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Abstract

Parallel beam electron diffraction (PBED) can be used to determine the tem-
perature from the thermal expansion of a material via its diffraction pattern.
As such, it can be used to measure the local temperature in an in-situ heating
experiment. This approach should, in principle, be feasible in any well aligned
microsope with a camera. Despite its general applicability, so far, precise
measurements have only been performed in high-end TEMs.
For TEMs with 2 condenser lenses, we show how to align the microscope for
a parallel electron beam - which is a crucial prerequisite for the measurement.
Moreover, in order to achieve satisfactory results even with lower camera
resolutions of 1 megapixel, a sophisticated evaluation algorithm is developed.
Using the latter we are able to demonstrate the possibility of determining the
diffraction ring radii of Au nanoparticles to within 0.04 pixel and therefore
measure the temperature of a given sample to an accuracy of approximately
6 °C.
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Kurzfassung

Mit der Parallelstrahl-Elektronenbeugung (PBED) kann die thermische Aus-
dehnung eines Materials über dessen Beugungsmuster bestimmt werden. Ist
der thermische Expansionskoeffizient des Materials bekannt, so kann diese
Methode zur Messung der lokalen Temperatur in einem in situ Heizexperi-
ment herangezogen werden. Ein Vorteil dieser Methode ist, dass sie in jedem
Mikroskop verwendet werden kann, das mit einer Kamera ausgestattet ist und
die Ausrichtung der Linsen für einen parallelen Elektronenstrahl ermöglicht.
Trotzdem wurden präzise Messungen bisher nur in High-End-TEMs durchge-
führt.
Für TEMs mit zwei Kondensorlinsen zeigen wir, wie man das Mikroskop
für einen parallelen Strahl einstellt - was eine entscheidende Vorausset-
zung für die Messung ist. Um auch bei geringeren Kameraauflösungen
von 1 Megapixel zufriedenstellende Ergebnisse zu erzielen, wird zudem
ein ausgeklügelter Auswertealgorithmus entwickelt. Mit diesem demonstri-
eren wir die Möglichkeit, die Beugungsringradien von Au-Nanopartikeln auf
0.04 Pixel genau zu bestimmen und damit die Temperatur der Probe mit einer
Genauigkeit von bis zu 6 °C zu messen.
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1. Motivation

In in-situ experiments, the response of a sample to a specific stimulus - such
as heating - can be observed in real time. Over the last decade, the field of
TEM in-situ heating experiments has been revolutionized by the introduction
of microelectromechanical (MEMS) based heating systems. Due to the small
size of MEMS-based heating elements, rapid temperature changes and high
stability can be achieved. This opens the door to high-resolution observations
of thermally initiated processes on the micro- and nanoscale.

What remains a challenge, however, is the accurate determination of the
sample temperature. While the MEMS system outputs the overall temperature
of the heating element it relies on external calibration and its error increases
with temperature. In addition, it would be desirable to resolve the temperature
locally, since the sample geometry and composition can lead to an non-uniform
heat distribution and the electron beam may additionally heat the sample.

Therefore, an in operando measurement method is sought that allows us to
resolve the temperature locally and accurately. For example, one can infer the
temperature of a material from its thermal expansion. In the work of Niekiel
et al. [1] it was shown that the determination of this thermal expansion
by parallel beam electron diffraction (PBED) provides a sound method for
temperature measurements in the TEM. Unlike other methods, PBED does
not require a spectrometer, so it can be used in most electron microscopes.
However, it is emphasized that the high accuracy of this technique is mainly
enabled by the high-end three-condenser-lens system of the used microscope
and its camera with a resolution of 2048× 2048 px.

The central question of this work is therefore whether we can extend the
scope of this method to TEMs with 2 condenser lenses and a lower resolution
camera. Since several factors influence the accuracy of the PBED temperature
measurement, we can tackle the problem on multiple fronts: the material used,
the alignment of the parallel beam (as a prerequisite for accurate measure-
ments) and - most importantly - the evaluation of the diffraction patterns.
Thus, as a final product, we would like to establish a routine for PBED
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1. Motivation

temperature measurements that can be used in "everyday" in-situ heating
experiments.
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2. Temperature measurement
methods

In this chapter, we introduce the heating system used to perform in situ
heating experiments, followed by an overview of the state of the art in TEM
temperature measurements. We then focus on the method used in this work
(PBED) and take a closer look at the parallel electron beam. At the end of this
chapter, we consider which materials are suitable and available for such a
measurement.

2.1. In situ heating experiments

In the last decade, a lot has happened in the field of TEM in situ heating
experiments due to the introduction of MEMS-based heating systems. In
Figure 2.1 we see a side-by-side comparison of a conventional TEM grid and a
MEMS based Nano-Chip, as well as the corresponding TEM holders. Compared
to furnace based holders, the MEMS system has many advantages [2]:

• Due to its small dimensions it needs much less power.
• It does not require cooling of the surrounding parts of the chip and

holder.
• We can achieve very high heating and cooling rates.
• The induced sample drift is very low.
• It offers the possibility to combine the heating measurement with an

electrical bias of the sample.
• It allows for EDS analyses at elevated temperatures.

The heating and temperature measurement with the MEMS system works
with the 4-point probes method: a known electric current flows through the
spiral via the two outer contact pads of the Nano-Chip. The voltage dropping
across the spiral is tapped at high impedance via the two inner contact pads

3



2. Temperature measurement methods

Figure 2.1.: furnace based: A conventional TEM grid is placed in a furnace based heating
holder [2]. MEMS based: The MEMS Nano-Chip has a heating spiral with electron
transparent windows in the center. On the right side we see the tip of the heat-
ing holder with the already mounted Nano-Chip, which is contacted on the four
rectangular pads [3].

and measured with a voltmeter. The resistance is calculated from Ohm’s law
and is related to the temperature via the Callendar Van Dusen equation [3]:

R(T) = aT2 + bT + c (2.1)

Below 800 °C the quadratic term is negligible leaving us with a linear relation,
where the offset c is the resistance at T = 0 °C. To get the slope b, we need the
resistance of the heating spiral at room temperature and a calibration factor
that is stated on the box (see Fig. 2.2).
As we can see, several chips (here e.g. ten) come in a box with the same
calibration factor. Since the chips belong to the same production batch, it
is assumed that the heating spirals all have approximately the same layer
thicknesses and thus the same resistance. In case b deviates slightly from the
real value of the individual chip, we can see from Eq. (2.1) that the error will
increase linearly with increasing temperature. For the DENSsolution Wildfire
MEMS system in Fig. 2.1 this error is 5 % of the displayed temperature [3].
Therefore, if samples are examined at high temperatures, greater deviations
from the actual temperature must be expected.

4



2.1. In situ heating experiments

Figure 2.2.: Box of Nano-Chips. The ones we are using are covered with a <20 nm thick SiNx
membrane. On the label the coefficients a and b for Eq. (2.1) are given.

The exact specifications of the equipment used for the experiments in this
thesis can be found in Chapter 4.
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2. Temperature measurement methods

2.2. Overview of available methods

Measuring the temperature of a TEM sample during an in situ experiment
is a challenging task, but there are multiple approaches and methods to do
so. This section provides a short overview of available methods (see Fig. 2.3)
following the review article by Gaulandris et al. [2].
A distinction is made between continuous methods, in which any temperature
can be measured over a wide range, and material-specific reference points, in
which a visible change in the sample can be assigned to a specific tempera-
ture. Such reference points can be used to calibrate a continuous temperature
measurement.

Figure 2.3.: Techniques for the continuous measurement of temperature in the TEM, and
calibration methods using various types of reference points.

In the following we will provide a short description of the calibration methods.
An overview of materials that have been successfully used for these methods
can be found in [2].

Melting point
When a material goes from solid to liquid, it loses its ordered crystal structure.
This can be exploited for temperature measurements through imaging and
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2.2. Overview of available methods

diffraction techniques.
Melting points of bulk materials are usually well characterized in the literature.
However, the melting temperature of nanoparticles is lower than for the bulk
material due to the larger surface-to-volume ratio [4]. Therefore, less thermal
energy is required to release an atom from a solid [5].
While the melting point of a particle of certain size can be calculated theoreti-
cally [6], nanoparticles are highly mobile at elevated temperatures and may
not adhere to a substrate long enough for a thorough experimental validation
of said calculations.

Structural phase transition
Structural changes in the crystal can be detected in the TEM from the diffrac-
tion pattern or with HRTEM imaging [7],[8]. Since the TEM operates in high
vacuum, we are only interested in materials that have pressure independent
phase transitions. However, the preparation of such samples is often compli-
cated due to their complex composition or sample geometry. Moreover, in
the case of nanoparticles, the increased mobility at high temperatures can
lead to a rotation of the nanoparticles out of the zone axis, which could be
misinterpreted as a phase transition.

Curie point
The Curie point in ferro- (and ferri-) magnetic materials can also serve as
a reference point. In the TEM, the magnetic moment of the sample causes
an image shift. This fact can be used to detect the Curie point as follows:
At different temperatures, one image is taken in focus and one in overfocus.
The shift between those two images will become zero once the Curie point is
reached [9].
For this measurement, a furnace based holder would be beneficial, as it is
important that the sample is well secured. The forces between the magnetic
sample and the magnetic field of the objective lens can otherwise cause it to
be pulled out.

Phase separation
An alloy can dissolve into phases of the metals it consists of. This separation
process can be observed in the TEM and can be assigned to a specific tem-
perature - described by the solvus line in the phase diagram. As is often the
case, it is questionable whether the TEM sample is representative of the bulk
material. It is not clear whether the sample has the same overall composition
as the bulk alloy, for which the solvus line is well defined [10].
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2. Temperature measurement methods

Now we will briefly introduce the continuous methods. PBED is excluded for
now, but will be discussed in detail in the next section.

Direct read-out
Most heating holders have a read-out function that gives back the current tem-
perature. For furnace based holders this works via a thermocouple mounted
directly on the holder, while for a MEMS-based system, we obtain the resis-
tance R(T) from the 4-point probe measurement. A disadvantage of the latter
is that the uncertainty increases with temperature (see Section 2.1), which
is of course inconvenient if you are interested in the behavior of a material
at high temperatures. Moreover, such direct read-outs only give an average
temperature. However, the support film or parts of the examined sample can
have a lower temperature than the heating element due to their low thermal
conductivity.
While it is convenient to be able to read the temperature directly from the
fixture, it is important to be able to validate it and, furthermore, resolve it
locally.

Plasmon energy expansion thermometry (PEET)
An electron in the beam can lose energy as it passes through the sample
by creating a charge oscillation - called a plasmon - in the material. The
energy of such plasmons is proportional to the square root of the electron
density in the material. Therefore, as the material expands from an increase
in temperature, the decrease in electron density can be seen in the electron-
energy-loss-spectrum (EELS) [11],[12].
With this method it is possible to resolve the temperature down to nanometer
scale. However, it is of course tied to TEMs that offer the possibility of EELS
measurements.
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2.3. Measuring temperature with PBED

2.3. Measuring temperature with PBED

Figure 2.4.: PBED

Most materials have a positive thermal expansion
coefficient α, i.e. they expand when heated. The
larger α, the more the average distance between
atoms increases with temperature. This relationship
is linear to a good approximation for many materials
[13].

d(T)
d0

= 1 + α(T − T0) (2.2)

d stands for the distance between lattice planes, the
slope α is the thermal expansion coefficient (TEC),
and T0 is the reference temperature.

As the material expands, we see a contraction of the diffraction pattern in
the TEM. For a polycrystalline material, this means that the diffraction rings
decrease in diameter as T increases.

In Figure 2.5 we see the ray diagram of an electron beam diffracted at an
angle 2Θ. In the plane of the diffraction image, the beam hits the screen at
a distance r from the undiffracted beam. From the Bragg equation and the
geometry of the ray diagram, we derive Equations (2.3).

Figure 2.5.: Ray diagram

r
L
= tan(2θ) ≈ 2θ

λ = 2dsinθ ≈ 2dθ

λ

d
≈ 2θ ≈ r

L
rd = λL

(2.3)

Now we can rewrite Equation (2.2) linking the radius of the diffraction rings
to the TEC.

r0

r(T)
= 1 + α(T − T0) (2.4)
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2. Temperature measurement methods

The right hand side of the equation stayed the same and again, the slope α
equals the TEC.

2.3.1. Parallel illumination

As the name of the method implies, the measurement is conducted with a
parallel electron beam. However, there are three angles of inclination (α, β, φ)
that contribute to the non-parallelism of the beam, each having different
origins [14].
In Figure 2.6 we see those angles visualized in ray diagrams.

• A certain point on the sample is hit by electrons coming from different
angles. This range of incident angle is called α and it results from
the finite size of the crossover above the objective lens. This ultimately
results from the finite size of the electron source.

• β is the convergence angle. It is the variation in mean incident angle
over the entire illuminated area. We can adjust β by changing the excita-
tion of the condenser lenses. When exciting them more, the beam will
spread out, for low lens currents the beam will be more focused.

• As the electrons pass through the magnetic lenses, they are forced onto
a spiral path by the Lorentz force. This causes an inclination φ of the
electron path relative to the sample.

Figure 2.6.: The three inclination angles α, β and φ contributing to the non-parallelism of the
electron beam.

Although we can adjust the radial components α and β to be very small, the
tangential part φ will always remain. However, since we are dealing with

10



2.3. Measuring temperature with PBED

polycrystalline samples and thus with radially symmetric diffraction patterns,
we do not need to consider this.
The reason it is important to have a parallel beam is that the heater chip bulges.
The center part of the chip itself expands from the temperature increase, but
since its surrounding does not, it will start to bulge - effectively moving the
sample slightly upwards in the TEM column. In imaging mode, this change
in height will become apparent as the sample moves out of focus.
However, it is not only disturbing the heating experiment in imaging mode:
for a non-parallel beam the ring radii of the diffraction pattern change their
diameters (see Fig. 2.7). Since the change in diffraction ring radii is also what
the entire PBED temperature measurement is based on, bulging of the chip
would greatly interfere with our measurement. However, if we can tune the
convergence angle β to be close to zero, the effect of bulging on the ring radii
will become negligible.

Figure 2.7.: For a non-parallel beam, a change in z-height of the sample will result in a change
in the diffraction ring radius ∆R. Image from Niekiel et al. [1]

This means that we have to find lens settings that result in a parallel beam.
Here it makes a big difference whether the TEM used is equipped with two
or three condenser lenses. The three condenser lens TEM (i.e. used by Niekiel
et. al. [1]) has the advantage of the so-called C2/C3 zoom which simplifies the
search for the parallel beam settings.
To find the correct lens settings for two condenser lenses, a sample is moved
up and down in the TEM. If the ring radii of the diffraction pattern do not
change despite the change in height, we have a parallel electron beam. How
this preparatory experiment proceeds in detail will be explained in Section
4.3.

11



2. Temperature measurement methods

2.3.2. Choice of materials

In order to be able to measure the temperature from the diffraction pattern
the material used must meet several criteria:

• large thermal expansion coefficient
• high melting point
• stability in the electron beam
• insensitivity to transfer (oxidation in air)

The first and most important point on the list is that the material expands as
much as possible, so that there is a measurable difference in the diffraction
patterns. After all, the more it expands the better the resolution of the temper-
ature measurement will be in the end. Furthermore, we want it to have a high
melting point, so it provides a wide temperature range to measure over.
There are several materials that fulfill these two requirements but most of
them bring some issues to the table when it comes to sample preparation
or their stability when exposed to the electron beam. The choice of suitable
materials is further narrowed down by the condition that the material must be
chemically inert, so that only thermal expansion changes the lattice parameter.
Moreover, it must be stable in the vacuum of the TEM and produce a nicely
defined diffraction pattern.

In sample preparation, the question is whether to have the materials as a
a thin layer or rather as nanoparticles on the chip. The former would provide
more signal because more electrons are scattered, making it easier to evalu-
ate the more clearly defined diffraction rings. On the other hand, however,
nanoparticles are free to expand in all directions and we would not have to
worry about inducing stress in the sample as the temperature increases.

In Table 2.1, we see the prime candidates. Au is the safest bet, since it has
proven to be easy to handle and stable throughout many measurements in the
work of Niekiel et al. [1]. Ag and Al have also been used for PBED temperature
measurements in literature, however Ag was used in an Environmental TEM
(ETEM) under H2 atmosphere and Al was deposited as a thin layer instead of
nanoparticles [15],[16].

12



2.3. Measuring temperature with PBED

Table 2.1.: Materials and the criteria for a successful PBED temperature measurement.
material α [10−6 K-1] melting point [◦C] no oxidation reference

Au 14.2 1,064 3 Niekiel et al. [1]
Ag 18.0 962 3 Winterstein et al. [15]
Al 23.1 660 7 Cremons et al. [16]
Cu 16.7 1,084 7

The problem with Al is that with our heating holder we cannot prepare and
measure the sample without ever exposing it to air where it would oxidize to
an uncertain degree. A partially oxidised sample does not necessarily have
the same thermal expansion coefficient as bulk aluminium. For the PBED
temperature measurement, however, it is of utmost importance to know the
exact thermal expansion coefficient.

13





3. Evaluation of diffraction patterns

In the previous section we discussed how an increase in temperature manifests
itself in the decrease of the diffraction ring radii. As we can see in Figure
3.1, the ring radii change only by a few pixels even for a large temperature
difference. With Au nanoparticles, for example, a 100 °C temperature differ-
ence makes only 0.5 pixel difference in the ring radius of the (220) diffraction
ring.

Therefore, it is of utmost importance to have a very precise evaluation algo-
rithm. In a nutshell, the evaluation consists of two major steps: First, the DP
is integrated azimuthally around its center to obtain the radial profile. In a
second step we can extract the ring radii by fitting the peaks.
Although this sounds like a simple 2-step plan, it is a difficult endeavor to
achieve high accuracy. The integration center must be determined to within a
fraction of a pixel to avoid falling victim to pixel artifacts later. Another hurdle
is the fit of the radial profile: We have to decompose it into the contributions
from the nanoparticles, the membrane of the support grid and the undiffracted
(zero) beam.

Figure 3.1.: Side-by-side comparison of DPs of Ag nanoparticles at 40 °C and 800 °C.
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3. Evaluation of diffraction patterns

3.1. Localizing the center of the diffraction rings

As already emphasized, the center of the diffraction rings must be determined
very precisely. However, in the recorded diffraction images the center is
concealed by the beam stop, to protect the camera from overexposure by the
undiffracted beam (see e.g. in Fig. 3.4(a)). Therefore, we must find a way to
determine the center indirectly via the rings.

In this section we present three algorithms to do so. Two of them are from
literature and the third one, called Peakmax, is an original creation. We
discuss their efficiency and accuracy and decide which one is best suited for
the application on diffraction rings.

3.1.1. Circular Hough Transform

The Circular Hough Transform (CHT) algorithm can effectively find circles in
an image and, consequently, their center.
First, the features we are interested in are isolated by thresholding. To do
so, the pixels that form the diffraction ring are set to an intensity value of 1,
while all other pixels are set to zero (Fig. 3.2a). Now we draw so called Hough
circles from each of the non-zero pixels. All of these circles have the same
radii. If those radii are the same as the radius of the diffraction ring, there will
be a maximum overlap of the Hough circles at the position of the diffraction
ring center (Fig. 3.2c). Since the radius of the diffraction ring is unknown, we
have to gradually increase the Hough circle radii until we achieve maximum
overlap (Fig. 3.2).

For a precise determination of the center, we need to try out many different
radii for the Hough circles. Even if we restrict the radius range, the method
remains computationally expensive. There is a script for DigitalMicrograph
that is optimized specifically for diffraction rings [17]. While there are also
packages available for Python and Matlab, they are primarily intended for the
rough location of round structures and do not provide the accuracy we are
aiming for.
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3.1. Localizing the center of the diffraction rings

Figure 3.2.: (a) Diffraction ring after thresholding. (c) When the circles drawn from each non-
zero pixel have a radius r = rHough there is a maximum overlap of all circles in the
center of the diffraction ring.
Reprinted from Cremons et al. [16] with permission from Elsevier.

3.1.2. Cross-correlation

Cross-correlation is often used when you need to find a particular feature in
an image [18]. In our case, we want to find a ring and thereby its center.
The cross-correlation between an input x and a kernel w in two dimensions is
given by

y(i, j) = ∑
m

∑
n

x(m− i, n− j)w(m, n). (3.1)

Figure 3.3 illustrates what happens in Equation (3.1): The kernel is dragged
across the input matrix. At each position, the superimposed entries are multi-
plied and the resulting products are summed up.

Figure 3.3.: Schematic operation of the 2D cross-correlation.

To use cross-correlation for our purposes, we define the DP as the input and

17



3. Evaluation of diffraction patterns

for the kernel we construct a zero-matrix with with a ring of ones (Fig. 3.4(a,b)).
We choose the size of the kernel-ring to match the most pronounced ring of
the DP. The output y (Fig. 3.4c) will have its maximum when the kernel-ring
lies centered on top of the diffraction ring. Then we can safely say that the
center of the-kernel ring is at the same location as the (up to now unknown)
center of the DP.

Figure 3.4.: Cross-correlating a DP (a) with a ring (b) gives an output matrix (c) that has a
maximum at the position of the center. The most pronounced ring of the DP is
highlighted in red.

This algorithm gives us the pixel that most likely inhabits the center. Cross-
correlation is available as scipy.signal.correlate in Python and while this
operation is not very time consuming, it can be sped up by cropping the input
and kernel images so they only include the relevant ring.

Subpixel accuracy

Unfortunately, the accuracy of the conventional cross-correlation is not suffi-
cient for our purposes. To determine the center more precisely, we first need
to upsample the DP using Python’s scipy.ndimage.zoom. This scales up the
dimensions of the DP as follows:

new dimensions = old dimensions ∗ zoom f actor.

The newly introduced pixels in between are filled using spline interpolation
and the size of the kernel is adjusted accordingly. We can now perform a
cross-correlation of these enlarged arrays and therefore calculate the center
with sub-pixel accuracy for the original size of the DP.
With a zoom factor n we get a result accurate to 1

n pixel. Of course, this also
means that the computational effort of the operation scales quadratically with
the zoom factor and thus also with the precision of the method.

18



3.1. Localizing the center of the diffraction rings

3.1.3. Peakmax method

When we compute the radial profile, we integrate azimuthally around the
center of the DP. In Figure 3.5 we see how the radial profile changes as we
move the integration center away from the center of the DP. We notice that
the farther they are apart, the broader and smaller the peaks will become. At
some point they even split into two peaks.

(a) 2 pixels off (b) 4 pixels off

Figure 3.5.: Radial profiles of a DP where the integration center does not coincide with the
center of the DP.

Looking at it the other way around: the closer we choose the center of the
radial profile to the unknown center of the DP, the higher the peaks will be.
We can use this observation to find the center coordinates of our diffraction
rings:
The peak height h is a function of the integration center with coordinates i, j.
By varying i and j we want to find the maximum peak height. We can choose
i and j also between the pixels and thus locate the center very precisely. It
would, however, be computationally expensive to evaluate the peak height at
a large number of points. Therefore, we need to come up with a scheme to
find the maximum of h(i, j) in a few steps.
An elegant way to find such a maximum would be a gradient search, also
known as "hill climber". Such an algorithm evaluates the local slope at a
certain point and then chooses its next step uphill. The step size is adapted to
the gradient, i.e. the closer it gets to a maximum, the smaller the steps. In our
case, however, it turns out that the function h is not smooth enough, which
causes the hill climber to get stuck at a local maximum.
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3. Evaluation of diffraction patterns

This can be circumvented by considering several points instead of just one
at each step: We draw a grid of (i, j) values around what we assume to be
the center and compute the peak height h for these limited number of points
(Fig. 3.6). It will have the shape of a 2D peak, that we can now fit with a 2D
Gaussian function given in Eq. (3.2). The maximum of the fit will then tell us
the center coordinates.

fX(x1, x2) =
1

2πσ1σ2
√

1− $2
exp

(
− 1

2(1− $2)

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2$ (x1 − µ1) (x2 − µ2)

σ1σ2

])
(3.2)

Unlike subpixel cross-correlation, the computational cost of this method does
not scale with accuracy.
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Figure 3.6.: The values for the peak height for different integration center coordinates (i, j)
form a 2D peak that can be fitted with a Gaussian.

A cross-correlation and Peakmax hybrid

With common cross-correlation we get to the center quickly but inaccurately
(error of ±1 pixel). Peakmax is costly but allows us to determine the center
with high accuracy. To exploit the strengths of both algorithms, we go with a

20



3.2. Fitting the radial profile

mixture of both of them.
First, we use cross-correlation to find the center to pixel accuracy. Then, we
evaluate the peak height h in the vicinity of this pixel. The number of grid
points at which we have to evaluate h can be greatly reduced and we have a
very accurate and relatively fast center finding method.

It was observed that slight distortions of the diffraction pattern can affect the
determination of the center. This effect can however be mitigated by a correc-
tion of the beam stop: After determining the center with pixel accuracy using
cross correlation, a slice of the DP containing the beam stop was replaced by
a copy of the neighboring slice (Fig. 3.7). This gives us a more continuous
(220) ring and the Peakmax method can now find the most probable center
coordinates of the diffraction ring.

Figure 3.7.: Masking the beamstop with a neighboring slice of the DP for the Peakmax algo-
rithm.

3.2. Fitting the radial profile

Once we have found the center, we can now decompose the radial profile into
its components. In this section, we demonstrate this using the example of a
sample with Au nanoparticles.
In the radial profile (blue curve in Fig. 3.9), a rapidly decaying background is
clearly visible. This fall-off of the zero beam is caused by inelastic scattering
and can be fitted from the data in the red marked area. Looking at the DP in
Figure 3.8a, we see that the area corresponding to this part is partially covered
by the beamstop. To get rid of the influence of the beamstop on the radial
profile, we apply a wedge mask (Fig. 3.8b).
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3. Evaluation of diffraction patterns

Figure 3.8.: Diffraction pattern of Au NP. (a) The beamstop covers parts of the area that provides
the data for the powerlaw fit (red area, also marked in Fig. 3.9). (b) To prevent the
beamstop from interfering we mask these parts with wedges.

The background can be fitted with a Powerlaw and subtracted from the radial
profile [1]. The resulting yellow curve in Figure 3.9 consists of some very
distinct Au peaks sitting on a background of several broad "bumps" originating
from the Nano-Chips membrane. The membrane consists of amorphous SiNx
and therefore has no long-range order in the atomic lattice. As a result, it
produces diffuse diffraction rings - which manifest themselves as relatively
broad hills in the radial profile.

Figure 3.9.: The wedge-corrected radial profile (blue) is broken down into its components:
By subtracting the powerlaw fit (orange), we obtain the yellow curve, which still
contains a background from the SiNx membrane.

Ultimately, we want to know the exact location of the Au peaks. Therefore,
we must try to deconvolve the yellow curve in Fig.3.9 into its components.
To get a rough idea of how much the SiNx background effectively shifts the
peaks, we can make an estimation: We approximate the Au peak by a parabola
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3.2. Fitting the radial profile

f (x) = −ax2 sitting on a part of the SiNx bump that has a local slope k and is
approximated by a line g(x) = kx + d. The question now is by how much the
peak position of the overall curve h(x) = f (x) + g(x) differs from the peak
position of f (x). To calculate the maximum of h(x), we set its first derivative
to zero.

h(x) = f (x) + g(x) = −ax2 + kx + d (3.3)

h′(x) = −2ax + k !
= 0 −→ x0 = k/2a (3.4)

This means that the peak of h(x) is shifted by approximately k/2a. In the
case of the (220) peak of the Au NP sample this corresponds to a temperature
difference of roughly 8 °C. Therefore, it is important to fit Au and SiNx sepa-
rately instead of simply determining the peak positions of the yellow curve.

The SiNx background can be fitted with a sum of 3 or more Gaussians. Due
to their very broad shapes (see Fig. 3.10), the parameters of these individual
Gaussians can vary greatly and still result in a seemingly good overall fit. It is
therefore difficult to determine the "true" configuration of parameters. Further-
more, for each new image, the non-linear least-squares fitting routine may fall
in another local minimum and give a slightly different variation of Gaussians.
Additionally, the SiNx has a nonzero - yet very small - thermal expansion
coefficient of its own and therefore also changes with temperature.

To tackle the challenges described above, we need a fitting routine that limits
the parameter variation and leaves little room for the fit to fall into a local
minimum. Python’s lmfit provides options to set limits for each parameter
and it provides a detailed fitting report that allows us to optimally fine-tune
the parameters [19].

After a few rounds of trial and error, the fit parameters can be narrowed
down and it is ensured that the routine converges for radial profiles of all
temperatures. In Figure 3.10 we see the individual parts of the profile we
obtained: The sharp Au peaks, fitted with Lorentzians, and the contribution
of the membrane, consisting of 4 Gaussians. The (220) Au peak is the one
least affected by the background and adjacent Au peaks and gives the most
signal. Therefore, we can consider it to be the most reliable. Moving forward,
we will use the (220) peak for the evaluation of the thermal expansion of the
nanoparticles.
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3. Evaluation of diffraction patterns

Figure 3.10.: Fits of the Au peaks and the background from the SiNx membrane.
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4. Experiments

4.1. Equipment

All measurements have been performed using a FEI Tecnai 12 operated at
an acceleration voltage of 120 kV. For image recording, it features a Gatan(R)
BioScan CCD camera with a resolution of 1024× 1024 pixels. All diffraction
patterns were taken at dwell times between 0.1 s and 1 s.
The DENSsolutions Wildfire heating system, which has already been described
in Chapter 2, consists of Nano-Chips and the corresponding heating holder,
with the temperature stimulus controlled and read out via the software
Digiheater. The Nano-Chips have round and oblong windows and are covered
with a <20 nm thick amorphous SiNx membrane that serves as substrate (see
e.g. Fig. 4.3) for samples that need to be deposited. The specifications of the
heating system are listed in Table 4.1.

Table 4.1.: Wildfire heating system specifications [20]
Nano-Chips D6
heating holder DH30
Digiheater version 3.2
window size ø= 8 µm
temperature range RT − 1, 300◦C
T stability ±0.005◦C
T accuracy > 95%
T uniformity > 99.5%
z-displacement (T < 500◦C) < 200 nm

The PBED measurements in this thesis were performed based on the work
of Niekiel et al. [1]. The high-end 300 kV TEM used there has a condenser
lens system consisting of three lenses. The parallel beam can thus be adjusted
via the relative excitation of the second and third lenses (C2/C3 zoom). In
contrast, with the FEI Tecnai 12 we only have two condenser lenses and also a
camera with lower resolution. On the other hand, we use a newer generation
of Nano-Chips that exhibit less bulging at high temperatures. We therefore
do not have to expect such large z-height changes that affect the ring radii
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4. Experiments

of the DP, which in turn improves the accuracy of the PBED temperature
measurement.

4.2. Sample preparation

As discussed in Section 2.3.2, Au and Ag are most promising for the applica-
tion of PBED temperature measurements. For the preparation of nanoparticles,
we use the dewetting routine: A layer of the material is sputtered onto the
back of the Nano-Chip which is then heated under continuous observation
until nanoparticles form. For this procedure to work, the initial sputter layer
must be sufficiently thin, and the temperature must be kept well below the
melting point, as the nanoparticles can volatilize at high temperatures due to
increased mobility.
Since the very first attempt to make nanoparticles failed, we can demonstrate
here what happens when the sputter layer is chosen too thick:
In Figure 4.1 we see how a 20 nm thick Au layer behaves during heating:
Here, no nanoparticles are formed - only the grain size changes and stress
is induced, as indicated by the black fringes. In contrast, in Figure 4.2, we
can see how a 5 nm thick Au layer transforms into free-standing roundish
particles. A clear difference can already be observed at room temperature:
While the thicker layer covers the membrane continuously, the 5 nm thick
layer has formed branched Au islands.

Figure 4.1.: Failed dewetting: A 20 nm Au layer is too thick to produce nanoparticles.

Therefore, we choose a nominal thickness of the sputtered layer of 5 nm for
both the Au and Ag samples, resulting in nanoparticles with a diameter of
10 to 70 nm that are well distributed across the electron-transparent windows
(Fig. 4.3).

Over the course of several experiments with the same sample of Au NP,
the particle density on the membrane decreased only slightly, proving its
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4.2. Sample preparation

Figure 4.2.: Formation of Au NP from a 5 nm thick layer with rising temperature.

durability.

Another interesting observation was that in the process of dewetting, the
exposure to the electron beam in imaging mode had an effect on NP formation.
In Figure 4.4 we see very unevenly sized Ag NP in the area where the beam
was directed during the initial heating of the sample.

Figure 4.3.: left: center of the heating spiral right: zooming into one of the circular windows
we see the nanoparticles evenly distributed over the entire area

FIB lamella

The final measurement, which will be discussed in detail at the end of Chapter
5, is a proof-of-concept measurement, where we want to show how PBED can
be used in an in-situ heating experiment. For this purpose, a chip is sputtered
with Au and dewetted to obtain Au NP as described previously. Afterwards, a
window is cut free from the membrane with a focused ion beam (FIB) (Thermo
Fischer Scientific Ltd. FIB Nova 200). An electron-transparent lamella of the
sample to be examined is then placed in/over this window (see Fig. 4.5).
We are using a lamella of an additively manufactured specimen from an
AlSi10Mg alloy powder [21]. It is cut out with the FIB and has a thickness of
about 90 nm.
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4. Experiments

Figure 4.4.: In the presence of the electron beam, the NPs have different shapes and size
distributions. We can roughly see the outline of where the electron beam hit the
sample during dewetting.

(a) (b)

Figure 4.5.: The AlSi10Mg lamella attached to one of the oblong windows of the Nano-Chip in
the (a) SEM and (b) TEM.
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4.3. Tuning procedure for a parallel beam

4.3. Tuning procedure for a parallel beam

Figure 4.6.: Ray diagram
parallel beam. Reprinted
from [22] with permission
from Springer Nature.

In preparation for the PBED measurement, the micro-
scope must be aligned to achieve a parallel electron
beam as discussed in Section 2.3.1.
To do this, we first look at which lenses of the mi-
croscope affect the beam in front of the specimen. In
Figure 4.6 we see a simplified ray diagram of the FEI
Tecnai 12TEM in diffraction mode. Above the sample
we have two condenser lenses, a mini condenser lens,
and the upper part of the objective lens.

The first condenser lens (C1) can be controlled by
changing the "spot size". It forms an image of the
source, that is, in turn, imaged by the second con-
denser lens (C2) to form the object for the mini-
condenser-lens. The latter cannot be adjusted sep-
arately. For a fixed spot size the convergence angle
β is therefore controlled by both the C2 lens and the
objective lens. However, in diffraction mode the objec-
tive lens cannot be adjusted either and therefore, we
must make sure that the value of the objective lens
is always the same before switching to diffraction
mode. The condenser aperture sits inside the C2 lens,
limiting the angular width of a focused beam and the
spatial width of a diverging beam.

To find out whether the beam is convergent, diver-
gent or parallel for a certain combination of settings,
a calibration experiment is performed:
We use a 10 nm thick polycrystalline gold foil sam-
ple that provides a clear circular diffraction pattern.
After setting the eucentric height zeuc, the sample is
moved to different z-heights, at each of which a DP
is recorded. The evaluation of these DPs will show
an increase or decrease of the ring radii through the
z-height series, which will tell us whether the beam
converges or diverges. To reach beam parallelity, we
need to vary the C2 currents, while keeping the val-
ues of the objective and C1 lens fixed.
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A potential pitfall of this method is that the ring diameters will only change
very little with z-height when the diffraction pattern is not in focus. Thus, if
the DP is out of focus, we may mistakenly think that the settings were found
for a parallel beam. We therefore have to focus the DP with the diffraction lens
at the very beginning and then keep this setting for the rest of the experiments.
All TEM settings as used in this measurement can be found in Table 4.2. In

Table 4.2.: TEM settings for the alignment of the beam
sample polycrystalline Au foil, 10 nm thick
C2 aperture No. 4 (ø = 30 µm)
objective aperture No. 3 (ø = 40 µm)
SAD aperture No. 3 (ø = 200 µm; on the sample: ø = 5.77 µm)
objective lens 93.4014 %
diffraction lens 33.586 %
set camera length 1.5 m
C2 lens 49 %, 50 %, 50.5 %, 50.9 %, 52 %
∆z [relative to zeuc] −20 µm, −10 µm, 0 µm, 10 µm, 20 µm

Figure 4.7 we see how the relative ring radii change with z-height (given
relative to the eucentric height; a negative z-height means the sample was
above zeuc a positive z-height means it was below). From this we can conclude
that the electron beam is divergent at low C2 lens currents and convergent at
higher currents. There is also an obvious correlation between the slopes of the
lines in Figure 4.7 and the lens current. Therefore, we can easily interpolate to
that lens current with which we obtain a slope of zero - and thus a parallel
beam (Fig. 4.8)
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Figure 4.8.: The linear relation between the C2 current and the slopes in Fig. 4.7 can be fitted
to obtain the C2 current for a parallel beam (C2parallel ≈ 50.5 %).
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4.4. The PBED measurement

4.4.1. Testing suitable materials

To investigate the applicability of a material for this method, we measure
its linear thermal expansion and compare it to literature values, e.g., from
[23]. Therefore, we record DPs for different Tset (temperature we set for the
heating system). A reference diffraction pattern is taken at a low temperature
where the 5 % error of the heating system is not yet significant. The relative
contraction of the diffraction rings r0

r(Tset)
is then plotted over Tset, and the

slope gives us the linear expansion coefficient α of the material (see Eq. (2.4)).
If the relation is linear and the expansion coefficient matches its literature
value within the 5 % error of Tset, we have found a reliable material for the
temperature measurement. The TEM settings used for these experiments are
listed in Table 4.3.

Table 4.3.: TEM settings for PBED
C2 aperture No. 4 (ø = 30 µm)
objective aperture No. 3 (ø = 40 µm)
SAD aperture No. 3 (ø = 200 µm; on the sample: ø = 5.77 µm)
C2 lens 50.9000 %
objective lens 93.4014 %
diffraction lens 33.586 %
set camera length 1.5 m

4.4.2. Application in a heating experiment with a FIB lamella

The lamella we want to investigate is attached to the heating chip as previously
described (Section 4.2). Again, a reference diffraction pattern is taken at a low
temperature.
We proceed with the heating experiment as we would for any sample. If
interesting changes occur, or if we simply want to know the temperature at
this moment, we can switch to diffraction mode (settings according to Tab.
4.3) and go to one of the windows covered with nanoparticles to record a DP.
The evaluation then shows what temperature prevailed at that time according
to PBED.
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4.4. The PBED measurement

Figure 4.9.: For acquiring a diffraction image for the PBED temperature measurement, we need
to move to one of the windows with nanoparticles on them.
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5. Results and Discussion

In this chapter we will look at the results of all the heating experiments and
discuss the difficulties we encountered, especially with regard to Nano Chip
calibration.
We will examine the performance of Au and Ag nanoparticles as nano-
thermometers for the PBED temperature measurement and discuss its accuracy
and possible pitfalls of the evaluation. Finally, we will put its application in a
heating experiment to a test, where we investigate the morphological changes
in a AlSi10Mg FIB-lamella sample at different temperatures.

5.1. The importance of Nano-Chip calibration

With our first heating experiments we tried to determine the thermal expan-
sion coefficient of Au nanoparticles following the procedure described in
Section 4.4.1. When plotting the relative contraction of the diffraction rings

r0
r(Tset)

against Tset we expect to see a linear relation, with the slope being the
linear thermal expansion coefficient α (see Eq. (2.4)).

In Figure 5.1 we see the results of the first measurement on Au nanoparticles.
While the data points clearly confirm a linear expansion, its slope is much
lower than the expected literature value of αlit = 14.2× 10−6 K−1, which
cannot be explained by the 5 % error of Tset.

There are two possible explanations for the error in the proportionality con-
stant α: Either the material - in our case the Au nanoparticles - does not expand
as much as anticipated or the indicated temperature Tset of the heating system
is incorrect. We first looked into the possibility that nanoparticles behave
differently than bulk gold when heated because of size effects. However, the
literature did not support this assumption [24],[25] and also, in the work of
Niekiel et al. [1] no such size effects were observed. Furthermore, when we
repeated the experiment on a different Nano Chip we got α = 17.6× 10−6 K−1
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Figure 5.1.: Thermal expansion of Au nanoparticles (sample 1). The light blue area marks the
±5% error region of Tset, which clearly does not enclose the orange dashed line of
αlit. The (220) ring radius at Tset = 40◦ was taken as reference.

which contradicts the earlier experiment (Fig. 5.2). It thus became evident that
the deviations most likely had something to do with the heating system.

As described in Section 2.1, the Nano-Chips are calibrated by the manufacturer
and delivered in boxes on which the calibration factor b is indicated (Fig.
2.2). We must assume that this factor applies to all chips of that box because
they are from the same production batch. However, if the calibration factor
b is inaccurate, the temperature we set for the heating system will deviate
from the actual temperature of the heating spiral. This error increases linearly
with temperature, as we can see from the Callendar-Van Dusen equation (Eq.
(2.1)).

In the present case, we suspect that at some point chips from different boxes
were mixed up, resulting in us using the wrong calibration factor for several
measurements. A closer look at the chips used under the light microscope
(Alicona Infinite Focus) supports this assumption: The Nano Chips do indeed
look differently and their resistance at room temperature also varies greatly.
These two observations also suggest that they could come from different
production batches.

These circumstances shed light on a different application of the PBED mea-
surement, namely using it to (re)calibrate the chip. To do this, we must of
course assume that the expansion coefficient of the nanoparticles matches
the literature value. In that manner, the previous measurements can now be
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Figure 5.2.: Thermal expansion of Au nanoparticles (sample 2). This time the measured thermal
expansion coefficient is clearly larger than αlit.

Figure 5.3.: The side-by-side comparison of the used Nano Chips reveals that they have slightly
different features in branding and layout. Also, their resistance at room temperature
differs more than what would be expected from chips from the same production
batch.
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recalibrated by calculating the temperature from the relative ring radius using
Equation (2.4) with αlit. In Figure 5.4 we see that between Tset and TPBED there
is a temperature difference of up to almost 100◦C in the first measurement!
This situation vividly underlines the importance of well-calibrated heating
chips.
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Figure 5.4.: Au NP (1): Comparison of the temperatures according to the heating system Tset
and the temperatures calculated from the PBED measurement using α = αlit.
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5.2. Au and Ag nanoparticles

After obtaining misleading results from the mixed-up Nano-Chips, we wanted
to repeat the experiments with correctly calibrated chips to better evaluate
the performance of the PBED temperature measurement. This time we took
a very close look at the Nano-Chips and their resistance at room temperature
beforehand (Fig. 5.5). The variation in the resistance of the chips at room
temperature is much lower than for the previously used chips.
To find out if there is a link between the slight deviation of the b-value to the
differences in resistance, we conduct the Au measurement on three chips with
different resistances (No. 1, 4 and 5). We will also perform a measurement
with Ag nanoparticles (No. 7).

Figure 5.5.: Overview of the Nano-Chips from the new box with their resistance at room
temperature. Chips No. 1, 4, 5: Au nanoparticles; No. 7: Ag nanoparticles; No. 6:
Au nanoparticles & FIB-lamella.

The experiments were again conducted following the procedure described in
Section 4.4.1. This time, we got results that agree well with the literature expan-
sion coefficients (Figures 5.6, 5.7 and 5.8). Taking a closer look, it seems there
is indeed a relation between the resistance of the chip at room temperature
and its (correct) b-value.

The increase in αmeas for a higher resistance of the chip at RT indeed suggests
that there is a relation. The increase of αmeas for a higher resistance of the chip
at RT indeed indicates a correlation, which however is still within the 5 %
uncertainty of the heating system.
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Figure 5.6.: Measured thermal expansion of Au NP on chip 1.
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Figure 5.7.: Measured thermal expansion of Au NP on chip 4.
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Figure 5.8.: Measured thermal expansion of Au NP on chip 5.

For each temperature, 3-5 diffraction images were taken and evaluated. If we
now look at the evaluated data, these measurement points are mostly con-
gruent. At the same time, however, we see somewhat of a periodic deviation
around the fit with increasing temperature. Within the examined temperature
interval the ring radius of the (220) ring of Ag changes by approximately 4
pixels. This suggests that this deviation originates from the discrete nature
of the diffraction pattern, that cannot be fully overcome with the used fit
routine.

We see this effect even more pronounced in the measurement with Ag nanopar-
ticles (Fig. 5.9). As discussed in the previous chapter, we used the same nom-
inal thickness for the initial sputter layers of Au and Ag, respectively. For
Ag we ended up with a lower nanoparticle density on the membrane. Thus
leading to grainier diffraction patterns, which consequently leads to a more
inaccurate evaluation of the ring radii.
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Figure 5.9.: Thermal expansion of Ag nanoparticles.

5.2.1. AlSi10Mg lamella

In the final experiment, the PBED temperature measurement is applied in the
context of a typical in situ heating experiment.
Prior to attaching the actual sample as a FIB-lamella to the Nano Chip, the
thermal expansion of the Au nanoparticles was measured. Just like in the
previous experiments the slope agreed with the literature value of gold (see
Fig. 5.10).
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Figure 5.10.: Thermal expansion of the Au NP before further preparation in the FIB.

The lamella was then placed over a window of the Nano Chip that had been
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5.2. Au and Ag nanoparticles

cut free from the SiNx membrane. The heating experiment was conducted as
follows: Starting at 40 °C the temperature was gradually increased by 20 °C.
At each temperature step images of the lamella were recorded, as well as DP
of the Au nanoparticles (Window No. 1 in Fig.5.13).
At 370 °C, cracks began to appear in the lamella, and the temperature was
lowered again (Fig. 5.11).

(a) 40 °C (b) 370 °C

Figure 5.11.: At Tset = 370 °C the lamella started to crack.

Surprisingly, the evaluation of the Au diffraction images now showed a much
lower expansion coefficient than before the lamella had been attached. In
Figure 5.12 we see both measurements in comparison. It has to be emphasized,
that both measurements were conducted on the same exact Nano Chip. All
microscope settings were the same and also the density of the nanoparticles
has not changed. The only difference is that the chip was in the FIB for the at-
tachment of the lamella in between the measurements. We then examined the
sample for possible impurities, but could only detect very low concentrations
of carbon, which do not explain this deviation.

We repeated the measurement on three different locations/windows of the
Nano Chip, which are labeled in Fig. 5.13.

The results confirmed the earlier result of αmeas(1) = 10.2× 10−6 K−1 in win-
dow 1. For windows 2 and 3 we got αmeas(2,3) = 10.9× 10−6 K−1 (Fig. 5.14).
Again we are faced with the problem that the measured thermal expansion
coefficient does not correspond to the literature value. This time it is particu-
larly odd, because according to the first measurement (before attaching the
lamella) we are using the correct calibration factor.
What remains unclear, however, is what happened in between the contradict-
ing measurements.
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Figure 5.12.: Comparison of the measured relative ring radius as a function of Tset before and
after attaching the lamella to the Nano Chip.

Figure 5.13.: Close-up of the heating spiral and the electron transparent windows of the Nano
Chip. The PBED measurement of Au NPs was conducted at locations 1, 2 and 3.
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Figure 5.14.: The measurements of α of Au NP on three different locations (see Fig. 5.13)
compared to each other and the literature value of bulk gold.

If we assume the PBED measurement of the Au nanoparticles to be correct, the
resistance of the heating spiral must have changed in the meantime. If the wire
would for example have a crack somewhere, the reduced cross-section at this
point would increase the resistance. This would change the proportionality
factor between resistance and temperature in the Callendar-Van Dusen Equa-
tion. Consequently, we would again be dealing with a "wrongly" calibrated
Nano Chip. Taking a look at the chip under the light microscope reveals that
there is indeed some sort of either damage or redeposition stemming from
the FIB sample preparation on the spiral (Fig 5.15).

It is unclear whether this slight damage of the heating coil actually has a
noticeable effect on the resistance of the chip. The fact that the resistance at
room temperature remained the same, speaks against this assumption.

On the other hand, if we assume that the thermal expansion coefficient of the
Au nanoparticles still matches the literature value of αlit = 14.2× 10−6 K−1,
we must assume that the chip has been altered in some way so that the previ-
ous calibration factor no longer fits. In Figure 5.16 we see the temperatures
according to the PBED measurement compared to Tset.

Thus, according to the PBED measurement, the white streaks in the lamella
would have already appeared at 280 °C degrees instead of at 370 °C.

45



5. Results and Discussion

Figure 5.15.: Close-up of the Nano Chip in the light microscope. In the course of fixing the
lamella to the chip, the heating spiral was apparently damaged, as can be seen
from the pink strikes through the wire.
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Figure 5.16.: Au NP on window 1: Comparison of the temperatures according to the heating
system Tset and the temperatures calculated from the PBED measurement using
α = αlit.
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It would have been interesting to monitor the ring radii of the Al islands
within the lamella, to see if we can get a PBED measurement of Al after all.
However, as the crystallization progresses with temperature, the diffraction
pattern of the lamella gets increasingly sparse (Fig. 5.17). This confirms our
earlier assumption that thin layers are less suitable for PBED measurements.

(a) (b)

Figure 5.17.: (a) DP of the lamella at room temperature and (b) after heating it up to 370 °C
several times.

47



5. Results and Discussion

5.3. Performance of the PBED measurement

The PBED measurements of samples with Au nanoparticles were in good
agreement within the error range of the heating system.

At this point we have to separate the discussion of the error into statistical
and systematical error. First we will discuss the statistical part: Assuming
we have a perfect heating system and that the nanoparticles expand exactly
like described by the literature value, we are left with a stochastic error that
amounts to 6 -10 °C. This means that with the used evaluation algorithm we
are able to determine the radius of the (220) diffraction ring to an accuracy of
0.04 pixel.

The stability of the evaluation scheme was put to the test by recording 30 sub-
sequent diffraction patterns at 800 °C and determining the standard deviation
of the resulting ring radii. In this case we found that the standard deviation
was only 1.5 °C. This suggests that the difference between the two stochastic
errors is caused by the discrete nature of the data (pixel error).

If we assume that the beam parallelism has no significant influence thanks to
the alignment performed, there are two effects that contribute to the systematic
error of the measurement. Firstly, the uncertainty of the used heating system
and secondly, the uncertainty as to whether the observed material actually
expands according to the reference from literature.
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6. Conclusion

The aim of this master thesis was to extend the applicability of the PBED tem-
perature measurements as shown in [1] to a TEM equipped with 2 condenser
lenses and a lower resolution camera.
To pave the way for an accurate measurement, it is crucial to align the micro-
scope to achieve a parallel electron beam. This was realized in a preparatory
experiment, using a polycrystalline sample that was moved up and down in
the TEM column to find the lens settings where the diffraction rings do not
change.
The materials tested were Au and Ag, respectively. These were applied in the
form of nanoparticles to the Nano Chips by means of solid-state dewetting of a
thin sputter layer.
A central role in this work is played by the evaluation algorithm that deter-
mines the center of the diffraction pattern with high sub-pixel accuracy and
subsequently extracts the radii of the relevant diffraction rings by a fitting
routine. The results are then converted to a relative temperature change. The
stochastic error of this evaluation method amounts to remarkable 6 °C for the
PBED measurement of Au nanoparticles.

By determining the relative expansion of the nanoparticles as a function of
the temperature indicated by the MEMS heating system, we calculated their
thermal expansion coefficient and compare it to the literature value. This
allowed us to find out that the chips used at the beginning were labeled with
the wrong calibration factor. For well-calibrated chips, we found excellent
agreement with the literature value within the 5 % error of the set temperature.
Here we were able to see slight deviations from the calibration factor of the
Nano Chips within the same production batch.
Finally the method was put to a test in a typical in situ heating experiment.
Thanks to the PBED measurement, we became aware that the properties of the
Nano Chip had changed during further preparation steps in the FIB. While the
underlying reasons for this change remain a subject of discussion, the PBED
measurement clearly suggests that the chip’s resistance as a function of the
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temperature has been altered and therefore the manufacturer’s calibration
factor is no longer valid.

In summary, the development of a PBED temperature measurement routine,
consisting of the microscope alignment and the evaluation algorithm, has
opened the possibility to perform local temperature measurements on TEMs
with only 2 condenser lenses. Despite the lower resolution of the camera used,
the accuracy achieved is comparatively high due to the precise evaluation
algorithm.
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A. Python Scripts

This section contains the evaluation algorithm, for determining the radii of
the (220) diffraction ring of Au nanoparticles sitting on a SiNx membrane. As
described in Section 3.1.3 it consists of two parts: the Peakmax center finder
and the fitting routine.

1 #%% packages
2

3 import os #for importing the DP as tiff
4 import matplotlib.pyplot as plt
5 from skimage import io
6 import numpy as np
7 from scipy import signal
8 from scipy.interpolate import griddata
9 from scipy.optimize import curve_fit

10 from lmfit.models import LorentzianModel, GaussianModel
11

12 #%% functions
13

14 def radial_profile(data, center):
15 # create array of radii
16 x,y = np.meshgrid(np.arange(len(data)),np.arange(len(data)))
17 R = np.sqrt((x - center[1])**2 + (y - center[0])**2)
18 # calculate the mean
19 f = lambda r : data[(R >= r-.5) & (R < r+.5)].mean()
20 r = np.linspace(1,int(len(data)/2),num=int(len(data)/2))
21 mean = np.vectorize(f)(r)
22 return mean
23

24 def crosscorrelation_kernel(size, r_min, r_max):
25 i,j = np.meshgrid(np.arange(size),np.arange(size),indexing='ij')
26 R = np.sqrt((i - size/2)**2 + (j - size/2)**2)
27 kernel = np.ones([size,size])
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28 kernel[(R < r_min) | (R > r_max)] = 0
29 return kernel
30

31 def peakmax(D, x, r_min, r_max):
32 return np.max(radial_profile(D, x)[r_min:r_max])
33

34 def gauss_2d(x,A,sigma1,sigma2,mu1,mu2,eta,offset):
35 g = A * (1/(2*np.pi*sigma1*sigma2*np.sqrt(1-
36 eta**2)))*np.exp(-(1/(2*(1-eta**2)))*((((x[0]-mu1)**2)/sigma1**2)+
37 (((x[1]-mu2)**2)/sigma2**2)-((2*eta*(x[0]-mu1)*(x[1]-
38 mu2))/(sigma1*sigma2)))) + offset
39 return g.ravel()
40

41 def powerlaw(x, a, k):
42 return a*x**(-k)
43

44 def beamstop_correction(data, center):
45 i,j = np.meshgrid(np.arange(len(data)),np.arange(len(data)),indexing='ij')
46 R = np.sqrt((i - center[0])**2 + (j - center[1])**2)
47 phi = np.zeros([len(data),len(data)])
48 for l in range(len(data)):
49 for u in range(len(data)):
50 phi[l,u] = math.atan2(center[0]-l,u-center[1])
51 phi = phi.ravel()
52 data = data.ravel()
53 R = R.ravel()
54 # deleting data within the slice that inhabits the beam stop
55 beta = 0.070
56 R = R[(phi<-beta)|(phi>beta)]
57 data = data[(phi<-beta)|(phi>beta)]
58 phi = phi[(phi<-beta)|(phi>beta)]
59 # filling it up again with data from the neighboring slice füllen
60 phi_new = np.concatenate((phi,phi[(phi>-3*beta)&(phi<-beta)]+2*beta))
61 R_new = np.concatenate((R,R[(phi>-3*beta)&(phi<-beta)]))
62 data_new = np.concatenate((data,data[(phi>-3*beta)&(phi<-beta)]))
63 # converting the DP back to a matrix
64 j_new = R_new * np.cos(phi_new) + center[1]
65 i_new = R_new * np.sin(-phi_new) + center[0]
66 D_new = griddata((i_new, j_new), data_new, (i,j), method='cubic')
67 D_new[np.isnan(D_new)] = 0
68 return D_new
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69

70 def mask(data, center, b_up, b_down, b_noseup, b_nosedown):
71 i,j = np.meshgrid(np.arange(data.shape[1]),np.arange(data.shape[0]),indexing='ij')
72 phi = np.zeros([len(data),len(data)])
73 for l in range(len(data)):
74 for u in range(len(data)):
75 phi[l,u] = math.atan2(center[0]-l,u-center[1])
76 data[(phi>-b_down) & (phi<b_up)] = 0
77 data[(phi < -np.pi + b_nosedown)] = 0
78 data[(phi > np.pi - b_noseup)] = 0
79 #streak
80 a1 = 0.77
81 a2 = 0.63
82 data[(phi> a2) & (phi<a1)] =0
83 return data

A.1. Center finding algorithm

1 #%% cross correlation
2

3 # importing the DP as an array
4 path = 'X:\\shared data\\guests\\Verena Fritz\\...' #location of the DP tiffs
5 tifs = os.listdir(path)
6 DP = io.imread(path + '\\' + tifs[0])
7 DP_size = len(DP)
8

9 # inner and outer radius of the kernel ring with reasonable values for
10 # crosscorrelation with the (220) diffraction ring of Au
11 kernel_min = 315
12 kernel_max = 322
13 kernel_size = 700
14

15 cc_kernel = crosscorrelation_kernel(kernel_size, kernel_min, kernel_max)
16 cc_output = signal.correlate(DP, cc_kernel, mode='same')
17 # croping the cross correlation output matrix and determining its maximum
18 cc_red = cc_output[int(DP_size/2-20):int(DP_size/2+20),int(DP_size/2-20):int(DP_size/2+20)]
19 cc_max = np.where(cc_red == np.max(cc_red))
20 cc_center = [int(DP_size/2-20) + cc_max[0], int(DP_size/2-20) + cc_max[1]]
21
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22

23 #%% peakmax
24 # radius range including the (220) peak
25 r_min = 310
26 r_max = 330
27

28 size_red = 350
29 PM_crop = 3
30 PM_size = 11
31 peak_height = np.zeros([PM_size,PM_size])
32

33 # values for the initual guess of the 2d gaussian fit
34 guess_A = 1300
35 guess_sigma1 = 3
36 guess_sigma2 = 3
37 guess_eta = -0.5
38 guess_offset = 50
39

40 # mask angles
41 mask_lu = 0.3
42 mask_ld = 0.3
43 mask_ru = 0.3
44 mask_rd = 0.3
45

46 # cropping the DP to speed up the subpixel-center finder
47 # and ajusting the cc_center coordinates accordingly
48 DP_size = len(DP)
49 DP_red = DP[int(len(DP)/2-size_red):int(len(DP)/2+size_red),
50 int(len(DP)/2-size_red):int(len(DP)/2+size_red)]
51 cc_center_red = [cc_center[0]-int(len(DP)/2-size_red),
52 cc_center[1]-int(len(DP)/2-size_red)]
53 # creating a sublattice around cc_center_red (of size +- PM_crop) with
54 # PM_size sites in each direction at each lattice site
55 PM_x = np.linspace(cc_center_red[0]-PM_crop,
56 cc_center_red[0]+PM_crop, PM_size)
57 PM_y = np.linspace(cc_center_red[1]-PM_crop,
58 cc_center_red[1]+PM_crop, PM_size)
59 x = np.meshgrid(PM_x, PM_y, indexing = 'ij')
60

61 DP_bcorr = beamstop_correction(DP_red,cc_center_red)
62 # evaluating the peak_height at each lattice site [PM_x,PM_y]
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63 for h in range(PM_size):
64 for j in range(PM_size):
65 peak_height[h,j] = peakmax(DP_bcorr, [PM_x[h], PM_y[j]], r_min, r_max)
66

67 # fitting the peak_height with an asymmetrical 2D Gaussian function
68 # the initial guess was created from trial and error
69 initial_guess=[guess_A, guess_sigma1, guess_sigma2,
70 cc_center_red[0][0], cc_center_red[1][0],
71 guess_eta, guess_offset]
72

73 popt, pcov = curve_fit(gauss_2d, x, peak_height.ravel(), initial_guess)
74

75 # the optimal fit parameters popt give us the location of the center
76 center = np.array([popt[3]+int(len(DP)/2-size_red),
77 popt[4]+int(len(DP)/2-size_red)])
78

79 DP_radial = radial_profile(mask(DP,center, mask_ru, mask_rd, mask_lu, mask_ld), center)

A.2. Fitting routine

1 #%% fit routine
2

3 DP_radial = radial_profile(mask(DP,center, mask_ru, mask_rd, mask_lu, mask_ld), center)
4 r = np.linspace(0.00001, DP_size/2, DP_size/2)
5

6 # specify regions of the DP_radial where the powerlaw should be fitted
7 rpow = np.concatenate((r[53:75],r[430:460]))
8 radpow = np.concatenate((DP_radial[53:75],DP_radial[430:460]))
9 popt_power, pcov = curve_fit(powerlaw, rpow, radpow)

10

11 DP_radial_red = DP_radial - powerlaw(r, *popt_power)
12 DP_radial_red[DP_radial_red < 0] = 0
13

14 # only the region around the (220) peak is fitted
15 r_fit = r[290:350]
16 DP_radial_fit = DP_radial_red[290:350]
17

18 peakAu = LorentzianModel(prefix = 'Au_')
19 pars = peakAu.guess(DP_radial_fit, x=r)
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20 pars.update(peakAu.make_params())
21 pars['Au_center'].set(value = 318, min = 313.5, max = 322)
22 pars['Au_sigma'].set(value = 3.5, min = 1, max = 5)
23 pars['Au_amplitude'].set(min = 0)
24

25 peakSiN = GaussianModel(prefix = 'SiN_')
26 pars.update(peakSiN.make_params())
27 pars['SiN_center'].set(value = 335 , max = 340, min = 333)
28 pars['SiN_sigma'].set(value = 38, min = 20, max = 50)
29

30 model = peakSiN + peakAu
31 model.eval(pars, x = r)
32 out = model.fit(DP_radial_fit, pars, x = r)
33 comps = out.eval_components(x=r)
34

35 radius_220 = out.best_values['Au_center']
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