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Abstract⎯ In this work, the hand trajectory decoding 
was investigated in the source space. A couple of di-
mensionality reduction techniques were utilized to re-
duce the number of the source-space signals, namely, 
computing the mean, principle component analysis 
(PCA), locality preserving projection (LPP).  
The decoding performances from the source-space 
approaches were compared to the sensor-space ap-
proach. We found that every approach showed perfor-
mance metrics in a similar range and only slight differ-
ences across approaches could be observed. The 
source-space approach with PCA with 8 components 
exhibited higher performance metrics than other ap-
proaches and slightly higher performance metrics than 
the sensor-space approach (improvement for correla-
tion 0.01 to 0.09, SNR 0.05 to 0.1 dB). The results sug-
gested that the source-space-based decoding is pos-
sible, and it can achieve comparable performance to 
the sensor-space approach.  
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Introduction 

The electroencephalogram (EEG) measures the elec-
trical changes of the brain non-invasively. Since the 
actual underlying sources in the brain are inaccessible 
from EEG, source localization is utilized to estimate 
the underlying cortical sources. The source localiza-
tion is rarely implemented in the processing steps but 
rather in the post-analysis because of the complexity 
of the problem.  
Recently, some studies investigated this direction. 
They demonstrated the possibility of source-space 
classification in brain-computer interfacing (BCI) [1]–
[4]. Still, only single literature [5] focused on the re-
gression problem, so this work will explore the possi-
bility of regression of hand trajectory in the source 
space.  

Previously, a couple of works from our group [6]–[9] 
studied the decoding of hand movement trajectory for 
the pursuit tracking task (PTT) from EEG in an online 
setting. Group-level source localization analysis re-
veals the brain regions contributing to the decoding of 
the movement kinematics to be located between the 
medial part of the frontal and parietal area, which cor-
responds to the frontoparietal network [10]. This infor-
mation could be used to restrict the signals in the 
source space, but the resulting number of signals is 
still in the range of thousands. Hence, different dimen-
sionality reduction techniques widely used in different 
research fields were investigated, namely, principal 
component analysis (PCA), locality preserving projec-
tion (LPP) [11], and computing the mean. 
 

Methods 

Dataset description 
The data from 2 studies [8], [9] was used. In total, 
there are 15 measurements from 14 different partici-
pants since one participant was in both studies while 
one participant was excluded due to the signal quality 
in some measurement runs. 
 
Experimental setup 
The task for the participant was to follow a target cur-
sor ("snake") on the screen by controlling a robotic arm 
(JACO, Kinova Robotics Inc., Canada) via a mixed 
control between the hand movement, captured via the 
LeapMotion (LM) system (LeapMotion Inc., USA), and 
the decoded signal from EEG. The mixed percentage 
of the control was adjusted to the respective run from 
100% LM and 0% EEG to 0% LM and 100% EEG. The 
EEG signals were simultaneously measured via 64 (in 
[8]) and 60 (in [9]) active EEG electrodes (actiCAP, 
Brain Products GmbH., Germany) recorded at 500 Hz 
with biosignal amplifiers (BrainAmp, Brain Products 
GmbH, Germany). The common EEG channels be-
tween both studies used in this analysis can be seen 

Figure 1: Overview of the experiment information a) common processing pipeline adapted from [7], [8] with addi-
tional source-space transformation and ROI scouting block, highlighted with dashed lines, b) common electrodes 
position used in the analysis, c) the predefined region-of-interest 
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in Fig. 1b. The data from the 100% LM was used to 
calibrate the decoding model.  For a detailed explana-
tion of the experimental setup, please refer to [8], [9] 
 
Processing Pipeline 
The overview of the processing was shown in Fig.1a. 
For a detailed description of the processing pipeline, 
please refer to [8], [9], on which the processing pipe-
line was based. The following changes were made in 
the processing pipeline. 1. an additional source-space 
transformation and ROI scouting block were added 2. 
criteria for choosing the retained number of compo-
nents in the partial least square (PLS) model were to 
retain 95% of total variances components instead of 
fixing the same number of components across meas-
urements. The combination between PLS and the 
square roots unscented Kalman filter (SR-UKF) [12] 
produces the following movement kinematics: hori-
zontal position, vertical position, horizontal velocity, 
vertical velocity, speed, and distance. 
 
Source-space transformation 
Before the experiment, electrode positions were 
measured. This information was used to co-register 
with an ICBM152 template head model. The forward 
problem was modeled with a boundary element 
method (BEM) with 5000 unconstrained cortical dipole 
sources, meaning that each source was modeled with 
3 components in XYZ directions. The conductivity of 
the scalp, skull, and brain was set to (0.41, 0.02, 0.47)  
[13], respectively. The inverse problem was solved 
with OpenMEEG [14] and sLORETA [15] using the 
Brainstorm package [16].  
 
ROI scouting 
Several regions-of-interests (ROIs) were defined ac-
cording to the Mindboggle brain atlas [17] to reduce 
the number of signals in the source space. The prede-
fined ROIs, which were based on the frontoparietal 
network [6], [10], are as follows: cuneus, lateral occip-
ital, paracentral, postcentral, precentral, precuneus, 
superior frontal, and superior parietal in both hemi-
spheres (Fig. 1c). Different dimensionality reduction 
techniques were employed for each directional com-
ponent of sources in each ROI to reduce the number 
of signals further. These are PCA, LPP [11], and com-
puting the mean signals. The optimum number of re-
tained components for both PCA and LPP were cho-
sen by comparing the correlation and the computa-
tional complexity of 1,2,4,8, and 16 components. For 
both PCA and LPP, 8 components were retained per 
each directional source component or equivalently 24 
components per ROI. The processes of source-space 
transformation and ROI scouting can be summarized 
as matrix multiplications as: 
 
 Y = 𝑆𝐾𝑋 (1) 

 

where X is processed sensor-space EEG signals, K 
is a kernel matrix that transforms sensor-space sig-
nals into the source space, S is a scouting matrix that 
produces the representation signals Y from the 
source-space signals. 
 
Decoding performance evaluation 
The following metrics were chosen to compare among 
the different approaches. Namely, the correlation be-
tween the decoded and the actual trajectory, signal-to-
noise (SNR) ratio defined as: 

 SNR(zt, zt̂) = 10 log10 
var(zt)

𝑚𝑠𝑒(zt,zt̂)
 (2) 

and decoded-signals-to-signal (DSSR) ratio defined 
as [7]:  

 DSSR(zt, zt̂) = 10 log10 
var(zt)

var(zt̂)
 (3) 

where zt, zt̂ indicate the true and the decoded kinemat-

ics, var(𝑥) means the variance of x and 𝑚𝑠𝑒(𝑥, 𝑦) 
means the mean squared error (MSE) between x and 
y. The DSSR [7] could be interpreted as the amplitude 
mismatch between the decoded and the actual move-
ment kinematics. The best case is that the amplitude 
of kinematics matches with a DSSR at 0 dB. The hor-
izontal and vertical components were grouped by 
computing the mean and distance and speed into po-
sition, velocity, and magnitude. The 3 kinematics will 
be called 'simplified' kinematics, and they were meant 
only for visualization purposes, while the 'full' kinemat-
ics contain the original 6 kinematics. The metrics dif-
ferences between 'Se' and the best source-space ap-
proach for each of the 'full' kinematics were computed 
by subtracting the best source-space approach to 'Se' 
from the same measurement and then computing the 
mean across measurements. 
 
Statistical evaluation 
The experiment was repeated in a simulated manner 
that closely resembles the online processing pipeline 
with different approaches: sensor-based approach 
'Se', computing the mean 'Mean', 'PCA8', and 'LPP8'. 
The subject-level average metrics were computed. 
Multiway repeated-measures ANOVA was used to 
compare the following factors: 1. control percentage 
(100% LM – 0% LM), 2. movement kinematics, and 3. 
different approaches ('Se', 'Mean', 'PCA8', 'LPP8'), us-
ing Greenhouse-Geisser correction. For the DSSR, 
the absolute value was used in the statistical test (aD-
SSR). Tukey's HSD test was used as a post-hoc test 
for multiple comparisons. These statistical tests were 
performed on the 'full' kinematics. 
 

Results 

The results from the 'simplified' kinematics were sum-
marized in Fig. 2. Overall, the boxplots revealed the 
trends where the directional kinematics indicated 
higher performance than the non-directional ones.  
From Fig. 2., every approach showed the median cor-
relations in a similar range at around 0.30, 0.32, 0.12 
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for the position, velocity, and magnitude. ‘PCA8’ ex-
hibited a higher median correlation in velocity and 
magnitude than ‘Se’. 
 

 
Figure 2: The subject-level boxplot correlation of differ-
ent approaches, 'Se', 'Mean', 'PCA8', 'LPP8'. For visu-
alization purposes, the 'simplified' kinematics were 
used, and the mean of the correlations was computed 
across 100%LM to 0%LM runs. The numbers indicate 
the corresponding median values. The dashed lines 
indicate the median value of ‘Se’. 
 
Multiway repeated-measures ANOVA revealed statis-
tically significant differences between approaches in 
terms of correlation (F(3,39)=5.5, p=0.010), SNR 
(F(3,39)=5.1, p=4.15x10-5), but not in the case of ab-
solute DSSR (F(3,39)=2.47, p=0.101). 
Post-hoc tests revealed that 'Mean' and 'LPP8' 
showed lower performance than 'Se' and that 'PCA8' 
indicated slightly higher performance than the rest.  
The only statistically significant results were between 
a pair of 'LPP8' to 'PCA8' (p=0.018), while the other 
comparison between pairs was not statistically signifi-
cant. The performance's ranking is as follows: ‘PCA8’ 
> ‘Se’ > ‘Mean’ > ‘LPP8’. The group-level differences 
between 'PCA8' and 'Se' of the 'full' kinematics can be 
found in Tab. 1. In most cases for correlation and SNR, 
'PCA8' showed slightly higher performance than 'Se'. 
 
Table 1: Group-level differences of 'PCA8' and 'Se' 
from 'full' kinematics 

 Corr. SNR aDSSR 

Pos. X 0.0009 0.1084 -0.0121 

Vel. X 0.0049 -0.0165 -0.04 

Pos. Y 0.0035 0.0938 -0.0454 

Vel. Y 0.0084 -0.02 -0.0588 

Distance -0.0015 0.0704 0.0282 

Speed 0.0096 0.0499 0.0503 

 

Discussion 

Several works had proven that the decoding of hand 
movement trajectory in humans based on the sensor-
space EEG signals could be done with an actual hand 
movement [8], [9], or imagined hand movement [18]. 
However, an open question was whether it is possible 
to perform decoding of hand movement trajectory 
based on the source-space signals. 
To answer that, we tried several approaches to over-
come the problem of a high number of signals in the 
source space, namely, 'Mean', 'PCA8', 'LPP8'. 

The processing pipeline of 'Se' is the same as in [9], 
and the results indicated the correlations of 'Se' to be 
in a similar range. Comparing 'Se' to the source space 
approaches ('Mean', 'PCA8', 'LPP8'), we see the per-
formance in a similar range as in 'Se' with some slight 
differences. It is indicated via post-hoc tests that 
among all approaches, 'PCA8' could perform slightly 
better than 'Se', but the differences were not statisti-
cally significant. The results showed that the decoding 
in the source space is possible with comparable per-
formance, and the best candidate out of all could be 
'PCA8'. 
We have the following assumptions to explain the 
cause of the lower performance of 'Mean'. First, the 
number of signals from 'Mean' was reduced from each 
ROI with the original number of signals in a range be-
tween hundreds to thousands of signals per ROI, to 
just 3 signals (1 for each direction of the source com-
ponents), and this could retain very little information. 
Second, by using the mean function, we assumed the 
distribution of the signals in each ROI to be normally 
distributed, which was hardly the case in this situation.  
In LPP, it was introduced as a dimensionality reduction 
technique that tries to retain the local network structure 
in the lower dimension [11]. This technique was suc-
cessfully applied in the computer vision field and the 
BCI field [19]. However, the results suggested the per-
formance of LPP to be the worse among the candi-
dates. The worse performance could be due to the dif-
ference between classification problems (as LPP was 
typically used) and the regression. 
Some works [1]–[4] that utilized the source-space in-
formation in the classification problem indicated some 
improvement over the sensor space. However, Sosnik 
and Zheng 2021 [5], who investigated the decoding of 
joints kinematics with signals in the source space, 
showed slightly lower performance than the sensor 

space. Their approach was comparable with our 
'Mean' approach, which also showed slightly lower 
performance than 'Se'.  
There are some interesting points to further explore for 
the source-space-based decoding: the benefits of in-
corporating the individualized anatomical information 
from the magnetic resonance imaging (MRI) and how 
the decoding behaves in the actual online experiment.  
 

Conclusion 

Different reduction techniques were implemented to 
overcome the problem of a high number of signals. 
By comparing the performance metrics from the sen-
sor-space approach, 'Se', to the source-space ap-
proaches, 'Mean', 'PCA8', 'LPP8', we found that only 
the 'PCA8' could perform better than 'Se'. However, 
the differences were only marginal and not statistically 
significant. The results suggested that the source-
space-based decoding of hand movement trajectory 
is possible with comparable performance to 'Se'. 
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