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Abstract

The recent introduction of  in-vivo field cycling MRI
systems  enables  the  exploration  of  new  contrast
mechanics  at  different  field  strength.  The  present
work explores changes in T1  for main magnetic field
from 200 mT down to 2 mT. The problem of inherent
low SNR with such low fields is overcome by using a
joint regularization approach in space and exploiting
shared  information  between  different  parameter
maps.  This  strategy  enables  preservation  of  fine
details  while  effectively  suppressing  noise  in  the
reconstructed  T1 maps.  Especially  in-vivo  data
showed  huge  improvements  of  visual  quality
compared to reference methods.
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Introduction

Fast  field  cycling  (FFC)  MRI  is  a  technique  that
allows  the  modulation  of  the  main  magnetic  field
during an imaging experiment and thus gives access
to new, unexploited contrast mechanisms [1]. Recent
work on MR hardware enabled the construction of
the first whole-body FFC system with fields ranging
from 50 μT to 200 mT [2]. The ramping of the main
magnetic  field  can  be  utilized  to  explore  the  field
dependency of the longitudinal (T1) and transverse
relaxation  (T2)  times,  also  referred  to  as  Nuclear
Magnetic  Relaxation  Dispersion  (NMRD)  [3].  The
controlled change of the main field allows to quantify
these  relaxation  time  constants  at  various  field
strengths. Especially T1 shows promising potential for
imaging with novel contrast in region affected by a
stroke  [2].  However,  the  small  fields  lead  to  a
decreased SNR [4] which complicates evaluation and
quantification of the results.

In  the  context  of  quantitative  MRI  in  high  field
applications, model-based reconstruction was proven
to improve SNR in the final parameter maps while
simultaneously  preserving  quantitative  accuracy
[5,6,7].  Dedicated  regularization  functionals  can
exploit spatial similarity between neighboring pixels to
stabilize  the  fitting  procedure.  Further,  features  in
individual  parameter  maps,  such  as  tissue

boundaries,  can  be  assumed  to  correlate  well
throughout all unknown parameter maps. To this end,
we  propose  to  incorporate  the  T1 quantification
process for multi-field FFC imaging in a model-based
reconstruction  framework  [8].  Specifically,  the
redundancies between T1 maps from multiple fields
will  be  exploited  by  means  of  a  total  generalized
variation (TGV) functional [9]  in conjunction with a
Frobenius norm. This type of regularization promotes
spatially  smooth  structures  but  also  allows  for
discontinuities, i.e., edges between tissue, leading to
an overall improved image impression and avoids the
known stair casing artifacts from total variation.  The
proposed approach  is  compared  to  standard  non-
linear fitting techniques on simulated numerical data
and in-vivo stroke patients.

Theory

The  MRI  signal  for  an  inversion-recovery  FFC
sequence [10] can be described by

M z ( tevo )=[−α M0−M 0
E ] e

− t evo

T 1
E

+M 0
E
, (1)

with  M z ( tevo )being  the  signal  after  an  evolution

time  t evo.  M 0 refers  to  the  equilibrium

magnetization for the detection field and M 0
E refers

to  the  magnetization  at  the  evolution  field.  α
accounts for imperfections of the inversion pulse,
incomplete polarization,  and field ramping effects
[11]. A schematic sequence diagram is given in Fig.
1.

Introducing a  proportionality  constant  C to  relate
evolution  field and detection field  with the
corresponding magnetization, one ends up with

. (2)

This equation is valid for one evolution time and 
field strength and incorporates the sampling and 
Fourier transformation operator . The signal 
equation resembles the well known behavior of the
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inversion recovery sequence but  relaxation takes 
place at the evolution field . The unknowns  u 

consist of  C,  α E, and T 1
E and are identified from 

measurement data d  using a regularized non-
linear least squares problem given by

          (3)

The regularization parameter   is used to balance
between data and a prior knowledge. The terms in
bracket  after  the  regularization  parameter  reflect
the  TGV  Frobenius  functional,  with   being  an
auxiliary  variable,  enabling a  weighting  between
first  and  higher  order  derivatives.  The  ratio  of
parameters   balances the optimization costs
between first and second derivatives, respectively,
and is chosen as  .  The derivatives a realized
via  finite  differences  for  the  gradient   and
symmetrized gradient  .  The optimization itself  is
carried using PyQMRI, a recently proposed Python
toolbox  for  quantitative  MRI  [8].  Regularization
parameter  is chosen based on visual inspection
of the results.

Figure  1:  Exemplary  sequence  diagram  for  an
inversion  recovery  FFC  acquisition.  After  the
inversion pulse, the main magnetic field is ramped
to the evolution field where relaxation takes place.
Prior to data acquisition the field is ramped back.

Methods

Numerical brain phantoms were simulated using eq.
(2)  and  three  simulated  field  strengths.  Simulated
evolution times and T1 values were chosen similar to
expected  in-vivo  values.  Image  resolution  was
chosen as 128x128 pixels, similar to the resolution of
the acquired stroke images.  To account for in-vivo
SNR levels, complex Gaussian noise was added to
the simulated data to achieve an SNR of 8.3 in white

matter  and  16.7  in  gray  matter,  directly  after
inversion. The simulated ground truth is given in the
top of Fig. 2. 

Acquired stroke images are part of an ongoing study
at University of Aberdeen and were acquired using
an inversion-recovery spin-echo FFC sequence with
a  128x128  matrix  and  at  3  field  strengths.  The
proposed method is applied to an exemplary data set
of  this  study  to  show  its  applicability  for  in-vivo
applications. 

The reference methods consisted of non-linear fitting
for each field separate with Tikhonov regularization, a
field-combined approach with Tikhonov regularization
and a field-combined method using H1 regularization,
i.e.,  penalizing  the  2-norm  of  the  gradient  of  the
parameter maps [12].

Results

Figure  2:  Ground  truth  phantom  T1 maps  and
reconstruction  results  using  different  fitting
algorithms.  The  proposed  method  is  visually
closest to the reference.
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Numerical simulations, given in Fig. 2, show the 
reduced noise using spatial regularization 
compared to Tikhonov based methods. Further, 
edges are best preserved using the proposed 
approach. Quantitative evaluation (Fig. 3) shows 
good accordance to the ground truth values. The 
proposed method shows least residual noise and 
best relative absolute difference for low field 
strength. At 200 mT a small bias to the ground 
truth can be observed. 

Application to in-vivo measurements show a similar
picture (Fig. 4). Standard methods without spatial 
regularization show poor SNR which might even 
hide the lesion. Both spatially regularized 
approaches are able to recover high quality T1 
maps, enabling a clear delineation of the stroke. 
The proposed approach shows the best 
suppression of noise while maintaining sharp 
edges between different tissue.

Discussion

This work demonstrates that spatial regularization in
combination with fitting all data in a combined fashion
can hugely improve the quality of T1  maps obtained
from multiple fields using FFC imaging techniques.
The  best  results  could  be  achieved  using  the
proposed  TGV-Frobenius  prior,  preserving  sharp
edges and effectively suppressing noise.

The improved noise suppression could be achieved
by leveraging spatial information in combination with
redundant  information  at  different  field  strength.  A
limitation of such an approach might be the possibility
of cross contamination from one map to the other.
Although such an effect  is theoretically possible,  it
could not be observed in practice [13, 14]. Still, care
should  be taken  when choosing the regularization
parameters  as  too  much  regularization  might
introduce such effects.

As the proposed method is posed as reconstruction
problem from k-space, it could further be leveraged to
reduce  the  acquisition  time  of  the  measurement,
enabling either faster scanning or the acquisition of
multiple additional fields in the same scan time. 

Especially in-vivo applications benefit from the 
proposed fitting approach, showing a vast 
improvement in image quality. This improvement of 
image quality   enables the exploration of the 
underlying contrast mechanics and is subject of an 
ongoing study at the University of Aberdeen. The 
proposed method is freely available at: 
https://github.com/IMTtugraz/PyQMRI

Figure  3:  Relative  absolute  difference  to  the
ground truth for the used fitting algorithms. Mean
difference within the object is given in the top right
corner of each map. The proposed method shows
improved  edge  preservation  and  noise
suppression,  especially  for  maps  at  lower  field
strength.
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Figure  4:  Exemplary  in-vivo  results  for  a  patient
suffering  from a  stroke.  The  stroke  area  can  be
clearly delineated in T1 maps from lower fields and
in approaches using spatial regularization and all
fields  combined  for  fitting.  Results  using  the
proposed method show the least residual noise in
the T1 maps.

References

[1] Lurie DJ, Aime S, Baroni S, Booth NA, Broche
LM, Choi CH, et al. Fast Field-Cycling Magnetic
Resonance Imaging. Comptes Rendus Physique
2010;11(2):136–148.

[2] Broche LM, Ross PJ, Davies GR, MacLeod MJ,
Lurie  DJ.  A  whole-body  Fast  Field-Cycling
scanner  for  clinical  molecular  imaging  studies.
Scientific Reports 2019;9(1):10402.

[3] Steele RM, Korb JP, Ferrante G, Bubici S. New
applications and perspectives of fast field cycling
NMR  relaxometry.  Magnetic  Resonance  in
Chemistry 2016;54(6):502–509.

[4] Bödenler  M,  Basini  M,  Casula  MF,  Umut  E,
Gösweiner  C,  Petrovic  A,  et  al.  R1  dispersion
contrast at high field with fast field-cycling MRI.
Journal of Magnetic Resonance 2018;290:68–75.

[5] Sumpf  TJ,  Uecker  M,  Boretius  S,  Frahm  J.
Model-based nonlinear inverse reconstruction for
T2  mapping  using  highly  undersampled  spin-
echo  MRI.  Journal  of  Magnetic  Resonance
Imaging 2011;34(2):420–428.

[6] Wang X, Roelo_s V, Klosowski J, Tan Z, Voit D,
Uecker M, et al. Model-based T1 mapping with
sparsity  constraints  using  single-shot  inversion-
recovery radial FLASH.  Magnetic Resonance in
Medicine 2018;79(2):730–740.

[7] Maier O, Schoormans J, Schloegl M, Strijkers GJ,
Lesch A, Benkert T, et al. Rapid T1 quanti_cation
from high resolution 3D data with model-based
reconstruction. Magnetic Resonance in Medicine
2019;81(3):2072–2089.

[8] Maier O, Spann SM, Bödenler M, Stollberger R.
PyQMRI:  An  accelerated  Python
basedQuantitative MRI toolbox.  Journal of Open
Source Software 2020;5(56):2727.

[9] Knoll F, Bredies K, Pock T, Stollberger R. Second
order total generalized variation (TGV) for MRI.
Magnetic  Resonance  in  Medicine
2011;65(2):480–491.

[10] Ross PJ, Broche LM, Lurie DJ. Rapid _eld-
cycling  MRI  using  fast  spin-echo.  Magnetic
Resonance in Medicine 2015;73(3):1120–1124.

[11]Hógáin DÓ, Davies GR, Baroni S, Aime S, Lurie
DJ. The use of  contrast  agents with fast  _eld-
cycling magnetic resonance imaging.  Physics in
Medicine and Biology 2010;56(1):105–115.

[12] Rudin LI, Osher S, Fatemi E. Nonlinear total
variation  based  noise  removal  algorithms.
Physica  D:  Nonlinear  Phenomena
1992;60(1):259–268.

[13] Knoll  F,  Holler  M,  Koesters  T,  Otazo  R,
Bredies  K,  Sodickson  DK.  Joint  MR-PET
Reconstruction  Using  a  Multi-Channel  Image
Regularizer.  IEEE  Transactions  on  Medical
Imaging 2017;36(1):1–16.

[14] Bredies  K.  Recovering  Piecewise  Smooth
Multichannel Images by Minimization of Convex
Functionals  with  Total  Generalized  Variation
Penalty  BT  -  Efficient  Algorithms  for  Global
Optimization Methods in Computer Vision. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2014. p.
44–77.

Proc. Annual Meeting of the Austrian Society for 
Biomedical Engineering 2021

 
DOI: 10.3217/978-3-85125-826-4-14

CC BY Published by Verlag der TU Graz 
Graz University of Technology


	Introduction
	Theory
	Methods
	Results
	Discussion
	Acknowledgements
	References



