
Accessible SVG Charts
with AChart Creator

and AChart Interpreter

Christopher Alexander Kopel

Accessible SVG Charts
with AChart Creator and AChart Interpreter

Christopher Alexander Kopel B.Sc.

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Graz, 16 May 2021

© Copyright 2021 by Christopher Alexander Kopel, except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Zugängliche SVG-Charts
mit AChart Creator und AChart Interpreter

Christopher Alexander Kopel B.Sc.

Masterarbeit

für den akademischen Grad

Diplom-Ingenieur

Masterstudium: Information and Computer Engineering

an der

Technischen Universität Graz

Begutachter

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Graz, 16 May 2021

Diese Arbeit ist in englischer Sprache verfasst.

© Copyright 2021 Christopher Alexander Kopel, sofern nicht anders gekennzeichnet.

Diese Arbeit steht unter der Creative Commons Attribution 4.0 International (CC BY 4.0) Lizenz.

https://creativecommons.org/licenses/by/4.0/

Statutory Declaration
I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The document uploaded to TUGRAZonline is identical to the present
thesis.

Eidesstattliche Erklärung
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Dokument ist mit der
vorliegenden Arbeit identisch.

Date/Datum Signature/Unterschrift

Abstract

Presenting visual information to blind users may be regarded as one of the most complex challenges
in the field of accessibility. The confluence of data visualisations moving to the web and initiatives
towards web accessibility have led to a particularly promising approach: enriching SVG-based charts
with underlying data and semantic information in machine-readable form using ARIA roles and properties.

This thesis first surveys current approaches to web accessibility, chart accessibility, and the semantic
enrichment of SVG charts, concentrating on charts of tabular data, such as line, bar, and pie charts. A
number of proposed taxonomies of ARIA roles and properties for accessible SVG charts are discussed
and compared, leading to a new aggregate taxonomy, the AChart (Accessible Chart) taxonomy.

The remainder of the thesis presents AChart, a suite of open-source software tools written in TypeScript
with Node.js, which currently supports bar charts, line charts, and pie charts. AChart Creator is a
command-line tool which generates accessible SVG charts from CSV files using the D3 framework and
injecting ARIA roles and properties from the AChart taxonomy. AChart Interpreter is a client-side
web application which interprets an accessible SVG chart, displays side-by-side graphical and textual
versions of the chart, and can read out the chart using synthetic speech. Its user interface is screen reader
compatible, so it can be used by blind users to gain an understanding of a chart, as well as by developers
and chart authors to verify and validate the accessibility markup of an SVG chart. AChart Summariser
is a command-line tool which interprets an accessible SVG chart and outputs a textual summary of the
chart.

Kurzfassung

Die Darstellung visueller Informationen für die Zielgruppe blinder NutzerInnen kann als eine der kom-
plexesten Herausforderungen auf dem Fachgebiet Accessibility betrachtet werden. Das Zusammenspiel
zweier Faktoren, nämlich der steigenden Zahl an im Web veröffentlichten Datenvisualisierungen einerseits
und der Initiativen für Barrierefreiheit andererseits, haben in einen besonders vielversprechenden Ansatz
gemündet: die Anreicherung SVG-basierter Charts mit ihren zugrundeliegenden Daten und semantischen
Informationen in maschinell auslesbarer Form mittels ARIA-Attributen (sog. roles und properties).

Diese Arbeit untersucht zunächst aktuelle Ansätze der Web-Accessibility, der Erstellung zugänglicher
Charts und der semantischen Anreicherung von SVG-Charts. Betrachtet werden hierbei auf tabellarischen
Daten basierende Charts, wie zum Beispiel Linien-, Balken- und Kreisdiagramme. Mehrere vorgeschla-
gene Taxonomien von ARIA-Attributen für zugängliche Charts werden diskutiert, verglichen und in ein
neues System überführt, die AChart- (Accessible Chart) Taxonomie.

In den verbleibenden Kapiteln dieser Arbeit wird AChart vorgestellt, eine Sammlung quelloffener
Software-Werkzeuge, die in TypeScript und mit Node.js entwickelt wurde und in der aktuellen Version
Linien-, Balken- und Kreisdiagramme unterstützt. AChart Creator ist ein Kommandozeilenprogramm,
welches unter Verwendung des D3-Frameworks zugängliche SVG-Charts aus CSV-Dateien generiert
und mit ARIA-Attributen aus der AChart-Taxonomie versieht. AChart Interpreter ist eine Client-seitige
Webanwendung, die ein zugängliches SVG-Chart interpretiert, nebeneinander grafische und textuelle
Versionen des Charts anzeigt und das Chart per Sprachsynthese vorlesen kann. Die Benutzeroberfläche
wurde barrierefrei gestaltet, so dass blinde Nutzer das Programm dazu einsetzen können, ein Chart zu ver-
stehen. Gleichzeitig kann es von Entwicklern und Chart-Autoren für die Verifizierung und Validierung des
Accessibility-Markups von SVG-Charts verwendet werden. AChart Summariser ist ein Kommandozeilen-
Werkzeug, welches ein zugängliches SVG-Chart interpretiert und eine textuelle Zusammenfassung des
Charts ausgibt.

Contents

Contents iii

List of Figures v

List of Tables vii

List of Listings ix

Acknowledgements xi

Credits xiii

1 Introduction 1

2 Web Accessibility 5
2.1 Definitions . 5
2.2 Assistive Technology . 6

2.2.1 Braille . 6
2.2.2 Computer Input and Output 6
2.2.3 Screen Readers . 9

2.3 The Web Content Accessibility Guidelines 12
2.3.1 Principle 1: Perceivable . 13
2.3.2 Principle 2: Operable . 13
2.3.3 Principle 3: Understandable 13
2.3.4 Principle 4: Robust . 14
2.3.5 Further Development . 14

2.4 Techniques for Accessible Web Pages 14
2.4.1 Semantic HTML . 14
2.4.2 The WAI-ARIA System . 16
2.4.3 The Accessibility Tree . 17

3 Chart Accessibility 21
3.1 Tactile Output. 23

3.1.1 Static Output . 24
3.1.2 Refreshable Tactile Displays 26

3.2 Auditory Output . 28
3.2.1 Speech Output . 28
3.2.2 Sonification . 29
3.2.3 Combined Speech Output and Sonification 29

i

3.3 Multimodal Output . 30
3.4 Screen-Reader-Friendly Output . 31
3.5 Charting Libraries with Accessibility Features 33

3.5.1 Highcharts. 33
3.5.2 FusionCharts . 34
3.5.3 Semiotic . 34
3.5.4 amCharts . 39
3.5.5 AnyChart . 39
3.5.6 evoGraphs . 39
3.5.7 ChartMaster . 42

3.6 Describler . 42
3.6.1 Chart Root . 43
3.6.2 Axes . 43
3.6.3 Data Points . 44
3.6.4 Legend Root . 44
3.6.5 Legend Item . 44

4 Semantic Enrichment of SVG Charts 45
4.1 Formats for Accessible Graphics . 45

4.1.1 Native Accessibility of SVG 46
4.1.2 Scientific Proposals for Semantic Enrichment 46
4.1.3 ARIA Enhancements to SVG 48

4.2 ARIA Guidelines for User Agents . 48
4.3 SVG Accessibility in Practice . 49
4.4 Scientific Proposals for Accessible SVG Charts. 49
4.5 WAI-ARIA-Based Systems for Charts 50

4.5.1 Describler . 54
4.5.2 WAI-ARIA Graphics Roles 57
4.5.3 W3C Proposal . 60
4.5.4 SVG Pseudo-Table . 64
4.5.5 SVG Pseudo-List . 67
4.5.6 Highcharts. 70
4.5.7 Semiotic . 75
4.5.8 amCharts . 79
4.5.9 FusionCharts . 82
4.5.10 AnyChart . 86

5 Accessible Charts with AChart 89
5.1 Motivation . 90
5.2 Developing an ARIA-Based System for Charts 91
5.3 AChart Taxonomy of Roles and Properties 93

6 AChart Creator 97
6.1 User Interaction . 97

6.1.1 Creating Line Charts . 101
6.1.2 Creating Bar Charts . 107
6.1.3 Creating Pie Charts . 111

6.2 Implementation . 115
6.2.1 SVG Generator . 115
6.2.2 AChart Creator Version 1.0 116
6.2.3 AChart Creator Version 2.0 117

ii

7 AChart Interpreter 121
7.1 User Interface . 122

7.1.1 Chart Accessibility Tree (CAT) 123
7.1.2 Retrieving Additional Information 128
7.1.3 Modes of Screen-Reader Interaction 130
7.1.4 Integrated Speech Output . 131

7.2 Software Architecture . 132
7.2.1 Common Interfaces . 132
7.2.2 Model Classes . 132
7.2.3 View Modules . 136
7.2.4 Controller Modules . 139

7.3 AChart Summariser . 142
7.3.1 User Interaction . 142
7.3.2 Software Architecture . 143

7.4 Selected Details of the Implementation. 144
7.4.1 Accessibility Considerations 144
7.4.2 The Context Menu . 145
7.4.3 Speech Synthesis . 148

8 Outlook and Future Work 153
8.1 Evolving an Extended AChart Taxonomy 153
8.2 Software Enhancements . 154

9 Concluding Remarks 157

A AChart Creator Help 159

B AChart Interpreter Help 163

C AChart Summariser Help 165

Bibliography 167

iii

iv

List of Figures

2.1 Example of a Portable 40-Cell Braille Display 7
2.2 Example of a Portable 16-Cell Braille Display 8
2.3 Example of an 88-Cell Braille Display. 8
2.4 Example of a Braille Cell . 9

3.1 Portable Tactile Graphics Display . 28

4.1 Sample Chart without Accessibility Markup 51

6.1 AChart Creator: Single-Series Line Chart 104
6.2 AChart Creator: Three-Series Line Chart 104
6.3 AChart Creator: Bar Chart . 108
6.4 AChart Creator: Pie Chart with Legend 111
6.5 AChart Creator: Pie Chart without Legend 114

7.1 AChart Interpreter: Initial Window . 122
7.2 AChart Interpreter: Multi-Line Chart . 123
7.3 AChart Interpreter: Bar Chart . 124
7.4 AChart Interpreter: Pie Chart . 124
7.5 AChart Interpreter: Context Menu for Data Point 127
7.6 AChart Interpreter: Statistics for Data Series 128
7.7 AChart Interpreter: Comparisons for Data Point 129
7.8 AChart Interpreter: Statistics for Data Point 130

v

vi

List of Tables

4.1 ARIA Roles Used by Describler . 54
4.2 ARIA Properties in Describler . 54
4.3 ARIA Roles in the W3C Proposal for Charts 60
4.4 ARIA Properties in the W3C Proposal for Charts 61
4.5 ARIA Roles for Line Charts Proposed by Watson. 64
4.6 ARIA Roles for Charts Proposed by Migliorisi and Kopacz 67
4.7 ARIA Roles and Class Names Used by Highcharts 71
4.8 ARIA Roles and Class Names Used by Semiotic 76
4.9 ARIA Roles Used by amCharts . 79
4.10 Class Names used by FusionCharts . 82

5.1 AChart Project Contributors . 90
5.2 ARIA Roles Used by AChart . 94
5.3 ARIA Properties Used by AChart . 94

vii

viii

List of Listings

3.1 Sample SVG Code by Highcharts . 35
3.2 Sample SVG Code by FusionCharts . 37
3.3 Sample SVG Code by Semiotic . 40

4.1 Sample SVG Code without Accessibility Markup. 52
4.2 Sample SVG Code with ARIA Roles and Properties by Describler 55
4.3 Sample SVG Code with Graphics Module Roles and ARIA Properties 58
4.4 Sample SVG Code with ARIA Roles and Properties in W3C Proposal 62
4.5 Sample SVG Code with ARIA Roles for Tables 65
4.6 Sample SVG Code with ARIA Roles for Lists 68
4.7 Sample SVG Code with ARIA Roles and Class Names by Highcharts 73
4.8 Sample SVG Code with ARIA Roles and Class Names by Semiotic 77
4.9 Sample SVG Code with ARIA Roles and Properties by amCharts 80
4.10 Sample SVG Code with ARIA Roles and Class Names by FusionCharts 84
4.11 Sample SVG Code with ARIA Roles and Properties by AnyChart 87

5.1 AChart: Sample SVG Code with AChart’s ARIA Roles and Properties 95

6.1 AChart Creator: Command-Line Syntax 98
6.2 AChart Creator: Sample CSV Input for Line Charts 101
6.3 AChart Creator: SVG Output for Single-Series Line Chart 102
6.4 AChart Creator: SVG Output for Three-Series Line Chart 105
6.5 AChart Creator: Sample CSV Input for Bar Chart and Pie Chart 107
6.6 AChart Creator: SVG Output for Bar Chart 109
6.7 AChart Creator: SVG Output for Pie Chart with Legend 112
6.8 AChart Creator: SVG Output for Pie Chart without Legend 113

7.1 AChart Interpreter: Class Chart, Declarations and Constructor 135
7.2 AChart Interpreter: Class Chart, Methods extractAll() and hasParent() 136
7.3 AChart Interpreter: Class Chart, Method getTitle() 137
7.4 AChart Interpreter: Method Message.getChartDescription() 139
7.5 AChart Interpreter: Excerpt of method interpret() 141
7.6 AChart Interpreter: Context Menu Items in Class Text 147
7.7 AChart Interpreter: Context Menu Item Structure. 148
7.8 AChart Interpreter: Adding an Item to the Context Menu 149
7.9 AChart Interpreter: Selecting the Next Item in the Context Menu 150

ix

x

Acknowledgements

I would like to express my thanks to Prof. Keith Andrews at ISDS for giving me the opportunity to
accomplish my desire to write my master’s thesis about a subject in the field of web accessibility.
In his Human-Computer Interaction course at TU Graz, he taught me the essentials of usability and
gave me the opportunity to conduct an extensive accessibility evaluation of the web site by the Graz
public transport services. During this course and on the long way of composing my thesis, I gained a
profound understanding and learned numerous interesting details about data visualisation, usability, and
accessibility, which will definitely be helpful for my future life as a computer engineer.

Many thanks also go to TU Graz as a whole for giving me as a blind person the chance to study in the
domains of electrical, sound, and computer engineering under fair circumstances. Whether providing me
lecture notes and exam sheets in LaTeX or other digital formats, granting additional time for certain tasks,
or discussing all my questions – there was never any problem to agree on a good solution for overcoming
visual barriers. Moreover, I would like to thank Jakob and the entire team of Zentrum Integriert Studieren
at KFU Graz for adapting dozens of graphics and formulae as well as thousands of pages of other learning
material according to my needs. Especially during the first years of my studies, this assistance was of
great help.

I am indebted to Sigi, Barbara, and Jasmin at Help Tech GmbH for providing me photos and other
useful sources, for assisting me in certain tasks of web research, and for giving me important feedback,
especially in debugging the visual output of AChart Creator and Interpreter. In this context, I would also
like to thank Philipp for his help.

Furthermore, I thank all my friends who would not stop praying or keeping their fingers crossed for my
many exams and practicals and, finally, for the completion of this thesis as well! In particular, I would
like to thank Marie, Nadine, and Thomas for testing the accessibility and usability of AChart Interpreter.
Their comments and suggestions encouraged me in the development of the application and contributed
to making AChart Interpreter a powerful tool for blind users.

Very warm thanks also go to my dear parents, without whom my studies would not have been possible.
Despite all obstacles and uncertainties, they always gave me financial support, the freedom to choose my
field of career, and the affirmation that I am on the right track.

My final thanks are dedicated to my wonderful girlfriend Annika, not only for testing AChart Interpreter
regularly during its development or giving me advice as a professional in writing good English. She
always stayed by my side as a true companion, on all the hills and through all the valleys on my way
towards achieving my master’s degree, understanding me, comforting me, cheering me up, encouraging
me, and giving me the energy I needed to move on.

Christopher Kopel
Graz, Austria, 16 May 2021

xi

xii

Credits

I would like to thank the following individuals and organisations for permission to use their material:
• The thesis was written using Keith Andrews’ skeleton thesis [Andrews 2018].

• Figures 2.1 to 2.4 are used with kind permission of Help Tech [2021].

• Figure 3.1 is used with kind permission of Orbit [2021].

• Figure 4.1 is used with kind permission of Keith Andrews, Graz University of Technology.

xiii

xiv

Chapter 1

Introduction

“ A picture is worth a thousand words. ”

[Internationally known proverb; quoted from [Gardner and Bulatov 2006, page 1243]]

Visualisations play an essential role across many types of information representations as a utility for
conveying data and their relationships in a clear, intuitive manner. They are omnipresent not only in
scientific and technical publications, but also in educational materials and popular media. With the
advances in information technology, it has become possible to store and to automatically depict large
amounts of data, as can be seen, for instance, in the visualisations of stock prices, election results, or
pandemic incidences. A static, merely graphical representation, however, does not accommodate the
needs of all potential target groups: blind persons are entirely excluded from information which is only
available visually. People with some residual vision may be able to perceive graphics in general, but often
require optical adaptations, such as enlargement, simplification, or colour modifications. Individuals
with cognitive or learning disabilities can notably benefit from illustrations; nevertheless, for this target
group, it is particularly important that the visualisations show a proportionate level of complexity.

In science and industry, as well as in recent standardisation efforts and consumer domains, modern
technologies are being applied to make data visualisations accessible to recipients with special needs.
Some of the strategies focus on converting an existing image to an alternative representation, or providing
a textual description alongside an image. A different approach is to produce semantically-encoded data
visualisations, which can adapt to the needs and preferences of an individual user. The semantics of the
visualisation and the underlying data are provided in a machine-readable form alongside, within, or in
place of a particular visual form. Strategies following this principle can be categorised under the inclusive
design paradigm and are mostly related to modern web development.

This master’s thesis examines various options to create accessible charts by means of Scalable Vector
Graphics (SVG) [W3C 2011], in conjunction with the Accessible Rich Internet Applications (ARIA)
system [W3C 2017a], both standardised by the World Wide Web Consortium (W3C) [W3C 2021c].

The term data visualisation includes a wide variety of types of chart and graphics, including maps,
flow diagrams, and network graphs. This thesis, however, will concentrate on charts of tabular data, such
as line charts, bar charts, and pie charts. Tabular data can often be found in spreadsheets, where one or
more dimensions are stored as columns, and one or more records (data points) are stored as rows. The
data in each dimension can be numerical or categorical. One dimension often contains a text string with
a name for each record.

In particular, the following types of charts are often found in the literature:
• Cartesian Charts: for instance, bar charts (also known as bar graphs), line charts (also known as

line graphs or line diagrams), and scatter plots.

• Non-Cartesian Charts: in two-dimensions, such as pie charts.

1

2 1 Introduction

• Higher-Dimensional Charts: such as parallel coordinates charts, star plots (also known as radar
charts), and cartesian or pie charts with additional information encoded as variation in colour, size,
or shape of the symbols.

Other types of visualisations may be mentioned in the context of related work, but are beyond the scope
of this thesis.

To ensure unambiguous and consistent use of nomenclature throughout this thesis, the following
often-used terms are defined:

• data point or record: a tuple of associated components representing one item in a tabular dataset
(one row of a spreadsheet).

• dimension: a component or value associated with every record in a tabular dataset (one column of a
spreadsheet).

• title: In many cases, one of the data dimensions contains text strings representing a name or title for
each record (which is often used to label or identify the record).

• dataset: the set of all the data points in a table.

• data series: a sequence of data points. In the case of a single-series chart, it is identical to the
entire dataset. In the case of a multiple-series chart, the data points in each series share a common
property. In the case of a line chart, each data series is displayed as one line on the chart.

• discrete axis: an axis representing a set of distinct numerical or categorical values to which the data
points are bound, such as the x-axis of a bar chart.

• continuous axis: an axis representing a range of real numbers out of which any value may occur in
the data, as in line charts and scatter plots.

• chart object: a logical component of a chart, such as an axis, a data series, or a data point, not
necessarily corresponding to a single SVG or any other single markup element.

• chart root: a chart object representing the entire chart and containing all other chart objects; for
instance, the root <svg> or <g> element.

This thesis focuses on three specific types of chart: line chart, bar chart, and pie chart. For these three
charts, exactly two of the original dimensions are provided as input to draw the chart. These dimensions
can be thought of in terms of name-value pairs:

• Line chart: Two numerical dimensions are chosen to construct the chart: one mapped to the x-axis
(which can be considered the name), and the other mapped to the y-axis (which can be considered
to be its corresponding value).

• Bar chart: A categorical dimension is typically chosen for the x-axis (the name), and a numerical
dimension is mapped to the y-axis (the corresponding value).

• Pie chart: The title of the record is used as the name and one numerical dimension provides the
value.

The accessibility of visualisations may cater to several kinds of disability. This thesis focuses on
visually impaired recipients, which includes both blind and partially sighted persons. When using the
term blind in this context, this neither means the total absence of any optical perception, nor does it refer
to any medical or legal definition. Instead, blind individuals shall be distinguished from partially sighted
ones by the single criterion that their sight, considering all possible technical aids for optical adaptation,
does not suffice to visually recognise the components of a chart.

This thesis is organised into two parts. The first part embeds this work into the wider context of related
work. The second part describes the practical work and the software developed as part of the thesis. The

3

next chapter, Chapter 2, introduces the topic of accessibility for visually impaired users and looks at web
accessibility in particular. Chapter 3 continues with a summary of past and present solutions towards
providing visually impaired individuals access to charts, including various charting libraries and their
accessibility features. Chapter 4 examines current approaches for producing adaptable and accessible
graphics documents by embedding data and semantic information within SVG charts. Most of these
approaches use non-standard ARIA roles and properties, which are currently not recognised by browsers
and screen readers. One goal of this thesis is to contribute to the standardisation of an SVG and ARIA
system for accessible charts.

For the practical part of this thesis, a software suite called AChart (Accessible Chart) was developed.
Chapter 5 gives an overview of AChart and describes the AChart taxonomy of ARIA roles and properties
for accessible charts. Chapter 6 describes AChart Creator, a command-line tool which generates accessible
SVG charts from CSV data files. It is written in TypeScript [Microsoft 2020b] and D3 [Bostock 2021] with
Node.js [OpenJS 2021b] and jsdom [jsdom 2021], and uses nexe [Boyd et al. 2020] to produce binaries for
various platforms. The software is open-source and is available at [Kopel, Andrews, Mendoza Estrada,
Grass et al. 2021].

Chapter 7 describes its partner, AChart Interpreter, a client-side web application which interprets an
accessible SVG chart, displays side-by-side graphical and textual versions of the chart, and provides
synthetic speech and Braille output for blind users. It can be used by sighted users verify and validate
accessible SVG charts and by blind users as a kind of screen reader for charts. AChart Interpreter is written
in TypeScript [Microsoft 2020b] and uses Electron [OpenJS 2021a] to produce executable packages for
various platforms. The software is open-source and is available at [Kopel, Andrews, Mendoza Estrada,
Bodner et al. 2021a]. The design of AChart Interpreter was inspired by Doug Schepers’ proof-of-concept
tool Describler [Schepers 2015a]. A separate spin-off command-line tool, AChart Summariser, interprets
an accessible SVG chart and outputs a textual summary of the chart.

Possible future work is discussed in Chapter 8, including the extension of AChart to further chart types
and the possibility of packaging a version of AChart Interpreter as a web browser extension to make
suitably marked-up accessible charts more widely available to non-sighted users. Chapter 9 concludes
the thesis with some final remarks. Finally, three appendices contain user guides for AChart Creator,
AChart Interpreter, and AChart Summariser.

4 1 Introduction

Chapter 2

Web Accessibility

“ The power of the Web is in its universality. Access by everyone regardless of disability is
an essential aspect. ”

[Tim Berners-Lee, W3C Director and inventor of the World Wide Web; quoted from [AnyChart 2020a]]

Computer systems represent one of the most important tools for visually impaired persons, used in
education and work as well as in private every-day life [Lang et al. 2010, page 189]. Since they support
various output modalities, from visual representations through synthetic speech to tactile characters,
many visually impaired humans use computers as note-takers, calendars, calculators, audio and video
players, as well as for reading text on paper in conjunction with a document scanner and optical character
recognition (OCR) software. Computers can act as a helpful utility for persons with other types of
deficiencies too. For instance, speech recognition systems can notably assist individuals with dyslexia,
cognitive, learning, hearing, or motor disabilities.

The Internet and in particular the World Wide Web (WWW, or simply the “web”), has lead to an
advance in information exchange which may be considered even more valuable for visually impaired
users than sighted users. Whether finding an article in an encyclopedia or a magazine, looking up the
timetable for public transport, shopping, or searching for public events — for a blind person, completing
one of these tasks (with few exceptions) traditionally requires some form of sighted assistance, whereas
all of them (in many cases) can be independently accomplished online. However, the potential benefits
of every software application or web page for users with disabilities rely heavily on one crucial cri-
terion, its accessibility. Appreciating the enormous potential of the web for users with disabilities, the
World Wide Web Consortium (W3C) has directed much effort towards defining standards and producing
supplementary advice with the goal of creating a web accessible for all [W3C 2021b].

2.1 Definitions
Iwarsson and Ståhl [2003, page 61] define the general term accessibility as follows:

Accessibility is the encounter between the person’s or group’s functional capacity and the
design and demands of the physical environment. Accessibility refers to compliance with
official norms and standards, thus being mainly objective in nature.

The closely related concept of usability, by contrast, deals with the effectiveness, efficiency, and satis-
faction of humans when interacting with the environment and is determined by user evaluations. Thus,
usability can be regarded as a rather subjective measure. As to the relationship between both terms, it can
be stated that accessibility “is a necessary precondition for usability” [Iwarsson and Ståhl 2003, page 62].
Both concepts cover a wide range of disciplines, such as architecture, public transport, media, and the
organisation of public events [Iwarsson and Ståhl 2003, page 57–59].

5

6 2 Web Accessibility

In the context of information technology, Kleynhans and Fourie [2014, page 370] summarise that:
“accessibility aims to enable users and to make access to content possible for everyone, regardless of
disability or the type of device that may be used.” This affects not only visual impairment but also several
other types of disabilities, such as auditory, learning, language, physical, and cognitive impairments
[W3C 2018f, Section 0.1]. Specific criteria of information accessibility have been defined by various
institutions: the legislation of several countries prescribes how hardware and software shall interact with
disabled users. The international reference standard specifying detailed requirements for the behaviour
of web pages is the Web Content Accessibility Guidelines (WCAG) by the W3C and will be introduced
in Section 2.3.

2.2 Assistive Technology
In general, assistive technology (AT) can be described as techniques “designed to improve the functional
capabilities of people with disabilities,” [EPRS 2018a, page 3]. The spectrum of AT ranges from special
appliances for food preparation, personal care, and household chores, through tools for leisure activities,
to mobility aids, such as crutches and wheelchairs for physically impaired people as well as white canes
used by blind persons for orientation [EPRS 2018a, pages 7–9; EPRS 2018b, page 31].

In the context of information exchange, ATs have the purpose to adapt the information channels to
the available capabilities of the target users [EPRS 2018a, pages 8–9; EPRS 2018b, page 31]: spoken
information can be transported to a recipient with auditory impairments by hearing aids increasing the
loudness of the acoustic signal or by communication systems translating it into text or sign language.
Humans with cognitive or learning disabilities may understand a text better if it is accompanied by
appropriate visualisations [Altmanninger and Wöß 2008, page 380]. In the case of partially sighted
recipients, it is often sufficient to optimise optical information according to the degree and properties of
the residual vision, usually achieved by magnification, modifications or the inversion of brightness, and the
application of a different colour set. Blind persons, by contrast, need one or more alternative information
channels to compensate for the missing visual channel, such as acoustic or haptic representations.

2.2.1 Braille
One of the oldest and best-known ATs for blind recipients is Braille, a system to represent text characters
as patterns of tangible dots [Lang et al. 2010, page 15; EPRS 2018b, pages 27–28; Kipke 2006, page 1].
The system was developed by Louis Braille in 1825 and still represents the main technique of reading by
the sense of touch. Braille dots are formed by convex elevations on a flat carrier medium, traditionally a
special type of paper which is thick and robust enough so that they persist during exposure to mechanical
impact. The elevations have a base diameter of 1.0 to 1.7 mm and a height of 0.3 to 0.7 mm, varying
among Braille output techniques and national standards [ISO 2013, Section 3.4].

The classic Braille system consists of cells of six dots, arranged in a matrix of three lines and two
columns, resembling the upright six-spots pattern on a dice [Lang et al. 2010, pages 15–17; Kipke 2006,
page 1]. Each of the six dots can have one of two states, set or not set, so one Braille character can
show 26 = 64 distinct combinations of dots. In order to express a larger character set, the Computer
Braille system appends a forth row of two extra dots, increasing the character set to 28 = 256 possible
combinations. Braille is commonly read using the fingertips, since they show a high density of haptic
receptors. The characters can be embossed by dedicated printers (see Subsection 3.1.1), on a special kind
of typewriter, or manually using a Braille slate in combination with a corresponding stylus [Lang et al.
2010, pages 21–23].

2.2.2 Computer Input and Output
As a replacement for the visual screen of a computer, two modalities are widely used. The first is output
via speech synthesis, also known as text-to-speech (TTS), which is nowadays readily available as software
for standard platforms and compatible with common sound interfaces [Lang et al. 2010, page 190].

Assistive Technology 7

Figure 2.1: Active Braille by Help Tech [2021] is a portable Braille display with 40 cells. The
surface of each module is concave to accommodate the shape of a reading finger. Each module
incorporates an additional slim key (the Cursor-Routing key) above its Braille cell. Concave
navigation keys are located to the left and right of the Braille line. Other keys are located above
and below the cells. The device has been turned on, and some of its Braille dots are set. A left
hand can be seen towards the right end of the line, reading the displayed Braille content. [Image
provided by and used with kind permission of Help Tech [2021].]

The user can configure the speech output according to personal preferences with regard to speed, pitch,
volume, and the pronunciation of certain characters and strings. More sophisticated TTS engines offer
natural-sounding speech, where the user can choose from several voices and accents for most languages.
Some current operating systems, such as Microsoft Windows 10 and Apple’s macOS X and iOS are
deployed with integrated speech synthesisers [Microsoft 2020a, Chapter 7; Apple 2020c; Apple 2020b].

The second solution is output on a Braille display, a device which is capable of presenting dynamically
changing information as refreshable dot patterns [Lang et al. 2010, pages 189–190; Kipke 2006, pages 1–
2]. In Braille displays, each character (cell) is produced dynamically by a module consisting of usually
eight pins fixed in an upright position and arranged as a four-by-two matrix according to the Computer
Braille system. The surface of each module is typically flat, but some products have modules with
a concave surface to better accommodate the shape of a reading finger. Braille modules are aligned
side-by-side to compose a line with a fixed number of characters. Additional keys are often provided to
the left and right of the Braille line and above and below the Braille line. Typical portable Braille displays
contain 40 cells, as shown in Figure 2.1; models designed for stationary use often have 80 cells. Some
manufacturers also offer smaller or larger devices, as can be seen in Figures 2.2 and 2.3.

The reading surface of a module is formed by a cap the size of a Braille character with additional
margins. Each cap contains eight openings located exactly at the positions of the underlying pins. In
order to set or remove a particular dot, the corresponding pin is raised or lowered, respectively, so that it
appears above or disappears beneath the level of the surface. The vertical movements are performed by
actuators working on an electromagnetic or, more usually cases, a piezoelectric basis. An example of a
Braille module is shown in Figure 2.4.

Many Braille displays can also act as an input device [Kipke 2006, pages 1–2]. Above each Braille
cell, they typically provide a button known as the Cursor-Routing key. Pressing the button triggers an
action on the character displayed on the corresponding Braille cell. Depending on the mode of operation

8 2 Web Accessibility

Figure 2.2: Actilino by Help Tech [2021] is a portable Braille display with 16 cells, deployed in a
protective carrier bag. [Image provided by and used with kind permission of Help Tech [2021].]

Figure 2.3: Modular Evolution 88 by Help Tech [2021] is a bulkier Braille display with 88 cells and
an integrated keyboard. [Image provided by and used with kind permission of Help Tech [2021].]

Assistive Technology 9

Figure 2.4: A single Braille module by Help Tech [2021], viewed from the left side. Its surface is
concave in order to adapt to the shape of a reading finger. Six of its eight pins are raised. A finger
is placed on the cell, reading the displayed Braille dots pattern. [Image provided by and used with kind
permission of Help Tech [2021].]

and the user interface of the platform, this action might be a simulated mouse click on the location of
the displayed character or the selection of the character within a text edit field. Moreover, most devices
have additional keys to the left and right of and above and below the Braille line, whose presses can be
passed to the computer. A comparably new feature is touch sensitivity of the Braille modules, enabling
the detection of the reading position within the Braille line. The first example released on the market
is the Active Tactile Control (ATC) technology developed by Kipke [2006] and applied by Help Tech
[2021]. Modern Braille displays can be connected to personal computers and smartphones via standard
interfaces like Universal Serial Bus (USB) and Bluetooth.

Apart from the additional buttons provided by Braille displays, the main input device for blind users
is the standard computer keyboard, supporting touch-typing [Lang et al. 2010, pages 192, 194]. Some
current AT supports selective speech and Braille output of the object the mouse cursor points to, but
mouse navigation is of course particularly difficult for blind users. Recently, touch screen interaction has
become increasingly popular in AT. These trends are discussed in Subsection 2.2.3.2.

Partially sighted individuals often use the standard computer screen in combination with features
provided as part of the view settings of the operating system and/or special magnification software [Lang
et al. 2010, page 191]. Pixellation artefacts occurring at high levels of magnification are eliminated
automatically. For persons with a higher degree of visual impairment, magnification software often
supports the combination of the described techniques with speech synthesis in the way that the text of the
selected object is read aloud. In addition to magnification, some partially sighted users can benefit from
aids such as increased contrast, the inversion of brightness, or alternative colour-coding.

2.2.3 Screen Readers
Both speech and Braille output exhibit two essential restrictions [Lang et al. 2010, page 192]. Firstly,
they are only capable of transporting textual information, whereas the front end of many modern software
systems is designed as a graphical user interface (GUI). Secondly, both modalities convey data at a
significantly lower bandwidth than a visual screen.

10 2 Web Accessibility

Screen readers are a dedicated type of assistive software, which interacts with the user interface of
the operating system and/or the current application to assist in navigation and to select which part of the
screen to output. At the time of writing, the following screen readers are widely available and used:

• JAWS: a commercial product for Microsoft Windows, developed and marketed by Vispero [2020];

• NVDA: free open-source software for Microsoft Windows, developed by NV Access [2020];

• Narrator: proprietary software developed and integrated into Windows by Microsoft [2020a];

• VoiceOver: proprietary software developed and integrated into macOS X and iOS by Apple [2020a],
Apple [2020b] and Apple [2020c];

• TalkBack: free software developed and integrated into Android by Google [2020a]; and

• ChromeVox: developed and integrated into Chrome OS by Google [2020b].
Throughout this thesis, most examples will be given for JAWS and NVDA, since these are the most widely
used [WebAIM 2019].

2.2.3.1 Semantic GUI Transformation
The main purpose of screen readers is to analyse the GUI of the software currently running with regard
to its component objects and to translate the results into a textual representation [Lang et al. 2010,
pages 190–191, 193]. This analysis needs to consider several aspects of each GUI object:

• its role or type, that is, the manner of user interaction it performs; for example, button, checkbox, or
text input field;

• its name or title as well as other possible text content;

• possible key combinations defined for access or activation; and

• its relationship to other objects within the hierarchical organisation of the GUI, that is, the application
window it belongs to, its ancestor object, any descendant objects, and any text associated with it.

In short, the screen reader performs a semantic analysis of the internal GUI structure as a replacement
for the intuitive analysis of the visual appearance performed by sighted users. In order to infer the
semantics of GUI objects, several different approaches are pursued. The most recent strategy is the
communication between screen readers and other software through dedicated application programming
interfaces (APIs) provided by the operating system (see Subsection 2.4.3).

2.2.3.2 Input and Selective Output
Most screen readers provide mainstream GUI panels for configuration, which are fully accessible by both
keyboard and mouse [Vispero 2020; NV Access 2020; Microsoft 2020a; Apple 2020c]. Nevertheless, the
classic method of controlling a screen reader is using the keyboard, where the set of basic key commands
integrated within the operating system is supplemented by a large number of additional key combinations
[Lang et al. 2010, pages 190–191]. In order to make a clear distinction between the functions of the
operating system and those of the AT, the strategy of reserving a particular modifier key has become
established. For most screen reader actions, this key needs to be pressed along with one or more other
keys. In NVDA, the user can choose either the 0 key on the numeric keypad for this purpose, where the
Num Lock function needs to be disabled, or the Caps Lock key [NV Access 2020]. JAWS additionally offers
the Insert key [Vispero 2020]. The original functionality of the respective key is achieved by pressing it
twice consecutively within a time interval similar to that of a double-click with a mouse.

The key commands of the screen reader provide a powerful tool which allows users to choose from
various navigation options, toggle between several modes of operation, and retrieve information on a
multitude of different parameters, such as the time and date, the status of the power supply, the current
window title, the content of the status bar within the current window, as well as the font, the colours,

Assistive Technology 11

and other properties of the selected object. Moreover, screen readers are also capable of interacting with
the current application, so that certain functions which are not designed to be keyboard accessible can
nevertheless be reached via key commands of the AT.

Screen readers can be used in combination with any of the output modalities described in Subsec-
tion 2.2.2, where all of them can be combined flexibly and used in parallel according to the user’s
preferences [Lang et al. 2010, pages 190–191]. The decision which portion of the textual GUI repres-
entation is passed to the output systems depends on several parameters: by default, it is bound to the
keyboard focus of the operating system, that is, the GUI object currently selected to receive keyboard
events [Vispero 2020; NV Access 2020]. This method ensures that the user is aware of the current state
of interaction.

However, many regions of a GUI window, such as static text and mouse-only toolbars, cannot receive
keyboard focus and, thus, are outside the reach of this kind of navigation. Certain applications do not
include any keyboard navigation at all. Therefore, screen readers provide additional output strategies
detached from the keyboard focus. These features commonly include:

F1: Speaking text which has recently been added to the currently focused application window (called
screen echo in JAWS) and temporarily showing it on the Braille display (called flash messages in
JAWS);

F2: Speaking a certain piece of information on user request and showing it on the Braille display as a
flash message;

F3: Binding the output to the object pointed to by the mouse cursor (called mouse echo in JAWS);

F4: Moving the mouse cursor by means of the Cursor keys and outputting information on the selected
object (called the JAWS cursor in JAWS);

F5: Moving a mouse-like pointer independent of any cursor of the operating system by means of the
Cursor keys and outputting information on the selected object (called the invisible cursor in JAWS);

F6: Navigating across the object hierarchy of the GUI independently of any cursor of the operating
system by means of the Cursor keys (called the touch cursor in JAWS and object navigation in
NVDA);

F7: Moving the displayed Braille frame by means of dedicated keys on the Braille display (called the
Braille cursor in JAWS); and

F8: Displaying static text in a text field similar to a document in a text editor (called a virtual cursor in
JAWS and browse mode in NVDA, see Subsection 2.2.3.3).

Features F4 to F8 above can be summarised as navigation methods which detach the reference point
of the screen reader from the keyboard focus of the operating system. This reference point is sometimes
referred to as AT focus or accessibility focus [Lang et al. 2010, page 191; Google 2020a]. After setting
the accessibility focus to a particular object by one of the methods F4 to F8, the screen reader can perform
certain actions on the selected object, for example, simulating left or right mouse clicks or performing
drag-and-drop operations.

A relatively novel method of screen reader input and output is the integration of touch screens [EPRS
2018b, page 33]. In contrast to the usual behaviour without AT, touching the location of a particular
GUI object does not trigger its default action. Instead, the accessibility focus of the screen reader is set
to the respective object, causing its information to be read aloud and/or shown on the Braille display.
This interaction paradigm enables the user to access any region of the displayed GUI and, in addition,
to gain an idea of its visual arrangement. The default action of the selected object can then be launched
by performing a double tap. Further gestures have been adapted to support choosing from additional
options related to the object and opening an object’s context menu. As an alternative to exploring the

12 2 Web Accessibility

layout of the screen content as described above, a sequential shift of the accessibility focus across the
GUI objects is possible by swiping with one finger to the left or right. This concept of non-visual touch
screen interaction was pioneered by Apple with iOS and its integrated screen reader VoiceOver [Apple
2020a; Apple 2020b], giving blind users the opportunity to use mainstream smartphones and tablets for
the first time. In the meantime, the basic concepts have been adopted by TalkBack for Android [Google
2020a] and NVDA and JAWS for Windows [NV Access 2020; Vispero 2020].

2.2.3.3 Handling Read-Only Documents
When entire documents are displayed as read-only text, that is, without any cursor for locating a particular
character, for example, web pages or files in Portable Document Format (PDF), some screen readers can
enable a special mode of operation [Vispero 2020; NV Access 2020]. In this mode, the screen reader
buffers the content of the document in a multi-line read-only text field and presents it to the user as if it
was displayed in a text editor. This way, the user can navigate the document line-by-line or character-
by-character with the Cursor keys, where the newly selected line or character is output by the screen
reader. Elements with a certain meaning, such as links, headings, tables, form controls, and graphics, are
represented with additional text indicating the type of the element.

Moreover, the user is provided with a set of key commands for a quick navigation of the document
structure; for example, to move to the next or previous heading, graphic, table, or link. Tables can be
navigated by line and column, where the content of the selected cell and the header of the newly selected
line or column are output by the screen reader. When moving the cursor to a certain element and pressing
Enter or Space, the screen reader can attempt to simulate a left mouse click on this element. In JAWS, the
described feature for viewing read-only documents is called virtual cursor, in NVDA it is called browse
mode. It is activated by default in conjunction with most browsers and electronic mail clients (when
opening messages in the folder for incoming or sent mail) as well as with Adobe Reader.

However, in order to make this navigation possible, the screen reader takes over almost the entire range
of key presses, including those of the Cursor and the alphanumeric keys. In other words, all these keys no
longer trigger events within the current application. While this has no consequence in static documents,
it prevents the user from entering text into form fields, for example. Moreover, if a web application
defines its own key commands (in many cases especially targeted to visually impaired users), these key
commands do not have the intended effect while the screen reader is running. An example is the YouTube
video player [Google 2020c], whose sliders for adjusting the volume and moving the playback cursor can
be controlled not only by mouse but also by the Cursor keys.

For this reason, the screen reader can temporarily switch to a mode of operation in which most key
presses are passed through to the application. In JAWS, there are two modes which do this: forms mode
and application mode. Forms mode is activated when the cursor is moved to certain form elements,
such as text input fields, combo boxes, and sliders. Application mode is enabled when encountering a
document region specifically marked as an application (see Subsection 2.4.2). NVDA has a single mode
called focus mode. In both screen readers, the user can manually toggle between the two modes and
configure under what circumstances the screen reader should automatically enter the respective mode.

2.3 The Web Content Accessibility Guidelines
In 2018, the W3C [W3C 2021c] published Version 2.1 of the Web Content Accessibility Guidelines
(WCAG) W3C [2018f]. The standard defines 13 guidelines for creating accessible web content, grouped
into 4 broad principles. The standard does not give recommendations on implementation, but rather
on the expected behaviour in conjunction with ATs and alternative input devices. Each guideline is
supplemented by success criteria, which can be used for testing the compliance of a web page with the
standard. Moreover, several supporting documents are provided, among others, a multitude of suggestions
for applying current web technologies [W3C 2020].

The Web Content Accessibility Guidelines 13

2.3.1 Principle 1: Perceivable
• Guideline 1.1 Text Alternatives: Any graphical content which does not only have decorative purposes

shall be accompanied by an alternative text.

• Guideline 1.2 Time-Based Media: Information presented through audio-only or video-only media
shall also be available in an alternative modality.

• Guideline 1.3 Adaptable: It shall be possible to display the web content in different representations
without any loss in information or structure.

• Guideline 1.4 Distinguishable: Web content shall be clearly distinguishable, concerning both the
separation of foreground from background and distinguishing individual pieces of information from
each other. This includes various aspects, such as minimum contrast ratios, a minimum difference
in volume for foreground and background audio signals, and the possibility to resize text without
needing ATs. Text shall not be presented as image content (with certain exceptions). Visual
information shall not be conveyed by colour alone.

2.3.2 Principle 2: Operable
• Guideline 2.1 Keyboard Accessible: All functionality shall be accessible using the keyboard.

• Guideline 2.2 Enough Time: All users shall be provided sufficient time to interact with content,
taking into account that reading text or entering input may take longer for humans with certain
disabilities.

• Guideline 2.3 Seizures and Physical Reactions: Visual representations known to cause seizures or
physical reactions for some humans must be avoided. This includes flashing at certain frequencies
and the animation of GUI objects.

• Guideline 2.4 Navigable: The user shall have several options for navigation, be able to rapidly find
the desired content, and always be aware of the current location. For instance, links for skipping a
region of the page shall be provided, keyboard navigation shall proceed in a logical focus order, a
web page shall have a meaningful title, and documents shall be structured with appropriate headings.

• Guideline 2.5 Input Modalities: Web content shall provide alternative input modalities beyond
keyboard interaction in a user-friendly way and shall not restrict the input methods of the local
system.

2.3.3 Principle 3: Understandable
• Guideline 3.1 Readable: Users shall be provided utilities to read and understand text content,

for instance, machine-readable indications of the language in which the text is written as well as
optionally available explanations for abbreviations and certain terms. If the text requires more
advanced reading ability, an alternative version with a lower reading level shall be provided.

• Guideline 3.2 Predictable: Interactive web content shall behave in a logical, consistent manner, and
user input shall cause no other effects than those which can be expected by the user.

• Guideline 3.3 Input Assistance: Users shall be provided guidance in correctly handling an interface.
Techniques for detecting input errors shall be applied, mistakes and errors shall be reported to the
user as text, and the user shall have a means of correcting input errors. Unintended actions shall be
reversible, and critical actions only processed after confirmation, especially for contracts, financial
transactions, and the manipulation of persistent user data.

14 2 Web Accessibility

2.3.4 Principle 4: Robust
• Guideline 4.1 Compatible: Web content shall be compatible with all current and future technologies,

including browsers and ATs. Markup shall be well-formed and used in accordance with the respective
specifications. Roles and names of all objects shall be machine-readable, states and values intended
to be set by the user shall in addition be writable by browsers as well as AT systems. Changes to any
value or state shall be reported to both browsers and ATs.

2.3.5 Further Development
At the time of writing, version 3.0 of WCAG is being worked on, and a first draft has been published
[W3C 2021a]. This successor can still be abbreviated as WCAG; however, the acronym here stands
for W3C Accessibility Guidelines. The change of the title reflects that this document no longer solely
concentrates on web pages, but also considers many other kinds of digital content, such as ePub and PDF
documents, as well as standalone desktop and smartphone applications, including browsers, ATs, content
management systems, authoring, and testing tools. Based on several years of research, WCAG 3.0 will
address a broader range of individual functional needs among different users with and without disabilities.

While the requirements to conform with WCAG 3.0 are similar to those for the compliance with
earlier versions, they have been restructured with the intention to be easier to understand and more
flexible to adapt to rapid changes in technology. In the new document, guidelines now represent the
top-level structure. Each guideline contains one or more outcomes, corresponding to the success criteria
in previous versions. Each outcome contains a description, examples of critical errors, and a rating scale
for conformance between 0 and 4. Incidents classified as a critical error immediately yield the lowest
rating. For example, the new Guideline 7.4 “Structured Content” contains three outcomes: “Headings
organize content”, “Uses visually distinct headings”, and “Conveys hierarchy with semantic structure”.
Due to the fundamental changes in structure and scoring, WCAG 3.0 will not be backward compatible
with previous versions. For this reason, WCAG 3.0 will not deprecate earlier versions of WCAG.

2.4 Techniques for Accessible Web Pages
Some web sites offer a separate version created especially with screen reader users in mind, for example,
Hörzu [Hörzu 2020]. However, in most cases, a web page does not need to be designed in a non-graphical
or less visually appealing way in order to achieve accessibility. Similar to the paradigm of responsive
web design, which promotes the creation of one flexibly adaptable web site rather than several versions
targeted to different browsers and displays, the recommended manner of producing accessible web content
is applying the paradigm of inclusive design, as explained, for instance, by Pickering [2016]. First and
foremost, this means that a web page is implemented as a well-formed document, employing the various
web development technologies in accordance with the specifications of the W3C. A particularly important
aspect is to define a web document primarily by its semantics, rather than its mere visual layout.

2.4.1 Semantic HTML
The Hypertext Markup Language (HTML) [W3C 2017c] defines various elements corresponding to
particular types of text structure or user interaction. Examples include the <p> element for a paragraph
of static text, the <button> element to create a clickable button object, and the <input> element for several
types of user input controls, such as checkboxes and fields for entering text. Since these elements not
only specify the visual appearance, but also the meaning and intended behaviour, they can be summarised
under the term semantic HTML and represent the recommended means for designing accessible web
pages [Pickering 2016, pages 34, 78–88]. Since screen readers try to determine the semantics of GUI
objects (see Subsections 2.2.3.1 and 2.4.3), merely using this subset of HTML elements in the intended
manner contributes significantly to the accessibility of a web page.

A well-known example is that of creating a button for a web application [Pickering 2016, pages 16–19].
it is technically possible to achieve the intended visual appearance and functionality using the semantically

Techniques for Accessible Web Pages 15

neutral <div> container element, attaching a JavaScript handler for click events, and embedding an image
of the desired icon. However, if no additional measures are taken, this kind of implementation provides
poor accessibility. Firstly, the element is not displayed as expected, if loading of graphics has been
deactivated in the browser. Secondly, the button cannot be focused and triggered using the keyboard.
Finally, screen readers are not informed about the meaning of the element. This has the consequence that
the corresponding text label, if available, is interpreted and output by the screen reader as if it was a mere
piece of text, so that a blind user is not told about the button functionality. In case that no textual label
is provided, the embedded image might be interpreted as decorative, causing the button to be completely
ignored by the screen reader. Even if the user infers the meaning from the prompt of a label and selects
the button by means of the screen reader’s navigation facilities, pressing Enter or Space might have no
effect, since the AT is not supplied with definitive information about how to interact with the element or
where exactly to place a simulated mouse click. Using the <button> element, by contrast, creates an object
which is appropriately displayed by the browser even if graphics are not loaded, can receive keyboard
focus, dispatches click events upon presses of the Enter or the Space key, and is well understood by ATs.

The scenario just described applies analogously for any other object intended to interact with the user.
A highly problematic issue is the non-standard implementation of a checkbox or a radio button, since
in both cases, the associated text is not included as a descendant element or as an attribute, but rather
as a separate element placed next to it. Therefore, a checkbox or radio button created by means of the
<div> element will contain only graphical information by default, meaning that the interactive object itself
might not be considered by screen readers. As a consequence, the information about its state, that is,
whether it has been checked or not, is not reported to a blind user. Moreover, if the user navigates to the
associated text, pressing Enter or Space might cause the screen reader to perform a mouse click on the
label but not on the checkbox or radio button itself, so that its state is not changed.

Another example concerns the formatting of text fragments as headings [Pickering 2016, page 79].
HTML specifies the elements <h1> to <h6> for the purpose of declaring headings at six distinct hierarchical
levels. Applying this technique ensures that browsers display the respective text at appropriate font sizes,
depending on the level, the size of the screen, and the visual preferences configured by the user. Screen
readers present the text fragment as a heading of the specified level, for instance: “Heading level 2,
Introduction”. In addition, screen reader users can benefit from the feature of navigating directly to the
next or previous heading, to quickly obtain an overview of a web document or to find a particular section.

If, by contrast, the respective text is only visually highlighted, for instance using Cascading Style Sheets
(CSS), all the advantages just mentioned are not available. Conversely, the use of heading elements as a
means of visual formatting for text fragments which are not intended to act as headings leads to screen
readers erroneously announcing the piece of text as a heading, and the facility of navigating by headings
might set the accessibility focus of the AT to unintended locations.

Although most screen readers offer a mode for browsing web pages by keyboard, independent of the
operating system’s navigation, it is recommended to ensure that every user input control can receive
keyboard focus by means of the Tab key [Pickering 2016, pages 61–63]. All HTML elements explicitly
designed for user interaction, such as <a>, <input>, <button>, <select>, and <details>, do so by default.
If a different element is used, it can be declared focusable by attaching the tabindex attribute to it. The
attribute’s value is an integer ≥ −1 and determines if and in which order the elements are focused when
pressing the Tab key (known as tab order). A positive number indicates elements which should be focused
first, in that order. Elements with a tabindex value of 0 are focused afterwards in the order they appear in
the source code. Elements with a tabindex value of -1 are not included within the tab order, and can only
be focused programmatically.

Furthermore, every element should provide an accessible name, that is, an associated title which can
be read by ATs [Pickering 2016, page 39]. In the case of a cancel button, for example, this would typically
be the string “Cancel”. When text is embedded within an element, it is taken to be the element’s name
in most cases. If no associated text content is present, the accessible name needs to be explicitly defined
by the author of the web content, for instance using ARIA properties, as described in Subsection 2.4.2.

16 2 Web Accessibility

In addition, every element can also provide an optional accessible description containing more detailed
information. The accessible description, too, can either be explicitly defined or is derived from text
content associated with the element. The computation of accessible names and descriptions is explained
in more detail in Subsection 2.4.3.

The arrangement of elements in the HTML source code plays an important role too [Pickering 2016,
pages 131–132]. While CSS provides the possibility to place every object at an arbitrary location in
the visual interface, screen readers derive the order of objects for textual presentation from that of the
corresponding node in the browser’s document object model (DOM), which, in the case of markup, is
determined by the order of the elements in the source code. In other words, the intended reading order of
the document should be reflected in the HTML and the resulting DOM structure. If, for instance, a user
action causes new content to be added to the page and the corresponding new elements are appended to
the end of the DOM structure, a blind user often does not notice the change, since it appears at the very
bottom of the textual representation and, thus, at an unexpected location. For this reason, a better option
in terms of accessibility for dynamically adding content is to insert the new content next to the node of
the currently focused element.

2.4.2 The WAI-ARIA System
The Web Accessibility Initiative (WAI) of the W3C [W3C 2021b] produced a suite of recommendations
and associated guides intended to improve the accessibility of web documents, known as Accessible
Rich Internet Applications (WAI-ARIA or just ARIA). The core specification [W3C 2017a] defines a
taxonomy of attributes which can be applied to elements of markup languages such as HTML, in order to
add semantic information useful for ATs. The role attribute specifies the type and function of the element.
Possible values for the role attribute include button, checkbox, radiobutton, and heading. The idea is that the type
and function of an element with a valid role can be recognised by ATs, even if it is not implemented using
a standard HTML element. For instance, a non-standard button such as described in Subsection 2.4.1 can
be identified and treated as such by ATs if it is assigned the attribute role=button. Other examples of valid
ARIA roles include:

• roles for structuring a web document into distinct sections, such as group, region, article, and main;

• textbox for text input fields;

• table, row, rowheader, columnheader, and cell for tables and their components;

• list and listitem for unordered lists and their contained list items;

• img for graphics; and

• presentation or none for content with no semantic significance, such as decorative graphical elements,
causing the respective element to be ignored by screen readers.

It should be noted that some ARIA roles do not have a direct counterpart in standard HTML, for
example menu and menuitem to denote a pop-up menu and its entries. The role application is intended to
identify the user interface of a web application. This role has particular relevance, since it determines
if screen readers switch to application mode (focus mode in NVDA) when encountering an associated
interactive element (see Subsection 2.2.3.3).

Beyond the definition of roles, ARIA specifies state and property attributes, which are all denoted by
the prefix aria- in the attribute name. Both states and properties specify further information on an element,
where properties express persistent characteristics and states can be expected to change frequently. An
example of states is the boolean attribute checked, indicating whether a checkbox or radio button is
currently checked (checked=true) or not (checked=false). It should be emphasised that it is the author’s
responsibility to implement the functions to dynamically set the values of states, since neither browsers
nor ATs can determine them for non-standard GUI objects.

Techniques for Accessible Web Pages 17

Important examples of properties include aria-label and aria-labelledby, both used to specify the accessible
name of an element. aria-label accepts an unstructured one-line string as value, directly specifying the
verbatim accessible name of the element. By contrast, aria- labelledby can be used to reference one or
more elements by their ids, where multiple ids are concatenated and delimited by a space character.
This way, the accessible name of the referencing element is composed from the accessible names of the
referenced elements. Both properties may be combined such that aria-labelledby points to an element whose
accessible name is given by aria-label, causing the latter to be the accessible name of the former element
as well. Moreover, it is permitted that an element points to itself with the aria-labelledby property, which
can be used to concatenate the text of this element with that of others. In the same manner, the property
aria-describedby is defined to specify an accessible description for an element. Other examples of ARIA
properties include:

• aria-roledescription intended to provide additional information about the function of an element, in case
it cannot be comprehensively described by a valid ARIA role;

• aria-flowto to specify a navigation order within a document different from that of the DOM nodes;

• aria-valuemin, aria-valuemax, aria-valuenow, and aria-valuetext to indicate the minimum, the maximum, and
the current value of an adjustable GUI control, such as a slider or a spin button; and

• aria-keyshortcuts to specify key combinations for accessing and/or activating an element. This property
only causes the user to be informed about the specified key commands, it does not implement any
handling of key presses.

ARIA attributes should only be used in cases where the host language element lacks the appropriate
information. An example is the non-standard implementation of a checkbox or radio button without
any implicit semantics, as discussed in Subsection 2.4.1. If the <div> element used in this example is
assigned the ARIA role checkbox or radiobutton, the element can be correctly recognised by ATs, even if it
is not associated with any text label. Setting the state aria-checked for this element according to the user’s
actions allows to ATs detect if the object is currently checked or not. However, in order to achieve full
accessibility, the element should also be given an accessible name and assigned the tabindex attribute so
that it can receive keyboard focus.

2.4.3 The Accessibility Tree
Screen readers and similar ATs aim to transform GUIs into a textual representation for visually impaired
users, To achieve this, they try to obtain information about the semantics of the objects within a GUI, as
described in Subsection 2.2.3.1. One way of receiving such information is a so-called Accessibility API.

Watson [2015] discusses the history of Accessibility APIs. Microsoft Active Accessibility (MSAA)
was released in 1997 for Windows 95 and was the first platform-wide accessibility API. Similar APIs
followed for Linux (AT-SPI), macOS (NSAccessibilityProtocol), and later still for iOS (UI Accessibility)
and Android (Accessibility Framework). Today, all major operating systems support at least one integrated
Accessibility API.

Web browsers support one or more of the Accessibility APIs for the particular platform they run on,
and expose information about both the browser itself and the currently rendered web page. To do this, the
browser constructs a so-called accessibility tree [Pickering 2016, page 84; W3C 2017b], a hierarchical
structure expressing accessibility information about the structure of the current web page, built from the
document object model (DOM) tree and applied ARIA roles and properties. The accessibility tree is then
passed to the screen reader.

The Core Accessibility API Mappings [W3C 2017b] is a W3C recommendation and is part of the WAI-
ARIA suite. It specifies how browsers should map the semantic information of web content provided
implicitly by native web content language elements or explicitly by the ARIA attributes defined in [W3C
2017a] to a corresponding representation for accessibility APIs. In general, the document states that:

• the accessibility tree must include all elements of the web document with semantic significance and

18 2 Web Accessibility

exclude all elements which are hidden or important only for the graphical appearance (with certain
exceptions);

• each node of the accessibility tree must contain the semantic information of the corresponding
element, expressed by the appropriate keywords of the platform-specific accessibility API;

• in case of any conflicts between the native semantics of a web content language element and the
semantics of an ARIA role assigned to this element, web browsers should prefer the latter;

• in case of any conflicts between a native state or property of a web content language element and an
ARIA state or property assigned to this element, web browsers should prefer the former;

• if an AT requests a default action on an element, web browsers should simulate a mouse click on
this element; and

• web browsers should notify an AT by means of dedicated events in case of any changes to the DOM,
accessibility tree, or focus with semantic significance and in case of user input.

The Core Accessibility API Mappings document defines appropriate mappings for each of the various
platform accessibility APIs. Furthermore, the recommendation describes how keyboard focus should
be handled by web browsers in order to enable control of a web application by keyboard and to receive
appropriate feedback for each keyboard event.

A further W3C recommendation, the Accessible Name and Description Computation recommendation
[W3C 2018a] specifies a recursive algorithm for deriving the accessible name and description of a given
DOM element. Both values are ultimately represented by plain character strings without markup, line
breaks, tabs, or sequences of multiple space characters. The algorithm to determine an accessible name
considers source(s) within the DOM tree in the following order:

1. an aria- labelledby property with at least one valid id reference, where for each referenced element
its accessible name is computed and all accessible names are concatenated, delimited by a space
character;

2. the value of an aria-label attribute;

3. the alternative text defined by a native attribute or element of the web content language, such as title,
alt, or <label> in HTML;

4. the accessible names of all descendant nodes, that is, descendant elements and text fragments, and
possible text content specified by means of CSS, all concatenated into one string;

5. the value of a tooltip attribute.
With regard to this order, the following exceptions apply:
• If an element is marked as hidden and is not directly referenced by aria-labelledby, aria-describedby, or

a similar attribute or element of the web content language, the accessible name or description is an
empty string.

• If an element is already involved in a computation by an aria-labelledby or aria-describedby reference, its
name or description computation starts with step 2. In other words, indirect references by series of
multiple aria-labelledby or aria-describedby pointers are not considered. The purpose of this restriction
is that an element can reference itself by one of the named properties.

• If an element has an alternative text specified by a native attribute or element of the web content
language, but is marked as presentational, that is, role=presentation or role=none, no accessible name or
description is computed.

• If the element is a GUI control with an adjustable value, such as a text input field or a drop-down

Techniques for Accessible Web Pages 19

list, and is embedded within the label of another GUI control, the adjusted value is considered.
The computation of an accessible description works analogously with the only difference that for step 1

the property aria-describedby is used instead of aria-labelledby.

20 2 Web Accessibility

Chapter 3

Chart Accessibility

The ambitious task of conveying charts and graphics to blind recipients has been addressed in numerous
ways. The most common approach is to describe graphics by words, either orally or in textual form
[Gardner and Bulatov 2006, page 1243]. For this reason, the Hypertext Markup Language (HTML)
standard specifies the alt attribute which can be attached to the element in order to assign it a
so-called alternative text, that is, a concise description [W3C 2017c, Section 4.7.5.1]. In addition, the
longdesc attribute was introduced which can be used to state the uniform resource locator (URL) of a more
detailed description with possible markup [W3C 2015a]. The Web Content Accessibility Guidelines 2.1
(WCAG) recommend that alternative texts be provided to all non-text content within a web document
[W3C 2018f, Guideline 1.1].

However, providing textual descriptions as an alternative for entire graphics has several difficulties.
Firstly, they traditionally need to be produced by humans, meaning that whether they are available for a
particular graphic relies on the willingness of at least one person to write and include an alternative text
and/or a long description. Particularly for more sophisticated graphics like those in the domain of science,
technology, engineering, and mathematics (STEM), this work can consume a considerable amount of
time; for any dynamically created graphics, it is impossible.

Secondly, writing a comprehensive, precise, and concise description of a STEM graphic so that it
is understandable for any potential target user is non-trivial. To address this problem, guidelines for
describing visual content have been published by various institutions. A well-known example is the
image description guidelines by NCAM and DIAGRAM Center [2015]. Based on these guidelines,
which also consider various types of STEM graphics, the DIAGRAM Center [2017] published a web
application to practice the creation of alternative text, and Morash et al. [2015] propose a system of
conditional questions and templates as a utility for authors to create high-quality descriptions of charts.

A different approach towards this problem is the automated generation of graphics descriptions, which
has meanwhile been implemented in several systems and is in some cases a result of research in the field
of artificial intelligence (AI). A popular example is Seeing AI, an iOS application developed by Microsoft
and available in the App Store for free [Microsoft 2021]. Among other functions, the application offers a
mode for recognising and describing human faces including their expressions. Another mode describes
scenes, that is, every-day pictures taken with the camera or stored on the device, detecting its main objects.
Both modes produce the results within a few seconds using a cloud-based service. However, at the time
of writing, the scene mode is still marked as experimental and can only handle simple pictures. SIGHT
[Carberry et al. 2012; Moraes et al. 2014] is a system which generates textual descriptions of simple
line and bar charts and is presented in Section 3.4. evoGraphs, [Sharif 2015a], an academic solution
designed to automatically describe charts with regard to certain statistical properties, is presented in
Subsection 3.5.6.

Nevertheless, the question as to whether verbal descriptions can provide an appropriate alternative to
data visualisations is controversial. Altmanninger and Wöß [2008, page 378] point out that although
textual descriptions are helpful for blind recipients, they might not accommodate the needs of users with

21

22 3 Chart Accessibility

other kinds of disabilities. Gardner and Bulatov [2006, page 1243] argue that charts and diagrams would
not be used so commonly in the sciences if text could transport the same information with an acceptable
number of words. Even if a description is assumed to include all the data contained in a visualisation,
another question is whether the information can be consumed with a comparable degree of efficiency.

Shneiderman’s Visual Information-Seeking Mantra [Shneiderman 1996, page 337] describes the basic
strategy of viewing graphical data representations as a three-step process: “Overview first, zoom and filter,
then details-on-demand”. Based on this principle, Shneiderman [1996, page 337] defines a taxonomy of
seven possible user tasks:

• Overview: Gain an overview of the entire collection.

• Zoom: Zoom in on items of interest

• Filter: filter out uninteresting items.

• Details-on-demand: Select an item or group and get details when needed.

• Relate: View relationships among items.

• History: Keep a history of actions to support undo, replay, and progressive refinement.

• Extract: Allow extraction of sub-collections and of the query parameters.
This taxonomy, however, implies the availability of non-sequential information access, which the

visual perception system of fully-sighted users provides. Continuous text, by contrast, can be regarded
as a linear structure intended for sequential consumption. This applies particularly in the case of blind
users, who are not capable of scanning over several lines of text at a time and, thus, of searching for a
particular piece of information within the text as quickly as a fully-sighted recipient. Moreover, extracting
important characteristics of the data, such as minima and maxima, trends, patterns, irregularities, and
outliers, requires the recipient of a text to memorise and interpret the data accordingly, whereas these
characteristics are often readily apparent for a sighted person looking at a chart or visualisation [Zou
and Treviranus 2015, page 108]. A solution could be to include such characteristics in the description,
but this has the consequence that the decision on which features to pay attention to is shifted from the
recipient to the author of the text or the designer of the text generation algorithm.

Another common strategy is to arrange the data in the form of a standard table, where each non-header
row or column corresponds to a data series and each cell contains the value of a data point. This
representation has several advantages in terms of data exploration compared to text descriptions. For
example, it can be generated automatically with relatively low effort, and it ensures that the recipient has
access to the values of all data points. Most current screen readers offer special key combinations for
moving between the columns and rows of a table (usually involving the Cursor keys), where the header
of the newly selected column or row, and the content of the selected cell are spoken. With tables, blind
users can navigate to particular data points more easily than continuous text. However, this approach does
not overcome the problems of lack of overview and difficult interpretation [Zou and Treviranus 2015,
page 108].

For the reasons discussed above, various solutions have been proposed which strive to provide recipients
with impairments the same level of access to data as it is possible for ones without any disability. In this
chapter, several of these proposals will be introduced. The approaches can be categorised with regard
to multiple aspects. Firstly, the solutions differ in the input format they handle: some systems are only
laboratory prototypes working with dedicated test material, whereas others can be regarded as complete
solutions which might require a certain category or format of graphics but accept arbitrary examples of
this type. The latter can be subdivided into closed systems, which perform all the transformations from
an input image to the output internally, and open systems, for which an input or intermediate file format is
specified, so that they could interact with third-party graphics software. Moreover, the solutions vary in
their implementation, ranging from Scalable Vector Graphics (SVG), other Extensible Markup Language

Tactile Output 23

(XML) transformations, through image recognition, to AI algorithms. Some of the systems require
special hardware, whereas others can be executed on common personal computers or smartphones.

In this chapter, the proposals are classified by the output modalities they use, that is, the interface
through which they present the information to the user. Section 3.1 presents tactile systems. These
solutions produce an output which can be perceived by the sense of touch, including static graphics
embossed on paper as well as refreshable representations composed of moving pins. Section 3.2 covers
solutions producing acoustic output and Section 3.3 looks at solutions which combine multiple output
modalities. Software solutions which interact with a running screen reader is presented in Section 3.4.
In essence, this means that the software generates (additional, potentially non-displayed) textual output
in response to a user action, and exposes these strings to the ATs, such that the latter can read them
aloud and/or output them to a connected Braille display. A special case of such screen-reader-friendly
software used in web applications are charting libraries with accessible output, which will be described
in Section 3.5.

Sometimes, however, the distinctions are blurred. For example, the iGraph-Lite system is described in
Subsection 3.2.1, because its main exploration component provides speech output independently of any
screen reader; nevertheless, its basic summary output is intended to be consumed by means of AT. This
chapter gives a representative overview of some of the vast variety of existing approaches and is certainly
not intended to be exhaustive or complete. For further reading, see the reviews in [Braier et al. 2014;
Carberry et al. 2012; Choi and B. N. Walker 2010; Fredj and Duce 2006; Gardner and Bulatov 2006;
Revnitski 2005; Yoshida et al. 2011; Zhao et al. 2008]. The chapter concludes with a separate section
dedicated to Describler, a web application which inspired the development of the AChart software in the
practical part of this thesis.

Some of the solutions presented in the following sections provide descriptive alternative texts as a
means to provide the recipient a first idea of a graphic’s content. Schepers [2020] calls alternative texts “a
great starting point”, not only for blind users but for all users, as it can help users decide whether to spend
more time with a particular graphic or data visualisation. Throughout the chapter, the term description
will be used for a text which conveys detailed information about the dataset, such as individual data points,
statistics, and trends. By contrast, the term summary will be used for a text containing only information
about the chart type, the axes, or the number of data series and data points.

3.1 Tactile Output
One of the oldest and most intuitive strategies to adapt a graphics document for blind recipients is to
transform it into a haptic representation. Braier et al. [2014, page 2] found that the cognitive processing of
tactile sensations is related to that of visual ones. A traditional technique to create tactile graphics is the
handcrafted composition of a three-dimensional (3D) document or model [Lang et al. 2010, pages 103–
116]. For example, haptic charts, maps, and diagrams can be composed by fixing strings, pieces of
thick paper, adhesive tapes, and other shapes of well-tangible material on a sheet of cardboard. For the
duplication of such models, the thermoform method can be applied: the master copy is placed into a
compartment, and a special type of plastic sheet is laid above it. The plastic is then heated to its melting
point, and a vacuum is produced within the compartment, so that the plastic sheet follows the form of
the master. Devices which can be used for this technique are, for example, the Thermoform Graphics
Machines by American Thermoform [2019].

The same company also produces the Swell Form Machine and a corresponding type of paper known
as swell paper or capsule paper. When heated, the surface of this paper rises at all non-blank locations,
such that the height of the respective portion of paper corresponds to the darkness of shade at that location
in the original source. In this way, hand-drawn, photocopied, or printed graphics from arbitrary sources
can be reproduced on swell paper, and thus made tactile. A similar product is the Pictures in a Flash
(PIAF) Tactile Image Maker by Harpo [2021].

For several decades, the analogue techniques described above have been widely used to produce tactile

24 3 Chart Accessibility

graphics by schools and libraries for the blind [Lang et al. 2010, pages 103–116]. However, manual
preparation and duplication is time-consuming and requires a certain amount of expertise and experience.
For many potential recipients, tactile images are difficult to understand, especially for those who lost their
sight early and, therefore, could not fully develop their visual imagination. Users often require training
and practice to correctly and efficiently handle and interpret such representations. Haptic resolution is
orders of magnitude lower than visual resolution and varies significantly among individual recipients
[Klatzky and Lederman 2004, page 152; Gardner and Bulatov 2006, page 1243]. Simultaneously, the
portion of a graphic perceivable by the sense of touch is relatively small, resulting in rather sequential
exploration, whereas a fully sighted user can process several pieces of visual information in parallel
[Prescher et al. 2017, page 392].

As a consequence, in most cases, graphics produced for visual perception cannot immediately be
mapped onto an analogous tactile counterpart, but several steps of adaptation are necessary, including
simplification, reduction of information to the essential parts, omitting solely decorative elements, and
the magnification of objects too small for tactile recognition. Moreover, if information is also encoded as
colours or shades of grey, this representation needs to be transformed to an equivalent tangible system.
Another important issue is the placement of text labels, since Braille characters have a fixed size (see
below) and often require more space than optical fonts [Gardner 2016, page 419]. Goncu and K. G.
Marriott [2008] argue that converting visual charts to tactile copies does not accommodate the needs of
blind recipients in many cases, because certain changes in the layout are necessary too. These include
inserting sufficient inner space for the comparably large Braille labels, placing the horizontal axis at the
top rather than the bottom of the chart, and adding contextual information to some elements, such as
labels with numeric values to single bars or pie slices.

With the advent of information technology, various solutions have been developed to immediately
produce haptic representations of graphics from digital ones. The most common strategy is to compose
raster images out of tactile pixels in a similar manner it is done in the visual domain. Tactile pixels are
usually formed by convex elevations, often referred to as dots, arranged on a plane carrier medium. Since
Braille characters consist of such dots (see Subsection 2.2.1), most devices for producing tangible raster
graphics benefit from techniques related to the Braille system. However, Braille dots do not fully meet
the requirements of graphics, largely due to a maximum resolution of around 12 DPI and the spacing
between neighbouring characters.

3.1.1 Static Output
One of the earliest solutions for the tactile embossing of data visualisations was developed at Vitro
Laboratories and is presented by Wefold [1976]. It is based on a generalised system to author graphics
documents for printing independent of the output medium, such as the printer type and resolution. For
this purpose, graphics are defined as a series of macro calls. When printing a document on a particular
hardware configuration, the appropriate set of macros is applied. If a graphic is to be embossed, a special
macro set is chosen which constructs lines as a series of dots (that is, full stop characters) and translates
letters to their corresponding braille dot combinations. The printout is performed on a line printer, where
an elastic strap is placed behind the paper so that the physical impact by the printing mechanism causes
the paper to be raised at the positions where the full stop characters are written. The system was used
regularly by a blind engineer working at Vitro Laboratories for embossing various types of charts and
diagrams.

Modern tactile embossers are devices which stamp depressions in the form of negative dots into a
sheet of relatively thick paper, so that tangible dots arise at the corresponding positions on its opposite
side. Tactile embossers were originally developed for printing Braille. However, many systems currently
available on the market provide a graphics mode offering higher resolutions and an equidistant pattern of
dots. Examples include the Phoenix, Romeo 60, and Juliet 120 by Enabling Technologies [2017] which
support a resolution of 25 DPI [Enabling Technologies 2015, page 13–14], as well as products by Index
Braille [2020] with resolutions from 20 DPI (Basic-D V5) to 50 DPI (Braille Box V5). The embossers by

Tactile Output 25

ViewPlus [2021] and Irie-AT [2019] achieve similar resolutions and, in addition, are capable of setting the
dots to eight different amplitudes: for instance, VP Elite and Premier [ViewPlus 2016a], VP EmBraille
[ViewPlus 2016b], IRIE Braille Buddy, and IRIE BrailleSheet 120 w/Power-Dot Braille. The variation
in dot height is used to encode visual information other than two-dimensional shape and position, such as
brightness or colour. By default, the different amplitudes represent the shades within a greyscale version
of the image, where level 0 (a blank dot cell) corresponds to white and the maximum level 7 to black.

Common graphics editing applications can be used to prepare an image for printing on an embosser,
but there are also dedicated software solutions for this purpose. QuickTac is an application for drawing
tactile graphics offered by Duxbury [2020] free of charge. The software provides tools similar to that
of a simple paint programme and a preview of the resulting dots pattern. It supports direct printing
on a tactile embosser as well as saving the created image in a special file format. Goncu and K. G.
Marriott [2008] present a software application developed in collaboration with Vision Australia for the
automated creation of bar and pie charts in SVG format optimised for tactile representation. The tool
accepts tabular data stored in formatted text files as input. Braille labels can be printed that the labels
and graphical content do not overlap. Afterwards, a sighted person can fine-tune several properties of the
chart, such as margins and the spacing between elements. At the time of writing, no usability study had
been conducted. However, the authors report that first feedback provided by sighted chart transcribers
and (mostly blind) proofreaders at Vision Australia was highly positive. In particular, they note that the
average time necessary for preparing tactile charts decreased from approximately half an hour in the case
of manual creation to around 5 seconds when using the software.

Ferro and Pawluk [2013] developed algorithms which automatically perform segmentation and sim-
plification of an existing image to make it suitable for tactile output. Implementations of such algorithms
are offered by some of the manufacturers of tactile embossers, in combination with dedicated tools for
drawing tactile graphics. For instance, the Tiger Software Suite by ViewPlus can be used in conjunction
with the their embossers to prepare documents for tactile output. It includes a Microsoft Office add-in
which provides a function to print charts from Excel [ViewPlus 2020, page 51] as well as Tiger Designer
for creating and adapting graphics.

Tiger Designer supports the import of images in Portable Document Format (PDF) and their conversion
to a format suitable for tactile embossing. The image is transformed into an eight-level greyscale
representation with the resolution scheme supported by the target ViewPlus embosser model, applying
anti-aliasing techniques [ViewPlus 2020, pages 58–78]. Text characters within the original document
are encoded as Braille letters. The result is shown in a preview of the embossed dots pattern and can
be modified with tools similar to those offered by a paint application. In order to represent particular
colours or other characteristics, special dot patterns can be defined and then applied for filling certain
shapes. Braille text labels can be added, the density and the contrast can be adjusted, and an automatic
simplification function can be applied. The prepared image can then be saved in a dedicated file format
or printed on a ViewPlus embosser.

A similar application is the Firebird Graphics Editor by Enabling Technologies [2017]. This software
can be used to create graphics for tactile output, either by drawing or by editing existing images in several
file formats. For this purpose, the software provides various automatic tools and filters to clean and
simplify images and to preview the tactile output. Irie-AT [2019] offers the TactileView design software,
which comprises various drawing tools and functions for the guided composition of maps and diagrams
as well as for creating charts from mathematical functions. A number of image file types can be opened,
and different filters are available to convert the imported image for tactile output. The software supports
Braille embossers by Irie-AT, Index Braille, and ViewPlus.

A relatively novel alternative for creating static tactile graphics is the use of printers for 3D output.
Braier et al. [2014], for instance, introduce the term relief charts, which means not only a flat haptic
representation of two-dimensional chart elements but also the encoding of information in the amplitude
of the relief shapes. The strategy is applied to five chart types in different manners. For scatter plots,
pie charts, simple bar charts, and stacked bar charts, height is used for conveying the value, as a second,

26 3 Chart Accessibility

redundant means. In the case of star charts, two approaches are presented and were evaluated. Firstly
the one just described and secondly using a distinct fixed height for each n-gon in order to ensure clear
separation of the data points. In a qualitative study with 17 visually impaired participants, it was found
that the redundant encoding of values in heights did not significantly improve the interpretation of the
charts, whereas the test persons could highly benefit from the system of distinct amplitudes to different
data points in a star chart. Based on the largely positive results of the study, a software tool for creating
relief charts by 3D printers was implemented. The software takes tabular data as input and supports the
five chart types mentioned above. The result can be edited by a sighted person and is stored in Surface
Tessellation Language (STL), a common file format used for printing 3D models.

3.1.2 Refreshable Tactile Displays
Over the past decades, several devices were developed capable of dynamically producing tactile raster
images instantaneously. The basic principle for setting and removing the tangible dots is the same as
in the case of Braille displays (see Section 2.2): each possible dot is formed by a pin of an appropriate
diameter. The pins are fixed in an upright position side by side as a horizontal dot matrix. To set or
remove a particular dot, the corresponding pin is raised or lowered, respectively, by a piezoelectric or
electromagnetic actuator. In contrast to standard Braille displays, however, the pins of most devices
for tactile graphics are not arranged as a single line of Braille characters but rather as a rectangular,
equidistant raster, similar to that of a screen in order to support the representation of two-dimensional
shapes.

One of the first refreshable tactile displays was introduced by Bliss [1969]. It contains an array of 24×6
photosensors whose signals control corresponding piezoelectric tactile pins. The sensors are located in
a handheld scanner, which the user can move across the printed material and is connected by cable to
the main unit. The pins are arranged in 24 rows by 6 columns, intended to be perceived at a time by
one fingertip. The pins vibrate at a frequency of 200 Hz, since experiments conducted by the authors
showed that such a stimulation resulted in higher recognition accuracy. The initial design focused on
reading printed text by means of the device. In an evaluation with four participants, all four achieved
reading rates greater than 10 correct words per minute, two of them a rate greater than 20 words per
minute. The device was commercially produced and marketed as Optical to Tactile Converter (Optacon)
by Telesensory Systems from 1971 until 1996.

Falk [1999] describes a prototype of Graphics Window Professional (GWP) developed by Handy Tech
Elektronik GmbH1, a tactile device with 24×16 piezoelectric pins at a distance of 3 mm. GWP was
originally intended as a means for blind persons to access graphical user interfaces. Since the dot matrix
can only represent a small part of the image, the device supports scrolling and zooming using dedicated
buttons next to the tactile elements, so that regions of interest can rapidly be navigated and inspected. The
author developed algorithms to adapt rich graphical inputs so as to yield more meaningful representations
on the tactile device. Firstly, the visual resolution is reduced by a factor of approximately 3000 to the
significantly lower tactile resolution. Secondly, as the tactile pins can only be set to one height, a colour
or greyscale image is converted to a monochromatic form, by applying methods of optimal thresholds.

A commercially produced version of GWP is described by Revnitski [2005]. This version is implemen-
ted in a smaller case and offers some additional navigation keys. Furthermore, it provides an application
programming interface (API) for setting the displayed dots pattern and reading certain parameters from
the device. GWP was produced and sold by Handy Tech until 2009.

A project with a focus similar to that of GWP is HyperBraille [Völkel et al. 2008; Prescher et al. 2017;
HyperBraille 2020]. The tactile display developed within this project is based on the Stuttgart pin-matrix
device and considerably larger than GWP. It features 60×120 pins and, in addition, supports touch input
from multiple fingers using capacitive measurement techniques. The device has been commercially

1Known as Help Tech [2021] since 2017.

Tactile Output 27

produced by metec [2020] since 2012. The manufacturer currently offers more compact variants of
the HyperBraille system for mobile use, as well as wireless communication to personal computers and
smartphones.

A system with a different approach to navigation was proposed by Owen et al. [2009], namely a special
kind of mouse for tactile exploration of graphical content. The prototype works in combination with a
tablet, where the mouse is moved across the displayed graphics and its current position is detected by a
radio frequency system. Between the mouse buttons, instead of a scroll wheel, a common Braille module
is located which is used to display shapes at the current location as raised pins. The Braille pins can be
vibrated with frequencies varying between 0 and 300 Hertz because, based on [Bliss 1969], the authors
hypothesise that vibrating shapes are easier to recognise than static ones. The device is accompanied by
a software library for integration with third-party systems. As a test case, the authors provide a function
for Matlab which displays three-series line charts, where each of the three lines is haptically represented
by pins vibrating at a distinct frequency. One of the mouse buttons can be used to retrieve the coordinates
of the current mouse position. Headley and Pawluk [2010] present an enhanced version of the tactile
mouse, which is capable of setting the braille pins to different amplitudes, for example to represent a
height field or different graphical textures.

Hribar et al. [2012] address the problem of integrating text labels within tactile graphics with a two-
layer approach. A tactile mouse is used to explore graphical content as described in [Headley and Pawluk
2010]. Whenever the user moves the mouse across a text character, the display switches to a mode in
which the character is shown in Braille. This Braille representation is fixed as long as the mouse remains
within the area of the character so that small movements do not impair readability. In order to facilitate a
clear distinction between textual and graphical content, two options are proposed. The first is to set the
pins to different amplitudes, where text characters are represented at the maximum level and graphical
elements at lower ones. As an alternative, both text and graphics are represented at the same heights,
but text characters are enclosed in borders. In a comparative study, nine visually impaired participants
were given the task of exploring different maps to identify contained three-letter labels and textures for
particular countries. The two strategies were evaluated along with the third option to represent text and
graphics at the same amplitudes without any means of distinction. All three methods performed similarly
in terms of finding the text labels. However, with regard to identifying graphical features, the tests showed
significantly worse results for the strategy of different pin amplitudes than for the other two options.

A recent development in the field of tactile devices is Graphiti, a commercially available device
produced by Orbit [2021] with a matrix of 60×40 tactile pins which can be set to variable amplitudes. It
can handle graphics files in various formats from memory stick, SD card, or a host computer connected
via USB or Bluetooth. Moreover, Graphiti features a High Definition Multimedia Interface (HDMI)
input port, which can display the screen content of an HDMI source, refreshing the tactile display every
few seconds. The pin array is touch-sensitive, enabling the user to either perform gesture commands for
scrolling, zooming, and navigation or to draw shapes by moving a fingertip along the desired curves.
The manufacturer provides an open API for communication via USB or Bluetooth, so that software for
external devices can be developed to both set the tactile output and to read the touch input. A photograph
of the Graphiti displaying an image is shown in Figure 3.1.

28 3 Chart Accessibility

Figure 3.1: Graphiti by Orbit [2021], a portable tactile graphics display with 40×60 pins, viewed
from above. Navigation keys are located in front of the pin array. The device is displaying the
logo of the manufacturer. [Image provided by and used with kind permission of Orbit [2021].]

3.2 Auditory Output
In scientific literature, many solutions can be found which transform the content of a graphics document
in general, or a chart in particular, into an acoustic representation. There are two basic approaches:
speech output and sonification. Systems using speech output read out the graphics document using
integrated speech synthesis. Systems using sonification produce an acoustic non-speech representation
of the graphics document. Some systems combine both approaches.

3.2.1 Speech Output
Ferres et al. [2007] describe the iGraph-Lite software, an interactive screen reader for charts. The software
takes a so-called visual description as input, which means a machine-readable tree structure representing
the objects and characteristics of the chart. This interface was chosen in order to make the main software
as independent of the chart authoring software as possible. The prototype is accompanied by a plug-in
for Microsoft Excel, which automatically generates such visual descriptions on chart creation.

The core component of iGraph-Lite applies several analysis algorithms in order to derive interpretations
of the data, which include the detection of trends and the identification of titles not explicitly specified
as such. For example, if an axis does not have a title but its axis items are labelled according to a pattern
like “Q1, 1996”, the software infers an axis title of “Quarter by Year”. This component, too, is organised
in a modular design, so that the set of algorithms can be extended by plug-ins with other capabilities.

From the user’s point of view, the software offers two levels of access. Firstly, it composes a textual
summary of the chart, which is available as a plain text file and includes the chart type and title as well
as information about the axes and the data points with the two lowest and two highest values. Secondly,
details of the data can be inspected as full-sentence speech messages by keyboard commands within a
special navigation tool. For instance, it is possible to navigate among data points along the x-axis using
the Cursor-Left and Cursor-Right keys, where the software speaks the x and y values of the selected data
point and indicates whether it represents an increase or a decrease compared to the previously selected
data point. Moreover, the user can skip a specified number of data points and have the textual summary

Auditory Output 29

spoken. The two-level user interface is intended to be integrated into web documents, where the textual
summary is referenced by the longdesc attribute of the HTML element embedding the chart, and a mouse
click on the graphic enables the navigation tool.

In [Ferres et al. 2013], an extended version of the system is presented. This implementation includes
the use of more plug-ins to other plotting and chart authoring applications, which generate the visual
descriptions from the internal object model of the respective software. The system was evaluated
in two formative usability tests with ten blind and ten (blindfolded) sighted participants at two different
development iterations, showing that it was considered as likeable and helpful. Based on the first usability
test, some new key commands were introduced and others were adapted according to the feedback of the
participants. The new commands include navigation to the first and last data point as well as to the data
points with the maximum and minimum value. Existing commands were reassigned in order to achieve
more consistency with the common interface of screen readers and to take into account the spatial location
on the keyboard. The source code of the iGraph-Lite software is publicly available at [Ferres 2015].

3.2.2 Sonification
Choi and B. N. Walker [2010] propose a hardware system called Digitizer Auditory Graph, which
transforms single-series line charts on paper to sequences of musical tones. The form factor is intended
to resemble an overhead projector: a camera is fixed above the surface the chart is placed on. After this
camera has captured the graphics, image recognition and edge detection are used to transform the detected
data points into numerical values. Once the analysis has been completed, the data series is sonified as a
sequence of piano tones with a total duration of 10 seconds, where the frequency of each tone corresponds
to the value of the respective data point. The audio is generated using the Auditory Graph Model library
of the Sonification Sandbox framework [B. Walker and Cothran 2003]. In an evaluation with four blind
and four sighted participants, the system received positive average ratings.

Yoshida et al. [2011] present an iPhone application which maps contours of arbitrary images to synthetic
sounds. Edges are extracted using computer vision. Depending on the operating mode selected, either
sine tones indicate whether there is an edge at the current finger position on the touch screen, or a pulse
train of variable frequency represents the distance to the next edge from the finger position. In evaluations,
most of the blindfolded sighted participants could recognise most of the shapes in the test material after
some initial training.

3.2.3 Combined Speech Output and Sonification
Zhao et al. [2008] introduced a hybrid solution, combining both speech output and sonification. This
Windows software was originally intended for the acoustic exploration of geospatial statistical data
commonly presented in maps, such as population or crime rates, but can be extended to other graphical
representations like charts. The data can be displayed not only in a map but alternatively as a tabular view.
Data points and particular properties can be navigated with both keyboard and touchpad. A selected value
is first represented by a musical tone, whereas names and numerical details can be obtained as synthetic
speech. Two blind persons were involved in the iterative design process. In an evaluation with seven
blind test users, all of them rated the system as “easy to use” and “helpful”, and an average of 90 % of
tasks were completed.

For the Graphics Accessible To Everyone (GATE) framework proposed by Kopecek and Oslejsek
[2008], the techniques of speech and sonification are combined the other way round. An overview of
an image can be obtained by a question-answer interface, where the questions are entered via speech
recognition and the answers given by speech synthesis. More detailed exploration is possible using the
standard numeric keypad, with each of the number keys from 1 to 9 representing one of nine rectangular
sections of the image. Once a section is selected, it can recursively be explored by nine subsections the
same way. For every selected rectangle, three different tones are played, where each of them represents
the intensity of one of the additive primary colours red, green, and blue in this section.

Banf and Blanz [2013] present a Windows software system with a similar exploration strategy: the

30 3 Chart Accessibility

software analyses arbitrary images in Joint Photographic Experts Group (JPEG) format by means of
computer vision and machine learning. A brief overview is given via speech output, whereas details
are explored pixel-wise by the user and represented as synthesised or prerecorded sounds. These details
include low-level features, such as colours and edges, as well as high-level information, like recognised
objects. While exploring, the user can navigate by keyboard or touch screen. The software was evaluated
qualitatively with three blind test persons and everyday pictures as material. All the participants could
solve most of the tasks and appreciated the system.

3.3 Multimodal Output
Various solutions for presenting graphics to recipients with disabilities address multiple senses, in order
to convey several parameters of complex visual information in parallel. One of these is the commercial
IVEO system produced by the company ViewPlus Technologies [ViewPlus 2021] and described by
Bulatov et al. [2005], Gardner and Bulatov [2006] and Gardner and Bulatov [2010]. The system consists
of three components: IVEO Creator, IVEO Viewer, and IVEO Touchpad.

IVEO Creator can be used to annotate objects within SVG documents with accessible names and
descriptions. Instead of textual information, audio recordings can be added as well. A Pro version of
Creator transforms images of any format into an SVG representation using image recognition techniques.
All the text labels contained in an image are converted to machine-readable text by optical character
recognition and structurally associated with their corresponding object within the graphics.

IVEO Viewer is a Windows application available for free and represents the counterpart used by the
recipient. An IVEO SVG file can be displayed, where each accessible name is read aloud by synthetic
speech when clicking on the corresponding object, and descriptions are spoken after a double click.
According to the authors, this kind of exploration may be helpful especially for users with low vision or
cognitive disabilities. Moreover, the user can print the SVG file on a ViewPlus tactile graphics embosser
directly from IVEO Viewer.

The third part of the system is the IVEO Touchpad, which can be connected to the computer running
IVEO Viewer. Subsequently, the user places an embossed graphic on the touchpad and explores the
tactile representation, where any name is read aloud on the connected computer when a finger presses
on the associated object, and descriptions can be retrieved pressing a certain key combination. A more
recent version of the IVEO system is presented by Gardner [2016]. The improvements include better
automatic and manual image simplification using edge detection, automatic generation of Braille labels
for the tactile graphics, a digital infra-red pen as an alternative to touch gestures for input, and various
usability enhancements.

Wall and Brewster [2006] introduced a system called Tac-tiles for exploring pie charts by speech,
sonification, and a tactile display using a graphics tablet with a pen as an input device. The non-speech
audio consists of musical tones which are played when reaching another sector of the pie chart, indicating
its proportion. The tactile display shows borders of the sectors when reached. Exact numerical values
can be obtained as speech output. For orientation and guidance within the chart, a circular overlay tile
is placed onto the tablet. In a qualitative evaluation, six blind test users (some with residual vision)
answered 89 % of all the questions correctly. All the participants appreciated the system on the whole,
preferring audio output to the (redundant) tactile output.

The GraCALC software presented in [Goncu and K. Marriott 2015] takes a mathematical function
or tabular data as input. A web service based on the statistics software R generates a textual summary
of important features, such as extrema and turning points, and plots the function or data in a dedicated
format. The result can be downloaded to a corresponding iOS application, in which blind users can
explore the plot by sound and vibration feedback depending on the finger positions on the touch screen.
In an evaluation with ten visually impaired students, eight of them stated that they preferred this system
to classic tactile graphics on paper due to its high flexibility and interactivity.

A multimodal software solution for accessing and exploring mathematical graphics on the tactile

Screen-Reader-Friendly Output 31

display GWP (see Subsection 3.1.2) was developed by Revnitski [2005]. The software called Plot
Explorer provides a refreshable tactile representation of visualisations combined with speech and Braille
output via the screen reader JAWS. It takes a tree structure as input, which contains the underlying
data and other semantics of the visualisation. The actual plot is then rendered by the Plot Explorer core
application in two formats, namely visually and as a representation optimised for the intended multimodal
output. The tactile image is displayed on the GWP, where the user can zoom and navigate by means of
the mouse, keyboard, or buttons of the tactile device. Furthermore, the user can choose between several
output modes, hide and unveil the axes, show only the data points, or show interpolation lines. The data
structure can be passed to Plot Explorer using a corresponding dynamically linked library. This library
has been integrated into the mathematics software Maple by Maplesoft.

Rotard et al. [2004] also presented a system for the multimodal exploration of graphics in conjunction
with a tactile display. While the prototype of the system was tested and evaluated using a particular
60×120 pin device, the interface is described to be flexible so that the software can support arbitrary
tactile displays. The system accepts SVG documents as input and performs a transformation to a simplified
representation. Once a document has been analysed completely, SVG elements can be navigated step by
step, and groups of elements can be entered recursively. The shape of the currently selected element is
displayed on the tactile device, and its accessible name and description are read aloud by speech synthesis.

Engel et al. [2019] present a Java application called SVG-Plott for generating SVG charts optimised
either for visual output, tactile embossing, or exploration on a tactile display. If the latter is chosen as
target output, titles, descriptions, and interactive regions are added to the file so that the user also receives
speech feedback when moving the finger to objects of the chart on an audio-tactile device. The system
accepts one or multiple Comma-Separated Values (CSV) files as data input and can create stacked and
grouped bar charts, line charts, and scatter plots. The programme can be controlled either via command
line or a graphical user interface (GUI). Within the GUI, data can also be entered, deleted, and edited by
the user. Depending on the data, the chart type, and the target output (screen, tactile graphics embosser,
or tactile display), many parameters of the SVG file are chosen automatically, but can also be customised
by the user. The GUI was designed to be accessible so that, according to the authors, creating charts is
possible not only for sighted but also for blind users. In an evaluation of embossed charts created by the
application with two blind participants, both of them could recognise the charts well and solve most of
the given tasks, with partly worse results for scatter plots than for bar and line charts. In another study,
the usability of the GUI was evaluated with two blind and ten sighted persons. All of them performed all
the given tasks successfully and appreciated the structure of the GUI. The source code of the software is
publicly available [Harlan et al. 2019].

3.4 Screen-Reader-Friendly Output
The Access2Graphics project introduced by Altmanninger and Wöß [2008] aims to achieve the inclusion
of all humans with or without any kind of impairment. The authors argue that one form of graphical
representation cannot serve the diverse needs of recipients with different disabilities. For this reason, a
web-based framework is proposed, which validates an SVG document against the guidelines published
in [Dürnegger et al. 2010] (see Subsection 4.1.2) and can transform it into various output formats.

The core component is a server-side programme designed to be used by any web application. The
software runs a database in which every user can store a profile with characteristics relevant for the
target output, such as any disabilities, used assistive technologies, and individual preferences. When a
user has created such a profile and encounters a valid SVG document on a web page which includes
the Access2Graphics service, an additional link is inserted next to the graphic. After activating this
link, the graphic is sent to the service, which then returns a representation according to the individual
characteristics specified in the profile of the particular user. For example, a screen reader user receives a
hierarchical structure of textual elements according to the logical structure of the objects in the graphic. In
the case of a chart, a tabular view of the data can also be obtained. A user who has indicated having colour
deficiencies, by contrast, is provided the SVG with modified colours according to the details specified in

32 3 Chart Accessibility

the profile or, as an alternative, a greyscale version of the graphic.
In the statistical software environment R, a package called BrailleR is available which generates a textual

representation for certain chart types [Godfrey 2013; Godfrey 2019]. The text output comprises a listing
of all the data points and is derived from an internal object of the software on chart creation. Fitzpatrick
et al. [2017] and Godfrey et al. [2018] present an extension to the BrailleR package creating accessible
charts which can be displayed in any browser and explored by keyboard commands in combination with
screen reader output.

The frontend is based on the DIAGcess library [Sorge 2016] (see Subsection 4.1.2) and provides a
hierarchical navigation model consisting of at least three layers of abstraction. The user can move within
one layer using the Cursor-Left and Cursor-Right keys, and between the layers with the Cursor-Up and
Cursor-Down keys, where upward navigation corresponds to an increased level of abstraction. Whenever
an item is selected, its title is conveyed to a running screen reader and the corresponding object within the
graphical representation is highlighted. An optional synchronised magnification of the selected object is
possible as well. If the user has enabled verbose mode, an additional description is passed to the screen
reader. If configured appropriately, the screen reader reads out the title and optionally the description
and/or outputs it to a connected Braille display.

The root of the hierarchical structure consists of a so-called top-level summary, which includes the
chart type and title, in verbose mode also the number of data points as well as the titles and ranges of
the axes. The next level is the major component layer, whose items represent a title component including
all the subtitles and other overall text information, one component for each axes, and a component for
the whole dataset. On the lower layers, single items such as data points can be selected. In the case of
charts resulting from continuous functions, the BrailleR extension divides the output into small sections
which can be navigated instead. Furthermore, statistical values are also provided, such as maxima,
minima, quartiles, and outliers. Two blind persons participated in the development process, and feedback
was requested from other blind users, most of whom had a mathematical background but no experience
working with R. The test persons used their own devices with various combinations of operating systems,
browsers, and screen readers and appreciated the means of exploration in general. However, many of
them had problems understanding the charts without asking for additional information. Moreover, some
of them requested other output modalities, in particular, Braille and sonification.

Carberry et al. [2012] introduce the Summarizing Information Graphics Textually (SIGHT) software,
an intelligent system which generates textual descriptions of single-series line charts and bar charts
automatically, trying to convey the essential message and important visual features of the chart. After
retrieving this description, the user can request follow-up information interactively. The system is
designed for readers of popular media rather than scientific literature, which means that the focus is not
put on detailed exploration of the data, but on retrieving high-level information expressed by the chart,
even when the user is not familiar with consuming numerical data.

The application is organised in a modular architecture. A browser helper object for Microsoft Internet
Explorer searches for graphics within a web document after loading and performs some initial image
recognition on each graphic, trying to detect whether it is likely to be a chart. If so, the software adds a
message to the alternative text of the graphic, saying that the user can request a description by pressing
the key combination Control+Z. After the user has entered this command, the image is sent to the Visual
Extraction Module which tries to identify all the objects of the chart and their properties using image
recognition. Other components of the software then derive higher-level semantics by probability-based
algorithms. The result is returned to the frontend and presented to the user in a separate window. In an
evaluation with seven visually impaired participants, all of them could solve all the given tasks correctly
and rated the system as very helpful and easy to use.

A newer version of the SIGHT system is presented in [Moraes et al. 2014]. This version is additionally
capable of processing stacked bar charts and of adapting the level of the language for the descriptions
to that of the language used in the article containing the analysed chart. For instance, the description
of a chart is expressed in every-day language when embedded in newspaper articles, whereas it is more

Charting Libraries with Accessibility Features 33

detailed and mathematical in the case of scientific documents. Moreover, the new version was designed as
a client-server architecture. While the previous version needs to be completely installed on the user’s local
machine, most processing is now performed on a cloud-based backend. The user interface is provided as
a browser plug-in for Google Chrome. In an evaluation with several line charts, four blind test persons
performed almost as well in answering questions about the charts as sighted participants viewing the
graphical representations.

Another commercial solution is the SAS Graphics Accelerator [Summers et al. 2018; SAS 2019].
The software is available free of charge as a plug-in for Google Chrome and offers alternative output
modalities for STEM graphics, including textual descriptions provided by the graphic’s author, tabular
views, interactive sonification controlled by the user, and modified visual representations for partially
sighted recipients. Graphics Accelerator can be used as a self-sufficient system or in combination with
a screen reader. It accepts charts and maps of more than ten different types created with other SAS
applications and conforming to the recommendations by Summers et al. [2018]. Moreover, it offers
the Laboratory function, which lets the user create visualisations as well. For this purpose, data can
be entered as tabular structures, imported from CSV and Microsoft Excel files, or extracted from web
documents opened in the browser.

3.5 Charting Libraries with Accessibility Features
Several of the existing web programming libraries for generating charts from datasets, so-called charting
libraries, have support for the production of screen-reader-friendly output. While some of them do
so by default, in the case of others, accessibility is an option which only takes effect when explicitly
activated by the author of the chart. The accessible output ranges from textual summaries, through
table representations of the data, to web applications enabling the user to navigate the objects of a chart
interactively by keyboard and speech or Braille output. Examples of such charting libraries will be
described in the following subsections.

3.5.1 Highcharts
The commercial software Highcharts offers an Accessibility module, which is being developed with
the involvement of users with disabilities [Highcharts 2021b; Highcharts 2021a]. In order to produce
accessible charts, this module needs to be added to the web document along with the other library
modules. Once included, it automatically attaches tabindex attributes as well as ARIA roles and properties
[W3C 2017a] to certain SVG elements of the generated chart. This enables navigation between these
elements by keyboard and exposes the labels of focused elements to a running screen reader, so that it
can output this information by speech and/or Braille. All the labels are generated automatically by the
software from the underlying data according to a pattern which can be adapted by the author of the chart.

When a user reaches the SVG by means of the Tab key, the focus is set to the first data point of the
first data series, and a running screen reader is supplied with the title and subtitle of the chart, as well as
the labels of the first data series and first data point. Afterwards, the data points can be navigated within
one data series by means of the Cursor-Left and Cursor-Right keys and across multiple series using the
Cursor-Up and Cursor-Down keys. Whenever a new data point is focused, the screen reader is informed
about its label (for example, x and y coordinates). In addition, if the user has moved to a different data
series, the label of the newly selected data series is conveyed to the screen reader as well. If a focused
data point contains a link, it can be activated by the Enter or the Space key. In particular, Highcharts
provides a facility to drill down into aggregate data points by following such a link.

Another press of the Tab key takes the user to the first item of the legend, if available for the particular
chart, where the remaining legend items can again be navigated using the Cursor keys. The legend items
are represented as buttons, which can be activated by the Enter or the Space key to hide the corresponding
chart object (for example, a data series) and to unveil it again. Regarding navigation by the Cursor keys,
however, it should be noted that this functionality is available in most screen readers only if the latter are

34 3 Chart Accessibility

not running in their default mode for web browsing (i.e. not running Virtual Cursor mode in JAWS or
Browse Mode for NVDA), because in this case, the key presses are captured by the screen reader.

If the default mode for web browsing is active, from a blind user’s perspective, the information on the
data points is listed sequentially by name, grouped by data series, and followed by the legend items, so
that all the objects can be viewed using the navigation facilities of the respective screen reader. In this
interaction mode, the user can also read several additional automatically-generated text summaries which
are presented in an invisible region placed into the accessibility tree before the SVG. They include the
chart type, the number of data series, and information about all the axes. Moreover, the user can choose
to view the data as a standard HTML table. Additional descriptions of the chart, data series, and data
points can be provided by the author and are then included in the accessible representation.

The default colours for Highcharts are chosen such that neighbouring objects can also be distinguished
by users with colour deficiencies. Every chart can also be exported as an SVG file which contains the
same accessibility attributes and is additionally optimised for tactile embossing. Sample demonstration
charts created using the accessibility module of Highcharts can be found at [Highcharts 2021c]. An
example of the ARIA roles and properties as well as the other attributes used to indicate chart objects is
shown in Listing 3.1. Further technical details can be found in Subsection 4.5.6.

3.5.2 FusionCharts
The commercial library FusionCharts provides a so-called accessibility extension [FusionCharts 2020],
similar to the Accessibility module of Highcharts. This FusionCharts extension, too, needs to be included
within the document of the chart in order to take effect. It then attaches tabindex attributes and ARIA roles
and properties to certain SVG elements of the generated chart, so that keyboard navigation between these
elements is possible and labels of the focused elements are conveyed to a running screen reader. All the
labels are automatically generated according to a pattern which is customisable by the author of the chart.

The first focusable element in the visualisations produced by FusionCharts is the root <svg> element.
When navigating to it, which can be achieved by means of the Tab key, a running screen reader is supplied
with the label of the chart. By pressing the Tab key another time, the focus is set to the first data point of
the first data series. Subsequently, the data points can be navigated within a data series by the Cursor-Up
and Cursor-Down keys and across multiple series using the Cursor-Left and Cursor-Right keys. Whenever
a data point is focused, the screen reader is informed about its label, for instance, its x and y coordinates,
index number, the total number of data points in its data series, the title and index number of its data
series, and the total number of data series. If a focused data point contains a link, it can be activated by
the Enter or the Space key. In particular, FusionCharts provides a facility to drill down into aggregate data
points by following such a link.

Pressing the Tab key another time, the focus is moved to the first item of the legend, if one is available
for the chart. Afterwards, the remaining legend items can again be navigated using the Cursor keys.
The items are represented as buttons, which can be activated by the Enter or the Space key to hide the
corresponding chart object (for example, a data series) and to unveil it again. As in the case of Highcharts,
navigation with the Cursor keys is available in combination with most screen readers, only if they are
not running in their default mode for web browsing, since otherwise these key presses are reserved for
navigation functions of the screen reader itself. Demonstration charts created with the accessibility
extension of FusionCharts are provided at [FusionCharts 2020]. An example usage of the ARIA and
other attributes applied by FusionCharts is presented in Listing 3.2; other technical details are described
in Subsection 4.5.9.

3.5.3 Semiotic
Semiotic is a free charting library based on the JavaScript frameworks React and D3. It is distributed
with all its accessibility features already included by default [Meeks and Lu 2020]. In a similar way to
Highcharts and FusionCharts, the dataset can be focused by means of the Tab key, where a running screen
reader is informed about the chart type and the number of contained navigable items, that is, the data points

Charting Libraries with Accessibility Features 35

1 <svg class="highcharts -root" tabindex="0" version="1.1" xml:lang="en"
2 lang="en" xmlns="http://www.w3.org/2000/svg"
3 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
4
5 <text class="highcharts -title" id="title">Line Chart of Sales</text>
6
7 <text class="highcharts -subtitle" id="desc">
8 Chart of sales for 12 months in year 2012 for Salespersons A and B.
9 </text>

10
11 <!-- Y Axis -->
12
13 <g class="highcharts -axis highcharts -yaxis">
14 <line x1="98" y1="443" x2="98" y2="212" />
15 <text class="highcharts -axis-title" id="y-title"
16 transform="matrix(0 -1 1 0 20 355)">
17 <tspan>Sales in €</tspan>
18 </text>
19 </g>
20
21
22 <g class="highcharts -axis-labels highcharts -yaxis-labels">
23
24 <g>
25 <text transform="matrix(1 0 0 1 38 215)">40,000</text>
26 <line x1="98" y1="212" x2="93" y2="212" />
27 </g>
28
29 <g>
30 <text transform="matrix(1 0 0 1 38 262)">35,000</text>
31 <line x1="98" y1="258" x2="93" y2="258" />
32 </g>
33
34 ...
35 </g>
36
37 <!-- X Axis -->
38
39 <g class="highcharts -axis highcharts -xaxis">
40 <line x1="98" y1="443" x2="677" y2="443" />
41 <text class="highcharts -axis-title" id="x-title"
42 transform="matrix(1 0 0 1 383 525)">
43 <tspan>Month</tspan>
44 </text>
45 </g>
46
47
48 <g class="highcharts -axis-labels highcharts -xaxis-labels">
49
50 <g>
51 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)">
52 <tspan>January 2012</tspan>
53 </text>
54 <line x1="98" y1="443" x2="98" y2="448" />
55 </g>

Listing 3.1: Sample chart source code produced by Highcharts. The SVG chart elements are
annotated with standard ARIA roles and properties, as well as being assigned dedicated class
names. In addition, the root <svg> element and the data points have the tabindex attribute set to
support keyboard navigation.

36 3 Chart Accessibility

56
57 <g>
58 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)">
59 <tspan>February 2012</tspan>
60 </text>
61 <line x1="150" y1="443" x2="150" y2="448" />
62 </g>
63
64 ...
65 </g>
66
67
68 <g class="highcharts -series-group">
69
70 <!-- Data Points A -->
71
72 <g role="region" aria-label="Salesperson A, line 1 of 2 with 12 data points."
73 class="highcharts -markers highcharts -series -0 highcharts -line-series"
74 id="data-a">
75
76 <polyline points="
77 98,319 150,331
78 150,331 203,309
79 203,309 255,280
80 255,280 308,322
81 308,322 361,303
82 361,303 413,375
83 413,375 466,382
84 466,382 519,353
85 519,353 571,315
86 571,315 624,298
87 624,298 677,246
88 " />
89
90 <rect role="img" class="highcharts -point" aria-label="1. January 2012, 28366.
91 Salesperson A" tabindex="-1" x="93" y="315" />
92
93 <rect role="img" class="highcharts -point" aria-label="2. February 2012, 27050.
94 Salesperson A" tabindex="-1" x="146" y="327" />
95
96 ...
97 </g>
98 </g>
99

100
101 <!-- Legend -->
102
103 <g class="highcharts -legend" id="legend">
104
105 <g class="highcharts -legend-item highcharts -series -1" id="legend-a">
106 <rect x="168" y="210" />
107 <text id="legend-text-a" x="185" y="220"
108 font-family="Verdana" font-size="14">Salesperson A</text>
109 </g>
110
111 ...
112 </g>
113
114 </svg>

Listing 3.1 (cont.): Sample chart source code produced by Highcharts.

Charting Libraries with Accessibility Features 37

1 <svg role="application" class="raphael-group-1-parentgroup" tabindex="0"
2 focusable="true" aria-label="This is a multi series line chart created
3 with FusionCharts Suite XT. Title of the chart is Line Chart of Sales.
4 Month is plotted on x-axis and Sales in € is plotted on y-axis"
5 version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
6 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
7
8 <g class="raphael-group-1-caption">
9 <text id="title">Line Chart of Sales</text>

10 </g>
11
12 <!-- Y Axis -->
13
14 <g>
15
16 <line x1="98" y1="443" x2="98" y2="212" />
17
18 <g class="raphael-group-1-dataset-axis-name">
19 <text id="y-title" transform="matrix(0 -1 1 0 20 355)">Sales in €</text>
20 </g>
21
22 <g class="raphael-group-1-dataset-axis">
23
24 <g>
25 <text transform="matrix(1 0 0 1 38 215)">40,000</text>
26 <line x1="98" y1="212" x2="93" y2="212" />
27 </g>
28
29 <g>
30 <text transform="matrix(1 0 0 1 38 262)">35,000</text>
31 <line x1="98" y1="258" x2="93" y2="258" />
32 </g>
33
34 ...
35 </g>
36 </g>
37
38
39 <!-- X Axis -->
40
41 <g>
42
43 <line x1="98" y1="443" x2="677" y2="443" />
44
45 <g class="raphael-group-1-dataset-axis-name">
46 <text id="x-title" transform="matrix(1 0 0 1 383 525)">Month</text>
47 </g>
48
49 <g class="raphael-group-1-dataset-axis">
50
51 <g>
52 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)">
53 January 2012</text>
54 <line x1="98" y1="443" x2="98" y2="448" />
55 </g>

Listing 3.2: Sample chart source code produced by FusionCharts. The SVG chart elements are
annotated with standard ARIA roles and properties, as well as being assigned dedicated class
names. The data points and legend items have the tabindex and focusable attributes set to support
keyboard navigation.

38 3 Chart Accessibility

56
57 <g>
58 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)">
59 February 2012</text>
60 <line x1="150" y1="443" x2="150" y2="448" />
61 </g>
62
63 ...
64 </g>
65 </g>
66
67
68 <!-- Data Points A -->
69
70 <g class="raphael-group-1-plot-group" id="data-a">
71
72 <polyline points="
73 98,319 150,331
74 150,331 203,309
75 203,309 255,280
76 255,280 308,322
77 308,322 361,303
78 361,303 413,375
79 413,375 466,382
80 466,382 519,353
81 519,353 571,315
82 571,315 624,298
83 624,298 677,246" />
84
85 <rect aria-label="Sales in € of Salesperson A for Month January 2012 is 28366.
86 Plot 1 of 12. Series 1 of 2" tabindex="0" focusable="true" x="93" y="315" />
87
88 <rect aria-label="Sales in € of Salesperson A for Month February 2012 is 27050.
89 Plot 2 of 12. Series 1 of 2" tabindex="-1" focusable="true" x="146" y="327" />
90
91 ...
92 </g>
93
94
95 <!-- Legend -->
96
97 <g class="raphael-group-1-legend" id="legend">
98
99 <text role="button" aria-label="Toggle the visibility of Salesperson A."

100 tabindex="0" focusable="true" id="legend-text-a" x="185" y="220"
101 font-family="Verdana" font-size="14">Salesperson A</text>
102
103 ...
104 </g>
105
106 </svg>

Listing 3.2 (cont.): Sample chart source code produced by FusionCharts.

Charting Libraries with Accessibility Features 39

when viewing a bar or a pie chart and the lines in the case of a line chart. Navigation amongst data points
and data series is then achieved using the Cursor keys. In the case of bar and pie charts, single data points
can be focused, exposing the name and value of the data point to the screen reader. Within line charts,
by contrast, navigation is possible only between entire lines, supplying the screen reader with a summary
about the focused line, including the total number of contained data points and the starting and ending
values. The accessibility-related attributes used by Semiotic are illustrated in Listing 3.3. More details
about the accessibility techniques applied by Semiotic are given in Subsection 4.5.7. Demonstration
charts produced by Semiotic can be found at [Meeks and Lu 2020].

3.5.4 amCharts
The commercial library amCharts, too, generates accessible SVG content “out of the box” [amCharts
2020a]. The elements of a chart can be navigated by means of the Tab key, where the focused object
is visually marked with a high-contrast outline and automatically-generated labels of the elements are
conveyed to a running screen reader. As soon as an object of the chart receives focus, the title and the
type of the chart is exposed. Whenever focus moves to a data point, the screen reader is informed about
its name and value, for example, its x and y coordinates. However, if the number of data points is larger
than a certain threshold (by default, 20 for bar charts and 50 for pie charts), focusing of single data points
is deactivated in order to improve clarity for the user. For the same reason, data points belonging to line
charts cannot be focused and have no label by default.

Controls for modifying the displayed content are accessible by Tab focus and screen reader as well.
Actions usually triggered by dragging the mouse cursor, such as those for scroll bars, can alternatively
be performed by focusing the respective object and then pressing the Cursor key corresponding to the
direction the mouse would be moved in. Zoom buttons and legend items to toggle the visibility of chart
elements can be activated by means of the Enter key. All the accessibility labels of the chart elements are
automatically generated according to a default pattern, which can be customised by the author of the chart.
Moreover, the author can assign accessible names and descriptions to specific chart elements, declare
them focusable, and/or state that tooltips associated with them shall be displayed not only on mouse
hovering but also on focus. The chart can be configured to fill chart elements with patterns which can be
easily distinguished by users with low vision. Technical details about the attributes used by amCharts are
described in Subsection 4.5.8. Sample charts produced by amCharts can be found at [amCharts 2020b].

3.5.5 AnyChart
The commercial software AnyChart offers two different accessibility modes, one of which can be chosen
on chart creation [AnyChart 2020a]. Chart Elements accessibility mode is enabled by default, generating
an overall summary of the chart with the chart type and title, the number of data series, and information
about the axes. The pattern for this summary can be modified by the author of the chart. In addition,
the author can activate accessibility mode for data series, which then generates labels for them, and can
adapt these labels as well.

By contrast, in Data Table accessibility mode, the data are represented to screen readers as an invisible
standard HTML table, where the overall summary of the chart is used as the title, data series correspond
to columns of the table, and the x-axis items or categories to rows of the table. Information on the ARIA
markup is given in Subsection 4.5.10, for demonstrations of accessible charts, see [AnyChart 2020a;
AnyChart 2020b].

3.5.6 evoGraphs
The evoGraphs library [Sharif 2015a; Sharif and Forouraghi 2018] is based on the JavaScript framework
jQuery, and creates bar charts and pie charts along with a textual description for screen reader users.
This text contains the chart type and title, labels and values for all the data points, and some statistical
characteristics, all expressed in full sentences. The description is visually hidden, while the created
graphic is excluded from the accessibility tree using the aria-hidden property.

40 3 Chart Accessibility

1 <svg class="visualization -layer" version="1.1" xml:lang="en" lang="en"
2 xmlns="http://www.w3.org/2000/svg"
3 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
4
5 <text class="frame-title" id="title">Line Chart of Sales</text>
6
7 <g role="group" class="data-visualization" aria-label="Visualization with
8 a complex title. Use arrow keys to navigate elements.">
9

10 <g class="axis axis-labels">
11
12 <!-- Y Axis -->
13
14 <g class="axis left y" aria-label="left axis from 15,000 to 40,000">
15
16 <line x1="98" y1="443" x2="98" y2="212" />
17
18 <g class="axis-title axis left y">
19 <text id="y-title" transform="matrix(0 -1 1 0 20 355)">Sales in €</text>
20 </g>
21
22 <g>
23 <text class="axis-label" transform="matrix(1 0 0 1 38 215)">40,000</text>
24 <line x1="98" y1="212" x2="93" y2="212" />
25 </g>
26
27 <g>
28 <text class="axis-label" transform="matrix(1 0 0 1 38 262)">35,000</text>
29 <line x1="98" y1="258" x2="93" y2="258" />
30 </g>
31
32 ...
33 </g>
34 </g>
35
36
37 <g role="group" class="lines" aria-label="2 lines in a line chart" tabindex="0">
38
39 <!-- Data Points A -->
40
41 <g tabindex="-1" id="data-a">
42
43 <polyline role="img" class="xyframe-line" aria-label="12 point line starting
44 value 28,366 at January 2012 ending value 28,490 at December 2012" points="
45 98,319 150,331
46 150,331 203,309
47 203,309 255,280
48 255,280 308,322
49 308,322 361,303
50 361,303 413,375
51 413,375 466,382
52 466,382 519,353
53 519,353 571,315
54 571,315 624,298
55 624,298 677,246" />

Listing 3.3: Sample chart source code produced by Semiotic. SVG chart elements are annotated with
standard ARIA roles and properties, as well as being assigned dedicated class names. The <g>
elements of the dataset and the data series are assigned the tabindex attribute to support keyboard
navigation.

Charting Libraries with Accessibility Features 41

56
57 <rect x="93" y="315" />
58
59 <rect x="146" y="327" />
60
61 ...
62 </g>
63
64 </g>
65 </g>
66
67
68 <!-- X Axis -->
69
70 <text id="x-title" transform="matrix(1 0 0 1 383 525)">Month</text>
71
72 <g class="ordinal-labels">
73
74 <line x1="98" y1="443" x2="677" y2="443" />
75
76 <g>
77 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)">
78 January 2012</text>
79 <line x1="98" y1="443" x2="98" y2="448" />
80 </g>
81
82 <g>
83 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)">
84 February 2012</text>
85 <line x1="150" y1="443" x2="150" y2="448" />
86 </g>
87
88 ...
89 </g>
90
91
92 <!-- Legend -->
93
94 <g id="legend">
95
96 <g id="legend-a">
97 <rect x="168" y="210" class="marker-square" />
98 <text id="legend-text-a" x="185" y="220"
99 font-family="Verdana" font-size="14">Salesperson A</text>

100 </g>
101
102 ...
103 </g>
104
105 </svg>

Listing 3.3 (cont.): Sample chart source code produced by Semiotic.

42 3 Chart Accessibility

The library takes data in JavaScript Object Notation (JSON) format as input. Its functionality and the
accessibility of its output was tested on various combinations of browsers and screen readers with sighted
and visually impaired users, but the details and results of these tests are not specified. However, Mirri
et al. [2017] applied both the evoGraphs system and the D3 library to automatically generate charts for
scientific papers out of data in CSV format. As a basis they used the Research Articles in Simplified
HTML (RASH) format and added extensions using either evoGraphs or D3. Comparative tests performed
by a blind co-author of this paper on several combinations of different operating systems, browsers, and
screen readers showed that evoGraphs produced positive results, whereas the charts generated by D3 were
hardly accessible by screen reader. A demonstration of the evoGraphs System can be found at [Sharif
2015b].

3.5.7 ChartMaster
ChartMaster [Zou and Treviranus 2015] does not represent a self-contained charting library as such, but
rather a software component which is intended to be integrated into existing systems for creating stock
market charts. The tool lets the user navigate and search charts of past stock trading data by screen reader
and keyboard. The web-based user interface consists of several drop-down menus enabling the user to
access particular data points and statistical values and to choose the time frame for which the information
should be displayed.

The user interface was designed in an iterative process involving usability tests with 18 participants, of
whom 16 were blind or partially sighted. All of them appreciated the tool and stated that it helped them
to understand the charts and to accomplish the given tasks. Moreover, the usability study confirmed the
hypothesis that representing a complex chart only as a numeric table does not provide the same level of
access for a screen reader user. The tool does not extract any information from the visual representation,
but from the underlying data on chart generation.

3.6 Describler
Describler [Schepers 2015a; Schepers 2015b; Schepers 2017] is a client-side web application written
in JavaScript, which lets the user explore charts and flow diagrams contained in SVG files by means
of keyboard or mouse navigation in combination with speech synthesis. Using the web interface of
Describler provided at [Schepers 2015a], an SVG file can either be chosen from a drop-down list of
sample charts or opened from the local computer of the user. Once a file has been loaded, the application
analyses the contained SVG structure with regard to ARIA roles, labels, and other ARIA properties.
Describler identifies one or multiple charts contained in the SVG file, as well as certain objects of each
chart, such as axes, legends, and data points, and extracts the information conveyed by these objects.

The software supports two-dimensional charts, such as pie charts, bar charts, and line charts. For
the analysis, it assumes the presence of dedicated ARIA markup, as described in Subsection 4.5.1. It
creates an array of all the focusable elements within the SVG document, that is, all the elements with
the tabindex attribute set. Afterwards, the graphics document is shown within Describler’s web interface,
and its objects can be focused by keyboard or mouse. Whenever one of these objects is focused this
way, Describler displays information on the object within a text box and reads it aloud. Throughout
this subsection, this manner of output will be abbreviated as speaking or reading aloud. The navigation
facilities and the speech synthesis work independently of any screen reader installed or running. To
generate the speech output, Describler uses the services of the browser and the local operating system via
the Web Speech API [MDN 2019].

Once an SVG document has been analysed completely, pressing the Tab key sets the focus to its <svg>
root element. From this moment on, keyboard interaction with Describler is enabled. The user can
navigate between those elements of the SVG having a tabindex of 0. The order of the focused elements
corresponds to the order in which they appear in the source code of the document. The user can move to
the subsequent chart object by means of the Tab key and to the preceding object by pressing Shift+Tab.

Describler 43

If not blocked by assistive technologies, forward navigation is also possible using the Cursor-Right or the
Cursor-Down key, backward navigation by the Cursor-Left or the Cursor-Up key. Independent of the keys
used, navigation is cyclic, that is, moving forward from the last focusable SVG element or backward from
the first focusable element sets the focus to the first or last element, respectively.

Whenever a chart element is focused, information about the chart is spoken. Afterwards, for most
objects, a menu with context-sensitive options is available, where the user can choose an option by
pressing a certain number key. All the menu items and their corresponding number keys are presented as
full-sentence text prompts of the form “Press. . . for/to . . . ”, which are also read aloud. As an alternative
to keyboard interaction, the graphics elements can be focused by clicking with the left mouse key, either in
the same order as for keyboard navigation using dedicated Forward and Backward buttons in the graphical
user interface (GUI), or by directly clicking on the target object. The items in the context menu for the
selected chart object can be chosen from a drop-down list.

The information spoken and the menu options offered by Describler vary by the kind of the focused
element. By default, the content of the next descendant <title> element is spoken. If a descendant <desc>
element is also present, the option “more details” can be chosen by pressing the key 1, which causes the
software to repeat the <title> and to speak the content of the <desc> element. With example texts taken
from the sample charts provided at [Schepers 2017], the following subsections describe how specific
chart elements behave.

3.6.1 Chart Root
The word “chart” and the chart title are spoken 𝑑 times, where 𝑑 is the number of datasets the chart
contains. The following menu options are available:

1. “Chart Statistics”: The word “chart” and the chart title are repeated. Afterwards, the chart type and
statistical values of the first dataset are spoken. These include the total number of contained data
points, the minimum and maximum data point values and the range between them, the average, the
median, and the sum of all the values. If the chart contains multiple datasets, the text sequence is
spoken for each dataset analogously.

2. “Data Points from Lowest to Highest”: The word “chart” and the chart title are repeated. Afterwards,
the phrase “Lowest to highest:” is spoken, and all data points of the first dataset are enumerated
in increasing order by their values. For each data point, its name and value (for example, x and y
coordinates) are spoken. If the chart contains multiple datasets, the text sequence is spoken for each
dataset analogously.

3. “Data Points from Highest to Lowest”: The word “chart” and the chart title are repeated. Afterwards,
the phrase “Highest to lowest:” is spoken, and all data points of the first dataset are enumerated
in decreasing order by their values. For each data point, its name and value (for example, x and y
coordinates) are spoken. If the chart contains multiple datasets, the text sequence is spoken for each
dataset analogously.

4. “Trend Sonification”: The values of all the data points are sonified in the order they appear in
the SVG source code. Sonification is implemented as a sine tone, whose frequency increases and
decreases with the magnitude of the values.

3.6.2 Axes
The type of axis (for example, “x-axis”) is spoken, followed by its title, number of axis items, first axis
item, and the last axis item. The following menu options are available:

1. “Axis Labels”: All labels of the axis are spoken in the order they appear in the SVG source code.

2. “Select Data Points by Axis Label” (only for x-axes): All labels of the x-axis are spoken as submenu
prompts with associated number keys. When the user presses one of these keys, the focus is set to

44 3 Chart Accessibility

that data point in the first dataset which refers to the corresponding x-axis item. The subsequent
behaviour corresponds to the default when focusing a data point (see below).

3.6.3 Data Points
The index of the focused data point and the total number of data points in the dataset is spoken (for
example: “Data point 1 of 12.”), followed by the name and the value of the data point (for instance, x and
y coordinates). The following menu options are available:

1. “More Details”: The name and the value of the data point are repeated. Afterwards, its value is
compared to that of the data point previously focused: Describler announces “This is an increase
of ” (or “decrease of ”), the absolute difference of the values of the two data points, and the name
and value of the previous data point. Finally, the index number and the colours of the current data
point are spoken.
For example, “This is a decrease of 1316 from the last value of 28366 for January 2012. This is the
2nd data point. The color is Contessa, and the outline is Contessa.”

2. “Comparison to All Other Data Points”: The name and the value of the data point are repeated.
Afterwards, the relationship in percent between the value of the current data point and each of the
other data points contained in the same dataset is spoken.

3. “Comparison to a Specific Data Point”: The name and the value of the data point are repeated.
Afterwards, all labels of the x-axis are spoken as submenu prompts with associated number keys.
When the user presses one of these keys, the name and the value of the data point are repeated
another time, and the focused data point is compared to the data point in the same dataset with the
corresponding x-axis label. This comparison includes the absolute difference in combination with
the word “higher” or “lower”, and the relationship in percent.

4. “Data Point Statistics”: The name and value of the current data point are repeated. Afterwards,
its value is compared to statistical values of the containing dataset. In particular, the absolute
differences to the average, median, minimum, and maximum value are spoken in combination with
the word “higher” or “lower”. Finally, Describler speaks the relationship in percent to the sum of
all the values of the dataset.
For example: “May 2012: 28050. This is 268.33 below the mean value of 28318.33, and 554.00
below the median value of 28604. This is 6544.00 above the low value of 21506, and 8204.00 below
the high value of 36254. May 2012 is 8.25% of the total value of 339820.”

3.6.4 Legend Root
The word “Legend” is spoken, followed by the title of the legend and the number of contained items.

3.6.5 Legend Item
The word “Legend item” is spoken, followed by the index number of the item, the total number of items,
and the title. For example, “Legend item 1 of 3. Happy”. The following option is available:

1. “A List of All Applicable Data Points”: All data points associated with the current legend item are
spoken.

Chapter 4

Semantic Enrichment of SVG Charts

While the previous chapter presented various user interface solutions to enable visually impaired recipients
to explore charts, this chapter discusses techniques to prepare digital charts such that they are accessible
for computer users with disabilities. As in general web accessibility, the two essential elements are the
embedding of underlying data and the assignment of semantics to objects of interest by annotating their
internal representations with appropriate machine-readable information. The vast majority of solutions
to this problem are based on Scalable Vector Graphics (SVG), a textual XML-based markup language
for defining graphical documents, and the Accessible Rich Internet Applications (WAI-ARIA) suite
introduced in Chapter 2.

Most of the solutions presented in this chapter still require special software to transform the resulting
graphics into a representation meaningful for blind users. A long-term goal could be to develop an ARIA
standard which can be implemented directly in common browsers and assistive technologies. It should
be noted that the entire topic is currently work-in-progress and standardisation efforts are still ongoing.
Unless stated otherwise, the following sections describe the situation at the time of writing this thesis.

4.1 Formats for Accessible Graphics
Scalable Vector Graphics (SVG) is an XML-based markup language for 2d vector graphics. SVG
Version 1.1 (Second Edition) is specified by the W3C in [W3C 2011] and is supported by all modern
web browsers. The more recent SVG 2 specification [W3C 2018c], on the other hand, is only partially
supported.

In contrast to raster image formats like Joint Photographic Experts Group (JPEG), Graphics Interchange
Format (GIF), and Portable Network Graphics (PNG), vector graphics are resolution-independent and
can be freely resized without any degradation in quality such as pixellation artifacts [Dürnegger et al.
2010, page 28]. For this reason, SVG is often used in web development for the automated creation of
charts, diagrams, maps, and other visualisations based on dynamically-changing data. Since they are
text files, SVG documents typically have much smaller file sizes than their raster equivalents and are also
much more amenable to compression.

In addition to these aspects, a consequence of the text-based format is that single SVG elements,
including both text fragments and graphical objects, are machine-readable without any need to apply
image recognition techniques. This, in turn, not only provides the possibility to access any object within
a graphic via the browser’s Document Object Model (DOM), but it also means that, in general, any SVG
content can be exposed via accessibility application programming interfaces (APIs) and processed by
assistive technologies. Moreover, SVG elements can receive keyboard focus and can be annotated with
WAI-ARIA attributes. While the latter two features are specified only in SVG Version 2 [W3C 2018c],
which has not yet been given the status of an official recommendation, they are already widely supported
by most modern browsers.

45

46 4 Semantic Enrichment of SVG Charts

4.1.1 Native Accessibility of SVG
SVG provides a set of dedicated elements for basic geometric shapes, such as lines, circles, rectangles,
ellipses, and polygons. More irregular shapes such as curves can be created using the more general <path>
element. Text labels are specified as plain character strings within a <text> element. Several related
objects can be logically grouped by nesting them within a <g> container. Moreover, it is possible to
duplicate an object or a group of objects once defined by means of the <use> element. The information
conveyed by these elements might provide sufficient semantics to derive a textual representation of certain
simple drawings without applying image recognition techniques. However, for more complex graphics
like charts and diagrams, this information cannot be regarded as semantic but only as syntactic and
structural [Salameh et al. 2014, page 219].

Beyond the elements described above, SVG also includes two elements to specify additional text
information, namely <title> and <desc>. The <title> element is intended to provide a name for its immediate
ancestor, and is typically rendered visually by current browsers as a tooltip for the corresponding graphical
representation [Migliorisi 2016; Schepers 2019]. The <desc> element can be used to add a detailed
description to its immediate ancestor. Both <title> and <desc> can be applied by appending them as
direct descendants to the root <svg> element, as well as to any shape or container element of the graphics
document. Thus, they provide the possibility not only to add an overall name and description to a whole
graphic, but also to create a hierarchical structure of separate names and descriptions corresponding to
individual graphical objects within a graphics document. This, in turn, forms the basis for interactively
exploring parts of an SVG document using screen readers and similar assistive technologies.

SVG 2 also considers keyboard navigation between objects of an SVG document. While interactive
elements like links and buttons are regarded as focusable by default, graphical elements can be assigned
the tabindex attribute known from HTML in order to make them keyboard focusable.

4.1.2 Scientific Proposals for Semantic Enrichment
Dürnegger et al. [2010] introduce a set of 15 guidelines for creating accessible SVG graphics, based on
the general Web Content Accessibility Guidelines (WCAG) by the W3C and present a Java-based tool for
the automatic evaluation of SVG documents against these guidelines. Their guidelines follow an inclusive
design approach, considering all potential target groups, and can be summarised as follows:

• An SVG document must be well-formed and valid according to the official XML and SVG specific-
ations. All elements and attributes must be used as intended by the SVG standard [W3C 2011].

• Presentational information must be separated from content using style sheets or the SVG presentation
attribute.

• Sizes must be specified using relative instead of absolute units.

• An SVG document, as well as all its graphical objects and containers with semantic relevance, must
have a <title> providing a name and a <desc> element with a more detailed description, where the
texts should be concise and avoid redundant phrases like “The image shows. . . ”.

• Raster images should be avoided whenever possible. If needed, they should be included within
the SVG document using the <image> element and assigned a meaningful accessible name and
description.

• Graphical objects should be grouped by containers and ordered in a hierarchy which represents the
structure of the graphical elements, taking into account that the linear representation of objects by
assistive technologies corresponds to the order in which they appear in the source code. Whenever
possible, objects should be reused instead of redundantly creating them multiple times.

• Information must not be conveyed by colour alone.

Formats for Accessible Graphics 47

• Low contrast, colour combinations problematic for users with certain visual impairments, and
animations with high frequency blinking or flashing effects which could cause photo-epileptic
seizures must be avoided.

• Interactive elements must be usable not only by mouse, but independently of the input device,
taking into account the lower speed and accuracy of certain alternative input devices. All important
elements must be large enough to be accessible for users with visual or motor impairments.

Numerous other approaches towards adding semantics to graphics can be found, most of which are
based on SVG but do not make use of the <title> and <desc> elements. Patil [2007] proposes a general
format for placing descriptive text into the metadata section of image files. A more concrete variant
of this idea is presented by Kopecek and Oslejsek [2008]. In their the GATE system (introduced in
Subsection 3.2.3), all the objects of an SVG document to be annotated are assigned id attributes. Titles
and semantic categories are stored within the <metadata> element of the SVG document, associated
with the graphical objects by their id attributes, and expressed by a system based on the Web Ontology
Language (OWL). The annotation of raster images is supported, too, by creating an invisible SVG structure
representing the annotated objects at their location within the image. At the time of writing, the ontology
used for the annotations is not a comprehensive system, but should rather be regarded as an open and
extensible standard which is meant to grow by crowd contributions. The resulting annotated graphics
document can be explored by synthetic speech and sonification using dedicated software created by the
authors.

The strategy of associating annotations with their corresponding graphical elements by identifiers
is also applied in two other solutions. Sorge [2016] presents a JavaScript library called DIAGcess
which converts chemical diagrams embedded in web pages as raster graphics into accessible SVG
representations. The raster image is analysed using image recognition techniques, and the elements
of the diagram are stored in Chemistry Markup Language (CML), an XML-based format for chemical
diagrams. The CML representation is further analysed and enriched with semantic information. Finally,
the diagram is reproduced as an SVG document whose elements are associated with their counterparts
in the CML representation. The SVG diagram can be navigated by keyboard, causing the semantics and
labels associated to the focused element to be sent to an ARIA live region, so that they are read aloud by
a screen reader. According to the author, the system can be extended to other types of diagrams and other
fields of science.

The Digital Accessibility Information System (DAISY) is an XML-based standard for structuring
information semantically and hierarchically so that it can easily be browsed by users with disabilities. It
is widely applied to digital audio books provided by libraries for blind people, enabling quick navigation
of the recordings by chapters, sections, paragraphs, and pages. Gardner and Bulatov [2010] introduce
a DAISY extension for graphical content, where the SVG elements are logically grouped by linking
them with so-called layers of the DAISY representation. Textual labels and references to supplementary
multimedia content can be associated with a graphical object nesting them in an <actions> element
as descendant of a corresponding <a> element. Moreover, the author can define several views which
represent different parts of the graphics at a chosen zoom level. This way, the recipient can easily print
and explore different sections of the graphics in more detail. The DAISY SVG system is used in the
IVEO software (described in Section 3.3), where IVEO Creator uses it as its output format and IVEO
Viewer ignores <title> and <desc> elements if a DAISY SVG structure is detected.

A different approach is pursued by Salameh et al. [2014]. The system is primarily intended to improve
the automated search for and categorisation of images. It expresses the semantics of an SVG document
in a structure based on the Resource Description Framework (RDF). As a first step, the graphical objects
are transfered to an RDF graph, whose triples only contain the information directly extracted from the
SVG elements and their attributes. This RDF graph is then compared to the entries of a knowledge base
using similarity computation. The best-matching result is returned and can be revised by the author or
transcriber of the graphic. After final confirmation, the RDF structure contains a semantic representation

48 4 Semantic Enrichment of SVG Charts

of the graphical objects and is then added to the knowledge base. The knowledge base is intended to
grow by crowd contributions and can be extended to express the semantics of specific domains.

4.1.3 ARIA Enhancements to SVG
SVG 2 [W3C 2018c] provides the possibility to use numerous standard ARIA attributes in the default
namespace to annotate SVG elements. According to this candidate recommendation, as an alternative to
the native SVG <title> and <desc> elements, the ARIA properties aria-label or aria-labelledby can be used
to specify a name and the property aria-describedby to reference to a description. Moreover, the SVG
Accessibility Task Force, a collaboration between the Web Accessibility Initiative (WAI) and the SVG
Working Group of the W3C, published several documents to further improve the accessibility of graphics
in general and of SVG in particular. These include the definition of additional special ARIA roles for
graphics, as well as recommendations how browsers should expose native elements and ARIA attributes
of graphics to accessibility APIs.

The WAI-ARIA Graphics Module [W3C 2018e] extends the core WAI-ARIA specification [W3C
2017a] by three additional roles. In particular, it defines the roles graphics-document for a whole structured,
navigable graphical unit, graphics-object for elements of a graphical structure, and graphics-symbol for
objects whose visual appearance is less important than its meaning (like icons). For elements with role
graphics-symbol or img (defined in [W3C 2017a]), all descendants should be considered presentational,
that is, excluded from the accessibility tree representation. This recommendation is not explicitly bound
to SVG, so that it can theoretically also be applied to any other graphics format which supports textual
markup.

4.2 ARIA Guidelines for User Agents
The SVG Accessibility API Mappings [W3C 2018d] are an extension of the Core Accessibility API
Mappings [W3C 2017b]. The document, which is currently only a working draft, specifies which of the
SVG elements defined in [W3C 2018c] should be included in the accessibility tree and how they should
be mapped to keywords in the known accessibility APIs of different platforms. In general, it recommends
that the majority of SVG elements be omitted in order to keep the accessibility tree representation of
a graphics document as simple as possible. This applies to all elements which are explicitly hidden
or not directly rendered (but not necessarily all the invisible ones). Moreover, each shape element and
each <use>, <g>, <image>, <mesh>, and <foreignObject> element should be excluded, unless the author has
assigned it semantic significance, that is, it has any kind of text content, text alternative, or appropriate
ARIA role. All the elements which can receive focus, trigger events, or are interactive in any way must
be included in the accessibility tree without exception.

With regard to the SVG <title> element, the SVG Accessibility API Mappings document states that
browsers must expose its content to accessibility APIs as the accessible name of its direct ancestor.
However, if the latter is assigned an aria-label or an aria-labelledby attribute, this must be used instead, where
aria-labelledby should be preferred over aria-label if both exist. Similarly, the <desc> element must be exposed
as an accessible description of its direct ancestor, but if an aria-describedby attribute is also specified, this
has higher priority. If neither an aria-describedby attribute nor a <desc> element is given and the accessible
name is derived from an ARIA attribute, a possible direct descendant <title> element can also be exposed
as an accessible description. In the case of a <text> element, the contained text should be considered if
none of the former information is provided. In the case of a link, the title attribute should be considered
where present.

The Graphics Accessibility API Mappings [W3C 2018b] represents a modular extension of the Core
Accessibility API Mappings [W3C 2017b] and specifies how the three roles defined in the WAI-ARIA
Graphics Module [W3C 2018e] should be mapped to keywords in the known accessibility APIs of
different platforms. Like [W3C 2018e], this recommendation is not explicitly bound to SVG, so that it
can theoretically also be applied to any other graphics format which supports textual markup.

SVG Accessibility in Practice 49

4.3 SVG Accessibility in Practice
Many researchers have experimented with creating accessible SVGs, including Watson [2014], Migliorisi
[2016], Watson [2018] and Fisher [2019]. All the authors recommend using SVG to create accessible
graphics and come to the conclusion that inline SVG embedded within a web document provides the
highest level of accessibility. By contrast, the content of external SVG files linked by an , <object>,
<iframe>, or <embed> element is not directly inserted into the DOM and, for this reason, is not entirely
included within the accessibility tree.

Watson [2018] states that the content of both the aria-label attribute and the <title> element are exposed
as accessible names by all the browsers tested. The <title> element is also used by all the screen readers
under test [Fisher 2019]. In [Watson 2014; Fisher 2019], the aria-labelledby attribute is shown to be well
supported for the computation of the accessible name by all browsers and screen readers. The content of
the <desc> element, by contrast, is recognised only by Microsoft Internet Explorer with JAWS and Apple
Safari with VoiceOver (on both macOS and iOS) [Fisher 2019]. According to the latter, the aria-describedby
attribute is not widely supported either, namely by the platforms just mentioned as well as Google Chrome
on Android with TalkBack.

In order to provide an accessible name and description compatible with as many browsers and screen
readers as possible, Watson [2014] and Fisher [2019] recommend using the <title> element to specify an
accessible name, <desc> for an accessible description, and associating both elements with the ancestor
by referencing them with an aria-labelledby attribute. Unfortunately, this association causes the accessible
name and/or the description to be read twice in some configurations. Moreover, using aria-labelledby for
an accessible description is not semantically correct. However, this solution is regarded by the authors as
the most reliable one at the moment. Setting the attribute to the id of the <title> element followed by that
of the <desc> element produces a concatenation of both id strings delimited by a space character, ensuring
that screen readers (at least, all those considered) present both the accessible name and the description in
sequence.

4.4 Scientific Proposals for Accessible SVG Charts
As in the case of general purpose graphics (see Subsection 4.1.2), several scientific proposals for the
semantic enhancement of digital charts have been published. Most of these, however, consider neither the
native SVG elements for descriptive text nor WAI-ARIA attributes. For instance, Fredj and Duce [2006]
argue that SVG 1 cannot store enough information on the structure and the semantics of a chart and, for
this reason, present a software system for storing charts whose output is not an SVG document but two
representations in more abstract, dedicated markup languages. Different visual and non-visual versions,
such as can be SVG documents and textual descriptions, derived from these abstract representations by
means of Extensible Stylesheet Language (XSL) transformations.

Similarly, the iGraph-Lite system proposed by Ferres et al. [2007], Ferres et al. [2013] and Ferres
[2015] described in Subsection 3.2.1 stores the properties of a chart in an OWL structure detached from
the graphical representation. The BrailleR extension by Fitzpatrick et al. [2017] and Godfrey et al. [2018]
uses the DIAGcess library [Sorge 2016]. Statistical charts created in SVG format are enriched with
semantic information on the chart elements expressed in a separate XML structure, whose elements are
associated with SVG chart elements by referencing their id attributes.

By contrast, the SVG-Plott software [Engel et al. 2019; Harlan et al. 2019] described in Section 3.3
appends titles and descriptions to the SVG elements of the generated charts if multimodal output is chosen.
Interactive regions are added so that speech output, if available, is triggered when touching elements of
the chart on a touch-sensitive tactile device. In addition to the SVG chart, a separate SVG file containing
the legend and an HTML file containing a short summary and listings of the data points are generated.

50 4 Semantic Enrichment of SVG Charts

4.5 WAI-ARIA-Based Systems for Charts
At the time of writing this thesis, no dedicated WAI-ARIA taxonomy for charts has been standardised,
nor has any de facto standard for enriching chart elements with ARIA roles and properties evolved.
However, various approaches based on W3C standards have been published informally, that is, as part
of web applications, charting libraries, wikis, or blog postings. These include comprehensive systems
using accessible names and descriptions, ARIA roles and properties, and sometimes SVG class names
to express the meaning of chart objects. In the following subsections, several of these proposals will be
described in detail.

For most of the systems discussed here, the taxonomy of semantic keywords will be depicted as tables.
In the case of ARIA roles and class names, the tables have the following structure: the first column, Role,
names an ARIA role used in this system. If class names are also relevant in the respective system, these
will be given in the second column, Class. The Element column states the SVG element the role and/or
class name is assigned to. The Ancestor column states which chart object contains the element with the
respective role and/or class name. The Content column names the chart objects or data type which the
respective element includes as descendants. The final column, Meaning, describes the semantics of the
role and/or class name.

Both Ancestor and Content describe the relations of chart objects within the hierarchical SVG structure
of the system. This description is, however, not comprehensive. It includes only those object(s) which are
assumed relevant for accessibility purposes. In other words, if a certain object contains objects without
any textual information (for instance, <g> or <path> elements without any ARIA role or property), these
objects will be omitted from the description of the relationship. Ancestors and descendants need not be
direct; for instance, if an object contains a <g> element without any ARIA role or property which, in turn,
contains another object with accessible information, the intermediate <g> element will not be mentioned.

Tables describing the usage of ARIA properties have the following structure: the first column, Property,
names an ARIA property applied in the respective system. The second column, Object, states the chart
object the property is attached to. The Value column lists the possible attribute values which can be
assigned to this property. The final column, Meaning, describes the information the respective ARIA
property conveys.

In addition to the terminology defined in the introductory chapter of this thesis, the following terms
will be used throughout this section:

• data object: A dataset, data series, data group, data point, or statistical summary.

• scale: One dimension of a dataset, typically expressed as an axis or legend.

• shape: A graphical SVG element like <circle>, <line>, <rect>, or <path>, or a <use> element referencing
such a graphical SVG element.

• standard ARIA role/property: An ARIA role or property defined in the core WAI-ARIA specification
for web documents [W3C 2017a].

Moreover, with regard to the representation of ARIA roles and properties, the following notation will
be used:

• Whenever the content of an object is stated as text, this means plain text and not the <text> element
unless stated otherwise.

• A hyphen (-) means that the value has no importance or is not applicable in this system.

• A question mark (?) means that the ancestor or content has not been precisely specified in this
system.

• Whenever the content of elements or values for properties are stated within quotation marks (), they
are meant verbatim. Otherwise, they are descriptive.

WAI-ARIA-Based Systems for Charts 51

S
al
es
in
€

40,000

35,000

30,000

25,000

20,000

15,000

Month

January
2012

February
2012

March
2012

April 2012

May
2012

June
2012

July
2012

August 2012

Septem
ber 2012

October 2012

Novem
ber 2012

Decem
ber 2012

Salesperson A Salesperson B

Figure 4.1: Basic sample line chart with two data series. It corresponds to the SVG code excerpt
shown in Listing 4.1. [Created and used with kind permission by Keith Andrews, ISDS, Graz University of
Technology.]

For each of the systems presented in the following subsections, its application will be illustrated by an
excerpt of sample SVG code. The chart taken for this purpose is shown in Figure 4.1. The initial version
of the corresponding SVG source code excerpt is given in Listing 4.1. This version does not include any
accessibility-related annotations apart from a <title> and a <desc> element appended to the chart root. In
all the subsequent SVG code listings, those attributes which fulfil accessibility purposes were deliberately
placed first within the element in order to improve readability. It should be noted that the values of all
the id attributes were chosen arbitrarily and do not form a part of any of the described systems. The same
applies to the class names, unless stated otherwise.

The systems presented in this section can be grouped into two groups. Firstly, those systems will be
described which have been explicitly published as such and, therefore, are assumed to be fully specified.
Some of these systems do not define all the roles and/or properties necessary to completely express the
semantics of all three main chart types covered in this thesis (line, bar, and pie charts). These missing
roles and/or properties are discussed at the end of the respective subsection under the term “necessary
extensions”. Roles and/or properties for other chart types are discussed under future work in Section 8.1.

Secondly, systems which are applied by some of the charting libraries introduced in Section 3.5 will
be summarised. Since the information about the roles, class names, and properties used by these systems
was derived from the SVG source code of demonstration charts provided on the web site of the respective
libraries, the resulting taxonomies are derived from observation and cannot be considered exhaustive or
complete. For this reason, a discussion of missing roles, class names, and properties is not considered
appropriate in these cases.

52 4 Semantic Enrichment of SVG Charts

1 <svg version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
3
4 <g>
5
6 <title id="title">Line Chart of Sales</title>
7
8 <desc id="desc">
9 Chart of sales for 12 months in year 2012 for Salespersons A and B.

10 </desc>
11
12
13 <!-- Y Axis -->
14
15 <g>
16
17 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
18 <text id="y-title" transform="matrix(0 -1 1 0 20 355)"
19 class="chart-title">Sales in €</text>
20
21 <g>
22 <text transform="matrix(1 0 0 1 38 215)" class="chart-label">40,000</text>
23 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
24 </g>
25
26 <g>
27 <text transform="matrix(1 0 0 1 38 262)" class="chart-label">35,000</text>
28 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
29 </g>
30
31 ...
32 </g>
33
34
35 <!-- X Axis -->
36
37 <g>
38
39 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
40 <text id="x-title" transform="matrix(1 0 0 1 383 525)"
41 class="chart-title">Month </text>
42
43 <g>
44 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)"
45 class="chart-label">January 2012</text>
46 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
47 </g>
48
49 <g>
50 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)"
51 class="chart-label">February 2012</text>
52 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
53 </g>
54
55 ...
56 </g>

Listing 4.1: Basic sample SVG source code of the chart shown in Figure 4.1. Apart from a <title>
and a <desc> element as descendants of the chart root, it contains no accessibility markup. The
class names are arbitrary and used only for styling.

WAI-ARIA-Based Systems for Charts 53

57
58
59 <!-- Data Points A -->
60
61 <g id="data-a">
62
63 <polyline points="
64 98,319 150,331
65 150,331 203,309
66 203,309 255,280
67 255,280 308,322
68 308,322 361,303
69 361,303 413,375
70 413,375 466,382
71 466,382 519,353
72 519,353 571,315
73 571,315 624,298
74 624,298 677,246
75 " class="chart-lineA" />
76
77 <g>
78 <rect x="93" y="315" class="marker-square" />
79 </g>
80
81 <g>
82 <rect x="146" y="327" class="marker-square" />
83 </g>
84
85 ...
86
87 </g>
88
89
90 <!-- Legend -->
91
92 <g id="legend">
93
94 <g id="legend-a">
95 <rect x="168" y="210" class="marker-square" />
96 <text id="legend-text-a" x="185" y="220"
97 font-family="Verdana" font-size="14">Salesperson A</text>
98 </g>
99

100 ...
101
102 </g>
103
104 </g>
105 </svg>

Listing 4.1 (cont.): Basic sample SVG source code of the chart shown in Figure 4.1.

54 4 Semantic Enrichment of SVG Charts

Role Element Ancestor Content Meaning

chart <svg> / <g> - / <svg> all objects chart root element
heading* <title> / <text> chart /

scale
text chart/scale title

chartarea <rect> chart - chart background (used to detect
visual hight and width)

xaxis <g> chart axis title and labels x-axis
yaxis <g> chart axis title and labels y-axis
axislabel <title> / <text> axis text label of an axis item
legend <g> chart legend title and

items
legend

legenditem <g> legend <text> element legend item
dataset <g> chart data points dataset
datagroup ? ? ? collection of related data points
datapoint <g> / shape dataset data value data point
datavalue <title> data point text y-value of a data point

Table 4.1: ARIA roles defined for the Describler software. An asterisk (*) indicates that this role is
defined in an official ARIA specification.

Property Object Value Meaning

aria-charttype chart root bar / pie / line type of a chart
aria-axistype axis category states if an axis has discrete values
aria-valuemin* numerical axis number minimum value
aria-valuemax* numerical axis number maximum value
aria-labelledby* data value id of x-axis label /

legend item
references the name (x-axis label / legend
item) associated with a data point

Table 4.2: ARIA properties defined for the Describler software. An asterisk (*) indicates that this
property is defined in an official ARIA specification.

4.5.1 Describler
The Describler software presented in Section 3.6 introduces a custom taxonomy of non-standard ARIA
roles and properties for charts and chart objects [Schepers 2015a; Schepers 2017]. This taxonomy is
used within both the source code of the application and the sample SVG files provided along with the
software. All the chart objects in these sample graphics include the tabindex attribute set to 0, so that they
can be navigated using the Tab key. The ARIA roles defined in this system are presented in Table 4.1;
the defined ARIA properties can be found in Table 4.2. The source code of a sample SVG document
annotated according to this system is given in Listing 4.2.

A necessary extension to the Describler taxonomy would be to define roles and titles for data series.

WAI-ARIA-Based Systems for Charts 55

1 <svg version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
3
4 <g role="chart" aria-charttype="line" tabindex="0">
5
6 <title role="heading" id="title">Line Chart of Sales</title>
7
8 <desc id="desc">
9 Chart of sales for 12 months in year 2012 for Salespersons A and B.

10 </desc>
11
12
13 <!-- Y Axis -->
14
15 <g role="yaxis" aria-valuemin="15000" aria-valuemax="40000" tabindex="0">
16
17 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
18 <text role="heading" id="y-title" transform="matrix(0 -1 1 0 20 355)"
19 class="chart-title">Sales in €</text>
20
21 <g>
22 <text role="axislabel" transform="matrix(1 0 0 1 38 215)"
23 class="chart-label">40,000</text>
24 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
25 </g>
26
27 <g>
28 <text role="axislabel" transform="matrix(1 0 0 1 38 262)"
29 class="chart-label">35,000</text>
30 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
31 </g>
32
33 ...
34 </g>
35
36
37 <!-- X Axis -->
38
39 <g role="xaxis" aria-axistype="category" tabindex="0">
40
41 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
42 <text role="heading" id="x-title" transform="matrix(1 0 0 1 383 525)"
43 class="chart-title">Month </text>
44
45 <g>
46 <text role="axislabel" id="x-2012-01" class="chart-label"
47 transform="matrix(0.7 0.7 -0.7 0.7 102 466)">January 2012</text>
48 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
49 </g>
50
51 <g>
52 <text role="axislabel" id="x-2012-02" class="chart-label"
53 transform="matrix(0.7 0.7 -0.7 0.7 155 466)">February 2012</text>
54 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
55 </g>

Listing 4.2: Sample SVG code annotated with ARIA roles and properties according to the system
introduced by the Describler software. Certain chart objects are assigned the attribute tabindex=0
for Tab navigation. The class names are arbitrary and used only for styling.

56 4 Semantic Enrichment of SVG Charts

56
57 ...
58 </g>
59
60
61 <!-- Data Points A -->
62
63 <g role="dataset" id="data-a">
64
65 <polyline points="
66 98,319 150,331
67 150,331 203,309
68 203,309 255,280
69 255,280 308,322
70 308,322 361,303
71 361,303 413,375
72 413,375 466,382
73 466,382 519,353
74 519,353 571,315
75 571,315 624,298
76 624,298 677,246
77 " class="chart-lineA" />
78
79 <g role="datapoint" tabindex="0">
80 <title role="datavalue" aria-labelledby="x-2012-01">28366</title>
81 <rect x="93" y="315" class="marker-square" />
82 </g>
83
84 <g role="datapoint" tabindex="0">
85 <title role="datavalue" aria-labelledby="x-2012-02">27050</title>
86 <rect x="146" y="327" class="marker-square" />
87 </g>
88
89 ...
90 </g>
91
92
93 <!-- Legend -->
94
95 <g role="legend" tabindex="0" id="legend">
96
97 <g role="legenditem" tabindex="0" id="legend-a">
98 <rect x="168" y="210" class="marker-square" />
99 <text id="legend-text-a" x="185" y="220"

100 font-family="Verdana" font-size="14">Salesperson A</text>
101 </g>
102
103 ...
104 </g>
105
106 </g>
107 </svg>

Listing 4.2 (cont.): Sample SVG code annotated with the ARIA roles and properties according to
the system introduced by the Describler software.

WAI-ARIA-Based Systems for Charts 57

4.5.2 WAI-ARIA Graphics Roles
Schepers [2019] recommends using the three roles defined in the WAI-ARIA Graphics Module [W3C
2018e] (see Subsection 4.1.3) in the following manner:

• graphics-document: for the chart root element.

• graphics-object: for objects which contain sub-components, such as axes.

• graphics-symbol: for atomic objects, such as data points.
According to this proposal, a more detailed classification of the objects should then be made using the

ARIA property aria-roledescription. As an example, the author suggests aria-roledescription=bar for a data point
in a bar chart. Moreover, it is recommended that all objects of interest be given a tabindex of 0, so that
they can be navigated to using the Tab key, and that each name and value of a data point be exposed as an
accessible name. The latter should be achieved either by grouping a <text> or a <title> element with the
data point’s element(s) or using one of the properties aria-label and aria-labelledby. For the widest browser
and screen reader compatibility, the author recommends using a combination of both a <text> or <title>
element and the property aria-labelledby pointing to this element. No complete example is provide for the
application of this system. A possible solution is given in Listing 4.3.

Necessary extensions to this scheme include:
• Values for aria-roledescription to indicate charts and other chart objects.

• Values for aria-roledescription to indicate data points of other chart types, such as line and pie charts.

• Properties for expressing the type of a chart or an axis.

58 4 Semantic Enrichment of SVG Charts

1 <svg version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
3
4 <g role="graphics -document" aria-roledescription="line chart">
5
6 <title id="title">Line Chart of Sales</title>
7
8 <desc id="desc">
9 Chart of sales for 12 months in year 2012 for Salespersons A and B.

10 </desc>
11
12
13 <!-- Y Axis -->
14
15 <g role="graphics -object" aria-roledescription="y-axis" tabindex="0">
16
17 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
18 <text id="y-title" transform="matrix(0 -1 1 0 20 355)"
19 class="chart-title">Sales in €</text>
20
21 <g role="graphics -symbol" aria-roledescription="axis item">
22 <text transform="matrix(1 0 0 1 38 215)" class="chart-label">40,000</text>
23 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
24 </g>
25
26 <g role="graphics -symbol" aria-roledescription="axis item">
27 <text transform="matrix(1 0 0 1 38 262)" class="chart-label">35,000</text>
28 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
29 </g>
30
31 ...
32 </g>
33
34
35 <!-- X Axis -->
36
37 <g role="graphics -object" aria-roledescription="x-axis" tabindex="0">
38
39 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
40 <text id="x-title" transform="matrix(1 0 0 1 383 525)"
41 class="chart-title">Month </text>
42
43 <g role="graphics -symbol" aria-roledescription="axis item">
44 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)"
45 class="chart-label">January 2012</text>
46 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
47 </g>
48
49 <g role="graphics -symbol" aria-roledescription="axis item">
50 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)"
51 class="chart-label">February 2012</text>
52 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
53 </g>
54
55 ...
56 </g>

Listing 4.3: Sample SVG code annotated with the roles defined in the WAI-ARIA Graphics Module
in conjunction with the property aria-roledescription. Objects of interest are assigned a tabindex=0 for
Tab navigation. The class names are arbitrary and used only for styling.

WAI-ARIA-Based Systems for Charts 59

57
58
59 <!-- Data Points A -->
60
61 <g role="graphics -object" aria-roledescription="line" tabindex="0" id="data-a">
62
63 <polyline points="
64 98,319 150,331
65 150,331 203,309
66 203,309 255,280
67 255,280 308,322
68 308,322 361,303
69 361,303 413,375
70 413,375 466,382
71 466,382 519,353
72 519,353 571,315
73 571,315 624,298
74 624,298 677,246
75 " class="chart-lineA" />
76
77 <g role="graphics -symbol" aria-roledescription="data point"
78 tabindex="0" aria-labelledby="x-2012-01 datapoint -a0">
79 <title id="datapoint -a0">28366</title>
80 <rect x="93" y="315" class="marker-square" />
81 </g>
82
83 <g role="graphics -symbol" aria-roledescription="data point"
84 tabindex="0" aria-labelledby="x-2012-02 datapoint -a1">
85 <title id="datapoint -a1">27050</title>
86 <rect x="146" y="327" class="marker-square" />
87 </g>
88
89 ...
90 </g>
91
92
93 <!-- Legend -->
94
95 <g role="graphics -object" aria-roledescription="legend" tabindex="0"
96 id="legend">
97
98 <g role="graphics -symbol" aria-roledescription="legend item" id="legend-a">
99 <rect x="168" y="210" class="marker-square" />

100 <text id="legend-text-a" x="185" y="220"
101 font-family="Verdana" font-size="14">Salesperson A</text>
102 </g>
103
104 ...
105 </g>
106
107 </g>
108 </svg>

Listing 4.3 (cont.): Sample SVG code annotated with the roles defined in the WAI-ARIA Graphics
Module in conjunction with the property aria-roledescription.

60 4 Semantic Enrichment of SVG Charts

Role Ancestor Content Meaning

graphics-datachart <svg> all objects chart root element
graphics-axis chart axis items axis
graphics-legend chart legend items legend
graphics-tick scale label item of a continuous (numerical) scale
graphics-category scale label item of a discrete (categorical / ordinal) scale
graphics-note** chart / data

object
text annotation with additional context /

information for the ancestor
graphics-datagroup ? ? collection of related data points
graphics-dataline chart data points data series
graphics-dataunit data series ? data point
graphics-dataregion ? ? complex 2-dimensional feature / contour
graphics-summarydata chart / data

group
? statistical object, such as trend / mean line

Table 4.3: Non-abstract ARIA roles for charts of tabular data defined in the W3C proposal [W3C
2015b]. The proposal does not state which particular SVG element(s) to annotate with a certain
role. An asterisk (*) indicates that this role is defined in an official ARIA specification. Roles
marked with two asterisks (**) are labelled as an “issue” in the wiki and are still the subject of
discussion.

4.5.3 W3C Proposal
W3C [2015b] proposes a system of ARIA roles and properties for various types of visualisations, such as
charts, network diagrams, and maps. This system is a hierarchical taxonomy partly consisting of abstract
and superclass roles. Tables 4.3 and 4.4 present the non-abstract subset applicable for charts of tabular
data. It should be noted that this proposal has no official status yet and is only available in the form of a
wiki.

No complete code example is provided for the application of this system. A possible solution can be
seen in Listing 4.4. Since no values for the property aria-roledescription are specified with regard to line
charts, the values in this example are only based on assumptions.

A necessary extension to this scheme would be a specified way to express the variable of an axis.

WAI-ARIA-Based Systems for Charts 61

Property Object Value Meaning

aria-roledescription* any text type of chart/object (e.g. piechart, slice)
aria-orientation* axis horizontal /

vertical / depth /
other

visual orientation

aria-dataunit scale text unit of numerical values
aria-datatype** scale token

(examples:
category / ordinal
/ number)

scale type

aria-valuemin*,** numerical
scale

number minimum value

aria-valuemax*,** numerical
scale

number maximum value

aria-valuenow*,** scale item string / number machine-readable value of label
aria-valuetext* scale item text human-readable text of label, defaults to accessible

name
aria-label* any text title of an object
aria-labelledby* any id reference to title of object
aria-describedby* any id reference to description of object
aria-live* any true indicates data which are updated
aria-datascales data

object
id list associates a data object with scales

aria-datavariables data
object

text list human-readable names of scales associated with
data object, defaults to scale titles

aria-datavalues data
object

text / number
list

names and values of data object in order of its
associated scales (example: x-name,y-value)

aria-datavaluearray data
group /
series

array of type
aria-datavalues

values of all data points associated with data group
or data series

aria-dataproperty** data
object

property /
attribute names

indicates which style property/attribute are
modified for each data variable

aria-haspopup* any ? for objects with author-generated pop-up
aria-owns* any id list associates referenced objects with host element

(such as data points with a data group)
aria-posinset* data point

/ group
number position within underlying dataset (if chart only

shows portion at a time)
aria-setsize* data point

/ group
number size of complete dataset (if chart only shows

portion at a time)

Table 4.4: ARIA properties for charts of tabular data defined in the W3C proposal [W3C 2015b].
An asterisk (*) indicates that this property is defined in an official ARIA specification. Properties
marked with two asterisks (**) are labelled as an “issue” in the wiki and are still the subject of
discussion.

62 4 Semantic Enrichment of SVG Charts

1 <svg version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
3
4 <g role="graphics -datachart" aria-roledescription="line chart"
5 aria-labelledby="title" aria-describedby="desc">
6
7 <title id="title">Line Chart of Sales</title>
8
9 <desc id="desc">

10 Chart of sales for 12 months in year 2012 for Salespersons A and B.
11 </desc>
12
13 <!-- Y Axis -->
14
15 <g role="graphics -axis" aria-valuemin="15000" aria-valuemax="40000"
16 aria-orientation="vertical" aria-dataunit="€" aria-datatype="number"
17 aria-roledescription="y-axis" aria-labelledby="y-title" id="yscale">
18
19 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
20 <text id="y-title" transform="matrix(0 -1 1 0 20 355)"
21 class="chart-title">Sales in €</text>
22
23 <g role="graphics -tick" aria-valuenow="40000">
24 <text transform="matrix(1 0 0 1 38 215)" class="chart-label">40,000</text>
25 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
26 </g>
27
28 <g role="graphics -tick" aria-valuenow="35000">
29 <text transform="matrix(1 0 0 1 38 262)" class="chart-label">35,000</text>
30 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
31 </g>
32
33 ...
34 </g>
35
36 <!-- X Axis -->
37
38 <g role="graphics -axis" aria-orientation="horizontal" aria-datatype="category"
39 aria-roledescription="x-axis" aria-labelledby="x-title" id="xscale">
40
41 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
42 <text transform="matrix(1 0 0 1 383 525)" id="x-title"
43 class="chart-title">Month </text>
44
45 <g role="graphics -category" aria-valuenow="2012-01">
46 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)"
47 class="chart-label">January 2012</text>
48 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
49 </g>
50
51 <g role="graphics -category" aria-valuenow="2012-02">
52 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)"
53 class="chart-label">February 2012</text>
54 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
55 </g>
56
57 ...
58 </g>

Listing 4.4: Sample SVG code annotated with ARIA roles and properties for charts according to the
system proposed by the W3C. The values chosen for aria-roledescription are not explicitly part of
this proposal. The class names are arbitrary and used only for styling.

WAI-ARIA-Based Systems for Charts 63

59
60
61 <!-- Data Points A -->
62
63 <g role="graphics -dataline" aria-roledescription="line"
64 aria-datascales="legend" aria-datavariables="Salespersons"
65 aria-labelledby="legend-text-a" aria-datavaluearray="[
66 ’January 2012’ 28366, ’February 2012’ 27050, ...]" id="data-a">
67
68 <polyline points="
69 98,319 150,331
70 150,331 203,309
71 203,309 255,280
72 255,280 308,322
73 308,322 361,303
74 361,303 413,375
75 413,375 466,382
76 466,382 519,353
77 519,353 571,315
78 571,315 624,298
79 624,298 677,246
80 " class="chart-lineA" />
81
82 <g role="graphics -dataunit" aria-datascales="xscale yscale"
83 aria-datavariables="x y" aria-datavalues="’January 2012’ 28366">
84 <rect x="93" y="315" class="marker-square" />
85 </g>
86
87 <g role="graphics -dataunit" aria-datascales="xscale yscale"
88 aria-datavariables="x y" aria-datavalues="’February 2012’ 27050">
89 <rect x="146" y="327" class="marker-square" />
90 </g>
91
92 ...
93 </g>
94
95
96 <!-- Legend -->
97
98 <g role="graphics -legend" aria-datatype="category" id="legend">
99

100 <g role="graphics -category" id="legend-a">
101 <rect x="168" y="210" class="marker-square" />
102 <text id="legend-text-a" x="185" y="220"
103 font-family="Verdana" font-size="14">Salesperson A</text>
104 </g>
105
106 ...
107 </g>
108
109 </g>
110 </svg>

Listing 4.4 (cont.): Sample SVG code annotated with the ARIA roles and properties for charts
according to the system proposed by the W3C.

64 4 Semantic Enrichment of SVG Charts

Role Element Ancestor Content Meaning

table <g> <svg> all objects chart root element
row <g> chart data point names /

values
group of data point names (examples:
x-axis / legend) / data series

columnheader <text> group of
data point
names

text names group title (examples: x-axis /
legend title) / data point name

rowheader <g> data series visual data object data series title
cell <g> data series visual data object data point
img shape data series

title / data
point

<title> visual data object (example: <line>)

Table 4.5: Standard ARIA roles for tables, used to mark up line charts, as proposed by Watson
[2017].

4.5.4 SVG Pseudo-Table
Watson [2017] recommends using the standard ARIA roles for tables defined in the core WAI-ARIA
specification [W3C 2017a] to mark up the data points included in line charts. A variant of the system is
applied by the charting library D3plus [D3plus 2019]. The usage of the roles is presented in Table 4.5.
ARIA properties are not used in the original proposal.

Note that the elements with role rowheader (that is, the representations of the data series titles) contain
a shape element with role img which, in turn, contains a <title> element with the actual title of the data
series. Similarly, the elements with role cell (the data points) contain a shape element with role img which,
in turn, contains a <title> element with the value of the data point. This implementation is chosen because
on most browsers, screen readers do not display the content of the <title> element if it is not a direct
descendant of a visible element [Watson 2017].

Necessary extensions to this scheme include roles to unambiguously indicate axes, axis titles, and
labels.

WAI-ARIA-Based Systems for Charts 65

1 <svg version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
3
4 <g role="table">
5
6 <title>Line Chart of Sales</title>
7
8 <desc>
9 Chart of sales for 12 months in year 2012 for Salespersons A and B.

10 </desc>
11
12
13 <!-- Y Axis -->
14
15 <g>
16
17 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
18 <text id="y-title" transform="matrix(0 -1 1 0 20 355)"
19 class="chart-title">Sales in €</text>
20
21 <g>
22 <text transform="matrix(1 0 0 1 38 215)" class="chart-label">40,000</text>
23 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
24 </g>
25
26 <g>
27 <text transform="matrix(1 0 0 1 38 262)" class="chart-label">35,000</text>
28 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
29 </g>
30
31 ...
32 </g>
33
34
35 <!-- X Axis -->
36
37 <g role="row">
38
39 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
40 <text role="columnheader" id="x-title" transform="matrix(1 0 0 1 383 525)"
41 class="chart-title">Month </text>
42
43 <g>
44 <text role="columnheader" id="x-2012-01" class="chart-label"
45 transform="matrix(0.7 0.7 -0.7 0.7 102 466)">January 2012</text>
46 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
47 </g>
48
49 <g>
50 <text role="columnheader" id="x-2012-02" class="chart-label"
51 transform="matrix(0.7 0.7 -0.7 0.7 155 466)">February 2012</text>
52 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
53 </g>
54
55 ...
56 </g>

Listing 4.5: Sample SVG code annotated with the standard ARIA roles for tables, as proposed by
Watson [2017]. Since a data series title needs to be a descendant element of the corresponding
data series in this system, it has been shifted accordingly in this example. The class names are
arbitrary and used only for styling.

66 4 Semantic Enrichment of SVG Charts

57
58
59 <!-- Data Points A -->
60
61 <g role="row" id="data-a">
62
63 <g role="rowheader" id="legend-a">
64 <rect x="168" y="210" class="marker-square" />
65 <text id="legend-text-a" x="185" y="220"
66 font-family="Verdana" font-size="14">Salesperson A</text>
67 </g>
68
69 <polyline points="
70 98,319 150,331
71 150,331 203,309
72 203,309 255,280
73 255,280 308,322
74 308,322 361,303
75 361,303 413,375
76 413,375 466,382
77 466,382 519,353
78 519,353 571,315
79 571,315 624,298
80 624,298 677,246
81 " class="chart-lineA" />
82
83 <g role="cell">
84 <rect role="img" x="93" y="315" class="marker-square">
85 <title id="datapoint -a0">28366</title>
86 </rect>
87 </g>
88
89 <g role="cell">
90 <rect role="img" x="146" y="327" class="marker-square">
91 <title id="datapoint -a1">27050</title>
92 </rect>
93 </g>
94
95 ...
96 </g>
97
98 </g>
99 </svg>

Listing 4.5 (cont.): Sample SVG code annotated with the standard ARIA roles for tables, as proposed
by Watson [2017].

WAI-ARIA-Based Systems for Charts 67

Role Element Ancestor Content Meaning

group <svg> - all objects chart root element
list <g> chart data points data series
listitem <g> data series <text> element with data point values in form

NAME-VALUE; e.g. Jaws-44\%
data point

Table 4.6: Standard ARIA roles for lists, used for bar charts as proposed by Migliorisi [2016],
Migliorisi [2019] and Kopacz [2019].

4.5.5 SVG Pseudo-List
Migliorisi [2016], Migliorisi [2019] and Kopacz [2019] propose to apply the standard ARIA roles for
lists to indicate data series and data points. The usage of these roles is presented in Table 4.6.

The standard ARIA properties aria-labelledby and aria-describedby are attached to the root <svg> element,
pointing to <text> elements which contain a chart title and description, respectively. Moreover, the <g>
element representing a data series is assigned the aria-label property with the title of the data series. A
sample SVG code excerpt is presented in Listing 4.6.

Necessary extensions for this scheme include roles for axes, axis titles, and axis labels.

68 4 Semantic Enrichment of SVG Charts

1 <svg role="group" aria-labelledby="title" aria-describedby="desc"
2 version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
3 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
4
5 <title id="title">Line Chart of Sales</title>
6
7 <desc id="desc">
8 Chart of sales for 12 months in year 2012 for Salespersons A and B.
9 </desc>

10
11
12 <!-- Y Axis -->
13
14 <g>
15
16 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
17 <text id="y-title" transform="matrix(0 -1 1 0 20 355)"
18 class="chart-title">Sales in €</text>
19
20 <g>
21 <text transform="matrix(1 0 0 1 38 215)" class="chart-label">40,000</text>
22 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
23 </g>
24
25 <g>
26 <text transform="matrix(1 0 0 1 38 262)" class="chart-label">35,000</text>
27 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
28 </g>
29
30 ...
31 </g>
32
33
34 <!-- X Axis -->
35
36 <g>
37
38 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
39 <text id="x-title" transform="matrix(1 0 0 1 383 525)"
40 class="chart-title">Month </text>
41
42 <g>
43 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)"
44 class="chart-label">January 2012</text>
45 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
46 </g>
47
48 <g>
49 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)"
50 class="chart-label">February 2012</text>
51 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
52 </g>
53
54 ...
55 </g>

Listing 4.6: Sample SVG code annotated with the standard ARIA roles for lists and the properties
aria-label, aria-labelledby, and aria-describedby, as proposed by Migliorisi [2016], Migliorisi [2019] and
Kopacz [2019]. The class names are arbitrary and used only for styling.

WAI-ARIA-Based Systems for Charts 69

56
57
58 <!-- Data Points A -->
59
60 <g role="list" aria-label="Salesperson A" id="data-a">
61
62 <polyline points="
63 98,319 150,331
64 150,331 203,309
65 203,309 255,280
66 255,280 308,322
67 308,322 361,303
68 361,303 413,375
69 413,375 466,382
70 466,382 519,353
71 519,353 571,315
72 571,315 624,298
73 624,298 677,246
74 " class="chart-lineA" />
75
76 <g role="listitem">
77 <rect x="93" y="315" class="marker-square" />
78 <text id="datapoint -a0" x="97" y="318" text-ancor="middle">
79 January 2012 - 28366</text>
80 </g>
81
82 <g role="listitem">
83 <rect x="146" y="327" class="marker-square" />
84 <text id="datapoint -a1" x="150" y="330" text-ancor="middle">
85 February 2012 - 27050</text>
86 </g>
87
88 ...
89 </g>
90
91
92 <!-- Legend -->
93
94 <g id="legend">
95
96 <g id="legend-a">
97 <rect x="168" y="210" class="marker-square" />
98 <text id="legend-text-a" x="185" y="220"
99 font-family="Verdana" font-size="14">Salesperson A</text>

100 </g>
101
102 ...
103 </g>
104
105 </svg>

Listing 4.6 (cont.): Sample SVG code annotated with the standard ARIA roles for lists and the
properties aria-label, aria-labelledby, and aria-describedby, as proposed by Migliorisi [2016], Migliorisi
[2019] and Kopacz [2019].

70 4 Semantic Enrichment of SVG Charts

4.5.6 Highcharts
The Accessibility module of the Highcharts library [Highcharts 2021b; Highcharts 2021a] described in
Subsection 3.5.1 assigns standard ARIA roles to data series and data points. Moreover, the semantics of
certain objects are clearly expressed by a dedicated taxonomy of class names. The resulting system of
role and class name combinations is shown in Table 4.7. All the information in this subsection is derived
from the sample charts provided at [Highcharts 2021c].

The SVG chart is embedded in a <div> element with a tabindex of 0. Data points and buttons are assigned
a tabindex of -1. Thus, the chart as a whole can be focused using the Tab key and, afterwards, focus can be
programmatically set to particular chart elements.

The standard ARIA property aria-label is attached to various chart objects. Its content is automatically
generated according to a pattern which can be customised by the author of the chart. The formats used
for the sample charts are as follows:

• Data Series: SERIES-TITLE, SERIES-TYPE SERIES-INDEX of TOTAL-SERIES
with TOTAL-POINTS data points.
For example: “VoiceOver, line 3 of 6 with 6 data points.”

• Data Points: POINT-INDEX. NAME, VALUE. SERIES-TITLE.
For example: “4. July 2015, 41.4%. NVDA.”

The SERIES-TYPE is “line” for line charts, and “series” otherwise. Some sample SVG code annotated
according to the Highcharts system is shown in Listing 4.7.

Apart from the SVG structure, several <div> elements are inserted for accessibility purposes and are
grouped in a <figure> element along with the <div> container for the chart. They are visually hidden
and contain automatically-composed texts about chart type, title, axes, and the number of data series,
an optional HTML table representation of the data, and an overall chart description, if provided by the
author of the chart. Moreover, two other <div> elements are present with the aria-live property, used to
make a screen reader announce the information about a chart object interactively while navigating.

WAI-ARIA-Based Systems for Charts 71

Role Class Element Ancestor Content Meaning

- highcharts-root <svg> - all
objects

chart root element

- highcharts-title <text> chart <tspan>
element

chart title

- highcharts-subtitle <text> chart <tspan>
element

chart subtitle

- highcharts-caption <text> chart ? chart caption (no content in all
examples)

- highcharts-credits <text> chart text chart credits statement
- highcharts-axis

highcharts-xaxis
<g> chart axis title

and line
x-axis

- highcharts-axis
highcharts-yaxis

<g> chart axis title
and line

y-axis

- highcharts-axis-title <text> axis <tspan>
element

axis title

- highcharts-axis-labels
highcharts-xaxis-labels

<g> chart <text>
elements
with
nested
<tspan>

labels of all x-axis items

- highcharts-axis-labels
highcharts-xaxis-labels
highcharts-navigator-xaxis

<g> chart <text>
elements
with
nested
<tspan>

labels of all items of a navigable
x-axis

- highcharts-axis-labels
highcharts-yaxis-labels

<g> chart <text>
elements

labels of all y-axis items

- highcharts-axis-labels
highcharts-yaxis-labels
highcharts-navigator-yaxis

<g> chart <text>
elements

labels of all items of a navigable
y-axis

- highcharts-range-selector-
group

<g> chart group of controls to select the
displayed range of a dataset

- highcharts-range-selector-
buttons

<g> range
selection
group

range
selection
buttons

group of buttons to select the
displayed range of a dataset

button highcharts-button
highcharts-button-pressed

<g> range
selection
buttons
group

<text>
element

button to display a predefined
range of the dataset, currently
selected

Table 4.7: System of standard ARIA role and class name combinations used by Highcharts. N
denotes a zero-based index of the data series. (continues on next page)

72 4 Semantic Enrichment of SVG Charts

Role Class Element Ancestor Content Meaning

button highcharts-button
highcharts-button-normal

<g> range
selection
buttons
group

<text>
element

button to display a predefined
range of the dataset, currently not
selected

- highcharts-input-group <g> range
selection
group

values of
selected
range

selection values group, labels
with the start and end values of
the range currently displayed

- highcharts-label
highcharts-range-label

<g> range
values
group

<text>
element

label for the subsequent range
value element; e.g. from

- highcharts-label
highcharts-range-input

<g> range
values
group

<text>
element
with
nested
<tspan>

range value associated with the
preceding label element; e.g.
Mar23,2020

- highcharts-legend <g> chart legend
items

legend

- highcharts-legend-item
highcharts-series-N

<g> legend <text>
and
<tspan>
elements

legend item

- highcharts-series-group <g> chart data
series

collection of all data series

- highcharts-series
highcharts-series-N
highcharts-pie-series

<g> chart data
points

data series of pie chart

region highcharts-series
highcharts-series-N
highcharts-N-series

<g> chart data
points

data series of other chart type

region highcharts-markers
highcharts-series-N
highcharts-spline-series /
highcharts-line-series

<g> chart data
points

data series of line chart

img highcharts-point <path> data
series

- data point

Table 4.7: System of standard ARIA role and class name combinations used by Highcharts. N
denotes a zero-based index of the data series.

WAI-ARIA-Based Systems for Charts 73

1 <svg class="highcharts -root" tabindex="0" version="1.1" xml:lang="en"
2 lang="en" xmlns="http://www.w3.org/2000/svg"
3 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
4
5 <text class="highcharts -title" id="title">Line Chart of Sales</text>
6
7 <text class="highcharts -subtitle" id="desc">
8 Chart of sales for 12 months in year 2012 for Salespersons A and B.
9 </text>

10
11 <!-- Y Axis -->
12
13 <g class="highcharts -axis highcharts -yaxis">
14 <line x1="98" y1="443" x2="98" y2="212" />
15 <text class="highcharts -axis-title" id="y-title"
16 transform="matrix(0 -1 1 0 20 355)">
17 <tspan>Sales in €</tspan>
18 </text>
19 </g>
20
21
22 <g class="highcharts -axis-labels highcharts -yaxis-labels">
23
24 <g>
25 <text transform="matrix(1 0 0 1 38 215)">40,000</text>
26 <line x1="98" y1="212" x2="93" y2="212" />
27 </g>
28
29 <g>
30 <text transform="matrix(1 0 0 1 38 262)">35,000</text>
31 <line x1="98" y1="258" x2="93" y2="258" />
32 </g>
33
34 ...
35 </g>
36
37 <!-- X Axis -->
38
39 <g class="highcharts -axis highcharts -xaxis">
40 <line x1="98" y1="443" x2="677" y2="443" />
41 <text class="highcharts -axis-title" id="x-title"
42 transform="matrix(1 0 0 1 383 525)">
43 <tspan>Month</tspan>
44 </text>
45 </g>
46
47
48 <g class="highcharts -axis-labels highcharts -xaxis-labels">
49
50 <g>
51 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)">
52 <tspan>January 2012</tspan>
53 </text>
54 <line x1="98" y1="443" x2="98" y2="448" />
55 </g>
56

Listing 4.7: Sample SVG code annotated with standard ARIA roles and properties as well as
dedicated class names according to the system used by Highcharts. The root <svg> element and
the data points have the tabindex attribute set for keyboard navigation.

74 4 Semantic Enrichment of SVG Charts

57 <g>
58 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)">
59 <tspan>February 2012</tspan>
60 </text>
61 <line x1="150" y1="443" x2="150" y2="448" />
62 </g>
63
64 ...
65 </g>
66
67
68 <g class="highcharts -series-group">
69
70 <!-- Data Points A -->
71
72 <g role="region" aria-label="Salesperson A, line 1 of 2 with 12 data points."
73 class="highcharts -markers highcharts -series -0 highcharts -line-series"
74 id="data-a">
75
76 <polyline points="
77 98,319 150,331
78 150,331 203,309
79 203,309 255,280
80 255,280 308,322
81 308,322 361,303
82 361,303 413,375
83 413,375 466,382
84 466,382 519,353
85 519,353 571,315
86 571,315 624,298
87 624,298 677,246
88 " />
89
90 <rect role="img" class="highcharts -point" aria-label="1. January 2012, 28366.
91 Salesperson A" tabindex="-1" x="93" y="315" />
92
93 <rect role="img" class="highcharts -point" aria-label="2. February 2012, 27050.
94 Salesperson A" tabindex="-1" x="146" y="327" />
95
96 ...
97 </g>
98 </g>
99

100
101 <!-- Legend -->
102
103 <g class="highcharts -legend" id="legend">
104
105 <g class="highcharts -legend-item highcharts -series -1" id="legend-a">
106 <rect x="168" y="210" />
107 <text id="legend-text-a" x="185" y="220"
108 font-family="Verdana" font-size="14">Salesperson A</text>
109 </g>
110
111 ...
112 </g>
113
114 </svg>

Listing 4.7 (cont.): Sample SVG code annotated with standard ARIA roles and properties as well as
dedicated class names according to the system used by Highcharts.

WAI-ARIA-Based Systems for Charts 75

4.5.7 Semiotic
A system of standard ARIA roles and properties in combination with dedicated class names is also used
by the charting library Semiotic [Meeks and Lu 2020] (see Subsection 3.5.3). The resulting taxonomy
is presented in Table 4.8. The element representing the whole dataset, in this case, the set of all the data
series, is assigned a tabindex of 0, so that it can be focused using the Tab key. The ancestor elements for
bars and lines have the tabindex attribute set to -1, which means that they can be focused programmatically.
All the details and examples presented in this subsection are based on demonstration charts provided at
[Meeks and Lu 2020].

The standard ARIA property aria-label is applied to various chart objects with texts generated automat-
ically according to predefined patterns. Examples taken from the demonstration charts include:

• group of dataset and continuous axes:
Visualization with a complex title. Use arrow keys to navigate elements.

• dataset of bar chart:
TOTAL-POINTS bars in a bar chart.

• dataset of line chart:
TOTAL-SERIES lines in a line chart.

• data points of bar chart:
x-VALUE bar value y-VALUE
For example: “Jason bar value 10”

• data series of line chart:
TOTAL-POINTS point line starting value FIRST-VALUE at FIRST-NAME
ending value LAST-VALUE at LAST-NAME
For example: “15 point line starting value 0.01k at 1 ending value 0.018k at 15”

• continuous axis:
POSITION axis from FIRST-AXIS-LABEL to LAST-AXIS-LABEL
For example: “left axis from 0 to 1”

A complete example of SVG code annotated according to the Semiotic system is shown in Listing 4.8.

76 4 Semantic Enrichment of SVG Charts

Role Class Element Ancestor Content Meaning

- visualization-layer <svg> - all objects chart root element
- frame-title <text> chart root text chart title
group data-visualization <g> dataset and

continuous
axes

group of dataset and
continuous axes

group pieces <g> group of
dataset and
continuous
axes

dataset for bar charts

group lines <g> group of
dataset and
continuous
axes

data series dataset for line charts

img - <rect> dataset - data point for bar charts
img xyframe-line shape dataset - data series for line charts
- axisaxis-labels <g> group of

dataset and
continuous
axes

continuous axes group of continuous axes

- [POS y] <g> group of
continuous
axes

axis labels continuous y-axis for
bar charts

- axis POS y <g> group of
continuous
axes

axis labels continuous y-axis for
line charts

- axisx POS <g> group of
continuous
axes

axis labels continuous x-axis

- axis-label <text> continuous
axis

text label for an item of a
continuous axis

- axis-title [POS y] <g> continuous
y-axis

<text> element with
possible <tspan>
elements

title of a continuous
y-axis for bar charts

- axis-titleaxis POS y <g> continuous
y-axis

<text> element with
possible <tspan>
elements

title of a continuous
y-axis for line charts

- axis-titleaxis POS x <g> continuous
x-axis

<text> element with
possible <tspan>
elements

title of a continuous
x-axis for line charts

- ordinal-labels <g> chart root <text> elements with
axis labels

discrete x-axis

Table 4.8: System of standard ARIA role and class name combinations used by Semiotic. Class
names in square brackets ([]) are only applied for stacked and grouped bar charts. POS denotes
the position of an axis, such as left or bottom.

WAI-ARIA-Based Systems for Charts 77

1 <svg class="visualization -layer" version="1.1" xml:lang="en" lang="en"
2 xmlns="http://www.w3.org/2000/svg"
3 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
4
5 <text class="frame-title" id="title">Line Chart of Sales</text>
6
7 <g role="group" class="data-visualization" aria-label="Visualization with
8 a complex title. Use arrow keys to navigate elements.">
9

10 <g class="axis axis-labels">
11
12 <!-- Y Axis -->
13
14 <g class="axis left y" aria-label="left axis from 15,000 to 40,000">
15
16 <line x1="98" y1="443" x2="98" y2="212" />
17
18 <g class="axis-title axis left y">
19 <text id="y-title" transform="matrix(0 -1 1 0 20 355)">Sales in €</text>
20 </g>
21
22 <g>
23 <text class="axis-label" transform="matrix(1 0 0 1 38 215)">40,000</text>
24 <line x1="98" y1="212" x2="93" y2="212" />
25 </g>
26
27 <g>
28 <text class="axis-label" transform="matrix(1 0 0 1 38 262)">35,000</text>
29 <line x1="98" y1="258" x2="93" y2="258" />
30 </g>
31
32 ...
33 </g>
34 </g>
35
36
37 <g role="group" class="lines" aria-label="2 lines in a line chart" tabindex="0">
38
39 <!-- Data Points A -->
40
41 <g tabindex="-1" id="data-a">
42
43 <polyline role="img" class="xyframe-line" aria-label="12 point line starting
44 value 28,366 at January 2012 ending value 28,490 at December 2012" points="
45 98,319 150,331
46 150,331 203,309
47 203,309 255,280
48 255,280 308,322
49 308,322 361,303
50 361,303 413,375
51 413,375 466,382
52 466,382 519,353
53 519,353 571,315
54 571,315 624,298
55 624,298 677,246" />

Listing 4.8: Sample SVG code annotated with standard ARIA roles and properties as well as dedicated
class names as used in Semiotic. The <g> element of the dataset and that of the data series have
been assigned a tabindex attribute for keyboard navigation.

78 4 Semantic Enrichment of SVG Charts

57 <rect x="93" y="315" />
58
59 <rect x="146" y="327" />
60
61 ...
62 </g>
63
64 </g>
65 </g>
66
67
68 <!-- X Axis -->
69
70 <text id="x-title" transform="matrix(1 0 0 1 383 525)">Month</text>
71
72 <g class="ordinal-labels">
73
74 <line x1="98" y1="443" x2="677" y2="443" />
75
76 <g>
77 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)">
78 January 2012</text>
79 <line x1="98" y1="443" x2="98" y2="448" />
80 </g>
81
82 <g>
83 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)">
84 February 2012</text>
85 <line x1="150" y1="443" x2="150" y2="448" />
86 </g>
87
88 ...
89 </g>
90
91
92 <!-- Legend -->
93
94 <g id="legend">
95
96 <g id="legend-a">
97 <rect x="168" y="210" class="marker-square" />
98 <text id="legend-text-a" x="185" y="220"
99 font-family="Verdana" font-size="14">Salesperson A</text>

100 </g>
101
102 ...
103 </g>
104
105 </svg>

Listing 4.8 (cont.): Sample SVG code annotated with standard ARIA roles and properties as well as
dedicated class names as used in Semiotic.

WAI-ARIA-Based Systems for Charts 79

Role Element Ancestor Content Meaning

group <svg> - chart(s) <svg> root element
region <g> <svg> all objects chart root element
menu <g> chart data points data series
menuitem <g> data series data value element data point

Table 4.9: Standard ARIA roles used by the charting library amCharts.

4.5.8 amCharts
The charting library amCharts [amCharts 2020a] described in Subsection 3.5.4 uses the standard ARIA
roles shown in Table 4.9. The roles for data series and points were originally intended to be used for
menus within a web application. The data points have the tabindex attribute set to 0 and the focusable
attribute set to true so that they can be navigated using the Tab key. Other chart objects can also be
declared focusable by the author of the chart. The information and examples given in this subsection are
derived from sample charts found at amCharts [2020b].

In addition to the roles described in Table 4.9, the ARIA property aria-describedby is used to convey
some information too, pointing to <desc> elements and assigned to the chart root and to the data series.
The label of a data point is attached programmatically at runtime when it receives keyboard focus. All
accessible descriptions are customisable by the author of the chart and default to the following patterns:

• chart root: corresponds to the visible chart title if specified, otherwise defaults to Chart.

• data series: corresponds to the data series title, if specified, otherwise no name or description.

• data points: x-VALUE y-VALUE
For example: “Research & Development 1200”
No accessible names or descriptions are assigned to data points of line charts.

Other chart objects, such as the data points of a line chart, can additionally be given an accessible name
and description by the author. A sample SVG code excerpt from amCharts is presented in Listing 4.9.

80 4 Semantic Enrichment of SVG Charts

1 <svg role="group" version="1.1" xml:lang="en" lang="en" viewBox="0 190 750 346"
2 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
3
4 <desc>JavaScript chart by amCharts </desc>
5
6 <g role="region" aria-describedby="desc">
7
8 <desc id="desc">Line Chart of Sales</desc>
9

10 <!-- Y Axis -->
11
12 <g>
13
14 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
15 <text id="y-title" transform="matrix(0 -1 1 0 20 355)"
16 class="chart-title">Sales in €</text>
17
18 <g>
19 <text transform="matrix(1 0 0 1 38 215)" class="chart-label">40,000</text>
20 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
21 </g>
22
23 <g>
24 <text transform="matrix(1 0 0 1 38 262)" class="chart-label">35,000</text>
25 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
26 </g>
27
28 ...
29 </g>
30
31 <!-- X Axis -->
32
33 <g>
34
35 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
36 <text id="x-title" transform="matrix(1 0 0 1 383 525)"
37 class="chart-title">Month </text>
38
39 <g>
40 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)"
41 class="chart-label">January 2012</text>
42 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
43 </g>
44
45 <g>
46 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)"
47 class="chart-label">February 2012</text>
48 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
49 </g>
50
51 ...
52 </g>

Listing 4.9: Sample SVG code annotated with standard ARIA roles and the aria-describedby property
in amCharts. The data points have a tabindex of 0 and the focusable attribute for Tab navigation. The
class names are arbitrary and used only for styling.

WAI-ARIA-Based Systems for Charts 81

53
54
55 <!-- Data Points A -->
56
57 <g role="menu" aria-describedby="legend-text-a" id="data-a">
58
59 <desc id="legend-text-a">Salesperson A</desc>
60
61 <polyline points="
62 98,319 150,331
63 150,331 203,309
64 203,309 255,280
65 255,280 308,322
66 308,322 361,303
67 361,303 413,375
68 413,375 466,382
69 466,382 519,353
70 519,353 571,315
71 571,315 624,298
72 624,298 677,246
73 " class="chart-lineA" />
74
75 <g role="menuitem" focusable="true" tabindex="0">
76 <rect x="93" y="315" class="marker-square" />
77 </g>
78
79 <g role="menuitem" focusable="true" tabindex="0">
80 <rect x="146" y="327" class="marker-square" />
81 </g>
82
83 ...
84 </g>
85
86
87 <!-- Legend -->
88
89 <g id="legend">
90
91 <g id="legend-a">
92 <rect x="168" y="210" class="marker-square" />
93 <text id="legend-text-a" x="185" y="220"
94 font-family="Verdana" font-size="14">Salesperson A</text>
95 </g>
96
97 ...
98 </g>
99

100 </g>
101 </svg>

Listing 4.9 (cont.): Sample SVG code annotated with standard ARIA roles and the aria-describedby
property in amCharts.

82 4 Semantic Enrichment of SVG Charts

Class Element Ancestor Content Meaning

raphael-group-N-parentgroup <g> <svg> all objects chart root element
raphael-group-N-background <g> chart root - chart background
raphael-group-N-dataset-axis-name <g> chart root <text> element axis title, associated with

subsequent axis labels
raphael-group-N-dataset-axis <g> chart root <text> elements axis labels, associated with

preceding axis title
raphael-group-N-dataset-top-label <g> chart root <text> elements labels of angular gauge chart
raphael-group-N-plot-group <g> chart root shape elements

as data points
data series

raphael-group-N-legend <g> chart root <text> elements
as legend items

legend

raphael-group-N-caption <g> chart root <text>
element(s)

caption

Table 4.10: Selected class names used by the charting library FusionCharts. N denotes a variable
number.

4.5.9 FusionCharts
In charts created by the library FusionCharts with its accessibility extension [FusionCharts 2020], as
described in Subsection 3.5.2, the <svg> element is assigned the standard ARIA role application. This
role is intended to be used to indicate web applications. A screen reader switches to application mode in
JAWS or focus mode in NVDA, as soon as the SVG receives keyboard focus. In combination with the
attributes tabindex and focusable attached to the root <svg> element and certain chart objects, the chart can
then be navigated by keyboard.

Moreover, the standard ARIA role button is used for <text> elements which represent legend items,
denoting the titles of the data series. They can also be used to toggle the visibility of a particular data
series. All the legend items are assigned the tabindex and focusable attributes. In the case of the first
legend item, tabindex is set to 0, whereas for all the other items the attribute is set to -1. The result is
that navigation by the Tab key always sets the keyboard focus to the first item. Subsequent items can
be focused programmatically. The same system of focus management is applied to the shape elements
representing the data points. Furthermore, certain objects of a chart can be identified by dedicated class
names. Those which are regarded as relevant for expressing semantic information are listed in Table 4.10.
The details and examples given in this subsection are taken from the demonstration charts available at
[FusionCharts 2020].

In addition, the chart root element, data points, and legend items are assigned an aria-label property with
titles, which are generated automatically according to customisable patterns. The default string patterns
for bar and line charts are:

• chart root: This is a CHART-TYPE chart created with FusionCharts Suite XT. Title of the chart is
CAPTION. x-AXIS-TITLE is plotted on x-axis and y-AXIS-TITLE is plotted on y-axis.
For example: “This is a multi series line chart created with FusionCharts Suite XT. Title of the chart
is Social Media Platforms Popularity. Years is plotted on x-axis and Popularity is plotted on y-axis.”

• data points: y-AXIS-TITLE of SERIES-TITLE for x-AXIS-TITLE NAME is y-VALUE. Plot POINT-INDEX of
TOTAL-POINTS. Series SERIES-INDEX of TOTAL-SERIES.
For example: “Popularity of Facebook for Years 2012 is 62%. Plot 1 of 5. Series 1 of 4.”

WAI-ARIA-Based Systems for Charts 83

• legend items: Toggle the visibility of ITEM_LABEL.
For example: “Toggle the visibility of Twitter.”

Some example SVG code annotated according to the system used by FusionCharts is presented in
Listing 4.10. For non-cartesian charts, the default string patterns are:

• chart root: This is a CHART-TYPE chart created with FusionCharts Suite XT. CAPTION for SUBCAPTION
is plotted.
For example: “This is a pie chart created with FusionCharts Suite XT. Web Servers Market Share
for 2015—16 is plotted.”

• data points: POINT-INDEX. LABEL, VALUE.
For example: 4.Other,18.67M.

• legend items: Toggle the slicing of LABEL.
For example: “Toggle the slicing of Other.”

84 4 Semantic Enrichment of SVG Charts

1 <svg role="application" class="raphael-group-1-parentgroup" tabindex="0"
2 focusable="true" aria-label="This is a multi series line chart created
3 with FusionCharts Suite XT. Title of the chart is Line Chart of Sales.
4 Month is plotted on x-axis and Sales in € is plotted on y-axis"
5 version="1.1" xml:lang="en" lang="en" xmlns="http://www.w3.org/2000/svg"
6 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
7
8 <g class="raphael-group-1-caption">
9 <text id="title">Line Chart of Sales</text>

10 </g>
11
12 <!-- Y Axis -->
13
14 <g>
15
16 <line x1="98" y1="443" x2="98" y2="212" />
17
18 <g class="raphael-group-1-dataset-axis-name">
19 <text id="y-title" transform="matrix(0 -1 1 0 20 355)">Sales in €</text>
20 </g>
21
22 <g class="raphael-group-1-dataset-axis">
23
24 <g>
25 <text transform="matrix(1 0 0 1 38 215)">40,000</text>
26 <line x1="98" y1="212" x2="93" y2="212" />
27 </g>
28
29 <g>
30 <text transform="matrix(1 0 0 1 38 262)">35,000</text>
31 <line x1="98" y1="258" x2="93" y2="258" />
32 </g>
33
34 ...
35 </g>
36 </g>
37
38
39 <!-- X Axis -->
40
41 <g>
42
43 <line x1="98" y1="443" x2="677" y2="443" />
44
45 <g class="raphael-group-1-dataset-axis-name">
46 <text id="x-title" transform="matrix(1 0 0 1 383 525)">Month</text>
47 </g>
48
49 <g class="raphael-group-1-dataset-axis">
50
51 <g>
52 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)">
53 January 2012</text>
54 <line x1="98" y1="443" x2="98" y2="448" />
55 </g>

Listing 4.10: Sample SVG code annotated with standard ARIA roles and properties as well as
dedicated class names in FusionCharts. The data points and legend items have both tabindex and
focusable attributes set for keyboard navigation.

WAI-ARIA-Based Systems for Charts 85

56
57 <g>
58 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)">
59 February 2012</text>
60 <line x1="150" y1="443" x2="150" y2="448" />
61 </g>
62
63 ...
64 </g>
65 </g>
66
67
68 <!-- Data Points A -->
69
70 <g class="raphael-group-1-plot-group" id="data-a">
71
72 <polyline points="
73 98,319 150,331
74 150,331 203,309
75 203,309 255,280
76 255,280 308,322
77 308,322 361,303
78 361,303 413,375
79 413,375 466,382
80 466,382 519,353
81 519,353 571,315
82 571,315 624,298
83 624,298 677,246" />
84
85 <rect aria-label="Sales in € of Salesperson A for Month January 2012 is 28366.
86 Plot 1 of 12. Series 1 of 2" tabindex="0" focusable="true" x="93" y="315" />
87
88 <rect aria-label="Sales in € of Salesperson A for Month February 2012 is 27050.
89 Plot 2 of 12. Series 1 of 2" tabindex="-1" focusable="true" x="146" y="327" />
90
91 ...
92 </g>
93
94
95 <!-- Legend -->
96
97 <g class="raphael-group-1-legend" id="legend">
98
99 <text role="button" aria-label="Toggle the visibility of Salesperson A."

100 tabindex="0" focusable="true" id="legend-text-a" x="185" y="220"
101 font-family="Verdana" font-size="14">Salesperson A</text>
102
103 ...
104 </g>
105
106 </svg>

Listing 4.10 (cont.): Sample SVG code annotated with standard ARIA roles and properties as well
as dedicated class names in FusionCharts.

86 4 Semantic Enrichment of SVG Charts

4.5.10 AnyChart
Charts created by the library AnyChart, described in Subsection 3.5.5, assign the standard ARIA role
presentation to the <svg> root element by default [AnyChart 2020a; AnyChart 2020b]. This role is defined
in the core WAI-ARIA specification [W3C 2017a] for graphics, but was intended for those graphics
without semantic significance. Within the SVG, the chart is wrapped in a <g> container element with
the standard role article and the standard property aria-label. The latter holds a description which can be
customised by the author of the chart and defaults to the following string pattern:

• chart: CHART-TYPE chart entitled CHART-TITLE, with TOTAL-SERIES CHART-TYPE series, . Y-scale
minimum value is MIN-y-VALUE , maximum value is MAX-y-VALUE. X-scale with TOTAL-x-AXIS-LABELS
categories: x-AXIS-LABEL1, x-AXIS-LABEL2, x-AXIS-LABEL3, . . . , .
For example: “line chart entitled Trend of Sales of the Most Popular Products of ACME Corp., with
3 line series, . Y-scale minimum value is 0 , maximum value is 28. X-scale with 24 categories:
1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, .”

These details were derived from the samples at AnyChart [2020b].

WAI-ARIA-Based Systems for Charts 87

1 <svg role="presentation" version="1.1" xml:lang="en" lang="en"
2 xmlns="http://www.w3.org/2000/svg"
3 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
4
5 <g role="article" aria-label="line chart entitled Line Chart of Sales, with 2
6 line series, . Y-scale minimum value is 15,000 , maximum value is 40,000.
7 X-scale with 12 categories: January 2012, February 2012, March 2012, April
8 2012, May 2012, June 2012, July 2012, August 2012, September 2012, October
9 2012, November 2012, December 2012, .">

10
11 <!-- Y Axis -->
12
13 <g>
14
15 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
16 <text id="y-title" transform="matrix(0 -1 1 0 20 355)"
17 class="chart-title">Sales in €</text>
18
19 <g>
20 <text transform="matrix(1 0 0 1 38 215)" class="chart-label">40,000</text>
21 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
22 </g>
23
24 <g>
25 <text transform="matrix(1 0 0 1 38 262)" class="chart-label">35,000</text>
26 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
27 </g>
28
29 ...
30 </g>
31
32
33 <!-- X Axis -->
34
35 <g>
36
37 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
38 <text id="x-title" transform="matrix(1 0 0 1 383 525)"
39 class="chart-title">Month </text>
40
41 <g>
42 <text id="x-2012-01" transform="matrix(0.7 0.7 -0.7 0.7 102 466)"
43 class="chart-label">January 2012</text>
44 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
45 </g>
46
47 <g>
48 <text id="x-2012-02" transform="matrix(0.7 0.7 -0.7 0.7 155 466)"
49 class="chart-label">February 2012</text>
50 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
51 </g>
52
53 ...
54 </g>

Listing 4.11: Sample SVG code annotated with standard ARIA roles and properties according to the
system used by AnyChart. The class names are arbitrary and used only for styling.

88 4 Semantic Enrichment of SVG Charts

55
56
57 <!-- Data Points A -->
58
59 <g id="data-a">
60
61 <polyline points="
62 98,319 150,331
63 150,331 203,309
64 203,309 255,280
65 255,280 308,322
66 308,322 361,303
67 361,303 413,375
68 413,375 466,382
69 466,382 519,353
70 519,353 571,315
71 571,315 624,298
72 624,298 677,246
73 " class="chart-lineA" />
74
75 <g>
76 <rect x="93" y="315" class="marker-square" />
77 </g>
78
79 <g>
80 <rect x="146" y="327" class="marker-square" />
81 </g>
82
83 ...
84 </g>
85
86
87 <!-- Legend -->
88
89 <g id="legend">
90
91 <g id="legend-a">
92 <rect x="168" y="210" class="marker-square" />
93 <text id="legend-text-a" x="185" y="220"
94 font-family="Verdana" font-size="14">Salesperson A</text>
95 </g>
96
97 ...
98 </g>
99

100 </g>
101 </svg>

Listing 4.11 (cont.): Sample SVG code annotated with standard ARIA roles and properties according
to the system used by AnyChart.

Chapter 5

Accessible Charts with AChart

The AChart (Accessible Chart) project was launched at Graz University of Technology’s Institute of
Interactive Systems and Data Science (ISDS) in 2019. Its goal is to provide open-source software
solutions for producing and interpreting accessible charts and data visualisations in Scalable Vector
Graphics (SVG) format. For this purpose, two complementary software systems were built. Firstly,
AChart Creator can be used to automatically generate accessible SVG charts from tabular data. Its
modular source code was designed in a way that it can be extended to other types of visualisations
with relatively low effort. The functionality and implementation of AChart Creator will be described in
Chapter 6.

Secondly, AChart Interpreter can interpret and read out the accessible charts produced by AChart
Creator, in a manner similar to Describler [Schepers 2015a]. Its split-screen GUI displays a chart
both visually and in textual form. The closely related spin-off command-line tool AChart Summariser
produces a solely textual summary of an accessible chart to the console. A detailed description of AChart
Interpreter and AChart Summariser will be given in Chapter 7.

The current chapter covers general aspects which are relevant for the AChart project as a whole. In
addition to the work done in the context of this thesis, other developers also contributed to the AChart
software. Table 5.1 lists all participants of the AChart project along with their contributions.

A web-based approach was chosen for the implementation of the AChart software. The programmes
were written in TypeScript [Microsoft 2020b], a class-based superset of JavaScript. The TypeScript
source code needs to be transpiled into JavaScript for execution. For transpilation, the TypeScript
compiler version 3.4.5 was used, set to ECMAScript version 5 as its target output. An automated tool
chain for transpilation, copying, and execution was facilitated by the task runner gulp.js [Bublitz and
Schoffstall 2021] and the implementation of appropriate gulp scripts.

89

90 5 Accessible Charts with AChart

Contributions Participants

AChart Creator:
First proof-of-concept. Alexander Grass, Lea Novak, and Danica

Radulovic [Grass et al. 2019]
Command-line options for chart, axis titles, and
descriptions.

Inti Gabriel Mendoza Estrada

New, class-based design, standalone version,
automatic titles, multi-line charts, data column
selection, sorting of data points, creation of
legends, accessibility enhancements, visual
corrections.

Christopher Alexander Kopel

AChart Interpreter:
Main implementation. Christopher Alexander Kopel
Visually optimised user interface, synchronised
highlighting of chart objects.

Inti Gabriel Mendoza Estrada; Lukas Bodner,
Daniel Geiger, and Lorenz Leitner [Bodner et al.
2020a]

Enhanced speech synthesis detection. Lukas Bodner, Daniel Geiger, and Lorenz
Leitner [Bodner et al. 2020a]

AChart Summariser:
Main implementation. Christopher Alexander Kopel

Table 5.1: Contributors to the AChart project at the time of writing.

5.1 Motivation
As described in Chapter 3, numerous solutions have been proposed with the goal of giving visually
impaired recipients access to data visualisations and charts. However, many of these approaches only
exist as laboratory prototypes and are not publicly available. Solely tactile representations do not provide
a suitable means to rapidly understand complex visual information for most users, as explained in
Section 3.1. Moreover, all the tactile and most of the multimodal solutions require special hardware,
which leads to increased cost for the potential recipients and is disadvantageous in terms of portability.
All the systems presented in Sections 3.1 to 3.3 are self-contained and do not interact with any screen
reader, with the consequence that the user needs to learn new commands and, in some cases, to deactivate
the screen reader in order to avoid conflicts. Lastly, many of the solutions can be classified as closed
systems, which do not interact with any graphics software or format, but try to recognise the information
from an image, which always introduces the risk of erroneous or unsuitable results.

Both iGraph-Lite by Ferres et al. [2007], Ferres et al. [2013] and Ferres [2015] (see Subsection 3.2.1)
and Plot Explorer by Revnitski [2005] (see Section 3.3) require use of a special software library or plug-in
to be be addressed by the graphics application. For example, iGraph-Lite uses a visual description based
on the Web Ontology Language (OWL) as an intermediate format.

Several other proposals, by contrast, use annotated SVG formats for embedding accessible information
in graphics documents. The Graphics Accessible To Everyone (GATE) system by Kopecek and Oslejsek
[2008] (see Subsection 3.2.3) and IVEO by Bulatov et al. [2005], Gardner and Bulatov [2006], Gardner
and Bulatov [2010] and Gardner [2016] both use special data structures in addition to the SVG code.
Rotard et al. [2004]’s prototype system, the SVG-Plott software by Engel et al. [2019] (see Section 3.3),
and the Access2Graphics approach by Dürnegger et al. [2010] and Altmanninger and Wöß [2008] (see
Section 3.4) all use annotated SVG formats, but solely make use of SVG’s native <title> and <desc>

Developing an ARIA-Based System for Charts 91

elements to provide accessible names and descriptions. None of them explicitly defines a taxonomy for
identifying the type of chart components, such as axes, data series, and data points. Expressing such
type information within accessible names and/or descriptions is possible, but has the disadvantage that
more computation is necessary to identify these types and, thus, to perform any further processing of the
underlying data. In contrast, the BrailleR extension by Fitzpatrick et al. [2017], Godfrey et al. [2018] and
Sorge [2016] described in Section 3.4 expresses such semantics in an XML structure associated with the
SVG elements of the visual chart.

The AChart project aims to develop a flexible software solution which can be used in conjunction
with common screen readers, applies an open SVG-based system for unambiguously identifying chart
objects, and provides the possibility of being easily extensible to other systems and visualisation types.
While most of the charting libraries discussed in Section 3.5 generally fulfil the criteria of screen reader
compatibility and semantic SVG enrichment, they do not provide any analytical features helping to rapidly
understand the data, such as comparisons of data points or statistical summaries. Moreover, in many
cases, they express the types of chart objects through dedicated CSS class names. An essential aspect for
the design of the AChart software, by contrast, was to embed accessible information as recommended by
the World Wide Web Consortium (W3C), that is, by means of native SVG elements in combination with
roles and properties based on the Accessible Rich Internet Applications (ARIA) system. Since, at the
time of writing, no ARIA taxonomy for charts has been standardised, it was decided to apply one of the
proposals listed in Section 4.5, which will be described in the following section.

The AChart Interpreter software was inspired by the Describler application [Schepers 2015a; Schepers
2017] in two ways. Firstly, Describler uses SVG along with a taxonomy of ARIA roles and properties for
declaring chart objects (see Subsection 4.5.1). Moreover, it provides a user interface which facilitates the
visual and auditory exploration of annotated SVG charts by means of the mouse or keyboard, as described
in Section 3.6. However, Describler is perhaps best regarded as an inspiring proof-of-concept, since it
is somewhat limited in its functionality. For example, the software does not fully handle charts with
multiple data series: if more than one data series is present, all data points are listed, but the different
data series are not reported as such to the user, and most of the analytical functions are supported only
for the first series. With regard to user interaction, no key command for rapidly leaving a data series is
provided; the only way is to step through all remaining data points of the series from the object currently
focused. Finally, Describler does not interact with screen readers in any way: the recognised information
is available through the integrated speech output or the read-only text field, which can be accessed by a
screen reader user only after moving the focus out of the chart. In addition, all the menu items need to be
invoked by the number keys, which are usually blocked by the navigation facilities of most screen readers
[Vispero 2020; NV Access 2020]. AChart Interpreter was carefully designed to provide an optimised
user experience for both sighted and blind users.

5.2 Developing an ARIA-Based System for Charts
Various proposals for enriching SVG charts with ARIA-based roles and properties were introduced in
Section 4.5. Each of these approaches exhibit certain advantages and drawbacks. The Describler system
[Schepers 2015a; Schepers 2017] presented in Subsection 4.5.1 represents an intuitive and logical strategy
to clearly express the semantics of chart objects. However, it lacks a role for identifying a data series
and its title; all sample charts provided with the Describler software contain only one data series with no
explicit title. Furthermore, this system does not consider chart types other than bar, line, and pie charts.
It defines no roles for axes apart from the x- and y-axis, no way to express the values for data point of
higher dimensions, and no other values for the aria-charttype property than bar, line, and pie. The name for a
data point is given by referencing an x-axis label or legend item using the standard aria-labelledby property
attached to the data value object, which is problematic in the case of a continuous axis as it might not
contain an item for each data point. Lastly, using the role heading to identify a title for chart objects of
different types has the consequence that the reading software needs to determine which object the title
belongs to, introducing unnecessary computational effort and uncertainties. The same applies for the

92 5 Accessible Charts with AChart

inconsistent definition of the chart root object either as a separate <g> or as the root <svg> element.
The main advantage of the approach to use the standard ARIA roles for tables, as proposed by Watson

[2017] and described in Subsection 4.5.4, is that such standard ARIA roles are recognised and conveyed
in a meaningful way by most modern browsers and screen readers. For charts of tabular data, the table
format might appear intuitive and logical, and the data can be navigated by the special screen reader
commands for reading tables. However, a table does not necessarily contain counterparts for all possible
objects of such a chart. In the case of bar charts, the x-axis may contain the names of all data points
and, thus, be represented by the first row of the pseudo-table, but this analogy is not valid for data points
which do not correspond to an item of the x-axis. In addition, assigning the role row to the x-axis uses
the same role assigned to a data series. It can therefore only be distinguished from a data series by its
position within the table and its contained objects. The y-axis and the chart type are not represented at
all. A solution to these problems could be to combine the pseudo-table representation of the data with
other, possibly non-standard, roles and properties. This would mean the document no longer completely
conforms to the W3C standards, but should not interfere with the interpretation of the table by screen
readers.

Most of the positive and negative aspects just discussed also apply for the pseudo-list approach by
Migliorisi [2016] and Kopacz [2019] presented in Subsection 4.5.5. In addition, the original approach
does not identify the names and values of a data point, but concatenates them to one string, which
complicates any further processing of the data. Another disadvantage compared to the pseudo-table
approach is that screen readers usually do not provide any special navigation mechanisms for lists like
they do for tables.

A different strategy complying with the W3C recommendations is the application of the three roles
defined in the WAI-ARIA Graphics Module [W3C 2018e], proposed by Schepers [2019] and described
in Subsection 4.5.2. In fact, the W3C specification recommends to use these three roles for identifying
three different layers in the hierarchical structure of a graphics document. Nevertheless, the roles only
convey the semantic information that the annotated objects are graphical and express their structural
relationship within the document, but do not give any further details about the meaning of the graphics.
More specific semantics could be exposed through the aria- label, aria- labelledby, and/or aria-describedby
properties or embedded within descendant SVG elements for text content, but this would prevent a clear
distinction between the types on the one hand and the accessible name and description on the other hand.

In a proposal for further defining the semantics of chart objects, Schepers [2019] recommends com-
bining the three ARIA graphics roles with the property aria-roledescription, but provides neither a taxonomy
of values for this property nor any sample chart annotated according to this proposal. A possible strategy
could be to transfer the Describler taxonomy of roles to a system of role descriptions using aria-roledescription.
Another question would be how to express the chart and axis types without non-standard ARIA attributes.

In this context, it should be noted that the correct usage and interpretation of the aria-roledescription
property is not unambiguously defined. The WAI-ARIA Graphics Module lists it among the inherited
states and properties of all the three roles, but explicitly recommends it only in combination with the role
graphics-symbol where it “can be used to name the symbol type separately from the name and description
for the particular instance of the symbol” [W3C 2018e, Subsection 4.1]. The core WAI-ARIA document
says that the property defines “a human-readable, author-localized description for the role of an element”
[W3C 2017a, Subsection 6.6]. This implies that its original purpose is providing a text which is conveyed
verbatim to the user, rather than specifying a string for automated processing.

Based on the various aspects just discussed, it is reasonable to claim that a system restricted to the
current ARIA roles, states, and properties standardised by the W3C cannot sufficiently meet the special
requirements for comprehensively enriching all chart objects with appropriate semantics. The taxonomy
developed by the W3C SVG Accessibility Task Force [W3C 2015b] (see Subsection 4.5.3) may be
regarded as a promising solution. However, as discovered in research for this thesis, this work has not
been continued since 2015, and the authors neither provide any example SVG charts annotated with these
attributes, nor has the system been applied in any way so far. In addition, it may be argued that the prefix

AChart Taxonomy of Roles and Properties 93

graphics-* for all the defined roles unnecessarily lengthens attribute names and increases the probability
of syntax errors. The systems used for the different charting libraries to identify and mark up chart
objects, described in Subsections 4.5.6 to 4.5.10, have not publicly been documented and, according to
the analysis for this thesis, partly rely on non-standard attributes beyond any ARIA context.

5.3 AChart Taxonomy of Roles and Properties
For the reasons given above, a taxonomy of roles and properties is defined for AChart, which extends
and builds upon Describler’s approach, since the latter is considered to be clear and consistent. The
system overcomes some of the insufficiencies of the original approach, but ensures the highest possible
compatibility with the existing Describler software. In particular, the following changes have been made
to the Describler taxonomy:

• The standard ARIA role graphics-document is assigned to the root <svg> element.

• The chart root object is specified as a <g> element with the defined role chart.

• A title object is given the standard ARIA role heading and is referenced by the standard property
aria-labelledby of the associated ancestor object.

• A single data series is identified using the role dataset.

• The title of a data series is identified using the standard ARIA role heading.

• The name of a data point is embedded as a descendant element and is assigned the standard ARIA
role of heading. It need not be given, if the data point name is present as an axis label or legend item.

The resulting AChart taxonomy of roles is shown in Table 5.2, the AChart system of properties is
shown in Table 5.3. A sample SVG chart annotated according to the AChart taxonomy can be seen in
Listing 5.1.

94 5 Accessible Charts with AChart

Role Element Ancestor Content Meaning

graphics-document <svg> - all charts graphics root element
chart <g> <svg> all objects chart root element
heading* <title>/<text> chart/scale/

data series
text title of chart/scale/data series

chartarea <rect> chart - chart outline (used to detect
visual height and width)

xaxis <g> chart axis title and
labels

x-axis

yaxis <g> chart axis title and
labels

y-axis

axislabel <title>/<text> axis text label of axis item
legend <g> chart legend title and

items
legend

legenditem <g> legend <text> element legend item
dataset <g> chart data points data series
datagroup <g> data series data group title

and data points
collection of related data points

datapoint <g>/shape data series /
data group

data point names
and values

data point

heading* <title>/<text> data point text name of data point (optional, if
already given by scale item)

datavalue <title>/<text> data point text value of data point

Table 5.2: Taxonomy of ARIA roles used by AChart, based on those of Describler. An asterisk (*)
indicates that this role is defined in an official ARIA specification.

Property Object Value Meaning

aria-charttype chart root bar/pie/line type of chart
aria-axistype axis category indicates axis has discrete values
aria-valuemin* numerical axis number minimum value
aria-valuemax* numerical axis number maximum value
aria-labelledby* chart/chart object id of associated title references title of chart or chart object
aria-labelledby* data point id of name references name of data point

Table 5.3: Taxonomy of ARIA properties used by AChart, based on those of Describler. An asterisk
(*) indicates that this property is defined in an official ARIA specification.

AChart Taxonomy of Roles and Properties 95

1 <svg role="graphics -document" version="1.1" xml:lang="en" lang="en"
2 xmlns="http://www.w3.org/2000/svg"
3 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 190 750 346">
4
5 <g role="chart" aria-charttype="line" aria-labelledby="title" tabindex="0">
6
7 <title role="heading" id="title">Line Chart of Sales</title>
8
9 <desc id="desc">

10 Chart of sales for 12 months in year 2012 for Salespersons A and B.
11 </desc>
12
13 <!-- Y Axis -->
14
15 <g role="yaxis" aria-valuemin="15000" aria-valuemax="40000"
16 aria-labelledby="y-title" aria-orientation="vertical" tabindex="0">
17
18 <line x1="98" y1="443" x2="98" y2="212" class="chart-line" />
19 <text role="heading" id="y-title" transform="matrix(0 -1 1 0 20 355)"
20 class="chart-title">Sales in €</text>
21
22 <g>
23 <text role="axislabel" transform="matrix(1 0 0 1 38 215)"
24 class="chart-label">40,000</text>
25 <line x1="98" y1="212" x2="93" y2="212" class="chart-line" />
26 </g>
27
28 <g>
29 <text role="axislabel" transform="matrix(1 0 0 1 38 262)"
30 class="chart-label">35,000</text>
31 <line x1="98" y1="258" x2="93" y2="258" class="chart-line" />
32 </g>
33
34 ...
35 </g>
36
37 <!-- X Axis -->
38
39 <g role="xaxis" aria-axistype="category" aria-labelledby="x-title"
40 aria-orientation="horizontal" tabindex="0">
41
42 <line x1="98" y1="443" x2="677" y2="443" class="chart-line" />
43 <text role="heading" id="x-title" transform="matrix(1 0 0 1 383 525)"
44 class="chart-title">Month </text>
45
46 <g>
47 <text role="axislabel" id="x-2012-01" class="chart-label"
48 transform="matrix(0.7 0.7 -0.7 0.7 102 466)">January 2012</text>
49 <line x1="98" y1="443" x2="98" y2="448" class="chart-line" />
50 </g>
51
52 <g>
53 <text role="axislabel" id="x-2012-02" class="chart-label"
54 transform="matrix(0.7 0.7 -0.7 0.7 155 466)">February 2012</text>
55 <line x1="150" y1="443" x2="150" y2="448" class="chart-line" />
56 </g>

Listing 5.1: Sample SVG code annotated with the ARIA roles and properties defined by AChart,
based on those of Describler. Certain chart objects are assigned a tabindex of 0 for Tab navigation.
The class names are arbitrary and used only for styling.

96 5 Accessible Charts with AChart

57
58 ...
59 </g>
60
61 <!-- Data Points A -->
62
63 <g role="dataset" aria-labelledby="legend-text-a" id="data-a">
64
65 <polyline points="
66 98,319 150,331
67 150,331 203,309
68 203,309 255,280
69 255,280 308,322
70 308,322 361,303
71 361,303 413,375
72 413,375 466,382
73 466,382 519,353
74 519,353 571,315
75 571,315 624,298
76 624,298 677,246
77 " class="chart-lineA" />
78
79 <g role="datapoint" aria-labelledby="x-2012-01" tabindex="0">
80 <title role="datavalue" aria-labelledby="yScale">28366</title>
81 <rect x="93" y="315" class="marker-square" />
82 </g>
83
84 <g role="datapoint" aria-labelledby="x-2012-02" tabindex="0">
85 <title role="datavalue" aria-labelledby="yScale">27050</title>
86 <rect x="146" y="327" class="marker-square" />
87 </g>
88
89 ...
90 </g>
91
92 <!-- Legend -->
93
94 <g role="legend" tabindex="0" id="legend">
95
96 <g role="legenditem" tabindex="0" id="legend-a">
97 <rect x="168" y="210" class="marker-square" />
98 <text id="legend-text-a" x="185" y="220"
99 font-family="Verdana" font-size="14">Salesperson A</text>

100 </g>
101
102 ...
103 </g>
104
105 </g>
106 </svg>

Listing 5.1 (cont.): Sample SVG code annotated with the ARIA roles and properties defined by
AChart, based on those of Describler.

Chapter 6

AChart Creator

Accessible Chart Creator (AChart Creator) is a command-line programme which produces charts in
Scalable Vector Graphics (SVG) format and enriches them with machine-readable semantic information.
It reads tabular data from files in Comma-Separated Values (CSV) format and transforms them into a
visualisation, where the user can choose one of multiple chart types. The semantics are embedded into
native SVG elements, such as <title>, <desc>, and <text>, in combination with roles and properties based
on the Accessible Rich Internet Applications (ARIA) system according to the AChart taxonomy of roles
and properties described in Section 5.3. The result is saved to an SVG file, which can then be viewed
by means of any SVG rendering engine, as well as explored in Describler (see Section 3.6) and AChart
Interpreter (see Chapter 7). The programme is launched and controlled via command line arguments.
Messages are sent to the standard output stream (stdout) or, in case of an error, to the standard error
stream (stderr).

The development of AChart Creator was motivated by several aspects. The JavaScript library D3
[Bostock 2021] is widely used to create SVG visualisations within web documents. However, despite
extensive research, Grass et al. [2019, page 5] were, at that time, unable to find any software tools capable
of creating SVG files using D3. While producing an SVG file could be accomplished by creating SVG
within a web page and then saving the resulting graphics by means of the browser, this strategy is time-
consuming, can introduce baggage into the resulting file, and does not support the automated generation
of multiple SVG documents. The source code of AChart Creator and its build scripts provide a tool chain
for graphics authors working with D3 to easily produce SVG files with custom visualisations. In addition,
they demonstrate how to create accessible SVG charts with D3. Finally, AChart Creator serves as a first
solution for producing charts which conform to the ARIA taxonomy proposed in this thesis.

The core visualisation functionality of the software was originally developed by Grass et al. [2019].
In the context of this thesis, the programme was extended by several functions and bundled into a user-
friendly standalone command-line tool. The software is open-source under an MIT licence and is available
at [Kopel, Andrews, Mendoza Estrada, Grass et al. 2021]. The first section of this chapter describes the
functionality and behaviour of AChart Creator. Afterwards, an overview of the implementation will be
given, comparing the previous versions to the current one and describing the enhancements.

6.1 User Interaction
AChart Creator can be started by calling its executable binary file from the console. If the executable
file is located in the current working directory or in a directory included within the search path of the
platform, then the command acreate or ./acreate will typically launch the programme. The command
has the syntax shown in Listing 6.1.

All options are treated as case-insensitive and can be used in arbitrary order. In case an argument other
than the above options is given, the programme will exit with an error message stating that an invalid
option has been used. Similarly, if one of the above options requiring an associated argument is used

97

98 6 AChart Creator

acreate [--chart] CHART-TYPE [--dataset CSV-FILENAME]
[--output SVG-FILENAME] [--chart-title TITLE]
[--chart-desc DESCRIPTION] [--x-axis-title TITLE]
[--y-axis-title TITLE] [--legend-title TITLE] [--target SOFTWARE]
[--column DATA-COLUMN] [--svg-precision PLACES] [--no-sort]
[--no-legend] [--no-tooltips] [--no-bar-values]
[--no-segment-values] [--no-segment-percentages]
[--segment-percentage -precision PLACES] [--version] [--help]

Listing 6.1: The command line syntax and options of AChart Creator.

without the argument, the programme will exit with an appropriate error message. The specification of
a chart type is mandatory. It can either be given as the first argument or at any position if preceded by
--chart. If this parameter is missing or if no valid chart type is given, the programme will display a
corresponding error message and exit. In all error cases just described, a standard help text is displayed
along with the respective error message (see Appendix A).

In the current implementation, the following chart types can be specified as valid arguments:

• line: Creates a line chart with an x-axis, y-axis, one or more colour-coded data series, and, in the
case of multiple data series, an optional legend.

• bar: Creates a bar chart with an x-axis, y-axis, one data series, and optional labels for the bars.

• pie: Creates a colour-coded pie chart with one data series, an optional legend, and optional labels
for the pie segments.

The user can specify the input CSV file, from which the data for the chart shall be read, with the option
--dataset. Without this option, AChart Creator loads a default CSV file as dataset, whose name is
determined within the source code by a string constant in the main class. The option --output is used to
specify the name of an output file for the SVG chart. If this option is not given, the chart will be saved in
the directory of the input CSV file, and the name of the resulting SVG file is equal to that of the input file
apart from the extension. If the input file name ends with .csv, this extension is replaced by .svg for the
output file name, otherwise .svg is appended to the name of the input file. Both the input and the output
file names may include a path. If no path or a relative path is specified, the programme will assume the
current working directory as a base.

When producing the SVG output, the markup generated by D3 is made more human-readable by
inserting line breaks and indentations. To avoid unnecessarily many digits of decimal precision, all the
numbers calculated for the position and lengths of SVG elements are rounded by default to a precision
of three decimal places. The number of decimal places can be specified using the command-line option
--svg-precision. The option --help causes AChart Creator to display its standard help text, as listed
in Appendix A, then exit. Similarly, the option --version makes the programme print its version
information, then exit.

By default, AChart Creator tries to infer the titles of charts, axes, legends, and data series from the
column headers provided in the CSV data. This automatic extraction of titles depends on the chart type
and is explained in the subsections below. Using dedicated command-line options, however, the user can
set most of the named titles manually, which always takes precedence over the default values. For this
purpose, the following options are supported:

• --chart-title: Specifies the title of the chart.

User Interaction 99

• --chart-desc: Specifies an additional description of the chart (no default value available).

• --x-axis-title: Specifies the title of the x-axis for a line chart or bar chart. This option can be
abbreviated to --x-title.

• --y-axis-title: Specifies the title of the y-axis for a line chart or bar chart. This option can be
abbreviated to --y-title.

• --legend-title: Specifies the title of the legend for a multi-series line chart or a pie chart.
In most cases, all these titles are embedded into a <text> element and assigned the ARIA role heading. Thus,
they are visible and can also be recognised by screen readers and AChart Interpreter. By contrast, the
chart description is placed into a <desc> element and is only relevant for Describler, AChart Interpreter,
and screen readers.

As explained in Section 5.2, the AChart taxonomy of ARIA roles and properties was composed with
the intention of achieving the highest possible compatibility with Describler. Moreover, as Describler
relies on setting the focus on the chart root and chart objects of interest, the corresponding elements
produced by AChart Creator have their tabindex attribute set to 0. Nevertheless, certain inconsistencies
could not be avoided. For instance, Describler does not recognise any dataset or data series titles. For
this reason, in the case of charts with multiple data series, each <g> element containing a data series is
assigned the tabindex attribute as well, so it can be focused.

However, for each focusable element not known to Describler, the software retrieves the next descendant
<title> element, not considering a possible higher-level <text> element or any element referenced with the
aria-labelledby property. Navigating to a data series element therefore causes Describler not to read the data
series title but instead the information of a descendant chart object, such as a data point value. To avoid this
behaviour, a <title> element with the corresponding data series title is redundantly appended to each data
series object, even if the title is already given by a legend item. The handling by browsers in combination
with common screen readers was taken into account as well. As browsers do not recognise most of the
ARIA roles and properties used by AChart Creator, the chart root and every chart object apart from axis
items are assigned the standard ARIA property <aria-roledescription> with a short human-interpretable
description in English.

This strategy produces charts which comply with the AChart system, but are also highly compatible
with Describler, as well as most combinations of modern browsers and screen readers. Nevertheless,
certain conflicts could not be resolved. For this reason, the command-line option --target can be used
to optimise the accessibility markup for the desired assistive technology. When the option is set to
describler, the chart title is redundantly appended as a <title> descendant to the root <svg> element,
since Describler expects a <title> element at this position. In addition, a placeholder title is appended to
the y-axis and the data series in case there is no title available. This placeholder title is “Values” for the
y-axis and “Data series” for a data series. Lastly, in the case of multi-series line charts with a legend,
each data point value is given an aria-labelledby property pointing to the legend item of the data series.
This enables Describler to provide an enumeration of all the data points which are associated with a
legend item. Setting the option --target to screen-reader, too, inserts the placeholder titles for the
y-axis and the data series as just described. Moreover, it sets the aria-labelledby property of every data
point differently, so that it references not only the elements with its names but also those with its values.
This way, both the data point names and values can be recognised by screen readers when navigating to a
data point. Setting --target to achart yields the default output format, that is, the AChart system with
compatibility extensions as described above.

Certain pieces of information are embedded by a <title> element, which causes them to be displayed
as a tooltip when setting the mouse pointer on the visible area of its respective ancestor element. This
mainly affects the compatibility extensions for Describler explained above as well as tooltips intentionally
generated for sighted users. All possible tooltips can be suppressed by specifying the command-line option
--no-tooltips. This takes precedence over the --target option and therefore impairs the compatibility

100 6 AChart Creator

with Describler. Those data which are inserted only for accessibility purposes and should neither be
permanently visible nor appear as tooltips are placed into <desc> elements.

In the following explanations, all rows and columns of the CSV input will be denoted by an index
number starting with 0 and increasing from top to bottom or from left to right, respectively. For the case
that the cells are not separated by a comma, the software tries to detect which character is used as the
delimiter. In general, the CSV structure of the input file is parsed as follows. Row 0 is assumed to be
a header row and column 0 is assumed to be a header column. In other words, column 0 contains the
names of the data points, which are then used for the x-axis of a line or bar chart and for the legend of
a pie chart, where the cell in row 0 is considered for the default x-axis or legend title. All subsequent
columns are interpreted as one data series each, where the respective cell in row 0 represents the title of
that dimension (data series). Row 0 is considered a header row, and all subsequent rows represent records
(data points).

If the CSV structure contains only two columns, column 1 is visualised as a single data series. If
more than two columns are present, the default behaviour depends on the chart type. In any case, the
option --column can be used to determine a single column which shall be regarded as a single data series
to visualise. This option expects a positive integer argument denoting the column, where 1 stands for
column 1, that is, the first data series. If a non-positive argument or a value greater than the number of
data series is given, the programme exits with a corresponding error message.

In the case of line and bar charts, the data points are plotted from left to right in increasing order by
their names. If this order is not desired, the sorting can be suppressed by the option --no-sort, which
will cause the data points to be plotted in the order that they are listed in the input CSV. In the following
three subsections, the exact behaviour for line, bar, and pie charts is described.

User Interaction 101

1 Year,Price in Austria [€],Price in Germany [€],Price in Spain [€]
2 2011,230,250,150
3 2012,239,255.8,145.9
4 2013,241,261,143.4
5 2014,260,266.1,151
6 2015,270,275,159
7 2016,277,281.3,175.9
8 2017,280,285.2,189.4
9 2018,300,293,200

10 2019,310,305.3,213.1

Listing 6.2: Some sample data in CSV format used by AChart Creator as input to create the line
charts shown in Figures 6.1 and 6.2. The CSV file contains nine data points in three dimensions,
with both a header row and a header column. The data concerns prices for Austria, Germany, and
Spain for each of nine years from 2011 to 2019.

6.1.1 Creating Line Charts
By default, all the data series contained in the given CSV file are visualised with one polyline (sequence
of line segments connecting the data points) per series, where each of the polylines has a different colour.
Each data point is drawn as a circle and contains a <title> element with its name and value shown as a
tooltip when moving the mouse pointer over the circle. Moreover, two <desc> elements are included for
exposing the name and the value as separate information to AChart Interpreter and Describler. If only
one data series is present or the --column option is used, the value of the respective cell in row 0 is taken
as the default visible y-axis title, and the data series title is empty. If multiple data series are visualised,
each data series is labelled by a <title> element with the role heading and the content of the respective cell
in row 0. This title is recognised by AChart Interpreter and becomes visible as a tooltip when moving
the mouse pointer over a polyline. In this case, the y-axis is not given a default title. In addition, for
multi-series line charts, a legend is created at the right margin of the chart. It shows one short line for
each data series in its colour, along with the corresponding data series title. The title of the legend itself
can be specified with the command-line option --legend-title; if this option is not given, it defaults to
the word “Legend”. The legend can be suppressed by specifying the command-line option --no-legend.

The x-axis title is embedded as a <text> element with role heading. The items of the y-axis are
interpolated from the minimum and the maximum value of all data points, taking into account all data
series shown in the chart. The chart title is composed as follows: for all columns represented in the chart,
their respective cells in row 0 are concatenated with a comma and a space character (“, ”). Afterwards, the
string “ by ”, and the x-axis title are appended. For example, “Amount 2015 by Fruit” for a single-series
chart and “Amount 2013, Amount 2014, Amount 2015 by Fruit” for a three-series chart.

Listing 6.2 shows some fictitious sample data in CSV format concerning prices for Austria, Germany,
and Spain for each of nine years from 2011 to 2019. Listing 6.3 shows (part of) the SVG source code of a
single line chart created by AChart Creator from column 3 of the CSV file (Price in Spain) and Figure 6.1
shows the resulting graphic.

Listing 6.4 shows the relevant parts of the SVG source code of a multi-line chart created from all three
data series in Listing 6.2, and Figure 6.2 shows the resulting graphic.

102 6 AChart Creator

1 <svg xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1"
3 viewBox="0 0 750 600" role="graphics-document">
4 <style type="text/css"> ... </style>
5 <rect id="backdrop" width="750" height="600" fill="#fff"/>
6
7 <g id="ChartRoot" role="chart" tabindex="0" transform="translate(100,100)"
8 aria-labelledby="title" aria-charttype="line"
9 aria-roledescription="Line Chart">

10 <rect role="chartarea" width="600" height="400" fill="none"/>
11 <text id="title" role="heading" text-anchor="middle" font-size="14"
12 x="275" y="-25">Price in Spain [€] by Year</text>
13
14 <g id="xScale" role="xaxis" aria-roledescription="x-Axis"
15 aria-labelledby="x-title" tabindex="0" aria-valuemin="2011"
16 aria-valuemax="2019" transform="translate(0,400)" fill="none"
17 font-size="10" font-family="sans-serif" text-anchor="middle">
18 <text y="50" x="300" text-anchor="middle" fill="black" font-size="12"
19 role="heading" id="x-title">Year</text>
20 <path class="domain" stroke="currentColor" d="M0.5,6V0.5H600.5V6"/>
21
22 <g class="tick" opacity="1" transform="translate(0.5,0)">
23 <line stroke="currentColor" y2="6"/>
24 <text fill="currentColor" y="9" dy="0.71em" role="axislabel"
25 id="x1">2011</text>
26 </g>
27
28 <g class="tick" opacity="1" transform="translate(75.5,0)">
29 <line stroke="currentColor" y2="6"/>
30 <text fill="currentColor" y="9" dy="0.71em" role="axislabel"
31 id="x2">2012</text>
32 </g>
33
34 ...
35 </g>
36
37 <g id="yScale" role="yaxis" aria-roledescription="y-Axis" tabindex="0"
38 aria-valuemin="72" aria-valuemax="320" aria-labelledby="y-title"
39 fill="none" font-size="10" font-family="sans-serif" text-anchor="end">
40 <text transform="rotate(-90)" y="-38" x="-200" text-anchor="middle"
41 fill="black" font-size="12" role="heading" id="y-title">
42 Price in Spain [€]</text>
43 <path class="domain" stroke="currentColor" d="M-6,400.5H0.5V0.5H-6"/>
44
45 <g class="tick" opacity="1" transform="translate(0,387.597)">
46 <line stroke="currentColor" x2="-6"/>
47 <text fill="currentColor" x="-9" dy="0.32em" role="axislabel"
48 id="y80">80</text>
49 </g>

Listing 6.3: SVG code excerpt of a line chart with one data series created from column 3 of the
CSV in Listing 6.2. Apart from --column 3, no other command-line options have been used.
The accessibility markup corresponds to the AChart taxonomy with additional aria-roledescription
properties and tooltips for the data points. Additional line breaks have manually been inserted to
improve readability.

User Interaction 103

50
51 <g class="tick" opacity="1" transform="translate(0,355.339)">
52 <line stroke="currentColor" x2="-6"/>
53 <text fill="currentColor" x="-9" dy="0.32em" role="axislabel"
54 id="y100">100</text>
55 </g>
56
57 ...
58 </g>
59
60 <g id="dataarea1" role="dataset" aria-roledescription="Data Series">
61 <path class="line" d="M0,274.194C25,276.613,50,279.032,75,280.806C100,
62 282.581,125,284.839,150,284.839C175 ,284.839,200,276.774,225,
63 272.581C250 ,268.387,275,266.371,300,259.677C325 ,252.984,350,
64 240.591,375,232.419C400 ,224.247,425,217.124,450,210.645C475 ,204.167,
65 500,199.919,525,193.548C550 ,187.177,575,179.798,600,172.419"
66 stroke="#66c2a5"/>
67
68 <g tabindex="0" role="datapoint" aria-labelledby="name1-1">
69 <title >2011: 150</title>
70 <desc role="heading" id="name1-1">2011</desc>
71 <circle class="dot" cx="0" cy="274.194" r="5" fill="#66c2a5"/>
72 <desc role="datavalue" id="value1 -1">150</desc>
73 </g>
74
75 <g tabindex="0" role="datapoint" aria-labelledby="name1-2">
76 <title >2012: 145.9</title>
77 <desc role="heading" id="name1-2">2012</desc>
78 <circle class="dot" cx="75" cy="280.806" r="5" fill="#66c2a5"/>
79 <desc role="datavalue" id="value1 -2">145.9</desc>
80 </g>
81
82 ...
83 </g>
84
85 </g>
86 </svg>

Listing 6.3 (cont.): SVG code excerpt of a line chart with one data series created from column 3 of
the CSV in Listing 6.2.

104 6 AChart Creator

Price in Spain [€] by Year

Year

2011 2012 2013 2014 2015 2016 2017 2018 2019

P
ric
e
in
S
pa
in
[€
]

80

100

120

140

160

180

200

220

240

260

280

300

320

Figure 6.1: Line chart with one data series created from column 3 of the CSV in Listing 6.2. The
chart, x-axis, and y-axis titles are visible. The data points are drawn as small circles. [Produced by
the author of this thesis using AChart Creator.]

Price in Austria [€], Price in Germany [€], Price in Spain [€] by Year

Year

2011 2012 2013 2014 2015 2016 2017 2018 2019

100

150

200

250

300

350

400

450 Legend

Price in Austria [€]

Price in Germany [€]

Price in Spain [€]

Figure 6.2: Line chart with three data series created from the CSV shown in Listing 6.2. The three
lines have different colours which are assigned to the three corresponding data series titles in the
legend to the right. The chart, x-axis, and legend titles are visible. The data points are drawn as
small circles. [Produced by the author of this thesis using AChart Creator.]

User Interaction 105

1 <svg xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1"
3 viewBox="0 0 750 600" role="graphics -document">
4 ...
5 <g id="ChartRoot" role="chart" tabindex="0" transform="translate(75,100)"
6 aria-labelledby="title" aria-charttype="line" aria-roledescription="Line Chart">
7 <rect role="chartarea" width="600" height="400" fill="none"/>
8 <text id="title" role="heading" text-anchor="middle" font-size="14"
9 x="387.5" y="-25">

10 Price in Austria [€], Price in Germany [€], Price in Spain [€] by Year
11 </text>
12
13 <g id="xScale" role="xaxis" aria-roledescription="x-Axis"
14 aria-labelledby="x-title" tabindex="0" aria-valuemin="2011"
15 aria-valuemax="2019" transform="translate(0,400)" fill="none"
16 font-size="10" font-family="sans-serif" text-anchor="middle">
17 <text y="50" x="300" text-anchor="middle" fill="black" font-size="12"
18 role="heading" id="x-title">Year</text>
19 <path class="domain" stroke="currentColor" d="M0.5,6V0.5H600.5V6"/>
20
21 <g class="tick" opacity="1" transform="translate(0.5,0)">
22 <line stroke="currentColor" y2="6"/>
23 <text fill="currentColor" y="9" dy="0.71em" role="axislabel"
24 id="x1">2011</text>
25 </g>
26
27 <g class="tick" opacity="1" transform="translate(75.5,0)">
28 <line stroke="currentColor" y2="6"/>
29 <text fill="currentColor" y="9" dy="0.71em" role="axislabel"
30 id="x2">2012</text>
31 </g>
32
33 ...
34 </g>
35
36 <g id="yScale" role="yaxis" aria-roledescription="y-Axis" tabindex="0"
37 aria-valuemin="72" aria-valuemax="465" fill="none" font-size="10"
38 font-family="sans-serif" text-anchor="end">
39 <path class="domain" stroke="currentColor" d="M-6,400.5H0.5V0.5H-6"/>
40
41 <g class="tick" opacity="1" transform="translate(0,372.001)">
42 <line stroke="currentColor" x2="-6"/>
43 <text fill="currentColor" x="-9" dy="0.32em" role="axislabel"
44 id="y100">100</text>
45 </g>
46
47 <g class="tick" opacity="1" transform="translate(0,321.111)">
48 <line stroke="currentColor" x2="-6"/>
49 <text fill="currentColor" x="-9" dy="0.32em" role="axislabel"
50 id="y150">150</text>
51 </g>
52
53 ...
54 </g>

Listing 6.4: SVG code excerpt of a line chart with three data series created from the CSV in
Listing 6.2. No command-line options have been used. The accessibility markup corresponds to
the AChart taxonomy with additional aria-roledescription properties and tooltips for the data points.
Additional line breaks have been manually inserted to improve readability.

106 6 AChart Creator

55
56 <g id="dataarea1" role="dataset" aria-roledescription="Data Series"
57 tabindex="0" aria-labelledby="dataset-title1">
58 <title role="heading" id="dataset-title1">Price in Austria [€]</title>
59 <path class="line" d="M0,239.186C25,235.284,50,231.383,75,230.025C100,
60 228.668,125,229.347,150,227.99C175 ,226.633,200,213.571,225,208.651C250,
61 203.732,275,201.357,300,198.473C325 ,195.589,350,193.045,375,191.349C400,
62 189.652,425,190.331,450,188.295C475 ,186.26,500,173.028,525,167.939C550,
63 162.85,575,160.305,600,157.761" stroke="#66c2a5"/>
64
65 <g tabindex="0" role="datapoint" aria-labelledby="name1-1">
66 <title >2011: 230</title>
67 <desc role="heading" id="name1-1">2011</desc>
68 <circle class="dot" cx="0" cy="239.186" r="5" fill="#66c2a5"/>
69 <desc role="datavalue" id="value1 -1">230</desc>
70 </g>
71
72 <g tabindex="0" role="datapoint" aria-labelledby="name1-2">
73 <title >2012: 239</title>
74 <desc role="heading" id="name1-2">2012</desc>
75 <circle class="dot" cx="75" cy="230.025" r="5" fill="#66c2a5"/>
76 <desc role="datavalue" id="value1 -2">239</desc>
77 </g>
78
79 ...
80 </g>
81
82 <g id="dataarea2" role="dataset" aria-roledescription="Data Series"
83 tabindex="0" aria-labelledby="dataset-title2">
84 <title role="heading" id="dataset-title2">Price in Germany [€]</title>
85
86 ...
87 </g>
88
89 ...
90
91 <g role="legend" aria-roledescription="Legend" font-size="10"
92 font-family="sans-serif" text-anchor="start" tabindex="0"
93 aria-labelledby="legend-title" transform="translate(608, 20)">
94 <text role="heading" font-size="12" id="legend-title">Legend </text>
95
96 <g role="legenditem" id="legenditem1" transform="..." tabindex="0">
97 <line x2="20" style="stroke-width: 3;" stroke="#66c2a5"/>
98 <text x="25" alignment -baseline="middle">Price in Austria [€]</text>
99 </g>

100
101 <g role="legenditem" id="legenditem2" transform="..." tabindex="0">
102 <line x2="20" style="stroke-width: 3;" stroke="#fc8d62"/>
103 <text x="25" alignment -baseline="middle">Price in Germany [€]</text>
104 </g>
105
106 ...
107 </g>
108
109 </g>
110 </svg>

Listing 6.4 (cont.): SVG code excerpt of a line chart with three data series created from the CSV in
Listing 6.2.

User Interaction 107

1 Fruit,Amount 2013,Amount 2014, Amount 2015
2 Apples ,9,8,10
3 Bananas ,20,22,28
4 Grapefruits ,30,25,35
5 Lemons ,8,14,50
6 Oranges ,12,4,6

Listing 6.5: Some sample data in CSV format used by AChart Creator as input to create the bar chart
shown in Figure 6.3 and the pie charts shown in Figures 6.4 and 6.5. The CSV file contains five
data points in three dimensions, with both a header row and a header column. The data concerns
amounts of five types of fruit in the years 2013, 2014, and 2015.

6.1.2 Creating Bar Charts
By default, column 1 of the CSV file is visualised, column 0 is considered to be a header column. If
the --column option is used, the specified column is rendered instead. Each data point is represented by
a vertical bar with its length proportional to its magnitude, along with a visible text label denoting its
exact value. The label can be suppressed with the command-line option --no-bar-values. In this case,
the data point value is available as a tooltip when moving the mouse over the corresponding bar. The
y-axis title corresponds to the cell in the visualised column and row 0, and the data series title is empty.
The items of the y-axis are interpolated from the minimum and maximum value of the data series. The
chart title is then composed of the cell in the used column and row 0, concatenated with the string “ by ”
and the x-axis title. An SVG code excerpt of an example chart generated from the fictitious CSV data in
Listing 6.5 is presented in Listing 6.6. The resulting graphic can be seen in Figure 6.3.

108 6 AChart Creator

Amount 2013 by Fruit

Fruit

Apples Bananas Grapefruits Lemons Oranges

A
m
ou
nt
20
13

5

10

15

20

25

30

35

40

45

9

20

30

8

12

Figure 6.3: Bar chart with one data series created from column 1 of the CSV shown in Listing 6.5.
The chart, x-axis, and y-axis titles are visible. The data points are drawn as vertical bars with a
length proportional to their magnitudes and are annotated by their exact values. [Produced by the
author of this thesis using AChart Creator.]

User Interaction 109

1 <svg xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1"
3 viewBox="0 0 750 600" role="graphics -document">
4 <style type="text/css">.bar {fill: steelblue; }</style>
5 <rect id="backdrop" width="750" height="600" fill="#fff"/>
6
7 <g id="ChartRoot" role="chart" tabindex="0" transform="translate(100,100)"
8 aria-labelledby="title" aria-charttype="bar"
9 aria-roledescription="Bar Chart">

10 <rect role="chartarea" width="600" height="400" fill="none"/>
11 <text id="title" role="heading" text-anchor="middle" font-size="14"
12 x="275" y="-25">Amount 2013 by Fruit</text>
13
14 <g id="xScale" role="xaxis" aria-axistype="category"
15 aria-roledescription="x-Axis" aria-labelledby="x-title" tabindex="0"
16 transform="translate(0,400)" fill="none" font-size="10"
17 font-family="sans-serif" text-anchor="middle">
18 <text y="50" x="300" text-anchor="middle" fill="black" font-size="12"
19 role="heading" id="x-title">Fruit</text>
20 <path class="domain" stroke="currentColor" d="M0.5,6V0.5H600.5V6"/>
21
22 <g class="tick" opacity="1" transform="translate(77.778,0)">
23 <line stroke="currentColor" y2="6"/>
24 <text fill="currentColor" y="9" dy="0.71em" role="axislabel"
25 id="x1">Apples </text>
26 </g>
27
28 <g class="tick" opacity="1" transform="translate(188.889,0)">
29 <line stroke="currentColor" y2="6"/>
30 <text fill="currentColor" y="9" dy="0.71em" role="axislabel"
31 id="x2">Bananas </text>
32 </g>
33
34 ...
35 </g>
36
37 <g id="yScale" role="yaxis" aria-roledescription="y-Axis" tabindex="0"
38 aria-valuemin="4" aria-valuemax="45" aria-labelledby="y-title"
39 fill="none" font-size="10" font-family="sans-serif" text-anchor="end">
40 <text transform="rotate(-90)" y="-38" x="-200" text-anchor="middle"
41 fill="black" role="heading" id="y-title" font-size="12">
42 Amount 2013</text>
43 <path class="domain" stroke="currentColor" d="M-6,400.5H0.5V0.5H-6"/>
44
45 <g class="tick" opacity="1" transform="translate(0,390.744)">
46 <line stroke="currentColor" x2="-6"/>
47 <text fill="currentColor" x="-9" dy="0.32em" role="axislabel"
48 id="y1">5</text>
49 </g>
50
51 <g class="tick" opacity="1" transform="translate(0,341.963)">
52 <line stroke="currentColor" x2="-6"/>
53 <text fill="currentColor" x="-9" dy="0.32em" role="axislabel"
54 id="y2">10</text>
55 </g>

Listing 6.6: SVG code excerpt of a bar chart with one data series created from column 1 of the
CSV shown in Listing 6.5. No command-line options have been used. The accessibility markup
corresponds to the AChart taxonomy with additional aria-roledescription properties. Additional line
breaks have manually been inserted to improve readability.

110 6 AChart Creator

56
57 ...
58 </g>
59
60 <g id="dataarea" role="dataset">
61
62 <g tabindex="0" transform="translate(44.444,351.22)"
63 role="datapoint" aria-labelledby="x1">
64 <rect class="bar" width="66.667" height="48.78"/>
65 <text x="33.334" y="10" text-anchor="middle" font-size="10"
66 fill="white" role="datavalue" id="value1">9</text>
67 </g>
68
69 <g tabindex="0" transform="translate(155.556,243.902)"
70 role="datapoint" aria-labelledby="x2">
71 <rect class="bar" width="66.667" height="156.098"/>
72 <text x="33.334" y="10" text-anchor="middle" font-size="10"
73 fill="white" role="datavalue" id="value2">20</text>
74 </g>
75
76 ...
77 </g>
78
79 </g>
80 </svg>

Listing 6.6 (cont.): SVG code excerpt of a bar chart with one data series created from column 1 of
the CSV shown in Listing 6.5.

User Interaction 111

Amount 2013 by Fruit

9

(11.4 %)

20

(25.3 %)

30

(38 %)

8

(10.1 %)

12

(15.2 %)

Fruit

Apples

Bananas

Grapefruits

Lemons

Oranges

Figure 6.4: Pie chart with one data series and a legend created from column 1 of the CSV shown in
Listing 6.5. The chart title is visible. The data points are depicted as pie segments of different
colours with a size proportional to their magnitudes. Within each segment, the exact value and
percentage are displayed. To the right of the chart, the legend shows the mapping of pie segment
colours to corresponding data point names. The legend title “Fruit” is also visible. [Produced by the
author of this thesis using AChart Creator.]

6.1.3 Creating Pie Charts
By default, column 1 of the CSV file is visualised, column 0 is considered to be a header column. If
the --column option is used, the specified column is rendered instead. The data points are rendered
as pie segments of different colours with sizes proportional to their magnitudes. The exact value of
each data point is displayed using a <text> label within its corresponding segment. These labels can be
visually hidden by using the command-line option --no-segment-values. In this case, each segment
contains a descendant <title> element which displays the value of the data point as a tooltip when moving
the mouse pointer over the pie segment. Below each label of a data point value, the corresponding
percentage is shown, rounded to one decimal place by default. A different number of decimal places can
be specified with the option --segment-percentage-precision. The percentage labels are suppressed
with the option --no-segment-percentages, causing the percentages to be shown as tooltips.

To the right of the pie chart, a legend is generated which represents each pie segment with a small
square in its colour next to the data point name. The legend title is visible and corresponds to the header
cell of CSV column 0, unless overridden by the user. An SVG code excerpt of an example pie chart with
a legend is shown in Listing 6.7. The resulting graphic can be seen in Figure 6.4.

The legend can be suppressed with the command-line option --no-legend. In this case, the names of
the data points are added as labels to their respective pie segments, immediately above the positions of
the labels for the data point values, as can be seen in Figure 6.5. However, this additional annotation is
semantically treated as legend with its title embedded in a <title> element, as shown in Listing 6.8.

The data series title is always present only as a <title> element and corresponds to the cell in row 0 of
the used column. The chart title is composed of the data series title, concatenated with the string “ by ”
and the legend title.

112 6 AChart Creator

1 <svg xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1"
3 viewBox="0 0 750 600" role="graphics-document">
4 <rect id="backdrop" width="700" height="550" fill="#fff"/>
5
6 <g id="ChartRoot" role="chart" tabindex="0" transform="translate(50,100)"
7 aria-labelledby="title" aria-charttype="pie"
8 aria-roledescription="Pie Chart" font-size="10">
9 <rect role="chartarea" width="400" height="400" fill="none"/>

10 <text id="title" role="heading" text-anchor="middle" font-size="14"
11 x="300" y="-25">Amount 2013 by Fruit</text>
12
13 <g id="pie-chart" transform="translate(200,200)" role="dataset"
14 aria-labelledby="dataset-title" tabindex="0">
15 <title role="heading" id="dataset-title">Amount 2013</title>
16
17 <g role="datapoint" tabindex="0" aria-labelledby="legenditem1">
18 <path d="M1.225e-14,-200A200 ,200,0,0,1,131.245,-150.913L0,0Z"
19 fill="#66c2a5" stroke="black" style="opacity: 0.7;"/>
20 <text transform="translate(45.54,-121.762)" dy="15"
21 style="text-anchor: middle;" role="datavalue" id="value1">9</text>
22 <text id="percentage1" transform="translate(45.54,-121.762)"
23 dy="30" style="text-anchor: middle;">(11.4 %)</text>
24 </g>
25
26 <g role="datapoint" tabindex="0" aria-labelledby="legenditem2">
27 <path d="M131.245,-150.913A200 ,200,0,0,1,148.274,134.22L0,0Z"
28 fill="#fc8d62" stroke="black" style="opacity: 0.7;"/>
29 <text transform="translate(129.769,-7.75)" dy="15"
30 style="text-anchor: middle;" role="datavalue" id="value2">20</text>
31 <text id="percentage2" transform="translate(129.769,-7.75)"
32 dy="30" style="text-anchor: middle;">(25.3 %)</text>
33 </g>
34 ...
35 </g>
36
37 <g role="legend" aria-roledescription="Legend" font-size="10"
38 font-family="sans-serif" text-anchor="start" tabindex="0"
39 aria-labelledby="legend-title" transform="translate(408, 20)">
40 <text role="heading" font-size="12" id="legend-title">Fruit</text>
41
42 <g role="legenditem" id="legenditem1"
43 transform="translate(0,15)" tabindex="0">
44 <rect x="5" y="-5" width="10" height="10" fill="#66c2a5"/>
45 <text x="25" alignment -baseline="middle">Apples </text>
46 </g>
47 ...
48 </g>
49
50 </g>
51 </svg>

Listing 6.7: SVG code excerpt of a pie chart with one data series and a legend created from
column 1 of the CSV shown in Listing 6.5. No command-line options have been used. The
accessibility markup corresponds to the AChart taxonomy with additional aria- roledescription
properties. Additional line breaks have manually been inserted to improve readability.

User Interaction 113

1 <svg xmlns="http://www.w3.org/2000/svg"
2 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1"
3 viewBox="0 0 750 600" role="graphics -document">
4 <rect id="backdrop" width="500" height="550" fill="#fff"/>
5
6 <g id="ChartRoot" role="chart" tabindex="0" transform="translate(50,100)"
7 aria-labelledby="title" aria-charttype="pie"
8 aria-roledescription="Pie Chart" font-size="10">
9 <rect role="chartarea" width="400" height="400" fill="none"/>

10 <text id="title" role="heading" text-anchor="middle" font-size="14"
11 x="200" y="-25">Amount 2013 by Fruit</text>
12
13 <g id="pie-chart" transform="translate(200,200)" role="dataset"
14 aria-labelledby="dataset-title" tabindex="0">
15 <title role="heading" id="dataset-title">Amount 2013</title>
16
17 <g role="datapoint" tabindex="0" aria-labelledby="legenditem1">
18 <path d="M1.225e-14,-200A200 ,200,0,0,1,131.245,-150.913L0,0Z"
19 fill="#66c2a5" stroke="black" style="opacity: 0.7;"/>
20 <text transform="translate(45.54,-121.762)" dy="15"
21 style="text-anchor: middle;" role="datavalue" id="value1">9</text>
22 <text id="percentage1" transform="translate(45.54,-121.762)"
23 dy="30" style="text-anchor: middle;">(11.4 %)</text>
24 </g>
25
26 <g role="datapoint" tabindex="0" aria-labelledby="legenditem2">
27 <path d="M131.245,-150.913A200 ,200,0,0,1,148.274,134.22L0,0Z"
28 fill="#fc8d62" stroke="black" style="opacity: 0.7;"/>
29 <text transform="translate(129.769,-7.75)" dy="15"
30 style="text-anchor: middle;" role="datavalue" id="value2">20</text>
31 <text id="percentage2" transform="translate(129.769,-7.75)"
32 dy="30" style="text-anchor: middle;">(25.3 %)</text>
33 </g>
34 ...
35 </g>
36
37 <g role="legend" aria-roledescription="Legend"
38 aria-labelledby="legend-title" tabindex="0"
39 transform="translate(200,200)">
40 <desc role="heading" id="legend-title">Fruit</desc>
41
42 <g role="legenditem" tabindex="0" id="legenditem1"
43 transform="translate(45.54,-121.762)" style="text-anchor: middle;">
44 <text>Apples </text>
45 </g>
46
47 <g role="legenditem" tabindex="0" id="legenditem2"
48 transform="translate(129.769,-7.75)" style="text-anchor: middle;">
49 <text>Bananas </text>
50 </g>
51 ...
52 </g>
53
54 </g>
55 </svg>

Listing 6.8: SVG code excerpt of a pie chart with one data series created from column 1 of the
CSV shown in Listing 6.5. The chart has no visible legend. Instead, each pie segment is
additionally labelled with its data point name, and these names are given the ARIA roles for
legends as well. Apart from --no-legend, no other command-line options have been used.
The accessibility markup corresponds to the AChart taxonomy with additional aria-roledescription
properties. Additional line breaks have manually been inserted to improve readability.

114 6 AChart Creator

Amount 2013 by Fruit

9

(11.4 %)

20

(25.3 %)

30

(38 %)

8

(10.1 %)

12

(15.2 %)

Apples

Bananas

Grapefruits

Lemons

Oranges

Figure 6.5: Pie chart with one data series created from column 1 of the CSV shown in Listing 6.5.
The chart title is visible. The chart has no legend. The data points are depicted as pie segments
of different colours with a size proportional to their magnitudes. Within each segment, the name,
exact value, and percentage are displayed. [Produced by the author of this thesis using AChart Creator.]

Implementation 115

6.2 Implementation
Chart authoring in D3 [Bostock 2021] takes place at a lower level of abstraction than is the case with the
charting libraries described in Section 3.5. The chart author composes SVG structures like marks and
axes into a chart, rather than specify the parameters of a chart object. For this reason, D3 cannot provide
pre-canned accessibility features by itself, as the charting libraries do. Instead, it is the responsibility
of the chart author to apply the D3 methods such that the resulting SVG is accessible, with a logical
structure, textual elements at appropriate places, and ARIA attributes attached to suitable SVG elements.
An example based on the SVG pseudo-list approach (see Subsection 4.5.5) is presented by Kopacz [2019].
The implementation of AChart Creator is another solution using D3 to create accessible charts.

To create SVG elements, D3 assumes that it is running inside a web browser with access to the browser’s
document object model (DOM). AChart Creator is written in TypeScript and, in its current form, uses
Node.js [OpenJS 2021b] as its runtime environment instead of a browser. The jsdom library [jsdom
2021] is used to emulate a DOM tree inside Node.js, so that D3 can be used to compose a hierarchical
structure of SVG nodes. The nexe [Boyd et al. 2020] package is then used to create self-contained binary
executable files for various platforms.

The general procedure applied by AChart Creator can be summarised as follows. The specified CSV
file is opened and read using the Node.js library csvtojson, whose method fromFile() is asynchronous
and invokes a given callback function when the operation has been completed. The callback function is
passed an array whose entries represent the rows of the CSV structure, starting with row 1. Each entry of
the array contains a data structure whose member variables represent the cells in the respective row. The
name of the variable is determined by the header of the cell’s column, that is, the cell in the same column
and row 0. The value of the variable corresponds to the content of the cell. The order in which these
member variables are stored within each structure corresponds to the order of the CSV cells from left to
right. This means, calling the Object.keys() method on one of these data structures returns an array whose
entry 0 holds the content of row 0, column 0; entry 1 holds the content of row 0, column 1; and so forth.
This way, all the columns can be programmatically referenced in their original order within the CSV.

After instantiating the JSDOM class and initialising the emulated DOM tree with a root <svg> element,
AChart Creator obtains this root element by means of the d3 select method. Using the attr() method of
D3, certain attributes of the element are set, such as viewBox, version, xmlns, and role. By means of D3’s
append() method, a <g> element for the chart root is appended to the root <svg> element and, in turn, the
elements for the chart objects to the chart root. For each of the appended elements, certain attributes are
set, including ARIA roles and properties, as well as tabindex and id. The text content of an element is
specified with D3’s text() method. Special D3 graphics methods are applied for drawing axes, lines, arcs,
curves, and other shapes and for mapping the input data to their labels. After composing the desired SVG
chart within the DOM tree, its content is serialised to a string of SVG markup and written to a file.

6.2.1 SVG Generator
The predecessor to AChart Creator was called SVG Generator, and was developed by Grass et al. [2019].
It creates accessible single-series line, bar, and pie charts in SVG format from CSV data by means of D3.
This software comprises a set of three self-contained TypeScript modules named line.ts, bar.ts, and
pie.ts, where each module creates one particular chart type. To initiate the creation of a chart, the module
for the desired chart type is transpiled to a JavaScript file, which is then executed with Node.js using the
given input CSV and output SVG file names. The base path for the CSV file is set to the subdirectory
source/data/csv/ of the project directory; the path for the SVG file is fixed to build/svg/. To automate
the process of transpiling the TypeScript and launching Node.js with the resulting JavaScript, the authors
provide a set of scripts for the task runner gulp.js [Bublitz and Schoffstall 2021]. The syntax for creating
a chart by means of gulp is as follows:

gulp --compile TYPESCRIPT -FILE --dataset CSV-FILE

116 6 AChart Creator

Afterwards, the created chart is located in the directory build/svg/ and has the name CHART-TYPE.svg,
where the output file name is determined by the gulp script. For example, the command:

gulp --compile line.ts --dataset fruit.csv

produces the SVG output file build/svg/line.svg, provided that the file source/data/csv/fruit.csv exists
and contains valid CSV data.

The software considers column 0 of the input CSV structure as data point names and column 1 as the
data series; any other columns are ignored. The cells of row 0 are used only to programmatically reference
the columns, but not for any text output. The root <svg> element is given the ARIA role graphics-document.
Apart from this assignment, the chart roots, axes, datasets, and data points are structured and annotated
exactly according to the Describler system introduced in Subsection 4.5.1. In the case of pie charts,
however, the legend represents a descendant element of the dataset, and the data points are appended
to the chart root element. All the text labels for axis and legend items as well as for data points are
automatically derived from the CSV data. The markup for the titles of the chart, axes, and legends as
well as for a chart description is also inserted as in the Describler system. However, the text content is
hard-coded within the source code and cannot be specified from the command line.

Although written in TypeScript, the three modules are designed as script files without any class,
function, or type declarations. They each have a similar structure. First, the emulated DOM tree is
initialised, the input and output file names are determined from the first two command-line arguments,
and the CSV file is read. The entire data extraction and chart composition is placed into an anonymous
callback function passed to the asynchronous fromFile() method for reading the CSV file. In addition to
the three modules for line, bar, and pie charts, the authors provide a template file which can be used to
write modules for other chart types. It contains the basic structure just described and can be filled with
the type-specific instructions for drawing a particular kind of visualisation.

6.2.2 AChart Creator Version 1.0
While the original implementation of SVG Generator is capable of creating SVG charts with the expected
visual representation and accessibility markup, the software architecture exhibits several drawbacks.
Firstly, the transpilation of the source code at every invocation of the programme increases execution
time and requires a TypeScript compiler to be installed on the user’s platform. To automate the steps of
transpiling, copying, and executing, gulp.js needs to be installed as well. The application of gulp scripts
for the mere execution, in turn, complicates the compilation of the Node.js project to a standalone binary
file, since gulp.js is mainly intended as a task runner during development.

Moreover, considerable blocks of source code are duplicated across the three modules, such as those for
initialising the DOM tree, reading the CSV, extracting the column headers, and creating the elements of the
basic SVG structure. In the context of this thesis, this architecture was transferred to a class-based design,
where the duplicated code blocks mentioned above were moved to dedicated central classes used for all
chart types. The main class AChartCreator handles all command-line arguments and creates an instance
for one of the three supported chart types. The abstract class Chart defines values and elements common
among all the chart types and inherited by their classes. This way, AChart Creator can be transpiled to
one JavaScript project, which can then be executed without gulp or any repeated transpilations and can
be compiled into a binary executable file.

With regard to the handling of CSV data, SVG Generator only considers the columns 0 and 1. In
order to facilitate the creation of charts from other columns as well, the --column option was introduced,
which lets the user choose an arbitrary column from those available to be interpreted as a data series.
In addition, the production of line charts with multiple data series was implemented, where each CSV
column starting from 1 is represented as a separate polyline within the same coordinate system and
encoded with a different colour. Each of these polylines is assigned the ARIA role dataset and is given
a descendant <title> element with the ARIA role heading for the data series title. In addition, the creation
of a legend was implemented, which lists the titles of all the data series along with a short line in its

Implementation 117

colour. The same kind of legend was also added to the pie charts, where squares in the colour of each
pie segment represent the corresponding data points and are given a label with the name. The segments
of a pie chart are not only labelled with the absolute value of the data point, but also with its percentage.
Several command-line options were added which let the user choose the exact visual appearance of the
charts with regard to legends and annotations of data points.

Tests with several different CSV files revealed two inconsistencies of SVG Generator. For example, it
drew the data points from left to right according to the order they are listed in the CSV file from top to
bottom, which assumes that the CSV rows are sorted in a suitable manner. If, however, the rows are listed
in an arbitrary order, this behaviour may lead to an unintended result, especially in the case of numerical
or time-based names. In AChart Creator version 1.0, the data points are therefore sorted in increasing
order by their names before generating the SVG. The sorting includes both numerical values and strings,
which are sorted alphabetically. This is especially useful in the case of dates or times expressed as string
values. If desired, the original order can be applied by giving the command-line option --no-sort.

Another problematic issue in SVG Generator was that the id values for x-axis labels, legend items, and
data points were automatically generated, including the verbatim content of the respective CSV cells.
While this solution works if the cells contain only alphanumerical strings, other characters such as the
full stop (.) or white space () can cause errors when querying for these ids using the JavaScript selector
methods. For this reason, the generation of id attributes was changed so that increasing index numbers
independent of the cell contents were used instead.

Moreover, SVG Generator did not provide any useful titles or descriptions, neither visible nor hidden,
but only the necessary markup to embed them within the graphics document, filled with constant strings.
The titles for the x-axis of bar charts and the y-axis of line charts were not visible; in the former case
because it was only included by the <title> element, in the latter case because the <text> element was
positioned outside the margins of the SVG document. The feature to set the chart title and description via
command-line options was introduced by Inti Gabriel Mendoza Estrada as a part of a seminar project,
along with the possibility to specify the x-axis and y-axis titles in the case of line charts. In the context of
this thesis, the command-line setting of axis titles was then extended to bar charts, and the possibility to
denote a legend title was added. Furthermore, the automatic derivation of default titles for charts, axes,
legends, and/or data series from the CSV column headers was implemented according to the specification
in Section 6.1. Lastly, all axis titles were made visible by embedding them in <text> elements and
positioning them within the boundaries of the SVG document.

6.2.3 AChart Creator Version 2.0
While the accessibility markup of the line and bar charts created by SVG Generator and AChart Creator
version 1.0 mostly conform to the Describler system, the pie charts lack the roles for the legend and its
titles. For version 2.0, these roles were added, along with the role heading for the legend title. Moreover,
the <path> elements representing the data points are appended to the chart root element instead of the
dataset, which prevents them from being found by Describler or AChart Interpreter. For this reason,
the data points were moved into the <g> element with the role dataset. In addition, the changes to the
Describler system proposed in Section 5.3 were applied.

The current version 2.0 of AChart Creator consists of seven classes. The classes LineChart, BarChart,
and PieChart are used to produce the three corresponding chart types. All three are derived from the
abstract superclass Chart, which declares several common instance variables and provides the method
init() for preparing the data and generating a basic structure of the SVG document. Each of the three
subclasses implements a method named create() which performs the main tasks of composing the chart.
Both methods expect an array of extracted CSV rows, a structure of chart metadata, and the root <svg>
element of the DOM tree as arguments. The chart metadata structure contains members representing all
the parameters which can be specified from the command line, such as the chart title and description, the
x-axis, y-axis, and legend titles, the column to visualise, the target accessibility software, the precisions
for rounding decimal numbers, and several booleans expressing whether a particular feature should be

118 6 AChart Creator

present. It should be noted that none of these classes have a constructor method, because at the time of
instantiation, the CSV data are not yet available.

In the Chart superclass, instance constants are first defined for the height, width, margins, and certain
positions, and variables are declared for other distances as well as for possible global CSS definitions and
for storing certain elements of the basic SVG structure. The instance variable names_columns of type string
array is intended to store the header of all the names columns, that is, in version 2.0, the CSV content
of the cell in row 0 and column 0. The variable values_columns of type string array holds the headers
of all data series to visualise, that is, the contents of the cells in row 0 and one or more of the columns
with numbers greater than 0. The headers serve two purposes: firstly, they are used to reference the
member variables in a data structure which represents a CSV row, secondly they provide the basis for
automatically composing the default titles.

The method init() of the Chart class extracts the column headers from the passed data array and stores
them into the instance variables just described. If a particular column has been specified for visualisation,
the header of this column is stored as the only entry in the values_columns array; otherwise, values_columns
is set to the headers of all extracted columns starting at 1. Afterwards, the init() method tests each title to
see if it has been set by the user and, if not, infers the particular default title from the CSV headers. The
next step is to test for all the names and values of each data point whether they are numeric or contain
other characters. In the former case, the string content is converted to the type number, which is necessary
for correctly sorting the data points and for calculating the minimum and maximum values of numerical
axis. If among the data point values any non-numerical content is detected, the programme exits with an
error message, since it was decided that all values need to be numerical. Finally, the array of CSV rows
is sorted by their names, unless the user has requested not to do so with the --no-sort option.

After these steps of data preparation, it is determined whether to print a legend to the right of the
chart. This is the case if there are multiple data series or the chart is a pie chart and if the user has
not suppressed the legend with the --no-legend command-line flag. Depending on this decision, the
horizontal position of the chart is calculated: if no legend is present, the chart is centred within the
SVG document, otherwise it is shifted to the left. Then, a basic structure of the graphics document is
created, including the background, the chart root, as well as the chart title and description, and certain
attributes are set which are independent of the chart type. Apart from the init() method just described,
the Chart class contains a method for creating the legend and methods for rounding numbers according to
the desired number of decimal places.

Each of the LineChart, BarChart, and PieChart classes starts with the initialisation of other instance
constants for the dimensions and positions of the chart; some also define global CSS. As one of its
first steps, the method create() of the respective instance calls the init() method inherited from the Chart
superclass just described. In the case of bar and pie charts, however, it first tests whether the user has
specified a particular data column. If not, the corresponding member variable of the chart metadata is
set to 1, so that the superclass method only considers this column for title derivation. This is necessary
since both classes currently support only visualising a single data series. After the superclass init() method
has completed, certain attributes are added to the chart elements already created, for example the ARIA
property aria-charttype to the chart root, and the D3 methods for drawing the chart are applied. Although
the DOM structures and the processing of data exhibit many similarities across the different chart types,
it was decided to leave these parts of the implementation in separate classes, as they differ slightly in the
graphics methods used. Finally, the methods return a string containing the serialised SVG structure.

Apart from the classes for creating charts, there are three central classes for performing general tasks.
The main class is called AChartCreator and is part of the module achart-creator. In this module, the
emulated DOM tree is first initialised. Then, the class AChartCreator is instantiated. This class declares
two string constants for the default input file names (one for line charts and a different one for other chart
types) as well as instance variables for the input and output file names given by the user, the requested
chart type, and the specified chart metadata (titles, description, CSV column and others) as described
above. Moreover, the variable chart of type Chart is declared to hold an instance of the class for the

Implementation 119

selected chart type.
The AChartCreator constructor calls the method parseCommandLine() of the same instance as a first step. In

a switch block, this method evaluates the command-line arguments, sets the respective instance variables
and chart metadata members accordingly, and outputs a message in case of syntax errors. All messages
are composed of string constants defined in the static class Text. If no syntax errors have been detected,
the argument of the mandatory --chart parameter is evaluated in a separate switch block. In the default
case of no known chart type, the programme exits with an error message. Otherwise, an instance of the
respective class for the chosen chart type is created and stored in the instance variable chart.

After handling the command-line input, the constructor outputs an initial message to stdout and then
calls the method loadFile() of the static class FileHelper. This method first tests if an input and an output file
name have been specified by the user. If no output file name has been given, it is derived from the input
file name by detecting whether the latter ends with the extension .csv, removing such an extension if
present, and appending the extension .svg. Afterwards, FileHelper.loadFile() handles the interaction with the
csvtojson library, outputs a text message if the CSV file has been successfully loaded, and then passes the
array with the CSV data to the method createChart() of the AChartCreator instance. This method eventually
initiates chart creation: it calls the create() method of the instance stored in the variable chart, passing it
the CSV data and the chart metadata specified by the user. The returned SVG markup string is handed to
the method FileHelper.writeSvg(), which outputs a final confirmation message to stdout and saves the markup
string to an SVG file with the appropriate name. Since the jsdom library serialises the DOM content
without any line breaks or indentations, the markup is passed to the library xml-formatter before saving
in order to improve its readability.

120 6 AChart Creator

Chapter 7

AChart Interpreter

Accessible Chart Interpreter (AChart Interpreter) is a web application for analysing charts in Scalable
Vector Graphics (SVG) format and presenting the results of this analysis in some form of textual output,
such as synthetic speech. In other words, AChart Interpreter is a kind of screen reader for charts. For
correct interpretation by the software, the SVG charts must contain semantic annotations using attributes
based on the Accessible Rich Internet Applications (ARIA) system. In particular, AChart Interpreter can
handle the AChart roles and properties presented in Section 5.3. Currently, AChart Interpreter supports
bar charts, line charts, and pie charts with an arbitrary number of data series.

The development of AChart Interpreter was inspired by Describler (see Section 3.6 and Subsec-
tion 4.5.1). AChart Interpreter was motivated by several aspects. Firstly, it represents a tool for de-
velopers and chart authors, which can be used to test the compliance of SVG charts with specific ARIA
markup. AChart Interpreter’s graphical user interface (GUI) provides a split-screen view of the chart and
the derived textual representation. Moreover, the application is screen reader compatible and thus can
supplement existing general-purpose screen readers when it comes to exploring accessible SVG charts.
In case no screen reader is available, or for use by sighted users, AChart Interpreter provides optional
integrated speech output.

AChart Interpreter runs in all modern web browsers, meaning those with support for HTML 5 and
ECMAScript version 5. Furthermore, it can be compiled to self-contained, standalone binary executable
packages for various platforms with Electron [OpenJS 2021a]. The web-based approach was chosen so
the software can be used not only as a self-contained application, but in future potentially as a browser
extension for reading embedded SVG charts.

The software is open-source under an MIT licence and is available at [Kopel, Andrews, Mendoza
Estrada, Bodner et al. 2021a]. A live demo of AChart Interpreter is available at [Kopel, Andrews,
Mendoza Estrada, Bodner et al. 2021b]. A showcase video of AChart Interpreter was created by Perko
[2021]. A showcase video of an earlier version of the software, then still called AChart Reader, was made
by Bodner et al. [2020b].

Finally, a spin-off command-line tool, called AChart Summariser, can output a textual summary of an
accessible SVG chart as plain text. With the tool, it is possible to perform automatic sequential analysis
of multiple charts using shell scripts and programmatically processing the output.

121

122 7 AChart Interpreter

Figure 7.1: AChart Interpreter’s main window after launch. Both the Graphic Panel and Text Panel are
initially empty. [Screenshot taken by the author of this thesis.]

7.1 User Interface
The GUI of AChart Interpreter consists of three major components, namely the Main Menu and two
synchronised panels, the Graphic Panel on the left and the Text Panel on the right. After launch, both panels
are empty, as can be seen in Figure 7.1. Between the menu and the panels, a short placeholder text is
displayed, prompting the user to “Select an SVG chart to get started.”. For screen reader users, the GUI
starts with the objects of the menu at the top, followed by the placeholder text, the Graphic Panel, and then
the Text Panel.

An accessible SVG chart can be opened in AChart Interpreter using the File Upload button in the main
menu. Alternatively, one of several sample SVG charts provided along with AChart Interpreter can be
loaded via the Sample Chart drop-down menu. The design is responsive, so that on narrower screens, the
main menu is collapsed behind a menu button (“hamburger icon”).

Once an accessible SVG chart has been loaded, it is displayed in the two synchronised panels. Figure 7.2
shows the GUI of AChart Interpreter with the sample three-series line chart from Listing 6.4. The Graphic
Panel displays the chart graphically. The file name of the current chart is shown to the right of the panel’s
heading “Graphic Panel”. A button Remove SVG is available to remove the chart and a switch allows
toggling between the two forms of highlighting the currently focused chart object: fill and outline (the
default). Changing the highlighting mode can be helpful if the current manner of highlighting is not
well-suited to a particular chart. The Text Panel displays a structured textual representation of the chart (the
so-called chart tree), garnered from the semantic annotations and which is suitable for reading out. This
includes a title and description, if included in the chart, a basic automatically-generated description of its
content, the titles and items of its axes and legends, the titles of its data series, and the names and values
of all its data points. This way, a developer or chart author can verify that the SVG chart’s structure and
ARIA markup conform to AChart’s taxonomy. Clicking on an element of the chart in one panel selects,
focuses, and highlights it in both panels.

From a screen reader’s point of view, the Graphic Panel’s heading is placed below the menu, followed
by the Remove SVG button and the switch for toggling the highlighting mode, which is exposed to screen
readers as a checkbox. If the checkbox is enabled, highlighting mode is set to outline. Immediately

User Interface 123

Figure 7.2: AChart Interpreter displaying the sample SVG multi-line chart from Listing 6.4. The
graphical version on the left shows three data series. The structured textual output on the right
lists the chart’s title, descriptions of the chart, the legend, the x- and y-axes, and the three data
series with their titles and all contained data points. Data point 3 of data series 1 is currently
selected. [Screenshot taken by the author of this thesis.]

below, screen reader users find the heading of the Text Panel, followed by all its contents. The graphical
content is hidden for screen readers, and the Tab navigation is modified, so that graphical objects do not
receive keyboard focus. This form of presentation was chosen because all the accessible information of
the graphic is available in the Text Panel and, this way, more convenient keyboard navigation between the
Main Menu and the Text Panel is possible.

To the right of the two controls for opening an SVG file described above, the Main Menu provides three
further buttons, each with a keyboard equivalent:

• Built-in speech (Alt+S): Toggles integrated speech output off or on. Depending on the current state, the
button text says “Disable built-in speech (Alt+S)” or “Enable built-in speech (Alt+S)”. In case that
no synthesiser can be detected it reads “No built-in speech available”.

• Application Mode (Alt+A): Toggles screen reader interaction between application mode and document
Mode (see Subsection 7.1.3). Depending on the current state, the button text says “Switch to
Application Mode (Alt+A)” or “Switch to Document Mode (Alt+A)”.

• Help (F1): Opens a scrollable modal window showing the application’s help text, which is included
in Appendix B. The help window can be closed by clicking the Help (F1) button again, clicking the
“Close (ESC)” button in the upper right corner of the dialogue window, or by pressing Escape.

In addition to line charts, AChart Interpreter supports bar charts and pie charts, as shown in Figures 7.3
and Figures 7.4, respectively.

7.1.1 Chart Accessibility Tree (CAT)
Since no official system for annotating chart elements has yet been standardised, current web browsers
neither detect semantically enriched objects contained in accessible SVG charts, nor enter and maintain
them as such in their standard accessibility tree (see Subsection 2.4.3).

124 7 AChart Interpreter

Figure 7.3: AChart Interpreter displaying the sample SVG bar chart from Listing 6.6. The graphical
version of the bar chart is shown on the left. The structured textual output on the right lists the
chart’s title, descriptions of the chart, the x- and y-axes, and the data series with its title and all
contained data points. Data point 3 has been selected. [Screenshot taken by the author of this thesis.]

Figure 7.4: AChart Interpreter displaying the sample SVG pie chart from Listing 6.7. The graphical
version of the pie chart is shown on the left. The structured textual output on the right lists the
chart’s title, descriptions of the chart and the legend, and the data series with its title and all
contained data points. Data point 3 has been selected. [Screenshot taken by the author of this thesis.]

User Interface 125

AChart Interpreter recognises and processes chart elements annotated according to the AChart tax-
onomy. While interpreting an accessible SVG chart, AChart Interpreter constructs its own internal
hierarchical representation of the chart, called the Chart Accessibility Tree (CAT), which reflects the
nesting of the corresponding SVG elements in the chart. Similar to the standard accessibility tree of web
browsers, every graphics object with semantic significance is represented by a corresponding tree node
along with its computed alternative text.

Dedicated classes are defined for all major chart objects, such as the chart root, axes, and data series.
Instances of these classes constitute nodes of the CAT. Minor chart objects without any descendants, such
as titles, axis labels, and data point values, are stored in ordinary member variables of type number or
string. Thus, the hierarchical structure of chart objects is reflected by the respective memberships of the
instances and variables. For example, an instance of class SVGDocument holds one or more instances of
class Chart; each instance of class Chart holds one or more instances of class Axis and one or more instances
of class Dataset; each instance of class Axis has member variables for the axis title, the axis variable, and
the minimum and the maximum value, as well as its contained axis labels; and so forth. Further details
of this architecture will be presented in Subsection 7.2.2.

As soon as the analysis of the SVG chart has been completed, the CAT for the chart is visualised in
the Text Panel as an expandable tree of nodes with associated text strings. This visualisation of the CAT
is known as the chart tree. A triangular icon next to every node allows it to be expanded or collapsed.
Alternatively, every node can be expanded or collapsed by the Enter or the Space key when focused. The
Text Panel becomes scrollable if the chart tree requires more vertical space. Any object in the chart tree can
be focused by Tab navigation or by left-clicking it, which also selects and focuses the same chart element
in the Graphic Panel (and vice versa). Focus in the Text Panel is indicated by a dotted outline around the
object in focus. The order of the chart tree nodes is the same for the visual arrangement and the screen
reader navigation from top to bottom as well as for forward Tab navigation.

Most chart tree objects have an equivalent textual summary, which is constructed dynamically from
the nodes in the CAT, as follows:

1. The type of the object, followed by a colon (:) and a space character. For certain object types, a
space character and an index number starting at 1 are placed between the type and the colon. For
example, “Line chart 1: ”

2. The title of the object, if provided by the chart’s author, within quotation marks ("), followed by a
comma and a space character. For example, “Line chart 1: "Price in Austria [€], Price in Germany
[€], Price in Spain [€] by Year", ”

3. The string “contains ”, followed by the number and type of descendant objects, delimited by a
space character. The type is expressed in its singular form if only one descendant object is present,
otherwise in its plural form. The text concludes with a full stop (.) character. For example, “Line
chart 1: "Price in Austria [€], Price in Germany [€], Price in Spain [€] by Year", contains 3 data
series.”

Subsequent discussion for particular chart tree objects which conform to the text pattern above will omit
the details about space and punctuation characters. A detailed explanation of the implementation of
textual summary and description composition is provided in Subsection 7.2.3.

The root object of the chart tree corresponds to the root <svg> element. Its textual summary starts
with the word “Graphic” and any title assigned to the entire graphics document. Afterwards, the number
and type of contained charts is stated. If charts of distinct types are present, each of these chart types
is enumerated with its number of occurrences, separated by the string “ and ”. For example: “Graphic:
contains 1 bar chart and 2 line charts.”. If an overall description has been provided for the graphics
document in a <desc> element, it is shown immediately below the root. Charts are always represented as
descendant objects of the graphics root, even if the <svg> element has been assigned the role chart and,
thus, the logical chart root is identical to the root <svg> element. This is one of few cases in which both

126 7 AChart Interpreter

the CAT and the visual chart tree may differ from the hierarchy of the SVG structure.
The textual summary of a chart root begins with the chart type, followed by the string “ chart ” and an

index number. If a chart title has been provided by the author, it is displayed afterwards. If applicable, the
number of contained data series is denoted along with the expression “data series”. For example: “Line
chart 1: "Price in Austria [€], Price in Germany [€], Price in Spain [€] by Year", contains 3 data series.”

Immediately below the chart object, a short description is given. This description contains the chart
type, followed by the string “ chart showing ”, the y-axis title in quotation marks, the string “ in relation
to ”, the x-axis title in quotation marks, the text “ from ”, the first x-axis label, the string “ to ”, and
the last x-axis label. This way, the user is able to rapidly obtain an idea of what the chart is about. In
the case of a pie chart, which does not have any axes, the title of the first data series (where available)
is displayed instead of the y-axis title, and the x-axis information is replaced by the title of the legend
(where available), and the first and last item of the legend. Independently of the chart type, if no y-axis,
data series, x-axis, or legend title has been specified, the word “values” is inserted as a replacement for
the respective title. If no x-axis is available in a bar or a line chart, or if no legend is available in a pie
chart for any reason, the part starting with “ in relation to ” is omitted. For example, a description can
be: “Line chart showing values in relation to "Year" from 2011 to 2019.”

Below the chart root object, the x-axis, the y-axis, and/or all legends are enumerated, where each axis
or legend is represented on a separate line and the legends are listed in the order they appear in the SVG
source code. Each of these objects displays a text starting with the object type. In the case of an axis,
its variable is prepended to the word “axis” with a hyphen (-). The text continues with a possible axis or
legend title and information of its content. Afterwards, the number of contained labels or legend items is
stated along with the word “labels” or “items”. In the case of a continuous axis, the word “continuously”
is appended. The text ends with the string “ ranging from ”, the first axis label or legend item, the text
“ to ”, and the last axis label or legend item. For example: “x-axis: "Year", contains 9 labels continuously
ranging from 2011 to 2019.”

Subsequently, all data series of the chart are listed. The text for each data series object begins with
the expression “Data Series”, followed by an index number, a possible data series title, and the number
of contained data points along with the string “items”. For example: “Data Series 1: "Price in Austria
[€]", contains 9 items.” If the data series is expanded, a drop-down menu and a list of all the data points
contained in this series is shown. The drop-down menu is labelled “Sort items:”. It contains the three
options “in original order”, “from lowest to highest value”, and “from highest to lowest value”. The first
option is the default and lists the data points in the order they appear in the SVG source code, whereas
the second and the third option cause the data points to be displayed in increasing or decreasing order of
value, respectively.

The data points are enumerated as a list beneath the drop-down menu. The text of each data point
starts with its name, that is, its x-coordinate or, in the case of a pie chart, the text of its associated legend
item. The name is followed by a colon and a space character. Afterwards, the value of the data point is
given, that is, its y-coordinate or, in the case of a pie chart, its associated label. It is followed by a space
character, an opening round bracket, and an index number which denotes the position of the data point
within the order of the SVG document. Only if the data points are sorted “in original order”, do the index
numbers always increase by one with each item in the list. The number is followed by the string “ of ”,
the total number of data points in the series, and a closing round bracket. For example: “2013: 241 (3 of
9)”

While all other objects of the chart tree, as well as all buttons and the drop-down menu, can be focused
by pressing Tab or Shift+Tab, these key commands focus the list of the data points as a whole. To navigate
within the list, a particular data point can then be selected with the Cursor-Up and Cursor-Down keys.
Another press of Tab or Shift+Tab sets the focus to the next or previous GUI object outside the list. This
concept of navigation was chosen as it resembles the behaviour of many standard GUIs with list views.
Furthermore, it provides keyboard users a way to leave the list of a data series faster than consecutively
stepping through multiple data points with Tab or Shift+Tab. When focusing a list, the selection is set to

User Interface 127

Figure 7.5: Main window of AChart Interpreter’s GUI after opening one of its sample SVG charts.
The context menu has been activated for data point 3 of data series 1 an shows the four options
described. The first option “Jump to first item (f)” is selected. [Screenshot taken by the author of this
thesis.]

the data point which has last been focused in this data series; if this list has not yet been focused since
starting the application, its first item is selected.

In addition to navigation among the data points of one series with Cursor-Up and Cursor-Down, the focus
can be set to the first list item by the Home and to the last item by the End key. If the chart contains multiple
data series, the user can rapidly move to the previous one pressing Cursor-Left and to the next one with
Cursor-Right. If the focus is moved to a closed data series this way, the GUI object of the data series is
automatically opened.

A context menu can be opened for each data point by clicking on it with the right mouse button or
pressing the Context Menu key. A menu item is activated by a left mouse click or selecting it with the
Cursor-Up or Cursor-Down key and then pressing Enter. In addition, each menu item provides a dedicated
key command for direct activation (also known as hot key). This key command is displayed in round
brackets at the end of the respective menu item. The menu contains the following options:

• “Jump to first item (f)”: sets the focus to the first item in the current list of data points (equivalent
to pressing Home);

• “Jump to last item (l)”: sets the focus to the last item in the current list of data points (equivalent to
pressing End);

• “Compare to this data series (c)”: opens a window listing comparisons of the selected data point to
all other data points in the same data series (see Subsection 7.1.2);

• “Show statistics for this item (s)”: opens a window listing comparisons of the selected data point to
statistical values of the same data series (see Subsection 7.1.2).

The context menu is closed without invoking any option by clicking outside its boundaries or pressing
Escape. Figure 7.5 shows the main GUI window with the context menu opened.

128 7 AChart Interpreter

Figure 7.6: AChart Interpreter opens a modal window to display summary statistics for a data series
as an unordered list. [Screenshot taken by the author of this thesis.]

7.1.2 Retrieving Additional Information
AChart Interpreter offers three analytical features for displaying further details on the underlying data of
the chart. This information is displayed as unordered lists in a separate modal window. Each specific detail
is represented as a list item containing the type of information, followed by a colon, a space character,
and the corresponding value(s). In the current implementation, all calculated values are displayed with
a precision of two decimal digits and rounded accordingly. The heading of this window as well as all
list items are focusable by keyboard. After opening, the focus is set to the window heading. For more
convenient keyboard navigation, both the virtual cursor of the screen reader and the keyboard focus are
temporarily restricted to the window. It can be closed again by a button named Close (ESC) at the upper
right corner of the window or by pressing Escape.

One option shows statistical values for a particular data series (see Figure 7.6). It can be invoked by
activating a dedicated button named “Show statistics for this data series” underneath the corresponding
list of data points. The heading of the opened window says “Statistics for Data Series ”, followed by the
index number of the data series. The list contains the following items:

• “Number of items”: The number of data points contained by the respective data series.

• “Lowest value”: The data point with the minimum value occurring in this data series; the value is
concatenated with the string “ for ” and the name of the data point enclosed in quotation marks, for
instance: “Lowest value: 230 for "2011"”.

• “Highest value”: The data point with the maximum value occurring in this data series; the value is
concatenated with the string “ for ” and the name of the data point enclosed in quotation marks, for
instance: “Highest value: 310 for "2019"”.

• “Range between highest and lowest value”: The difference between the maximum and the minimum
value of this data series.

• “Sum of all values”: The sum calculated from the values of all the data points in this series.

User Interface 129

Figure 7.7: AChart Interpreter opens a modal window to show comparisons between a selected data
point and other data points in the same data series. Each comparison is expressed as the absolute
difference as well as the corresponding percentage and is displayed as an item of an unordered
list. [Screenshot taken by the author of this thesis.]

• “Average”: The arithmetic mean calculated from the values of all the data points in this series.

• “Median”: The median calculated from the values of all the data points in this series.
Via the context menu, a comparison of the selected data point to all other data points in the same series

can be displayed. After activating the corresponding menu item, a window opens which is entitled by
the name of the selected data point, concatenated with the string “compared to”; for instance: “2013
compared to”. The subsequent list items enumerate the comparisons of the selected data point to all the
other ones in the data series. A list item is composed by the name of the enumerated data point, followed
by a colon and a space character, the absolute difference between the value of the selected data point and
that of the enumerated one, and the string “higher” or “lower”, respectively. Finally, the ratio in percent
between the value of the selected data point and that of the enumerated one is stated, enclosed in round
brackets. For example: “2014: 19 lower (92.69 %)” In case that the values of both data points are equal,
the word “equal” is displayed instead of the numerical comparisons. The comparisons window is shown
in Figure 7.7.

Moreover, the user can retrieve statistical information about the selected data point, as shown in
Figure 7.8. This option, too, can be chosen from the context menu. The heading of the window for this
feature says “Statistics for ”, concatenated with the name of the selected data point in quotation marks; for
instance: “Statistics for "2013"”. The first list item is composed by the string “Item ”, the index number
of the data point, the string “ of ”, the total number of data points contained by this series, and the string
“ in this data series”. For example: “Item 3 of 9 in this data series”. The next item contains the string
“Value: ” and the value of the selected data point.

Below, comparisons of the data point to the minimum, the maximum, the mean, and the median of
the data series are displayed in this order. Each of these list items starts with the absolute difference
between the value of the selected data point and that of the statistical property, concatenated with the
string “ higher than the ” or “ lower than the ”, respectively. If the value of the data point is equal to that
of the statistical property, the item starts with “equal to the ” instead. In both cases, the type of statistical

130 7 AChart Interpreter

Figure 7.8: AChart Interpreter opens a modal window to display statistics related to a particular data
point as an unordered list. [Screenshot taken by the author of this thesis.]

property and a space character are appended. The type is expressed by the string “lowest value”, “highest
value”, “average”, or “median”, respectively. In the case of the minimum and the maximum, the name
of the data point with the minimum or maximum value is appended, enclosed in quotation marks, and
followed by a space character. All four items end with the ratio in percent between the value of the data
point and the statistical property, enclosed in round brackets. For example: “11 higher than the lowest
value "2011" (104.78 %)” and “26.44 lower than the average (90.11 %)” Finally, the ratio in percent
between the value of the selected data point and the sum of all values is stated, followed by the string
“ the sum of all values”; for instance: “10.01 % the sum of all values”

7.1.3 Modes of Screen-Reader Interaction
When the GUI of AChart Interpreter is used in combination with screen readers, they should enable their
navigation facilities for web documents by default, such as the virtual cursor in JAWS or browse mode
in NVDA, as explained in Subsection 2.2.3.3. While this might represent the optimal mode for reading
the textual information of the chart objects, the Cursor-Left and Cursor-Right keys are captured by the
screen reader in this case, which has the consequence that the user cannot benefit from the possibility
to rapidly navigate between adjacent data series by means of these keys. For the same reason, the Home
and End keys cannot be used for moving the focus to the start or the end of a data point list either.
When activating application mode in JAWS or focus mode in NVDA, the named keys are passed through
to AChart Interpreter and fulfil the described purpose. However, according to the accessibility testing
performed during the implementation (see Subsection 7.4.1), this causes objects with static text, that is,
the headings, the chart description, the axes, and the legends, not to be shown on a connected Braille
display when using Mozilla Firefox in combination with JAWS. Moreover, some users might wish to use
the virtual cursor of JAWS or the browse mode cursor of NVDA to have single characters of the text
information read aloud.

To address this problem, it was decided to let the user choose between the two modes of interaction.
While both JAWS and NVDA provide their own key commands to do so [Vispero 2020; NV Access 2020],
AChart Interpreter offers a specific additional means of doing so. When activating the button “Switch to
application mode (Alt+A)” in the Main Menu, all lists of data points available for currently loaded charts

User Interface 131

are assigned the ARIA role application. This means that JAWS and NVDA automatically enable their
respective mode for passing keystrokes through to the application, as soon as the focus is set to one of
these data point lists. When the virtual cursor or the cursor of browse mode, respectively, is moved to one
of the data lists, the screen reader enables its mode for passing keys through after pressing Enter. Moving
the focus out of the data lists causes NVDA to automatically enable browse mode again; in the case of
JAWS, its virtual cursor needs to be manually activated by the user if its forms mode configuration is set
to “manual”. AChart Interpreter can be switched back to its default mode of interaction by pressing the
same Main Menu button, now labelled “Switch to document mode (Alt+A)”, again. The mode can also be
toggled at any time by pressing Alt+A.

7.1.4 Integrated Speech Output
AChart Interpreter is able to output all its textual information using speech synthesis, independent of
any screen reader. However, the application itself does not have a built-in speech synthesiser, because
most speech engines are released under a proprietary licence and require a significant amount of disk
storage. Instead, AChart Interpreter uses the Web Speech API, which is supported by most modern
browsers [MDN 2019]. This means that the browser and/or the operating system must provide speech
synthesis which can be accesses through this API. Depending on the particular configuration of browser
and operating system, a speech engine may be installed locally, either as part of the operating system or
of the browser, or the browser may temporarily download it from a remote server.

When launching AChart Interpreter, integrated speech output is enabled by default. It can be turned
off by the menu button Disable built-in speech (Alt+S) or by the key command Alt+S. This causes the integrated
speech to say “Speech disabled.”, the text label of the button changes to “Enable built-in speech (Alt+S)”,
and speech output is deactivated. It can be turned on again by activating the button or pressing Alt+S
another time. In this case, the integrated speech says “Speech enabled!”, and the text label of the button
changes accordingly. If no speech synthesiser is provided in the current configuration, the button is
labelled No built-in speech available. In this case, neither the button nor the key command has any effect.

While speech output is active, it is triggered on every focus change and reads aloud the text content of
the newly focused object. If the object is a button, it appends the word “button” for clarification. When
focusing on the drop-down menu for adjusting the sorting mode, the speech first reads its label “Sort
items:”, followed by the mode currently selected. On each change of sorting mode, it then only speaks
the newly selected mode. In the case of the checkbox for adjusting the visual highlighting of the SVG
objects, the speech synthesis reads its label “Toggle SVG highlighting mode” when it is focused. If the
mode is toggled, the speech says “SVG highlighting mode changed to Outline” or “SVG highlighting
mode changed to Fill”, respectively. The speech is interrupted by pressing an arbitrary key or clicking
anywhere within AChart Interpreter’s window, where any information newly available due to the user
action is spoken instead. This manner of user interaction corresponds to the common behaviour of screen
readers like JAWS and NVDA [Vispero 2020; NV Access 2020].

132 7 AChart Interpreter

7.2 Software Architecture
AChart Interpreter was implemented according to the model-view-controller (MVC) design pattern. Data
extraction and preparation is performed by dedicated classes, output composition and handling of user
input by different ones, where both groups of classes do not directly communicate with each other. The
main class AChartInterpreter acts as a bridge between model and view which interprets requests by the user,
calls the appropriate methods, retrieves data, and passes them to the GUI classes.

7.2.1 Common Interfaces
In a separate module, four types are declared which are used in several classes across the model, view,
and controller. In particular, these types describe special data structures which are returned by methods
of certain model classes (see Subsection 7.2.2) and passed to the class Message (see Subsection 7.2.3).
The type declarations are performed by means of TypeScript interfaces to ensure a consistent, clearly
specified exchange of data structures without providing the Message class access to the respective model
classes. The interfaces are defined as follows:

• Scale: A subset of the instance variables declared in the Axis class and the Legend class, where the
axis-specific members variable and type are optional.

• Statistics: All characteristics considered for the calculation of statistical information, such as count,
min, max, sum, average, and median. A data structure of this type is returned by a method of the Dataset
class when retrieving statistics for a data series.

• Comparison: Characteristics for the comparison of a data point to a numerical value. A data structure
of this type is returned when retrieving a comparison from the Datapoint class.

• StatisticsComparisons: All statistical characteristics for a data point. A data structure of this type is
returned by a method of the Dataset class when retrieving data point statistics.

The same module also declares an enumeration called Sorting with the constant values: NONE, UPWARDS,
and DOWNWARDS. This enumeration is used by the classes Dataset, UserInterface, and AChartInterpreter in order
to unambiguously specify a mode for listing data points. Here, Sorting.NONE means no sorting, that is, the
order of the data points in the SVG source code, whereas Sorting.UPWARDSmeans sorting in increasing order
and Sorting.DOWNWARDS means sorting in decreasing order.

7.2.2 Model Classes
The model consists of six classes representing different types of logical graphical objects, namely
SVGDocument, Chart, Axis, Legend, Dataset, and Datapoint. In other words, the model classes all represent
nodes of the CAT. All of them have in common that their instances are initialised with a given SVG
element in the current document object model (DOM), where this element is expected to be the root node
of the graphics object represented by the instance. The constructor method traverses the DOM tree in
order to search for one or multiple specific descendant objects. As these graphics objects are uniquely
characterised by their ARIA role attribute in most cases, JavaScript selector methods are mainly used for
this purpose.

The constructor then iterates over all elements found and processes each of them. If the type of
the descendant object searched for corresponds to one of the classes named above, a new instance of
the respective class is created and passed the element found. Otherwise, the data contained within the
descendant object are immediately extracted. In both cases, the results are stored in an array which is
accessible as a public instance variable. The techniques for searching and extracting the chart objects
were inspired by those employed in Describler (see Section 3.6 and Subsection 4.5.1). The six model
classes are described in the following paragraphs.

The class SVGDocument represents the entire loaded graphics structure and is the first class to perform
the procedure of data extraction described above. When instantiated, its constructor expects to be passed

Software Architecture 133

the root <svg> element of the graphics document for initialisation. First, it tests whether a <title> and/or
<desc> element is present as a direct descendant, in order to specify a title and/or description for the entire
graphic.

Afterwards, it searches all descendants of the root for elements with the role chart. If no charts have
been detected this way, the root <svg> element is itself tested for the role chart, since the Describler system
also permits this element to be the chart root. For each of the charts found, a new instance of the class
Chart is created and initialised with the respective chart element. All Chart instances created are stored in
an array of type Chart which is accessible as a public variable of the SVGDocument instance.

A single chart is represented by an instance of the class Chart and is initialised by the passed chart
element. The constructor then searches for a chart title, which is represented by a descendant element
with role heading, and stores its text content in a public string instance variable. Moreover, the chart type
is determined by retrieving the value of the ARIA property aria-charttype attached to the chart root element
and is then stored in a public string variable as well.

Afterwards, all descendants of the chart element are searched for axes, legends, and data series. They
are detected by querying for the role axis, legend, or dataset, respectively. For each axis, legend, and data
series found, an instance of the respective class is created, initialised with the found element, and stored in
a dedicated array as public instance member. As in Describler and the current AChart taxonomy, an axis
is identified by its variable as part of its role (for example, role=xaxis in the case of an x-axis), additional
queries for axes annotated with these roles are necessary: if no x-axis has been stored after the extraction
procedure described above, the chart is searched for an element with role xaxis. The same strategy is
applied for a y-axis.

The Chart class contains three public static methods for tasks often performed within the model.
extractAll() has the purpose to find all descendant elements of a given node with a specified role. For
each descendant found, a callback function is executed. The method getTitle() searches for the title of a
particular chart object, applying various strategies. The algorithm is similar to that for the computation of
accessible names recommended by W3C [2018d] (see Section 4.2), additionally considering descendant
elements with role heading. According to the AChart ARIA system, the method first retrieves a possible
aria-labelledby property of the chart object and searches for all elements referenced by this attribute. If
no title has been found this way, the method tests whether a descendant with the role heading is present,
which also takes into account titles annotated according to the Describler system. With regard to this role,
however, it is important to take into account that it may occur several times within the graphics document,
namely for the chart root, the axes, the legend, and the data series titles as well as the data point names.
This means that for each of the elements annotated with the role heading, the associated chart object needs
to be determined. While the AChart system prescribes that a title or name and its corresponding object
be linked by the aria-labelledby property for this purpose, such an association is not defined in the original
Describler system.

If, for example, all descendants of the chart root element are queried for elements with role heading, the
selector method will return not only the chart title but also the axis, legend, and / or data series titles. In
order to identify the chart title out of all the elements found, the role of the ancestor needs to be detected.
Since the root element of the respective chart object does not need to be an immediate ancestor, the
applied strategy is to recursively obtain the ancestor element until a node with a role attribute has been
found. If this attribute corresponds to the object for which the title is being sought (that is, chart in the
current example), the found element is considered as title for the object. The recursive test just described
is performed by the method hasParent(), returning the result as a boolean value.

In the case that no suitable element with role heading could be found either, the method getTitle() tests
the given object for a possible aria-label property and returns it instead. This case is not expected to occur
for charts annotated by the AChart or the Describler system; nevertheless, it is considered in order to
achieve a certain degree of compatibility to other chart annotation formats. For the same reason, if the
property aria-label has not been specified either, a possible descendant <title> or <text> element is considered
independently of any ARIA attribute. For unambiguous detection of the chart object associated with this

134 7 AChart Interpreter

element, the method hasParent() just described is applied here, too. An excerpt of the declarations and
the constructor for instances of the Chart class is given in Listing 7.1, the described static methods can be
seen in Listings 7.2 and 7.3.

Similar to the case of the Chart class, instances of classes Axis and Legend are initialised with the
respective root element. Afterwards, the constructors search for an axis or legend title using the method
Chart.getTitle() and for descendants representing the contained items. In the case of an axis, the items are
identified by the role axislabel, for legends by the role legenditem. The text content of all axis labels is
stored in a public instance variable of type string array. The same for all legend items. Furthermore, the
title, minimum, and maximum values of an axis or legend are stored in separate public variables of the
instance. To detect the minimum and maximum value, the presence of the ARIA properties aria-valuemin
and aria-valuemax is tested. If one or both properties are not available, the first and/or the last axis label or
legend item according to the order in the SVG source code are considered instead.

Since data series are denoted by the role dataset in the applied ARIA system, the class for data series is
accordingly named Dataset. The constructor first tests for a possible title of the data series. Subsequently,
it searches for all data points contained, querying all descendant elements with the role datapoint. Each
data point element found is passed to a new instance of the class Datapoint, and all Datapoint instances are
stored in two public arrays of the Dataset instance. The first array is left without modifications, whereas the
second one is sorted in increasing order by the first values of the data points. Afterwards, the constructor
performs the computation of the statistical values for the data series. The results are stored in public
variables of the Dataset instance. Both the sorting and the statistical calculations are achieved by accessing
the public numerical variables of all stored Datapoint instances.

Apart from the constructor, Dataset instances offer the public methods getStatistics() for obtaining all the
statistical values as one data structure of type Statistics (see Subsection 7.2.1), getComparisonToStatistics() for
obtaining the statistics of a given data point, and getComparisonToAll() for comparing a given data point to
all other values of this series. The comparison methods use the public comparison method of the given
data point instance.

Data points are represented by the class Datapoint. Each of its instances expects the root SVG element of
the respective data point for initialisation. In order to determine the value of the data point, the constructor
queries for a descendant element with the role datavalue. Its text content is extracted and stored as a public
instance variable of type string. In order to support sorting and statistical computations, the string is also
converted to a numerical value and stored in an associated instance variable of type number.

In addition, the Datapoint constructor tries to determine the name of the data point. In both the AChart
and the Describler systems, the relation between a data point and its name is expressed by the ARIA
property aria-labelledby; however, in the former case, it is assigned to the data point element, whereas, in
the latter case, it is attached to the object for the data point value. For this reason, the constructor first
tests if the property is set for the data point and uses this one to determine the name. Only if no name can
be obtained in this way, is an aria-labelledby property possibly assigned to the data point value is considered
instead. In both cases, for pie charts, the property points to the id of the associated legend item, otherwise
to that of the corresponding x-axis label or, in the AChart system, to a descendant element with role
heading. Since the x-axis or legend does not represent a descendant object of the data point, the entire
SVG structure needs to be traversed in this case.

Beyond the constructor, this class contains the public method getComparisonTo() for calculating a
comparison of the data point to a given numerical value. The method returns a data structure of type
Comparison (see Subsection 7.2.1) containing the label of the data point, the absolute difference between
the value of the data point and the given value, as well as the corresponding percentage.

Software Architecture 135

1 export class Chart
2 {
3 // Root element of the chart:
4 root : SVGElement
5
6 // Chart type (e. g., bar, line, pie):
7 type : string
8
9 // Chart title:

10 title : string
11 ...
12 // Data series:
13 datasets : Dataset[] = []
14
15 axes =
16 {
17 x: <Axis>undefined ,
18 y: <Axis>undefined ,
19 others: new Array<Axis >(0)
20 }
21 ...
22
23 constructor(root : SVGElement)
24 {
25 this.root = root;
26
27 this.type = root.getAttribute("aria-charttype");
28 ...
29 this.title = Chart.getTitle(this.root, "chart", this.root);
30 ...
31
32 Chart.extractAll(root, "dataset", (item : SVGElement) =>
33 {
34 this.datasets.push(new Dataset(item, this.root));
35 });
36
37 ...
38
39 }
40
41 ...
42 }

Listing 7.1: Excerpt from the source code for the model class Chart. First, the public instance
variables are declared. The constructor then retrieves the chart type by reading the ARIA
property aria-charttype, the title by means of the static method getTitle(), and uses the static method
extractAll() to find and store all contained data series.

136 7 AChart Interpreter

1 static extractAll(root : SVGElement , type : string,
2 callback : Function , required_parent_role? : string) : void
3 {
4 let elements = root.querySelectorAll("[role=’" + type + "’]");
5 for (let index = 0; index < elements.length; index++)
6 {
7 if ((!required_parent_role) ||
8 (Chart.hasParent(elements[index], required_parent_role)))
9 {

10 callback(elements[index]);
11 }
12 }
13
14 }
15
16 ...
17
18 static hasParent(element : Element, role : string) : boolean
19 {
20 let parent_role = "", parent_element = element.parentElement;
21
22 // Find the next parent of the given element with any ARIA role:
23 while ((parent_element) &&
24 !(parent_role = parent_element.getAttribute("role")))
25 {
26 parent_element = parent_element.parentElement;
27 }
28
29 // Check if this parent has the required role:
30 return (parent_role === role);
31 }

Listing 7.2: Two public static methods of the model class Chart. extractAll() searches all descendants
of the given SVG element for objects with the specified ARIA role and executes the provided
callback function with each of the found elements as argument. Optionally, only those of the
found objects are considered which have an ancestor with the specified role. The method uses
hasParent(), which searches the next ancestor with an ARIA role assigned and then tests whether
this role is the desired one.

7.2.3 View Modules
The basic initial GUI of AChart Interpreter is defined in an HTML file. It contains the logo text of the
application, the main menu including the two controls for loading an SVG file, the button to hide and
unveil the menu in the case of displaying the GUI in a narrow window, and a container for the placeholder
text along with the arrow-up symbol. Moreover, the basic structure of the graphic and the text panel is
defined, and the main JavaScript file and Cascading Style Sheets (CSS) definitions are referenced.

The interactive view functionality mainly consists of the class UserInterface. It is instantiated by the
constructor of the AChartInterpreter class instance immediately when launching the programme. UserInterface
is in charge of creating GUI objects, writing messages and chart data to them, appending them to the
appropriate node in the DOM tree, attaching event listeners to them, handling user input, and managing
keyboard focus. The GUI objects are created by inserting HTML templates defined as string constants
in the static class HTMLTemplate; some of them also contain additional inline CSS. For each GUI object
which might need to be modified at a later time, its reference is stored in an instance variable of the class

Software Architecture 137

1 static getTitle(element : SVGElement , role : string,
2 root : SVGElement) : string
3 {
4
5 // First, consider a possible aria-labelledby property
6
7 let label_ids_str = element.getAttribute("aria-labelledby") || "";
8 let label_ids = label_ids_str.match(/\S+/g) || [];
9

10 let label = "";
11 for (let index = 0; index < label_ids.length; index++)
12 {
13 let label_element = root.querySelector("#" + label_ids[index]);
14 if ((label_element) && (label_element !== <Element>element))
15 {
16 if (label)
17 {
18 label += ", ";
19 }
20 label += label_element.textContent.trim();
21 }
22 }
23
24 if (label) { return label; }
25
26 // If no title has been found this way,
27 // search for a child element with ARIA role "heading"
28 let title_element = element.querySelector("[role=’heading’]");
29 if ((title_element) && (Chart.hasParent(title_element , role)))
30 {
31 return title_element.textContent.trim();
32 }
33
34 // If still no title has been found, consider the property "aria-label":
35 if (label = element.getAttribute("aria-label"))
36 {
37 return label.trim();
38 }
39
40 // If still no title has been found, search for a child <title> element
41 // without ARIA role:
42 title_element = element.querySelector("title");
43 if ((title_element) && (!title_element.getAttribute("role"))
44 && (Chart.hasParent(title_element , role)))
45 {
46 return title_element.textContent.trim();
47 }
48
49 // As a last attempt, look fora child <text> element without ARIA role:
50 title_element = element.querySelector("text");
51 if ((title_element) && (!title_element.getAttribute("role"))
52 && (Chart.hasParent(title_element , role)))
53 {
54 return title_element.textContent.trim();
55 }
56
57 // It seems there is no suitable text at all, so return an empty string:
58 return "";
59 }

Listing 7.3: Public static method getTitle() of the model class Chart. It applies the described algorithm
to determine the title of the given element and uses hasParent() to test if the role of the found
candidate is equal to that of the element.

138 7 AChart Interpreter

UserInterface in order to minimise the number of DOM queries. Furthermore, every chart tree object is
attached a listener for focus events in order to facilitate synchronised focus highlighting, and every SVG
element representing a chart object within the graphic panel is added a listener for mouse events which
sets the focus to its counterpart in the text panel.

The constructor of the UserInterface instance composes the initial GUI and enables the general function-
ality. It adds text labels to the existing controls and creates the buttons for activating and deactivating the
integrated speech output, for toggling between document and application mode, as well as for showing
the help window. Moreover, it adds handlers for click events to these controls and a global event listener
for processing key presses and mouse events to the main window. Afterwards, it initialises the com-
ponents of the graphic panel and attaches key event listeners so that Tab navigation skips the displayed
SVG document. Apart from the GUI creation, the constructor also instantiates the Speech class for the
initialisation of the speech synthesis and attaches an event listener to the main window which causes the
text of every newly focused object to be read aloud if the user has enabled the speech output. Finally, the
context menu for data points is initialised.

When a file has been opened, its SVG content is passed to the method insertSvg() of the UserInterface
instance. This method hides the placeholder text, appends the SVG to a container element of the graphic
panel, and unveils the controls for removing the graphic as well as for toggling the highlighting mode.
After the completion of the analysis, the method initTextPanel() is called, which takes information on the
root <svg> element of the loaded graphic as arguments and creates a corresponding root node of the chart
tree. Subsequently, all other chart tree objects are inserted into the text panel by dedicated methods of the
UserInterface instance. They are called and passed the corresponding chart data by an instance of the main
class AChartInterpreter. Those chart tree objects which can be expanded and collapsed in order to display
and to hide descendant chart objects are implemented using the HTML element pairing of <summary> and
<details>.

The method initDataList() has a special role for initialising a list of data points. It is invoked one time at
the creation of each data series and appends the drop-down list for choosing the sorting mode, a container
element for the list view, and the button for displaying the statistics to the data series object. Afterwards,
it adds an event listener to the drop-down list which triggers the sorting according to the user’s choice.
The list view container, too, has an event listener attached, which handles key presses for the navigation
among the data points and series. The event listeners for opening the context menu are attached to each
single data point upon creation. Other methods of the UserInterface instance include those for the visual
highlighting of SVG objects, for displaying details in a separate window, as well as for the removal of the
current list view and its replacement by a new one according to the given sorting mode.

The context menu displayed for each data point on request is represented by instances of the ContextMenu
class. An instance stores each menu item as a special type of data structure according to an interface
defined in the same module. The set of menu items is implemented as a linked list of these variables.
First, the constructor creates the menu container and then assigns it the necessary listeners for mouse and
key events. The method addItem() creates a menu item and adds it to the menu. This method needs to
be called for each new menu item, passing it the text of the item, its associated key command, and the
function which shall be called on activation. The order in which the different menu items are registered
determines the order they are listed in the menu. To open and close the menu, other dedicated methods
of the ContextMenu instance need to be called. The open() method expects to be passed the DOM node the
menu shall be appended to. More details on the implementation of this class are given in Subsection 7.4.2.

Message is a static class with various methods for composing human-readable text messages, such as
chart, axis, and legend summaries and descriptions. Each method expects the necessary data to be shown
in the respective message and concatenates them with text blocks defined in the Text class. The latter
is a static class of string constants for all kinds of text output intended. This organisation of message
composition shall provide the basis for localisations to other languages with low technical effort. The
methods of the Message class are mainly called by an instance of the main class AChartInterpreter, where
their return value is immediately passed to a method of the UserInterface instance. As an example, the

Software Architecture 139

1 static getChartDescription(type : string, values_title : string,
2 names_scale : Scale) : string
3 {
4 // Start the description with the chart type:
5 let description = (type in Text.CHART_TYPE) ? Text.CHART_TYPE[type][2] : Text.

CHART_TYPE.other[2];
6
7 // Append "showing" and the y-axis or data series title;
8 // if none is given, insert "values" as placeholder text instead:
9 description += ‘ ${Text.SHOWING} ‘ + ((values_title) ?

10 ‘"${values_title}"\n‘ : ‘${Text.SCALE_TITLE_REPLACEMENT} ‘);
11
12 // Only append this part if any x-axis or legend data are given:
13 if (names_scale)
14 {
15
16 // Append "in relation to" and the x-axis or legend title ;
17 // if none is given, insert "values" as placeholder text instead:
18 description += ‘${Text.RELATED_TO} ‘ + ((names_scale.title) ?
19 ‘"${names_scale.title}"\n‘ : ‘${Text.SCALE_TITLE_REPLACEMENT} ‘);
20 // End with the range of x-axis or legend values:
21 description += ‘${Text.FROM} ${names_scale.min} ‘ +
22 ‘${Text.TO} ${names_scale.max}‘;
23 }
24
25 return description + ".";
26 }

Listing 7.4: Source code of the static method getChartDescription() in the Message class. It expects the
chart type, the title of the y-axis, as well as the title, the first, and the last label of the x-axis as
input. In the case of a pie chart, the data series title can be passed instead of a y-axis title and the
legend data instead of x-axis data. The method creates a short description of the chart. If no x-
or y-axis title is given, it inserts the placeholder text “values”. In case no x-axis or legend data
are present, it omits the part starting with “ in relation to ”.

method Message.getChartDescription() is shown in Listing 7.4.
The class Speech is used to facilitate the integrated speech feature of AChart Interpreter. It encapsulates

the various classes of the Web Speech API and performs all necessary steps for their initialisation.
When creating a Speech instance, its constructor tests if any speech synthesis is available on the current
configuration and initialises the text label of the GUI button for toggling speech output accordingly. In
case no speech is supported, a corresponding static message is written to the button. Otherwise, the
button is labelled Disable built-in speech (Alt+S), and initialisation of speech synthesis is started. Afterwards,
the public toggle() method is called to disable or enable the synthesis and to change the text label of the
menu button accordingly. The public method speak() expects an arbitrary text string and causes it to be
read aloud if speech has been enabled. Moreover, the public method readElement() composes a message
out of a given GUI object, depending on the object type, and invokes speak() on this message. Further
details on the implementation of the Speech class will be given in Subsection 7.4.3.

7.2.4 Controller Modules
The module achart-interpreter contains the main class AChartInterpreter and represents the entry point
of the software. In order to facilitate choosing and opening an SVG file, it communicates with the static
class FileLoader. The achart-interpretermodule first adds an event listener waiting for the HTML content

140 7 AChart Interpreter

to completely be loaded. Its callback function creates an instance of the class AChartInterpreter, which
launches the application.

The constructor of the AChartInterpreter class first creates a UserInterface instance and, this way, triggers
the composition of the initial GUI. Afterwards, it invokes the method FileLoader.prepareFileChoosing(), which
attaches event listeners for user input to both controls for loading a file and inserts the names of all sample
SVG charts into the corresponding drop-down list. The set of sample charts is determined by the entries
of the plain-text file samples.txt which is generated at build time and placed into the directory of AChart
Interpreter’s main JavaScript file.

When the user has chosen a file from one of the two controls in the main menu, its SVG content is
read by a private method of the FileLoader class and passed to the method interpret() of the AChartInterpreter
instance. interpret() immediately calls the method insertSvg() of the UserInterface instance, which appends the
SVG content to a container of the graphic panel and returns the DOM node of the root <svg> element.
Afterwards, an instance of the SVGDocument model class is created and initialised with this root element,
which starts the analysis of the entire SVG structure and the composition of the CAT as described in
Subsection 7.2.2. As soon as this process has completed, the method initTextPanel() of the UserInterface
instance is called and passed a summary of the loaded graphic, the number of charts contained by the SVG,
and a possible description provided by the author. The summary is obtained by calling the getSvgSummary()
method of the Message class.

Subsequently, the interpret() method iterates over all charts and chart objects found within the SVG
structure. For each graphics object, in a similar manner as just described for the root <svg> element, it
invokes the appropriate Message methods in order to generate human-readable text strings and a UserInterface
method to create a corresponding GUI object in the chart tree representation. As an example, the source
code for inserting the GUI objects of the graphics root and all contained charts is shown in Listing 7.5.

For each data series, the method initDataList() of the UserInterface instance (see Subsection 7.2.3) is called.
The iteration over all the data points of a series for inserting them into the chart tree was placed into a
separate AChartInterpreter method named listDataPoints(), because it needs to be performed again every time
the sorting mode is changed. Other methods of an AChartInterpreter instance include showDatasetStatistics() for
displaying the statistical characteristics of a given data series, compareToRestOfDataset() for displaying the
comparisons of a particular data point to all other data points in the same series, and compareToStatistics()
to display the statistical characteristics of a specified data point. All three methods are invoked by event
listeners within a UserInterface instance. They retrieve the requested data or comparisons from the specified
Dataset instance, pass them to an appropriate method of the Message class, and hand the resulting text
string to the showDetails() method of the UserInterface instance.

Software Architecture 141

1 interpret(svg_content : string, filename : string) : void
2 {
3 // Display the SVG in the graphic panel:
4 let svg_root = this.user_interface.insertSvg(svg_content , filename);
5
6 // Parse the SVG, extract chart data etc.:
7 this.svg_document = new SVGDocument(svg_root);
8
9 // Initialise text panel with SVG title and summary:

10 this.user_interface.initTextPanel(Message.getSvgSummary(
11 this.svg_document.titles[0], this.svg_document.chart_type_counts),
12 this.svg_document.charts_count , this.svg_document.descriptions[0]);
13
14
15 // Iterate over all known chart types incl. "unknown"
16
17 // Index of chart independent of its type (for user interface):
18 let charts_index = 0;
19
20 for (let chart_type in this.svg_document.charts)
21 {
22
23
24 // Add all charts of this type to the web interface
25
26 for (let charts_index_of_type = 0;
27 charts_index_of_type < this.svg_document.charts[chart_type].length;
28 charts_index_of_type++, charts_index++)
29 {
30 let chart = this.svg_document.charts[chart_type][charts_index_of_type];
31 this.svg_document.all_charts[charts_index] = chart;
32
33 // If x-axis is present, consider it as names scale,
34 // otherwise consider a possible legend:
35 let names_scale = chart.axes.x ||
36 ((chart.legends) ? chart.legends[0] : undefined);
37 let names_scale_data : Scale = (names_scale) ?
38 {
39 min: names_scale.min,
40 max: names_scale.max,
41 title: names_scale.title
42 } : undefined;
43
44 // If y-axis is present, consider it as values scale,
45 // otherwise consider the first data series:
46 let values_scale_title = (chart.axes.y) ? chart.axes.y.title :
47 ((chart.datasets) ? chart.datasets[0].title : "");
48
49 this.user_interface.addChart(charts_index ,
50 chart.root, true, chart.datasets.length,
51 Message.getChartSummary(chart.type, chart.title,
52 chart.datasets.length, true, charts_index_of_type),
53 Message.getChartDescription(chart.type, values_scale_title ,
54 names_scale_data));
55
56
57 // Add all axes of each chart to the web interface
58 ...

Listing 7.5: Excerpt from the source code of the method interpret() defined in the AChartInterpreter class.
It first displays the visualisation in the graphic panel, starts the analysis of the SVG content,
creates the GUI object for the graphics root, and then inserts a GUI object for each of the charts
found within the graphics document, enumerating them by their types.

142 7 AChart Interpreter

7.3 AChart Summariser
AChart Summariser is a command-line programme which outputs a textual summary of an accessible
ARIA-annotated SVG chart. The text output is encoded as 8-bit Unicode Transformation Format (UTF-
8) and is structured using markdown syntax [GitHub 2020]. The programme displays basic summary
information about each chart in the SVG file, such as the chart title, its type, the titles of the data series and
the number of contained data points, as well as information about the axes and legends. Command-line
options can be used to output statistics on all data series and to list their data points.

7.3.1 User Interaction
AChart Summariser is started by calling its executable binary file from the text terminal. If the executable
file is located in the current working directory or in a directory included within the search path of
the platform, usually the command asummarise or ./asummarise will launch the programme. The
command-line syntax is as follows:

asummarise [--output OUTPUT-FILENAME] [--statistics]
[--datapoints] [--version]
[--help] [--input] SVG-FILENAME

All options are treated as case-insensitive and can be used in arbitrary order. The argument SVG-
FILENAME is mandatory and can be given either as the last command-line parameter or, alternatively, at
any position, prepended by --input. In case an argument other than those above is given, the programme
will exit with an error message stating that an invalid option has been used. Similarly, if no input SVG
file is specified or if one of the above options requiring an associated argument is used without providing
the argument, the programme will exit with an appropriate error message. In all these cases, the standard
help text (see Appendix C) will be displayed along with the respective error message.

Once running, the version information “AChart Summariser version 1.0.0” and the message “File...
loaded” are written to stdout. The chart summary is written to stdout, unless an output file was specified.
It consists of the following data:

• The name of the loaded SVG file.

• The title and description of the SVG and the number of contained charts.

• Each chart found in the SVG, expressed by its chart type, an index number, its title, and the number
of its contained data series.

• For each chart:
– A description including the chart type, the titles of the contained axes, and the first and last

value of the x-axis. In the case of pie charts, which do not have any axis, the title of the first
data series found, the title of the first legend found, as well as the first and last item of this
legend will be displayed instead.

– Each axis found, expressed by its variable, its title, the number of its labels, and its first and last
label.

– Each legend found, expressed by its title, the number of its labels, and its first and last label.

– Each data series found, expressed by an index number, its title, and the number of contained
data points.

If the option --statistics is given, AChart Summariser will additionally display statistical information
for each data series, including the number of contained data points, the minimum and maximum value,
the range between the latter two values, the sum of all values, the average, and the median. Using the
option --datapoints will additionally output all data points of every data series. All graphics and chart
information is composed in exactly the same manner as the textual content of the chart tree objects

AChart Summariser 143

specified in Subsection 7.1.1, with the exception that each title is followed by a quotation mark, a comma
and a line break instead of a quotation mark, a comma, and a space character. The line breaks are inserted
to avoid writing beyond the end of a screen line in case of long titles since most text terminals do not
provide automatic line breaking between words. The text fragments are structured by means of markdown
elements for headings and unordered lists as described in Subsection 7.3.2.

If the option --output is specified along with a valid filename, the above output, starting with the name
of the SVG file, is directed to the specified file as plain text. In this case, the user will be informed by a
console message that the summary is being written to this file. Both the input and the output filename
may include a path. If no path or a relative path is specified, the programme will take the current working
directory as a reference. The option --help causes AChart Summariser to display its standard help text,
as listed in Appendix C, and then exit. If the option --version is given, AChart Summariser prints
version information and exits.

7.3.2 Software Architecture
AChart Summariser can be regarded as a command-line version of AChart Interpreter. Indeed, both
programmes share nine common modules: in particular, all six model classes for chart analysis, the view
classes Message and Text for message composition, and the module declaring the common interfaces.
Node.js is used as the JavaScript runtime environment. Since no browser DOM is available in this case,
the DOM is emulated using the jsdom package [jsdom 2021], in order to facilitate the DOM traversal
of SVG elements performed by the model classes. Self-contained binary executable files for various
platforms are generated using nexe [Boyd et al. 2020].

The handling of command-line arguments and text output is achieved by the main class AChartSummariser.
For reading SVG and writing to text files, the programme contains the singleton class FileHelper. The
general procedure of AChart Summariser can be described as follows. After launching the asummarise
command, an instance of the main class is created, containing instance variables which correspond to
the possible execution parameters. The constructor calls the method parseCommandLine(), which sets these
variables according to the arguments specified by the user.

Afterwards, the AChartSummariser instance is passed to the static method FileHelper.loadFile(). This method
opens the specified input file, searches it for a starting <svg> tag, reads all the file content beginning at the
position of this string, and appends the SVG structure as DOM node to the <body> element of the virtual
document. As the function for reading the file is an asynchronous process, the root <svg> element cannot
be returned to the constructor method. Instead, it is passed to the method processSVG() of the main class
instance by means of an anonymous callback function, which is executed as soon as loading has been
completed.

The method processSVG() first calls the static method FileHelper.openOutput() which sets the instance
variable output of the AChartSummariser instance according to the user’s preference. If an output file name
has been specified from the command line, a file with the desired name is opened with write access, and
its associated write stream is stored in output. Otherwise, the instance variable is set to stdout. This
way, all subsequent information can be written to the preferred output target without the need for multiple
conditional statements. Afterwards, an instance of the class SVGDocument is created from the passed SVG
node, which starts the analysis process.

Finally, the method processSVG() iterates over all chart objects which have been detected during the
analysis and whose information has been requested by the user. For each of these objects, the extracted
information is composed into human-readable text strings using the methods of the singleton Message
class and written to the stream stored in the output instance variable. In order to create a textual layout
and markdown syntax reflecting the nested structure of the chart objects, line breaks and indentations
are inserted according to the level of the respective object within the hierarchy. All graphical objects are
represented as list items by a leading hyphen and a space character (-). The main heading is marked by
prepending the number character and a space “# ”, subheadings are denoted by prepending two number
characters and a space “## ”.

144 7 AChart Interpreter

7.4 Selected Details of the Implementation
This section covers aspects of AChart Interpreter’s GUI implementation which were particularly interest-
ing or tricky.

7.4.1 Accessibility Considerations
As mentioned in the introductory paragraphs of this chapter, a major goal of the project was to make
AChart Interpreter as screen-reader-friendly as possible. Throughout the entire implementation phase,
the accessibility of the GUI was extensively tested on the following configurations:

• Operating system: Windows 10.

• Browsers: Mozilla Firefox, Google Chrome, and Electron.

• Screen readers: JAWS 2019, JAWS 2020, and NVDA 2020.
A fundamental question was how to present the chart objects and their data to screen reader users.

In most of the software solutions currently available, a blind user navigates directly through the SVG
elements, where information on the focused element is conveyed to the screen reader. For instance,
Describler writes the data extracted from the focused object to a read-only text field. If this text field
was assigned the ARIA property aria- live, screen readers might announce any text written to it by
speech, but, testing for this project found that this information was not shown on a connected Braille
display. Furthermore, this strategy does not provide any means for screen reader users to have the current
information spelt out or to repeat it without leaving the current element and returning to it.

The solution of embedding data into the SVG elements by means of the aria- label or aria- labelledby
property, as applied in several charting libraries, overcomes the two described issues. Nevertheless, this
manner of implementation implies the modification of the SVG source code at runtime. The sorting
of data points, especially, would require substantial changes to the chart itself in this case. In general,
presenting the data in a standard HTML user interface produced more stable results with lower latencies
during keyboard navigation. For this reason, the hybrid representation by means of a graphic and a text
panel was chosen for AChart Interpreter. This solution has the additional advantage that, for a sighted
user, several pieces of the extracted data are visible at the same time.

The objects of AChart Interpreter’s GUI were implemented by semantically appropriate HTML ele-
ments wherever possible. In particular, the following elements were used:

• <h1> to <h3> for headings.

• <p> for paragraphs of static text.

• <button> for all buttons which toggle between different modes, or open or close a window.

• <select> with descendant <option> elements for drop-down lists.

• <label> for the associated text of a drop-down list with the <select> element as descendant.

• <details> for chart tree objects containing descendant GUI objects, i.e. the graphics root object,
charts, and data series. The <details> element supports opening and closing by both mouse click and
keyboard and reports its current status to the accessibility tree of the browser.

• <summary> for the text label of a <details> element.

• and for lists.

• for data points and all other list items.
The semantically neutral <div> element was only used for containers and for short fragments of static text,
in particular, the objects for descriptions by the graphic’s author, chart descriptions, axes, and legends.

Selected Details of the Implementation 145

With this implementation, no ARIA roles needed to be set for most of the GUI elements. For all those
which have their associated text included, ARIA labels were not regarded as necessary either. However,
every container for a list of data points was given the property aria-label with its value set to the title of the
respective data series, causing this title to be read aloud by screen readers when moving the focus into
this list. For data series without any title, the default label was set to “Data list”.

Both the structure of the basic HTML source code and the insertion of all the dynamically created
GUI objects were implemented so that the resulting order within the DOM tree corresponds to a logical
reading order for blind users. This way, screen reader users can start the navigation from the main menu
at the top of the window and then move downwards level-by-level through the chart tree until reaching a
list of data points. Furthermore, all GUI objects were assigned the tabindex attribute so they can receive
keyboard focus. While this would not have been necessary for static text fragments due to the special
navigation features of screen readers for web documents, these objects were included into the Tab order
as well, so that they can be read by the integrated speech output.

For most of the elements, the tabindex attribute was set to 0, enabling navigation by Tab and Shift+Tab.
In the case of the lists of data points, by contrast, the value 0 was only assigned to the list container,
whereas for the single data point objects the tabindex attribute was set to -1. This way, the data points can
programmatically receive focus without being included in the Tab order. An event listener was attached
to the container of a data list, which reacts as soon as the container is focused by Tab or Shift+Tab. Its
callback function immediately moves the focus to the descendant data point object which has been stored
as previous selection of the respective list. This, however, had the consequence that the propagation of
focus events needed to be stopped for all data point objects because, otherwise, focusing a data list would
result in an infinite loop. Once the focus has been set to any data point object, the Cursor, the Home, and the
End keys are evaluated in a switch block for calculating which data point to focus next. The corresponding
GUI object is then selected by the focus() method specified for markup elements.

Certain interactive elements, such as <button> and <details>, dispatch click events also on presses of
the Enter or the Space key, others do not, such as drop-down menus. For this reason, an additional event
listener for handling presses of the Enter key was attached to the element. A solution for the desired
functionality could be to use a listener for change events, which is always triggered when selecting a list
item by mouse or keyboard. However, since stepping through the list items by keyboard is a common
way for blind users to read the items within a drop-down list, this manner of implementation would have
caused the associated action to be triggered at each of these navigation steps.

AChart Interpreter was implemented in an iterative design process which involved several informal
usability evaluations of the GUI performed by a blind user. In addition, the user interface was informally
tested one time by three other blind persons. In general, the GUI received highly positive feedback from
all participants. Many of the suggestions for improvement given by the users could be implemented in
subsequent iteration steps.

7.4.2 The Context Menu
Context menus are a common way to access specific options related to the selected GUI object. Context
menus are particularly popular among screen reader users, since they can usually be opened by a single
key press without further searching, support keyboard navigation, and additionally offer hot keys to
directly activate a particular option. Another advantage of context menus for visually impaired users is
the fact that, after quitting a menu without any action, usually by pressing Escape, the focus is reset to the
GUI object from which the menu was opened. For this reason, it was decided to provide some of AChart
Interpreter’s optional functions in a context menu which can be launched for each data point. The menu
is opened by clicking on any data point with the right mouse key or selecting a data point by keyboard
and then pressing the Context Menu key. While it currently contains only four entries, the ContextMenu class
was implemented so that any item can be added by calling the addItem() method of the respective instance.
This method expects three arguments: the string to be displayed for the entry, the associated hot key, and
the function to be executed on activation.

146 7 AChart Interpreter

HTML 5.1 specifies the <menu> element along with <menuitem> for exactly the purpose just described.
However, these elements are marked as experimental and are currently not supported by most browsers
[MDN 2020], meaning that the implementation of the desired functionality belongs to the web author’s
responsibilities for now. The design goals for the data point context menu were the following:

• It should appear as a pop-up menu, visually located near the chart tree object of the selected data
point.

• The activation of any option should be possible by left mouse click.

• Alternatively, the activation of any option should be possible with a hot key.

• Selection of a menu item should be possible using the Cursor-Up and Cursor-Down keys with cyclic
navigation, i.e. moving upwards from the first or downwards from the last item set the selection to
the last or first item, respectively.

• The selected item should be visually highlighted.

• When opening the menu, screen readers should be aware of it; both screen readers and the integrated
speech, if enabled, should report to the user that the focus has moved to a menu and output the menu
item initially selected.

• When selecting a different menu item, it should be reported by screen readers and the integrated
speech.

• The option of the selected menu item should be activated by pressing the Enter key.

• The menu should always close after activating an option or, without any other menu action, when
clicking outside the boundaries of the menu or pressing Escape.

• When closing the menu by pressing Escape, the focus should return to the data point selected when
the menu was opened.

To achieve this functionality, the context menu was implemented as follows. The <div> element was
chosen as container for the menu, combined with CSS specifying the visual appearance. In order to
provide appropriate semantic information for screen readers, the element was assigned the ARIA role
menu. Furthermore, it was given the tabindex attribute set to -1, so that it can be focused programmatically.

Since the class ContextMenu is meant to be instantiated only once at GUI creation, the constructor
was designed to perform as much of the initialisation as possible. The <div> container defined in the
HTMLTemplate class is made a DOM node and an event listener is attached for all key presses. In order
to avoid any possible conflicts with key commands of the web application or the browser, the first step
within the callback function is invoking the stopPropagation() and preventDefault() methods of the key event.
Afterwards, the key event is tested for any modifier key pressed, returning without any action if the result
is true. Finally, the pressed key is evaluated in a switch block which considers Cursor-Up for selecting
the previous menu item, Cursor-Down for selecting the next one, Enter for activating the option associated
with the selected item, and Escape for closing the menu. Moreover, in the default case, it is tested if the
pressed key represents the hot key defined for any of the menu items and, if so, the associated option is
executed. In a second event handler, mouse clicks on a menu item are processed, so that the option of the
clicked item is executed.

The basic element of a single menu item was defined in HTMLTemplate as <button> with the ARIA role
menuitem. All items currently supported by the application were declared in an array of the Text class, as
shown in Listing 7.6. Each array item represents one menu item in the form of a structure which holds the
displayed text as well as its hot key. In the instances of the class ContextMenu, a menu item is represented
as a structure of a special type Item defined by means of a TypeScript interface in the same module (see
Listing 7.7). This type contains four variables, namely the reference of the GUI object for the item,

Selected Details of the Implementation 147

1 static readonly MENU_ITEM =
2 {
3 JUMP_TO_BEGINNING:
4 {
5 text: ‘Jump to first item‘,
6 hot key: ‘f‘
7 },
8 JUMP_TO_END:
9 {

10 text: ‘Jump to last item‘,
11 hotkey: ‘l‘
12 },
13 COMPARE_TO_SAME:
14 {
15 text: ‘Compare to this data series‘,
16 hotkey: ‘c‘
17 },
18 COMPARE_TO_OTHER:
19 {
20 text: ‘Compare to other data series‘,
21 hotkey: ‘d‘
22 },
23 SHOW_DATAPOINT_STATISTICS:
24 {
25 text: ‘Show statistics for this item‘,
26 hotkey: ‘s‘
27 }
28 }

Listing 7.6: Excerpt from the source code of the static class Text. The four items of the data point
context menu are defined as an array, each of whose entries contains both the text label for the
menu item and the associated hot key. In addition, a fifth text and hot key for comparing a data
point to another data series is defined for future use.

the reference to the function which shall be executed on activation, as well as two variables referencing
the previous and the next item within the order of the menu. This way, the items can form a circular
doubly linked list, which was considered as preferred data structure because its sequential manner of
access facilitates the cyclic sequential navigation by means of the Cursor keys without the need of any
conditional execution on each step.

Each item is inserted into the menu by appending its <button> element to the <div> container and
initialising a new Item structure. If the new item is the last one within the sequence, its reference to the
next item is set to the first one, whereas the reference of the first item to the previous one is assigned the
new item, facilitating cyclic navigation. Moreover, the item structure is stored in a map, where its index
represents the associated hot key. This way, the press of a hot key can be processed by solely accessing
the corresponding map entry. In order to enable the insertion of items after instantiation has taken place,
the steps just described were implemented in a separate public method, which expects to be passed the
displayed text, along with the corresponding hot key of the item as the two-string structure defined in the
Text class, and the function to be executed on activation. An excerpt of the method is shown in Listing 7.8.

When opening the menu, its container element is inserted into the DOM tree as immediate descendant
of the GUI object passed by the caller, which is expected to be the selected data point object. Afterwards,
the first item is selected, and the focus is set to the menu container. Navigating forward and backward
within the menu is possible by just removing the selection from the current item and selecting the one

148 7 AChart Interpreter

1 interface Item
2 {
3 run : Function
4 element : HTMLElement
5 previous_item : Item
6 next_item : Item
7 }

Listing 7.7: Excerpt from the source code of the class ContextMenu. The type for storing a menu item
is declared as a structure with the member variables for the GUI object reference, the function to
be executed when activating the menu item, the previous item, and the next item within the order
of the menu.

referenced by the next_item or previous_item pointer, respectively. The source code for selecting the
next item and for processing hot keys can be seen in Listing 7.9. The selection of a particular item is
performed by setting the instance variable selected_item to the target Item structure and adding a class for
visual highlighting to the associated HTML element. Furthermore, the id attribute of the element is set
to a predefined string, which is used in conjunction with the ARIA property aria-activedescendant assigned
to the menu container. With this attribute, screen readers can detect which descendant element of an
interactive control is currently selected.

The context menu implemented as described above should usually cause a screen reader to announce
the menu and its items and to switch into a state comparable to application mode (JAWS) or focus mode
(NVDA) in order to pass the keys for the menu navigation to the application. While this worked as
expected with NVDA on both Mozilla Firefox and Google Chrome, JAWS only recognised the menu
reliably in conjunction with Firefox. On Chrome, by contrast, JAWS kept displaying the selected data
point when using the virtual cursor in combination with certain user settings (see Appendix B). Several
attempts were made to overcome this problem, such as appending the menu container element to different
DOM nodes and assigning the ARIA property aria-haspopup to the data point objects. Another option was
to include the menu element into the DOM tree already at startup with the hidden attribute set and opening
the menu by removing this attribute. Moreover, modifying the indication of the selected menu item by
assigning each item a different id attribute and changing the value of the property aria-activedescendant
accordingly was also tried. Despite these intensive efforts, no satisfactory solution to this problem could
be found.

7.4.3 Speech Synthesis
The Speech class of AChart Interpreter is in charge of all communication with any speech synthesiser
available through the Web Speech API [MDN 2019], which provides an integrated speech service to the
instances of the UserInterface and the ContextMenu class. At the beginning of the class declaration, the
Speech class defines a boolean constant ON_BY_DEFAULT,which determines whether speech output should
be enabled at startup. For the version described in this thesis, this constant is set to true.

Since some browsers and operating systems provide for the temporary download of speech engines on
request, a first step is to start this download as soon as possible [Bodner et al. 2020a, page 10]. This
is performed at the beginning of the Speech constructor. As the Speech instance is created within the
UserInterface constructor, the download is initiated immediately after launching the application and can
take place while the user is choosing a chart.

After this initialisation, the Speech constructor tests the availability of any speech engine by calling the
interface window.speechSynthesis. If speech is supported by the current configuration, this interface returns

Selected Details of the Implementation 149

1 addItem(text_key : string, run : Function,
2 position? : Item, append = false) : HTMLElement
3 {
4 let item : Item =
5 {
6 run: run,
7 element: Helper.appendHTML(this.menu_element ,
8 HTMLTemplate.MENU_ITEM),
9 previous_item : undefined ,

10 next_item: undefined
11 };
12
13 // If no item has been added yet, set this.first_item to this item
14 // and select it as default:
15 if (!this.first_item)
16 {
17 this.first_item = item;
18 this.selectItem(item);
19 }
20 // Otherwise , link the item with the one previously added:
21 else
22 {
23 item.previous_item = this.last_item;
24 this.last_item.next_item = item;
25 }
26
27 // Every new item is the last item of the menu so far:
28 item.next_item = this.first_item;
29 this.last_item = item;
30 this.first_item.previous_item = item;
31
32 this.item_count++;
33
34 // Text (incl. hotkey) displayed for the item:
35 item.element.textContent = Text.MENU_ITEM[text_key].text
36 + " (" + Text.MENU_ITEM[text_key].hotkey + ")";
37 item.element.setAttribute("aria-keyshortcuts", Text.MENU_ITEM[text_key].hotkey);
38
39 // Assign corresponding hotkey to the item:
40 this.items[Text.MENU_ITEM[text_key].hotkey] = item;
41
42 return item.element;
43 }

Listing 7.8: Excerpt from the source code of the method addItem() implemented in the class ContextMenu.
The method creates a context menu item by appending a new <button> element to the menu
container and writing the appropriate text label to it. The data of the menu item are stored in
a structure of type Item, where the member variables for the previous and the next item are set
according to the items already present within the menu. This structure is then stored in the
instance variable items of type Map<string,Item> under the associated hot key.

150 7 AChart Interpreter

1 this.menu_element.addEventListener("keydown", (event : KeyboardEvent) =>
2 {
3 event.preventDefault();
4 event.stopPropagation();
5
6 if ((event.shiftKey) || (event.altKey) || (event.ctrlKey) || (event.metaKey)

)
7 {
8 return;
9 }

10 let key = "";
11 if (event.key)
12 {
13 key = event.key.toLowerCase();
14 }
15
16 switch (key)
17 {
18
19 case "arrowdown":
20 this.removeSelection();
21 this.selectItem(this.selected_item.next_item);
22 this.user_interface.speech.speak(
23 this.selected_item.element.textContent);
24 break;
25
26 ...
27 default:
28 // If the key is among the defined hot keys, call the function
29 // assigned to the corresponding menu item and close the menu:
30 if (this.items[key])
31 {
32 this.close();
33 this.items[key].run();
34 }
35
36 }
37
38 });

Listing 7.9: Excerpt from the source code of the constructor for ContextMenu instances. In the switch
block of the callback function for the event listener attached to the menu container, the key
Cursor-Down is processed in order to select the subsequent menu item. The latter does not need to
be calculated, but is given by the member variable next_item of the structure for the current item.
A hot key press is evaluated in the default case by querying the map items for it and executing
the function stored in the run member of the corresponding item structure.

Selected Details of the Implementation 151

an instance of the class SpeechSynthesis, otherwise null. In the case that speech is available and shall
be enabled by default, the constructor calls the method setSynthesiser(), which stores the SpeechSynthesis
instance in the variable synthesizer of the Speech instance and calls the method setVoice(). In addition,
it attaches a listener to the SpeechSynthesis instance which is triggered in the case that voices have been
downloaded from a remote server and the loading process has been completed. Its callback function then
invokes setVoice() another time if no voice has yet been initialised.

The method setVoice() of the Speech instance detects the voices currently available and chooses an
appropriate one according to the preferred language. It therefore calls the method getVoices() of the
SpeechSynthesis instance. This method returns an array of all the voices provided, where each voice is
represented by an instance of the class SpeechSynthesisVoice. In order to find a voice for a particular
language, the array of voices is searched for a SpeechSynthesisVoice instance whose member variable lang
starts with a certain string. This variable is specified to contain a language tag as defined in [IETF 2009],
for example en-US for American English.

At the time of writing, the user interface of AChart Interpreter exists in English only, so only a voice
for English is searched for. However, the facility to search for voices of arbitrary languages is already
implemented. If no suitable voice has been found by the lang instance variable, the SpeechSynthesisVoice
array is searched for an instance whose name variable, converted to a lower-case representation, contains
the string english. If this query does not yield any result either, the first entry of the SpeechSynthesisVoice
array returned by the getVoices() method is considered. In any case, the voice is stored in the variable voice
of the Speech instance.

The public method stop() of the Speech instance interrupts any ongoing speech by calling the method
cancel() of the SpeechSynthesis instance. It is invoked when pressing any key as well as by clicking
anywhere within the GUI in order to provide the possibility to immediately output a new message.
Without interrupting the speech, the new information would be stored in a message queue and spoken
only after completing the current output, which would hinder rapid keyboard navigation by blind users.

The method speak() of the Speech instance takes a text string as input and sends it to the speech engine.
For this purpose, it first tests if a voice has been successfully initialised. If this is not the case, it calls
the method setVoice() another time. Afterwards, an instance of the class SpeechSynthesisUtterance is created
and initialised with the text to be read aloud. Moreover, the SpeechSynthesisUtterance instance needs to
be passed the voice and the tag for the language to be used, which is performed by setting its member
variables voice and lang accordingly. Finally, the SpeechSynthesisUtterance instance is passed to the method
speak() of the SpeechSynthesis instance.

The public method readElement() is provided to read the text content of a focused GUI object. It expects
the reference of this object as an argument and reads its text content as well as its element name, and,
in some cases, its ARIA role. Depending on the element name and the role, the content of the object is
concatenated with certain text indicators, such as “button” for button objects, “expanded”, or “collapsed”
for an open or a closed node of the chart tree. The composed string is then read aloud by the speak()
method.

Speech synthesis is disabled or enabled by the public toggle() method. If speech is active at the moment,
it destroys the current SpeechSynthesis instance, otherwise it creates a new one. This method also takes
care of speaking the appropriate message when turning speech on or off and changing the text label of
the corresponding menu button.

152 7 AChart Interpreter

Chapter 8

Outlook and Future Work

Although the AChart suite described in the practical part of this thesis is equipped with powerful features
for the creation and exploration of accessible charts, there is still much potential for improvements and
enhancements. All the components of the AChart software were implemented in a modular design in
order to provide the basis for future extensions. The source code of AChart Creator is publicly available at
[Kopel, Andrews, Mendoza Estrada, Grass et al. 2021], that of AChart Interpreter and AChart Summariser
at [Kopel, Andrews, Mendoza Estrada, Bodner et al. 2021a], and any helpful contribution will be highly
appreciated. Some ideas for desirable future development will be described in Section 8.2, embedding
them into general trends observed in the field. Among others, an essential goal is the support for more of
the numerous well-known chart variants. This, however, requires a system of ARIA roles and properties
covering the wide range of chart objects occurring in such charts to be developed. For this reason, several
potential extensions to the AChart taxonomy will be discussed first.

8.1 Evolving an Extended AChart Taxonomy
In Section 5.3, an ARIA-based system of roles and properties for charts was proposed. This taxonomy
builds upon the system used by Describler (see Subsection 4.5.1) and modifies it in order to overcome
certain insufficiencies of the original approach. Nevertheless, the resulting system still meets only the
requirements of bar, line, and pie charts with one or more data series. In pursuit of support for a larger set
of common chart types, it seems reasonable first to explore other types of charts which use tabular data.
As a first step, new values for the property aria-charttype should be defined, including but not restricted to
scatter, parallelcoordinates, star, donut, and gantt. As scatter plots can be classified as cartesian charts with
characteristics similar to those of bar and line charts, merely setting aria-charttype to scatter might suffice
to express the semantics of this chart type by means of the AChart taxonomy, provided that variation
in colour, size, or shape of the data point symbols can be represented by distinct data series. Similarly,
donut charts could be annotated in the same manner as pie charts applying the corresponding property
value for the chart type.

Parallel coordinates charts and star plots, by contrast, involve different axis types. For this reason,
it is proposed to use the role axis to define an axis in a chart with more than two axes. The property
aria-variable could then be defined to express its variable or index number. In addition, the standard ARIA
property aria-orientation could be applied to indicate the visual orientation of an axis, where possible values
could include horizontal, vertical, radial, and other. The data points for such charts are truly multidimensional
tuples, which cannot in general be represented as name-value pairs, but could still contain one descendant
element per component with role heading or datavalue, depending on the context. For unambiguous
annotation of these elements, the standard ARIA property aria-labelledby could be attached to each of them
in order to reference its associated axis. The strategy of allowing multiple data point descendants with
role datavalue might represent a general solution for all those cases where data points have more than one
value; for instance, in Gantt charts with a starting and an ending value on a time axis for each data point.

153

154 8 Outlook and Future Work

Here, the property aria-labelledby could be used to point to the label associated with the value (in the Gantt
chart example, “start” or “end”).

The current AChart taxonomy adopts the Describler role dataset for compatibility reasons and uses it
to denote data series. Describler does not recognise data series as such, but can handle multiple datasets.
Since the Describler project has not been continued since 2015, however, it seems reasonable to introduce
the dedicated role dataseries into future versions of the AChart taxonomy.

8.2 Software Enhancements
As one of the first steps for the further development of AChart Interpreter, it would be desirable to solve
the minor problems with regard to screen reader interaction described in Subsection 7.1.3. It is assumed,
however, that this will require cooperation with the developers of the respective screen readers.

In both AChart Creator and AChart Interpreter, it is intended to implement support for other chart
types. This could first include scatter plots and donut charts, as well as charts of tabular data with higher
dimensions, such as parallel coordinates charts, star plots, and similarity maps, which do not significantly
differ from the already supported types with regard to their data structures. For AChart Creator, the
visualisation of multiple data series should be added to more chart types as well.

In a second step, other kinds of visualisations could be considered, for instance, flow diagrams and
hierarchy visualisations. Similarly, both AChart Creator and AChart Interpreter could be extended to a
larger set of ARIA-based systems for chart annotation, such as the pseudo-table (see Subsection 4.5.4)
and the pseudo-list approach (see Subsection 4.5.5), as well as a system based on the WAI-ARIA Graphics
module (see Subsection 4.5.2), all possibly enhanced as proposed in Section 5.2.

The functionality of AChart Interpreter could be extended by other analytical features. For example, it
would be possible to compare a data point not only to the data series it belongs to, but also to different
ones. As an additional option for obtaining an overview of the data, a sonification feature could be
implemented, starting with sequential playback of a data series, as provided in most of the solutions
presented in Chapter 3. Going even further, AChart Interpreter’s navigation commands could be applied
to sonification functionality, too, where the currently selected data point is played, so that the user is in
full control of the playback. This option could be combined with the existing textual output, which might
further help some users to understand the chart.

It would be possible to add interaction with touch-sensitive tactile graphics displays like the Graphiti
by Orbit [2021] (see Subsection 3.1.2). Like with the visual and textual representation in the Graphic Panel
and Text Panel, synchronised navigation should be possible, so that the chart object currently focused in
AChart Interpreter is clearly highlighted on the tactile display and, conversely, touching an object within
the haptic representation sets the focus of AChart Interpreter to its counterpart in the Graphic Panel and
Text Panel. This way, AChart Interpreter could be extended to a system offering multimodal exploration,
where the accessible information of the currently touched chart object is read aloud by speech synthesis,
displayed in Braille, and/or sonified, all flexibly combined according to the user’s preferences. The open
application programming interface (API) provided by Graphiti for both input and output as well as AChart
Interpreter’s selection of graphical objects by mouse are a promising foundation for the implementation
of this feature.

Furthermore, the chart description displayed in the text panel for each chart root object could be
enhanced with further characteristics of the data, such as a brief description of the trends shown by
the data series. As an alternative, AChart Interpreter could integrate a sophisticated algorithm which
generates overall descriptions of the chart, like the one applied used the SIGHT system by Carberry
et al. [2012] and Moraes et al. [2014] introduced in Section 3.4. Such a description may represent
another helpful means to rapidly obtain an idea of a chart’s content immediately when encountering
it, so as to better decide whether to further explore it. It can be assumed that research in the field of
artificial intelligence will lead to even more powerful solutions over the coming years, which could then
be combined with AChart Interpreter.

Software Enhancements 155

As mentioned in Subsection 7.4.1, the iterative development process of AChart Interpreter was accom-
panied by informal accessibility and usability tests. Nevertheless, there is scope for further formative
usability evaluation, such as a heuristic evaluation or thinking aloud test. As shown in Chapter 3,
presenting charts to visually impaired recipients is the subject of extensive research. For this reason, a
comparative study considering some of the presented solutions and AChart Interpreter would certainly
yield highly interesting results.

Finally, as a longer-term goal, it might be possible to publish a version of AChart Interpreter as a
plug-in which can be integrated into web browsers or screen readers, giving a visually impaired user the
possibility to explore charts on arbitrary web pages. With the implementation of the software, certain
preparations for this purpose were already taken into account, such as the search for SVG documents
embedded in any loaded web page and the assignment of event listeners to them which start the analysis
process.

156 8 Outlook and Future Work

Chapter 9

Concluding Remarks

This thesis examined several aspects related to the problem of presenting charts to visually impaired
recipients and described a new solution. After an introduction to the field, Chapter 2 explained the
concepts of information accessibility and described some of the assistive technologies available for
blind and partially sighted users. Based on this knowledge, essential requirements and techniques for
producing and handling accessible web documents were summarised. In particular, the WAI-ARIA
system was introduced, which represents a basis for the practical part of this thesis.

The next Chapter 3 gave an overview of different approaches for enabling visually impaired persons
to efficiently consume charts, concentrating on user interaction and various possible output modalities.
In Chapter 4, current approaches for the inclusive design of graphics documents were discussed. The
SVG format was introduced as an appropriate means for defining accessible graphics, and several options
for embedding accessible information in SVG were explained. Of special relevance is Section 4.5, as it
provided an extensive survey of systems for annotating SVG charts with semantic information and the
underlying chart data in a machine-readable format. ARIA-based proposals were described, and current
practice as applied in the charting libraries Highcharts, FusionCharts, amCharts, Semiotic, and AnyChart
was documented.

Chapter 5 acted as a connection between the theoretical and the practical part of this thesis. It first
gave an introduction to the AChart project including a list of all its participants with their contributions.
It then discussed some of the practical and research approaches and argued that none of the approaches
presented in Chapter 3 represents an open, ARIA-based solution to the problem at issue, which also fulfils
the criteria of extensibility, public availability, and screen reader compatibility. Hence, the motivation
for the AChart project. In Section 5.2, the advantages and drawbacks of the SVG-based taxonomies
presented in Section 4.5 were analysed, and possible extensions to some of the ARIA-based systems were
suggested. Finally, AChart’s ARIA taxonomy, based on that of Describler, was introduced.

AChart Creator, a command-line programme for generating charts in SVG format from CSV data and
annotating them with accessible markup was described in Chapter 6. The software was first developed
by Grass et al. [2019] and enhanced in the context of this thesis. The current version 2.0.0 supports the
creation of bar, pie, and line charts, where for the latter chart type, multiple data series can be visualised.
It has been shown that it is possible to create highly accessible charts by means of D3 and to automatically
save them to SVG files.

AChart Interpreter and AChart Summariser are presented in Chapter 7. They are two related, powerful
applications developed as practical part of this thesis which analyse accessible SVG charts and present
them in a textual form. AChart Interpreter provides a graphical user interface with an intuitive visual
representation, screen-reader-friendly navigation, and optional integrated speech output. On the one
hand, both programmes are intended to provide developers and chart authors with a tool for testing the
accessibility of SVG charts, in particular, their compliance with the AChart taxonomy. Simultaneously,
they enable blind users to rapidly and efficiently explore and understand accessible charts, by providing
an overview of the relevant chart objects, a summary of the chart, and the possibility to view and compare

157

158 9 Concluding Remarks

all data points of the chart as well as to obtain statistical information on its data. In informal accessibility
and usability tests with four blind participants, the application received highly positive feedback.

All the components of the AChart software were implemented in a class-based, modular design in
order to facilitate future modifications and extensions. Some ideas for possible enhancements were
summarised in Section 8.2. These include the support for other common chart types and publishing
AChart Interpreter as a browser extension which can be used by blind persons to read charts on arbitrary
web pages. Nevertheless, an important prerequisite for the universal usage of AChart Interpreter or
any similar assistive solution is the annotation of charts according to a system which is widespread and
includes a large number of possible chart objects. The current AChart taxonomy and most of the other
approaches presented in Section 4.5, however, are not compatible among each other and only cover
line, bar, and pie charts. For this reason, several extensions to the AChart taxonomy were proposed in
Section 8.1. A longer-term goal of the AChart project is to establish a standard for semantically enriching
digital charts and to provide a software module supplementing the capabilities of browsers and screen
readers. It is hoped that this thesis will make a valuable contribution to these developments and that
a general standard for annotating charts will soon be developed and agreed on, which could then be
supported by a significant number of chart authoring tools, charting libraries, browsers, and assistive
software.

Appendix A

AChart Creator Help

AChart Creator – Creates a chart in SVG format with WAI-ARIA markup from a CSV file.
Command-line syntax:

acreate [--chart] CHART-TYPE [--dataset CSV-FILENAME]
[--output SVG-FILENAME] [--chart-title TITLE]
[--chart-desc DESCRIPTION] [--x-axis-title TITLE]
[--y-axis-title TITLE] [--legend-title TITLE]
[--target SOFTWARE] [--column DATA-COLUMN] [--no-sort]
[--no-legend] [--no-tooltips] [--no-bar-values]
[--no-segment-values] [--no-segment-percentages]
[--segment-percentage -precision PLACES] [--svg-precision

PLACES]
[--version] [--help]

Mandatory arguments:
• CHART-TYPE: Specifies the type of the chart to be created. Currently supported chart types are

bar, line, and pie (case-insensitive). This argument can be given either as the first command-line
parameter or, alternatively, at any position, prepended by --chart.

Optional arguments:
• --dataset CSV-FILENAME: Specifies the CSV file containing the data to be visualised in the chart.

If not specified, a default CSV file will be chosen.

• --output SVG-FILENAME: Specifies the name of the resulting SVG file. If not specified, the output
file will be named according to the input filename with the extension .svg and placed into its directory.

• --chart-title TITLE: Specifies a title for the chart which is visible and accessible by screen
readers. If not specified, the title will be derived from the headers of the CSV columns.

• --chart-desc DESCRIPTION: Assigns the chart a more detailed overall description in addition to
the title. The description is not visible but can be obtained by screen readers.

• --x-axis-title TITLE: Specifies a title for the x-axis (if applicable). The title is visible and
accessible by screen readers. If not specified, it will be derived from the header of the first CSV
column. For pie charts, the option has no effect. Alias: --x-title TITLE

• --y-axis-title TITLE: Specifies a title for the y-axis (if applicable). The title is visible and
accessible by screen readers. If not specified, in the case of a single-series bar or line chart, it will
be derived from the header of the data column. For pie charts, the option has no effect. Alias:
--y-title TITLE

• --legend-title TITLE: Specifies a title for the legend (if applicable). The title is visible and

159

160 A AChart Creator Help

accessible by screen readers. If not specified, in the case of a pie chart, it will be derived from the
header of the first CSV column. For multi-line charts, the legend title defaults to "Legend". If no
legend is printed, the option has no effect.

• --target SOFTWARE: States which assistive software the accessibility markup shall be optimised
for. Valid arguments for SOFTWARE are (case-insensitive):

– achart for AChart Interpreter (default).

– describler for Describler.

– screen-reader for common screen readers (JAWS, NVDA, etc.) interacting with browsers
without any special chart reading software.

This is meant to optimise the user experience for the respective target; in general, all the three targets
should work with all the named types of assistive software.

• --column DATA-COLUMN: Specifies the CSV column containing the data series to be visualised.DATA
-COLUMN is an integer > 0, where the columns are assumed to be counted with increasing numbers
from left to right. If the option is not given, in the case of a line chart, all columns of the CSV file,
starting by number 1, will be visualised, where one line (data series) corresponds to one column.
For bar and pie charts, DATA-COLUMN defaults to 1.

• --no-sort: By default, all data points are sorted in increasing order by name, i.e. the content of the
corresponding cells of the first CSV column. If this option is given, the data points will instead be
visualised in the order their corresponding lines are listed in the CSV file from top to bottom.

• --no-tooltips: Suppresses all tooltips on mouse-over (<title> elements). This may slightly impair
the optimisation for Describler, even if the option --target describler is used.

• --no-legend: Suppresses the creation of a legend. Unless --no-tooltips is given as well, in the
case of a multi-line chart, each line will still be given a <title> element with the corresponding data
series title, which is accessible by screen readers and visible as a tooltip on mouse-over. For pie
charts, labels are instead displayed within their corresponding pie segments.

• --no-bar-values: Suppresses the visual labelling of bars in bar charts with data point values. The
bar values are then available as tooltips, unless --no-tooltips is given as well. For other chart
types, the option has no effect.

• --no-segment-values: Suppresses the visual labelling of pie segments in pie charts with data point
values. The segment values are then available as tooltips, unless --no-tooltips is given as well.
For other chart types, the option has no effect.

• --no-segment-percentages: Suppresses the visual labelling of pie chart segments with data point
percentages. The percentages are then available as tooltips, unless --no-tooltips is given as well.
For other chart types, the option has no effect.

• --segment-percentage-precision PLACES: Specifies the number of decimal places for rounding
percentages in labels or tooltips of pie chart segments. PLACES must be an integer ≥ 0. The default
is 1. For other chart types, the option has no effect.

• --svg-precision PLACES: Specifies the number of decimal places for rounding SVG coordinates
and lengths. PLACES must be an integer ≥ 0. The default is 3.

• --version: Prints version information and exits.

• --help: Prints this help message and exits.

161

All parameters and options are case-insensitive. If an argument contains spaces, enclose it in double
quotation marks (""). File names may contain relative or absolute paths. If no path is given, the current
working directory is assumed.

162 A AChart Creator Help

Appendix B

AChart Interpreter Help

Help
Welcome to AChart Interpreter!
AChart Interpreter (standing for "Accessible Chart Interpreter") is a screen reader for charts. It gives you
a description of charts created in SVG format. The chart needs to contain appropriate WAI-ARIA markup
as generated, e.g., by the tool AChart Creator. If you are interested in more details, AChart Interpreter lets
you further explore a chart by keyboard navigation in combination with either a built-in speech synthesis
or the screen reader of your choice.

Usage
To start AChart Interpreter, open the graphic you want to explore. You can either choose a sample chart
from the drop-down list or load an SVG file from your computer using the “File Upload” button. After
opening an SVG file, it will be displayed in the part of the window named Graphic Panel. In the Text Panel,
the textual information will be shown.

To move around within AChart Interpreter’s windows, use the Tab key or the appropriate cursor of your
screen reader (for example, the virtual cursor in JAWS or the cursor of the browse mode in NVDA, both
controlled by the Arrow keys). To close any window, you can use the Esc key or the “Close” button at the
top of the window.

In the main window of AChart Interpreter, next to the “File Upload” button, you find a button to switch
the built-in speech synthesis on and off. You can also do this by pressing Alt+S. If the speech is enabled,
it reads aloud every element when focusing it. The speech can be interrupted pressing any key or clicking
anywhere within AChart Interpreter’s window. Note that the integrated speech feature depends on your
browser and the voices installed on your local machine and that it is not available in Internet Explorer.

The next button toggles the list view for the data items to Application Mode and back to Document
Mode (see below).

This help text can be shown again using the “Help” button or the F1 key.
Underneath these buttons, you will find the Graphic Panel and the Text Panel. In the Graphic Panel, the

opened visualisation will be displayed. The button “Remove SVG” can be used to close the graphic
again. The Text Panel shows the title and description of the graphic as well as a list of all charts and chart
components contained by it. All chart components can be selected using the Tab key. Mouse users can
also select any component by a left click either on the graphical object or its textual counterpart. The
selected component will be visually highlighted in both the graphical and the textual representation. The
style of highlighting for the graphical objects can be chosen from two options by the switch “Toggle SVG
highlighting mode”.

To hide or unveil the information on a particular chart, select its title and close or open its details,
respectively, by pressing Enter or Space or left-click on the triangle symbol. When the details for a chart

163

164 B AChart Interpreter Help

have been opened, they are displayed right underneath its title. Below, you will find a list of all data series
within the chart. To hide or unveil the information on a particular data series, again, select its title and
close/open its details by pressing Enter or Space or left-click on the triangle symbol.

When the details for a data series have been opened, you will find a list of all items (that is, all values,
all data points) contained in this data series. Using the combo box above this list, you can choose if
the items are displayed either in increasing order (“from lowest to highest value”) or in decreasing order
(“from highest to lowest value”). With the default choice “in original order”, the items are listed in the
same order they appear in the SVG source code, that is, in most cases, along the x-axis from left to right.
To choose a certain sorting option, open the combo box, select the option by using the Arrow-Up and
Arrow-Down keys and then press Enter.

Once you have reached the list for a data series, use the Arrow-Up and Arrow-Down keys to navigate
through it. If no screen reader is running or Application Mode is activated (see below), you can use the
following additional navigation keys: the Home key will move the selection to the first item in the list; the
End key will take you to the last item. If there are multiple data series contained in the chart, you can
quickly move between their data lists using the Arrow-Left and Arrow-Right keys.

Moving to an item and pressing the Context-Menu key or right-clicking on it, a context menu will appear
offering several options: you can view statistics about the particular item or a list of comparisons of this
item to all others in the same data series. Moreover, you can move to the first or the last item within the
data list, which might be helpful in case of longer data series.

Pressing Tab within the list for a certain data series will take you to the button underneath this data list.
Using this button, you can obtain statistics about the whole data series.

Application Mode
Most screen readers like JAWS and NVDA have their own special keyboard setting for navigating Web
pages, which might block the functionality of some of AChart Interpreter’s navigation keys (like the Home
and End keys). If you are using a screen reader and would like to benefit from all of AChart Interpreter’s
key commands, switch to Application Mode using the corresponding button at the top of the window
or pressing Alt+A. When you move to a data list afterwards, your screen reader should enable a special
mode in which all keystrokes are passed through to AChart Interpreter (in JAWS this is also known
as Application Mode or Forms Mode, in NVDA it is called Focus Mode). If your screen reader does
not activate this mode automatically, try pressing Enter after moving to the data list. Note that after
switching to Application Mode, the data lists might look different and that NVDA may announce them
as “Application”.

Using the same button as before or pressing Alt+A again, you can switch back to AChart Interpreter’s
standard mode, called Document Mode.

Known Issues
AChart Interpreter does not yet support Internet Explorer at the moment. It is recommended to use the
current version on Mozilla Firefox.

On Google Chrome, JAWS might not recognise a context menu correctly after opening it. If so, try
using AChart Interpreter’s Application Mode or enabling automatic forms mode of JAWS.

When AChart Interpreter is switched to Application Mode, JAWS might not announce all elements
outside the data lists appropriately. If so, try leaving forms mode and enabling the virtual cursor of JAWS
manually by pressing Numpad + (desktop keyboard) or JAWS+; (laptop keyboard).

Appendix C

AChart Summariser Help

AChart Summariser – Outputs a textual summary of an SVG chart.
Command-line syntax:
asummarise [--output OUTPUT-FILENAME] [--statistics]

[--datapoints] [--version] [--help]
[--input] SVG-FILENAME

Mandatory arguments:
• SVG-FILENAME: Specifies the SVG file to analyse. This argument can be given either as the last

command-line parameter or, alternatively, at any position prepended by --input.
Optional arguments:
• --output OUTPUT-FILENAME: Writes the output to the specified plain text file. If not specified,

output is written to stdout.

• --statistics: Additionally outputs statistical information on each data series.

• --datapoints: Additionally outputs all the data points in the chart.

• --version: Prints version information and exits.

• --help: Prints this help message and exits.
All options are case-insensitive. If an argument contains space characters, it should be enclosed in

quotation marks (""). File names may contain relative or absolute paths. If no path or relative path is
given, the current working directory is assumed.

165

166 C AChart Summariser Help

Bibliography

Altmanninger, Kerstin and Wolfram Wöß [2008]. Accessible Graphics in Web Applications: Dynamic
Generation, Analysis, and Verification. Computers Helping People with Special Needs: 11th Inter-
national Conference (ICCHP 2008) (Linz, Austria). Edited by Klaus Miesenberger, Joachim Klaus,
Wolfgang Zagler, and Arthur Karshmer. Volume 5105. Lecture Notes in Computer Science. Berlin /
Heidelberg, Germany: Springer-Verlag, 09 Jul 2008, pages 378–385. doi:10.1007/978-3-540-70540-6_55
(cited on pages 6, 21, 31, 90).

amCharts [2020a]. Accessibility in amCharts 4. Documentation. 2020. https://amcharts.com/accessibi
lity/accessible-charts (cited on pages 39, 79).

amCharts [2020b]. amCharts 4 Demos. 2020. https://amcharts.com/demos (cited on pages 39, 79).

American Thermoform [2019]. Tactile Graphics Machines. 2019. http://americanthermoform.com/produ
ct-category/tactile-graphics-machine (cited on page 23).

Andrews, Keith [2018]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria. 30 Dec 2018. https://ftp.isds.tugraz.at/pub/keith/thesis/
(cited on page xiii).

AnyChart [2020a]. Accessibility Settings. Documentation. 2020. https://docs.anychart.com/Common_Set
tings/Accessibility/Settings (cited on pages 5, 39, 86).

AnyChart [2020b]. AnyChart Accessibility Demos. Accessible SVG Charts with WAI-ARIA Support. 2020.
https://anychart.com/accessibility/a11y-demos (cited on pages 39, 86).

Apple [2020a]. Vision Accessibility – iPad. 2020. https://apple.com/accessibility/ipad/vision (cited
on pages 10, 12).

Apple [2020b]. Vision Accessibility – iPhone. 2020. https://apple.com/accessibility/iphone/vision
(cited on pages 7, 10, 12).

Apple [2020c]. Vision Accessibility – Mac. 2020. https://apple.com/accessibility/mac/vision (cited on
pages 7, 10).

Banf, Michael and Volker Blanz [2013]. Sonification of Images for the Visually Impaired Using a Multi-
Level Approach. Proc. 4th Augmented Human International Conference (AH ’13) (Stuttgart, Germany).
07 Mar 2013, pages 162–169. doi:10.1145/2459236.2459264. http://staff.www.ltu.se/~kalevi/Referenc
es/Sonification%20of%20images%20for%20the%20visually%20impaired%20using%20a%20multilevel%20ap

proach.pdf (cited on page 29).

Bliss, James C. [1969]. A Relatively High-Resolution Reading Aid for the Blind. IEEE Transactions on
Man-Machine Systems 10.1 (Mar 1969), pages 1–9 (cited on pages 26–27).

Bodner, Lukas, Daniel Geiger, and Lorenz Leitner [2020a]. Accessible Charts with AChart Reader. Graz
University of Technology, 29 Jun 2020. https://courses.isds.tugraz.at/ivis/projects/ss2020/ivis
-ss2020-g1-project-achart-reader.pdf (cited on pages 90, 148).

167

http://doi.org/10.1007/978-3-540-70540-6_55
https://amcharts.com/accessibility/accessible-charts
https://amcharts.com/accessibility/accessible-charts
https://amcharts.com/demos
http://americanthermoform.com/product-category/tactile-graphics-machine
http://americanthermoform.com/product-category/tactile-graphics-machine
https://ftp.isds.tugraz.at/pub/keith/thesis/
https://docs.anychart.com/Common_Settings/Accessibility/Settings
https://docs.anychart.com/Common_Settings/Accessibility/Settings
https://anychart.com/accessibility/a11y-demos
https://apple.com/accessibility/ipad/vision
https://apple.com/accessibility/iphone/vision
https://apple.com/accessibility/mac/vision
http://doi.org/10.1145/2459236.2459264
http://staff.www.ltu.se/~kalevi/References/Sonification%20of%20images%20for%20the%20visually%20impaired%20using%20a%20multilevel%20approach.pdf
http://staff.www.ltu.se/~kalevi/References/Sonification%20of%20images%20for%20the%20visually%20impaired%20using%20a%20multilevel%20approach.pdf
http://staff.www.ltu.se/~kalevi/References/Sonification%20of%20images%20for%20the%20visually%20impaired%20using%20a%20multilevel%20approach.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2020/ivis-ss2020-g1-project-achart-reader.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2020/ivis-ss2020-g1-project-achart-reader.pdf

168 Bibliography

Bodner, Lukas, Daniel Geiger, and Lorenz Leitner [2020b]. AChart Reader Showcase Video. Graz
University of Technology, 17 Jun 2020. https://youtu.be/7unJ2aU9ghc (cited on page 121).

Bostock, Mike [2021]. D3 – Data-Driven Documents. 29 Mar 2021. https://d3js.org/ (cited on pages 3,
97, 115).

Boyd, Caleb, James M. Greene, and Jared Allard [2020]. nexe. 05 Apr 2020. https://github.com/nexe/n
exe (cited on pages 3, 115, 143).

Braier, Jonas, Katharina Lattenkamp, Benjamin Räthel, Sandra Schering, Michael Wojatzki, and Ben-
jamin Weyers [2014]. Haptic 3D Surface Representation of Table-Based Data for People with Visual
Impairments. ACM Transactions on Accessible Computing 6.1 (Dec 2014), 1:1–1:35. ISSN 1936-7228.
doi:10.1145/2700433 (cited on pages 23, 25).

Bublitz, Blaine and Eric Schoffstall [2021]. gulp. A Toolkit to Automate & Enhance Your Workflow.
08 Feb 2021. https://gulpjs.com/ (cited on pages 89, 115).

Bulatov, Vladimir, John A. Gardner, and Holly Stowell [2005]. The ViewPlus IVEO Scalable Vector
Graphics Technology for Universally Usable Complex Information. Proc. 11th International Conference
on Human-Computer Interaction: Universal Access in HCI (HCI International 2005) (Las Vegas, NV,
USA). Volume 5 – Emergent Application Domains in HCI. 22 Jul 2005. https://viewplus.com/about
/abstracts/05hcibulatov.html (cited on pages 30, 90).

Carberry, Sandra, Stephanie Elzer Schwartz, Kathleen McCoy, Seniz Demir, Peng Wu, Charles Green-
backer, Daniel Chester, Edward Schwartz, David Oliver, and Priscilla Moraes [2012]. Access to Mul-
timodal Articles for Individuals with Sight Impairments. ACM Transactions on Interactive Intelligent
Systems 2.4 (Dec 2012), 21:1–21:49. ISSN 2160-6455. doi:10.1145/2395123.2395126. http://assets.ctfas
sets.net/kdr3qnns3kvk/6HYQd4VEtOqsKIeMEGEOOO/6dc01d7477738dd2ad8ac4efb8c6eb01/tiis-a21-carber

ry.pdf (cited on pages 21, 23, 32, 154).

Choi, Stephen H. and Bruce N. Walker [2010]. Digitizer Auditory Graph: Making Graphs Accessible to
the Visually Impaired. CHI ’10 Extended Abstracts on Human Factors in Computing Systems (CHI
EA ’10) (Atlanta, GA, USA). New York, NY, USA: ACM, 10 Apr 2010, pages 3445–3450. doi:10.114
5/1753846.1753999. http://sonify.psych.gatech.edu/publications/pdfs/2010CHI-ChoiWalker.pdf (cited
on pages 23, 29).

D3plus [2019]. Accessibility. Documentation. 06 Dec 2019. https://d3plus.org/accessibility (cited on
page 64).

DIAGRAM Center [2017]. Poet Image Description Tool. Benetech, 2017. https://poet.diagramcenter.o
rg/ (cited on page 21).

Dürnegger, Bernhard, Christina Feilmayr, and Wolfram Wöß [2010]. Guided Generation and Evaluation
of Accessible Scalable Vector Graphics. Computers Helping People with Special Needs: 12th Interna-
tional Conference (ICCHP 2010) (Vienna, Austria). Edited by Klaus Miesenberger, Joachim Klaus,
Wolfgang Zagler, and Arthur Karshmer. Volume 6179.I. Lecture Notes in Computer Science. Berlin
/ Heidelberg, Germany: Springer-Verlag, 14 Jul 2010, pages 27–34. doi:10.1007/978-3-642-14097-6_5
(cited on pages 31, 45–46, 90).

Duxbury [2020]. Product Info: QuickTac. Duxbury Systems, 25 Apr 2020. https://duxburysystems.com
/product2.asp?product=QuickTac (cited on page 25).

Enabling Technologies [2015]. Cyclone, Trident and Phoenix (gold) Braille Embosser User’s Manual.
Enabling Technologies. Apr 2015. https://web.archive.org/web/20200113224602/http://www.braille
r.com/images/downloads/manuals/CyclonePhoenixgoldTridentManual.pdf (cited on page 24).

https://youtu.be/7unJ2aU9ghc
https://d3js.org/
https://github.com/nexe/nexe
https://github.com/nexe/nexe
http://worldcatlibraries.org/wcpa/issn/1936-7228
http://doi.org/10.1145/2700433
https://gulpjs.com/
https://viewplus.com/about/abstracts/05hcibulatov.html
https://viewplus.com/about/abstracts/05hcibulatov.html
http://worldcatlibraries.org/wcpa/issn/2160-6455
http://doi.org/10.1145/2395123.2395126
http://assets.ctfassets.net/kdr3qnns3kvk/6HYQd4VEtOqsKIeMEGEOOO/6dc01d7477738dd2ad8ac4efb8c6eb01/tiis-a21-carberry.pdf
http://assets.ctfassets.net/kdr3qnns3kvk/6HYQd4VEtOqsKIeMEGEOOO/6dc01d7477738dd2ad8ac4efb8c6eb01/tiis-a21-carberry.pdf
http://assets.ctfassets.net/kdr3qnns3kvk/6HYQd4VEtOqsKIeMEGEOOO/6dc01d7477738dd2ad8ac4efb8c6eb01/tiis-a21-carberry.pdf
http://doi.org/10.1145/1753846.1753999
http://doi.org/10.1145/1753846.1753999
http://sonify.psych.gatech.edu/publications/pdfs/2010CHI-ChoiWalker.pdf
https://d3plus.org/accessibility
https://poet.diagramcenter.org/
https://poet.diagramcenter.org/
http://doi.org/10.1007/978-3-642-14097-6_5
https://duxburysystems.com/product2.asp?product=QuickTac
https://duxburysystems.com/product2.asp?product=QuickTac
https://web.archive.org/web/20200113224602/http://www.brailler.com/images/downloads/manuals/CyclonePhoenixgoldTridentManual.pdf
https://web.archive.org/web/20200113224602/http://www.brailler.com/images/downloads/manuals/CyclonePhoenixgoldTridentManual.pdf

169

Enabling Technologies [2017]. Enabling Technologies – the Supreme Braille Dot Quality! 2017. https:
//web.archive.org/web/20201020035404/http://www.brailler.com/ (cited on pages 24–25).

Engel, Christin, Emma Franziska Müller, and Gerhard Weber [2019]. SVGPlott: an Accessible Tool to
Generate Highly Adaptable, Accessible Audio-Tactile Charts for and from Blind and Visually Impaired
People. Proc. 12th ACM International Conference on PErvasive Technologies Related to Assistive
Environments (PETRA ’19) (Rhodes, Greece). New York, NY, USA: ACM, 05 Jun 2019, pages 186–
195. doi:10.1145/3316782.3316793 (cited on pages 31, 49, 90).

EPRS [2018a]. Assistive Technologies for People with Disabilities. In-Depth Analysis. Science and Tech-
nology Options Assessment. European Parliamentary Research Service, 22 Feb 2018. 15 pages. doi:1
0.2861/422217. https://op.europa.eu/s/oUy3 (cited on page 6).

EPRS [2018b]. Assistive Technologies for People with Disabilities. Part II: Current and Emerging Tech-
nologies. Science and Technology Options Assessment. European Parliamentary Research Service,
22 Feb 2018. 73 pages. doi:10.2861/567013. https://op.europa.eu/s/oUy4 (cited on pages 6, 11).

Falk, Eike-Peter [1999]. Blindengerechte Umsetzung grafischer Bildinformationen in eine taktile Darstel-
lungsform. Diploma Thesis. Universität Karlsruhe, Jul 1999 (cited on page 26).

Ferres, Leo [2015]. iGraph: the iGraph-Lite Source Code. 27 Feb 2015. https://github.com/leoferres
/igraph (cited on pages 29, 49, 90).

Ferres, Leo, Gitte Lindgaard, Livia Sumegi, and Bruce Tsuji [2013]. Evaluating a Tool for Improving
Accessibility to Charts and Graphs. ACM Transactions on Computer-Human Interaction 20.5 (Nov
2013), 28:1–28:32. ISSN 1073-0516. doi:10.1145/2533682.2533683 (cited on pages 29, 49, 90).

Ferres, Leo, Petro Verkhogliad, Gitte Lindgaard, Louis Boucher, Antoine Chretien, and Martin Lachance
[2007]. Improving Accessibility to Statistical Graphs: the iGraph-Lite System. Proc. 9th International
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2007) (Tempe, AZ, USA).
New York, NY, USA: ACM, 15 Oct 2007, pages 67–74. doi:10.1145/1296843.1296857 (cited on pages 28,
49, 90).

Ferro, Tyler J. and Dianne T. V. Pawluk [2013]. Automatic Image Conversion to Tactile Graphic. Proc.
15th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2013)
(Bellevue, WA, USA). New York, NY, USA: ACM, 21 Oct 2013, 39:1–39:2. doi:10.1145/2513383.2513406
(cited on page 25).

Fisher, Carie [2019]. Creating Accessible SVGs. Blog posting. 10 Jan 2019. https://deque.com/blog/cre
ating-accessible-svgs (cited on page 49).

Fitzpatrick, Donal, A. Jonathan R. Godfrey, and Volker Sorge [2017]. Producing Accessible Statistics
Diagrams in R. Proc. 14th International Web for All Conference on The Future of Accessible Work
(W4A 2017) (Perth, Western Australia, Australia). 22. New York, NY, USA: ACM, 02 Apr 2017,
22:1–22:4. doi:10.1145/3058555.3058564. https://research.birmingham.ac.uk/portal/files/43284212/a
22_Fitzpatrick.pdf (cited on pages 32, 49, 91).

Fredj, Z. Ben and David A. Duce [2006]. GraSSML: Accessible Smart Schematic Diagrams for All. Proc.
2006 International Cross-Disciplinary Workshop on Web Accessibility: Building the Mobile Web:
Rediscovering Accessibility? (W4A 2006) (Edinburgh, UK). New York, NY, USA: ACM, 23 May
2006, pages 57–60. doi:10.1145/1133219.1133229. http://ra.ethz.ch/CDstore/www2006-wwa/p57-benfred
j.pdf (cited on pages 23, 49).

FusionCharts [2020]. Accessibility Extension for FusionCharts Beta. Documentation. 07 May 2020.
https://fusioncharts.com/extensions/accessibility (cited on pages 34, 82).

https://web.archive.org/web/20201020035404/http://www.brailler.com/
https://web.archive.org/web/20201020035404/http://www.brailler.com/
http://doi.org/10.1145/3316782.3316793
http://doi.org/10.2861/422217
http://doi.org/10.2861/422217
https://op.europa.eu/s/oUy3
http://doi.org/10.2861/567013
https://op.europa.eu/s/oUy4
https://github.com/leoferres/igraph
https://github.com/leoferres/igraph
http://worldcatlibraries.org/wcpa/issn/1073-0516
http://doi.org/10.1145/2533682.2533683
http://doi.org/10.1145/1296843.1296857
http://doi.org/10.1145/2513383.2513406
https://deque.com/blog/creating-accessible-svgs
https://deque.com/blog/creating-accessible-svgs
http://doi.org/10.1145/3058555.3058564
https://research.birmingham.ac.uk/portal/files/43284212/a22_Fitzpatrick.pdf
https://research.birmingham.ac.uk/portal/files/43284212/a22_Fitzpatrick.pdf
http://doi.org/10.1145/1133219.1133229
http://ra.ethz.ch/CDstore/www2006-wwa/p57-benfredj.pdf
http://ra.ethz.ch/CDstore/www2006-wwa/p57-benfredj.pdf
https://fusioncharts.com/extensions/accessibility

170 Bibliography

Gardner, John A. [2016]. Universally Accessible Figures. Computers Helping People with Special Needs:
15th International Conference (ICCHP 2016) (Linz, Austria, 13 Jul 2016). Edited by Klaus Miesen-
berger, Christian Bühler, and Petra Penaz. Volume 9758.I. Lecture Notes in Computer Science. Springer
International Publishing Switzerland, 06 Jul 2016, pages 417–420. doi:10.1007/978-3-319-41264-1_57
(cited on pages 24, 30, 90).

Gardner, John A. and Vladimir Bulatov [2006]. Scientific Diagrams Made Easy with IVEO. Computers
Helping People with Special Needs: 10th International Conference (ICCHP 2006) (Linz, Austria).
Edited by Klaus Miesenberger, Joachim Klaus, Wolfgang Zagler, and Arthur Karshmer. Volume 4061.
Lecture Notes in Computer Science. Springer-Verlag, 11 Jul 2006, pages 1243–1250. doi:10.1007/1178
8713_179 (cited on pages 1, 21–24, 30, 90).

Gardner, John A. and Vladimir Bulatov [2010]. Highly Accessible Scientific Graphical Information
through DAISY SVG. Improving SVG for Perfect Accessibility. Proc. 8th International Conference on
Scalable Vector Graphics (SVG Open 2010) (Paris, France). 30 Aug 2010. http://graphicalweb.net
/2010/papers/56-Highly_Accessible_Scientific_Graphical_Information_through_DAISY_SVG (cited on
pages 30, 47, 90).

GitHub [2020]. Basic Writing and Formatting Syntax – GitHub Docs. 2020. https://docs.github.com/e
n/github/writing-on-github/basic-writing-and-formatting-syntax (cited on page 142).

Godfrey, A. Jonathan R. [2013]. Statistical Software from a Blind Person’s Perspective. R is the best, but
we can make it better. The R Journal 5.1 (03 Jun 2013), pages 73–79. ISSN 2073-4859. doi:10.32614
/RJ-2013-007. https://journal.r-project.org/archive/2013/RJ-2013-007/RJ-2013-007.pdf (cited on
page 32).

Godfrey, A. Jonathan R. [2019]. The BrailleR Project. 12 Dec 2019. https://r-resources.massey.ac.nz
/BrailleR (cited on page 32).

Godfrey, A. Jonathan R., Paul Murrell, and Volker Sorge [2018]. An Accessible Interaction Model for
Data Visualisation in Statistics. Computers Helping People with Special Needs: 17th International
Conference (ICCHP 2018) (Linz, Austria). Edited by Klaus Miesenberger and G. Kouroupetroglou.
Volume 10896. Lecture Notes in Computer Science. Springer International Publishing AG, 11 Jul
2018, pages 590–597. doi:10.1007/978-3-319-94277-3_92 (cited on pages 32, 49, 91).

Goncu, Cagatay and Kim Marriott [2015]. GraCALC: an Accessible Graphing Calculator. Proc. 17th

International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2015) (Lisbon,
Portugal). New York, NY, USA: ACM, 26 Oct 2015, pages 311–312. doi:10.1145/2700648.2811353 (cited
on page 30).

Goncu, Cagatay and Kimbal George Marriott [2008]. Tactile Chart Generation Tool. Proc. 10th Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2008) (Halifax, Nova
Scotia, Canada). New York, NY, USA: ACM, 13 Oct 2008, pages 255–256. doi:10.1145/1414471.1414525
(cited on pages 24–25).

Google [2020a]. Get Started on Android with TalkBack – Android Accessibility Help. 2020. https://sup
port.google.com/accessibility/android/answer/6283677 (cited on pages 10–12).

Google [2020b]. Introducing ChromeVox. 2020. https://chromevox.com/ (cited on page 10).

Google [2020c]. Use YouTube with a Screen Reader – YouTube Help. 2020. https://support.google.com
/youtube/answer/189278 (cited on page 12).

Grass, Alexander, Lea Novak, and Danica Radulovic [2019]. Accessible D3 and SVG. Graz University of
Technology, 30 Jun 2019. https://courses.isds.tugraz.at/ivis/projects/ss2019/ivis-ss2019-g2-pr
oject-d3-a11y.pdf (cited on pages 90, 97, 115, 157).

http://doi.org/10.1007/978-3-319-41264-1_57
http://doi.org/10.1007/11788713_179
http://doi.org/10.1007/11788713_179
http://graphicalweb.net/2010/papers/56-Highly_Accessible_Scientific_Graphical_Information_through_DAISY_SVG
http://graphicalweb.net/2010/papers/56-Highly_Accessible_Scientific_Graphical_Information_through_DAISY_SVG
https://docs.github.com/en/github/writing-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/github/writing-on-github/basic-writing-and-formatting-syntax
http://worldcatlibraries.org/wcpa/issn/2073-4859
http://doi.org/10.32614/RJ-2013-007
http://doi.org/10.32614/RJ-2013-007
https://journal.r-project.org/archive/2013/RJ-2013-007/RJ-2013-007.pdf
https://r-resources.massey.ac.nz/BrailleR
https://r-resources.massey.ac.nz/BrailleR
http://doi.org/10.1007/978-3-319-94277-3_92
http://doi.org/10.1145/2700648.2811353
http://doi.org/10.1145/1414471.1414525
https://support.google.com/accessibility/android/answer/6283677
https://support.google.com/accessibility/android/answer/6283677
https://chromevox.com/
https://support.google.com/youtube/answer/189278
https://support.google.com/youtube/answer/189278
https://courses.isds.tugraz.at/ivis/projects/ss2019/ivis-ss2019-g2-project-d3-a11y.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2019/ivis-ss2019-g2-project-d3-a11y.pdf

171

Harlan, Gregor, Jens Bornschein, Denise Prescher, and the Tangram team [2019]. SVG-Plott. Technische
Universität Dresden, 24 May 2019. https://github.com/TUD-INF-IAI-MCI/SVG-Plott (cited on pages 31,
49).

Harpo [2021]. PIAF (Pictures in a Flash). Harpo Assistive Technology, 08 Apr 2021. http://piaf-tact
ile.com/ (cited on page 23).

Headley, Patrick C. and Dianne T. V. Pawluk [2010]. A Low-Cost, Variable-Amplitude Haptic Display for
Persons Who Are Blind and Visually Impaired. Proc. 12th International ACM SIGACCESS Conference
on Computers and Accessibility (ASSETS 2010) (Orlando, Florida, USA). New York, NY, USA: ACM,
25 Oct 2010, pages 227–228. doi:10.1145/1878803.1878844 (cited on page 27).

Help Tech [2021]. Aids for the Blind and Visually Impaired. 08 Apr 2021. https://helptech.de/ (cited
on pages xiii, 7–9, 26).

Highcharts [2021a]. Accessibility Module. 08 May 2021. https://highcharts.com/docs/accessibility/a
ccessibility-module (cited on pages 33, 70).

Highcharts [2021b]. Accessibility Module Feature Overview. 08 May 2021. https://highcharts.com/doc
s/accessibility/accessibility-module-feature-overview (cited on pages 33, 70).

Highcharts [2021c]. Highcharts for Accessibility. 08 May 2021. https://highcharts.com/blog/accessibi
lity/ (cited on pages 34, 70).

Hörzu [2020]. EPGDATA Textprogramm. 25 Aug 2020. https://hoerzu.de/text (cited on page 14).

Hribar, Victoria E., Laura G. Deal, and Dianne T. V. Pawluk [2012]. Displaying Braille and Graphics
with a “Tactile Mouse”. Proc. 14th International ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS 2012) (Boulder, Colorado, USA). New York, NY, USA: ACM, 22 Oct 2012,
pages 251–252. doi:10.1145/2384916.2384978. https://researchgate.net/profile/D_Pawluk/publication
/262207469_Displaying_braille_and_graphics_with_a_tactile_mouse/links/5400ac280cf2c48563ae5e6

1/Displaying-braille-and-graphics-with-a-tactile-mouse.pdf (cited on page 27).

HyperBraille [2020]. HyperBraille. Mar 2020. http://hyperbraille.de/ (cited on page 26).

IETF [2009]. Tags for Identifying Language. Request for Comments 5646. Internet Engineering Task
Force, 30 Sep 2009. doi:10.17487/RFC5646. https://rfc-editor.org/rfc/pdfrfc/rfc5646.txt.pdf (cited
on page 151).

Index Braille [2020]. Braille Printers / Braille Embossers by Index Braille. 2020. https://indexbraille
.com/ (cited on page 24).

Irie-AT [2019]. Braille and Tactile Graphics Embossers for the Visually Impaired. 2019. https://irie-a
t.com/braille/braille-embossers (cited on page 25).

ISO [2013]. International Standard ISO 17049 First Edition: Accessible Design – Application of Braille
on Signage, Equipment, and Appliances. Technical report. 15 Oct 2013 (cited on page 6).

Iwarsson, Susanne and Agneta Ståhl [2003]. Accessibility, Usability, and Universal Design—Positioning
and Definition of Concepts Describing Person-Environment Relationships. Disability and Rehabilita-
tion 25.2 (2003), pages 57–66. ISSN 1464-5165. doi:10.1080/0963828021000007969. http://olemygind.pbwo
rks.com/f/Accessibility_Iwarsson.pdf (cited on page 5).

jsdom [2021]. jsdom. 04 Apr 2021. https://github.com/jsdom/jsdom (cited on pages 3, 115, 143).

Kipke, Siegfried [2006]. Taktile Kontrollvorrichtung. DPMA DE 10 2004 046 526. Help Tech. 06 Apr
2006. https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE102004046526B4
(cited on pages 6–7, 9).

https://github.com/TUD-INF-IAI-MCI/SVG-Plott
http://piaf-tactile.com/
http://piaf-tactile.com/
http://doi.org/10.1145/1878803.1878844
https://helptech.de/
https://highcharts.com/docs/accessibility/accessibility-module
https://highcharts.com/docs/accessibility/accessibility-module
https://highcharts.com/docs/accessibility/accessibility-module-feature-overview
https://highcharts.com/docs/accessibility/accessibility-module-feature-overview
https://highcharts.com/blog/accessibility/
https://highcharts.com/blog/accessibility/
https://hoerzu.de/text
http://doi.org/10.1145/2384916.2384978
https://researchgate.net/profile/D_Pawluk/publication/262207469_Displaying_braille_and_graphics_with_a_tactile_mouse/links/5400ac280cf2c48563ae5e61/Displaying-braille-and-graphics-with-a-tactile-mouse.pdf
https://researchgate.net/profile/D_Pawluk/publication/262207469_Displaying_braille_and_graphics_with_a_tactile_mouse/links/5400ac280cf2c48563ae5e61/Displaying-braille-and-graphics-with-a-tactile-mouse.pdf
https://researchgate.net/profile/D_Pawluk/publication/262207469_Displaying_braille_and_graphics_with_a_tactile_mouse/links/5400ac280cf2c48563ae5e61/Displaying-braille-and-graphics-with-a-tactile-mouse.pdf
http://hyperbraille.de/
http://doi.org/10.17487/RFC5646
https://rfc-editor.org/rfc/pdfrfc/rfc5646.txt.pdf
https://indexbraille.com/
https://indexbraille.com/
https://irie-at.com/braille/braille-embossers
https://irie-at.com/braille/braille-embossers
http://worldcatlibraries.org/wcpa/issn/1464-5165
http://doi.org/10.1080/0963828021000007969
http://olemygind.pbworks.com/f/Accessibility_Iwarsson.pdf
http://olemygind.pbworks.com/f/Accessibility_Iwarsson.pdf
https://github.com/jsdom/jsdom
https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE102004046526B4

172 Bibliography

Klatzky, Roberta L. and Susan J. Lederman [2004]. Handbook of Psychology: Experimental Psychology.
In: volume 4. John Wiley & Sons, 16 Apr 2004. Chapter 6, pages 147–176. ISBN 047166667X. http://c
iteseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.3816&rep=rep1&type=pdf (cited on page 24).

Kleynhans, Stefanus Andreas and Ina Fourie [2014]. Ensuring Accessibility of Electronic Information
Resources for Visually Impaired People: the Need to Clarify Concepts such as Visually Impaired.
Library Hi Tech 32.2 (10 Jun 2014), pages 368–379. ISSN 0737-8831. doi:10.1108/LHT-11-2013-0148.
https://pdfs.semanticscholar.org/06c3/a9a4baef9dc56c4d138b2b353b8cfb7018d1.pdf (cited on page 6).

Kopacz, Lindsey [2019]. Accessibility in D3 Bar Charts. Blog posting. 06 May 2019. https://a11ywithl
indsey.com/blog/accessibility-d3-bar-charts (cited on pages 67–69, 92, 115).

Kopecek, Ivan and Radek Oslejsek [2008]. GATE to Accessibility of Computer Graphics. Computers
Helping People with Special Needs: 11th International Conference (ICCHP 2008) (Linz, Austria).
Edited by Klaus Miesenberger, Joachim Klaus, Wolfgang Zagler, and Arthur Karshmer. Volume 5105.
Lecture Notes in Computer Science. Berlin / Heidelberg, Germany: Springer Verlag, 09 Jul 2008,
pages 295–302. doi:10.1007/978-3-540-70540-6_44 (cited on pages 29, 47, 90).

Kopel, Christopher A., Keith Andrews, Inti Gabriel Mendoza Estrada, Lukas Bodner, Daniel Geiger, and
Lorenz Leitner [2021a]. AChart Interpreter. 14 May 2021. https://github.com/tugraz-isds/achart-i
nterpreter (cited on pages 3, 121, 153).

Kopel, Christopher A., Keith Andrews, Inti Gabriel Mendoza Estrada, Lukas Bodner, Daniel Geiger, and
Lorenz Leitner [2021b]. AChart Interpreter. Online demo. 15 May 2021. https://tugraz-isds.github
.io/achart-interpreter/ (cited on page 121).

Kopel, Christopher A., Keith Andrews, Inti Gabriel Mendoza Estrada, Alexander Grass, Lea Novak, and
Danica Radulovic [2021]. AChart Creator. 14 May 2021. https://github.com/tugraz-isds/achart-cr
eator (cited on pages 3, 97, 153).

Lang, Markus, Ursula Hofer, and Friederike Beyer [2010]. Didaktik des Unterrichts mit blinden und
hochgradig sehbehinderten Schülerinnen und Schülern. Volume 2: Fachdidaktiken. Kohlhammer, 2010.
276 pages. ISBN 3170201514 (cited on pages 5–7, 9–11, 23–24).

MDN [2019]. Web Speech API. 18 Mar 2019. https://developer.mozilla.org/en-US/docs/Web/API/Web
_Speech_API (cited on pages 42, 131, 148).

MDN [2020]. <menu> – HTML: Hypertext Markup Language. 11 Apr 2020. https://developer.mozill
a.org/en-US/docs/Web/HTML/Element/menu (cited on page 146).

Meeks, Elĳah and Susie Lu [2020]. Semiotic – Accessibility. 25 Apr 2020. https://semiotic.nteract.io
/guides/accessibility (cited on pages 34, 39, 75).

metec [2020]. Der „Laptop für Blinde“. 04 Aug 2020. https://metec-ag.de/graphik%20display.html
(cited on page 27).

Microsoft [2020a]. Complete Guide to Narrator – Windows Help. 2020. https://support.microsoft.com
/help/22798 (cited on pages 7, 10).

Microsoft [2020b]. TypeScript: Typed JavaScript at Any Scale. 2020. http://typescriptlang.org/ (cited
on pages 3, 89).

Microsoft [2021]. Seeing AI App. 25 Apr 2021. https://microsoft.com/en-us/ai/seeing-ai (cited on
page 21).

Migliorisi, Heather [2016]. Accessible SVGs. Blog posting. 28 Aug 2016. https://css-tricks.com/acces
sible-svgs (cited on pages 46, 49, 67–69, 92).

http://amazon.co.uk/dp/047166667X/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.3816&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.3816&rep=rep1&type=pdf
http://worldcatlibraries.org/wcpa/issn/0737-8831
http://doi.org/10.1108/LHT-11-2013-0148
https://pdfs.semanticscholar.org/06c3/a9a4baef9dc56c4d138b2b353b8cfb7018d1.pdf
https://a11ywithlindsey.com/blog/accessibility-d3-bar-charts
https://a11ywithlindsey.com/blog/accessibility-d3-bar-charts
http://doi.org/10.1007/978-3-540-70540-6_44
https://github.com/tugraz-isds/achart-interpreter
https://github.com/tugraz-isds/achart-interpreter
https://tugraz-isds.github.io/achart-interpreter/
https://tugraz-isds.github.io/achart-interpreter/
https://github.com/tugraz-isds/achart-creator
https://github.com/tugraz-isds/achart-creator
http://amazon.co.uk/dp/3170201514/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/menu
https://semiotic.nteract.io/guides/accessibility
https://semiotic.nteract.io/guides/accessibility
https://metec-ag.de/graphik%20display.html
https://support.microsoft.com/help/22798
https://support.microsoft.com/help/22798
http://typescriptlang.org/
https://microsoft.com/en-us/ai/seeing-ai
https://css-tricks.com/accessible-svgs
https://css-tricks.com/accessible-svgs

173

Migliorisi, Heather [2019]. Accessible Complex Image – Bar Graph. Source code. https://codepen.io/h
mig/pen/MeJKee (cited on pages 67–69).

Mirri, Silvia, Silvio Peroni, Paola Salomoni, Fabio Vitali, and Vincenzo Rubano [2017]. Towards Acces-
sible Graphs in HTML-based Scientific Articles. 2017 14th IEEE Annual Consumer Communications
& Networking Conference (CCNC) (Las Vegas, NV, USA). IEEE, 08 Jan 2017, pages 1067–1072.
doi:10.1109/CCNC.2017.7983287. https://essepuntato.it/papers/rash-ads2017.html (cited on page 42).

Moraes, Priscilla, Gabriel Sina, Kathleen McCoy, and Sandra Carberry [2014]. Evaluating the Accessi-
bility of Line Graphs through Textual Summaries for Visually Impaired Users. Proc. 16th International
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2014) (Rochester, NY,
USA). New York, NY, USA: ACM, 20 Oct 2014, pages 83–90. doi:10.1145/2661334.2661368 (cited on
pages 21, 32, 154).

Morash, Valerie S., Yue-Ting Siu, Joshua A. Miele, Lucia Hasty, and Steven Landau [2015]. Guiding
Novice Web Workers in Making Image Descriptions Using Templates. ACM Transactions on Accessible
Computing 7.4 (Nov 2015), 12:1–12:21. ISSN 1936-7228. doi:10.1145/2764916. http://valeriemorash.co
m/publications/2015%20Morash%20-%20Guiding%20novice%20web%20workers%20in%20making%20image%20d

escriptions%20using%20templates.pdf (cited on page 21).

NCAM and DIAGRAM Center [2015]. Image Description Guidelines. Technical report. Jun 2015. http:
//diagramcenter.org/table-of-contents-2.html (cited on page 21).

NV Access [2020]. NVDA 2020.2 User Guide. 2020. https://nvaccess.org/files/nvda/documentation/u
serGuide.html (cited on pages 10–12, 91, 130–131).

OpenJS [2021a]. Electron. OpenJS Foundation, 08 Apr 2021. https://electronjs.org/ (cited on pages 3,
121).

OpenJS [2021b]. Node.js. OpenJS Foundation, 08 Apr 2021. https://nodejs.org/ (cited on pages 3,
115).

Orbit [2021]. Graphiti – A Breakthrough in Non-Visual Access to All Forms of Graphical Information.
Orbit Research, 08 Apr 2021. https://orbitresearch.com/product/graphiti (cited on pages xiii, 27–28,
154).

Owen, Justin M., Julie A. Petro, Steve M. D’Souza Ravi Rastogi, and Dianne T. V. Pawluk [2009]. An
Improved, Low-Cost Tactile “Mouse” for Use by Individuals Who Are Blind and Visually Impaired.
Proc. 11th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS
2009) (Pittsburgh, Pennsylvania, USA). New York, NY, USA: ACM, 25 Oct 2009, pages 223–224.
doi:10.1145/1639642.1639686. http://sonify.psych.gatech.edu/~walkerb/classes/assisttech/pdf/Owen
(2009).pdf (cited on page 27).

Patil, Sandeep R. [2007]. Position Paper: Accessible Image File Formats - The Need and the Way. Proc.
2007 International Cross-Disciplinary Conference on Web Accessibility (W4A 2007) (Banff, Canada).
New York, NY, USA: ACM, 07 May 2007, pages 40–43. doi:10.1145/1243441.1243455. http://citeseer
x.ist.psu.edu/viewdoc/download?doi=10.1.1.118.3582&rep=rep1&type=pdf (cited on page 47).

Perko, Alexander [2021]. AChart Interpreter Showcase Video. Graz University of Technology, 29 Apr
2021. https://youtu.be/NLKqTTnKLII (cited on page 121).

Pickering, Heydon [2016]. Inclusive Design Patterns. Smashing, Sep 2016. ISBN 3945749433 (cited on
pages 14–17).

Prescher, Denise, Jens Bornschein, Wiebke Köhlmann, and Gerhard Weber [2017]. Touching Graphical
Applications: Bimanual Tactile Interaction on the HyperBraille Pin-Matrix Display. Universal Access

https://codepen.io/hmig/pen/MeJKee
https://codepen.io/hmig/pen/MeJKee
http://doi.org/10.1109/CCNC.2017.7983287
https://essepuntato.it/papers/rash-ads2017.html
http://doi.org/10.1145/2661334.2661368
http://worldcatlibraries.org/wcpa/issn/1936-7228
http://doi.org/10.1145/2764916
http://valeriemorash.com/publications/2015%20Morash%20-%20Guiding%20novice%20web%20workers%20in%20making%20image%20descriptions%20using%20templates.pdf
http://valeriemorash.com/publications/2015%20Morash%20-%20Guiding%20novice%20web%20workers%20in%20making%20image%20descriptions%20using%20templates.pdf
http://valeriemorash.com/publications/2015%20Morash%20-%20Guiding%20novice%20web%20workers%20in%20making%20image%20descriptions%20using%20templates.pdf
http://diagramcenter.org/table-of-contents-2.html
http://diagramcenter.org/table-of-contents-2.html
https://nvaccess.org/files/nvda/documentation/userGuide.html
https://nvaccess.org/files/nvda/documentation/userGuide.html
https://electronjs.org/
https://nodejs.org/
https://orbitresearch.com/product/graphiti
http://doi.org/10.1145/1639642.1639686
http://sonify.psych.gatech.edu/~walkerb/classes/assisttech/pdf/Owen(2009).pdf
http://sonify.psych.gatech.edu/~walkerb/classes/assisttech/pdf/Owen(2009).pdf
http://doi.org/10.1145/1243441.1243455
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.3582&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.3582&rep=rep1&type=pdf
https://youtu.be/NLKqTTnKLII
http://amazon.co.uk/dp/3945749433/

174 Bibliography

in the Information Society 17 (05 Apr 2017), pages 391–409. doi:10.1007/s10209-017-0538-8 (cited on
pages 24, 26).

Revnitski, Dmitri [2005]. Konzeption und Realisierung eines taktilen Zugangs zu grafischen Veran-
schaulichungen mathematischer Sachverhalte. Entwurf und Implementierung von Darstellungshilfen
für den Mathematikunterricht von blinden Schülern und Studenten. Diploma Thesis. Universität Karl-
sruhe, Jan 2005 (cited on pages 23, 26, 31, 90).

Rotard, Martin, Kerstin Otte, and Thomas Ertl [2004]. Exploring Scalable Vector Graphics for Visually
Impaired Users. Computers Helping People with Special Needs: 9th International Conference (ICCHP
2004) (Paris, France). Edited by Joachim Klaus, Klaus Miesenberger, Dominique Burger, and Wolfgang
Zagler. Volume 3118. Lecture Notes in Computer Science. Berlin / Heidelberg, Germany: Springer-
Verlag, 07 Jul 2004, pages 725–730. doi:10.1007/978-3-540-27817-7_108. http://vis-web.informatik.un
i-stuttgart.de/~rotard/publications/ICCHP04-SVG4VisuallyImpaired.pdf (cited on pages 31, 90).

Salameh, Khouloud, Joe Tekli, and Richard Chbeir [2014]. SVG-to-RDF Image Semantization. Proc. 7th

International Conference on Similarity Search and Applications (SISAP 2014) (Los Cabos, Mexico).
Edited by Agma Juci Machado Traina, Caetano Traina Jr., and Robson Leonardo Ferreira Cordeiro.
Volume 8821. Lecture Notes in Computer Science. Springer International Publishing Switzerland,
29 Oct 2014, pages 214–228. doi:10.1007/978-3-319-11988-5_20. https://hal.archives-ouvertes.fr/hal
-01082168/document (cited on pages 46–47).

SAS [2019]. SAS Graphics Accelerator. 2019. https://support.sas.com/software/products/graphics-ac
celerator (cited on page 33).

Schepers, Doug [2015a]. Describler. 2015. http://describler.com/ (cited on pages 3, 42, 54, 89, 91).

Schepers, Doug [2017]. describler: SVG Dataviz Accessibility Tool. 31 Mar 2017. https://github.com/s
hepazu/describler (cited on pages 42–43, 54, 91).

Schepers, Doug [2019]. Accessible Charts with ARIA. Blog posting. 25 Nov 2019. https://blog.tenon.i
o/accessible-charts-with-aria (cited on pages 46, 57, 92).

Schepers, Doug [2020]. Why Accessibility Is at the Heart of Data Visualization. Nightinggale. Article.
21 May 2020. https://medium.com/nightingale/accessibility-is-at-the-heart-of-data-visualizat
ion-64a38d6c505b (cited on page 23).

Schepers, Douglas [2015b]. Accessible SVG Data Visualization. 17 Feb 2015. https://youtu.be/W1VUr54
4i84 (cited on page 42).

Sharif, Ather [2015a]. evoGraphs. Documentation. 2015. http://evoxlabs.org/projects/evographs (cited
on pages 21, 39).

Sharif, Ather [2015b]. evoGraphs – a jQuery Plugin to Create Web Accessible Graphs. EvoXLabs, 23 Jan
2015. https://youtu.be/bnACsbcbUxY (cited on page 42).

Sharif, Ather and Babak Forouraghi [2018]. evoGraphs – a jQuery Plugin to Create Web Accessible
Graphs. 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC) (Las
Vegas, NV, USA). IEEE, 12 Jan 2018, pages 1–4. doi:10.1109/CCNC.2018.8319239 (cited on page 39).

Shneiderman, Ben [1996]. The Eyes Have It: A Task by Data Type Taxonomy for Information Visual-
izations. Proc. 1996 IEEE Symposium on Visual Languages (VL ’96) (Boulder, CO, USA). IEEE
Computer Society, 03 Sep 1996, pages 336–343. doi:10.1109/VL.1996.545307. https://cs.umd.edu/~ben
/papers/Shneiderman1996eyes.pdf (cited on page 22).

Sorge, Volker [2016]. Polyfilling Accessible Chemistry Diagrams. Computers Helping People with Special
Needs: 15th International Conference (ICCHP 2016) (Linz, Austria, 13 Jul 2016). Edited by Klaus
Miesenberger, Christian Bühler, and Petra Penaz. Volume 9758.I. Lecture Notes in Computer Science.

http://doi.org/10.1007/s10209-017-0538-8
http://doi.org/10.1007/978-3-540-27817-7_108
http://vis-web.informatik.uni-stuttgart.de/~rotard/publications/ICCHP04-SVG4VisuallyImpaired.pdf
http://vis-web.informatik.uni-stuttgart.de/~rotard/publications/ICCHP04-SVG4VisuallyImpaired.pdf
http://doi.org/10.1007/978-3-319-11988-5_20
https://hal.archives-ouvertes.fr/hal-01082168/document
https://hal.archives-ouvertes.fr/hal-01082168/document
https://support.sas.com/software/products/graphics-accelerator
https://support.sas.com/software/products/graphics-accelerator
http://describler.com/
https://github.com/shepazu/describler
https://github.com/shepazu/describler
https://blog.tenon.io/accessible-charts-with-aria
https://blog.tenon.io/accessible-charts-with-aria
https://medium.com/nightingale/accessibility-is-at-the-heart-of-data-visualization-64a38d6c505b
https://medium.com/nightingale/accessibility-is-at-the-heart-of-data-visualization-64a38d6c505b
https://youtu.be/W1VUr544i84
https://youtu.be/W1VUr544i84
http://evoxlabs.org/projects/evographs
https://youtu.be/bnACsbcbUxY
http://doi.org/10.1109/CCNC.2018.8319239
http://doi.org/10.1109/VL.1996.545307
https://cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf
https://cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf

175

Springer International Publishing Switzerland, 06 Jul 2016, pages 43–50. doi:10.1007/978-3-319-41264
-1_6. https://research.birmingham.ac.uk/portal/files/33124334/icchp16AA.pdf (cited on pages 32,
47, 49, 91).

Summers, Ed, Julianna Langston, and Dan Heath [2018]. Accessibility and ODS Graphics: Seven Simple
Steps to Section 508 Compliance Using SAS 9.4M5. SAS Institute Inc. Jan 2018 (cited on page 33).

ViewPlus [2016a]. VP Elite and Premier Embosser User Manual. ViewPlus. 13 Jun 2016. https://view
plus.com/downloads/docs/manuals/VPElitePremier_UM_EN_20160613.pdf (cited on page 25).

ViewPlus [2016b]. VP EmBraille User Manual. ViewPlus. 13 Jun 2016. https://viewplus.com/download
s/docs/manuals/VPEmBraille_UM_EN_20160613.pdf (cited on page 25).

ViewPlus [2020]. ViewPlus Software Suite 7.0.7 User Manual. ViewPlus. 27 Apr 2020. https://viewplu
s.com/downloads/docs/manuals/VPTSS7_UM_EN_20200427.pdf (cited on page 25).

ViewPlus [2021]. Braille Embossers & Tactile Graphics. ViewPlus Technologies, 08 Apr 2021. https:
//viewplus.com/ (cited on pages 25, 30).

Vispero [2020]. JAWS® – Freedom Scientific. 2020. https://freedomscientific.com/products/software
/jaws (cited on pages 10–12, 91, 130–131).

Völkel, Thorsten, Gerhard Weber, and Ulrich Baumann [2008]. Tactile Graphics Revised: The Novel
BrailleDis 9000 Pin-Matrix Device with Multitouch Input. Computers Helping People with Special
Needs: 11th International Conference (ICCHP 2008) (Linz, Austria). Edited by Klaus Miesenberger,
Joachim Klaus, Wolfgang Zagler, and Arthur Karshmer. Volume 5105. Lecture Notes in Computer
Science. Berlin / Heidelberg, Germany: Springer-Verlag, 09 Jul 2008, pages 835–842. doi:10.1007/978-
3-540-70540-6_124 (cited on page 26).

W3C [2011]. Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C Recommendation 1.1 (Second
Edition). World Wide Web Consortium (W3C), 16 Aug 2011. https://w3.org/TR/2011/REC-SVG11-201
10816 (cited on pages 1, 45–46).

W3C [2015a]. HTML5 Image Description Extension (longdesc). W3C Recommendation. World Wide
Web Consortium (W3C), 26 Feb 2015. https://w3.org/TR/2015/REC-html-longdesc-20150226 (cited
on page 21).

W3C [2015b]. SVG Accessibility/ARIA Roles for Charts. A Proposed System of Roles and Properties for
Using ARIA to Annotate Charts, Graphs, and Maps. W3C wiki. 11 Sep 2015. https://w3.org/wiki
/SVG_Accessibility/ARIA_roles_for_charts (cited on pages 60–61, 92).

W3C [2017a]. Accessible Rich Internet Applications (WAI-ARIA) 1.1. W3C Recommendation 1.1. World
Wide Web Consortium (W3C), 14 Dec 2017. https://w3.org/TR/2017/REC-wai-aria-1.1-20171214
(cited on pages 1, 16–17, 33, 48, 50, 64, 86, 92).

W3C [2017b]. Core Accessibility API Mappings 1.1. W3C Recommendation 1.1. World Wide Web
Consortium (W3C), 14 Dec 2017. https://w3.org/TR/2017/REC-core-aam-1.1-20171214 (cited on
pages 17, 48).

W3C [2017c]. HTML 5.2. W3C Recommendation 5.2. World Wide Web Consortium (W3C), 14 Dec
2017. https://w3.org/TR/2017/REC-html52-20171214 (cited on pages 14, 21).

W3C [2018a]. Accessible Name and Description Computation 1.1. W3C Recommendation 1.1. World
Wide Web Consortium (W3C), 18 Dec 2018. https://w3.org/TR/2018/REC-accname-1.1-20181218
(cited on page 18).

W3C [2018b]. Graphics Accessibility API Mappings. W3C Recommendation 1.0. World Wide Web
Consortium (W3C), 02 Oct 2018. https://w3.org/TR/2018/REC-graphics-aam-1.0-20181002 (cited on
page 48).

http://doi.org/10.1007/978-3-319-41264-1_6
http://doi.org/10.1007/978-3-319-41264-1_6
https://research.birmingham.ac.uk/portal/files/33124334/icchp16AA.pdf
https://viewplus.com/downloads/docs/manuals/VPElitePremier_UM_EN_20160613.pdf
https://viewplus.com/downloads/docs/manuals/VPElitePremier_UM_EN_20160613.pdf
https://viewplus.com/downloads/docs/manuals/VPEmBraille_UM_EN_20160613.pdf
https://viewplus.com/downloads/docs/manuals/VPEmBraille_UM_EN_20160613.pdf
https://viewplus.com/downloads/docs/manuals/VPTSS7_UM_EN_20200427.pdf
https://viewplus.com/downloads/docs/manuals/VPTSS7_UM_EN_20200427.pdf
https://viewplus.com/
https://viewplus.com/
https://freedomscientific.com/products/software/jaws
https://freedomscientific.com/products/software/jaws
http://doi.org/10.1007/978-3-540-70540-6_124
http://doi.org/10.1007/978-3-540-70540-6_124
https://w3.org/TR/2011/REC-SVG11-20110816
https://w3.org/TR/2011/REC-SVG11-20110816
https://w3.org/TR/2015/REC-html-longdesc-20150226
https://w3.org/wiki/SVG_Accessibility/ARIA_roles_for_charts
https://w3.org/wiki/SVG_Accessibility/ARIA_roles_for_charts
https://w3.org/TR/2017/REC-wai-aria-1.1-20171214
https://w3.org/TR/2017/REC-core-aam-1.1-20171214
https://w3.org/TR/2017/REC-html52-20171214
https://w3.org/TR/2018/REC-accname-1.1-20181218
https://w3.org/TR/2018/REC-graphics-aam-1.0-20181002

176 Bibliography

W3C [2018c]. Scalable Vector Graphics (SVG) 2. W3C Candidate Recommendation 2. World Wide Web
Consortium (W3C), 04 Oct 2018. https://w3.org/TR/2018/CR-SVG2-20181004 (cited on pages 45, 48).

W3C [2018d]. SVG Accessibility API Mappings. W3C Working Draft 1.0. World Wide Web Consortium
(W3C), 10 May 2018. https://w3.org/TR/2018/WD-svg-aam-1.0-20180510 (cited on pages 48, 133).

W3C [2018e]. WAI-ARIA Graphics Module. W3C Recommendation 1.0. World Wide Web Consortium
(W3C), 02 Oct 2018. https://w3.org/TR/2018/REC-graphics-aria-1.0-20181002 (cited on pages 48,
57, 92).

W3C [2018f]. Web Content Accessibility Guidelines (WCAG) 2.1. W3C Recommendation 2.1. World
Wide Web Consortium (W3C), 05 Jun 2018. https://w3.org/TR/2018/REC-WCAG21-20180605 (cited on
pages 6, 12, 21).

W3C [2020]. Techniques for WCAG 2.1. WCAG supporting document. World Wide Web Consortium
(W3C), 10 Jul 2020. https://w3.org/WAI/WCAG21/techniques (cited on page 12).

W3C [2021a]. W3C Accessibility Guidelines (WCAG) 3.0. W3C First Public Working Draft 3.0. World
Wide Web Consortium (W3C), 21 Jan 2021. https://w3.org/TR/2021/WD-wcag-3.0-20210121 (cited on
page 14).

W3C [2021b]. Web Accessibility Initiative (WAI). 24 Apr 2021. https://w3.org/WAI (cited on pages 5,
16).

W3C [2021c]. World Wide Web Consortium (W3C). 08 Apr 2021. https://w3.org/ (cited on pages 1, 12).

Walker, Bruce and Joshua Cothran [2003]. Sonification Sandbox: a Graphical Toolkit for Auditory Graphs.
Proc. 9th International Conference on Auditory Display (ICAD 2003) (Boston, MA, USA). 06 Jul 2003,
pages 161–163. http://cs.cmu.edu/~kkitani/pdf/YKKBS-AH11.pdf (cited on page 29).

Wall, Steven A. and Stephen A. Brewster [2006]. Tac-tiles: multimodal Pie Charts for Visually Impaired
Users. Proc. 4th Nordic Conference on Human- Computer Interaction: Changing Roles (NordiCHI
2006) (Oslo, Norway). 14 Oct 2006, pages 9–18. doi:10.1145/1182475.1182477. http://eprints.gla.ac
.uk/3236/1/tac-tiles1.pdf (cited on page 30).

Watson, Léonie [2014]. Tips for Creating Accessible SVG. Blog posting. 06 May 2014. https://sitepoi
nt.com/tips-accessible-svg (cited on page 49).

Watson, Léonie [2015]. Accessibility APIs: A Key To Web Accessibility. 16 Mar 2015. https://smashing
magazine.com/2015/03/web-accessibility-with-accessibility-api/ (cited on page 17).

Watson, Léonie [2017]. Accessible SVG Line Graphs. Blog posting. 09 Sep 2017. https://tink.uk/acce
ssible-svg-line-graphs (cited on pages 64–66, 92).

Watson, Léonie [2018]. Test Case: SVG Accessible Names. Blog posting. 16 Jan 2018. https://test-cas
es.tink.uk/svg-accessible-names/index.html (cited on page 49).

WebAIM [2019]. Screen Reader User Survey #8 Results. 27 Sep 2019. https://webaim.org/projects/sc
reenreadersurvey8 (cited on page 10).

Wefold, Harold E. [1976]. Computer Graphics for the Blind. ACM SIGCAPH Computers and the Physi-
cally Handicapped 18 (Jan 1976), pages 10–12. doi:10.1145/951781.951782 (cited on page 24).

Yoshida, Tsubasa, Kris M. Kitani, Hideki Koike, Serge Belongie, and Kevin Schlei [2011]. EdgeSonic:
Image Feature Sonification for the Visually Impaired. Proc. 2nd Augmented Human International
Conference (AH ’11) (Tokio, Japan). New York, NY, USA: ACM, 13 Mar 2011, 11:1–11:4. doi:10.11
45/1959826.1959837. http://sonify.psych.gatech.edu/publications/pdfs/2003ICAD-WalkerCothran-Sand
box.pdf (cited on pages 23, 29).

https://w3.org/TR/2018/CR-SVG2-20181004
https://w3.org/TR/2018/WD-svg-aam-1.0-20180510
https://w3.org/TR/2018/REC-graphics-aria-1.0-20181002
https://w3.org/TR/2018/REC-WCAG21-20180605
https://w3.org/WAI/WCAG21/techniques
https://w3.org/TR/2021/WD-wcag-3.0-20210121
https://w3.org/WAI
https://w3.org/
http://cs.cmu.edu/~kkitani/pdf/YKKBS-AH11.pdf
http://doi.org/10.1145/1182475.1182477
http://eprints.gla.ac.uk/3236/1/tac-tiles1.pdf
http://eprints.gla.ac.uk/3236/1/tac-tiles1.pdf
https://sitepoint.com/tips-accessible-svg
https://sitepoint.com/tips-accessible-svg
https://smashingmagazine.com/2015/03/web-accessibility-with-accessibility-api/
https://smashingmagazine.com/2015/03/web-accessibility-with-accessibility-api/
https://tink.uk/accessible-svg-line-graphs
https://tink.uk/accessible-svg-line-graphs
https://test-cases.tink.uk/svg-accessible-names/index.html
https://test-cases.tink.uk/svg-accessible-names/index.html
https://webaim.org/projects/screenreadersurvey8
https://webaim.org/projects/screenreadersurvey8
http://doi.org/10.1145/951781.951782
http://doi.org/10.1145/1959826.1959837
http://doi.org/10.1145/1959826.1959837
http://sonify.psych.gatech.edu/publications/pdfs/2003ICAD-WalkerCothran-Sandbox.pdf
http://sonify.psych.gatech.edu/publications/pdfs/2003ICAD-WalkerCothran-Sandbox.pdf

177

Zhao, Haixia, Catherine Plaisant, Ben Shneiderman, and Jonathan Lazar [2008]. Data Sonification
for Users with Visual Impairment: a Case Study with Georeferenced Data. ACM Transactions on
Computer-Human Interaction 15.1 (May 2008), 4:1–4:28. ISSN 1073-0616. doi:10.1145/1352782.1352786.
https://cs.umd.edu/~ben/papers/Zhao2008Data.pdf (cited on pages 23, 29).

Zou, Hong and Jutta Treviranus [2015]. ChartMaster: a Tool for Interacting with Stock Market Charts
Using a Screen Reader. Proc. 17th International ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS 2015) (Lisbon, Portugal). New York, NY, USA: ACM, 26 Oct 2015, pages 107–
116. doi:10.1145/2700648.2809862 (cited on pages 22, 42).

http://worldcatlibraries.org/wcpa/issn/1073-0616
http://doi.org/10.1145/1352782.1352786
https://cs.umd.edu/~ben/papers/Zhao2008Data.pdf
http://doi.org/10.1145/2700648.2809862

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Credits
	1 Introduction
	2 Web Accessibility
	2.1 Definitions
	2.2 Assistive Technology
	2.2.1 Braille
	2.2.2 Computer Input and Output
	2.2.3 Screen Readers

	2.3 The Web Content Accessibility Guidelines
	2.3.1 Principle 1: Perceivable
	2.3.2 Principle 2: Operable
	2.3.3 Principle 3: Understandable
	2.3.4 Principle 4: Robust
	2.3.5 Further Development

	2.4 Techniques for Accessible Web Pages
	2.4.1 Semantic HTML
	2.4.2 The WAI-ARIA System
	2.4.3 The Accessibility Tree

	3 Chart Accessibility
	3.1 Tactile Output
	3.1.1 Static Output
	3.1.2 Refreshable Tactile Displays

	3.2 Auditory Output
	3.2.1 Speech Output
	3.2.2 Sonification
	3.2.3 Combined Speech Output and Sonification

	3.3 Multimodal Output
	3.4 Screen-Reader-Friendly Output
	3.5 Charting Libraries with Accessibility Features
	3.5.1 Highcharts
	3.5.2 FusionCharts
	3.5.3 Semiotic
	3.5.4 amCharts
	3.5.5 AnyChart
	3.5.6 evoGraphs
	3.5.7 ChartMaster

	3.6 Describler
	3.6.1 Chart Root
	3.6.2 Axes
	3.6.3 Data Points
	3.6.4 Legend Root
	3.6.5 Legend Item

	4 Semantic Enrichment of SVG Charts
	4.1 Formats for Accessible Graphics
	4.1.1 Native Accessibility of SVG
	4.1.2 Scientific Proposals for Semantic Enrichment
	4.1.3 ARIA Enhancements to SVG

	4.2 ARIA Guidelines for User Agents
	4.3 SVG Accessibility in Practice
	4.4 Scientific Proposals for Accessible SVG Charts
	4.5 WAI-ARIA-Based Systems for Charts
	4.5.1 Describler
	4.5.2 WAI-ARIA Graphics Roles
	4.5.3 W3C Proposal
	4.5.4 SVG Pseudo-Table
	4.5.5 SVG Pseudo-List
	4.5.6 Highcharts
	4.5.7 Semiotic
	4.5.8 amCharts
	4.5.9 FusionCharts
	4.5.10 AnyChart

	5 Accessible Charts with AChart
	5.1 Motivation
	5.2 Developing an ARIA-Based System for Charts
	5.3 AChart Taxonomy of Roles and Properties

	6 AChart Creator
	6.1 User Interaction
	6.1.1 Creating Line Charts
	6.1.2 Creating Bar Charts
	6.1.3 Creating Pie Charts

	6.2 Implementation
	6.2.1 SVG Generator
	6.2.2 AChart Creator Version 1.0
	6.2.3 AChart Creator Version 2.0

	7 AChart Interpreter
	7.1 User Interface
	7.1.1 Chart Accessibility Tree (CAT)
	7.1.2 Retrieving Additional Information
	7.1.3 Modes of Screen-Reader Interaction
	7.1.4 Integrated Speech Output

	7.2 Software Architecture
	7.2.1 Common Interfaces
	7.2.2 Model Classes
	7.2.3 View Modules
	7.2.4 Controller Modules

	7.3 AChart Summariser
	7.3.1 User Interaction
	7.3.2 Software Architecture

	7.4 Selected Details of the Implementation
	7.4.1 Accessibility Considerations
	7.4.2 The Context Menu
	7.4.3 Speech Synthesis

	8 Outlook and Future Work
	8.1 Evolving an Extended AChart Taxonomy
	8.2 Software Enhancements

	9 Concluding Remarks
	A AChart Creator Help
	B AChart Interpreter Help
	C AChart Summariser Help
	Bibliography

