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Abstract

Depth reconstruction is a fundamental problem in many computer vision applications. Although
calculating depth is one of the oldest and most researched topics in computer vision, there are still
many challenges to be resolved. Repetitive structures, di�erent lighting conditions, re�ections,
oversaturated and undersaturated image areas, occlusions etc. make the stereo problem even
more di�cult. �e main goal of developing novel stereo methods is to be robust against these
challenges. Current research mainly focuses on Deep Learning (DL) approaches to automatically
learn robust models. However, these models require a large amount of training data and o�en
have di�culty in generalizing to new scenes.

In this work, we propose new structured models that consist of Convolutional Neural Networks
(CNNs) together with Conditional Random Fields (CRFs) and Variational Networks (VNs) coming
from discrete or continuous optimization. �is enables us to get the best of both worlds: the power
and expressiveness of DL as well as the structure and interpretability of the optimization. We use
the two opposite methods speci�cally where they work best. For this purpose, we learn on the
one hand optimal features for matching with a CNN , since it is unclear how optimal features can
be hand-cra�ed. On the other hand, we use optimization to bring prior knowledge into our model
and generalize it with modern, learnable elements. �is allows us to explicitly prefer slanted
surfaces and add global information to the problem, which is not easy with traditional CNNs.

In order to demonstrate the applicability and robustness of the proposed CNN + CRF models,
we apply them to the stereo task. �e experiments show that these hybrid models make it possible
to signi�cantly reduce the number of learnable parameters while at the same time achieving
excellent performance in the stereo benchmarks. Of particular note are the results of the high-
resolution Middlebury 2014 benchmark. Our CNN + CRF method is one of the few DL-based
methods that can be used for high-resolution images and also has an excellent ratio of performance
and runtime.

Since the CNN + CRF models naturally lead to a discrete disparity map, we propose a re�nement
module with a hybrid CNN + VN model. �is makes it possible to learn a higher-order regularizer
speci�cally for the stereo task. Our experiments show that our proposed module can signi�cantly
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reduce discretization artifacts, reduce artifacts in occlusions and, as a result, deliver the desired
sub-pixel accurate disparity maps.

We furthermore tackle the problem of acquiring ground-truth data for stereo. Due to the
geometric properties of the stereo problem, it is not possible to create this data manually. Instead,
expensive hardware is required. To overcome this limitation, we propose a method based on
self-learning to automatically generate training data for stereo. Our experiments show that we can
not only successfully train DL-based models with our generated training data, but also signi�cantly
improve the performance of the resulting models.

Keywords: Stereo, CNN+CRF, VN, Optimization, Deep Learning, Self-Learning



Kurzfassung

Tiefeninformation ist ein wichtiger Bestandteil für viele Computer-Vision-Anwendungen. Ob-
wohl die Berechnung von Tiefe eines der ältesten und am meisten erforschten �emen in der
Bildverarbeitung ist, gibt es nach wie vor viele Herausforderungen zu lösen. Repetitive Struk-
turen, unterschiedliche Lichtverhältnisse, Re�exionen, über- und untergesä�igte Bildbereiche,
Verdeckungen usw. machen das Stereoproblem noch schwieriger. Das Hauptziel der Entwick-
lung neuartiger Stereomethoden ist es, gegenüber diesen Herausforderungen robust zu sein. Die
aktuelle Forschung konzentriert sich hauptsächlich auf DL-Ansätze, um automatisch robuste
Modelle zu lernen. Diese Modelle benötigen jedoch eine große Menge an Trainingsdaten und
haben häu�g Schwierigkeiten, auf neue Szenen zu generalisieren.

In dieser Arbeit schlagen wir Hybridmodelle vor, die aus CNNs zusammen mit CRFs und VNs
bestehen und aus der diskreten oder kontinuierlichen Optimierung stammen. Dies ermöglicht es
uns, das Beste aus beiden Welten herauszuholen: die Ausdruckskra� von DL sowie die Struktur
und Interpretierbarkeit der Optimierung. Wir verwenden die beiden entgegengesetzten Methoden
speziell dort, wo sie am besten funktionieren. Zu diesem Zweck lernen wir einerseits optimale
Features für den Vergleich mit einem CNN , da unklar ist, wie optimale Features von Hand erzeugt
werden können. Andererseits verwenden wir die Optimierung, um Vorwissen in unser Modell
einzubringen und sie mit modernen, lernbaren Elementen zu verallgemeinern. Dies ermöglicht
es uns, geneigte Ober�ächen explizit zu bevorzugen und dem Problem globale Informationen
hinzuzufügen, was mit herkömmlichen CNNs nicht einfach möglich ist.

Um die Anwendbarkeit und Robustheit der vorgeschlagenen CNN + CRF-Modelle zu demon-
strieren, wenden wir sie auf das Stereoproblem an. Unsere Experimente zeigen, dass es diese
Hybridmodelle ermöglichen, die Anzahl der lernbaren Parameter signi�kant zu reduzieren und
gleichzeitig eine hervorragende Leistung bei den Stereo-Benchmarks zu erzielen. Besonders
hervorzuheben sind die Ergebnisse auf dem hochau�ösenden Middlebury 2014-Benchmark. Un-
sere CNN + CRF-Methode ist eine der wenigen DL-basierten Methoden, die für hochau�ösende
Bilder verwendet werden können und außerdem ein hervorragendes Verhältnis von Leistung und
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Laufzeit aufweisen.
Da die CNN + CRF Modelle natürlicherweise zu einer diskreten Disparitätskarte führen,

schlagen wir ein Verfeinerungsmodul mit einem hybriden CNN + VN Modell vor. Dies ermöglicht
es, einen Regularisierer höherer Ordnung speziell für das Stereoproblem zu lernen. Unsere Exper-
imente zeigen, dass unser vorgeschlagenes Modul Diskretisierungs- und Verdeckungen-Artefakte
signi�kant reduzieren und als Ergebnis die gewünschten subpixelgenauen Disparitätskarten
liefern kann.

Zusätzlich beschä�igen wir uns mit dem Problem der Erfassung von Referenzdaten für Stereo.
Aufgrund der geometrischen Eigenscha�en des Stereoproblems ist es nicht möglich, diese Daten
manuell zu erstellen. Sta�dessen ist teure Hardware erforderlich. Um diese Einschränkung zu
überwinden, schlagen wir eine Methode vor, die auf dem Selbstlernen basiert, um automatisch
Referenzdaten für Stereo zu generieren. Unsere Experimente zeigen nicht nur, dass DL-basierte
Modelle nicht nur mit unseren generierten Referenzdaten erfolgreich trainiert werden können,
sondern auch, dass die Leistung der resultierenden Modelle erheblich verbessert wird.

Keywords: Stereo, CNN+CRF, VN, Optimierung, Deep Learning, Self-Learning
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1
Introduction

Within the last years, Machine Learning (ML) and especially Deep Learning (DL) have become
the most successful tools in computer vision. Many ideas, including Arti�cial Neural Networks
(ANNs), the back propagation algorithm [105], etc., have been invented already decades ago. At
that time the training of ANNs was very tedious due to the limited computational power and the
learned models generalized poorly [26]. However, the renaissance started in 2012 when these
ideas have been successfully applied to large-scale problems in practice. Back then, Krizhevsky
et al. [100] paved the path to large-scale DL by exploiting the Graphics Processing Unit (GPU)
for training deep Convolutional Neural Networks (CNNs) stochastically. �e stochastic training
and the additional power and parallelization on GPUs allowed for the �rst time to train on huge
datasets including billions of images [42]. �e massive amount of training data together with the
expressiveness of CNNs yielded a signi�cant performance gain on the image classi�cation task
without the severe over��ing problem. �enceforth, the whole �eld of computer vision moved
towards using deep CNNs and pushed the performance to previously unimaginable areas. �is
is also re�ected in many computer vision benchmarks, where models using CNNs outperform
classical, non-learned models by a signi�cant margin. For example, the best performing method
on the Ki�i Stereo benchmark [132], which does not use a CNN at all [200], is only ranked at
position 199 (!).1 �is shows impressively that DL is an irreplaceable tool in modern computer
vision. �eoretically, neural networks are universal function approximators [41, 228]. Although it
is tempting to let the model learn a speci�c task directly, it is o�en a bad and naive idea. Instead,
it turns out that it is advantageous to explicitly incorporate structure into the model. In this thesis,
we provide structure to our models through optimization. �is allows to explicitly incorporate
prior knowledge about speci�c tasks, which does not have to be additionally learned by the model.
�erefore, as a result we o�en get more lightweight models which are i) faster to train and ii)
o�en generalize be�er to previously unseen data.

1http://www.cvlibs.net/datasets/kitti/eval scene flow.php?benchmark=stereo accessed on 17th July, 2020.
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1.1 Machine Learning and Optimization – A Symbiosis

ML and optimization are tightly connected to each other. Many ML problems are a (large-) scale
optimization problem in their core. E�cient optimization algorithms are therefore required in
order to �nd optimal parameters for the ML models. We will see this connection in Section 2.5,
where we are introducing important optimization algorithms. Although the algorithms presented
come from the literature on convex optimization [5, 140], these algorithms are also frequently
and successfully used to train machine learning models. However, ML and optimization are not
the same as also argued by Benne� and Parrado-Hernández [9]. �ey rather form a symbiosis.
ML research focuses on designing new models for speci�c tasks using e.g. tools from statistics
and probability theory [64]. �ere, the optimization algorithms are viewed as a tool that should
be easy to use. In di�erence, the focus in optimization is more on e�ciency, speed in terms of
convergence properties, robustness and theoretical guarantees without having a speci�c target
application. �is symbiosis between ML and optimization is also evident in research, where ML
triggers optimization research and vice versa. On the one hand, new results from the optimization
literature are o�en used in ML, because they enable to train e.g. more complex models e�ciently,
which was not possible before. On the other hand, ML also triggers optimization research. An
important example is the training of deep CNNs, which poses a large-scale, nonlinear and non-
convex optimization problem. �eoretical results from the literature on convex optimization are
no longer valid and thus new theoretical results are required.

In this work, we show how ideas originating from optimization can be used to introduce
structures into ML models. We investigate and propose methods to seamlessly integrate Con-
ditional Random Field (CRF) into DL models in Chapters 3 and 4. �is enables us to explicitly
incorporate global structure in terms of pixel neighborhoods and leads to a global optimization
problem. We integrate structure into our ML models by interpreting the layers of a CNN as the
iterations of an optimization algorithm, too. �is technique is called algorithm unrolling and
guides the architecture of the resulting ML model. We successfully use this technique in Chapter 5
and show that we can gain interpretability of what the model learns. We explicitly exploit the
provided e�ciency by the optimization algorithm and transfer it to our ML models in both variants.
Furthermore, we can also build up on mathematically sound theoretical results which yield ML
models designed in a principled way. �erefore, optimization is not only a necessary tool for
training ML models, but also a principled tool for designing new DL models.

1.2 Stereo

Solving the stereo problem is the main task we want to tackle with the methods presented in
this thesis. �erein, the goal is to compute depth information from images. We will mainly focus
on the canonical stereo problem, where two images are captured at the same time, but from
slightly di�erent viewpoints. �is is di�erent to the Multi-View-Stereo (MVS) problem where we
have more than two views possibly captured at di�erent times, which we will only tackle brie�y
in Chapter 6.
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Figure 1.1: Stereo matching on recti�ed images. �e le� image shows the reference image together
with a reference point/patch. �e task is to �nd the corresponding point in the right image on the
epipolar line. �e green line depicts the epipolar line, which corresponds to an image row.

Let us now describe the (canonical) stereo problem formally. To this end, we consider images
to be continuous functions � : Ω → ℝ� , where Ω ⊂ ℝ2

+ is the domain of our images (usually a
rectangle) and� is the number of channels being 1 for gray-scale images and 3 for Red-Green-Blue
(RGB) color images. Note that we can always convert discrete images to continuous images by
interpolation and vice versa by sampling. �en, given two recti�ed images �0, �1 : Ω → ℝ� from a
calibrated camera pair, the goal is to �nd the displacements 3 : Ω → ℝ2, such that

�0(x) = �1(x − 3 (x)), (1.1)

where x ∈ Ω are the pixel coordinates and 3 (x) = (31(x), 32(x))>. In the recti�ed stereo setup
31 are the sought horizontal displacements which are referred to as disparities and measured in
pixels. Due to the recti�cation and the epipolar constraint we have 32(x) = 0 everywhere.

In the following we will review and discuss the generic stereo taxonomy by Scharstein and
Szeliski [171]. It consists of the four steps

1. Matching cost computation,

2. Cost (support) aggregation,

3. Disparity computation / Optimization,

4. Disparity re�nement.

Additionally, we will also discuss possible features which can be used for the matching cost
computation.

Matching Cost Computation Equation (1.1) is also known as the Brightness Constancy As-
sumption (BCA) [72]. �erein, the central assumption is that the brightness (=intensity) of a pixel
remains the same when viewed from di�erent cameras. In order to �nd pixels ful�lling the BCA,
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we need to solve the pixel-wise optimization problem

min
3

∫
Ω
5
(
�0(x), �1(x − 3 (x))

)
3x, (1.2)

where the matching cost function 5 : Ω2 → ℝ measures the similarity between a pixel in the
reference image �0 and the second image �1, respectively. Hence, we want to �nd for every pixel
position x the displacement 3 (x) yielding the minimal matching cost or equivalently the maximal
matching similarity. Equation (1.2) is also known as the correspondence problem. Note that Eq. (1.2)
decouples over the individual pixels. A visualization explaining Eq. (1.2) is shown in Fig. 1.1. To
this end, let us next review classical matching cost functions. Since pixel-wise matching is not
robust we de�ne the matching cost functions on patches. For the sake of simplicity, we assume
here patches of a are discrete image which can be represented by a matrix of size " ×# or vector
of size "# , respectively. Let us denote a patch in the reference image centered at position x with
p = (?1, . . . , ?"# ) and a patch in the second image centered at the shi�ed position x − 3 (x) with
q = (@1, . . . , @"# ). One of the most o�en used matching cost function are the Sum of Squared
Di�erencess (SSDs) de�ned as

5((� (p, q) = ‖p − q‖22 (1.3)

where ‖·‖22 is the squared ℓ2-norm (see Section 2.2.2). �is is probably the simplest matching
cost and works very well in many conditions. In di�erence, the matching cost Sum of Absolute
Di�erencess (SADs) is de�ned as

5(�� (p, q) = ‖p − q‖1, (1.4)

where we have replaced the ℓ2-norm with an ℓ1-norm which is known to be robust against outliers.
Another alternative is the Normalized Cross Correlation (NCC) [110] de�ned as

5#�� (p, q) =
∑"#
8=1 (?8 − ?̄) (@8 − @̄)√∑"#
8=1 (?8 − ?̄)2(@8 − @̄)2

(1.5)

where

?̄ =
1

"#

"#∑
8=1

?8 @̄ =
1

"#

"#∑
8=1

@8 (1.6)

are the mean of the patches p and q, respectively. �e NCC is a similarity measures where larger
values re�ect more similarity. �us, we have to add a minus in Eq. (1.5) to make it a cost measure.
In di�erence to the SAD and SSD the NCC is invariant to a�ne intensity changes and thus o�en
more robust.

�ere are many more classical similarity measures used in stereo such as e.g. Mutual Informa-
tion [71], etc. Recently, also learned matching cost functions using a CNN have been proposed as
e.g. done by Kendall et al. [78]. We refer the reader to these papers for more information about
these matching costs.
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Local Features Brightness information, as used in Eq. (1.2), is simple to use but o�en ambiguous.
For example, the color of the roof of the church in Fig. 1.1 is the same for all roof pixels. �us, it is
impossible to �nd the correct corresponding point using only brightness or color information.
�is problem can be mitigated by �rst extracting features i0, i1 : Ω → ℝ� out of the images and
then using the features in the correspondence problem. Taking this into account leads to the new
optimization problem

min
3

∫
Ω
5 (i0(x), i1(x − 3 (x)))3x, (1.7)

where we compute the matching cost on the feature representations instead of on the brightness
information. Note that we can still use the similarity measures shown in the previous paragraph.

It remains to answer the question of which features should be actually used in Eq. (1.7). Classical
features are e.g. Scale Invariant Feature Transform (SIFT) features [117], the Census Transform [216]
or the Rank Transform [216]. Although these features have been heavily used in classical stereo
methods [171], the question of which features are the best for patch comparison is remaining.
Unfortunately, the answer to this question is unknown. �erefore, modern approaches propose
to learn optimal features for stereo matching with a CNN and show signi�cant performance
improvements compared to classical methods [132]. Learning optimal features for matching
and integrating them into the stereo pipeline lies at the core of this thesis. We refer the reader
to Chapters 3 to 6 for more information about the actual architecture for feature learning for the
stereo task.

Cost Volume and Cost Aggregation Equipped with a matching cost and a feature represen-
tation of the two input images we can build a cost volume. To this end, we �rst de�ne a continuous
setD = [0, �] representing the possible disparities, which we can then use to de�ne a cost volume
�0 : Ω × D → ℝ for a speci�c disparity 3 : Ω → D as

�0(x, 3) = 5 (i0(x), i1(x − 3 (x))). (1.8)

�e cost volume contains all the necessary information about the stereo problem and can thus
be used as an input for further processing steps. To this end, we can use the initial cost volume
�0 to compute a new cost volume, where we aggregate information over local support regions.
Formally, this can be de�ned as

� (x, 3) = (F ∗�0) (x, 3), (1.9)

where we convolve a weight �lter F with the cost volume �0. We can use either 2D or 3D
weights forF . 2D weights are applied at �xed disparities and fast to compute. However, they favor
fronto-parallel surfaces which can be sub-optimal. In di�erence, 3D weights also allow for slanted
surfaces, but come with a higher computational cost. �e weightsF can be e.g. computed based on
a bilateral �lter [189] in the color and disparity domain or using cross-based cost aggregation [222].
For more methods used for cost aggregation in the stereo se�ing the reader is referred to [171].
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Disparity Computation Using the cost volume, we can directly compute the Winner Takes
All (WTA) solution to the stereo problem using

3∗ ∈ arg min
3

∫
Ω
� (x, 3)3x, (1.10)

which corresponds to the solution of the local stereo problem, because we considered only local
information in order to compute the cost volume. Figure 1.2b shows a visualization of a local
stereo result computed with Eq. (1.10). It shows that local matching is not su�cient in order to get
high-quality disparity maps as a result. �is is especially a problem in untextured regions of the
image and in occlusions. Also map uniqueness [230], i.e. that one pixel from the reference image
can only match to exactly one pixel in the second image, is not modeled in the WTA solution.

Optimization To tackle the problems of local stereo methods, we can add global information
to the stereo problem. �is results in the new global optimization problem

min
3
� (3) + '(3), (1.11)

where 3 : Ω → ℝ is the disparity map. �e function � is called data term capturing local
information measuring how well the disparity 3 agrees with the observed input images. �e
function ' is called the regularizer. As we will show in Section 2.4.3, the regularization term has a
strong connection to the prior in the Bayesian probability se�ing. It can therefore be used to inject
prior knowledge about the stereo problem and prefer physically plausible solutions. A commonly
used regularizer is based on a smoothness assumption de�ned on neighboring pixels. For the
stereo problem this means that we want to avoid small and isolated regions and prefer slanted
surfaces and sparse depth discontinuities. �is can be seen in Fig. 1.2c, where we have eliminated
almost all the noise compared to the WTA solution in Fig. 1.2b.

�ere are many possible instantiations of the optimization problem (1.11). We will use two con-
trary formulations in this thesis. In the �rst formulation Eq. (1.11) is de�ned by a CRF , which poses
a discrete optimization problem (c.f . Chapters 3, 4 and 6). Second, we formulate the optimization
in the continuous domain (c.f . Chapter 5).

Disparity Refinement Many stereo algorithms compute integer valued disparity maps, which
could, however, introduce discretization artifacts. In order to get a sub-pixel accurate disparity
map, we need to perform a disparity re�nement step. �is can be e.g. done by ��ing a quadratic
function to the matching cost [118, 220]. Furthermore, there are also works proposing to learn the
re�nement of disparity maps with CNNs [80, 84]. Figure 1.2d shows the e�ect of a learned stereo
re�nement method. We will tackle stereo re�nement in Chapter 5.
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(a) Reference Image [169] (b) Local Stereo [87]

(c) Global Stereo [87] (d) Re�ned Global Stereo [84]

Figure 1.2: Comparison of local, global and re�ned stereo results on the Adirondack image [169].
Disparity values are color coded from cold = far away to warm = close to the camera.

1.3 Contribution and Outline

In this thesis we are interested in combining DL with classical discrete and continuous optimization
models/techniques. It will turn out that this allows us to get the best out of both worlds: �e
power and expressiveness of DL and the e�ciency and interpretability of classical optimization.

• CNN+CRF models We consider the generic optimization problem (1.11) in the discrete
se�ing. While many methods in the stereo literature learn features for matching cost com-
putation [120, 220], they apply the global optimization only as a post-processing. However,
the resources are not fully exploited in this se�ing, because it is impossible to learn a robust
matching term for homogeneous regions. In contrast, this is perfectly possible for the
regularizer in the optimization. We therefore show how to enable end-to-end learning of the
CNNs together with the CRF via a Structured Support Vector Machine (SSVM) formulation.

• Generic CNN+CRF framework �e end-to-end learning in the previous point is only
possible if the CRF is the last layer of the model. Here, we get rid of this restriction and
therefore enable to integrate CRF inference layers at any position in the model. �us, we
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can now build hierarchical models, where the output of the CRF from a coarse resolution
is used as an input for the next �ner resolution – everything fully end-to-end trainable.
Furthermore, we introduce a generic dynamic programming building block which allows
us to instantiate multiple CRF inference algorithms together with their gradient.

• CNN + variational optimization One disadvantage of discrete graphical models such as
CRFs is that their output is discrete. �is is unnatural for the geometrical stereo problem.
�erefore, we consider here a continuous variant of the generic optimization problem
de�ned in Eq. (1.11). Speci�cally, we tackle the stereo-re�nement task. �is allows to get
rid of the discretization artifacts from the discrete solution of a CRF and yields sub-pixel
accurate solutions.

• Learning without labeled data CNNs usually require a large amount of labeled training
data. However, for stereo it is very di�cult and also expensive to get labeled data because
hand-labeling is clearly out of reach. We therefore propose to exploit geometrical constraints,
which we can use to automatically generate training data for the stereo problem. �is allows
to train high-performance models also on datasets, where no ground-truth data exists.

Outline Chapter 2 gives an overview of all relevant topics to understand the later chapters
describing the contributions. We have therefore grouped the related work section into Discrete
Optimization, Continuous Optimization and Machine Learning. Discrete Optimization covers the
basics of probabilistic graphical models such as Markov Random Fields (MRFs) and CRFs, relates
the probabilistic interpretation to energy minimization and shows how we can perform inference
in these models. �ese sections are especially relevant for Chapters 3, 4 and 6.

In the section Continuous Optimization, we review the most important concepts of convex
analysis together with convex optimization algorithms. Many of the presented algorithms are
also used in ML in order to �nd optimal parameters for the model.

Section 2.6 gives an overview of the di�erent kinds of ML and shows the most important
building blocks for CNNs. Furthermore, we discuss model training and show how the objective
function can be derived from risk minimization.
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1.4 Notation

We use the subscripts + and ++ to restrict a set to positive and strictly positive values. For
example, we write ℝ+ to denote positive real values and ℝ++ to denote strictly positive real values,
respectively. Upper-case le�ers such as", # ∈ ℕ+ are used to specify e.g. the number of elements
of a vector or the size of an image.

We consider images to be functions � : Ω → ℝ� , where Ω ⊂ ℝ2
+ is the domain of the function

and� is the number of channels which is 3 for an RGB-color images. If the image size is important,
we specialize the domain to Ω"# B {1, . . . , "} × {1, . . . , # }, which corresponds to a matrix of "
rows and # columns.

We use bold-face lowercase le�ers to denote a column vector such as e.g. x = (G1, . . . , G# )
and thus a row vector is denoted by x>. Similarly, we use bold-face uppercase le�ers to denote
matrices, e.g. M. By convention we always index matrices row-major, i.e. the element "8 9 is the
matrix element in row 8 and column 9 . We use curly le�ers for general sets, e.g. X,Y.

�e notation {1, . . . , # } denotes a discrete set. Here, we have de�ned the integer values from
1 to # . Similarly, the notation [0, 1] denotes the closed interval from 0 to 1, i.e. the values 0 and 1
are included to the interval. In di�erence, the notation (0, 1) denotes the open interval from 0 ∈ ℝ
to 1 ∈ ℝ, where 0 and 1 are not included in the interval. �us, (0, 1] would denote a half-open
interval excluding 0 but including 1.





2
Related work

2.1 Probability Theory

Probabilities allow us to incorporate uncertainty into our models and thus enable to make optimal
predictions with noisy, incomplete or ambiguous data. We give a brief overview of the basics of
probability theory in this section. We refer the reader to [63] for a more complete overview of
probability theory.

2.1.1 Probabilities and Random Variables

A discrete random variable is denoted by capital le�er - and can take values from a �nite set
X called state space. �e realization that a random variable takes a speci�c value is denoted by
- = G , indicating the event that the random variable - takes the value G . �e complete probability
distribution is denoted by ? (- ) and ful�lls the two properties i) 0 ≤ ? (G) ≤ 1 ∀G ∈ X and ii)∑
G ∈X ? (G) = 1. We denote the probability of an event - = G by ? (- = G), which is equivalent

to the shortcut ? (G). Hence, we use the notation to distinguish between the whole probability
distribution ? (- ) and the probability of an event ? (G). Let - and . be two random variables
which can take values from the state spaces X andY. �en, the joint probability distribution over
these two random variables is denoted by ? (-,. ) and ? (G, H) denotes the probability of the event
that - = G and . = H . A conditional probability distribution is denoted by ? (- |. ), which reads
as “the probability of - given . ”. We can also group # random variables to one random vector of
size N, i.e. X = (-1, . . . , -# ), which we denote by a bold face capital le�er.

2.1.2 Probability Calculus

�e probability framework contains two fundamental rules, the product rule of probability and the
sum rule of probability. Let - and . be random variables with their corresponding state spaces X
and Y. �en,the product rule of probability is de�ned as

? (-,. ) = ? (. |- )? (- ), (2.1)

11
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where ? (-,. ) is the joint distribution over - and . , ? (. |- ) is the conditional distribution of
. given - and ? (- ) is the distribution over - . Note that we can similarly factorize the joint
distribution as ? (-,. ) = ? (- |. )? (. ). �e sum rule of probability is de�ned as

? (- ) =
∑
H∈Y

? (-,. = H), (2.2)

where ? (- ) is the distribution over - and ? (-,. ) is the joint distribution over - and . . �e
sum-rule of probability in Eq. (2.2) shows that we can marginalize out one variable. Hence,
marginalizing means applying the sum-rule to remove the dependence on one variable. �erefore,
the resulting probability distribution ? (- ) in Eq. (2.2) is also called marginal distribution. We can
also marginalize over - to get a distribution only dependent on . , i.e. ? (. ) = ∑

G ∈X ? (- = G,. ).

Bayes Theorem �e most fundamental equation in probability theory is Bayes theorem also
known as Bayes rule. It is de�ned as

? (. |- )︸  ︷︷  ︸
Posterior

=

Likelihood︷  ︸︸  ︷
? (- |. )

Prior︷︸︸︷
? (. )

? (- )︸︷︷︸
Evidence

, (2.3)

which can be computed by e.g. applying the product rule Eq. (2.1) twice. �e individual terms
in Eq. (2.3) are denoted by likelihood, prior, evidence and posterior. To illustrate their purpose
consider the se�ing where - is the random variable for the data and . is the random variable
for the labels. �en the likelihood ? (- |. ) describes how likely the data is given the label. �e
prior ? (. ) captures information we know in advance. For example we could encode here that
some labels are more likely than others and thus inject prior knowledge. �e evidence is used
to normalize the resulting posterior distribution ? (. |- ) appropriately. �e posterior de�nes the
distribution a�er (= lat. post) we have evaluated the right-hand side and thus incorporates all the
information necessary to make predictions given unseen data. �e task of computing ? (. |- ) is
called probabilistic inference.

2.1.3 Decision Theory

As shown in the previous section, the posterior distribution ? (. |- ) in Eq. (2.3) is a probability
distribution. However, eventually we have to make a prediction which should be optimal in some
sense. We will investigate two possibilities here, the Maximum-A-Posteriori (MAP) solution and
the expected solution.

MAP solution �e MAP decision is given by

Ĥ"�% = argmax
H∈Y

? (H |G), (2.4)
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Figure 2.1: MAP vs Expectation. �e MAP solution is uncharacteristic for this probability distribu-
tion, while the expected solution re�ects the characteristic of the probability distribution.

where Ĥ"�% ∈ Y can only take values from the state space Y and is referred to as the maximum
a-posteriori solution. Equation (2.4) tells that we should select the most probable solution. �is
also makes sense intuitively and it can indeed be shown that the MAP solution actually minimizes
the misclassi�cation rate [12]. �us, this is the preferred decision rule for Classi�cation problems.

Expected solution A second option is to decide for the expected solution. We can compute
the expected solution with

ĤE = E.∼? ( · |G) [. ] =
∑
H∈Y

H? (H |G), (2.5)

where ĤE can also take values that are not in the state spaceY. �is is e.g. bene�cial if sub-classes
exist and can be used to recover a sub-label accurate solution. A second property of the expected
solution is shown in Fig. 2.1. It can be seen that the expected solution re�ects the characteristic of
the probability distribution be�er than the MAP solution. �e expected solution (2.5) minimizes
the expected loss [12].

2.2 Mathematical Preliminaries

Let us de�ne the necessary mathematical preliminaries in this section. We will use these basic
concepts throughout the thesis.

2.2.1 Inner Product

An inner product on a vector space V = ℝ# is de�ned as the function 〈·, ·〉 : V → ℝ. An inner
product ful�lls the properties

(1) Symmetry: 〈x, y〉 = 〈y, x〉 for any x, y ∈ V.
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Figure 2.2: Visualization of ℓ?-unit-balls. Note that ℓ0.5 is not a norm.

(2) Additivity: 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ V.

(3) Homogeneity: 〈_x, y〉 = _〈x, y〉 for any x, y ∈ V and _ ∈ ℝ.

(4) Positive de�niteness: 〈x, x〉 ≥ 0 for any x, y ∈ V and 〈x, x〉 = 0 i� x = 0.

�e inner product is given by the vector dot product on V = ℝ# as

〈x, y〉 B x>y =

#∑
8=1

G8H8 , (2.6)

and by
〈x, y〉M B x>My, (2.7)

on a symmetric and positive de�nite matrix M ∈ ℝ#×# .

2.2.2 Vector Norms

A norm ‖·‖ on a vector space V = ℝ# is de�ned as a function ‖·‖ : V → ℝ mapping from a vector
space V to the real numbers ℝ. A norm ful�lls the properties

(1) Nonnegativity: ‖v‖ ≥ 0 for any v ∈ V.

(2) De�niteness: ‖v‖ = 0 i� v = 0.

(3) Positive Homogeneity: ‖_v‖ = |_ | · ‖v‖ for any v ∈ V and _ ∈ ℝ.

(4) Triangle Inequality: ‖v +w‖ ≤ ‖v‖ + ‖w‖ for any v,w ∈ V.

If property (2) is not satis�ed, it is called a semi-norm and a vector space V with a norm is called a
normed vector space. Additionally, an inner product on V induces a norm on V via ‖v‖ B

√
〈v, v .

�e Q-induced norm or the norm in the metric Q, respectively, is de�ned as

‖v‖Q B
√
〈v, v〉Q =

√
v>Qv , (2.8)

where Q ∈ ℝ#×# is a symmetric and positive de�nite matrix.
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ℓ?-norm Let us next investigate the ℓ?-norm. �e ℓ?-norm is de�ned as

‖v‖? =

(
#∑
8=1
|E8 |?

) 1
?

, (2.9)

where v = (E1, . . . , E# ) ∈ V is a vector and ? ∈ [1,∞) is a parameter. Note that if ? < 1, then Eq. (2.9)
de�nes no longer a norm, because then the triangle inequality is no longer ful�lled. Figure 2.2
shows a visualization of di�erent ℓ?-norm balls. Additionally, we will de�ne three special cases of
the ℓ?-norm in the upcoming paragraphs.

ℓ1-norm �e ℓ1-norm is also referred to as Manha�an norm and can be computed by se�ing
? = 1. We thus get the de�nition of the ℓ1-norm

‖v‖1 =
#∑
8=1
|E8 |. (2.10)

ℓ2-norm �e ℓ2-norm is the probably most o�en used norm, which corresponds to our
interpretation of distance in the Euclidean space. �erefore, the ℓ2 norm is also called Euclidean
norm. We set ? = 2 and get the de�nition of the ℓ2-norm

‖v‖2 =

√√√
#∑
8=1
|E8 |2 . (2.11)

Sometimes we will omit the explicit subscript and use the simpler notation

‖v‖ = ‖v‖2. (2.12)

ℓ∞-norm �e last important norm is the so-called ℓ-in�nity norm. It is a special case of the
ℓ?-norm and can be computed by

‖v‖∞ = max
8=1,...,#

{|E8 |} , (2.13)

which is the maximal absolute component of v.

2.2.3 Matrix Norm

Let ‖·‖? and ‖·‖@ be vector norms on ℝ# and ℝ" , respectively. Given a matrix A ∈ ℝ"×# , the
induced matrix norm is de�ned as

‖A‖?,@ B max
x∈ℝ# : ‖x‖? ≤1

‖Ax‖@ = sup
x∈ℝ# \{0}

‖Ax‖@
‖x‖?

, (2.14)
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which immediately implies the important inequality

‖Ax‖@ ≤ ‖A‖?,@ ‖x‖? (2.15)

revealing the relation between vector norms and matrix norms. If ? = @, then we use the shortcut
‖A‖? = ‖A‖?,@ .

As an example, let us next consider the 2, 1-matrix norm given by

‖M‖2,1 =
"∑
8=1

������
√√√ #∑

9=1
|"8 9 |2

������ , (2.16)

which is o�en used in optimization for computer vision.

1, 2 and∞Matrix Norms If ‖·‖? = ‖·‖@ = ‖·‖1, then the induced norm of a matrix A ∈ ℝ"×#

is given by

‖A‖1 = max
9=1,2,...,#

#∑
8=1
‖�8 9 ‖, (2.17)

which is the largest absolute column sum norm. For ‖·‖? = ‖·‖@ = ‖·‖2 we obtain the spectral
norm

‖A‖2 =
√
_max(A>A) = fmax(A), (2.18)

which corresponds to the largest singular value of A. If ‖·‖? = ‖·‖@ = ‖·‖∞, the induced norm of a
matrix A"×# is given by

‖A‖∞ = max
8=1,2,...,"

"∑
9=1
|�8 9 |, (2.19)

which is the largest absolute row sum norm.

Frobenius Norm �e Frobenius norm is an example of a matrix norm, which is not an induced
norm. It is de�ned by

‖A‖� B

√√√ #∑
8=1

"∑
9=1
�2
8 9
, (2.20)

where A ∈ ℝ"×# .

Scha�en Norm A class of matrix norms that are based on ℓ? norms of the singular values
f8 (A) with 8 = 1, . . . ,min{", # } is called Scha�en norm. For ? ≥ 1 it is given by

‖A‖(? =

(min{",# }∑
8=1

(f8 (A))?
) 1
?

. (2.21)
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2.2.4 Adjoint Operator

Let V = ℝ# and E = ℝ" be vector spaces and A : V → E a linear transform. �en the adjoint
linear transform A∗ : E→ V is de�ned as

〈Ax, y〉E = 〈x,A∗y〉V, (2.22)

where x ∈ ℝ# and y ∈ ℝ" . Since we work on V = ℝ# and E = ℝ" , the adjoint transform is
given by the usual matrix transpose A∗ = A>, because

〈Ax, y〉 = (Ax)>y = x>(A>y) = 〈x,A>y〉. (2.23)

2.2.5 Properties of functions

Domain of a function �e domain of a proper extended real-valued function 5 : V → (−∞,∞]
is wri�en as

dom(5 ) B {x ∈ V : 5 (x) < ∞}. (2.24)

Lower Semi-Continuous A function 5 : V → [−∞,∞] is lower semi-continuous at x ∈ V if

5 (x) ≤ lim inf
=→∞

5 (x=) (2.25)

for any sequence {x=}=≥1 ⊂ V for which x= → x when = → ∞. �e whole function is lower
semi-continuous if it is lower semi-continuous at every point x ∈ V.

2.3 Optimization problems in Computer Vision and Machine
Learning

In many situations in research, industry, but also in life we aim to �nd the “best” option out
of a range of choices for a speci�c problem. Optimization is a discipline of mathematics which
provides tools and recipes to �nd these best options in a structural way. An important family of
optimization problems speci�cally suitable for practical problems arising in computer vision and
machine learning can be de�ned in terms of energy minimization problems

min
x
� (x) B � (x) + '(x), (2.26)

where x ∈ ℝ# is the # -dimensional optimization variable and � : ℝ# → ℝ is the objective
function, which is o�en referred to as energy function. It consists of a data term � (x) and a
regularization term '(x). �e data term measures thereby the compatibility between the measure-
ments and our current choice of x and the regularization term is used to impose regularity and
smoothness on the result. �e “min” in Eq. (2.26) states that we want to �nd a solution having the
lowest energy and thus Eq. (2.26) poses an optimization problem. Note that the result of Eq. (2.26)
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is a scalar stating the energy of the optimal solution. However, sometimes we are also interested
in the argument yielding minimal energy. Formally, this can be wri�en as

x∗ ∈ arg min
x
� (x) (2.27)

where we have changed the “min” with “arg min” to get the optimizer x∗. We generally denote
optimal solutions of optimization problems with an asterisk in the super-script. We have used
“element of” instead of “equality” to denote that there could be multiple optimizers yielding the
same energy.

Depending on the domain and on the actual structure imposed by the function � in Eq. (2.26)
di�erent optimization algorithms are appropriate. In this thesis we generally distinguish between
discrete (c.f . Section 2.4) and continuous (c.f . Section 2.5) optimization problems. Both discrete
and continuous problems have di�erent properties and thus di�erent algorithms are required.
Finding e�cient algorithms for speci�c practical problems is the central goal in optimization. We
will review the most important problems as well as suitable algorithms for solving them in the
upcoming sections.

2.4 Discrete Optimization

Discrete optimization is a sub-discipline of optimization, where the optimization variable can
only a�ain discrete values. In the computer vision community discrete optimization problems
are o�en referred to as labelling problems, where the discrete values encode integer-valued labels
{1, 2, . . . }. Depending on the task at hand the labels can then be interpreted as e.g. disparities
in the stereo problem or semantic classes in the semantic segmentation problem. Due to the
grid-structure of the pixel-grid in natural images, we are mainly interested in (probabilistic)
undirected graphical models such as Markov Random Fields (MRFs) or Conditional Random Fields
(CRFs). �ey can be represented by grid-graphs as shown in Fig. 2.3 and we will review them
in detail in the upcoming sections. �e material presented in this section is partly based on the
excellent textbooks [14, 143, 168]. Note that we will not cover directed graphical models which
are known as Bayes Networks here. For more information on Bayes Networks we refer the reader
to e.g. [12, 92].

2.4.1 Markov Random Fields

MRFs are undirected probabilistic graphical models de�ned as a graph G = (V, E) consisting of a
set of verticesV and a set of edges E. Vertices are also o�en referred to as “nodes” and thus we
will use both terms interchangeably in this thesis. �e structure of the graph G thereby de�nes
the relations between the nodes. A sample MRF is depicted in Fig. 2.3, where the nodes of the
graph are visualized as blue circles and the edges in the graph are visualized as connecting lines.
Denoting the label-set with Y, every node in the graph represents a discrete random variable
.8 ∈ Y. �us the MRF actually de�nes a probability distribution ? (.1, . . . , . |V |). �e graphical
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Vertices

Edges

Pairwise Cost

Unary Cost

Figure 2.3: Overview of a pairwise MRF . Vertices (= nodes) de�ne random variables and the edges
encode conditional dependence of random variables. Unary costs are de�ned on every node and
pairwise costs are de�ned on pairs of nodes visualized as edges.

visualization in Fig. 2.3 also directly reveals that an MRF encodes factorization properties of the
underlying probability distribution ? and thus shows the conditional dependence of the individual
random variables .8 . It can for example be seen that every node is only dependent on its direct
neighbors (encoded by the edges), but not on all the other nodes present. �is property is also
referred to as the Markov property.

An MRF de�nes a family of joint probability distributions over a random vector Y, obeying
factorization properties given by the graph structure. Formally, it is de�ned via the Hammersley-
Cli�ord theorem [37] as

? (Y) = 1
/

∏
2∈C

q2 (Y), (2.28)

where the product is de�ned on the set of cliques C in the graph. A clique is a subgraph of G in
which every node is connected with every other node. In computer vision, we work mainly with
(hidden) pairwise MRFs. �e factorization of this model can be wri�en down in terms of unary
potentials and pairwise potentials with

? (Y|x) = 1
/ (x)

∏
8∈V

q8 (.8 ;G8)
∏
(8, 9) ∈E

k8 9 (.8 , .9 ), (2.29)

where the unary potentials q8 : X × Y → ℝ are the factors for every node 8 and the pairwise
potentialsk8 9 : Y ×Y → ℝ are the factors of the edges de�ned on pairs of nodes. Note that we
index all nodes inV with scalar indices 8 and all edges in E with tuple indices (8, 9). �us, the
index does not refer to the same node/edge in the two products. �e constant / (x) is known
as the partition function and used to appropriately normalize the probability distribution ? . �e
normalization / is given by

/ (x) =
∑

y∈Y |V|

©«
∏
8∈V

q8 (H8 ;G8)
∏
(8, 9) ∈E

k8 9 (H8 , H 9 )
ª®¬ , (2.30)

where the summation is de�ned over all possible labelings. Note, however, that it is usually
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(a) Verbose MRF

Node   Node   Edge   

La
be
ls

(b) Detailed node

Figure 2.4: Verbose visualization of a MRF / CRF . Le�: �e graph G = (V, E) of a MRF / CRF
showing the connection between all source and target labels. Right: A zoomed variant of the two
nodes in the red rectangle describing the core parts of the MRF / CRF .

intractable to compute / for real-world problems. To see this, we consider an MRF de�ned on
the pixels of a tiny image with size 10 × 10. Let us further assume the task is a binary labeling
problem, i.e. |Y| = 2. �en the summation in Eq. (2.30) would have 210·10 = 2100 terms which is
intractable to compute.

Let us now investigate the de�nition of an MRF given in Eq. (2.29) in detail. First, us-
ing Eqs. (2.29) and (2.30), we observe that an MRF is strongly related to Bayes’ rule in Eq. (2.3). We
can associate the unary potentials to the likelihood, the pairwise potentials to the prior, / (x) to
the evidence and the le�-hand side to the posterior. Let us next consider the verbose visualization
showing all available labels and edges shown in Fig. 2.4a. If we compare this visualization with
the formal de�nition in Eq. (2.29), we see that the nodes together with labels depict exactly the
unary potentials q8 . Here, every node can take one out of three states, i.e. |Y| = 3. �e edges in
the graph depict the joint probability between neighboring pairs of nodes. By counting the edges
between neighboring nodes, it is easy to verify that we have nine states for the joint probability.
�is �ts perfectly to the de�nition of the pairwise potentialsk8 , which are de�ned on the Cartesian
product Y ×Y. Hence, the edges encode the jump probability from every source label to every
target label. Figure 2.4b shows a detailed visualization of a node pair including the possible states.

We also want to note that an MRF always yields a probability distribution as a result for every
node and not directly a single estimate. Depending on the inference algorithm (c.f . Section 2.4.4),
the resulting probability distribution corresponds to the max-marginals or to the (true) marginals
of every node. �ese resulting marginal distributions are bene�cial in two regards: First, we can
use tools from decision theory (c.f . Section 2.1.3) to make our decision based on the complete
distribution and second we automatically get a con�dence for our decision, since we can simply
evaluate the probability of our choice.
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(a) Reference image (b) Edge weights

Figure 2.5: Exploiting information from the observation. Le�: �e “Pipes” images from the
Middlebury [169] benchmark. Right: Edge weights extracted from the image using [87], where
dark regions encode low jump costs and bright encodes high jump costs. Note that the edge
weights can be directly used to encourage label jumps at strong object boundaries like e.g. around
the pipes and discourage label jumps in homogeneous regions as e.g. on the pipes.

2.4.2 Conditional Random Fields

Conditional Random Fields (CRFs) [102] are an important variant of MRFs. Similar to the MRF
de�ned in Eq. (2.29) the CRF also de�nes the posterior distribution ? (Y|x). However, the factor-
ization into the likelihood ? (x|Y) and prior ? (Y) is no longer explicitly modeled [102]. Instead,
the posterior distribution is directly modeled with unary and pairwise potentials. �is will turn
out to be bene�cial in practice, since we can provide additional information to the pairwise term.
�us, we can de�ne a CRF as the conditional probability distribution

? (Y|x) = 1
/ (x)

∏
8∈V

q8 (H8 ;G8)
∏
(8, 9) ∈E

k8 9 (H8 , H 9 ;G8 , G 9 ), (2.31)

where we have used the shorthand ? (Y|x) = ? (Y|X = x) with x ∈ X and added the dependence on
the observation in all factors, i.e. q8 andk8 9 . We have separated the labels and the observation with
a semi-colon, i.e. “;”. In order to avoid clu�er, we will not always explicitly write the dependence
on x in the factors if it is clear from the context. Similar as in Eq. (2.30) for the MRF we can now
compute the partition function for the CRF as

/ (x) =
∑

y∈Y |V|

©«
∏
8∈V

q8 (H8 ;G8)
∏
(8, 9) ∈E

k8 9 (H8 , H 9 ;G8 , G 9 )
ª®¬ .

Let us next brie�y investigate why the additional dependence on the observation is bene�cial
in practice. �is explicit dependence on the observation allows for example to adjust the pairwise
potentials based on the actual image content. In many computer vision problems we want to
encourage label jumps on object edges and discourage label jumps in homogeneous regions. We
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Figure 2.6: Fully connected CRF . From le� to right: input image, unary only, %= CRF of [91], fully
connected CRF with Markov Chain Monte Carlo (MCMC) inference, fully connected CRF of [98].
Image courtesy of [98].

can use image gradients to modulate the pairwise potentials by increasing the jump probability if
there is a strong gradient and decrease the jump probability if the image gradient is low. Figure 2.5
shows an exemplary edge map which was used exactly for this purpose.

CRF variants An important variant is the fully connected CRF. It has been mainly used for
semantic segmentation problems [98, 225]. �e main property of the fully connected CRF is
that every node is connected to every other node in the graph. �is is also known as dense
connectivity. Dense CRFs therefore exhibit long range interactions. �ey allow for nodes to be
directly dependent on spatially distant nodes and thus inject additional context as shown in Fig. 2.7.
Figure 2.6 shows a comparison of a higher-order CRF and the fully connected CRF from the paper
of Krähenbühl and Koltun [98]. �e dense connectivity is of course the main advantage of the fully
connected CRF . However, there is also a price to pay to keep inference tractable. �e potentials are
restricted to be Gaussian which are known to be non-robust against strong outliers. Nevertheless,
this allows to compute the optimal solution e�ciently using �ltering (see [98] for details).

In this thesis, we are mainly interested in geometrical problems. Although the fully connected
CRF has many nice properties, it implicitly encodes a fronto-parallel assumption. �is is perfectly
�ne for semantic segmentation, but a signi�cant limitation for stereo, where we actually want to
get slanted surfaces instead. We will show in Chapters 3 and 4 that 4-connected CRFs are be�er
suited for geometrical problems.

A second family of CRFs are Gaussian CRFs [196]. �e advantage of Gaussian CRFs is that an
exact solution can be computed in closed form. However, they are restricted to Gaussian potentials
and thus not robust against outliers by design.
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(a) Fully connected neighborhood (b) 4-connected neighborhood

Figure 2.7: Fully connected vs 4-connected neighborhood. �e fully connected neighborhood has
the advantage that information from distant neighbors can be used to compute the label for the
current node. �is is indicated by the green shaded nodes in (a). (b) shows the same region with a
4-connected neighborhood. �e center node does not get direct information from any other green
tree-node. Image adapted from [98].

2.4.3 Energy Minimization for MRF/CRF

We have motivated MRFs and CRFs in the probabilistic se�ing in Section 2.4.1 and Section 2.4.2,
respectively. As we will see in Section 2.4.4, we will perform energy minimization to compute
the marginal distribution ? (Y|x), i.e. the le�-hand side of Eq. (2.31). �erefore, we show here the
connection between probability maximization and energy minimization.

We start from the original de�nition in Eq. (2.31) and get

? (Y|x) = 1
/ (x)

∏
8∈V

q8 (H8)
∏
(8, 9) ∈E

k8 9 (H8 , H 9 ) (2.32)

=
1

/ (x)
∏
8∈V

exp (−68 (H8))
∏
(8, 9) ∈E

exp
(
−58 9 (H8 , H 9 )

)
(2.33)

=
1

/ (x) exp
(
−

∑
8∈V

68 (H8)
)

exp ©«−
∑
(8, 9) ∈E

58 9 (H8 , H 9 )
ª®¬ (2.34)

=
1

/ (x) exp ©«−
∑
8∈V

68 (H8) −
∑
(8, 9) ∈E

58 9 (H8 , H 9 )
ª®¬ (2.35)

=
1

/ (x) exp (−� (y; x)) , (2.36)

where we have omi�ed the explicit dependence on x in the unary and pairwise potentials. �e
function

� (y; x) =
∑
8∈V

68 (H8) +
∑
(8, 9) ∈E

58 9 (H8 , H 9 ) (2.37)



24 Chapter 2. Related work

is called energy function and the exponential representation in Eq. (2.36) is a Gibbs1 distribution [59]
known from statistical mechanics. �e term energy originates from mechanics and is commonly
used in optimization literature as a synonym for an objective function. �e functions 68 (H8) and
58 9 (H8 , H 9 ) correspond to the negative log-likelihood of the potential functions, i.e.

68 (H8) = − logq8 (H8), q8 (H8) = exp(−68 (H8)) (2.38)

and
58 9 (H8 , H 9 ) = − logk8 9 (H8 , H 9 ), k8 (H8 , H 9 ) = exp(−58 9 (H8 , H 9 )), (2.39)

respectively. Equipped with the result (2.36), we now show how we can compute the solution
with highest probability in terms of energy minimization:

argmax
y∈Y |V|

? (y|x) = argmax
y∈Y |V|

1
/ (x) exp (−� (y; x)) (2.40)

= argmax
y∈Y |V|

−� (y; x) (2.41)

= arg min
y∈Y |V|

� (y; x), (2.42)

where we note that Eq. (2.42) is exactly an instance of the generic optimization problem introduced
in Eq. (2.26). �is result nicely shows the tight connection between energy minimization and
probability maximization.

Relation between Probabilistic Perspective and Energy Minimization Perspective As
we have shown in the previous section, the probabilistic and energy minimization perspective are
closely related. However, there are also di�erences between them which we want to show here.
�e probabilistic interpretation provides in addition to the optimal solution also a con�dence for
this solution in terms of a probability. �is is simply a result of the le� hand side of Eq. (2.32)
which actually de�nes the marginal distribution over the labels given the input, i.e. ? (Y|x). �is
probability distribution not only allows to compute the MAP solution (shown in Eq. (2.40))
corresponding to the mode of the distribution, but we can also compute the expected value. �is
can be done for every pixel 8 as follows:

E.8∼?8 ( · |X=x) [.8] =
∑
H∈Y

H?8 (H |X = x), (2.43)

which can be bene�cial for some problems.

1Also called Boltzmann distribution
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?

Figure 2.8: Chain sub-problem of an MRF . �e nodes are visualized as vertical rectangles and
contain here 3 circles representing the possible labels and the edges are represented as lines
connecting neighboring nodes. �e green path denotes the optimal path through the chain. It is
the shortest path through the graph and corresponds to the MAP solution. Note that such a graph
is also referred to as “Trellis” graph.

2.4.4 Inference Algorithms

Using the graphical models de�ned in Sections 2.4.1 and 2.4.2, we typically want to make predic-
tions with these models. From now on we will apply all results to CRFs, but of course all presented
algorithms can be also used for MRFs. In order to use our CRF to make predictions, we need to
compute the marginal distribution for every node 8 by marginalizing out all nodes but node 8 . As
a result we get marginal distributions ? (.8 |x) capturing information of all other nodes given the
graph structure. �e task of computing this marginal distribution is referred to as probabilistic
inference.

2.4.4.1 Dynamic Programming

Dynamic Programming (DP) is a standard algorithm invented by Bellman [7] to compute the
shortest path through acyclic graphs. We derive the DP algorithms here on a chain graph similar
as visualized in Fig. 2.8. To this end, let us assume we have given a chain graph G = (V, E)
consisting of # nodes and # − 1 edges connecting neighboring nodes. As usual, every node 8 can
take labels form a label set Y, i.e. H8 ∈ Y. Using these de�nitions, we can quantify the cost of all
possible paths with the energy

� (H1, . . . , H# ) =
#∑
8=1

68 (H8) +
#−1∑
8=1

58,8+1(H8 , H8+1), (2.44)

where the functions 68 quantify the cost of selecting one speci�c label for node 8 and the functions
58,8+1 quantify the transition cost from node 8 to node 8 + 1. Note also that Eq. (2.44) is just a special
case of the energy shown in Eq. (2.37) used in a CRF . Given the energy de�ned in Eq. (2.44), we
want to

1. compute the path through the graph yielding minimal cost and

2. the cost of the optimal path.
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Figure 2.9: Visualization of the belief computation for node 8 . �e nodes are enumerated from
1 to # . A�er the message passing the forward messages contain for every node the gathered
information from node 1 to node 8 denoted by the arrow and the dashed vertical line at the le� of
node 8 . 68 denotes the unary costs and the backward messages hold the information from node #
to 8 .

�us, we have to solve the optimization problem

min
H1,...,H#

� (H1, . . . , H# ) . (2.45)

By expanding Eq. (2.45), we see that we can split up the optimization problem into sub-problems
and get

min
H1,...,H# ∈Y#

� (H1, . . . , H# ) = min
H1,...,H# ∈Y#

#∑
8=1

68 (H8) +
#−1∑
8=1

58,8+1(H8 , H8+1) (2.46)

= min
H2,...,H# ∈Y#−1

(
min
H1
61(H1) + 51,2(H1, H2)︸                        ︷︷                        ︸

<2 (H2)

)
+

#∑
8=2

68 (H8) +
#−1∑
8=2

58,8+1(H8 , H8+1) (2.47)

= min
H3,...,H# ∈Y#−2

(
min
H2
<2(H2) + 62(H2) + 52,3(H2, H3)︸                                       ︷︷                                       ︸

<3 (H3)

)
+

#∑
8=3

68 (H8) +
#−1∑
8=3

58,8+1(H8 , H8+1) (2.48)

= · · · = min
H# ∈Y

<# (H# ) + 6# (H# ), (2.49)

where<8 (H8) is called the (forward) message sent from node 8 − 1 to 8 . More compactly, we can
write the DP algorithm as

<8+1(C) = min
B∈Y

<8 (B) + 68 (B) + 58,8+1(B, C), 0 < 8 < # − 1, <1(B) = 0, (2.50)

where B ∈ Y is the label of the source node and C ∈ Y is the label of the target node. Apply-
ing Eq. (2.50) to a problem is also referred to as message passing [152] and the variables<8 are
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Algorithm 1: Dynamic Programming on a Chain
Input: Unary costs 6, pair-wise costs 5
Result: Optimal path y∗

// Propagate in chain direction

1 for 8 ∈ {1, 2, . . . # − 1} do
2 <�

8+1(C) = min
B∈Y

<�
8 (B) + 68 (B) + 58,8+1(B, C) ; /* Eq. (2.50) */

3 end for

// Propagate in reverse chain direction

4 for 8 ∈ {#, # − 1, . . . 2} do
5 <�

8−1(C) = min
B∈Y

<�
8 (B) + 68 (B) + 58−1,8 (B, C) ; /* Eq. (2.50) */

6 end for

// Compute optimal path

7 for 8 ∈ V do
8 18 (H8) = 68 (H8) +<�

8 (H8) +<�
8 (H8) ; /* Eq. (2.51) */

9 H∗8 = arg min
H8 ∈Y

18 (H8) ; /* Eq. (2.52) */

10 end for
11 return y∗

called messages. Note that the message passing also re�ects the Markov property, i.e. that a speci�c
node is only dependent on its direct neighbors.

In order to compute the optimal labeling we need to apply the DP algorithms shown in Eq. (2.50)
twice, i.e. in chain direction and in reverse chain direction.

Let us denote the messages computed in chain direction as forward messages<�
8 (C) and the

messages computed in reverse chain direction as backward messages<�
8 (C). �e forward messages

can be directly computed with Eq. (2.50). To compute the backward messages the chain is indexed
in reverse order with indices 8 ∈ {#, # − 1, . . . , 2}. Figure 2.9 shows which information is gathered
by the forward and backward messages, respectively. For every node 8 , the forward messages
contain the min-marginals until node 8 (without 8), where the nodes {1, . . . , 8 − 1} have been
marginalized out already. Similarly, the backward messages contain the min-marginals until node
8 (without 8), where the nodes {#, . . . , 8 + 1} have been marginalized out already. �us, in order to
compute the min-marginals it remains to add the unary information to the forward and backward
messages, i.e.

18 (H8) = 68 (H8) +<�
8 (H8) +<�

8 (H8) (2.51)

for every node 8 . �e min-marginals are also o�en referred to as the more general term beliefs.
Next, we can use the min-marginals to compute the optimal path. �is can be done by

computing the element-wise Winner Takes All (WTA) solution

H∗8 = arg min
H8 ∈Y

18 (H8), (2.52)
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iL j
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U

(a) Message Passing

iL R

D

U

(b) Belief Readout

Figure 2.10: Visualization of the update rules in the belief propagation algorithm. �e green color
indicates the send-direction of the message. Here, the message is sent from node 8 to node 9 . �e
uppercase le�ers L, R, U, D denote the Le�, Right, Up and Down neighbors of node 8 .

where the asterisk in the super-script denotes the optimal labeling. Note that this variant of DP
using the min-marginals does not require additional backtracking. All the information required
to compute the optimal labeling is already captured in the min-marginals. Algorithm 1 shows the
complete dynamic programming algorithm as de�ned in this section.

Depending on the task, the DP algorithm is also called Viterbi algorithm [198] in Hidden Markov
Models or Belief propagagtion on a chain [168] in the probabilistic se�ing. �e DP algorithm is
exact for acyclic graphs such as trees and chains and the optimal solution can be computed with
one forward-backward sweep through the graph. Note that the DP interpretation of the algorithm
is di�erent based on the task. In general, the algorithm can be used to compute the shortest path
through a graph. However, this can also be interpreted as e.g. an optimal labeling in a classi�cation
task.

�e DP algorithm cannot be used directly to perform inference in a CRF because it contains
loops and is thus not an acyclic graph. Nevertheless, we will see later in Chapter 4 how the DP
algorithm can be used as a generic building block for CRF inference.

2.4.4.2 (Loopy) Belief Propagation

Next we want to investigate belief propagation. We will �rst describe the belief propagation
algorithms, max-product and sum-product belief propagation, in their most general form for
grid graphs used in CRFs as de�ned in Eq. (2.31) and show how they can be used to perform
inference in the CRF . It will turn out that belief propagation de�nes a whole family of algorithms
on grid-graphs. �en, we will also show the relation to DP presented in the previous section and
derive numerically stable algorithms suitable for implementation.

To get started, recall from Section 2.4.2 Conditional Random Fields that a CRF has nodes
8 ∈ V , which are pair-wise connected with edges (8, 9) ∈ E. Every node can take labels from
our label set, i.e. H8 ∈ Y. Equipped with the notation and the se�ing, we can now de�ne belief
propagation.
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Max-Product Belief Propagation Max-Product belief propagation consists of the two steps
message passing and belief readout. �e former is de�ned as

<̃8 9 (H 9 ) = max
H8 ∈Y

q8 (H8)k8 9 (H8 , H 9 )
∏

=∈N(8)\9
<̃=8 (H8), (2.53)

where <̃8 9 denotes a message sent from node 8 to node 9 andN(8) is the set of neighboring nodes.
Figure 2.10a shows a visualization of the message passing procedure. �e la�er, i.e. the belief
readout, is de�ned as

18 (H8) =
1
/̃8
q8 (H8)

∏
=∈N(8)

<̃=8 (H8), (2.54)

where18 are called beliefs of node 8 and /̃8 is the normalization constant ensuring that the beliefs are
a valid probability distribution. �e belief readout can be interpreted as aggregating information
from the neighboring nodes. Figure 2.10b shows a visualization of the belief readout. �is speci�c
belief propagation version shown in Eq. (2.53) is called Max-Product Belief Propagation. �e name
is simply derived from the fact that we take the maximum of a product in every message update
step. �e max-product algorithm can be used to compute the beliefs which correspond to max-
marginals here. Note the similarity to the min-marginals we computed in Eq. (2.51). To get a �nal
prediction out of the beliefs we can again simply compute the WTA solution, which corresponds
to the MAP solution and is given by

H∗8 = argmax
H8 ∈Y

18 (H8), (2.55)

where the asterisk denotes the estimated solution. We cannot guarantee that we �nd the optimal
solution for grid-graphs and it is known that inference in grid-graphs is an NP-hard problem [38].
Nevertheless, the algorithm works o�en very well in practice. Note that, in order to compute the
MAP solution as done in Eq. (2.55), we do not need to compute the normalization constant /8
because rescaling does not a�ect the minimizer in Eq. (2.55).

Log-Domain �e belief propagation algorithm is usually not directly implemented using
Eqs. (2.53) and (2.54) because the products therein cannot be computed in a numerically stable
way. �is is, because the functions q and Ψ represent probabilities and a product of probabilities
results in very small values. Propagating these small values yields tiny values and therefore the
computation can become numerically unstable. To avoid this problem, the algorithm is usually
implemented in the log domain. �is allows to replace the products with summations, which
can be implemented in a numerically stable way. Let us derive the log message updates for the
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max-product belief propagation (2.53) �rst. We therefore compute the (negative) log messages

<8 9 (H 9 ) = − log
(
<̃8 9 (H 9 )

)
(2.56)

= − log
(

max
H8 ∈Y

q8 (H8)k8 9 (H8 , H 9 )
∏

=∈N(8)\9
<̃=8 (H8)

)
(2.57)

= −max
H8 ∈Y

log
(
q8 (H8)k8 9 (H8 , H 9 )

∏
=∈N(8)\9

<̃=8 (H8)
)

(2.58)

= −max
H8 ∈Y

log
(

exp(−68 (H8)) exp(−58 9 (H8 , H 9 ))
∏

=∈N(8)\9
exp(−<=8 (H8)

)
(2.59)

= −max
H8 ∈Y

log
(

exp
(
− 68 (H8) − 58 9 (H8 , H 9 ) −

∑
=∈N(8)\9

<=8 (H8)
))

(2.60)

= −max
H8 ∈Y
−68 (H8) − 58 9 (H8 , H 9 ) −

∑
=∈N(8)\9

<=8 (H8) (2.61)

= min
H8 ∈Y

68 (H8) + 58 9 (H8 , H 9 ) +
∑

=∈N(8)\9
<=8 (H8) . (2.62)

If we compare the result in Eq. (2.62) with Eq. (2.50), we see that we have derived the DP algorithm
from a probabilistic viewpoint again. However, result (2.62) is slightly more general, because we
did not specify any structure of the graph. Equation (2.62) is also referred to as Min-Sum Belief
Propagation and Eq. (2.61) is also referred to as Max-Sum Belief Propagation.

�e belief readout in the log domain is still missing. First, we observe that we are only interested
in the MAP solution and thus we do not need to compute the normalization constant /8 , because
scaling does not change the result. �us, we can rewrite Eq. (2.54) as

18 (H8) =
1
/̃8
q8 (H8)

∏
=∈N(8)

<̃=8 (H8) (2.63)

∝ q8 (H8)
∏

=∈N(8)
<̃=8 (H8) . (2.64)

Next, using result (2.64) we compute the approximate negative log beliefs with

− log18 (H8) ∝ − log
(
q8 (H8)

∏
=∈N(8)

<̃=8 (H8)
)

(2.65)

= − log
(

exp(−68 (H8))
∏

=∈N(8)
exp(−<=8 (H8))

)
(2.66)

= 68 (H8) +
∑

=∈N(8)
<=8 (H8) . (2.67)

Equation (2.67) corresponds to the (unnormalized) negative log likelihood. In this se�ing the lower
the value the be�er the result. �erefore, we can compute the MAP solution using a node-wise
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arg min operation, i.e.

H∗8 = arg min
H8 ∈Y

68 (H8) +
∑

=∈N(8)
<=8 (H8)

 . (2.68)

Implementation Details Although the log messages in Eq. (2.62) and the beliefs based on
the log messages in Eq. (2.67) are fairly stable, there are still two more ingredients missing to
make the whole algorithm stable. First, we need to add a normalization of the message updates.
To this end, consider the min-sum message updates de�ned in Eq. (2.62), where the resulting
message is computed by accumulating the unary cost, the pairwise cost and the neighborhood
information. Depending on the length of the chain of the message passing and on the number
of iterations of the algorithm, the messages will become larger and larger a�er every update. In
order to avoid this problem, we need to normalize the messages and propagate the normalized
messages instead of the original messages. Note that the normalization is a constant for every
node and thus this constant will not change the �nal result. �erefore, we are free to choose an
appropriate normalization. It turns out that it is bene�cial to normalize the messages in Eq. (2.62)
such that the minimum value is zero. �is can be achieved by subtracting the minimum

I8 B min
H 9 ∈Y

<8 9 (H 9 ) (2.69)

from every component of the resulting message yielding the numerically stable message update

<8 9 (H 9 ) B <8 9 (H 9 ) − I8 . (2.70)

Note that we also need to replace the original incoming messages <=8 (H8) by the normalized
messages<=8 (H8) in Eq. (2.62).

If we normalize the log messages de�ned in Eq. (2.62) with Eq. (2.69) and compute the
result with Eq. (2.68), we eventually have a numerically stable version of the max-product belief
propagation algorithm. A complete max-product algorithm applied to a grid-graph is shown
in algorithms 2 and 4.

Sum-Product Belief Propagation Recall Eq. (2.2) from Section 2.1, where we have de�ned
the sum-rule of probabilities which we can use to marginalize out speci�c random variables. Up to
now we have been talking about “max-marginals” in Eq. (2.53) and “min-marginals” in Eq. (2.50),
respectively, and not about (true) marginals. By replacing the max operation with a summation in
the message update algorithm in Eq. (2.53), we can actually compute marginals as well.

Let us �rst derive this result on a chain problem containing # vertices. We know from
probability theory that we can compute marginals by summing (=marginalizing) out all other
variables (c.f . Eq. (2.2)). To derive an algorithm for our chain problem, we simply apply Eq. (2.2)
to Eq. (2.31) where we are interested in computing the marginal distribution ? (H: |x) for every
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node : . �is can be done with

? (H: |x) =
∑

H−: ∈Y#−1

?−: (H−: |x) (2.71)

=
∑

H−: ∈Y#−1

(
#∏
8=1

q8 (H8)
#−1∏
8=1
k8 9 (H8 , H8+1)

)
(2.72)

= q: (H: )
∑

H−: ∈Y#−1

(
#∏
8=1

q8 (H8)
#−1∏
8=1
k8,8+1(H8 , H8+1)

)
(2.73)

= q: (H: )
∑

H<: ∈Y −1

(
 −1∏
8=1

q8 (H8)
 −1∏
8=1
k8,8+1(H8 , H8+1)

)
︸                                              ︷︷                                              ︸

(0)

∑
H>: ∈Y#− 

(
#∏

8= +1
q8 (H8)

#∏
8= +1

k8−1,8 (H8−1, H8)
)

︸                                                   ︷︷                                                   ︸
(1)

,

(2.74)

where we have used the shortcuts H−: = {H1, H2, . . . , H:−1, H:+1, . . . , H# }, i.e. all indices except : ,
H<: = {H1, H2, . . . , H:−1}, i.e. all indices less than : and H>: = {H:+1, H:+2, . . . , H# }, i.e. all indices
larger than : . Next we investigate the terms (0) and (1) to derive the recursive message update
scheme. We can compute (0) recursively by starting from the �rst node with

(0) =
∑

H1<: ∈Y −2

[( ∑
H1∈Y

q1(H1)k1,2(H1, H2)︸                      ︷︷                      ︸
<̃�

2 (H2)

) (
 −1∏
8=2

q8 (H8)
 −1∏
8=2

k8,8+1(H8 , H8+1)
) ]

(2.75)

=
∑

H2<: ∈Y −3

[( ∑
H2∈Y

<̃�
2 (H2)q2(H2)k2,3(H2, H3)︸                                  ︷︷                                  ︸

<̃�
3 (H3)

) (
 −1∏
8=3

q8 (H8)
 −1∏
8=3

k8,8+1(H8 , H8+1)
) ]

(2.76)

= · · · =
∑

H −1∈Y
<̃�
 −1(H −1)q −1(H −1)k −1, (H −1, H ), (2.77)

where H8<: = {H8 , H8+1, . . . H:−1}. Similarly, we can compute the term (1) by starting the recursion
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from the last node # going backwards with

(1) =
∑

H#−1> +1∈Y −#−1

( ∑
H# ∈Y

q# (H# )k#−1,# (H#−1, H# )︸                                   ︷︷                                   ︸
<̃�
#−1 (H#−1)

) (
#−1∏
8= +1

q8 (H8)
#−1∏
8= +1

k8−1,8 (H8−1, H8)
)

(2.78)

=
∑

H#−2> +1∈Y −#−2

( ∑
H#−1∈Y

<̃�
#−1(H#−1)q#−1(H#−1)k#−2,#−1(H#−2, H#−1)︸                                                                 ︷︷                                                                 ︸

<̃�
#−2 (H#−2)

)
· (2.79)

·
(
#−2∏
8= +1

q8 (H8)
#−2∏
8= +1

k8−1,8 (H8−1, H8)
)

(2.80)

= · · · =
∑

H +1∈Y
<̃�
 +1(H +1)q +1(H +1)k +1, (H +1, H ) . (2.81)

�e messages <̃�
8 and <̃�

8 are called forward and backward messages, respectively. �ey are
also o�en referred to as forward marginals and backward marginals, respectively, because they
marginalize out all preceding and succeeding nodes. Using the forward or backward marginals,
respectively, we get the recursive message update equation

<̃8 9 (H 9 ) =
∑
H8 ∈Y

q8 (H8)k8 9 (H8 , H 9 )
∏

=∈N(8)\9
<̃=8 (H8), (2.82)

where the summation is used to marginalize out speci�c random variables (c.f . Eq. (2.2)). Note that
we also slightly generalized Eq. (2.82) compared to the messages derived in Eqs. (2.74) and (2.81),
since we now have messages from node 8 to node 9 capturing both directions and a product
capturing neighborhood information from arbitrarily many directions. Using the same naming
scheme as before, we see that the speci�c belief propagation version shown in Eq. (2.82) is called
Sum-Product Belief Propagation, because the elementary message updates are computed as the
sum of a product. �e belief readout handles the le�-over term q: (H: ) and can be computed
with Eq. (2.54). �e beliefs in the sum-product algorithm correspond indeed to the (true) marginals.

Log-Domain Similar as in the max-product belief propagation also the sum-product belief
propagation algorithm is numerically unstable. �erefore, we can again represent the sum-product
message passing in the (negative) log-domain to get a numerically stable version. �is can be
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done with

<8 9 (H 9 ) = − log<̃8 9 (C) (2.83)

= − log
( ∑
H8 ∈Y

q8 (H8)k8 9 (H8 , H 9 )
∏

=∈N(8)\9
<̃=8 (H8)

)
(2.84)

= − log
( ∑
H8 ∈Y

exp(−68 (H8)) exp(−58 9 (H8 , H 9 ))
∏

=∈N(8)\9
exp(−<=8 (H8))

)
(2.85)

= − log
( ∑
H8 ∈Y

exp
(
−68 (H8) − 58 9 (H8 , H 9 ) −

∑
=∈N(8)\9

<=8 (H8)︸                                             ︷︷                                             ︸
−48 9 (H8 ,H 9 )

))
, (2.86)

where 48 9 (H8 , H 9 ) is the energy augmented with the messages of the neighbors and we got rid of
the product.

�e last missing part is the computation of the beliefs based on the (negative) log-message.
We therefore insert Eq. (2.67) into Eq. (2.54) and get

18 (H8) =
exp (−68 (H8) −

∑
=∈N<=8 (H8))∑

H′
8
∈Y exp

(
−68 (H ′8 ) −

∑
=∈N<=8 (H ′8 )

) , (2.87)

where the denominator corresponds to the normalization constant /8 in Eq. (2.54) and ensures
that the beliefs are a valid probability distribution.

Implementation Details In di�erence to the log version of the max-product algorithm
(Eq. (2.62)), we end up with a summation of exponents in Eq. (2.86) which is also known to be
numerically unstable if the values in the exponent are large. Luckily, we can apply the so-called
log-sum-exp trick to Eq. (2.86). To this end, we set G8 = −48 9 (H8 , H 9 ) to and get

log
(
#∑
8=1

exp(G8)
)
= log

(
#∑
8=1

exp(G8 − I + I)
)

(2.88)

= log
(
#∑
8=1

exp(G8 − I) exp(I)
)

(2.89)

= log
(
exp(I)

#∑
8=1

exp(G8 − I)
)

(2.90)

= log (exp(I)) + log
(
#∑
8=1

exp(G8 − I)
)

(2.91)

= I + log
(
#∑
8=1

exp(G8 − I)
)

(2.92)
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where

I B max
8
G8 . (2.93)

�e transformation in the log-sum-exp trick given in Eq. (2.92) ensures that the maximal argument
entering the exponential function is 0. If we apply the log-sum-exp trick given in Eq. (2.92) to the
negative log-messages of the sum-product algorithm in Eq. (2.86), we get

<8 9 (H 9 ) = I 9 − log ©«
∑
H8 ∈Y8

exp
(
−48 9 (H8 , H 9 ) + I 9

)ª®¬ (2.94)

= I 9 − log ©«
∑
H8 ∈Y8

exp ©«−68 (H8) − 58 9 (H8 , H 9 ) −
∑

=∈N(8)\9
<=8 (H8) + I 9

ª®¬ª®¬ (2.95)

and have a numerically stable message update. However, similar as in the max-product algorithm,
we need to normalize the message during propagation. Since we are free to choose an arbitrary
normalization, we can simply subtract the minimum I 9 and get

<8 9 (H 9 ) B <8 9 (H 9 ) − I 9 (2.96)

and now have a numerically stable message passing procedure. Note that Eq. (2.96) shows that
we can simply omit adding the minimum I 9 in Eq. (2.95). Since we need to compute this mini-
mum already for the log-sum-exp trick, this type of normalization is bene�cial compared to e.g.
normalizing the message to have zero mean which is commonly done in the literature [143].

Also the belief readout in Eq. (2.87) can be numerically unstable. We can stabilize the readout
again by computing the exponents robustly with

18 (H8) =
exp (−68 (H8) −

∑
=∈N<=8 (H8))∑

H′
8
∈Y exp

(
−68 (H ′8 ) −

∑
=∈N<=8 (H ′8 )

) (2.97)

=
exp (−68 (H8) −

∑
=∈N<=8 (H8) − I8 + I8)∑

H′
8
∈Y exp

(
−68 (H ′8 ) −

∑
=∈N<=8 (H ′8 ) − I8 + I8

) (2.98)

=
exp(I8) exp (−68 (H8) −

∑
=∈N<=8 (H8) − I8)

exp(I8)
∑
H′
8
∈Y exp

(
−68 (H ′8 ) −

∑
=∈N<=8 (H ′8 ) − I8

) (2.99)

=
exp (−68 (H8) −

∑
=∈N<=8 (H8) − I8)∑

H′
8
∈Y exp

(
−68 (H ′8 ) −

∑
=∈N<=8 (H ′8 ) − I8

) , (2.100)

where the constant

I8 = max
H8 ∈Y

{
−68 (H8) −

∑
=∈N

<=8 (H8)
}

(2.101)
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(a) Maximization (Max-Product) (b) Marginalization (Sum-Product)

Figure 2.11: Comparison between the max-product and the sum-product algorithm. �e black line
shows the noisy data, the gray shading shows the max-marginals and marginals, respectively,
and the blue line shows the result of the algorithms.

ensures that the maximal number entering the exponent is 0. If we now use Eqs. (2.96) and (2.100)
we have a numerically stable implementation for the sum-product algorithm. �e complete stable
algorithm applied to a grid-graph is shown in algorithms 3 and 5.

Figure 2.11 shows a comparison of the two presented versions in this section. �e result of the
max-product algorithm is always a discrete label and yields sharp jumps at the discontinuities. �e
sum-product algorithm can also result in continuous values and therefore the result is smoother,
but the jumps are o�en over-smoothed.

Message Update Schedules Both the max-product and sum-product algorithm are de�ned
very generically in that they do not directly specify a message update scheme. Hence, to apply
these algorithms to an actual problem, we �rst need to de�ne a message update schedule.

Undirected Acyclic Graphs Let us �rst start with undirected acyclic graphs such as trees
and chains. Undirected acyclic graphs have the property that two vertices are connected by exactly
one path. In this se�ing Eq. (2.53) de�nes the complete algorithm. �is can be seen through the
message passing de�ned in Eq. (2.53), where we note that the current message is dependent
on previous messages corresponding to previous nodes. �us, in order to start the algorithm,
we need to �nd a node which does not depend on any other node. As shown in Fig. 2.12 nodes
ful�lling this requirement are leaf-nodes and the root-node. Similar as in DP we need to make
two passes through the graph. First, we start the message passing from a leaf node and propagate
the messages to the root node (visualized in Fig. 2.12a). Second, we do exactly the opposite and
start at the root node and propagate the messages towards the leaf nodes (visualized in Fig. 2.12b).
�e beliefs can then be simply computed with Eq. (2.54). Note that the procedure described above
yields the optimal solution, similar as in DP . An example, where belief propagation is used in
practice, is the pictorial structures model [53].
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Figure 2.12: Distinct ordering of message updates on a tree graph. First the messages are propagated
from the leaf nodes to the root note shown in Fig. 2.12a and second the messages are propagated
from the root node to the leaves shown in Fig. 2.12b. Same numbers denote that both messages
are required by the receiving node.

Grid Graphs In this thesis, we are mainly interested in grid graphs containing loops as e.g.
in CRFs. In di�erence to trees and chains, we cannot �nd any node not depending on any other
node in grid graphs. �is is simply because such a node does not exist (c.f . Fig. 2.3). Nevertheless,
we can come up with an approximate inference algorithm by de�ning an update schedule. �is
yields an iterative algorithm which we can use to perform approximate inference in the CRF .
Such an algorithm is referred to as Loopy Belief Propagation in the literature [136]. We also want
to emphasize that we can actually come up with several update schemes and depending on
the speci�c schedule we also get di�erent loopy belief propagation algorithms with di�erent
properties.

Now we are ready to show two commonly used schedules which can be applied to grid
graphs [186]. �ese are the synchronous update schedule and the asynchronous update schedule.
Let us start with the synchronous update schedule, where all messages are updated in parallel.
�is algorithm is summarized for the min-sum belief propagation variant in algorithm 2 and for
the sum-product belief propagation variant in algorithm 3, where we have additionally normalized
the messages a�er each update step. �e synchronous loopy belief propagation version updates
all neighboring nodes using the current message states. �is is easy to implement, but it can
take many iterations until the algorithm converges. However, a drawback of the synchronous
schedule is that information is only transported over one node in one iteration. �us, if we have
an image with a width of e.g. 1000 pixels, we need to perform at least 1000 iterations to ensure
that information is transported over the whole width of the image.

An alternative schedule is the asynchronous schedule, where one message is updated at a
time. �is schedule is also known as le�-right-up-down belief propagation [186], BP-M [185] or
sweep belief propagation [88], because the update schedule performs sweeps over the whole



38 Chapter 2. Related work

Algorithm 2: Synchronous Max-Product Loopy Belief Propagation
Input: Unary probabilities 6, pair-wise probabilities 5
Result: Negative log beliefs −log1
// Message Passing

1 for 0 ≤ : ≤  do
2 for 8 ∈ V do
3 for 3 ∈ {!, ',* , �} do

// Compute message and normalization

4 <:+1
83
(H3 ) = min

H8 ∈Y
68 (H8) + 583 (H8 , H3 ) +

∑
=∈N(8)\9

<:
=8 (H8) ; /* Eq. (2.62) */

5 I3 = min
H3 ∈Y

<:+1
83
(H3 ) ; /* Eq. (2.69) */

// Update normalized message for neighbor 3

6 <:+1
83 (H 9 ) =<

:+1
83
(H3 ) − I3 ; /* Eq. (2.70) */

7 end for
8 end for
9 end for

// Belief Readout

10 for 8 ∈ V do
11 − log18 (H8) = 68 (H8) +

∑
=∈N(8)

<=8 (H8) ; /* Eq. (2.67) */

12 end for
13 return − log1

Right Left Up Down

Figure 2.13: Le�-Right-Up-Down Belief Propagation on a 4-connected grid-graph. �e long arrows
show the sweep direction of the algorithm, the green node is the node receiving the new message
from the blue center node and its neighbors.

width and height of an image, respectively. Figure 2.13 shows a visualization of the sweeps for
a 4-connected grid graph. �ese sweeps are indeed a great advantage because (i) in this se�ing
information is transported over the whole width or height of an image in one iteration and (ii) the
chain sub-problems can be solved exactly with DP which yields faster convergence of the message
updates. A robust implementation of the max-product and sum-product algorithm is shown
in algorithms 4 and 5, respectively. Similar as in the asynchronous update schedule, the messages
are normalized before they are propagated through the chain. Note that from an implementation
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Algorithm 3: Synchronous Sum-Product Loopy Belief Propagation
Input: Unary probabilities 6, pair-wise probabilities 5
Result: Beliefs 1 ≈ marginals
// Message Passing

1 for 0 ≤ : ≤  do
2 for 8 ∈ V do
3 for 3 ∈ {!, ',* , �} do

// Update message for neighbor 3

4 4:
83
(H8 , H3 ) = 68 (H8) + 583 (H8 , H3 ) +

∑
=∈N(8)\3

<:
=8 (H8) ; /* Eq. (2.62) */

5 I3 = min
H8 ∈Y

4:
83
(H8 , H3 ) ; /* Eq. (2.93) */

6 <:+1
83 (H3 ) = − log ©«

∑
H8 ∈Y

exp
(
−4:

83
(H8 , H3 ) + I3

)ª®¬ ; /* Eq. (2.96) */

7 end for
8 end for
9 end for

// Belief Readout

10 for 8 ∈ V do
11 log18 (H8) = −68 (H8) −

∑
=∈N

<=8 (H8) ; /* Eq. (2.67) */

12 I8 = max
H8 ∈Y8

log18 (H8) ; /* Eq. (2.101) */

13 18 (H8) =
exp (log18 (H8) − I8)∑

H′
8
∈Y exp

(
log18 (H ′8 ) − I8

) ; /* Eq. (2.100) */

14 end for
15 return 1

point of view the two di�erent algorithms, synchronous and asynchronous belief propagation,
di�er only in the order of the for loops. In the synchronous version the outer loop is over the
nodes and the inner loop is over the directions and in the asynchronous version it is exactly the
opposite. �ere, the outer loop is over the directions and the inner loop is over the nodes resulting
in sweeps through chain sub-problems.

Practical examples, where belief propagation is used on grid graphs are shown in [54, 171, 183].

Summary and Outlook We have seen the generic formulation of belief propagation and how
we can apply belief propagation to undirected acyclic models and grid graphs such as CRFs.
For the former, we can compute the exact solution with two sweeps through the graph. �e
situation is di�erent for grid graphs. First, the inference problem in grid graphs is known to be NP-
hard. Second, the generic belief propagation formulation de�nes a whole family of approximate
inference algorithms, where the message update schedule de�nes the actual algorithm. However,
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Algorithm 4: Asynchronous Max-Product Loopy Belief Propagation
Input: Unary probabilities 6, pair-wise probabilities 5
Result: Negative log beliefs −log1
// Message Passing

1 for 0 ≤ : ≤  do
2 for 3 ∈ {!, ',* , �} do
3 for 8 ∈ V3 on chain sub-graph in direction 3 do

// Compute message and normalization

4 <:+1
8,8+1(H8+1) = min

H8 ∈Y
68 (H8) + 58,8+1(H8 , H8+1) +

∑
=∈N(8)\9

<:
=8 (H8) ; /* Eq. (2.62) */

5 I8+1 = min
H8+1∈Y

<:+1
8,8+1(H8+1) ; /* Eq. (2.69) */

// Propagate message in direction 3

6 <:+1
8,8+1(H8+1) =<:+1

8,8+1(H8+1) − I8+1 ; /* Eq. (2.70) */

7 end for
8 end for
9 end for

// Belief Readout

10 for 8 ∈ V do
11 − log18 (H8) = 68 (H8) +

∑
=∈N(8)

<=8 (H8) ; /* Eq. (2.67) */

12 end for
13 return − log1

it should be noted that independent of the message update schedule the derived belief propagation
algorithms do not come with any convergence guarantees. It might for example happen that the
beliefs jump between two states yielding a bad approximation of the (max-)marginals. However,
especially the max-product belief propagation algorithm performs very well empirically and is
thus one of the mostly used algorithms for approximate inference in grid graphs.

More information on message schedules can be found e.g. in [51]. Alternative message passing
algorithms with convergence guarantees are e.g. the tree-reweighted message passing algorithm,
TRW-S, by Kolmogorov [94], the generalized max-product belief propagation by Sontag et al.
[182] and the max-sum di�usion algorithm by Werner [207]. Connections to the Bethe free energy
are shown in e.g. [67, 212, 215]. An excellent overview of inference in graphical models including
connections between graphical models, exponential families and variational inference is given
in [202]. Meltzer et al. [130] shows a uni�ed overview of message passing algorithms. In the
next section we will derive another inference algorithm for graphical models based on dual
decomposition.
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Algorithm 5: Asynchronous Sum-Product Loopy Belief Propagation
Input: Unary probabilities 6, pair-wise probabilities 5
Result: Beliefs 1 ≈ marginals
// Message Passing

1 for 0 ≤ : ≤  do
2 for 3 ∈ {!, ',* , �} do
3 for 8 ∈ V3 on chain sub-graph in direction 3 do

// Propagate message in direction 3

4 4:8,8+1(H8 , H8+1) = 68 (H8) + 58,8+1(H8 , H8+1) +
∑

=∈N(8)\8+1
<:
=8 (H8) ; /* Eq. (2.62) */

5 I8+1 = min
H8 ∈Y

4:8,8+1(H8 , H8+1) ; /* Eq. (2.93) */

6 <:+1
8,8+1(H8+1) = − log ©«

∑
H8 ∈Y

exp
(
−4:8,8+1(H8 , H8+1) + I8+1

)ª®¬ ; /* Eq. (2.96) */

7 end for
8 end for
9 end for

// Belief Readout

10 for 8 ∈ V do
11 log18 (H8) = −68 (H8) −

∑
=∈N

<=8 (H8) ; /* Eq. (2.67) */

12 I8 = max
H8 ∈Y

log18 (H8) ; /* Eq. (2.101) */

13 18 (H8) =
exp (log18 (H8) − I8)∑

H′
8
∈Y exp

(
log18 (H ′8 ) − I8

) ; /* Eq. (2.100) */

14 end for
15 return 1

2.4.4.3 Dual Decomposition

�e idea in dual (or Lagrangian) decomposition is to split up a di�cult optimization problem into
two simpler optimization problems. Consider the generic primal optimization problem

min
x∈C

% (x) B 51(x) + 52(x), (2.102)

where C ⊆ ℝ# is a convex set and 51 and 52 are two functions depending on the input x. To motivate
the decomposition, consider an instance of Eq. (2.102) where the composite problem minx 51(x) +
52(x) is hard to solve, but the individual problems minx 51(x) and minx 52(x), respectively, are
easy to solve. We can now rewrite the unconstrained original problem shown in Eq. (2.102) to the
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equivalent constrained optimization problem

min
x1,x2∈C

51(x1) + 52(x2) (2.103)

s.t. x1 = x2, (2.104)

where the equality constraint Eq. (2.104) ensures equivalence to the initial problem. Starting
from Eq. (2.104) we compute the relaxation

min
x1,x2∈C

x1=x2

51(x1) + 52(x2) = min
x1,x2∈C

51(x1) + 52(x2) + Xx1=x2 (x1, x2) (2.105)

≥ min
x1,x2∈C

51(x1) + 52(x2) + 〈λ, x1 − x2〉︸                               ︷︷                               ︸
! (x1,x2,λ)

(2.106)

= min
x1∈C

51(x1) + 〈λ, x1〉 +min
x2

52(x2) − 〈λ, x2〉 (2.107)

which is known as the Lagrange decomposition, since we relaxed the indicator function Xx1=x2 by
introducing a Lagrange multiplier λ for the equality constraint x1 = x2. �e function !(x1, x2,λ)
is known as the Lagrangian. We see that we have actually split up the composite optimization
problem into two independent optimization problems in Eq. (2.107). In order to �nd the best lower
bound of (2.107), we need to solve the optimization problem

max
λ

min
x1,x2∈C

!(x1, x2,λ) = max
λ

(
min
x1∈C

51(x1) + 〈λ, x1〉 + min
x2∈C

52(x2) − 〈λ, x2〉
)
, (2.108)

where we need to minimize for the primal variables x1 and x2 and maximize with respect to the
dual variable λ.

Recall our initial motivation for the decomposition. We argued thereby that the individual
problems are easy to solve and the composite problem is hard to solve. �e advantage of the
new optimization problem in Eq. (2.107) is that we have actually achieved to decouple the two
functions 51 and 52. �ese functions are now sub-problems in Eq. (2.108) which are easy to solve.
Let us denote the solutions of these easy problems in the primal variables by x∗1 and x∗2. Inserting
these solutions into the Lagrangian we get the dual problem

� (λ) = 51(x∗1 ) + 〈λ, x∗1 〉 + 52(x∗2) − 〈λ, x∗2〉 (2.109)
= −

(
5 ∗1 (−λ) + 5 ∗2 (λ)

)
, (2.110)

where the functions 5 ∗1 and 5 ∗2 , respectively, are the convex conjugate functions as de�ned
in Eq. (2.125). �e function � (λ) is known as the Lagrange decomposition based dual, which
is a concave function and non-smooth in general [168]. Next, we combine Eq. (2.108) and Eq. (2.110)
to see that it remains to solve the maximization problem

max
λ

� (λ) (2.111)
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(a) Horizontal Sub-Problem (b) Vertical Sub-Problem (c) Minorant

Figure 2.14: Decomposition and minorant used in Dual Minorize-Maximize (DMM). Figs. 2.14a
and 2.14b shows a decomposition of Fig. 2.3. �e DMM algorithm exploits the fact that these
sub-problems can be easily solved and parallelized on the GPU . Fig. 2.14c shows a minorant for
the dual problem.

in the dual variable λ. �is problem can for example be solved with the sub-gradient ascent
algorithm as proposed by Komodakis et al. [96]. In the next section, we will see another possibility
to tackle Eq. (2.111) which can be highly parallelized on the Graphics Processing Unit (GPU).

Dual Minorize-Maximize Algorithm �e Dual Minorize-Maximize (DMM) algorithm [178]
brings us back to MAP inference problems in CRFs. �is algorithm is a massively parallel algorithm
speci�cally designed to be used on GPUs. �e DMM algorithm operates on the Lagrange decom-
position based dual de�ned in Eq. (2.111). To show how the algorithm works we rewrite Eq. (2.111)
to

max
λ

� (λ) = max
λ
−

(
5 ∗1 (−λ) + 5 ∗2 (λ)

)
(2.112)

= max
λ

(
−5 ∗1 (−λ)︸     ︷︷     ︸
�1 (λ)

)
+

(
−5 ∗2 (λ)︸  ︷︷  ︸
�2 (λ)

)
(2.113)

= max
λ

�1(λ) + �2(λ), (2.114)

where the two sub-problems correspond to a spli�ing of the original graph shown in Fig. 2.3
into horizontal and vertical sub-problems visualized in Figs. 2.14a and 2.14b, respectively. In
every iteration of the algorithm, we need to compute a minorant of the dual functions �1 and �2,
respectively. �ese minorants are lower bounds on the original problem, i.e.

� {1,2} (λ) ≤ � {1,2} (λ) (2.115)

and exact in the current point λ: ,i.e.

� {1,2} (λ: ) = � {1,2} (λ: ). (2.116)
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Algorithm 6: Dual Minorize-Maximize
Input: Initial dual varaiables λ0

Result: Optimal dual variables λ∗
1 for : ≥ 0 do
2 λ:+

1
2 = max

λ
�1,: (λ) + �2(λ)

3 λ:+1 = max
λ

�1(λ) + �2,: (λ)
4 end for
5 return λ∗

Figure 2.14c shows a visualization of a suitable minorant. We are interested in maximal modular
minorants i (x) = ϕ>x ful�lling

ϕ>x ≤ 5 (x), ∀x, (2.117)

for a function 5 such that there is no ϕ′ satisfying

ϕ>x′ < ϕ′>x′. (2.118)

�ere are di�erent possibilities to �nd maximal modular minorants i . �e DMM algorithm
computes the minorants by distributing the slacks of the chain sub-problems using a hierarchical
approach. �e advantage of this distribution is that the minorants can be computed very e�ciently
in parallel on the GPU which yields a fast algorithm in practice. Algorithm 6 shows the complete
DMM algorithm. �e reader is referred to [178] for more details.

2.4.4.4 Summary and Further Reading

We have seen an overview of di�erent inference algorithms for graphical models, especially CRFs,
in this section. �e inference in CRFs is an NP-hard problem on grid-graphs and therefore, we need
to make approximations to keep these models tractable. In this section we focused on inference
algorithms retaining as much information as possible from the original problem. For CRFs this
means that we tried to keep as many edges from the original grid graph as possible. �is yields a
family of algorithms based on DP , where the sub-problems consist of chains which can be solved
e�ciently. We did not cover further inference techniques such as the mean-�eld approximation,
graph-cuts, LP-relaxations and sampling methods here. For more information on the mean-�eld
approximation we refer the reader to [202], for earlier applications of mean-�eld in computer
vision see [197, 205], for mean-�eld approximation combined with Convolutional Neural Networks
(CNNs) see e.g. [31, 116, 123, 226]. �e reader is referred to [19, 21, 75] for more information about
graph-cuts and to [20, 186] for applications. For a good overview about graphical models in general
we recommend the textbook by Nowozin and Lampert [143] and the surveys [77, 185] including
solvers based on the LP-relaxation proposed by Schlesinger [172].
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Figure 2.15: Convex and non-convex sets in ℝ2.

2.5 Continuous Optimization

In this section, we are interested in problems arising in image processing and computer vision
and how we can exploit continuous optimization techniques to tackle these problems. Computer
vision and image processing problems are usually large-scale problems, because the optimization
variable has e.g. the size of the image. For an image of size 1000 × 1000 pixels, i.e. “only” a mega-
pixel image, we therefore have to solve a one million dimensional optimization problem. �is
simple example shows that we need to use e�cient optimization algorithms in order to be able to
actually compute solutions in practice. In this section, we are especially interested in continuous
optimization algorithms which can be used in such large-scale practical problems. As we will see
in Section 2.5.2, we can exploit gradient information in order to iteratively approach an optimal
solution.

2.5.1 Convex Analysis

We will review the most important concepts and tools used in convex optimization in this section.
�ey form the basis for a deep understanding of the problems and algorithms presented in the
upcoming sections. �e material is based on the excellent textbooks of Beck [5] and Boyd et al.
[16].

2.5.1.1 Convex Sets

A subset � ⊆ ℝ# is a convex set if the connecting line between any two points x1, x2 ∈ � is also
entirely contained in the set � . Formally, this can be de�ned as

\x1 + (1 − \ )x2 ∈ � \ ∈ [0, 1] . (2.119)

Figure 2.15 shows two convex sets and one non-convex set. �e connecting lines shown in the
�gure re�ect exactly the de�nition of a convex set in Eq. (2.119). Note that also the empty set and
the whole space ℝ# are convex sets.

Convexity preserving operations Sometimes it is easier to show the convexity of a set based
on convexity preserving operations instead of showing it directly with Eq. (2.119). �e following
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Figure 2.16: Visualization of an exemplary convex and non-convex function. �e black line shows
the chord between x1 and x2.

list provides some convexity preserving operations:

• �e intersection of convex sets
"⋂
8=1
�8 is a convex set.

• �e Minkowski sum�1 +�2 = {x1 + x2 : G1 ∈ �1, x2 ∈ �2} of two convex sets�1,�2 is again
a convex set.

• A convex set � , which is transformed with an a�ne function 5 = Ax + b, is again a convex
set given by {5 (x) : x ∈ �}.

2.5.1.2 Convex Functions

A function 5 : � → ℝ on a convex set � ⊆ ℝ# is called a convex function if ∀x1, x2 ∈ � and
0 ≤ \ ≤ 1 the inequality

5 (\x1 + (1 − \ )x2) ≤ \ 5 (x1) + (1 − \ ) 5 (x2) (2.120)

holds. Equation (2.120) can be interpreted geometrically as follows. We span a chord (=line)
between the two points G1 and G2 and if the chord is everywhere above the function, then the
function is convex. If inequality (2.120) holds strictly for 0 < \ < 1, then the function is called
strictly convex. You can �nd a visualization of this geometric interpretation in Fig. 2.16. If a
function 5 (x) is convex, then we call the function −5 (x) a concave function.

An alternative way of de�ning a convex function is by using the so-called epigraph of the
function. �e epigraph is the set of all points above the function 5 (x). �is is also re�ected in the
name, where the Greek word “epi” means “above”. Formally, the epigraph is de�ned as the set

epi 5 (x) = {(x, C) : x ∈ dom(5 ), C ≥ 5 (x)} (2.121)

If the epigraph (Eq. (2.121)) of a function 5 (x) is a convex set, then the function 5 (x) is convex.
�is can also be easily seen in Fig. 2.17. Note that this �gure shows exactly the same functions as
used in Fig. 2.16.
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Figure 2.17: Visualization of the epigraph of an exemplary convex and non-convex function.

Convexity-preserving operations Similar as for the convex sets, we will also list some
convexity-preserving operations on convex functions.

• A non-negative weightingF1, . . . ,F" ≥ 0 of convex functions is again a convex function,
thus 5 = F1 51 +F2 52 + · · · +F# 5# is a convex function.

• �e composition with an a�ne mapping is again a convex function. If 5 (x) is convex, then
6(x) = 5 (Ax + b) is also a convex function.

• �e point-wise maximum of two functions 51 and 52 is a convex function. If 51 and 52 are
convex functions, then 5 (x) = max{51(x), 52(x)} is convex.

2.5.1.3 Subdi�erential

If we deal with non-smooth functions, a gradient can not be computed everywhere. �erefore,
we introduce here a generalization of the gradient called subgradient which can then be used to
de�ne the subdi�erential. A vector g ∈ ℝ# is called a subgradient at x ∈ ℝ# , if

5 (y) ≥ 5 (x) + 〈g, y − x〉 ∀y ∈ dom(5 ) . (2.122)

Equation (2.122) states that we are looking for a linear under-estimator of our function. Let us, as
an example, take the absolute function visualized in Fig. 2.18. We cannot compute a gradient for
this function at the point x = 0 because the absolute function is a non-smooth function. However,
we can compute subgradients based on the de�nition in Eq. (2.122). �e gray lines shown in the
�gure are exemplary subgradients in the point x = 0. �e set of all subgradients together is called
the subdi�erential. Formally, it is de�ned as

m5 (x) B
{
g ∈ ℝ# : 5 (y) ≥ 5 (x) + 〈g, y − x〉 ∀y ∈ dom(5 )

}
. (2.123)
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x

f(x)

subgradientsubdifferential

Figure 2.18: Visualization of exemplary sub-gradients (shown in gray) of the absolute function
|x| = ∑#

8=1 G8 . �e set of all sub-gradients is called the sub-di�erential.

Coming back to our example, we can now formally compute the subdi�erential with

m‖x‖1 =


−1 for G8 < 0,
[−1, 1] for G8 = 0,
1 for G8 > 0,

(2.124)

where (G8)#8=1 are the components of the vector x.

2.5.1.4 Convex Conjugate

Next, we investigate the dual representation of a convex function which is known as the convex
conjugate or as the Legendre–Fenchel transform. It is de�ned as the supremum

5 ∗(y) = sup
x∈ℝ#

{〈x, y〉 − 5 (x)} . (2.125)

Geometrically, it can be computed by moving a line 〈x, y〉 upwards until the line touches the graph
of the function 5 (x). �en we need to �nd the largest slope such that the line is a lower bound
of the function 5 (x). �e intersection of this line with the y-axis then corresponds to −5 ∗(y).
Figure 2.19 shows a visualization of a function 5 (x) with its corresponding dual function 5 ∗(y).
�e le� plot shows the lines lower-bounding the function. �is representation also reveals that
we actually represent the function by a family of intersections of half-spaces. Note that the dual
variable y represents the slopes of the half-spaces representing our function 5 (x).

We can also apply the Legendre–Fenchel transform to the conjugate function 5 ∗(y) and get

5 ∗∗(x) = sup
y∈ℝ#

{〈x, y〉 − 5 ∗(y)} , (2.126)

which is known as the bi-conjugate function. In general, the bi-conjugate 5 ∗∗ is the convex
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Figure 2.19: �e convex conjugate. It can be computed by �nding the maximal slope x such that
the line is a lower bound of the function 5 (x) as visualized in the le� plot. Using these lines we
can represent the convex conjugate as shown in the right plot.
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Figure 2.20: Computing the bi-conjugate from the conjugate. See Fig. 2.19 for a visualization of
the function 5 (G).

envelope of 5 and thus a lower bound of the original function 5 . �us, the inequality

5 ∗∗(x) ≤ 5 (x) (2.127)

holds. Figures 2.19 and 2.20 show the transformation of a function to its conjugate and to its
bi-conjugate. Since the original function was non-convex, we have successfully computed the
convex envelope of the original function with the bi-conjugate. If the original function 5 is convex,
then

5 ∗∗(x) = 5 (x), (2.128)

i.e. the bi-conjugate is the same function as the original function.

Properties of the conjugate function

• �e conjugate function 5 ∗ is always a convex function, because it is the maximum over a
family of linear functions.
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Figure 2.21: Projection of a point H onto a convex set � .

• �e bi-conjugate 5 ∗∗(x) is equivalent to the function 5 (x) if 5 is convex.

• �e bi-conjugate 5 ∗∗(x) is the convex envelope of the function 5 (x) if 5 is non-convex.

2.5.1.5 Proximal Operator

�e proximal operator, o�en referred to as “prox”, can be derived by generalizing the projection
onto a convex set to convex functions. We can de�ne the projection of a given point H onto a
closed and non-empty convex set � as the constrained optimization problem

proj� (y) = arg min
x∈�

‖x − y‖, (2.129)

which is also known as Euclidean projection or orthogonal projection. Figure 2.21 shows a visual-
ization of this optimization problem. �e point minimizing Eq. (2.129) is given by the orthogo-
nal projection of the point H onto the convex set � . We can rewrite the optimization problem
in Eq. (2.129) into the unconstrained optimization problem

proj� (y) = arg min
x∈�

‖x − y‖ (2.130)

= arg min
x∈�

1
2 ‖x − y‖2 (2.131)

= arg min
x∈ℝ#

1
2 ‖x − y‖2 + X� (x), (2.132)

where X� is the indicator function of the set � de�ned as

X� (x) =
{

0 if x ∈ �,
+∞ else.

(2.133)

Next, we generalize Eq. (2.132) to get the de�nition of the proximal operator. To this end, we
replace the indicator function in Eq. (2.132) by a convex function 5 and get

prox_5 (y) = arg min
x∈ℝ#

5 (x) + 1
2_ ‖x − y‖2, (2.134)
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where _ ∈ ℝ. Equation (2.134) is known as the proximal operator with respect to a function 5 .
Next, we derive an alternative de�nition based on the optimality condition of the proximal

operator which is

_m5 (x) + x − y 3 0 (2.135)
⇔ _m5 (x) + x 3 y (2.136)
⇔ (I + _m5 ) (x) 3 y (2.137)
⇔ x = (I + _m5 )−1(y) (2.138)
⇔ x = prox_5 (y), (2.139)

where m5 (x) is the sub-di�erential of the function 5 . We note that the proximal operator can also
be used with non-smooth convex functions.

An important result, known as Moreau’s Identity relates the proximal operators of 5 and 5 ∗

and is given by
x = prox_5 (x) + _ prox_−1 5 ∗

(x
_

)
. (2.140)

�e proximal operator is e.g. used in Proximal Methods and in the Primal-Dual Method. We
will see later in Chapter 5 how we can also use the proximal operator to e.g. project to the positive
half-space.

2.5.2 Convex Optimization

Convex optimization is an important sub-discipline in optimization. �is �eld studies optimization
problems of the form

min
G ∈ℝ#

5 (x) (2.141)

s.t. 58 (x) ≤ 0, 8 = 1, . . . , ", (2.142)

where 5 : ℝ# → ℝ is a convex, but possibly non-smooth function and the functions 58 : ℝ# → ℝ

are convex constraint functions. Since Eq. (2.142) is a minimization problem, we want to �nd an
x∗ such that

5 (x∗) ≤ 5 (x) ∀x. (2.143)

�e argument x∗ is referred to as the minimizer of 5 . �e convexity of the domain and the function
yields the bene�cial property that any local minimum is also a global minimum. Furthermore, if a
minimum exists and the function is strictly convex, then the global optimum is also unique. �ese
properties allow to analyse convex optimization problems and we can come up with algorithms
that are guaranteed to converge towards the optimal solution.

Here we are mainly interested in the algorithms which we can use to optimize large scale op-
timization problems with possibly millions of dimensions. �e following optimization algorithms
exploit gradient information of the function which should be optimized. While the algorithms are
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Algorithm 7: Gradient Method
Input: Choose x0 ∈ ℝ# , step-size U: > 0
Result: Optimal x

1 for : ≥ 0 do
2 x:+1 = x: − U:∇5 (x: )
3 end for

Algorithm 8: Sub-Gradient Method
Input: Choose x0 ∈ ℝ# , step-size U: > 0
Result: Optimal x

1 for : ≥ 0 do
2 Compute 3 (x: ) ∈ m5 (x: )
3 x:+1 = x: − U:3 (x: )
4 end for

guaranteed to converge to the global optimum if the function is convex, they converge to a local
optimum or a saddle point in the non-convex case. We start with the most basic gradient descent
algorithms and move on to proximal algorithms until we arrive at the powerful primal-dual
algorithm.

2.5.2.1 Gradient Methods

We consider here the generic optimization de�ned in Eq. (2.142) and assume the function to be
convex and smooth functions. Some of the algorithms can also be applied to non-smooth functions.
We will note this in the respective paragraphs.

(Sub-) Gradient Descent �e simplest method which we can use for optimization is referred
to as gradient method, steepest descent method or gradient descent. All three names refer to the
same optimization algorithm. As the name already indicates the key idea in the gradient method
is to iteratively perform steps in the direction of steepest descent. �e steepest descent direction
for a continuously di�erentiable function is given as the negative gradient of the function

3 (x: ) = −∇5 (x: ), (2.144)

where we call 3 a descent direction. Algorithm 7 shows a listing of the complete algorithm. If the
function 5 has a Lipschitz-continuous gradient, i.e.

‖∇5 (x) − ∇5 (y)‖ ≤ !‖x − y‖ (2.145)

for a �nite constant !, then it can be shown that the gradient method converges with a constant
step-size U: ∈ (0, 2/!) with rate O(1/:).
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Algorithm 9: Heavy Ball Method [155]
Input: Choose x0 ∈ ℝ# , set x−1 = x0, U: , V: > 0
Result: Optimal x

1 for : ≥ 0 do
2 x:+1 = x: − U:∇5 (x: ) + V: (x: − x:−1)
3 end for

Algorithm 10: Nesterov Accelerated Gradient Method
Input: Choose x0 ∈ ℝ# , set x−1 = x0, U: , V: > 0
Result: Optimal x

1 for : ≥ 0 do
2 y: = x: + V: (x: − x:−1)
3 x:+1 = y: − U:∇5 (y: )
4 end for

In case the function 5 is non-smooth, the descent direction is given by a sub-gradient (c.f . Sec-
tion 2.5.1.3)

3 (x: ) ∈ m5 (x: ) (2.146)

which is used in the sub-gradient method shown in algorithm 8. Since non-smooth functions
are more di�cult to optimize, the convergence rate of the sub-gradient method is only O(1/

√
: ).

We note, that the sub-gradient method is o�en used for learning optimal parameters in deep
CNNs because many activation functions are not di�erentiable in all points, e.g. ReLU is only
sub-di�erentiable in the point 0.

Heavy Ball Method Polyak [155] proposed the Heavy Ball Method, also known as gradient
descent with momentum. �is algorithm achieves a be�er convergence rate of O

(
1/:2) . It is

motivated from a physical point of view, where the model adds friction to a body moving in
a potential �eld. It can be derived from a second-order Ordinary Di�erential Equation (ODE)
representing the motion of this body in the potential �eld. �e acceleration term in the ODE
yields the additional term x: − x:−1 which is referred to as momentum. Intuitively, if the ball rolls
down a steep curve and approaches a �at region, then the acceleration (=momentum) in the ball
is used to make larger steps towards the optimum also in �at regions. �is is the reason for the
name “Heavy Ball”. Algorithm 9 shows a listing of the method.

Nesterov Accelerated Gradient Method Next, we present the optimal �rst-order method
of Nesterov [138] which achieves, similar as the Heavy Ball Method, a convergence rate ofO

(
1/:2) .

�is algorithm �rst performs an extrapolation step and then computes the new descent direction
using the gradient at the extrapolated position. Using the Lipschitz constant !, we can compute
the step-size as U: = 1/!. �e proof in Nesterov’s paper [138] shows that the optimal value for V:
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is given by
V: =

C: − 1
C:+1

, (2.147)

where one needs to be careful with the used indices, since we subtract 1 from C: in the enumerator
and the denominator uses the next iterate C:+1 in Eq. (2.147). �e variables C: can be computed by

C:+1 =
1 +

√
1 + 4C2

:

2 . (2.148)

A simpler yet good approximation to Eq. (2.147) is given by

V: =
: − 1
: + 2 , (2.149)

as also shown in [138]. We provide a complete listing of the method in algorithm 10.
Nesterov showed in [140] that the convergence rate of O

(
1/:2) is the lower bound for any

�rst-order method on smooth, convex functions. �erefore, both the heavy ball method and the
accelerated gradient method are optimal methods.

Machine Learning �e algorithms presented above come with strong convergence guarantees
if applied to convex functions. However, these algorithms are not only applicable to convex
problems. Actually, the presented algorithms are also implemented in current deep learning
frameworks such as PyTorch, Tensor�ow, etc. and are o�en used to �nd the optimal parameters
for Machine Learning (ML) models. �ey are heavily used in training non-linear and non-convex
CNNs and also work very well in this se�ing. While the convergence guarantees do not hold
anymore when applied to non-convex functions, the trend is similar in practice, i.e. the heavy
ball method and Nesterov’s accelerated gradient method usually converge faster than gradient
descent.

2.5.2.2 Proximal Methods

Proximal methods are a family of algorithms which make use of the Proximal Operator in the
algorithm. �e advantage of proximal methods is that they can also handle non-smooth objective
functions via the proximal map. In this section, we assume that the optimization problem at hand
is a composite function

min
x∈ℝ#

5 (x) B 6(x) + ℎ(x), (2.150)

where the function 6 is continuously di�erentiable and convex and the function ℎ is convex, but
possibly non-smooth.

Let us �rst start with the proximal gradient method. �is method can be seen as a generalization
of the gradient method presented in Section 2.5.2.1. �e proximal gradient method performs an
explicit gradient step on the di�erentiable function 6 and a proximal step (=implicit gradient
step) on the non-di�erentiable function ℎ. Although the proximal gradient method can handle
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Algorithm 11: Proximal Gradient Method
Input: Choose x0 ∈ dom(5 ), step-size U: > 0
Result: Optimal x

1 for : ≥ 0 do
2 x:+1 = proxU:ℎ

(
x: − U:∇6(x: )

)
3 end for

Algorithm 12: Accelerated Proximal Gradient Method
Input: Choose x0 ∈ dom(5 ), set x−1 = x0, U: , V: > 0
Result: Optimal x

1 for : ≥ 0 do
2 y: = x: + V: (x: − x:−1)
3 x:+1 = proxU:ℎ

(
y: − U:∇6(y: )

)
4 end for

non-di�erentiable functions, it can be proven that the convergence rate of the algorithm is O(1/:).
�is is notable because this is the same rate of convergence as for the gradient method which
can only handle smooth functions. For comparison, a sub-gradient method which can handle
non-di�erentiable functions only has a convergence rate of O(1/

√
: ). �us, the proximal operator

signi�cantly improves the rate of convergence for non-smooth functions. Again, if we know
the Lipschitz constant ! of the gradient (c.f . Eq. (2.145)) we can set the constant step-size to
U = U: ∈ (0, 2/!). �e complete algorithm is shown in algorithm 11.

Now, the natural question arises, whether we can improve this convergence rate by adding
momentum, similarly as we did in Section 2.5.2.1 for smooth functions. It actually turns out
that this is possible. �e resulting method is then called accelerated proximal gradient method
and shown in algorithm 12. �e only change we need to make is to additionally conduct the
extrapolation step before performing the explicit gradient step on the continuously di�erentiable
function 6 and the proximal step on the non-di�erentiable function ℎ. It can be shown that this
algorithm converges with rate O(1/:2) which is the best convergence rate we can achieve.

We also want to note that the proximal methods described above are special instances of the
generic Proximal Point Algorithm (PPA)

x:+1 = proxU: 5 (x: ) . (2.151)

Variants �e proximal methods presented in this section perform an explicit gradient step on
the di�erentiable function 6 and an implicit (= proximal) step on the non-di�erentiable function ℎ.
Note, however, that it is sometimes bene�cial to perform the gradient step on the non-di�erentiable
function and the proximal step on the di�erentiable function. �e method is then called proxi-
mal sub-gradient method, because we can only compute sub-gradients on the non-di�erentiable
function.
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Algorithm 13: Primal-Dual Algorithm
Input: Choose (x0, y0) ∈ ℝ# ×ℝ" , set x̄0 = x0, g, f > 0, \ ∈ [0, 1]
Result: Optimal primal point x and dual point y

1 for : ≥ 0 do
2 y:+1 = proxf5 ∗

(
y: + fKx̄:

)
// Gradient ascent on the dual

3 x:+1 = proxg6
(
x: − gK∗y:+1

)
// Gradient descent on the primal

4 x̄:+1 = x:+1 + \ (x:+1 − x: ) // Over-relaxation

5 end for

Similar as in the non-proximal algorithms in Section 2.5.2.1, the proximal methods here are
wri�en in their most generic form. It turns out that the optimal value for V: can be computed
with Eqs. (2.147) and (2.148) which we already used in Section 2.5.2.1. If we use these rules to
compute V: , we have actually instantiated the famous Fast Iterative Shrinkage and �resholding
Algorithm (FISTA) [6].

2.5.2.3 Primal-Dual Method

In this section we introduce a class of problems which can be solved e�ciently with the primal-
dual algorithm proposed by Chambolle and Pock [27]. �e general optimization problem which
we consider here is of the form

min
x∈ℝ#

5 (x) B 6(x) + ℎ(Kx), (2.152)

where 5 : ℝ# → ℝ ∪ {∞} is a composite function consisting of a convex and continuously
di�erentiable function 6 : ℝ# → ℝ ∪ {∞} and a convex, but possibly non-smooth, function
ℎ : ℝ" → ℝ ∪ {∞} and K is a linear operator. �e optimization problem in Eq. (2.152) can be
transferred to the primal-dual problem

min
x∈ℝ#

max
y∈ℝ"

〈Kx, y〉 + 6(x) − ℎ∗(y), (2.153)

where y ∈ ℝ" is the dual variable and ℎ∗ : ℝ" → ℝ ∪ {∞} is the convex conjugate (c.f .
Section 2.5.1.4) of the functionℎ. If we solve the minimization problem, we get the dual formulation
of the problem yielding

max
y∈ℝ"

− (6∗(−K∗y) + ℎ∗(y)) , (2.154)

where the function 6∗ : ℝ# → ℝ ∪ {∞} is the convex conjugate of the function 6 and K∗ is the
adjoint operator as de�ned in Section 2.2.4.

�e primal-dual algorithm iterates the steps i) proximal gradient ascent on the dual problem, ii)
proximal gradient descent on the primal problem and iii) over-relaxation. �e respective step-sizes
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for the primal and dual steps need to be larger than zero, i.e. g > 0 and f > 0, and satisfy

gf!2 ≤ 1, (2.155)

where ! is the Lipschitz constant of the gradient of ℎ, which can be computed with

! = ‖K‖, (2.156)

where ‖K‖ is the operator norm which corresponds to the largest singular value of K in this case.
A complete listing is shown in algorithm 13. By investigating the algorithm in detail, one can
observe that it is necessary to be able to compute the norm of the operator K in a reasonable
time and that the proximal operator needs to be computable easily enough. �is means, either we
can come up with a closed form solution for the proximal operator, or we can �nd the solution
within a few iterations of an auxiliary optimization problem. Chambolle and Pock [27] applied
this algorithm to a variety of computer vision problems, including denoising, super-resolution,
deconvolution and motion estimation. Furthermore, the authors give formal proofs about the
convergence rate which is O(1/:) for convex problems and O(1/:2) for strongly convex problems.
An extended primal-dual algorithm with preconditioning is shown in [153]. Preconditioning
speeds up convergence of the algorithm if the matrix K is e.g. inappropriately scaled.

2.5.3 Variational Methods for Stereo

We are interested in correspondence problems such as stereo and optical �ow as described
in Section 1.2. �e task is to �nd a 1D in stereo or a 2D displacement in optical �ow, respectively.
More precisely, given two images 51, 52 : Ω → ℝ� with� channels, we are seeking a displacement
�eld 3 : Ω → ℝ2, such that 50(x + 3 (x)) = 51(x) for every pixel position x = (G1, G2). We refer to
image 50 as the reference image and to 51 as the second image. For stereo we have 3 (x) = (31(x), 0)>
to model the 1D displacement and for optical �ow we allow a 2D displacement by se�ing 3 (x) =
(31(x), 32(x))>.

We start here the formal description of the correspondence problems with the continuous
problem formulation and show later how this formulation can be discretized to be applicable
to the discrete pixels of real-world images. We can de�ne the optimization problem for the
correspondence problem as

min
3

∫
Ω
|∇3 | 3x +

∫
Ω
|50(x − 3 (x)) − 51(x) | 3x, (2.157)

where the �rst term is the total variation of the function 3 ∈, 1,1(Ω) modeling the displacement
and the second term, i.e. the data-term, models the Brightness Constancy Assumption (BCA) [72,
118] between 50 and 51. �e BCA states that a pixel and its corresponding displaced pixel have the
same gray-scale value or intensity, respectively. If we can �nd the correct displacement 3 for every
pixel, then the data-term vanishes. However, the BCA cannot be used as shown in Eq. (2.157),
because it is non-convex and non-linear in the unknown3 . We can compute a linear approximation
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Original Function
Linear Approximation

Figure 2.22: �rst-order Taylor approximation (=linear approximation) of a function d (G), shown
in blue, in the point G0. �e linear approximation is shown in orange.

to the BCA by using a �rst-order Taylor series expansion. Using the shortcut

d (3) = 50(x − 3 (x)) − 51(x), (2.158)

we can compute the linearized BCA with

d (3) ≈ d̂ (3) = d (30) + ∇d (30)>(3 − 30), (2.159)

where

∇d (30) =
©«
md (30)
mG1

md (30)
mG2

ª®®¬ , (2.160)

i.e. the vector of partial derivatives. �e linearized BCA shown in Eq. (2.159) yields the famous
Optical Flow Constraint (OFC) [72, 118]. Figure 2.22 shows a graphical interpretation of the original
function (2.158) and its linear approximation (2.159) in 1D.

We can now plug the linearization (2.159) into Eq. (2.157) and get

min
3

∫
Ω
|∇3 | 3x +

∫
Ω
|d̂ (3) | 3x. (2.161)

Equation (2.161) is now convex and can thus be optimized e�ciently using the Primal-Dual
Method [27] shown in Section 2.5.2.3.

Note that the optimization problem in Eq. (2.161) is entirely de�ned on the continuous domain
Ω. In order to apply Eq. (2.161) to real-world images, we have to discretize it. A natural discretization
is for example given by the discrete pixel-grid itself. We thus discretize the continuous domain Ω

to a discrete domain of size " × # which we denote by Ω"# .
In the discrete domain the reference and second image are de�ned as functions 50, 51 : Ω"# →
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ℝ� , where � is again the number of channels in the image. We can de�ne the discrete gradient
operator ∇3 with standard �nite di�erences with Neumann boundary conditions as

(∇3)8, 9,1 =
{
38, 9+1 − 38, 9 if 9 < #

0 else,
(∇3)8, 9,2 =

{
38+1, 9 − 38, 9 if 8 < "

0 else,
(2.162)

where (∇3) ·, ·,1 is the derivative in G1-direction and (∇3) ·, ·,2 is the derivative in G2-direction,
respectively. �e discrete gradient (2.162) is therefore a mapping ∇ : ℝ"×#×% → ℝ"×#×2% . We
can now state the discrete version of Eq. (2.161) which is given by

min
3∈ℝ"×#

‖∇3 ‖2,1 + _‖d̂ (3)‖1, (2.163)

where
‖∇3 ‖2,1 =

∑
8, 9

√∑
:

| (∇3)8, 9,: |2 , (2.164)

is the discrete total variation and

‖d̂ (3)‖1 =
∑
8, 9

| (d̂ (3))8, 9 | (2.165)

is the ℓ1-norm of the vector d̂ (3). Note that the ℓ1-norm ensures robustness against strong outliers.
However, as shown in Fig. 2.22, the linearization in Eq. (2.159) is only locally a good approximation
to the true function in Eq. (2.158). �erefore, the optimization Eq. (2.163) is usually embedded into
a coarse-to-�ne warping scheme as shown in [24]. �e warping ensures that the initial point 30 is
always close to the current point 3 in Eq. (2.159).

2.6 Machine Learning

Machine Learning (ML) is together with optimization (c.f . Sections 2.4 and 2.5) the main tool
we use throughout this thesis. �e material of this section is based on the textbooks by Murphy
[137], Russell and Norvig [167], Shalev-Shwartz and Ben-David [176].

We start in the upcoming section with Arti�cial Intelligence (AI) and move then on towards the
data driven specializations ML and Deep Learning (DL). Figure 2.23 shows a high-level overview
of these three terms and sets them into relation.

2.6.1 Artificial Intelligence

�e term Arti�cial Intelligence (AI) was �rst used by the computer scientists John McCarthy
et al. [127] in 1955. Back then, they wrote a proposal to organize a summer research project on
Arti�cial Intelligence in the year 1956 in Dartmouth. Together with selected scientists, the goal
was to investigate how machines can be programmed such that they can solve problems, which
was thought to be reserved for humans only. Hence, the term AI only judges the behavior of
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Machine Learning

Artificial Intelligence

Deep Learning

Figure 2.23: AI , ML and DL in relation.

a machine, but it is indi�erent as to how the machine acquired its behavior. For example, an
industrial robot which is programmed to automatically sort items on a conveyor belt can be
considered as a machine with AI because it mimics human behavior. �e fact that the robot is
just programmed and not intelligent in terms of human intelligence is not important here.

Although, in 1956 the technical capabilities have been very limited compared to today’s high-
end computing infrastructure, the proposal contained many terms which are common building
blocks in current state-of-the-art models. Examples are the terms Neural Nets, Self-Improvement
and Randomness. As we will describe in more detail later, Arti�cial Neural Network are nowadays
one of the main driving forces in AI . Self-Improvement became an independent research area,
where models try to automatically learn from their own failures and randomness is a core part
during training of state-of-the-art models.

2.6.2 Machine Learning

In general, Machine Learning (ML) de�nes data-driven methods to automatically detect pa�erns
in data. �is usage of data is the main di�erence compared to general AI . We can formally de�ne
a machine learning model as

5 : X → Y, x ↦→ y = 5 (x;θ), (2.166)

where X ⊂ ℝ# is the input domain, Y ⊂ ℝ" is the output domain, x ∈ X is the input, y ∈ Y is
the output and θ ∈ � are the learnable parameters with � being the set of all learnable parameters.
In the simplest case, the input and output are vectors. Fig. 2.24 shows such an example, where the
input vector x is an image of a handwri�en digit and the output y is the digit interpreted as a
number. For this speci�c example the input domain X = {x(8) ∈ Ω}#8=1 is the set of all # images
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(a) Input images x ∈ X

⇒

0 4 1 9 2
1 3 1 4 3
5 3 6 1 7
2 8 6 9 4
0 9 1 1 2

(b) Output digits y ∈ Y

Figure 2.24: An input image x is processed by a machine learning method to compute the digit y
visible on the image. Sample images taken from the MNIST handwri�en digit database [106].

and the output domain Y = {0, 1, . . . , 9} de�nes the set of possible outcomes representing the
digits from 0 to 9.

Regardless of the actual model 5 , the question remains how well parameters θ should be
calculated for the model. Depending on this, we can categorize machine learning approaches into
supervised learning (c.f . Section 2.6.3), unsupervised learning and reinforcement learning. �ese
approaches are distinguished by the used data during training. If ground-truth data is available,
then we are in the supervised se�ing (c.f . Fig. 2.25b). In di�erence, the term unsupervised learning
indicates, that we do not have labels for our data. Reinforcement learning is mainly used in agent
systems, where the agent tries to learn a strategy in order to maximize some reward. Besides
these main categories, there are also variants such as semi-supervised learning, weakly supervised
learning or self-supervised learning (c.f . Section 2.6.4). �e names suggest that these variants are
neither fully supervised nor unsupervised. Figure 2.25a shows an example with di�erent ways of
supervision. Figure 2.25b shows the pixel-wise annotation used in (full) supervised learning and
Figs. 2.25c and 2.25d show two examples of weak supervision; bounding boxes and scribbles.

2.6.3 Supervised Learning

Due to its superior performance, supervised learning is the most common type of ML. In order to
perform supervised learning we need a labeled datasetD = {(x(8) , y(8) )}#8=1, where x(8) ∈ X is the
input and y(8) ∈ Y is the desired output. �us, the dataset contains corresponding input-output
pairs, which we can use to train our models. Based on the output domain Y, we distinguish
between classi�cation and regression.

2.6.3.1 Classification

We call a machine learning problem a classi�cation problem, if the output domain Y is de�ned by
a discrete set. �e classi�cation problem is referred to as a binary classi�cation problem if |Y| = 2
and as amulti-class classi�cation problem if |Y| > 2. �e following list shows some exemplary
classi�cation problems together with their input and output domains.
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(a) Input Image (b) Full Annotation

(c) Bounding Boxes (d) Scribbles

Figure 2.25: Full and weak supervision. (a) shows the input image and (b) the corresponding full
pixel-wise annotation. (c) and (d) show weak annotations, i.e. instead of the pixel-wise annotation
only bounding-boxes or scribbles, respectively. Images taken from the Cityscapes dataset [39]

• Handwritten digit recognition Given an image, the task is to identify the digit shown
on this image. �us, the input domain X = {x(8) ∈ Ω}#8=1 corresponds to the set of training
images and the output domainY = {0, . . . , 9} corresponds to the possible digits. Figure 2.24
shows the exemplary input images together with their ground-truth output labels.

• Semantic Image Segmentation Given an input image, we are interested in a pixel-wise
segmentation into the categories visible in the image pixels. �us, the input domain X =

{x(8) ∈ Ω}#8=1 corresponds to the training images and the output domain is for every pixel
e.g. Y = {car, street, tra�c sign, vegetation, sky, . . . }. Figure 2.25b shows a semantic image
segmentation, where di�erent colors encode di�erent semantic labels.

• Stereo Given two recti�ed images, the task is to compute for every pixel in the �rst image
the corresponding pixel in the second image. �us, we want to compute a 1-dimensional
displacement for every pixel. �erefore, the input domain is given by X = {(x(8)1 , x(8)2 ) :
x(8){1,2} ∈ Ω}

#
8=1 and the output domain is for every pixel the set of all possible displacements

Y = {0, 1, . . . , �}, where � is the maximal displacement. Figure 2.26 shows the input
images with the corresponding disparity map of the “Adirondack” from the Middlebury
dataset [169].
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(a) �0 (b) �1 (c) Disparity Map

Figure 2.26: �e stereo problem. Given two images from a calibrated camera the task is to compute
a dense disparity map capturing the displacement between �0 and �1 for every pixel. �e disparity
in (c) is color-coded ranging from far away (cold) to near (warm). Images from the Middlebury
2014 Stereo Benchmark [169].

We can instantiate Eq. (2.166) for a classi�cation problem using a discriminative approach with

ŷ = 5 (x;θ) = arg max
y∈Y

? (y|x, θ), (2.167)

where θ ∈ � are the parameters of our model, x ∈ X is the input image and y ∈ Y is the �nite
and discrete output. In di�erence to the discriminative approach, where we directly model the
posterior distribution, we model the joint distribution ? (X,Y) = ? (X|Y)? (Y) in a generative
approach.

2.6.3.2 Regression

Regression is the second category in machine learning. �e di�erence compared to classi�cation
is that the output domain is a continuous domain such as Y = ℝ# . For example, in geometric
problems such as stereo and optical �ow, the �nal goal is to compute a continuous disparity map
or �ow �eld, respectively. Fig. 2.27 shows a visual comparison for the stereo task. �e CNN-CRF
method [85] predicts a discrete result, while the VN [84] computes a continuous and thus sub-pixel
accurate solution.

2.6.4 Self-Supervised Learning

A machine learning approach is referred to as self-supervised learning, if the training data is
labeled automatically. �e training itself is then conducted using supervised learning as described
in the previous Section 2.6.3.

One common principle for automatic training data generation is reconstruction. �ereby, some
known parts of an image are hidden and the learning task is formulated to reconstruct the missing
part. Recent works following this pa�ern are e.g. image inpainting [150], where the model needs
to �ll in the missing part of an image. In cross-channel prediction the task is to predict color from
luminance and vice versa as done by [224]. Another example is colorization [223], where the task
is to predict the color image given a grayscale image.
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Figure 2.27: Comparison between discrete and continuous stereo. �e disparity maps are shown
using a high-frequency visualization to highlight the disparity changes. Images from [85] and
[84].

�e second principle we want to brie�y describe here is label generation through commonsense
reasoning. Commonsense thereby refers to the ability to set everyday things into relation. �is
could be e.g. jigsaw puzzles where the task is to align parts of an image [141], rotating images to
some canonical representation [61] or context prediction [43]. Note that the task in the examples
above is actually o�en only a proxy task for which training data can be automatically generated
using the image data itself. For example, in the jigsaw puzzle, the model needs to learn the relation
and the context of objects (proxy task) and thus our model needs to implicitly learn e.g. semantic
information to distinguish between a foreground object and the background. �erefore, self-
supervised learning approaches can also be used to learn embeddings for semantic segmentation
without actual semantic supervision. Due to these implicitly learned high-level representations,
the above self-supervised learning models fall also in the category called representation learning [8],
since the learned features can represent e.g. some speci�c semantic class.

A third principle is based on automatic label generation. �is approach can be used in geo-
metrical problems such as stereo and optical �ow. �e geometry in these problems can thereby be
directly used to get labels and/or supervision. �is can be for example done by computing two
disparity maps 30 and 31 using �0 and �1 as a reference image, respectively. Using both disparity
maps, the le�-right-consistency check [57]

|30(x) + 31(x + 30(x)) | < Y, (2.168)

where Y is a hyper-parameter, can be used to determine whether the predictions from the model
are plausible or not. We in [86] and Zhou et al. [227] exploited the le�-right-consistency to detect
reliable predictions of the model and used them for training the model itself. We refer the reader
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to Chapter 6 for more details on this variant.
�e examples above clearly show that self-supervised learning gains more and more impor-

tance. Until now the methods can not yet compete with their fully supervised trained pendants
in terms of �nal performance. However, the gap between self-supervised and fully supervised
trained methods became smaller in recent years.

2.6.5 Unsupervised Learning

For completeness, we also brie�y mention unsupervised learning here. In unsupervised learning
the training dataset does not contain any target labels. Hence, classical unsupervised learning
tasks are clustering, density estimation and dimensionality reduction as e.g. shown in [12]. One
example of an unsupervised learning algorithm is the K-means clustering algorithm [12]. �e
reader is referred to classical text books [12] for further information on classical unsupervised
learning.

�e objective function of an unsupervised problem does not use any target labels. However,
we can argue that the supervision is done directly by the data itself which classi�es the  -means
algorithm also as a self-supervised algorithm. Again, we can conclude that unsupervised learning
and self-supervised learning are closely related to each other.

2.7 Deep Learning with Neural Networks

Arti�cial Neural Networks (ANNs) or short neural networks are nowadays the most successful
machine learning models. �ey are successfully applied to a wide variety of tasks including, but
not limited to, image classi�cation [100], stereo [220], optical �ow [47], semantic segmentation
[116], natural language processing [184]. Although the basic concepts – the perceptron [164],
non-linear activations and the backpropagation algorithm [105] – have been invented many years
ago, the success story of neural networks truly started only in 2012. Krizhevsky et al. [100] showed
in their seminal work on image classi�cation how to utilize the GPU to train a CNN with a huge
dataset containing millions of images. �is was the starting point of the modern deep learning
era.

We will review the most relevant building blocks of neural networks in the upcoming sections.
To this end, we will start with the basic perceptron, proceed to neural networks and show the
basic principles to train neural networks.

2.7.1 Perceptron

�e perceptron [164] can be considered as a main building block of neural networks. Given an
input vector x̃ ∈ ℝ# , the perceptron is a linear model

H (x̃; w̃, 1) =
#∑
8=1

F̃8G̃8 + 1, (2.169)
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(a) Scalar Output
(b) Vector Output

Figure 2.28: Perceptron for scalar output / vector output. �e output H / y is a linear combination
of learnable weights w /W and and the inputs x. �e bias parameter 1 is captured through the
homogenous representation. See text for details.

where w̃ ∈ ℝ# are the learnable weights and 1 ∈ ℝ is called the bias. Figure 2.28a shows a
visualization of a perceptron. �e elements G̃1, . . . , G̃# are called (arti�cial) input neurons and H is
called the output neuron. Using homogeneous coordinates, we can express the addition in Eq. (2.169)
as a vector-vector product and get the concise notation

H (x; w) = w>x, (2.170)

where x ∈ ℝ#+1 is the input x̃ extended with the homogeneous coordinate

x =

(
1
x̃

)
=

©«

1
G̃1
G̃2
...

G̃#

ª®®®®®®®¬
, (2.171)

and w ∈ ℝ#+1 is the weight vector including the bias parameter, i.e.

w =

(
1

w̃

)
=

©«

1

F̃1
F̃2
...

F̃#

ª®®®®®®®¬
. (2.172)

We can easily extend the perceptron in order to predict an output vector y ∈ ℝ" instead of a
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scalar. To this end, we replace the weight vector w by a weight matrix W ∈ ℝ"×# :

W =

©«
w>0
w>1
...

w>
"

ª®®®®®¬
=

©«
11 F11 . . . F1#
12 F21
...

. . .
...

1" . . . F"#

ª®®®®®¬
. (2.173)

�is allows to map the # -dimensional input to an "-dimensional output. Both versions of the
perceptron are shown in Fig. 2.28.

A perceptron can be used for modeling logical operations such as AND, OR and NOT [164].
However, as shown by Minsky and Papert [133], the perceptron cannot model the XOR operation,
because XOR is not linearly separable. In the next section we overcome this problem by introducing
multi-layer perceptrons which are o�en also referred to as fully connected neural networks.

2.7.2 Fully Connected Neural Networks

Fully connected neural networks can be constructed by stacking multiple perceptrons together.
�e term fully connected indicates that each neuron of a layer is connected with each neuron of
the next layer. Equivalently, this means that the learnable weight matrices are dense matrices.
Neural networks are also o�en called multi-layer perceptrons, since the perceptron is the main
building block.

Let us now describe a fully connected neural network more formally. Note that, similar as in
the previous section, we use homogeneous coordinates in the following. To this end, consider the
multi-layer model

y = W(2)W(1)x, (2.174)

where x is the input and W(1) and W(2) are the learnable weights for the �rst and second layer,
respectively. However, if we investigate Eq. (2.174), we see that we actually did not gain anything.
We can easily come up with a new matrix W computed as the product of W(2) and W(1) and see
that we have just invented the perceptron again:

ỹ = Wx = W(2)W(1)x = y. (2.175)

�e problem in Eq. (2.175) is that we can always merge multiple linear layers into one linear layer.
�e key idea to avoid this problem is the introduction of a non-linearity, also-called activation
function, between the individual layers. �is change makes the whole model non-linear and thus
it is no longer possible to collapse multiple layers into an equivalent single layer representation.
Let us denote the element-wise activation function for the ;-th layer as f (;) : ℝ→ ℝ. �en we
can de�ne an !-layer neural network with layer indices ; ∈ {1, . . . , !} as{

z(;+1) = W(;+1)a(;)

a(;) = f (;) (z(;) ),
(2.176)
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Figure 2.29: A multi-layer perceptron (=neural network) with hidden layers. �e input neurons
are shown in blue, hidden neurons are shown in green and the output neurons Average shown in
red.

where z(;)
8

and a(;)
8

are the output and the activation of the 8-th neuron in the ;-th layer, respectively,
and W(;) is the homogeneous, learnable weight matrix for the ;-th layer. �e activation of the
0Cℎ-layer is the input, i.e. a(0) = x and the output is simply the activation of the last layer, i.e.
y = a(!) .

A visualization of a fully connected neural network is shown in Fig. 2.29, where the hidden
layers are the layers between the input and the output layer. If there is more than one hidden
layer, then the network is called a deep neural network. Note that we did not explicitly visualize
the activation functions in Fig. 2.29.

Properties of a neural network are e.g. the depth and the width of the network. �e depth
refers to the number of layers ! in the network and the width refers to the number of neurons in
the layers (c.f . Fig. 2.29).

So far, the activation function f is just abstractly de�ned. We will look at di�erent activation
functions commonly used in deep learning in the next section.

2.7.3 Activation Functions

We have seen in Section 2.7.2 that stacking linear layers without activation functions together does
not increase model complexity because we can always design an equivalent single-layer perceptron
as shown in Eq. (2.175). �us, the second main ingredient of neural networks are the non-linear
activation functions. Due to the non-linearity the layers cannot be collapsed into an equivalent
single-layer network. �us, we can increase the complexity arbitrarily by designing deep neural
networks. In this section, we will brie�y show the most important activation functions. Note that
this list is not complete. For a more complete list of activation functions we recommend the reader
to consult the documentation of a recent machine learning framework such as PyTorch.2 Usually,
they contain an up-to-date list of activation functions, which is not trivial, because activation
functions are actively researched.

2https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
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Figure 2.30: Common activation functions.

Classical activation functions �e logistic “sigmoid” function (see Fig. 2.30 top-le�) and
the “tanh” activation function (see Fig. 2.30 top-right) are representatives of classical activation
functions. �e sigmoid function is de�ned as

f (G) = 1
1 + 4−G , (2.177)

where G ∈ ℝ is a scalar input. �e sigmoid function squashes the input to the interval [0, 1],
and therefore the output of f (G) can be interpreted as a probability. We can also generalize the
sigmoid function to the “so�max” function, which can be used to convert an arbitrary vector
x ∈ ℝ# to a probability distribution. �is can be done with the so�max function de�ned as

f (x)8 =
4−G8∑#
9=1 4

−G 9
, (2.178)

where f (x) ∈ Δ# , i.e. the output is in the # -dimensional simplex and thus can be interpreted as
a probability.

As visualized in Fig. 2.30 (top-le�) the sigmoid function is not symmetric around the G-axis. In
di�erence, the tanh activation function is symmetric around the G-axis (see Fig. 2.30 (top-right)).
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�e tanh function is de�ned as
tanh(G) = 4G − 4−G

4G + 4−G , (2.179)

where G ∈ ℝ is a scalar input, which is squashed to the interval [−1, 1]. E.g. LeCun et al. [108]
argue that learning works be�er if the data is centered around zero. �is �ts perfectly to the
de�nition of the tanh activation function.

�ese classical activation functions have been the gold standard for a long time. However,
modern deep learning papers [62, 65, 121] have shown the problems of the sigmoid and tanh
activation function and introduced modern activation functions. We will investigate the most
important ones in the next paragraph.

Modern activation functions �e currently most o�en used activation function is the recti�ed
linear unit, usually just abbreviated as ReLU. In di�erence to the sigmoid and tanh function, the
ReLU is a non-saturating function, i.e. limG→∞ ReLU(G) = ∞. �is can be seen in Fig. 2.30 (bo�om-
le�) and in the de�nition

ReLU(G) = max(0, G), (2.180)

where G ∈ ℝ. �is non-saturation is bene�cial during model training (Section 2.7.5), because the
gradient is always non-zero for G > 0. However, the ReLU can su�er from the so-called dying
ReLU problem. To see this, consider a neural network with one hidden layer activated with the
ReLU function. If the input vector x ∈ ℝ# contains only negative entries, i.e. (G8 < 0)#8=1, then
the gradient of this layer w.r.t. its input is always zero. A zero gradient discontinues learning
and therefore the model gets stuck. However, it should also be noted that the shutdown of some
neurons can be very useful, i.e. when some features should be ignored during further processing.

�e ReLU activation function is the basis for many more activation functions such as
LeakyReLU [122], the parameterized ReLU (PReLU) [65], the exponential linear unit (ELU) [36],
the scaled exponential linear unit (SELU) [83], etc. �e LeakyReLU function was invented to avoid
the dying ReLU problem by using a small slope for the negative interval as well. It is de�ned as

LeakyReLU(G ;U) =
{
UG for G < 0
G for G ≥ 0

, (2.181)

where G ∈ ℝ is the input and U = 0.01. �e LeakyReLU function is plo�ed in Fig. 2.30 (bo�om-
right). While the parameter U is �xed in LeakyReLU, in the PReLU U is a learnable parameter.

�e modern activation functions are usually used in Deep Neural Network (DNN) [66, 180].
�e main reason is that the training usually converges faster due to the be�er gradient �ow.
However, the classical activations are still used as well. A standard use-case for the sigmoid or
so�max function is for example the conversion of some output signal to a probability distribution.
�is is for example useful in classi�cation problems.
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Figure 2.31: Visualization of a convolution. �e blue image is convolved with the gray �lter and
results in the green image. Image courtesy of [188].

2.7.4 Convolutional Neural Networks

When we work with images, we usually want to share the parameters over the complete image [107].
�is is also encouraged by the well-known fact that images are locally very similar. To take
advantage of this self-similarity we replace the dense matrix-vector product with a convolution.
A convolution is translation invariant and thus very well suited to be applied on images. Formally,
it is de�ned as

(5 ∗ 6) (G, H) =
"′∑
8=1

# ′∑
9=1

5 (G − 8, H − 9)6(8, 9), (2.182)

where 5 is an image with size " × # and 6 is a �lter kernel with size " ′ × # ′. In the context
of neural networks usually the �lter function 6 covers only a small local region of the image 5 .
Intuitively, Eq. (2.182) states that a local window 6 is slid over the input image 5 . For each position
in the input image the content in the local window de�ned by the �lter is multiplied and summed
up. In other words, the two signals are convolved with each other. �is can be interpreted as
�ltering the image 5 with the �lter 6. Figure 2.31 shows a convolution of an image with 4 × 4
pixels and a �lter with 3 × 3 pixels.

Convolution Layer In Eq. (2.182) we have seen the formal de�nition of a convolution. We will
clarify in this section how convolutions are actually used in CNNs. Before we detail the learnable
parameters of the convolution operation we are going to map Eq. (2.182) to Eq. (2.176). �erefore,
we show how a convolution can be represented in terms of a matrix-vector multiplication. �is is
exactly the same representation as we have been using for fully connected neural networks shown
in Eq. (2.176). To this end, assume we are given an input image 5 : Ω → ℝ and a convolution
kernel 6 : Ω → ℝ. We assume the image has size " × # and the convolution kernel has size
* ×+ .

�en, a convolution as de�ned in Eq. (2.182) can also be implemented using a matrix-vector
product. �e �rst option is to represent the convolution kernel as a �a�ened vector g ∈ ℝ*+ and
the matrix F ∈ ℝ"#×*+ can be constructed using the input image. �en, the convolution can
be performed by taking the product Fg. In the second option we exchange the roles. Here, the
vector f ∈ ℝ"# represents the �a�ened input image and we construct a highly sparse matrix



72 Chapter 2. Related work

3 4 5 8

1 2 2 3

7 4 3 6

3 2 9 4

4 8

7 9

maxpool

s = 2

(a) Max-Pooling

3 4 5 8

1 2 2 3

7 4 3 6

3 2 9 4

2.5 4.5

4 5.5

avgpool

s = 2

(b) Average-Pooling

Figure 2.32: Pooling operations with stride B = 2. �e pooling operation computes the maximum
(Fig. 2.32a) or the average (Fig. 2.32b) over the colored windows.

G ∈ ℝ"#×"# which represents the convolution kernel. �is yields the vector-matrix product Gf .
�e last representation reveals that a convolution layer can be seen as a special instance of a

fully connected layer. �e di�erence is that a convolution layer has sparse and shared weights
while the fully connected layer has dense non-shared weights. �is representation is bene�cial
for computing the gradient w.r.t. the convolution kernel as we will show in Section 2.7.5.

�e convolution layer as described above is the simplest form of a convolution used in
CNNs. �ere exist many variants such as depth-wise separable convolutions [35], dilated convolu-
tions [214], etc., which are not covered here in detail.

Pooling Layer �e second important layer in CNNs is the pooling layer. As the name already
suggests, this layer is used to condense information in order to get a more compact representation.
Let us consider the pooling operation in 2D. We distinguish between two di�erent pooling
operations, max-pooling and average pooling. Given an image 5 : Ω ⊂ ℕ → ℝ. �en we can
de�ne max-pooling as

maxpool(f)|Ω8 B max
G ∈Ω8

5 (G) (2.183)

and average pooling as
avgpool(f)|Ω8 B

1
|Ω8 |

∑
G ∈Ω8

5 (G), (2.184)

where Ω8 are sub-regions of the image such that Ω =
⋃#
8=1 Ω8 . Figures 2.32a and 2.32b show a

visualization of max pooling and average pooling where the sub-regions have a size of 2 × 2.
Pooling operations are mainly used to reduce the spatial dimensions of feature maps. �e

interpretation of max pooling is e.g. that only the feature with the highest response survives,
because this feature might contain most information. �e pooling operations are also related to
strided convolutions, where the convolution is only applied on prede�ned pixel positions.

2.7.5 Model Training

Successfully applying a machine learning model to a speci�c tasks includes the three components
i) training data, ii) model architecture and iii) model training. We will investigate these three parts
in the upcoming paragraphs.
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Training Data Since ML and especially deep learning are data-driven approaches, the training
data is of special importance. From a theoretical ML perspective the training data set is sampled
from the true underlying joint distribution of inputs and outputs ? (X,Y), where the capital
le�ers denote random vectors. �us, the be�er the training data D = {x(8) , y(8) }#8=1 represents the
true distribution ? (X,Y), the be�er the �nal model will perform. Let us consider the following
gedankenexperiment in order to demonstrate that more training data is be�er in general. Imagine
a tiny gray-scale image with 4 × 4 pixels. If every pixel can select one out of 2563 gray values,
then there exist 16256 ≈ 10308 (!) di�erent gray-scale images with size 4 × 4. �is huge number is
even more impressive if we set it into relation with the number of atoms in the universe, which
is estimated to be around 1080 and thus tremendously smaller than 10308. Coming back to the
training data in ML this tells us basically that (i) there will never be enough training data available
and (ii) more data represents ? (X,Y) be�er and is thus bene�cial for training.

Model Architecture In deep learning, the model architecture is usually designed by domain
experts. However, nowadays some architectures are considered standard architectures in the
deep learning community. �ese standard models can be directly used as e.g. general purpose
feature extractors in composite models. Examples of standard architectures are e.g. the ResNet

family [66], the U-Nets [116, 163] or the VGG-Net [180]. �ere are also some a�empts to automate
the process of �nding be�er architectures. Such approaches fall into the research area of Neural
Architecture Search (NAS) which is a sub-�eld of Automated Machine Learning (AutoML). �e
idea of automatically �nding be�er architectures is interesting. However, especially in the context
of deep learning NAS approaches are extremely costly in terms of computations. �e computation
time is usually measured in GPU -days and it o�en takes hundreds or even thousands of GPU -days
until a suitable architecture is found [208].

Model Training Finding the best parameters for a given model is at the core of every machine
learning algorithm. �e goal of model training is to �nd parameters for a model4 which explains
the given training data best. Machine learning theory and mathematical optimization provide
us with tools which we can use to �nd be�er parameters for our models. We can quantify the
risk of our model 5 : X → Y by the expectation of the loss function ℓ over the data-generating
distribution:

'(θ) = E(X,Y)∼? ( ·, ·) [ℓ (5 (X;θ),Y)], (2.185)

where θ are the parameters of the model. �e quantity ' in Eq. (2.185) is also known as the true
risk. However, in practice we can hardly ever compute the expectation in the true risk, because we
do not know the distribution ? . Instead, as an approximation we can compute the empirical risk

'̂(θ) = E(X,Y)∼?̂ ( ·, ·) [ℓ (5 (X;θ),Y)], (2.186)

3Standard images are quantized with 8 bit per pixel⇒ 28 = 256 di�erent values.
4�e word “model” here means neural networks and CNNs, respectively.
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where we use the hat to denote an estimated quantity.

?̂ (x, y) = 1
#

#∑
8=1

Xx=x8Xy=y8 (2.187)

is the empirical distribution de�ned by the underlying dataset and '̂ is the empirical risk. Expand-
ing the expectation in Eq. (2.186) we get

L(θ) B '̂(θ) = 1
#

#∑
8=1

ℓ
(
5
(
x(8) ;θ

)
, y(8)

)
, (2.188)

where we have inserted the dataset D = {x(8) , y(8) }#8=1 into ?̂ (·, ·) = ? (D) and de�ned the total
loss L to be the empirical risk. Equation (2.188) can be computed and thus our goal is to �nd the
optimal parameters θ∗ by solving the optimization problem

θ∗ ∈ arg min
θ

{
L(θ) B 1

#

#∑
8=1

ℓ
(
ℎ
(
x(8) ;θ

)
, y(8)

)}
, (2.189)

which is known as Empirical Risk Minimization (ERM). ERM is the most central task in every
machine learning model.

Let us next investigate how we can approach the ERM problem de�ned in Eq. (2.189). To this
end, we �rst note that Eq. (2.189) is actually an instance of the continuous optimization problem
in Eq. (2.142). As we have seen in Section 2.5.2 we can use gradient-based optimization methods
such as e.g. the gradient method de�ned in algorithm 7 to iteratively compute the optimizer θ∗.
Note that L(θ) is a non-convex function in the parameters θ and thus we cannot guarantee to
�nd the global optimum of the function. Instead, we will only �nd a local minimum or a saddle
point. However, it turns out that the parameters found with gradient-based methods work very
well in practice. Gradient-based methods require, as the name already suggests, a gradient to
update the parameters. �erefore, we need to compute

∇θL(θ), (2.190)

where again θ represents all the parameters of our network. Let us now consider a convolutional
neural network with ! layers. To this end, we reuse the formal de�nition given in Eq. (2.176) and
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expand it to

y = a(!) = f (!) (W(!) · · ·

a(2)︷                       ︸︸                       ︷
f (2) (W2

a(1)︷        ︸︸        ︷
f (1) (W(1)x︸︷︷︸

z(1)

)

︸               ︷︷               ︸
z(2)

)

︸                                          ︷︷                                          ︸
z(!)

), (2.191)

where we have used the homogeneous representation for W(;) and x in order to implicitly handle
the bias parameter. We name z(;) and a(;) the output and the activation of the ;-th layer, respectively.
�e parameters of our network de�ned in Eq. (2.191) are the weight and bias parameters of all
layers captured by θ = {W(1) , . . . ,W(!) }. �us, we can rewrite Eq. (2.190) to

∇{W(1) ,...,W(!) }!(W(1) , . . . ,W(!) ), (2.192)

which enables us to split up the computation of the gradients. To ease the notation, we de�ne

∇W(; )!(W(;) ) B m!

mW(;) =

©«

m!

m,
(; )

11

m!

m,
(; )

12
. . . m!

m,
(; )

1#

m!

m,
(; )

21

. . .
...

...
m!

m,
(; )
"1

. . . m!

m,
(; )
"#

ª®®®®®®®®¬
. (2.193)

Next, equipped with the notation de�ned in Eq. (2.193) we can compute the gradient for the
parameter blocks W(;) using the chain rule, i.e.

m!

mW(;) =
m!

ma(!)
ma(!)

mz(!)
mz(!)

ma(!−1) . . .
ma(;)

mz(;)
mz(;)

mW(;) . (2.194)

Due to the structure of a neural network as de�ned in Eq. (2.191) we have only three di�erent
terms in Eq. (2.194) for which we must compute the derivatives. �ese derivatives are given by

ma(;)

mz(;)
= f ′(;) (z(;) ) mz(;)

ma(;−1) = W(;)> mz(;)

mW(;) = a(;−1)>, (2.195)

where ; is the layer index. �e chain rule in Equation (2.194) reveal also that the gradient is
computed by propagating the error from the output to the input. If we also compute the gradients
in reverse order, i.e. {W(!) , . . . ,W(1) }, we observe that we can reuse intermediate results. �is
allows us to de�ne an e�cient algorithm for computing the gradients. We therefore de�ne the
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Algorithm 14: Backpropagation Algorithm
Input: Outputs z(;) , activations a(;) , parameters

{
W(1) , . . . ,W(!)}

Result: Gradients of parameters
{

m!

mW(1) , . . . ,
m!

mW(!)

}
1 for ; = {!, ! − 1, . . . , 1} do

/* Compute current delta */

2 if l == L then
3 δ = f ′(!) (z(!) ) � m!

ma(!)

4 else
5 δ = f ′(;) (z(;) ) �W(;+1)>δ (;+1)

6 end if
/* Compute gradient for layer ; */

7 m!

mW(; ) = δ a(;−1)>

8 end for

intermediate results δ recursively as

δ (;) = f ′(;) (z(;) ) �
{

m!

ma(!) if ; = !,
W(;+1)>δ (;+1) else,

(2.196)

where the derivative of the activation function f is point-wise applied to the output z of the same
layer ; and � denotes the point-wise multiplication operation. In order to compute the sought
gradients, we use Eq. (2.196) and get

m!

mW(;) = δ
(;)a(;−1)> . (2.197)

Note that by de�nition of Eq. (2.196) the gradients are propagated backwards through the network.
We actually derived the backpropagation (backprop) algorithm [105] in Equations (2.196) and (2.197)
and now understand that this algorithm is simply an e�cient way to compute the gradients of
the parameters of neural networks by intelligently reusing intermediate results. Algorithm 14
shows the complete algorithm.

Now, we have an algorithm to e�ciently compute the gradient in Eq. (2.190) and can come back
to conduct the optimization. Regardless of the used optimization algorithm, we need to specify a
step-width o�en referred to as learning rate in the machine learning literature. Unfortunately,
�nding an appropriate learning rate is a di�cult problem in its own. Additionally, since neural
networks are non-convex and non-linear functions, there are no theoretical guidelines available
on how to select a good learning rate. �us, �nding an appropriate learning rate is usually done
by a machine learning expert. On one hand the non-convexity of neural networks enables to
train very powerful models, but on the other hand any theoretical guarantees are lost. Another
di�culty of non-convex functions is to �nd a “good” initialization for the parameters. Depending
on the initialization, the optimization algorithm will end up in a di�erent stationary point. But of
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Algorithm 15: Adam Optimizer as presented in [81]
Input: step size U
Input: Exponential decay rates for moment estimates V1, V2 ∈ [0, 1)
Input: Stochastic objective function 5 (\ )
Input: Initial parameters \0
Result: Parameters \C
/* VC1 and VC2 denotes V1 and V2 to the power of C. */

1 <0 = 0 ; /* Initialize 1BC moment vector */

2 E0 = 0 ; /* Initialize 2=3 moment vector */

3 C = 0 ; /* Initialize timestep */

4 while \C not converged do
5 C = C + 1
6 6C = ∇\ 5C (\C−1) ; /* Get gradient at timestep t */

7 <C = V1 ·<C−1 + (1 − V1) · 6C ; /* Update biased first moment estimate */

8 EC = V2 · EC−1 + (1 − V2) · 62
C ; /* Update biased second raw moment estimate */

9 <̂C =
<C

1−VC1
; /* Compute bias-corrected first moment estimate */

10 ÊC =
EC

1−VC2
; /* Compute bias-corrected second raw moment estimate */

11 \C = \C−1 − U · <̂C√
ÊC +Y

; /* update parameters */

12 end while

course, we want to end up in a “good” local minimum a�er the optimization. �e term “good”
is here vaguely de�ned. �is is simply, because there are no precise theoretical measurements
which could be used to de�ne good and bad. Instead “good” means here that our model performs
as expected a�er the training. Despite of the problem with the learning rate and the initialization,
the literature shows that it is o�en possible in practice to handle all these unknowns. However,
this also shows that from a scienti�c point of view there are still a lot of theoretical questions
open.

The Adam optimizer �e Adaptive Momentum (Adam) optimizer [81] is a relatively new
optimization algorithm speci�cally designed to be used in deep learning problems. �e main
advantage compared to classical optimization algorithms shown in Section 2.5.2 is the adaptive
weighting of the learning rate. To this end, the algorithm adaptively estimates the �rst and second
moment of the gradient. �e �rst momentum corresponds to the mean of the gradient 6 and the
second momentum is the uncentered5 variance of the gradient given by

< = E[6] = 1
)

)∑
C=1

6C E = E[62] = 1
)

)∑
C=1

62
C , (2.198)

5Not to be confused with the variance which is centered around the mean m, i.e. E = E[(6 −<)2].
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Figure 2.33: Exponential decay in the Adam optimizer.

where 6C and 62
C are the gradient and the squared gradient at time step C , respectively. Equa-

tion (2.198) can be recursively computed in an online se�ing with

<C =
1
C
·
{
61 if C = 1,
6C +<C−1 · (C − 1) if C > 1,

(2.199)

where C is the current time step. However, the importance of every sample in Eqs. (2.198) and (2.199)
is uniformly distributed. In the learning se�ing, we might want to increase the importance of
recent samples and decrease the importance of old samples. Kingma and Ba [81] therefore suggest
to use an exponentially decaying moving average which enables to make the moments adaptive
to changes in the gradient. An exponentially moving average is de�ned as

<C =

{
61 if C = 1,
V6C + (1 − V)<C−1 if C > 1.

(2.200)

Figure 2.33 shows the e�ect of the exponential decay at time step C of a sample drawn at time step
C0 using the default values V1 = 0.9 for the �rst moment and V2 = 0.999 for the second moment,
respectively.

�e descent direction at time step C is then computed by

3C =
<̂C√
ÊC + Y

, (2.201)

where <̂C and ÊC denotes the bias corrected �rst and second raw moments, respectively, and Y
is a small hyper-parameter to avoid a division by zero. Hence, the descent direction used in the
Adam optimizer is given by the variance-normalized, exponentially smoothed mean gradient. �e
smoothing and normalization ensures that the magnitude of 3C does not �uctuate signi�cantly.
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�us, also the magnitude of the actual update step, U · 3C , is similar in all time steps. In di�erence,
the actual step size in traditional optimization algorithms (c.f . Section 2.5.2) is directly in�uenced
by the gradient, i.e. U ·6C . �us, in general the Adam optimizer is more stable in practice compared
to traditional optimization algorithms. �is is especially important in the early stage in training
when the randomly initialized parameters can cause large gradients or in the presence of strong
outliers.

Another advantage of the Adam optimizer is the tracking of the running �rst and second
moments for every (scalar) element individually. To understand this advantage we consider
training a CNN with multiple hidden layers. �e magnitude of the gradient can be signi�cantly
di�erent in di�erent layers. In the classical se�ing the maximal learning rate is limited by the
largest gradient magnitude. Contrary, since the Adam optimizer performs element-wise rescaling
the e�ective update will be similar for all layers. �us, if we compare multiple learning algorithms
for training CNNs in practice, the Adam optimizer yields o�en the best results although the
theoretical convergence rate is even worse to the convergence of the gradient method. �e very
good performance makes the Adam optimizer o�en the number one choice for training CNNs.





3
Hybrid CNN-CRF Model for Stereo

Deep Learning (DL) based models have been successfully applied to many problems
in computer vision. �is is especially true for tasks where it is su�cient to predict only
a single value for the entire image. Back in 2016, when we were working on the paper
presented in this section, the community started to apply DL to geometric problems such
as stereo. �e seminal work of Žbontar and LeCun [220] therefore suggested learning the
features for matching using Convolutional Neural Networks (CNNs). �ey replaced the
hand-cra�ed features with the learned features, integrated them into the stereo pipeline
and achieved a signi�cant performance gain on several stereo benchmarks. However, the
process relied still on a chain of hand-cra�ed post-processing steps. �e authors used
e.g. a Conditional Random Field (CRF) during post-processing, but it was not possible to
train the matching part jointly with the CRF in an end-to-end fashion. �at was exactly
the motivation for this paper. If we are able to enable end-to-end training with hybrid
CNN + CRF models for stereo, we can i) avoid all hand-cra�ed post-processing steps
that make the entire model learnable, ii) use much smaller networks while achieving a
comparable performance and iii) integrate prior knowledge directly through the CRF
and thus gain interpretability of the entire model.

�is work was presented at CVPR 2017 in Honolulu, Hawaii.
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Figure 3.1: Architecture: A convolutional neural network, which we call Unary-CNN computes
features of the two images for each pixel. �e features are compared using a Correlation layer.
�e resulting matching cost volume becomes the unary cost of the CRF. �e pairwise costs of the
CRF are parametrized by edge weights, which can either follow a usual contrast sensitive model
or estimated by the Pairwise-CNN.

3.1 Introduction

Stereo matching is a fundamental low-level vision problem. It is an ill-posed inverse problem,
asking to reconstruct the depth from a pair of images. �is requires robustness to all kinds of visual
nuisances as well as a good prior model of the 3D environment. Prior to deep neural network data-
driven approaches, progress had been made using global optimization techniques [93, 103, 160, 171,
209] featuring robust surface models and occlusion mechanisms. Typically, these methods had to
rely on engineered cost matching and involved choosing a number of parameters experimentally.

Recent deep CNN models for stereo [33, 119, 220] learn from data to be robust to illumination
changes, occlusions, re�ections, noise, etc. A deep and possibly multi-scale architecture is used to
leverage the local matching to a global one. However, also deep CNN models for stereo rely a lot
on post-processing, combining a set of �lters and optimization-like heuristics, to produce �nal
accurate results.

In this work we combine CNNs with a discrete optimization model for stereo. �is allows
complex local matching costs and parametrized geometric priors to be put together in a global
optimization approach and to be learned end-to-end from the data. Even though our model
contains CNNs, it is still easily interpretable. �is property allows us to shed more light on the
learning our network performs. We start from a CRF formulation and replace all hand-cra�ed
terms with learned ones.

We propose a hybrid CNN-CRF model illustrated in Fig. 3.1. Our Unary-CNN computes local
features of both images which are then compared in a �xed correlation metric. Our Pairwise-CNN
can additionally estimate contrast-sensitive pairwise costs in order to encourage or discourage
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label jumps. Using the learned unary and pairwise costs, the CRF tries to �nd a joint solution
optimizing the total sum of all unary and pairwise costs in a 4-connected graph. �is model
generalizes existing engineered approaches in stereo as well as augment existing fully learned
ones. �e Unary-CNN straightforwardly generalizes manually designed matching costs such as
those based on di�erences of colors, sampling-insensitive variants [11], local binary pa�erns (e.g.,
Census transform [216]), etc. �e Pairwise-CNN generalizes a contrast-sensitive regularizer [18],
which is the best practice in MRF/CRF models for segmentation and stereo.

To perform inference in the CRF model we apply the fast method of [177], which improves
over heuristic approaches combining multiple post-processing steps as used in [33, 119, 220]. We
deliberately chose not to use any post-processing in order to show that most of the performance
gain through post-processing can be covered by a well-trained CRF model. While previously,
methods based on LP-relaxation were considered prohibitively expensive for stereo, [177] reports
a near real-time performance, which makes this choice de�nitely faster than a full deep archi-
tecture [220] and competitive in speed with inference heuristics such as SGM [68], MGM [52],
etc.

We can train the complete model shown in Fig. 3.1 using the structured support vector machine
(SSVM) formulation and propagating its subgradient through the networks. Training a non-linear
CNN+CRF model of this scale is a challenging problem that has not been addressed before. Since at
test time the inference is applied to complete images, we train it on complete images as well. �is
is in contrast to the works [119, 218, 220] which sample patches for training. �e SSVM approach
optimizes the inference performance on complete images of the training set more directly. While
with the maximum likelihood it is important to sample hard negative examples (hard mining) [179],
the SSVM determines labellings that are hard to separate as the most violated constraints.

We observed that the hybrid CNN+CRF network performs very well already with shallow
CNN models, such as 3-7 layers. With the CRF layer the generalization gap is much smaller (less
over��ing) than without. �erefore a hybrid model can achieve a competitive performance using
much fewer parameters than the state of the art. �is leads to a more compact model and a be�er
utilization of the training data.

We report competitive performance on benchmarks using a shallow hybrid model. �alitative
results demonstrate that our model is o�en able to delineate object boundaries accurately and it
is also o�en robust to occlusions, although our CRF did not include explicit occlusion modeling.

Contribution We propose a hybrid CNN+CRF model for stereo, which utilizes the expres-
siveness of CNNs to compute good unary- as well as pairwise-costs and uses the CRF to easily
integrate long-range interactions. We propose an e�cient approach to train our CNN+CRF model.
�e trained hybrid model is shown to be fast and yields competitive results on challenging datasets.
We do not use any kind of post-processing.
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3.2 Related Work

CNNs for Stereo Most related to our work are CNN matching networks for stereo proposed
by [33, 119] and the fast version of [220]. �ey use similar architectures with a siamese network [22]
performing feature extraction from both images and matching them using a �xed correlation
function (product layer). Parts of our model (see Fig. 3.1) denoted as Unary-CNN and Correlation
closely follow these works. However, while [33, 119, 220] train by sampling matching and non-
matching image patches, following the line of work on more general matching / image retrieval, we
train from complete images. Only in this se�ing it is possible to extend to a full end-to-end training
of a model that includes a CRF (or any other global post-processing) optimizing speci�cally for the
best performance in the dense matching. �e accurate model of [220] implements the comparison
of features by a fully connected NN, which is more accurate than their fast model but signi�cantly
slower. All these methods make an extensive use of post-processing steps that are not jointly-
trainable with the CNN: [220] applies cost cross aggregation, semi-global matching, subpixel
enhancement, median and bilateral �ltering; [119] uses window-based cost aggregation, semi-global
matching, le�-right consistency check, subpixel re�nement, median �ltering, bilateral �ltering
and slanted plane ��ing; [33] uses semi-global matching, le�-right consistency check, disparity
propagation and median-�ltering. Experiments in [119] comparing bare networks without post-
processing show that their �xed correlation network outperforms the accurate version of [220].

CNNMatching General purpose matching networks are also related to our work. [218] used a
matching CNN for patch matching, [48] used it for optical �ow and [126] used it for stereo, optical
�ow and scene �ow. Variants of networks [48, 126] have been proposed that include a correlation
layer explicitly; however, it is then used as a stack of features and followed by up-convolutions
regressing the dense matching. Overall, these networks have a signi�cantly larger number of
parameters and require a lot of additional synthetic training data.

Joint Training (CNN+CRF training) End-to-end training of CNNs and CRFs is helpful in
many applications. �e fully connected CRF [99], performing well in semantic segmentation,
was trained jointly in [30, 225] by unrolling iterations of the inference method (mean �eld)
and backpropagating through them. Unfortunately, this model does not seem to be suitable
for stereo because typical solutions contain slanted surfaces and not piece-wise constant ones
(the �ltering in [99] propagates information in fronto-parallel planes). Instead simple heuristics
based on dynamic programming such as SGM [68] / MGM [52] are typically used in engineered
stereo methods as post-processing. However they su�er from various artifacts as shown in [52].
A trained inference model, even a relatively simple one, such as dynamic programming on a
tree [156], can become very competitive. Scharstein [170] and Pal et al. [146] have considered
training CRF models for stereo, linear in parameters. To the best of our knowledge, training of
inference techniques with CNNs has not yet been demonstrated for stereo. We believe the reason
for that is the relatively slow inference for models over pixels with hundreds of labels. Employing
the method proposed in [177], which is a variant of a LP-relaxation on the GPU, allows us to
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overcome this limitation. In order to train this method we need to look at a suitable learning
formulation. Speci�cally, methods approximating marginals are typically trained with variants of
approximate maximum likelihood [1, 82, 113, 142, 146, 170]. Inference techniques whose iteration
can be di�erentiated can be unrolled and trained directly by gradient descent [115, 144, 145, 159,
173, 190, 225]. Inference methods based on LP relaxation can be trained discriminatively, using a
structured SVM approach [29, 56, 97, 192], where parameters of the model are optimized jointly
with dual variables of the relaxation (blended learning and inference). We discuss the di�culty
of applying this technique in our se�ing (memory and time) and show that instead performing
stochastic approximate subgradient descent is more feasible and practically e�cient.

3.3 CNN-CRF Model

In this section we describe the individual blocks of our model (Fig. 3.1) and how they connect.
We consider the standard recti�ed stereo setup, in which epipolar lines correspond to image

rows. Given the le� and right images � 0 and � 1, the le� image is considered as the reference image
and for each pixel we seek to �nd a matching pixel of � 1 at a range of possible disparities. �e
disparity of a pixel 8 ∈ Ω = dom(� )0 is represented by a discrete label G8 ∈ L = {0, . . . ! − 1}.

�e Unary-CNN extracts dense image features for � 0 and � 1 respectively, denoted as q0 =

q (� 0;\1) and q 1 = q (� 1;\1). Both instances of the Unary-CNN in Fig. 3.1 share the parameters \1.
For each pixel, these extracted features are then correlated at all possible disparities to form a
correlation-volume (a matching con�dence volume) ? : Ω × L → [0, 1]. �e con�dence ?8 (G8)
is interpreted as how well a window around pixel 8 in the �rst image � 0 matches to the window
around pixel 8 + G8 in the second image � 1. Additionally, the reference image � 0 is used to estimate
contrast-sensitive edge weights either using a prede�ned model based on gradients, or using a
trainable pairwise CNN. �e correlation volume together with the pairwise weights are then
fused by the CRF inference, optimizing the total cost.

3.3.1 Unary CNN

We use 3 or 7 layers in the Unary-CNN and 100 �lters in each layer. �e �lter size of the �rst layer
is (3 × 3) and the �lter size of all other layers is (2 × 2). We use the tanh activation function a�er
all convolutional layers. Using tanh i) makes training easier, i.e., there is no need for intermediate
(batch-)normalization layers and ii) keeps the output of the correlation-layer bounded. Related
works [3, 23] have also found that tanh performs be�er than ReLU for patch matching with
correlation.

3.3.2 Correlation

�e cross-correlation of features q0 and q 1 extracted from the le� and right image, respectively, is
computed as

?8 (:) =
4 〈q

0
8
,q 1
8+: 〉∑

9 ∈L 4
〈q0
8
,q 1
8+9 〉

∀8 ∈ Ω,∀: ∈ L . (3.1)
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Hence, the correlation layer outputs the so�max normalized scalar products of corresponding
feature vectors. In practice, the normalization �xes the scale of our unary-costs which helps to
train the joint network. Since the correlation function is homogeneous for all disparities, a model
trained with some �xed number of disparities can be applied at test time with a di�erent number
of disparities. �e pixel-wise independent estimate of the best matching disparity

G8 ∈ arg max
:

?8 (:) (3.2)

is used for the purpose of comparison with the full model.

3.3.3 CRF

�e CRF model optimizes the total cost of complete disparity labelings,

min
G ∈X

(
5 (G) :=

∑
8∈V

58 (G8) +
∑
8 9 ∈E

58 9 (G8 , G 9 )
)
. (3.3)

whereV is the set of all nodes in the graph, i.e., the pixels, E is the set of all edges and X = LV
is the space of labelings. Unary terms 58 : L → ℝ are set as 58 (:) = −?8 (:), the matching costs.
�e pairwise terms 58 9 : L × L → ℝ implement the following model:

58 9 (G8 , G 9 ) = F8 9d ( |G8 − G 9 |; %1, %2). (3.4)

�e weightsF8 9 may be set either as manually de�ned contrast-sensitive weights [17]:

F8 9 = exp(−U |�8 − � 9 |V ) ∀8 9 ∈ �, (3.5)

allowing cheaper disparity jumps across strong image gradients, or using the learned model of
the Pairwise-CNN. �e function d is a robust penalty function de�ned as

d ( |G8 − G 9 |) =


0 if |G8 − G 9 | = 0,
%1 if |G8 − G 9 | = 1,
%2 otherwise,

(3.6)

popular in stereo [69]. Cost %1 penalizes small disparity deviation of one pixel representing
smooth surfaces and %2 penalizes larger jumps representing depth discontinuities. We use only
pairwise-interactions on a 4-connected grid.

Inference Although the direct solution of (3.3) is intractable [111], there are a number of methods
to perform approximate inference [29, 94] as well as related heuristics designed speci�cally for
stereo such as [52, 69]. We apply our dual minorize-maximize method (Dual MM) [177], which is
sound because it is based on LP-relaxation, similar to TRW-S [94], and massively parallel, allowing
a fast GPU implementation.
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We give a brief description of Dual MM, which will also be needed when considering training.
Let 5 denote the concatenated cost vector of all unary and pairwise terms 58 , 58 9 . �e method starts
from a decomposition of 5 into horizontal and vertical chains, 5 = 5 1 + 5 2 (namely, 5 1 includes all
horizontal edges and all unary terms and 5 2 all vertical edges and zero unary terms). �e value of
the minimum in (3.3) is lower bounded by

max
_

(
� (_) := min

G 1
(5 1 + _) (G 1) +min

G2
(5 2 − _) (G2)

)
, (3.7)

where _ is the vector of Lagrange multipliers corresponding to the constraint G 1 = G2. �e bound
� (_) ≤ (3.3) holds for any _, however it is tightest for the optimal _ maximizing the sum in
the brackets. �e Dual MM algorithm performs iterations towards this optimum by alternatively
updating _ considering at a time either all vertical or horizontal chains, processed in parallel. Each
update monotonously increases the lower bound (3.7). �e �nal solution is obtained as

G8 ∈ arg min
:

(5 1
8 + _8) (:), (3.8)

i.e., similar to (3.2), but for the reparametrized costs 5 1 + _. If the inference has converged and
the minimizer G8 in (3.8) is unique for all 8 , then G is the optimal solution to the energy minimiza-
tion (3.3) [96, 206].

3.3.4 Pairwise CNN

In order to estimate edge weights with a pairwise CNN, we use a 3-layer network. We use 64 �lters
with size (3 × 3) and the tanh activation function in the �rst two layers to extract some suitable
features. �e third layer maps the features of pixel 8 to weights (F8 9 | 8 9 ∈ �) corresponding to the
two edge orientations, where we use the absolute value function as activation. �is ensures that
the pairwise costs are always larger than 0 and that our Pairwise-CNN has the ability to scale the
output freely. In practice this is desirable because it allows us to automatically learn the optimal
trade-o� between data-�delity and regularization. �e parameters of this network will be denoted
as \2. �e weights F can be stored as a 2-channel image (one channel per orientation). �ey
generalize over the manually de�ned contrast-sensitive weights de�ned in (3.5) in the pairwise-
terms 58 9 (3.4). Intuitively, this means the pairwise network can learn to apply the weights F
adaptively based on the image content in a wider neighborhood. �e values %1, %2 remain as global
parameters. Fig. 3.2 shows an example output of the Pairwise-CNN.

3.4 Training

One major goal of this work is the end-to-end training of the complete model in Fig. 3.1. For
the purpose of comparison of di�erent components we train 3 types of models, of increasing
generality:

• Pixel-wise Unary-CNN: model in which CRF interactions are set to zero and Pairwise-CNN
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(a) Learned (b) Fixed

Figure 3.2: Learned vs �xed pairwise costs: Visualization of the pairwise costs between two
neighboring pixels in horizontal direction using the learned Pairwise-CNN (le�) and a �xed edge-
function (right). Dark pixels indicate a low cost for changing the label and bright pixels indicate
a high cost for a label-switch. Note, how the dark pixels follow object outlines (where depth
discontinuities are likely) and how texture-edges tend to be suppressed (e.g., on the �oor) in the
learned version.

is switched o�.

• Joint Unary-CNN +CRF model in which the Pairwise-CNN is �xed to replicate exactly the
contrast-sensitive model (3.5). Trained parameters are: Unary-CNN and global parameters
%1, %2.

• Joint model with trained Unary-CNN and Pairwise-CNN (=complete model). Trained Param-
eters are: Unary-CNN, Pairwise-CNN and global parameters %1, %2.

3.4.1 Training Unary CNN in the Pixel-wise Model

For the purpose of comparison, we train our Unary-CNN in a pixel-wise mode, similarly to [33, 119,
220]. For this purpose we set the CRF interactions to zero (e.g., by le�ing %1 = %2 = 0), in which case
the resulting decision degenerates to the pixel-wise independent argmax decision rule Eq. (3.2).
Training such models can be formulated in di�erent ways, using gradient of the likelihood /
cross-entropy [119, 219], reweighed regression [33] or hinge loss [219]. Following [119, 219] we
train parameters of the Unary-CNN \1 using the cross-entropy loss,

min
\1

∑
8∈Ω

∑
:∈X

?
6C

8
(:) log?8 (: ;\1), (3.9)

where ?6C
8
(:) is the one-hot encoding of the ground-truth disparity for the 8-th pixel.
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3.4.2 Training Joint Model

We apply the structured support vector machine formulation, also known as the maximum margin
Markov network [187, 192], in a non-linear se�ing. A�er giving a short overview of the SSVM
approach we discuss the problem of learning when no exact inference is possible. We argue that
the blended learning and inference approach of [29, 97] is not feasible for models of our size. We
then discuss the proposed training scheme approximating a subgradient of a �xed number of
iterations of Dual MM.

SSVM Assume that we have a training sample consisting of an input image pair � = (� 0, � 1) and
the true disparity G∗. Let G be a disparity prediction that we make. We consider an additive loss
function

; (G, G∗) =
∑
8

;8 (G8 , G∗8 ), (3.10)

where the pixel loss ;8 is taken to be ;8 (G8 , G∗8 ) = min( |G8 − G∗8 |, g), appropriate in stereo reconstruc-
tion. �e empirical risk is the sum of losses (3.10) over a sample of several image pairs, however for
our purpose it is su�cient to consider only a single image pair. When the inference is performed
by the CRF i.e., the disparity estimate G is the minimizer of (3.3), training the optimal parameters
\ = (\1, \2, %1, %2) can be formulated in the form of a bilevel optimization:

min
\
; (G, G∗) (3.11a)

s.t. G ∈ arg min
G ∈X

5 (G ;\ ). (3.11b)

Observe that any G ∈ arg min 5 (G) in (3.11b) necessarily satis�es 5 (G) ≤ 5 (G∗). �erefore, for
any W > 0, the scaled loss W; (G, G∗) can be upper-bounded by

max
G : 5 (G) ≤5 (G∗)

W; (G, G∗) (3.12a)

≤ max
G : 5 (G) ≤5 (G∗)

[5 (G∗) − 5 (G) + W; (G, G∗)] (3.12b)

≤ max
G
[5 (G∗) − 5 (G) + W; (G, G∗)] . (3.12c)

A subgradient of (3.12c) w.r.t. (58 | 8 ∈ V) can be chosen as

X (G∗) − X (Ḡ), (3.13)

where X (G)8 is a vector in ℝL with components ( [[G8 = :]] | : ∈ L), i.e. the 1-hot encoding of G8 ,
and Ḡ is a (generally non-unique) solution to the loss augmented inference problem

Ḡ ∈ arg min
G

[
5̄ (G) := 5 (G) − W; (G, G∗)

]
. (3.14)

Figure 3.3 shows a visualization of the gradient derived in (3.13). In the case of an additive loss
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Figure 3.3: Visualization of the gradient resulting from the SSVM. (1) We need to �nd the most
violated constraint Ḡ by solving the loss-augmented inference problem (3.14). Applying a gradient
step is equivalent to decreasing the energy of the ground-truth label G∗ and increasing the energy
of the most violated constraint.

function, problem (3.14) is of the same type as (3.3) with adjusted unary terms.

We facilitate the intuition of why the SSVM chooses the most violated constraint by rewriting
the hinge loss (3.12c) in the form

min{b ∈ ℝ | (∀G) b ≥ 5 (G∗) − 5 (G) + W; (G, G∗)}, (3.15)

which reveals the large margin separation property: the constraint in (3.15) tries to ensure that the
training solution G∗ is be�er than all other solutions by a margin W; (G, G∗) and the most violated
constraint sets the value of slack b . �e parameter W thus controls the margin: a large margin
may be bene�cial for be�er generalization with limited data. Finding the most violated constraint
in (3.15) is exactly the loss-augmented problem (3.14).

SSVMwith Relaxed Inference An obstacle in the above approach is that we cannot solve the
loss-augmented inference (3.14) exactly. However, having a method solving its convex relaxation,
we can integrate it as follows. Applying the decomposition approach to (3.14) yields a lower bound
on the minimization: (3.14) ≥

�̄ (_) := min
G 1
( 5̄ 1 + _) (G 1) +min

G2
( 5̄ 2 − _) (G2) (3.16)

for all _. Lower bounding (3.14) like this results in an upper-bound of the loss W; (G, G∗) and the
hinge loss (3.12a):

W; (G, G∗) ≤ (3.12a) ≤ 5 (G∗) − �̄ (_) . (3.17)

�e bound is valid for any _ and is tightened by maximizing � (_) in _. �e learning problem on
the other hand minimizes the loss in \ . Tightening the bound in _ and minimizing the loss in \
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can be wri�en as a joint problem

min
\,_

5 (G∗;\ ) − �̄ (_;\ ) . (3.18)

Using this formulation we do not need to �nd an optimal _ at once; it is su�cient to make a step
towards minimizing it. �is approach is known as blended learning and inference [29, 97]. It is
disadvantageous for our purpose for two reasons: i) at the test time we are going to use a �xed
number of iterations instead of optimal _ ii) joint optimization in \ and _ in this fashion will be
slower and iii) it is not feasible to store intermediate _ for each image in the training set as _ has
the size of a unary cost volume.

Approximate Subgradient We are interested in a subgradient of (3.17) a�er a �xed number
of iterations of the inference method, i.e., training the unrolled inference. A suboptimal _ (a�er a
�xed number of iterations) will generally vary when the CNN parameters \ and thus the CRF
costs 5 are varied. While we do not fully backtrack a subgradient of _ (which would involve
backtracking dynamic programming and recursive subdivision in Dual MM) we can still inspect its
structure and relate the subgradient of the approximate inference to that of the exact inference.

Proposition 1. Let Ḡ 1 and Ḡ2 be minimizers of horizontal and vertical chain subproblems in (3.16)
for a given _. Let Ω≠ be a subset of nodes for which Ḡ 1

8 ≠ Ḡ
2
8 . �en a subgradient 6 of the loss upper

bound (3.17) w.r.t. 5V = (58 | 8 ∈ V) has the following expression in components

68 (:) =
(
X (G∗) − X (Ḡ 1)

)
8
(:) (3.19)

+
∑
9 ∈Ω≠

(
�8 9 (:, Ḡ2

8 ) − �8 9 (:, Ḡ 1
8 )

)
,

where �8 9 (:, ;) is a sub-Jacobian (matching 3_9 (;)
358 (:) for a subset of directions 3 58 (:)).

Proof. �e loss upper bound (3.17) involves the minimum over G 1, G2 as well as many minima
inside the dynamic programming de�ning _. A subgradient can be obtained by �xing particular
minimizers in all these steps and evaluating the gradient of the resulting function. It follows that
a subgradient of the point-wise minimum of ( 5̄ 1 + _) (G 1) + ( 5̄ 2 − _) (G2) over G 1, G2 can be chosen
as 6 =

∇5V ( 5̄ 1(Ḡ 1) + 5̄ 2(Ḡ2)) + ∇_ (_(Ḡ 1) − _(Ḡ2)) � , (3.20)

where �8, 9 (:, ;) is a sub-Jacobian matching 3_ 9 (;)
358 (:) for the directions 3 5V such that _(5 + 3 5V) has

the same minimizers inside dynamic programming as _(5 ).
In the �rst part of the expression (3.20), the pairwise components and the loss ; (Ḡ 1, G∗) do not

depend on 58 and may be dropped, leaving only (∇5V
∑
9 ∈V 59 (Ḡ 1

9 ))8 = X (Ḡ 1)8 .
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Let ℎ denote the second expression in (3.20). Its component ℎ8 (:) expands as

ℎ8 (:) =
∑
9 ∈V

∑
; ∈L

m

m_ 9 (;)
(_ 9 (Ḡ 1

9 ) − _ 9 (Ḡ2
9 )) �8 9 (:, ;) (3.21a)

=
∑
9 ∈Ω≠

∑
; ∈L
( [[Ḡ 1

9=;]] − [[Ḡ2
9 = ;]]) �8 9 (:, ;) (3.21b)

=
∑
9 ∈Ω≠

(�8 9 (:, G 1
9 ) − �8 9 (:, G2

9 )) . (3.21c)

�

Our intuition to neglect the sum (3.21c) is as follows. We expect that variation of 58 for a pixel
8 far enough from 9 ∈ Ω≠ will not have a signi�cant e�ect on _ 9 and thus �8 9 will be small over
Ω≠.

We conjecture that when the set Ω≠ is small, for many nodes the contribution of the sum
in (3.19) will be also small, while the �rst part in (3.19) matches the subgradient with exact
inference (3.13).

Proposition 2. For training the abbreviate inference with dual decomposition such as Dual MM, we
calculate the minimizer Ḡ 1 a�er a �xed number of iterations and approximate the subgradient as
X (G∗) − X (Ḡ 1).

�e assumption for the learning to succeed is to eventually have most of the pixels in agreement.
�e inference method works towards this by adjusting _ such that the constraints G 1

8 = G
2
8 are

satis�ed. We may expect in practice that if the data is not too ambiguous this constraint will be
met for a large number of pixels already a�er a �xed number of iterations. A good initialization
of unary costs, such as those learned using the pixel-wise only method can help to improve the
initial agreement and to stabilize the method.

3.4.3 Training Unary and Pairwise CNNs in Joint Model

To make the pairwise interactions trainable, we need to compute a subgradient w.r.t.F8 9 , %1, %2.
We will compute it similarly to the unary terms assuming exact inference, and then just replace
the exact minimizer Ḡ with an approximate Ḡ 1. A subgradient of (3.12c) is obtained by choosing a
minimizer Ḡ and evaluating the gradient of the minimized expression. Components of the later
are given by

m
mF8 9

= d ( |G∗8 −G∗9 |; %1,2) − d ( |Ḡ8 − Ḡ 9 |; %1,2), (3.22a)
m
m%1

=
∑
8 9 F8 9 ( [[|G∗8 −G∗9 | = 1]] − [[|Ḡ8−Ḡ 9 | = 1]]), (3.22b)

m
m%2

=
∑
8 9 F8 9 ( [[|G∗8 −G∗9 | > 1]] − [[|Ḡ8−Ḡ 9 | > 1]]) . (3.22c)

We thus obtain an end-to-end trainable model without any hand-cra�ed parameters, except for
the hyper-parameters controlling the training itself.
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Figure 3.4: Performance w.r.t. the real objective for key complexity steps of our model during
training.

3.4.4 Implementation Details

We trained our models using �eano [10] with stochastic gradient descent and momentum. For
training the model without pairwise costs we set the learning rate to 1×10−2, for all other models
we set the learning rate to 1×10−6. Before feeding a sample into our model we normalize it such
that it has zero-mean and unit-variance. We additionally correct the recti�cation for Middlebury
samples. Our full model is trained gradually. We start by training the models with lower complexity
and continue by training more complex models, where we reuse previously trained parameters
and initialize new parameters randomly. Since we use full RGB images for training, we have to
take care of occlusions as well as invalid pixels, which we mask out during training. Additionally,
we implemented the forward pass using C++/CUDA in order to make use of our trained models
in a real-time environment in a streaming se�ing. We achieve 3-4 frames per second with our
fully trained 3-layer model using an input-size of 640 × 480

3.4.5 Training insights

We train our full joint model gradually as explained in Section 3.4 in the main paper. To give more
insights on how the joint training evolves until we get our �nal parameters, we show a training
plot in Fig. 3.4. �is plot shows the evolution of the bad4 error on the Middlebury dataset for
our 7-layer model. We can identify three key steps during the training procedure. (A) shows the
training of our Unary-CNN using ML Section 3.4.1. In (B) we add the CRF with contrast-sensitive
weights with an optimal choice of parameters (U, V, %1, %2). Finally, in (C) we jointly optimization
the complete model Sections 3.4.2 and 3.4.3. Observe that the gap between training and validation
errors is signi�cantly smaller in (C).
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3.5 Experiments

In this section we test di�erent variants of our proposed method. In order not to confuse the
reader, we use the following naming convention: CNNx is the argmax output of a network
trained as described in Section 3.4.1; CNNx+CRF is the same network with Dual MM as
post-processing; CNNx+CRF+Joint is the jointly trained network described in Section 3.4.2 and
CNNx+CRF+Joint+PW is the fully trained method described in Section 3.4.3. G represents the
number of layers in the CNN.

3.5.1 Benchmark Data Sets

We use two stereo benchmark datasets for our experiments: Ki�i 2015 [132] and Middlebury
V3 [169]. Both benchmarks hold out the test set, where the ground truth is not accessible to
authors. We call examples with ground truth available that can be used for training/validation the
design set and split it randomly into 80% training set and 20% validation set. �is way we obtain
160 + 40 examples for Ki�i and 122 + 31 examples for Middlebury (including additionally provided
images with di�erent lightings, exposures and perfectly/imperfectly recti�ed stereo-pairs). �e
used error metric in all experiments is the percent of pixels with a disparity di�erence above G
pixels (badx).

3.5.2 Performance of Individual Components

In this experiment we measure the performance improvement when going from CNNx to the full
jointly trained model. Since ground-truth of the test data is not available to us, this comparison
is conducted on the complete design set. �e results are shown in Table 3.2. �is experiment
demonstrates that an optimization or post-processing is necessary, since the direct output of all
tested CNNs (a�er a simple point-wise minimum search in the cost volume) contains too many
outliers to be used directly. A qualitative comparison on one of the training images of Middlebury
is depicted in Table 3.1. One can observe that the quality of the CNN-only method largely depends
on the number of layers, whereas the CNN+CRF versions achieve good results even for a shallow
CNN. Table 3.3 additionally shows the error metrics bad{2,3,4} on the design set of Ki�i, because
these error metrics cannot be found online.

3.5.3 Benefits of Joint Training

In this experiment, we compare our method to two recently proposed stereo matching methods
based on CNNs, the MC-CNN by Zbontar and LeCun [220] and the Content-CNN by Luo et al. [119].
To allow a fair comparison of the methods, we disable all engineered post-processing steps of
[119, 220]. We then unify the post-processing step by adding our CRF on top of the CNN outputs.
We evaluate on the whole design set since we do not know the train/test split of the di�erent
methods. In favor of the compared methods, we individually tune the parameters %1, %2, U, V of the
CRF for each method using grid search. �e results are shown in Table 3.2. While the raw output
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Input CNN +CRF +Joint+PW

Table 3.1: �alitative comparison of Unary-CNN, CNN+CRF and CNN+CRF+Joint+PW on the
Middlebury benchmark. Zoom-in of disparity with 3 layers (top) and 7 layers (bo�om). Note how
the jointly trained models inpaint occlusions correctly.

Benchmark Method CNN +CRF +Joint +PW

Middlebury CNN3 23.89 11.18 9.48 9.45
CNN7 18.58 9.35 8.05 7.88

Ki�i 2015

CNN3 28.38 6.33 6.11 4.75
CNN7 13.08 4.79 4.60 4.04
[119] 5.99 4.31 - -
[220] 13.56 4.45 - -

Table 3.2: In�uence of the individual components of our method (Section 3.5.2) and comparison
with [119, 220] without post-processing (Section 3.5.3). Standard error metrics (bad4 on o�cial
training data for Middlebury and bad3 on the design set for Ki�i) are reported.

Method Non-occ All Time

[126] 4.32 4.34 0.06s
[119] 4.00 4.54 1s
[220] acc. 3.33 3.89 67s
[174] 2.58 3.61 68s
Ours 4.84 5.50 1.3s

(a) Performance on the Ki�i 2015 test set. We report
the standard error bad3 on both non-occluded and
all pixels.

Train err. bad2 bad3 bad4

[119]3 7.39 4.31 3.14
[220]3 11.4 4.45 2.93
Ours 6.01 4.04 3.15

(b) Comparison of the training error with di�erent
error metrics badx on the Ki�i dataset.

of our CNN is inferior to the compared methods, the post-processing with a CRF signi�cantly
decreases the di�erence in performance. Joint training of our CNN+CRF model further improves
the performance, despite using a relatively shallow network with fewer parameters. Speci�cally,
our full joint model with 7 layers has 281k parameters, while the networks [119, 220] have about
700k and 830k parameters, respectively.
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[220] fst 22.4 1.69 22.0 20.3 12.7 28.8 42.6 9.82 28.7 25.1 5.07 32.0 23.3 16.5 30.6 25.5 34.1
[220] acc. 21.3 150 20.8 19.6 9.6 28.6 67.4 7.67 23.2 15.7 8.49 31.8 16.7 13.9 38.8 18.7 28.6

RM
S[4] 15.0 188 18.4 18.1 8.72 9.06 19.9 6.52 24.2 25.7 3.91 12.7 24.7 9.58 17.9 17.5 17.9

Ours 14.4 4.46 15.9 16.2 10.7 10.3 11.2 14.0 13.7 13.1 4.11 14.3 19.2 11.9 22.5 20.6 25.5

[220] fst 9.47 1.69 7.35 5.07 7.18 4.71 16.8 8.47 7.37 6.97 2.82 20.7 17.4 15.4 15.1 7.9 12.6
[220] acc. 8.29 150 5.59 4.55 5.96 2.83 11.4 8.44 8.32 8.89 2.71 16.3 14.1 13.2 13.0 6.40 11.1

ba
d2[4] 8.62 188 6.05 5.16 6.24 3.27 11.1 8.91 8.87 9.83 3.21 15.1 15.9 12.8 13.5 7.04 9.99

Ours 12.5 4.46 4.09 3.97 8.44 6.93 11.1 13.8 19.5 19.0 3.66 17.0 18.2 18.0 21.0 7.29 17.8

Table 3.3: Performance on the Middlebury test set as of time of submission. We compare our
results against work that is based on CNNs for matching costs and accepted for publication. We
report the respective standard error metric bad2 and the root-mean-squared error.

3.5.4 Benchmark Test Performance

�e complete evaluation of our submission on test images is available in the online suites of
Middlebury [169] and Ki�i 2015 [132]. �e summary of this evaluation is presented in Table 3.3.
We want to stress that these results have been achieved without using any post-processing like
occlusion detection and -inpainting or sub-pixel re�nement.

We �ne-tuned our best performing model (Table 3.2, CNN7+PW) for half sized images and
used it for the Middlebury evaluation. Table 3.3 shows the root mean squared (RMS) error metric
and the bad2 error metric for all test images. We achieve the lowest overall RMS error. Our bad2
error is slightly worse compared to the other methods. �ese two results suggest our wrong
counted disparities are just slightly beside. �is behavior is shown in the error plot at the bo�om
in Fig. 3.6, where many small discretization artefacts are visible on slanted surfaces. Note that a
sub-pixel re�nement would remove most of this error. Additionally, we present an example where
our algorithm achieves a very low error as in the majority of images.

For Ki�i we use our best performing model (Table 3.2, CNN7+PW), including the G- and
H-coordinates of the pixels as features. �is is justi�ed because the sky is always at the top of the
image while the roads are always at the bo�om for example. �e error plots for Ki�i in Fig. 3.7
reveal that most of the incorrect predictions are in occluded areas. In Fig. 3.8 we show a qualitative
comparison of magni�ed depth predictions of CNN-based methods on a Ki�i test image. �e
depth overlays at the le� side of the �gure show how accurately the algorithms recover object
boundaries and the images on the right side show the corresponding error plots provided by the
evaluation system. Note, that very accurate predictions are partially treated as incorrect and how

3With our CRF as postprocessing
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Figure 3.6: �alitative comparison on selected test images (from top to bo�om: Djembe and
Crusade) of the Middlebury Stereo Benchmark. �e le� column shows the generated disparity
images in false color, the right column the bad2 error image, where white = error smaller than 2
disparities, grey = occlusion and black = error greater than 2 disparities.

the competing methods tend to over�t to the fa�ened ground truth. Our approach works also
very well in the upper third of the images, whereas the competing methods bleed out.

3.5.5 Additional Experiments

3.5.5.1 Sublabel Enhancement

A drawback of our CRF method based on dynamic programming is the discrete nature of the
solution. For some benchmarks like Middlebury the discretization artifacts negatively in�uence
the quantitative performance. �erefore, most related stereo methods perform some kind of
sub-label re�nement (e.g. [119, 220]). For the submission to online benchmarks we deliberately
chose to discard any form of non-trainable post-processing. However, we performed additional
experiments with ��ing a quadratic function to the output cost volume of the CRF method around
the discrete solution. �e re�ned disparity is then given by

3B4 = 3 +
� (3 − ℎ) −� (3 + ℎ)

2(� (3 + ℎ) − 2� (3) +� (3 − ℎ)) (3.23)
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Figure 3.7: �alitative comparison on the test set of Ki�i 2015. Cold colors = error smaller than 3
disparities, warm colors = error larger than 3 disparities.

Ours [220] [126] [119] Ours [220] [126] [119]

Figure 3.8: Zoom-in comparison with state-of-the-art methods on a selected test image. Le� images
show an overlay of depth prediction and input image and right images show the corresponding
error plots.

where � (3) is the cost of disparity 3 . A qualitative experiment on the Motorcycle image of
Middlebury stereo can be seen in Fig. 3.9. �antitative experiments have been conducted on
both Ki�i 2015 and Middlebury and will be reported in the follow sections (columns w. ref. in
Figs. 3.11 and 3.11b). Again, in the main paper and in the submi�ed images we always report the
performance of the discrete solution in order to keep the method pure.

3.5.5.2 Middlebury Stereo v3

In this section we report a complete overview of all tested variants of our proposed hybrid CNN-
CRF model on the stereo benchmark of Middlebury Stereo v3. We report the mean error (error
metric percent of non-occluded pixels with an error bigger 4 pixels). All results are calculated on



3.5. Experiments 99

Figure 3.9: �alitative comparison on Motorcycle of discrete (upper-right) and sublabel enhanced
(bo�om-le�) solution. Note how smooth the transitions are in the sublabel enhanced region (e.g.
at the �oor or the rear wheel).

quarter resolution and upsampled to the original image size. We present the results in Figs. 3.10
and 3.11. Note, how the quality increases when we add more parameters and therefore allow a
more general model (visualized from le� to right in Fig. 3.10. �e last row shows the Vintage image,
where our model produces a rather high error. �e reason for that lies in the (almost) completely
untextured region in the top-le� corner. Our full model is able to recover some disparities in this
region, but not all. A very interesting byproduct visible in Fig. 3.10 concerns our small 3-layer
model. Visually, one can hardly see any di�erence to the deeper 7-layer model, when our models
are full jointly trained. Hence, this small model is suited very well for a real-time application.

Additionally, we compared to the performance of the model learned on Ki�i, denoted Ki�i-
CNN in Fig. 3.11. �e performance is inferior, which means that the model trained on Ki�i does
not generalize well to Middlebury. Generalizing from Middlebury to Ki�i, on the other hand is
much be�er, as discussed in the next section.

3.5.5.3 Ki�i 2015

In this section we report a complete overview of all tested variants of our proposed hybrid CNN-
CRF model on the stereo benchmark of KITTI 2015. We report the mean error (o�cial error
metric percent of pixel with an error bigger 3 pixels) on the complete design set. Fig. 3.11b shows a
performance overview of our models. In the last row of Fig. 3.11b we apply our best performing
model on Middlebury to the Ki�i design set. Interestingly, the performance decreases only by
≈ 1.5% on all pixels. �is experiment indicates, that our models generalize well to the scenes of
the Ki�i benchmark.

Due to lack of space in the main paper, we could only show a few qualitative results of the
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Figure 3.10: �alitative comparison of our models on Middlebury. For each image, the �rst row
shows our 3-layer model and the second row shows the result of our 7-layer model. �e �rst
column shows out Unary-CNN with argmax desicion rule, the second column CNNx+CRF and
the third column shows the result of CNNx+CRF+Joint+PW. �e remaining columns show the
respective error-plots for the di�erent models, where white indicates correct and black indicates
wrong disparities. �e red boxes highlight di�erences between our models. Disparity maps are
color-coded from blue (small disparities) to red (large disparities).

submi�ed method. In Fig. 3.12 we show additional results, more of which can be viewed online.
Looking at Ki�i results in more detail, we observe that most of the errors happen in either

occluded regions or due to a fa�ened ground-truth. Since we train edge-weights to courage
label-jumps at strong object boundaries, our model yields very sharp results. It is these sharp
edges in our solution which introduce some errors on the benchmark, even when our prediction is
correct. Fig. 3.13 shows some examples on the test set (provided by the online submission system).
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Method w/o. ref. w. ref.

CNN3 23.89 -
CNN3+CRF 11.18 10.50
CNN3 Joint 9.48 8.75
CNN3 PW+Joint 9.45 8.70
CNN7 18.58 -
CNN7+CRF 9.35 8.68
CNN7 Joint 8.05 7.32
CNN7 PW+Joint 7.88 7.09

Ki�i-CNN 15.22 14.43

(a) Middlebury 2014

Method w/o. ref. w. ref.
all non occ. all non occ.

CNN3 29.58 28.38 - -
CNN3+CRF 7.88 6.33 7.77 6.22
CNN3 Joint 7.66 6.11 7.57 6.02
CNN3 PW+Joint 6.25 4.75 6.14 4.65
CNN7 14.55 13.08 - -
CNN7+CRF 5.85 4.79 5.76 4.70
CNN7 Joint 5.98 4.60 5.89 4.50
CNN7 PW+Joint 5.25 4.04 5.18 3.96

[220]+CRF 6.10 4.45 5.74 4.08
[119]+CRF 5.89 4.31 5.81 4.21
[220] 15.02 13.56 - -
[119] 7.54 5.99 - -

MB-CNN 6.82 5.35 6.69 5.21

(b) KITTI 2015

Figure 3.11: Comparison of di�erently trained models and their performance on the design set of
Ki�i and on the o�cial training images of the Middlebury V3 stereo benchmark. �e results are
given in % of pixels farther away than 4 disparities from the ground-truth on all pixels.

3.5.6 Timing

In Table 3.4 we report the runtime of individual components of our method for di�erent image
sizes and number of labels (=disparties). All experiments are carried out on a Linux PC with a
Intel Core i7-5820K CPU with 3.30GHz and a NVidia GTX TitanX using CUDA 8.0. For Ki�i 2015,
the image size is 1242 × 375. For Middlebury V3 we selected the Jadeplant data set with half
resolution, leading to an image size of 1318 × 994. We observe that with a constant number of
layers in the Unary CNN and disparity range, the runtime depends linearly on the number of
pixels in the input images. Correlation and CRF layer also depend on the number of estimated
disparities, where we report numbers using 128 and 256 disparities.

3.6 Conclusion

We have proposed a fully trainable hybrid CNN+CRF model for stereo and its joint training
procedure. Instead of relying on various post-processing procedures we designed a clean model
without post-processing, where each part has its own responsibility. �erefore we gain inter-
pretability of what is learned in each component of the model. �is gives the insight that using
a well de�ned model decreases the number of parameters signi�cantly while still achieving a
competitive performance. We have shown that the joint training allows to learn unary costs as
well as pairwise costs, while having the evidence that the increased generality always improves the
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Component # Disp. Kitti 2015 Middlebury Real-Time
0.4 MP 1.3 MP 0.3 MP

Input processing 7.58 6.40 6.02
Pairwise CNN 21.12 59.46 13.75
Unary CNN 262.48 664.19 62.54
Correlation 128 154.86 437.02 46.70
Correlation 256 286.87 802.86 −
CRF 128 309.48 883.57 155.85
CRF 256 605.35 1739.34 −
Total 128 755.52 2050.64 284.86
Total 256 1183.40 3272.25 −

Table 3.4: Timing experiments for 7 layer CNN and 5 CRF iterations (3 layer and 4 iterations for
Real-Time). Runtimes in ms.

performance. Our newly proposed trainable pairwise terms allow to delineate object boundaries
more accurately. For the SSVM training we detailed the approximation of a subgradient and have
shown that our training procedure works experimentally. For future work we plan to introduce
an additional occlusion label to our model to further improve the performance in occluded areas.
In addition, it will be interesting to investigate a continuous label space [134] to improve the
performance of the model on slanted surfaces.
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Figure 3.12: �alitative comparison on the test set of KITTI 2015.
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Figure 3.13: Error comparison on magni�ed parts of Ki�i 2015 test images: �e �rst and third row
show the color-coded disparity map of Ours, MC-CNN, ContentCNN and DispNetC. �e second
and last row show the corresponding error-plots, where shades of blue mean correct and shades
of orange mean wrong. Note, how our model accurately follows object boundaries, whereas all
other approaches fa�en the object. Nevertheless, in terms of correct or wrong we make more
wrong predictions, because the ground-truth seems to be fa�ened as well.
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It has been shown by several works that the combination of Convolutional Neural
Network (CNN) and Conditional Random Field (CRF) is o�en bene�cial in Deep Learning
(DL). �e hybrid se�ing yields much smaller models which are able to generalize be�er
to previously unseen data while maintaining the performance of CNN-only counterparts.
However, e�cient training of these hybrid models has been an open problem in 2019
when we have been working on the paper presented in this chapter. �e method presented
in the previous section [87] is still based on an approximate sub-gradient, which makes
training more di�cult. Mean-�eld methods [226] are an interesting alternative, but
they usually assume complete independence of the nodes in the grid graph during
inference, which makes this approach a rough approximation. In this work, we propose a
generic framework to compute the exact gradient of numerous CRF inference algorithms
e�ciently. We are able to maintain the largest possible sub-trees for every node that we
can solve exactly with dynamic programming. Our method can be seamlessly integrated
into DL frameworks and can be used for a variety of computer vision problems.

�is work was presented at CVPR 2020 in Sea�le, USA1.
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4.1 Introduction

Figure 4.1: BP-Layer in action. �e BP-Layer can be used for dense prediction problems such as
stereo (top) semantic segmentation (middle) or optical �ow (bo�om). Note the sharp and precise
edges for all three tasks. Input images are from Ki�i, Cityscapes and Sintel benchmarks.

We consider dense prediction tasks in computer vision that can be formulated as assigning
a categorical or real value to every pixel. Of particular interest are the problems of semantic
segmentation, stereo depth reconstruction and optical �ow. �e importance of these applications
is indicated by the active development of new methods and intense competition on common
benchmarks.

Convolutional Neural Networks (CNNs) have signi�cantly pushed the limits in dense predic-
tion tasks. However, composing only CNN blocks, though a general solution, becomes ine�cient
if we want to increase robustness and accuracy: with the increase of the number of blocks and
respectively parameters the computational complexity and the training data required grow signif-
icantly. �e limitations are in particular in handling long-range spatial interactions and structural
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constraints, for which Conditional Random Fields (CRFs) are much more suitable. Previous work
has shown that a combination of CNN+CRF models can o�er an increased performance, but
incorporating inference in the stochastic gradient training poses some di�culties.

In this work we consider several simple inference methods for CRFs: A variant of Belief
Propagation (BP) [186], tree-structured dynamic programming [15] and semi-global matching [71].
We introduce a general framework, where we view all these methods as speci�c schedules of
max-product BP updates and propose how to use such BP inference as a layer in neural networks
fully compatible with deep learning. �e layer takes categorical probabilities on the input and
produces re�ned categorical probabilities on the output, associated with marginals of the CRF.
�is allows for direct training of the truncated inference method by propagating gradients through
the layer. �e proposed BP-Layer can have an associated loss function on its output probabilities,
which we argue to be more practical than other variants of CRF training. Importantly, it can
be also used as an inner layer of the network. We propose a multi-resolution model in which
BP-Layers are combined in a hierarchical fashion and feature both, associated loss functions as
well as dependent further processing blocks.

We demonstrate the e�ectiveness of our BP-Layer on three dense prediction tasks. �e BP-
Layer performs a global spatial integration of the information on the pixel-level and is able to
accurately preserve object boundaries as highlighted in Fig. 4.1. Deep models with this layer have
the following bene�cial properties: (i) they contain much fewer parameters, (ii) have a smaller
computation cost than the SoTA fully CNN alternatives, (iii) they are be�er interpretable (for
example we can visualize and interpret CRF pairwise interaction costs) and (iv) lead to robust
accuracy rates. In particular, in the high-resolution stereo Middlebury benchmark, amongst the
models that run in less than 10 seconds, our model achieves the second best accuracy. �e CRF for
stereo is particularly e�cient in handling occlusions, explicitly favoring slanted surfaces and in
modelling a variable disparity range. In contrast, many CNN techniques have the disparity range
hard-coded in the architecture.

4.2 Related Work

We discuss the related work from the points of view of the learning formulation, gradient compu-
tation and application in dense prediction tasks.

CRF Learning CRFs can be learned by the maximum margin approach (e.g., [79, 85]) or the
maximum likelihood approach and its variants (e.g., [1, 82, 113, 146]). In the former, the loss
depends on the optimal (discrete) solution and is hard to optimize. In the la�er, the gradient of the
likelihood is expressed via marginals and approximate marginals can be used. However, it must
be ensured that during learning enough iterations are performed, close to convergence of the
approximation scheme [44], which is prohibitive in large-scale learning se�ings. Instead, several
works advocate truncated inference and a loss function directly formulated on the approximate
marginals [44, 45, 76]. �is gives a tighter connection between learning and inference, is be�er
corresponding to the empirical loss minimization with the Hamming loss and is easy to apply with
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incomplete ground truth labelings. Experimental comparison of multiple learning approaches
for CRFs [45] suggest that marginalization-based learning performs be�er than likelihood-based
approximations on di�cult problems where the model being �t is approximate in nature. Our
framework follows this approach.

Di�erentiable CRF Inference For learning with losses on marginals Domke [45] introduced
Back-Mean Field and Back-TRW algorithms allowing back-propagation in the respective inference
methods. Back-Belief Propagation [49] is an e�cient method applicable at a �xed point of BP,
originally applied in order to improve the quality of inference, and not suitable for truncated
inference. While the methods [44, 45, 49] consider the sum-product algorithms and back-propagate
their elementary message passing updates, our method back-propagates the sequence of max-
product BP updates on a chain at once. Max-product BP is closely related with the Viterbi algorithm
and Dynamic Programming (DP). However, DP is primarily concerned with �nding the optimal
con�guration. �e smoothing technique [131] addresses di�erentiating the optimal solution itself
and its cost. In di�erence, we show the back propagation of max-marginals.

�e mean �eld inference in fully connected CRFs for semantic segmentation [31, 226] like our
method maps label probabilities to label probabilities, is well-trainable and gives improvements
in semantic segmentation. However, the model does not capture accurate boundaries [123] and
cannot express constraints needed for stereo/�ow such as non-symmetric and anisotropic context
dependent potentials.

Gaussian CRFs (GCRFs) use quadratic costs, which is restrictive and not robust if the solution
is represented by one variable per pixel. If  variables are used per pixel [196], a solution of a
linear system of size  ×  is needed per each pairwise update and the propagation range is only
proportional to the number of iterations.

Semi-Global Matching (SGM) [71] is a very popular technique adopted by many works on stereo
due to its simplicity and e�ectiveness. However, its training has been limited either to learning
only a few global parameters [131] or to indirect training via auxiliary loss functions [175] avoiding
backpropagating SGM. Although we focus on a di�erent inference method, our framework allows
for a simple implementation of SGM and its end-to-end learning.

Non-CRF Propagation Many methods train continuous optimization algorithms used inside
neural networks by unrolling their iterations [84, 162, 201]. Spatial propagation networks [114],
their convolutional variant [34] and guided propagation [221] apply linear spatial propagation
models in particular in stereo reconstruction. In di�erence, we train an inference algorithm that
applies non-linear spatial propagation. From this point of view it becomes related to recurrent
non-linear processing methods such PixelCNN [195].

4.3 Belief Propagation

In this section we give an overview of sum-product and max-product belief propagation (BP)
algorithms and argue that max-marginals can be viewed as approximation to marginals. �is
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allows to connect learning with losses on marginals [45] and the max-product inference in a
non-standard way, where the output is not simply the approximate MAP solution, but the whole
volume of max-marginals.

Let G = (V, �) be an undirected graph and L a discrete set of labels. A pairwise Markov
Random Field (MRF) [104] overG with state spaceVL is a probabilistic graphical model ? : VL →
ℝ+ that can be wri�en in the form

? (G) = 1
/

exp
( ∑
8∈V

68 (G8) +
∑
(8, 9) ∈E

58 9 (G8 , G 9 )
)
, (4.1)

where / is the normalization constant, functions 68 : L → ℝ are the unary scores2, typically con-
taining data evidence; and functions 58 9 : L2 → ℝ are pairwise scores measuring the compatibility
of labels at nodes 8 and 9 . A CRF ? (G |H) is a MRF model (4.1) with scores depending on the inputs
H .

Belief Propagation [151] was proposed to compute marginal probabilities of a MRF (4.1) when
the graph G is a tree. BP iteratively sends messages "8 9 ∈ ℝ!

+ from node 8 to node 9 with the
update:

":+1
8 9 (C) ∝

∑
B

468 (B)4 58 9 (B,C )
∏

=∈N(8)\9
":
=8 (B), (4.2)

where N ((, 8)) is the set of neighboring nodes of a node 8 and : is the iteration number. In a
tree graph a message "8 9 is proportional to the marginal probability that a con�guration of a
tree branch ending with (8, 9) selects label C at 9 . Updates of all messages are iterated until the
messages have converged. �en the marginals, or in a general graph beliefs, are de�ned as

�8 (G8) ∝ 468 (G8 )
∏

=∈N(8)
"=8 (G8), (4.3)

where the proportionality constant ensures
∑
B �8 (B) = 1.

�e above sum-product variant of BP can be restated in the log domain, where the connection to
max-product BP becomes apparent. We denote m̃ax the operation ℝ= → ℝ that maps (01, . . . 0=)
to log

∑
8 4
08 , known as log-sum-exp or smooth maximum. �e update of the sum-product BP (4.2)

can be expressed as

<:+1
8 9 (C) := m̃ax

B

(
68 (B) + 58 9 (B, C) +

∑
=∈N(8)\9

<:
=8 (B)

)
, (4.4)

where < are the log domain messages, de�ned up to an additive constant. �e log-beliefs are

2�e negative scores are called costs in the context of minimization.
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respectively

18 (G8) = 68 (G8) +
∑

=∈N(8)
<=8 (G8) . (4.5)

�e max-product BP in the log domain takes the same form as (4.4) but with the hard max operation.
Max-product solves the problem of �nding the con�guration G of the maximum probability (MAP
solution) and computes max-marginals via (4.5). It can be viewed as an approximation to the
marginals problem since there holds

max
8
08 ≤ m̃ax

8
08 ≤ max

8
08 + log= (4.6)

for any tuple (01 . . . 0=). Preceding work has noticed that max-marginals can in practice be used
to assess uncertainty [90], i.e., they can be viewed as approximation to marginals. �e perturb and
MAP technique [148] makes the relation even more precise. In this work we apply max-marginal
approximation to marginals as a practical and fast inference method for both, prediction time and
learning. We rely on deep learning to make up for the approximation. In particular the learning
can tighten (4.6) by scaling up all the inputs.

To summarize, the approximation to marginals that we construct is obtained by running the
updates (4.4) with hard max and then computing beliefs from log-beliefs (4.5) as

�8 (G8=B) = so�max
B

18 (B), (4.7)

where so�maxB 18 (B) = 418 (B)/
∑
B 4
18 (B) . Beliefs constructed in this way may be used in the loss

functions on the marginal or as an input to subsequent layers, similarly to how simple logistic
regression models are composed to form a sigmoid neural network. �is approach is akin to
previous work that used the regularized cost volume in a subsequent re�nement step [80], but is
be�er interpretable and learnable with our methods.

4.4 Sweep BP-Layer

When BP is applied in general graphs, the schedule of updates becomes important. We �nd that the
parallel synchronous update schedule [152] requires too many iterations to propagate information
over the image and rarely converges. For application in deep learning, we found that the schedule
which makes sequential sweeps in di�erent directions as proposed by [186] is more suitable. For a
given sweep direction, we can compute the result of all sequential updates and backpropagate the
gradient in a very e�cient and parallel way. �is allows to propagate information arbitrarily far
in the sweep direction, while working on a pixel level, which makes this schedule very powerful.

Before detailing the sweep variant of BP [186], let us make clear what is needed in order to
make an operation a part of an end-to-end learning framework. Let us denote the gradient of a
loss function ! in variables H as 3̄ H := d!

dy . If a layer computed H = 5 (G) in the forward pass, the
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? ?

Figure 4.2: Max-marginal computation for node ? on the highlighted trees. Le�: Le�-right-up-
down BP [186] or equivalent tree DP [15]. Right: SGM [71] on a 4-connected graph. Note that SGM
prediction for node ? uses much smaller trees, ignoring the evidence from out of tree nodes.

gradient in G is obtained as

3̄G 9 =
∑
8
m58
mG 9
3̄ H8 , (4.8)

called the backprop of layer 5 . For the BP-Layer the input probabilities G and output beliefs H
are big arrays containing all pixels and all labels. It is therefore crucial to be able to compute the
backprop in linear time.

4.4.1 Sweep BP as Dynamic Programming

�e BP variant of [186] (called le�-right-up-down BP there and BP-M in [185]) performs sweeps
in directions le�→right, right→le�, up→down, down→up. For each direction only messages
in that direction are updated sequentially, and the rest is kept unmodi�ed. We observe the
following properties of this sweep BP: (i) Le� and right messages do not depend on each other
and neither on the up and down messages. �erefore, their calculation can run independently in
all horizontal chains. (ii) When le�-right messages are �xed, they can be combined into unary
scores, which makes it possible to compute the up and down messages independently in all
vertical chains in a similar manner. �ese properties allow us to express le�-right-up-down BP as
shown in algorithm 16 and illustrated in Fig. 4.2 (le�). In algorithm 16, the notation 0V′ means
the restriction of 0 to the nodes inV ′, i.e. to a chain.

It is composed of dynamic programming subroutines computing max-marginals. Since indi-
vidual chains in each of the loops do not interact, they can be processed in parallel (denoted as
par. for). �e max-marginals 0 of a horizontal chain are computed as

08 (B) = 68 (B) +<!
8 (B) +<'

8 (B), (4.9)

where<!
8 (B) denotes the message to 8 from its le� neighbour and<'

8 (B) from its right. �e max-
marginals (4.9) are indeed the beliefs a�er the le�-right pass. �e max-marginals 1 for vertical
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Algorithm 16: Sweep Belief Propagation
Input: CRF scores 6 ∈ ℝV×L , 5 ∈ ℝ�×L2 ;
Output: Beliefs � ∈ ℝV×L ;

1 par. for each horizontal chain subgraph (V ′, � ′) do
2 0V′ := max marginals(6V′, 5�′);
3 par. for each vertical chain subgraph (V ′, � ′) do
4 1V′ := max marginals(0V′, 5�′);
5 return beliefs �8 (B) := so�maxB (18 (B));

Algorithm 17: Dynamic Programming (DP)
Input: Directed chain (V, �), nodesV enumerated in chain direction from 0 to

==|V|−1, scores 6 ∈ ℝV×L , 5 ∈ ℝ�×L2 ;
Output: Messages< ∈ ℝV×L in chain direction;

1 Init: Set:<0(B) := 0; /* first node */

2 for 8 = 0 . . . = − 2 do
/* Compute message: */

3 <8+1(C) := max
B

(
68 (B) +<8 (B) + 58,8+1(B, C)

)
;

/* Save argmax for backward: */

4 >8+1(C) := argmax
B

(
68 (B) +<8 (B) + 58,8+1(B, C)

)
;

5 return m;

Algorithm 18: Backprop DP
Input: 3̄< ∈ ℝV×L , gradient of the loss in the messages< returned by DP on chain

(V, �);
Output: 3̄6 ∈ ℝV×L , 3̄ 5 ∈ ℝ�×L2 , gradients of the loss in the DP inputs 6, 5 ;

1 Init: 3̄6 := 0; 3̄ 5 := 0;
2 for 8 = = − 2 . . . 0 do
3 for C ∈ L do
4 B := >8+1(C);
5 I := 3̄<8+1(C) + 3̄68+1(C);
6 3̄68 (B) += I;
7 3̄ 58,8+1(B, C) += I;

8 return 3̄6, 3̄ 5 ;
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DP L→R

DP R→L

mL
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+

DP U→D

DP D→U

+g
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<latexit sha1_base64="HgcEWYk4gTR1L5gCTpgapj/ViT4="></latexit>
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Figure 4.3: Computation graph of BP-Layer with Sweep BP in algorithm 16 down to log-beliefs
1. Dynamic Programming computational nodes (DP) are made di�erentiable with the backprop
in algorithm 18. �e pairwise terms 5 L, 5 R, 5 U, 5 D illustrate the case when pairwise scores 58 9 are
di�erent for all four directions.

chains are, respectively,

18 (B) = 08 (B) +<*8 (B) +<�
8 (B). (4.10)

It remains to de�ne how the messages< are computed and back-propagated. Given a chain and
the processing direction (i.e., L-R for le� messages <L), we order the nodes ascending in this
direction and apply dynamic programming in algorithm 17. �e Jacobian of algorithm 17 is well
de�ned if the maximizer in each step is unique3. In this case we have a linear recurrent dependence
in the vicinity of the input:

<8+1(C) = 68 (B) +<8 (B) + 58,8+1(B, C), (4.11)

where B = >8+1(C), i.e. the label maximizing the message, as de�ned in algorithm 17. Back-
propagating this linear dependence is similar to multiplying by the transposed matrix, e.g., for
the gradient in 68 (B) we need to accumulate over all elements to which 68 (B) is contributing. �is
can be e�ciently done as proposed in algorithm 18.

�us we have completely de�ned sweep BP, further on referred to as BP-Layer, as a composition
of di�erential operations. �e computation graph of the BP-Layer shown in Fig. 4.3 can be back-
propagated using standard rules and our Backprop DP in order to compute the gradients in all
inputs very e�ciently.

4.4.2 Other Inference Methods

We show the generality of the proposed framework by mapping several other inference techniques
to the same simple DP operations. �is allows to make them automatically di�erentiable and
suitable for learning with marginal losses.

3Otherwise we take any maximizer resulting in a conditional derivative like with ReLU at 0.
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Algorithm 19: Semi-Global Matching
Input: CRF scores 6 ∈ ℝV×L , 5 ∈ ℝ�×L2 ;
Output: Beliefs 1 ∈ ℝV×L ;

1 par. for each direction : in {L, R,U,D} do
2 par. for each chain (V ′, � ′) in direction to : do
3 <:

V′ := �% (6V′, 5�′);

4 return 1 = 6 +∑
:<

: ;

4.4.2.1 SGM

We can implement SGM using the same DP function we needed for BP (algorithm 19), where for
brevity we considered a 4-connected grid graph. As discussed in the related work, the possibility
to backpropagate SGM was previously missing and may be useful.

4.4.2.2 Tree-structured DP

Bleyer and Gelautz [15] proposed an improvement to SGM by extending the local tree as shown
in Fig. 4.2 (le�), later used e.g. in a very accurate stereo matching method [211]. It seems it has not
been noticed before that sweep BP [186] is exactly equivalent to the tree-structured DP of [15], as
clearly seen from our presentation.

4.4.2.3 TRW and TBCA

With minor modi�cations of the already de�ned DP subroutines, it is possible to implement and
back-propagate several inference algorithms addressing the dual of the LP relaxation of the CRF:
the Tree-Reweighted (TRW) algorithm by Wainwright et al. [203] and Tree Block Coordinate
Ascent (TBCA) by Sontag and Jaakkola [181], which we show in the upcoming paragraphs. �ese
algorithms are parallel, incorporate long-range interactions and avoid the evidence over-counting
problems associated with loopy BP [203]. In addition, the TBCA algorithm is monotone and has
convergence guarantees. �ese methods are therefore good candidates for end-to-end learning,
however they may require more iterations due to cautious monotone updates, which is undesirable
in the applications we consider. Nevertheless, as they improve on the issues of BP in loopy graphs,
this makes them potential candidates for drop-in replacement of our sweep BP-layer.

Tree Re-weighted BP Wainwright et al. [203] proposed a correction to BP, which turns it into
a variational inference algorithm optimizing the dual of the LP relaxation. Suppose that we are
given an edge-disjoint decomposition of the graph into trees. For our models it is convenient to
take horizontal and vertical chain subproblems. �e TRW-T algorithm [203] can be implemented
as proposed in algorithm 20. In this representation we keep the decomposition into subproblems
explicitly and messages are encapsulated in the computation of max-marginals. �is is in order to
reuse the same subroutines we already have for BP-Layer. An explicit form of updates in terms of
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Algorithm 20: Tree Reweighted BP (TRW-T)
Input: CRF scores 6 ∈ ℝV×L , 5 ∈ ℝ�×L2 ;
Output: Beliefs � ∈ ℝV×L ;

1 6h := 6v := 1
26;

2 for iteration C = 1 . . .) do
/* Compute max-marginals: */

3 par. for horizontal chain subgraphs (V ′, � ′) do
4 1h

V′ := max marginals(6h
V′, 5�′);

5 par. for vertical chain subgraphs (V ′, � ′) do
6 1v

V′ := max marginals(6v
V′, 5�′);

/* Enforce consistency: */

7 1 := (1h + 1v);
8 6h += ( 1

21 − 1
ℎ);

9 6v += ( 1
21 − 1

E);
10 return Log-beliefs 1;

messages only which reveals the similarity to loopy belief propagation with weighting coe�cients
can be also given [203]. �is algorithm is not guaranteed to be monotonous because it does
block-coordinate ascent steps in multiple blocks in parallel. However thanks to parallelization it
is fast to compute (in particular on a GPU), incorporates long-range interactions and avoids the
over-counting problems associated with loopy BP [203].

Tree Block Coordinate Ascent �e TBCA method [181] is an inference algorithm optimizing
the dual of the LP relaxation. It does so by a block-coordinate ascent in the variables associated
with tree-structured subproblems. �e variables are the same as the messages in BP. At each
iteration a sub-tree (V ′, � ′) from the graph is selected. For simplicity and ease of parallelization
we will assume (V ′, � ′) is a horizontal chain and consider it to be ordered from le� to right. �e
following updates are performed on this chain:

• Compute the current reparametrized costs, excluding the messages from inside the chain:

08 (B) = 68 (B) +
∑

(8, 9) ∈�\�′
< 98 (B)∀8 ∈ V ′. (4.12)

• Compute the right messages<R by DP in the direction R→L.

• Compute the le� messages<L by a redistribution DP (rDP) in the direction R→L.

We can write the rDP update equation [181] in the form

<L
8+1(C) := max

B

(
6̃8 (B) + A8<L

8 (B) + 58,8+1(B, C)
)
, (4.13)
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where 6̃8 (B) = 68 (B) + (1 − A8)<R
8 (B) and A8 ∈ [0, 1] are the redistribution coe�cients. For A = 1,

this recovers the regular dynamic programming. Similarly to DP, the update is linear and depend
on the current maximizers that we record as >8+1(C). It di�ers from DP in two ways: i) it depends
on the right messages, which we have taken into account by incorporating them to the unary
costs in 6̃8 (B) and ii) there are coe�cients A8 in the recursion. To handle the la�er, we only need
to modify algorithm 18 of algorithm 18 to

I := 3̄<8+1(C) + A8+13̄68+1(C) . (4.14)

It follows that we have de�ned the TBCA subproblem update with standard operations on tensors
and the two new operations DP and rDP, for which we have shown e�cient backprop methods. �e
TBCA method [181], when specialized to horizontal and vertical chains, would then alternate the
above updates in parallel for all horizontal chains and then for all vertical chains. �is method also
achieves high parallelization e�ciency and long-range propagation. �anks to the redistribution
mechanism it is also guaranteed to be monotonous. However, this monotonicity may slow down
the information propagation, which can make it less suitable as a truncated inference technique
in deep learning.

4.5 Models

We demonstrate the e�ectiveness of the BP-Layer on the three labeling problems: Stereo, Optical
Flow and Semantic Segmentation. We have two CNNs (Table 4.1) which are used to compute i)
score-volumes and ii) pairwise jump-scores, at three resolution levels used hierarchically. Fig. 4.4
shows processing of one resolution level with the BP-Layer. �e label probabilities from these
predictions are considered as weak classi�ers and the inference block combines them to output
a stronger �ner-resolution classi�cation. Accordingly, the unary scores 68 (B), called the score
volume, are set from the CNN prediction probabilities @8 (B) as

68 (B) = )@8 (B), (4.15)

where ) is a learnable parameter. Note that 68 is itself a linear parameter of the exponential
model (4.1). �e preceding work more commonly used the model 68 (B) = log@8 (G), which, in the
absence of interactions, recovers back the input probabilities. In contrast, the model (4.15) has
the following interpretation and properties: i) it can be viewed as just another non-linearity in
the network, increasing �exibility; ii) in case of stereo and �ow it corresponds to a robust metric
in the feature space (see below), in particular it is robust to CNN predictive probabilities being
poorly calibrated.

To combine the up-sampled beliefs �up from the coarser-resolution BP-Layer with a �ner-
resolution evidence @, we trilinearly upsample the beliefs from the lower level and add it to the
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score-volume of the current level, i.e.

68 (B) = )
(
@8 (B) + �up

8
(B)

)
. (4.16)

On the output we have an optional re�nement block, which is useful for predicting continuous
values for stereo and �ow. �e simplest re�nement takes the average in a window around the
maximum:

H =
∑

3 : |3−3̂8 | ≤g

3 �8 (3)
( ∑
3 : |3−3̂8 | ≤g

�8 (3)
)−1
, (4.17)

where 3̂8 = argmax�8 (3) and we use the threshold g = 3. Such averaging is not a�ected by a
multi-modal distribution, unlike the full average used in [78]. As a more advanced re�nement
block we use a variant of the re�nement [80] with one up-sampling step using also the con�dence
of our prediction as an additional input.

4.5.1 Stereo

For the recti�ed stereo problem we use two instances of a variant of the UNet detailed in Section 4.7.
�is network is relatively shallow and contains signi�cantly fewer parameters than SoTA. It is
applied to the two input images � 0, � 1 and produces two dense feature maps 5 0, 5 1. �e initial
prediction of disparity : at pixel 8 is formed by the distribution

@8 (:) = so�max
:∈{0,1,...,� }

(
− ‖ 5 0(8) − 5 1(8 − :)‖1

)
, (4.18)

where 8 − : denotes the pixel location in image � 1 corresponding to location 8 in the reference
image � 0 and disparity : and� is the maximum disparity. �is model is related to robust costs [95].
�e pairwise terms 58 9 are parametric like in the SGM model [71] but with context-dependent pa-
rameters. Speci�cally, 58 9 scores di�erence of disparity labels in the neighbouring pixels. Disparity
di�erences of up to 3 pixels have individual scores, all larger disparity jumps have the same score.
All these scores are made context dependent by regressing them with our second UNet from the
reference image � 0.

4.5.2 Optical Flow

�e optical �ow problem is very similar to stereo. Instead of two recti�ed images, we consider
now two consecutive frames in a video, � 0 and � 1. We use the same UNets to compute the per-pixel
features and the jump scores as in the stereo se�ing. �e di�erence lies in the computation of the
initial prediction of �ow D = (D1, D2). �e �ow for a pixel 8 is formed by the two distributions

@1
8 (D1) = so�max

D1
max
D2

(
−‖ 5 0(8) − 5 1(8+D)‖1

)
, (4.19)

@2
8 (D2) = so�max

D2
max
D1

(
−‖ 5 0(8) − 5 1(8+D)‖1

)
, (4.20)
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Score 
CNN

Weight 
CNN

input image

score volume

pixelwise scores

beliefs

BP-Layer

disparities

Figure 4.4: BP-Layer overview. �e weight and score CNNs compute pixelwise weights and a
score volume from the input image. �is is used as an input for the BP-Layer which returns beliefs
as an output.

which follows the scalable model of Munda et al. [135], avoiding the storage of all matching scores
that for an "×# image have the size "×#×�2. �e inner maximization steps correspond to the
�rst iteration of an approximate MAP inference [135]. �ey form an “optimistic” estimate of the
score volume for each component of the optical �ow, which we process then independently. �is
scheme may be sub-optimal in that D1 and D2 components are inferred independently until the
re�nement layer, but it scales well to high resolutions (the search window size � needs to grow
with the resolution as well) and allows us to readily apply the same BP-Layer model as for the
stereo to @1 and @2 input probabilities.

4.5.3 Semantic Segmentation

�e task in semantic segmentation is to assign a semantic class label from a number of classes to
each pixel. In our model, the initial prediction probabilities are obtained with the ESPNet [128],
a lightweight solution for pixel-wise semantic segmentation. �is initial prediction is followed
up directly with the BP-Layer, which can work with two di�erent types of pairwise scores 58 9 .
�e inhomogeneous anisotropic pairwise terms depend on each pixel and on the edge direction,
while the homogeneous anisotropic scores depend only on the edge direction. We implement
the homogeneous pairwise terms as parameters within the model and constrain them to be
non-negative. �e pixel-wise pairwise-terms are computed from the input image using the same
UNet as in stereo. We follow the training scheme of [128].

4.6 Learning

We use the same training procedure for all three tasks. Only the loss function is adapted for the
respective task. �e loss function is applied to the output of each BP-Layer in the coarse-to-�ne
scheme and also to the �nal output a�er the re�nement layer. Such a training scheme is known as
deep supervision [109]. For BP output beliefs �; at level ; of the coarse-to-�ne scheme, we apply at
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each pixel 8 the negative log-likelihood loss ℓNLL(�;8 , 3∗;8 ) = − log�;8 (3∗;8 ), where 3∗;8 is the ground
truth disparity at scale ; .

For the stereo and �ow models that have a re�nement block targeting real-valued predictions,
we add a loss penalizing at each pixel the distance from the target value according to the Huber
function:

ℓ� (H8 , H∗8 ) =
{
A 2

2X if |A | ≤ X,
|A | − X

2 otherwise,
(4.21)

where H8 is the continuous prediction of the model, H∗8 is the ground-truth and A = H8 − H∗8 .
Losses at all levels and the losses on the continuous-valued outputs are combined with equal

weights4.

4.7 Implementation Details

We implemented our model in PyTorch5 and the core of the BP-layer as a highly e�cient CUDA
kernel. For geometrical problems such as stereo and optical �ow, we use a truncated compatibility
function (see Fig. 4.5a). �is is allows us to decrease the asymptotic runtime for  labels to O( )
and makes very e�cient inference and training possible. For semantic segmentation we want to
learn the full compatibility matrix. Nevertheless, since we learn the cost from any source label to
any target label, the runtime is O( 2) and thus quadratic in the number of labels. �e practical
impact on the runtime can be seen in Tables 4.3 and 4.6.

In our optimized CUDA implementation we utilize the following parallelization: All chains of
the same direction as well as the chains in the opposing directions can be processed in parallel.
Furthermore, the message-passing also parallelizes over the labels. For an image of size #×# ,
assuming that the number of disparities also grows as  = $ (# ), our implementation achieves
parallelism of $ (# 2) while requiring sequential processing $ (# ), which is an acceptable scaling
with the image size. �e backprop operation of the DP, has the same level of parallelism, which is
important for large-scale learning. �ese implementations are connected as extensions to PyTorch,
which allows them to be used in any computation graphs. In order to increase numerical accuracy,
we also normalize the messages by subtracting the maximum over all labels on each step of DP.
�is does not a�ect the output beliefs, as the normalization cancels in the so�max operation.

We trained the model with the Adam optimizer [81] with a learning rate of 3 · 10−3. We always
start with a pre-training for 300k iterations on large scale synthetic data for stereo and optical
�ow to get a good initialization for our model. Finally, we �ne-tune the pre-trained models on the
target dataset for 1000 epochs using a learn-rate of 10−5.

4.7.1 Runtime Analysis

We give a brief comparison of the runtime of the proposed BP-Layer and 3D convolutions here.
Compared to other networks such as [28, 78, 221] we completely avoid the usage of the very

4the relative weights could be considered as hyper-parameters, but we did not tune them.
5https://pytorch.org

https://pytorch.org


120 Chapter 4. Belief Propagation Reloaded

4 2 0 2 4
xi xj

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f ij
(x

i,x
j)

Jump Costs

(a) Robust penalty function. Similar as the %1, %2
model in SGM, but with one additional learnable
step. We allow to learn this function asymmetrically,
because positive occlusions appear only on le�-sided
object boundaries.

max(d,1)

1-exp(-d)

(b) �e cost−68 (:) as a function of3 = ‖ 5 0 (8)−5 1 (8−
:)‖1 in our model is similar to robust costs max(3, g)
previously used to be�er handle occlusions [95].

costly 3D convolution layers. 3D convolution layers have a runtime of O("# �%3) while our
proposed BP-Layer has a runtime of O("# ), where " and # are the width and the height of
the image,  is the number of disparities, � is the number of feature channels and % is the size
of the 3D kernel. Although Zhang et al. [221] have a similar runtime of their SGA Layer, they
still use 15 3D conv layers with 48 feature volumes in every layer in their full model which is
very expensive. Note that their LGA Layer also operates on a 4D input, i.e. on multiple 3D feature
volumes, where in di�erence we use only one 3D volume in all stereo experiments. Chang and
Chen [28], Kendall et al. [78] use 19 and 25 3D conv layers, respectively. In di�erence, as our
ablation study in the main paper shows, we are on-par with these methods on several metrics.
Furthermore, our method is the only method which is also able to achieve high quality results on
the di�cult Middlebury 2014 benchmark.

4.7.2 Model Architecture

Table 4.1 shows our very lightweight architecture which we use for feature extraction. “convXX”
with XX being to scalars denotes a block with consisting of a Convolution, GroupNormalization
and the LeakyReLU activation function We actually maintain two copies of this networks with
non-shared parameters. �e �rst one is used as the feature network for matching and the second
one is the feature network for predicting the pairwise jump-scores. Figs. 4.5a and 4.5b show the
functions used for unary costs and pairwise costs respectively. Note, that both functions are robust
due to the truncation.

On every hierarchical level we add one convolution layer to map the features to pixel-wise
descriptors used for matching and to pixel-wise jump-scores respectively. We denote the convo-
lutions as “convD{0,1,2}” and “convS{0,1,2}”, where D stands for disparity and S for scores. We
do not apply any activation function a�er these two convolutions in order to not remove any
information which could be utilized in the feature matching. �e highest resolution is here level
0 and the lowest resolution is level 2 in our se�ing. In the last group in Table 4.2 we show the
hierarchical inference block. We apply our BP-Layer on the score-volume with the coarsest scale,
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Layer KS Resolution Channels Input

conv00 3 , × � /, × � 3 / 16 Image
conv01 3 , × � /, × � 16 / 16 conv00
pool0 2 , × � / ,2 ×

�
2 16 / 16 conv01

conv10 3 ,
2 ×

�
2 /

,
2 ×

�
2 16 / 32 pool0

conv11 3 ,
2 ×

�
2 /

,
2 ×

�
2 32 / 32 conv10

pool1 2 ,
2 ×

�
2 /

,
4 ×

�
4 32 / 32 conv10

conv20 3 ,
4 ×

�
4 /

,
4 ×

�
4 32 / 64 pool1

conv21 3 ,
4 ×

�
4 /

,
4 ×

�
4 64 / 64 conv20

bilin1 - ,
4 ×

�
4 /

,
2 ×

�
2 64 / 64 conv21

conv12 3 ,
2 ×

�
2 /

,
2 ×

�
2 96 / 32 {bilin1, conv11}

conv13 3 ,
2 ×

�
2 /

,
2 ×

�
2 32 / 32 conv12

bilin0 - ,
2 ×

�
2 /, × � 32 / 32 conv12

conv02 3 , × � /, × � 48 / 32 {bilin0, conv01}
conv03 3 , × � /, × � 32 / 32 conv02

Table 4.1: Detailed Architecture of our UNet for feature extraction.

i.e. level 2, upsample the result trilinearly and combine it with SAD matching from the next level.
We apply this procedure until we get a regularized score-volume on the �nest level, i.e. level 0.

Note that the resolutions given in Tables 4.1 and 4.2 are relative to the input image size. We
use with a factor 2 bilinearly downsampled images as the input to our feature networks in all
experiments but Ki�i. In Ki�i we do all computations on the full-size images directly.

4.8 Experiments

We implemented the BP-Layer and hierarchical model in PyTorch and used CUDA extensions for
time and memory-critical functions (forward and backward for DP, score volume min-projections).6

4.8.1 Improvements brought by the BP-Layer

We investigate the importance of di�erent architectural choices in our general model on the stereo
task with the synthetic stereo data from the Scene Flow dataset [125]. �e standard error metric in
stereo is the bad- error measuring the percentage of disparities having a distance larger than -
to the ground-truth. �is metric is used to assess the robustness of a stereo algorithm. �e second

6https://github.com/VLOGroup/bp-layers

https://github.com/VLOGroup/bp-layers
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Layer KS Resolution Channels Input

convD2 3 ,
4 ×

,
4 /

�
4 ×

�
4 64 / 32 conv21

convD1 3 ,
2 ×

,
2 /

�
2 ×

�
2 32 / 32 conv13

convD0 3 , ×, / � × � 32 / 32 conv03

convS2 3 ,
4 ×

,
4 /

�
4 ×

�
4 64 / 32 conv21

convS1 3 ,
2 ×

,
2 /

�
2 ×

�
2 32 / 32 conv13

convS0 3 , ×, / � × � 32 / 32 conv03

sad2 - ,
4 ×

,
4 /

�
4 ×

�
4 32 / �4 convD2 0, convD2 1

sad1 - ,
2 ×

,
2 /

�
2 ×

�
2 32 / �2 convD1 0, convD1 1

sad0 - , ×, / � × � 32 / � convD0 0, convD0 1

BP2 - ,
4 ×

,
4 /

�
4 ×

�
4

�
4 /

�
4 sad2, convS2

BP2 up - ,
4 ×

,
4 /

�
2 ×

�
2

�
4 /

�
2 BP2

BP1 - ,
2 ×

,
2 /

�
2 ×

�
2

�
2 /

�
2 sad1 + BP2 up, convS1

BP1 up - ,
2 ×

,
2 /, × �

�
2 / � BP1

BP0 - , ×, / � × � � / � sad0 + BP1 up, convS0

Table 4.2: Hierarchical BP inference block. We add convolutions to map the features from the
feature net to appropriate input to our BP-Layer. �e plus operation ’+’ indicates a point-wise
addition.

Model #P time bad1 bad3 MAE

WTA (NLL) 0.13 0.07 10.3 (18.0) 5.27 (13.2) 3.82 (15.1)
BP (NLL) 0.27 0.10 12.6 (17.9) 4.97 (8.12) 1.23 (3.36)
BP+MS (NLL) 0.33 0.11 10.0 (16.5) 3.66 (7.86) 1.13 (2.84)
BP+MS (H) 0.33 0.11 8.15 (15.1) 3.07 (8.00) 0.96 (3.42)
BP+MS+Ref (H) 0.56 0.15 7.73 (13.8) 2.67 (6.46) 0.74 (1.67)
GC-Net [78] 3.5 0.95 - (16.9) - (9.34) - (2.51)
GA-Net-1 [221] 0.5 0.17 - (16.5) - (-) - (1.82)
PDS-Net [194] 2.2 - - (-) - (3.38) - (1.12)

Table 4.3: Ablation Study on the Scene �ow validation set. We report for all metrics the result on
non-occluded and (all pixels). #P in millions. bold = best, underline = second best.

metric is the mean-absolute-error (MAE) which is more sensitive to the (sub-pixel) precision of a
stereo algorithm.

Table 4.3 shows an overview of all variants of our model. We start from the winner-takes-all
(WTA) model, add the proposed BP-Layer or the multi-scale model (MS), then add the basic
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Method #P[M] Middlebury 2014 Kitti 2015
bad2 time[s] bad3 time[s]

PSMNet [28] 5.2 42.1 (47.2) 2.62 2.14 (2.32) 0.41
PDS [194] 2.2 14.2 (21.0) 12.5 2.36 (2.58) 0.50
HSM [210] 3.2 10.2 (16.5) 0.51 1.92 (2.14) 0.14

MC-CNN [220] 0.2 9.47 (20.6) 1.26 3.33 (3.89) 67.0
CNN-CRF [85] 0.3 12.5 (21.9) 3.53 4.84 (5.50) 1.30
ContentCNN [120] 0.7 - - 4.00 (4.54) 1.00
LBPS (ours) 0.3 9.68 (17.5) 1.05 3.13 (3.44) 0.39

Table 4.4: Evaluation on the Test set of the Middlebury and Ki�i Stereo Benchmark using the
default metrics of the respective benchmarks. Top group: Large models with > 1M parameters.
Bo�om group: Light-weight models. Bold indicates the best result in the group.

re�nement (4.17) trained with Huber loss (H), then add the re�nement [80] (Ref (H)). �e column
#P in Table 4.3 shows the number of parameters of our model, which is signi�cantly smaller
than SoTA methods applicable to this dataset. Each of the parts of our model increase the �nal
performance. Our algorithm performs outstandingly well in the robustness metric bad- . �e
ablation study shows also the impact of the used loss function. It turns out that Huber loss
function is bene�cial to all the metrics but the MAE in occluded pixels. �e optional re�nement
yielded an additional improvement, especially in occluded pixels on this data, but we could not
obtain a similar improvement when training and validating on Middlebury or Ki�i datasets. We
therefore selected BP+MS (H) model, as the more robust variant, for evaluation in these real-data
benchmarks.

4.8.2 Stereo Benchmark Performance

We use the model BP+MS (H) to participate on the public benchmarks of Middlebury 2014 and Ki�i
2015. Both benchmarks have real-world scences, Middlebury focusing on high-resolution indoor
scenes and Ki�i focusing on low-resolution autonomous driving outdoor scenes. �alitative
test-set results are shown in Fig. 4.6.

�e Middlebury benchmark is very challenging due to huge images, large maximum dispari-
ties, large untextured regions and di�cult illumination. �ese properties make it hard or even
impossible for most of the best-performing methods from Ki�i to be used on the Middlebury
benchmark. Due to our light-weight architecture we can easily apply our model on the chal-
lenging Middlebury images. �e test-set evaluation (Table 4.4) shows that we are among the
best performing methods with a runtime of up to 10 seconds, and thus convincingly shows the
e�ectiveness of our light-weight model. �e challenges on the Ki�i dataset are regions with over-
and under-saturation, re�ections and complex geometry. We signi�cantly outperform competitors
with a similar number of parameters such as MC-CNN, CNN-CRF and Content CNN, which
demonstrates the e�ectiveness of the learnable BP-Layer. Methods achieving a be�er performance
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Figure 4.6: �alitative results on the test sets of Middlebury 2014 (top) and Ki�i 2015 (bo�om)
datasets. Le�: Color coded disparity map, right error map, where white/blue = correct, gray =
occluded, black/orange = incorrect. Note how our method produces sharp edges in all results.

on Ki�i come with the high price of having many more parameters.

4.8.3 More stereo experiments

Fig. 4.7 shows a qualitative ablation study comparing our model variants on selected images. Note
that we show here exactly the same model variants as in Table 4.3. �e visual ablation study shows
interesting insights about our models: First, the WTA result (2nd row in Fig. 4.7) is already a very
good initialization on all matchable pixels although we use a very e�cient network (Table 4.1)
which uses only 130k parameters. �e BP-Layer regularizes the WTA solution by removing most
of the artifacts, especially in occluded regions as can be seen in the 3rd row. However, due to
the NLL loss function the discretization artifacts are visible in e.g. the 3rd example from le�. �e
multi-scale variant adds robustness in large, untextured regions as can be seen in e.g. example 1
on the gray box. Training with the Huber loss (row 5) enables sub-pixel accurate solutions. Note
how this model captures �ne details such as the bar be�er than the previous models. Our �nal
model can then be used to recover very �ne details such as the spokes of the motorcycle in the
�rst example.
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Figure 4.7: Visual ablation study. �e methods are the same as used in the quantitative ablation
study (Table 4.3) and compared from top to bo�om. �e last row shows the learned jump-costs
of BP+MS+Ref (H) used in our BP-Layer, where black=low cost and white=high cost. �e edge
images are easily interpretable. We can see that the object edges and depth discontinuities are
precisely captured.

Figs. 4.8 and 4.10 show additional qualitative results on the Middlebury 2014 test set and the
Ki�i 2015 test set. We include the input image and the error images which are provided by the
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Figure 4.8: Ki�i test set examples. �e le� column shows the color-coded disparity map, the
right column shows on top the input image and on the bo�om the o�cial error map on the Ki�i
benchmark. �e blue color in the error map indicates correct predictions, orange indicate wrong
predictions and black is unknown. Note how our method produces high quality results also for
regions where no ground-truth is available, i.e. in the upper third of the images.

LBPS LBPS err

HD3

GANet

Input

PSMNet

Figure 4.9: Comparison with other methods on the Ki�i benchmark. Top row: LBPS (ours),
LBPS error visualization. Middle row: HD3 Stereo [213], input image. Bo�om row: GANet [221],
PSMNet [28]. One can observe that LBPS shows no artifacting in regions where no ground truth
is present.
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respective benchmarks.
In Fig. 4.9 we compare our prediction with the prediction of current state-of-the-art models.

While GA-Net [221], HD3-Stereo [213] and PSM-Net [28] predict precise disparity maps for pixels
with available ground-truth, they o�en hallucinate incorrect disparities on the other pixels. In
contrast, our method does not seem to be a�ected at all by this problem and thus this indicates
that our model generalizes very well also to previously unseen structures. For a be�er comparison
we highlighted these regions in Fig. 4.9.

Figure 4.10: �alitative results on the Middlebury 2014 test set. Le�: color coded disparity map,
right error map, where white = correct disparity, black = wrong disparity and gray = occluded
area.

4.8.4 Optical Flow

Here we show the applicability of our BP-Layer to the optical �ow problem. We use the Fly-
ingChairs2 dataset [46, 74] for pre-training our model and �ne-tune then with the Sintel dataset
[25]. We use the same network architectures for optical �ow as for stereo. �us, we have two
feature nets Table 4.1 and then apply hierarchically our BP-Layer on the cost-volumes. In the
optical �ow se�ing we set the search-window-size to 109 × 109 in the �nest resolution.
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Model #P[M] time bad2 EPE

WTA 0.13 0.27 4.46 (5.67) 1.25 (1.65)
BP+MS (CE) 0.34 0.44 2.56 (3.46) 0.83 (0.94)
BP+MS (H) 0.34 0.44 2.24 (3.19) 0.66 (0.79)
BP+MS+Ref (H) 0.56 0.49 2.06 (2.64) 0.63 (0.72)

Table 4.5: Ablation Study on the Sintel Validation set.

Figure 4.11: Le�: �alitative optical �ow results on the Sintel validation set. Right: Visualization
of the endpoint error, where white=correct and darker pixels are erroneous.
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Figure 4.12: �alitative ablation study for optical �ow. �e WTA result clearly shows occluded
regions (the noisy regions), while our model is able to successfully inpaint these regions. Note
that the details increase from top to bo�om.
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We compute the 1092 similarities per pixel without storing them and compute the two cost-
volumes @1 and @2 using Eq. (4.20) on the �y. Fig. 4.11 shows qualitative results and Table 4.5
shows the ablation study on the validation set of the Sintel dataset.

We use only scenes where the �ow is not larger than our search-window in this study. We
compare the endpoint-error (EPE) and the bad2 error on the EPE. �e results show that our
BP-Layer can be directly used for optical �ow computation and that the BP-Layer is an important
building block to boost performance.

We show in Fig. 4.12 more examples on our validation set and highlight di�erences until we
get our �nal model BP+MS+Ref (H). If we compare the models we see that the quality of the results
increase from top to bo�om. �us, the components we add are also bene�cial for optical �ow. If we
add our BP-Layer and use it to regularize the WTA result we can clearly see that most of the noise,
mainly coming from occlusions, is gone. �e Huber loss function and the re�nement successfully
predict then contiguous solutions. Although our approach is very simplistic in comparison with
current state-of-the-art models we are still able to compute high quality optical �ow.

4.8.5 Semantic Segmentation

We apply the BP-Layer also to semantic segmentation to demonstrate its general applicability.
In Table 4.6 we show results with our model variants described in Section 4.5.3 using the same
CNN block as ESPNet [128], evaluated on the Cityscapes [40] dataset. All model variants using
the BP-Layer improve on ESPNet [128] in both the class mean intersection over union (mIOU) and
the category mIOU. �e best model is, as expected, the jointly trained pixel-wise model referred
to as LBPSS joint. We have submi�ed this model to the Cityscapes benchmark. Table 4.7 shows
the results on the test set and we can see that we outperform the baseline. Figure 4.13 shows
that the BP-Layer re�nes the prediction by aligning the semantic boundaries to actual object
boundaries in the image. Due to the long range interaction, the BP-Layer is also able to correct
large incorrect regions such as on e.g. the road. One of the advantages of our model is that the
learned parameters can be interpreted. Fig. 4.13 shows the learned non-symmetric score matrix,
which allows to learn di�erent scores for e.g. person→ car and car→ person. �e upper and
lower triangular matrix represent pairwise scores when jumping upwards and downwards in the
image, respectively. We can read from the matrix that, e.g., an upward jump from sky to road is
not allowed. �is con�rms the intuition, since the road never occurs above the sky. Our model
has thus automatically learned appropriate semantic relations which have been hand-cra�ed in
prior work such as e.g. [55].

Additional Experiments We show here additional evaluation metrics provided by the
Cityscapes benchmark. In Table 4.8, we show the category mIOU score for each invidual category.
It can be observed, that the BP-Layer improves this metric for every category and thus the
average score for all categories is also improved. �e BP-layer also improves the average class
mIOU, as seen in Table 4.8. For this metric, the BP-layer improves the results for most classes.
However, the mIOU is slightly decreased for the classes truck, train and motorcycle. �is is due to
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Figure 4.13: Top Le�: Semantic segmentation result with the BP-Layer. Bo�om Le�: Corresponding
error where black = incorrect, white = correct. �e red square highlights the region where �ne
details were accurately reconstructed. Right: Visualization of learned vertical pairwise scores.

Method pw mIOU CatmIOU #P time
ESPNet [128] - 61.4 82.2 0.36 0.01
LBPSS - 62.8 83.0 0.37 0.11
LBPSS X 63.6 83.7 0.73 0.90
LBPSS joint X 65.2 84.7 0.73 0.90

Table 4.6: Ablation study on the Cityscapes validation set. “pw” = pixel-wise, inhomogeneous
scores.

Method pw mIOU CatmIOU #P time
ESPNet [128] - 60.34 82.18 0.36 0.01
LBPSS joint X 61.00 84.31 0.73 0.90

Table 4.7: Benchmark results on the Cityscapes [40] test set.

Method avg �at nature object sky construction human vehicle
ESPNet [128] 82.18 95.49 89.46 52.94 92.47 86.67 69.76 88.45
LBPSS pixel-wise joint 84.31 97.90 90.01 58.89 93.10 88.08 72.79 89.43

Method avg road side. build. wall fen. pole tr. light tr. sign veg. terr. sky person rider car truck bus train motorc. bic.
ESPNet [128] 60.34 95.68 73.29 86.60 32.79 36.43 47.06 46.92 55.41 89.83 65.96 92.47 68.48 45.84 89.90 40.00 47.73 40.70 36.40 54.89
LBPSS pw joint 61.00 97.00 76.88 87.38 31.29 37.99 53.60 53.84 60.85 90.41 65.85 93.10 70.34 43.27 90.93 31.59 50.32 33.93 31.77 58.67

Table 4.8: Benchmark results for categories on the Cityscapes [40] test set

the fact that a confusion between these classes in the result from ESPNet [128] can be propagated
by the BP-Layer leading to larger patches of incorrect semantic labels. Figure 4.14 shows a visual
ablation study of the di�erent models for semantic segmentation. It can be seen that all of the
models utilizing the BP-Layer are able to regularize over inconsistencies in the original result
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Figure 4.14: Visual ablation study for semantic segmentation on the Cityscapes [40] validation set.
�e results in the �rst column show that the BP-Layer can recover �ne details such as the thin
structures of the tra�c light. In the second column one can observe that the legs and heads of
the pedestrians are recovered and do not appear as a single blob-like structure. �is can also be
seen when looking at the bike in the third column. �e fourt column shows that the BP-Layer
can regularize over inconsistencies in the initial estimation from ESPNet [128] as seen on the
sidewalk.

from ESPNet [128]. Furthermore, the pixel wise models are able to be�er preserve �ne structures
like tra�c lights. If we use the BP-Layer without jointly training the ESPNet, we get some line
artifacts in the global and pixel results. �ese artefacts are easily removed by jointly training both
networks as seen in the pixel joint result.

In Figure 4.15, we show qualitative results from the LBPSS pixel joint model on the test set
of Cityscapes [40]. It can be seen that the detail on the boundaries of the segmentation masks
for scene elements such as cars and pedestrians is preserved, as transition scores are predicted
from the input image. We can also show the full vertical transition score matrix for all classes,
which we do in Figure 4.16. As described in the paper, the matrix is not symmetric which allows
for di�erent scores when transitioning upwards and downwards. If we investigate this matrix
in more detail, we are actually able to interpret the learned results. An interesting observation
can e.g. be seen when looking at the column for the sky class. It encodes that downward label
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Figure 4.15: �alitative results for semantic segmentation on the Cityscapes [40] test set. Our
model is able to precisely capture object boundaries around e.g. pedestrians and cars.
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Figure 4.16: Vertical transition score matrix for all classes, where the upper triangular matrix
encodes upwards transitions and the lower triangular matrix encodes downwards transitions.

transitions from car, truck or train to sky are very expensive and upwards transitions from e.g.
car to sky are comparably cheap. �is is very intuitive and encodes that the sky is always above
the car and not below. Another example is that tra�c lights and vegetation are o�en surrounded
by sky and thus these scores are higher. Also the scores for the unknown class very intuitive. �e
very similar scores to all other classes can be interpreted as a uniform distribution. �is makes



4.9. Conclusion 133

totally sense, because the class “unknown” has interactions with all other classes.

4.9 Conclusion

We have proposed a novel combination of CNN and CRF techniques, aiming to resolve practical
challenges. We took one of the simplest inference schemes, showed how to compute its back-
prop and connected it with the marginal losses. �e following design choices were important
for achieving a high practical utility: using max-product for fast computation and backprop of
approximate marginals, propagating the information over a long range with sequential subprob-
lems; training end-to-end without approximations; coarse-to-�ne processing at several resolution
levels; context-dependent learnable unary and pairwise costs. We demonstrated the model can
be applied to three dense prediction problems and gives robust solutions with more e�cient
parameter complexity and time budget than comparable CNNs. In particular in stereo and �ow,
the model performs strong regularization in occluded regions and this regularization mechanism
is interpretable in terms of robust ��ing with jump scores.





5
Learned Continuous Disparity Refinement

Back in 2018, we had the powerful hybrid Convolutional Neural Network (CNN) +
Conditional Random Field (CRF) model [87]. As shown in the previous sections, we have
used a discrete optimization algorithm to perform inference in our CRF. While the CRF
is very powerful and e�cient in integrating spatial constraints, the output is however
always discrete. �is is a limitation in the geometric stereo task where a continuous
value is more natural and desirable. We will address exactly this problem in the work
presented in this chapter. We therefore propose a continuous, hierarchical variational
network to re�ne disparity maps. �e proposed method is speci�cally designed as a
re�nement module and can therefore be applied on top of any stereo method.

�is work was presented at GCPR 2019 in Dortmund and was awarded with the Best
Paper Award.
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5.1 Introduction
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Figure 5.1: Model Overview. Our model takes three inputs, an initial disparity map, con�dence
map and the color image. �e collaborative hierarchical regularizer iteratively computes a re-
�ned disparity map and yields re�ned con�dences and a color image holding the main depth
discontinuities. �e subscripts indicate the hierarchical level of the image pyramid.

Computing 3D information from a stereo image pair is one of the most important problems in
computer vision. One reason for this is that depth information is a very strong cue to understanding
visual scenes, and depth information is therefore an integral part of many vision based systems.
For example, in autonomous driving, it is not su�cient to identify the objects visible in the scene
semantically, but the distance to the objects is also very important. A lidar scanner can be used for
distance estimates, but is o�en too expensive and provides only sparse depth estimates. �erefore,
the primary approach is to compute depth information only from stereo images. However, due
to re�ections, occlusions, di�cult illuminations etc., the calculation of depth information from
images is still a very challenging task. To tackle these di�culties the computation of dense depth
maps is usually split up into the four steps (i) matching cost computation, (ii) cost aggregation, (iii)
disparity computation and (iv) disparity re�nement [171]. In deep learning based approaches (i)
and (ii) are usually implemented in a matching convolutional neural network (CNN), (iii) is done
using graphical models or 3D regularization CNNs and (iv) is done with a re�nement module
[194].

�ere are many approaches to tackle (i)-(iii). However, there are only a few learning-based
works for disparity re�nement (iv) (see Section 5.2). Existing work to re�ne the disparity maps
is o�en based on black-box CNNs to learn a residuum from an initial disparity map to a re�ned
disparity map. In this work we want to overcome these black-box re�nement networks with a
simple, e�ective and most important easily interpretable re�nement approach for disparity maps.
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We tackle the re�nement problem with a learnable hierarchical variational network. �is allows
us to exploit both the power of deep learning and the interpretability of variational methods. In
order to show the e�ectiveness of the proposed re�nement module, we conduct experiments on
directly re�ning/denoising winner-takes-all (WTA) solutions of feature matching and as a pure
post-processing module on top of an existing stereo method.

Fig. 5.1 shows an overview of our method. �e inputs to our method are an initial disparity
map, a pixel-wise con�dence map and the corresponding RGB color image. �ese three inputs
span a collaborative space in which our hierarchical regularizer iteratively re�nes the initial
inputs. Finally, the output of the hierarchical regularizer is the re�ned disparity map, a re�ned
con�dence map and a re�ned color image. Note that the re�ned (= output) color and con�dence
image are a byproduct of the re�nement process.

Contributions We propose a learnable variational re�nement network which takes advantage
of the joint information of the color image, the disparity map and a con�dence map to compute
a re�ned disparity map. Our proposed method can be derived from the iterates of a proximal
gradient method speci�cally designed for stereo re�nement. Additionally, we evaluate a broad
range of possible architectural choices in an ablation study. We demonstrate the interpretability
of our model by visualizing the intermediate iterates and showing the learned �lters as well as
the learned activation functions. We show the e�ectiveness of our method by participating on the
two complementary publicly available benchmarks Middlebury 2014 and Ki�i 2015.

�is paper extends the conference paper [84], where we additionally study i) a model with
shared parameters over the iterations, ii) a comparison with the recent lightweight StereoNet
re�nement module [80] and iii) a new section, where we analyze the VN. To this end, we show
how to compute eigen disparity maps that reveal structural properties of the learned regularizer
and analyze the re�ned con�dences in order to show the increased reliability of the con�dences
predicted by our model.

5.2 Related Work

We propose a learnable model using the modeling power of variational calculus to explicitly guide
the re�nement process for stereo. �is combination of learning and classical optimization for
stereo re�nement allows us to group the related work into the three categories (i) variational
methods, (ii) disparity re�nement and (iii) learnable optimization schemes. We review the most
related works of these categories in the following paragraphs.

Variational Methods Variational methods formulate the dense correspondence problem as
minimization of an energy functional comprising a data �delity term and a smoothness term. We
use here the term correspondence problem to indicate that the following methods can in general be
used for both optical �ow and stereo, because stereo can be considered as optical �ow in horizontal
direction only. �e data-term usually measures the raw intensity di�erence [24, 27, 217] between
the reference view and the warped other view. �e regularizer imposes prior knowledge on the
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resulting disparity map. �is is, the disparity map is assumed to be piecewise smooth. Prominent
regularizers are the robust Total Variation (TV) [217] and the higher order generalization of TV as
e.g. used by Ran�l et al. [158, 160] or by Kuschk and Cremers [101]. Variational approaches have
two important advantages in the context of stereo. �ey naturally produce sub-pixel accurate
disparities and they are easily interpretable. In order to capture large displacements as well, a
coarse-to-�ne warping scheme [24] is necessary. To overcome the warping scheme without losing
�ne details, variational methods can also be used to re�ne an initial disparity map. �is has
e.g. be done by Shekhovtsov et al. [178] who re�ned the initial disparity estimates coming from a
Conditional Random Field (CRF). Similarly, [161] and [124] used a variational method for re�ning
optical �ow.

Disparity Refinement Here we want to focus on the re�nement of an initial disparity map.
�e initial disparity map can be e.g. the WTA solution of a matching volume or any other output
of a stereo algorithm. One important approach of re�nement algorithms is the fast bilateral solver
(FBS) [4]. �is algorithm re�nes the initial disparity estimate by solving an optimization problem
containing an ℓ2 smoothness- and an ℓ2 data-�delity term. �e fast bilateral solver is the most
related work to ours. However, in this work we replace the ℓ2 norm with the robust ℓ1 norm. More
importantly, we additionally replace the hand-cra�ed smoothness term by a learnable multi-scale
regularizer. Another re�nement method was proposed by Gidaris and Komodakis [60]. �ey also
start with an initial disparity map, detect erroneous regions and then replace and re�ne these
regions to get a high-quality output. Pang et al. [147] proposed to apply one and the same network
twice. �ey compute the initial disparity map in a �rst pass, warp the second view with the
initial disparity map and then compute only the residual to obtain a high quality disparity map.
Liang et al. [112] also improved the results by adding a re�nement sub-network on top of the
regularization network. We want to stress that the CNN based re�nement networks [112, 147] do
not have a specialized architecture for re�nement as opposed to the proposed model. Khamis et
al. [80] also focused on the re�nement of coarse initial disparity maps in a hierarchical se�ing.
�ey explicitly construct a light-weight network which is used to compute a residuum between
the initial disparity map and the re�ned map. [80] therefore uses only standard CNN building
blocks with explicitly modeled residual connections. In di�erence, our method naturally provides
the residual connections and we gain control and interpretability of the re�nement process
through our specialized, optimization based architecture. We show a direct comparison between
both methods in the experiments and it will turn out that our approach is actually bene�cial in
interpretability and performance.

Learnable Optimization Schemes Learnable optimization schemes are based on unrolling
the iterates of optimization algorithms. We divide the approaches into two categories. In the �rst
category the optimization iterates are mainly used to utilize the structure during learning. For
example in [162] 10 iterations of a TGV regularized variational method are unrolled and used for
depth super-resolution. However, they learn only the step-sizes for the algorithm and keep the
algorithm �xed. Similarly, in [201] unrolling 10k iterations of the FISTA [6] algorithm is proposed.
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�e second category includes methods where the optimization scheme is not only used to provide
the structure, but it is also generalized by adding additional learnable parameters directly to the
optimization iterates. For example [199] proposed a primal-dual-network for low-level vision
problems, where the authors learned the inference part of a Markov Random Field (MRF) model
generalizing a primal-dual algorithm. Chen et al. [32] generalized a reaction-di�usion model
and successfully learned a model for image denoising. Based on [32] a generalized incremental
proximal gradient method was proposed in [89], where the authors showed connections to residual
units [66]. Wang [204] proposed proximal deep structured models where the authors perform
inference with their recurrent network. Meinhardt et al. [129] learned proximal operators using
denoising networks for regularization. We built on the work of Chen et al., but specially designed
the energy terms for the stereo task. Additionally, we allow to regularize on multiple spatial
resolutions jointly and make use of the robust ℓ1 function in our data-terms.

5.3 Method

We consider images to be functions 5 : Ω → ℝ� , with Ω ⊂ ℕ2
+ and � is the number of channels

which is 3 for RGB color images. Given two images 5 0 and 5 1 from a recti�ed stereo pair, we
want to compute dense disparities 3 such that 5 0(G) = 5 1(G − 3̃), i.e. we want to compute the
horizontal shi� 3̃ = (3, 0) for each pixel G = (G1, G2) between the reference image 5 0 and the
second image 5 1. Here, we propose a novel variational re�nement network for stereo which
operates solely in 2D image space and is thus very e�cient. �e input to our method is an initial
disparity map Ď : Ω → [0, �], where � is the maximal disparity, a reference image 5 0 and a
pixel-wise con�dence map 2 : Ω → [0, 1]. We explain the computation of the initial disparity-
and con�dence map in detail in Section 5.4. Right now, we just assume we have given the inputs.

�e proposed variational network is a method to regularize, denoise and re�ne a noisy disparity
map with learnable �lters and learnable potential functions. Hence, the task we want to solve
is the following: Given a noisy disparity map Ď, we want to recover the clean disparity with )
learnable variational network steps. We do not make any assumptions on the quality of the initial
disparity map, i.e. the initial disparity map may contain many strong outliers.

Collaborative Disparity Denoising

As the main contribution of this paper, we propose a method that performs a collaborative
denoising in the joint color image, disparity and con�dence space (see Fig. 5.2). Our model is based
on the following three observations: (i) Depth discontinuities coincide with object boundaries,
because we use the le� image as the reference image (ii) discontinuities in the con�dence image
are expected to be close to le�-sided object boundaries and (iii) the con�dence image can be used
as a pixel-wise weighting factor in the data �delity term. Based on these three observations, we
propose the following collaborative variational denoising model

min
u
R(u) + D(u), (5.1)
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(a) VN Disparity Map (b) VN Con�dence Map

(c) Ground-truth (d) VN Color Image

Figure 5.2: Collaborative Disparity Denoising. Our method produces three outputs: (a) the re�ned
disparity map, (b) the re�ned con�dence map and (d) the re�ned color image. (c) shows the
ground-truth image for comparison (black pixels = invalid). Note how our method is able to
preserve �ne details such as the spokes of the motorcycle.

where u = (uA61, D3 , D2) : Ω → ℝ5, i.e. u contains for every pixel an RGB color value, a disparity
value and a con�dence value. R(u) denotes the collaborative regularizer and it is given by a
multi-scale and multi-channel version of the Fields of Experts (FoE) model [165] with ! scales and
 channels.

R(u;\ ) =
!∑
;=1

 ∑
:=1

∑
G ∈Ω

q;
:

((
 ;
:
�;u

)
(G)

)
, (5.2)

where �; : ℝ5 ↦→ ℝ5 are combined blur and downsampling operators,  ;
:

: ℝ5 ↦→ ℝ are linear
convolution operators and q;

:
: ℝ ↦→ ℝ are non-linear potential functions. �e vector \ holds

the parameters of the regularizer which will be detailed later. Note that multiple levels allow the
model to operate on di�erent spatial resolutions and therefore enables the denoising of large
corrupted areas. Intuitively, the collaborative regularizer captures the statistics of the joint color,
con�dence and disparity space. Hence, it will be necessary to learn the linear operators and the
non-linear potential functions from data. It will turn out that the combination of �ltering in the
joint color-disparity-con�dence space at multiple hierarchical pyramid levels and speci�cally
learned channel-wise potential functions make our model powerful.
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D(u) denotes the collaborative data �delity term and it is de�ned by

D(u;\ ) = _

2 ‖u
A61− f0‖2 + `‖D2 − 2 ‖1 + a ‖D3 − 3̌ ‖D2 ,1, (5.3)

where \ is again a placeholder for the learnable parameters. �e �rst term ensures that the
smoothed color image uA61 does not deviate too much from the original color image f0. We use
here a quadratic ℓ2 term, because we do not assume any strong outliers in the color image. �e
second term ensures that the smoothed con�dence map stays close to the original con�dence
map. Here we use an ℓ1 norm in order to deal with outliers in the initial con�dence map. �e last
term is the data �delity term of the disparity map. It is given by an ℓ1 norm which is pixel-wise
weighted by the con�dence measure D2 , i.e.

‖A ‖F,1 =
#∑
8=1

F8 |A8 |, (5.4)

where A,F ∈ ℝ# . Hence, data �delity is enforced in high-con�dence regions and suppressed in
low-con�dence regions. Note that the weighted ℓ1 norm additionally ties the disparity map with
the con�dence map during the steps of the variational network.

Proximal Gradient Method (PGM) We consider a PGM [149] whose iterates are given by

uC+1 = proxUCD (uC − UC∇R(uC )), (5.5)

where UC is the step-size, ∇R(uC ) is the gradient of the regularizer which is given by

∇R(u) =
!∑
;=1

 ∑
:=1
( ;
:
�; )) d;

:

(
 ;
:
�;u

)
, (5.6)

where d;
:
= diag((q;

:
) ′). Hence, d;

:
is the derivative of the potential function and can be interpreted

as the activation function in our regularizer. A visual comparison between potential and activation-
functions is shown in Fig. 5.10. proxUCD denotes the proximal operator with respect to the data
�delity term, which is de�ned by

proxUCD (ũ) = arg min
u
D(u) + 1

2UC
‖u − ũ‖22 . (5.7)

Note that the proximal map allows to handle the non-smooth data �delity terms such as the ℓ1
norm. Additionally, there is a strong link between proximal gradient methods and residual units
which allows to incrementally reconstruct a solution (see Fig. 5.1).

Proximal Operators for the Data Terms �e proximal operator in Eq. (5.7) is an optimization
problem itself. We need to compute the proximal operator for the ℓ1 and the ℓ2 function. Both can
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be computed in closed form. �erefore, let us consider the proximal operator of a function 5 :

proxg 5 (D̃) = arg min
D
5 (D) + 1

2g ‖D − D̃‖
2. (5.8)

First, we present the result of the proximal operator for the ℓ2 function

5 (D) = _

2 ‖D − D0‖2. (5.9)

Inserting Eq. (5.9) into Eq. (5.8) and se�ing the derivative w.r.t. D to zero, we can compute the
optimal solution D∗ with

D∗ =
D̃ + g_D0

1 + g_ , (5.10)

where for the color image data term, D0 = �0 and D̃ = DA61 .
Similarly, we compute the proximal operator of the weighted ℓ1 function

5 (D) = W ‖D − D0‖F,1 = W
∑
G ∈Ω

F (G) |D (G) − D0(G) |. (5.11)

�e absolute function is not di�erentiable at 0 and therefore the optimality condition requires the
sub-di�erential to contain 0. �e closed form solution of the proximal operator Eq. (5.8) with 5
being the ℓ1 function as de�ned in Eq. (5.11) is given by

D∗ = D0 +max(0, |D̃ − D0 | − gWF) · sign(D̃ − D0) . (5.12)

�us, for the disparity data term we setF = 2 and D0 = 3̌ . Since the con�dence D2 is present in
the con�dence data term, and linearly dependent in the disparity data term, we make use of the
identity

proxg 5 (D̃) = proxg6 (D̃ − 0) (5.13)

for functions 5 (D) = 6(D) + 0)D + 1. In our se�ing 6(D) = `‖D2 − 2 ‖1 is the con�dence data-term
and 0 = |D3 − 3̌ |.

Variational Network Our collaborative denoising algorithm consists of performing a �xed
number of) iterations of the proximal gradient method Eq. (5.5). In order to increase the �exibility
we allow the model parameters to change in each iteration.

uC+1 = proxUCD(·,\C ) (uC − UC∇R(uC , \C )), 0 ≤ C ≤ ) − 1 (5.14)

Following [32, 89] we parametrize the derivatives of the potential functions d;
:

in (5.6) using
Gaussian radial basis functions (RBF)

d
;,C

:
(B) = V;,C

:

�∑
1=1

F
;,C

:,1
exp

(
− (B − W1)

2

2f2

)
(5.15)
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Figure 5.3: Visualization of the quadratic ��ing. We select the points next to the maximum value
and �t a quadratic function. Computing the extremum of the quadratic functions yields the re�ned
disparity and the re�ned probability.

to allow learning of appropriate activation functions from the data. We sample the means W1
regularly on the interval [−3, 3], f is the standard deviation of the Gaussian kernel and V;,C

:

is a scaling factor. �e linear operators  ;,C
:

are implemented as multi-channel 2D convolu-
tions with convolution kernels ^;,C

:
. In summary, the parameters in each step are given by

\C = {^;,C: , V
;,C

:
,F

;,C

:,1
, `C , aC , _C , UC , }.

5.4 Computing Inputs

Our proposed re�nement method can be applied to any stereo method coming along with a
cost-volume, which is the case for the majority of existing stereo methods.

Probability Volume Assume we have given a cost-volume E : Ω × {0, . . . , � − 1} → ℝ, where
smaller costs mean a higher likelihood of the respective disparity values. In order to map the
values onto probabilities ? : Ω × {0, . . . , � − 1}, we make use of the “so�max” function, that is

? (G, 3) =
exp( −E (G,3)

[
)∑�−1

3′=0 exp( −E (G,3′)
[
)
, (5.16)

where [ in�uences the smoothness of the probability distribution.
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Initial Disparity Map From Eq. (5.16) we can compute the WTA solution by a pixel-wise arg
max over the disparity dimension, i.e.,

3̄ (G) ∈ arg max
3

? (G, 3) . (5.17)

Moreover, we compute a sub-pixel accurate disparity map 3̌ (G) by ��ing a quadratic function to
the probability volume. �is is equivalent to performing one step of Newton’s algorithm:

3̌ (G) = 3̄ (G) − X+(? (G, ·)) (3̄ (G))
X−(X+(? (G, ·))) (3̄ (G))

, (5.18)

where X {+,−} denote standard forward and backward di�erences in the disparity dimension.
Furthermore, we compute the re�ned value of the probabilities, denoted as ?̌ (G), via linear inter-
polation in the probability volume.

In the joint training of our feature network and the regularization network we need to
backpropagate the gradient through the re�ned disparities. �erefore, we must compute the
gradient of our sub-pixel accurate disparity map w.r.t. the probability volume. �e gradient is
non-zero only for the supporting points of the quadratic function (shown in blue in Fig. 5.3) and
it is given by

m3̌ (G)
m? (G, 3) =



X2 (? (G, ·)) (3̄ (G))
(X− (X+ (? (G, ·))) (3̄ (G)))2 if 3 = 3̄ (G)

X+ (? (G, ·)) (3̄ (G))
(X− (X+ (? (G, ·))) (3̄ (G)))2 if 3 = 3̄ (G) − 1

X− (? (G, ·)) (3̄ (G))
(X− (X+ (? (G, ·))) (3̄ (G)))2 if 3 = 3̄ (G) + 1

0 else,

(5.19)

where X {+,−,2 } are standard forward-, backward- and central-di�erences in the disparity dimension.
Note, that we overcome the problem of the non-di�erentiable arg min function with the ��ing of
the quadratic function. Fig. 5.3 shows a visualization of the quadratic ��ing procedure.

Initial Confidence Measure �e computation of a con�dence measure of the stereo results is
important for many applications and a research topic on its own [73]. Here we take advantage
of the probabilistic nature of our matching costs ?̌ (G). Moreover, we make use of geometric
constraints by using a le�-right (LR) consistency check, where the le� and right images are
interchanged. �is allows us to identify occluded regions. We compute the probability of a pixel
being not occluded as

?> (G) =
max(Y − dist;A (G), 0)

Y
∈ [0, 1], (5.20)

where
dist;A (G) = |3̌; (G) + 3̌A (G + 3̌; (G)) | (5.21)
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Init Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Figure 5.4: Visualization of steps in the VN. Top to bo�om: disparity map, con�dence map, image.
Le� to right: Initialization, VN Steps 1 - 7. Note how the color image and the con�dence map help
to restore very �ne details in the disparity map.

is the disparity di�erence between the le� prediction 3̌; and the right prediction 3̌A and the
parameter Y acts as a threshold and is set to Y = 3 in all experiments. �e �nal con�dence measure
is given by

2 (G) = ?̌ (G)?> (G) ∈ [0, 1] . (5.22)

�us, we de�ne our total con�dence as the product of the matching con�dence and the LR
con�dence. Most of the pixels not surviving the LR check are pixels in occluded regions. To get a
good initialization for these pixels as well, we inpaint the disparities of these pixels from the le�
side. �e experiments show that this signi�cantly increases the performance of the model (see
Table 5.2).

5.5 Learning

In this section we describe our learning procedure for the collaborative denoising model. To
remove scaling ambiguities we require the �lter kernels ^;,C

:
to be zero-mean and to have an ℓ2

norm ≤ 1. Moreover, we constrain the weights of the RBF kernels to have an ℓ2 norm ≤ 1, too.
�is is de�ned with the following convex set:

Θ = {\C : ‖^;,C
:
‖ ≤ 1,

�∑
9=1
^
;,C

:,9
= 0, ‖F;,C

:
‖ ≤ 1} (5.23)

For learning, we de�ne a loss function that measures the error between the last iterate of the
disparity map D3

)
and the ground-truth disparity 3∗. Note that we do not have a loss function for

the con�dence and the color image. �eir aim is rather to support the disparity map to achieve
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the lowest loss. We use a truncated Huber function of the form

min
\ ∈Θ

(∑
B=1

∑
G ∈Ω

min
(
|D3B,) (G, \ ) − 3

∗
B (G) |X , g

)
(5.24)

where g is a truncation value, B denotes the index of the training sample and

|A |X =

{
A 2

2X if |A | ≤ X
|A | − X

2 else
(5.25)

is the Huber function.

Implementation Details We implemented our model in the PyTorch machine learning frame-
work1. We train the re�nement module for 3000 epochs with a learning rate of 10−3 with a
modi�ed projected Adam optimizer [81]. While in [81] the stepsize is adjusted element-wise, we
use a constant stepsize within each parameter block. �is is necessary to ensure an orthogonal
projection of the parameter blocks onto the constraint set Θ. A�er 1500 epochs we reduce the
truncation value g from∞ to 3.

5.6 Experiments

We split the experiments into two parts. In the �rst part we evaluate architectural choices based
on the WTA result of a matching network and compare with the Fast Bilateral Solver (FBS) [4] and
the StereoNet (SN) re�nement method of [80]. In the second part, we use the best architecture and
train a variational network for re�ning the disparity maps computed by the CNN-CRF method [85].
We use this method to participate in the publicly available stereo benchmarks Middlebury 2014 and
Ki�i 2015. To ensure a fair comparison we choose methods with similar numbers of parameters
and runtimes. Fig. 5.4 shows how our method constructs the �nal result. �e method recovers
step-by-step �ne details with the guidance of the con�dences and the color image. �alitative
results on the o�cial tests sets of Middlebury and Ki�i are visualized in Figs. 5.5 and 5.6 and
additional qualitative results are shown in Figs. 5.7 and 5.8.

Ki�i 2015 �e Ki�i 2015 dataset [132] is an outdoor dataset speci�cally designed for autonomous
driving. It contains 200 images with available ground-truth to train a model and 200 images
with withheld ground-truth which is used for testing the models on previously unseen data. �e
ground-truth is captured using a laser scanner and is therefore sparse in general. �e cars are
densi�ed by ��ing CAD models into the laser point-cloud. We report the badX error metric for
occluded (occ) and non-occluded (noc) pixels with - = 3. In the badX measure the predicted
disparity 3̂ is treated incorrect, if the distance to the ground-truth disparity 3∗ is larger than - .

1h�ps://pytorch.org
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Layer KS Resolution Channels Input

conv00 3 , × � /, × � 3 / 64 Image
conv01 3 , × � /, × � 64 / 64 conv00
pool0 2 , × � / ,2 ×

�
2 64 / 64 conv01

conv10 3 ,
2 ×

�
2 /

,
2 ×

�
2 64 / 64 pool0

conv11 3 ,
2 ×

�
2 /

,
2 ×

�
2 64 / 64 conv10

pool1 2 ,
2 ×

�
2 /

,
4 ×

�
4 64 / 64 conv10

conv20 3 ,
4 ×

�
4 /

,
4 ×

�
4 64 / 64 pool1

conv21 3 ,
4 ×

�
4 /

,
4 ×

�
4 64 / 64 conv20

deconv1 3 ,
4 ×

�
4 /

,
2 ×

�
2 64 / 64 conv21

conv12 3 ,
2 ×

�
2 /

,
2 ×

�
2 128 / 64 {deconv1, conv11}

conv13 3 ,
2 ×

�
2 /

,
2 ×

�
2 64 / 64 conv12

deconv0 3 ,
2 ×

�
2 /, × � 64 / 64 conv12

conv02 3 , × � /, × � 128 / 64 {deconv0, conv01}
conv03 3 , × � /, × � 64 / 64 conv02

Table 5.1: Detailed architecture of our multi-level feature network. KS denotes the kernel size,
Resolution contains the spatial resolution of the input and output, respectively and Channels
contain the number of input and output feature channels, respectively. We use curly brackets to
indicate a concatenation of feature maps. We use the LeakyReLU activation function a�er every
convolution layer.

Middlebury 2014 �e Middlebury 2014 stereo dataset [169] is orthogonal to the Ki�i 2015
dataset. It consists of 153 high resolution indoor images with highly precise dense ground-truth.
�e challenges in the Middlebury dataset are large, almost untextured regions, huge occluded
regions, re�ections and di�cult lighting conditions. �e generalization capability of the method is
evaluated on a 15 image test-set with withheld ground-truth data. We report all available metrics,
i.e., bad{0.5, 1, 2, 4} errors, the average error (avg) and the root-mean-squared error (rms).

5.6.1 Ablation Study

To �nd the most appropriate hyper parameters for the proposed method, we generate our initial
disparity map with a simple feature network. �e learned features are then compared using a
�xed matching function for a pre-de�ned number of discrete disparities.

Feature Network Our feature network is a modi�ed version of the U-Net [116, 163] which we
use to extract features suitable for stereo matching. We keep the number of parameters low by
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Model Conf Img OccIp Joint Error [bad3] #Pocc noc

WTA 8.24 6.78 480k

WTA + VN7,5
4 X 5.42 4.68 50k

WTA + VN7,5
4 X X 5.12 3.98 140k

WTA + VN7,5
4 X X 4.43 3.90 73k

WTA + VN7,5
4 X X 3.77 3.07 118k

WTA + VN7,5
4 X X X 3.46 2.72 140k

WTA + VN7,5
4 X X X X 3.37 2.55 140k

WTA + VN5,7
3 X X X X 3.43 2.58 133k

WTA + VN8,7
2 X X X X 3.62 2.97 141k

WTA + VN14,3
4 X X X X 4.37 3.71 136k

WTA + VN11,3
5 X X X X 4.25 3.49 134k

WTA + VNS30,5
4 X X X 5.24 4.35 20k

WTA + FBS [4] X X X 7.48 6.08 -
WTA + SN [80] X X 4.02 3.11 114k
WTA + SN [80] X X X 3.78 2.88 114k

Table 5.2: Ablation study on the Ki�i 2015 dataset. Conf = Con�dences, Img = Image, OccIp =
Occlusion inpainting, Joint = joint training, Shared = shared VN parameters, #P = number of
parameters. �e super-script indicates the number of steps and the �lter-size while the sub-script
indicates the number of levels in the variational network. VN7,5

4 is therefore a variational network
with 7 steps and 4 levels.

only using 64 channels at every layer. �e output of our feature network is thus a 64-dimensional
feature vector for every pixel. Table 5.1 shows the architecture in tabular format.

Feature Matching Next, we use the extracted featuresk 0 from the le� image andk 1 from the
right image to compute a matching score volume ?̃ : Ω × {0, . . . , � − 1} → ℝ with

?̃ (G, 3) = 〈k 0(G), k 1(G − 3̃)〉. (5.26)

We follow Section 5.4 to compute the inputs for the variational network.

Ablation Study We systematically remove parts of our method in order to show how the �nal
performance is in�uenced by the individual parts. Table 5.2 shows an overview of all experiments.
First, we investigate the in�uence of our data-terms, the disparity data-term, the con�dence
data-term and the RGB image data-term. �e study shows that each of the data-terms positively
in�uences the �nal performance. Especially, adding the original input image signi�cantly increases
the performance. �is can be e.g. seen in Fig. 5.4, where the information of how the basket needs
to be reconstructed, is derived from the input image. In the second part of the study, we evaluate



5.6. Experiments 149
In

iti
al

Re
�n

ed

Figure 5.5: �alitative results on the Middlebury test set. Top-group: Le�: Color-coded disparity
maps ranging from blue = far away to red = near. Right: Error maps, where white = correct and
black = incorrect. �e top row shows the initial disparity map (=input to the VN) and the bo�om
row shows our re�ned result. Bo�om group: Close-up results with input-image, initial disparity
map and re�ned disparity map from le� to right. �e second column shows a high-frequency
visualization of the disparity map.



150 Chapter 5. Learned Continuous Disparity Refinement

Figure 5.6: �alitative results on the Ki�i 2015 test set. Top-to-bo�om: Reference image, disparity
map which is color coded with blue = far away to yellow = near, error map, where blue = correct
disparity, orange = incorrect disparity.

di�erent variational network architectures. To make the comparison as fair as possible, we chose
the variants such that the total number of parameters is approximately the same for all architectures.
�e experiments show, that a compromise between number of steps, pyramid levels and �lter-size
yields the best results. �e best performing model is the model VN7,5

4 , where the �lter-size is set
to 5 × 5 for 4 pyramid levels and 7 steps. �e average runtime of this VN is as low as 0.09s on an
NVidia 2080Ti graphics card.

We use the model VNS30,5
4 to run another experiment where we share the parameters over all

iterations in the VN. �is shows that we can use the same procedure also in a pure optimization
se�ing. Here, we have signi�cantly less parameters, i.e. we have only 20k parameters in the VN
while the non-shared version has 140K parameters. We trained the shared model for ) = 30
iterations and show the result in Table 5.2. �e shared model needs more iterations to converge
to a good result.

Additionally, we compare with the FBS, because the FBS is de�ned via a similar optimization
problem as our VN. We therefore use exactly the same inputs as we did in our method, i.e., the
re�ned WTA solution 3̌ , our con�dence measure 2 and the RGB input image. To ensure the best
performance for the FBS, we performed a grid-search over its hyper-parameters on the Ki�i
dataset. As shown in Table 5.2 the FBS clearly improves the performance upon the initial solution,
but the FBS cannot compete with the proposed method.

�e next method we want to directly compare with is the StereoNet [80]. StereoNet performs
a hierarchical re�nement on top of initial disparity maps and is similar lightweight as our model.
�e re�nement in the StereoNet approach is performed with a re�nement module consisting of 6
residual blocks and an input and an output mapping layer. While our model contains residual con-
nections implicitly through the optimization structure the authors of StereoNet explicitly designed
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Figure 5.7: Results of VN7,11
4 on half size (H) Middlebury images. Le� to right: Initial disparity map,

re�ned disparity map, con�dences and color image. Our model learns to use object edges to guide
the denoising of the disparity map. Best viewed with zoom on the PC.

Figure 5.8: Re�nement on Ki�i. Top to bo�om are the disparity map, the con�dence map and the
color image. Le�: Initial results, right re�ned results. Note especially the highlighted boxes, where
artefacts are corrected and �ne details are recovered.
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Method Middlebury 2014
bad0.5 bad1 bad2 bad4 avg rms time

PSMNet [28] 90.0 (90.8) 78.1 (79.9) 58.5 (61.8) 32.2 (37.3) 9.60 (13.3) 21.7 (27.1) 2.62
PDS [194] 54.2 (58.2) 26.1 (31.9) 11.4 (16.7) 5.10 (9.09) 1.98 (3.26) 9.10 (12.7) 10

MC-CNN [220] 42.1 (49.0) 20.5 (29.8) 11.7 (21.5) 7.94 (17.7) 3.87 (12.8) 16.5 (37.5) 1.26
CNN-CRF [85] 56.1 (60.5) 25.1 (32.5) 10.8 (18.9) 6.12 (13.7) 2.30 (9.57) 9.89 (32.0) 3.53

[85] + VN (ours) 41.8 (46.6) 17.1 (23.0) 7.05 (12.1) 2.96 (6.49) 1.21 (2.06) 5.80 (8.57 ) 4.06

PSMNet [28] 81.1 (82.9) 63.9 (67.3) 42.1 (47.2) 23.5 (27.2) 6.68 (8.78) 19.4 (23.3) 2.62
PDS [194] 58.9 (62.8) 21.1 (38.3) 14.2 (21.0) 6.98 (12.6) 3.27 (6.90) 15.7 (27.5) 10.3

MC-CNN [220] 41.3 (48.5) 18.0 (28.4) 9.47 (20.6) 6.7 (17.7) 4.37 (19.3) 22.4 (55.7) 1.26
CNN-CRF [85] 60.9 (65.1) 31.9 (39.4) 12.5 (21.9) 6.61 (15.9) 3.02 (15.7) 14.4 (49.0) 3.53

[85] + VN (ours) 56.2 (61.0) 30.0 (37.5) 14.2 (22.4) 7.71 (14.6) 2.49 (4.98) 10.8 (17.3) 4.06

Table 5.3: Performance on the Middlebury 2014 benchmark. We report the numbers of the o�cial
online system for non-occluded (all) pixels. Top = O�cial training set, Bo�om = O�cial test set.
Bold font: Overall best. Italic font = improvement of base-line. Note especially the signi�cant
improvement of the continuous error metrics avg and rms on all pixels.

Method Kitti 2015 (train) Kitti 2015 (test)
noc all noc all

PSMNet [28] - 1.83 2.14 2.32
PDS [194] - - 2.36 2.58

MC-CNN [220] - - 3.33 3.89
CNN-CRF [85] - 4.04 4.84 5.50

[85] + VN (ours) 1.90 2.04 4.45 4.85

Table 5.4: Performance on the Ki�i 2015 benchmark. We provide the o�cial bad3 error metric
on non-occluded (noc) and all pixels on the training set (le�) and on the test set (right). �e VN
improves the base-line method on both metrics.

them in their architecture. �e receptive �eld is similar to ours, but instead of downsampling the
authors used dilated convolutions. �e inputs to the StereoNet are the RGB color image and the
initial disparity map. We will investigate the performance of StereoNet on top of our feature net
in the original se�ing i.e. without the con�dences and additionally we show the bene�t of using
con�dences in the StereoNet as well in Table 5.2. �e ablation study shows that the proposed VN
compares favorable to the StereoNet in both variants, with and without additional con�dences
as input. �us we can conclude that the structure arising from an optimization problem is also
bene�cial in terms of �nal performance in the learning se�ing.
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5.6.2 Benchmark Performance

We use our method on top of the CNN-CRF [85] stereo method for the o�cial test set evaluation
(see Tables 5.3 and 5.4). We set the temperature parameter [ = 0.075 in all experiments.

We used the model VN7,5
4 on the Ki�i dataset, since this model performed best in the ablation

study. As shown in Table 5.4 we reduce the bad3 error in both, occluded and in non-occluded
regions. �e relative improvement brought by the VN is 8% for occluded pixels and 12% for all
pixels. �us, the experiment shows that the VN is especially bene�cial in occluded pixels. Fig. 5.6
shows qualitative results with the corresponding error maps on the Ki�i test set.

On the Middlebury benchmark we use the model VN7,11
4 for all evaluations, where we have

choosen a larger �lter size to account for the high-resolution images in this benchmark. We
compare the errors on the training set with the errors on the test set (Table 5.3) and observe �rst
that our method shows a signi�cant improvement over the baseline method on the continuous
error metrics avg and rms on both the test set and the training set in non-occluded and all pixels.
�is is understandable, because we have used the continuous Huber loss (5.24) for training the
VN. �e Huber loss is a combination of the ℓ1 and ℓ2 error and thus minimizes the continuous
error metrics. However, we can also see that minimizing the continuous error metric does not
necessarily yield be�er results for the badX error measure, which can be explained by the fact
that the Huber loss does not provide a good proxy for the badX measures. While the VN can at
least slightly improve the results on bad{0.5,1,4}, the error is slightly increased on the bad2 error
on the test set compared to [85]. �is is in contrast to the training set, where the VN can improve
on all badX error measures as well. Similar to the behavior on the Ki�i dataset, the bene�t of the
VN is signi�cant especially in occluded regions, where we have reduced the average error from
15.7 to 4.98 which is a relative improvement of almost 70% over the baseline method. �is is also
noticeable visually in Fig. 5.7, where the VN is o�en able to perfectly �ll in occluded regions. To
conclude, we have seen that the VN yields state-of-the-art (SOTA) results using continuous error
metrics for evaluation, but trails SOTA on the badX error metric. Fig. 5.5 shows a qualitative
example of the Middlebury test set. Note that the tabletop is nice and smooth while the sharp
edges of the objects are very well preserved.

5.7 Analyzing the VN

One of the main bene�ts of a variational network compared to other CNNs is the interpretability of
the VN. Due to the optimization-like architecture, we can visualize the individual steps, interpret
the learned �lters and activation functions, compute eigen-disparity maps, which are non-linear
eigenvectors of our learned regularizer, and investigate the quality of our con�dence maps. We
address all these properties of our model in the next sub-sections.

5.7.1 Learned Filters and Activation Functions

In this section we investigate the structure of our learned �lters and plot the learned activation
functions. Visualizing the �lters can be easily done in the VN, because our �lters always operate
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Figure 5.9: Visualization of the learned �lters of our model. Top to bo�om: Filters of the disparity
map, �lters of the RGB color image and �lters of the con�dence map.
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Figure 5.10: Visualization of learned activation functions of our model. �e �rst row (blue) shows
the activation functions d in the derivative space. �e second row (green) shows the corresponding
potential functions q in the energy domain. �e thrid row (red) shows analytic potential functions
corresponding to the expressions shown on the le� for comparison.

in the 2D image space directly. Note that this visualization technique is not possible in other
CNNs, because the �lters are usually 3D in convolution layers and thus, they can not be directly
plo�ed. For our visualization we split the learned 5-dimensional �lters into three parts which can
then be interpreted as the �lters for the disparity map, for the color image and for the con�dence
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maps. Fig. 5.9 shows selected �lter kernels. �e �rst row contains �lters for the disparity map,
the second row contains �lters for the RGB color image and the third row contains �lters for the
con�dence map. Note that the learned �lters contain structure which makes them interpretable.
�e structure can be clearly seen in the disparity �lters, which look like Gabor �lters. �e color
�lters contain structure as well and can be interpreted as texture �lters. �e middle �lter could be
an ellipsoidal blob detector. �e con�dence �lters seem to capture the edge information between
low con�dent and high con�dent regions around edges. �e color- and con�dence-�lters are not
as smooth as the disparity �lters, which can be explained by the fact that we did not use any loss
function on the color and con�dence channel. �e structure in the �lters suggests that our model
actually captures statistics of how to appropriately re�ne disparity maps, con�dence maps and
color images jointly.

Figure 5.10 shows the learned activation functions. We can integrate the learned activation
functions (blue) to get the potential functions (green) used in our energy. Similar as for the learned
�lters, the learned activation functions can also be interpreted. We plot in Fig. 5.10 prototypical
learned potential function of our model. Starting from le� to right we can see instances of a
Student-t potential, the Mexican hat function, a truncated Huber function and a double-well
potential. For comparison, we show the analytic potential functions in the last row in red and
state the corresponding analytic expressions. We can e.g. see that our model has learned to be
robust against outliers with the �rst (Student-t) and the third (truncated Huber) potential function.
We also observe that we have found similar functions as e.g. Chen et al. [32] for denoising and
Zhu et al. [229].

5.7.2 Shared Parameters

In this section we restrict the parameters to be shared for all iterations of the VN. Since we are
in a pure optimization se�ing we can perform additional experiments such as computing eigen
disparity maps, eigen image and eigen con�dence maps.

Using shared parameters during the iterations of the VN requires us to change Eq. (5.14) to

uC+1 = proxUD(·,\ ) (uC − U∇R(uC , \ )), 0 ≤ C ≤ ) − 1 (5.27)

where we removed the index C in all parameters. Next, we compute the eigenmodes of the learned
regularizer. We therefore use the same shared model as in the ablation study in Table 5.2, i.e.
VNS30,5

4 .

Eigenmodes of the VN We show how we can compute eigenmodes of our learned regularizer
in the re�nement VN by adapting the approach of [50]. �is allows us to visualize the eigenmodes
of our regularizer as images and we can thus interpret them. �e eigenimages give insights into
what the regularizers has learned, since they reveal prototypical structures yielding a low energy
of the regularizer.
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Recall the classical eigenvalue/eigenvector problem

�D = _D (5.28)

with � ∈ S#×# , where S is the space of symmetric positive de�nite matrices. _ and D are the
sought eigenvalue/eigenvector pairs. To motivate the way we compute our eigenmodes, we note
that the le� hand side of Eq. (5.28) can also be derived using the gradient of a quadratic function
Q(D) = 1

2D
)�D, where we get

∇Q(D) = _D. (5.29)

In order to apply the eigenmode analysis to our re�nement VN, we replace the quadratic function
Q(D) with our non-linear regularizer and get

∇R(u) = _u, (5.30)

which corresponds to a non-linear eigenvalue/eigenvector problem. Since we cannot compute a
solution to (5.30) in closed form, we propose to compute approximate solutions by solving the
nonlinear least squares optimization problem

min
u,_

1
2 ‖∇R(u) − _u‖2. (5.31)

First, we observe that we can actually solve for _∗ in closed form by se�ing the derivative w.r.t. _
to zero. �us, we get

_∗ =
〈u,∇R(u)〉
‖u‖2 , (5.32)

which is known as the Rayleigh quotient. Substituting (5.32) back into (5.30) yields the new
optimization problem

min
u

1
2

∇R(u) − 〈u,∇R(u)〉u‖u‖2

2
, (5.33)

where we have additionally restricted the elements of the variable u to the interval [0, 1].

Now we are ready to move on to the eigenmode computation of the VN. �erefore, we solve
problem (5.33) with Nesterov’s proximal accelerated gradient method [139] in order to actually
compute the eigen disparity-maps. We iterate until convergence and get a pixel-wise residuum of
less than 2 · 10−6, which indicates that we approximate eigenmaps of high quality. �e computed
eigenimages are of particular interest since substituting an eigenmode back into our model (5.5)
yields

uC+1 = proxUCD (uC − UC

_uC︷   ︸︸   ︷
∇R(uC ))

= proxUCD (uC (1 − UC_)) (5.34)
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Figure 5.11: Eigenimages. Top to bo�om shows the eigenimage of our learned regularizer for
disparity map, color image and con�dence map. Note that the regularizer learned to favour pole-
like structures, car parts and slanted surfaces. �is �ts perfectly to the scenery of the Ki�i dataset.
Best viewed in color on the screen.

and reveals that the regularizer adapts only the contrast to capture the correct disparity. �us, the
structure contained in the eigenimages is kept and transferred to the outputs of our model.

Fig. 5.11 shows two examples of all three eigen maps, where we have used di�erent initializa-
tions to compute di�erent eigenmaps. It can be easily seen that our regularizer learned the stucture
of local disparity maplets, i.e. local parts of natural disparity maps. We see that our regularizer
prefers to accurately align the edges in all three components, the eigendisparity, eigenimage and
eigencon�dence. �ey consist of e.g. pole-like and car-like structures as well as slanted surfaces.

Another way to interpret the eigen disparity maps is in terms of energy. �erefore, we observe
that the Karush-Kuhn-Tucker condition of the constraint optimization problem

min
u
R(u) s.t. 1

2 ‖u‖
2
2 = d (_), (5.35)

for an unknown function d depending on the eigenvalue _ is given by

∇R(u) = _u, (5.36)

which resembles exactly the non-linear eigenvalue problem de�ned in Eq. (5.30). �us, we are
seeking images which contain structure, but have a low energy in the regularizer. �e eigenmaps
shown in Fig. 5.11 contain frequent structures of natural disparity maps and thus con�rm that we
have learned a regularizer suitable for disparity re�nement.

5.7.3 VN Color Image

In this section we �nally provide a possible interpretation of the processed color image. �e color
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Disparity Con�dence Color

Figure 5.12: Detailed view of the outputs of the VN. Note that all three images contain sharp
edges at depth discontinuities. �e color image is normalized for be�er visualization. Best viewed
zoomed on the PC.

image is used to support the VN during re�ning the disparity map. As visualized in Fig. 5.4 it
provides e.g. edges to guide the disparity re�nement process. Figure 5.12 shows a detailed view of
the three outputs of the VN, the re�ned disparity map, con�dence image and color image. We �rst
observe that both the con�dence and the color image have edges at depth discontinuities. For the
color image, we see on the one hand that the green channel captures depth discontinuities on the
right side of object boundaries, where no occlusions exist. On the other hand, the blue channel
seems to capture the le� side of the object boundaries and can be interpreted as an occlusion
detector. �us, the color image shows a tendency to capture problem speci�c information in the
processed color images. It is therefore used as a memory channel for the VN. Using the color
image as an additional input during the re�nement process yields not only be�er quantitative
results as shown in Table 5.2, but contains also abstracted, but still interpretable information
about the stereo problem.

5.7.4 VN Confidences

In our collaborative re�nement model we do not only re�ne the disparity map but we additionally
implicitly re�ne the initial con�dences as well. Note that we do not put any loss on the con�dences
during learning. We show in this section that the re�ned con�dences are more reliable compared
to the initial con�dence values. �erefore, we compared the initial con�dences from our feature
network (e.g. Fig. 5.13, le� top) with the con�dences generated by the VN (e.g. Fig. 5.13, le� bo�om).
For showing the reliability of the con�dences we compute Receiver Operating Characteristics
(ROC) for both con�dence maps. �erefore, we compute the True Positive Rate2 (TPR)

TPR =
TP

TP + FN , (5.37)

2Also known as Recall
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Figure 5.13: Le�: Initial con�dences (top) and VN con�dences (bo�om). Right: ROC curve for
initial con�dences and VN con�dences. �e blue curve shows the con�dences provided by the
VN7,5

4 and the green curve shows the initial con�dences. �e larger the area under the curve, the
be�er. �us, the con�dences provided by our VN re�ect the actual performance be�er than the
initial con�dences. TPR = True positive rate, FPR = False positive rate.

where TP are the true positives and FN are the false negatives and the False Positive Rate (FPR)

FPR =
FP

FP + TN , (5.38)

where FP are the false positives and TN are the true negatives. To compute the all terms in Eqs. (5.37)
and (5.38) we use a threshold X to split all predicted disparities into two two sets� ≥ X for con�dent
predictions and � < X for vague predictions, respectively. Intuitively, the larger X , the more reliable
the predictions in set � should be. �us, we de�ne the TP and FP as the data points in � having a
disparity error less than and larger than 1 or 3 pixels, respectively. Similarly, we use the set � to
de�ne the FN and TN as the data points in � having a disparity error less than and larger than 1
or 3 pixels, respectively. �e ROC curve can then be computed by evaluating Eqs. (5.37) and (5.38)
for a range of thresholds X .

Fig. 5.13 right shows the ROC curves of the initial con�dences and the VN con�dences. We
construct the plot using the same data as we used in the ablation study. �e larger the area under
curve (AUC) in this plot, the be�er the con�dences. �e solid lines show the ROC curves for the
VN and the dashed curves show the ROC curves of the initial con�dences. We report the curves
for the bad3 (green) and the bad1 (blue) error metric. Consider for example the point (0.1, 0.82)
on the green curve (bad3), where we have selected the FPR of 0.1. �e ROC curve reveals here
that the con�dences predicted by our model are reliable with a TPR of 0.82, while the FPR is as
low as 0.1. If we decrease X , we get more points into the set � and have therefore the chance to
get a higher TPR, but we will also increase the FPR as can be seen in Fig. 5.13. �e ROC curve of
the con�dences of the VN are always above the curve of the initial con�dences which yields a
higher AUC for the VN. �us, we have shown that the re�ned con�dences are more reliable than
the initial con�dences.
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5.8 Conclusion & Future Work

We have proposed a learnable variational network for e�cient re�nement of disparity maps. �e
learned collaborative and hierarchical re�nement method allows the use of information from
the joint color, con�dence and disparity space from multiple spatial resolutions. In an ablation
study, we evaluated a broad range of architectural choices and demonstrated the impact of our
design decisions. Our method can be applied on top of any other stereo method and explicitly
exploits con�dence information contained in a cost volume. We demonstrated this by adding
the variational re�nement network on top of the CNN-CRF method and have shown improved
results. We have shown insights and interpretations of our model in terms of visualizing the
indermediate steps, the learned �lters and activation functions. �e optimization like structure of
our model additionally allowed us to compute eigen disparity maps, eigen color images and eigen
con�dence maps. Furthermore, we have proven the e�ectiveness of our method by participating
in the publicly available stereo benchmarks of Middlebury and Ki�i. In future work, we would
like to include a matching score during the re�nement process and perform data augmentation to
increase the training set for learning.



6
Self-learning for Stereo

Deep Convolutional Neural Networks (CNNs) have replaced almost any hand-cra�ed
stereo methods. �is is, because they achieve a signi�cantly be�er performance on the
available benchmarks. However, this high performance is expensively payed in terms
of the required amount of accurately labeled training data. In the paper presented in
this chapter, we show how we can exploit Deep Learning (DL) without the requirement
of any hand-labelled training data. We therefore use an aerial dataset and show how
we can adapt self-supervised learning for stereo. �e results show impressively that self-
supervised learning exploits all available data and therefore results in highly accurate
disparity maps.

�is paper was presented at IGARSS 2018 in Valencia and was awarded with the Sympo-
sium Paper Award.
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(a) Input Images

(b) Textured 3D Pointcloud

(c) Complete 3D point cloud of Vaihingen

Figure 6.1: Visualization of the textured 3D point cloud of Vaihingen generated by our algorithm.
Figure 6.1a shows the input images, Fig. 6.1b shows a close-up visualization of our computed
textured 3D point cloud and Fig. 6.1c shows the complete reconstructed area consisting of ≈ 250
million points. Note that the channels of the image are Infrared-Red-Green and thus vegetation
appears red.

6.1 Introduction

Acquired with modern high resolution cameras, aerial images can provide accurate 3D measure-
ments of the observed scene via dense image matching. Consequently, through the years, stereo
estimation has emerged as an a�ractive alternative to LiDAR (Light Detection and Ranging) in
various tasks, like high resolution Digital Surface Model (DSM) generation or orthoimage produc-
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tion [58], leading to a simpli�ed processing pipeline and reduced (�ight) costs. Furthermore, the
generation of stereo data is a common �rst step in many di�erent applications, e.g. in 3D change
detection [157] or semantic 3D reconstruction of urban scenes [13].

Recently, machine learning, and in particular, deep learning has a�ected many low-level
vision tasks including stereo estimation, leading to considerable improved performance. Here,
convolutional neural networks (CNNs) can be used to replace di�erent parts in conventional stereo
pipelines, e.g. the feature generation for computing the data term [220]. A di�erent path is to
directly formulate stereo estimation as a regression task [126]. In this work, we follow the former
approach, which naturally requires less parameters, leading to easier to train networks and in
our experience also a be�er generalization performance. Especially the la�er feature is a�ractive
for our aerial reconstruction task. Dense ground truth data is notoriously hard to acquire, while
arti�cial datasets [126] usually lack the photogrammetric properties of ’real world scenes’ and
especially of the speci�c dataset in consideration. �e problem of missing ground truth data is
further magni�ed by the fact that CNNs demand a lot of labeled training data to expose their
performance. While LiDAR measurements could provide at least (very) sparse ground truth, such
an approach would mitigate the advantages of utilizing image based matching at all, with the
additional problem that these measurements appear too sparse to be of use for CNN training.
Nevertheless, the aim of this work is to utilize CNNs for stereo estimation of aerial scenes. To
that end, we propose a self-supervised learning framework. Instead of formulating the problem as
an unsupervised learning task, which ultimately leads to a fully generative approach, we rather
directly utilize the dataset that has to be reconstructed as training data. In that sense, we are able
to learn the speci�c imaging characteristics at hand. Our self-learning approach is summarized
in Fig. 6.2 Starting from a pre-trained version of our network, we generate the training data
simply by applying our reconstruction method on the whole dataset. To secure the integrity of our
training data we employ strict and conservative outlier �ltering and apply our training procedure
on the unmasked, but still dense data. Our experiments indicate that this concept can lead to
highly accurate reconstructions, improving the completeness (and accuracy) from 5 (4) percent
up to 22 (24) percent, if compared to our pre-trained model and other competing stereo methods.

6.2 Related Work

Commonly, dense stereo estimation from aerial images is formulated as a label-based Markov-
Random Field (MRF) energy optimization problem, where methods operate on recti�ed image
pairs. A popular representative is Semi-Global Matching (SGM) [68, 70] that approximately solves
the MRF energy via dynamic programming (DP), with four scanlines per pixel. Later, the work
of Zbontar et al. [220] paved the way for deep learning for stereo. �ey propose to replace the
usual, handcra�ed features that are used to de�ne the data term in the energy, with a learned
representation. Later, Luo et al. [119] exchange the patch-wise training of [220] with a method that
learns the features on whole images instead, introducing a di�erentiable cost volume formulation
in the CNN. Both methods rely on SGM to �nd a solution of their energy formulation and employ
various post-processing steps to re�ne the solution. Mayer et al. [126] instead directly formulate
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Predict on
unlabeled data

Filter Predictions

Add reliable predictions
to training set

Train model on
labeled data

Figure 6.2: Self-Learning Cycle. We �rst prediction on unlabeled data, �lter the predictions and
add the reliable predictions to the training set in order to train the model with the labeled data.
Note that the cycle can also be repeated.

the problem as an end-to-end regression task. �eir CNN possesses several millions of parameters
and, hence, requires a large amount of synthetic data for training.

To overcome the requirement for a su�cient amount of training data, the recent trend is to
use only weak supervision. Tonioni et al. [191] generate their training data from a traditional
formulation [216], but estimate a con�dence score for the established matches with another CNN
[154]. For training their regression network, the loss function combines the con�dence weight to
penalize deviations to their generated training data with an additional smoothness constraint on
the solution. In contrast, we generate our training data using a state-of-the-art learned model
[87] and employ a geometrically motivated consistency check with a hard, conservatively chosen
threshold. [193] explicitly utilize a pre-de�ned list of matching constraints to guide the learning.
To that end, they are restricted to train the network per scanline to encode the constraints in the
learning procedure. Another regression based approach is proposed by Zhou et al. [227]. �ey
start from a randomly initialized network and construct their training data using their own reliable
predictions. Matches are considered as reliable if they survive a le�-right (LR) consistency check.
�e network is then trained using only the reliable matches. �e method is similar in spirit to our
approach. In contrast, we advocate to start from a much be�er initialization using a pre-trained
model [87]. In our experience this procedure is both, bene�cial in training time and �nal accuracy.
Apart from that, our model is much closer to the traditional MRF problem.

6.3 Self-Supervised Dense Matching

In our se�ing we assume to have access to a larger set of already recti�ed image pairs on which
we want to perform stereo matching. What we do not assume is to have access to ground truth
data for any of these image pairs, which could be used for training. Our objective is to still apply
a state-of-the-art stereo CNN and boost its performance on this speci�c dataset. In a nutshell,
we exploit a pre-trained and – during training – continuously improving versions of the CNN to
generate our own training data.

CNN-CRF Model. In this work we utilize the hybrid CNN-CRF model proposed in [87] that
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incorporates deep learning into classical energy minimization. Our CNN-CRF model minimizes
the following typical CRF-type energy de�ned on the pixel graph G = {V, E} of an image Ω with
the usual 4-connected neighborhood structure E:

min
G ∈L

∑
8∈V

58 (G8) +
∑
8∼9 ∈E

58 9 (G8 , G 9 ) . (6.1)

�e solution G∗ of (6.1) is a member of the set of mappings L : V → {0, . . . , 3 − 1} |V | representing
a disparity map of Ω of range 3 . Here, both, the data-term 58 (G8) and the regularizer 58 9 (G8 , G 9 )
are each represented as a CNN. �e optimization of the CRF energy is performed via a massively
parallel and highly e�cient variant of dual decomposition. �e whole system can be learned
end-to-end [87]. In this work, however, we focus on the data term 58 and keep edge-weights and
penalty function 58 9 in (6.1) �x.

Generating the training data. To bootstrap our procedure, we directly use the publicly available
model (https://github.com/VLOGroup/cnn-crf-stereo) with a 7 layered data term CNN, which was
trained on the Middlebury Stereo 2014 dataset [169]. It has been shown in [87] that the model
generalizes well to unknown scenes, which arguably makes it a good candidate for generating
our initial training data. However, because the original training images are completely di�erent
from our aerial dataset, the reconstruction still contains outliers and erroneous regions. �erefore,
directly using the resulting disparity images for training a new data term will rather harm the
performance than improve our method. To mitigate this problem, our training procedure has to
distinguish between regions, where it can trust the generated ground truth and where not.

Filtering the generated data. We use the common le�-right consistency check to �lter unre-
liable matches. �erefore, we �rst compute two disparity maps, 3; and 3A , for each image pair,
where either the le� image (3; ) or the right one (3A ) serves as the reference frame. For our �lter
we then require that matching points in the le� and right image are in mutual correspondence for
both disparity maps. More precisely, a pixel G survives the le�-right consistency check if

|3; (G) + 3A (G + 3; (G)) | < n, (6.2)

where n is a threshold that is set to 0.9 in our experiments. �is simple check gets rid of most of
the wrong pixels and is, in our experience, already su�cient to retrain our model.

Training. As stated in Section 6.3, the model consists of two networks, one for the data-term
58 and one for the regularizer 58 9 . From our experience, training edge costs for our regularizer
requires the edges also to be represented in the training data. However, pixel near occlusions rarely
survive our consistency check and are, thus, underrepresented in our self-supervised training
data. Consequently, we keep the edge costs �xed and only retrain the network represented by 58
for the aerial images. In particular, we generate a one-hot encoding of our ground truth disparity
maps and perform maximum likelihood training, i.e. we minimize the following loss function

https://github.com/VLOGroup/cnn-crf-stereo
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(a) Lidar (b) Our Result

Figure 6.3: Close-up comparison between our computed depth values and the laser depth values.

(a) Reference image (b) Our result
Figure 6.4: Detailed view of a church. Note how accurately the church tower and the facade is
reconstructed.

w.r.t. the parameters \ of the network:

!(5 (\ ), 5 ∗)=−
∑
8∈Ω

∑
3∈�

5 ∗
8,3

log 58,3 = −
∑
8∈Ω

log 58,3∗, (6.3)

where 5 is the correlation volume predicted by the model, 5 ∗ is the one-hot encoding of the
ground truth disparity map. �e second equality comes from the fact that the one-hot encoding
puts all the probability mass to the ground truth disparity 3∗.

6.4 Experiments

In this section we evaluate the e�ectiveness of our self learning algorithm in the context of aerial
images and street scenes for autonomous driving. We compare the depth maps generated by the
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well-known Semi-Global Matching algorithm [2, 68] with the pre-trained CNN-CRF model and
our model, re�ned via self-supervised training.

6.4.1 Vaihingen Dataset

We evaluate our method on the Vaihingen dataset of the ISPRS Urban classi�cation and 3D
reconstruction benchmark [166]. �e Vaihingen dataset consists of 20 aerial images of size 7680 ×
13824 pixels. In each image of the dataset the blue channel has been replaced by the response of
an infrared camera, which leads to further deviation between the pre-trained and re�ned model.
Nevertheless, we could observe similar behavior for the Toronto dataset of the same benchmark
[166] where the color channels are RGB. All images are registered in a global coordinate system.
Additionally a laser point cloud is provided, which we use for our evaluation. We perform all our
experiments at half resolution.

Both algorithms, SGM and CNN-CRF, require recti�ed input images. In order to limit the
memory consumption during training, we additionally divide the images into parts.

Performance evaluation. We use the provided laser scanned depth values as our reference data
to compare the di�erent models. �e pipeline for the evaluation consists of (i) computing the
disparity map in pixel space for an image pair, (ii) using the disparity to compute the metric depth
value for all pixels in the reference image, (iii) projecting the laser point cloud into the reference
image and (iv) computing the metric di�erence for all valid pixels in pixel space. Additionally, we
compute the recall of the reconstructed points, given by

A420;; =
|P( ∩ P! |
|P! |

, (6.4)

where %( is the set of pixel with a valid (surviving the consistency check) disparity and %! the set
of pixels with a Laser measurement. A recall of 100% would mean that every pixel captured by
the laser scanner is also captured by our model. We perform the evaluation using all available
images and, therefore, report the numbers achieved on the whole dataset. Recall that we use the
laser measurements only for evaluation.

Table 6.1 compares the recall and the accuracy achieved by the baseline SGM model, our
pre-trained model used to bootstrap the training and our model a�er the �rst and the second
training iteration. �e accuracy is given as the percentage of pixel within a de�ned 3D distance
to the laser measurements. In our se�ing one disparity value corresponds to a 3D displacement of
0.55 to 0.72 meters. Each iteration of the training increases both the recall and the overall accuracy.
Our �nal model is able to increase the recall by 16.4 percent points and the accuracy between
2.6 and 12.7 percent points compared to the pre-trained version. �is shows that self learning
is a suitable option to use deep learning on stereo data without ground truth. Fig. 6.5 visually
compares the depth map obtained from the pre-trained network with the one computed with
the retrained model. Our model is able to close the gaps in the reconstruction during retraining.
A closer inspection reveals that masked regions mainly occur near building-ground edges and
correspond to occlusions and, hence, cannot survive the consistency check. �is underlines our
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(a) Initial disparity map (b) Self-learned disparity map

Figure 6.5: Visual comparison of disparity maps. Le�: Generated training data. Right: Improved
disparity map a�er retraining. Most of the (dark blue) artefacts are gone a�er the self-training.
Color-coding from cold (small height) to warm (large height).
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Model Recall [ % ] Accuracy [ % ]
0.3m 0.5m 1m

SGM 76.0 52.5 69.8 86.7
Pt-Net 87.7 62.9 76.4 87.1

Training 1 92.1 65.2 78.6 88.9
Training 2 92.4 64.5 78.7 89.3

Table 6.1: Evaluation of the models and comparison with the laser ground truth. �e self-learned
models increase the performance on the target domain signi�cantly compared to SGM and the
pre-trained network (Pt-Net) used for retraining.

Le�/right input Un�ltered CNN-CRF [87] Prediction

Filtered Mask

Figure 6.6: Visualization of the two steps prediction and �ltering of the self-learning circle. �e
white pixels in the mask are used as ground-truth during self-learning and the black pixels are
�ltered.

�ndings from Table 6.1, self-training can improve the accuracy and performance and lead to
signi�cantly denser reconstructions.

Fig. 6.3 compares the density of points between our computed depth map and the laser depth
values projected into the image space. We are able to densely reconstruct the scene, whereas the
laser provides only a sparse depth map. Fig. 6.4 shows a detailed reconstruction of our algorithm.
In this visualization the color-coding is chosen to highlight high-frequency variations in depth.
Here, especially the tower and the arches in the facade of the church prove that our model can
deliver highly precise reconstruction from aerial images.
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Figure 6.7: Comparison of initial disparity map and self-learned disparity map. From top (input
image), to middle (initial disparity map) to bo�om (self-learned disparity map). Note especially
the highlighted boxes, where the self-learned results removed artifacts on the street and recovered
�ne details such as the poles.

6.4.2 Cityscapes Dataset

Additionally to the aerial dataset, we present qualitative results on the Cityscapes dataset [39].
�is dataset consists of street scenes speci�cally for autonomous driving. It provides both the le�
and the right image of the mounted stereo system and thus we can apply the same self-learning
procedure as we did for the aerial dataset. However, here we can only conduct a qualitative
evaluation, because the Cityscapes dataset does not contain any groundtruth data. Figure 6.6
shows a visualization of the two main steps of the self-learning circle shown in Fig. 6.2. We can
see that our le�-right �ltering step removes occluded pixels as well as other unreliable regions.
Figure 6.7 shows the bene�t of our self-learning approach. In general we are able to recover �ner
information compared to the initialization. �is can be e.g. seen in Fig. 6.7 in the le� column, where
the we successfully recovered the poles of the tra�c signs/lights. �e right column shows an
example where th initial disparity map contains a large incorrect regions, which can be successfully
recovered as visualized in the bo�om-right image.
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6.5 Conclusion & Future Work

We have shown that, without the requirement of any labeled training data, state-of-the-art machine
learning approaches for stereo matching can be used to compute high quality depth maps from
aerial images as well as from street images used in autonomous driving. Starting from a pre-
trained version, our proposed self-supervised learning framework constructs the training data
with a previous version of the learning algorithm itself and additionally relies on conservative
consistency checking to reject most of the potential outliers. Our experiments indicate that this
concept works for large scale aerial images, whose imaging characteristics are quite far from
the initial dataset used for pre-training. Nevertheless, the perceptual quality as well as the raw
performance numbers are increased signi�cantly compared to baseline models.





7
Summary and Outlook

In this thesis, we have developed methods for combining deep Convolutional Neural Networks
(CNNs) with classical optimization approaches. �is allowed us to get the best out of both worlds:
�e expressiveness and robustness of deep learning and the e�ciency and interpretability of
optimization. Using this paradigm, we have i) proposed methods to seamlessly combine CNNs
with discrete optimization problems arising in Conditional Random Fields (CRFs), ii) combined
CNNs with continuous optimization problems stemming from variational approaches and iii)
proposed a method to learn powerful hybrid models without the need of any manually labeled
training data.

7.1 Summary

We have shown how a CRF can be integrated as the �nal “layer” into deep learning based on the
Structured Support Vector Machine (SSVM). �is formulation is theoretically sound and has the
advantage that the CRF is no longer used as a post-processing step, but fully integrated into the
learning process. �erefore, this has allowed us to enable end-to-end learning of the joint model
and thus we have been able to get rid of the long chain of manually tuned post-processing steps.
We have shown that our formulation allows not only to learn an appropriate data-term for the
CRF , but additionally also the pairwise term. Both terms can be visualized and thus, we got insights
about what our hybrid model learns. �e experiments con�rmed our expectation: Including prior
knowledge via the CRF together with end-to-end learning yields signi�cantly smaller models
in terms of parameters while maintaining or even outperforming CNN -only competitors. �e
SSVM can be used for jointly training CNN+CRF models without knowing the details of the
CRF inference algorithm. However, one limitation is that the SSVM can only be used if the CRF
is the last “layer” in the model. To overcome this limitation, we have proposed an orthogonal
approach allowing to put CRF-layers at any position in the CNN . To this end, we have derived
a generic CRF inference framework based on highly e�cient dynamic programming building
blocks. We have shown how to instantiate a number of di�erent CRF inference algorithms using
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the dynamic programming routine as a central building block. �us, we have proposed an e�cient
algorithm to compute the exact gradient for this building block. �is enabled us to seamlessly
integrate all CRF inference algorithms in our framework into deep CNN models. In di�erence to
the SSVM approach it is here also possible to integrate the CRF layer as an intermediate layer in
the CNN . We have shown that our proposed CRF layer can be used generically and demonstrated
its bene�ts on the stereo, optical �ow and semantic segmentation tasks. �e resulting models are
interpretable and signi�cantly smaller than CNN -only methods. Hence, we have provided two
alternative approaches for training composite CNN+CRF models end-to-end. On the one hand
the SSVM approach has the advantage that we do not need to know details about the inference
algorithm, but has the drawbacks that the approach only yields an approximate sub-gradient and
the CRF can only be used as the last layer in the model. On the other hand, the proposed generic
CRF framework allows to train the hybrid models with the exact gradient and therefore eases
the training. Furthermore, the CRF layer can be used at any position in the network including
intermediate layers as well. A drawback is the required knowledge about the exact steps of the
CRF inference algorithm.

�e hybrid CNN+CRF models described above solve discrete optimization problems and
thus the result is naturally a discrete value for every pixel. �is is, however, not optimal for the
geometrical stereo problem, which is a continuous problem. In order to keep the robustness of the
CRF in the cost-volume space, we have proposed to learn a continuous-valued re�nement on top
of the CRF . We have therefore shown how to exploit the color image, the initial (discrete) disparity
map and the pixel-wise con�dences in a collaborative space with a learned variational network. To
this end, our model is able to transfer and align object edges and depth discontinuities and yields a
re�ned disparity map as the output. We have demonstrated that the proposed module is generally
applicable to di�erent initial disparity maps. Our method is able to remove the discretization
artifacts and yields smooth disparity maps as a result.

�e methods presented above work very well, however, all of them need a signi�cant amount of
training data in order to learn the parameters for the models. Unfortunately, due to the geometric
constraints it is not possible to label the training images manually. �us, generation of labeled
training data is a di�cult and also expensive problem for the stereo task. We have proposed a
method to completely avoid the need of a training data set. To this end, we have shown how to
exploit the geometric properties of the stereo problem in order to automatically generate training
data. We have demonstrated the applicability of our method on an aerial dataset for which we
did not use any ground-truth training data. �e experiments have shown that it is possible to
learn a high quality stereo model without the use of ground-truth data and that we signi�cantly
outperform classical methods even on datasets where no training data is available.

7.2 Conclusion & Outlook

�e presented models in this thesis have given deep insights into the strengths and weaknesses
of deep learning and classic optimization. Based on that it turned out that i) optimization o�en
provides an elegant and e�cient structure and ii) deep learning works amazingly well to calculate



7.2. Conclusion & Outlook 175

suitable features and representations for a particular problem. Taking these observations into
account can also be bene�cial for future research. In the following paragraphs, we will point to
some interesting directions for future research.

Occlusions Although our models incorporate prior knowledge modeled in a principled way, we
did not explicitly model occlusions in our models. However, occlusions are an inherent challenge
in correspondence problems such as stereo and optical �ow. �ey result from pixels only visible
in the reference image but not in the second image. One possibility to include occlusions in a
principled way can be realized with a CRF . To this end, we can easily include one additional
label which we interpret as “occlusion”. Furthermore, the CRF can also be used to model the
geometrical constraints regarding occlusions directly in the inference algorithm. �is could be
trained similarly as proposed in Chapters 3 and 4.

Discrete Optical Flow Another interesting direction for future research is dense, discrete
optical �ow. �e method proposed in Chapter 4 uses a �xed two-dimensional search window.
However, the label space grows quadratically and thus makes optimization intractable. While
current state-of-the-art models rely on a coarse-to-�nd warping scheme, one might consider
coarse-to-�ne optical �ow schemes in the discrete se�ing as well. Instead of capturing large �ow
vectors with image warping, the idea is to move the search window with the estimate from the
previous level. �is has the advantage i) of avoiding the warping artifacts because we sample
the image always on the original (non-warped) image and ii) that the search window size can be
signi�cantly reduced without limiting the maximal possible displacements. Using e.g. a special
version of the BP layer could make such a dense, discrete optical �ow tractable.

Multi-View Stereo In this thesis we have mainly focused on the canonical 2-view stereo task.
However, the proposed methods actually form a very general framework of how graphical models
can be trained together with CNNs. �is concept could also be extended to the general Multi-
View-Stereo (MVS) task, where we have multiple views framing the same scene as opposed to the
2-views in the canonical stereo. �is is especially interesting, since currently the best performing
MVS methods do not use learning at all. �is is mainly due to the large image sizes and the
required view selection. �e la�er is usually a heuristic in the optimization itself and it is therefore
unclear how to integrate it into a learning framework. However, it is clear that learned features
and learning in general will signi�cantly improve MVS. �e vision would be a fully learnable
system including view selection, matching, regularization and fusion to get a fused point-cloud as
the result.

Unsupervised and Self-Supervised Learning One of the main trends in the next few years
will be unsupervised and self-supervised learning. �e literature has shown that deep models
bene�t signi�cantly from more training data. However, simply labeling more data is probably not
the right way. Instead, statistical tools such as mutual information estimation could pave the way
for unsupervised learning to be as powerful as supervised learning.
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List of Acronyms

Adam Adaptive Momentum
AI Arti�cial Intelligence
ANN Arti�cial Neural Network
AutoML Automated Machine Learning
BCA Brightness Constancy Assumption
CNN Convolutional Neural Network
CRF Conditional Random Field
DL Deep Learning
DMM Dual Minorize-Maximize
DNN Deep Neural Network
DP Dynamic Programming
ERM Empirical Risk Minimization
FISTA Fast Iterative Shrinkage and �resholding Algorithm
GPU Graphics Processing Unit
MAP Maximum-A-Posteriori
MCMC Markov Chain Monte Carlo
ML Machine Learning
MRF Markov Random Field
MVS Multi-View-Stereo
NAS Neural Architecture Search
NCC Normalized Cross Correlation
ODE Ordinary Di�erential Equation
OFC Optical Flow Constraint
PPA Proximal Point Algorithm
RGB Red-Green-Blue
SAD Sum of Absolute Di�erences
SIFT Scale Invariant Feature Transform
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SSD Sum of Squared Di�erences
SSVM Structured Support Vector Machine
VN Variational Network
WTA Winner Takes All
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My work at the Institute of Computer Graphics and Vision led to the following peer-reviewed
publications.

Frame-To-Frame Consistent Semantic Segmentation
Manuel Rebol and Patrick Knöbelreiter. Joint Austrian Computer Vision and Robotics Workshop
(OAGM), 2020.
Abstract: In this work, we aim for temporally consistent semantic segmentation throughout frames
in a video. Many semantic segmentation algorithms process images individually which leads to
an inconsistent scene interpretation due to illumination changes, occlusions and other variations
over time. To achieve a temporally consistent prediction, we train a convolutional neural network
(CNN) which propagates features through consecutive frames in a video using a convolutional
long short term memory (ConvLSTM) cell. Besides the temporal feature propagation, we penalize
inconsistencies in our loss function. We show in our experiments that the performance improves
when utilizing video information compared to single frame prediction. �e mean intersection over
union (mIoU) metric on the Cityscapes validation set increases from 45.2% for the single frames
to 57.9% for video data a�er implementing the ConvLSTM to propagate features trough time on
the ESPNet. Most importantly, inconsistency decreases from 4.5% to 1.3% which is a reduction
by 71.1%. Our results indicate that the added temporal information produces a frame-to-frame
consistent and more accurate image understanding compared to single frame processing.

Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems
Patrick Knöbelreiter, Christian Sormann, Alexander Shekhovtsov, Friedrich Fraundorfer and
�omas Pock. Conference on Computer Vision and Pa�ern Recognition (CVPR), 2020.
Abstract: It has been proposed by many researchers that combining deep neural networks with
graphical models can create more e�cient and be�er regularized composite models. �e main
di�culties in implementing this in practice are associated with a discrepancy in suitable learning
objectives as well as with the necessity of approximations for the inference. In this work we
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take one of the simplest inference methods, a truncated max-product Belief Propagation, and add
what is necessary to make it a proper component of a deep learning model: connect it to learning
formulations with losses on marginals and compute the backprop operation. �is BP-Layer can
be used as the �nal or an intermediate block in convolutional neural networks (CNNs), allowing
us to design a hierarchical model composing BP inference and CNNs at di�erent scale levels.
�e model is applicable to a range of dense prediction problems, is well-trainable and provides
parameter-e�cient and robust solutions in stereo, �ow and semantic segmentation.

Learned Collaborative Stereo Refinement
Patrick Knöbelreiter and �omas Pock. German Conference on Pa�ern Recognition (GCPR), 2019.
Abstract: In this work, we propose a learning-based method to denoise and re�ne disparity maps
of a given stereo method. �e proposed variational network arises naturally from unrolling the
iterates of a proximal gradient method applied to a variational energy de�ned in a joint disparity,
color, and con�dence image space. Our method allows to learn a robust collaborative regularizer
leveraging the joint statistics of the color image, the con�dence map and the disparity map. Due to
the variational structure of our method, the individual steps can be easily visualized, thus enabling
interpretability of the method. We can therefore provide interesting insights into how our method
re�nes and denoises disparity maps. �e e�ciency of our method is demonstrated by the publicly
available stereo benchmarks Middlebury 2014 and Ki�i 2015.

E�icient Multi-Task Learning of Semantic Segmentation and Disparity Estimation
Robert Harb and Patrick Knöbelreiter. Joint Austrian Computer Vision and Robotics Workshop
(OAGM), 2019.
Abstract: We propose a jointly trainable model for semantic segmentation and disparity map
estimation. In this work we utilize the fact that the two tasks have complementary strength and
weaknesses. Traditional depth prediction algorithms rely on low-level features and o�en have
problems at large textureless regions, while for semantic segmentation these regions are easier to
capture. We propose a CNN-based architecture, where both tasks are tightly interconnected to each
other. �e model consists of an encoding stage which computes features for both tasks, semantic
segmentation and disparity estimation. In the decoding stage we explicitly add the semantic
predictions to the disparity decoding branch and we additionally allow to exchange information
in the intermediate feature representations. Furthermore, we set the focus on e�ciency, which
we achieve by the usage of previously introduced ESP building blocks. We evaluate the model on
the commonly used KITTI dataset.

Learning Energy Based Inpainting for Optical Flow
Christoph Vogel, Patrick Knöbelreiter and �omas Pock. Asian Conference on Computer Vision
(ACCV), 2018.
Abstract: Modern optical �ow methods are o�en composed of a cascade of many independent
steps or formulated as a black box neural network that is hard to interpret and analyze. In this
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work we seek for a plain, interpretable, but learnable solution. We propose a novel inpainting
based algorithm that approaches the problem in three steps: feature selection and matching,
selection of supporting points and energy based inpainting. To facilitate the inference we propose
an optimization layer that allows to backpropagate through 10K iterations of a �rst-order method
without any numerical or memory problems. Compared to recent state-of-the-art networks, our
modular CNN is very lightweight and competitive with other, more involved, inpainting based
methods.

Self-Supervised Learning for Stereo Reconstruction on Aerial Images
Patrick Knöbelreiter, Christoph Vogel and �omas Pock. International Geoscience and Reomte
Sensing Symposium (IGARSS), 2018.
Abstract: Recent developments established deep learning as an inevitable tool to boost the per-
formance of dense matching and stereo estimation. On the downside, learning these networks
requires a substantial amount of training data to be successful. Consequently, the application of
these models outside of the laboratory is far from straight forward. In this work we propose a
self-supervised training procedure that allows us to adapt our network to the speci�c (imaging)
characteristics of the dataset at hand, without the requirement of external ground truth data.
We instead generate interim training data by running our intermediate network on the whole
dataset, followed by conservative outlier �ltering. Bootstrapped from a pre-trained version of
our hybrid CNN-CRF model, we alternate the generation of training data and network training.
With this simple concept we are able to li� the completeness and accuracy of the pre-trained
version signi�cantly. We also show that our �nal model compares favorably to other popular
stereo estimation algorithms on an aerial dataset.

Robot Localisation and 3D Position Estimation using a Free-Moving Camera and Cas-
caded Convolutional Neural Networks
Justinas Miseikis,Patrick Knöbelreiter, Inka Brijacak, Saeed Yahyanejad, Kyrre Gle�e, Ole Jakob
Elle and Jim Torresen. International Conference on Advanced Intelligent Mechatronics (AIM), 2018.
Abstract: Many works in collaborative robotics and humanrobot interaction focuses on identifying
and predicting human behaviour while considering the information about the robot itself as given.
�is can be the case when sensors and the robot are calibrated in relation to each other and o�en
the recon�guration of the system is not possible, or extra manual work is required. We present
a deep learning based approach to remove the constraint of having the need for the robot and
the vision sensor to be �xed and calibrated in relation to each other. �e system learns the visual
cues of the robot body and is able to localise it, as well as estimate the position of robot joints
in 3D space by just using a 2D color image. �e method uses a cascaded convolutional neural
network, and we present the structure of the network, describe our own collected dataset, explain
the network training and achieved results. A fully trained system shows promising results in
providing an accurate mask of where the robot is located and a good estimate of its joints positions
in 3D. �e accuracy is not good enough for visual servoing applications yet, however, it can be
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su�cient for general safety and some collaborative tasks not requiring very high precision. �e
main bene�t of our method is the possibility of the vision sensor to move freely. �is allows it to
be mounted on moving objects, for example, a body of the person or a mobile robot working in
the same environment as the robots are operating in.

Scalable Full Flow with Learned Binary Descriptors
Go�fried Munda, Alexander Shekhovtsov, Patrick Knöbelreiter and �omas Pock. German
Conference on Pa�ern Recognition (GCPR), 2018.
Abstract: We propose a method for large displacement optical �ow in which local matching costs
are learned by a convolutional neural network (CNN) and a smoothness prior is imposed by a
conditional random �eld (CRF). We tackle the computation- and memory-intensive operations on
the 4D cost volume by a min-projection which reduces memory complexity from quadratic to
linear and binary descriptors for e�cient matching. �is enables evaluation of the cost on the
�y and allows to perform learning and CRF inference on high resolution images without ever
storing the 4D cost volume. To address the problem of learning binary descriptors we propose
a new hybrid learning scheme. In contrast to current state of the art approaches for learning
binary CNNs we can compute the exact non-zero gradient within our model. We compare several
methods for training binary descriptors and show results on public available benchmarks.

End-to-end Training of Hybrid CNN-CRF Models for Stereo
Patrick Knöbelreiter, Christian Reinbacher, Alexander Shekhovtsov and �omas Pock. Confer-
ence on Computer Vision and Pa�ern Recognition (CVPR), 2017.
Abstract: We propose a novel and principled hybrid CNN+ CRF model for stereo estimation.
Our model allows to exploit the advantages of both, convolutional neural networks (CNNs)
and conditional random �elds (CRFs) in an uni�ed approach. �e CNNs compute expressive
features for matching and distinctive color edges, which in turn are used to compute the unary
and binary costs of the CRF. For inference, we apply a recently proposed highly parallel dual
block descent algorithm which only needs a small �xed number of iterations to compute a high-
quality approximate minimizer. As the main contribution of the paper, we propose a theoretically
sound method based on the structured output support vector machine (SSVM) to train the hybrid
CNN+CRF model on large-scale data end-to-end. Our trained models perform very well despite
the fact that we are using shallow CNNs and do not apply any kind of post-processing to the
�nal output of the CRF. We evaluate our combined models on challenging stereo benchmarks
such as Middlebury 2014 and Ki�i 2015 and also investigate the performance of each individual
component.

End-to-end Training of Hybrid CNN-CRF Models for Semantic Segmentation using
Structured Learning
Aleksander Colovic, Patrick Knöbelreiter, Alexander Shekhovtsov and �omas Pock. Computer
Vision Winter Workshop (CVWW), 2017.
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Abstract: In this work we tackle the problem of semantic image segmentation with a combination
of convolutional neural networks (CNNs) and conditional random �elds (CRFs). �e CRF takes
contrast sensitive weights in a local neighborhood as input (pairwise interactions) to encourage
consistency (smoothness) within the prediction and align our segmentation boundaries with
visual edges. We model unary terms with a CNN which outperforms non data driven models.
We approximate the CRF inference with a �xed number of iterations of a linearprogramming
relaxation based approach. We experiment with training the combined model end-to-end us-
ing a discriminative formulation (structured support vector machine) and applying stochastic
subgradient descend to it.

Learning joint Demosaicing and Denoising based on Sequential Energy Minimization
Teresa Klatzer, Kerstin Hammernik, Patrick Knöbelreiter and �omas Pock. International Con-
ference on Computational Photography (ICCP), 2016.
Abstract: Demosaicing is an important �rst step for color image acquisition. For practical reasons,
demosaicing algorithms have to be both e�cient and yield high quality results in the presence of
noise. �e demosaicing problem poses several challenges, e.g. zippering and false color artifacts
as well as edge blur. In this work, we introduce a novel learning based method that can overcome
these challenges. We formulate demosaicing as an image restoration problem and propose to
learn e�cient regularization inspired by a variational energy minimization framework that can
be trained for di�erent sensor layouts. Our algorithm performs joint demosaicing and denoising
in close relation to the real physical mosaicing process on a camera sensor. �is is achieved
by learning a sequence of energy minimization problems composed of a set of RGB �lters and
corresponding activation functions. We evaluate our algorithm on the Microso� Demosaicing
data set in terms of peak signal to noise ratio (PSNR) and structured similarity index (SSIM). Our
algorithm is highly e�cient both in image quality and run time. We achieve an improvement of
up to 2.6 dB over recent state-of-the-art algorithms.
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[22] Jane Bromley, James W Bentz, Léon Bo�ou, Isabelle Guyon, Yann LeCun, Cli� Moore, Eduard
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[56] Vojtěch Franc and Pavel Laskov. Learning maximal margin markov networks via tractable
convex optimization. Control Systems and Computers, pages 25–34, April 2011. (page 85)

[57] Pascal Fua. A parallel stereo algorithm that produces dense depth maps and preserves
image features. Machine vision and applications, 6(1):35–49, 1993. (page 64)

[58] S Gehrke A, K Morin B, M Downey A, N Boehrer C, and T Fuchs C. Semi-global matching:
An alternative to lidar for dsm generation? 2012. (page 163)

[59] Willard J. Gibbs. Elementary principles in statistical mechanics. Cambridge University Press,
1902. (page 24)

[60] Spyros Gidaris and Nikos Komodakis. Detect, replace, re�ne: Deep structured prediction
for pixel wise labeling. In IEEE Conference on Computer Vision and Pa�ern Recognition
(CVPR), pages 5248–5257, 2017. (page 138)

[61] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning
by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018. (page 64)

[62] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse recti�er neural networks. In
International Conference on Arti�cial Intelligence and Statistics, pages 315–323, 2011. (page 70)

[63] Allan Gut. Probability: a graduate course, volume 75. Springer Science & Business Media,
2013. (page 11)



190

[64] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. �e elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media, 2009. (page 2)

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti�ers:
Surpassing human-level performance on imagenet classi�cation. In IEEE International
Conference on Computer Vision (ICCV), pages 1026–1034, 2015. (page 70)

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pa�ern Recognition (CVPR), pages
770–778, June 2016. (page 70, 73, 139)

[67] Tom Heskes. Convexity arguments for e�cient minimization of the bethe and kikuchi free
energies. Journal of Arti�cial Intelligence Research, 26:153–190, 2006. (page 40)

[68] Heiko Hirschmüller. Accurate and e�cient stereo processing by semi-global matching and
mutual information. In IEEE Conference on Computer Vision and Pa�ern Recognition (CVPR),
volume 2, pages 807–814, 2005. (page 83, 84, 163, 167)

[69] Heiko Hirschmüller. Semi-global matching-motivation, developments and applications.
Photogrammetric Week, 2011. (page 86)

[70] Heiko Hirschmüller, Maximilian Buder, and Ines Ernst. Memory e�cient semi-global
matching. In International Society for Photogrammetry and Remote Sensing (ISPRS), 2012.
(page 163)

[71] Heiko Hirschmüller. Stereo processing by semiglobal matching and mutual information.
IEEE Transactions on Pa�ern Analysis and Machine Intelligence, 30(2):328–341, February
2008. (page 4, 107, 108, 111, 117)

[72] Berthold KP Horn and Brian G Schunck. Determining optical �ow. In Techniques and
Applications of Image Understanding, volume 281, pages 319–331. International Society for
Optics and Photonics, 1981. (page 3, 57, 58)

[73] X. Hu and P. Mordohai. A quantitative evaluation of con�dence measures for stereo
vision. IEEE Transactions on Pa�ern Analysis and Machine Intelligence, pages 2121–2133,
2012. (page 144)

[74] E. Ilg, T. Saikia, M. Keuper, and T. Brox. Occlusions, motion and depth boundaries with a
generic network for disparity, optical �ow or scene �ow estimation. In European Conference
on Computer Vision (ECCV), 2018. (page 127)

[75] Hiroshi Ishikawa. Exact optimization for markov random �elds with convex priors. IEEE
Transactions on Pa�ern Analysis and Machine Intelligence, pages 1333–1336, 2003. (page 44)

[76] Sham Kakade, Yee Whye Teh, and Sam T. Roweis. An alternate objective function for
markovian �elds, 2002. (page 107)



BIBLIOGRAPHY 191

[77] Jörg H. Kappes, Bjoern Andres, Fred A. Hamprecht, Christoph Schnörr, Sebastian Nowozin,
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[85] Patrick Knöbelreiter, Christian Reinbacher, Alexander Shekhovtsov, and �omas Pock. End-
to-end training of hybrid cnn-crf models for stereo. In IEEE Conference on Computer Vision
and Pa�ern Recognition (CVPR), pages 2339–2348, 2017. (page 63, 64, 107, 123, 146, 152, 153)
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[103] Emanuel Laude, �omas Möllenho�, Michael Moeller, Jan Lellmann, and Daniel Cremers.
Sublabel-accurate convex relaxation of vectorial multilabel energies. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling, editors, European Conference on Computer Vision
(ECCV), pages 614–627, Cham, 2016. Springer International Publishing. (page 82)

[104] Ste�en L. Lauritzen. Graphical Models. Number 17 in Oxford Statistical Science Series.
Oxford Science Publications, 1998. ISBN 0-19-852219-3. (page 109)

[105] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwri�en zip code recognition. Neural Computation, 1(4):
541–551, Dec 1989. (page 1, 65, 76)

[106] Yann LeCun and C. Cortes. �e mnist database of handwri�en digits, 1998. URL http:

//yann.lecun.com/exdb/mnist/. (page 61)
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[220] Jure Žbontar and Yann LeCun. Stereo matching by training a convolutional neural network
to compare image patches. Journal of Machine Learning Research, 2016. (page 6, 7, 65, 81,
82, 83, 84, 88, 94, 95, 96, 97, 98, 101, 123, 152, 163)

[221] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-net: Guided aggrega-
tion net for end-to-end stereo matching. In IEEE Conference on Computer Vision and Pa�ern
Recognition (CVPR), pages 185–194, 2019. (page 108, 119, 120, 122, 126, 127)

[222] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit. Cross-based local stereo matching using
orthogonal integral images. IEEE transactions on circuits and systems for video technology,
19(7):1073–1079, 2009. (page 5)

[223] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European
Conference on Computer Vision (ECCV), pages 649–666, 2016. (page 63)

[224] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised
learning by cross-channel prediction. In IEEE Conference on Computer Vision and Pa�ern
Recognition (CVPR), pages 1058–1067, 2017. (page 63)

[225] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong
Su, Dalog Du, Chang Huang, and Philip H. S. Torr. Conditional random �elds as recurrent
neural networs. In IEEE International Conference on Computer Vision (ICCV), 2015. (page 22,
84, 85)

[226] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong
Su, Dalong Du, Chang Huang, and Philip HS Torr. Conditional random �elds as recurrent
neural networks. In IEEE Conference on Computer Vision and Pa�ern Recognition (CVPR),
pages 1529–1537, 2015. (page 44, 105, 108)

[227] Chao Zhou, Hong Zhang, Xiaoyong Shen, and Jiaya Jia. Unsupervised learning of stereo
matching. In IEEE International Conference on Computer Vision (ICCV), 2017. (page 64, 164)



BIBLIOGRAPHY 203

[228] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and compu-
tational harmonic analysis, 48(2):787–794, 2020. (page 1)

[229] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random �elds and maximum
entropy (frame): Towards a uni�ed theory for texture modeling. International Journal of
Computer Vision, 27(2):107–126, 1998. (page 155)

[230] C Lawrence Zitnick and Takeo Kanade. A cooperative algorithm for stereo matching and
occlusion detection. IEEE Transactions on Pa�ern Analysis and Machine Intelligence, 22(7):
675–684, 2000. (page 6)


	Introduction
	Machine Learning and Optimization – A Symbiosis
	Stereo
	Contribution and Outline
	Notation

	Related work
	Probability Theory
	Probabilities and Random Variables
	Probability Calculus
	Decision Theory

	Mathematical Preliminaries
	Inner Product
	Vector Norms
	Matrix Norm
	Adjoint Operator
	Properties of functions

	Optimization problems in Computer Vision and Machine Learning
	Discrete Optimization
	Markov Random Fields
	Conditional Random Fields
	Energy Minimization for MRF/CRF
	Inference Algorithms
	Dynamic Programming
	(Loopy) Belief Propagation
	Dual Decomposition
	Summary and Further Reading


	Continuous Optimization
	Convex Analysis
	Convex Sets
	Convex Functions
	Subdifferential
	Convex Conjugate
	Proximal Operator

	Convex Optimization
	Gradient Methods
	Proximal Methods
	Primal-Dual Method

	Variational Methods for Stereo

	Machine Learning
	Artificial Intelligence
	Machine Learning
	Supervised Learning
	Classification
	Regression

	Self-Supervised Learning
	Unsupervised Learning

	Deep Learning with Neural Networks
	Perceptron
	Fully Connected Neural Networks
	Activation Functions
	Convolutional Neural Networks
	Model Training


	Hybrid CNN-CRF Model for Stereo
	Introduction
	Related Work
	CNN-CRF Model
	Unary CNN
	Correlation
	CRF
	Pairwise CNN

	Training
	Training Unary CNN in the Pixel-wise Model
	Training Joint Model
	Training Unary and Pairwise CNNs in Joint Model
	Implementation Details
	Training insights

	Experiments
	Benchmark Data Sets
	Performance of Individual Components
	Benefits of Joint Training
	Benchmark Test Performance
	Additional Experiments
	Sublabel Enhancement
	Middlebury Stereo v3
	Kitti 2015

	Timing

	Conclusion

	Belief Propagation Reloaded
	Introduction
	Related Work
	Belief Propagation
	Sweep BP-Layer
	Sweep BP as Dynamic Programming
	Other Inference Methods
	SGM
	Tree-structured DP
	TRW and TBCA 


	Models
	Stereo
	Optical Flow
	Semantic Segmentation

	Learning
	Implementation Details
	Runtime Analysis
	Model Architecture

	Experiments
	Improvements brought by the BP-Layer
	Stereo Benchmark Performance
	More stereo experiments
	Optical Flow
	Semantic Segmentation

	Conclusion

	Learned Continuous Disparity Refinement
	Introduction
	Related Work
	Method
	Computing Inputs
	Learning
	Experiments
	Ablation Study
	Benchmark Performance

	Analyzing the VN
	Learned Filters and Activation Functions
	Shared Parameters
	VN Color Image
	VN Confidences

	Conclusion & Future Work

	Self-learning for Stereo
	Introduction
	Related Work
	Self-Supervised Dense Matching
	Experiments
	Vaihingen Dataset
	Cityscapes Dataset

	Conclusion & Future Work

	Summary and Outlook
	Summary
	Conclusion & Outlook

	List of Acronyms
	List of Publications
	Bibliography

