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Abstract

The wide repertoire of abilities of the human brain poses an open challenge to
understand how these abilities could be reproduced computationally, on the path to
understanding intelligence and the brain. These abilities include various cognitive
tasks, learning the structure of the environment and using it to adapt quickly, and
learning to perform complex motor tasks within the limitations of what is possible
in biology. In biology, plasticity and learning are constrained by the architecture
and processes present in the brain. An understanding of the inductive biases and
learning rules required for solving such tasks, and a computational analysis of
emergent representations when performing such tasks has so far been missing.
Moreover, while fast adaptation is a well known phenomena, most of the current
theories revolve around studying it in the context of plasticity. This is in spite of
the fact that there are few plasticity processes in biology that are known to involve
fast enough processes to explain this rapid adaptation. To address these issues, an
inductive bias that makes it possible for recurrent networks of spiking neurons
(RSNNs) to solve tasks involving flexible cognitive control and computation — spike
frequency adaptation — is studied. Then the installation of additional inductive
biases in RSNNs using optimization rather than manual design is illustrated. It
is shown that RSNNs can learn to learn/adapt quickly, where the adaptation can
happen either using just the plasticity of a readout, or no synaptic plasticity at all.
Adaptation without synaptic plasticity can occur on very short time scales, since
it is not limited by the time scales of plasticity — the adaptation occurs solely
using the dynamics of the recurrent network by taking advantage of the universal
computing properties of recurrent neural networks. Lastly, a proposal for a way to
achieve biologically plausible and online reinforcement learning for motor control is
presented, based on recently proposed approximations to backpropagation through
time (BPTT). Overall, this thesis provides a first direction for understanding how
networks of spiking neurons in biology compute, while at the same time remaining
functionally capable of solving complex tasks.
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Zusammenfassung

Das menschliche Gehirn besitzt eine Vielzahl elementarer Fähigkeiten. Dazu zählen
verschiedene höhere kognitive Fähigkeiten, das Erlernen von komplexen Bewe-
gungsabläufen, die Fähigkeit die Struktur der Umgebung zu analysieren und sich
dementsprechend an diese anzupassen. Es ist ein ungelöstes Problem, wie diese
Fähigkeiten mit Hilfe von Modellen reproduziert werden können, insbesondere
im Hinblick auf die biologischen Einschränkungen von Plastizität und Lernvor-
gängen. Bislang unklar ist, welche induktiven Verzerrungen (inductive biases) und
Lernregeln zum Bewältigen dieser Probleme nötig sind und welche neuronalen
Repräsentationen sich dabei ergeben. Es ist bekannt, dass sich das Gehirn schnell
Adaptieren kann. Da aber kaum biologische Plastizitätsmechanismen bekannt sind,
die auf solchen schnellen Zeitskalen ablaufen, wurden Anpassungsmechanismen
bislang nur im Rahmen von synaptischer Plastizität erforscht. Diesen Problemen
widmet sich die vorliegende Arbeit. Zunächst wird eine induktive Verzerrung für
das Lösen von flexiblen kognitiven Entscheidungsaufgaben mittels rekurrenten
spikenden neuronalen Netzwerken (RSNNs) untersucht: die Anpassung der Feuer-
rate. Danach wird beschrieben, wie durch Optimierungsvorgänge, im Gegensatz
zu händischer Wahl, weitere induktive Verzerrung in RSNNs installiert werden
können. Damit wird demonstriert, dass ein schneller Lern-/Anpassungsvorgang in
RSNNs allein durch die Plastizität in einem Readoutmechanismus erfolgen kann,
oder sogar komplett ohne synaptische Veränderungen. Diese Art von Anpassung ist
auf sehr kurzen Zeitskalen möglich, da sie nicht von den langsamen Abläufen der
synaptischen Plastizität im biologischen Kontext beschränkt wird: Anpassungen
erfolgen nur innerhalb der Dynamik des rekurrenten Netzwerkes durch die univer-
sellen Berechnungseigenschaften solcher Netzwerke. Außerdem wird eine Methode
für biologisch plausibles online reinforcement learning in Kontext der motorischer
Kontrolle vorgestellt, welches auf einer kürzlich veröffentlichten Approximation
des Backpropagation-through-time (BPTT) Algorithmus basiert. Damit stellt diese
Arbeit einen ersten Ansatz zur Erklärung von funktionalen spikenden neuronalen
Netzen in der Biologie dar.
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The human brain is capable of an astounding variety of complex and subtle
behaviour — all the way from fast but precise control of various muscles to slow,
complex reasoning, processing, and creation of abstract ideas. The basis of its
amazing flexibility is provided by millennia of evolutionary optimizations, and
years of developmental processes. This flexibility is also expressed by the brain’s
ability to learn over time spans of anywhere from years to seconds.

To understand how these processes might work, one common strategy is to build
computational and functional models that mimic various aspects of biology Lev-
enstein et al., 2020. Recurrent networks of neurons (RNNs) have been frequently
studied as models for networks of neurons in the brain. Specifically, recurrent
networks with more biologically plausible and detailed models of neurons — re-
current networks of spiking neurons (RSNNs) — have been used to understand
and simulate memory and learning in biological brains Maass, 1997. While RNNs
and RSNNs are theoretically powerful models Siegelmann and Sontag, 1995;
Maass and Markram, 2004, training them poses its own set of challenges Pascanu

et al., 2013. This indicates the necessity of imbuing these networks with inductive
biases Mitchell, 1980.

Recurrent networks are often trained using backpropagation through time (BPTT) Wer-
bos, 1990. BPTT has been adapted to work with spiking neurons Bellec et al.,
2018b by using a pseudo-derivative for the spiking function that is otherwise not
differentiable. These RSNNs can be imbued with memory using spike frequency
adaptation (SFA) using adaptive thresholds, making their performance compara-
ble to that of the state-of-the-art models of non-spiking artificial recurrent neural
networks — Long short-term Memory (LSTM) networks. Such RSNNs with SFA
are called Long short-term memory Spiking Neural Networks (LSNNs). Inductive

1



1 Introduction

bias for fast learning can also be installed in LSNNs using the spiking variation of
BPTT using learning-to-learn (L2L) or meta-learning. Since it is not clear how the
brain could implement BPTT, biologically plausible approximations to BPTT have
been developed Bellec et al., 2019b.

This thesis bases itself on these advances and focuses on exploring three important
themes — abstract cognitive tasks, learning to learn, and biologically plausible
reinforcement learning. More specifically, these themes translate into achieving and
analysing cognitive processing, exploring fast learning without synaptic plasticity
through learning to learn, and learning from reward with local synaptic plasticity.
They also aim to provide insights into what is possible to achieve with spiking
neural networks, and more importantly, how these can be connected with biological
models of the brain.

1.1 Cognitive tasks

The ability to perform abstract cognitive computations underlies most definitions
of intelligence in the context of artificial intelligence. Many such cognitive tasks
can be formulated as operations on abstract sequences of symbols. Humans are
not only able to perform such operations, but are also able to do this on strings
they have never seen before. This ability to apply rules and perform operations
on previously unseen strings of symbols — free generalization — is an essential
property of cognitive architectures Marcus, 2003. Some of these tasks are also used
for evaluating the abstract reasoning capability of human subjects MacDonald

III, 2008. Using neural network models to solve such tasks Rougier et al., 2005;
O’Reilly and Frank, 2006 can provide insights into what aspects of the architecture
are important, and what mechanisms the network uses to arrive at solutions. As
we show here, using neural network models that are based on simple and generic
but biologically realistic architectures for these tasks provides interpretable insights
into the inductive biases that play an important role in these tasks. The specific
biases we study here are for short-term memory, and network codes that emerge
for solving such cognitive tasks.

1.2 Learning to learn

Learning to learn or meta-learning is a paradigm where optimization is used to
generate a model that can learn tasks from a given family of tasks, rather than
constructing and training separate model for each task Thrun and Pratt, 1998;
Schmidhuber, 1987. One way this can be achieved is by optimizing a set of hyper-
parameters of the model so that the model can learn to solve any of these tasks. In
many cases, we want to be able to leverage the common structure present in the
family of tasks to learn each task faster compared to a tabula rasa model. Therefore,
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a natural setup is to optimize the model hyper-parameters not only learn any task
in the family, but also to learn each task quickly Hochreiter et al., 2001.

Most biological brains have strong inductive biases installed over millennia of
evolution and years of developmental processes Zador, 2019. Most animals already
have the ability to execute a wide repertoire of behaviour required for their survival
from the moment they are born. For example, a giraffe can walk within hours of
birth, and most insects are born ready to perform all adult behaviours. Additionally,
many animals are capable of adapting to the changing world very quickly by taking
advantage of and using their prior knowledge of the world to deal with novel
stimuli and generate novel behaviours Harlow, 1949. But it is not clear what sort
of learning mechanism or plasticity, if at all, is used for implementing this sort of
fast learning in biology.

With the observation that recurrent neural networks are theoretically capable of
implementing any algorithm in their dynamics Cotter and Conwell, 1990, we
study if this could provide the basis for a biologically plausible mechanism for fast
learning in biology. Such a model can be implemented in any recurrent network
with some form of short-term memory — the shorter memory demands being
satisfied with fading memory Maass et al., 2004; Maass et al., 2002, and the
longer ones with explicit working memory mechanisms using SFA with adaptive
thresholds Bellec et al., 2018b; Salaj et al., 2020. Therefore, such a model would
be biologically plausible: it would work with any recurrent network irrespective of
neuron or synapse models used, as long as some memory mechanism was installed.
The hyper-parameters of the model being optimized for fast learning would be the
weights of the network itself, since the fast learning occurs in the dynamics of the
network.

In this thesis, we show that such a biologically plausible model for fast learning can
be installed using L2L. This model can explain a wide variety of behaviours from
motor control to navigation, and is capable of performing complex non-linear tasks.
In addition, this can be used to install inductive biases through optimization in the
form of priors based on the common structure of the task in the given task family.
The network can then use these priors to provide much more robust learning that is
not affected by deceptive local task structure, since the network has already learnt
the global task structure.

1.3 Reinforcement Learning

The standard way reinforcement learning (RL) is usually formulated is that an
agent interacts with an environment by observing the state of the environment, and
performing actions that can change its state. Certain transitions lead to a reward,
and the agent’s goal is to maximize the amount of reward it receives. The agent
is not directly provided information about which actions and states are desirable,
but rather it must try out different strategies to discover which ones can lead to
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rewards. In a general setting, actions may not immediately affect rewards — they
can either be delayed, or the environment could require a long sequence of precise
actions to lead to a state which provides a reward. A very detailed introduction to
the field is provided in R. S. Sutton and Barto, 2018.

Multi-layer “deep” feedforward and recurrent neural networks are commonly
used to learn models for such agents, and this combination is referred to as deep
reinforcement learning. Deep RL has been responsible for some of the biggest
breakthroughs in AI in recent times, starting from DQN Mnih et al., 2015a in 2015

that could play ATARI 2600 games at human level to MuZero Schrittwieser et al.,
2020 in 2020 that can play multiple, very different, games from scratch without the
rules of the game even being encoded in the learning. Among these, one class of
simple, but powerful algorithms that emerged was a range of so-called advantage
actor-critic methods Mnih et al., 2016.

A lot of conceptual inspiration in modern deep learning comes directly from bi-
ology or is closely connected to biology, ranging from temporal difference error
to episodic replay. While deep learning is not directly concerned with developing
models that are biologically plausible, such models have the potential to provide
validation of biologically plausible learning algorithms and insights into rein-
forcement learning in biology. Additionally, algorithms that share properties with
biological models, such as learning restricted to locally available quantities, and
sparse communication and activation can also serve as efficient implementations
of these RL algorithms in neuromorphic hardware. The last chapter in this thesis
addresses this problem of biologically plausible reinforcement learning in recurrent
spiking neural networks.

1.4 Spiking neuron models

In this thesis, we exclusively explore models consisting of networks of spiking
neurons Maass, 1997. These neurons are modelled after neurons in the mammalian
brain, which communicate with each other using release of neurotransmitters
across connections called synapses. This release of neurotransmitters is usually
triggered by sharp pulse-like changes in the membrane potential of a neuron
called action potentials or “spikes”. Such incoming signals lead to membrane-
potential depolarization in the receiving neuron, which can trigger another spike
if the depolarization crosses a certain threshold. These spikes are binary events
— all or none — and are independent of the number and magnitude of incoming
signals Barnett and Larkman, 2007.

Early spiking neuron models, such as the Hodgkin-Huxley model Hodgkin et al.,
1952, were modelled after detailed biophysical mechanisms in the neuron. Later
simplifications of these models based on their abstract and essential properties led
to models such as the leaky integrate and fire model Gerstner and Kistler, 2002.
A leaky integrate and fire (LIF) model models all incoming signals as currents, and
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the membrane potential of the neuron is a linear sum of these currents weighted by
the synaptic weights, with an additional leak current. When the membrane potential
crosses a certain threshold, the neuron emits a binary spike that is conveyed to the
other neurons connected to it. In this thesis, we always use LIF neuron models,
and sometimes (when mentioned) extend it with the SFA mechanism described in
Chapter 2.

1.5 Organization of the thesis

All results in this thesis are based on publications to which I have contributed as
first- or co-first author during my PhD studies. A detailed statement about author
contributions are given at the beginning of every chapter. Each chapter consists of
the main results and discussion, while the methods and supplemental details are
given in the appendices at the end of this thesis.

In Chapter 2, we first address the problem of how spiking neural networks can be
trained using BPTT, propose an architecture to imbue spiking neurons with long
short-term memory, and train and analyse representations that emerge in such
spiking networks in cognitive tasks. The short-term memory in these networks
is implemented using spike-frequency adaptation (SFA), a commonly observed
property of biological neurons, which was first proposed in Bellec et al., 2018b. We
are able to solve cognitive tasks that require two different levels of working memory,
and tasks that involve operations on strings of symbols. We also demonstrate that
commonly observed phenomena of neural activity — assembly sequences and
mixed selectivity — emerge through training in these networks. In Chapter 3, we
use a reservoir model to study how learning to learn can be used in networks of
spiking neurons. We optimize the weights of a recurrent network of spiking neurons,
used as a liquid state machine or a “liquid”, to improve its performance on a family
of complex non-linear signal processing tasks — predicting the result of applying
randomly chosen second-order volterra filters to inputs. Using learning to learn,
we generate liquids that can perform significantly better than a random liquid. We
show that we can even fix the weights of the readouts, which are otherwise usually
trained in a liquid paradigm, and achieve fast learning for a complex non-linear
regression task. Overall, this allows us to generate liquids that are capable of much
better performance and faster learning than random liquids. In principle, these
liquids can then be implemented on an underlying hardware substrate optimized
for spiking neurons. In Chapter 4, we study how we can use RSNNs with short-
term memory introduced in Chapter 2 to perform biologically realistic tasks and
connect it with known phenomena in biology. We demonstrate that such networks
can perform fast motor prediction, and solve a navigation task in ways very
similar to that seen in biology. Moreover, we demonstrate how prior knowledge
about the structure of tasks can be installed in such networks, and the advantages
arising out of installing such priors. In Chapter 5, we shift our focus to online
reinforcement learning — where learning occurs within biological constraints of
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temporal causality and spatial locality. We show how online reinforcement learning
can be used to solve a motor control problem using a biologically realistic plasticity
rule.

1.6 Publications not included in this thesis

In Rao et al., 2020, we developed a theoretical model for plasticity of layer 5

pyramidal cells based on its properties known from neuroscience — specifically the
fact that temporally extended calcium mediated plateau potential leads to burst
firing and opening of plasticity windows. Such a neuron model can be shown to
perform logistic regression using a very simple plasticity rule, whose dynamics is
supported by biological data. The manuscript for this paper is in preparation. I
contributed to the conceptualization of the model and the theoretical derivation.
In Subramoney and Maass, 2020, we investigated the role of critical dynamics
for working memory in networks of spiking neurons. We draw a connection
between two measures of criticality used in different fields — lyapunov exponent
and avalanches. I contributed to the development of the model, performed the
simulations and analysed the simulation data in this model as well. The manuscript
for this paper is in preparation.
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Chapter 2
Spike-frequency adaptation provides a long
short-term memory to networks of spiking neurons
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Abstract. Brains are able to integrate memory from the recent past into their
current computations, seemingly without effort. This ability is critical for cognitive
tasks such as speech understanding or working with sequences of symbols accord-
ing to dynamically changing rules. But it has remained unknown how networks
of spiking neurons in the brain can achieve that. We show that the presence of
neurons with spike frequency adaptation makes a significant difference: Their
inclusion in a network moves its performance for such computing tasks from a
very low level close to the level of human performance. While artificial neural
networks with special long short-term memory (LSTM) units had already reached
such high performance levels, they lack biological plausibility. We find that neurons
with spike-frequency adaptation, which occur especially frequently in higher corti-
cal areas of the human brain, provide to brains a functional equivalent to LSTM
units.
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neurons

Acknowledgments and author contributions. This chapter is based on the manuscripts
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conceived by DS, AS, GB, WM. The experiments were designed by DS, AS, GB, RL,
WM and were conducted by DS, AS, CK. The manuscript was written by DS, AS,
CK, RL, GB, WM.

2.1 Introduction

Our brains are able to constantly process new information in the light of recent
experiences and dynamically changing rules, seemingly without any effort. But we
do not know how networks of spiking neurons (SNNs) in the brain accomplish that.
The performance of both spike-based and rate-based models for recurrent neural
networks in the brain have stayed on a rather low performance level for such tasks,
far below the performance level of the human brain and artificial neural network
models. Artificial neural network models that perform well on such tasks use,
instead of neuron models, a special type of unit called Long Short-Term Memory
(LSTM) unit. LSTM units store information in registers — like a digital computer —
where it remains without perturbance by network activity for an indefinite amount
of time, until is is actively updated or recalled. Hence these LSTM units are not
biologically plausible, and it has remained an open problem how neural networks
in the brain achieve so high performance on cognitively demanding tasks that
require integration of information from the recent past into current computational
processing. We propose that the brain achieves this — at least for some tasks
— without separating computation and short-term memory in different network
modules: Rather it intertwines computing and memory with the help of inherent
slow dynamic processes in neurons and synapses.

Arguably the most prominent internal dynamics of neurons on the time scale of
seconds — which is particularly relevant for many cognitive tasks — is spike-
frequency adaptation (SFA). It is expressed by a substantial fraction of neocortical
neurons Allen Institute, 2018. SFA reduces the excitability of a neuron in re-
sponse to its firing, see Fig. 2.1. Neurons with SFA have often been included in
SNN models that aim at modelling the dynamics of brain networks Gutkin and
Zeldenrust, 2014, but not in computational studies. We show that neurons with
SFA do in fact significantly enhance the computational power of SNNs. This is
somewhat surprising, because on first sight their history dependence, which even
varies strongly from neuron to neuron, tends to obstruct — rather than enhance
— network computations. We propose that this may hold for hand-constructed
circuits, whereas evolutionary and learning processes are able to exploit advantages
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of such diverse forms of SFA. We demonstrate this in SNN models for a series of
demanding benchmark tasks for network computations that all require integration
of information over time: Recalling features of fleeting sensory inputs, speech
recognition, time series classification, and operations on sequences of symbols.

We also compare the performance of SNNs with SFA to the performance of SNNs
that have a different type of slow hidden dynamics, although on a smaller time scale
— short-term plasticity (STP) of synapses. But the contribution of synaptic short-
term plasticity — especially synaptic facilitation — to computational performance
turns out to be lower. Interestingly, the most common form of STP in synapses
between pyramidal cells, synaptic depression, tends to provide better support for
such computations than synaptic facilitation. References to the related literature
can be found in the Discussion.

Altogether our results suggest that neurons with SFA provide to SNNs a similar
performance boost for computations that require a long short-term memory as
LSTM units do for artificial neural networks. Hence we refer to SNNs that contain
neurons with SFA as Long short-term memory SNNs (LSNNs). Since the term
short-term memory is more common in the literature on LSTM networks, but the
term working memory is more common in the neuroscience literature, and both
appear to refer to the same phenomena, we treat these two notions as synonyms
and let their use depend on the context.

SNNs are currently of high interest not only for modelling neural networks of
the brain, but also as a computing paradigm for drastically more energy-efficient
computer hardware. Hence it is of interest to see that the performance of LSTM
networks, and thereby many recent achievements in Artificial Intelligence, can be
ported to spike-based computing hardware.

2.2 Experimental data and a simple model for SFA

The SFA of a neuron is usually measured in terms of the gradual increase of
interspike intervals in its spike response to a constant input drive. An example
for such measurement is the Adaptation Index (AI) that is employed by the Allen
Institute Allen Institute, 2018, see Fig. 2.1A for samples of neurons with different
AI, Fig. 2.1B for the distribution of AI values, and the Methods for the definition
of the AI. These data suggest that the human neocortex has a larger fraction of
neurons with SFA than the mouse neocortex, and that within the human brain
the frontal lobe has a larger fraction than the temporal gyrus. The analysis of
experimental data in Pozzorini et al., 2013; Pozzorini et al., 2015 lead to the
conclusion that SFA takes place on multiple time scales, with a history dependence
that lasts up to 20 s in neocortical neurons. Various models for adapting neurons
have been proposed in Gerstner et al., 2014; Teeter et al., 2018. We employ a
very simple model for SFA, the generalized leaky integrate-and-fire model GLIF2
from Teeter et al., 2018; Allen Institute, 2017, which we will refer to as the
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Figure 2.1: Experimental data on neurons with SFA, and a simple model for SFA. (A) The re-
sponse to a 1-second long step current is displayed for three sample neurons in the
neocortex. The adaptation index AI measures the rate of increase of interspike intervals.
AI > 0 means that a neuron exhibits SFA. (B) Distribution of adaptation indices in neu-
rons from human and rodent neocortex. Source of data for A and B: ALLEN INSTITUTE,
2018. (C) Response of a simple model for a neuron with SFA — the adaptive LIF (ALIF)
model — to the same input current as in A.

10



2.3 Methods for training recurrent SNNs

ALIF (adaptive LIF) model. A practical advantage of this simple model is that
it can be very efficiently simulated and is amenable to gradient descent training
methods. It assumes that the firing threshold A(t) contains a variable component
a(t) that increases by a fixed amount after each of its spikes z(t) (Fig. 2.1C), and
then decays exponentially back to 0. This variable threshold models the inactivation
of voltage-dependent sodium channels in a qualitative manner. We write zj(t) for
the spike output of neuron j, that switches from 0 to 1 at time t when the neuron
fires at time t, and otherwise has value 0. With this notation one can define the
ALIF model by the equations:

Aj(t) = vth + βaj(t),

aj(t + δt) = ρjaj(t) + (1− ρj)zj(t)δt,
(2.1)

where vth is the constant baseline of the firing threshold Aj(t), and β > 0 scales

the amplitude of the activity-dependent component. The parameter ρj = exp
(
−δt
τa,j

)
controls the speed by which aj(t) decays back to 0, where τa,j is the adaptation time
constant and δt is the duration of a discrete time step (which we chose to be 1 ms).
An LSNN is a network of spiking neurons that contains some ALIF neurons (see
Methods for details on neuron and synapse models). It typically suffices to use
ALIF neurons with some spread of time constants τa,j around the required duration
of working memory for solving a task (see Table S1 in Supplement for details on
how the choice of adaptation time constant impacts performance).

2.3 Methods for training recurrent SNNs

We focused on the best performing training method for recurrent SNNs that is
currently known: Backpropagation through time (BPTT) with the pseudo-derivative
for spiking neurons from Bellec et al., 2018b. While BPTT is not assumed to be
biologically plausible as an online learning method, results from training with
BPTT inform us about computational capabilities of different types of SNNs. They
also inform us about performance levels that could in principle be attained through
evolution. In order to test whether complex cognitive computations, such as the
12AX task , can in principle also be learnt by brain networks, we also trained the
same LSNN with a biologically plausible learning method: e-prop. For LSNNs,
e-prop tends to achieve in general an almost as good computational performance
level as BPTT Bellec et al., 2019b.

2.4 SFA provides a functionally powerful working memory
for spike-based computing

Our brains are able to recall an image, even after having seen many other images
in between. We wondered whether LSNNs would be able to model such funda-
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Figure 2.2: High-dimensional working memory capability of an LSNN. Rows top to bottom:
Stream of randomly drawn 20 dimensional input patterns, represented by the firing ac-
tivity of 20 populations of input neurons (subsampled), firing activity of two additional
populations of input neurons for the STORE and RECALL commands, firing activity of 25
sample ALIF neurons in the LSNN (we first ordered all ALIF neurons with regard to the
variance of their dynamic firing thresholds, and then picked every 20th), temporal evolu-
tion of the firing thresholds of these 25 neurons, traces of the activation of 20 sigmoidal
readout neurons, and their average value during the 200 ms time window of the RECALL
command represented by grey values. During the RECALL command (green shading)
the network successfully reproduced the pattern that had been given as input during the
preceding STORE command (yellow shading). Coloring of the threshold traces in blue
or red was done after visual inspection to highlight the emergent two disjoint populations
of ALIF neurons. The activity of one of them peaks during the STORE command, and
provides a negative imprint of the stored pattern during RECALL through a reduced firing
response. The other one peaks during RECALL.

12



2.4 SFA provides a functionally powerful working memory for spike-based computing

mental working memory task. Note that remembering an image requires retaining
substantially more than a single bit, even if it is encoded in a highly compressed
form in a higher cortical area. In contrast, most models for working memory have
focused on retaining just a single bit, and this memory content occurred during
training and testing. We formulated our more demanding computational task as
the STORE-RECALL task illustrated in Fig. 2.2. The network received a sequence of
frames, each consisting of a vector of 20 binary features — arranged in a 4× 5 grid
(top of Fig. 2.2) — which were presented for 200 ms. Each frame can be seen as
corresponding to the compressed representation of an image in a higher visual area
such as IT. In addition, the network received occasional STORE and RECALL com-
mands, marked in yellow and green in Fig. 2.2. The STORE command corresponds
to directing attention to a particular frame of the input stream. The computational
task was to reproduce, during a RECALL command, the feature vector that had
been presented during the preceding STORE command. The delay between the
STORE and RECALL commands was randomly chosen from the interval between
200 and 1600 ms.

We trained an LSNN that consisted of 500 ALIF neurons, whose firing thresholds
had time constants of 800 ms, to solve this task. Sigmoidal readout neurons, one
for each of the 20 binary input features, were trained to reproduce the feature
value that had been present during STORE. Binary feature values were extracted
by rounding the activity of readout neurons at the half-way (100 ms) mark of each
200 ms time window. A sample segment of a test trial is shown in Fig. 2.2, with
the activity of input neurons at the top and the activation of readout neurons at
the bottom. In order to probe the generalization capability of the LSNN we made
sure that none of the patterns shown during testing had occurred during training,
and in fact had a Hamming distance of at least 5 bits to all training patterns. Note
that previous models for working memory only aimed at storing a single bit, and
the model could only be tested for the same content for which it was trained.
Here we require that the working memory can be used for content other than
what was used during training. The resulting recall performance of the LSNN was
99.09%, i.e., 99.09% of the stored feature vectors were perfectly reproduced during
recall. This demonstrates that LSNNs have inherent high-dimensional working
memory capabilities. SFA was essential for this, because the recall performance
of a recurrent network of LIF neurons without SFA, trained in exactly the same
way, stayed at chance level (see Methods). A closer inspection of the time course
of firing thresholds of a sample subset of neurons in the LSNN provides insight
into how LSNNs are able to solve this task: A pattern-specific subset S of neurons
is highly activated during STORE, which raises their firing thresholds (shown as
blue curves in Fig. 2.2). Many neurons are activated again during RECALL, but the
firing activity of neurons in the subset S remains lower this time, thereby providing
a negative imprint of their activation pattern during STORE. Readout neurons can
easily be trained to decode these negative imprints, and to reproduce the originally
stored pattern.

Interestingly, the firing activity of the network was rather low during the delay be-
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tween STORE and RECALL. Furthermore we found that a Support Vector Machine
(SVM) was not able to decode the stored feature vector from the firing activity
of the LSNN neurons during the delay (the decoding accuracy during the delay
was 4.38%, as opposed to 100% decoding accuracy during RECALL; see Methods).
Hence the type of working memory that an LSNN exhibits corresponds to the
activity-silent form of working memory in the human brain that had been examined
in the experiments of Wolff et al., 2017. It had also been shown there that the
representation of working memory content changes drastically between memory
encoding and subsequent network reactivation during the delay by an “impulse
stimulus”: A classifier trained on the network activity during encoding was not
able to classify the memory content during a network reactivation, and vice versa.
The same holds for our LSNN model (see Methods), since the reactivation of the
network during RECALL provides a negative, rather than a positive imprint, of the
high-dimensional memory content.

We also examined how the time constants of the thresholds of ALIF neurons should
be chosen to achieve good performance for a task that requires a particular time
span of working memory. We studied this for a variant of the STORE-RECALL
task where the time-varying input vector of features was just 1D instead of 20D,
but where the expected delays between STORE and RECALL varied between 0.2
to 16 s for different versions of the task. It turned out that good performance
did not require a tight coupling between the required length of working memory
and the adaptation time constants of ALIF neurons in the LSNN, see Table S1.
In particular, good working memory performance was also achieved when the
required time span for working memory was substantially larger than these time-
constants, suggesting that the network had learned to automatically refresh or
stagger the implicit memory in firing thresholds of different neurons. We also
verified that good performance for many memory retention time spans could be
achieved by a single network with a mixture of time constants of firing thresholds
drawn from a uniform or power-law distribution. This suggests that brains can
solve working memory tasks for many different retention spans using SFA neurons
with a generic spread of time constants.

Finally, we wondered whether the adaptive firing threshold of ALIF neurons affects
the autocorrelation function of their firing activity — termed intrinsic timescale in
Wasmuht et al., 2018. We tested this for an LSNN consisting of 200 LIF and 200
ALIF neurons that was trained to solve a 1D version of the STORE-RECALL task.
It turned out that during the delay between STORE and RECALL these intrinsic
time constants were in the same range as those measured in monkey cortex, see
Fig. 1C in Wasmuht et al., 2018. Furthermore LIF and ALIF neurons exhibited very
similar distributions of these time constants (see Fig. S1), suggesting that these
intrinsic time constants are determined largely by their network inputs, and less by
the neuron type.
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neurons or synapses

2.5 Working memory performance of variants of SNNs
with other slow processes in neurons or synapses

There exist numerous other slow processes on the time scale of seconds in neurons
and synapses, that can potentially also enhance network computations on this time
scale. We examined the performance of three other candidates besides SFA on a
simple version of the STORE-RECALL task:

• LIF neurons whose excitability gets increased through their firing: ELIF
neurons

• Depressing short-term plasticity of synapses (STP-D)
• Facilitating short-term plasticity of synapses (STP-F).

The ELIF neuron is a dual version of an ALIF neuron whose excitability is increased
through preceding firing, rather than decreased (see Methods). ELIF neurons
appear to be particularly suitable for creating a working memory through persistent
firing. Facilitating short-term plasticity of synapses also supports that, and was
conjectured by Mongillo et al., 2008 to produce a working memory. We also
evaluated the performance of depressing short-term plasticity, because this is the
standard dynamics of synapses between pyramidal cells Markram et al., 2015.
The dynamics of the salient hidden variables in these three models is illustrated
in Fig. S2. The performance of corresponding variants of the SNN is shown in
Fig. 2.3A for a 1D variant of the STORE-RECALL task from Fig. 2.2, with a delay
between STORE and RECALL commands varying between 200 ms and 3600 ms.
It turns out that SNNs with ALIF neurons, i.e., LSNNs, learn to solve this task
much faster than the other variants of the SNN model, and also reach the highest
performance level. Furthermore only the networks with STP-D or ELIF neurons
eventually approach reasonably good — although lower — performance levels. We
were surprised to see that facilitating short-term plasticity of synapses (STP-F) did
not provide the working memory capability needed to solve this task, although
we used here a really long time constant for facilitation with a mean of 2000 ms
— much larger than the mean of 507 ms that had been found experimentally in
Y. Wang et al., 2006 for synaptic connections between pyramidal cells in the PFC.
Similar results hold for the time series classification task sMNIST, see Fig. 2.3C and
the subsection on sMNIST below.

We also found that replacing ALIF by ELIF neurons reduced the working memory
capability of the network for both tasks, see Fig. 2.3A and C. One possible reason is
that information that is stored in the firing threshold of a neuron is better protected
in the case of an ALIF neuron, since an increased firing threshold suppresses
subsequent accidental firing, and hence accidental modifications of the memory
that is stored in the firing threshold. In contrast, for an ELIF neuron the information
that is stored in the firing threshold is quite vulnerable, since a decreased firing
threshold invites accidental firing.
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Figure 2.3: Performance comparisons for common benchmark tasks that require substantial
integration of information over time. (A) Learning curves of networks with different
slow processes, for a 1D version of the STORE-RECALL task from Fig. 2.2. The stan-
dard SNN (“LIF”) as well as SNNs with STP-F cannot learn the task. SNNs with STP-D
come closest to the performance level of the LSNN, but require substantially longer train-
ing. Mean accuracy and standard deviation are shown for 7 runs with different network
initializations for all 5 network types. (B) Trained LSNN solving the delayed-memory XOR
task HUH and SEJNOWSKI, 2018. Plot of a trial with input consisting of two different types
of pulses is shown. From top to bottom: Input pulses, go cue, neuron spike raster, thresh-
old traces, network output. (C) Learning curves of five variants of the SNN model (same
as in A) for the sMNIST time series classification task. Mean accuracy and standard de-
viation are shown for a minimum of 4 runs with different network initializations for all 5
network types. (D) sMNIST performance of two versions of LSNNs are compared with
that of an equally large network of LIF neurons, and an LSTM network. SC-LSNN is a
sparsely connected LSNN consisting of excitatory and inhibitory neurons.
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2.6 Performance of LSNNs for speech recognition and
other benchmark tasks that require substantial
integration of information over time

Model test accuracy (%)
FastGRNN-LSQ Kusupati et al., 2018 93.18

LSNN 91.21

LIF network 89.04

Table 2.1: Google Speech Commands. Accuracy of the spiking network models on the test set
compared to the state-of-the-art artificial recurrent model reported in KUSUPATI et al., 2018.
Accuracy of the best out of 5 simulations for LSNNs and LIF networks is reported.

Google Speech Commands dataset. We trained LSNNs and networks of LIF neu-
rons on the keyword spotting task with Google Speech Commands Dataset P.
Warden, 2018 (v0.02). The dataset consists of 105,000 audio recordings of people
saying thirty different words. Fully connected networks were trained to classify
audio recordings, that are clipped to one second length, into one of 12 classes
(10 keywords, as well as two special classes for silence and unknown words; the
remaining 20 words had to be classified as “unknown”). Comparison of maximum
performance of trained spiking networks against state-of-the-art artificial recur-
rent networks is shown in Table 2.1. Averaging over 5 runs, the LSNN reached
90.88± 0.22%, and the LIF network reached 88.79± 0.16% accuracy. Thus an SNN
without ALIF neurons can already solve this task quite well, but the LSNN halves
the performance gap to the published state-of-the-art in machine learning. The
only other report on a solution of this task with spiking networks is Cramer et al.,
2019. There the authors encode the audio features to spike trains using cochlea
model and train a network of LIF neurons using surrogate gradients with BPTT
and achieve 50.9± 1.1% accuracy.

Delayed-memory XOR task. We also tested the performance of LSNNs on a pre-
viously considered benchmark task for SNNs, where two items in the working
memory have to be combined non-linearly: The Delayed-memory XOR task Huh

and Sejnowski, 2018. The network is required to compute the exclusive-or op-
eration on the history of input pulses when prompted by a go-cue signal, see
Fig. 2.3B.

The network receives on one input channel two types of pulses (up or down), and
a go-cue on another channel. If the network received two input pulses since the
last go-cue signal, it should generate the output “1” during the next go-cue if the
input pulses were different or “0” if the input pulses were the same. Otherwise, if
the network only received one input pulse since the last go-cue signal, it should
generate a null output (no output pulse). Variable time delays are introduced
between the input and go-cue pulses. Time scale of the task was 600 ms which
limited the delay between input pulses to 200 ms.
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This task was solved in Huh and Sejnowski, 2018, without providing a performance
statistics, by using a type of neuron that has not been documented in biology —
a non-leaky quadratic integrate and fire neuron. We are not aware of previous
solutions by networks of LIF neurons. To compare and investigate the impact of SFA
on the performance of delayed-memory XOR task, we trained networks of ALIF
and LIF neurons of the same size as in Huh and Sejnowski, 2018 — 80 neurons.
Across 10 runs, networks of ALIF neurons solved the task with 95.19± 0.014%
accuracy, whereas the networks of LIF neurons converged at lower 61.30± 0.029%
accuracy.

Sequential MNIST (sMNIST).

Finally, we compared the performance of LSNNs and other variants of SNNs with
that of LSTM networks on a more demanding benchmark task for time series
classification: The classification of pixel-wise sequentially presented handwritten
digits (sMNIST dataset), see Fig. 2.3C,D and Fig. S3. This task requires integration
of information over a longer time span than for recognizing speech commands.
It also requires very good generalization capability, since the pixel sequences for
different handwriting styles of the same digit may vary widely. LSNNs achieved
here about the same performance level as LSTM networks, whereas networks that
contain only LIF and not ALIF neurons performed poorly, see Fig. 2.3D. Besides a
fully connected LSNN, we also tested the performance of a variant of the model,
called SC-LSNN, that integrates additional constraints of SNNs in the brain: It
is sparsely connected (12% of possible connections are present) and consists of
75% excitatory and 25% inhibitory neurons that adhere to Dale’s law. By adapting
the sparse connections with the rewiring method in Bellec et al., 2018a during
BPTT training, the SC-LSNN was enabled to perform even better than the fully-
connected LSNN. The resulting architecture of the SC-LSNN is shown in Fig. S3C.
Its activity of excitatory and inhibitory neurons, as well as the time courses of
adaptive thresholds for (excitatory) ALIF neurons of the SC-LSNN are shown in
Fig. S3B.

Fig. 2.3C shows that, apart from LSNNs, SNNs with experimentally reported
parameters for short-term synaptic plasticity (STP-D) also achieve very high per-
formance. Furthermore, SNNs with STP-D perform substantially better for this
task than networks with data-based synaptic facilitation (STP-F), similar as for
STORE-RECALL (see Fig. 2.3A).

2.7 SFA supports demanding cognitive computations
with dynamically changing rules

The 12AX task — which can be viewed as a simplified version of the Wisconsin
Card Sorting task — tests the capability of subjects to apply dynamically changing
rules for pattern recognition and to ignore currently irrelevant inputs O’Reilly
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Figure 2.4: Solving the 12AX task by a network of spiking neurons (LSNN), trained with ran-
dom e-prop. A sample trial of the trained network is shown. From top to bottom: Full
input and target output sequence for a trial, consisting of 90 symbols each, blow-up for a
subsequence of the input symbols, firing activity of 10 sample LIF neurons and 10 sam-
ple ALIF neurons from the LSNN, time course of the firing thresholds of these 10 ALIF
neurons, activation of the two readout neurons, the resulting sequence of output symbols
which the network produced, and the target output sequence.
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and Frank, 2006; MacDonald III, 2008. It also probes — at least in the more
demanding version that we consider — the capability to maintain and update
a hierarchical working memory. The task consists of a sequence of trials where
the subject is first shown a context cue to indicate which one of two possible
sequences is the “correct” symbol sequence in the current trial. These sequences
consist of two relevant symbols, interspersed with distractor symbols, including
those belonging to the “wrong” sequence in the current context. At every step, the
subject has to press one of two buttons depending on whether the correct sequence
has been completed or not. The context of the trial switches randomly after a few
presentation of symbols.

To model this, we gave as network inputs sequences of 90 symbols from the set {1,
2, A, B, C, X, Y, Z}, with repetitions as described in Methods. See the top of Fig. 2.4
for an example. After each symbol, the network should output “R” if this symbol
terminates a context dependent target sequence and “L” otherwise. Specifically,
given a context where the most recently received digit was a “1”, the subject should
output “R” only after presentation of a symbol X that terminates a subsequence
A...X. This occurs, for example, for the 7th symbol in the trial shown in Fig. 2.4.
In case that the most recent input digit was a “2”, the subject should respond “R”
only after the symbol Y in a subsequent subsequence B...Y (see the 20th symbol
in Fig. 2.4). The letters C and Z are irrelevant and serve as distractors. This task
requires a hierarchical working memory, because the most recently occurring digit
determines whether subsequent occurrences of “A” or “B” should be placed into
working memory. Note also that neither the content of the higher-level working
memory — the digit — nor the content of the lower level working memory — the
letter A or B — are simply recalled. Instead, they both affect processing rules, where
the higher-level processing rule affects what is placed into the lower level working
memory. A simpler version of this task, where X and Y were relevant only if they
directly followed A or B respectively, and where fewer irrelevant letters occurred
in the input, was solved in O’Reilly and Frank, 2006 through artificial neural
network models that were endowed with special working memory modules. Note
that for this simpler version no lower order working memory is needed, because
one just has to wait for an immediate transition from A to X in the input sequence,
or for an immediate transition from B to Y. But neither the simpler nor the more
complex version of the 12AX-task has previously been solved by a network of
spiking neurons.

We show in Fig. 2.4 that a generic LSNN can solve this quite demanding version
of the 12AX task. The LSNN received spike trains from the input population of
spiking neurons, producing Poisson spike trains. Possible input symbols {1, 2, A, B,
C, X, Y, Z} were encoded using one-hot coding; each input symbol was signaled
through a high firing rate of a separate subset of 5 input neurons for 500 ms. The
LSNN consisted of 200 recurrently connected spiking neurons (100 ALIF and 100
LIF neurons), with all-to-all connections between them. The output consisted of
two readouts, one for L, one for the R response. During each 500 ms time window
the input to these readouts was the average activity of neurons in the LSNN during
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that time window. The final output symbol was based on which of the two readouts
had the maximum value. After training with BPTT the LSNN produced an output
string with all correct symbols in 97.79% of episodes, where 90 symbols had to be
processed during each episode. But also after training with e-prop, a biologically
realistic learning method Bellec et al., 2019b, the LSNN produced fully correct
output sequences in 92.89% of the episodes. In contrast, a recurrent SNN with the
same architecture but no neurons with SFA could achieve only 0.39% fully correct
output strings after training with BPTT (not shown). Note that it was not necessary
to create a special network architecture for the two levels of working memory that
our more complex version of the 12AX task requires: A near perfectly performing
network emerged from training a generic LSNN. This shows that neurons with SFA
enable generic recurrent networks of spiking neurons to solve demanding cognitive
tasks involving dynamically changing rules and two levels of working memory.

2.8 SFA supports brain-like operations on sequences

A generic difficulty for neural networks is learning to carry out operations on
sequences of symbols in such a way that they generalize to new sequences, a
fundamental capability of the human brain Marcus, 2003. Actually, not only
humans, but also non-human primates are able to carry out operations on sequences
of items, and numerous neural recordings — starting with Barone and Joseph,
1989 up to recent results such as Carpenter et al., 2018; Liu et al., 2019 — provide
information about the neural codes for sequences that accompany such operations
in the brain. One fundamental question is how serial order of items is encoded
in working memory. Behind this is the even more basic question of how transient
structural information — the serial position of an item — is combined in the brain
with content information about the identity of the item Lashley, 1951. Obviously,
this question also lies at the heart of open questions about the interplay between
neural codes for syntax and semantics that enable language understanding in
the human brain. The experimental data both of Barone and Joseph, 1989 and
Liu et al., 2019 suggest that the brain uses a factorial code where position and
identity of an item in a sequence are encoded separately by some neurons, thereby
facilitating flexible generalization of learned experience to new sequences. But so
far we had been lacking spiking neural network models that were able to carry out
such tasks, and whose emergent neural codes could then be compared with neural
recordings from the brain. We show here that LSNNs can be trained to carry out
complex operations on sequences, are able to generalize such capabilities to new
sequences, and produce spiking activity and neural codes that offer interesting
links to recorded data.

One basic operation on sequences of symbols is remembering and reproducing a
given sequence Liu et al., 2019, a task which non-human primates can also learn,
and for which neural codes for sequences have been investigated Barone and
Joseph, 1989; Liu et al., 2019. A more complex operation that can also be carried
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out by the brain is the reversal of a sequence Marcus, 2003; Liu et al., 2019. We
show that an LSNN learns to carry out both of these operations, and is able to
apply them to new sequences of symbols that did not occur during training.
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Figure 2.5: (Caption on the next page.)
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Figure 2.5: Analysis of an LSNN trained to carry out operations on sequences. (A) Two sample
episodes where the LSNN carried out sequence duplication (left) and reversal (right). Top
to bottom: Spike inputs to the network (subset), sequence of symbols they encode, spike
activity of 10 sample LIF, and ALIF neurons in the LSNN, firing threshold dynamics for
these 10 ALIF neurons, activation of linear readout neurons, output sequence produced
by applying argmax to them, target output sequence. (B-F) Emergent neural coding of
279 neurons in the LSNN. Neurons sorted by time of peak activity. (B) A substantial num-
ber of neurons are sensitive to the generic timing of the tasks, especially for the second
half of trials when the output sequence is produced. (C) Neurons separately sorted for
duplication episodes (left column) and reversal episodes (right column). Many neurons
respond to input symbols according to their serial position, but differentially for different
tasks. (D) Histogram of neurons categorized according to conditions with statistically sig-
nificant effect (3-way ANOVA). Firing activity of a sample neuron that fires primarily when:
(E) the symbol “g” is to be written at the beginning of the output sequence. The activity
of this neuron depends on the task context during the input period; (F) the symbol “C”
occurs in position 5 in the input, irrespective of the task context.

We trained an LSNN consisting of 128 LIF and 192 ALIF neurons to carry out
these two operations on sequences of 5 symbols from a repertoire of 31 symbols,
which we labeled by the letters a, b, c, ..., x, y, z, A, B, C, D, E from the English
alphabet. Four additional symbols were used: “*” denoted the end of the input
sequence (EOS), “?” a prompt for an output symbol, and one symbol each for the
DUPLICATE and REVERSE commands (see Fig. 2.5A). Each of the altogether 35

input symbols were given to the network in the form of higher firing activity of a
dedicated population of 5 input neurons outside of the LSNN (“one hot encoding”).
It was not necessary to assign particular values to adaptation time constants of
firing thresholds of neurons with SFA; we simply chose them uniformly randomly
to be between 1 ms and 6000 ms, mimicking the diversity of SFA effects found in
the neocortex Allen Institute, 2018 in a qualitative manner. The network output
was produced by linear readouts (one per potential output symbol, each with a
low pass filter with a time constant of 250 ms) that received spikes from neurons
in the LSNN, see the row “Output” in Fig. 2.5A). The final output symbol was
selected using the readout which had the maximum value at the end of each 500
ms time window (a softmax instead of the hard argmax was used during training),
mimicking winner-take-all computations in neural circuits of the brain Chettih

and Harvey, 2019 in a qualitative manner.

After training, an LSNN was able to apply duplication and reversal also to new
sequences, achieving a success rate of 0.9588 (average over 5 random seeds) for un-
seen sequences. The “success rate” was defined as the fraction of test episodes/trials
where the full output sequence was generated correctly. Sample episodes of the
trained LSNN are shown in Fig. 2.5A. For comparison, we also trained a LIF
network in exactly the same way with the same number of neurons. It achieved a
performance of 0.0 (zero).

Emergent coding properties of neurons in the LSNN are analyzed in Fig. 2.5B-F.
Neurons are sorted in Fig. 2.5B,C according to the time of their peak activity
(averaged over 1000 episodes), like in Harvey et al., 2012. A number of network
neurons (about one-third) participate in sequential firing activity independent
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of the type of task and the symbols involved (Fig. 2.5B). Instead, these neurons
have learned to abstract the overall timing of the tasks. This kind of activity is
reminiscent of the neural activity relative to the start of a trial that was recorded in
rodents after they had learned to solve tasks that had a similar duration Tsao et al.,
2018.

The time of peak activity of other neurons depended on the task and the concrete
content, see Fig. 2.5C. Interestingly enough, these neurons change their activation
order already during the loading of the input sequence in dependence of the task
(duplication or reversal). Using 3-way ANOVA, we were able to categorize each
neuron as selective to a specific condition or a non-linear combination of conditions
based on the effect size ω2. Each neuron could belong to more than one category
if the effect size was above the threshold of 0.14 (as suggested by Field, 2013).
Similar to recordings from the brain Carpenter et al., 2018, a diversity of neural
codes emerged that encode one or several of the variables symbol identity, serial
position in the sequence, and type of task. In other words, a large fraction of
neurons are mixed-selective, i.e. selective to non-linear combinations of all three
variables. Peri-condition time histogram (PCTH) plots of two sample neurons
are shown in Fig. 2.5E,F: One neuron is selective to symbol “g” but at different
positions depending on task context. The other neuron is selective to symbol “C”
occurring at position 5 in the input, independent of task context. Thus one sees that
a realization of this task by an SNN, which was previously not available, provides
rich opportunities for a comparison of emergent spike codes in the model and
neuronal recordings from the brain.

2.9 Discussion

An important open problem in computational neuroscience is to understand how
brains carry out computations that involve not just current cues, but information
from the recent past. In fact, brains are able to store not just single bits for sub-
sequent computational use over a time scale of many seconds, but previously
experienced images, movie scenes, and dialogues that require a fairly large storage
capacity. This problem is usually formulated as a question about the implemen-
tation of working memory — or short-term memory — in the brain. But this
formulation is somewhat biased against the possibility that computing and short-
term memory are so intertwined in neural networks of the brain that it becomes
really difficult to separate mechanisms and network modules that hold short-term
memory from those that constitute the computational machinery of the network.

There already exists fairly wide agreement that different forms of working or
short-term memory can be distinguished in the brain, see e.g. Olivers et al., 2011;
Kamiński and Rutishauser, 2019; Masse et al., 2019. Recent experimental data
show clearly that, for a highly trained task, discrete attractors of the network
dynamics, implemented by persistent firing, hold an intended movement direction
in the anterior lateral motor cortex Inagaki et al., 2019. But the question remains
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whether the brain uses the same mechanism — especially without extensive training
— for holding quickly changing high-dimensional memory content, such as a movie
scene, previously read text, or a sequence of images. Neural codes for storing
information from a sequences of two images — after extensive training — had
been examined in M. R. Warden and Miller, 2007. A complex interaction was
found between the memory traces of two sequentially presented images, thereby
speaking against an assumption that each is held by a separate discrete attractor in
working memory.

Several publications argue that the brain uses a variety of mechanisms for working
memory, each with its specific advantages and disadvantages, whose engage-
ment depends on the specific task Olivers et al., 2011; Trübutschek et al., 2017;
Kamiński and Rutishauser, 2019; Barbosa et al., 2019; Hu et al., 2020. In par-
ticular, Wolff et al., 2017; Trübutschek et al., 2017; Kamiński and Rutishauser,
2019; Masse et al., 2019; Barbosa et al., 2019 point to an activity-silent form of
working memory that is used by the brain for maintaining working memory while
it is not in the focus of attention. A model for such activity-silent memory had
been proposed already in Mongillo et al., 2008, based on facilitating short-term
plasticity of synapses. This mechanism requires a facilitating short-term plasticity of
synapses between excitatory neurons (pyramidal cells), which had previously been
discovered in the medial prefrontal cortex of ferret Y. Wang et al., 2006. However
the model of Mongillo et al., 2008 used a time constant of 1500 ms for the time
constant F of facilitation, whereas this parameter for the facilitation-dominant
synapse type E1 of Y. Wang et al., 2006 has a reported average value of 507 ms
with a standard deviation of 37 ms. An experimentally testable prediction of this
form of activity-silent working memory is that an unspecific network reactivation
between storage and recall would make the content of working memory decodable
from the resulting network activity. However, the experimental data of Wolff et al.,
2017 do not support this prediction.

We examined in this paper whether the arguably most prominent dynamic fea-
ture of neurons on the time-scale of seconds, SFA, supports computations that
require a working memory. Experimental data show that SFA does in fact produce
history-dependence of neural firing on a time scale of several seconds up to 20
seconds Pozzorini et al., 2013; Pozzorini et al., 2015. We found that this prominent
feature of a fairly large fraction of neurons in the neocortex provides an inher-
ent working memory capability to neural networks. Our results suggest that this
working memory capability is functionally quite powerful, and enables networks
of spiking neurons to solve a variety of cognitively demanding tasks that were
previously beyond the reach of SNN models. In particular, SFA enables flexible
operations on sequences of symbols (Fig. 2.4, 2.5). This allows us, for the first time,
to study emergent neural codes for symbols and their position in a sequence in a
model network of spiking neurons, and to compare them with recordings from
neurons in the neocortex for corresponding tasks (Fig. 2.5). When we compared
the contribution of SFA with the contribution of the other two most prominent
slow processes in neurons or synapses, synaptic facilitation and synaptic depres-

26



2.9 Discussion

sion, we found that the contribution of SFA is substantially more powerful for
a basic working memory task (Fig. 2.3A). A comparison for a demanding time
series classification task with a lower demand on the retention time span (Fig. 2.3C)
suggests that synaptic depression works for such tasks about equally well, but not
synaptic facilitation. The good performance of synaptic depression for tasks that
require shorter retention time of working memory is consistent with the modelling
results of Masse et al., 2019 and Hu et al., 2020. However, as already pointed
out in Masse et al., 2019, synaptic depression tends to work best for tasks that
require rather short working memory maintenance. Our results are also consistent
with the finding of Masse et al., 2019 that persistent activity is more prominent if
the working memory content has to be manipulated, rather than just maintained.
Compare the higher firing activity in Fig. S3B for the sMNIST task that requires
continuous manipulation of working memory content with the low firing activity
in Fig. 2.2, where the working memory content just has to be maintained. One sees
this difference also in the sequence manipulation task of Fig. 2.5. There the working
memory just has to be maintained during the first half of a trial, yielding an average
firing rate of 16.6 Hz over all neurons. But this average firing rate increased to 26.7
Hz during the second halfs of the trials, where the stored information had to be
manipulated (averages taken over 50,000 trials during testing).

On first sight one might think that working memory can only be held in neural
activity through increased firing. Our results show that it can just as well be attained
through decreased firing, which is the way how neurons with SFA provide evidence
of preceding strong activation. Whereas this mechanism may be intuitively less
plausible, it looks equally viable from the perspective of downstream networks in
the brain. Whether preceding firing activity leaves a positive or negative imprint
in subsequent firing appears to be of secondary relevance for readout neurons if
the downstream integration of evidence involves a weighted sum, since weights
can have positive or negative signs. One may argue that there are actually, from
the systems-perspective, two benefits in maintaining working memory in the form
of a negative imprint, i.e., through decreased excitability of neurons. One is that
encoding working memory through non-firing consumes less energy. Another
is that this form of working memory is less vulnerable to disturbances through
intervening network activity, since a decreased excitability protects a neuron from
accidental activation — and hence potential overwriting of its memory content.
One first piece of experimental evidence for the negative imprinting hypothesis
was provided by the previously mentioned result of Wolff et al., 2017. It was
examined there whether a classifier that had been trained to decode from the
network activity the stored memory content during encoding would be able to
decode the memory content also during a subsequent network reactivation through
an unspecific impulse. The answer was negative, which is consistent with the
negative imprinting hypothesis. We confirmed for the task of Fig. 2.2 that the same
holds true for our model with SFA (see subsection “Decoding memory from the
network activity” in Methods). It is actually well-known that negative imprinting
is used by the brain for a particular type of long-term memory called recognition
memory: Familiarity of an object is encoded through reduced firing of a large
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fraction of neurons in the perirhinal cortex and adjacent areas, see Winters et al.,
2008 for a review.

A major structural difference between standard models for neural networks in the
brain and artificial neural networks (ANNs) that are used in artificial intelligence
and deep learning for solving computational tasks that involve memory from
the recent past lies in the type of neurons (units) that are used. Well-performing
ANNs usually employ LSTM units or similar units that allow to store a bit or
analog variable in a memory register — like in a digital computer — where it
is protected from perturbation by ongoing network activity. Our results show —
rather surprisingly — that such drastic protection of working memory content
is not needed: We showed that almost the same performance can be achieved by
LSNNs, i.e., SNNs that contain neurons with SFA. This holds in spite of the fact
that memory content that is stored in an adaptive firing threshold of a neuron with
SFA is not fully protected from the disturbance through network activity. But it is
at least somewhat shielded, because a neuron that holds memory in the form of
an increased firing threshold has an inherent tendency not to respond to smaller
membrane depolarizations.

Our results show that biologically rather realistic models for spiking neural net-
works in the brain that also contain neurons with SFA reach for demanding
cognitive tasks for the first time the performance level of humans, which could
previously only be reached with ANNs that employ biologically unrealistic LSTM
units. This paves the way for reaching a key-goal of brain modelling — to combine
detailed experimentally data from neurophysiology on the level of neurons and
synapses with brain-like functionality of the network.

Recurrent networks of spiking neurons are also of interest from the perspective of
novel computing technology. Spike-based computing hardware has the potential to
provide substantially more energy-efficient implementations of artificial intelligence
and deep learning results than standard digital hardware. But its performance
has so far been significantly inferior to that of non-spiking neural networks. Our
results show that this performance gap is becoming quite small for the case of
recurrent neural networks if one integrates neurons with SFA into the spike-based
network.

Altogether, we have shown that a well-known feature of a substantial fraction
of neurons in the neocortex — SFA — provides an important new facet to our
understanding of computations in SNNs: It enables SNNs to integrate working
memory from the recent past seamlessly into ongoing network computations.
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Abstract. The common procedure in reservoir computing is to take a “found”
reservoir, such as a recurrent neural network with randomly chosen synaptic
weights or a complex physical device, and to adapt the weights of linear readouts
from this reservoir for a particular computing task. We address the question of
whether the performance of reservoir computing can be significantly enhanced if
one instead optimizes some (hyper)parameters of the reservoir, not for a single task
but for the range of all possible tasks in which one is potentially interested, before
the weights of linear readouts are optimized for a particular computing task. After
all, networks of neurons in the brain are also known to be not randomly connected.
Rather, their structure and parameters emerge from complex evolutionary and
developmental processes, arguably in a way that enhances speed and accuracy of
subsequent learning of any concrete task that is likely to be essential for the survival
of the organism. We apply the Learning-to-Learn (L2L) paradigm to mimick this
two-tier process, where a set of (hyper)parameters of the reservoir are optimized
for a whole family of learning tasks. We found that this substantially enhances the
performance of reservoir computing for the families of tasks that we considered.
Furthermore, L2L enables a new form of reservoir learning that tends to enable
even faster learning, where not even the weights of readouts need to be adjusted
for learning a concrete task. We present demos and performance results of these
new forms of reservoir computing for reservoirs that consist of networks of spiking
neurons, and are hence of particular interest from the perspective of neuroscience
and implementations in spike-based neuromorphic hardware. We leave it as an
open question what performance advantage the new methods that we propose
provide for other types of reservoirs.
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3.1 Introduction

One motivation for the introduction of the liquid computing model Maass et
al., 2002 was to understand how complex neural circuits in the brain, or cortical
columns, are able to support the diverse computing and learning tasks which the
brain has to solve. It was shown that recurrent networks of spiking neurons (RSNNs)
with randomly chosen weights, including models for cortical columns with given
connection probability between laminae and neural populations, could in fact
support a large number of different learning tasks, where only the synaptic weights
to readout neurons were adapted for a specific task Maass et al., 2004; Haeusler

and Maass, 2006. Independently from that, a similar framework Jaeger, 2001 was
developed for artificial neural networks, and both methods were subsumed under
the umbrella of reservoir computing Verstraeten et al., 2007. Our methods for
training reservoirs that are discussed in this paper have so far only been tested for
reservoirs consisting of spiking neurons, as in the liquid computing model.

Considering the learning capabilities of the brain, it is fair to assume that synaptic
weights of these neural networks are not just randomly chosen, but shaped through
a host of processes — from evolution, over development to preceding learning
experiences. These processes are likely to aim at improving the learning and
computing capability of the network. Hence we asked whether the performance of
reservoirs can also be improved by optimizing the weights of recurrent connections
within the recurrent network for a large range of learning tasks. The Learning-to-
Learn (L2L) setup offers a suitable framework for examining this question. This
framework builds on a long tradition of investigating L2L, also referred to as meta-
learning, in cognitive science, neuroscience, and machine learning Abraham and
Bear, 1996; J. X. Wang et al., 2018; Hochreiter et al., 2001; J. X. Wang et al., 2016.
The formal model from Hochreiter et al., 2001; J. X. Wang et al., 2016 and related
recent work in machine learning assumes that learning (or optimization) takes
place in two interacting loops (see Fig. 3.1A). The outer loop aims at capturing the
impact of adaptation on a larger time scale (such as evolution, development, and
prior learning in the case of brains). It optimizes a set of parameters Θ, for a — in
general infinitely large — family F of learning tasks. Any learning or optimization
method can be used for that. For learning a particular task C from F in the inner
loop, the neural network can adapt those of its parameters which do not belong
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voirs

to the hyperparameters Θ that are controlled by the outer loop. These are in our
first demo (section 3.2) the weights of readout neurons. In our second demo in
section 3.3 we assume that — like in J. X. Wang et al., 2018; J. X. Wang et al., 2016;
Hochreiter et al., 2001 — ALL weights from, to, and within the neural network, in
particular also the weights of readout neurons, are controlled by the outer loop. In
this case just the dynamics of the network can be used to maintain information from
preceding examples for the current learning task in order to produce a desirable
output for the current network input. One exciting feature of this L2L approach
is that all synaptic weights of the network can be used to encode a really efficient
network learning algorithm. It was recently shown in Bellec et al., 2018b that
this form of L2L can also be applied to RSNNs. We discuss in section 3.3 also the
interesting fact that L2L induces priors and internal models into reservoirs.

The structure of this article is as follows: We address in section 3.2 the first form of
L2L, where synaptic weights to readout neurons can be trained for each learning
task, exactly like in the standard reservoir computing paradigm. We discuss in sec-
tion 3.3 the more extreme form of L2L where ALL synaptic weights are determined
by the outer loop of L2L, so that no synaptic plasticity is needed for learning in the
inner loop. Finally, in section 3.4 we will discuss implications of these results, and
list a number of related open problems. In the Appendix, we give full technical
details for the demos given in sections 3.2 and 3.3.

3.2 Optimizing reservoirs to learn

In the typical workflow of solving a task in reservoir computing, we have to address
two main issues: 1) a suitable reservoir has to be generated and 2) a readout function
has to be determined that maps the state of the reservoir to a target output. In the
following, we address the first issue by a close investigation of how we can improve
the process of obtaining suitable reservoirs. For this purpose, we consider here
RSNNs as the implementation of the reservoir and its state refers to the activity of
all units within the network. In order to generate an instance of such a reservoir, one
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usually specifies a particular network architecture of the RSNN and then generates
the corresponding synaptic weights at random. Those remain fixed throughout
learning of a particular task. Clearly, one can tune this random creation process
to better suit the needs of the considered task. For example, one can adapt the
probability distribution from which weights are drawn. However, it is likely that a
reservoir, generated according to a coarse random procedure, is far from perfect at
producing reservoir states that are really useful for the readout.

A more principled way of generating a suitable reservoir is to optimize their
dynamics for the range of tasks to be expected, such that a readout can easily
extract the information it needs.

Description of optimized reservoirs: The main characteristic of our approach is
to view the weight of every synaptic connection of the RSNN that implements the
reservoir as hyperparameters Θ, and to optimize them for the range of tasks. In
particular, Θ includes both recurrent and input weights (Wrec, Win), but also the
initialization of the readout Wout,init. This viewpoint allows us to tune the dynamics
of the reservoir to give rise to particularly useful reservoir states. Learning of a
particular task can then be carried out as usual, where commonly a linear readout
is learned, for example by the method of least squares or even simpler, by gradient
descent.

As previously described, two interacting loops of optimization are introduced,
consisting of an inner loop and an outer loop (Fig. 3.1A). The inner loop consists
here of tasks C that require to map an input time series xC(t) to a target time
series yC(t) (see Fig. 3.2A). To solve such tasks, xC(t) is passed as a stream to the
reservoir, which then processes these inputs, and produces reservoir states hC(t).
The emerging features are then used for target prediction by a linear readout:

ŷC(t) = Wout
C [xC(t),hC(t)]T . (3.1)

On this level of the inner loop, only the readout weights Wout
C are learned. Specifi-

cally, we chose here a particularly simple plasticity rule acting upon these weights,
given by gradient descent:

∆Wout
C = η

(
yC(t)− ŷC(t)

)
· hC(t)T , (3.2)

which can be applied continuously, or changes can be accumulated. Note that the
initialization of readout weights is provided as a hyperparameter Wout,init and η
represents a learning rate.

On the other hand, the outer loop is concerned with improving the learning
process in the inner loop for an entire family of tasks F . This goal is formal-
ized using an optimization objective that acts upon the hyperparameters Θ =
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Figure 3.2: Learning to learn a nonlinear transformation of a time series: A) Different tasks Ci
arise by sampling second order Volterra kernels according to a random procedure. Input
time series xC(t) are given as a sum of sines with random properties. To exhibit the vari-
ability in the Volterra kernels, we show three examples where different Volterra kernels
are applied to the same input. B) Learning performance in the inner loop using the learn-
ing rule (3.2), both for the case of a reservoir with random weights, and for a reservoir that
was trained in the outer loop by L2L. Performance at the indicated time window is shown
in Panel C. C) Sample performance of a random reservoir and of an optimized reservoir
after readouts have been trained for 10 seconds. Network activity shows 40 neurons out
of 800.

{Win, Wrec, Wout,init}:

min
Θ

EC∼F

[ ∫
t

∥∥∥yC(t)− ŷC(t)
∥∥∥2

2

]
(3.3)

subject to ∆Wout
C = η

(
yC(t)− ŷC(t)

)
· hC(t)T (readout learning) (3.4)

Regressing Volterra filters: Models of reservoir computing typically get applied
to tasks that exhibit nontrivial temporal relationships in the mapping from input
signal xC(t) to target yC(t). Such tasks are suitable because reservoirs have a prop-
erty of fading memory: Recent events leave a footprint in the reservoir dynamics
which can later be extracted by appropriate readouts. Theory guarantees that a
large enough reservoir can retain all relevant information. In practice, one is bound
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3 Reservoirs learn to learn

to a dynamical system of a limited size and hence, it is likely that a reservoir,
optimized for the memory requirements and time scales of the specific task family
at hand, will perform better than a reservoir which was generated at random.

We consider a task family F where each task C is determined by a randomly
chosen Volterra filter Volterra, 2005. Here, the target yC(t) arises by application
of a randomly chosen second order Volterra filter Volterra, 2005 to the input
xC(t):

yC(t) =
∫

τ
k1

C(τ)xC(t− τ) dτ +
∫

τ1

∫
τ2

k2
C(τ1, τ2)xC(t− τ1)xC(t− τ2) dτ1dτ2 , (3.5)

see Fig. 3.2A. The input signal xC(t) is given as a sum of two sines with different
frequencies and with random phase and amplitude. The kernel used in the filter
is also sampled randomly according to a predefined procedure for each task C,
see Methods C.3, and exhibits a typical temporal time scale. Here, the reservoir is
responsible to provide suitable features that typically arise for such second order
Volterra filters. In this way readout weights Wout

C , which are adapted according to
equation (3.2), can easily extract the required information.

Implementation: The simulations were carried out in discrete time, with steps
of 1 ms length. We used a network of 800 recurrently connected neurons with leaky
integrate-and-fire (LIF) dynamics. Such neurons are equipped with a membrane
potential in which they integrate input current. If this potential crosses a certain
threshold, they emit a spike and the membrane voltage is reset, see Methods C.1 for
details. The reservoir state was implemented as a concatenation of the exponentially
filtered spike trains of all neurons (with a time constant of τreadout = 20 ms).
Learning of the linear readout weights in the inner loop was implemented using
gradient descent as outlined in equation (3.2). We accumulated weight changes in
chunks of 1000 ms and applied them at the end. The objective for the outer loop,
as given in equation (3.3), was optimized using backpropagation through time
(BPTT), which is an algorithm to perform gradient descent in recurrent neural
networks. Observe that this is possible because the dynamics of the plasticity in
equation (3.2) is itself differentiable, and can therefore be optimized by gradient
descent. Because the threshold function that determines the neuron outputs is not
differentiable, a heuristic was required to address this problem. Details can be
found in the Methods C.2.

Results: The reservoir that emerged from outer-loop training was compared
against a reference baseline, whose weights were not optimized for the task family,
but had otherwise exactly the same structure and learning rule for the readout. In
Fig. 3.2B we report the learning performance on unseen task instances from the
family F , averaged over 200 different tasks. We find that the learning performance
of the optimized reservoir is substantially improved as compared to the random
baseline.
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randomly sampled weights: target networks (TN). C) Sample input/output curves of TNs
on a 1D subset of the 2D input space, for different weight and bias values.

This becomes even more obvious when one compares the quality of the fit on a
concrete example as shown in Fig. 3.2C. Whereas the random reservoir fails to
make consistent predictions about the desired output signal based on the reservoir
state, the optimized reservoir is able to capture all important aspects of the target
signal. This occurred just 10 seconds within learning the specific task, because the
optimized reservoir was already confronted before with tasks of a similar structure,
and could capture through the outer loop optimization the smoothness of the
Volterra kernels and the relevant time dependencies in its recurrent weights.

3.3 Reservoirs can also learn without changing synaptic
weights to readout neurons

We next asked whether reservoirs could also learn a specific task without changing
any synaptic weight, not even weights to readout neurons. It was shown in Hochre-
iter et al., 2001 that LSTM networks can learn nonlinear functions from a teacher
without modifying their recurrent or readout weights. It has recently been argued
in J. X. Wang et al., 2018 that the pre-frontal cortex (PFC) accumulates knowledge
during fast reward-based learning in its short-term memory, without using synap-
tic plasticity, see the text to supplementary Fig. 3 in J. X. Wang et al., 2018. The
experimental results of Perich et al., 2018 also suggest a prominent role of network
dynamics and short-term memory for fast learning in the motor cortex. Inspired by
these results from biology and machine learning, we explored the extent to which
recurrent networks of spiking neurons can learn using just their internal dynamics,
without synaptic plasticity.

In this section, we show that one can generate reservoirs through L2L that are able
to learn with fixed weights, provided that the reservoir receives feedback about
the prediction target as input. In addition, relying on the internal dynamics of the
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Figure 3.4: Learning to learn a nonlinear function that is defined by an unknown target net-
work (TN): A) Performance of the reservoir in learning a new TN during training in the
outer loop of L2L. B) Performance of the optimized reservoir during testing compared
to a random reservoir and the linear baseline. C) Learning performance within a single
inner-loop episode of the reservoir for 1000 new TNs (mean and one standard deviation).
Performance is compared to that of a random reservoir. D) Performance for a single sam-
ple TN, a red cross marks the step after which output predictions became very good for
this TN. The spike raster for this learning process is the one depicted in (F). E) The inter-
nal model of the reservoir (as described in the text) is shown for the first few steps of inner
loop learning. The reservoir starts by predicting a smooth function, and updates its inter-
nal model in just 5 steps to correctly predict the target function. F) Network input (top row,
only 100 of 300 neurons shown), internal spike-based processing with low firing rates in
the neuron populations (middle row), and network output (bottom row) for 25 steps of 20
ms each. G) Learning performance of backpropagation for the same 1000 TNs as in C,
working directly on the ANN from Fig. 3.3B, with a prior for small weights, with the best
hyper-parameters from a grid-search.

reservoir to learn allows the reservoir to learn as fast as possible for a given task i.e.
the learning speed is not determined by any predetermined learning rate.

Target networks as the task family F : We chose the task family to demonstrate
that reservoirs can use their internal dynamics to regress complex non-linear
functions, and are not limited to generating or predicting temporal patterns. This
task family also allows us to illustrate and analyse the learning process in the inner
loop more explicitly. We defined the family of tasks F using a family of non-linear
functions that are each defined by a target feed-forward network (TN) as illustrated
in Fig. 3.3B. Specifically, we chose a class of continuous functions of two real-valued
variables (x1, x2) as the family F of tasks. This class was defined as the family of all
functions that can be computed by a 2-layer artificial neural network of sigmoidal
neurons with 10 neurons in the hidden layer, and weights and biases in the range
[-1, 1]. Thus overall, each such target network (TN) from F was defined through
40 parameters in the range [-1, 1]: 30 weights and 10 biases. Random instances of
target networks were generated for each episode by randomly sampling the 40

parameters in the above range. Most of the functions that are computed by TNs
from the class F are nonlinear, as illustrated in Fig. 3.3C for the case of inputs
(x1, x2) with x1 = x2.

Learning setup: In an inner loop learning episode, the reservoir was shown a
sequence of pairs of inputs (x1, x2) and delayed targets C(x′1, x′2) sampled from the
non-linear function generated by one random instance of the TN. After each such
pair was presented, the reservoir was trained to produce a prediction Ĉ(x1, x2) of
C(x1, x2). The task of the reservoir was to produce predictions with a low error. In
other words, the task of the reservoir was to perform non-linear regression on the
presented pairs of inputs and targets and produce predictions of low-error on new
inputs. The reservoir was optimized in the outer loop to learn this fast and well.
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3 Reservoirs learn to learn

When giving an input x1, x2 for which the reservoir had to produce prediction
Ĉ(x1, x2), we could not also give the target C(x1, x2) for that same input at the same
time. This is because, the reservoir could then “cheat” by simply producing this
value C(x1, x2) as its prediction Ĉ(x1, x2). Therefore, we gave the target value to
the reservoir with a delay, after it had generated the prediction Ĉ(x1, x2). Giving
the target value as input to the reservoir is necessary, as otherwise, the reservoir
has no way of figuring out the specific underlying non-linear function for which it
needs to make predictions.

Learning is carried out simultaneously in two loops as before (see Fig. 3.1A). Like in
Hochreiter et al., 2001; J. X. Wang et al., 2016; Duan et al., 2016 we let all synaptic
weights of N , including the recurrent, input and readout weights, to belong to the
set of hyper-parameters that are optimized in the outer loop. Hence the network is
forced to encode all results from learning the current task C in its internal state, in
particular in its firing activity. Thus the synaptic weights of the neural network N
are free to encode an efficient algorithm for learning arbitrary tasks C from F .

Implementation: We considered a reservoir N consisting of 300 LIF neurons with
full connectivity. The neuron model is described in the Methods C.1. All neurons in
the reservoir received input from a population X of 300 external input neurons. A
linear readout receiving inputs from all neurons in the reservoir was used for the
output predictions. The reservoir received a stream of 3 types of external inputs
(see top row of Fig. 3.4F): the values of x1, x2, and of the output C(x′1, x′2) of the
TN for the preceding input pair x′1, x′2 (set to 0 at the first trial), each represented
through population coding in an external population of 100 spiking neurons. It
produced outputs in the form of weighted spike counts during 20 ms windows
from all neurons in the network (see bottom row of Fig. 3.4F). The weights for this
linear readout were trained, like all weights inside the reservoir, in the outer loop,
and remained fixed during learning of a particular TN.

The training procedure in the outer loop of L2L was as follows: Network training
was divided into training episodes. At the start of each training episode, a new
TN was randomly chosen and used to generate target values C(x1, x2) ∈ [0, 1] for
randomly chosen input pairs (x1, x2). 400 of these input pairs and targets were used
as training data, and presented one per step to the reservoir during the episode,
where each step lasted 20 ms. The reservoir parameters were updated using BPTT
to minimize the mean squared error between the reservoir output and the target in
the training set, using gradients computed over batches of 10 such episodes, which
formed one iteration of the outer loop. In other words, each weight update included
gradients calculated on the input/target pairs from 10 different TNs. This training
procedure forced the reservoir to adapt its parameters in a way that supported
learning of many different TNs, rather than specializing on predicting the output
of single TN. After training, the weights of the reservoir remained fixed, and it was
required to learn the input/output behaviour of TNs from F that it had never seen
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before in an online manner by just using its fading memory and dynamics. See the
Methods C.4 for further details of the implementation.

Results: The reservoir achieves low mean-squared error (MSE) for learning new
TNs from the family F , significantly surpassing the performance of an optimal
linear approximator (linear regression) that was trained on all 400 pairs of inputs
and target outputs, see grey bar in Fig. 3.4B. One sample of a generic learning
process is shown in Fig. 3.4D.

Each sequence of examples evokes an “internal model” of the current target function
in the internal dynamics of the reservoir. We make the current internal model of the
reservoir visible by probing its prediction C(x1, x2) for hypothetical new inputs for
evenly spaced points (x1, x2) in the entire domain, without allowing it to modify
its internal state (otherwise, inputs usually advance the network state according to
the dynamics of the network). Fig. 3.4E shows the fast evolution of internal models
of the reservoir for the TN during the first trials (visualized for a 1D subset of
the 2D input space). One sees that the internal model of the reservoir is from the
beginning a smooth function, of the same type as the ones defined by the TNs in
F . Within a few trials this smooth function approximated the TN quite well. Hence
the reservoir had acquired during the training in the outer loop of L2L a prior for
the types of functions that are to be learnt, that was encoded in its synaptic weights.
This prior was in fact quite efficient, as Figs. 3.4C,D,E show, compared to that of a
random reservoir. The reservoir was able to learn a TN with substantially fewer
trials than a generic learning algorithm for learning the TN directly in an artificial
neural network as shown in Fig. 3.4G: backpropagation with a prior that favored
small weights and biases. In this case, the target input was given as feedback to the
reservoir throughout the episode, and we compare the training error achieved by
the reservoir with that of a FF network trained using backpropagation. A reservoir
with a long short-term memory mechanism where we could freeze the memory
after low error was achieved allowed us to stop giving the target input after the
memory was frozen (results not shown). This long short-term memory mechanism
was in the form of neurons with adapting thresholds as described in Bellec et al.,
2018b; Salaj et al., 2020. These results suggest that L2L is able to install some
form of prior knowledge about the task in the reservoir. We conjectured that the
reservoirs fits internal models for smooth functions to the examples it received.

We tested this conjecture in a second, much simpler, L2L scenario. Here the family
F consisted of all sine functions with arbitrary phase and amplitudes between 0.1
and 5. The reservoir also acquired an internal model for sine functions in this setup
from training in the outer loop, as shown in Bellec et al., 2018b. Even when we
selected examples in an adversarial manner, which happened to be in a straight
line, this did not disturb the prior knowledge of the reservoir.

Altogether the network learning that was induced through L2L in the reservoir
is of particular interest from the perspective of the design of learning algorithms,
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since we are not aware of previously documented methods for installing structural
priors for online learning of an RSNN.

3.4 Discussion

We have presented a new form of reservoir computing, where the reservoir is
optimized for subsequent fast learning of any particular task from a large – in
general even infinitely large – family of possibly tasks. We adapted for that purpose
the well-known L2L method from machine learning. We found that for the case of
reservoirs consisting of spiking neurons this two-tier process does in fact enhance
subsequent reservoir learning performance substantially in terms of precision and
speed of learning. We propose that similar advantages can be gained for other types
of reservoirs, e.g. recurrent networks of artificial neurons or physical embodiments
of reservoirs (see Tanaka et al., 2019 for a recent review) for which some of their
parameters can be set to specific values. If one does not have a differentiable
computer model for such physically implemented reservoir, one would have to
use a gradient-free optimization method for the outer loop, such as simulated
annealing or stochastic search, see Bohnstingl et al., 2019 for a first step in that
direction.

We have explored in Sec. 3.3 a variant of this method, where not even the weights
to readout neurons need to be adapted for learning a specific tasks. Instead, the
weights of recurrent connections within the reservoir can be optimized so that
the reservoir can learn a task from a given family F of tasks by maintaining
learnt information for the current task in its working memory, i.e., in its network
state. This state may include values of hidden variables such as current values
of adaptive thresholds, as in the case of LSNNs Bellec et al., 2018b. It turns out
that L2L without any synaptic plasticity in the inner loop enables the reservoir
to learn faster than the optimal learning method from machine learning for the
same task: Backpropagation applied directly to the target network architecture
which generated the nonlinear transformation, compare panels C and G of Fig. 3.4.
We also have demonstrated in Fig. 3.4E (and in Bellec et al., 2018b) that the L2L
method can be viewed as installing a prior in the reservoir. This observation raises
the question what types of priors or rules can be installed in reservoirs with this
approach. For neurorobotics applications it would be especially important to be
able to install safety rules in a neural network controller that can not be overridden
by subsequent learning. We believe that L2L methods could provide valuable tools
for that.

Another open question is whether biologically more plausible and computationally
more efficient approximations to BPTT, such as e-prop Bellec et al., 2019b, can be
used instead of BPTT for optimizing a reservoir in the outer loop of L2L. In addition
it was shown in Bellec et al., 2019a that if one allows that the reservoir adapts
weights of synaptic connections within a recurrent neural network via e-prop, even
one-shot learning of new arm movements becomes feasible.
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Chapter 4
Prior knowledge and network dynamics enable
networks of spiking neurons to learn new tasks from
just a few trials
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Abstract. Brains can learn a new task much faster because they can engage prior
knowledge to learn a new task with few trials. In fact, it has recently been argued
that neural networks in the pre-frontal cortex (PFC) can learn even faster than
models based on synaptic plasticity by storing information from prior learning
trials in their dynamic state, rather than in synaptic weights. But we are missing
methods that could explain how these functionally important fast forms of learning
are implemented in neural networks of the brain, rather than in artificial neural
network models such as long-short term memory (LSTM) networks. We show
here how prior knowledge can be installed in networks of spiking neurons, and
how such networks can learn without even engaging synaptic plasticity. Using
our biologically realistic network models, we also make experimentally testable
predictions and provide neural correlates of fast learning without synaptic plasticity.
Fast adaptation is also known to occur in the motor cortex for motor prediction, and
we provide a model that proposes a possible mechanism for such rapid adaptation.
Moreover, we demonstrate these previously unknown capabilities of spiking neural
networks for fast learning for the water-maze task. Since spiking neural networks
are also of interest for current work on the design of energy-efficient computing
hardware for AI, and since fast learning is essential in many AI applications, our
methods also provide new insights for these application domains.

41



4 Prior knowledge and network dynamics enable networks of spiking neurons to learn new
tasks from just a few trials

Acknowledgments and author contributions. This chapter is based on the manuscripts

Anand Subramoney, Guillaume Bellec, Franz Scherr, Robert Legenstein,
Wolfgang Maass (2020). “Prior knowledge and network dynamics enable
networks of spiking neurons to learn new tasks from just a few trials.” In
preparation.

To this study, I contributed as first author. The study was conceived by WM, AS.
The experiments were designed by WM, AS, GB and were conducted by AS, GB,
FS. The manuscript was written by AS, WM, GB.

4.1 Biological inspiration for enhancing learning in
recurrent networks of spiking neurons

It is known that biological neural networks are capable of multiple levels of learning,
including on very fast and slow time scales Botvinick et al., 2019. Fast learning
happens much more quickly, and in much fewer trials or learning attempts, than
can be explained by synaptic plasticity mechanisms like spike-time dependent
plasticity (STDP), and closer to the time scales of short-term memory J. X. Wang

et al., 2018. Mechanisms for this fast learning can be installed in the form of
inductive biases or priors either through the slower learning process during the
lifetime of an organism, or through longer term evolutionary and developmental
processes Zador, 2019. These inductive biases or priors facilitate fast learning
for specific families of tasks that are important for the organism, and can emerge
due to the advantage it provides an organism over using only innate knowledge
from evolution or slower learning processes and can be produced by these very
processes Zador, 2019. This mechanism of installing this fast learning process,
known as learning to learn Harlow, 1949, was demonstrated in experiments with
monkeys. Here, a monkey learnt over time that one of two potentially unknown
objects they were shown contained a reward and the other did not. These objects
were switched every 6 trials to entirely new pairs of objects the monkey had never
seen before, but one object was consistently associated with a reward within a block
of trials, and the other was not. After some training, the monkeys learnt to infer
which object was associated with the reward in just one trial, even when the objects
changed in blocks of trials.

While spike time dependent plasticity (STDP) is a well understood and biologically
supported learning mechanism, it usually requires 50 − 100 pairings repeated
over several minutes, and evoked at low frequencies of 0.1− 5Hz for successful
induction of long-term potentiation and depression Froemke et al., 2010. So it is not
a plausible candidate for learning in biology that can happen in some situations in
the matter of a single or a few trials Harlow, 1949; Behrens et al., 2007; J. X. Wang

et al., 2018, where each trial corresponds to one action that receives an associated
reward.
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Evidence from neuroscience indicates that fast learning can occur using only the
dynamics of the brain activity, without synaptic plasticity, in various contexts
including reinforcement learning and motor adaptation. It has been suggested
J. X. Wang et al., 2018 that the pre-frontal cortex (PFC) implements fast reward-
based learning in its activity without using dopamine-gated synaptic plasticity.
The dopaminergic learning is rather used for the longer learning process in the
PFC that leads to the weights that enable fast learning. In fact, J. X. Wang et al.,
2018 show that a recurrent network (LSTM) with fixed weights trained using meta-
reinforcement learning qualitatively matches the behaviour from cognitive and
biological experiments. In other words, they argue that part of the learning in the
pre-frontal cortex can happen even without synaptic plasticity. Rapid adaptation
was also demonstrated during motor adaptation Perich et al., 2018 in the absence
of any changes in functional synaptic connectivity.

In the domain of machine learning, this fast learning also hints at a solution to
the general sample inefficiency of supervised and reinforcement learning meth-
ods Zador, 2019; Botvinick et al., 2019. One way of achieving such fast learning,
using learning-to-learn, was shown in Hochreiter et al., 2001: Long short-term
memory (LSTM) networks were trained using the learning-to-learn framework
to do fast learning from supervised examples using only their internal recurrent
dynamics. That is, they learned to implement fast learning for specific families of
tasks in their recurrent dynamics. This was a practical demonstration of the earlier
theoretical result that recurrent networks with fixed weights can learn Cotter and
Conwell, 1990. It was further shown in J. X. Wang et al., 2016; Duan et al., 2016

that this result can be extended to reinforcement learning.

All these earlier results use LSTM networks, or LSTMs Hochreiter and Schmid-
huber, 1997. LSTMS are a class of networks that are imbued with long short-term
memory due to specific architectural choices in the form of various gating units.
This makes it feasible to train it to solve tasks that have longer memory require-
ments. More specifically, each LSTM unit consists of a memory cell that holds real
valued information, with gates controlling the flow of input to this cell, output
from the cell, and the decay of the contents of the cell itself (forget gate). But these
very architectural choices make it biologically very unrealistic in terms of how its
computation and memory are implemented, due to the use of multiplicative gates
and the separate digital memory cell in every unit.

Since L2L thus far had only been demonstrated with these quite unbiological
models of recurrent computation J. X. Wang et al., 2016; J. X. Wang et al., 2018;
Hochreiter et al., 2001, it was not clear if the more biologically plausible networks
of spiking neurons are capable of learning to implement learning in its dynamics
which consist of discrete spiking states. We show that this is possible by harnessing
recent innovations in implementing long short-term memory in spiking neural
networks using spike frequency adaptation Bellec et al., 2018b; Salaj et al.,
2020. This network model, called LSNN (Long-short term memory Spiking Neural
Networks) has similar functionality as LSTMs, but is modelled on real biological
neurons rather than abstract entities such as memory cells without decay. LSNNs
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also well suited for L2L since they can accommodate two levels of learning and
representation of learned insight: The synaptic weights can encode, at a higher
level, a learning algorithm and prior knowledge on long time scales. The short-term
memory of the LSNN can accumulate, at a lower level, knowledge relevant to the
current learning task. Some L2L tasks have memory requirements on a very short
time scale, where purely recurrent fading memory exhibited by reservoirs Maass et
al., 2002; Jaeger, 2001 suffices without additional memory mechanisms: These tasks
are demonstrated in Subramoney et al., 2019. But for most biologically realistic
tasks like motor prediction and reinforcement learning, memory on longer time
scales is required.

Therefore, in this paper, we show that we can implement fast learning in recurrent
networks of spiking neurons sans synaptic plasticity. We first demonstrate it on a
toy example of learning a sinusoidal function. This example also elucidates a novel
property of this framework: It enables installing prior knowledge into networks
based on the shared structure of the task, without any manual intervention. These
priors give an indication of how the learning can be fast and use only a few
examples. Since these priors are learnt through optimization, this has potential
applicability in understanding how prior knowledge and inductive biases are learnt
in biology. We hypothesize that learning such priors forms a very important factor
in enabling fast learning in biology, and we present one experimentally testable
prediction in terms of firing rates that are measurable in biology. Additionally, one
can apply this framework to a very large variety of machine learning tasks where
safety and robustness are paramount. We then provide a concrete demonstration of
the utility of this framework in modelling biological phenomena: specifically, how
rapid adaptation of motor prediction can occur when changes in limb kinematics
occur. This gives a parsimonious explanation to the phenomena observed in Perich

et al., 2018 in the limited context of motor prediction (and not control). Finally, we
show that networks of spiking neurons can learn to learn on a continuous control
reinforcement learning problem formulated in the form of a dynamic water-maze
task that is often used in biological experiments. Here, the agent needs to learn
to learn how to get to a goal that changes its position every episode. Overall, we
propose that being able to learn without using synaptic plasticity could play an
important role, and an explanation for how biology achieves fast learning or rapid
adaptation in certain scenarios like motor prediction, or adaptive navigation.

4.2 Learning to learn

The idea of learning to learn (L2L) is to optimize the model not for a single
task, but instead assume that the model must learn to perform well in a dynamic
environment that consists of a series of interrelated tasks. This family of interrelated
tasks can, in the general case, be infinitely large. We optimize the model for fast
learning of each task chosen from this family of tasks. This means that learning
is carried out at two levels (see Fig. 4.1A): The “inner loop” involves the learning
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Figure 4.1: Learning to learn (L2L) setup. (A) Schematic of the learning to learn setup. (B) Com-
mon architecture for LSNN with inputs and outputs. All the weights are only updated in
the outer-loop training using BPTT, and remain fixed during testing.

of a single task by the network. The “outer loop” involves optimization of some
parameters of the network to support fast learning of the individual tasks in
the inner loop. The outer loop training proceeds on a much larger time scale
than the inner loop, integrating performance evaluations from many different
individual tasks. This outer loop can be interpreted as a process that mimics
the impact of evolutionary and developmental optimization processes, as well as
prior learning, on the learning capability of brain networks. We use the terms
training and optimization interchangeably. Like in Hochreiter et al., 2001 we let
all synaptic weights of the network belong to the set of hyper-parameters that
are optimized through the outer loop. Hence the outer loop training shapes the
activation dynamics of the network, which include its firing activity and short-
term memory. The synaptic weights of the neural network can encode an efficient
algorithm for learning arbitrary tasks from the family of tasks.

When the brain learns to predict sensory inputs, or state changes that result from an
action, this can be formalized as learning from a teacher (i.e., supervised learning).
The teacher is in this case the environment, which provides – often with some delay
– the target output of a network. Here, we show that LSNNs can learn using this
supervision signal without modifying their synaptic weights.

4.3 L2L allows installing prior knowledge into networks of
spiking neurons

We first demonstrate the principles of the new methods for fast learning in SNNs for
a rather simple but transparent example: Learning a specific input-output mapping
from a parametrized range of such mappings. More concretely, we consider the
task of learning a class of sinusoidal functions using supervision. The family of
tasks F was defined as consisting of sinusoidal functions with different phases
and amplitudes, parameterized as y = Asin(x + φ), where x was in the range of
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Figure 4.2: Prior learning and effect of feedback disruption. (A) Illustration of the prior knowl-
edge acquired by the LSNN through L2L for another family F (sinus functions). Even
adversarially chosen examples (Step 4) do not induce the LSNN to forget its prior. (B)
Step-wise error before and after the feedback is switched to wrong feedback. (C) Firing
rate of the network increases after the switch to wrong feedback (left), whereas it remains
at a lower value as long as the feedback is correct (right). Shown firing rate is mean over
2000 episodes.
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[−5, 5], and A and φ were chosen uniformly randomly between [0, π] and [0.1, 5]
respectively (see Fig. 4.2A).

During training, both the phase and amplitude were randomly chosen anew for
each episode. In each step k of an episode, the network was given, as input, a value
of xk chosen randomly from the above range, and was expected to produce, as
output, a prediction C(x) that matched the target yk = Asin(xk + φ) for the values
of A and φ chosen in that particular episode, where k denotes the step index. The
network was also given the correct target of the previous step i.e. with a delay of
one step as in Hochreiter et al., 2001, and only after the network had guessed the
output value for the preceding input. For the outer-loop, the LSNN parameters
were updated using the version of BPTT for spiking neurons Bellec et al., 2018b, to
minimize the squared loss of the prediction error. Updates to the network weights
were done after each batch of 20 episodes, which formed one iteration of the
outer-loop. Since each individual episode in the batch used a sinusoidal curve
with different parameters, the network could not just learn to predict values for
one particular sinusoidal curve, but had to learn to learn the parameters of each
different sinusoid in each episode.

After training, the weights of the network remained fixed, and the network was
just given inputs and feedback as described above. It was required to learn to make
correct predictions of sinusoids with new parameters in an online manner, using
just its short-term memory and dynamics.

After a few thousand training iterations in the outer loop, the LSNN achieved
low mean-squared error for learning new sinusoidal functions from the family F .
In fact, the LSNN was able to produce good approximations of a new sinusoidal
function in just a few steps. Each sequence of examples evokes an internal model
that is stored in the short-term memory of the LSNN. Fig. 4.2A shows the fast
evolution of internal models of the LSNN during the first few steps. We make
the current internal model of the LSNN visible by probing its prediction C(x)
for hypothetical new inputs x in the domain (without allowing it to modify its
short-term memory; all other inputs advance the network state according to the
dynamics of the LSNN). It is evident that the internal model of the LSNN is a
smooth sinusoid function from the beginning. Within a few trials this smooth
function approximated the currently chosen sinusoid quite well. Hence, during
the outer-loop training of L2L, the LSNN had acquired a prior for the types of
functions that are to be learnt, that was encoded in its synaptic weights. These
results suggest that L2L is able to install some form of prior knowledge about the
task in the LSNN.

This result indicates that the LSNN fits internal models for smooth functions to the
examples it received. Even when we selected examples in an adversarial manner,
which happened to be in a straight line (as in the presented examples in Fig. 4.2A),
this did not disturb the prior knowledge of the LSNN. Altogether the network
learning that was induced through L2L in the LSNNs is of particular interest
from the perspective of the design of learning algorithms: We are not aware of
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previously documented methods for installing structural priors for online learning
of a recurrent network of spiking neurons. Additionally, the ability to install such
priors would be essential for ensuring safety and robustness in SNNs when used
in real world applications.

We then tested the effect of switching to giving wrong feedback to the network
after it had learnt a particular task. As usual, within an episode, the specific sinus
task parameters were fixed. The network predicted the values of the function with
high accuracy by the 50th step in almost all episodes. We then replaced the target
feedback with a random signal after the 50th step, and observed the change in
neural activity in the network. As expected, the network unlearned the particular
function it had learnt and the error increased significantly as shown in Fig. 4.2B.
The error stayed high after step 50 since the feedback received by the network
was random, and the network was unable to learn any meaningful function using
this feedback. Interestingly, we also observed that the firing rate of the network
increased significantly when we started giving it the wrong feedback, and stayed
high as long as we continued to give wrong feedback — this is shown in Fig. 4.2C.
We show the mean values over 2000 such episodes in Fig. 4.2B,C which validates
that this phenomena is robust to the specific sinusoidal task chosen in every episode.
This increase in firing activity could provide an experimentally testable signature
of meta-learning in the brain if the overall task setup is matched.

4.4 L2L supports fast learning of motor prediction by
networks of spiking neurons

We next turn to a more biologically realistic task that is also harder — learning a
forward model of the dynamical system formed by our body and muscles. The
brain needs this to be able to plan movement and also to take corrective action
if the desired motor state is not achieved Lalazar and Vaadia, 2008; Wolpert

and Ghahramani, 2000. Therefore, motor prediction plays an important role
in controlling movement of the body and more generally behaviour. Visual and
proprioceptive feedback from voluntary movement Wong et al., 2012 enables the
brain to learn how the body responds to various motor commands.

But one important question that has remained in neuroscience is how neurons
rapidly adapt their activity to continue making correct predictions when the
kinematic and dynamic properties of the body undergoes a change. For example,
carrying objects can change the effective mass of the limbs, and using tools can
change the effective lengths of the limbs. And yet, the brain is able to quickly
correct for these changes without requiring multiple rounds of trial and error over
longer periods of time.

Learning over days or weeks is usually associated with persistent synaptic changes
Kleim et al., 2004, but behaviour can adapt a lot more rapidly Thoroughman and
Shadmehr, 2000, sometimes also in a single trial Bailey and Chen, 1988. Recent
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Figure 4.3: Learning to learn forward models for motor control from few trials. (A) Illustration
of the two-link arm model with states given by the angle of the links, and the motor
command applied on both the joints. (B) Sample trajectories generated by the two-link
arm with different link masses and lengths. (C) Spike raster of the LSNN for 1 second
of an inner-loop learning episode (after outer-loop training). (D) Mean error ever all test
episodes during the 1 second of inner-loop learning. (E) Target trajectories and network
prediction for one sample test episode for an arm with new link lengths and masses.
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work in neuroscience Perich et al., 2018 indicates that this rapid adaptation of
motor output occurs even while the functional connectivity in cortical areas remains
unaltered. In fact, it is quite implausible that the strengths of synaptic connections
between neurons in our brain are changed when we, say, take a book into a hand.

We wondered if learning to learn implemented in SNNs with fixed weights could
provide a basis for explaining how motor prediction can be rapidly adapted/learnt
without synaptic changes. Such a model could be very powerful when applied
to robotics where such rapid adaptation is not only useful, but in many cases,
absolutely essential. The ability to port this model onto neuromorphic hardware,
which would then allow the model to run with high performance and power
efficiency, also makes it a good match for robotics applications.

Therefore, we now explore how learning to learn (L2L) can generate recurrent net-
works of spiking neurons that are able to exhibit rapid learning of motor prediction
without synaptic plasticity, even for kinematic and dynamic configurations that
have not been encountered before.

We considered the task of predicting the state of a two-link arm model as illustrated
in Fig. 4.3A. One link is connected by a joint to the other link, which is itself
connected by a joint to a fixed position in space. Torque could be applied to each of
the two joints, which results in movement. Both links are also subject to gravity at
all times. Concretely, the task that we considered here was to predict the angles of
the two joints. But the masses and lengths of the two links were different in every
episode, which defined the family of tasks F . This led to very different trajectories
when the torque was applied — Fig. 4.3B shows examples of state trajectories that
result for arms with different link masses and lengths. We provided feedback to
the network so that it could learn about the mass and length configuration of the
current task. This feedback was in the form of the true angles of the links, but
delayed by 100 ms.

For each episode in the inner-loop, a new arm was chosen with different masses
and lengths of links, and the LSNN was asked to predict the sequence of states of
the arm given the torques. In the outer-loop, we trained the LSNN using BPTT for
spiking neurons, to minimize the squared error between the predictions and the
target arm states. (See Chapter D for further details).

After outer-loop training, we fixed the weights of the LSNN and its readouts, and
used it to predict the angles of the two joints of an arm with previously unseen
link lengths and masses. Fig. 4.3E shows a sample episode of 1 second during
the inner loop learning process with fixed synaptic weights. It is evident that the
network was able to adapt its predictions to the new lengths and masses fairly
quickly. The error in prediction, averaged over 8000 such episodes, is shown in
Fig. 4.3D. This demonstrates that the network achieves low prediction error within
about 800− 1000 ms on average. This is in spite of the fact that it has not already
been trained on arms with these specific link lengths and masses (since these are
chosen randomly for each episode). Note that the drop in the error in the first
100 ms is actually caused by the fact that the arm always starts from the same initial
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position, but the effect of the different link lengths and mass on the arm trajectory is
observed only after the first 100 ms. The inner-loop learning happens significantly
faster than earlier biologically plausible learning algorithms with spiking neurons,
for example Gilra and Gerstner, 2017.

4.5 Meta-RL enables fast learning of complex navigation
tasks

We now turn to an application of meta reinforcement learning (meta-RL) to LSNNs.
In meta-RL, the LSNN receives rewards instead of teacher inputs. Meta-RL has
led to a number of remarkable results for LSTM networks, see e.g. J. X. Wang

et al., 2016; Duan et al., 2016. In addition, J. X. Wang et al., 2018 demonstrates that
meta-RL provides a very interesting perspective of reward-based learning in the
brain.

We focused on one of the more challenging demos of J. X. Wang et al., 2016 and
Duan et al., 2016, where an agent had to learn to find a target in a 2D arena, and to
navigate subsequently to this target from random positions in the arena. This task
is related to the well-known biological learning paradigm of the Morris water-maze
task Morris, 1984; Vasilaki et al., 2009. We study here the capability of an agent
to discover two pieces of abstract knowledge from the concrete setup of the task:
The distribution of goal positions, and the fact that the goal position is constant
within each episode. We asked whether the agent would be able to exploit the
pieces of abstract knowledge from learning for many concrete episodes, and use it
to navigate more efficiently.

An LSNN-based agent was trained on a family of navigation tasks with continuous
state and action spaces in a circular arena. The task is structured as a sequence of
episodes, each lasting 2 seconds. The goal was placed randomly for each episode
on the border of the arena. When the agent reached the goal, it received a reward
of +1, and was placed back randomly in the arena. When the agent hit a wall, it
received a negative reward of −0.02 and the velocity vector was truncated to remain
inside the arena. The objective was to maximize the number of goals reached within
the episode. This family F of tasks is defined by the infinite set of possible goal
positions. For each episode, an optimal agent is expected to explore until it finds
the goal position, memorize it and exploits this knowledge until the end of the
episode by taking the shortest path to the goal. We trained an LSNN so that the
network could control the agent’s behaviour in all tasks, without changing its
network weights.

Since LSNNs with just a few hundred neurons are not able to process visual
input, we provided the current position of the agent within the arena through
a place-cell-like Gaussian population-rate encoding of the current position. The
lack of visual input already made it challenging to move along a smooth path,
or to stay within a safe distance from the wall. The agent received information
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Figure 4.4: Meta-RL results for an LSNN. (A, B) Performance improvement during training in the
outer loop. (C, D) Samples of navigation paths produced by the LSNN before and after
this training. Before training, the agent performs a random walk (C). In this example it
does not find the goal within the limited episode duration. After training (D), the LSNN
had acquired an efficient exploration strategy that uses two pieces of abstract knowledge:
that the goal always lies on the border, and that the goal position is the same throughout
an episode. Note that all synaptic weights of the LSNNs remained fixed after training. (E)
Connectivity between sub-populations of the network after training. The global connectiv-
ity in the network was constrained to 20%. (F) The network dynamics that produced the
behavior shown in (A).
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about positive and negative rewards in the form of spikes from external neurons.
For training in the outer loop, we used BPTT together with DEEP R Bellec et al.,
2018a applied to the surrogate objective of the Proximal Policy Optimization (PPO)
algorithm Schulman et al., 2017. In this task the LSNN had 400 recurrent units (200

excitatory, 80 inhibitory and 120 adaptive neurons with adaptation time constant
τa of 1200ms), the network was rewired with a fixed connectivity of 20%. The
resulting network diagram and spike raster is shown in Fig. 4.4E,F.

The network behaviour before, during, and after L2L optimization is shown in
Fig. 4.4C,D. Fig. 4.4A shows that a large number of training episodes finally
provided significant improvements. With a close look at Fig. 4.4B, one sees that
before 52k training episodes, the intermediate path planning strategies did not
seem to use the discovered goal position to make subsequent paths shorter. Hence
the agents had not yet discovered that the goal position does not change during
an episode. After training for 300k episodes, one sees from the sample paths in
Fig. 4.4D that both pieces of abstract knowledge had been discovered by the agent.
The first path in Fig. 4.4D shows that the agent exploits the fact that the goal is
located on the border of the maze. The second and last paths show that the agent
knows that the position is fixed throughout an episode. Altogether this demo shows
that meta-RL can be applied to RSNNs, and produces previously unseen capabilities
of sparsely firing RSNNs to extract abstract knowledge from experimentation, and
the ability to use it in clever ways for controlling behaviour. The trained LSNN is
capable of autonomously controlling a complex multi-stage behaviour consisting of
exploration and exploitation, which has not been demonstrated before in networks
of spiking neurons.

4.6 Discussion

We know that fast learning and rapid adaptation is fairly common in biology at
time scales that are not explained by the currently studied plasticity mechanisms.
Here, we propose a mechanism to achieve this rapid learning in a very general
and biologically plausible way — using only the dynamics of a recurrent spiking
network with few constraints on neuron or plasticity mechanisms. This mechanism
uses learning-to-learn to install and enable this form of fast learning for families
of tasks, including motor prediction and navigation. We consider processes like
evolution and development as potential mechanisms for outer-loop optimization to
have imbued the LSNN with learning potential in the inner-loop, and we emulate
it with BPTT.

This L2L mechanism also provides a powerful way to install prior knowledge about
the structure of the family of tasks into the LSNN. We demonstrate it with a simple
structured task in Fig. 4.2A, where, once the network has learnt the overall task
structure, it is able to robustly ignore other misleading and more local structures.
We also show that giving wrong feedback to the network after it has learnt to
predict values for a single task leads to elevated neural activity as seen in Fig. 4.2B.
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This provides an experimentally testable hypothesis, and provides an alternative
explanation for elevated activity resulting from unexpected or wrong feedback.

We then show that we can use this framework to generate motor prediction models
that are able to adapt very quickly to changes in the dynamics of the plant being
controlled. In our particular case, the arm masses and lengths changed leading to
the change in dynamics in a two-dimensional two-link arm model. We speculate
that this could be further extended to provide a biologically plausible mechanism
that can explain rapid adaptation in motor control without changes in synaptic
plasticity as observed in Perich et al., 2018.

Finally, we show that this framework can solve the Morris water-maze task, which
is a well known biological learning paradigm Morris, 1984; Vasilaki et al., 2009.
The task we considered was a continuous control problem that we solved with
meta-reinforcement learning, where the goal position changed after every episode
consisting of many trials. Learning to learn enables the LSNN — without any
additional outer control or clock — to embody an agent that first searches an arena
for a goal, and subsequently exploits the learnt knowledge in order to navigate fast
from random initial positions to this goal.

Altogether, we expect that the new methods and ideas that we have introduced
will advance our understanding and reverse engineering of RSNNs in the brain.
For example, the RSNNs that emerged in all the tasks compute and learn with a
brain-like sparse firing activity, quite different from an SNN that operates with
rate-codes. Apart from these implications for computational neuroscience, our
finding that RSNNs can acquire powerful computing and learning capabilities with
very energy-efficient sparse firing activity provides new application paradigms for
spike-based computing hardware.
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Chapter 5
Slow processes of neurons enable a biologically
plausible approximation to policy gradient
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Abstract. Recurrent neural networks underlie the astounding information pro-
cessing capabilities of the brain, and play a key role in many state-of-the-art
algorithms in deep reinforcement learning. But it has remained an open question
how such networks could learn from rewards in a biologically plausible manner,
with synaptic plasticity that is both local and online. We describe such an algorithm
that approximates actor-critic policy gradient in recurrent neural networks. Building
on an approximation of backpropagation through time (BPTT): e-prop, and using
the equivalence between forward and backward view in reinforcement learning
(RL), we formulate a novel learning rule for RL that is both online and local, called
reward-based e-prop. This learning rule uses neuroscience-inspired slow processes
and top-down signals, while still being rigorously derived as an approximation to
actor-critic policy gradient. To empirically evaluate this algorithm, we consider a
delayed reaching task, where an arm is controlled using a recurrent network of
spiking neurons. In this task, we show that reward-based e-prop performs as well
as an agent trained with actor-critic policy gradient with biologically implausible
BPTT.
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gradient

To this study, I contributed as first author along with FS, GB. The study was
conceived by WM, AS, GB, FS, with the theory being developed by AS, FS, GB.
The experiments were designed by WM, AS, GB and were conducted by AS. The
manuscript was written by AS, FS, GB, EH, DS, RL, WM.

5.1 Introduction

Deep reinforcement learning (deep RL) has formed the basis for the staggeringly
successful recent results in machine learning and AI Mnih et al., 2015b; Vinyals

et al., 2019; Silver et al., 2018. A standard algorithm in deep RL is actor-critic policy
gradient Mnih et al., 2016, where the network model outputs probabilities for each
action (called the policy) and also predicts the sum of future rewards (called the
value). For tasks that require working memory, recurrent neural networks (RNNs)
are used, often in the form of LSTM units Hochreiter and Schmidhuber, 1997 in
deep RL. These recurrent networks are trained using backpropagation through time
(BPTT) to maximize the expected sum of future rewards while minimizing the
error in predicting the value.

But BPTT requires storing the intermediate states of all neurons during a network
computation, and merging these in a subsequent offline process with gradients that
are computed backwards in time. This makes it very unlikely that BPTT is used
by the brain Lillicrap and Santoro, 2019. In addition, assigning credit to actions
necessitates simulating the environment until the outcome becomes evident, i.e.
until the end of an episode. This makes online implementation of actor-critic policy
gradient difficult.

In this submission, we describe an algorithm called reward-based e-prop that solves
both of these problems. The result is a local, online RL rule that can be used to
train RNNs. It can also be shown to approximate the ideal learning rules based
on gradient descent. This algorithm builds on an approximation to BPTT called e-
prop Bellec et al., 2019b and incorporates the advantages of the actor-critic method
into a learning rule that is both local and online.

This method derives its inspiration from experimental data in biology for how
such a learning rule could be implemented in a biologically plausible way. The
dynamics of neurons are known to have traces of past activity on a molecular
level Sanhueza and Lisman, 2013. These traces record events that are known to
induce plasticity in the presence of top-down learning signals Cassenaer and
Laurent, 2012; Yagishita et al., 2014; Gerstner et al., 2018. These type of local
traces are referred to as eligibility traces in e-prop Bellec et al., 2019b. In addition,
various kinds of top-down signals that are specific for target population of neurons
are known to exist MacLean et al., 2015. Among them are signals that predict
upcoming rewards Engelhard et al., 2019; Roeper, 2013 or movement errors in
case of error-related negativity (ERN) Sajad et al., 2019. These signals constitute
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the learning signals of e-prop and the reward prediction error that emerges in the
context of reward-based e-prop.

Using such processes, and formulating online actor-critic policy gradient R. S.
Sutton and Barto, 2018 using the mathematical framework of e-prop leads us to
reward-based e-prop. In reward-based e-prop, the weight updates can be calculated at
every time step without having to wait for all future rewards, without backpropaga-
tion of signals either through time (online) or synapses (local). We demonstrate this
learning rule on a neuroscience inspired RL task (Fig. 2.1). We specifically consider
the scenario where the agent needs to remember early parts of an episode in order
to produce a successful policy in later parts of an episode. This requires the use of
RNNs for working memory, and the ability to discover the relationship between
early observations and later actions.

5.2 Reward-based learning

In the RL setting an agent interacts with an environment. In our case, the agent is
implemented by a recurrent network, specifically a recurrent network of spiking
neurons with working memory (see Appendix for details), although the theory
is generally applicable to any model of recurrent network. This network receives
observations xt from the environment, and interacts with it by means of real-valued
actions at. These actions are distributed according to a Gaussian centered around
the network output yt with a fixed variance σ2. The probability distribution of these
actions π(at|yt) is the stochastic policy. In our setting, we restrict the actions to
certain decision times t0, . . . , tn, . . . , and set π ≡ 0 at other times. The environment
can provide a positive or negative reward rt at any time t to inform the agent about
favorable states.

The goal of reward-based learning is to maximize sum of discounted future rewards
in expectation: max E[R0], where we define the return at time t as Rt = ∑t′≥t γt′−trt′ .
Here, γ ≤ 1 is known as the discounting factor. This is achieved by the actor-critic
variant of policy gradient, involving the policy π (the actor) and an additional
output neuron Vt (with weights WV,out

j ), predicting the value function E[Rt] (the
critic). Both are learnt simultaneously by minimizing the loss function:

E = Eπ + cV EV , (5.1)

where Eπ = −E[R0] measures the performance of the stochastic policy π, EV =
E[∑t

1
2 (Rt − Vt)2] measures the error in value prediction, and cV is a hyper-

parameter chosen appropriately.

To improve the agent’s behavior, we minimize the loss function E using gradient de-

scent on the network weights Wji. For this purpose, we can derive an estimator d̂E
dWji
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of the loss gradient with reduced variance (using the policy gradient theorem R. S.
Sutton and Barto, 2018):

dE
dWji

= E

[
−∑

t
(Rt −Vt)

(
d

dWji

(
log π(at|yt) + cVVt))

︸ ︷︷ ︸
def
= d̂E

dWji

]
. (5.2)

Equation (5.2) can be seen as the typical formulation of an actor-critic algorithm.
However, in its current form, the value of this gradient cannot be computed in a
biological plausible way:

A) the quantity Rt is not available at time t because its computation requires
future rewards,

B) calculating the derivatives of the network output (log π, V) with respect to
the network input and recurrent weights requires biologically implausible
BPTT.

Solution to A): Backward view We can alleviate the first problem involving the
computation of Rt at time t by exploiting the equivalence between forward view and
backward view in RL R. S. Sutton and Barto, 2018. For this purpose, we introduce
a temporal difference (TD) error δt = rt + γVt+1 −Vt that allows us to rewrite the
error in value prediction by a sum over future TD errors: Rt −Vt = ∑t′≥t γt′−tδt′ . If
we substitute this into the relevant part of equation (5.2), we obtain two sums over
t and t′. Because the summation of t′ starts from t, we can reorganize and collect
terms such that only past terms are summed (commonly denoted backward view
of RL R. S. Sutton and Barto, 2018):

∑
t
(Rt −Vt)( · ) = ∑

t
∑
t′≥t

γt′−tδt′( · ) = ∑
t′

δt′ ∑
t≤t′

γt′−t( · ) = ∑
t′

δt′Fγ( · ) . (5.3)

In order to simplify notation, we introduce a temporal filter F that is defined as
Fα(xt) = αFα(xt−1) + xt.

Solution to B): E-prop Computing the gradient d
dWji

(
log π(at|yt) + cVVt) re-

quired in equation (5.2) with respect to input weights Win
ji and recurrent weights

Wrec
ji in RNNs with BPTT is biologically implausible. We approximate this gradient

using e-prop Bellec et al., 2018b by ignoring both spatially and temporally non-local
interactions. This gradient is approximated as a product of learning signals Lt

j,
which are specific to the post-synaptic neuron j, and synapse-specific eligibility
traces et

ji:

d̂
dWji

(
log π(at|yt) + cVVt) = Lt

j ē
t
ji , (5.4)
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Here, we define ēt
ji = Fκ(et

ji) with κ being the time constant associated with the
output neuron, and the eligibility traces et

ji only depend on the activity that is

local to the synapse. The eligibility traces are formally defined as et
ji =

∂zt
j

∂ht
j
· εt

ji,

using a so-called eligibility vector that is propagated forward in time, according

to the dynamics of neurons: εt+1
ji =

∂ht+1
j

∂ht
j
· εt

ji +
∂ht+1

j
∂Wji

, where ht
j is the hidden state

vector and zt
j is the observable state of the neuron model. This definition precisely

captures the dynamics of the hidden states. In particular, if the dynamics of the
neurons contain slower processes as our network does (see Appendix), long lived
traces arise that can help with the credit assignment problem.

The learning signal Lt
j =

∂(log π(at|yt)+cVVt)
∂zt

j
is the impact of neuron spikes zt

j on

log π(at|yt) + cVVt. Considering our Gaussian policy π, we obtain:

Lt
j = −cVWV,out

j + ∑
k

Wπ,out
jk

yt
k − at

k
σ2 . (5.5)

where Wπ,out
jk and WV,out

j are the output weights for the policy π and the value
prediction V respectively.

5.3 Learning rule emerging from reward-based e-prop

The learning rule emerging in equation (5.5) solves major issues of biological
plausibility in BPTT. There is no need to backpropagate through time or store
earlier network activity, and the algorithm can be implemented by online updates.
Even the sum over t in (5.5) does not need store every element of the sum. Instead
the sum can be accumulated, or every contribution can be applied directly.

With this definition of the learning signal (equation (5.5)), the deviation between the
stochastic action at

k and its expected value yt
k are fed back to neuron j with the same

weights Wπ,out
kj that define yt

k, and this symmetry also arises for WV,out
j . To avoid

such biologically implausible weight sharing between the feedforward and the
feedback pathways, we use fixed random feedback weights Bπ

jk, BV
j as in (Lillicrap

et al., 2016; Nøkland, 2016). Using a simple local plasticity rule on Bjk that mirrors
the plasticity rule applied to Wkj also leads to similar results. Putting together the
results of equation (5.3), (5.4) and (5.5), we obtain the learning rule for reward-based
e-prop:

∆Wrec
ji = −η ∑

t
δtFγ

(
Lt

j ēt
ji

)
for (5.6)

Lt
j = −cV BV

j + ∑
k

Bπ
jk

yt
k − at

k
σ2 , (5.7)
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where η is a fixed learning rate.

Note that the filtering Fγ requires an additional eligibility trace per synapse. The

term Fγ

(
Lt

j ēt
ji

)
is identical to the eligibility traces commonly used in RL R. S.

Sutton and Barto, 2018; Seijen and R. Sutton, 2014, except that we use an
approximation for the true gradient of the loss instead. Additionally, Seijen and
R. Sutton, 2014 use a linear feedforward model, whereas we specifically address
learning in recurrent neural networks. This term depends on the learning signal
and does not have the same function as the eligibility trace et

ji that are employed by
e-prop.

5.4 Empirical evaluation of reward-based e-prop

We tested reward-based e-prop on a task that is representative of a common learn-
ing experiment paradigm in systems neuroscience: There an agent has to learn a
delayed goal-directed movement, consisting of a sequence of many 2-dimensional
continuous motor commands. The rewards are sparse and often arrive long after rel-
evant actions have been taken. The agent first receives a spatial goal cue (Fig. 5.1C),
which is followed by a delay period during which the agent has to remember the
cue, and has to make sure the tip of the two-joint arm it controls remains within a
center region (indicated by a dotted circle) in order to avoid punishment. The agent
controls the arm movement by controlling the angular velocities of the two joints.
After the delay period, the agent receives a go-cue, which instructs that the agent
has to move the tip of the arm to the location that was indicated by the initial goal
cue in order to receive a positive reward.

Note that the network was not given any forward- or inverse model of the arm
but had to learn those implicitly. The agent also required working memory to
remember the goal cue from the beginning of the episode until it received the
go-cue. In addition, due to delayed rewards, credit assignment for actions which
led to the reward was non-trivial.

We used a recurrent spiking network with an additional working memory mecha-
nism called an LSNN (as in Bellec et al., 2018b) to control the arm. The overall
architecture of the network, along with the components that contribute to the
weight update rule, are shown in Fig. 5.1A.

Three sample trials after learning are shown in Fig. 5.1D. Fig. 5.1B shows that reward-
based e-prop is able to solve this demanding RL task about as well as policy gradient
with biologically implausible BPTT. This is due to the fact that the eligibility traces
that arise in reward-based e-prop are able to handle the long term credit assignment
problem, while the slower dynamics of the neurons in the network provide the
working memory. Note that the credit assignment here occurs successfully without
any backpropagation of gradients through the entire history. We conjecture that
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Figure 5.1: Application of e-prop to RL. A) Learning architecture for reward-based e-prop: The
network input xt consists of the current joint angles and input cues. The network produces
output yt which is used to stochastically generate the actions at. In addition, the network
produces the value prediction, which, along with the reward from the environment, is used
to calculate the TD-error δt, An LSNN is the network model defined in the Appendix. The
learning signals and the TD-errors are used to calculate the weight update, as denoted
by the green dotted lines. B) Performance of reward-based e-prop and of a control where
e-prop is replaced by BPTT, both for an LSNN consisting of 350 LIF and 150 adaptive
LIF (ALIF) neurons. Solid curves show the mean over 5 different runs, and shaded area
indicates 1 standard deviation. C) Scheme of the delayed arm movement task. The red
arrow points to the formerly visible goal. The arm always starts moving from the center of
the circle. D) Resulting arm movement in three sample trials after learning. The orange
dot indicates the position of the tip of the arm at the end of the delay period.
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variants of reward-based e-prop will be able to solve most RL tasks that can be solved
by online actor-critic methods in machine learning.

5.5 Discussion

We have proposed a biologically plausible learning rule – reward-based e-prop –
for RL that is both online and local. The combination of reward prediction error
and neuron-specific learning signal has also been used in a plasticity rule for
feedforward networks inspired by neuroscience Pozzi et al., 2018. But in the case
of reward-based e-prop, it arises from the approximation of BPTT by e-prop in spiking
RNNs tackling RL problems. Other previously proposed learning rules use the
correlation of the noisy output of network neurons with rewards to estimate the
gradients of the policy Kappel et al., 2018; Gerstner et al., 2018. But due to noisy
gradient estimates, such learning rules are inefficient.

Since reward-based e-prop is based on a transparent mathematical principle, it pro-
vides a normative model for signals that are abundantly present in the brain, but
whose precise role is not very well understood – eligibility traces, learning signals
and reward prediction errors. Actor-critic policy gradient combined with BPTT
for RNNs has been shown to be very powerful in deep RL. Reward-based e-prop
approximates this, and so has the potential to be a very powerful online learning
algorithm for RL for a wide variety of tasks. Here, we have demonstrated that it
can be used to successfully train recurrent networks on a reinforcement learning
task that requires complex arm movements, working memory and long term credit
assignment. In addition, we have demonstrated this using a recurrent network
model that is biologically realistic – using spiking neurons, and slower processes
very similar to that found in biology.

Future work would explore scaling up this algorithm to tasks of greater complexity
and memory demands. Furthermore, an online RL algorithm such as reward-
based e-prop can also lead to a qualitative jump in on-chip learning capabilities of
neuromorphic chips.
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Appendix B
Appendix to Chapter 2: Spike-frequency adaptation
provides a long short-term memory to networks of
spiking neurons

B.1 Adaptation index

The adaptation index (AI) is a quantitative measure of firing rate adaptation that
has been recorded for a wide variety of cells in the Allen institute database Allen

Institute, 2018. It measures the rate at which firing of a spiking neuron speeds up
or slows down when the neuron is fed with a step current of 1 second. Given the
induced spike times, it is defined as:

1
N − 1

N−1

∑
n=1

ISIn+1 − ISIn

ISIn+1 + ISIn
,

where ISIn is n-th inter spike interval (ISI) and N is the number of ISIs induced
during the stimulus duration. Hence regular doubling of the ISI produces for
example AI = 0.33.

B.2 Network models

Leaky integrate and fire (LIF) neurons. A LIF neuron j spikes as soon at its
membrane potential Vj(t) is above its threshold vth. At each spike time t, the
membrane potential Vj(t) is reset by subtracting the threshold value vth and the
neuron enters a strict refractory period for 2 to 5 ms (depending on the experiment)
where it cannot spike again. Between spikes the membrane voltage Vj(t) is following
the dynamic:

τmV̇j(t) = −Vj(t) + Rm Ij(t).

Our simulations were performed in discrete time with a time step δt = 1 ms. In
discrete time, the input and output spike trains are modeled as binary sequences
xi(t), zj(t) ∈ {0, 1

δt} respectively. Neuron j emits a spike at time t if it is currently
not in a refractory period, and its membrane potential Vj(t) is above its threshold.
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During the refractory period following a spike, zj(t) is fixed to 0. The neural
dynamics in discrete time reads as follows:

Vj(t + δt) = αVj(t) + (1− α)Rm Ij(t)− vthzj(t)δt, (B.1)

where α = exp(− δt
τm
) , with τm being the membrane constant of the neuron j. The

spike of neuron j is defined by zj(t) = H
(

Vj(t)−vth
vth

)
1
δt , with H(x) = 0 if x < 0 and

1 otherwise. The term −vthzj(t)δt implements the reset of the membrane voltage
after each spike.

In all simulations the Rm was set to 1 GΩ. The input current Ij(t) is defined as the
weighted sum of spikes from external inputs and other neurons in the network:

Ij(t) = ∑
i

W in
ji xi(t− din

ji ) + ∑
i

Wrec
ji zi(t− drec

ji ), (B.2)

where W in
ji and Wrec

ji denote respectively the input and the recurrent synaptic
weights and din

ji and drec
ji the corresponding synaptic delays.

Adaptive leaky integrate and fire (ALIF) neurons. An ALIF neuron extends the
LIF neuron with an SFA mechanism. The SFA is realized by replacing the fixed
threshold vth with the adaptive threshold Aj(t) which follows the dynamic de-
scribed in equation (2.1). The spiking output of ALIF neuron j is then defined by

zj(t) = H(
Vj(t)−Aj(t)

Aj(t)
) 1

δt .

Adaptation time constants of ALIF neurons were chosen to match the task re-
quirements while still conforming to the experimental data from rodents Allen

Institute, 2018; Pozzorini et al., 2013; Pozzorini et al., 2015; Mensi et al., 2012.
For an analysis of the impact of the adaptation time constants on the performance
see Table S1 in Supplement.

LIF neurons whose excitability gets increased through their firing: ELIF neurons.
There exists experimental evidence that some neurons fire for the same stimulus
more for a repetition of the same sensory stimulus. We refer to such neurons as ELIF
neurons, since they are becoming more excitable. Such repetition enhancement was
discussed for example in Tartaglia et al., 2015. But to the best of our knowledge,
it has remained open whether repetition enhancement is a network effect, resulting
for example from a transient depression of inhibitory synapses onto the cell that
is caused by postsynaptic firing Kullmann et al., 2012, or a result of an intrinsic
firing property of some neurons. We used a simple model for ELIF neurons that is
dual to the ALIF neuron model: The threshold is lowered through each spike of
the neuron, and then decays exponentially back to its resting value. This can be
achieved by using a negative value for β in equation (2.1).

Models for Short-Term Plasticity (STP) of synapses. We modelled the STP dy-
namic according to the classical model of STP in Mongillo et al., 2008. The STP
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dynamics in discrete time, derived from the equations in Mongillo et al., 2008, are
as follows:

u′ji(t + δt) = exp
(
−δt

F

)
u′ji(t) + Uji(1− uji(t))zi(t)δt, (B.3)

uji(t + δt) = Uji + u′ji(t), (B.4)

r′ji(t + δt) = exp
(
−δt
D

)
r′ji(t) + uji(t)(1− r′ji(t))zi(t)δt, (B.5)

rji(t + δt) = 1− r′ji(t), (B.6)

WSTP
ji (t + δt) = Wrec

ji uji(t)rji(t), (B.7)

where zi(t) is the spike train of the pre-synaptic neuron and Wrec
ji scales the

synaptic efficacy of synapses from neuron i to neuron j. Networks with STP were
constructed from LIF neurons with the weight Wrec

ji in equation (B.2) replaced by
the time dependent weight WSTP

ji (t).

STP time constants of facilitation-dominant and depression-dominant network
models were based on values of experimental recordings in Y. Wang et al., 2006 of
PFC-E1 and PFC-E2 synapse types respectively. Recordings in Y. Wang et al., 2006

were performed in medial prefrontal cortex of young adult ferrets. For the STORE-
RECALL task, both facilitation and depression time constants were equally scaled
up until the larger time constant matched the requirement of the task (see section
on “Comparing networks with different slow processes” below). In the sMNIST
task for the depression-dominant network model (STP-D) we used values based
on PFC-E2: F = 20 ms, D = 700 ms and U = 0.2, and for facilitation-dominant
network model (STP-F) we used values based on PFC-E1: F = 500 ms, D = 200 ms
and U = 0.2.

Weight initialization. Initial input and recurrent weights were drawn from a
Gaussian distribution Wji ∼ w0√

nin
N (0, 1), where nin is the number of afferent

neurons and N (0, 1) is the zero-mean unit-variance Gaussian distribution and
w0 = 1 Volt

Rm
δt is a normalization constant Bellec et al., 2018b.

B.3 Training methods

BPTT. In artificial recurrent neural networks such as LSTMs, gradients can be
computed with backpropagation through time (BPTT). In spiking neural networks,
complications arise from the non-differentiability of the output of spiking neurons.
In our discrete time simulation, this is formalized by the discontinuous step function
H arising in the definition of the spike variable zj(t). All other operations can be
differentiated exactly with BPTT. For feedforward artificial neural networks using
step functions, a solution was to use a pseudo derivative H′(x) := max{0, 1−
|x|}, but we observed that this convention is unstable with recurrently connected
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neurons. We found that dampening this pseudo-derivative with a factor γ < 1
(typically γ = 0.3) solves that issue. Hence we use the pseudo-derivative:

dzj(t)
dvj(t)

:= γ max{0, 1− |vj(t)|}, (B.8)

where vj(t) denotes the normalized membrane potential vj(t) =
Vj(t)−Aj(t)

Aj(t)
. Impor-

tantly, gradients can propagate in adaptive neurons through many time steps in
the dynamic threshold without being affected by the dampening.

e-prop. In the 12AX task the networks were trained using biologically plausible
learning method random e-prop Bellec et al., 2019b in addition to BPTT.

B.4 Tasks

The STORE-RECALL task of Fig. 2.2 The input to the network consisted of STORE,
RECALL, and 20 bits which were represented by sub-populations of spiking input
neurons. STORE and RECALL commands were represented by 4 neurons each.
The 20 bits were represented by population coding where each bit was assigned 4
input neurons (2 for value zero, and 2 for value one). When a sub-population is
active, it would exhibit a Poisson firing with frequency of 400 Hz. To measure the
generalization capability of a trained network, we first generate a test set dictionary
of 20 unique feature vectors (random bit strings of length 20) that have at least
a Hamming distance of 5 bits among each other. For every training batch a new
dictionary of 40 random bit strings (of length 20) would be generated where each
string has a Hamming distance of at least 5 bits from any of the bit string in
the test set dictionary. This way we ensure that, during training, a network never
encounters any bit string similar to one from the test set. Each input sequence
consisted of 10 steps (200 ms each) where a different population encoded bit string
is shown during every step. Only during the RECALL period, the 20 bit input
populations are silent. At every step, the STORE or the RECALL populations were
activated interchangeably with probability 0.2 which resulted in distribution of
delays between the STORE-RECALL pairs in the range [200, 1600] ms.

The training and the test performance were computed as average over 256 and 512
random input sequences respectively. Networks were trained for 4000 iterations
and stopped if the error on the training batch was below 1%. We used the Adam
optimizer with default parameters and initial learning rate of 0.01 which is decayed
every 200 iterations by a factor of 0.8. We also used learning rate ramping, which,
for the first 200 iterations, monotonically increased the learning rate from 0.00001
to 0.01. To avoid unrealistically high firing rates, the loss function contained a
regularization term (scaled with coefficient 0.001) that minimizes the squared
difference of the average firing rate of individual neurons from a target firing rate
of 10 Hz. To improve convergence, we also included an entropy component to the
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loss (scaled with coefficient 0.3) which was computed as the mean of the entropies
of the sigmoid neurons outputs.

We trained an ALIF network and a LIF network, both consisting of 500 recurrently
connected neurons. The membrane time constant was τm = 20 ms. For adaptation
parameters we used βALIF = 4 mV and τa = 800 ms with baseline threshold voltage
10 mV. Synaptic delay was 1 ms. The input to the sigmoidal readout neurons were
the neuron traces that were calculated by passing all the network spikes through a
low-pass filter with a time constant of 20 ms.

We ran 5 training runs with different random seeds for both ALIF and LIF network
models. All runs of the ALIF network converged after ∼ 3600 iterations to a
training error below 1%. At that point we measured the accuracy on 512 test
sequences generated using the previously unseen test bit strings which resulted in
test accuracy of 99.09% with standard deviation of 0.17%. The LIF network was not
able to solve the task in any of the runs (all runs resulted in 0% training and test
accuracy with zero standard deviation). On the level of individual feature recall
accuracy, the best out of 5 training runs of the LIF network was able to achieve
49% accuracy which is the chance level since individual features are binary bits.
In contrast, all ALIF network runs had individual feature level accuracy of above
99.99%.

Decoding memory from the network activity. We trained a Support Vector Ma-
chine (SVM) to classify the stored memory content from the network spiking activity
in the step before the RECALL (200 ms before the start of RECALL command). We
performed a cross-validated grid-search to find the best hyperparameters for the
SVM which included kernel type [linear, polynomial, RBF] and penalty parameter
C of the error term [0.1, 1, 10, 100, 1000]. We trained SVMs on test batches of the
5 different training runs (see above). SVMs trained on the period preceding the
RECALL command of a test batch achieved an average of 4.38% accuracy with
standard deviation of 1.29%. In contrast SVMs trained on a period during the
RECALL command achieved an accuracy of 100%. This demonstrates that the
memory stored in the network is not decodable from the network firing activity
before the RECALL input command.

Additionally, analogous to the experiments of Wolff et al., 2017, we trained SVMs
on network activity during the encoding (STORE) period and evaluated them on the
network activity during reactivation (RECALL), and vice versa. In both scenarios,
the classifiers were not able to classify the memory content of the evaluation period
(0.0% accuracy).

Comparing networks with different slow processes on a simplified version of
the STORE-RECALL task. For the comprehensive comparison of networks en-
dowed with different slow processes in neuron and synapse dynamics we used a
single dimensional version of the STORE-RECALL task where only a single feature
needs to be stored and recalled from memory. The input to the network consisted of
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40 input neurons: 10 for STORE, 10 for RECALL, and 20 for population coding of a
binary feature. Each sequence consisted of 20 steps (200 ms each) where the STORE
or the RECALL populations were activated with probability 0.09 interchangeably
which resulted in delays between the STORE-RECALL pairs to be in the range [200,
3600] ms.

The training batch and the test performance were computed as average over 128
and 2048 random input sequences respectively. All networks were trained for
400 iterations. We used the Adam optimizer with default parameters and initial
learning rate of 0.01 which was decayed every 100 iterations by a factor of 0.3.
The same firing rate regularization term was added to the loss as in the original
STORE-RECALL setup (see above).

All networks consisted of 60 recurrently connected neurons. The membrane time
constant was τm = 20 ms. For ALIF and ELIF networks, we used βALIF = 1 mV
and βELIF = −0.5 mV with τa = 2000 ms. Synapse parameters of STP-D network
were F = 51± 15 ms, D = 2000± 51 ms and U = 0.25, and of STP-F network
F = 2000± 146 ms, D = 765± 71 ms and U = 0.28. The baseline threshold voltage
was 10 mV for all models except ELIF for which it was 20 mV. Synaptic delay was
1 ms across all network models.

Google Speech Commands task. Features were extracted from the raw audio using
the Mel Frequency Cepstral Coefficient (MFCC) method with 30 ms window size, 1
ms stride and 40 output features. The network models were trained to classify the
input features to one of the 10 keywords (yes, no, up, down, left, right, on, off, stop,
go) or to two special classes for silence or unknown word (where the remainder
of 20 recorded keywords are grouped). The training, validation and test set were
assigned 80, 10, and 10 percent of data respectively while making sure that audio
clips from the same person stay in the same set.

All networks were trained for 18,000 iterations using the Adam optimizer with
batch size 100. The output spikes of the networks were averaged over time, and the
linear readout layer was applied to those values. During the first 15,000 we used a
learning rate of 0.001 and for the last 3000 we used a learning rate of 0.0001. The
loss function contained a regularization term (scaled with coefficient 0.001) that
minimizes the squared difference of average firing rate between individual neurons
and a target firing rate of 10 Hz.

Both ALIF and LIF networks consisted of 2048 fully connected neurons in a single
recurrent layer. The neurons had a membrane time constant of τm = 20 ms, the
adaptation time constant of ALIF neurons was τa = 100 ms, adaptation strength
was β = 2 mV. The baseline threshold was vth = 10 mV, and the refractory period
was 2 ms. Synaptic delay was 1 ms.

Delayed-memory XOR task. The pulses on the two input channels were generated
with 30 ms duration and the shape of a normal probability density function
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normalized in the range [0, 1]. The pulses were added or subtracted from the
baseline zero input current at appropriate delays. The go-cue was always a positive
current pulse. The 6 possible configurations of the input pulses (+, −, ++, −−,
+−, −+) were sampled with equal probability during training and testing.

Networks were trained for 2000 iterations using the Adam optimizer with batch size
256. The initial learning rate was 0.01 and every 200 iterations the learning rate was
decayed by a factor of 0.8. The loss function contained a regularization term (scaled
with coefficient 50) that minimizes the squared difference of the average firing rate
of individual neurons from a target firing rate of 10 Hz. This regularization resulted
in networks with mean firing rate of 10 Hz where firing rates of individual neurons
were spread in the range [1, 16] Hz.

Both ALIF and LIF networks consisted of 80 fully connected neurons in a single
recurrent layer. The neurons had a membrane time constant of τm = 20 ms, a
baseline threshold vth = 10 mV, and a refractory period of 3 ms. ALIF neurons
had an adaptation time constant of τa = 500 ms and an adaptation strength of
β = 1 mV. Synaptic delay was 1 ms. For training the network to classify the input
into one of the three classes, we used the cross-entropy loss between the labels
and the softmax of three linear readout neurons. The input to the linear readout
neurons were the neuron traces that were calculated by passing all the network
spikes through a low-pass filter with a time constant of 20 ms.

The sequential MNIST (sMNIST) task. The input consisted of sequences of 784
pixel values created by unrolling the handwritten digits of the MNIST dataset, one
pixel after the other in a scanline manner as indicated in Fig. S3A. For comparing
different spiking network models, we used 1 ms presentation time for each pixel
(Fig. 2.3C). LSTM networks also work well for tasks on larger time-scales. Hence
for comparing LSNNs with LSTM networks, we used a version of the task with
2 ms presentation time per pixel, thereby doubling the length of sequences to be
classified to 1568 ms (Fig. 2.3D). A trial of a trained LSNN (with an input sequence
that encodes a handwritten digit “3” using population rate coding) is shown in
Fig. S3B. The top row of Fig. S3B shows a version where the grey value of the
currently presented pixel is encoded by population coding, through the firing
probability of 80 input neurons. Somewhat better performance was achieved when
each of the 80 input neurons was associated with a particular threshold for the grey
value, and this input neuron fired whenever the grey value crossed its threshold
in the transition from the previous to the current pixel (this input convention was
used for the results of Fig. 2.3C,D). Grey values of pixels were presented to the
LSTM network simply as analog numbers.

Networks were trained for 36,000 iterations using the Adam optimizer with batch
size 256. The initial learning rate was 0.01 and every 2500 iterations the learning
rate was decayed by a factor of 0.8. The loss function contained a regularization
term (scaled with coefficient 0.1) that minimizes the squared difference of average
firing rate between individual neurons and a target firing rate of 10 Hz.
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The neurons had a membrane time constant of τm = 20 ms, a baseline threshold of
vth = 10 mV, and a refractory period of 5 ms. The adaptation time constants of ALIF
and ELIF neurons were τa = 700 ms in Fig. 2.3C. ALIF neurons had τa = 1400 ms
in Fig. 2.3D. The adaptation strength of ALIF neurons was β = 1.8 mV, and of
ELIF neurons β = −0.9 mV. Synaptic delay was 1 ms. The output of the LSNN is
produced by the softmax of 10 linear output neurons that receive spikes from all
neurons in the network, as shown in the bottom row of Fig. S3B. For training the
network to classify to one of the ten classes we used cross-entropy loss computed
between the labels and the softmax of output neurons. The input to the linear
readout neurons were the neuron traces that were calculated by passing all the
network spikes through a low-pass filter with a time constant of 20 ms.

The 12AX task. The input for each training and testing episode consisted of a se-
quence of 90 symbols from the set {1,2,A,B,C,X,Y,Z}. A single episode could contain
multiple occurrences of digits 1 or 2 (up to 23), each time changing the target
sequence (A...X or B...Y) after which the network was supposed to output R. Each
digit could be followed by up to 26 letters before the next digit appeared. More
precisely, the following regular expression describes the string that is produced:
[12][ABCXYZ]{1,10}((A[CZ]{0,6}X|B[CZ]{0,6}Y)|([ABC][XYZ])){1,2}. Each choice
in this regular expression is made randomly.

The neurons had a membrane time constant of τm = 20 ms, a baseline threshold
vth = 30 mV, a refractory period of 5 ms, and synaptic delays of 1 ms. ALIF neurons
had an adaptation strength of β = 1.7 mV, and adaptation time constants were
chosen uniformly from [1, 13500] ms.

A cross-entropy loss function was used along with a regularization term (scaled
with coefficient 15) that minimizes the squared difference of average firing rate
between individual neurons and a target firing rate of 10 Hz. The LSNN was
trained for 10,000 iterations with a batch size of 20 episodes and a fixed learning
rate of 0.001. An episode consisted of 90 steps, with between 4 to 23 tasks generated
according to the task generation procedure described previously. We trained the
network with BPTT using 5 different seeds, which resulted in average test success
rate 97.79% with standard deviation 0.42%. The network trained with random e-prop
using 5 different seeds resulted in average test success rate 92.89% with standard
deviation 0.75%.

Symbolic computation on strings of symbols. The input to the network consisted
of 35 symbols - 31 symbols represented symbols from the English alphabet {a, b,
c, d, ... x, y, z, A, B, C, D, E}, one symbol was for “end-of-string” (EOS) ‘*’, one
for cue for the output prompt ‘?’, and two symbols to denote whether the task
instruction was duplication or reversal. The task and the rest of the symbols were
encoded using separate one-hot vectors of dimension 2 and 33 respectively. Inputs
to the network were transformed into spike trains using a population of 5 spiking
neurons for each input component for a total of 175 input neurons. This population
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fired at a “high” rate (200 Hz) to encode 1, and at a “low” rate (2 Hz) otherwise. The
output consisted of 32 linear readouts: 31 for symbols from the English alphabet
and one additional readout for the “end-of-string” symbol. The input to these linear
readouts was the value of neuron traces at the end of each step of 500 ms during
the output period, i.e, the second half of each episode. The neuron traces were
calculated by passing all the network spikes through a low-pass filter with a time
constant of 250 ms. The final output symbol was produced using the argmax over
the value of all the readouts (a softmax instead of the hard argmax was used during
training). The network was trained to minimize the cross entropy error between
the softmax applied on the output layer and targets. The loss function contained a
regularization term (scaled with coefficient 5) that minimizes the squared difference
of average firing rate between individual neurons and a target firing rate of 20
Hz.

The training was performed for 50,000 iterations, with a batch size of 50 episodes.
We used the Adam optimizer with default parameters and fixed learning rate of
0.001. Each symbol was presented to the network for a duration of 500 ms. The
primary metric we used for measuring the performance of the network was success
rate, which was defined as the percentage of episodes where the network produced
the full correct output for a given string i.e. all the output symbols in the episode
had to be correct. The network was tested on 50,000 previously unseen strings.

The network consisted of 128 LIF and 192 ALIF neurons. All the neurons had
a membrane time constant of τm = 20 ms, a baseline threshold vth = 30 mV, a
refractory period of 5 ms, and a synaptic delay of 1 ms. ALIF neurons in the
network had an adaptation strength of β = 1.7 mV, and an adaptation time constant
randomly uniformly chosen from the range [1, 6000] ms. All other parameters were
the same as in the other experiments. We trained the network using 5 different
seeds and tested it on previously unseen strings. Average test success rate was
95.88% with standard deviation 1.39%.

Analysis of spiking data. We used 3-way ANOVA to analyze if a neuron’s firing
rate is significantly affected by task, serial position in the sequence, symbol identity,
or combination of these (similar to Lindsay et al., 2017). We refer to these factors
as “conditions”. The analysis was performed on the activity of the neurons of
the trained LSNN during 50,000 test episodes. For the analysis, neurons whose
average firing rate over all episodes was lower than 2Hz or greater than 60Hz
were discarded from the analysis to remove large outliers. This left 279 out of
the 320 neurons. From each episode, a serial position from the input period was
chosen randomly, and hence each episode could be used only once, i.e., as one data
point. This was to make sure that each entry in the 3-way ANOVA was completely
independent of other entries, since the neuron activity within an episode is highly
correlated. Each data point was labeled with the corresponding triple of (task
type, serial position, symbol identity). To ensure that the dataset was balanced, the
same number of data points per particular combination of conditions was used,
discarding all the excess data points, resulting in a total of 41,850 data points.
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To categorize a neuron as selective to one or more conditions, or combination of
conditions, we observed p-values obtained from 3−way ANOVA and calculated
the effect size ω2 for each combination of conditions. If the p-value was smaller
than 0.001 and ω2 greater than 0.14 for a particular combination of conditions,
the neuron was categorized as selective to that combination of conditions. The ω2

threshold of 0.14 was suggested by Field, 2013 to select large effect sizes. Each
neuron can have large effect size for more than one combination of conditions.
Thus the values shown in Fig. 2.5D sum to > 1. The neuron shown in Fig. 2.5E had
the most prominent selectivity for the combination of Task × Position × Symbol,
with ω2 = 0.394 and p < 0.001. The neuron shown in Fig. 2.5F was categorized
as selective to a combination of Position × Symbol category, with ω2 = 0.467 and
p < 0.001. While the 3-way ANOVA tells us if a neuron is selective to a particular
combination of conditions, it does not give us the exact task/symbol/position that
the neuron is selective to. To find the specific task/symbol/position that the neuron
was selective to, Welch’s t-test was performed, and a particular combination with
maximum t-statistic and p < 0.001 was chosen to be shown in Fig. 2.5E,F.

Figure B.1: Histogram of intrinsic timescale of LSNN. We trained 64 randomly initialized LSNNs
consisting of 200 LIF and 200 ALIF neurons on the single-feature STORE-RECALL task.
Measurements of intrinsic timescale were performed according to WASMUHT et al., 2018
on the spiking data of LSNNs solving the task after training. Averaged data of all 64 runs
is presented in histogram. The distribution is very similar for LIF and ALIF neurons.
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Figure B.2: Illustration of models for an inversely adapting ELIF neuron, and for short-term
synaptic plasticity. (A) Sample spike train. (B) Resulting evolution of firing threshold for
an inversely adapting neuron (ELIF neuron). (C-D) Resulting evolution of the amplitude
of post synaptic potentials (PSPs) for spikes of the presynaptic neuron for the case of
a depression-dominant (STP-D: D�F) and a facilitation-dominant (STP-F: F�D) short-
term synaptic plasticity.

Expected delay between
STORE and RECALL

200ms 2s 4s 8s 16s

τa = 200ms 0.8 26.4 42 49 49

τa = 2s 1 0.4 1.2 7.8 24.8
τa = 4s 0.9 0.3 0.3 2.2 9.5
τa = 8s 0.4 0.2 0.3 2.3 2.9
τa power dist. in [0, 8]s 0.4 0.3 1.6 3.7 16.4
τa uniform dist. in [0, 8]s 3.8 0.1 1.4 7.9 7.4

Table B.1: Performance (% of errors) of LSNNs with different time constants of ALIF neurons
for variations of the STORE-RECALL task with different expected delays. One sees
that good task performance does not require good alignment of adaptation time constants
of ALIF neurons with required duration of working memory. An LSNN network of 60 ALIF
neurons was trained in all different configurations of adaptation time constant and ex-
pected delay of a single dimensional STORE-RECALL task. Every step in the input se-
quence had a duration of 200 ms. An exception is the task instance with expected delay of
200 ms where each step had a duration of 50 ms. Training was performed with a batch size
of 64. All other parameters match the description of single dimensional STORE-RECALL
task in Results section “Working memory performance of variants of SNNs with other
slow processes in neurons or synapses”. A network of 60 LIF neurons trained under the
same parameters did not improve beyond chance level (∼ 50% error), except on the task
instance with expected delay of 200 ms where the LIF network reached 3.3% error.
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Figure B.3: sMNIST time series classification benchmark task. All performance data are reported
for test samples that did not occur during training. (A) Illustration of the pixel-wise input
presentation of handwritten digits for sMNIST. (B) Rows top to bottom: Input encoding
for an instance of the sMNIST task, network activity, and temporal evolution of firing
thresholds for randomly chosen subsets of LIF and ALIF neurons in the SC-LSNN ver-
sion, where 25% of the LIF neurons were inhibitory (their spikes are marked in red). The
light color of the readout neuron for digit “3” around 1600 ms indicates that this input
was correctly classified. (C) Resulting connectivity graph between neuron populations
of an SC-LSNN after BPTT optimization with DEEP R on sMNIST task with 12% global
connectivity limit.
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Appendix C
Appendix to Chapter 3: Reservoirs learn to learn

C.1 Leaky integrate and fire neurons

We used leaky integrate-and-fire (LIF) models of spiking neurons, where the
membrane potential Vj(t) of neuron j evolves according to:

Vj(t + 1) = ρj Vj(t) + (1− ρj) Rm Ij(t)− Bj(t) zj(t) (C.1)

where Rm is the membrane resistance, and ρj is the decay constant defined using

the membrane time constant τj as ρj = e
−∆t

τj , where ∆t is the time step of simulation.

A neuron j spikes as soon at its normalized membrane potential vj(t) =
Vj(t)−Bj(t)

Bj(t)
is

above its firing threshold vth. At each spike time t, the membrane potential Vj(t) is
reset by subtracting the current threshold value Bj(t). After each spike, the neuron
enters a strict refractory period during which it cannot spike.

C.2 Backpropagation through time

We introduced a version of backpropagation through time (BPTT) in Bellec et al.,
2018b which allows us to back-propagate the gradient through the discontinuous
firing event of spiking neurons. The firing is formalized through a binary step
function H applied to the scaled membrane voltage v(t). The gradient is propagated
through this step function with a pseudo-derivative as in Courbariaux et al., 2016;
Esser et al., 2016, but with a dampened amplitude at each spike.

Specifically, the derivative of the spiking zj(t) with respect to the normalized

membrane potential vj(t) =
Vj(t)−Bj(t)

Bj(t)
is defined as:

dzj(t)
dvj(t)

:= γ max{0, 1− |vj(t)|}. (C.2)

In this way the architecture and parameters of an RSNN can be optimized for a
given computational task.

79



C Appendix to Chapter 3: Reservoirs learn to learn

C.3 Optimizing reservoirs to learn

Reservoir model: Our reservoir consisted of 800 recurrently connected leaky
integrate-and-fire (LIF) neurons according to the dynamics defined above. The
network simulation is carried out in discrete timesteps of ∆t = 1 ms. The membrane
voltage decay was uniform across all neurons and was computed to correspond
to a time constant of 20 ms (ρj = 0.368). The normalized spike threshold was set
to 0.02 and a refractory period of 5 ms was introduced. Synapses had delays of
5 ms. In the beginning of the experiment, input Win and recurrent weights Wrec

were initialized according to Gaussian distributions with zero mean and standard
deviations of 1√

3
and 1√

800
respectively. Similarly, the initial values of the readout

Wout,init were also optimized in the outer loop, and were randomly initialized in
the beginning of the experiment according to a uniform distribution, as proposed
in Glorot and Bengio, 2010.

Readout learning: The readout was iteratively adapted according to equa-
tion (3.2). It received as input the input xC(t) itself and the features hC(t) from
the reservoir, which were given as exponentially filtered spike trains: hC,j(t) =

∑t′≤t κt−t′zC,j(t′). Here, κ = e
−∆t

τreadout is the decay of leaky readout neurons. Weight
changes were computed at each timestep and accumulated. After every second
these changes were used to actually modify the readout weights. Thus, formulated
in discrete time, the plasticity of the readout weights in a task C took the following
form:

∆Wout
C = η

t

∑
t′=t−1000 ms

(
yC(t′)− ŷC(t′)

)
· hC(t′)T, (C.3)

where η is a learning rate.

Outer loop optimization: To optimize input and recurrent weights of the reser-
voir in the outer loop, we simulated the learning procedure described above for
m = 40 different tasks in parallel. After each 3 seconds, the simulation was paused
and the outer loop objective was evaluated. Note that the readout weights were
updated 3 times within these 3 seconds according to our scheme. The outer loop
objective, as given in equation 3.3, is approximated by:

L =
1
m

m

∑
n=1

t

∑
t′=t−2000 ms

∥∥∥yn(t′)− ŷn(t′)
∥∥∥2

2
+ Lreg . (C.4)

We found that learning is improved if one includes only the last two seconds
of simulation. This is because the readout weights seem fixed and unaffected by
the plasticity of equation 3.2 in the first second, as BPTT cannot see beyond the
truncation of 3 seconds. The cost function L was then minimized using a variant
of gradient descent (Adam Kingma and Ba, 2014), where a learning rate of 0.001
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was used. The required gradient ∇L was computed with BPTT using the 3 second
chunks of simulation and was clipped if the L2-norm exceeded a value of 1000.

Regularization: In order to encourage the model to settle into a regime of
plausible firing rates, we add to the outer loop cost function a term that penalizes
excessive firing rates:

Lreg = α
800

∑
j=1

( f j − 20 Hz)2, (C.5)

with the hyperparameter α = 1200. We compute the firing rate of a neuron f j based
on the number of spikes in the past 3 seconds.

Task details: We describe here the procedure according to which the input
time series xC(t) and target time series yC(t) were generated. The input signal was
composed of a sum of two sines with random phase φn ∈ [0, π

2 ] and amplitude
An ∈ [0.5, 1], both sampled uniformly in the given interval.

xC(t) =
2

∑
n=1

An sin(2π
t

Tn
+ φn), (C.6)

with periods of T1 = 0.323 s and T2 = 0.5 s.

The corresponding target function yC(t) was then computed by an application of
a random second order Volterra filter to xC(t) according to equation (3.5). Each
task uses a different kernel in the Volterra filter and we explain here the process
by which we generate the kernels k1 and k2. Recall that we truncate the kernels
after a time lag of 500 ms. Together with the fact that we simulate in discrete time
steps of 1 ms we can represent k1 as a vector with 500 entries, and k2 as a matrix of
dimension 500× 500.

Sampling k1: We parametrize k1 as a normalized sum of two different exponential
filters with random properties:

k̃1(t) =
2

∑
n=1

an exp
(
− t

bn

)
, (C.7)

k1(t) =
k̃1(t)
‖k̃1‖1

, (C.8)

with an being sampled uniformly in [−1, 1], and bn drawn randomly in [0.1 s, 0.3 s].
For normalization, we use the sum of all entries of the filter in the discrete repre-
sentation (t ∈ {0, 0.001, 0.002, . . . , 0.499}).
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Sampling k2: We construct k2 to resemble a Gaussian bell shape centered at t = 0,
with a randomized “covariance” matrix Σ, which we parametrize such that we
always obtain a positive definite matrix:

Σ =

[√
1 + u2 + v2 + u v

v
√

1 + u2 + v2 − u

]
, (C.9)

where u, v are sampled uniformly in [−12, 12]. With this we defined the kernel k2

according to:

k̃2(t1, t2) = exp
(
− 1

24
[
t1, t2

]
Σ−1

[
t1
t2

])
, (C.10)

k2(t1, t2) =
k̃2(t1, t2)

‖k̃2‖1
· 14. (C.11)

The normalization term here is again given by the sum of all entries of the matrix
in the discrete time representation ([t1, t2] ∈ {0, 0.001, 0.002, . . . , 0.499}2).

C.4 Reservoirs can also learn without changing synaptic
weights to readout neurons

Reservoir model: The reservoir model used here was the same as that in Sec-
tion C.3, but with 300 neurons.

Input encoding: Analog values were transformed into spiking trains to serve
as inputs to the reservoir as follows: For each input component, 100 input neurons
are assigned values m1, . . . m100 evenly distributed between the minimum and
maximum possible value of the input. Each input neuron has a Gaussian response
field with a particular mean and standard deviation, where the means are uniformly
distributed between the minimum and maximum values to be encoded, and with
a constant standard deviation. More precisely, the firing rate ri (in Hz) of each
input neuron i is given by ri = rmax exp

(
− (mi−zi)

2

2 σ2

)
, where rmax = 200 Hz, mi

is the value assigned to that neuron, zi is the analog value to be encoded, and
σ = (mmax−mmin)

1000 , mmin with mmax being the minimum and maximum values to be
encoded.

Setup and training schedule: The output of the reservoir was a linear readout
that received as input the mean firing rate of each of the neurons per step i.e the
number of spikes divided by 20 for the 20 ms time window that constitutes a
step.
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The network training proceeded as follows: A new target function was randomly
chosen for each episode of training, i.e., the parameters of the target function are
chosen uniformly randomly from within the ranges above.

Each episode consisted of a sequence of 400 steps, each lasting for 20 ms. In each step,
one training example from the current function to be learned was presented to the
reservoir. In such a step, the inputs to the reservoir consisted of a randomly chosen
vector x = (x1, x2) as described earlier. In addition, at each step, the reservoir also
got the target value C(x′1, x′2) from the previous step, i.e., the value of the target
calculated using the target function for the inputs given at the previous step (in
the first step, C(x′1, x′2) is set to 0). The previous target input was provided to the
reservoir during all steps of the episode.

All the weights of the reservoir were updated using our variant of BPTT, once
per iteration, where an iteration consisted of a batch of 10 episodes, and the weight
updates were accumulated across episodes in an iteration. The ADAM Kingma

and Ba, 2014 variant of gradient descent was used with standard parameters and a
learning rate of 0.001. The loss function for training was the mean squared error
(MSE) of the predictions over an iteration (i.e. over all the steps in an episode, and
over the entire batch of episodes in an iteration), with the optimization problem
written as:

min
Θ

EC∼F

[
∑

t

(
C(xt

1, xt
2; Θ)− Ĉ(xt

1, xt
2; Θ)

)2
]

. (C.12)

In addition, a regularization term was used to maintain a firing rate of 20 Hz as in
equation C.5, with α = 30. In this way, we induce the reservoir to use sparse firing.
We trained the reservoir for 5000 iterations.

Parameter values: The parameters of the leaky integrate-and-fire neurons were
as follows: 5 ms neuronal refractory period, delays spread uniformly between 0− 5
ms, membrane time constant τj = τ = 20ms (ρj = ρ = 0.368) for all neurons j,
vth = 0.03 V baseline threshold voltage. The dampening factor for training was
γ = 0.4 in equation C.2.

Comparison with Linear baseline: The linear baseline was calculated using
linear regression with L2 regularization with a regularization factor of 100 (deter-
mined using grid search), using the mean spiking trace of all the neurons. The
mean spiking trace was calculated as follows: First the neuron traces were cal-
culated using an exponential kernel with 20 ms width and a time constant of 20
ms. Then, for every step, the mean value of this trace was calculated to obtain the
mean spiking trace. In Fig. 3.4B, for each episode consisting of 400 steps, the mean
spiking trace from a subset of 320 steps was used to train the linear regressor, and
the mean spiking trace from remaining 80 steps was used to calculate the test error.
The reported baseline is the mean of the test error over one batch of 1000 episodes
with error bars of one standard deviation.
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The total test MSE was 0.0056± 0.0039 (linear baseline MSE was 0.0217± 0.0046)
for the TN task.

Comparison with random reservoir In Fig. 3.4B,C, a reservoir with randomly
initialized input, recurrent and readout weights was tested in the same way as
the optimized reservoir – with the same sets of inputs, and without any synaptic
plasticity in the inner loop. The plotted curves are the average over 8000 different
TNs.

Comparison with backprop: The comparison was done for the case where the
reservoir was trained on the function family defined by target networks. A feed-
forward (FF) network with 10 hidden neurons and 1 output was constructed. The
input to this FF network were the analog values that were used to generate the
spiking input and targets for the reservoir. Therefore the FF had 2 inputs, one for
each of x1 and x2. The error reported in Fig. 3.4G is the mean training error over
1000 TNs with error bars of one standard deviation.

The FF network was initialized with Xavier normal initialization Glorot and
Bengio, 2010 (which had the best performance, compared to Xavier uniform and
plain uniform between [−1, 1]). Adam Kingma and Ba, 2014 with AMSGrad Reddi

et al., 2018 was used with parameters η = 10−1, β1 = 0.7, β2 = 0.9, C = 10−5. These
were the optimal parameters as determined by a grid search. Together with the
Xavier normal initialization and the weight regularization parameter C, the training
of the FF favoured small weights and biases.

84



Appendix D
Appendix to Chapter 4: Prior knowledge and
network dynamics enable networks of spiking
neurons to learn new tasks from just a few trials

D.1 Network models

Neurons are modelled after the standard adaptive leaky integrate-and-fire model as
in Bellec et al., 2018b. A neuron j consists of two state variables — its membrane
potential Vj(t) and threshold Aj(t). Whenever the membrane potential Vj(t) exceeds
the threshold Aj(t), the neuron emits a spike zj, and its membrane potential is
reset by subtracting the threshold value vth from it. After this, the neuron enters
a refractory period of some τre f time steps during which time it cannot spike.
Between spikes, the membrane potential Vj(t) evolves according to:

τmV̇j(t) = −Vj(t) + Rm Ij(t), (D.1)

where Rm is the membrane resistance, and Ij is the incoming current.

In discrete time, using timesteps of δt, the neuron is simulated as:

Vj(t + δt) = αVj(t) + (1− α)Rm Ij(t)− vthzj(t), (D.2)

where α = e(−
δt

τm ), τm is the membrane constant of the neuron j. The neuron spike
is defined as zj(t) = H(Vj(t)− Aj(t)), where H(x) = 1 if x > 0 and 0 otherwise,
Aj(t) is the adaptive threshold defined below. During the refractory period, zj(t) is
fixed to 0.

In all simulations the Rm was set to 1 GΩ. The input current Ij(t) is defined as the
weighted sum of spikes from external inputs and other neurons in the network:

Ij(t) = ∑
i

W in
ji xi(t− din

ji ) + ∑
i

Wrec
ji zi(t− drec

ji ), (D.3)

where W in
ji and Wrec

ji denote respectively the input and the recurrent synaptic
weights and din

ji and drec
ji the corresponding synaptic delays.

After each spike, the adaptive threshold Aj(t) contains a variable component aj(t)
that is increased by a constant and is allowed to decay back to 0:
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Aj(t) = vth + βaj(t), aj(t + δt) = ρjaj(t) + (1− ρj)zj(t) (D.4)

where vth is the constant baseline of the firing threshold A(t), a(t) is its activity-
dependent component, β > 0 is the relative amplitude of the activity-dependent
component. The parameter ρ = e(

−δt
τa ) controls the speed by which a(t) decays back

to 0, where τa is the adaptation time constant and δt is the duration of a discrete
time step.

We refer to these neurons as adaptive leaky integrate-and-fire (ALIF) neurons. An
LSNN is a network of spiking neurons that contains some ALIF neurons.

D.2 Training methods

Since the output of spiking neurons are not differentiable, we use a pseudo-
derivative with an additional factor γ < 1 that dampens the increase of backpropa-
gated errors through spikes as in Bellec et al., 2018b:

dzj(t)
dvj(t)

:= γ max{0, 1− |vj(t)|}, (D.5)

where vj(t) denotes the normalized membrane potential vj(t) =
Vj(t)−Aj(t)

Aj(t)
.

In ALIF neurons, gradients can be propagated through many time steps through
the dynamic threshold without dampening.

D.3 Tasks

Learning priors with the sinusoidal task.

Task family: The LSNN was trained to implement a regression algorithm on a
family of sinusoidal functions. The targets were defined by sinusoidal functions
y = A sin(φ + x) over the domain x ∈ [−5, 5]. The specific function to be learned
was defined then by the phase φ and the amplitude A, which were chosen uniformly
random between [0, π] and [0.1, 5] respectively.

Input encoding: Analog values were transformed into spiking trains to serve as
inputs to the LSNN as follows: For each input component, 100 input neurons
are assigned values m1, . . . m100 evenly distributed between the minimum and
maximum possible value of the input. Each input neuron has a Gaussian response
field with a particular mean and standard deviation, where the means are uniformly
distributed between the minimum and maximum values to be encoded, and with
a constant standard deviation. More precisely, the firing rate ri (in Hz) of each

86
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input neuron i is given by ri = rmax exp
(
− (mi−zi)

2

2 σ2

)
, where rmax = 200 Hz, mi

is the value assigned to that neuron, zi is the analog value to be encoded, and
σ = (mmax−mmin)

1000 , mmin with mmax being the minimum and maximum values to be
encoded.

Output decoding: The output of the LSNN was a linear readout that received as
input the mean firing rate of each of the neurons per step i.e the number of spikes
divided by 20 for the 20 ms time window that constitutes the step.

LSNN setup and training schedule: The standard LSNN model was used, with 100
hidden neurons. Of these, 40% were adaptive. We used all-to-all connectivity
between all neurons (regular and adaptive).

The network training proceeded as follows: A new target function was randomly
chosen for each episode of training, i.e., the parameters of the target function were
chosen uniformly randomly from within the ranges above. Each episode consisted
of a sequence of 500 steps, each lasting for 20 ms. In each step, one training example
from the current function to be learned was presented to the LSNN. In such a step,
the inputs to the LSNN consisted of a randomly chosen scalar input x. In addition,
at each step, the LSNN also got the target value C(x′) from the previous step, i.e.,
the value of the target calculated using the target function for the inputs given at
the previous step (in the first step, C(x′) is set to 0).

All the weights of the LSNN were updated once per iteration using our variant
of BPTT where an iteration consisted of a batch of 100 episodes, and the weight
updates were accumulated across episodes in an iteration. Adam Kingma and Ba,
2014 was used with standard parameters and a learning rate of 0.001. The loss
function for training was the mean squared error (MSE) of the LSNN predictions
over an iteration (i.e. over all the steps in an episode, and over the entire batch of
episodes in an iteration). In addition, a regularization term was used to maintain
a firing rate of 20 Hz. In this way, we induce the LSNN to use sparse firing. We
trained the LSNN for 5000 iterations.

Parameter values: The LSNN parameters were as follows: 5 ms neuronal refractory
period, delays of 1 ms, adaptation time constants of the adaptive neurons spread
uniformly between 1 − 3000 ms, β = 1.6 for adaptive neurons (0 for regular
neurons), membrane time constant τ = 20 ms, 0.03 V baseline threshold voltage.
The dampening factor for training was γ = 0.3.

Analysis and comparison: The linear baseline was calculated by performing linear
regression on the analog values of input points and targets in the first half of the
episodes (250 steps) and testing it on the points in the second half of the episode.
The total test MSE was 0.1968± 0.1469 and the linear baseline was 4.0340.
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Learning to learn motor prediction.

Task family: The family of functions was defined by different two-link arms where
the length and masses of the links were randomly chosen in the range [0.5, 2]. The
torques were generated randomly as described in Gilra and Gerstner, 2017. The
network was trained to predict the arm state, i.e. the angles φ1, φ2 of its two links.

Input encoding: The input was encoded in the same way as in the sinusoidal task.

Output decoding: The output of the LSNN was a linear readout that received as input
the trace of the firing of all the neurons in the network, where the spiking activity
of the neurons was convolved with an exponential kernel with time constant 50 ms
to generate the trace.

LSNN setup and training schedule: The standard LSNN model was used, with 600
hidden neurons. Of these, 50% were adaptive in all simulations. We used all-to-all
connectivity between all neurons (regular and adaptive).

The training was as follows: During inner loop training, for each episode, we
randomly chose a value for the mass and length for each link of the arm. The
LSNN received the motor command m(t) = [m1(t)m2(t)]T, and the actual state
vector of the arm τ = 100 ms ago, s(t− τ) as inputs. The state vector of the arm
s(t) = [φ1(t)φ2(t)]T was defined by the angles φ1, φ2 of its two links. All the inputs
were encoded into spikes using a population-rate code before being presented to
the network (as shown in Fig. 4.3C top panel). A linear readout on the trace of the
neural activity was used to generate the predictions of the state of the arm ŝ(t; Θ).
Each episode lasted for 10 seconds, where the torque changed every 5 ms.

In the outerloop, the following loss function was minimized using BPTT for spiking
networks:

L(Θ) = EC∼F

[ ∫
t

(
s(t)− ŝ(t; Θ)

)2
]

, (D.6)

where E denotes expectation, and Θ denotes the hyper-parameters.

Parameter values: The LSNN parameters were as follows: 5 ms neuronal refractory
period, delays of 1 ms, adaptation time constants of the adaptive neurons spread
uniformly between 1− 600 ms, β = 1.7 for adaptive neurons (0 for regular neurons),
membrane time constant τ = 20 ms, 0.03 mV baseline threshold voltage. The
dampening factor for training was γ = 0.3. We used the Adam optimizer Kingma

and Ba, 2014 with the default parameters with a learning rate of 0.001. We used a
batch size of 80 for training.

Meta-reinforcement learning.

Task family: An LSNN-based agent was trained on a family of navigation tasks in
a two-dimensional circular arena. For all tasks, the arena is a circle with radius 1
and goals are smaller circles of radius 0.3 with centers uniformly distributed on
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the circle of radius 0.85. At the beginning of an episode and after the agent reaches
a goal, the agent’s position is set randomly with uniform probability within the
arena. At every timestep, the agent chooses an action by generating a small velocity
vector of Euclidean norm smaller or equal to ascale = 0.02. When the agent reaches
the goal, it receives a reward of 1. If the agent attempts to move outside the arena,
the new position is given by the intersection of the velocity vector with the border
and the agent receives a negative reward of −0.02.

Input encoding: Information of the current environmental state s(t) and the reward
r(t) were provided to the LSNN at each time step t as follows: The state s(t) is
given by the x and y coordinate of the agent’s position (see top of Fig. 4.4C). Each
position coordinate ξ(t) ∈ [−1, 1] is encoded by 40 neurons which spike according
to a Gaussian population rate code defined as follows: A preferred coordinate value
ξi, is assigned to each of the 40 neurons, where ξi’s are evenly spaced between −1
and 1. The firing rate of neuron i is then given by rmax exp(−100(ξi − ξ)2) where
rmax is 500 Hz. The instantaneous reward r(t) is encoded by two groups of 40
neurons (see green row at the top of Fig. 4.4F). All neurons in the first group spike
in synchrony each time a reward of 1 is received (i.e., the goal was reached), and
the ones in the second group spike when a reward of −0.02 is received (i.e., the
agent moved into a wall).

Output decoding: The output of the LSNN is provided by five readout neurons.
Their membrane potentials yi(t) define the outputs of the LSNN. The action vector
a(t) = (ax(t), ay(t))T is sampled from the distribution πθ which depends on
the network parameters θ through the readouts yi(t) as follows: The coordinate
ax(t) (ay(t)) is sampled from a Gaussian distribution with mean µx = tanh(y1(t))
(µy = tanh(y2(t))) and variance φx = σ(y3(t)) (φy = σ(y4(t))). The velocity vector
that updates the agent’s position is then defined as ascale a(t). If this velocity has a
norm larger than ascale, it is clipped to a norm of ascale.

The last readout output y5(t) is used to predict the value function Vθ(t). It estimates
the expected discounted sum of future rewards R(t) = ∑t′>t ηt′−tr(t′), where
η = 0.99 is the discount factor and r(t′) denotes the reward at time t′. To enable
the network to learn complex forms of exploration we introduced current noise in
the neuron model in this task. At each time step, we added a small Gaussian noise
with mean 0 and standard deviation 1

Rm
νj to the current Ij into neuron j. Here, νj

is a network parameter initialized at 0.03 and optimized by BPTT alongside the
network weights.

LSNN setup and training schedule: To train the network we used the Proximal
Policy Optimization algorithm (PPO) Schulman et al., 2017. For each training
iteration, K full episodes of T timesteps were generated with fixed parameters
θold (here K = 10 and T = 2000). We write the clipped surrogate objective of PPO
as OPPO(θold,θ, t, k) (this is defined under the notation LCLIP in Schulman et al.,
2017). The loss with respect to θ is then defined as follows:
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L(θ) = − 1
KT ∑

k<K
∑
t<T

OPPO(θold,θ, t, k) + µv (R(t, k)−Vθ(t, k))2 , (D.7)

−µeH(πθ(k, t)) + µ f iring
1
n ∑

j
|| 1

KT ∑
k,t

zj(t, k)− f 0||2, (D.8)

where H(πθ) is the entropy of the distribution πθ, f 0 is a target firing rate of 10
Hz, and µv, µe, µ f iring are regularization hyper-parameters. Importantly, probability
distributions used in the definition of the loss L (i.e. the trajectories) are conditioned
on the current noises, so that for the same noise and infinitely small parameter
change from θold to θ the trajectories and the spike trains are the same. At each
iteration this loss function L is then minimized with one step of the ADAM
optimizer Kingma and Ba, 2014.

Parameter values: In this task the LSNN had 400 hidden units (200 excitatory neurons,
80 inhibitory neurons and 120 adaptive neurons with adaptation time constants
τa = 1200 ms) and the network was rewired with a fixed global connectivity of
20% Bellec et al., 2018a. The membrane time constants were similarly sampled
between 15 and 30 ms. The adaptation amplitude β was set to 1.7. The refractory
period was set to 3 ms and delays were sampled uniformly between 1 and 10 ms.
The regularization parameters µv, µe and µ f iring were respectively 1, 0.001, and
100. The parameter ε of the PPO algorithm was set to 0.2. The learning rate was
initialized to 0.01 and decayed by a factor 0.5 every 5000 iterations. We used the
default parameters for ADAM, except for the parameter ε which we set to 10−5.
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Appendix to Chapter 5: Slow processes of neurons
enable a biologically plausible approximation to
policy gradient

E.1 Detailed derivation of Reward-based e-prop for
continuous actions

Here, we show the detailed derivation for the synaptic plasticity rules that result
from gradients of the loss function E, as given in equation (5.1), see Fig. E.1 for the
network architecture. As a result of the general actor-critic framework with policy
gradient, this loss function additively combines the loss function for the policy Eπ

(actor) and the value function EV (critic).

We assume that the agent can take at certain decision times t0, . . . , tn, . . . real-
valued actions a. We also assume that each component k of this action vector
follows independent Gaussian distributions, with a mean given by the output yk
and a fixed variance σ2.

We consider first the regression problem defined by the loss function EV . We obtain
an estimation of the loss gradient:

d̂EV

dWrec
ji

= −∑
t′
(Rt′ −Vt′)WV,out

j ēt′
ji , (E.1)

where WV,out
j are the weights of the output neuron Vt

j predicting the value function

E[Rt]. In order to overcome the obstacle that an evaluation of the return Rt′

requires to know future rewards, we introduce temporal difference errors δt =
rt + γVt+1 − Vt, and use that Rt′ − Vt′ is equal to the sum ∑t≥t′ γ

t−t′δt. We then
reorganize the two sums over t and t′ (note that the interchange of the summation
order amounts to the equivalence between forward and backward view of RL (R. S.
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Figure E.1: Learning architecture for reward-based e-prop: The network input xt consists of the
current joint angles and input cues. The network produces output yt which is used to
stochastically generate the actions at. In addition, the network produces the value predic-
tion, which, along with the reward from the environment, is used to calculate the TD-error
δt. The learning signals and the TD-errors are used to calculate the weight update, as
denoted by the green dotted lines.

Sutton and Barto, 2018)):

d̂EV

dWrec
ji

= −∑
t′

(
∑
t≥t′

γt−t′δt
)

WV,out
j ēt′

ji (E.2)

= −∑
t

δt ∑
t′≤t

γt−t′WV,out
j ēt′

ji (E.3)

= −∑
t

δt Fγ

(
WV,out

j ēt
ji
)

. (E.4)

For the other part Eπ in the loss function E defined at equation (5.1), we consider

the estimator ̂∂ log π(at|yt)
∂zt

j
, and use our previous definition that each component k of

the action follows an independent Gaussian, which has a mean given by the output
yk and a fixed variance σ2. The estimator then becomes:

̂∂ log π(at|yt)

∂zt
j

= −∑
k

Wπ,out
kj ∑

{n | tn≥t}
κtn−t(Rtn −Vtn)

atn
k − ytn

k
σ2 , (E.5)

where Wπ,out
kj are the weights onto the output neurons yt

k defining the policy π, and
κ is the constant of the low-pass filtering of the output neurons. Using e-prop, we
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arrive at an estimation of the loss gradient of the form:

d̂Eπ

dWrec
ji

= ∑
t

∂̂Eπ

∂zt
j

et
ji (E.6)

= −∑
t,k

Wπ,out
kj ∑

{n | tn≥t}
(Rtn −Vtn)

atn
k − ytn

k
σ2 κtn−tet

ji (E.7)

= −∑
n,k
(Rtn −Vtn)Wπ,out

kj
atn

k − ytn
k

σ2 ∑
t≤tn

κtn−tet
ji︸ ︷︷ ︸

ētn
ji

. (E.8)

Like in the derivation of the gradient of EV , this formula hides a sum over future
rewards in Rtn that cannot be computed online. It is resolved by introducing the
backward view as in equation (E.4). We arrive at the loss gradient:

d̂Eπ

dWrec
ji

= −∑
t

δtFγ

(
∑

k
Wπ,out

kj
at

k − yt
k

σ2 ēt
ji

)
. (E.9)

Importantly, an action is only taken at times t0, . . . , tn, . . . , hence for all other times,
we set the term (at

k − yt
k) to zero.

Finally, the gradient of the loss function E is the sum of the gradients of Eπ

and EV , equations (E.4) and (E.9) respectively. Application of stochastic gradient
descent with a learning rate of η yields the synaptic plasticity rule given in the
equations (5.6) and (5.7).

The gradient of E with respect to the output weights can be computed directly
from equation (5.1) without the theory of e-prop. However, it also needs to account
for the sum over future rewards that is present in the term Rt −Vt. Using a similar
derivation as in equations (E.2)-(E.4) the plasticity rule for these weights becomes:

∆Wπ,out
kj = −η ∑

t
δtFγ

(yt
k − at

k
σ2 Fκ(zt

j)
)

, (E.10)

∆WV,out
j = ηcV ∑

t
δtFγ

(
Fκ(zt

j)
)

. (E.11)

Similarly, we also obtain for the update rules of the biases of the output neurons:

∆bπ,out
k = −η ∑t δtFγ

(
yt

k−at
k

σ2

)
, and ∆bV,out = ηcV ∑t δt.

E.2 Simulation details: delayed arm reaching task

Details of the arm model: The arm consisted of two links, with one link connected
to the other link by a joint, which is itself connected by a joint to a fixed position
in space. The configuration of this arm model at time t can be described by the
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angles φt
1 and φt

2 of the two joints measured against the horizontal and the first link
of the arm respectively, see Fig. 5.1C. For given angles, the position yt = (xt, yt)
of the tip of the arm in Euclidean space is given by xt = l cos(φt

1) + l cos(φt
1 + φt

2)
and yt = l sin(φt

1) + l sin(φt
1 + φt

2). Angles were computed by discrete integration
over time: φt

i = ∑t′≤t φ̇t′
i δt + φ0

i using δt = 1 ms.

Details of the delayed arm reaching task and of the input scheme: The agent
could control the arm by setting the angular velocities of the two joints to a different
value at every ms. There was a total of 8 possible goal locations, which were evenly
distributed on a circle with a radius of 0.8. The arm was initially positioned so
that its tip was equidistant from all the goals. In each trial, one of the 8 goals
was chosen randomly, and indicated as the desired goal location in the first 100
ms of the trial. Each possible goal location was associated with a separate input
channel, consisting of 20 neurons. They produced a Poisson spike train with a
rate of 500 Hz while the corresponding goal location was indicated. After this cue
was provided, a delay period of a randomly chosen length between 100− 500 ms
started, during which the subject was penalized with a negative reward of −0.1 if
it moved outside a central region of radius 0.3. After this delay period, a go cue
instructed the subject to move towards the goal location. This cue was provided in a
separate input channel of 20 neurons, which produced a Poisson spike train with a
rate of 500 Hz for 100 ms. Once the tip of the arm had moved closer than a distance
of 0.1 to the goal location, a positive reward of 1 was given to signal a success. A
negative reward of −0.01 was given for every ms after the go cue started while the
arm did not yet reach the goal, in order to encourage an efficient movement. Going
far off the region of interest — a circle of radius 1 — was penalized with a negative
reward of −0.1 at each ms. One trial lasted for a total of 1.5 seconds i.e. the subject
had 900 ms from the start of the go cue to reach the goal.

The agent also received its current configuration (angles of the arms φ1 and φ2, see
Fig. 5.1B) as input at each time step in the following way: Each one of the angles
was encoded by a population of 30 neurons, where each neuron had a Gaussian
tuning curve centered on values distributed evenly between 0 and 2π, with a firing
rate peak of 100 Hz. The tuning curve had a standard deviation of 4

30 .

In addition, if the goal position was successfully reached, the network received this
information using a separate input channel consisting of 20 neurons that produced
a Poisson spike train with a rate of 500 Hz.

Details of the network model: The network consisted of 350 LIF neurons and 150

ALIF neurons. The membrane time constant of all neurons was τm = 20 ms, with a
baseline threshold vth = 0.6 and a refractory period of 3 ms. All synaptic delays
were 1 ms. The adaptation time constant of ALIF neurons was set to τa = 500 ms,
and the adaptation strength was β j = 0.07. The membrane time constant of output
neurons was given by τout = 20 ms.
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Actions (angular velocities for the 2 joints) were sampled from a Gaussian dis-
tribution with a mean of yt

k, and a standard deviation of σ = 0.1, which was
exponentially decayed over iterations so that it reached σ = 0.01 at the end.

Details of the learning procedure: The network was trained for a total of 16000
weight updates (iterations). In each iteration, a batch of 200 trials was simulated,
and we applied weight changes at the end of each batch. Independent of the
learning method, we used Adam to implement the weight update, with a learning
rate of 0.001 and default hyper-parameters (Kingma and Ba, 2014). For training
with BPTT, gradients were computed for the loss function given in equation (5.1).
In the case of e-prop, we used equations (5.6) and (5.7). For random e-prop, the
broadcast weights Bjk were initialized using a Gaussian distribution with mean 0
and variance 1. To avoid an excessively high firing rate, regularization was applied
with creg = 100 and a target firing rate of f target = 10 Hz.
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