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Abstract⎯ This paper presents the development of a 
system theory-based model of the COVID-19 pan-
demic spread based on weekly reports available on 
the EU Open Data Portal (EUODP). The considered 
mathematical model will be represented in the S com-
plex domain as a transfer matrix. System identification 
methodology, well known in control system theory, 
was applied. Stability analysis with possibilities of con-
trollability and observability was considered. The 
spread of a pandemic can be controlled by propor-
tional (P) action in an open loop. 
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Introduction 

The spread of the SARS-Cov-2 pandemic can be de-
scribed as a mathematical model of a system that is a 
unique function that maps the input vector to the out-
put vector according to the mathematical law. The sys-
tem model is an idealized, imaginary system, which 
retains the properties of the real system essential for 
system analysis [1]. Having in mind the definitions of 
the system [1], [2], the spread of the coronavirus pan-
demic can be considered as a dynamic model. 
A large number of mathematical models of disease 
spread can be found in [3-8] with the aim to predict the 
pandemic's next moves. However, available models 
[9-14] are based on data representing the output func-
tion.   
Mathematical modeling of a biological system based 
on system theory and control system engineering con-
cepts however enable to determine and characterize 
the system model of the spreading pandemic by con-
sidering various aspects of the system including sta-
bility, observability, and controllability. 
 
Methods 

As known from systems dynamics and control theory, 
a dynamic system can be described by a behavioral 
differential equation which can be stochastic and de-
terministic [1]. The assumption is introduced that the 
spread of a pandemic system can be described as 
a dynamic system.  
In previous considerations [15], a so-called SISO 
(single input – single output) system was consid-
ered. A similar approach is applied in this work, 
however, the system here will be defined as a 

multiple transfer system. Such a system is de-
scribed by one input and two outputs (SIMO – single 
input – multiple outputs), that is why it is necessary 
to define the transfer matrix of the system instead of 
the transfer function. 
The behavioral differential equation of the system 
with multiple inputs and multiple outputs is defined 
according to [16], [17] 

∑ 𝐀𝑘𝐘(𝑡)

𝑙

𝑘=0

= ∑ 𝐁𝑘𝐔(𝑡)

𝑚

𝑘=0

, 𝑚 ≤ 𝑙 (1) 

 

where 𝐴 ∈ 𝑅𝑁×𝑁 and 𝐵 ∈ 𝑅𝑁×𝑀 are matrices with 
constant coefficients, and 𝑙, 𝑚 the highest deriva-
tions that occur between output and input variables.  
Based on the ordinary differential equation of the 
system behavior, the transfer matrix of a system is 
defined as 

𝐆(𝑠) =  (
𝐺11 ⋯ 𝐺1𝑀

⋮ ⋱ ⋮
𝐺𝑁1 ⋯ 𝐺𝑁𝑀

)  (2) 

 
where 𝑁 is the dimension of the output vector and 

𝑀 is the dimension of the input vector.  
For the considered system describing the spread 
SARS-CoV-2 virus we assumed a system with one 
input and two outputs. The general transfer matrix 
is:  
 

 𝐆(𝑠) =  (
𝐺11(𝑠)
𝐺21(𝑠)

)  
 

(3) 

 

 

Figure 1. Illustrated block diagram of the system. 

A block diagram of the system is given in Figure 1 
based on Equation 3. Following Figure 1, 𝑢(𝑡) is the 

input variable, 𝐲(𝑡) =  (𝑦1(𝑡) 𝑦2(𝑡))𝑇 is the output 
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vector and 𝒛(𝑡) = (𝑧1(𝑡) 𝑧2(𝑡))𝑇 is the disturbance 
vector. The disturbance vector can also be defined 
as an input vector, but can also be considered sep-
arately. Note that the disturbance vector is needed 
to be defined according to the definition of the input 
of a system [16]. For modeling the spreading pan-
demic, disturbances were not taken into considera-
tion. 
To determine the transfer matrix of the system, the 
concept of system identification that has been 
widely used in the field of control system engineer-
ing was applied. If it is not possible to determine a 
mathematical model based on physical laws, e.g. 
Newton's law, Bernoulli's equation, Kirchhoff's law, 
etc. the system identification methodology can be 
subsequently applied in case of a known response 
of the system, represented by the input and output 
vectors.  
However, there are different approaches for system 
identification including parametric, nonparametric, 
linear, nonlinear, stochastic or deterministic model-
ing concepts. In general, the identification of a sys-
tem is performed according to a flow chart with mul-
tiple key elements in the system identification cycle 
as defined in [18]. An adapted flow chart for this pro-
cess is given in Figure 2.  

 
Figure 2.  Adapted flow chart in system identifica-

tion of the spread of SARS-CoV-2. 
 
To determine the mathematical model of the system 
(spread of SARS-CoV-2) we used publicly collected 
data available on the EU Open Data Portal [19]. In 
a previous study pre-published in [15], mathemati-
cal models were provided based on data collected 
daily. It should be noted that in one period 

(14.12.2020 to 11.03.2021), the availability of data 
changed from a daily to weekly periods, as coun-
tries have begun to adopt anti-pandemic strategies 
on a two-week basis. Therefore, in this paper we 
present models based on the number of infected 
and dead persons weekly. Observed from the as-
pect of control theory, the sampling time was finally 
defined to be one week. 
The basic hypothesis of this work was to define and 
predict the input vector, i.e. the number of new cases 
on a weekly level based on the output variable. In our 
recent work [15] we were able to demonstrate that the 
methodology can be applied similarly for different 
countries when the sampling time is daily. Model vali-
dation therein was performed for multiple countries 
such as Austria, Italy, Germany and Serbia. In this 
work, vectors were defined on a weekly basis, sample 
rate was set to one week, and results for Austria and 
Germany are presented in more detail.   
 
Results 

Models for Austria and Germany were exemplarily 
developed and evaluated in order to determine 
whether the used methodology can be applied with 
regard to a diminished (weekly) sampling time by 
maintaining a sufficient prediction accuracy. 

 

Figure 3. Identified transfer function model in rela-
tion to the number of new cases in Austria 

 

Figure 4. Identified transfer function model in rela-
tion to the number of deaths in Austria 

In accordance with the definition of a behavioral dif-
ferential equation, the ordinary differential equation 
(ODE) should be of lowest order, fully describing the 
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dynamic characteristics of the system. Therefore, 
we decided to adopt a second-order system based 
on the conducted analysis for systems from 1st to 5th 
order. 
The spread of pandemic was assumed as a contin-
uous-time model, and therefore a continuous-time 
transfer matrix was identified. Parameterization of 
the model included that each transfer function has 
two poles and one zero, the number of free coeffi-
cients is 4. The transfer matrix of the system 𝐆(𝑠), 
which responses are shown in Figures 3 and 4, is: 
 

𝐆(𝑠) =  (
𝐺11(𝑠)

𝐺21(𝑠)
) = (

17,53𝑠+17,71

𝑠2+10,59𝑠+18,85

0.007816𝑠−0.0001566

𝑠2+0,3026𝑠+0,000003505

)  (4) 

 
Transfer matrices for other countries can be deter-
mined similarly. Figures 5 and 6 show that the transfer 
matrix for Germany with a ten times higher population 
than Austria can also be defined as a system of sec-
ond-order in relation to the number of new cases and 
deaths. 
 

 

Figure 5. Identified transfer function model in rela-
tion to the number of new cases in Germany.  

 

Figure 6. Identified transfer function model in rela-
tion to the number of deaths in Germany. 

 

The transfer matrix determined for Germany, in re-
lation to the number of new infected and the number 
of deaths as shown in Figures 5 and 6, is given by 
Eq. 5.  

𝐆(𝑠) =  (
𝐺11(𝑠)
𝐺21(𝑠)

) = (

6,397𝑠+8,704

𝑠2+2,787𝑠+9,023
0.007961𝑠+0.0001296

𝑠2+0,1518𝑠+0,01323

)  (5) 

 
The slight time delay of the model simulations ob-
served in Figures 4 and 6 can be explained by ef-
fects of the disturbance and input vector. It should 
be noted that for both countries the spread of the 
pandemic can be determined by the transfer matrix 
which transfer functions are of second order. Note 
that the coefficients are different as a consequence 
of different values of the input and output vectors. If 
other countries were analyzed similarly, transfer 
matrices would be determined with appropriate 
transmission functions of second order. 
 

 

Figure 7. Pole-Zero Map for Austria and Germany.  

Based on the pole distribution of transfer matrices for 
both systems as shown in Figure 7, it is reasonable to 
evaluate controllability and observability, because the 
systems of both countries are concluded to be stable. 
The same conclusion about stability can be made from 
the analysis of transient responses of the systems. For 
both systems, controllability and observability matrices 
were determined, and pandemics in both countries 
were observable and controllable, which could also be 
confirmed for the other countries.  
When transfer matrices are known, behavioral differ-
ential equations are also known. By applying the in-
verse Laplace transform, the time responses of the 
systems are obtained, which also represent the solu-
tions of the behavioral differential equations of those 
systems. 
 
Discussion 

By applying the system identification methodology 
from control theory, it is possible to determine a math-
ematical model of pandemic spread, as demonstrated 
on the example of SARS-CoV-2. Linear models of a 
second-order system at a satisfying level can be used 
to describe mathematical models representing a dy-
namic system. Deviations of the actual values from the 
model can be explained by the effect of disturbance 
on the system.  
Theoretically it is possible to consider different types of 
control algorithms, e.g., predictive control model, 
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natural tracking control, exponential tracking control or 
fuzzy control so that in the future, in the case of similar 
epidemics, epidemic control can be exerted.  
The models which are applied for both countries from 
the aspect of system control theory are represented by 
an application which contains a proportional gain of 
the control system. The system is considered as an 
open-loop control system without compensation of the 
effects of disturbances. A lockdown represents the ap-
plication of a P (proportional) action in the open loop 
of controlling the spreading of the disease (see Figure 
8). 

 

Figure 8. Control in open-loop with P-action. 

Models were able to be determined even though the 
diminished weekly sampling time and provide suffi-
cient information "on the basis of which" it is possible 
to predict the further spread of the pandemic since the 
mathematical model of the system is known. One of 
the conditions that need to be considered in further re-
search is the impact of the number of vaccinated per-
sons and the determination of mathematical models of 
pandemic spread, considering the data of the popula-
tion. 
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