a PTT,
where the participants were asked to track a moving
object on a screen by controlling a robotic arm. At
the beginning of the experiment, the robotic arm was
fully controlled by the participants’ hand kinematics.
After the EEG-based linear decodingmodel was calib-
rated, the robotic arm control was gradually switched
from hand kinematics to EEG-based decoded traject-
ories, first with 33%, then 66%, up to the final condi-
tion of 100% EEG-based control.

Given the exploratory nature of the study, a part
of this work will be dedicated to describing the

challenges that may arise when switching from offline
to online decoding from LF-EEG, and which solu-
tions can be adopted to achieve low-latency, continu-
ous closed-loop control. A second part will be ded-
icated to the analysis of decoder patterns at cortical
level, while a final part will touch upon the impres-
sions and behavioral responses of participants when
progressively exposed to closed-loop control based on
movement decoding from their LF-EEG.

2. Methods

2.1. Participants
Ten healthy persons, of age 26.5± 3.8 yr, took part in
this study. All participants had normal or corrected-
to-normal vision, five were females, and nine were
right-handed (as assessed by the Edinburgh Handed-
ness Inventory [33]). All participants gave their writ-
ten informed consent to take part in the study, and
received compensatory payment for their participa-
tion. The data of one participant were excluded from
the analysis due to technical problems in the record-
ings. The experimental procedure conformed to the
Declaration of Helsinki and was approved by the
ethics committee of the Medical University of Graz.

2.2. Experimental paradigm
The experimental paradigm implemented a pursuit
tracking task, where the participants were asked to
track a moving object with a robotic arm. A schem-
atic representation of the experimental setup is given
in figure 1(a). The participants were comfortably
seated in front of a reclined (~45◦) screen display-
ing the moving object, which we called snake. An
assistive robotic arm (JACO, Kinova Robotics Inc.
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Canada) overlaid the screen, and was controlled by
the participants through a mixture of hand kinemat-
ics and EEG-based decoded trajectories. The right-
hand kinematics was recorded using a LeapMotion
controller (LeapMotion Inc. USA). The LeapMotion
was mounted ~20 cm over a planar board that sup-
ported the participant’s arm as s/he was perform-
ing planar, two-dimensional movements. The elec-
trical brain activity of the participant was mean-
while collected through 64 active EEG electrodes
(actiCAP Brain Products GmbH, Germany), placed
on the scalp according to the 10–10 system (fig-
ure S1) (available online at stacks.iop.org/JNE/17/
046031/mmedia). Reference and ground electrodes
were placed at the right mastoid and AFz, respect-
ively. Six additional active electrodes were positioned
at the inferior, superior and outer canthi of the eyes to
record the electro-oculographic signal (EOG) (figure
S1, right). The EEG and EOG signals were recorded
at 500 Hz through biosignal amplifiers (BrainAmp,
Brain Products GmbH, Germany).

The experiment was conceptually divided in two
parts, i.e. calibration and online feedback operation of
the EEG-based movement decoder (figure 1(c)). The
main experimental paradigmwas implemented in the
so-called snakeruns.

Each snakerun consisted of 10 trials and lasted
~5 min. Each snakerun trial started with a self-paced
break (figure 1(b)). During these breaks, a yellow fix-
ation cross was displayed, the robotic arm was kept
still, and the participant was in control of a cursor
mapping his/her right-hand trajectories. As the par-
ticipant wished to start a new trial, he/she had to
move the cursor to the center of the cross and hold
it for 1 s (baseline period, figure 1(b)). Thereafter,
the cross and the cursor disappeared, the snake was
displayed and started to move, and the participant
gained control over the robot, marking the begin-
ning of the tracking period. The tracking period lasted
for 23 s.

At the beginning of the experiment, participants
could choose a comfortable resting position, on
the planar board, for their hand; this position was
mapped to the origin of the fixation cross, and
remained fixed for the whole experiment. In addition,
there was no amplitude scaling between robot and
hand movement (1:1 scaling). The snake trajectories
were generated offline as in [25], and were the same
across participants. Twelve trajectories were sampled
from band-pass filtered (0.2–0.4 Hz) pink noise [32].
The set of trajectories was extended by rotating (90◦,
180◦ and 270◦) and mirroring existing trajectories,
leading to a total of 96 trajectories randomly dis-
tributed over the trials of the experiment. The pro-
cedure ensured uncorrelated positions and velocit-
ies across and within horizontal (x) and vertical (y)
dimensions [25].

Two eyeruns (figure 1(c)), where added to the cal-
ibration phase to collect the participant’s EEG and

EOG activity during rest with eyes open, blinks, hori-
zontal and vertical eye movements, as in [34]. The
data from the two eyeruns were used to train an eye
artifact attenuation algorithm as specified in [35].

As anticipated, the experiment was conceptually
divided in two parts (figure 1(c)). In the first cal-
ibration part, the participants performed five runs
where the robot was entirely controlled by their
hand kinematics (snakeruns 1–5). After the decod-
ing model was fitted to the movement (see the next
sections for details), the participant gradually started
to receive feedback on his/her decoded movements
(online feedback). The robotic arm control was gradu-
ally switched from hand kinematics to EEG-based
decoded trajectories, first with 33% (snakeruns 6–7),
then 66% (snakeruns 8–9), up to the final condition
of 100% EEG control (snakeruns 10–11).

2.3. Data recording and processing
Data were recorded and synchronized through the
lab streaming layer protocol (https://github.com/
sccn/labstreaminglayer). The presentation of the
visual stimulus, the online processing and visualiza-
tion of data were carried out using custom Matlab
scripts (Matlab 2015b,Mathworks Inc. USA) and Psy-
chotoolbox [36–38]. A photodiode was used for off-
line synchronization. Offline analysis was carried out
in Matlab and EEGLAB (v14.1.1) [39].

2.3.1. Online processing.
The EEG and LeapMotion processing pipelines are
outlined in figure 2.

To give an overview of the EEG processing
pipelines, the signals were band-pass filtered between
0.18 and 1.5 Hz, the bad channels interpolated,
the eye artifacts [35] attenuated and the pops/drifts
detected and interpolated [40] after re-referencing
(common average reference, CAR). The signals were
finally downsampled (20 Hz) and buffered (300 ms)
for multi-lag decoding.

In the first processing stage, the EEG was high-
pass filtered at 0.18 Hz and downsampled to 100 Hz.
To avoid aliasing, the filter was composed as a cas-
cade of i) 1st order IIR high-pass filter at 0.18 Hz, ii)
a 2nd order low-pass Butterworth filter at 25 Hz, and
iii) two Notch filters at 50 Hz and 100 Hz. The bad
channels were identified for each participant (table
S1, supplementary material) by visual inspection of
the calibration runs, and were then linearly inter-
polated online from the four nearest neighboring
channels. The influence of eye movements/blinks was
attenuated with the generalized eye artifact subspace
subtraction (GEYESUB) algorithm described in [35],
which was fitted to the eyeruns data. The signals were
then re-referenced to the CAR. The electrode pops
and drifts were detected online and corrected with
the high-variance electrode artifact removal (HEAR)
algorithm in [40], which evaluated the probability
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Figure 2. Online and offline processing pipelines. The EEG was filtered in two stages: after the first filtering stage (0.18 Hz
high-pass+ anti-aliasing low-pass filter), the EEG was downsampled to 100 Hz, the bad channels were interpolated, the eye
artifacts attenuated (GEYESUB algorithm [35]), the signals were re-referenced to the common average reference (CAR), and the
slow drifts/occasional pops interpolated (HEAR algorithm [40]). After the second filtering stage (1.5 Hz low-pass), the EEG was
downsampled to 20 Hz, buffered for 300 ms and decoded (PLSKF method). Meanwhile, the movement trajectories recorded with
the LeapMotion were low-pass filtered at 4 Hz, delayed (with a ring-buffer) for synchronization with EEG, and downsampled to
20 Hz. After synchronization, the hand kinematics and EEG-based decoded trajectories were mixed into a unique control signal,
transformed to be able to slide to the reclined screen and fed to the robotic arm.

for each sample to be artifactual, and proportion-
ally interpolated it with the four nearest neighboring
channels. The second stage filtering (2nd order low-
pass Butterworth, 1.5Hz) and downsampling (20Hz)
was then achieved. To obtain multi-lag decoding of
the hand trajectories, the EEGwas finally buffered for
300 ms; a partial least squares (PLS) linear model was
fitted to the calibration data, and used in combina-
tion with linear Kalman Filtering (KF) (see the next
sections for details).

Right-hand position trajectories, recorded with
the LeapMotion, were low-pass filtered at 4 Hz (3rd
order low-pass; Butterworth filter), delayed by 165ms
through a ring-buffer, and finally downsampled to
20 Hz. The 165 ms delay was introduced to align the
online processed LeapMotion and EEG signals. The
estimation of 165 ms was obtained by considering
the average processing delay for the EEG (~250 ms)
and the LeapMotion (~80ms), the transmission delay
between brain activity and actualmovement [41], and
the latencies of the recording systems, as depicted in
supplementary figure S2.

After alignment, the hand kinematics (LeapMo-
tion) and EEG-based decoded trajectories were
weighted according to the run (figure 1(c)), and com-
bined to control the robot. The movement coordin-
ates were transformed with a rotation matrix to make
the robot move planarly on the tilted screen, while
the amplitude of the movements remained the same
(1:1 mapping).

The total delay between the participant’s move-
ment and feedback, i.e. the robot reaction, was estim-
ated to be around ~550-650 ms altogether, of which
~250ms were introduced by the processing pipelines,
and 300–400 ms by the inertial displacement of the
robot (supplementary figure S2).

2.3.2. Offline processing.
The EEG and LeapMotion data were processed off-
line following the same pipelines as online (figure 2).
At the end of calibration, the snakerun data were col-
lected, processed and epoched into 23 s trials. These
trials were automatically marked for rejection if the
EEG signal of any channel exceeded a threshold of

±100 µV or had an abnormal probability or kurtosis
(more than five standard deviations from the mean).
The procedure was applied twice to detect both gross
and subtle outliers. The marked trials were further
visually checked to correct, where necessary, the auto-
matic detection. The proportion of rejected trials was
10 out of 50 calibration trials on average.

The LeapMotion signals, recording the planar
hand trajectories and therefore the sideways (x) and
forwards/backwards (y) components of the positions,
were used as a base to additionally compute velocit-
ies and accelerations. All movement parameters were
later used to fit the PLS models and set up the KF
(see the next section for details). Velocities and accel-
erations were estimated with a Savitzky-Golay filter
(order 3, 11 taps). The first and last second of each
trial were finally excluded to eliminate edge artifacts.

After the experiment, feedback runs were pro-
cessed in the same way as calibration runs. The pro-
portion of rejected trials was 10 out of 60 feedback
trials on average.

2.3.3. Decoder fitting (PLS).
Likewise previous EEG decoding studies [6, 25], we
applied PLS regression [42] to find the linear mod-
els linking hand movement parameters (x and y pos-
itions, velocities and accelerations) and EEG record-
ings. PLS is particularly appropriate in situations with
strongly collinear predictor variables, as in the case of
multi-lag, LF-EEG.

Let X be the n × P matrix of predictor vari-
ables, with n observations and P predictors, here the
multi-lag EEG data. Let then Y be the n × M matrix
of response variables with M responses, here the six
movement parameters (x and y coordinates of posi-
tions, velocities and accelerations).

The predictor variables are then modelled as:

X= Xs ·XT
L + E (1)

with XS being an n x Ncomp matrix of latent compon-
ents, XL being the P x Ncomp matrix to relate the pre-
dictors X to their latent space, and E being an n x P
matrix of additive independent and identically dis-
tributed (iid) noise.
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The dependent variables are then modelled as:

Y= Xs ·YT
L +G (2)

with YL being the M × Ncomp matrix relating Y with
the predictor components XS, and G being a matrix
of additive iid noise.

The estimates XL and YL may also be combined
into a P×M weight matrixW, to directly predict the
dependent from the predictor variables, i.e. themove-
ment parameters from the EEG:

Ŷ= X ·W. (3)

In this study, we used the SIMPLS algorithm
[43] to estimate XL, YL, and W from the calibration
data (i.e. the clean trials from snakeruns 1–5). Even
though eye movement artifacts were strongly atten-
uated [35], pilot experiments revealed that a subtle
residual artifactual activity could sometimes affect the
most frontal locations. Therefore, we removed the five
most frontal electrodes in the Fp and AF rows (figure
S1, supplementary material), and fitted the model to
the remaining 59 channels. Since we considered seven
EEG lags (i.e. lag 0, −50 ms, −100 ms, −150 ms,
−200 ms, −250 ms and −300 ms), this resulted in
59× 7= 413 predictor variables. For the latent space,
we considered a number of components explaining
99% of the variance in the multi-lag EEG, resulting
in Ncomp = 85.

2.3.4. Kalman filter.
The Kalman filter [44] is an algorithm to infer the
internal state of a system, given a set of indirect
and noisy measurements and the system’s underly-
ing model. The Kalman filter is composed of two
equations, namely: i) the process equation, describ-
ing the evolution of the internal state over time and
ii) the measurement equation, describing the relation
between the noisy measures and the state.

In its discrete-time and linear form, the Kalman
filter equations can be written as follows:

{
θk+1 = Fθk + vk v∼ N(0,Q)
zk =Hθk +wk w∼ N(0,R)

. (4)

In the process equation, θ represents the nθ-
dimensional state of the system, F is the nθ x nθ trans-
ition matrix between the present k and next k + 1
time sample, and v is additive Gaussian noise (with
zero-mean and covariance matrix Q) modeling the
uncertainties and propagation of errors. In the meas-
urement equation, z is the nz-dimensional vector of
measurements, H is the nz x nθ matrix modeling the
linear relation between z and θ, and w is additive
Gaussian noise (with zero-mean and covariance mat-
rix R) modelling the measurement and model errors.

In this study, we set up the Kalman filter to estim-
ate the movement parameters, i.e. the status θ, from
the noisy measures z, i.e. the multi-lag EEG.

The status θ was therefore defined as:

θ =
[
pxvxaxpyvyay

]T
(5)

and contained the whole kinematic chain from posi-
tions to accelerations.

We then adopted for the process equation a gen-
eral ‘zero-jerk’ model. This model considers the finite
difference integration between positions, velocities
and accelerations at sample times k and k + 1, while
assuming the acceleration to be constant (ak+1 = ak)
and therefore the variability in the accelerations as a
source of noise. Let T be the integration step (in our
case T = 0.05 s, due to the downsampling to 20 Hz),
the F and Qmatrices were then defined as:

F=




1 T T2/
2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0

0 0 0 1 T T2/
2

0 0 0 0 1 T
0 0 0 0 0 1




Q=




T5
/20

T4
/8

T3/
6 0 0 0

T4
/8

T3/
3

T2/
2 0 0 0

T3/
6

T2/
2 T 0 0 0

0 0 0 T5
/20

T4
/8

T3/
6

0 0 0 T4
/8

T3/
3

T2/
2

0 0 0 T3/
6

T2/
2 T




· 1

10
· var(a)

T
(6)

with F modeling the integration process between
movement parameters in θ, and Q describing the
propagation of noise on the accelerations (i.e. the
acceleration variance) to velocities and positions [45].

In the measurement equation, we used the PLS
decoder model to estimate the status θ from the EEG.
However, to reduce redundancy and increase compu-
tation speed, instead of the completemulti-lag EEG in
X we considered its projection to the latent space XS

(equation (1)), thus reducing the dimensionality of z
fromP= 413 to the previously definedNcomp= 85 lat-
ent components. As a result of equation (2), the Kal-
man filter matrix H was therefore:

H= pinv(YL) . (7)

The covariance matrix of the measurement error,
R, was obtained by applying its definition, and fitted
to the calibration data:

R= [cov(z− ẑ)]calibration = [cov(z−Hθ)]calibration.
(8)

In equation (8), the ‘measured’ z were derived by pro-
jecting the pre-processed EEG to the latent space XS

(equation (1)), and the ‘estimated’ � were derived by
applying the matrix H to the LeapMotion recorded
and pre-processed kinematics (θ).
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The resulting model, combining the dimension-
ality reduction properties of PLS regression with
the data fusion properties of KF, was used for the
online decoding of hand movement from the EEG.
We will later refer to this model as PLSKF. The PLSKF
model was fitted only once for each participant based
on the calibration runs; after calibration, the PLSKF
decoded hand trajectories weremixed to the LeapMo-
tion recorded and delayed ones (figure 2), with differ-
ent proportions according to the experimental condi-
tion (figure 1(c)).

2.4. Offline evaluation of the decoding
performance
2.4.1. Pearson’s correlation coefficients.
Even though the PLSKF was the model used online
to give feedback during the experiment, its perform-
ance was then evaluated offline, and compared to the
performance that could have been achieved by using
the PLS regression alone, similarly to previous studies
[5, 6, 25].

A commonly used measure of similarity between
hand kinematics and decoded trajectories is the Pear-
son’s correlation coefficient, r. We evaluated the cor-
relations r between the hand kinematics and PLSKF-
decoded trajectories, for each participant, movement
parameter (positions, velocities, accelerations), and
condition (0%, 33%, 66% and 100% EEG control).

We estimated the upper bound confidence inter-
val of the chance level correlations, rchance through a
shuffling approach, i.e. by breaking the association
between the multi-lag EEG in X and the recorded
movement parameters in Y, by randomly shuffling X
and Y across trials. After shuffling the data 100 times,
fitting each time a new PLS model and evaluating the
corresponding correlation r, we estimated the upper
bound confidence interval of the chance level, rchance,
(with significance α = 0.05) as the 95th percentile of
the correlations r, taken in absolute value |r|.

To evaluate the effect of the Kalman filter on the
decoding performance, we computed the correlations
r in two cases. In the first case, we estimated themove-
ment parameters using the PLSmodel only (equation
(3)). In the second case, we estimated the correlations
using the same PLSKF model as in the online case.
We compared the two methods for each participant,
movement parameter, and condition, usingWilcoxon
signed-rank tests. We ran a total of 24 tests, corres-
ponding to the 6 movement parameters x 4 condi-
tions. We controlled the false discovery rate (FDR),
at significance level 0.05, by adjusting the p-values
[46, 47].

To avoid overfitting, in the 0%EEG condition (i.e.
the calibration data) we evaluated r using a leave-one-
trial-out cross-validation approach. For each calib-
ration trial, we fitted a PLS model (and Kalman fil-
ter) to all-but-one trials, evaluated the correlation r
on the remaining one, and computed the average r
in the end. Regarding the other three conditions of

33%, 66% and 100% EEG control, we evaluated the
correlations with the same PLS and Kalman models
used online (i.e. the ones fitted to the whole calibra-
tion data).

2.4.2. Amplitude of hand kinematics and EEG-based
decoded trajectories.
To complete the analysis on the decoder output, we
evaluated the amplitudes of hand kinematics and
EEG-based decoded trajectories for each participant
and condition. To quantify the amplitudes, we con-
sidered the difference between the 95th and the 5th
percentiles of the position distributions, for both x
and y coordinates.

2.5. Source space analysis
2.5.1. Source imaging.
In order to interpret the decoding models at cortical
level, we evaluated the activation patterns A from the
weight vectors W, and projected them to the cortex
by using EEG source imaging [48, 49]. The activation
patterns A were obtained as in [50]:

A= Σ̂X ·W · Σ̂Y
−1

(9)

where Σ̂XandΣ̂Y are the sample covariance matrices
for the multi-lag EEG (X) and the movement para-
meters (Y). We estimated Σ̂XandΣ̂Y using the calib-
ration data, and regularized them through analytical
shrinkage regularization [51]. In order to express the
patterns A as voltages [52], we scaled them by mul-
tiplyingAwith the square root of Σ̂Y. We further nor-
malized these scaled patterns, Ascaled, to account for
the variability, across participants, of EEG baseline
level of activity. For each participant and movement
parameter, the baseline level of activity was estimated
from the chance level scaled patterns, Achance_scaled.
We first evaluated the root mean square (rms) of
Achance_scaled over electrodes and lags. These rms values
were then averaged over the 100 chance level repeti-
tions. Similarly to [25], the obtained (scalar) values
were finally used for the normalization of Ascaled.

The normalized, scaled patterns were projected to
source space using the open source software Brain-
storm [53] (version 22 August 2018). We created the
head models by co-registering the ICBM152 bound-
ary element model (BEM) [54] with the recorded
electrode positions (ELPOS, Zebris Medical Gmbh,
Germany) of each participant. The BEM template
consisted of three layers (cortex, skull, scalp), whose
conductivities were set to (1, 0.008, 1). The elec-
trode positions were registered to the scalp layer using
three anatomical landmarks (nasion, left and right
preauricular points). In case a participant’s anatomy
slightly deviated from the template model, we com-
pleted the registration by projecting the floating elec-
trodes on the BEMscalp layer.Wemodelled the cortex
with 5001 voxels and computed the forward model,
describing the propagation of electrical fields from
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the cortex to the scalp with OpenMEEG [55, 56].
We finally used sLORETA [57] to evaluate the cor-
responding inverse model, and considered 3 uncon-
strained source components per voxel. We estimated
the noise covariance matrix of the EEG, necessary for
sLORETA, on the eye-corrected data of the eyeruns,
and applied analytical shrinkage regularization [51].
We finally computed, for each voxel, the norm of the
three x, y and z source components.

2.5.2. Source space statistics, and evaluation of the
temporal dependency between movement parameters.
For each movement parameter and time lag, we
looked for significant activations in source space
by computing the paired difference between each
decoder pattern and the corresponding chance level
activity (in source space). We computed the chance
level by averaging the 100 back-projected, normal-
ized chance level patterns. As in [25], we evaluated
significance at eight region of interests (ROIs) associ-
ated with movement processing (figure 5(a)), namely
the dorsomedial occipital cortex (DMOC), the super-
ior parietal lobule (SPL), the primary somatosensory
and motor cortices (SM1) and fronto-central (FC)
areas of both hemispheres. We computed the activity
of each ROI by averaging its voxels. We assessed the
significance through two-tailed non-parametric per-
mutation paired t-tests [58, 59] with 1000 repetitions.
We ran a total of 336 tests, corresponding to 8 ROIs x
7 time lags x 6 movement parameters. We controlled
the FDR by adjusting the p-values at 0.05 significance
level [47].

The analysis of significant activations in source
space follows from the projection at cortical level of
the decoder activation patterns. However, provided
that these patterns involve several movement para-
meters and time lags, the correct interpretation of
the results needs to take into account the temporal
dependencies between the movement parameters, i.e.
the variables to which the decoder is fitted. To invest-
igate this, we evaluated the cross-correlations in the
[−1, 1] s time range between positions, velocities and
accelerations and between the x and y dimensions. For
this analysis, we used the trajectories derived from the
LeapMotion in the 0% EEG condition, i.e. the same
trajectories to which the linear decoder model was
fitted.

2.8. Questionnaires
To collect the participants’ impressions during the
experiment, we administered a questionnaire at the
end of each condition (0%, 33%, 66% and 100% EEG
control). The text of the questionnaire is provided at
the end of the supplementary material. On the one
hand, the questionnaire collected the overall impres-
sions about the experiment, e.g. by asking to what
extent the task was intuitive, mentally or physically
demanding, complicated and engaging, along with

the level of experience with robot usage and whether
the participants felt comfortable around the robot.
On the other hand, the questionnaire tracked the
evolution of the participant during the experiment,
by enquiring about the perceived level of control, the
perceived delay, the level of attention to the snake, the
robot or their hand, and whether the participants had
the feeling to be performing smaller or larger move-
ments with respect to the calibration. For each ques-
tion, the participants could quantify their answers
by drawing a mark on a visual analogue scale. To
analyze the results, we transformed the answers into
scores by measuring the distance of each mark from
the extremities of the visual analogue scale, and nor-
malized them by the scale length. For the questions
regarding the general impressions about the exper-
iments, the scores were mapped between 0 and 1.
The score distributions were described by evaluating
the median and inter-quartile range (IQR). For the
questions regarding the evolution of the participant’s
state, the decreases/increases with respect to calibra-
tionweremapped between−1 (‘maximum decrease’)
and 1 (‘maximum increase’).

After the experiment, we additionally asked the
participants whether they perceived (or not) that
their ability to control the robot with the EEG-based
decoded trajectories could improve with training.

2.9. Task performance and behavioral results
In order to investigate howwell the participants could
track the snake with their hand, how much the EEG-
based decoded trajectories complied with the tar-
get, and how well the participants could ultimately
control the robot, we performed correlation ana-
lysis between three additional pairs of trajectories:
i) between snake and hand trajectories (later named
‘snake-hand’ pair), ii) between the snake and the
decoded trajectories (‘snake-PLSKF’), and finally iii)
between the snake and the robot trajectories (‘snake-
robot’). For each of the three pairs of trajectories and
for each condition (0%, 33%, 66% and 100% EEG
control) we evaluated the cross-correlation values in
the interval [−1, 1] s (i.e. by shifting one trajectory
with respect to the other up to± 1 s).

Unlike previous analyses, having as an outcome
measure the correlation r at lag 0, we decided to con-
sider here the maximum correlation rmax in the cross-
correlation interval [−1, 1] s. This allowed for a better
comparison across participants, considering that the
snakewas amoving trace with a non-negligible length
(approximately 1 s of trace was displayed in each
moment) and participants could choose to focus on
different parts of it (for example, on the head rather
than the tail of the snake). Considering rmax instead of
the correlation r at lag 0 permitted us to evaluate the
participant’s compliance to the task, independently of
which part of the snake he/she decided to track.
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Figure 3. Decoder performance. Overview of the r Pearson’s correlation distributions for each movement parameter (positions,
velocities and accelerations in the left, middle and right panels, x and y dimensions in the two rows) and condition (0%, 33%,
66% and 100% EEG control) for the two methods (i.e. the PLSKF as online, or PLS only, simulated offline). In each bar, the bigger
central dot represents the median of the distribution, the whiskers extend to the 25th and 75th percentile, and the small dots
represent the participants. Statistically significant differences between the two methods (α= 0.05, corrected for multiple
comparisons) are marked with a star ∗. The horizontal dotted bars finally display the median rchance value, for each method, across
participants.

To estimate the delay between each of the three
pairs (‘snake-hand’, ‘snake-PLSKF’ or ‘snake-robot’),
we considered the time-interval between lag 0 and the
time point of rmax. To finally evaluate whether the cor-
relation rmax (or delay) distributions differed among
conditions (0%, 33%, 66% or 100% EEG control),
we used a Kruskal-Wallis test with significance level
α= 0.05 and the Tukey’s criterion to correct for mul-
tiple comparisons.

3. Results

3.1. Decoding performance
3.1.1. Pearson’s correlation coefficients.
The results of correlation analysis between hand
kinematics and EEG-based decoded trajectories are
displayed in figure 3. The diagrams show the dis-
tributions of the Pearson’s correlations r for each
movement parameter (positions, velocities and acceler-
ations) and condition (0%, 33%, 66% and 100% EEG
control), and for the two methods (the PLSKF used
online, and the PLS alone, simulated offline). The
upper bound correlations of the chance level distribu-
tions (rchance, with significance α= 0.05) are also dis-
played for each case and method. The corresponding

mean ± SEM values are detailed in the supplement-
ary table S2.

We obtained moderate yet overall significant
correlations r between hand kinematics and EEG-
decoded trajectories; the correlations r were signi-
ficantly (α = 0.05) above the chance level rchance
in 206 out of 216 cases (considering all 9 parti-
cipants x 6 movement parameters x 4 conditions).
For the PLSKF, i.e. the method implemented online,
we obtained average correlations of (0.28 ± 0.04,
0.29 ± 0.03, 0.26 ± 0.03, 0.23 ± 0.05, mean ± SEM)
for the (0%, 33%, 66%, 100%) EEG conditions for
the positions. The corresponding upper-bound rchance
values with significance α = 0.05 were (0.14 ± 0.01,
0.15± 0.01, 0.14± 0.01, 0.13± 0.01).

For the PLS model alone, which we simulated
offline, we obtained, on average, correlations of
(0.25 ± 0.03, 0.25 ± 0.03, 0.21 ± 0.03, 0.19 ± 0.04)
for the positions, while the corresponding rchance were
(0.12± 0.01, 0.12± 0.01, 0.11± 0.01, 0.12± 0.01).

In both cases, we observed that the best recon-
structed movement parameter was the velocity
(figure 3, middle).

3.1.2. Effect of the kalman filter.
With respect to the PLS, we could observe two effects
introduced by the PLSKF.
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The first effect was the moderate yet stable
increase in correlation between the PLS and PLSKF.
The mean ± SEM of the correlation r obtained with
the twomethods, the average increase∆r, and the res-
ults of statistical analyses for each movement para-
meter and condition, are detailed in the supplement-
ary table S3. The grand average increase in correlation
due to the Kalman filter was∆r= 0.049. The increase
was consistent overmovement parameters and condi-
tions, and statistically significant in the majority (19
out of 24) of the comparisons (figure 3).

The second observed effect was the smoothing
of the PLSKF-decoded trajectories with respect to
using the PLSmodel alone. This smoothing effect can
be qualitatively appreciated in figure 4(a), display-
ing an example of decoded trajectories with the two
methods.

3.1.3. Amplitude of hand kinematics and EEG-based
decoded trajectories.
To complete the analysis of the decoder output, we
compared the amplitude of the EEG-based decoded
trajectories with the hand kinematics, for each par-
ticipant and condition. Figure4(b) depicts the mean
and standard deviations for the hand kinematics
(recorded with the LeapMotion) and EEG-based
decoded trajectories (with KF), across participants,
and for each condition. As it can be seen in figure
4(b), the decoded trajectories were generally smal-
ler (~5–6 cm) with respect to the hand kinematics
(~15–20 cm). In addition, their amplitude remained
the same throughout the experiment, even though
the participants tended to increase the size of their
movement in the 33%, 66% and 100% EEG control
conditions.

3.2. Source space analysis
3.2.1. Source imaging and source space statistics.
The results of projecting the decoder patterns to
the cortex, and the subsequent statistical analysis in
source space, are outlined in figure 5(b) and detailed
in supplementary table S4.

Figure 5(b) shows the norm (at each voxel) of the
projected activation patterns, averaged across parti-
cipants, for each movement parameter and at time
lag 0. The same results for the other time lags can be
found in supplementary figure S3.

The results of the permutation tests for each R
(figure 5(a)), time lag and movement parameter are
detailed in supplementary table S4. The p-values need
to be interpreted according to the critical value from
the FDR correction, pcrit = 0.007. Overall, we found
significant activations in theDMOCand SPL areas for
the decoded velocities and accelerations, and overmul-
tiple time-lags. No significant activations were found
in the FC and somatosensory and motor (SM) areas,
or in any region for the decoded positions.

3.2.2. Temporal dependency between movement
parameters.
The cross-correlation curves between the hand (i.e.
LeapMotion) positions, velocities and accelerations and
between x and y dimensions are useful to visual-
ize the temporal dependencies between movement
parameters and therefore to interpret the multi-lag
source analysis results, as displayed in supplementary
figure S4.

3.3. Questionnaire results
A visual representation of the questionnaire results
can be found in the supplementary figures S5–S7.

Regarding the general impressions over the
experiment (figure S5), participants found the task
very intuitive (median = 0.75 and IQR = 0.24,
within a 0–1 range), very engaging (median = 0.66,
IQR = 0.18), and not complicated (median = 0.09,
IQR = 0.12). They also found it moderately men-
tally demanding (median = 0.37, IQR = 0.42),
although not physically demanding (median = 0.15,
IQR = 0.57). The participants finally varied in terms
of previous robot usage experience (median = 0.47,
IQR= 0.79), although they generally felt comfortable
around the robot (median= 0.91, IQR= 0.46).

Regarding the evolution of the participant’s state
over time (figures S6 and S7), the participants repor-
ted to perceive, after calibration, a good baseline
level of control (median = 0.79, IQR = 0.38),
a moderate delay between movement and feed-
back (median = 0.48, IQR = 0.56), and repor-
ted to focus most of their attention to the snake
(median = 0.93, IQR = 0.13) and less to the
robot (median = 0.24, IQR = 0.40) or their hand
(median = 0.25, IQR = 0.45). Over the course of
the experiment (figure S7), their perceived level of
control progressively decreased, the perceived delay
slightly increased, and the level of attention to the
snake, robot and hand also varied. The participants
finally perceived to bemaking larger movements with
respect to calibration.

Regarding the bonus question, 7 out of 9 par-
ticipants had the feeling they could improve their
control skills with training, 1 participant replied neg-
atively, while the remaining one did not reply.

3.4. Task performance and behavioral results
Figure 6 outlines the behavioral analysis/task per-
formance results, quantifying the participants com-
pliance to the task, the correlation between the target
(i.e. the snake) and the EEG-based decoded traject-
ory, and ultimately the participant’s level of control
over the robot.

The rmax values between snake and hand traject-
ories, (‘snake-hand’ panels, figure 6 left), quantifying
the participants’ compliance to the task, were moder-
ately high (on average 0.68± 0.010 and 0.58± 0.013
for x and y). The correlations for y were slightly lower
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Figure 4. Qualitative evaluation of decoding, andmovement amplitude. (a) Sample decoded trajectories (positions) with PLS
model alone or in combination with Kalman filtering, for one of the participants in the 33% EEG condition. The figure displays
the concatenation of the tracking part of several trials in the run. (b) Amplitude of the hand kinematics and EEG-based decoded
trajectories, for the x and y direction, over the course of the experiment. The shaded intervals indicate the mean± standard
deviation (SD) amplitude over participants.

Figure 5. Source analysis. (a) Location of the user-defined region-of-interests (ROIs). (b) Grand average decoder patterns at lag 0
for the horizontal (left) and vertical (right) dimensions, for the positions (upper panels), velocities (middle panels) and
accelerations (lower panels). The voxel color indicates strength of pattern activity.

than for x, possibly because of a difficulty in evaluat-
ing the y coordinate, due to the reclining of the screen.
In the x dimension, we observed significantly lower
rmax values in the 100%EEG conditionwith respect to
0% and 33%EEG.However, in this condition the par-
ticipants had no feedback about their hand position,
as the robot was entirely controlled with the EEG.

The middle panel of figure 6 displays the rmax

correlations between snake and decoded trajectories
(‘snake-PLSKF’). The correlations weremoderate (on
average 0.28± 0.053 and 0.29± 0.046 for x and y) but
above chance level in almost all the comparisons (69
out of 72 comparisons, considering 9 participants x

4 conditions x 2 dimensions). These correlations did
not significantly differ among conditions.

The right panel of figure 6 displays the rmax correl-
ations between snake and robot trajectories (‘snake-
robot’) quantifying how well, ultimately, the parti-
cipants could control the robot. It can be noted from
the figure that the ‘snake-robot’ correlations rmax are
a mixture of the corresponding ‘snake-hand’ and
‘snake-PLSKF’ values, reflecting the mixture of hand
kinematics and EEG-based decoded trajectories over
conditions in the control signal of the robot. In the
0% EEG condition, the distribution of ‘snake-robot’
correlations rmax correspond to the ‘snake-hand’ case,
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Figure 6. Task performance and behavioral results. Distributions of rmax correlations for the three pairs of trajectories: i)
snake-hand, ii) snake-kalman and iii) snake-robot. The and dimensions are represented in the first and second row. In each bar,
the big dot represents the median of the distribution, the whiskers extend between the 25th and the 75th percentile, and the small
dots represent the values of each participant. Statistically significant differences, corrected for multiple comparisons, are marked
with ∗ (p<0.05), ∗∗ (p<0.01), and ∗∗∗(p<0.001). In the middle panel, the horizontal dotted bars display the median rmax_chance

value across participants.

while in the 100% EEG condition, they correspond
to the ‘snake-PLSKF’ case. The rmax values and there-
fore the level of control significantly decreased with
increasing proportions of decoded EEG to the con-
trol. Nevertheless, even in the 100% EEG condition,
the rmax correlations and therefore the level of control
were overall above chance.

The distributions of delays between the three pairs
of trajectories are displayed in supplementary figure
S8. The delays between snake and hand were on aver-
age 120 ± 30 ms and 130 ± 45 ms (mean ± SEM)
for x and y. The corresponding delays between snake
and PLSKF-decoded trajectories were 215 ± 80 ms
and 290 ± 115 ms. Finally, the delays between snake
and the robot were 550 ± 43 ms and 560 ± 51 ms.
In all three cases, the delays did not significantly
differ across conditions, i.e. they remained constant
throughout the experiment.

4. Discussion

Continuous decoding of voluntary movement is
desirable for closed-loop, natural control of neuro-

prostheses. Even though recent studies [6, 24, 25, 52]
have shown the possibility to infer hand positions
and velocities from the LF-EEG, so far, this has only
been performed offline. In this study, we made a
first attempt to switch to an online scenario, by
implementing continuous LF-EEG-based movement
decoding for the online control of a robotic arm. We
obtainedmoderate yet overall significant correlations
of 0.32 on average over all movement parameters, the
PLSKF decoder could significantly improve the per-
formance with respect to PLS regression alone, and
the majority of participants reported to feel enough
control over the robot to be able to improve it with
training.

4.1. Overall decoding performance, potential
challenges when switching to an online scenario,
and effect of the Kalman filter
In this study, we could show that continuous decod-
ing of voluntary movement from LF-EEG is feas-
ible when switching from an offline to a closed-loop
online scenario. The information about the right-
hand movement could indeed be decoded above
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chance level for almost each participant, movement
parameter and condition (figure 3 and supplement-
ary table S2); we obtained a grand average correla-
tion over allmovement parameters of 0.32, which is in
line with some previous offline EEG studies [26, 27].
The level of robot control was also overall higher than
chance even in the 100% EEG condition (figure 6)
and, finally, most participants (7 out of 9) reported
to feel enough control over the robotic arm to be able
to improve with training.

Despite the encouraging results, the translation of
linear, LF-EEG-based continuous movement decod-
ing to a closed-loop online scenario presented us
some challenges that had to be addressed. These are
part of the general bottlenecks that might arise in the
translation process. In the following paragraphs, we
discuss why the PLSKF model could be an option to
overcome these bottlenecks, and how it can be exten-
ded to scenarios different than ours.

One of the requirements of closed-loop control
is to keep the total delay between the recorded signal
and the feedback as small as possible. In the context
of LF-EEG-based decoding, one of the main bottle-
necks is the delay introduced by the EEG processing
pipeline, and particularly by the temporal filtering
step. In this type of decoding, the desired movement
parameters are indeed obtained through linear com-
binations of the EEG signals, band-pass filtered in
approximately the same frequency band as the move-
ment (i.e. typically between 0.1 Hz and < 3 Hz)
[6, 24, 25, 52]. However, if in an offline study pro-
cessing delays and phase distortions can be elimin-
ated with zero-phase filtering, when switching to an
online processing, the introduced delays may render
closed-loop control unfeasible. A possible approach
to reduce the delays, is to relax the design constraints
of the temporal filter. To give an example, if we would
have implemented the same filter as in a previous off-
line study [25], this would have led to an approxim-
ately 2 s processing delay, which would be incom-
patible with closed-loop control. By reducing the fil-
ter orders and enlarging the filtered bandwidth, we
could reduce the processing delay to ~250 ms. The
problem with this approach is, however, that the fil-
ter attenuation is lower, and therefore higher fre-
quency components may remain in the EEG signal.
Provided that linear regression models are only able
to relate signals in similar frequency ranges [60], the
higher frequency components in the EEG will ulti-
mately transfer to the decoded trajectories (for an
example, see the trajectories decodedwith PLS regres-
sion alone in figure 4(a)), thus deteriorating the qual-
ity of decoding.

An additional limitation of previously used linear
approaches is that they are typically used to retrieve
only one type of movement at a time. For example,
some previous studies used linear models to dir-
ectly decode the positions [5, 28, 29], some others
only the velocities [24, 29]. Using one linear model

at a time would therefore lead to sub-optimal decod-
ing, provided that not all the available sources of
information are exploited; in contrast, implementing
a method to simultaneously consider the models of
all movement parameters, would permit to integrate
them and potentially improve the results.

With the introduction of PLSKF, we could address
both of the previously identified limitations. First,
the method was successful in integrating the lin-
ear models of the different movement parameters,
as documented by the significant (figure 3 and table
S3) increase in correlation with respect to using
the PLS decoder alone. Second, the PLSKF had a
clear smoothing effect on the decoded trajectories
(figure 4(a)), which could finally have a similar fre-
quency content to the actual movement, despite the
more relaxed temporal filtering.

Similar Kalman filter approaches had already
been introduced in movement decoding studies from
invasive recordings, either based on intracortical
recordings [10, 14, 15] or electrocorticography [16].
Lv et al [26] used KF with EEG recordings to integ-
rate the information of decoded velocities. However,
the filter parameters were fitted to the calibration data
not only to regress the velocities from the EEG (mat-
rix H in equation (4)), but also for the process equa-
tion (i.e. matrix F), which might lead to overfitting to
the task. In addition, although the measurement vec-
tor z (equation (4)) was also a multi-lag concatena-
tion of EEG power features, no dimensionality reduc-
tion was implemented. In our study, a PLS-based
KF (PLSKF) approach was proposed for linear LF-
EEG-based decoding. In addition to the dimensional-
ity reduction properties of PLS regression, integrated
into the model when using the latent components as
measurement vector z instead of the complete EEG
(equations (7) and (8)), this version of PLSKF also
implements a general zero-jerk model (equation (6)),
which means that the process equation is not fitted
to the data and, therefore, it is potentially more gen-
eral. Given the generality of the approach, we believe
it could be easily extended to other cases where the
decoding models of different movement parameters
have to be combined for a better estimation of the
trajectories. For example, we recently demonstrated
[61, 62] that a non-linear extension of themodel with
unscented KF can successfully integrate non-linearly
related movement parameters (e.g. like velocities and
speed [63]) to further improve the estimation of the
trajectories.

4.2. Source space analysis: tuning of neural activity
to the velocities and activations in the
parieto-occipital areas
The source space analysis revealed that i) the strongest
activation patterns were the ones relative to velocit-
ies and accelerations and that, in both cases, ii) these
patterns were most prominent in parieto-occipital
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areas (SPL and DMOC, figures5(a) and (b), and sup-
plementary table S4). However, given the temporal
dependencies between movement parameters, cau-
tion should be taken when interpreting these results.

Neural tuning to movement direction has been
largely demonstrated in both monkeys and humans,
both through invasive and non-invasive recordings
[9, 13–16, 20, 22, 24, 25, 29, 32, 63–65]. The signi-
ficant activations found in our study for the velocit-
ies, i.e. a parameter related to movement direction,
are therefore in linewith literature. The localization of
the velocity activation patterns in the parieto-occipital
areas is also consistent with the findings of other stud-
ies. Our results are indeed very similar to the ones
obtained in the previous offline study of Kobler et al
[25]. The involvement of posterior parietal areas to
decode the velocities of the end-effector has finally
been demonstrated in [15].

While the neural tuning to velocities is quite estab-
lished in literature, it still remains unclear whether the
same can be said for the accelerations [15, 63]. The
significant activations in the parieto-occipital areas
(DMOC and SPL) that we found for the accelera-
tion patterns would therefore constitute a novel con-
tribution. However, due to the temporal dependen-
cies between movement parameters, special attention
needs to be paid when interpreting these results. Con-
sidering the cross-correlation curves in supplement-
ary figure S4, we can indeed see that the correlation
between velocities and accelerations in the −300 to
0 ms time-range (i.e. the time-range in which the
decoder patterns were extracted) is moderately high,
and that the accelerations lead (i.e. anticipate) the
velocities. Looking at the supplementary figure S3, we
can then see that the acceleration patterns at previous
time lags (e.g. −300 ms) are very similar to the velo-
city patterns at 0 ms, and the same similarities can be
found in supplementary table S4. Considering these
similarities and the temporal dependency between the
two movement parameters, we cannot rule out that
the significant ROI activations found for the acceler-
ations are actually of the same nature of the velocities,
i.e. that our experimental paradigm does not permit
to disentangle them.

Another question that may arise when looking at
the source space results is why the significant ROIs
encompassed mostly parieto-occipital areas, but we
could not find significant activations in the motor
areas. Considering indeed that the task involved
voluntary arm movement, a participation of both
parietal and motor areas could have been expec-
ted [8, 9, 11, 13, 15, 24, 25, 66–68]. It should be con-
sidered, however, that the task not only involved
voluntary movement, but also visual processing and
eye movements. As natural eye movements were
allowed during the experiment, participants could
track indeed the snake with their gaze, andmove their
arm accordingly. The presence of eye movements and
the additional visual processing may explain why the

activation of parieto-occipital areas was so promin-
ent [68] to mask the contribution of motor areas.
This interpretation is also in line with the results of
an offline study [25], showing that significant activ-
ations in the motor areas, masked during a visuo-
motor task, could only be revealed when contrasting
between executed and observed movement.

4.3. Amplitude of the decoder output
One important effect that we could observe in this
study is that the decoded trajectories were estimated
with consistently smaller amplitudes with respect to
the hand kinematics. The effect was already present
when using the PLS model alone and was not
improved by adding the Kalman filter, as it can
be observed in the sample decoded trajectories in
figure 4(a). The same effect can also be observed in
figure 4(b), showing that even though participants
were enlarging their movements, this did not influ-
ence the amplitude of the decoder output.

Although this amplitude mismatch could also
be observed in other non-invasive offline stud-
ies [25, 28, 60], it might represent a limitation
when translating to closed-loop online control. For
example, one related undesired effect in our experi-
ment was that the participants enlarged their move-
ments during the 33%, 66% and 100% EEG condi-
tion, to compensate for the smaller amplitudes of the
decoded output.

One hypothesis to explain the amplitude mis-
match may be that we only included in our model
information about movement direction, but not
about the corresponding magnitude. This directional
information, in our case, was carried by the pos-
ition, velocity and acceleration x and y compon-
ents. The corresponding information about the mag-
nitude, however, would have been represented by the
distance (for the positions), the speed (for the velocit-
ies) and the magnitude of the acceleration vector (for
the accelerations). Since previous studies could show
that neural activity carries information, for example,
about speed [63, 64], including this information in
the decoding model might be a possible approach
to alleviate the problem of amplitude mismatch. We
recently showed that incorporating distance [61] and
speed [61, 62] information in the decoding model
can lead to a better estimation of the movement
amplitude.

4.4. Questionnaire, task performance,
effect of feedback and adaptation
One positive aspect of the implemented paradigm is
that the participants consistently considered the task
to be very intuitive, engaging, and not complicated,
according to the analysis of the questionnaire res-
ults (supplementary figure S5). Even though these
features were suggested to be ideal to improve BCI
training [69], we could still observe a gradual loss of

13



J. Neural Eng. 17 (2020) 046031 V Mondini et al

control over the course of the experiment, as docu-
mented by both the participants’ impressions (sup-
plementary figure S7) and the task performance res-
ults (figure 6, right). Even though the level of control
shown in figure 6 was above chance level even in the
100% EEG condition, and that the majority of par-
ticipants (7 out of 9) reported to feel enough control
over the robot to be able to improvewith training, this
surely is an aspect that needs to be improved.

One element that influenced the results of this
study is the amplitude mismatch between the hand
kinematics and the EEG-based decoded trajectories
(figures 4(a) and (b)). Not only this mismatch might
have induced changes in the participants’ mental state
with respect to calibration, but it also changed the
participants’ behavior, as they naturally tended to
enlarge their movements as a compensation strategy
(figure 4(b)) with limited awareness of this (supple-
mentary figure S7).

Another indirect effect of the amplitude mis-
match was that it probably affected the perception
of delays. Although the participants reported to feel
increasing delays between movement and feedback
(supplementary figure S7), this was not confirmed
by the behavioral analysis (supplementary figure S8),
showing that the delays were not significantly chan-
ging over the course of the experiment. We believe
that the increased perception of delay might have
been an indirect effect of the amplitude mismatch:
since the EEG-based decoded trajectories had smal-
ler amplitudes with respect to the hand kinematics,
increasing the proportion of EEG control resulted in a
reduced responsiveness of the robot to the movement
amplitude, which might have given the impression of
larger delays.

A final observation that can be drawn from the
questionnaire results, is that the internal state of the
participants was changing over time. Although they
consistently reported to allocate most of their atten-
tion to the snake (and less to the robot or their hand)
during calibration, their strategies changed over the
course of the experiments, and varied among parti-
cipants (as it can be observed in supplementary fig-
ure S7). Switching the attention between the actors
(i.e. snake, robot and hand) might also have had an
influence on the decoder models, as the proportion
of visual processing (e.g. when focusing on the snake)
changes with respect to proprioception (e.g. when
focusing on the hand). It might be therefore benefi-
cial, to improve the quality of the decoding, by imple-
menting an adaptive scheme that deals with the ongo-
ing changes and progressively adjusts the decoder
parameters.

To summarize, we believe that the quality of
online control might be improved in two ways. On
the one hand, special attention needs to be paid
in the future to eliminate amplitude mismatches
when giving feedback to the users. On the other
hand, the implementation of co-adaptive approaches

(i.e. promoting the simultaneous adaptation of the
participant and the decoding model [70]) might
help to better deal with the feedback-induced non-
stationarities. It might be particularly helpful to deal
with changes in the participant’s mental state, by
adapting the decoder parameters to the changing con-
trol strategy.

5. Limitations

One of themain limitations of this studywas the pres-
ence of residual movement artifacts, visible on the
left side of the brain in the position activation pat-
terns (figure 5(b)). However, we believe that the influ-
ence of these movement artifacts was negligible for
the decoding. If the movement artifacts were contrib-
uting, then we should have seen higher correlations
in figure 3 for the positions during 33% and 66%
EEG control, because in these conditions the move-
ments were larger (figure 4(b)) and the users could
still accomplish the task verywell (figure 6, left panel).
However, since the correlations in figure 3 were not
increasing in these conditions, we can conclude that
the residual artifactual activity did not have a big
effect. One way to overcome this limitation in future
studies could be to set a different scaling between
hand and robot trajectories (e.g. 1:2), so to have smal-
ler arm movements and therefore reduce the possib-
ility of an artifact.

6. Conclusion

In this study, we could demonstrate for the first
time the feasibility of LF-EEG-based decoding for the
closed-loop control of a robotic arm. The potential
bottlenecks arising when switching from an offline to
an online decoding scenario were highlighted, along
with possible solutions to address them. A novel pos-
sible approach, named PLSKF, was introduced in this
sense. In addition to the dimensionality reduction
properties of PLS regression, the PLSKFwas proved to
be suitable for the online decoding and successful in
integrating the information from different decoding
models (here positions, velocities and accelerations).
Although there surely is room for improvement, we
could obtain online correlations between hand kin-
ematics and EEG-based decoded trajectories above
chance inmost of the cases. Source space analysis con-
firmed the localization in the parieto-occipital areas
of the velocity decoder patterns, in line with previous
literature. An amplitudemismatch between hand kin-
ematics and decoded trajectories was also found. The
influence of the amplitude mismatch on the behavi-
oral response of participants was discussed, partic-
ularly in the context of shared control like in this
study. The behavioral responses and impressions of
participantswhen progressively receiving feedback on
their decoded movements were captured and dis-
cussed. The level of control of the robot was overall
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above chance even in the condition of 100%EEG con-
trol. Most participants finally reported to feel enough
control over the robot to be able to improve with
training.

Altogether, the study takes a first step in the field
of continuous EEG-based movement decoding for
the closed-loop control of a robotic arm or neuro-
prosthesis. Other challenges, such as the influence of
reinforcement learning over multiple recording ses-
sions, the development of a co-adaptive approach to
improve training, or the minimization of the calibra-
tion time needed for the decoder, might be of interest
in the future.
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Abstract— Decoding upper-limb movements in invasive
recordings has become a reality, but neural tuning in non-
invasive low-frequency recordings is still under discussion.
Recent studies managed to decode movement positions and ve-
locities using linear decoders, even developing an online system.
The decoded signals, however, exhibited smaller amplitudes
than actual movements, affecting feedback and user experience.
Recently, we showed that a non-linear offline decoder can
combine directional (e.g., velocity) and non-directional (e.g.,
speed) information. In this study, it is assessed if the non-
linear decoder can be used online to provide real-time feedback.
Five healthy subjects were asked to track a moving target by
controlling a robotic arm. Initially, the robot was controlled by
their right hand; then, the control was gradually switched until
it was entirely controlled by the electroencephalogram (EEG).
Correlations between actual and decoded movements were
generally above chance level. Results suggest that information
about speed was also encoded in the EEG, demonstrating that
the proposed non-linear decoder is suitable for decoding real-
time arm movements.

I. INTRODUCTION

Current brain–computer interface (BCI) research is gently
moving from decoding categorical classes that represent cer-
tain actions (e.g., through motor imagery) toward decoding
continuous users’ movements [1]. In this sense, imagined
upper-limb movements were successfully decoded via inva-
sive recordings [2]; however, the usability of non-invasive
methods such as EEG for the same purpose is still under
discussion [3–7].

Previous studies demonstrated that kinematic information
of executed [3], [6], observed [6], [8] and imagined [5]
upper-limb movements is encoded in the low-frequency EEG
band, making it possible to decode positions and velocities
using linear algorithms, such as partial least squares (PLS)
regression [5], [6] or Kalman filters [8–10]. First offline
studies assessed whether neural tuning can be retrieved from
EEG [3], [5] and studied the locations of the cortical sources
[6]. A step further was performed in [10] to develop an
online decoder to control a robotic arm by adding a linear
Kalman filter based on a kinematic model. Even though this
approach demonstrated that a real-time EEG decoding of
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upper-limb movements is possible, there was a mismatch
in the amplitude range between the decoded and actual
movements. This amplitude mismatch has been observed in
previous works [4], [6], indicating that linear models were
not successful in extracting the amplitude or magnitude of the
kinematics (e.g., speed in the case of velocity). We recently
showed that non-directional (e.g., speed) and directional
(e.g., velocity) kinematics are simultaneously encoded in the
magnetoencephalogram [11] and EEG [8], and demonstrated
that linear models were not able to combine both kinematic
signals due to the non-linear relation [8], in contrast to an
unscented Kalman filter (UKF) [12].

The purpose of this study was to implement the UKF in
an online system to control a robotic arm and assess if it is
possible to decode executed upper-limb movements in real-
time. In order to alleviate the amplitude mismatch the UKF
decoded not only the positions and velocities, but also the
instantaneous speed.

II. MATERIALS AND METHODS

A. Subjects

Five right-handed healthy subjects participated in the study
(mean age: 28.2 ± 2.4 years; 2 males, 3 females). The
subjects gave their informed written consent and received
compensatory payment to participate in the study. The exper-
imental procedure, conforming to the declaration of Helsinki,
was approved by the local ethics committee.

B. Experimental setup and paradigm

The experimental setup is depicted in Fig. 1(A). The
subject was comfortably seated in front of a screen that
depicted a white target trace following a pre-defined trajec-
tory (i.e., “snake”). Three main devices were present: (1) an
EEG acquisition system, which monitored the electrical brain
activity; (2) a LeapMotion (LM, LeapMotion Inc., USA)
system, which tracked the position of the user’s right hand
(visually occluded); and (3) an assistive robotic arm (JACO,
Kinova Robotics Inc., Canada).

As in [10], the task of the user was to follow the snake’s
trajectory with the gaze and with the JACO. As shown in
Fig. 1(B), JACO was initially controlled by the arm move-
ments captured by the LM. That control was progressively
substituted by an EEG-based control up to the point of
being completely controlled by an EEG-based decoder at
the end of the experiment. The EEG decoder was calibrated
with 5 snake runs (100% LM, 0% EEG), and then used in
snake runs 6–7 (66% LM, 33% EEG), 8–9 (33% LM, 66%

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 2981



Fig. 1. (a) Experimental setup. The users were seated in front of a screen that depicted a continuous trajectory. The task was to follow the trajectory with
the robotic arm (JACO). (b) Paradigm of the study. During calibration, JACO was controlled entirely by the arm movements recorded with a LeapMotion
(LM) system. For the feedback runs, the control was reduced until JACO was fully controlled by the EEG.

EEG) and 10–11 (0% LM, 100% EEG). A run typically
lasted 5 minutes and was divided into 10 trials. The trials
lasted 24 s each and were interleaved with short breaks. Two
runs recording eye movements were also performed between
calibration blocks. They were used to train an eye artifact
correction algorithm according to [13]. After each control
condition (100%, 66%, 33% and 0% LM), a questionnaire
was fulfilled by the users to collect their impressions.

In order to avoid large movements and consequently mo-
tion artifacts, a trial was aborted if the user made movements
that were more than 12.5 cm away from the initial position.
We additionally decided to map the arm movements to larger
movements of JACO; the ratio was 1:2.

The snake’s trajectories were generated offline and were
the same across users. Twelve of them were generated by
sampling band-pass filtered pink noise (0.2–0.4 Hz) [14].
The final set of trajectories was extended by mirroring and
rotating (90o, 180o and 270o) this initial set, obtaining a total
of 96 different ones. This procedure assured uncorrelated
positions and velocities in both horizontal and vertical com-
ponents [6].

The EEG was recorded using a total of 60 active electrodes
(actiCAP, Brain Products GmbH, Germany), referenced to
the left earlobe and using AFz as ground. Four additional
channels were placed at the inferior (left), superior (left) and
outer canthi (both) of the eyes to record the electrooculogram
as well. All electrodes were connected to biosignal amplifiers
(BrainAmp, Brain Products GmbH, Germany) with a sam-
pling rate of 500 Hz. Exact locations of the electrodes were
initially measured using an ultrasonic positioning system
(EPLOS, Zebris Medical GmbH, Germany) for each user.

C. Signal processing pipeline

The signal processing pipeline is shown in Fig. 2. In
a nutshell, EEG signals were band-pass filtered (0.18–1.5

Hz), spatially filtered (common average reference, CAR)
and down-sampled to 20 Hz. The filter specifications were
identical to [10]. Pops and drifts were corrected by a high-
variance electrode artifact removal (HEAR) algorithm [15].
Eye movements and blinks were corrected with the sparse
generalized eye artifact subspace subtraction (SGEYESUB)
algorithm [13]. Then, PLS regression projected the EEG
data and reduced the dimensionality [5], [8], leading to the
final state decoding with a square-root UKF (SQ-UKF) [12].
Meanwhile, the LM signals were low-pass filtered (< 4 Hz)
and down-sampled to 20 Hz. The low-pass filter was used to
attenuate occasional jitters and measurement noise. Finally,
the real and decoded positions were weighted according to
the run and scaled (1:2 ratio) to match the movement range
of JACO over the screen.

D. EEG decoding of movements

The decoder aimed at estimating the movement state of the
user’s hand by analyzing the EEG. In particular, we focused
on decoding 5 different kinematics: positions px and py ,
velocities vx and vy and speed ς =

√
vx2 + vy2. The latter

was added to include information about the amplitude range
of the hand trajectories.

PLS regression was used to reduce the co-linearity of
the EEG signals and at the same time maintain kinematic
information. In detail, we used it to get an initial estimate of
the movement states by simultaneously finding the relation
between EEG (i.e., E) and LM signals, and reducing the
dimensionality to N = 40 latent components (explaining
70% of variance) [6], [10]. The activity of the latent com-
ponents is L̂ = EW ; where E ∈ Rn×m denotes the
calibration period EEG storing previous lags (n samples,
m = 64 channels × 7 lags ∈{-300 : 50 : 0} ms), and
W ∈ Rm×N is the weight matrix. PLS was computed using
the SIMPLS algorithm [16]. Afterward, the SQ-UKF, a non-
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Fig. 2. Online signal processing pipeline followed in this study, in which LM and EEG signals are combined to control the JACO arm.

linear Kalman filter approach, was applied to improve the
estimation of the states, assuming that the measurements (i.e.,
latent component activity) L̂ were noisy. As in [8], the SQ-
UKF initial parameters were fitted to the calibration data
using an encoding approach:

F = Cxkxk−1
(Cxkxk

)−1, (1)

Q = Cεqεq , where εq = Fxk−1 − xk, (2)

h(xk) = Cl̂kx+
k

(Cx+
k x

+
k

)−1 ·
[ xk

ς(xk)

]
, (3)

R = Cεrεr , where εr = h(xk)− l̂k, (4)

where F is the state-transition matrix, Q the process noise
covariance, h(·) the observation model, R the observation
noise covariance, and Ca,b denotes the covariance matrix
between two signals a and b. The state at time k is denoted
as xk = [px, vx, py, vy]Tk , becoming x+

k = [x, ς]Tk when
speed is included. Note that the non-linearity was included
in the measurement equation, whereas the process equation
was kept in its linear form. Finally, SQ-UKF returns an
estimate of the states x̂k in real-time, which is further used to
control the JACO arm. In the 100% LM condition, we used
a cross-validation approach to simulate the EEG decoder on
the calibration data (snake runs 1–5).

III. RESULTS

Fig. 3 depicts the main results concerning the quantitative
analysis. Correlations between the SQ-UKF decoded x̂k and
the actual LM xk movement state trajectories are shown for
all control conditions, including the upper bound confidence
interval of chance level (with significance α = 0.05), esti-
mated with a shuffling approach. Moreover, a representative
trial is displayed to qualitatively compare the amplitude and
shape of LM, PLS and SQ-UKF position trajectories, as
well as grand-averaged activation patterns for each kinematic
signal. Almost all correlations were above the significance
level, except positions and velocities of the Y-axis in the 0%
LM condition for some participants. Note that the grand-
averaged amplitude ratio between the LM movements and the
decoded ones was 1.07 ± 0.09, indicating that the amplitude
mismatch was negligible. The trajectories in Fig. 3(B) also
show that the amplitudes of the LM and SQ-UKF trajectories

were in a similar range, whereas the PLS decoded trajectories
indicated a large mismatch in amplitudes.

Qualitative analysis results are depicted in Fig 4. As
shown, the users found the task engaging and intuitive,
and highlighted that the experiment was neither physically
nor mentally demanding. From the questionnaires is also
revealed that the users paid more attention to the snake,
followed by their own hands, and finally to JACO. As
expected, the perceived level of control decreased as the
control by LM did. Some users’ declared that they felt to
be in control of the JACO even in the 100% EEG-based
control condition.

IV. DISCUSSION AND CONCLUSION

Correlations between the decoded and recorded LM sig-
nals indicate that the online EEG-based decoding of contin-
uous arm movements is feasible. Maximal correlations were
reached in the 100% LM condition (px: 0.63, vx: 0.68, py:
0.51, vy: 0.55), which progressively decreased as the fraction
of EEG-based decoding increased. Nevertheless, maximal
correlations for the 100% EEG control (px: 0.39, vx: 0.48,
py: 0.35, vy: 0.44) indicate that movement kinematics can
still be decoded in a fully EEG-driven BCI. Since the decoder
was fitted to 100% LM condition data and its accuracy was
moderate (average correlations of 0.45), the users naturally
started to compensate erroneous feedback of the EEG de-
coder in the shared control conditions. Due to the slight
difference in the movement behavior a performance decline
was expected. Overall, the correlations are comparable with
previous offline results [8], and improved the amplitude
mismatch upon the linear Kalman filter based online results
[10]. It is also noteworthy that the inclusion of JACO entailed
an additional delay between hand and robot movements
which, although similar across conditions, was perceived by
users as higher as the EEG-based control was.

Owing to the nature of the task; i.e., a low and very
limited frequency band, the possibility of observing spurious
correlations is real. For that reason, the upper boundary of
the chance level correlations (with significance α = 0.05)
were also calculated. Hence, they serve as a landmark to
compare with and assure that the decoding states are not
due to chance. Note also that the SQ-UKF works ideally for
this kind of task and thus, correlations are expected to decay
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Fig. 3. (a) Feedback runs correlations between the SQ-UKF decoding and the real LM arm movements for each condition and state (chance level is
depicted as a black line). (b) Sample trials of 20 s, in which the LM (dashed grey), the PLS decoding (dot-dash blue), and the final SQ-UKF decoding
(solid magenta) signals are shown. (c) Averaged activation patterns across subjects in top and back view for each state.

Fig. 4. Normalized questionnaire results regarding (left) the nature of the
task and (right) the level of attention users paid to the robot, hand and snake
trajectories during the 100% LM condition.

in a “free movement” task, where positions and velocities
are not zero-mean or have more variance.

Despite these positive results, we observed that the cor-
relations of the Y-axis kinematics were lower than the X-
axis ones. This decrease was especially influential in the
33% and 0% LM condition, leading to correlations near or
even at chance level. The rationale could be related to the
experimental setup. As shown in Fig. 1(a), the screen was
tilted towards the Y-axis to ease the movement of JACO. This
leads to a setup in which the perception of vertical move-

ments is ambiguous in comparison with horizontal ones. In
other words, to perceive a vertical movement of ∆d in Y-
axis, JACO needs to move a distance of d = ∆d/ sin (θ),
where θ ∼ 45o is the vertical angle of the screen (i.e., for
the X-axis, d = ∆d). This mismatch could influence the
perception of the target snake, hindering the encoding of
vertical movements. However, further experiments should be
carried out in order to determine the actual cause of the
phenomenon, since it was not observed in [10]. A decreasing
trend of LM signals in 33% and 0% condition trials was also
observed, implying that users began to perform movements
slightly shifted from the home position. Hence, they lost
the initial reference (i.e., origin of coordinates) due to the
unawareness of their own hand position when feedback was
almost or entirely EEG-based. This behavior could also
influence the final decoding.

One of the drawbacks of previous linear studies was that
the amplitude of the decoded EEG signals was lower than
the actual arm movements [10], causing the users to enlarge
their movements to compensate the decoded trajectories. As
shown in Fig. 3(b) and [8], this issue has been alleviated
by the inclusion of speed in the state space model, leading
to an average amplitude ratio of 1.07. Even though speed
is linearly encoded in the EEG signals, its relationship with
velocities is non-linear. A non-linear approach like the UKF
was successful in combining the information and thereby
improve the estimation [8].

Concerning the source analysis of the patterns that
effectively contributed to the SQ-UKF decoding, we found
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activations over the parieto-occipital areas, especially for the
velocities. The patterns for positions seem unfocused, with
the exception of a demarcate activation on the right occipital
lobe only for px, which is likely due to a noisy channel. Both
results are in accordance with previous studies that associate
neural tuning to velocities [6], [10]. As shown in Fig. 3(c),
the main activations for speed were over the anterior part of
the frontal cortex, close to the primary motor cortex; which
can be viewed as a novel result. Note that this observation
is slightly different to [8], where speed-related activations
peaked in primary sensorimotor cortex. This difference could
also be explained by the limited spatial resolution of the
source analysis. The resolution was limited since we used
a template head model that we co-registered with the users
specific electrode locations.

From the questionnaire results, it was clear that the users
were satisfied with the task, reporting that they could feel the
control of the JACO, even in 33% and 0% LM conditions.
Users reported that the task was engaging, intuitive and easy;
which were highlighted to be ideal features for BCI training
[17] and make users open to participate in further related
studies. In general, the strategy of the users was to focus
mainly on the snake, putting less attention to their hands
or JACO. By focusing on the trajectory, they could ignore
possible unexpected shifts in 66%, 33% or 0% conditions
due to the decoder, as well as the delay between LM and
JACO. In that way, they also avoided performing movements
to compensate inaccurate JACO shifts.

The experimental outcomes not only supported that infor-
mation about upper-limb positions and velocities are encoded
in the EEG [6], [8], [10], but also demonstrates that infor-
mation about speed is present and can be extracted in real-
time to improve the position and velocity decoder accuracy.
In conclusion, a non-linear decoder based on SQ-UKF has
been proved to be suitable for decoding user movements from
non-invasive recordings in real-time, providing moderate
correlations.

In spite of these encouraging results, several limitations
were identified. Firstly, the users were not aware of their
own upper-limb positions when EEG decoding gained im-
portance, leading to shifts from the home position that may
influence the final decoding. This issue could be addressed
by depicting a pointer that indicates the current LM posi-
tion on the screen. Secondly, the Y-axis decoding yielded
lower correlations than X-axis. Further work is required to
investigate the reason and adapt the setup to overcome this
limitation. Lastly, the number of users that participated in
the study was limited (5 participants). An additional effort
to recruit more participants, or even motor-disabled users, is
necessary to generalize these results.
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