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AbstractElectromyographic (EMG) control of pros-
thetics is well established both in research and cl ini-
cal settings. However, it remains unclear how much 
of the EMG information can be predicted from the 
electroencephalographic (EEG) signals, and used 
instead, for control. In this study, we used a dataset 
that contains simultaneously acquired EEG and EMG 
signals of 31 subjects performing 33 grasping condi-
tions, and applied unscented Kalman filtering (UKF) 
to continuously predict the EMG grasping envelopes 
from the low-frequency (0.1-2 Hz) EEG. We achieved 
higher prediction accuracy for intermediate grasps 
compared to power or precision grasps. Our findings 
indicate the feasibility of continuously predicting EMG 
envelopes of grasping movements from EEG signals. 
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Introduction 

Electromyographic (EMG)-based control of prosthetic 
devices has shown to be reliable in the detection of 
the initiation of movement, as well as in identifying 
the desired grasping type [1, 2]. Currently, the pros-
thetic control achieved with EMG signals looks prom-
ising and it is in daily use for many amputees. How-
ever, this type of control faces some limitations when 
the number of functional muscles or neuromuscular 
content in the EMG signal are not sufficient (e.g.,  in 
the case of high amputation, such as shoulder exar-
ticulation, or severe paralysis). One way of increasing 
performance is by leveraging the information related 
to the movement from the brain activity, in addition to 
the muscle information. Electroencephalographic 
(EEG) signals contain global motor-related infor-
mation that can be accessed to predict , instead of 
merely responding to the user’s intention. Recent 
EEG-based brain-computer interfacing (BCI) studies 
have shown the feasibility of discriminating between 
several types of movements [3-5]. Movement covari-
ates, such as velocity of hand movement, have also 
been decoded from low-frequency EEG activity [6]. 
 Furthermore, we have shown in a previous study 
that EEG and EMG activity share similarities during 
different stages of grasping [7]. Adaptive approaches 
for sensorimotor control have attracted a lot of atten-
tion over the last decades [8, 9]. Recent studies that 
use Kalman filtering approaches show promising 
results in terms of movement covariates’ predict ion 
from EEG activity [10, 11].     

In this study, we investigated the feasibility of predict-
ing the EMG envelopes of extrinsic hand muscles in 
a wide range of grasping movements from EEG sig-
nals. We conducted this study on a previously rec-
orded dataset [7]. EEG and EMG activity were rec-
orded simultaneously. We studied the amplitude 
patterns of the EEG signals in the delta frequency 
band (0.1-2 Hz) and used an unscented Kalman filter 
for the prediction. Our findings show the feasibility of 
this approach and could be informative for more intui-
tive and reliable upper-limb neuroprosthetic control. 
 
Methods 

A. Dataset description 
A previously recorded dataset [7] has been used in 
this study. The dataset contains simultaneously ac-
quired neural (EEG) and behavioral (muscle and 
kinematic) data of 31 participants, in a task that in-
volves observation and execution of 33 different 
grasping movements. Figure 1A illustrates the struc-
ture of the experimental protocol. 
During the fixation period, participants were instruct -
ed to focus their gaze on a cross located in the mid-
dle of the screen and avoid eye movements for three 
seconds. Next, during the observation phase which 
lasted four seconds, participants were presented with 
a static image showing a hand in a final grasping 
position together with the grasped object as shown in 
Figure 1B. During the execution phase which was 
also four seconds long, participants were instructed 
to focus their gaze on the “x” symbol located in the 
middle of the screen and perform the grasping 
movement that they had observed during the previ-
ous phase. Figure 1C shows the pictograms of the 33 
grasping movements with their ordinal numbers. The 
order of the grasping conditions (blocks) was ran-
domized among subjects. 
EEG and electrooculographic (EOG) data was rec-
orded using a 64-channel ActiCap System with two 
BrainAmp amplifiers (BrainProducts, Germany). The 
ground sensor was placed on AFz and the reference 
sensor on the right mastoid. Muscle activity was rec-
orded with a Myo armband (Thalmic Labs Inc., Ontar-
io, Canada). The armband was located on the right 
arm close to the elbow, above the extrinsic hand 
muscles. 
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Figure 1. (A) Experimental protocol. Each of the 33 blocks 
contained eight consecutive repetitions (trials) of the same 
grasp. Each trial had four phases: f ixation, observation, 
execution and relaxation. (B) Experimental setup. Photos of 
one participant during the observation and execution phas -
es, and the materials used during recording. (C) Pictograms  
of the grasping conditions. 
 
B. EEG and EMG data processing 
For all data preprocessing and analyses, we used 
Matlab R2016b (Mathworks, Inc. USA). EEG data 
was first filtered using a Butterworth fourth-order, 
zero-phase, band-pass filter between 0.1–40 Hz and 
then downsampled to 100 Hz. We rejected the trials 
in which the task was incorrectly performed. From the 
EEG and EMG data we extracted 10-second long 
trials consisting of the last two seconds from the fixa-
tion period and the entire observation and execution 
periods. Next, we performed a similar cleaning pro-
cessing pipeline as described in [7]. Then, we filtered 
the EEG data in the frequency range between 0.1–2 
Hz using a zero-phase Butterworth band-pass filter of 
fourth-order. The eight EMG data channels were 
processed using Hilbert transform, standardized 
using z-score and, finally, the envelope of the data 
was computed. For both types of the data we reor-
dered the groups of trials in a common order be-
tween subjects, as depicted in Figure 1C.  
For each of the subjects we built an EEG-based 
measurement matrix by concatenating all the 10-
second long trials, associated with different blocks of 
grasping conditions. In a similar way, the EMG data 
was concatenated across all t rials to generate an 
EMG state vector (8 EMG channels by time samples 
for 264 trials, associated with 33 grasping conditions 
× 8 repetitions). 
We used a hybrid approach similar to the one de-
scribed in [12]. Like the standard Kalman filter, the n-
th order unscented Kalman filter (UKF) [13] inferred 
the hidden state (the EMG envelope of the desired 
grasping) from the observations (low-frequency EEG 
amplitudes). The state transition model predicted the 
hidden state at the current time step given the state 

at the previous n  time steps, where n  is the order of 
the autoregressive model. 
The standard Kalman filter is described by the follow-
ing equations: 
 

11   kkk wFxx                      (1) 

 
1 kkk vHxy                         (2) 

where the random variables w  and v  represent the 
process and measurement noise, respectively. They 
are assumed to be independent (of each other), 
white, and with normal probability distributions. The 
matrix F in (1) relates the state at the previous t ime 
step k-1 to the state at the current step k. The matrix 
H  in (2) relates the state to the measurement. We 
choose a multivariate autoregression (MVAR) [14] to 
model the state transition equation because the trend 
of the EMG signal is assumed to be linear. The for-
mula that describes the model is the following: 
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where 
nx  is the nth sample of a d-dimensional t ime 

series, each )(nAi
 is a d-by-d matrix of coefficients 

(weights) and 
ne  is additive Gaussian noise. The 

neural tuning model relates the status of the system 
and the measures. To infer the relation between EEG 
and EMG signals we applied part ial-least  squares 
(PLS) as described in [15].  
For each grasping condition, we performed an 8-fold 
cross validation (CV) among the EEG repetitions (7 
trials for training and 1 trial for prediction).  We used 
an n-th order UKF with a number of taps equal to the 
order of the fitted MVAR model (the model order was 
3 or 4). For the PLS regression we have used the 10 
previous lags of the EEG data to estimate the actual 
value of the EMG signal. Ten lags correspond to a 
time window equal to 0.4 s and we choose a fixed 
number of components (30), based on the level of 
explained variance (larger than 99%). Afterwards, we 
computed the mean over the different cross-validated 
predictions, for each trial and grasping condition. 
 
C. Evaluation metrics 

We define 
tx as the measurement value and 

ty as 
the prediction value at time t. We used Pearson cor-
relation (r) and mean absolute error (MAE) to evalu-
ate the quality of the EMG estimation with respect  to 
the original EMG signal. Since MAE is a scale de-
pendent metric, we expressed the prediction error in 
percentages and normalize it to the scale (the differ-
ence between maximum and minimum amplitudes) 
of the actual EMG envelope. We refer to the metric 
as normalized MAE (nMAE). The higher the r and the 
lower the nMAE values are, the better the prediction. 
Chance level values for our metrics were estimated 
by applying the 8-fold CV to shuffled data. We broke 
the association between x and y by randomly ex-
changing y across trials. The shuffling and 8-fold CV 
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procedure was repeated 100 times. Then, we then 
computed the α = 0.05 confidence interval for the r 
and nMAE distributions.    
Next, we calculated the values of these two metrics 
for each EMG channel, grasp condition and subject. 
Finally, we present our prediction results for catego-
ries of grasps. Specifically, we group the 33 grasp 
conditions according to the more conventional grasp-
ing categorization into power, precision and interme-
diate grasp type, and according to the position of the 
thumb during grasping, adducted or abducted.   
 
Results 

A.  Prediction accuracy of EMG envelopes 
Figure 2 shows three cases of EMG envelope predic-
tion. On the left plot we show an example of a good 
prediction (r = 0.65, nMAE = 20.4%), in which the 
overall shape of the predicted curve visually resem-
bles the actual one. Similarly, the middle plot  shows 
an average example of prediction (r = 0.41 and 
nMAE = 36.6%). In this case, the prediction is better 
during the grasping execution phase (from second 6 
to 10) than in the other phases. Finally, the right plot 
shows an example of poor prediction (r = -0.13 and 
nMAE = 40%). In this example, the predicted signal 
captures the small EMG activation during the obser-
vation period, but fails to infer the muscle activat ion 
during the movement execution phase. 
 

 
 
Figure 2. Examples of EMG single channel and single trial 
envelope estimation. Blue curves indicate actual EMG 
envelopes and red curves indicate predicted signals. 
 
B. Correlation and normalized mean absolute 

error 
Figure 3 shows median values of the two metrics for 
each grasping condition, across subjects. The high-
est r = 0.36 corresponds to grasp 11 (power sphere 
grasping), while the lowest nMAE value = 26% corre-
sponds to grasp 16 (lateral grasping). We show the 
relation between all grasps relative to the two metrics 
of prediction. Dotted black lines indicate the overall 
median values for the two metrics. Dotted red l ines 
show median chance level values across subjects 
and grasps. While it is informative to evaluate the 
prediction accuracy for each grasp, we believe that  
grouping the grasps into categories can be more 
interpretable and improve the general understanding 

of our findings. Hence, Figure 4 presents the results 
of the EMG envelope prediction for different catego-
ries of grasps. On the left side, the intermediate type 
of grasps has the lowest median nMAE = 27% com-
pared to the power (nMAE = 28.7%) and precision 
(nMAE = 30.2%) types, and the highest  correlation 
value r = 0.21, followed by r = 0.2 for power grasps 
and r = 0.18 for precision grasps. Regarding the cat-
egorization based on thumb’s position, we found a 
better median prediction for the adducted grasps (r = 
0.2, nMAE = 27.7%) than for the abducted grasps (r 
= 0.19, nMAE = 30%).  
 

 
 
Figure 3. Scatter plot representation of all grasping condi-
tions in terms of nMAE and r. The dotted black lines indi-
cate the overall median values among grasping conditions 
for the tw o evaluation metrics:  nMAE (vertical) and r (hor i-
zontal). The dotted red lines indicate the median chance 
level for the tw o metrics across subjects and grasps. 
 

 
 
Figure 4. Prediction evaluation in terms of r and nMAE for 
tw o categorizations: Left. the type of grasp (pow er, prec i-
sion and intermediate); Right. the position of the thumb 
(adducted and abducted). Dotted vertical and horizontal 
lines indicate median values for different groups of grasps.  
 
Discussion 

Our findings show the feasibility of predicting grasp-
ing EMG envelopes of extrinsic hand muscles from 
EEG signals using an UKF. In this study, we showed, 
for the first time, that EMG envelopes of a wide range 
of grasping conditions, involving periods of rest  and 
movement, can be continuously predicted from low-
frequency EEG amplitudes. Based on the presented 
categorizations of grasps we found a smaller predic-
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tion error for the grasps in which the position of the 
thumb was adducted. Moreover, we observed that 
the EMG envelopes of intermediate grasps can be 
more successfully predicted from the brain activity, 
than power or precision grasps.  
Previous studies have shown the abil ity of an UKF 
approach to infer EMG envelopes from low-
frequency EEG amplitudes while performing a con-
tinuous ground walking task on different terrains [12, 
16]. They obtained an overall r among subjects and 
muscles of 0.236, with an SNR of 0.8 dB. In the cur-
rent study, we found a similar median r of 0.2 and an 
nMAE of 28.6%. However, a direct comparison be-
tween their findings and the ones of the current is not 
straightforward due to the differences in the per-
formed task (other groups of muscles and different 
neural processes involved) and different  number of 
movement repetitions. 
Another study evaluated the prediction accuracy of 
grasping EMG envelopes of intrinsic hand muscles 
from firing rates in monkeys [17]. Their measurement 
consisted of more than 100 repetitions of each grasp 
leading to a better prediction and larger r than the 
ones reported in the current study. Nevertheless, 
comparison is again difficult due to further differences 
in signal acquisition modalities, measured hand mus-
cles and signal processing.  
Our findings show different levels of prediction accu-
racy among different grasps (Figure 3 and 4), as well 
as at single EMG channel level (Figure 2). We used 
median values to obtain robust global estimates in 
such cases of variability. Moreover, we employed r 
and nMAE as two complementary metrics for our 
prediction accuracy, evaluating both the phase and 
the amplitude similarity between the actual and the 
predicted values. Even though the number of grasps 
from each category is not the same, we observed 
that intermediate grasps have a lower median nMAE 
value than power or precision grasps. This observa-
tion could be due to the involvement of the wrist as 
an additional joint when performing intermediate 
grasp. Previous findings [3] have shown that EEG 
activity can be used to separate hand movements 
that involve different number of joints.   
We have shown the feasibility of using UKF to predict 
grasping EMG envelopes from EEG activity; howev-
er, a better prediction could be achieved by increas-
ing the number of movement repetitions for each 
grasp type, on which the model is trained. Moreover, 
the size of the prediction window plays also an im-
portant role, trading off precision to delay in the final 
prediction. In clinical setups,  it  is important to ac-
commodate the delay between the EEG-based pre-
diction and the actual triggering of the neuroprosthe-
sis. Hence, different prediction windows could be 
evaluated in the future to enhance the control. These 
advances could lead to an intuitive and reliable inter-
face that allows the user to reach autonomy in 
movement.   
 

Acknowledgements 
This research w as supported by funding from the European 
Research Council (ERC-CoG 2015 681231 'Feel Your 
Reach'). 
 
References 

[1] Ninu, A., et al. Closed-loop control of grasping w ith a 
myoelectric hand prosthesis: Which are the relevant 
feedback variables for force control?. IEEE 
Transactions on Neural Systems and Rehabilitation 
Engineering, 22(5), 1041-1052. (2014). 

[2] Scheme, E. & Englehart, K. Electromyogram pattern 
recognition for control of powered upper-limb 
prostheses: state of the art and challenges for clinical 
use. J. Rehabil. Res. Dev. 48, 643–659 (2011). 

[3] Schw arz, A., et al. Decoding natural reach-and-grasp 
actions from human EEG. J. Neural Eng. 15, 016005 
(2018). 

[4] Ofner, P., et al. Upper limb movements can be 
decoded from the time-domain of low -frequency EEG. 
PLoS One 12, e0182578 (2017). 

[5] Iturrate, I. et al. Human EEG reveals distinct neural 
correlates of power and precision grasping types. 
Neuroimage 181, 635–644 (2018). 

[6] Kobler, R. J., Sburlea, A. I. & Müller-Putz, G. R. Tuning 
characteristics of low-frequency EEG to positions and 
velocities in visuomotor and oculomotor tracking tasks. 
Sci. Rep. 8, 17713 (2018). 

[7] Sburlea, A. I. & Müller-Putz, G. R. Exploring 
representations of human grasping in neural, muscle 
and kinematic signals. Sci. Rep. 8, 16669 (2018). 

[8] Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An 
internal model for sensorimotor integration. Science 
269, 1880–1882 (1995). 

[9] Antelis, J. M., et al. On the usage of linear regression 
models to reconstruct limb kinematics from low  
frequency EEG signals. PLoS One 8, e61976 (2013). 

[10] Schlögl, A., Vidaurre, C. & Müller, K.-R. Adaptive 
Methods in BCI Research - An Introductory Tutorial. 
The Frontiers Collection 331–355 (2009). 

[11] Nakagome, S., et al. Prediction of EMG envelopes of 
multiple terrains over-ground walking from EEG signals 
using an unscented Kalman filter. in 2017 IEEE 
International Conference on Systems, Man, and 

Cybernetics (SMC) (2017).   
[12] Li, Z. et al. Unscented Kalman filter for brain-machine 

interfaces. PLoS One 4, e6243 (2009). 
[13] Wan, E. A. & Van Der Merw e, R. The unscented 

Kalman filter for nonlinear estimation. in Proceedings of 
the IEEE 2000 Adaptive Systems for Signal Processing, 
Communications, and Control Symposium (Cat. 
No.00EX373)   

[14] Anderson, C. W., Stolz, E. A. & Shamsunder, S. 
Multivariate autoregressive models for classification of 
spontaneous electroencephalographic signals during 
mental tasks. IEEE Transactions on Biomedical 
Engineering 45, 277–286 (1998). 

[15] Ofner, P., & Müller-Putz, G.R. Using a noninvasive 
decoding method to classify rhythmic movement 
imaginations of the arm in tw o planes. IEEE 
Transactions on Biomedical Engineering 62.3 (2014): 
972-981.  

[16] He, Y. et al. An integrated neuro-robotic interface for 
stroke rehabilitation using the NASA X1 pow ered lower 
limb exoskeleton. Conf. Proc. IEEE Eng. Med. Biol. 
Soc. 2014, 3985–3988 (2014). 

[17] Ethier, C., et al. Restoration of grasp follow ing 
paralysis through brain-controlled stimulation of 
muscles. Nature 485, 368–371 (2012). 

Proc. Annual Meeting of the Austrian Society for 
Biomedical Engineering 2021

 
DOI: 10.3217/978-3-85125-826-4-19

CC BY Published by Verlag der TU Graz 
Graz University of Technology

http://paperpile.com/b/xGDxZ3/2qMx
http://paperpile.com/b/xGDxZ3/2qMx
http://paperpile.com/b/xGDxZ3/2qMx
http://paperpile.com/b/xGDxZ3/2qMx
http://paperpile.com/b/xGDxZ3/ZU5O
http://paperpile.com/b/xGDxZ3/ZU5O
http://paperpile.com/b/xGDxZ3/ZU5O
http://paperpile.com/b/xGDxZ3/oMPt
http://paperpile.com/b/xGDxZ3/oMPt
http://paperpile.com/b/xGDxZ3/oMPt
http://paperpile.com/b/xGDxZ3/TnZC
http://paperpile.com/b/xGDxZ3/TnZC
http://paperpile.com/b/xGDxZ3/TnZC
http://paperpile.com/b/xGDxZ3/pbtu
http://paperpile.com/b/xGDxZ3/pbtu
http://paperpile.com/b/xGDxZ3/pbtu
http://paperpile.com/b/xGDxZ3/pbtu
http://paperpile.com/b/xGDxZ3/2O1B
http://paperpile.com/b/xGDxZ3/2O1B
http://paperpile.com/b/xGDxZ3/2O1B
http://paperpile.com/b/xGDxZ3/OklF
http://paperpile.com/b/xGDxZ3/OklF
http://paperpile.com/b/xGDxZ3/OklF
http://paperpile.com/b/xGDxZ3/TKbk
http://paperpile.com/b/xGDxZ3/TKbk
http://paperpile.com/b/xGDxZ3/TKbk
http://paperpile.com/b/xGDxZ3/5dXW
http://paperpile.com/b/xGDxZ3/5dXW
http://paperpile.com/b/xGDxZ3/5dXW
http://paperpile.com/b/xGDxZ3/C5M2
http://paperpile.com/b/xGDxZ3/C5M2
http://paperpile.com/b/xGDxZ3/C5M2
http://paperpile.com/b/xGDxZ3/C5M2
http://paperpile.com/b/xGDxZ3/C5M2
http://paperpile.com/b/xGDxZ3/xKHk
http://paperpile.com/b/xGDxZ3/xKHk
http://paperpile.com/b/xGDxZ3/pyHQ
http://paperpile.com/b/xGDxZ3/pyHQ
http://paperpile.com/b/xGDxZ3/pyHQ
http://paperpile.com/b/xGDxZ3/pyHQ
http://paperpile.com/b/xGDxZ3/pyHQ
http://paperpile.com/b/xGDxZ3/OwXC
http://paperpile.com/b/xGDxZ3/OwXC
http://paperpile.com/b/xGDxZ3/OwXC
http://paperpile.com/b/xGDxZ3/OwXC
http://paperpile.com/b/xGDxZ3/OwXC
http://paperpile.com/b/xGDxZ3/YWxF
http://paperpile.com/b/xGDxZ3/YWxF
http://paperpile.com/b/xGDxZ3/YWxF
http://paperpile.com/b/xGDxZ3/YWxF
http://paperpile.com/b/xGDxZ3/PBxT
http://paperpile.com/b/xGDxZ3/PBxT
http://paperpile.com/b/xGDxZ3/PBxT



