
Leo Prikler, BSc

Design and Implementation of a Method-based
Java Card to Native Code Compiler

MASTER’S THESIS
to achieve the university degree of

Master of Science
Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Stefan Lemsitzer (NXP Semiconductors Austria GmbH und Co KG)

Institute of Technical Informatics

Graz, May 2021

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Abstract
Vendors of modern-day Java Card smartcards provide “accelerators” – methods, which
are implemented in native code rather than Java Card bytecode for reasons of perfor-
mance. The set of methods implemented in such a way naturally includes (parts of) the
Java Card API, but is not necessarily limited by it.

However, the usage of accelerators defined outside of any standard may come at the
cost of interoperability. Any such accelerator may only be implemented by a particular
vendor and calling conventions between two given sets of accelerators can differ drasti-
cally. Applet developers can be locked in to (a set of) vendors, may need to keep around
several versions of their code – which might exhibit different behaviour from each other
as time marches on – and risk a great performance penalty when not making use of
them.

The development of accelerators in turn is a time- and labour-intensive task and
previous research has shown that Java Card applets can still gain performance through
compilation to native code despite them. The benefits of compilation are clear: not only
is interoperability kept on a source and bytecode level, it can also be done automatically.
However, native applets are also significantly larger than those implemented in bytecode,
even if they still fit onto a smartcard. In contrast to an existing applet-based approach,
this thesis shows a method-based compilation approach based on an interface to the
Java Card operating system that makes it possible to have multiple applets and even
libraries with native code attached to them. This approach has less code-size overhead
than the previous one while still achieving decent speed-up and can further be tuned to
favour time or space in this trade-off.

iii

Kurzfassung
Hersteller moderner Java Card Smartcards bieten “Beschleuniger” (“accelerators”) an –
Methoden, die aus Performanzgründen in nativem Code anstelle von Java Card Bytecode
implementiert sind. Diese Methoden umfassen natürlich Teile der Java Card API, sind
aber nicht notwendigerweise durch sie beschränkt.

Werden Beschleuniger genutzt, die nicht in irgendeinen Standard fallen, so passiert
dies auf Kosten der Interoperabilität. So kann es zum Beispiel sein, dass nur ein Her-
steller einen bestimmten Beschleuniger bietet, aber auch die Art, wie diese Beschleuniger
zu verwenden sind, kann zwischen zwei verschiedenen Herstellern sehr unterschiedlich
sein. Applet-Entwickler können somit auf einen oder mehrere Hersteller beschränkt
werden und müssen gegebenenfalls mehrere Versionen ihres Applets entwickeln – die
sich mit der Zeit in ihrem Verhalten unterscheiden können – oder sie riskieren große
Leistungseinbüßungen.

Was die Entwicklung von Beschleunigern betrifft, so ist diese auch zeit- und arbeits-
aufwändig, und bisherige Forschung zeigt, dass Java Card Applets trotz ihnen durch
Kompilierung weiterhin beschleunigt werden können. Die Vorteile einer Kompilierung
sind klar: Nicht nur ist die Interoperabilität auf Quellcode- und Bytecode-Ebene weiter-
hin erhalten, sie kann zudem automatisch erfolgen. Allerdings sind Applets, die in
nativen Code kompiliert wurden signifikant größer als die Bytecode-Variante – selbst
wenn sie noch auf die Smartcard passen. Als Kontrast zu einer bereits existierenden
Applet-basierten Kompilierung zeigen wir einen methodenbasierten Ansatz zusammen
mit einer Schnittstelle, die es ermöglicht, mehrere Applets und sogar Bibliotheken mit
nativem Code zu versehen, der weiter verfeinert werden kann, um Geschwindigkeit bzw.
Speicherbedarf zu optimieren. Wir stellen fest, dass unser Ansatz zu einem geringeren
Overhead und dennoch passabler Beschleunigung eines Applets führt.

iv

Acknowledgement
I would like to thank everyone who made this thesis possible, including in no particular
order

• professor Christian Steger, my supervisor,

• everyone at NXP Semiconductors Austria GmbH und Co KG who collaborated
with me during the implementation, with special thanks going to Stefan Lem-
sitzer for leading the project and Tobias Rauter for implementing the runtime
environment,

• and my family for the continued support they’ve given me for the long time it took
me to write this thesis.

Had any of them not aided me in the way that they did, this thesis would probably not
be able to exist.

v

Contents
Abstract iii

Kurzfassung iv

Acknowledgement v

1. Introduction 1

2. Background and Related Work 3
2.1. Notation and language . 3
2.2. Language Interaction . 6
2.3. JNI and variations . 8
2.4. Specialised Java Environments . 10

2.4.1. Java Card . 10
2.4.2. Other resource-constrained devices 12

2.5. Bytecode to native code compilation . 13
2.6. Other smartcard platforms . 17

3. Design 19
3.1. System Architecture . 19
3.2. Interfaces . 21
3.3. Build Process . 24
3.4. Compiler architecture . 27

4. Implementation 29
4.1. Analysis . 29

4.1.1. Control Flow . 31
4.1.2. Data Flow . 34
4.1.3. Symbols . 35

4.2. Code Generation . 36
4.2.1. Translating Java Card bytecode to C 36
4.2.2. Exception handling . 42

4.3. Optimizations . 43
4.3.1. Caches . 43
4.3.2. Function outlining . 48
4.3.3. Function call re-routing . 49
4.3.4. Mapping arrays into C runtime . 50
4.3.5. Contracting the DDG . 51

vi

Contents

5. Evaluation 53
5.1. Benefits and drawbacks of native code . 53
5.2. Benefits and drawbacks of optimizations 54

5.2.1. Caches . 54
5.2.2. Function outlining . 55
5.2.3. Function call re-routing . 56
5.2.4. Mapping arrays into C runtime . 56

5.3. Overhead . 57
5.4. Experimental Results . 58
5.5. Limitations . 65

5.5.1. Compatibility . 65
5.5.2. Lacking Features . 66
5.5.3. Known Bugs . 66

5.6. Security Considerations . 67
5.6.1. Type confusion . 67
5.6.2. Object reference manifacturing . 67
5.6.3. Arbitrary Code Execution . 68
5.6.4. Exception Handling . 69
5.6.5. Unintentional data leakage . 70
5.6.6. Introducing side channels . 70

6. Conclusion 71

References 72

A. Equivalence Checking in the DDG 76

B. Lost in translation: function purity 77

C. Exception range semantics 78

vii

List of Tables
3.1. JVM bytecode macros. 21
3.2. Macros used in the main skeleton. 22

4.1. Encoding of expressions. 38
4.2. Stubs for outlined functions. 49

5.1. Test applet size comparison legend . 59
5.2. Test applet size comparison . 59
5.3. Test applet size comparison cont. 60
5.4. Test applet size comparison cont. 60
5.5. Test applet size comparison cont. 61
5.6. Test applet size summary . 61
5.7. RWA1 performance . 62
5.8. RWA2 performance . 63
5.9. RWA3 performance . 63

viii

List of Figures
2.1. Performance of Grimmer’s native function interface. 10
2.2. Architecture of the Fiji VM . 13
2.3. Files generated by Muller et al. 14
2.4. Compilation process used by Ellul and Martinez. 16

3.1. Architecture of a typical Java Card system. 19
3.2. Architecture of the extended system. 20
3.3. Exception stack. 23
3.4. Build flow for a classic Java Card applet. 24
3.5. Extended build flow of native applets. 26
3.6. Dependencies within the generated code. 27

4.1. CST of a simple assignment. 30
4.2. Data flow graph of the same example. 30
4.3. Creation of a data flow graph. 35
4.4. Structure of a cached field read in the DDG. 46
4.5. Structure of a cached write in the DDG. 46
4.6. Structure of a cached array read in the DDG. 47
4.7. Structure of a cached array read in the DDG. 47

5.1. Size results . 64
5.2. Performance results . 64

ix

List of Algorithms

1. Procedure branchtarget(C, B, n) . 32
2. Generation of the control flow graph. 33
3. Code generation for simple instructions. 38
4. Procedure makelabel(n, o) . 40
5. Code generation for branch instructions. 40
6. Code generation for switch instructions. 41

x

List of Acronyms
ABI application binary interface.

AES Advanced Encryption Standard.

AOT ahead of time.

APDU application protocol data unit.

API application programming interface.

CAP converted applet.

CFG control flow graph.

CLDC Connected Limited Device Configuration.

CPU central processing unit.

CRE C runtime environment.

CST concrete syntax tree.

DDG data flow graph.

FFI foreign function interface.

FPGA field-programmable gate array.

GCC GNU Compiler Collection/GNU C compiler.

GNFI Graal Native Function Interface.

IR intermediate representation.

ISO International Organization for Standardization.

JAR java archive.

JCVM Java Card Virtual Machine.

JIT just in time.

xi

List of Acronyms

JNA Java Native Access.

JNI Java Native Interface.

JRE Java runtime environment.

JVM Java Virtual Machine.

OS operating system.

VM virtual machine.

WSN wireless sensor network.

xii

1. Introduction
In ye olden days, one was typically forced to write software directly for the hardware one
had – a change in hardware, specifically the processor a program was running on – either
meant one had to recompile the program all over again or even worse was forced to port
the software over. This style of programming is still in use today where it is (assumed to
be) required for the sake of performance. On the other hand, software developers have
collectively decided that they prefer languages with strong guarantees like Java over
those that permit arbitrary bit fiddling like C or those in which a standard-compliant
compiler may give you a wrong answer on the question of “Is this a valid program?”
like C++. Particularly interesting for the sake of interoperability is the promise of a
virtual machine (VM) on which the generated code runs. Unlike C or C++ compilers,
which often generate machine code1, Java and its variants compile to bytecode, which
is then run on top of a VM. Porting one’s entire codebase to Java may however hurt
performance, specifically in computation-intensive tasks. To mitigate these issues, Java
allows calling “native” machine code from a Java context and vice versa.

In the same way that Java promises type safety, interoperability, etc. to Java pro-
grammers writing desktop or Android applications, Java Card makes those promises
towards smartcard application developers. Like Java, it permits the use of native code,
but in a more limited context – this room for optimization is exploited by smartcard
vendors to provide fast implementations of certain algorithms for particularly interesting
use cases. Historically, Java Card failed to live up to the expectations w.r.t. interoper-
ability, as its filesystem and cryptographic application programming interfaces (APIs)
were not defined concretely enough to fit in various existing implementations, as pointed
out by Baentsch [3]. While that particular issue may have been resolved by now, ac-
celerators pose a similar problem, in that they can force developers to use proprietary
APIs, because alternative open ones – or even the ones an applet developer could write
for themself – will perform worse.

As the use of smartcards is so varied, one can hardly expect an API to ever satisfy
all potential needs. Hence it is also not possible to standardize such an API under the
Java Card label, but even vendors, who do develop accelerators beyond the standard
have to struggle with the possibility of there being some need outside of what they
accounted for.

One solution to the problems raised by accelerators is to use compilation instead.
Unlike accelerators, which have to be written and carefully optimized before an applet
developer uses them and must also be accounted for by that developer, compilation
specifically optimizes the functions they wrote with the intent of being compatible with

1This is no hard requirement. A compiler could just as well target a virtual machine, like the
WebAssembly virtual machine.

1

1. Introduction

all platforms. Much of the performance gains that would normally be achieved by specif-
ically targetting those platforms, can be harvested by the compiler while interoperability
at a source code and even bytecode level is retained. Only the result of the complation
process and parts of the toolchain to derive them are platform-specific.

This thesis describes such a compilation approach, in particular one in which each
method can be compiled separately much in the same way that vendors would often
choose to make certain methods faster through acceleration. It is structured as follows:
Chapter 2 lays out background information and shortly discuss related work. Chapter 3
lays out the general design of the compilation approach and how it integrates into the
Java Card workflow. Chapter 4 describes the compiler itself and various optimizations.
Chapter 5 gives a theoretical and practical evaluation of the compiler and also discusses
limitations and security considerations. The conclusion can be found in Chapter 6.

2

2. Background and Related Work
Before diving head-first into the design and implementation of the compiler, it is neces-
sary (or at least helpful) to form a common basis of understanding. Section 2.1 explains
the terms and notations that will be used throughout this thesis. Section 2.2 gives a
rough summary of how components written in different programming languages are usu-
ally stitched together into one cohesive program. Section 2.3 explains the Java Native
Interface and some variations of it. Section 2.4 gives an overview of Java environments
that users of the desktop version might not be aware of, particularly with regards to
resource-constrained devices. Section 2.5 lists previous compilation approaches target-
ting some Java platform. Finally, Section 2.6 gives an overview of the smartcard systems
that fall outside the scope of this thesis but could still be considered for related research.

2.1. Notation and language
Chapters and sections in this thesis are often structured in a fashion that puts context
and other helpful metaphors at their start and more technical details towards their end.
With that comes a change in the way things are phrased. While in the first parts,
conditionals may be used freely to draw up hypothetical scenarios, many of which are
known to occur, or likewise freely omitted them as there is no real change in semantics,
in the latter, conditionals such as potentially, possibly, etc. denote occasions in which
at that given step in some process the outcome is unsure and the lack thereof implies
certainty1. This holds especially if qualifiers of potential and lack thereof are often
intermixed within or across paragraphs.

This thesis deals in large part with the construction of a compiler and as such uses
language commonly associated with compilers and their construction, specifically:

code: a set of instructions forming a program.
machine code: code that can be executed as-is (given some data) on physical

machines.
native code: (from the point of a virtual machine) code for the machine that

runs the virtual machine.
bytecode: code that can be executed as-is (given some data) on non-physical (i.e.

virtual) machines2.
source code: code written by a human in a way that can (hopefully) be reasoned

about.
1at least to the extent that we can believe to be “certain” about things
2other literature may also call this p-code or “portable code”

3

2. Background and Related Work

intermediate representation (IR): a representation of code used by a compiler.

machine: a device that executes code.
virtual machine (VM): such a machine that is itself implemented as code for an-

other one.

compiler: a tool (or in rare cases a human) that transforms code from one form to
another.

interpreter: a tool that executes source code directly.

As one can see, these definitions are somewhat circular (as all fundamental definitions
happen to be). The difference between virtual machines and interpreters is a rather
nuanced one, though they are sometimes also conflated – see some of resources cited in
this very thesis, which refer to various virtual machines as “bytecode interpreters”. By
the definitions above, an interpreter can – as it executes code – be considered a machine.
Since they are also implemented as code for other machines, they can be considered a
strict subset of virtual machines – strict, because virtual machines also include machines
that don’t execute source code directly.

However, which virtual machines are interpreters and which are not, depends on what
one views as source code. As laid out above, source code is defined as code written by
humans. But nothing is stopping humans from writing or reasoning about any other
form of code as defined above, it is merely easier to express one’s thoughts in structured
text rather than sequences of bytes3. Some also use a different definition of source code,
defining it as the input to a compiler. Using a more exact definition of compilers as
tools that transform code from a source language into a target language, it makes sense
to declare code written in the source language as source code and code written in the
target language as target code. From this point of view, other systems that execute the
“source code”, such as virtual machines, may be considered interpreters.

Following this train of thought to its logical extreme however, every machine could
be considered an interpreter, as instead of executing code directly, it could very well
compile the code for some other machine – which in turn could compile the code for
another, and so on, and so forth ad infinitum. Hence all machines are interpreters,
and at the same time all interpreters are also machines, meaning there is no distinction
between interpreters and machines. And we haven’t even talked about actual hardware
that actually translate their own instruction set to some other instruction set at runtime
– those do exist. But even if machines and interpreters are in some sense the same
philosophically and the lines might get blurred in practice as well, there is a point at
which a line has to be drawn, because clearly this does not work for all potential angles.
Therefore the word “interpreter” will in this thesis not be used to describe machines
that execute compiled code, including bytecode.

In most existing software systems, particularly larger ones, source code will at some
point be split into multiple files, each of which can be compiled separately (when a

3By these definitions, an assembler would be considered a compiler as well.

4

2. Background and Related Work

compiler exists) or interpreted “on their own”, under the assumption, that dependencies
between those files are somehow resolved. Several styles of such splits can be distin-
guished, including

• method-based or function-based splits, in which a file contains at least one
method (or function)

• class-based splits, in which a file contains at least one class (i.e. a data structure
with associated methods), and

• module-based splits, in which a file contains one logically connected module (a
set of classes and functions).

Some programming languages, like Python or Scheme encourage module-based splitting,
although in both examples it would still technically be possible to construct modules
for single classes and single functions. Java is explicitly class-based, as no function may
exist outside of a class.

A compiler will of course always dissect its input, e.g. a module becomes a set of
classes and functions, a class becomes a data structure and a set of functions, and
functions become sets of basic blocks. However, it makes sense to consider the smallest
part that a compiler will typically translate on its own, even if its input may generally
be larger than that. Here it is no longer a matter of programming languages, but really
the compiler itself. For instance, in interpreted languages one may decide to compile
code blocks or expressions, which offers even finer granularity than the splits discussed
above, a compiler for Java may use a method-based approach and translate methods
into another language while leaving others alone, and so on, and so forth.

Within this thesis, the word macro might sometimes pop up. With the existence of
almost as many definitions of this term as there are programming languages featuring
them4, one might qualify it as “not really well-defined”, and indeed, even within this
thesis multiple definitions are used as-needed, not aiding the situation in the slightest.
The simplest definition of a macro we can give is “code that expands to other code,
usually at compile time”. While this in-place expansion usually explains why macros
are used instead of functions or global variables, it is also not very helpful. Within the
context of C, Stallman and Zachary [30] distinguish between object-like macros, which to
the reader of the code appear as if they were variables and function-like macros, which
to the reader of the code appear as function calls. Most of the time, when the term
macro is used within this thesis, it refers to a function-like macro that expands to an
expression, in which each of its arguments is used at most once. While this looks very
limiting, considering what macros can do in C, it suffices in many cases5. In those cases
in which it does not suffice, the expansion shall be explicitly stated, so that it will be
clear from the context that it is not simply an expression.

4the fact that C has two kinds of macros doesn’t really help here either
5Considering that Stallman and Zachary also mention duplication of side effects as a pitfall and GCC

provides “compound statements” to build “safe” macros, not expanding arguments twice is already good
practise on its own.

5

2. Background and Related Work

Some terms or notations may be borrowed from fields not necessarily linked to compiler
construction, including:

Graph Theory: Graphs just so happen to be the most important data structure in this
compilation process and thus language will be borrowed from this field. Expect
nodes and edges, but also cuts, specifically the cut δ−G(n), which are the ingoing
edges of n in graph G. However, the language used within this thesis may also
conflict some of the terms. In specific instances, where confusion is otherwise likely,
an ad-hoc definition should clear those up.

Design Patterns: Since this is not a thesis on design patterns, they will not be mentioned
explicitly unless particularly noteworthy – such as the excessive use of visitors –
but as patterns may be found anywhere, surely you may also find them here.

2.2. Language Interaction
Many programs are not written in only one, but many languages, the reasons for doing
so often being part of the design. For instance, one could write the core of a text editor
in C, while writing almost everything else – including configuration – in some dialect of
Lisp. Programs written primarily in C may from time to time include (inline) assembly
for reasons of performance, or to use special instructions that a C compiler usually does
not emit. Command line applications, which on their own may have dozens upon dozens
of options may be wrapped in shell scripts, whose options are easier to understand, and
so on and so on.

Whenever a mix of programming languages is used within a given software project,
some interaction of parts written in some language with parts written in another is
implied by principle of association. Or rather, they wouldn’t be part of the same program
if they did not somehow interact. But for those parts to interact one first requires a way
of facilitating said interaction. Indeed, this even holds for programs written in just one
language.

Consider function calls, particularly within the C programming language. A library
written (primarily) in C, compiled with some compiler and some flags, should be usable
in another library or another program possibly compiled with different compilers or flags,
assuming that both compilers at least somewhat adhere to some specification, which is
usually referred to as the application binary interface (ABI). A commonly known part
of such an ABI are calling conventions, which state how functions are to be called in
a given context. For instance, the cdecl convention is to push arguments in reverse
order onto the stack and then use the call instruction, which itself pushes program
counter and stack pointer before jumping to the destination. In contrast Java has a
calling convention in which the arguments are pushed onto the stack in “normal” order,
followed by an invoke bytecode, which is analogous to call, except that it carries some
information about the method that it tries to invoke.

Along with calling conventions, data representation also varies across platforms. This
already starts at the endianness, which affects multi-byte integral data types, such as

6

2. Background and Related Work

int and short. While the Java Virtual Machine is big-endian, many non-virtual ma-
chines are little-endian. The packing of structures with multiple fields may cause further
problems, and so on and so forth.

A program may be split into multiple parts – across different languages even – but
can still be compiled and linked into a single executable, a long as the target platform
for each of those parts is the same or can be made the same. Think back to the earlier
example of mixing C with Assembly. It turns out that as long as compiler warnings are
ignored (the specific one in this case being -Wimplicit-function-declarations), one
can use arbitrary functions declared anywhere – the linker will eventually resolve those
references and construct an executable that makes the right calls. Depending on the
inner workings of the assembler, the same may hold for it as well. Of course, this is not
the “correct” way of doing that. In C, we write header files, for example stdio.h, which
declare that a function – e.g. printf – exists, but provide no implementation. In lack
of such a header, one can also write an extern function declaration into a header or
into the source code directly. A similar directive exists in Assembly as well. Once the
compiler or assembler is made aware of the functions to call, everything should behave
as one would reasonably expect.

Until now, everything works fine, because symbols can be resolved at link time and can
thus things work. The worst thing that can happen, is dynamic linkage, i.e. the binding
of a symbol to an address at runtime, which itself is not a big deal, because lookup
tables are known data structures. But now comes a program written in a totally bizarre
language that is certainly not C, which is interpreted by or compiled for some other
target platform. Not only are symbols from that language nonexistent, not visible, or
sometimes even just obscured – if one were to somehow find them and then try to call such
functions from C or Assembly, the result would be a failure. These functions are foreign
in the same way as some human languages appear foreign to the speakers of others.
Even when assuming a common alphabet, trying to pronounce foreign words without
knowledge of the language they come from will end up weird at best and disastrous at
worst, with a tendency towards disaster whenver machines are involved.

The foreign function interface (FFI) is a part of any language runtime that expects
to coexist with another and has several responsibilities. The biggest is of course making
functions from one safely callable by the other, but in order to facilitate this, it needs
to ensure

• a common calling convention or conversion between uncommon ones,

• implicit conversion of data types to their respective counterparts, or at least a
method of explicit transformation6,

6Oftentimes one would want implicit conversion, especially with numeric data types. However, this
is not always straightforward. Consider for instance a language such as C, which only has fixed-size
numeric data types, and then take a language such as Scheme, which has arbitrarily large numerical
types as well as exact fractions. Converting from the C representation to the Scheme one is no problem,
but going back without additional information is hard, which is why this conversion to e.g. int will
always need to be made an explicit one at some point in user-written code and can not “simply” be
abstracted.

7

2. Background and Related Work

• common memory management7,

• and a bidirectional symbol lookup8 through which parties learn of interfaces im-
plemented by the other

among other things. In the case of interpreted languages, there may also be a function
(usually called eval), which takes code in that language as a string and evaluates it. In
fact, eval alone can in conjunction with string manipulation functions and other ways of
marshalling data be the entire FFI. An example for that would be the system function,
which thus provides an FFI to the underlying system’s shell interpreter, although most
people who only use it to spawn a process would rarely if ever refer to it as such.9

The tackling of these problems has given rise to a few patterns and a widely used li-
brary (libffi) on which many such interfaces are based. One such pattern shall be given
by example. C++, Rust, and Vala are – while they still compile to the same machine
code as C – in some sense foreign to C, as each have their own naming schemes, with
C++ being an especially notorious example with its compiler-dependant name mangling.
However, all of these languages provide some way of giving functions a readable name
in C context, multiple even in the case of Vala. The pattern here is a language-level
interface towards naming conventions, allowing direct (or sometimes indirect, as both
are possible in Vala) control over a generated function’s name at a lower level. Another
pattern concerns the way data is laid out and managed and will be be discussed at a
later point within this thesis, when it is used for optimization purposes.

With a basic understanding of what a foreign function interfaces are and why they
exist, we can now proceed further towards the actual core of this thesis.

2.3. JNI and variations
One foreign function interface and the default for Java is the so-called Java Native
Interface (JNI), which – along with Java itself – has been subject to analysis, especially
with respect to performance, pretty much since the dawn of Java. As running a virtual
machine always results in some overhead, people have sought to eliminate that by the
use of native code, and the more native the code, the better performance should get –
at least in theory. In praxis, performance comes at the sake of compatibility and code
size, which in turn causes people to still rely on the benefits the Java Virtual Machine
(JVM) provides in some sections and thus raises the problem of efficiency and usability
of the FFI.

7At the very least both parties must agree which data not to free, which on its own already shat-
ters (wrongly held) ideas about ownership, and sometimes also when to actually free data, if there is
potentially high memory usage or critical timings.

8This mechanism can in theory also be implemented as one lookup methods per direction.
9In a similar manner, interfaces to some language from C are sometimes referred to as the “C API”.

While this term is technically correct in most situations and useful in manuals to distinguish between
the different directions of an interface, on a more philosophical level there really is no difference between
the two; there only appears to be a difference due to different viewpoints.

8

2. Background and Related Work

Kurzyniec and Sunderam [15] provided benchmarks for the JNI and highlight various
kinds of performance overhead, specifically

• the overhead of calling native methods from Java,

• the overhead of calling Java methods from native methods,

• the overhead of field accesses in native methods,

• the overhead of array and string accesses in native methods,

• and the overhead of exception handling.

Kurzyniec and Sunderam found that all of the above perform significantly worse than
their Java counterparts. While their exact numbers may differ from the ones found in
this thesis, these results are nontheless in accordance with each other, only excluding
strings as a source of overhead, as they do not exist in Java Card-based technologies.

As far as usability is concerned, the JNI does not fare great either, requiring much
boilerplate code to call an already existing native method. This is rather unfortunate in
situations where native code is not (only) used for performance reasons. If one wanted
to optimize a routine that would otherwise be implemented in Java using native code,
one is still writing that code (although the code itself may now be different) to be used in
Java, whereas one couldn’t care less about Java if the same algorithm was implemented
for the use in a C(-like) environment. Writing wrappers for such code is boring and
repetitive, especially if one does it for a large library, e.g. all of POSIX, and as with all
copy-paste style coding, the chance of introducing an error somewhere rises with each
copy and each derivation. This is where Java Native Access (JNA) [14] comes to the
rescue. Instead of using the JNI directly, with JNA a native library is wrapped in an
interface with individual function wrappers being automatically generated using libffi.
These functions can then be called as if they were functions of any other object.

Grimmer et al. [12] implemented their own native interface (dubbed Graal Native
Function Interface (GNFI)) in the Graal VM, which is used by OpenJDK. The GNFI
is designed around the concept of handles – a programmer first creates a library handle
and then uses that handle to explicitly instantiate a function handle, similar to how a C
programmer would use dlopen and dlsym to get a function pointer. A programmer also
has to explicitly pack arguments into an object array and unpack the return value into
whatever type was expected. The function handle itself is implemented by synthesizing
a Graal intermediate representation (IR) graph, which is turned into native code using
facilities of the Graal VM. As a result, all parts of a native function call can at some
point be optimized by the VMs they were meant for. This reportedly makes the GNFI
significantly faster and more flexible as the JNI, which itself is – according to the same
report – also faster than using JNA (whose only benefit therefore is the flexibility). One
of their comparisons is shown in Figure 2.1. As can be seen, throughput is significantly
higher with their native interface compared to the other ones.

9

2. Background and Related Work

Figure 2.1.: Number of matrix multiplications, that can be done within 10 seconds for
matrices of size 102, 1002 and 10002 through various Java FFIs, taken from
[12].

2.4. Specialised Java Environments
While the standard edition of Java satisfies the needs of most desktop users, there also
exist other platforms with special needs that some edition of Java caters to. Of particular
interest for this thesis is of course Java Card, as it serves as technological foundation,
but there are also resource-constrained devices that differ from smartcards, which are
worth taking a short look at.

2.4.1. Java Card
Java Card is a specialised Java environment targetting smartcards. It differs from desk-
top Java in a few key areas, e.g. the instruction set, the lack of a 32-bit integer (or
to be more accurate, support for 32-bit integers is optional), the lack of strings, the
lack of threads, the lack of wrapper types such as Integer, and so on, and so forth.
Oracle [22] claims Java Card – specifically the Java Card Virtual Machine (JCVM) – to
be a subset of the JVM, and while this is true to some extent, it is at the same time
false to another. Looking only at the Java code and ignoring that it’s using somewhat
atypical packages, one could conclude that Java Card is indeed a subset of Java. This
kind of subset – a behavioral subset – is what they meant with that claim. Were one to

10

2. Background and Related Work

get to the bones and consider e.g. specialized bytecodes, it would be more appropriate
to call it a distinct version of Java altogether. Nitpicks aside, let us look at some more
substantial differences.

A big architectural difference between Java and Java Card is the difference between
their object files. Java packs single classes into class files, whereas Java Card packs
entire packages into converted applet (CAP) files.10 CAP files again are essentially java
archive (JAR) files structured in a special way. Rather than packing folders and files into
a container as one would normally do, the segments of a typical Java class file are packed
into components, with additional components added to tie them together. For instance
the ConstantPoolComponent contains all the constant pools, the MethodComponent the
methods, and so on, with the DescriptorComponent “describing” classes, methods and
fields, i.e. linking an index to their respective location elsewhere as well as providing
access and type information, the AppletComponent listing applets, and so on, and so
forth.

Another difference is the limited support for native methods, which are only allowed
for packages “located in the card mask”. The term card mask is never again used in
any Java Card related manual, but since it’s explained that “masking” refers to the
embedding of the virtual machine, runtime environment and applets into the read-only
memory of a smartcard, it becomes somewhat clear that this mechanism is only meant to
be used by vendor-provided packages. This is where the idea of accelerators is born. A
vendor will first try to make as many packages related to the Java Card framework native,
since that will make applets run much faster on their cards than the competition’s. Once
that is done, however, there are still computationally intensive algorithms not covered,
e.g. crypto algorithms, which an applet developer would otherwise implement in Java.
As one might imagine, running such algorithms in a virtual machine has a large runtime
impact, so vendors seek to provide their own methods, which are significantly faster due
to the fact that they run on the hardware itself. Reliance on a single set of such methods
leads to vendor lock-in, whereas supporting multiple ones requires some sort of wrapper
if the applet developer does not want to rewrite all the code using any of them. In either
case some of the benefits provided by the Java Card platform are done away with. In
the former, applet code will not be portable, in the latter it is portable at the expense
of the maintenance of platform-specific wrapper code.11

Of course, there are not only differences with regards to the virtual machine, but also
with regards to the runtime and framework. While the typical Java program is written
around one class containing a public static void main(String[] args), Java Card
is centered around applets. These extend javacard.framework.Applet, implementing
methods such as install and process. The former is used in lieu of a constructor to
allow complex instantiation of an applet. The latter could be seen as a typical iteration
of a read-eval-print loop, in which an applet takes a command from the environment,
processes it and writes the result back. This loop – specifically the “reading” and “print-

10Contrary to what this name suggests, a CAP file can have any number of applets, as long as
“any number” fits into an unsigned byte. A more accurate name would therefore be “converted and
compressed package” or CCP.

11Note that this is in no meaningful way different from the portability of C code.

11

2. Background and Related Work

ing” aspects of it – is performed by the smartcards on one or multiple so-called logical
channels. An applet may be bound to (or in the language of Java Card selected on) any
such channel, even multiple ones if it implements the Multiselectable interface.

Within the runtime environment of Java Card the Applet Firewall prevents cross-
package12 object accesses, except for the case in which applets are explicitly shared
between two packages (or “contexts”) and global arrays. If that sounds awfully similar to
the way operating systems separate processes, but at the same time provide mechanisms
for inter-process communication, you are not alone.

Not quite satisfied with the division of install and process, many real world applet
developers actually distinguish three phases, install in which the applet (plus depen-
dencies are installed), perso in which initial settings are set, and process in which the
actual work is performed. These phases are not to be confused with the methods of
javacard.framework.Applet. While both install and process involve the respective
methods, they may also include other things. For instance, a part of the process phase
could be selecting the applet. The perso or “personalization” phase is realized a series
of calls to the process method, which involves commands that are otherwise not used.

2.4.2. Other resource-constrained devices
Java Card is of course not the only Java environment for resource-constrained devices.
Other devices have different restrictions and needs, leading to the creation of special
environments for them. Many of them use a so-called “split VM architecture”, meaning
that the Java bytecode is first analyzed and compiled to a different representation before
being loaded onto the device.

Simon et al. [29] proposed “Squawk”, a JVM written in Java for the Sun SPOT devices,
which were at the time supposed to serve as sensor nodes in wireless sensor networks
(WSNs). This VM had a large set of features, including garbage collection and threads,
neither of which are supported by Java Card, and on top of that allowed the isolation
of applications, so that they could start, pause, resume, stop, and even be transferred
onto other devices.

Brouwers et al. [5] proposed “Darjeeling”, a virtual machine for sensor nodes, which
implements a subset of the JVM and handles native code with the native keyword just
as Java would, only that said native code has a different interface to the Darjeeling VM.
Darjeeling also supports garbage collection and threads.

Aslam et al. [2] proposed “Takatuka”, a virtual machine for sensor nodes (which
they refer to as motes), which aims at minimal memory requirements while being fully
CLDC-compliant13.

Maye and Maaser [18] compare Darjeeling and Takatuka in several qualitative and
quantitative aspects, arriving at the conclusion that Takatuka is more feature-rich and
uses less memory in most cases, whereas Darjeeling has better runtime performance and
as a result consumes less power.

12And again it’s cross-package, not cross-applet. Why do we even care?
13Connected Limited Device Configuration (CLDC) is the specification of a framework for the Micro

edition of Java.

12

2. Background and Related Work

Armbruster et al. [1] constructed a real-time JVM for the use in avionics. However,
as Pizlo et al. [25] note, their approach is not sufficient in a large number of areas with
really resource-constrained devices. Hence, they propose “Fiji”, which rather than some
kind of bytecode runs native code in a special environment, really stretching the split
VM architecture. As can be seen in Figure 2.2, they first transform Java bytecode into
ANSI C before translating that into native code through the GNU C Compiler (GCC).
This segues neatly into the next section.

Figure 2.2.: Architecture of the Fiji VM proposed by Pizlo et al. [25].

2.5. Bytecode to native code compilation
Ever since bytecode was first used as a compilation target, it was the compilation source
to someone else. In some cases the virtual machine, which it is supposed to run on,
compiles it to native code “on the fly”, or as others would say just in time (JIT). In
other cases people, who sought to do away with the overhead of interpreters or virtual
machines, compiled it to native code ahead of time (AOT), i.e. before the program is
run, possibly dropping the infrastructure that would be required to run it in favor of a
new executable while doing so.

There are a few key differences between JIT compilation and AOT compilation that
are worth pointing out. First of all, AOT compilers are programs on their own, whereas
JIT compilers exist (to be) embedded in an interpreter or virtual machine. Secondly,
there are different constraints placed upon them. For instance the time it takes to
compile some given code is crucial in JIT settings, but mostly irrelevant in AOT settings.
Thirdly, AOT compilers are (if programmed to do so) capable of cross-compilation, i.e.
a compiler running on one machine can produce code for another (kind of) machine.

13

2. Background and Related Work

JIT compilers on the other hand always compile for the machine they are running on.
As a corollary of the second and the third point, JIT compilers will have to produce the
target machine code directly without invoking another compiler. In an AOT setting,
the chaining (or “pipelining”) of compilers is not only theoretically possible, but also
practically useful.

Muller et al. [20] designed a Java environment including a class-based AOT compiler
as well as runtime library integrated JVM. As far as compilation is concerned, there
are a few similarities to the approach discussed in this thesis, although they are merely
accidental. Their compiler takes a MainClass (i.e. a class that implements a public,
static main method) and generates two source files from them, a source file for the class
itself and a main file, which contains the C main method. See Figure 2.3 for the full set
of for the full set of files generated by their compiler. As will be explored in Section 3.3,
the separation into sources and main methods in different files remains, but the input is
a package (as CAP file) and it need not necessarily contain a MainClass (or rather an
applet). They also generate sources for all classes related to this main class, resolving
those dependencies statically. While the compiler described in this thesis and the system
around it also depend on static dependency analysis, there is no assumption that all code
is present at compile time. In fact, this case is quite rare.

Figure 2.3.: Files generated by Muller et al.’s compiler [20].

Muller et al.’s runtime architecture is the inverse of ours. Since their VM is made
into an interpreter that is part of a library, it can be controlled by an application, much
more so than it is the case in the scenario assumed within this thesis. Such a design
requires – at the very least – that the application boots the VM before it actually runs,
often allowing the application programmer to directly interact with the VM to a certain
extent. This is an approach often taken by so-called extension languages, such as Guile [9,
5 Programming in C] and Lua [13, 4 – The Application Program Interface], perhaps
because of its flexibility, and it certainly constitutes good interoperability. However, it
also puts certain amounts of trust in the programmer of said application – a level of
trust that is hard to argue for in the context of Java Card. This might not be a security
risk in the scenario of Muller et al., but linking an arbitrary application to the JVM
and have the former control the latter runs counter to the design goals of both Java and
Java Card, with especially the latter imposing strict rules for some notion of security.

14

2. Background and Related Work

As complying with said rules was a requirement for interoperability, this aspect had to
be reflected in the design process.

Gal et al. [8] constructed a JIT compiler for resource-constrained devices. They use a
trace-based approach, meaning they compile sequences of already executed instructions.
Using this approach, they optimize loops, which are executed often (so-called “hotspots”
or “hotpaths” as they call them on bytecode level). Within a trace, the only branch that
is taken is the unconditional branch to the loop header. Conditional branches that occur
within the trace are therefore not taken, and the native code is generated in a way that
the corresponding check causes the JVM to resume at the bytecode in case of failure.
To make this possible, Gal et al. retain a mapping between registers and altered locals,
which are written back to their respective location before control is returned to the JVM.

Ellul and Martinez [7] constructed a “run-time” compiler for resource-constrained
devices, which somewhat stretches the distinction between AOT and JIT. While the
transformations they make are not too complicated to be implemented as a JIT compiler
– they do not even map stack or locals to registers, keeping them “as-is” on the runtime
stack – they still compile the whole program before execution, so that they can do
away with the virtual machine, making the process AOT. As they retain the stack, each
operation that pushes on top of the Java stack therefore becomes a set of instructions
that does the same and any pop done by an instruction becomes a pop instruction.
This causes many gratuitous push and pop instructions, some of which Ellul [6] later
eliminates. Ellul [6] also considers mixing AOT and JIT compilation. Reijers et al. [26]
expanded upon their work, improving the optimizations Ellul has made while adding
their own.

Wang et al. [31] implemented a mixed-mode ahead-of-time compiler for Android appli-
cations. Their framework identifies hot methods based on a static profiling model, which
are then compiled to native code and linked to the remaining parts of the application
while their bytecode is replaced with a redirection. They had quite interesting findings
with partial compilation, i.e. leaving cold methods in the bytecode, while compiling hot
ones to native code. While the compiler described in this thesis does not come with
a static profiler, it allows methods to be filtered. With this mechanism any static or
dynamic analysis can be done prior to compilation. Some of their optimizations also
have limited applicability in Java Card systems, for instance the cloning of methods. It
reduces the amount of context switches at the cost of essentially doubling the size of
cloned functions. When size is very limited, overhead of that scale should already be
called into question if it arises from the compilation itself, requiring it for such purpose
seems unreasonable.

Gressl [11] has built a Java Card cross-compilation framework based on an already
existing ahead-of-time compilation framework. They use a class-based approach, repre-
senting Java classes as C structs, complete with method table and everything. They
also pack the Java Card framework classes together with the applets they’re actually
compiling, creating a program that runs like any other program without the need for a
JVM. Their approach comes with severe limitations. While the applets themselves may
be able to run in such a manner, only one can do so at a time, and it is unclear if and
how these applets would interact with the rest of Java Card. This interaction may not

15

2. Background and Related Work

Figure 2.4.: Compilation process used by Ellul and Martinez [7]. Note, that the last step
of the process – the compilation of intermediate bytecode to native code –
is performed on the sensor node.

16

2. Background and Related Work

be needed, as all dependencies are compiled into the program as well, but it limits the
scope of what the framework can reasonably be used for – specifically it would exclude
libraries if there indeed was no FFI. It also leads to worse overhead, as everything must
be compiled regardless of whether it is meaningful to do so.

The compiler described in this thesis only needs the CAP file of the applet to convert
and the export files of its dependencies, with the virtual machine handling runtime
dependencies. Gressl on the other hand needs to have all dependencies – both explicit
and implicit – in their resulting binary. This leads to a dependency resolution method
dubbed automated greenlisting. Their framework allows for the specification of a set of
classes, which shall be the only ones to be included in the output – this set is called
greenlist. Gressl computes their greenlists starting from a basic initial one by compiling
and running the program and including the class whose exclusion caused a failure in
this process. This is repeated until no such failure occurs.14 It might be worth noting
that a simpler dependency resolution exists for their case, as Java Card is not reflective.
Starting from a set of classes that one wants to include in one’s target output, the
recursive resolution of any constant pool item referenced by the methods of those classes
will lead to a minimal working greenlist for all possible execution paths. As Gressl
already needs the CAP files of all dependencies to extract their bytecode, this should be
possible in their setting.

2.6. Other smartcard platforms
Other Java Card systems typically work like the one that serves as basis for this the-
sis. However, there are instances of Java Card systems that use a completely different
architecture as well as competition to Java Card itself.

When talking about other Java Card platforms, one optimization strategy that does
not depend on native code at all, would be the usage of dedicated hardware, particularly
a processor, which is able to execute Java Card bytecode. Said bytecode would then
be native to that processor, making it the most efficient code that could be executed
on it. While some blueprints, such as the ones by Zhang et al. [33] or Golatowski et
al. [10] do exist, it is not accompanied by research suggesting that they can outperform
other processors running native code. Similar research was also done for the Java Vir-
tual Machine to create a Java processor – Schoeberl [28] shows that they are indeed
outperformed even by a JVM, as long as they compete on the grounds of performance;
only when putting chip size into consideration their system becomes better.

An overview of competing architectures is given by Sauveron [27] or Markantonakis
and Akram [16]. Specifically, they list MULTOS, Smartcard.NET, Multiapplication
BasicCard and Windows for Smartcard. MULTOS smartcards use a variant of Pascal
p-codes, with compilers available for C, Java, and other languages (Sauveron specifi-
cally lists Basic and Modula-2). While the availability of more compilers appears to be
liberating, it is in fact just yet another virtual machine and on top of the advantages

14Let us assume, even though one may doubt it that an execution only succeeds if the requirements
for any execution path through the applet are met.

17

2. Background and Related Work

and drawbacks that Sauveron points out, it stands to reason that performance could
be gained through native code there as well. Smartcard.NET supports a subset of the
.NET framework with a larger array of features than Java Card, and allows applications
to be written in any language suitable for the framework. Multiapplication BasicCard
is the continuation of an older product – BasicCard – but with support for multiple ap-
plications, as the name implies. BasicCard itself is built around the Basic programming
language and the cards execute some variant of p-code (neither Sauveron nor Markan-
tonakis and Akram are more specific). Lastly, Windows for Smart Card is an abandoned
project, whose goal was to bring the Windows Operating System to smartcards.

Of the still existing smartcard platforms listed above, all follow a similar structure
to Java Card as far as the core is concerned. A virtual machine runs some kind of
bytecode and provides a certain set of features – the exact feature set depending on the
architecture and possibly the vendor. If one further wishes to be able to program in
Java, only MULTOS (Sauveron [27]) and BasicCard (Markantonakis and Akram [16])
offer compatibility layers on their own. There does however exist at least one compiler
that allows for the interoperability of Java and .NET, namely the one that Gressl bases
their thesis on. In any case, it appears as if smart card system designers can all agree that
they want to use some kind of virtual machine for whichever reason (usually something
along the lines of security, portability, etc.), but are divided on the question of which of
them to take. Given such an ecosystem, all of them could profit in some way or another
from native compilation and/or dedicated hardware.

18

3. Design
The following sections outline the design of the compiler and the infrastructure around
it. Section 3.1 describes the system that the generated code is supposed to run on.
Section 3.2 describes interfaces – i.e. functions and macros – to said system, which
the compiler may rely on existing. Section 3.3 describes the compilation process itself.
Section 3.4 gives a general overview of the design that went into the compiler itself,
whose inner workings are described in Chapter 4.

3.1. System Architecture
The Java Card specification covers two big parts: the JCVM and the runtime envi-
ronment for applets. Anything beyond that is outside of its scope. However, that is
not everything necessary to facilitate a complete Java Card system. Of course, some
hardware is required, but there is also a reliance on (software) components that han-
dle communication or deal with resources. These components must exist alongside or
below the JVM for them to be available to the Java runtime environment (JRE). In
computer science, such components are usually combined into an entity, that is called
the “operating system (OS)”. Hence, we have a system that looks like Figure 3.1.

Figure 3.1.: Architecture of a typical Java Card system.

19

3. Design

It does not really matter, whether the JVM is part of the OS or part of the JRE,
whether one applet or more is/are running, or whether the JRE lives inside its own box
that is encapsulated both from the OS and from the applet or just from the applet – the
Java Card specification only requires a strict separation between different applets and
between applets and the JRE. This is the system that will be expanded.

It is extended by adding a C runtime environment (CRE), as shown in Figure 3.2.
Native code is treated as separate from bytecode, but is still part of the same package.
For instance, both parts of Applet 2 in the figure refer to the same constant pool – that
way method invocations are facilitated among other things. The CRE is set up inside of
a sandbox and communicates with the JRE through system calls. Each of these system
calls corresponds to some Java Card bytecode, and the same checks are expected to run
for both – e.g. a BALOAD from the JRE or CRE shall in either case check that indeed an
array is accessed and that the index is valid. That way, the CRE is perhaps not more
efficient than the JRE for such accesses, but an important security property is gained,
as any attack using this system calls would also be possible by abusing the JRE in some
way.

Figure 3.2.: Architecture of the extended system.

To allow arbitrary recursion up to the limits imposed by memory, the OS shall main-
tain a call stack that is used by both the JRE and the CRE. When a method call resolves
to a function implemented in Java, a Java frame shall be pushed on top and populated
with necessary data (e.g. reserve space for stack and locals, initialize locals from argu-
ments). When a method call resolves to a function implemented in native code, a native
frame shall be pushed on top.

20

3. Design

3.2. Interfaces
The compiler described in this thesis shall make as few assumptions on the underlying
system as possible – that way, the generated code will be portable to an extent. However,
some additional interfaces are necessary, given that the functionalities that are to be
implemented, exist partly beyond the scope of plain C.

First of all, the bytecodes given in Table 3.1 must somehow be made available
through system calls. UPPER_SNAKE_CASE is used for them as opposed to the
lower_snake_case used in the Java Card specification to indicate that these can be
regarded as macros. A 1:1 correspondence between bytecode and system call is not
required. For instance, one could merge LOAD and STORE type calls or CHECKCAST and
INSTANCEOF into one with an additional parameter. Order of arguments can also be
swapped around to the extent allowed by the C preprocessor, and so on, and so forth.

Bytecode Comments
<T>ALOAD
<T>ASTORE
GETSTATIC_<T>
PUTSTATIC_<T>
GETFIELD_<T>
PUTFIELD_<T>
INVOKE<T> A nargs parameter is added to those invokes, which do

not already have them. This parameter can be used to
determine the number of arguments to push onto the JVM
stack before resolving the invocation, as the JVM would
handle bytecode with similar amounts of precognition.

NEW
NEWARRAY
ANEWARRAY
ARRAYLENGTH
ATHROW
CHECKCAST
INSTANCEOF

Table 3.1.: JVM bytecodes, which lack native handling. Generally speaking, all byte-
codes, which dereference object references, as well as all communication with
other packages, are to be handled by the JVM.

There are two entry points from the OS. The first one is main, which is called when
a method is invoked. This may happen for one of two reasons.

1. A Java method invokes a native method for the first time.

2. A C method invokes – directly or indirectly through some Java method(s) – another
C method.

21

3. Design

In either case, main resolves the method call and calls the function corresponding to it,
returning its return value (if any) to the OS. The second is catch, which is used for
exception handling. Native methods may both raise and handle exceptions in the same
way that Java methods do. This, however, creates an interesting problem, as there is no
direct link between positions in Java bytecode and offsets to the machine code produced
by the C compiler. However, those positions are essential to the JVM exception handling,
both to indicate ranges of a try block and the position of an exception handler. The
CRE instead uses a longjmp-esque convention for catch. If the exception is unhandled,
it returns to the OS normally, otherwise it does not return. Both main and catch may
be renamed as the OS desires.

Since catch can not return normally if the exception is handled, main can not return
normally either. An additional syscall, SYS_RETURN(bool,short)1, is therefore neces-
sary to signal a return from main, wherein the first argument is false for void methods
to indicate the lack of a return value. The name of this syscall as well as all implementa-
tion details surrounding it, are however hidden by the compiler, so a platform may freely
choose to supply a different way of handling exceptions and returns. To aid portability
to a wide array of platforms, the main method is instead built via a skeleton using the
macros defined in Table 3.2.

Macro Expansion
MAIN_TYPE Return type of the main function, such as

int.
MAIN_FUNCION Name of the main function.
MAIN_ARGS Arguments supplied to the main function by

the platform.
MAIN_SETUP(methodOffset) Platform-specific setup code. After this code

is executed, methodOffset is expected to
hold the offset of the method that is to be
invoked.

MAIN_RUN(func, ...) Code to run func(...) and store its result.
MAIN_RUN_VOID(func, ...) Code to run func(...) without storing its

result
MAIN_ARG(type, i) The ith argument, cast to type
MAIN_TEAR_DOWN() Platform specific tear-down code, including

the return to the caller.

Table 3.2.: Macros used in the main skeleton.

The catch procedure can be defined in any file that is compiled and linked together
with the results of the compiler. The exception handler uses three non-functional macros
that need to be defined in a header.

1Systems that support 32-bit integers (int) may also use SYS_RETURN(short,short,...), in which
the first argument specifies the length of the return value. Note however, that the compiler does not
produce code that requires such systems yet. See Section 5.5.

22

3. Design

1. DECLARE_OF_EXCEPTION(idx) expands to the declaration of the variables used by
exception range idx.

2. ENTER_EXCEPTION_RANGE(idx, type, handler) will be called when entering an
exception range. Here, type will be the index of an exception class in the con-
stant pool (which may be 0 in case of a “finally”) and handler will be a label to
jump to when the exception is thrown. This makes it so that setjmp (or func-
tions like it) can be used inside the expansion, along with a code snippet à la if
(exception_thrown) goto handler;.

3. EXIT_EXCEPTION_RANGE(idx) will be called when exiting an exception range.

Together, these macros help maintain an exception (handler) stack in the native com-
ponents. These stacks are again kept on an exception frame stack, through the code
inside MAIN_SETUP and MAIN_TEAR_DOWN, which together looks roughly like Figure 3.3.
The workflow is as follows:

1. MAIN_SETUP creates a new frame and pushes it on top of the frame stack, which
exists on a well-known address.

2. ENTER_EXCEPTION_RANGE creates a new handler and pushes it on top of the frame.

3. EXIT_EXCEPTION_RANGE pops the current handler from the frame.

4. MAIN_TEAR_DOWN pops the current exception frame.

These steps come in pairs – i.e. there is always a MAIN_TEAR_DOWN for a MAIN_SETUP and
and EXIT_EXCEPTION_RANGE for an ENTER_EXCEPTION_RANGE – and they may be nested
and repeated up to the amount permitted by memory. In addition there is catch, which
pops as many exception frames as needed, until the frame that was popped is the one
which handles the exception and then performs a longjmp (or an operation similar to it)
to resume execution there. A catch therefore acts as multiple implicit exception range
exits.

Figure 3.3.: Exception stack corresponding to a recursive invocation of depth 1. Between
the two C frames, there can be an arbitrary number of invisible Java frames.

23

3. Design

3.3. Build Process
Having a good enough abstraction of the underlying system and the interfaces to it, one
can start to write code that would at least compile in some way. However, doing so
programmatically requires some kind of build flow. Typically, a Java Card applet would
be built as demonstrated in Figure 3.4. One or several Java source files are compiled to
class files as they would be for a Java application, which are then used in conjunction
with export files to produce a converted applet (CAP) file. A JCVM implementation
can then install an applet from this CAP file. In the case of libraries, this process may
also yield export files for the build flow of other applets.

Figure 3.4.: Build flow for a classic Java Card applet.

This flow is extended as shown in Figure 3.5. On the outside, a CAP file and the
export files that were involved in its generation are taken as inputs and a CAP file
extended with (custom) native components is produced as output. Inside that process,
three kinds of files are to be distinguished. The first are headers, also referred to as
methods.h. These are quite literally C header files and contain a declaration to each
method that is to be compiled from Java Card bytecode to C. The second are the sources
with the actual compiled methods, referred to as methods.c. They contain the C code
for the methods listed in the headers. Finally, there is a so-called main file, also referred
to as main.c. This is the place, where the main function is defined. Specifically,
it is defined as in Listing 3.1, with methods from methods.h added to the switch.

24

3. Design

#include ...

MAIN_TYPE MAIN_FUNCTION(MAIN_ARGS)
{

MAIN_SETUP(methodOffset);
switch(methodOffset)
{
case __offset_to_function:

MAIN_RUN(__function_name , MAIN_ARG(__arg_type , 0), ...);
break;

...
}
MAIN_TEAR_DOWN();

}
Listing 3.1: Skeleton main file.

In each of the compilation steps – header, compile and main – methods can be filtered
based on regular expresion. This allows one to partially compile a CAP file to C or to
use different compilation switches for individual methods.

The dependencies of the files generated by the compiler are shown in Figure 3.6. In
addition to internal dependencies, there are

• platform type headers, which define basic types, such as inttypes.h and stdbool.h
if depending only on the ISO C standard,

• platform interface headers, in which the system calls of Section 3.2 are defined,
and

• platform main macros, which in a rather self-explanatory way are the headers that
define the macros used by main.

Both internal and external headers must be specified on the command line through op-
tions – -sys-include=FILE for an angled bracket include directive and -include=FILE
for one with quotes.

In a standard setting, one would require both inttypes.h and stdbool.h to translate
all primitive types used in Java Card applications to primitive types in C. However, non-
standard conventions are not unheard of, particularly not within the C environment, with
platforms, frameworks, etc. each adding their own typedefs to the mix. Ironically, the
JNI would be one of them, and it would define all the types that are needed, but as the
native keyword and the JNI were “dropped” from Java Card – at least as far applet
development is concerned – these definitions are missing in a Java Card environment.
In order not to define yet another set of types, a so-called “type definition file” is used
to override the internal data type definitions. The headers, which define those types
towards C code, are included as platform type headers.

25

3. Design

Figure 3.5.: Extension of the classic Java Card applet to an applet with native compo-
nents. The commands header, compile and main are implemented by the
compiler. The files methods.h, methods.c and main.c refer to one or
multiple outputs of said commands.

26

3. Design

Figure 3.6.: Dependencies within the generated code.

3.4. Compiler architecture
Compilers are usually structured into three components,

• a front end, consisting of parser and lexer, which transforms a file written in the
source language into an intermediate representation (IR),

• a set of optimizations performed on that IR, sometimes grouped together under
the name middle-end, and

• a back-end, which transforms this IR into target-dependant code.

At least, such is the case for compilers, whose input is assumed to conform to some
programming language. The input to the compiler of this thesis is a CAP file in the
broadest sense, and a stream of instructions with various metadata scattered around said
CAP file in the narrowest sense. As such, its front end is an ad-hoc constructed binary
analysis framework and the middle and back ends are one procedure with a series of hooks
allowing for optimizations. Since C is not only the output of the compiler described in
this thesis, but also the input to some toolchain that does the actual compilation to
native code, C itself can be seen as an IR here. Using C as an IR is however not in any
way a new and exciting idea – it has existed at least since C++, if not before it.

Before the actual work of the compiler starts, some metadata needs to be extracted
from the CAP file. This is boring work, parsing the file according to the specification, and
will thus not be discussed in greater detail. Once that is done, we are left (among other
things) with a set of classes and methods, the latter of which are to be compiled. The
compilation of a method begins with its disassembly it, i.e. then turning the bytecode
into a list of instructions. Thereafter follows the creation of a control flow graph (CFG)
from this list and some metadata, and a data flow graph (DDG)2 from the CFG and some
metadata. Next, this CFG and DDG are used to construct a mapping from instructions
to a set of equivalent statements (and labels) in C. Finally, these statements are collected

2Normally, one would abbreviate “data flow graph” as DFG, but internally the term DDG (actually
means “data dependency graph”) was used until it got stuck. As those terms are only as meaningful as
we decide as developers, we settled on the somewhat weird combination of data flow graph and DDG.

27

3. Design

in the same order as the instructions – as well as the labels, putting the latter before
the statements they point to – and after being decorated with variable declarations and
a function signature, the result can be called a C function.

Repeating this process for each method will allow us to compile the entire CAP file.
As will be seen later, some optimizations will also produce additional functions. This
transforms the simple loop used before to a more complex one able to receive events from
the innermost parts of the compiler through a global queue, but the core idea remains
the same: the compiler takes Java methods as input and produces C functions as output,
preferably printing them in a “pretty” manner.

28

4. Implementation
This chapter elaborates on the implementation details of the compiler. The raw structure
has been outlined in Section 3.4: First, the binary is to be analysed, so as to produce a
CFG and a DDG, from which then C code can be generated with various optimizations
being applied along the way. This is also the structure, in which the following sections
are laid out. The rest of this section is structured just like that: first comes bytecode
analysis, then code generations, then optimizations.

4.1. Analysis
As a binary is to be analysed – particularly a binary for the JCVM – the methods
through which it is analysed are binary analysis methods, not the lexical or syntactical
analysis one would typically expect from a compiler. The intermediate representation,
which this analysis yields, consists of two graphs: the control flow graph and the data
flow graph. While normal compilers use an abstract syntax tree to represent their input,
this compiler uses the data flow graph as a union of concrete inverted syntax trees, each
encoding an expression. This formulation might at first look a bit intimidating, but it
is a lot easier to understand it by example.

Consider a simple assignment, such as

short foo = 2 + 3;

The corresponding concrete syntax tree (CST) would look like Figure 4.1. A non-
optimizing Java Card compiler may generate the following bytecode out of it:

SCONST_2
SCONST_3
SADD
SSTORE_1

The corresponding data flow graph looks like Figure 4.2. Clearly, the same information
(modulo interpretation) is present in both, it’s just that the direction of the data flow
is inverted w.r.t. the CST. Therefore, to generate a syntax tree from the data flow, one
simply needs to invert the flow back into its original direction.

29

4. Implementation

Figure 4.1.: CST of a simple assignment.

Figure 4.2.: Data flow example of a the same assignment as Figure 4.1.

30

4. Implementation

4.1.1. Control Flow
The analysis of the control flow starts from a disassembly of the bytecode of a method
represented as a list of instructions and generate a graph, which has

• one node per instruction representing said instruction, and

• one node per target of a branch instruction representing a label.
In addition to that, one might have to deal with exception handlers, which are given to
as a set of integers, each corresponding to the offset of a handler. Their entry points
also get a node each, which also serves as an additional root1 in the CFG, the main root
being the main entry to the function, i.e. its first instruction.

The structure of the control flow graph was chosen in such a way to make processing
easier, especially in the generation of the data flow graph, but also within code genera-
tion. It constructs views, in which each instruction can be seen as somewhat independent
of previous and subsequent ones (while still being connected), and the implementation
of any other method becomes a Visitor of the control flow graph with a switch on the
instruction code.

With a quick overview of the structure to create and the reasoning as to why it is
to be created in that way in mind let us proceed towards the process of its generation.
As previously mentioned, the starting point is a list of instructions. Each instruction in
said list has a position, a code and optionally arguments that have been encoded in the
bytecode itself rather than being taken from the stack. None of that matters in the case
of instructions that do not alter the control flow. In that case, the next instruction will
be the one that comes afterwards in the instruction list. Branching instructions may
alter the control flow in the following ways:

1. They might have an edge to some target instruction that would otherwise not be
reached in such a manner.

2. They might not lead to the next instruction.

3. They might do all of the above (e.g. GOTO).
In order to deal with this complexity, a two-step process is used. First, one node is
created per instruction and then the edges are filled in, with a mapping B tracking all
redirections due to branches and a node np tracking the previous instruction node. The
pseudocode for the generation process is given in Algorithm 2.

By convention, each node holds at most one instruction. To make it simpler to deal
with nodes that have none, dummy instructions are also added for branch targets and
exception handlers with special “opcodes” that does not map to any JCVM bytecode
marking them as such.

1Note that the concept of a “root” differs from the roots of a tree in graph theory. Since control
flow graphs are directed, but not necessarily acyclic, it makes no sense to apply such concepts here. In
this case, a root is much more an entry point to the function. A comparison might be made to state
machines, whose graphical representation have an initial state as their “root”, which is often depicted as
a node having an ingoing edge with only one endpoint, the other endpoint lying somewhere in the ether
(though the ether itself might be a node on its own for some, as Graphviz surely would agree).

31

4. Implementation

Input: CFG C, branch target mapping B, CFG node n
Output: CFG node t
begin

if ∃t : (n, t) ∈ B then return t;
else

Allocate a new node t;
Set V (C) = V (C) ∪ {t}, E(C) = E(C) ∪ {(t, n)}, B = B ∪ {(n, t)};
if ∃n′ : (n′, n) ∈ E(C) then

Set E(C) = E(C) ∪ {(n′, t)} \ {(n′, n)};
end
return t;

end
end

Procedure 1: branchtarget(C, B, n)

32

4. Implementation

Input: Instructions I, Exception handler offsets H
Output: CFG C
begin

Allocate a CFG C;
Let R be the roots of C and L be its leaves;
Allocate a map of integer to nodes N ;
foreach instruction i ∈ I do

Construct CFG node ni and set V (C) = V (C) ∪ {ni};
if R = ∅ then Set R = {ni};
Set N = N ∪ {(pi, ni)}, where pi is the position of i;

end
Allocate a map of nodes to nodes B;
Let np = null;
foreach position-node pair (pi, ni) ∈ N sorted by pi do

if np ̸= null then
if ∃t : (ni, t) ∈ B then set E(C) = E(C) ∪ {(np, t)};
else set E(C) = E(C) ∪ {(np, ni)};

end
foreach offset o denoting a branch do

Let (pi + o, n′) ∈ N be the position of the targeted instruction and its
node;

Let t := branchtarget(C,B, n′);
Set E(C) = E(C) ∪ {(ni, t)};

end
if i is a returning instruction then set L = L ∪ {ni}, np = null ;
else if i is a goto then set np = null;
else set np = ni;
if pi ∈ H then

Allocate a new node nh;
Set V (C) = V (C) ∪ {nh}, R = R ∪ {nh}, E(C) = E(C) ∪ {(nh, ni)};

end
end
Return C;

end
Algorithm 2: Generation of the control flow graph.

33

4. Implementation

4.1.2. Data Flow
The analysis of the data flow starts from the freshly created control flow graph and gener-
ates a graph, in which stack and local nodes as well as their assignments are represented.
For each node in the CFG, there will be a number of stack and local nodes (henceforth
summarized as variable nodes), some of which may be created or overwritten depending
on the current instruction. For two CFG nodes that share an edge, there will be paths
from variable nodes corresponding to the source to variable nodes corresponding to the
destination, which may or may not have non-variable nodes – e.g. operator nodes, which
represent an operation, or function nodes, which represent a method invocation – on
their way.

The creation of the data flow graph is a three step process, as illustrated in Figure 4.3.
In the first step, all stack nodes are created and some edges, such as those for mathemat-
ical operators are already added. The stack can be created inductively from the roots
of the CFG, at which it is either empty if the node is the function’s entry or holds the
exception if the node is the first instruction of an exception handler. Each instruction
pops a number of values from the stack (e.g. SADD always pops 2) and pushes a number
of values to the stack (e.g. SADD always pushes 1), and that number is either statically
known as in the case of operator nodes, or can be inferred from arguments, such as in
the case of method invocations through any invoke instruction. With both the stack
depth of an already reached node and the changes made to it being known, the depth
upon reaching the next instruction can be determined. Of course, one has to assume
(and verify) that the stack depth of an instruction is invariant across all the routes by
which it can be reached.

In the second step all local nodes, i.e. nodes that correspond to the method’s argu-
ments as well as variables assigned by the programmer, are created. In order to do this,
the stack creator first needs to be modified, such that it also reports local definitions
(i.e. assignments) and references. Bytecodes that use locals can be categorized into

• bytecodes that push locals onto the stack,

• bytecodes that pop the top of the stack into a local,

• or bytecodes that modify a local in-place

according to their op-code. With the additional information of which local they operate
on, corresponding nodes and edges can be computed from the previous state as was done
for the stack.

The third step processes “special” bytecodes that have so far not been dealt with.
This means filling in everything that has to do with field or array accesses, method
invocations and adding return nodes that highlight returns from the function as well as
decision nodes that highlight the value based on which branches are made.

For each node that is created in the DDG, regardless of the step in which it was created,
the CFG node, which was being handled at the time of its creation will be remembered
as its “parent” – or to avoid confusion with terminology from graph theory its linked
CFG node. In addition to that, each node also has a name, which is a string loosely

34

4. Implementation

associated with its meaning. For instance, stack nodes will be named “stack[%d]”, with
“%d” replaced by their index, function nodes have the name of the function, operator
nodes the operator, and so on, and so forth. This name is not purely cosmetic (i.e.
solely related to the nodes “label” within the graph’s visualization), but will also be
used during code generation.

Figure 4.3.: Steps during the creation of the data flow graph. In the first step, the stack
nodes are created and their relation to each other represented by edges. In
the second step, local nodes are created and connected to the stack. In the
third step, “special” nodes are created for bytecodes that deal with decisions
or data other than the stack and locals, such as fields and arrays.

4.1.3. Symbols
Symbols are needed in various places, one of the first ones being the data flow anal-
ysis, which needs to know the number of arguments of functions as well as their re-
turn type to pop/push the right amount of variables from the stack. Within the
CAP file all references that are made to such symbols are encoded as indices to the
ConstantPoolComponent, which mainly consists of class references and tokens. In com-
bination with the DebugComponent of a file (or alternatively the DescriptorComponent
in combination with some clever naming scheme), as well as the export files of all im-
ported packages, these references can be resolved. We uncreatively term them resolved
(ConstantPool) item and regard them as a tuple of name referring to the fully qualified
name of the item, type referring to its data type and attributes referring to some flags
that are deemed important. The symbol table is thus replaced by such a lookup mech-
anism, though it can of course be made a table explicitly by first looking up all indices
and writing them to some kind of memory.

35

4. Implementation

4.2. Code Generation
Having created both control flow and data flow graphs, it is finally time for some ac-
tual C code generation. As already hinted at, the code generator will visit the CFG
and associate each instruction with a (list of) statement(s)2 and an optional label. The
function that is created then consists of a signature that has already been looked up and
a body that is about to be constructed. This body consists of a set of variables and a
list of statements interleaved with labels. On a higher level, a Java Card instruction is
associated with at most one label, an arbitrary amount of statements and an arbitrary
amount of exception handlers. When putting together the method body exception han-
dlers are added first together with any code associated with them (if any), followed by
the optional label and then the statement(s) of the instruction. These statements labels
and statements are of course only printed after all variables have been declared.

We will look at the somewhat naïve core of the code generator, which translates a
single Java Card instruction to C in Section 4.2.1, also adding an association with labels
in the process. With each instruction having an equivalent “block” of C code and a way
of stringing them together as described above, a first prototype can be constructed that
is able to translate method-like Java Card bytecode constructs (including Java Card
methods themselves, which are extract from the MethodComponent of a CAP file) to the
body of a C function. The only exception to its feature set are exceptions, which will be
discussed in Section 4.2.2.

4.2.1. Translating Java Card bytecode to C
Most bytecodes, which do nothing special, have a straightforward representation already
within the DDG. If an instruction with such a bytecode is encountered, Algorithm 3
can be used to create a list of statements. For now, this list will hold at most one
element, which is an assignment to either the top of the stack or some local. However,
formulating the algorithm in this way later permit certain contractions within the DDG
while retaining all of the functionality of the generated code.

The procedure expression is defined recursively. If d is a stack or a local node, it
yields a C variable corresponding to the same variable within the Java Card context.
Otherwise it recursively turns the node’s inputs (nodes with an outgoing edge towards
d) into expressions and then returns an expression corresponding to Table 4.1.

node type inputs expression notes
stack any Variable(“stack”, i) i is the index part of

name(d)
local any Variable(“local”, i) i is the index part of

name(d)
constant none Constant(c)

Continued on next page

2We regard a sequence of statements as a single statement since either way the output will be a
simplified, almost assembler-esque subset of C with labels and goto.

36

4. Implementation

Continued from previous page
node type inputs expression notes
operation d′ Operation(n, d′) n is the operation name
operation d′, d′′ Operation(n, d′, d′′) n is the operation name
cast d′ Cast(t, d′) t is the type to which d′

is cast. The only relevant
cast in this thesis is short
to byte

array read a, i FunctionCall(m, a, i) m is the mnemonic of the
linked CFG node’s byte-
code

array write a, i, v FunctionCall(m, a, i, v) m is the mnemonic of the
linked CFG node’s byte-
code

field read none FunctionCall(m, i) m is the shortened3

mnemonic of the linked
CFG node’s bytecode, i is
the constant pool index of
the field

field read o FunctionCall(m, o, i) m is the shortened3

mnemonic of the linked
CFG node’s bytecode, i is
the constant pool index of
the field

field write v FunctionCall(m, i, v) m is the shortened3

mnemonic of the linked
CFG node’s bytecode, i is
the constant pool index of
the field

field write o, v FunctionCall(m, o, i, v) m is the shortened3

mnemonic of the linked
CFG node’s bytecode, i is
the constant pool index of
the field

function call a... FunctionCall(m, i, n,
a...)

m is the mnemonic of the
linked CFG node’s byte-
code, i is the constant pool
index of the function

Continued on next page

37

4. Implementation

Continued from previous page
node type inputs expression notes
interface function
call

a... FunctionCall(m,n, iC ,
iF , a...)

m is the mnemonic of the
linked CFG node’s byte-
code, iC is the constant
pool index of the interface,
iF is the method id given
in the bytecode

Table 4.1.: DDG nodes and their corresponding expressions. Parameters mentioned as
inputs or in the notes are implicitly converted to expressions themselves.

Input: CFG C, DDG D, CFG node n
Output: List of statements S
begin

Allocate a new statement list S;
foreach DDG node d corresponding to the stack or locals at n do

Let (d′, d) be the first edge in δ−D(d)
4;

if name(d) ̸= name(d′) then
Let s := assignment(expression(d) as variable, expression(d′));
Set S = S ∪ {s};

end
end
return S;

end
Algorithm 3: Default algorithm, which is able to handle most bytecodes naturally.

With all such “simple” expressions out of the way, control flow operations (conditional
and unconditional jumps, as well as switches, also various ways of returning from the
function) and the special bytecodes DUP_X and SWAP_X remain to be handled. Thanks
to the control flow graph all potential successors of a given instruction are known, but
this is not enough for code generation, as the conditions under which such branches
are taken need to be accounted for. Those are encoded either in the DDG or in the

3Some bytecodes are variants of others with suffixes such as “_W” signaling a short-sized parameter
instead of a byte-sized one, or in the case of non-static field accesses, “_THIS”, which implies that the
local 0 (the this pointer as it were) shall be taken as first argument. All these cases to a uniform one,
as it decreases the number of functions that need implementation.

4Note the implicit assumption that the first input is the same as any other. This follows from the
way the gloss(cfg) and gloss(ddg) were constructed earlier. Any difference that could be made due to
branching is eliminated by having the results first written to some stack or local variable. In a similar
manner, exception handlers do not affect correctness either, because the stack is initially empty and the
locals are unchanged or in the case of the local holding the exception itself, invisibly changed. If such an
instruction is at all reachable from normal code, it is also quite likely the target of a goto instruction,
due to that only being the case in finally blocks.

38

4. Implementation

instruction itself. While one could label the edges of the CFG with those conditions,
these labels are missing until the creation of the DDG, for which the CFG is already
needed, creating a circular dependency. Instead of recomputing the CFG, it makes sense
to instead recompute the target instruction of a jump as one walks through the already
exiting one and to that said target is indeed a successor of the currently visited node.
This is done in the procedure makelabel(n, o).

Now we have all prerequisites to handle conditional and unconditional jumps, which
are handled by Algorithm 5, as well as switches, which are handled by Algorithm 6.
Returns do not require that much overhead. In case of a return without value, one
simply emit the statement return;, otherwise return val; is emitted, where val is
the single input to the single return value node for n formatted according to Table 4.1.

Lastly, there are the special bytecodes DUP_X and SWAP_X, special in the sense that a
“direct” translation from the DDG to C code leads to errors due to the lack of simulta-
neous assignments. Instead, one has to consider which sequence of assignments would
yield the same result. DUP_X is surprisingly similar to Algorithm 3, but with a few key
differences:

1. The list of assignments starts at the top of the new stack and goes downwards.

2. A map needs to be kept containing values that were already written to new lo-
cations. If one of them ends up on the right hand side of an assignment, the
newly-written one is to be used, as that one will not change as the assignment
“loop” continues.

This way, the previously described problems can be averted. For SWAP_X, let n be the
amount of swapped variables. Then:

1. allocate n temporary variables,

2. assign the inputs of the lower n changed variables to the temporaries,

3. assign the other inputs to their variables as we’d normally do,

4. assign the temporaries to their respective variables.

Indeed, this sequence of operations is no different to the typical swap routine that you’d
find in countless places, perhaps with the difference of explicit unrolling.

39

4. Implementation

Input: CFG node n, offset o
Output: Label l
begin

Let p be the position of n’s instruction ;
Let q := p+ o ;
Assert that n has a successor with position q ;
Let i be the instruction of that successor ;
if i is already associated with a label l then

return l ;
end
else

Generate a new label l and associate i with it;
return l;

end
end

Procedure 4: makelabel(n, o)

Input: CFG C, DDG D, CFG node n
Output: Statement s
begin

Let o be the offset encoded in the jump;
Let g := goto(makelabel(n, o));
if n is a conditional jump then

Let d be the single operator node for n;
return if(expression(d), g);

end
else

return g;
end

end
Algorithm 5: Algorithm for translating unconditional jump instructions, such as
goto, as well as unconditional jumps, such as ifeq, ifneq, etc.

40

4. Implementation

Input: CFG C, DDG D, CFG node n
Output: Statement s
begin

Let d be the default target of the switch;
Let x be “stack[i]”, where i is the number of stack nodes at n;
Let s := switch(x) ;
if n is a table switch then

Let i, j be lower and upper bound of the table;
for i ≤ k < j do

Let o be the k − ith target offset of n ;
Add case(k, goto(makelabel(n, o))) to s;

end
end
else if n is a lookup switch then

foreach k, o in n’s lookup table do
Add case(k, goto(makelabel(n, o))) to s;

end
end
else

There is no such switch;
end
Add default(goto(makelabel(n, d))) to s;
return s;

end
Algorithm 6: Algorithm for translating switch instructions. Note that the genera-
tion of x is not an off-by-one error. As the instruction at n pops x from the stack,
the DDG, which always encodes results, no longer references it, but it is still valid
at exactly this point.

41

4. Implementation

4.2.2. Exception handling
In order to handle exceptions, the exception handler needs to

• have its bytecode translated, and

• be registered in some way or another.

Translating the bytecode is easy, as all exception handlers are in fact part of the bytecode
of the method they belong to. In order to ensure that their instructions are reachable
from the CFG, a root has already been added, which points at its first instruction.

To register exception handlers recall the discussion of exception frames in Section 3.2.
To comply with this specification, one has to generate the ENTER_EXCEPTION_RANGE and
EXIT_EXCEPTION_RANGE “macro calls”. For this purpose, two classes of bytecodes need
distinction:

1. those which affect control flow within the current method, and

2. those that do not.

For the latter, it suffices to emit one set of ENTER macros before the translated instruction
code and one set of EXIT macros afterwards. In case of the former, this cannot be done,
as the code after the branch will not be reached before the next instruction, if at all. Both
ENTER and EXIT macros must come before it, this time first exiting the old range(s) and
then entering the new one(s). In addition, an instruction may end up jumping directly
to the start of (a) new exception range(s). In this case, the corresponding ENTER macros
are already contained behind the label it jumps to and should therefore not be emitted.
This can be achieved by checking that the target instruction position is strictly greater
than the start and less than or equal to the end of a given exception range.

To accurately handle returns, the code is blown up a little. First, a new variable ret
is introduced, and when there is a valued return, it is assigned to the value of whatever
variable would be returned. Next, all open exception ranges are exited and finally ret
is returned from the function.

With this, all bytecodes are now covered, but not yet all execution flows. Just like code
generation was implemented without thinking about exceptions before, here exceptions
are implemented without thinking about exceptions. Specifically the case of multiple
exception handlers for the same exception range remains to be handled. This happens
when a try block has more than one handler and requires some extra magic when gluing
together the code. When a certain exception handler is reached, it needs to exit all
exception handlers that correspond to the same range and have not yet been exited.
The final code then looks like Listing 4.1. This strategy makes no assumptions about
the code other than the assumptions about exception handling that are already given.
Most importantly the original bytecode may jump freely into handler code on its own
without interference.

42

4. Implementation

exception_handler_1:
goto L1234;

exception_handler_2:
EXIT_EXCEPTION_RANGE(X);
goto L1234;

exception_handler_3:
EXIT_EXCEPTION_RANGE(Y);
EXIT_EXCEPTION_RANGE(Z);
goto L1234;

L1234:
/* handler code */
Listing 4.1: Example of multiple exception handlers in different ranges pointing to the

same code block.

4.3. Optimizations
As a matter of principle, I regard compilers – especially compilers for the C language –
as smarter than myself when it comes to optimizing C code. This naturally also holds
when tasked to output particularly efficient C code. Nevertheless, there are situations
in which the heuristics employed by the C compiler do not suffice, or the C compiler is
unable to understand what powers really are at play in a given situation due to lacking
metadata. The following discusses a few ways of tweaking the compiler (and runtime)
in hope for better performance, code size, or some other nice property.

4.3.1. Caches
Oftentimes in computing, instructions get repeated… a lot. At least that is what one
would think from a fairly high-level perspective, if one was e.g. looking at the source
code of a program5 or at an even higher level at the things people use their computers
for. In practice, there are ways to mitigate this repetition, and one of these ways –
conveniently the being discussed here – are caches. To give an example, there are many
pages on the web, some of which are very popular and thus accessed quite frequently. If
the host of such a page needed to go through all the steps required to computing it each
and every time, it would be quite a load as well as quite a loading time for the user. To
keep this from happening, there are large numbers of caches, from the ones embedded
in browsers for the sake of user experience to the ones employed by the hoster mostly
for load balancing, but maybe also user experience, as having bad user experience would
otherwise negatively affect the site’s popularity.

Originally, (hardware) caches were a way of making up for the increasing performance
gap between accessing data in a register and loading or storing the same data to the

5Even without outright repetitive code of the “copy & paste” variant, specific functions will be called
way more often than others.

43

4. Implementation

main memory of a computer. Similar ideas have also been applied elsewhere, as indicated
by aforementioned web caches. Applying caches to the idea of programming itself also
yields interesting results. In functional programming, the application of a function is
considered the same as its result. Knowing that, an interpreter might want to remember
both function call and result for some function that takes long to compute, so that if the
same function is called again with the same arguments, the result can be returned more
quickly. The real function is effectively only called once. Returning from this fantasy
lambda world to the real one with only bare metal and C, we find that compilers use
similar reasoning for optimizations, if they know functions to be pure. GCC actually has
two attributes with similar semantics, the first being pure, meaning that a function has
no visible side effects and the second being const, implying pure and also stating that no
variables other than those passed to the function are used to compute its return value
[30]. In the programs handled by this compiler, there exist two classes of functions,
which might fit the criteria of the former, but also might not6. Since one can not
simply declare them to be what they are, and the C compiler lacks the information it
would need to check whether underlying resources did change, a potential opportunity
for optimizations will be missed. Caches can (partially) recreate the effects of some of
these optimizations.7

For this compiler, a cache is a variable that stores the value read from or written
to specific places via references to objects “belonging to the JVM” that is specifically
arrays and fields, both of which will also be mentioned separately later. Additional nodes
are inserted into the DDG, which we dub cache nodes (short: caches) and connect the
value as an ingoing edge. For the sake of brevity and also clarity, cache nodes for read
accesses and write accesses are referred to as read caches and write caches respectively,
and to the specific access of a given cache as their access. We say that a cache is active,
if at a given point in the CFG, their value is both known and known to be correct.
That is, their access must happen before the instruction at that point is executed, and
the underlying memory must not possibly8 have been changed since. We also say that
two caches (potentially) share data if a specific subset of the inputs to their accesses
are (potentially) the same. This is done by checking for equivalence in the DDG (see
Appendix A).

A read cache may be replaced by another cache, if the other cache is active and they
share data. Finding such a cache is a two-step process. First, a list of active caches for
a given DDG node is computed, then one can check whether they share data with the
cache in question.

6The GCC manual mentions “functions, which access system resources that might change between
calls” as “interesting non-pure functions”. In our architecture, arrays and fields are considered system
resources, which sure enough might change between two calls depending on what other functions are
called.

7GCC performs both common subexpression elimination and loop optimizations. With this admit-
tedly limited approach, one can do some of the former.

8Thorough analysis of whether the underlying data actually changed might be quite complicated
when taking function calls into account, touching the realm of symbolic execution. This is beyond the
scope of this thesis. Instead, all caches will as of currently assume such invocations to be destructive
(see their entries).

44

4. Implementation

The list of active caches per CFG node can be built incrementally. A cache is active,
if it is it was active in all predecessors and is not overwritten in the current instruction.
A cache becomes active, if its access is being made in that instruction. Given that
information, a map of CFG nodes to list of active caches can be created by visiting the
CFG.

This leads to an easy implementation of caches. First, caches are created for all
accesses, then as many accesses as possible are replaced with cached ones. Finally,
caches that are no longer used (replaced caches) or only used once (i.e. only at the
point of insertion, not in any replacement) are deleted. The details for the specific
kinds of caches handled by the compiler, i.e. when they share data and when they are
overwritten, will now be discussed.

Field caches

A cached non-static field read is shown in Figure 4.4 and a cached non-static field write
in Figure 4.5. Static accesses appear similar, but lack the first argument, which in a
non-static access is the object whose field is being accessed.

Two static field caches share data, when their access involves the same field, non-
static caches require their access to involve both the same object and the same field to
share data. Fields are potentially overwritten at function invocations (i.e. all INVOKE
bytecodes) and if a write potentially shares data with an active cache.

Array caches

Array caches are structurally similar to field caches, but with different argument place-
ment and semantics. Read and write accesses are shown in Figure 4.6 and Figure 4.7
respectively.

Two array caches share data, when their access involves the same array at the same
index. Array caches are potentially overwritten by a write to potentially shared data or
function invocations.

45

4. Implementation

Figure 4.4.: Structure of a cached non-static field read in the DDG “stack[i]@n” is the
object being accessed, “idx” the field, which is encoded in the instruction
as an index to the Constant Pool, making it a unique short per field, and
“stack[i]@n+1” is the result.

Figure 4.5.: Structure of a cached non-static field write in the DDG. The arguments
“stack[i]@n” and “idx” are just as in read accesses, while “stack[i+1]@n” is
the value.

46

4. Implementation

Figure 4.6.: Structure of a cached array read in the DDG. “stack[i]@n” is the array
being accessed, “stack[i+1]@n” is the index at which it is accessed, and
“stack[i]@n+1” is the result.

Figure 4.7.: Structure of a cached array write in the DDG. “stack[i]@n” and
“stack[i+1]@n” are array and index, as with read accesses, “stack[i+2]@n”
is the value.

47

4. Implementation

4.3.2. Function outlining
As pointed out back in Section 3.2, an additional parameter is added to all INVOKE
bytecodes when turning them into system calls to have a clear way of passing around
arguments. However, it turns out that adding said argument to a function call quickly
blows up the size of the assembly outputted by the C compiler, as shifting around
arguments passed by registers is anything but elegant. The same holds for field accesses
as well, and even with array accesses an additional argument can be saved when the
array or index is statically known.

Compilers which optimize for speed will try to inline functions (i.e. expand their code
with respect to arguments at a given point) if they deem the cost of doing so to be less
than the cost of invoking the function. In contrast, compilers which optimize for size
will search for common code snippets to outline, i.e. to make a separate function of,
even if the programmer didn’t explicitly ask for it. In either case, the compiler will leave
the code as-is in cases where it is not too sure about the way a transformation affects its
output, and it seems the C compiler is largely indifferent to the code bloat introduced
by the compiler of this thesis. We wish to rectify that by outlining those functions inside
the compiler itself.

In order to do so, several things need to be done. Firstly, code must be generated for
the outlined function – both method header and body – and secondly said code needs to
be invoked. The latter is not so difficult, one simply overrides the expression procedure,
so that the outlined function is called rather than the generic macro. The former can
also be done lazily – in fact at the same time as the latter – as one just needs to create
a function call and perhaps wrap it in a return statement to create the entire method
body. In the method header, arguments that are still needed will be retained, and those
that can be done without are dropped and instead added to the name of the function in
some format that avoids naming conflicts. For instance, a BALOAD with a constant index
of 42 turns into BALOAD_42. To avoid duplicates, these functions are stored in a map,
which can be considered part of the symbol table9, with the C name of the function as
key and a stub as value. This stub can act as a method signature, which is of minor
importance now, but somewhat relevant when we want to write out the function. More
importantly right now, these stubs are used to create the overrides for the expression
procedure mentioned before, which are given in Table 4.2.

node type inputs expression notes
array read a, i FunctionCall(s, a) s encodes the offset
array write a, i, v FunctionCall(s, a, v) s encodes the offset
field read none FunctionCall(s) s encodes the field name
field read o FunctionCall(s, o) s encodes the field name
field write v FunctionCall(s, v) s encodes the field name
field write o, v FunctionCall(s, o, v) s encodes the field name

Continued on next page

9Yes, this compiler has a decentralized symbol table. No, it has not lead to conflicts… yet.

48

4. Implementation

Continued from previous page
node type inputs expression notes
function call a... FunctionCall(s, a...) s encodes the original

function signature
interface function
call

a... FunctionCall(s, a...) s encodes the original
function signature

Table 4.2.: Stubs for outlined functions. In all of these function calls, s is the name of
the stub to be generated as a C function.

Now we have almost everything to outline functions. All that remains to be done is for
the compiler to write out the actual function definition at some point before it is used.
However, this puts us in a somewhat odd position. The method-based approach that
has been used so far expected a 1:1 mapping of Java methods to C functions and can
thus simply be implemented by “returning” the C function definition. This 1:n mapping
on the other hand requires the introduction of an event queue. Treating the creation of
functions as events, one event is queued for each new outlined function. The compiler
can then first empty that queue before printing the function that uses any definition
within it, and the C compiler will signal no error.

4.3.3. Function call re-routing
One quite obvious difference between C and Java is the difference between a function
and a method. In C, a function is little more than a name and a pointer to some machine
code underneath said name. In Java, a method is a signature consisting of name and
parameters, which at runtime turns into an index by which to lookup the code for said
method in a table. Since the function pointer in the latter case is generally speaking
not obvious until the method is invoked at runtime, the way these two languages handle
invocations is quite different. Method invocations are – until now – handled by simply
asking the JVM to look up the correct method and call it. This is necessary for functions
implemented in other applets and also required for functions we’ve translated, as method
overriding might cause a function to be invoked that is not the same as the one specified
in the bytecode. If we’re compiling a library, a public function may even be overridden
in a subclass from another library or an application.

As anyone should be able to tell after a primer on object-oriented programming, Java
methods are actually collections of functions that may be called, instead of one function
pointer that will be called. While Java programs could certainly be written in a way
that a 1:1 relation of method to function can be established, being able to not do that
is considered a feature, and we will not make ourselves many friends by imposing such
a restriction. However, there is a range of effectively final methods, i.e. methods which
will not resolve to overrides upon invocation, and identifying those might already lessen
the need of runtime lookups. These include of course final methods, i.e. methods
declared final through the keyword with the same name, but also static and private
ones as well. In fact, even the Java Card spec is somewhat aware of optimizations

49

4. Implementation

that can be made if the function that is to be called at runtime is statically known.
In Java Card bytecode, static method references are simply an offset into the bytecode
pointing at the header of said method.10 Using a similar approach, an effectively final
method can be called directly if its name as a C function is known – which it is during
header creation. In order to make this information available during the method part of
the build flow (see Figure 3.5), annotations are added to the headers created by header
as comments. During compilation, this header is read and the annotations parsed to
create a mapping from Java method signature to C function names. An override of the
expression procedure then emits a call to the corresponding C function if one such
effectively final method is encountered.

More generally, whoever invokes the compiler could decide to override certain proce-
dures themselves, creating faster implementations of certain methods as part of the CRE
– somewhat similar to accelerators. A similar set of annotations can manually be written
into the header rather than automatically created, and may take an optional fallback
argument As was done previously, a mapping is created from Java method signature to
C function names, but a fallback function with the name specified in the fallback argu-
ment is also generated, so that the function may call it if the override is not applicable in
certain situations. This process is almost identical to that of outlined functions, the only
difference being that whoever writes the header also controls the name of the function.

4.3.4. Mapping arrays into C runtime
Going back to the background chapter, one might recall that this is by far not the
first source-to-source compiler and also not the first FFI. One can look back to earlier
compilers and FFIs in search for certain patterns, particularly ones that would not even
require modification of the compiler. It is time to talk about direct memory access11.
The JNI [24] documents direct access for arrays and strings, Guile’s arrays directly map
to C arrays [9] whereas strings can only be converted, and Ruby strings can also be
directly accessed from C [17] whereas structs and arrays can not or at least should not
be accessed directly. Guile and Ruby are especially interesting here, because they also
allow direct access in the other direction, i.e. of C pointers via wrapper types in the
respective language.

Having proven direct memory access to be a pattern by giving at least three examples,
it is time to make use of it. In order to directly access the underlying data of an array,
the OS needs to expose said data in some fashion to the CRE. Since the output of the
compiler is generic and should at least in theory be able to run on any machine, system
dependant hacks that would require it to be modified are not of interest here, though
they may be an interesting idea for future work. Instead, one can modify the system call
handlers and the macros defined in Section 3.2 for the bytecode instructions that are
already translated to make use of direct memory access. Within a system call handler

10Ironically, not even Java Card is consistent with their terminology here. Static method references
are used for static methods, private methods and constructors.

11No, not that direct memory access, which allows components other than the CPU access to the
physical memory, although it is similar in principle.

50

4. Implementation

the OS may decide to map an array into the runtime and if it does, the mapping will
be recorded in an array on some well-known address. The macros in turn resolve to
functions, which first check whether the array is mapped into the runtime by iterating
over this array and directly accesses it if so. Otherwise they call the corresponding
handler.

From the perspective of the generated C code, the access is thus still indirect. However,
this is just as intended, because it allows the OS or CRE to freely unmap/remap arrays
between calls. This might become necessary, if for instance a call is made to a function
in another library – were this data to remain mapped during this call, it would otherwise
be leaked to a potential attacker.

4.3.5. Contracting the DDG
At the very beginning of Section 4.2.1, after having defined the expression procedure,
a generic way of dealing with almost any “basic” bytecode was constructed. It was
also mentioned that this would later allow certain contractions fo the data flow graph.
People with a background in graph theory will notice that this results in the construction
of a minor of the DDG. However, this does not sound very flashy as an optimization
technique. Instead, we call the software component that performs this operation, the
GraphReducer, as it reduces the number of nodes in a graph (specifically the DDG).12

As you might imagine after reading Section 4.1.2, many gratuitous nodes are inserted
into the data flow graph, the most obvious offender being variable assignments of the kind
stack[x] = stack[x] or local[x] = local[x]. It turns out that all such assignments
can be dropped without any change in semantics whatsoever until a node is hit with
assignments from multiple sources, i.e. one of the nodes specifically inserted for branch
targets, also called a “branch marker” for short.

More aggressively, one can (partially) eliminate the stack. Again, branch markers serve
as limitation, but assignments can be delayed until they hit a marker, local or special
node (i.e. function calls, arrays, fields, returns, etc.). This optimization may cause
assignments to occur in control flow statements, which is not ideal, because the code
generator ignores them as of now. To fix this, a round of assignments à la Algorithm 3
is inserted, in which only stack nodes need to be taken care of.

At the end of this, simple expressions like return (a + b) / 2 can be reconstructed
to the quite similar return (locals[a] + locals[b]) / 2, with a and b in the latter
being the local indices that those variables were translated to during compilation. The
ternary operator is not handled well, because it has no equivalent on bytecode level –
instead it translates to a normal jump.

Speaking of jumps, they serve as a hard synchronisation barrier until now, when this
might not be needed. Consider for instance the procedure max shown in Listing 4.2. With
the current reduction, the GraphReducer manages to produce code similar to Listing 4.3.
Don’t worry about the inequality operator changing its sign that happens outside of our
influence. More important is the fact that locals still need to be assigned to even though

12The name GraphReducer is my own invention and has not been approved by the marketing team of
NXP Semiconductors Austria GmbH und Co KG, nor do I seek approval.

51

4. Implementation

they are always taken as argument values. If at this point the C compiler stopped caring
about the value being stored in locals, it would produce vastly inferior code. One can
actually propagate arguments further than that, as long as one makes sure that they
are the only value that the local takes in a given branch, see Listing 4.4. In a similar
fashion, one can try to propagate constants and variables through branches, but not
other operations, as that could lead to duplication of side effects.

short max (short a, short b)
{

return a > b ? a : b;
}

Listing 4.2: Simple Java code for the maximum operator.

short max (short arg0, short arg1)
{

short stack[2];
short locals[2];
locals[0] = arg0;
locals[1] = arg1;
if (locals[0] <= locals[1])

goto L1;
stack[0] = locals[0];
goto L2;

L1:
stack[0] = locals[1];

L2:
return stack[0];

}
Listing 4.3: max after translation to C with stack elimination.

short max (short arg0, short arg1)
{

short stack[2];
if (arg0 <= arg1)

goto L1;
stack[0] = arg0;
goto L2;

L1:
stack[0] = arg1;

L2:
return stack[0];

}
Listing 4.4: max after translation to C with stack elimination and argument propagation.

52

5. Evaluation
We evaluate the code size and performance of some applets when compiled for the
mystery architecture X (henceforth maX) provided by NXP Semiconductors Austria
GmbH und Co KG. Testing is done on a sample specially created for that occasion in
case of one applet, where it was made possible by NXP Semiconductors Austria GmbH
und Co KG, and on a(n) field-programmable gate array (FPGA), which runs the code
at exactly 1

4th of the speed of the actual hardware, in the other cases. Whether actual
hardware or the FPGA is used, does not matter, though, because execution times are
compared in the relation to the time the same operation would take when not compiled.

5.1. Benefits and drawbacks of native code
In general, there are many advantages of native code, such as

• better control over memory management,

• better control of execution time,

• overall shorter execution times, AND

• interaction with specific hardware (either directly or through the OS).

Virtual machines usually claim the memory and have their own allocators for the objects
they create. Depending on the virtual machine, a user may be able to freely allocate
and deallocate space, but this is not the case in the JVM – while byte arrays of any size
may be allocated at will, those arrays cannot be repurposed, e.g. for holding objects of
varying kind.

The execution of code in a virtual machine follows a scheme that is similar to the one
already performed by simple hardware. Put simply, the machine fetches an instruction
(i.e. reads it from memory), executes it and adjusts the instruction pointer to point
towards the next instruction. Doing this in code rather than relying on hardware creates
a big runtime overhead – the execution of a simple bytecode instruction takes 20 to 30
native ones. Native code can be executed directly and thus does not have this overhead.
This is the source of performance gain for every native compilation scheme.

Lastly, if a system offers specialized hardware of any kind, it must be possible to
talk to that hardware through native code somehow. Virtual machine “drivers” for
such hardware too require native code, which in many cases must also be adjusted to
some type system. If the VM does not come equipped with such drivers, they need
to be written by the user utilizing some FFI. However, it is very likely that native

53

5. Evaluation

applications and libraries are already built around this driver. Hence if an FFI is already
a requirement, those libraries can be wrapped instead.

Of those benefits, this compiler can at best achieve shorter execution time. In terms
of the memory model both it and more generally the CRE are bound to the restrictions
imposed by the JVM and the OS, the former applying to objects, the latter applying to
the stack and exception stack. As far as “control” over said execution time is concerned,
there is little to none. Given the almost literal translation of bytecode to C code, there
are few liberties to enforce certain timing behaviour, and one is instead subject to the
whims of the JVM in the FFI sections and the underlying hardware everywhere else.
Lastly, interaction with specific hardware would require function rerouting to implement
and hence presupposes already existing bindings, which are exported to Java, meaning
no functionality would be gained that was not already present before.

Native code also has several drawbacks. A big one is portability. While source code
may be portable to an arbitrary extent – e.g. requiring only a POSIX-compatible system
and a compiler capable of handling a specific language version – binaries are hardware
and dependency-specific. We’ve taken some steps to ensure that generated C sources
are portable through macro expansion – see Section 3.2 – but implicitly rely on some
undefined behaviour to not be that undefined – see Section 5.5. As a result, code
generated by the compiler of this thesis is certainly less portable than the bytecode
it was compiled from. Memory management is also widely known to be error-prone.
Thankfully, most data structures needing to be allocated by or for the compiled code,
can be allocated on the stack, which is harmless for sufficiently large stacks or sufficiently
small amounts of allocations – implying recursion limits among other things. However,
the biggest drawback for resource-constrained devices such as smartcards is the increase
of code size. This will be discussed in greater detail in Section 5.3.

5.2. Benefits and drawbacks of optimizations
The following sections give a quick theoretical view of the benefits and drawbacks that the
implemented optimizations may have. As many of these implicitly rely on the C compiler
backend and further the targeted architecture, your mileage may vary in multiple ways,
but it still doesn’t hurt to justify them on theoretical backgrounds before diving into the
raw numbers that will be provided by Section 5.4.

5.2.1. Caches
The code size and performance costs of a cache can be described as C = ci+ kca with ci
being the cost of initializing the cache once and ca being the variable cost of reading the
cache instead of performing the actual action. A cache only makes sense, if the cost of
accessing it is less than the cost of performing the cached operation, or in other words
if ca is negative. A cache is overall beneficial if C is negative.

For code size, the value of C is measured in bytes, k is the amount of cache accesses
visible in the code, and ci may be

54

5. Evaluation

• the size of the code storing some value in an additional register, OR

• the cost of the code storing some value on the stack.

At the same time, ca is the difference between the size of the code for a register/memory
read against the size of the code for a system call with two to three arguments or –
in case that outlined functions also need to be accounted for – a function call with up
to two arguments. These should in the worst case break even, the worst case being a
function call with the correct values already assigned to their registers. Otherwise, ca is
a small negative number like −2.

For performance, C is measured in seconds or a fraction thereof, and is determined by
stacking the time required to make k register/stack accesses against the time to it takes
for a system call that performs various checks before eventually returning some value
that hopefully is still within the main memory. It is much clearer for this case that ca is
negative and that even a single access is beneficial.

Note that k in these two cases are not necessarily equal. There might only be a single
cache, that is accessed within a loop, which may account or 10 or 100 read accesses or
0 depending on whether the correct branch was hit.

5.2.2. Function outlining
The theoretical benefits of grouping code blocks into functions are well known – in fact,
programmers do it all the time to avoid errors that come with repeated typing of the same
code block. As a result, the size of the source code is greatly reduced. Leaving compiler
optimizations aside, the same also holds for any code produced from it. The otherwise
repeated instructions become a single call instruction. When a compiler performs such
a transformation on the programmer’s behalf (in an attempt to optimize for size), we
call it outlining. Within this thesis, the code being outlined consists of sequences of
instructions that add one argument to the argument list of another function call.

Were we to use the cdecl calling convention, this would be a nearly pointless exercise.
After all, pushing one argument in front of the list is a trivial operation – although to
be fair it does still cost one additional operation instead of simply a call instruction and
thus the optimization could still be beneficial. However, the maX calling convention
is one that passes the first n parameters through registers, as do many other calling
conventions out there. Only in the code directly surrounding the INVOKE<T> system
call, it is transformed into a stack-based calling convention as a way of handling variadic
arguments1, which means that any code calling system call wrappers still has to repack
registers to make things fit.

In either case, the size cost is n times calling a function plus the definition of the func-
tion against n times the inlined function. Given that the function itself is by definition
larger than a function call, the comparison of the two is almost always in the favour of

1INVOKE<T> as defined in Section 3.2 is of type (short, short, short…) → short, the system call
handler is of type (short, short, short*) → short. This definition is used to support a stack and locals
consisting of variables instead of arrays – a trivial distinction thanks to optimizations in the C compiler
– but can also be exploited by the GraphReducer.

55

5. Evaluation

the outlined version. In the few cases that it is not, e.g. trivially n = 1, the C compiler
has both a performance and size reason for inlining the outlined function and will thus
very likely weed out any improper outlines.

5.2.3. Function call re-routing
Re-routed functions in the specialized case do not have any cost on their own, safe
for perhaps the additional work that needs to be done in the compiler, which is not
a concern. Instead, they are beneficial in terms of code size, since they eliminate the
trouble of constructing a system call, and in the runtime none is performed. Code
size may however take a hit, when re-routed and non-rerouted functions are mixed,
since these conform to somewhat different calling conventions. In re-routed functions,
the first argument is the first argument, non-rerouted functions may (if they are not
outlined) however take the number of arguments as first argument and move the actual
argument list to the second and so on. An optimizing compiler that detects this, may
turn out better code for the case in which the second kind of call is made uniformly.

In the general case, the overhead of implementing another version of an already existing
function is added, which is certainly less than ideal. (Recall the harsh words used
towards Wang et al.’s method cloning.) Worse yet, if multiple packages all use the same
optimization, that code is duplicated over and over. Function call re-routing seems to
accidentally reintroduce a problem, that has once been solved by shared libraries, but
until shared libraries are discovered once again, those are the side effects, that one must
be prepared for. Then again, since this code is vendor-controlled, nothing stops them
from using shared libraries as long as they find ways to map them into the CRE, or
perhaps reuse code that is implemented in the OS with some function call. It should
be noted that this does eliminate some of the benefits of this optimization, however.
The more work is required to map a shared library into the CRE or worse yet call an
optimized function rather the one that would normally be called, the less beneficial the
rerouting will be. In other words, we have a typical time-memory tradeoff.

5.2.4. Mapping arrays into C runtime
While direct memory access can trivially be proven to be faster than indirect access, it
is hard to make statements that are not very specific to some benchmark. There are also
implementation-specific limitations to consider. Neither Java Card nor the compiler of
this thesis knows such a thing as an explicit construction of an array view, whereas the
JNI provides a large array of such functions (pun intended). Even if the compiler did
know, it would require great amounts of speculation about repeated accesses – similar to
the one done for caches, but needing to find much clearer patterns of repeated use – and
additional code would need to be emitted to deal with the (de-)allocation of necessary
data structures. Not only are those not implemented, they contradict the design goal
of generating fairly generic code. In lieu of the compiler the OS and CRE manage the
memory mappings. This comes at the cost of having the OS speculate, which array is
going to be used or not – a speculation that is replaced in the particular implementation

56

5. Evaluation

tested here by the assumption that the array will be reused, hence always mapping the
array into runtime.

Whether a mapping is produced or not, there is considerable overhead both in the
decision of whether or not to map and in establishing the mapping itself. Furthermore,
when switching between multiple libraries, one may have to unmap arrays when calling
into another native library so as to not cause information leakage. As a result, while fast
subsequent accesses to the same array are the goal and likely result of this optimization,
it may end up inadvertently slowing down applets that had not asked for the optimization
in the first place. A solution to this dilemma would again be an explicit API, which in
turn comes at the cost of portability and additional compilation overhead.

5.3. Overhead
Generally speaking, one can expect code size to increase during the transformation from
Java Card bytecode to machine code understood by the platform itself. This is to be
expected, as machines are constructed in a way that caters to the language that is most
likely used to write programs for it. In the case of the JVM (and the JCVM by extension)
there are lots of bytecodes referring to objects, their fields and methods. To give another
– although completely unrelated – example, the Guile VM has an even larger amount
of bytecodes dedicated to various forms of calls (including tail calls) and checking the
number of arguments to a procedure, as well as various bytecodes to deal with “basic”
types such as numbers, lists, vectors or strings. CPU designers on the other hand expect
code to be written in Assembly or C, maybe C++ or Rust, and are thus much more
concerned with pointers. This holds especially for the smartcards Java Card is run on.
Even though the main purpose is running Java code, a virtual machine implemented
in C or C++ is still closer to the hardware, and this fact would not change if said
virtual machine was implemented in another language. If one wanted to mitigate the
size overhead caused by this catering towards a language through compilation alone, the
compiler would have to translate paradigms into more suitable ones rather than simply
reimplementing them. This may be a subtle difference, but not only do modern compilers
lack the creativity for such a task, this kind of translation would likely not be acceptable
when interoperability with particular pre-existing components is a requirement.

There are several specific sources of overhead worth addressing. First would be variable
instruction size, seen not only in Java Card, but also many modern CPUs, specifically
the x86 architectures. In Java Card bytecode, the shortest instruction – which hopefully
for Shannon are the most common ones – have a size of 1. maX on the other hand
has a “fixed” instruction size of 2, with some pseudo-instructions affecting the way the
next instruction is handled, essentially creating instructions of size 4. As often the
exact same operations are done only with registers rather than a stack, code size is
effectively doubled in such methods. Even more code is required to push values onto
or pop values from the C stack. Interestingly, we will find later that many functions
grow by a factor smaller than two. In other words, native functions – while being
larger in terms of size – are smaller in terms of instructions. Put differently, it would

57

5. Evaluation

seem that individual instructions carry more meaning in maX than in Java Card. A
similar phenomenon can be found when comparing natural languages with compounds
(such as German) to those without. While some German sentences may very well be
longer than their English translation in terms of characters, they may contain less words.
For instance, the Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz (beef
labeling supervision duties delegation law) has 63 characters as opposed to 47 (including
spaces), but is one word instead of 6.

An additional factor would be glue code. The macros specified in Section 3.2 them-
selves often require functions to be implemented (or at least would benefit from being
implemented as functions), which also need to be included in the resulting binary and
are not immediately visible when inspecting the code of a single translated function.
(This issue would somewhat be mitigated by shared libraries.) The same holds for some
optimizations more or less. Last, but not least there are the entry points to the compiled
applet with additional glue code. First would be the resolution of Java methods to C
functions, which is implemented in the file main.c (see Section 3.3) as a large switch.
The OS only provides a key for this lookup. In a similar fashion catch exists as entry
point for exception handling. Provided with the thrown exception, this function needs
to find the corresponding handler and “call” it, or otherwise return to the OS.

When optimizing a binary for size, link-time optimizations which can completely erase
methods by pulling them into others, are often beneficial. However, this comes with
the drawback of no longer being able to easily inspect that function by itself, which is
important in the process of developing and evaluating other optimizations. For instance,
the heavy cost associated with adding one parameter to each call, which inspired the
function outlining optimization2 would likely have gone unnoticed without a disassembly
with debug information, which contained both the generated C code and the Java Card
bytecode from which it was generated as comments.

5.4. Experimental Results
Various experiments have been made with test and real-world applets to back up the
claims made earlier. We refer to them by using a prefix – “T” for test and “RWA” for
real world applets – and a 1-based index.

The first test applet has two purposes. First, it tracks the development of the compiler
by adding one testcase per feature and some for bugs. Second, it highlights specific
factors, that contribute towards size overhead of compiled methods w.r.t. their Java Card
counterparts. These should allow (perhaps limited) reasoning about the effects that
compilation will have on larger applets, particularly those appearing in the real world.

For a better comparison, optimizations are grouped into sets. A set is either empty
∅ or a list of identifiers denoting a given optimization. The interpretation of these

2One additional idea we initially had was to actually encode this added parameter by literally
inserting it after the system call instruction and having the affected system call adjust the program
counter so that this dummy instruction would be skipped. This attempt failed at the code generation
step for unclear reasons, presumably magic in the C compiler.

58

5. Evaluation

symbols is given in Table 5.1. We will compare ∅, (R), (R,CA), (R,CF), (R,O) and
(R,CA, CF , O) to the Java version. Note that O obscures some of the size of a method by
removing the size of the outlined functions completely. However, since outlined functions
can be shared by all of the methods, counting them to any one of them would be even
more dishonest than reporting a slightly smaller size.

Key Meaning
∅ Should mean “no optimizations”, but actually does include the rerout-

ing of effectively final methods. The flags for that are automatically
added by the build system used to wrap compiler calls.

R DDG contractions (GraphReducer).
CA Array cache.
CF Field cache.
O Function outlining.

Table 5.1.: Optimization symbols and their meaning.

The first set of comparisons concerns methods relevant to the applet lifecycle, those
methods being <init> – also known as the constructor –, install and process. The
sizes for those methods can be seen in Table 5.2. It can be seen, that no optimization
affects install, even though it calls <init>. This is because a constructor is effectively
final and can thus be called directly. <init> uses some array and field operations, but
only touches each of them once and thus is only affected by outlining. process does
heavier work and apparently touches some fields at least twice, thus benefitting from the
field cache.

Method <init>()V install([BSB)V process(<APDU>)V
Java 151 24 746
Native ∅ 328 40 1194
Native (R) 328 40 1178
Native (R,CA) 328 40 1178
Native (R,CF) 328 40 1122
Native (R,O) 296 40 950
Native (R,CA, CF , O) 296 40 910

Table 5.2.: Java Card runtime related functions and their sizes when compiled with dif-
ferent options. <APDU> is an abbreviation of Ljavacard/framework/APDU;.

The next set of comparisons concerns various variants of the Fibonacci microbench-
mark. fib is the iterative version, fibrec the recursive, and fibrec_s is also the re-
cursive version, but declared static. Their sizes can be seen in Table 5.3 and differences
in their implementation are immediately obvious. fibrec_s never shrinks, because it is
effectively final and the recursion is therefore as effective as it can be, fibrec is shrunk
through outlining to the same size, supporting the claim about the cost of reordering
arguments on maX – note that a stub still needs to be generated, though – and fib is

59

5. Evaluation

only slightly improved through DDG reduction. A better version of this compiler could
through reasoning about this also make fibrec as effective as fibrec_s, but such an
optimization is not implemented.

Method fib(S)S fibrec(S)S fibrec_s(S)S
Java 24 27 25
Native ∅ 46 56 40
Native (R) 42 56 40
Native (R,CA) 42 56 40
Native (R,CF) 42 56 40
Native (R,O) 42 40 40
Native (R,CA, CF , O) 42 40 40

Table 5.3.: Variants of the Fibonacci microbenchmark and their sizes when compiled
with different options.

Apart from the Fibonacci function, there are further mathematical benchmarks, shown
in Table 5.4. crc16_ISO3309 is an implementation of a cyclic redundancy check accord-
ing to the mentioned ISO standard. Funnily enough, the generated C code is already
better than the Java code it was generated from. The effects of outlining are negligible
in this case – no other method uses these fields. max0 is our idea of how to troll compiler
developers. The normally straightforward implementation of max using the ternary op-
erator is wrapped in an identity preserving sum (or in plain English, 0 is added to the
result). Since the Java compiler performs no optimizations whatsoever, the C compiler
reaches the point of not caring if no optimizations are performed by the compiler of this
thesis. Luckily enough, contracting the DDG fixes this.

Method crc16_ISO3309(S[BS)S max0(SS)S
Java 139 11
Native ∅ 136 28
Native (R) 136 10
Native (R,CA) 136 10
Native (R,CF) 136 10
Native (R,O) 132 10
Native (R,CA, CF , O) 132 10

Table 5.4.: Other mathematical functions. Note that crc16_ISO3309 also initializes a
lookup table on the first run and the code for that is inside the function itself.

Finally, some benchmarks are given for the operations on fields. Both addMember and
subtractMember load two fields to perform the respective operations that is addition or
subtraction upon them. The results are shown in Table 5.5 and the numbers speak for
themselves – even with optimizations, they are still horrible.

While other test applets exist (e.g. one that mimics the “echo” command has been
used as a proof of concept elsewhere), only the above was used for the purpose of

60

5. Evaluation

Method addMember()S subtractMember()S
Java 6 6
Native ∅ 18 20
Native (R) 18 20
Native (R,CA) 18 20
Native (R,CF) 18 20
Native (R,O) 14 16
Native (R,CA, CF , O) 14 16

Table 5.5.: Trivial operations on fields.

Method Java Native worst Native best Ratio worst Ratio best
<init> 151 328 296 2.1721854 1.9602649
install 24 40 40 1.6666667 1.6666667
process 746 1194 910 1.6005362 1.2198391
fib 24 46 42 1.9166667 1.75
fibrec 27 56 40 2.0740741 1.4814815
fibrec_s 25 40 40 1.6 1.6
crc16 139 136 132 0.97841727 0.94964029
max0 11 28 10 2.5454545 0.90909091
addMember 6 18 14 3 2.3333333
subtractMember 6 20 16 3.3333333 2.6666667

Table 5.6.: Summary of size comparisons on T1. As can be seen, the best results are
achieved with mathematical operations and moderately good results when
arrays are added to the mix. Object oriented programming primitives, such
as field accesses, however, vastly increase the size of a method, even with
optimizations.

61

5. Evaluation

benchmarking. All other results therefore come from real world applets, which are
exactly the kinds of applets to be optimized.

The first real-world applet performs some file system operations interleaved with an
AES-based authentication scheme as part of a larger transaction. The performance
for one such transaction is compared in Table 5.7. As indicated in the table, the native
version is 17% faster than the Java version overall. Performance is significantly improved
in all major parts except the authentication, which might be an indicator, that it defers
to an already existing accelerator or calls into some library to do the main work.

Command Java [us] Native [us] Difference[ms] Ratio Native:Java
1.select() 20926 19985 0.941 0.9550320176
2.read(A, 20) 25777 23363 2.414 0.9063506226
3.auth(K_A) 207216 206706 0.51 0.9975388001

53497 52803 0.694 0.9870273099
4.read(B, 32) 174357 138450 35.907 0.7940604622
5.read(C, 12) 143754 123501 20.253 0.8591134855
6.read(D, 37) 167003 126738 40.265 0.7588965468
7.read(E, 32) 162478 126162 36.316 0.7764866628
8.read(F, 35) 165292 126448 38.844 0.764997701
9.read(G, 35) 165217 126511 38.706 0.7657262872
10.read(H, 48) 177179 128026 49.153 0.7225799897
11.read(I, 13) 145046 123988 21.058 0.8548184714
12.read(J, 24) 155126 125203 29.923 0.8071051919
13.read(K, 13) 145081 123965 21.116 0.854453719
14.auth(K_B) 199313 198300 1.013 0.9949175418

53572 52816 0.756 0.9858881505
15.write(L, 35) 195373 149835 45.538 0.7669176396
16.write(G, 35) 184547 139080 45.467 0.7536291568
17.write(D, 37) 186445 139262 47.183 0.746933412
18.write(C, 12) 163303 136480 26.823 0.8357470469
19.write(B, 32) 183711 141292 42.419 0.7690992918
20.commit() 213839 201358 12.481 0.941633659
sum [ms] 3288.052 2730.272 557.78 0.8303615636

Table 5.7.: A single transaction in RWA1. Note that the sum only carries commands 3
to 20, as the first two are only required once.

The second real-word applet is a large banking applet that was heavily abused for
feature testing in the initial phase. In fact, it is so large that it requires all of size-
related optimizations to fit on the card with all features implemented. Most test results
for this applet are from an earlier stage of development, in which not all features were
available. For instance, this applet has some exception handlers that greatly reduce
its size were they to be dropped from the binary (as they were before exceptions were
implemented). These results are therefore of little meaning. Once the compiler was

62

5. Evaluation

fully implemented, however, this applet could be tested on real hardware, producing the
results in Table 5.8. As can be seen in the table, the room for improvement is rather
small, because the applet relies strongly on other components (it is barely a fifth of the
total runtime). Still, its performance was decently improved.

Time [ms] Difference Ratio
Java 108.56 0 1
(applet) 20
Native 100.74 7.82 0.928
Native + short accessors 99.32 9.24 0.915

Table 5.8.: A single test run of RWA2. The Java version is compared against two native
versions: one with all optimizations applicable to just the applet and with
arrays mapped into the C runtime, and one where additionally the short ac-
cessors for byte arrays in javacard.util have been rerouted to an optimized
version.

The third real-world applet is intended for the long-time storage of data and readout
at request. There are two “phases”, which can be distinguished in this applet: personal-
ization or perso, in which data is written, and read in which data is only read. Note that
perso also carries out a read to check whether the data is actually written as expected.
The comparison of the applets with respect to these phases are done in Table 5.9. As
can be seen, performance only improves slightly – by less than 5% to be exact – which
was expected to be the case due to the applet’s heavy use of accelerators.

Phase Java [ms] Native [ms] Difference [ms] Ratio Native:Java
Perso 3886.48641975 3800.68119975 85.80522 0.9779221614
Read 818.5 784 34.5 0.9578497251

Table 5.9.: Comparison of Java and native versions of RWA3 with corrected values.

The size overhead compilation induces on RWA1 and RWA2 is also evaluated. Both
grow to about 150% of their original size, but at least in the case of RWA2, this overhead
can be dropped to 15% through partial compilation.3

Size results for both testing and real world applets are summarized in Figure 5.1
and performance results in Figure 5.2. As can be seen from either the figures or the
tables, the best performance result is a runtime reduction of roughly 17%. Compared
to Gressl’s results, who reports a runtime reduction of 27% with their reference applet,
these improvements might seem rather disappointing. However, while this approach has
an expected size increase of roughly 150% on average and up to 300% in exceptionally
bad situations, their reference applet grows beyond three times in size, so one can still
consider this contribution a success.

3This number might change w.r.t. to the way methods are filtered. For this test, any method invoked
after the personalization phase was kept and the rest dropped. It may very well be that this does not
include all possible post-perso commands.

63

5. Evaluation

Figure 5.1.: Summary of size results. On the left individual functions are measured with-
out additional overhead, on the right total applet size is measured without
considering individual functions.

Figure 5.2.: Results of the performance evaluation.

64

5. Evaluation

5.5. Limitations
Nothing is without limits, but this compiler has so many, that they can be split into
three categories. Firstly, there are compatibility limitations with regards to the applets
that can be compiled and run as well as platform requirements. Second, the compiler
lacks certain features that a “decent” (for some value of decent) compiler would have.
And last but not least, there are bugs.

5.5.1. Compatibility
It goes without saying that enabling native code for applets, rather than just system
libraries at the vendor’s discretion is not quite conforming to the Java Card standard.
However, there are further issues to be pointed out.

• The supporting infrastructure of the compiler was written with Java Card specifi-
cations of the version 3.0.5 in mind. As of January 2019, Oracle [23] has published
a new version, which among other things updates the CAP file format. At the
time of writing, this format is not yet supported.

• While not explicitly stated in the rest of this document, a few of the algorithms
discussed in Section 4.1.2 and Section 4.2.1 implicitly assume short (equivalently
int16_t) to be the only or largest data type that is to be handled, among others
specifically

– Algorithm 3 assumes this to be the case, as both the stack and locals are
short arrays. Conversions to byte are implicitly followed by a conversion
back to short, just like the JVM would do it.

– Algorithm 6 assumes this to be the case, as it only regards stack[i] for some
i, which itself is a short value.

This of course makes the current version of the compiler incompatible with applets
that require the 32-bit extension of Java Card.

• Regarding the hardware the code is supposed to run on, there are additional re-
quirements.

– To achieve a separation between JRE and CRE, their memories need to be
separated as well. In other words, virtual memory is required.

– To achieve a separation of runtime environments and resources, the OS needs
to be running with different privileges than said environments, specifically
the privilege to access such resources.

• As the original bytecode of compiled methods and constant pool indices inlined
into the generated code, the RefLocationComponent (or Reference Location Com-
ponent, whichever you prefer), no longer holds meaningful values after the trans-
formation. In fact, they are cleared even if some methods are retained, so as to not
create a false sense of “correctness”. In any case, the contents of this component

65

5. Evaluation

are not to be trusted once native code is present. In a similar manner, the contents
of the ConstantPoolComponent shall not be “optimized” after compilation, as that
would break the generated code.

• Java Card allows vendors to add their own bytecodes to the machine. Such exten-
sions are not handled by this compiler.

• As Pizlo et al. [25] note, directly translating Java Card bytecode to C code can
cause problems due to undefined behaviour. For instance, signed integer over-
flow in additions is undefined (but usually causes wraparound), whereas in Java
wraparound is required. Unlike them, we are not cautious about these cases, since
most non-exotic compilers do tend towards the same behaviour as Java. In cases,
where this does not hold, users may have to alter the compiler to emit safe instruc-
tions or – if barred the ability to do so – manually or automated through scripts
alter the resulting C code.

5.5.2. Lacking Features
Rather than “Future Work”, this is work that would under normal circumstances be
part of a compiler, but aren’t included in this compiler for reasons that should perhaps
not be questioned too strongly.

• The compiler currently lacks type checking, and what checks are made can be
disabled for “optimization”.

– Neither is any analysis on class relations performed. Instead, objects are all
conflated to a single type.

• The compiler also doesn’t check for compliance of the bytecode with any require-
ment that may be mandated by Java Card. This check (as well as type checks)
are to be done by a bytecode verifier instead.

• The compiler does not understand the concept of a “pure” function and thus also
does not infer purity, making some optimizations more conservative than they need
to be.

5.5.3. Known Bugs
All software contains bugs, and this compiler is no exception. This section points out
notable ones.

• Equivalence checks in the DDG confuse “maybe” and “no” with each other (for
more details, see Appendix A, which documents how it should be, rather than how
it is). This is not a “big” deal, since the two are often conflated later on, but
it may end up causing troubles sometime. However, there are also instances, in
which “maybe” is interpreted as “potentially yes”, which might cause significantly
more problems for the poor soul who wants to fix this bug.

66

5. Evaluation

• The DDG reduction as described in Section 4.3.5 actually led to a strange bug
with some programs, in which branches would be translated wrongly. We still
don’t fully understand this bug, but rather circumvented it by not replacing stack
nodes which end in a decision node. This detail is hidden from the reader in the
given examples to make them easier understandable.

• The DDG reduction is also oblivious to exception ranges and may move some
operations into or out from them as a result. This is usually not a problem, since
applets tend to be written (and compiled) in a way that storage of the result of an
operation (if any) is still within the same range(s) as that operation.

• The Java Card OS used for evaluation currently ignores some timeouts while in the
CRE, so they had to be reconfigure. The exact issue will likely not be replicated by
other systems, though there may be other causes for the same results, including,
but not limited to, the deliberate deactivation of such timeouts when the CRE
can not be preempted. (The OS in question should be able to preempt the CRE,
however, so it seems that timeouts are merely ignored by accident.)

5.6. Security Considerations
As already noted at the very start of this thesis, letting arbitrary C code run freely on
a smartcard is a potential security risk. In this section, a few ways are listed by which
the compiler or supporting architecture might be abused for various attacks. Most
of these attacks are purely hypothetical, as the platform-specific resources required to
even compile an applet for their smartcards, let alone run it on them, are handled by the
vendor, who would only shoot themselves into their knees, if they maliciously introduced
bugs in their own hardware based on the writings below.

5.6.1. Type confusion
As the compiler sees everything as short (see Section 5.5), it would certainly be possible
to carry out some of the attacks described by Mostowski et al.[19] at least partly. The
compiler would happily emit code, which unsafely casts an object or array to any other
type. However, when it comes to using the object as one of the new type – whether it
is from the JRE or CRE no longer matters at this point – both have to pass through a
barrier (the OS) to access the data of this object. Ideally, the checks within this barrier
should be sufficient to detect such malicious behaviour, in other words, the operating
system is aware of Java Card data types and (correctly) checks an object’s real type.

5.6.2. Object reference manifacturing
In a similar fashion to the previous attack, one might cast arbitrary shorts to objects.
Since an “object” on the Java Card stack is little more than an index in some hidden list,
with said indices very likely simply increasing as more objects get created, an attacking
applet can try to cast a range of values to references of a given type (using checkcast

67

5. Evaluation

or instanceof). An attacker who knows the order in which objects are created by
their victim applet, might also after obtaining just one object from said applet infer
the references of the rest, and so on, and so forth. Such casts of shorts to objects are
obviously not allowed in the Java language and they might also be detected by the VM
depending on how it is implemented. Within C code however, all type information that
could be used to prevent this part of the attack is lost, forcing the system to treat the
shorts as if they were genuine objects.

It turns out, however that the potential harm of this attack is minuscule in the presence
of the Java Card applet firewall[21, pp. 43–48]. As specifically outlined in [21, 6.1.4.
Object Access], any usage of the bytecodes

getfield, putfield, invokevirtual, invokeinterface, athrow, <T>aload,
<T>astore, arraylength, checkcast [and] instanceof

shall only be performed if the “owning context [of the object] is the currently active
context”. Assuming that this firewall is implemented correctly, the attack mentioned
above will always fail with a SecurityException unless the applet would already be
allowed to access the object. This not only prevents an attacker from illegally accessing
objects, but it might as well prevent them from learning anything about the underlying
object that they do not already know, unless there was an additional side channel, e.g.
the exception is thrown faster in the case of arrays or nonexistent objects.

Of course, for this to work, one has to assume that implementing the applet firewall
is still possible with all extensions. However, only one comes to mind that could cause
potential problems, said extension being the mapping of arrays (or objects generally for
that matter) into the runtime as described in Section 4.3.4. That being said, it would not
be unreasonable to simply unmap the corresponding objects if another context becomes
owner of the object.

5.6.3. Arbitrary Code Execution
Function rerouting in its more general version (Section 4.3.3) allows, nay, requires arbi-
trary code execution to work at all. As such, an attacker could write a malicious function
replacing some generic function that is likely to be called, like javacard.util.getShort
or something within javacard.framework and perform anything they want with it. Due
to the separation of runtimes and applets, the effects are limited to whatever can be done
with Java Card bytecode on a given card. However, this does not exclude malicious be-
haviour, as an applet could certainly read one of its own secret keys into some byte array
and share that array with another applet or send it over an application protocol data
unit (APDU).

Since this is the intended use of this feature, the only way around its problems would
be not using it. This decision ultimately lies with the one who compiles the binary, i.e.
the vendor, who would already be able to inject arbitrary Java Card bytecode into any
of the applets running on their smartcard. As trust in the vendor – unfounded though
it may be – would first need to be established before handing any applet to them, this
is hardly a real attack surface.

68

5. Evaluation

In a similar manner, the loading mechanism that a smartcard would need to have
to load extended CAP files, allows for some degree of arbitrary native code execution.
In the setting used for evaluation, this is mitigated by preloading the applet onto the
smartcard – in other words, on-the-fly installation of applets with native components,
which is still possible for normal Java Card applets, is prohibited for those with native
components. There are potentially other solutions to this issue that make use of code
signing.

5.6.4. Exception Handling
As we’ve described in Section 3.1, the CRE exception stack – i.e. the part of the exception
stack that is used by functions lying in the CRE – lies in the CRE, more importantly in
directly accessible memory from the view of such a function. This fact is partly obscured
by two things: first the fact that Java Card bytecode is compiled, which itself makes
no reference to the exception stack whatsoever, second that the only code emitted in
order to deal with the stack are macros, which hide platform-dependant details. One
such detail would for instance be the well-known address of the pointer to the top of the
exception stack.

Due to the above, it is highly unlikely that code is generated which messes up the
exception stack. However, an attacker with access to it and the ability to run arbitrary
code in an (implied) dependency of a given applet, may perform a denial of service attack
by crafting a malicious stack frame, which – depending on the course of action that the
program takes – causes an access violation, which ends up in a security exception or a
card reset. For instance, they might insert an empty frame, which would cause a read
violation once the exception range hits its end. They might also fake a handler with
bogus values, which causes a similar violation.

A more sophisticated attacker may also set up handlers in a way that they don’t catch
the right exception types, possibly altering the control flow in-applet or themselves
catching the exception in another applet they prepared. Finally, an attacker could set
up their own exception handler in such a way that execution jumps to an arbitrary point
in the victim’s binary, which may even be used for some return oriented programming.

All of these attacks can of course be averted by handling the exception stack in the
OS, as none of these attacks are possible without direct access to it. Since the compiler
relies on platform-dependant macros to handle exceptions, this can be done simply by
rewriting the header that defines them. (Of course, said functionality must first be
implemented in the OS.) That being said, the cost of expensive system calls can also
be saved by not giving access to the exception stack to arbitrary code. One would be
to not allow any applets other than the ones compiled from Java Card bytecode access
to the exception stack. Sadly, this would then turn into a problem of securely marking
such applets, or one simply couldn’t install any applets except those compiled by some
“trusted” compiler. (Remember that it is still the chip vendor who makes this decision.)
Another method would be to use code analysis tools to determine whether an applet
accesses global variables in a context in which it shouldn’t be allowed to. How accurately
such tools can find malicious accesses is however a topic for papers in other fields.

69

5. Evaluation

5.6.5. Unintentional data leakage
Recall that in C, functions put data onto the stack once it becomes too large to fit into
a register and also uses the same stack to manage call frames. This is important, when
considering cross-package function calls with a shared stack (or registers). “Accidental”
access of some information is already prevented by restricting the stack of a function to
exclude the stack of its caller(s). However, a malicious applet might call some function
of another applet which uses secret information and then inspect the called functions’
stack to extract e.g. crypto keys. This can be mitigated by clearing the stack (either
with zeros or random data) of the called function. In a similar fashion, it needs to be
ensured that the call of another function changes no register in the calling code safe for
those designated to capture return values.

Note that this does not exclude any data leakage that occurs from functions called
directly, since they do not travel through the OS to arrive at their target. However, the
impact of such “leakage” is minimal, as the attacker would attack their own applet (or
rather package), which they may freely do if they so wish.

5.6.6. Introducing side channels
It is worth pointing out that the compiler pays no attention to potential side channels it
might create through optimizations. For instance, using the array cache might make one
code path faster, which would allow an attacker to infer (parts of) a key. Optimizations
performed by the C compiler can also produce a side channel involuntarily.

If you plan on compiling such code with this compiler, we strongly suggest to only
use function outlining and redirection and to tune the C compiler to not perform any
optimizations that interfere with timing either – that is, assuming that your code was
already written with timing in mind. Consider also passing the resulting program to a
side-channel eliminating compiler, such as the one proposed by Wu et al. [32] – although
this specific one might be of little use, because the resulting code is still obfuscated to a
point, where the actual secret is not apparent – how exactly should their compiler deal
with BALOAD, for instance?

In theory, compilation to C also makes it possible to link a (small) crypto library
against the application, which would not suffer from the above weaknesses. However,
doing so in a meaningful way would require the compiler to be handed to the application
developer rather than being kept behind closed doors with the hardware vendor, which
would open up much larger potential for exploitation (see earlier sections). Again, a
software developer writing crypto code in Java has to hope that the vendor either does
not transform their code at all or performs security-aware transformations. This too is
little different from the implicit trust already put into the hardware vendor that some
given Java Card bytecode has no side-channels.

70

6. Conclusion
A compiler was constructed together with a runtime environment and an FFI to perform
a method-based compilation of Java Card bytecode into C, and subsequently native
code. Some optimizations were added to said compiler to improve the performance of
the generated code, and arrive at decent speedup compared to the original code, while
keeping size overhead minimal by adding the generated code as a shared object to the
original CAP file.

The potential for future work is quite large in the realms of optimization and security.
In terms of optimizations, a fair number of techniques were left out, including the ex-
traction of invariants, loop unrolling and other operations on basic blocks. These could
be of interest, as the C backend lacks relevant information that this compiler would
have. In a similar manner, the compiler could infer function purity, which could also
prove useful (see Appendix B for motivation). Methods could be (partially) resolved at
compile time to save runtime spent doing lookups in the JCVM. The overall size usage
of a set of applets utilizing native components could potentially be reduced by allowing
dynamic linkage between native components, though the Applet Firewall would need to
be considered in such a design as well.

In terms of security, the compiler should be modified, so as to not invoke undefined
behaviour, and may on top be modified to better integrate with side-channel eliminating
techniques. Systems designed to run applets containing native code may in turn want
to employ their own rules when it comes to loading and sandboxing such applets.

71

Bibliography
[1] Austin Armbruster et al. “A real-time Java virtual machine with applications in

avionics”. In: ACM Trans. Embedded Comput. Syst. 7.1 (2007), 5:1–5:49. doi: 10.
1145/1324969.1324974. url: https://doi.org/10.1145/1324969.1324974.

[2] Faisal Aslam et al. “Optimized Java Binary and Virtual Machine for Tiny Motes”.
In: Distributed Computing in Sensor Systems, 6th IEEE International Conference,
DCOSS 2010, Santa Barbara, CA, USA, June 21-23, 2010. Proceedings. 2010,
pp. 15–30. doi: 10.1007/978-3-642-13651-1_2. url: https://doi.org/10.
1007/978-3-642-13651-1%5C_2.

[3] Michael Baentsch et al. “JavaCard-from hype to reality”. In: IEEE Concurrency
7.4 (1999), pp. 36–43.

[4] Per Bothner. Kawa Reference Manual. url: https://www.gnu.org/software/
kawa.

[5] Niels Brouwers, Koen Langendoen, and Peter Corke. “Darjeeling, a feature-rich
VM for the resource poor”. In: Proceedings of the 7th International Conference on
Embedded Networked Sensor Systems, SenSys 2009, Berkeley, California, USA,
November 4-6, 2009. 2009, pp. 169–182. doi: 10.1145/1644038.1644056. url:
https://doi.org/10.1145/1644038.1644056.

[6] Joshua Ellul. “Run-time compilation techniques for wireless sensor networks”. PhD
thesis. University of Southampton, 2012.

[7] Joshua Ellul and Kirk Martinez. “Run-time compilation of bytecode in wireless
sensor networks”. In: Proceedings of the 9th International Conference on Infor-
mation Processing in Sensor Networks, IPSN 2010, April 12-16, 2010, Stock-
holm, Sweden. 2010, pp. 422–423. doi: 10.1145/1791212.1791286. url: https:
//doi.org/10.1145/1791212.1791286.

[8] Andreas Gal, Christian W. Probst, and Michael Franz. “HotpathVM: an effec-
tive JIT compiler for resource-constrained devices”. In: Proceedings of the 2nd
International Conference on Virtual Execution Environments, VEE 2006, Ottawa,
Ontario, Canada, June 14-16, 2006. 2006, pp. 144–153. doi: 10.1145/1134760.
1134780. url: https://doi.org/10.1145/1134760.1134780.

[9] Mark Galassi et al. Guile Reference Manual. Version 2.2.3. Free Software Organi-
zation. Dec. 2017.

[10] Frank Golatowski et al. “JSM: A small Java processor core for smart cards and
embedded systems”. In: Target 2.10 (2002), p. 11.

72

https://doi.org/10.1145/1324969.1324974
https://doi.org/10.1145/1324969.1324974
https://doi.org/10.1145/1324969.1324974
https://doi.org/10.1007/978-3-642-13651-1_2
https://doi.org/10.1007/978-3-642-13651-1%5C_2
https://doi.org/10.1007/978-3-642-13651-1%5C_2
https://www.gnu.org/software/kawa
https://www.gnu.org/software/kawa
https://doi.org/10.1145/1644038.1644056
https://doi.org/10.1145/1644038.1644056
https://doi.org/10.1145/1791212.1791286
https://doi.org/10.1145/1791212.1791286
https://doi.org/10.1145/1791212.1791286
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/1134760.1134780

Bibliography

[11] Lukas Gressl. “Design and Implementation of a Java Card Cross-Compilation
Framework”. MA thesis. Graz University of Technology, 2016.

[12] Matthias Grimmer et al. “An Efficient Native Function Interface for Java”. In:
Proceedings of the 2013 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools.
PPPJ ’13. Stuttgart, Germany: ACM, 2013, pp. 35–44. isbn: 978-1-4503-2111-2.
doi: 10.1145/2500828.2500832. url: http://doi.acm.org/10.1145/2500828.
2500832.

[13] Roberto Ierusalimschy and Luiz Henrique. Lua Reference Manual. Version 5.3.
2017.

[14] Java Native Access. https://github.com/java-native-access/jna.
[15] Dawid Kurzyniec and Vaidy Sunderam. “Efficient cooperation between Java and

native codes–JNI performance benchmark”. In: The 2001 International Conference
on Parallel and Distributed Processing Techniques and Applications. Jan. 2001.

[16] Konstantinos Markantonakis and Raja Naeem Akram. “Multi-Application Smart
Card Platforms and Operating Systems”. In: Smart Cards, Tokens, Security
and Applications. Ed. by Keith Mayes and Konstantinos Markantonakis. Cham:
Springer International Publishing, 2017, pp. 59–92. isbn: 978-3-319-50500-8. doi:
10.1007/978-3-319-50500-8_3. url: https://doi.org/10.1007/978-3-319-
50500-8_3.

[17] Yukihiro Matsumoto. Creating Extension Libraries for Ruby. url: https://docs.
ruby-lang.org/en/trunk/extension_rdoc.html.

[18] Oliver Maye and Michael Maaser. “Comparing Java Virtual Machines for Sensor
Nodes - First Glance: Takatuka and Darjeeling”. In: Grid and Pervasive Computing
- 8th International Conference, GPC 2013 and Colocated Workshops, Seoul, Korea,
May 9-11, 2013. Proceedings. 2013, pp. 181–188. doi: 10.1007/978-3-642-38027-
3_19. url: https://doi.org/10.1007/978-3-642-38027-3%5C_19.

[19] Wojciech Mostowski and Erik Poll. “Malicious code on Java Card smartcards: At-
tacks and countermeasures”. In: International Conference on Smart Card Research
and Advanced Applications. Springer. 2008, pp. 1–16.

[20] Gilles Muller, Fabrice Bellard, and Charles Consel. “Harissa: a Flexible and Effi-
cient Java Environment Mixing Bytecode and Compiled Code”. In: Proceedings of
the 3rd Conference on Object-Oriented Technologies and Systems. Usenix, 1996,
pp. 1–20.

[21] Oracle. Java Card 3 Platform Runtime Environment Specification. Classic. Ver-
sion 3.0.5. Oracle. May 2015.

[22] Oracle. Java Card 3 Platform Virtual Machine Specification. Classic. Version 3.0.5.
Oracle. May 2015.

[23] Oracle. Java Card 3 Platform Virtual Machine Specification. Classic. Version 3.1.0.
Oracle. Jan. 2019.

73

https://doi.org/10.1145/2500828.2500832
http://doi.acm.org/10.1145/2500828.2500832
http://doi.acm.org/10.1145/2500828.2500832
https://doi.org/10.1007/978-3-319-50500-8_3
https://doi.org/10.1007/978-3-319-50500-8_3
https://doi.org/10.1007/978-3-319-50500-8_3
https://docs.ruby-lang.org/en/trunk/extension_rdoc.html
https://docs.ruby-lang.org/en/trunk/extension_rdoc.html
https://doi.org/10.1007/978-3-642-38027-3_19
https://doi.org/10.1007/978-3-642-38027-3_19
https://doi.org/10.1007/978-3-642-38027-3%5C_19

Bibliography

[24] Oracle. Java Native Interface Specification. Version 11. Oracle. 2017. url: https:
//docs.oracle.com/en/java/javase/11/docs/specs/jni.

[25] Filip Pizlo, Lukasz Ziarek, and Jan Vitek. “Real time Java on resource-constrained
platforms with Fiji VM”. In: Proceedings of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems, JTRES 2009, Madrid, Spain,
September 23-25, 2009. 2009, pp. 110–119. doi: 10.1145/1620405.1620421. url:
https://doi.org/10.1145/1620405.1620421.

[26] Niels Reijers and Chi-Sheng Shih. “Ahead-of-Time Compilation of Stack-Based
JVM Bytecode on Resource-Constrained Devices”. In: Proceedings of the 2017
International Conference on Embedded Wireless Systems and Networks, EWSN
2017, Uppsala, Sweden, February 20-22, 2017. 2017, pp. 84–95. url: http://dl.
acm.org/citation.cfm?id=3108022.

[27] Damien Sauveron. “Multiapplication Smart Card: Towards an Open Smart Card?”
In: Information Security Technical Report 14 (May 2009), pp. 70–78. doi: 10.1016/
j.istr.2009.06.007.

[28] Martin Schoeberl. “JOP: A Java Optimized Processor for Embedded Real-Time
Systems”. PhD thesis. Vienna University of Technology, 2005. url: http://www.
jopdesign.com/thesis/thesis.pdf.

[29] Doug Simon et al. “Java™ on the bare metal of wireless sensor devices: the Squawk
Java virtual machine”. In: Proceedings of the 2nd international conference on Vir-
tual execution environments. ACM. 2006, pp. 78–88.

[30] Richard M Stallman and Zachary Weinberg. GCC Reference Manual. Version 8.3.
Free Software Organization. 2018.

[31] Chih-Sheng Wang et al. “A Method-based Ahead-of-time Compiler for Android
Applications”. In: Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. CASES ’11. Taipei, Taiwan:
ACM, 2011, pp. 15–24. isbn: 978-1-4503-0713-0. doi: 10.1145/2038698.2038704.
url: http://doi.acm.org/10.1145/2038698.2038704.

[32] Meng Wu et al. “Eliminating timing side-channel leaks using program repair”. In:
Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21,
2018. 2018, pp. 15–26. doi: 10.1145/3213846.3213851. url: https://doi.org/
10.1145/3213846.3213851.

[33] Zhang Jianjie et al. “A Java processor suitable for applications of smart card”.
In: ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat.
No.01TH8549). Oct. 2001, pp. 736–739. doi: 10.1109/ICASIC.2001.982668.

74

https://docs.oracle.com/en/java/javase/11/docs/specs/jni
https://docs.oracle.com/en/java/javase/11/docs/specs/jni
https://doi.org/10.1145/1620405.1620421
https://doi.org/10.1145/1620405.1620421
http://dl.acm.org/citation.cfm?id=3108022
http://dl.acm.org/citation.cfm?id=3108022
https://doi.org/10.1016/j.istr.2009.06.007
https://doi.org/10.1016/j.istr.2009.06.007
http://www.jopdesign.com/thesis/thesis.pdf
http://www.jopdesign.com/thesis/thesis.pdf
https://doi.org/10.1145/2038698.2038704
http://doi.acm.org/10.1145/2038698.2038704
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1109/ICASIC.2001.982668

Appendix

75

A. Equivalence Checking in the DDG
Some optimizations require equivalence checks in the DDG. When checking two nodes in
the DDG for equivalence, an answer is searched to the question of whether or not they
contain the same data. This is a trivalent question with a large room for “maybe”s.

In order to answer this question and leave as little room to “maybe”s as possible, this
compiler uses three heuristics, each more powerful than the one before while also being
more costly.

• Trivial equivalence check

• Equivalence modulo basic blocks

• Identical sources

The trivial equivalence check is – as its name suggests, trivial. The compiler checks
that the two nodes are either the same, or in the case of constants that their contents
are the same.

In the equivalence check modulo basic blocks, it follows the predecessors of variable
nodes until they are either more than one or no longer variables, and then appliies the
trivial equivalence check on these two.

Should both of these tests fail, it looks for the sources of a node. A source is in this
case either a non-variable node or a variable node that is a root1 of the DDG, whichever
is reachable first through its predecessors. As branches occur, a node may have multiple
predecessors, which do not necessarily share a source, hence it is possible for a node to
have multiple sources. In the case that they do have only one source, and the sources of
two nodes are the same, they can consider them equal. The same holds if the sources
were constants with the same content, but this check is somehow missing in the current
version. Otherwise, the sources of two nodes may overlap or not. If there is no overlap,
it is highly unlikely that they are the same. There could potentially be two different
nodes in the DDG encoding the same operation, which would make them equal, but the
compiler does not eliminate common subexpressions yet, so they are considered distinct.
If there is some overlap, then it may be possible for both nodes to have been assigned
to the same source. However, this cannot be asserted without venturing into symbolic
execution land, and therefore the result has to be considered a “maybe”.

1Although the DDG is certainly not acyclic just like the CFG, here the notion of a root as a node
with no ingoing edge actually applies.

76

B. Lost in translation: function purity
Currently the compiler has to assume that any function call may in theory modify each
and every object or array in existence. We already know that a firewall exists to prevent
unauthorized modification, but that would not prevent someone from deliberately calling
a function that modifies all objects within the scope of an applet anyway. Still, it is silly
to assume that all functions do that when we in fact know better. Sadly, it is not
really possible to annotate the C code in a way that the compiler understands which
modifications are or are not made. Instead, the compiler of this thesis would need to
take them into account.

Consider the following example. An applet uses a byte[] buffer to read and store
data. Some of that data is actually of type short, which can be extracted from the
buffer using javacard.framework.Util.getShort. Maybe some data is copied into
another buffer using javacard.framework.Util.arrayCopy. In either case, it is worth
noting that the source buffer is not modified in those calls, and neither are any other
objects safe for the destination buffer of arrayCopy.

Another example would be the typical Java programmer’s habit of wrapping field
accesses in (frankly meaningless) accessor methods. No getter will ever change anything
in any object and no setter should ever modify any data other than that associated with
its corresponding getter. On the plus side, the additional cost of writing a function call
each time to access some data will often convince the programmer to store its return
value in a local variable and use that for the rest of the function. However, if one was to
implement loop optimizations, it would not be clear whether that getter could be pulled
out from a loop or not. It would also not be clear whether any field access could be
pulled out from a loop in the presence of any accessor method without information of
what that method modifies (if it does).

If any of the above are mixed with field/array accesses and one decided to cache such
accesses – because we know that many programmers prefer to write code in a way that
it makes the access rather than storing the data in to them useless temporary variables
– caches would too quickly get invalidated for them to become useful. A lot of problems
would be alleviated by some kind of const keyword. Were the buffer in getShort to be
declared const, one would be able to assume that it is not modified within. However,
infering whether or not other data is modified remains a problem – an even bigger one
in fact. Such information would need to be taken from documentation or by actually
inspecting the code and putting it into some database or perhaps into an “extended”
export file. Once this database is established, however, one would be able to strengthen
the assumptions about invoked methods. Sadly, none of this is done yet.

77

C. Exception range semantics
In Section 5.5.3, it was pointed out that operations may move across exception bound-
aries, but it was also claimed that this rarely turns into an issue. This section delves
deeper into that claim and also somewhat discredits it, but before doing so, it is worth
pointing out, that the setup for this analysis differs from the one used in the main por-
tion. Namely, it consists OpenJDK version 1.8.0_212, Kawa 3.0 (3.0-0-g39797ea), and
Jasmin 2.4. To make things fair for platforms, which are not supported by Java Card
anyway, the desktop JVM is used instead of the JCVM.

public class NthJava
{

public static short nth(short[] arr, short i) {
try {

return arr[i];
} catch (IndexOutOfBoundsException ex) {

return 0;
}

}
}
Listing C.1: Example code for a class with a static method that returns the nth element

of an array or 0 if it doesn’t exist.

Consider the class NthJava as described in Listing C.1. It is obvious that the access
arr[i] is covered by the try block, but so would be the return statement – at least
visually. When compiling this to bytecode, one might be surprised to see that this is not
the case.

public static short nth(short[], short);
Code:

0: aload_0
1: iload_1
2: saload
3: ireturn
4: astore_2
5: iconst_0
6: ireturn

Exception table:
from to target type

0 3 4 Class java/lang/IndexOutOfBoundsException

78

C. Exception range semantics

As can be seen from the exception table, the range covered by the try block is from
0 (inclusive) to 3 (exclusive). In other words, the return statement is for all intents and
purposes considered “outside” of the exception range. This is the painful observation
that everyone will make when trying to mix return and finally in the wrong way.
Code written in such a manner would trigger the mentioned bug, but in reality, a lot
of code is written like Listing C.2 instead. The explicit return value prevents all errors
that would come from mixing try and return, both the bug described in Section 5.5.3
and the infamous try-finally behaviour.

public class NthJava2
{

public static short nth(short[] arr, short i) {
short ret;
try {

ret = arr[i];
} catch (IndexOutOfBoundsException ex) {

ret = 0;
}
return ret;

}
}

Listing C.2: NthJava with explicit return value.

The bytecode it produces becomes larger, but the assignment to the local variable
that contains the return value is now inside the exception range, just as expected by the
compiler.

public static short nth(short[], short);
Code:

0: aload_0
1: iload_1
2: saload
3: istore_2
4: goto 10
7: astore_3
8: iconst_0
9: istore_2

10: iload_2
11: ireturn

Exception table:
from to target type

0 4 7 Class java/lang/IndexOutOfBoundsException

But why limit ourselves to Java? Well, for one, the Java Card environment is very
limited and it would not make sense to use another language built on top of the JVM

79

C. Exception range semantics

that requires an even larger runtime environment – to which your favourite programming
language likely belongs if it has one. On top of that many languages have quite similar
exception semantics to Java, even if their syntax may differ.

Okay, you might say, but what about languages with different exception semantics,
reminding us that there are languages with completely different concepts for everything,
exceptions included. Consider for example the Kawa scheme implementation. Rather
than writing statements and statement blocks as one would in other languages, Lisp
dialects – among them Scheme – are built upon expressions, and blocks are simply a
sequence of expressions that are evaluated in order.1 Behold the Kawa implementation
of nth, which can be seen in Listing C.3.
(define (nth (array ::short[]) (i ::short)) ::short

(try-catch (array i)
(x java.lang.IndexOutOfBoundsException 0)))

Listing C.3: Kawa implementation of nth

The semantics of try-catch are outlined in the manual[4], but as that does not seem
to completely line up with how things actually work (at least at the time of writing),
they are also described here. The first argument is evaluated as an expression and if it
succeeds without an exception, then its result is returned. Otherwise, the rest of the
arguments is scanned for a handler given as (var cls stmt ...) where the currently
thrown exception is a subclass of cls. If so, it is bound to var and the statements are
evaluated with the last one being the returned value.

Having achieved knowledge of how Kawa exceptions are supposed to work in theory,
one can now verify, that this theory holds by running the compiler.

public static short nth(short[], short);
Code:

0: aload_0
1: iload_1
2: saload
3: istore_2
4: goto 10
7: astore_3
8: iconst_0
9: istore_2

10: iload_2
11: ireturn

Exception table:
from to target type

0 7 7 Class java/lang/IndexOutOfBoundsException

1This distinction is actually more contentious than it is made to seem. At the time of writing Kawa
sees expressions as a subcategory of statements, Guile sees statements as expressions used for side-
effects only and the Emacs Lisp reference uses both words without clearly defining either, sometimes
interchangeably.

80

C. Exception range semantics

Oh wait, that’s the same as the second Java version. To understand why, one could
dissect the compiler, but let’s not do that and instead think about this on a more
conceptual level. Kawa’s try-catch evaluates to the result of the body or the last
statement in a handler. Since an expression and the value it evaluates to are considered
the same in functional programming, the interpreter/compiler is tasked to allocate a new
value, store the given result in it and hand it to the outer expression. In conclusion, yes,
Kawa has different exception semantics from Java, but these are exactly the semantics
that can be considered sane, that cause no trouble. This might inspire some people
to write all their applets in Kawa, but sadly this is not all of the code generated by
the above snippet. There is more boilerplate generated to make this method callable
from Scheme, which relies on additional infrastructure, making it difficult to port this
example to Java Card without first porting the interpreter itself.

Moving on to the next language, there is another candidate that could be used to
actually write applets in: Jasmin, i.e. an assembly language for the Java VM. Since it’s
assembly, a developer can apply human intelligence to write exactly the code wanted by
the compiler while also turning it to a shorter and better version of the first one.

.method public static nth([SS)S

.limit stack 2

.limit locals 2
START:

aload_0
iload_1
saload
ireturn

OOPS:
iconst_0
ireturn

.catch java/lang/IndexOutOfBoundsException from START to OOPS using OOPS

.end method

Again, the resulting Java bytecode can be inspected to verify, that it matches expec-
tations.

public static short nth(short[], short);
Code:

0: aload_0
1: iload_1
2: saload
3: ireturn
4: iconst_0
5: ireturn

Exception table:
from to target type

0 4 4 Class java/lang/IndexOutOfBoundsException

81

C. Exception range semantics

Just as promised, one can write code that is both shorter and captures expected
exception semantics better than the initial Java version – although the gains achieved
in doing so don’t really translate that well to C. (Recall that the compiler generates
the variable ret similar to how it is manually inserted in the second Java version.) In a
similar fashion, however, a very nasty programmer could decide to only wrap the saload
in an exception range just to spite the compiler, not that this decision would end up
creating “better” C code even if exceptions were to be handled correctly.

Of course, these experiments are neither very thorough nor are the results from them
guaranteed to stay the same over time. In fact, one might (fearfully or hopefully) expect
future compilers to reason away variables explicitly created for the purpose of serving as
temporary return values, to do away with caught exceptions whose value is never used,
and so on, and so forth, especially when considering size-constrained environments like
Java Card. Hopefully this section has served as a small glimpse into how we currently
expect code to be written.

82

	Abstract
	Kurzfassung
	Acknowledgement
	Introduction
	Background and Related Work
	Notation and language
	Language Interaction
	JNI and variations
	Specialised Java Environments
	Java Card
	Other resource-constrained devices

	Bytecode to native code compilation
	Other smartcard platforms

	Design
	System Architecture
	Interfaces
	Build Process
	Compiler architecture

	Implementation
	Analysis
	Control Flow
	Data Flow
	Symbols

	Code Generation
	Translating Java Card bytecode to C
	Exception handling

	Optimizations
	Caches
	Function outlining
	Function call re-routing
	Mapping arrays into C runtime
	Contracting the DDG

	Evaluation
	Benefits and drawbacks of native code
	Benefits and drawbacks of optimizations
	Caches
	Function outlining
	Function call re-routing
	Mapping arrays into C runtime

	Overhead
	Experimental Results
	Limitations
	Compatibility
	Lacking Features
	Known Bugs

	Security Considerations
	Type confusion
	Object reference manifacturing
	Arbitrary Code Execution
	Exception Handling
	Unintentional data leakage
	Introducing side channels

	Conclusion
	References
	Equivalence Checking in the DDG
	Lost in translation: function purity
	Exception range semantics

