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Abstract (English Version)

One of the four known fundamental forces of physics is the strong interaction, which in the

Standard Model of Particle Physics is included by Quantum Chromodynamics (QCD).

This theory aims to describe the interaction between quarks and gluons and the formation

of baryonic matter. For experimental tests of the strong interaction at high temperatures

and high densities heavy-ion collisions are performed in particle colliders. To describe the

processes involved in these experiments theoretically, it is vital to understand QCD at a

non-perturbative level. Lattice QCD has proved itself to be an e�cient approach for high

temperatures, but su�ers from a numerical di�culty for �nite densities, called the sign

problem, which renders Monte Carlo methods inapplicable. In this thesis we investigate

a numerical method which rewrites QCD in terms of a canonical density of states (CDoS)

to avoid the sign problem so that standard implementations are possible again. Special

attention was paid to the evaluation of the Dirac determinant by expressing the fermion

degrees of freedom in terms of multi-bosons. The CDoS technique was tested for a

simpli�ed theory as well as for full QCD in 2 dimensions. Since the results obtained for

the latter are inconclusive, more advanced Monte Carlo methods are required for future

implementations of this approach.

Abstract (Deutsche Fassung)

Eine der der vier bekannten fundamentalen Kräfte der Physik ist die Starke Wechsel-

wirkung, welche im Standardmodell der Teilchenphysik mit Hilfe der Quantenchromody-

namik (QCD) formuliert wird. Das Ziel dieser Theorie ist die Beschreibung der Wechsel-

wirkung zwischen Quarks und Gluonen, als auch die Entstehung aller baryonischer Ma-

terie. Als experimentelle Tests zur Starken Wechselwirkung bei hohen Temperaturen und

hohen Dichten werden Schwerionen-Kollisionsexperimente mit Teilchenbeschleunigern

durchgeführt. Um alle Vorgänge in diesen Experimenten beschreiben zu können ist ein

detailliertes, nicht perturbatives Verständnis von QCD von Nöten. Für Hochtemperatur-

Prozesse hat sich die Gitter-QCD als e�zient bewiesen. Vorgänge bei endlichen Dichten

sind hiermit aber aufgrund des sogenannten Vorzeichenproblems nicht mit Monte-Carlo

Methoden berechenbar. In dieser Arbeit untersuchen wir einen numerischen Ansatz,

welcher die Theorie der QCD mit Hilfe einer kanonische Zustandsdichte (CDoS) for-

muliert. Auf die Weise kann das Vorzeichenproblem umgangen und numerische Stan-

dardmethoden wieder angewendet werden. Besonderes Augenmerk wurde auf die Dirac-

Determinante gelegt, die berechnet wurde indem die fermionischen Freiheitsgrade mittels

Multi-Bosonen approximiert wurden. Die CDoS Methode wurde für eine vereinfachte

Theorie aber auch für die vollständige QCD in 2 Dimensionen getestet. Da letzteres

keine schlüssigen Ergebnisse lieferte, sind für zukünftige Anwendung dieser Methode

fortschrittlichere Monte-Carlo Techniken notwendig.
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1. INTRODUCTION

1. Introduction

Modern theoretical particle physics knows four fundamental forces with which all known

interactions between particles can be described. Three of these forces, namely the electro-

magnetic, the weak and the strong interaction, as well as all known elementary particles

are described in a theory which is called the Standard Model of Particle Physics. This

theory has proven to be a suitable description for many aspects of fundamental physics,

since its predictions are in very good agreement with experimental results [1]. Despite

its many successes, the Standard Model is still not a complete theory, in the sense that

it only contains three of the four known forces, because up to this date it has not been

possible to incorporate gravitation into this theory.

In this thesis we will focus only on one of the three forces in the Standard Model, namely

the strong interaction, which is responsible for forming the baryonic matter everything

around us is made of. I.e. it holds together the quarks to form protons and neutrons, and

on a larger scale it also holds together protons and neutrons to form atomic nuclei. The

theory describing this interaction is called Quantum Chromodynamics, or QCD for short,

which is a quantum �eld theory. We will use a special regularization of this quantum

�eld by discretizing the continuous spacetime to an Euclidean lattice. This mathematical

description of the quantum �elds is called Lattice Field Theory.

One of the standard methods for numerical calculations in lattice �eld theories are

Monte Carlo simulations. But in this work we will look at the behavior of the strong

interaction for �nite densities, which is to say for �nite chemical potential. This gives rise

to a numerical di�culty which is called the sign problem or the complex action problem,

which prohibits the direct use of Monte Carlo methods. The main goal of this thesis

is to test a numerical technique where the theory is rewritten in terms of a Density of

States. This way the complex action problem can be overcome which makes Monte Carlo

simulations accessible again.

The structure of this thesis will be as follows. At �rst, a very short overview of QCD

and its lattice representation are given, where also the emergence of the sign problem is

discussed. Following that, in the third chapter, the theoretical description of the density

of states approach is given and the ansatz for its numerical calculation is explained.

In the subsequent two chapters a numerical method is introduced which will be a very

important tool for the implementation of the density of states method. Its applicability

is also discussed and the method is tested by calculating simple observables. After

that, a �rst implementation of the density of states method is presented for the free

theory, where the results may still be compared with analytic the solutions. In the 7th

chapter the Monte Carlo implementation of the full theory is explained and the obtained

results, as well as possible improvements for the numerical implementation, are discussed.
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1. INTRODUCTION

The thesis is closed with a summary of the whole work and a short outlook for future

applications of this density of states method.
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2. QCD ON THE LATTICE AND THE SIGN PROBLEM

2. QCD on the Lattice and the Sign Problem

In this chapter we give a very short overview of the basic ideas of Quantum Chromo-

dynamics in general and then we will go into a little more detail when discussing the

lattice description of the theory. We want to stress, though, that the purpose of this

chapter is just to introduce the most important formulas used in this thesis. Therefore,

derivations and proofs are for the most part not carried out here. In the third section of

this chapter we will explain the origin of the so called sign problem, which is the main

focus point of this work. Lastly, we will talk about some conventions needed and also �x

some parameters which will then stay unchanged for the rest of the thesis.

2.1. Quantum Chromodynamics

The mathematical language in which the Standard Model of Particle Physics is for-

mulated is called Quantum Field Theory. This ansatz combines the probabilistic and

discretized nature at very small scales, as it is described in Quantum Mechanics, with

Einstein's theory of special relativity. In this description particles are not considered to

be fundamental objects. Instead, every kind of particle has an underlying �eld associated

with it which spans over all of space and time. The quantized excitations of these �elds

can then be interpreted to be the particles we can measure and study in the laboratory.

As we already brie�y discussed in the introduction, the part of the Standard Model

we are interested in for this thesis is Quantum Chromodynamics, describing the strong

interaction. This theory describes the fundamental interactions between the fermionic

quarks and the bosonic gluons. Conceptually, QCD is similar to Quantum Electrody-

namics (QED). In QED there exists just one charge, called the electric charge. Particles

like the electron, for example, are carriers of that charge and they can interact with

other electrically charged particles via the exchange of photons, the mediators of electro-

magnetism. QCD generalizes this idea. For strong interaction, there are three possible

charges a particle can carry. These charges are called color. As for QED there are

particles which mediate the interactions and these are the previously mentioned gluons.

The important di�erence between these two theories is now that gluons themselves carry

charge, which means they can interact with each other. This is not possible for the

charge-neutral photons in QED. These additional possible interactions make the descrip-

tion of chromodynamics much more complicated and give also rise to interesting new

properties.

One of these phenomenons which arises due to the self interactions of the gluons is

called the con�nement of quarks. This describes the fact that it is not possible to detect

single, unbound quarks. All experimental evidence for quarks are as a part of compos-
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2. QCD ON THE LATTICE AND THE SIGN PROBLEM

ite particles1, bound states of the strong interaction, called hadrons. These composite

particles (baryons and mesons) are always color-neutral. Since con�nement is a property

which manifests itself only for large separations of quarks, it cannot be described by

perturbation theory. So a rigorous theoretical description of con�nement can only be

achieved via non-perturbative approaches to Quantum Chromodynamics.

Of course, besides the general description of how quarks and gluons interact to form

composite particles like baryons and mesons, it is also of interest to see how the theory

behaves in more extreme conditions like for high temperatures or for high densities. Such

conditions arise for example here on earth in particle colliders. So in order to be able to

get an accurate understanding of the processes happening in these experiments and also

in order to be able to interpret the measurements accurately it is of vital importance to

study and understand the theory in these extreme circumstances.

Additionally, understanding QCD in these exceptional conditions does not only help

to describe the smallest building blocks of our universe, but also to explain much larger,

macroscopic objects: neutron stars. These remnants of supermassive stars are objects

mainly made of neutrons with extremely high densities. This shows that, although QCD

is a theory that aims to describe the smallest known objects, it is also a very important

tool for our understanding of astrophysical objects found in our universe and is even

needed to get an accurate understanding of cosmology.

So as a whole it can be said that it is of great importance to achieve a good de-

scription of QCD at high temperatures and high densities. In this work, we will use

a non-perturbative description of QCD, called lattice �eld theory, which is well suited

for numerical simulations. In this representation, however, the introduction of non-zero

densities gives rise to di�culties regarding the numerical calculations. The main focus

point of this thesis will be to circumvent these problems by rewriting the theory such

that standard numerical methods are applicable again.

2.2. QCD on the Lattice

In this section, we want to give a short overview of the lattice description of QCD. It

is important to note here that the derivation of the formulas is not part of this work.

The aim is just to introduce the reader to the most important formulas needed and also

to present the convention of notation used in this thesis. For an easy to understand

introduction into the �eld of Quantum Chromodynamics on the lattice the reader is

referred to [2].

The basic idea of lattice �eld theory is to discretize the continuous spacetime of quan-

tum �eld theory to a �nite Euclidean lattice. To set up this discretization we replace

1An exception are very high temperatures where QCD undergoes the so-called decon�nement transition

and the quarks become liberated.
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2. QCD ON THE LATTICE AND THE SIGN PROBLEM

the d-dimensional spacetime vector xT = {x1, . . . , xd} (T denoting transposition) by a

discretized vector,

x→ an. (1)

Here, n is a vector of integer values labeling all the lattice sites and a is called the lattice

constant, which carries the units of length and represents the physical distance between

two lattice points. Since a is a scalar we have the same distance in all directions. The

lattice Λ can then be de�ned as the set of all lattice sites via

Λ =
{
n | nT = (n1, . . . , nd) ; nν = 0, . . . , Nν − 1; ν = 1, . . . , d

}
, (2)

where Nν gives the number of lattice points in direction ν.

At this point it is necessary to mention some conceptual and notational di�erences

between the continuous and the lattice description of the spacetime. For the continuous

spacetime the Minkowskian metric is used, whereas our lattice is Euclidean. This means

that there is no need to distinguish between upper and lower spacetime indices when

dealing with the lattice formulation. Additionally, in the Minkowski space usually the

zero-th component of a vector is the time component. For our Euclidean lattice descrip-

tion, however, we will use the convention that the time component is the d-th entry of a

vector.

Now that we know how the lattice looks like, we can proceed by describing how

the �elds which live on the spacetime are in�uenced by this change of viewpoint. For

fermions, which are described by Grassmann �elds to incorporate the Fermi statistics,

this implies now that they only have Grassmann degrees of freedom on the lattice sites.

These will be denoted as ψ(x)→ ψ(an) =: ψ(n). Here it is common practice to omit the

lattice constant in the argument. For the gauge �elds describing the gluons the change to

the lattice formulation has somewhat more subtle consequences compared to the fermion

�elds. The gluons, which are in the continuous spacetime elements of the algebra su(3),

are represented on the lattice by elements of the corresponding group SU(3), denoted

as Aν(x) → Uν(an) =: Uν(n), where again a is suppressed in the argument. The Uν(n)

are called gauge links and since they carry a directional Lorentz index ν they live on

the edges of the lattice and connect the two sites an and an + aν̂. These matrices can

therefore describe the interaction between fermions on neighboring lattice sites. Also,

it is important to mention that the �elds actually carry additional indices. The gauge

links, being SU(3) matrices, carry two color indices and the fermion �elds carry one color

as well as one Dirac index. These we will usually not write down explicitly but use

matrix/vector notation, as was also done above.

After de�ning the lattice spacetime and introducing the �elds needed for QCD, it is

important to mention how observables can be calculated. In quantum �eld theory in
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2. QCD ON THE LATTICE AND THE SIGN PROBLEM

general, this can be done via the path integral formulation. The expressions for vacuum

expectation values then have a very similar appearance to that of expectation values in

statistical mechanics and are given by

〈O〉 =
1

Z

∫
D[φ] e−S[φ]O[φ]. (3)

The quantity in the denominator is called the partition function and can be expressed as

Z =

∫
D[φ] e−S[φ]. (4)

The variable φ here is understood to represent all �elds of the theory we want to study.

The measure of integration for a path integral is given in a way such that it integrates

over all possible con�guration of the �elds φ. Formally, this can be achieved by performing

an integration over the whole domain of the �elds at every spacetime position. For a

continuous theory, however, this implies an uncountable set of integrations, which cannot

be rigorously de�ned [3]. For the discretized ansatz of lattice �eld theory, on the other

hand, the measure can be given explicitly as a product of measures at every lattice site.

So the path integral measure can be written as∫
D[φ] =

∏
n∈Λ

∫
dφ(n). (5)

With this the partition function can be understood as being a weighted high dimensional

integral over all possible con�gurations of the �elds, where in quantum �eld theories the

weight factor e−S is called the Boltzmann factor, and S [φ] is the Euclidean action of the

theory.

If we now use this path integral formulation to calculate observables of QCD, we have

to perform integrations over all degrees of freedom. This means we have an integration

over the gauge links U as well as the Grassmann �elds ψ and ψ 2. Therefore, the vacuum

expectation value of some observable O is given by

〈O〉 =
1

Z

∫
D[U ] e−SG[U ]

∫
D
[
ψ,ψ

]
e−SF [ψ,ψ,U ]O[ψ,ψ, U ], (6)

where the expression for the partition function is

Z =

∫
D[U ] e−SG[U ]

∫
D
[
ψ,ψ

]
e−SF [ψ,ψ,U ]. (7)

Here we already separated the action S into the gauge �eld action SG[U ] and the fermion

2In the operator formulation ψ and ψ are related to one another, but in the path integral approach we
treat them as separate and independent �elds.
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2. QCD ON THE LATTICE AND THE SIGN PROBLEM

action SF [ψ,ψ, U ]. The measure of the fermions is given by a product of integral measures

for Grassmann variables: ∫
D
[
ψ,ψ

]
=
∏
n∈Λ

∫
dψ(n)dψ(n). (8)

The measure for the gauge links can be expressed as

∫
D[U ] =

∏
n∈Λ

d∏
ν=1

∫
dUν(n), (9)

where we now not only have a product over all lattice points n, but also have to include

all possible directions ν. This is due to the fact that the gauge links live on the edges

of the lattice. The dUν(n) are called Haar measures, which describe an integration over

the group manifold of the SU(3) valued matrices Uν(n).

Now we turn to discuss the weight factors of the integration. First, we will look at the

gauge �eld action SG where we use the Wilson gauge action �rst introduced by Wilson

in 1974 [4]. It can be expressed as

SG[U ] =
β

3

∑
n∈Λ

∑
ν<ρ

Re [tr {1− Uνρ(n)}] , (10)

Uνρ(n) = Uν(n)Uρ(n+ ν̂)U †ν (n+ ρ̂)U †ρ(n). (11)

The quantities Uνρ(n) are called plaquettes and represent the smallest possible closed

loops of gauge links. 1 denotes the three by three identity matrix for the color space.

With the two sums all plaquettes are added up, where the restriction ν < ρ ensures that

only one orientation of the plaquettes is counted. The prefactor β is called the inverse

gauge coupling. It can be shown that in the limit of a vanishing lattice constant a → 0

and the substitution β = 6/g2 the action in Eq. (10) yields the correct expression for

the continuum gauge action of QCD, with g being the gauge coupling in the continuum

where it describes the coupling strength of the gauge �elds to the fermions.

In the second weight factor of Eq. (7) is SF , the so-called fermion action, which de-

scribes the quarks and their interaction with the gauge links U . It is a bilinear functional

of the fermions ψ and ψ and can be expressed in the following way

SF
[
ψ,ψ, U

]
= ad

∑
n,m∈Λ

ψ(n)D (n|m)ψ(m), (12)

7



2. QCD ON THE LATTICE AND THE SIGN PROBLEM

D (n|m)αβ
ab

=

(
m+

d

a

)
δαβδabδnm −

1

2a

d∑
ν=1

{
[1− γν ]αβ Uν(n)abδn+ν̂,m

+ [1 + γν ]αβ U
†
ν (n− ν̂)abδn−ν̂,m

}
. (13)

Here we have used matrix/vector notation for color and Dirac space in Eq. (12), but

wrote down all the indices explicitly in Eq. (13), where the Greek letters are indices in

Dirac space and the Latin letters indices in the color space. Here 1 stands for the unit

matrix in Dirac space.

Writing the fermion action as in Eq. (12) makes the bilinearity of SF obvious and

simultaneously de�nes the quantity D(n|m), which is called the lattice Dirac operator

or, more �ttingly, lattice Dirac matrix, and will be of major importance in this work. This

quantity obviously depends on the gauge links U , which are not displayed as an argument

for notational convenience at this point. The matrices γν are the Euclidean gamma

matrices. Their explicit form will be given later in this chapter when the spacetime

dimension d is �xed. The quantities δxy are Kronecker deltas. Their value is equal to one

if the two indices are identical and zero otherwise. Also, as usual, m denotes the mass

of the fermion, which is here of course not to be confused with the lattice index of the

same name.

What we also want to mention is the reason for the additional mass term d
a . This

is a necessary alteration in the lattice formulation to overcome the so-called doubling

problem which arises due to the discretization. Also the two 1 in the sum are part of this

correction. Altogether these additional parts are called the Wilson term. Important is

that when calculating the continuum limit of the fermion action, a→ 0, the Wilson term

decouples from the theory and the correct expressions for the mass and the fermion-gluon

interactions are achieved.

In this thesis, although, we will work with a slightly di�erent representation of the

Dirac operator than the one stated in Eq. (13). With a simple rescaling of the fermionic

�elds by ψ →
√
m− a

dψ and ψ →
√
m− a

d ψ the Dirac operator changes to

D(n|m) = 1− κH(n|m), with κ =
1

2 (am+ d)
, (14)

H(n|m)αβ
ab

=
d∑

ν=1

{
[1− γν ]αβ Uν(n)abδn+ν̂,m + [1 + γν ]αβ U

†
ν (n− ν̂)abδn−ν̂,m

}
. (15)

The quantity H(n|m) de�ned this way is called the hopping matrix since it includes all

nearest neighbor interactions of quarks and gluons. The scalar κ is accordingly called the

hopping parameter and gives the mass dependence. The �rst term for the Dirac operator

in Eq. (14) is given by an identity matrix in all spaces (position, Dirac and color space).

We will discuss this representation in a little more detail in the next section when we

8



2. QCD ON THE LATTICE AND THE SIGN PROBLEM

introduce the chemical potential.

Before we can turn to discussing the chemical potential, however, there is still an

important relation regarding the numerical implementation of Eq. (6) which needs to

be addressed. Due to the fact that the fermion action SF is a bilinear functional, the

integration over the fermion degrees of freedom has the form of a Gaussian Grassmann

integral. Using this fact, the integration over the Grassmann �elds in Eq. (7) can be

calculated to be

ZF =

∫
D
[
ψ,ψ

]
e−ψDψ = det (D) , (16)

where matrix/vector notation has been used in the exponent and the prefactor ad has

been absorbed into D. ZF is the fermion partition function and detD is usually called

the Dirac or fermion determinant. Additionally, it is possible to integrate out the fermion

degrees of freedom of the observable O to get a new observable

Õ[U ] =
1

ZF

∫
D
[
ψ,ψ

]
e−ψDψO

[
ψ,ψ, U

]
, (17)

which is dependent only on the gauge links U . With Eq. (16) and Eq. (17) it is now

possible to rewrite Eq. (6) to

〈O〉 =
1

Z

∫
D[U ] e−SG[U ] detD[U ] Õ[U ]. (18)

Here we want to stress that the Dirac operator is of course a functional of the gauge

links U . Now, the standard approach of calculating observables in lattice �eld theory is

numerically with Monte Carlo simulations. By applying this idea to Eq. (18), one can

consider the Dirac determinant together with the gauge action and the normalization to

be a weight factor for generating con�gurations of the gauge links U distributed with

probability P [U ] = eSG[U ] detD[U ]
Z . Expectation values of observables are then obtained

by averaging over these con�gurations. In order for that to be possible, however, the

Dirac determinant has to be real and positive. The reality can easily be veri�ed by using

the γ5-hermiticity of the Dirac operator γ5Dγ5 = D† via

det (D)∗ = det(D†) = det
(
γ5Dγ5

)
= det (D) , (19)

where γ5 is de�ned by γ5 := i
∏d
ν=1 γν and by using (γ5)2 = 1 and the anti commutator

{γν , γ5} = 0. To ensure positivity the square of the determinant can be used for example,

which amounts to using two di�erent �avors of quarks with the same mass.

This last paragraph shows that the behavior of the Dirac determinant is critical to the

numerical calculation of observables. Speci�cally, if it can no longer be ensured that the

determinant is a real quantity, then Monte Carlo simulations are no longer applicable in

9



2. QCD ON THE LATTICE AND THE SIGN PROBLEM

a straightforward way. In the next section, where we introduce the chemical potential,

we will see that precisely this problem arises.

2.3. Chemical Potential and the Sign Problem

In order to be able to get a detailed understanding of heavy ion collisions and also the

inner workings of neutron stars it is necessary to describe QCD at non-zero temperature

and non-zero density. The temperature on the lattice can be regulated by compacti�ca-

tion of the time direction of the Euclidean lattice by imposing (anti-)periodic boundary

conditions for the �elds. It can be shown that the temperature is inversely proportional to

the lattice extent in time direction. As in statistical mechanics, the inverse temperature

is denoted with β3, which leads to the equation (with kB set to unity)

β = aNd =
1

T
. (20)

To describe non-zero density we need to induce an asymmetry between matter and

antimatter. In the lattice description this can be achieved by introducing the additional

factors exp(±aµ) into the hopping matrix from Eq. (15) in the following way

H(n|m) =
d∑

ν=1

{
[1− γν ]Uν(n)eaµδdνδn+ν̂,m + [1 + γν ]U †ν (n− ν̂)e−aµδdνδn−ν̂,m

}
, (21)

where µ denotes the chemical potential. To get a conceptual idea of how µ in�uences

the theory, it is necessary to understand the hopping matrix in more detail. Firstly, it

is important to note that for each direction ν there are two terms. The �rst one can

be understood as to describe forward hoppings on the lattice, mediated by the gauge

links Uν(n) and the deltas δn+ν̂,m. The second term describes backward hoppings, corre-

spondingly. Secondly, it can be seen that due to the delta functions δdν in the exponent

the chemical potential only has an in�uence in the time direction. This also means, due

to the signs in the exponent, that the forward propagation in time is favored, but the

backward propagation is suppressed. This introduces the desired asymmetry into the sys-

tem, since particles can be interpreted as propagating forwards in time, and antiparticles

backwards.

The introduction of the chemical potential into the hopping matrix has a drastic ef-

fect for the Dirac operator. The additional factors spoil the previously mentioned γ5-

hermiticity, which in turn means that the Dirac determinant is no longer a real quantity.

More speci�cally, it can be shown with the same methods used for Eq. (19) that the

3Not to be confused with the inverse gauge coupling, which is also denoted as β.
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2. QCD ON THE LATTICE AND THE SIGN PROBLEM

Dirac operator now obeys

γ5D(µ)γ5 = D(−µ)†. (22)

With this, �nally, we see the e�ect of the complex action problem. Since the determinant

is now complex it can no longer be interpreted as a probability as in Eq. (18). This makes

the standard Monte Carlo approach inapplicable.

There are di�erent approaches available to get a hold of this complex action problem,

see for example [5, 6, 7]. One method is to substitute the chemical potential with an

imaginary one, µ → iθ. The change of sign in the argument of the Dirac operator in

Eq. (22) is then corrected by the complex conjugation within the Hermitian conjugation.

Therefore, for an imaginary chemical potential the Dirac determinant is real. Of course,

when performing this transformation, one has to �nd a way to relate the physics one wants

to study to θ, e.g., by analytical continuation. In this work we will use an imaginary

chemical potential in the context of the canonical ensemble that will be discussed in the

next chapter.

2.4. Notations

In this short section we want to discuss some notations and �x parameters which were

left open in the general discussion so far. First of all, for the rest of this work, we will

express all dimensionful quantities in terms of the lattice parameter a. In principle this

means that we can set the parameter equal unity, so a = 1.

Also, what is especially important for the numerical discussion later on, are the bound-

ary conditions for the �elds on the lattice. For the bosonic �elds, the gauge links U , we

use periodic boundary conditions in all directions. For all �elds representing fermionic

degrees of freedom, on the other hand, we have periodic boundary conditions in all spa-

tial directions, but anti-periodic boundary conditions in the temporal direction. So this

means

Uρ(n)|nν=0 = Uρ(n)|nν=Nν
∀ ν, ρ ∈ {1, . . . , d},

ψ(n)|nj=0 = ψ(n)|nj=Nj ∀ j ∈ {1, . . . , d− 1}, (23)

ψ(n)|nd=0 = −ψ(n)|nd=Nd
.

For the �elds ψ apply the same conditions as for ψ.

Another parameter we also need to �x is the number of spacetime dimensions. In this

work, we will consider QCD in 1 + 1 dimensions, which means we can set the lattice

dimensions to d = 2. This also enables us now to give an explicit representation for the

11



2. QCD ON THE LATTICE AND THE SIGN PROBLEM

gamma matrices which appear in the hopping matrix. We can set these to

γ1 = σ2 =

(
0 −i
i 0

)
, γ2 = σ1 =

(
0 1

1 0

)
,

γ5 = iγ1γ2 = iσ2σ1 = σ3 =

(
1 0

0 −1

)
,

where σj are the three Pauli matrices. We also used the previously mentioned de�nition

for the γ5 matrix. Also, the hopping parameter from Eq. (14) can �nally be stated

explicitly to be κ = 1
2m+4 , with m being the mass of the fermions.
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3. CANONICAL DENSITY OF STATES METHOD

3. Canonical Density of States Method

In this chapter we will discuss a general idea for addressing the sign problem of �nite

density lattice QCD, namely the density of states method. This ansatz was introduced

in [5, 8]. There are di�erent methods of using this approach and we will focus on the

speci�c case where we will work with the canonical ensemble which we introduce as a

�rst step in this chapter. After that, we can state the basic idea and formalism for the

canonical density of states method and also give a detailed account on how Monte Carlo

simulations can be applied again to calculate observables using the so-called functional

�t approach [9].

3.1. Canonical Partition Function

As was already discussed in the previous sections, the introduction of the chemical po-

tential gives rise to a sign problem since the Dirac determinant picks up a complex phase.

For an imaginary chemical potential, however, no complex factor appears, and to take

advantage of this behavior we will change our viewpoint from the previously discussed

grand canonical ensemble, where the partition function depends explicitly on the chemical

potential Z(µ), to the canonical ensemble. In this representation, the partition function

is no longer a function of µ but depends on the �xed net quark number Nq, which can

only assume integer values since it is the total number of quarks minus the number of

antiquarks in the system. Positive values can be understood to indicate a surplus of

particles, and negative values a surplus of antiparticles. Furthermore, what also needs

to be mentioned, is the fact that the absolute value of Nq is bounded due to the �nite

lattice size. With the spin and color degrees of freedom in mind, it can be seen that

each �avor of quarks can contribute a maximum of 6N1 (anti-)particles, where N1 is the

number of lattice sites in spatial direction.

To express the canonical partition function, we substitute the chemical potential in

the grand canonical partition function as it appears in Eq. (18) with an imaginary one

µ = iθ/β and integrate over θ with an additional Fourier factor e−iθNq . This way we can

project out the contribution for a speci�c net number of quarks Nq [2]. This then yields

ZNq =

∫ π

−π

dθ

2π
Z (µ)

∣∣∣
µ= iθ

β

e−iθNq

=

∫ π

−π

dθ

2π

∫
D[U ] e−SG[U ] det2D [U, µ]

∣∣∣
µ= iθ

β

e−iθNq , (24)

where β is the inverse temperature as mentioned in Eq. (20) and we squared the deter-

minant to ensure positivity.4 Alternatively, this formula can also be seen as the inverted

4Strictly speaking, this is not a necessary step to take here, as will be discussed in a later chapter where

13



3. CANONICAL DENSITY OF STATES METHOD

fugacity expansion of the grand canonical partition function for an imaginary chemi-

cal potential. Vacuum expectation values for a �xed quark number can therefore be

expressed as

〈O〉Nq =
1

ZNq

∫ π

−π

dθ

2π

∫
D[U ] e−SG[U ] det2D [U, µ]O [U, µ]

∣∣∣
µ= iθ

β

e−iθNq , (25)

where the observable O is in general also a function of the chemical potential.

The advantage of this canonical ansatz is that the complex contribution is moved from

the determinant to the Fourier moment, which is not dependent on U . This enables us

to use Monte Carlo simulations for the gauge link integration. To this end we introduce

the density ρ in the next section.

3.2. Density of States

For the canonical partition function we can now de�ne the density of states in the fol-

lowing way

ρ(J )(θ) =

∫
D[U ] e−SG[U ] det2D [U, µ]J [U, µ]

∣∣∣
µ= iθ

β

. (26)

Here, J is some general real and positive functional of the gauge links and the chem-

ical potential. When we identify this quantity once with some suitable observable

J [U, µ] = O[U, µ] and once with the identity J [U, µ] = 1, we can express Eq. (25) and

Eq. (24) using this density. This yields

〈O〉Nq =
1

ZNq

∫ π

−π
dθρ(O)(θ) e−iθNq ,

ZNq =

∫ π

−π
dθρ(1)(θ) e−iθNq ,

(27)

where we have also cancelled the 2π normalization. This now makes clear why we denoted

ρ with the superscript (J ), since every observable gives a di�erent density. We also want

to stress here that observables which do not satisfy the condition of being real and positive

may always be split up into several terms which do ful�ll this condition.

The objective in the following will be to �nd a way to calculate the density ρ(J ). This

has to be done very precisely due to the integration over θ with the oscillatory Fourier

moment. For this we will employ a suitable parametrization of the density. But before

we go into detail about that, we want to discuss symmetry properties of the density,

which also makes the parametrization simpler.

In general, the density has to be integrated over the symmetric interval θ ∈ [−π, π].

But with the help of suitable symmetry transformations, ρ(J ) can be classi�ed to be

we will analyze the spectrum of the Dirac operator in detail.
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3. CANONICAL DENSITY OF STATES METHOD

either an even or an odd function, depending on whether J is even or odd under said

transformations.5 With the use of charge conjugation, for example, it can be shown that

ρ(1) is an even function, as it is demonstrated in Appendix A.1 and also in [10, 11]. This

property cuts the numerical cost in half, since by using the symmetries the density only

needs to be calculated in the reduced interval θ ∈ [0, π].

Now we can turn to discussing the parametrization for the density. For notational

convenience, we will not distinguish the cases with and without insertion of J but stress

that for di�erent insertions the parameters of the density have to evaluated separately.

The �rst step for the parametrization is to divide the reduced interval [0, π] into Nθ

subintervals

[0, π] =

Nθ−1⋃
n=0

In, with In = [θn, θn+1], (28)

where θ0 = 0 and θNθ = π. The length of each interval can then be expressed with

∆n = θn+1 − θn.
For the density we use an ansatz that was presented for example in [12],

ρ(θ) = e−L(θ), (29)

where L is a continuous function which is piecewise linear on the subintervals In. There-

fore, it can be expressed as

L(θ) = an + kn(θ − θn), θ ∈ In. (30)

This way we have two parameters per subinterval, the constants an as well as the slopes

kn of the lines. What we did not use so far, although, is the fact that we are free to choose

a normalization for the densities, since this will cancel out, as can be seen in Eq. (27).

If we set ρ(0) = 1, this implies L(0) = 06. With this normalization, and using also the

fact that L is continuous, all the constant factors an can be expressed by the slopes kn

and the interval lengths ∆n. The only unknown parameters for L then are the slopes of

all the intervals. With a few lines of algebra it can be shown that L takes the form

L(θ) = dn + θkn, θ ∈ In, dn =
n−1∑
j=0

(kj − kn)∆j . (31)

Finally, we can express the density as

ρ(J )(θ) = A(J )
n e−θk

(J )
n , θ ∈ In, with A(J )

n = e−d
(J )
n . (32)

5Here, too, a general J may always be decomposed into even and odd contributions.
6This normalization works �ne if the density is even, but would lead to a discontinuity for uneven
densities. To avoid this, a di�erent ansatz would be required in that case.

15



3. CANONICAL DENSITY OF STATES METHOD

Here we have used the superscript (J ) again to make clear that k
(J )
n and A

(J )
n are in

fact dependent on the observable.

What should be noted here, is that the interval size ∆n can be di�erent for each

subinterval In. This fact can be used as an advantage for numerical calculations. For

example, if the density varies quickly in a given region, the step size can be reduced

to get a better approximation. Alternatively, for regions where the density shows slow

variations, the step size can be increased to reduce numerical cost. Additionally, larger

intervals can also be used to get a rough estimate of the density, to locate the regions of

quick variations, for example. Subsequently, the intervals can be re�ned where necessary.

This procedure is called preconditioning and will also be mentioned in a later chapter

when we discuss our numerical results. For a more detailed account, see for example [9].

With this ansatz, therefore, all that needs to be calculated are the slopes for each of the

Nθ subintervals. This can be achieved with a method called the functional �t approach,

which is used also for example in [9, 10, 11] and is presented in the next section.

3.3. Functional Fit Approach

The functional �t approach, or FFA for short, is a method to calculate the slopes k
(J )
n ,

which will in turn enable us to calculate the density of states as given in Eq. (31) and

Eq. (32). For the presentation of this method in this section we will closely follow the

steps taken in [10].

First, we de�ne new quantities, the so-called restricted expectation values 〈θ〉(J )

n (λ) and

the corresponding restricted partition functions Z
(J )

n (λ), which have the following form

〈θ〉(J )

n (λ) =
1

Z
(J )

n (λ)

∫ θn+1

θn

dθ

∫
D[U ] e−SG[U ] det2D [U, µ]J [U, µ]

∣∣∣
µ= iθ

β

eλθθ,

Z
(J )

n (λ) =

∫ θn+1

θn

dθ

∫
D[U ] e−SG[U ] det2D [U, µ]J [U, µ]

∣∣∣
µ= iθ

β

eλθ.

(33)

These expectation values have a very similar form to the actual observables given in

Eq. (25) and Eq. (24), but with a few di�erences. First of all, the integration over

the imaginary chemical potential θ is restricted to only one subinterval In, which is

indicated by the index n. Secondly, the expectation value calculated with this formula

is the imaginary chemical potential θ itself. And thirdly, instead of the complex Fourier

moment, we have introduced a Boltzmann factor with a real-valued parameter λ which

will help us to calculate the slopes. Due to this substitution, the whole integrand is real.

Therefore, for this expectation value, no sign problem occurs and Monte Carlo methods

are possible, were θ is just an additional degree of freedom in the simulation.

To see how this parameter λ can be used to calculate the slopes k
(J )
n , we express the
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3. CANONICAL DENSITY OF STATES METHOD

restricted partition function in terms of the density from Eq. (26) by

Z
(J )

n (λ) =

∫ θn+1

θn

dθρ(J )(θ) eλθ. (34)

Further, we can use the exponential ansatz from Eq. (32) for the density. In this way we

can perform the integration in Eq. (34) analytically to get a closed form expression

Z
(J )

n (λ) = A(J )
n

e
θn
(
λ−k(J )

n

)
λ− k(J )

n

(
e

∆n

(
λ−k(J )

n

)
− 1

)
. (35)

Now, using the fact that the restricted expectation value can be expressed as the deriva-

tive of the logarithm of its Z
(J )

n (λ) with respect to λ, as can easily be veri�ed from

Eq. (33), we can use Eq. (35) to obtain

〈θ〉(J )

n (λ) =
d lnZ

(J )
N (λ)

dλ

= θn +
∆n

1− e−∆n

(
λ−k(J )

n

) − 1

λ− k(J )
n

. (36)

As a last step, we perform an additive and a multiplicative normalization of 〈θ〉(J )

n (λ)

which yields

V
(J )

n (λ) =
〈θ〉(J )

n (λ)− θn
∆n

− 1

2
= h

(
∆n

[
λ− k(J )

n

])
, (37)

where h is a sigmoidal function of the form

h(s) =
1

1− e−s
− 1

s
− 1

2
. (38)

At this point we want to state some important properties of this function. These will

be useful in a later chapter when we discuss the �tting procedure:

h(0) = 0, lim
s→±∞

h(s) = ±1

2
,

∂h
(

∆n

[
λ− k(J )

n

])
∂λ

∣∣∣∣∣∣
λ=k

(J )
n

= h′(s)
∣∣
s=0

∆n =
∆n

12
.

(39)

Here we want to emphasize the equation given in the second line, which states that the

slope of the function at its root is dependent on the size of the interval ∆n. This is an

helpful fact which can be used later on as a check for consistency of our calculations.

With this result we are now able to approximate the slopes k
(J )
n which we need to

evaluate the density. As the �rst step of this procedure, 〈θ〉(J )

n (λ) from Eq. (33) can be
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calculated numerically with Monte Carlo methods. This needs to be done for several

values of the real parameter λ. Since we can choose its values freely, this can be used

as an advantage. For a negative value of λ, for example, the integral is exponentially

suppressed for higher values of θ. Therefore, the lower part of the integration is the

dominant factor in the result. Conversely, for a positive λ, the upper part of the integral

contributes stronger. This shows that this parameter can be used to scan the subintervals

In even more precisely.

Following the Monte Carlo simulations we can perform the normalizations given in

Eq. (37) to get V
(J )

n (λ). This numerical data can then be used to �t the function h,

where the only parameter in this function which is not known is k
(J )
n . Therefore, a

one parameter �t can be used to get an estimate for the slope. This procedure has to

be repeated for all subintervals In and the results can then be used to calculate the

density ρ(J )(θ) with Eq. (32). All this needs to be done twice, once for some observable

J [U, µ] = O[U, µ] and once for J [U, µ] = 1. Finally, the vacuum expectation value for a

�xed net quark number Nq can be obtained after the integrations in Eq. (27).

This concludes our discussion of the technical description of the canonical density

of states approach. What still needs to be addressed is how the Dirac determinant in

Eq. (33) will be calculated, since this is a very costly task in terms of computer time.

We aim to employ Monte Carlo simulations for this quantity too. The ansatz how this

can be achieved is discussed in the next chapter.
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4. Multi-Boson Representation of the Dirac Determinant

In this chapter we will discuss a method for calculating the Dirac determinant using

auxiliary bosonic �elds. This is obviously a central quantity in our simulation, since it

appears in the restricted expectation value in Eq. (33) which we aim to calculate with

Monte Carlo methods. Therefore we are in need of an e�cient method to evaluate this

determinant.

4.1. Pseudofermions

Before we discuss some of the possible approaches to calculating the determinant, we will

at �rst take a step back to remind ourselves where the expression for the determinant

originates. From Eq. (16) we see that it can be written as an Gaussian integral over the

fermion degrees of freedom. The problem with this expression is, however, that the �elds

ψ and ψ are Grassmann-valued. The numerical implementation of these variables is very

challenging and does not give rise to e�cient algorithms. Also, standard algorithms for

calculating determinants are numerically rather expensive, especially for larger matrices.

Therefore we are looking for a di�erent way to represent this determinant.

To achieve that, we introduce, in analogy to the fermionic Gaussian integral, a bosonic

Gaussian integral. This means that instead of Grassmann variables we now work with

a complex �eld φ. For this type of integral holds a similar identity to that of Eq. (16),

namely [3] ∫
D[φ] e−φ

†Mφ =
πn

detM
. (40)

Here, the integral measure is de�ned as
∫
D[φ] =

∏n
k=1

∫
Cdφk and n is the dimension of

the matrix M . For this expression to be correct, a su�cient condition is that the matrix

M is hermitian,M = M †, and the spectrum ofM is positive de�nite. Additionally, since

with these conditions M is invertible, the equation 1
detM = detM−1 holds. We then can

write the determinant as

detM = π−n
∫
D[φ] e−φ

†M−1φ. (41)

Now if we turn back to Eq. (33), we see that in fact we want to calculate the square

of the Dirac determinant. This can be rewritten to

detD detD = detD† detD = det(D†D),

where in the �rst step we have used the γ5-hermiticity of the Dirac operator, which holds

for imaginary chemical potential. If we now identify M = D†D in Eq. (41), we see that

we have an expression for the fermion determinant using a path integral over bosonic
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degrees of freedom, as was introduced in [13]. The �eld φ is therefore often referred to

as pseudofermions.

Still, this is not an ideal representation of the determinant for numerical implementa-

tion. The problem here lies in the fact that the inverse of the matrix has to be calculated.

This is numerically very expensive, since the size of the matrix scales with the lattice size,

and also with the number of spacetime dimensions. Additionally, since the determinant

is part of the weight in the Monte Carlo simulation, it has to be calculated for every con-

�guration of the gauge links U . This means that a direct implementation of Eq. (41) is

accompanied with a too high numerical e�ort. Therefore, in the next section, we discuss

a factorization of the determinant which helps us to �nd an approximate solution that

can also be combined with the pseudofermion method.

4.2. Chebyshev Factorization of the Dirac Determinant

In this section we introduce a convenient factorization which we will use to express

the Dirac determinant. This, in turn, will enable us to adopt the above mentioned

pseudofermion representation to approximate the determinant in a numerically less ex-

pensive way. At the heart of this factorization lie the Chebyshev polynomials, therefore

we will call this the Chebyshev factorization. This method is explained for example in

[14, 15].

As a �rst step, we will discuss this factorization for a single complex number z. This

number has to be contained within an ellipse which does not touch the origin and whose

center, denoted by d, lies on the positive real axis. If we de�ne the semi-major and

semi-minor axes to be called a and b respectively, we can express the linear eccentricity

of this ellipse as c =
√
a2 − b2. In this case it is possible to approximate the inverse of z

with a polynomial PN

1

z
≈ PN (z) = cN

N∏
j=1

(z − zj), (42)

whereN is the degree of the polynomial and cN is a normalization constant which depends

on N . The zj are the roots of PN which can be explicitly calculated by using properties

of the Chebyshev polynomials. They lie on a larger ellipse which passes through the

origin and encloses the other ellipse. They are given by

zj = d

(
1− cos

(
2πj

N + 1

))
− i
√
d2 − c2 sin

(
2πj

N + 1

)
, (43)

with j = 1, . . . , N . The center of this ellipse is also given by d and it also shares the same

linear eccentricity c. The factorization of Eq. (42) is therefore in principle possible for

all z with Re(z) > 0. Also, we are going to assume that N is an even number, because

then the zj always come in complex conjugate pairs, as can be checked with Eq. (43).

20



4. MULTI-BOSON REPRESENTATION OF THE DIRAC DETERMINANT

This will be convenient later on.

For our purposes, however, we need to generalize this ansatz from complex numbers to

matrices. To this end, consider a diagonalizable matrix7 M = S−1JS with a nonsingular

matrix S and J = diag(λ1, . . . , λn), where λk, k = 1, . . . , n are the eigenvalues of M and

n is its dimension. This means that a polynomial of the matrix can be written as

PN (M) = PN (S−1JS) = S−1PN (J)S = S−1diag(PN (λ1), . . . , PN (λn))S. (44)

Here, the last step is possible since J is a diagonal matrix, which means that none of the

entries mix in the polynomial. Now we can use the equality in Eq. (42) for each entry of

the matrix separately and then pull the product out of the diagonal matrix to write

PN (M) = S−1

cN N∏
j=1

(J − zj1)

S = cN

N∏
j=1

(M − zj1). (45)

Additionally, if we use the approximation in Eq. (42), then Eq. (44) yields

PN (M) ≈ S−1diag

(
1

λ1
, . . . ,

1

λn

)
S = S−1J−1S = M−1. (46)

When comparing Eq. (45) and Eq. (46), one can see that the inverse of a diagonalizable

matrixM can be expressed by a polynomial similar to the one for a single complex number

as in Eq. (42), required that all the eigenvalues of the matrix obey Re(λk) > 0 so that

the spectrum of M can be enclosed by an ellipse described by Eq. (43).

We can now use Eq. (45) and Eq. (46) to express the determinant of M with the

Chebyshev factorization. To this end, we can use the relation 1
detM = detM−1 which

holds for invertible matrices. After rearranging the equation, this yields

detM ≈ c̃N
N∏
j=1

1

det(M − zj1)
, (47)

where c̃N = 1
cN
.

Now, having found an expression to calculate the determinant of some general diago-

nalizable matrixM with a spectrum in the positive real half-plane, we would like to turn

back to look at our matrix of interest, the Dirac operator. But before we can employ

the Chebyshev factorization in this case, we need to check if the eigenvalues ful�ll the

requirement that they can be enclosed by the ellipse as discussed above. This problem

will be dealt with in the next section where we will take a closer look at the spectrum of

7In fact, this factorization also works for non-diagonalizable matrices [15]. But in this thesis we only
need to concern ourselves with diagonalizable ones.
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the Dirac determinant in the free case, where the gauge links are set to unity, and also

discuss it for the full theory, where the gauge links are included. There we will �nd that

this factorization is indeed viable for the Dirac determinant. But for the moment, to

�nish the discussion, we assume that all the requirements for the spectrum are ful�lled

and insert Eq. (14) in Eq. (47), which yields

detD = det(1− κH) ≈ c̃N
N∏
j=1

1

det((1− zj)1− κH)
= c̃N

N∏
j=1

1

det(uj1− κH)
, (48)

where we have de�ned uj = 1− zj .
As can be seen now from Eq. (48), we are able to approximate the Dirac determinant

as a product of N inverse determinants. Our aim is now to express these inverse de-

terminants using bosonic Gaussian integrals as in Eq. (40). In order to establish that

this is possible we now show that the matrices are hermitian and then also demonstrate

that the eigenvalues are positive. We can use the second Dirac determinant to ful�ll this

condition. If we introduce the shorthand Dj = uj1− κH we can write

det2D = detD† detD

≈ c̃ 2
N

N∏
j=1

1

det(uj1− κH†)
1

det(uj1− κH)

= c̃ 2
N

N∏
j=1

1

det(D†jDj)

= sN

N∏
j=1

∫
D
[
φ(j)

]
e−φ

(j)†D†jDjφ
(j)

. (49)

In the �rst step we used the γ5-hermiticity of the Dirac operator and then we employed

the approximation from Eq. (48). For the third line we used the fact that the uj always

appear in complex conjugate pairs. In the last step we could make use of Eq. (40),

since D†jDj is obviously a hermitian matrix, and thereby introduced N bosonic �elds

φ(j), j = 1, . . . , N . These �elds of course also carry Dirac and color indices, but these

are suppressed for notational convenience. sN is a constant factor which combines c̃ 2
N

with the constants from Eq. (40). We will not concern ourselves here with the explicit

form of this constant, since it appears in the numerator as well as in the denominator of

the restricted expectation value in Eq. (33) and therefore cancels out.

As a �nal step, we want to absorb the product which appears in Eq. (49) into the

de�nition of the path integral measure via
∏N
j=1

∫
D
[
φ(j)

]
=
∫
D[φ]. The product of

exponentials can then be written as a sum in the exponent. This means that we can
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approximate the squared Dirac determinant as

det2D ≈
∫
D[φ] e−

∑N
j=1 φ

(j)†D†jDjφ
(j)

, (50)

where we now have also dropped the normalization sN .

As a summary of this chapter so far, we want to discuss what this Chebyshev factoriza-

tion entails for our calculation. As can be seen when comparing Eq. (41) with Eq. (50),

we were able to circumvent the necessity of inverting matrices, which is a very time con-

suming task for large matrices. But in exchange, we now do not only have one bosonic

�eld in the path integral, but N species. Due to this fact this ansatz is often called multi-

boson representation of the Dirac determinant. As a next step it is of course necessary to

investigate how many of the �elds φ(j) are needed to achieve a good approximation for

the determinants. This will be studied in the next chapter. At �rst, however, we take a

look at the spectrum of the Dirac operator to show that the Chebyshev approximation

is applicable at all.

4.3. Eigenvalues of the Dirac Operator

In this section we are going to verify that the spectrum of the Dirac operator has the

properties that are required for the Chebyshev factorization. To this end, we separate the

discussion into two parts. First, we will talk about the spectrum of a simpli�ed version

of the theory where we are working with the so-called free Dirac operator. In this case

it is possible to calculate the spectrum analytically. The second part of the discussion,

where we will talk about the full theory, will be kept very short. There we will give

only a short account on why the factorization works and will refer to the literature for a

detailed description. With the results of this analysis we are then able to determine the

open parameters of the ellipse in Eq. (43).

4.3.1. Free Dirac Operator

The simpli�ed version using the free Dirac operator describes a system where the quarks

on di�erent lattice sites do not interact with one another. Since the interaction is governed

by the gauge links U , the free theory can be described by setting all gauge links equal to

unity, Uν(n) = 1, ∀ ν, n. The free Dirac operator can thus still be written as in Eq. (14),

but the hopping matrix from Eq. (21) now simpli�es to

H(n|m) =

2∑
ν=1

{
[1− γν ] e

iθ
β
δν,2δn+ν̂,m + [1 + γν ] e

− iθ
β
δν,2δn−ν̂,m

}
, (51)

where we now already inserted the imaginary chemical potential via µ = iθ
β .
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When calculating the spectrum of the free Dirac operator it is convenient to �rst

perform a Fourier transformation to momentum space, because then the matrix becomes

block diagonal, as is demonstrated in Appendix A.2. This reduces the complexity of the

problem greatly, since the spectrum of a block diagonal matrix is given by the combined

spectrum of all the individual blocks. This means we now only need to calculate the

eigenvalues of the two by two matrices D̃′(p) from Eq. (A.4) for all values of the discretized

momenta pT = (p1, p2) given in Eq. (A.2). By setting det
(
D̃′(p)− λ1

)
!

= 0, we can

calculate the eigenvalues of the free Dirac operator to be

λ±(p) = 1− 2κ
(
cos(p1) + cos(p′2)

)
± i2κ

√
sin2(p1) + sin2(p′2), (52)

where we used the abbreviation p′2 de�ned in Eq. (A.5).

With this result for the eigenvalues, we can now check the region to which the spectrum

of the Dirac operator is con�ned to in the free case of the theory. Using the lower and

upper bounds of the trigonometric functions it is easy to verify that all the eigenvalues

lie within
1− 4κ ≤ Re (λ±(p)) ≤ 1 + 4κ,

−
√

8κ ≤ Im (λ±(p)) ≤
√

8κ.
(53)

For the real part of the spectrum we can now see that the crucial requirements for the

Chebyshev factorization can be ful�lled if the hopping parameter κ is chosen to be κ < 1
4 ,

which implies for the mass of the fermions that it has to be larger than zero. In that

case the real part of the eigenvalues does not touch the origin since it is con�ned to

Re(λ±(p)) ∈ (0, 2), which means it is possible to de�ne an ellipse according to Eq. (43)

which encloses the whole spectrum of the free Dirac operator.

What is also important to note is that the spectrum does in fact not only depend on

the mass m via the hopping parameter κ, but also on the imaginary chemical potential

θ through p′2. In order to get a more detailed understanding of how these parameters

in�uence the eigenvalues, we have plotted the spectrum of the free Dirac operator for

several combinations of these parameters in Fig. 1 for an 8× 8 lattice.

As can be seen in Fig. 1a, where the imaginary chemical potential was �xed to θ = π/2,

increasing the mass leads just to an overall contraction of the spectrum. The variation

of θ in Fig. 1b, however, does not change the extent of the spectrum in any way but only

shifts the eigenvalues within the general shape of the spectrum. Additionally, as can

of course be seen in Eq. (52), the eigenvalues always come in complex conjugate pairs.

What we also want to mention is that for larger lattices the extent of the spectrum does

of course also not change. The only e�ect this has is that the general shape that can be

seen in Fig. 1 becomes more densely populated with eigenvalues.
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Fig. 1: The spectrum of the free Dirac operator on an 8 × 8 lattice for di�erent values
of (a) the mass m and (b) the imaginary chemical potential θ. Also the ellipse
(black circle) for the Chebyshev factorization is plotted.

4.3.2. Complete Dirac Operator

In this section we are looking at the behavior of the complete Dirac operator, which in-

cludes the gauge links U . Here it is also possible to show that all the necessary conditions

needed for the Chebyshev factorization are ful�lled by the spectrum. We will, however,

not give a detailed presentation of how this can be seen, but refer to the literature in-

stead. In [10], for example, a crude estimate for the lower bound of the spectrum is given

for a real chemical potential. For an imaginary chemical potential it is then easy to see

that the same estimation yields that the spectrum of the Dirac operator does not touch

the origin for m > 0, the same result as for the free Dirac operator. Additionally, as it is

also mentioned in [10], the introduction of gauge links into the free Dirac operator leads

only to a contraction of the spectrum. That means that an ellipse which encloses the

free spectrum does also enclose the eigenvalues of the full Dirac operator.

What we also want to discuss at this point is the fact that we squared the Dirac

determinant in order to ensure positivity, as we mentioned earlier when we introduced

the canonical partition function. This is in fact not necessary, as can be shown when

looking at the eigenvalues of the Dirac operator. Using the γ5-hermiticity from Eq. (22)

for an imaginary chemical potential, which uses just a unitary transformation, it is easy

to see that the spectrum of D is the same as the spectrum of D†. This shows that the

eigenvalues always appear in complex conjugate pairs, discussed for example also in [16].

Since also Re(λ±(p)) > 0 holds, we know that the Dirac determinant is real and positive
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by itself. Moreover, this also ensures that the spectrum of D†jDj is positive de�nite,

which we mentioned is a su�cient condition for the last step in Eq. (49). Additionally,

we also do not need the second Dirac determinant to ensure hermiticity in Eq. (49), as

will be used in a following chapter.

All this shows that for the canonical density of states method it is not required to work

with an even number of mass degenerate quarks. In this thesis, however, we will continue

to work with two mass degenerate �avors, since this is already a good approximation for

the behavior of the two lightest quarks, up and down, which have similar masses [1]. But

if the inclusion of additional quarks or quarks with di�erent masses is desired, it can be

accomplished in a straightforward way.

Turning back to the spectrum of the Dirac operator, we can now use our knowledge of

the behavior of the eigenvalues to �x the open parameters of the ellipse in the Chebyshev

factorization. A straightforward way to do this is to set d to the center of the spectrum,

d = 1, and to set the linear eccentricity to c = 0. This de�nes a circle, which is also

plotted in Fig. 1. The quantities uj that appeared in the Chebyshev factorization of the

Dirac determinant in Eq. (48) can then be expressed in the simple form of a unit circle,

uj = 1− zj = ei
2πj
N+1 . (54)

With this we can now conclude this chapter. We were able to show that the spectrum

of the Dirac operator ful�lls all the properties required for the Chebyshev factorization

also for non-zero imaginary chemical potential, see Eq. (53) and Fig. 1. Therefore, we

can approximate the squared Dirac determinant with complex Gaussian integrals using

several pseudofermion �elds φ(j) via Eq. (50). In the next chapter we will use this ansatz

and the free Dirac determinant for �rst numerical calculations, where we will be able to

verify the results with exact analytic solutions. This will tell us how many Chebyshev

factors N are needed to obtain a good approximation of the determinant.
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5. Testing the Chebyshev Factorization

In this chapter our goal is to perform �rst tests using the Chebyshev factorization of the

free Dirac determinant. Following that, we will also perform a �rst Monte Carlo simula-

tion using the pseudofermion ansatz. We will work with the free Dirac operator because

this simpli�ed theory has the advantage that observables can be computed analytically.

This enables us to verify the calculations using the factorization of the determinant with

the exact results. The quantities of interest in this chapter are the free energy and the

chiral condensate, which will be introduced in detail in the �rst section. After that, we

will calculate these quantities for di�erent numbers of Chebyshev factors N , as well as

for di�erent values of the other free parameters of our theory, for example the mass of

the fermions. This will help us to identify a suitable amount of Chebyshev factors N

which give a good approximation of the Dirac determinant. This result will be important

afterwards when we implement the pseudofermion ansatz of the determinant using Monte

Carlo methods.

Since in this chapter our main focus is the Chebyshev factorization, we will not perform

any θ integrations. This means the calculated quantities will always depend on the

imaginary chemical potential, which is therefore also a free parameter in this discussion.

Also, for these tests, it is su�cient if we work with one quark �avor.

5.1. Free Energy and Chiral Condensate

The quantities for which we are going to test the factorization are the free energy and

the chiral condensate, denoted as F and 〈ψψ〉 respectively. Since we are working with

the canonical ensemble, the free energy represents the corresponding thermodynamic

potential and is given by F = − 1
β ln

(
ZNq

)
, which is explained in any textbook on

statistical physics. We will not work with the full form of the canonical partition function

from Eq. (24), however, but with a simpli�ed version. As already mentioned, we are not

performing the θ integration, so we leave it out together with the Fourier factor. Also,

since we are working with the free theory without interactions between the fermions, we

set Uν(n) = 1, ∀ ν, n. By doing so the gauge action and the path integral over the gauge

links drop out, as can be seen in Eq. (10) and by the fact that the Haar measures are

already suitably normalized [2]. Since we are only working with one �avor, the partition

function is now reduced to

Z̃(θ) = detD(µ)
∣∣
µ= iθ

β
. (55)

This is equivalent to the free grand canonical partition function with an imaginary chem-

ical potential. Using this Z̃, the free energy reduces to

F = − 1

β
ln (detD) , (56)
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where the dependence on the imaginary chemical potential is suppressed in our notation.

The second quantity, an observable called the chiral condensate 〈ψψ〉, is important

in phenomenological descriptions of QCD and is used as an order parameter for phase

transitions due to the spontaneous8 breaking of chiral symmetry in the limit of massless

fermions, called the chiral limit. Although this is an interesting topic, we will not go into

further detail about the physics of the chiral condensate, since our focus is now just on

the numerical implementation of the Chebyshev expansion. For more information about

the chiral condensate on the lattice and the continuum the reader is referred to [2, 17]

and [18].

For our de�nition of 〈ψψ〉 the same simpli�cations as above will be used for Eq. (25).

In this equation the fermion degrees of freedom are already integrated out, and therefore

the observable cannot depend on the fermion �elds. To express the chiral condensate

we need to reverse that step by writing the Dirac determinant as a fermionic Gaussian

integral as in Eq. (16) where we can then set the observable to O = ψψ. Then we can

write the chiral condensate as (cf. Eq. (17))

〈ψψ〉 =
1

V Z̃

∫
D
[
ψ,ψ

]
e−ψDψψψ

=
−1

V

∂

∂s
ln (detDs)

∣∣∣
s=1

. (57)

Here we used the lattice volume V = N1N2 as an additional normalization and also

introduced the parameter s in the Dirac operator via Ds = s1 − κH, which is set

to one after taking the derivative. This way we can express 〈ψψ〉 by using the Dirac

determinant. The validity of the second line can be easily veri�ed when remembering

Eq. (16). Also, we again use the hopping matrix H, which for both the free energy and

the chiral condensate is given by Eq. (51).

The reason why we chose these two quantities for our tests is because they have a very

simple dependence on the Dirac determinant, as can be seen from Eq. (56) and Eq. (57).

This enables us to test the Chebyshev factorization e�ciently. In the case of the chiral

condensate it is further possible to express the determinant with pseudofermions and

calculate 〈ψψ〉 using Monte Carlo simulations, as will be explained later in this section.

But at �rst we will show how the logarithm of the determinant can be expressed by using

the Fourier transform of the Dirac operator, which is calculated in Appendix A.2. Since

D̃ (p|q) in Eq. (A.3) is block diagonal, its determinant reduces to the product of the

determinants of the blocks D̃′(p) in Eq. (A.4). Additionally, when writing the logarithm

8In our lattice description, using the Wilson-Dirac operator, the chiral symmetry is always broken
explicitly. However, this problem can be cured if instead of the Wilson term a so-called Ginsparg-

Wilson Dirac operator is used [2, 17].
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of products as a sum of logarithms we have

ln (detDs) = ln (det [s1− κH])

= ln

(∏
p

det D̃′s(p)

)
=
∑
p

ln
([
s− 2κ(cos(p1) + cos(p′2))

]2
+ 4κ2

[
sin2(p1) + sin2(p′2)

])
, (58)

where the propagation of s through the calculation of the Fourier transformation is

straightforward.

Now we will use the Chebyshev factorization to express the quantity ln (detDs). As

a �rst step, we use Eq. (48) for the determinant of Ds. Here we have to be careful,

however, since we introduced the parameter s and this formula works only for matrices

of the form 1−M . With that in mind we can write

detDs = det (s1− κH)

≈ c̃Ns2V
N∏
j=1

1

det
(
uj − κ

sH
)

= c̃Ns
2V (1+N)

N/2∏
j=1

1

|det (suj1− κH) |2
. (59)

For the second line we �rst pulled the factor s out of the determinant to obtain the desired

form of the matrix, where the exponent of s is the dimension of the Dirac operator. The

factor 2 comes from the gamma matrices in two dimensions, and V is the size in real

space, given by the volume of the lattice. The gauge links do not contribute since they are

set to unity. Following that, also for the second line, we used the Chebyshev factorization.

This is possible since we know that the parameter s is in the vicinity of 1, otherwise we

would need to check if the spectrum of the matrix in the determinant is still compatible

with the restrictions of the ellipse. For the third line we now pulled the factor 1
s out of

the determinant and then used the γ5-hermiticity of H together with the fact that the uj

always come in complex conjugate pairs, which is the case since we chose N to be even.

At this point it is also necessary to calculate the normalization c̃N explicitly, since it

does not drop out in the calculation of the free energy. This can be easily done with

Eq. (47) and the requirement that det1 = 1. Using also that the uj come in complex

conjugate pairs and lie on the unit circle, see Eq. (54), this yields the particularly simple

answer

c̃N = 1. (60)

Putting Eq. (59) and Eq. (60) together, we can write the logarithm of the Dirac
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determinant using the Chebyshev factorization as

ln (detDs) ≈ 2V (1 +N) ln(s)−
N/2∑
j=1

ln
(
|det (suj1− κH)|2

)
. (61)

For the remaining determinant in the logarithm we can use the same analytical expression

as was used in Eq. (58), only that the scalar s is now also accompanied by the complex

numbers uj . So for both expressions Eq. (58) and Eq. (61) we use the analytic results,

but for the latter we also employed the Chebyshev factorization which gives us a simple

way to test the quality of this approximation.

With these results for ln (detDs) it is now easy to calculate the analytic result of the

free energy Fan by using Eq. (58) with s = 1 and by using the prefactors of Eq. (56). And

in the same way, via Eq. (61), we can approximate the free energy with the Chebyshev

factorization, which we call FCh. In the same spirit we can also calculate the analytic and

the approximated chiral condensate 〈ψψ〉an and 〈ψψ〉Ch, respectively, where taking the

derivative in Eq. (57) is a straightforward calculation. In the next section we compare

the numerical results for all these quantities.

Before we do that, however, we also want to discuss how the chiral condensate can

be used to test the implementation of the multi-boson representation of the free Dirac

determinant. This can be done via Monte Carlo simulations and is a stand-alone calcu-

lation, needing no analytical input, and could in principle also be extended to the full

theory including the gauge links. We will, however, stay with the free theory where we

have analytical data to which we can compare our results to.

The �rst step now is to express the Dirac determinant using the pseudofermion �elds

φ(j) to �nd an expression for the chiral condensate which can be evaluated with Monte

Carlo methods. This can be achieved by using the Chebyshev approximation as in

Eq. (59), where we can use the fact that the absolute square of any determinant can be

written as |detM |2 = det
(
M †M

)
. This shows that it is also possible to use Eq. (49)

and therefore Eq. (50) for only a single determinant, i.e. only one �avor, where the

di�erence is that in this way the number of pseudofermion �elds reduces to N/2. This

can be understood by the fact that removing one determinant corresponds to removing

one quark �avor, which cuts the fermion degrees of freedom in the theory in half.

Putting these equations together we can immediately express the logarithm of the free

Dirac determinant as

ln (detDs) ≈ 2V (1 +N) ln(s) + ln

(∫
D[φ] e−

∑N/2
j=1 φ

(j)†[suj1−κH]†[suj1−κH]φ(j)
)
. (62)

Here we already ignored the normalization sN from Eq. (49) since it drops out when

we insert this result in Eq. (57). The derivative with respect to the parameter s can be

30



5. TESTING THE CHEBYSHEV FACTORIZATION

calculated within a few lines of algebra. The chiral condensate, expressed with pseudo-

fermions, can then be written in the compact form

〈ψψ〉 ≈ −2(1 +N) +
1

V

〈
N/2∑
j=1

φ(j)†
[
21− κ

(
u∗jH + ujH

†
)]
φ(j)

〉
. (63)

Here, the expression within the angle brackets denotes the observable we will calculate

with Monte Carlo simulations. Using some general observable O, these brackets can be

expressed as the path integral over the �elds φ(j) by

〈O〉 =
1

Z

∫
D[φ] e−

∑N/2
j=1 φ

(j)†D†jDjφ
(j)

O [φ] ,

Z =

∫
D[φ] e−

∑N/2
j=1 φ

(j)†D†jDjφ
(j)

.

(64)

The implementation of Eq. (63) and the numerical results will only be discussed after

the next section, since before that, as already mentioned, we compare the results for Fan

and FCh as well as for 〈ψψ〉an and 〈ψψ〉Ch.

5.2. Numerical Results for the Chebyshev Factorization

In this section we present and discuss our �rst numerical results using the Chebyshev

factorization of the free Dirac determinant. To this end, we look at the relative error

between the analytic and the approximated results

ε =
|Xan −XCh|

Xan
,

where X is to be substituted with F or 〈ψψ〉 to obtain the relative error for the free

energy or the chiral condensate, respectively. This is done for several combinations of

the mass m, the imaginary chemical potential θ, the lattice size N1 ×N2 as well as the

number of Chebyshev factors N , to see how these parameters in�uence the quality of the

approximation. The results of these calculations can be seen in Fig. 2.

Starting our discussion with the �rst plot, Fig. 2a, where the results for an 128× 128

lattice and an imaginary chemical potential of θ = 0 is shown, we can see that the con-

vergence of the Chebyshev approximation is roughly of exponential form in the displayed

region of N . What can also be seen is the fact that the approximation is better for

fermions with larger masses m. The reason for that is the spectral gap (see, e.g., [14]),

which de�nes the minimal distance between the eigenvalues of the Dirac operator and

the circle de�ned by the zj from Eq. (43). It can be shown that the convergence is better

for larger spectral gaps. Since this gap is given by 1 − 4κ, the lower bound of the real

part of the eigenvalues from Eq. (53), it is clear that the gap increases for larger masses,
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0 20 40 60 80 100 120 140
N

1e-10

1e-08

1e-06

1e-04

0.01

1

e

m = 0.2, free energy
m = 0.2, condensate
m = 0.1, free energy
m = 0.1, condensate
m = 0.05, free energy
m = 0.05, condensate

(b) 128× 128, θ = π/3.
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Fig. 2: Results for the relative error ε between the analytic solution and the Cheby-
shev approximation of the free energy and the chiral condensate, plotted against
the number of Chebyshev factors N . The varied parameters are the lattice size
N1 ×N2, the mass m and the imaginary chemical potential θ.

see also Fig. 1a. This explains the di�erent convergence rates for the di�erent masses.

What can also be seen in Fig. 2a for m = 0.05 at around N = 80 are slight instabilities

of the approximation. These instabilities become much more pronounced in Fig. 2b

with an increased imaginary chemical potential of θ = π
3 and even more so in Fig. 2c

where θ = π. We do not concern ourselves with a detailed analysis of these irregularities.

We will, however, explain shortly what seems to cause them and how they might be

compensated.

Firstly, it is important to note that larger masses suppress these instabilities. For

m = 0.2, for example, none can be seen in the displayed regions of ε and N . Secondly,

an important factor for these irregularities are the positions of the eigenvalues relative

to the positions of the parameters zj on the surrounding circle. This can be seen by the

fact that increasing θ only shifts the eigenvalues within the spectrum, see Fig. 1b, but
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can have a strong in�uence on the quality of the approximation, evident in Fig. 2. What

is also interesting is that for larger masses the convergence is not really a�ected by the

change of θ up to some value of N . Looking at m = 0.1, for example, it is clear that the

convergence is the same for all θ up to about N = 100. Thirdly, what can be seen in

Fig. 2d, where only the lattice sizes are varied, is that the instabilities are reduced for

larger lattices. This shows that the convergence is more stable when the spectrum is more

densely populated. Lastly, we want to mention what is also discussed in [15], namely that

the convergence of the Chebyshev approximation does not only depend on the spectrum

of the matrix, but also on the parameters d and c. Therefore the approximation might

also be improved by changing the position or the form of the ellipse described by the zj

in Eq. (43).

What we also need to address at this point is how well the Chebyshev factorization

can approximate the determinant of the complete Dirac operator. The problem hereby

is that tests like this, where we can compare the Chebyshev approximation with exact

analytic results, are only possible in the free case of the theory, as we already mentioned.

However, since we know how the spectrum of the free Dirac operator changes when

reintroducing the gauge links, we can convince ourselves that the Chebyshev factorization

with the parameters determined here also gives good approximations for the full Dirac

determinant.

For this, two factors are important. The �rst thing to note is that the introduction

of the gauge links leads to a contraction of the spectrum. This has therefore a similar

e�ect on the convergence as increasing the mass does, since a contraction means that

the spectral gap becomes larger. The second important fact is that the complete Dirac

operator has less degeneracies of eigenvalues than the free operator, which means that

the spectrum becomes more densely populated. This should reduce the instabilities, as it

does when increasing the lattice size, see Fig. 2d. We can therefore expect the Chebyshev

factorization to approximate the Dirac determinant in the interacting theory with at least

comparable quality as it does in the free case.

The discussion of these results shows that �nding the best parameters for the Cheby-

shev approximation is not a simple task, since the convergence is dependent on multiple

variables. To get a more detailed understanding would require a more in-depth analysis

of the Chebyshev factorization and its convergence rate. For our purposes, however, we

already have enough information, since we were able to show that increasing the mass of

the fermions guarantees a better convergence and also suppresses the instabilities. Espe-

cially for masses m ≥ 0.2 it is clear that only about 100 Chebyshev factors are needed

to obtain a very good agreement with the analytic solution of the free Dirac determi-

nant. Additionally, we also argued why we expect the error for the approximation of the

complete Dirac determinant to be very similar to the error of the free case.
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So far we only used the Chebyshev factorization to represent the free Dirac determinant

as a product of inverse determinants, which we then still calculated analytically. In the

following section, however, we will approximate the free Dirac determinant without any

analytical input.

5.3. Monte Carlo Simulation of the Chiral Condensate

In this section we �rst discuss the implementation of the Monte Carlo simulation for

the chiral condensate. The expression we implement is given by Eq. (63) and Eq. (64).

Following that, we discuss the results of this simulation.

5.3.1. Implementation of the Monte Carlo Simulation

The general idea of how we implement Monte Carlo simulations is summarized in Ap-

pendix A.3. Therefore, in this section, we will only need to talk about the details which

are speci�c for the implementation of the chiral condensate, which are the action of this

theory and the update procedure for the �elds.

The �rst thing which is important to mention for Monte Carlo simulations is the action

of the theory, which for the chiral condensate is given by Scc[φ] =
∑N/2

j=1 φ
(j)†D†jDjφ

(j),

as can be seen in Eq. (64). We therefore know that we need to generate con�gurations

of the �elds φ which follow the distribution e−Scc[φ]

Z . Also, we have to keep in mind that

the �elds actually carry several indices, namely n, α and j, denoting the lattice site,

the Dirac component and the Chebyshev factors, respectively. Color does not contribute

here since we are working with the free theory.

We now turn to the actual implementation of the Monte Carlo simulation. For this

we will shortly discuss all the steps also outlined in Appendix A.3. For the cold start

initialization we set all entries of φ equal to zero. The update sweeps over the �elds were

implemented by iterating over all indices of φ, where at each step we generated the trial

con�guration (cf. Eq. (A.6)) by adding a small complex number δ = δ1 + iδ2 to the �eld,

where δ1 and δ2 are real and random. The proposed change can therefore be expressed

as

φ′(j0)
α0

(n0) = φ(j0)
α0

(n0) + δ. (65)

The bound for the random numbers δ1 and δ2 was determined by the acceptance rate of

the proposed con�gurations, as discussed in the appendix.

To determine if this proposed change is accepted, we calculate the change of the action

as given in Eq. (A.7). Since the �eld only changed locally, it is not necessary to calcu-

late the action explicitly, as mentioned in the appendix. For example, since the �eld is

only varied for a �xed value of j, the sum over the Chebyshev factors drops out when

calculating the di�erence of the actions. Similar arguments also hold for the other pa-
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rameters. This fact was of course considered when implementing the algorithm to reduce

the numerical cost of evaluating the Metropolis weight in Eq. (A.8). Additionally, when

calculating ∆S, it is important to keep in mind that the �elds representing fermion de-

grees of freedom, which in this case are the pseudofermions φ, have antiperiodic boundary

conditions in time direction, as given in Eq. (23).

The observable which needs to be calculated in this simulation is the sum within the

angle brackets in Eq. (64), which can immediately be combined with the prefactors to

obtain a measurement of the chiral condensate. The error of the data set was then

calculated using data blocking together with the Jackknife method, as it is explained in

Appendix A.3.

This concludes the discussion of the implementation of the Monte Carlo simulation for

the chiral condensate. In the next section we �rst are going to discuss the values of all

the parameters we used in the simulation and then we show the results of the calculation

and compare them to the analytic result. Also we will talk shortly about how the size of

the error bars was determined.

5.3.2. Monte Carlo Results for the Chiral Condensate

Before we go into detail about the numerical results for the chiral condensate, we �rst need

to address the values of the parameters of the simulation. The lattice size was chosen to be

4×4, since that will also be the size we will use in later chapters where we implement this

ansatz for the calculation of the canonical density of states. These simulations, discussed

in the following chapters, are much more costly in computer time, so we could only test

them with this small lattice. The number of Chebyshev factors was set to N = 100,

since we know from Section 5.2 that this amount yields already a good approximation,

especially for larger masses. For equilibration we used nequi = 2× 103 steps, since after

this amount of sweeps the con�guration of the �eld has already reached an equilibrium,

which was veri�ed by looking at the results of the measurements of the observable.

For decorrelation of the measurements nskip = 10 sweeps were used and the number of

measurements was set to nmeas = 2×106. For this �xed parameter set several calculations

were performed for di�erent combinations of the remaining parameters, namely the mass

m of the fermion and the imaginary chemical potential θ. The results of these Monte

Carlo simulations can be seen in Fig. 3, where they are plotted together with the analytic

results of the chiral condensate.

The plot clearly shows that the results have the same dependence on the parameters m

and θ as we already found in Fig. 2. For small masses the error bars are relatively large

but decrease steadily for increasing m, which we expected due to the behavior of the

spectral gap. Also, when comparing the results for θ = 0 to those with higher imaginary

chemical potential, it can be seen that an increasing θ also increases the error. Again,
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Fig. 3: Results of the chiral condensate for three di�erent values of the imaginary chemical
potential. The continuous lines are the analytic solutions and the dots represent
the results of the Monte Carlo simulations, calculated on an 4 × 4 lattice for
N = 100 Chebyshev factors.

this is most pronounced for small masses but can be neglected for larger m. This re�ects

very well the �ndings of the previous section.

We also want to go into a little more detail about the calculation of the errorbars for

the Monte Carlo results. As mentioned in the appendix, the error was estimated using

Eq. (A.10), where the criterion we used to �x the number of elements per blocks n is also

discussed there. In Fig. 4 we show how the error σ behaves for an increasing size of the

data blocks for the Monte Carlo simulation of the chiral condensate with an imaginary

chemical potential of θ = 3π
4 . As can be seen, for higher values of n the errors almost

reach a constant value, where for smaller masses larger blocks are necessary for this to

happen. Also, we want to stress at this point that the lines connecting the results in the

�gure are of course only a guide to the eye an do not represent actual numerical results.

The size of the blocks used for the result in Fig. 3 is n = 56 = 15625.

With this we can conclude this chapter about the �rst numerical tests of the Cheby-

shev factorization and the pseudofermion representation. We were able to show that for

masses larger thanm = 0.2 the Chebyshev approximation already yields satisfying results

for N = 100 factors and all values of the imaginary chemical potential. Also, the results

of the Monte Carlo implementation of the chiral condensate show that good approxima-

tions can be achieved for the multi-boson representation of the free Dirac determinant,
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Fig. 4: Behavior of the error estimation for the chiral condensate when di�erent sizes of
the blocks are used for the Jackknife method. Here, the error for θ = 3π

4 is shown
for several values of the mass m. The lines connecting the data points are only a
guide to the eye.

especially if the value of the mass is not too small. What we also discussed was that

although we only tested the free case, we can expect the Chebyshev factorization ansatz

to also give results of a similar quality for the interacting theory. In the next chapters

we will use the same Monte Carlo methods to calculate the restricted expectation value

via the FFA approach, which will enable us to calculate the density of states.
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6. Testing the FFA for the Free Theory

Before we go into detail about the implementation of the functional �t approach (FFA),

we want to recapitulate the steps we took in the last two sections. There we described

and tested two methods which we need for an e�cient implementation of the Dirac

determinant, which is a central quantity of the restricted expectation values, which in

turn is needed for the FFA. The two methods are of course the Chebyshev factorization

of the determinant which, combined with the pseudofermion ansatz, leads to the multi-

boson representation of the Dirac determinant. We veri�ed their applicability for our

theory by looking at the behavior of the eigenvalues of the Dirac operator. Following that,

in the subsequent chapter, we introduced two quantities for numerical testing of these

methods. First, in Section 5.2, we explicitly tested only the Chebyshev factorization, and

then in Section 5.3 we also included the pseudofermions and tested the complete ansatz

with Monte Carlo simulations. After all this we concluded that this is a valid method

for approximating the Dirac determinant, so that we can now proceed to use it for the

implementation of the FFA.

In the �rst section of this chapter we will discuss how the density of states and the

restricted expectation values look like for the free theory and also go into the details of

the Monte Carlo simulation of the FFA. Following that, in the second section, we present

our numerical results and compare them to the analytic solution.

6.1. Implementation of the FFA for the Free Theory

In this chapter, we will test the FFA as it is presented in Section 3.3, although we will

still stay with the free case so that we are able to verify our results with the analytic

solutions. Additionally, we will also only consider the case where the observable is set

equal to unity, J = 1. As discussed when introducing the density of states method, this

corresponds to the density which is needed to calculate the normalization, as can be seen

in Eq. (27). It is therefore a central quantity, since it is essential for the calculation of

any observable with this method. Finally, as was also the case in the previous chapters,

it is su�cient if we work with only a single quark �avor.

The density which we aim to calculate in this chapter can thus be expressed via

Eq. (26), where we can just apply the above mentioned simpli�cations. This leads to the

relatively simple density

ρ(1)(θ) = detD (µ)
∣∣∣
µ= iθ

β

, (66)

where all the contributions of the gauge links just drop out in the free theory, as we

discussed already in an earlier chapter. It is clear that the right hand side of this equation

can be calculated analytically with Fourier transformation as before. Also what is easy
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to see here, is that if we introduced a second �avor where the quarks have the same mass,

we would only need to square the result we obtain for the density.

For the numerical calculation of the density we will employ Monte Carlo simulations

to compute the restricted expectation values from Eq. (33). Here, we now also need to

express the Dirac determinant via the multi-boson representation as given in Eq. (50),

where the sum over the Chebyshev factors in the exponent only needs to go up to N/2

since we work with just a single �avor. Additionally, instead of writing the sum explicitly,

we will use the shorthand notation
∑N/2

j=1 φ
(j)†D†jDjφ

(j) = φ†D†Dφ. Finally, when also

using the same simpli�cations as before, we see that the restricted expectation value for

the partition function of the non-interacting theory is given by

〈θ〉(1)n (λ) =
1

Z
(1)

n (λ)

∫ θn+1

θn

dθ

∫
D[φ] e−φ

†D†Dφeλθθ,

Z
(1)

n (λ) =

∫ θn+1

θn

dθ

∫
D[φ] e−φ

†D†Dφeλθ.

(67)

As a reminder we want to mention that the Dirac operator in the exponent is given by

Eq. (14), where the hopping matrix H for the free theory is shown in Eq. (51). Here

it is of course important to keep in mind that the hopping matrix is dependent on the

imaginary chemical potential θ.

Now we will turn to discussing the Monte Carlo implementation of Eq. (67), where

we only explain the details of this application since the general steps are outlined in

Appendix A.3. It is clear that we now have two quantities we need to consider in our

update steps: the imaginary chemical potential θ and the complex �elds φ. These two

come with di�erent parts of the action and therefore follow di�erent distributions. The

action part for the �eld is given by Sφ = φ†D†Dφ, whereas for the part with θ also the

dependence on the arti�cial parameter λ has to be considered, hence Sθ = φ†D†Dφ−λθ.
For the proposed update of the two integration variables (Eq. (A.6)) we perform the

small, additive variations

φ′(j0)
α0

(n0) = φ(j0)
α0

(n0) + δφ,

θ′ = θ + δθ.
(68)

The update for the �eld δφ = δ1 + iδ2 is here precisely the same as in Eq. (65), where

for a complete sweep we had to loop over all indices. For θ however, since it is just a

real valued parameter, the update is simply given by a small and random real number

δθ. Here it is of course important to remember that the θ integration is con�ned to the

n-th subinterval. This gives rise to di�erent possibilities for how this update should be

implemented. We tested two di�erent versions and will compare the results in the next

section. For Version 1, if the suggested new value θ′ lies outside the allowed bounds, we

disregard this con�guration and immediately create a new one. This is iterated until a
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valid value is found. For Version 2, however, if θ′ lies outside the allowed integration

range it is disregarded and the Monte Carlo simulation proceeds without changing θ in

the current sweep.

If a possible con�guration for either of the variables was found, the change in action

was calculated via Eq. (A.7), using Sθ for the imaginary chemical potential and Sφ for

the �elds, and then accepted with the probability Eq. (A.8). To reduce the numerical

cost when calculating the change of the actions, the locality of the update was considered

here in the same way as also mentioned in Section 5.3.1. The update of θ, on the other

hand, is not locally restricted, but contributes on every lattice site in time direction,

see Eq. (51), which makes the evaluation of ∆Sθ rather expensive, compared to a single

update of a pseudofermion �eld.

The bounds for the random numbers were again determined by the acceptance rates for

the proposed updates of the variables. As explained in the appendix, a desired acceptance

rate would be around 0.5. For the update of the imaginary chemical potential, however,

we settled for an acceptance of around 0.9, which indicates that the variation is actually

rather small. This does not pose a problem, however, since the reason for this is only the

fact that the allowed intervals [θn, θn+1] are small. So increasing the size of the variation

δθ would only lead to more suggested updates θ′ out of bound. This tells us that although

the variation is small, we still can easily cover the whole integration range, which is true

regardless of which of the two update versions is used.

What we also need to address for the Monte Carlo implementation of restricted expec-

tation values is the fact that we have to implement integrations over the two di�erent

variables θ and φ. This raises the question in what order the updates should be per-

formed, for example if θ should be updated more often than just once per sweep. To

explore this, we tested two di�erent update methods with short test runs of the simula-

tion. For the �rst method we suggested an update for θ after every complete update of

one Chebyshev �eld φ(j). This means that in every sweep a total of N/2 updates for θ

were suggested. For the second method we just updated the imaginary chemical poten-

tial once per sweep after all Monte Carlo steps for φ were done. We found that the two

procedures yield very similar results. Therefore the obvious choice was to use method two

for further calculations, since it requires much less numerical e�ort. Especially because

the update of θ is not local, as mentioned above.

What we also need to mention is the evaluation of the observable of the restricted

expectation values. As can be seen in Eq. (67), for example, the observable is just given

by the imaginary chemical potential. So the determination of the observable here is

particularly simple, since all that needs to be done for a measurement is to save the

current value of θ into a �le.

Finally, before we can talk about the values used for all of the parameters in the
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simulation, we need to speci�cally address the parameter λ to �nd out what values

are appropriate for this quantity. To do that, we �rst want to recapitulate where this

parameter originates. It was introduced as an arti�cial parameter in the de�nition of the

restricted expectation values in Eq. (33). Since it is a real parameter which e�ectively just

substitutes the imaginary unit in the Fourier factor in Eq. (25), it removes the complex

action problem and makes Monte Carlo methods accessible. The idea of the FFA is then

to perform several calculations of the restricted expectation values in every interval In

from Eq. (28) for di�erent values of the parameter λ to get data sets which can be used

to �t the function h of Eq. (38).

The question which obviously arises at this point is what values of λ are adequate for

this procedure. This can be answered when �rst looking at Eq. (37). Here it can be

seen that the argument s of h(s) has the simple dependence s ∝ λ − k(J )
n , where k

(J )
n ,

the slope of the density in the interval In, is the quantity we aim to �nd with the �t.

Secondly, we also know that the function has its only root at the origin, h(0) = 0, as

stated in Eq. (39). Therefore, if we interpret h as a function of λ, all that the �t entails

is �nding the function's root, which is given at the position λ = k
(J )
n . Consequently, the

best choices for λ are near the root to minimize the error in the �tting procedure.

Naturally, the exact position of the root is unknown. It can be estimated, however,

with preliminary calculations which are called preconditioning. In this procedure crude

calculations of the restricted expectation values are performed for some guessed values

of λ to �nd a �rst estimate for the root. With this information one can then adjust the

values of λ accordingly, so that for the full run of the calculation optimal choices can be

implemented.

This form of preconditioning is not necessary for the simple case we discuss in this

chapter, however. Since we are working with the case where the observable is set to

J = 1 and where there is no interaction between the (pseudo-)fermions, we can calculate

the slope k
(1)
n of the density of states and therefore the root of h explicitly. This can

easily be seen via (here θ ∈ In)

∂

∂θ
ln (detD) =

∂

∂θ
ln
(
ρ(1)(θ)

)
=

∂

∂θ
ln
(
A(1)
n e−θk

(1)
n

)
= −k(1)

n , (69)

where for the �rst step we employed Eq. (66) and then we could make use of the ansatz

for the density, given in Eq. (32). The left hand side can easily be calculated with Eq. (58)

where s = 1, since the derivative can be obtained by a straightforward calculation. Also

it is clear that in order to get an estimate for the slope in the n-th interval one has to

choose θ ∈ In.
With this we have discussed all the important aspects for the Monte Carlo implemen-

tation of the FFA for the free theory. In the next section we will �rst �x all the values of
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the parameters which are still left open. After that we will show plots where we compare

our numerical results with the analytic solution. Also we discuss in detail the �tting

procedure for the slopes of the density.

6.2. Numerical Results for the Free Density of States

Before we can present our numerical results, we �rst need to mention all the values of

the parameters included in the simulation. Two important quantities, which need to be

chosen with care, are the number of subintervals for the θ integration, Nθ, and also the

number of values for the parameter λ, which we call Nλ. The �rst one regulates with

how many intervals the density is discretized, which is of course an important aspect of

the density of states ansatz. One has to keep in mind that a rather precise description of

ρ(1) is needed for the evaluation of the Fourier integral in Eq. (27). On the other hand,

also the numerical e�ort has to be considered. Therefore, similar to the procedure for

�nding the best values for λ, one can perform preconditioning runs to �rst get a crude

approximation for the behavior of ρ(1). This can be done with a rather low number of

intervals. With this information it is then possible to choose an appropriate number

Nθ for the subintervals. Additionally, what can also be made use of at this point, is

the fact that the size of each subinterval ∆n can be adjusted individually. This is a

convenient method with which the accuracy in regions of fast variation of the density

can be increased by choosing smaller subintervals. Alternatively, it is also possible to

save computer time by enlarging the subintervals in regions where the variation is slow.

For the free theory, however, this kind of preconditioning is not necessary since we can

calculate the density analytically. Now, to turn our discussion back to actually setting

the parameters, we chose Nθ = 50 equally sized subintervals for the θ integration. The

interval size is thus given by ∆n = π
50 , ∀n.

The parameter Nλ has a similar in�uence on the quality of the approximation as Nθ

does. If more calculations for di�erent values of λ are performed in each subinterval

In, then the errors made in the �t of the function h are reduced. But the number of

calculations for λ can not be set too high since this is also numerically very expensive.

With this in mind we chose for our calculations Nλ = 7. In combination with the

number of subintervals this means that for the full calculation of the density a total of

NθNλ = 350 Monte Carlo simulations have to be performed. For the actual values of λ

we estimated the slopes with the analytic result of Eq. (69) for some θ ∈ In and chose

the seven values equally spaced within [k
(1)
n − 1, k

(1)
n + 1].

For the remaining parameters we chose very similar values as we did in Section 5.3.2.

The number of Chebyshev factors was set to N = 100 since the results with this amount

were satisfying for the tests we did in the last chapter. Also the lattice size was again

set to 4× 4. For the mass of the fermions we used the value m = 0.5, since at this point
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no strong θ-dependence in the error can be seen in the results of Fig. 3. Finally, we also

need to mention the Monte Carlo parameters. For the equilibration of the con�gurations

of the �elds we used nequi = 104 and for the decorrelation between the measurements

nskip = 10 update sweeps were performed. The total number of measurements used in

the simulation was nmeas = 107. Now that we discussed the values of all parameters in

our simulation, we can proceed to showing the results of the calculations.

First, we have to return to the previously mentioned fact that we explored two di�erent

versions for the update of the θ variable in the Monte Carlo simulation. What we found

when comparing the normalized restricted expectation values for the two versions, which

are explained later on, is that the results for Version 1 do not agree as well with the

�tting function h. The reason for this can be seen when comparing the distribution of

the θ measurements within one subinterval, which is done in Fig. 5 for the interval n = 0

and λ = 1. Due to the exponential factor eλθ in the integral Eq. (67), the distribution

should be roughly of exponential form9. While this is true for Version 2 of the update,

as can be seen in the right plot, Version 1 yields a distorted distribution.

Why this happens can be understood in the following way: Version 1 forces θ to �nd a

possible con�guration within the given interval. But if the current value of θ is already

near the edge, the only possible update is a jump away from that edge. Also, since the

acceptance rate in the Metropolis step is high, these jumps are accepted most of the time.

This pushes the values for θ away from the edges, as can be seen on the left hand side of

Fig. 5. With Version 2, this cannot happen, since if an out-of-bound value is suggested,

θ simply does not change. This allows more con�gurations where θ is close to the edge.

Therefore, for all following calculations, we only use Version 2 of the update, since this

yields much smoother distributions of θ and more consistent results.

Now that we also decided on the update version for the θ integration, we can show the

results for the restricted expectation values. In Fig. 6, the results after normalization

via Eq. (37) for a selection of subintervals n are plotted. The symbols in this plot show

the results of the Monte Carlo simulation, where the errors were again calculated using

the Jackknife method. The continuous lines are the �ts of the linearized version of the

function h from Eq. (38) to the numerical results, as explained below. The λ values

where the lines cross the origin give the slope k
(1)
n for the density ρ(1) in the interval n.

As can be seen, the slope starts at around zero for the �rst subinterval n = 0 and then

increases up to n = 30. Afterwards, the slope reduces and ends up at around zero again

for the last subinterval n = 49.

As we just mentioned, the function used to �t the data is not actually the full function

stated in Eq. (38), but a linearized version which will be denoted by h̃. The reason we

use the linearization is given by the fact that the �tting procedure becomes much simpler

9Whether the distribution increases or decreases depends on whether λ > k
(1)
n or λ < k

(1)
n , respectively.
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Fig. 5: Distribution of the measurements of the imaginary chemical potential θ within
the �rst subinterval n = 0 with λ = 1 for the two di�erent update methods in
the Monte Carlo simulation. Left is the result of the method we called Version 1,
right is Version 2.

this way, while the agreement between the linear function and h is still very good in the

region of interest. To calculate h̃ we express the actual function using the Taylor series,

which is given by

h(s) = h(0) + h′(s)
∣∣
s=0

s+O
(
s2
)
.

Inserting here the properties of h stated in Eq. (39) and ignoring contributions of order

O
(
s2
)
, it is easy to see that the linearized function can be written as

h̃
(

∆n

[
λ− k(1)

n

])
=

∆n

12

(
λ− k(1)

n

)
. (70)

Since we now already made use of the fact that the slope of the function h at the

origin is given analytically, the �t using the linear function reduces again to a simple

one-parameter �t.

For completeness of the argument, we also want to mention how big the error between

h and h̃ is in the region of interest. Since we centered the values for λ around the analytic

result of the slope, the maximal value of the argument of the functions can be s ≈ ±∆n,

which gives an absolute error of about ε =
∣∣∣h̃(s)− h(s)

∣∣∣ ≈ 3.5× 10−7. The linearization

is therefore clearly an acceptable approximation, especially when considering the size

of the errorbars in Fig. 6. Also, this plot gives an important consistency check for our

calculations, since it shows that the slopes of the restricted expectation values agree very

well with the analytical value of ∆n
12 as given in Eq. (39). For Version 1 of the θ update

this slope would be slightly underestimated, due to skewed distribution of Fig. 5.

The next step is now to use the slopes k
(1)
n , which were obtained by the linear �t of
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Fig. 6: Results for the normalized restricted expectation values plotted over the param-
eter λ for the non-interacting theory. The lines depict the linear �ts of the data
in the same color. The Monte Carlo simulation was performed on a 4× 4 lattice
with N = 100 Chebyshev factors and a fermion mass of m = 0.5.

the normalized restricted expectation values V
(1)

n , to calculate the density of states ρ(1).

This can be done by inserting the slopes into Eq. (32), which yields a piecewise linear

approximation of the density. The result can be seen in the left plots of Fig. 7, where

also the analytic solution for the density obtained by Fourier transformation is displayed

as the black line. In the plot on the right side the relative error between the analytic and

numeric solution is shown. It was calculated via

ερ(θ) =
ρ

(1)
MC(θ)− ρ(1)

FT (θ)

ρ
(1)
FT (θ)

, (71)

where ρ
(1)
FT (θ) denotes the analytic solution and ρ

(1)
MC(θ) is the result of the Monte Carlo

simulation.

As can be seen, at the start of the interval, where θ = 0, we have no error at all. This

is of course due to the reason that we used this point to normalize the density, which

enabled us to express it in terms of only the slopes. Then, for an increased imaginary

chemical potential, the numerical results are slightly lower than the analytical solution

up to about θ = π
4 . After this point the Monte Carlo simulation yields too high values

for ρ(1)(θ) and the error increases until θ = π. To understand this, it is important to

keep in mind that the value of the density in one subinterval n is also dependent on all
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Fig. 7: Results for the Monte Carlo simulation of the density of states ρ(1)(θ) for the non-
interacting theory. On the left-hand side, the comparison to the analytic solution
can be seen, and on the right the relative error ερ is plotted. The Monte Carlo
simulation was performed on a 4× 4 lattice with N = 100 Chebyshev factors and
a fermion mass of m = 0.5.

previous slopes kn, n = 0, . . . , n − 1, as can be seen in Eq. (31). Therefore an error for

one slope also in�uences the approximation of ρ(1)(θ) for all following subintervals. So

the behavior of the error indicates that the approximated slopes for the subintervals are

mostly underestimated. Also it needs to be mentioned that the error again was calculated

using the Jackknife method but is still underestimated, as can be seen in the left plot of

Fig. 7.

Finally, we can summarize this chapter by stating that we found that it is su�cient to

use a linear function to �t the slope and also that the slopes of the normalized restricted

expectation values do agree very well with the expected analytic values. Nevertheless,

we found that the slope of the density tends to be underestimated, which results in

larger errors for higher values of the imaginary chemical potential. We do want to stress,

however, that there are still several ways with which this density of states method may

be improved. Some of these are discussed at the end of the next chapter, after we tested

this method for full QCD which includes the SU(3) dynamics of the gauge links.
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7. Application of the FFA to Full QCD

In this chapter we will use the FFA to calculate the density of states for the full theory

of QCD. The structure of this chapter is in essence the same as the previous one for

the free theory. Firstly, we will repeat all the expression which are important for the

implementation of the FFA, namely the density and the restricted expectation values,

and we will discuss the update procedure for the Monte Carlo simulation, where we need

to focus especially on the role the SU(3) structure has, since this is the de�ning di�erence

to the last chapter. Following that, in the second section, we will show and discuss the

numerical results. Finally, in the last section, we discuss the numerical implementation

of the theory and the consistency of the results more generally, and we will also look at

possible improvements for future applications of the density of states method.

7.1. Implementation of the FFA for the Full Theory

At �rst, it is of course important to look at the density which we aim to calculate. As in

the previous section, we are only interested in the case where the observable is set equal

to unity, J = 1. Again, this corresponds to the density which is needed for evaluating

the normalization in Eq. (27). Other than that, no further simpli�cations are possible

at this point. Therefore, with Eq. (26), it is easy to see that the density we are working

with in this chapter is given by

ρ(1)(θ) =

∫
D[U ] e−SG[U ] det2D [U, µ]

∣∣∣
µ= iθ

β

. (72)

In contrast to all previous calculations, we now consider two mass-degenerate �avors

explicitly in the gauge link integral.

To calculate this density, we of course want to employ the FFA and therefore need to

calculate the restricted expectation values using Monte Carlo simulations. In order to

do that, we express the the squared determinant using the multi-boson representation as

given in Eq. (48). Similar to the previous chapter, we introduce a shorthand notation for

the exponent and write
∑N

j=1 φ
(j)†D†jDjφ

(j) = φ†D†Dφ, where the sum now includes N

terms since we have two �avors. The expectation values to calculate, given by Eq. (33),

can thus be expressed as

〈θ〉(1)n (λ) =
1

Z
(1)

n (λ)

∫ θn+1

θn

dθ

∫
D[U ]

∫
D[φ] e−SG[U ]e−φ

†D†Dφeλθθ,

Z
(1)

n (λ) =

∫ θn+1

θn

dθ

∫
D[U ]

∫
D[φ] e−SG[U ]e−φ

†D†Dφeλθ.

(73)

Here we want to remind the reader that the Dirac operator D [U, θ] is in fact a functional
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of the gauge links U and is also dependent on the imaginary chemical potential θ. Its

exact form is given in Eq. (14). The hopping matrix is shown in Eq. (21), where the

substitution µ = iθ
β still has to be performed. The expression used for SG is the Wilson

gauge action which is given in Eq. (10).

For the Monte Carlo implementation it is now again important to look at the action

of the theory. As before, the di�erent variables come with di�erent parts of the action

and therefore follow di�erent distributions. For the �elds φ and U and the variable θ the

di�erent parts are given by

Sφ = φ†D†Dφ,

SU = SG + φ†D†Dφ, (74)

Sθ = φ†D†Dφ− λθ,

respectively. It can be seen that Sφ and Sθ are structurally still the same as in the

free theory. As before, it is important to discuss the update procedure of the di�erent

variables in the Monte Carlo simulation. The variations we perform in the calculation

can be written as

φ′(j0)
α0

(n0) = φ(j0)
α0

(n0) + δφ,

U ′ν0(n0) = XUν0(n0), (75)

θ′ = θ + δθ,

where X is an SU(3) matrix in the vicinity of 1.

By far the simplest update of these three is the one for θ, which is exactly the same

as in the previous chapter and consists just of a small real and random number δθ. Also,

the update for the pseudofermion �elds works with the same principle as before, but with

one very important di�erence. Since we are working now with the full theory, the fermion

�elds gained an additional degree of freedom which describes the interaction with the

SU(3) gauge links. Therefore the �elds φ as well as the variation δφ in Eq. (75) are three

dimensional color vectors, were the entries of the variation vector are again small and

random complex numbers. So each entry of the vector equation e�ectively follows the

same update step as in Eq. (68). Alternatively, instead of using vectors to update all the

color components in one step, it would of course also be possible to update each color

entry separately as it is done for the components of the Dirac space, for example.

Now we turn our attention to the newly introduced update for the gauge links. A

de�ning di�erence is here that the change in con�guration is not achieved by an additive

but a multiplicative variation of the links. This is of course due to the fact that the U

are elements of the SU(3) gauge group and we need to make sure that this structure is
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preserved. The small variation can therefore be described with an SU(3) matrix X, which

is generated in a way such that the product XU modi�es the matrix U only slightly. This

can be achieved if X is close to the unit element of the group, which is of course simply

the 3×3 identity matrix. To understand how this X can be generated, we shortly discuss

in general terms how SU(3) matrices can be constructed in the �rst place.

Given the properties of SU(3), namely unitarity and unit determinant, it is possible to

construct these matrices by �rst generating two random complex vectors u and v, which

represent the �rst two columns of a matrix. These vectors have to be orthogonal, which

can be achieved for example by using the Gram-Schmidt process, and also normalized.

The last column can then be calculated via a cross-product of the �rst two, accompanied

with a complex conjugation. General SU(3) matrices can therefore be expressed as

U = (u,v, (u× v)∗) . (76)

It can be veri�ed that matrices of this form really are elements of SU(3) by checking

U−1 = U † and detU = 1.

Also, what we want to mention at this point, is the fact that due to the properties of

SU(3) matrices, they can be fully characterized using only eight real parameters. It is,

however, numerically cheaper to create them the way explained above. Also, since the

last column of the matrix can be generated by the �rst two, one could save memory by

only storing u and v. But the matrices play a very dominant part in the simulation,

and since speed was of far more concern than memory in our calculation, storing them

explicitly was the preferred choice.

Now, for the generation ofX, we can not create a fully random SU(3) matrix as outlined

above, since we need to make sure that it is near the unit element. This of course means

that the real diagonal entries have to be larger compared to all other entries. To achieve

this, an additive real valued bias δU is introduced when generating the random vectors u

and v. To make sure that only the diagonal is in�uenced by this bias, one only has to alter

the �rst and second entry of u and v, respectively, via u1 → u1 + δU and v2 → v2 + δU .

This shift has of course to be performed before orthogonalization and normalization. The

resulting matrix then shows the desired property of having a dominant real part on the

diagonal. Since δU controls the magnitude of the change of the �eld, as it is also the

case with the variation of the other variables, an appropriate value for the bias has to be

determined by looking at the acceptance rate of the varied gauge links in the Metropolis

step of the Monte Carlo simulation. The only di�erence here is that larger values of δU

create smaller variations, whereas for δφ and δθ it is the other way around.

The last thing we need to address regarding the update of the gauge links is the problem

of numerical error. It is clear that the matrices in our simulation are just approximations

of SU(3) elements due to their �nite precision. This fact does not pose a problem in itself
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since the error is small enough. However, during the repeated multiplications of these

matrices in the updating process the error accumulates and the matrices drift further

and further away from the needed SU(3) structure. If many sweeps are performed in

the simulation, this will in�uence the quality of the results signi�cantly. To combat

this, normalization updates have to be performed periodically, where the gauge links are

projected back into the group. This can be achieved by orthogonalizing and normalizing

the �rst two columns and then calculating the third one as shown in Eq. (76). The

frequency with which this normalization is performed is a new parameter in the Monte

Carlo simulation, which we call nrepro. Also we want to mention that for the initialization

of the gauge links in the Monte Carlo simulation, using a cold start, we set the links to

Uν(n) = 1, ∀ ν, n.
After this speci�c discussion of the SU(3) update, we can summarize the remaining

steps in general terms, since they are the same for all variables. If a possible con�gu-

ration was found, we followed again the procedure outlined in the appendix, where we

calculate the change of the corresponding part of the action via Eq. (A.7) and accept

the new con�guration with the probability Eq. (A.8). Here it is of course also possible

to experiment with di�erent update orders for the �elds in the simulation. An example

of this was discussed in the last chapter. The way we implemented the sweep for the

current case is just by updating one �eld after the other. So we �rst suggested variations

for all degrees of freedom in φ, followed by a sweep over n and ν for U and �nally varied

the imaginary chemical potential θ. Performing a measurement of the observable of the

restricted expectation value is again simply given by saving the current value of θ.

In next section we will discuss the numerical results for this implementation. As usual,

we begin with listing the values of all the parameters and then show and discuss the results

in detail. Also, in the subsequent section, we review our implementation of the theory

and also introduce a �tting procedure which can be important for future applications of

the FFA.

7.2. Numerical Results for the Full Density of States

For the testing of the full theory, we will mostly use the same values for the parameters

as we did for in the free case. Especially for the mass and the Chebyshev factorization

this is important, since we want to ensure the same or a better approximation of the

Dirac determinant. Despite the similarities of the parameters, we will still list all values

here again, for the sake of completeness in this section.

Now, starting with the only parameters which can have a physical interpretation, we

set the mass of the fermions to m = 1, which is twice the value we used in the free case

to improve the numerical stability of the Chebyshev factorization. The new parameter

β, the gauge coupling, which is introduced together with the gauge links since it appears
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in the action Eq. (10), was set to β = 6. The size of the lattice on which the calculations

were performed was 4 × 4, and the number of Chebyshev factors, which corresponds to

the number of pseudofermion �elds, was N = 100. The interval [0, π] of the density

was discretized into Nθ = 50 equal subintervals, giving an interval size of ∆n = π
50 , ∀n.

To �nd the slopes of the density ρ(1) in those subintervals using the �t, we calculated

the restricted expectation value Eq. (73) for Nλ = 7 di�erent values of λ. Here, of

course there exists no analytic solution to center the values of λ around. But after short

preconditioning runs, it was decided to distribute the values of λ evenly around the

origin within the intervals [−1, 1] for all subintervals. As before, to calculate the density

a total of NθNλ = 350 di�erent Monte Carlo simulations have to be performed. Now

turning to the Monte Carlo parameters, we used nequi = 2× 104 equilibration sweeps to

relax the system from the cold start. For decorrelation of the measurements, nskip = 10

sweeps were performed, and to ensure that the gauge links stay within SU(3), they were

normalized after every nrepro = 5 × 102 sweeps, as discussed in the previous section.

Finally, the number of measurements taken for our results was nmeas = 4 × 106. The

results achieved with this set of parameters are discussed below, where all errorbars were

calculated using the Jackknife method Eq. (A.10).

In the following �gure, Fig. 8, the results for some exemplary normalized restricted

expectation values are shown, together with the �t to the linear function of Eq. (70). As

already extensively discussed in the previous section, the λ value where the �t crosses the

origin gives the slope of the density ρ(1) in the n-th subinterval. What can immediately

be seen when comparing these results to the one for the free case in Fig. 6, is that the

slopes of the density seem to be much smaller in the interacting theory, since the crossing

occurs very close to the origin. In fact, this is the case for all subintervals, which means

the density is very �at. This is also the reason why only three subintervals are shown

in the �gure, since the results for the all the other look very similar and the plot would

become too crowded if more are displayed.

As for the free theory, the next step is to use the slopes k
(1)
n obtained by the �t to

calculate the density of states ρ(1) via Eq. (32). The result for this calculation is shown

in Fig. 9. Unfortunately, however, this result does not look very promising. Based on

our understanding of the non-interacting theory, we chose the values of the parameters

carefully, especially regarding the mass and the number of Chebyshev factors, to yield a

good convergence. Therefore, we expected the result to be much smoother and with less

�uctuations. Especially the larger jumps, for example at θ ≈ π
3 , seem rather unnatural.

What can be seen nicely, however, is the fact that the error increases with increasing

θ, which is expected since the error in one subinterval is dependent on the errors of all

previous subintervals.

Given the unsatisfying result for the full theory, we will in the following section discuss
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Fig. 8: Results for the normalized restricted expectation values plotted over the param-
eter λ. The lines depict the linear �ts of the data in the same color. The Monte
Carlo simulation was performed on a 4× 4 lattice with N = 100 Chebyshev fac-
tors, a fermion mass of m = 1 and a gauge coupling of β = 6.
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Fig. 9: Results for the Monte Carlo simulation of the density of states ρ(1)(θ) for the
full theory. The Monte Carlo simulation was performed on a 4 × 4 lattice with
N = 100 Chebyshev factors, a fermion mass of m = 1 and a gauge coupling of
β = 6.
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additional steps we took to review the results obtained above to ensure they are correct

and how they might be improved. Firstly, to check our code for programming errors,

we used the implementation of the full theory to obtain results of the free theory, which

can be compared with analytic results. Secondly, we also veri�ed that our Monte Carlo

implementation of the theory is gauge invariant. This is of course a central property

of gauge theories like QCD. Thirdly, we examine the behavior of the simulation under

a particular discrete symmetry, called the center symmetry of SU(3), which is given by

a Z3 rotation of speci�c gauge links. Finally, we will also introduce a di�erent �tting

procedure to obtain the density. This method will give much smoother results, since it

is a global �t, using all subintervals and λ values at the same time and does not rely on

a piecewise linear function.

7.3. Error Discussion and Possible Improvements

7.3.1. Free Theory With Six Species of Fermions

Since the results in Fig. 9 look rather chaotic and do not seem to represent physical

properties, the question arises if the problem is just some accidental coding error. In this

and the next section we discuss tests we performed to ensure that this is not the reason

for the results we obtained.

First of all, when considering a simple programming error, it is helpful to keep in mind

that we already know that the implementation of the free theory yields correct results.

This of course suggests that, if an error exists, it could only have emerged during the

introduction of the SU(3) structure. To verify that no mistake was made, we can use the

code for the full theory to calculate an observable of the free theory, which is independent

of the gauge links.

An obvious way to achieve this is by setting all gauge links equal to unity, Uν(n) = 1,

∀ν, n, and to not perform any Monte Carlo updates for the links in the simulation. This

way the di�erent color entries of the pseudofermions never interact with one another.

Therefore this describes a free theory, because now the three colors behave like non-

interacting �avors. Since we implemented the squared Dirac determinant in the full

theory, this means that the code now simulates six non-interacting, mass degenerate

quarks. As before, such a free theory can be solved analytically using the Fourier trans-

form of the Dirac operator. In this case now, the result is simply given by taking the

sixth power on the right hand side of Eq. (66). This enables us to verify the numerical

results.

For the implementation we did not use the analytic results for the slopes k
(1)
n to position

the λ values as we did for the free theory in Section 6.2, but just centered them around

zero. Also, we chose the interval to be larger and distributed the λ values evenly within
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Fig. 10: Results for the Monte Carlo simulation of the density of states ρ(1)(θ) for six
non-interacting quarks using the code for the full theory. On the left-hand side,
the comparison to the analytic solution can be seen, and on the right the relative
error ερ is plotted.

[−5, 5]. The mass of the fermion was set to m = 0.5 and the number of measurements

performed were nmeas = 106. All other parameters are the same as in the full theory

described in Section 7.2.

The results for this calculation can be seen on the left in Fig. 10, where also the analytic

solution is plotted. On the right, the relative error, calculated via Eq. (71), is shown.

These results clearly show that the implementation of the additional matrix structure

did not lead to the introduction of a programming error, since they agree very well with

the analytic solution. In fact, compared to Fig. 7, the results are even better. This can

only be explained by the fact that di�erent λ values were used in the calculation, which

also yielded a very di�erent behavior of the relative error. Except for the part of the code

that performs the gauge link update, these results rule out the possibility of a simple

coding error.

7.3.2. Local Gauge Invariance

In this section, we use another strong test to �nd possible errors in our code. Here, we

check whether the implementation is invariant under local gauge transformations. This

is a central property of gauge theories. We will, however, not go into much detail about

this crucial element of the theory, but only state the important facts needed for the

discussion in this short section. For a detailed description we refer to the literature.

Local gauge invariance tells us that at every position in spacetime the fermion �elds

can be transformed in such a way that the theory is left invariant. This invariance

means that the action, and therefore also the Monte Carlo simulation, do not change.

This fundamental property necessitates the interaction between the fermionic matter
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�elds and the gauge �elds [3], or in our lattice description, the interaction between the

pseudofermions and the SU(3) gauge links.

On the lattice, these gauge transformations can be written in the following way [2]:

φ(n)→ φ′(n) = Ω(n)φ(n),

Uν(n)→ U ′ν(n) = Ω(n)Uν(n)Ω†(n+ ν̂).
(77)

Every pseudofermion �eld on every lattice site can be multiplied with a random SU(3)

matrix Ω(n), which can be di�erent for every site. To guarantee invariance of the theory,

the gauge links are de�ned to transform via the two transformations of the neighbor-

ing matter �elds which the link connects. With these transformation properties it is

straightforward to show analytically that all parts of the action in Eq. (74) are invariant.

To test if this invariance is also given in the numerical implementation, we calculated

the Metropolis weight given in Eq. (A.8) twice for every update. At �rst, we evaluated

it normally as given in the appendix, but before we calculated it a second time, we

performed the gauge transformations of Eq. (77) with randomly generated SU(3) matrices

Ω. For a correct implementation of the theory, these two versions of the Metropolis weight

have to be equivalent. This is what we found for our implementation, which means that

the important gauge invariance is preserved in our code. This fact, together with the

results shown in Fig. 10, gives a strong indication that other factors besides a coding

error are responsible for the unsatisfying results of the density.

7.3.3. Z3 Update of the Gauge Links

In this section we present another possibility we considered to help improve our results

for the full theory. For this, we introduce an additional update for the gauge links which

uses elements of the center of the SU(3) group. The update consists of multiplying all

gauge links in a random time slice of the lattice which point in time direction with a

random center element, which are given by

Z = ei
2πn
3 1, n ∈ {0, 1, 2} . (78)

This update corresponds to a discrete symmetry, which is only present in the pure gauge

theroy, called the Z3 symmetry or the center symmetry. Using the de�ning property of

the center elements, namely the fact that they commute with all elements of the group,

it is easy to verify that the gauge part of the theory, the gauge action of Eq. (10), is

invariant under such transformations. If the gauge �elds interact with matter �elds,

however, this symmetry is broken explicitly. Nonetheless, this Z3 update still poses a

valid o�er for the change of the gauge �elds in the Monte Carlo simulation.

Due to the unsatisfying results seen in Fig. 9, this update procedure was implemented
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with the intent to help the gauge links to easier reach all possible con�gurations. Also,

the implementation of this update is very simple at this point, since it is just a slightly

modi�ed gauge link update, which was of course already part of the simulation.

With this additional update implemented, we performed short test runs to compare

the behavior of the simulation with and without this Z3 transformation. As it turns out,

the additional updates do not have an e�ect at all, due to the fact that they are always

rejected. This was of course anticipated as a possible behavior of the simulation. The

Z3 update is, after all, a non-local and parameterless transformation, which means there

is no possibility to control the magnitude of the variation. This is of course in contrast

to all other implemented updates, all of which have a variable parameter δ.

Summarizing the last three sections, we can say that we are con�dent that a coding

error is not the culprit for the unsatisfying results and that the problem has to lie some-

where else. A possible weak point may be the simple gauge link update in our Monte

Carlo simulation. Therefore, we implemented the additional Z3 update to help the gauge

links to �nd their way through con�guration space, but unfortunately to no avail. A pos-

sible way forward from here would be to try brute force and aim at a better result by

increasing the number of measurements, but that would demand much computer time.

Therefore, the best option would be to implement more sophisticated gauge link updates

in the Monte Carlo simulation, for example the Heat Bath or the Hybrid Monte Carlo

algorithm [2].

7.3.4. Global Fit

Finally, in this last section, we want to discuss a �tting method which can be used to

smoothen out some �uctuations of the density. For our speci�c case this might not be of

much help, but it opens up very interesting possibilities for future applications.

The reason why �uctuations can arise is because ρ(1) is not given by one continuous

function, but instead is just piecewise linear due to the de�nition of L in Eq. (30). For

the results in Fig. 9, the measurements in every subinterval In were �tted separately

to get the slope of the density for that interval. These results were then put together

via Eq. (31) to obtain the piecewise linear approximation. To avoid this, it is possible

to use a di�erent �tting procedure for the restricted expectation values which �ts all

subintervals simultaneously and yields much smoother results.

For this global �t we can make use of the fact that for J = 1 the density is an even

function, as shown in Appendix A.1. This of course means that the function L is also

even and we can therefore write it as a simple polynomial of the form

L(θ) =
∑

`∈{2,4,...}

a`θ
`, (79)
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Fig. 11: Plot of the global �t compared to the piecewise linear approximation of the
density ρ(1), where Na denotes the number of coe�cients used in the �t. The
results on the left hand side show free case from Fig. 7, and the one on the right
the full theory from Fig. 9.

where the number of terms can be varied to yield the best result for the �t. From

the piecewise function Eq. (31) it is easy to see that L′(θ) = k
(1)
n , with θ ∈ In. For

the continuous function, therefore, we can demand that the slope in the middle of the

n-th subinterval is equal to k
(1)
n . To express the middle of this interval we can write∑n−1

i=0 ∆i + ∆n
2 = 2n+1

2 ∆, where for the right hand side we used the fact that in our

calculation all subintervals are of the same size, ∆n = ∆, ∀n. This then yields

L′
(

2n+ 1

2
∆

)
= k(1)

n . (80)

The expression in Eq. (80) can then be inserted for the slope in the linearized function

h̃ of Eq. (70). The �tting parameters for the global �t are then the coe�cients a`.

For our tests of this �tting procedure, we implemented the very simple gradient descent

method of the form

a(t+1) = a(t) − γ gradF (a)
∣∣∣
a=a(t)

, (81)

where a denotes a vector containing the �tting parameters, F is the function dependent

on the parameters that needs to be minimized, t counts the number of iterations and

the parameter γ controls the step size in the direction of steepest descent. Since we are

using the linearized function for the �t, γ can be calculated explicitly. The results we

obtained using this method are shown in Fig. 11.

As can be seen, the results of the free theory can be �tted very nicely with only three

or four coe�cients in the polynomial of Eq. (79). For the full theory, however, due to

the chaotic results, more parameters are needed to obtain a reasonable �t, which makes

the convergence of this �tting procedure much slower. Still, it is clear that with this
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�tting method smaller variations in the density can be smoothed out. Since we only

wanted to discuss the general idea of this global �t, we did not concern ourselves with

calculating the corresponding error bars. This can here also be done via the Jackknife

method, although it is more involved for this case than it is for the piecewise linear �t.

An advantage of this �tting procedure can also be seen when remembering that, in

order to calculate observables with this density of states method, one still needs to

evaluate the integration of Eq. (27). For this integral, which also includes an oscillatory

Fourier factor, a detailed expression for the density is needed. Here it is therefore also

an advantage if a smooth polynomial expression for ρ is available.

Finally, we also want to mention that the gradient descent method is a very simple

�tting procedure. Thus, despite the fact that it yields good results in our tests, it might

be necessary, especially for general observables O, to use more sophisticated algorithms,

for example conjugate gradient methods. For detailed descriptions and examples of these

methods the reader is referred to [19].
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8. Summary and Outlook

In this thesis we investigated the behavior of the strong interaction for �nite densities

by using a lattice regularized formulation of QCD in 2 dimensions. This description

of the theory is a�ected by the so-called complex action problem, which prohibits the

use of straightforward Monte Carlo simulations. The goal of this work was to test and

study a numerical technique called the canonical density of states approach. Rewritten

in terms of this density, the complex action problem is absent and observables can again

be calculated using standard numerical methods. The main challenge is here to obtain a

precise description of the density, for which the functional �t approach was implemented.

In the �rst two chapters, we gave a short overview over QCD and its lattice description,

and also introduced the chemical potential and discussed how the complex action problem

arises. The third chapter is a crucial section of this thesis. Here we �rst introduced the

canonical ensemble and then de�ned the corresponding density of states, followed by a

detailed discussion of how it can be calculated numerically using standard Monte Carlo

methods and the �tting procedure of the FFA. All following chapters then dealt with the

numerical implementation of the density of states method described in this chapter.

After setting up the general idea, we �rst turned our attention to a crucial element

in the Monte Carlo simulation, namely the fermion determinant of the Dirac operator.

To this end, in Chapter 4, we presented the Chebyshev factorization. This convenient

tool enabled us to avoid time consuming calculations, like evaluating the determinant ex-

plicitly, and instead allowed us to approximate the Dirac determinant with Monte Carlo

simulations using pseudofermions. We discussed in detail the applicability of this factor-

ization for the determinant by �rst looking at the spectrum of the Dirac operator for the

non-interacting theory, and then generalizing the idea for the full theory. We explained

why the value of the mass of the fermions is a crucial parameter for the convergence of

this ansatz. Following that, in Chapter 5, we tested the Chebyshev factorization and

were able to show that it yields good results, see Fig. 3.

In Chapter 6 we discussed a �rst simple implementation of the density of states method

for the non-interacting theory. Here we also mentioned several important strategies

for an e�cient implementation of the FFA regarding Monte Carlo updates, the �tting

procedure and preconditioning. We showed that the results obtained for one �avor are

very consistent, but the comparison with the analytic solution in Fig. 7 showed that there

is still room for improvement. For several mass degenerate quarks the agreement with

the analytic result increased, see Fig. 10.

Finally, in Chapter 7, we turned to the anticipated goal of this thesis, namely the

implementation of the density of states for the full lattice QCD in 2 dimensions. Here,

the results obtained in Fig. 9 are unsatisfactory. Since our code passed all consistency
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checks performed in Section 7.3, we concluded that the local gauge link update used in

our Monte Carlo simulation is too naive and does not provide a fast enough sampling

of con�guration space. Therefore, it cannot yield satisfying results for this demanding

calculation.

For further progress in this topic of �nite density lattice QCD using the density of states

approach, the most promising idea is to use more sophisticated Monte Carlo methods for

the simulation of the interaction, e.g. heat bath or hybrid Monte Carlo methods. Such

improvements, together with the global �t as shown in Fig. 11, can drastically increase

the quality of the results.

Additionally, there are of course also di�erent points which are worth looking into for

future applications, which we did not investigate in this thesis. For example, it is possible

to test a di�erent ansatz for the density besides approximating it with a piecewise linear

function, as was done in this work. But this can alter the process of calculating the

density signi�cantly. Also, a more subtle point is a more detailed investigation of the

Chebyshev factorization. Here, further improvements regarding the convergence rate

may be possible when choosing the shape of the ellipse of Eq. (43) with more care. With

all these possible methods for improvement in mind, we are con�dent that future research

on this density of states method can yield promising results.
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A. Appendix

A.1. Symmetry of ρ(1)(θ) under Charge Conjugation

As mentioned in Chapter 3 of this thesis, it is always possible to classify the density

of states ρ(J )(θ) from Eq. (26) as either an even an or an odd function. The exact

classi�cation is of course dependent on the observable J and can be checked with the

help of suitable symmetry transformations. Knowledge of these symmetries can cut the

numerical cost of evaluating the density in half. In this appendix we will show that the

density ρ(1)(θ), which always appears in the normalization when calculating observables

via Eq. (27), is an even function under charge conjugation C.
The e�ect that charge conjugation has on a system is the transformation of particles

into antiparticles and vice versa. Since we are looking at the density of states of Eq. (27),

we only need to consider the transformation properties of the gluons, since the fermion

degrees of freedom are already integrated out and their transformation properties are

re�ected in symmetries of the fermion determinant. For the gauge links, the charge

conjugation is given by [2]

Uν(n)
C−→ U ′ν(n) = U∗ν (n) =

(
U †ν (n)

)T
,

where the asterisk denotes complex conjugation.

To see how the density of states behaves under those transformations we need to

look at the transformation properties of all the components in the integral. Since the

path integral measure consists of products of Haar measures, as given in Eq. (9), it is

invariant per de�nition, so
∫
D[U ′] =

∫
D[U ]. Also, the invariance of the Wilson gauge

action SG[U ′] = SG[U ] is easy to show with Eq. (10), since here only the real part

of the plaquettes contribute. To see the behavior of the Dirac determinant under this

transformation, however, we need to introduce the charge conjugation matrix C. This

matrix acts only on the Dirac space and is de�ned by the property

CγνC
−1 = −γTν , ν ∈ {1, 2} .

For our choice of the γ-matrices it can be checked that charge conjugation matrix is given

by C = γ1. For the Dirac determinant we then can use C to show

detD
[
U ′, µ

]
= det

(
CD

[
U ′, µ

]
C−1

)
= det

(
D [U,−µ]T

)
,

which can be veri�ed using Eq. (14) and Eq. (21). Here, the transposition does of course

not change the value of the determinant and can be omitted.
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With this we have now all the ingredients we need to verify the symmetry of ρ(1)(θ).

Using Eq. (26) we can write

ρ(1)(−θ) =

∫
D[U ] e−SG[U ] det2D [U, µ]

∣∣∣
µ=− iθ

β

=

∫
D
[
U ′
]
e−SG[U ′] det2D

[
U ′, µ

] ∣∣∣
µ=− iθ

β

=

∫
D[U ] e−SG[U ] det2D [U,−µ]

∣∣∣
µ=− iθ

β

= ρ(1)(θ). (A.1)

For the second line we just substituted all the gauge links with their charge conjugated

counterparts, and for the third line we used all previously established properties which

in turn enable us to cancel out the minus sign for the chemical potential in the last step.

This shows that the density ρ(1)(θ) is even and only needs to be evaluated for positive

values of θ. The same calculation can also be repeated for general observables J [U, µ],

where the symmetry of ρ(J )(θ) is then dependent only on the transformation properties

of the observables under charge conjugation.
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A.2. Fourier Transformation of the Free Dirac Operator on the Lattice

The goal of this appendix is to calculate the Fourier transformation of the Dirac operator

on the lattice. This can be done analytically only in the free case of the operator, which

means that the link variables between the (pseudo-)fermion �elds on neighboring lattice

sites are set to Uν(n) = 1, ∀ ν, n. So in this appendix we work with the operator of the

form Eq. (14), where the hopping matrix H is given by Eq. (51) since the gauge links

are absent. Also, we are only interested in the case of an imaginary chemical potential

µ = iθ
β .

In order to perform the Fourier transformation, we have to introduce the unitary

matrices

U(n, p) =
1√
V
ein·p,

where the volume of the lattice is given by V = N1N2 and the dot in the exponent

denotes the scalar product. Here, pT = (p1, p2) describes the discretized momentum on

the lattice where the components are given by

pν =
2π

Nν

(
kν + δν,2

1

2

)
, kν = 0, . . . , Nν − 1, ν ∈ {1, 2} . (A.2)

The term with the Dirac delta in Eq. (A.2) controls the boundary conditions we ini-

tially imposed on the Grassmann �elds. For ν = 1 the boundaries are periodic, but for

the temporal direction, ν = 2, the additional term generates anti-periodic boundary

conditions.

The Fourier transform of the free Dirac operator is then de�ned by

D̃ (p|q) =
∑
n,m∈Λ

U †(n, p)D(n|m)U(m, q)

=
1

V

∑
n∈Λ

e−i(p−q)n

(
1− κ

2∑
ν=1

{
[1− γν ] e

i
(
qν+ θ

β
δν,2

)
+ [1 + γν ] e

−i
(
qν+ θ

β
δν,2

)})
= δ(p− q)D̃′(p), (A.3)

where for the second line we have summed over m. For the third line we have de�ned

the two by two matrix D̃′(p), which depends only on one discretized momentum, and we

used the de�nition of the delta function on the lattice δ(p − q) = 1
V

∑
n∈Λ e

−i(p−q)n. It

can be seen that the Fourier transformed free Dirac operator D̃ (p|q) is diagonal in the

momentum space, due to this delta function.

Also, it is possible to express the matrices D̃′(p) on the diagonal of D̃ (p|q) with the
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help of trigonometric functions in the form

D̃′(p) = 1− 2κ

2∑
ν=1

{
1 cos

(
pν +

θ

β
δν,2

)
− iγν sin

(
pν +

θ

β
δν,2

)}
, (A.4)

where it is also often convenient to absorb the chemical potential into the de�nition of

the momentum via

p′2 = p2 +
θ

β
. (A.5)
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A.3. General Structure of Monte Carlo Simulations

In the main text of the thesis there are three instances where we employ Monte Carlo

simulations which all have the same overall structure. Therefore, in this appendix, we

discuss the procedure in general terms which is then applicable for all three cases. The

exact details for each application are of course discussed in the main text.

What all of our simulations have in common is that we want to calculate some ob-

servable O via a path integral as it is shown in Eq. (3). In order to do that we need to

generate �eld con�gurations which follow a distribution given by a weighted Boltzmann

factor of the form e−S

Z , where S is the action and Z the partition function of the theory

of interest. In general, we have integrations over scalar variables as well as integrations

over di�erent �elds. The �elds usually have several components which are denoted by

indices. In this general discussion, we will represent this fact with the notation χσ, where

χ can be substituted for any �eld or variable and σ is a multi-index which combines all

indices of the quantity of interest.

The structure of the Monte Carlo simulations can be summarized in the following

steps, which are also derived and explained in [2], for example.

1. Initialization: The �rst step is to choose an initial con�guration of the �elds. We

will implement this by setting all χσ to some �xed starting value. This is called a

cold start.

2. Sweeps: To generate con�gurations of the �elds with the desired distribution,

propose a small random variation for one �eld component with index σ = σ0. This

update can be expressed via

χσ0 → χ′σ0 . (A.6)

For some variables it needs to be checked if χ′σ0 still lies within the allowed bounds

of the variable. If it does not, the proposed change is discarded immediately.

Otherwise, if χ′σ0 is a valid value, the change of the action under this variation is

calculated by

∆S = S[χσ]
∣∣∣
χσ0=χ′σ0

− S[χσ]. (A.7)

To check if this change in the con�guration is accepted, calculate a random number

r ∈ [0, 1) and the Metropolis weight

ρ = e−∆S . (A.8)

Accept the o�er χ′σ0 as the new value for this �eld if the condition r < ρ holds.

Otherwise reject the proposed update, which means that the value of the �eld at

σ = σ0 does not change. This procedure has to be repeated for all indices in σ and

65



A. APPENDIX

also for all variables χ. This is called a sweep. There are two variants of how such

sweeps are used.

a) Equilibration: In the beginning of the simulation a given amount of initial

sweeps are performed. This is done to update the system into an equilibrium

distribution which is independent of the starting con�guration. The number

of these equilibration sweeps is called nequi.

b) Measurements: After the system has reached equilibrium, the observable

O[χσ] can be calculated using the con�gurations generated by the algorithm.

The evaluation of the observable from a single con�guration is called mea-

surement. Single measurements are always separated by nskip update sweeps.

This procedure, called decorrelation, ensures that the con�gurations for the

measurements are su�ciently di�erent. The total number of measurements

that are taken is called nmeas and all of these results are saved into a �le.

3. Processing the data: The last step of the Monte Carlo simulation is to evaluate

the data. Hereby the mean of the data set is calculated to obtain an expectation

value of the observable via

O =
1

nmeas

nmeas∑
i=1

Oi, (A.9)

where Oi denotes the i-th measurement of the observable. Obtaining a reasonable

expression for the statistical error is not so simple, however. Despite the fact

that we use nskip decorrelation sweeps the obtained data set does not consist of

independent measurements. This has to be taken into account when calculating

the statistical error. How this can be achieved is discussed below.

These steps are universal to all our Monte Carlo applications. We also want to go

into a little more detail about the update procedure in Eq. (A.6). Here it is desired to

propose a con�guration which is "in the neighborhood" of the old one, which means that

the random variation should be reasonably small. A measure to check if this condition

is true is the acceptance rate of these proposed variations, which should neither be too

high nor too low. If the acceptance is too low, for instance, a lot of computer time is

used without actually updating the con�guration. This happens if the change in the

action is large. An acceptance rate which is too high, on the other hand, implies that the

proposed changes of the �eld are very small. This implies that a lot of sweeps would be

necessary for equilibration and decorrelation, since the con�gurations of the �elds only

vary very slowly. Therefore, for many applications it is convenient to adjust the random

changes such that the acceptance rate lies approximately between 0.3 and 0.7.
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Additionally, what we also want to mention here, is the fact that the main numerical

e�ort of our simulations is the evaluation of the change in action as given in Eq. (A.7). A

lot of computer time can be saved at this point, however, if we take into account that the

changes of most of the �elds are local. This means that most of the terms that appear in

the action S cancel out when calculating the di�erence. Therefore we need not calculate

the full action of the theory when evaluating the Metropolis weight Eq. (A.8) but only a

small subset. This reduces the numerical cost of these calculations drastically. Examples

of these are discussed in the main text when we talk about speci�c applications.

Finally, we also need to discuss how we calculate the estimate for the statistical error

in the Monte Carlo simulations. Since our data are correlated, we employ a combination

of data blocking together with the Jackknife method. A more detailed description of the

behavior and applicability of these methods is given for example in [2] and [20].

If we have a set of N measurements of the observable O, the �rst step is to separate

the data into k blocks containing n elements each, so that N = kn. With this division

of the data set we can now calculate the averages Oi, i = 1, . . . , k, in the same way as

in Eq. (A.9), only that all the elements of the i-th block are left out. This allows us to

calculate an estimate for the standard deviation of the mean of the observable O via

σ =

√√√√k − 1

k

k∑
i=1

(
Oi −O

)2
. (A.10)

It is of course necessary to �nd an appropriate size of blocks for this estimate. To do

this, we start with a low value of n and increase this value while comparing the results

for the error estimation. In general, the error �rst grows with n and an appropriate size

of the blocks is found when the error starts to plateau. An example of this can be seen

in the main text in Fig. 4.

Aside from being able to get an error estimate for correlated data, the Jackknife method

is also very useful for observables which are obtained after �tting procedures. The reason

for this is that the blocked data sets are still large enough so that �ts can be performed.

This means that it is also possible to obtain the quantities Oi as the results of �ts,

where the error estimation can then still be calculated via Eq. (A.10). Therefore, with

this method, one circumvents the need for calculating the error propagation through the

�tting procedure, but it requires several �ts to be performed. This is used in this thesis

for all results which are obtained from calculations of the restricted expectation values.
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