
Doctoral Thesis

Assessment of Cybersecurity Based on
Risk and Uncertainty Propagation in

Distributed Networked Systems
by Dipl.-Ing. Michael Krisper BSc

DOCTORAL THESIS
to achieve the university degree of

Doktor der technischen Wissenscha�en

submi�ed to

Graz University of Technology
and conducted at the

Institute of Technical Informatics

Supervisor:

Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

Advisors:

Dipl.-Ing. Dr.techn. Georg Macher

Dipl.-Ing. Dr.techn. Christian Kreiner

External Examiner:

Prof. Indrajit Ray, Colorado State University

Graz, May 2021





A�idavit
I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the
present doctoral thesis.

Date Signature

– iii –





Acknowledgements
Working on this dissertation has been a long, bumpy road over many years, requiring full commitment
and perseverance. It was a seemingly endless turmoil of literature research, writing articles, discus-
sions, conferences, project work, teaching, and administrative work, including some wrong turns and
dead ends. I am incredibly proud that I was �nally able to complete the dissertation and would like to
thank everyone who accompanied me along the way. Writing this thesis would not have been possible
without the support of my wife, friends, colleagues and the many other inspiring and helpful people I
have met in my life.

First and foremost, I would like to thank my wife, Melanie Krisper, for being endlessly patient with me
during the many days, nights, weekends, months, and years I spent at the institute. Especially during
stressful times, she supported, encouraged and spurred me on to continue working on the dissertation.
Thank you for the love you gave me during those stressful times.

Next, I would like to thank my parents, Renate Krisper and Hermann Krisper, for their support
during my prolonged studies. They were the most loving parents a person could imagine. I want to
thank Otto Platzer for always being a close family friend and supporting us after the sad loss of my
father. I also want to thank my brother Martin Krisper for taking care of my mother and the family
home during the times when I could not.

Without him, I would not have the opportunity of writing a dissertation, and for that, I am in�nitely
grateful: Christian Kreiner. We shared the enthusiasm and passion for design patterns, critical think-
ing and insightful discussions. Tragically, he also passed away far too early and could not see the end
of my dissertation. He was one of the most inspiring teacher and human I have ever met. Besides
him, I would also like to thank my teachers and role models from whom I learned to think critically
and humanistic, to be tolerant and open-minded towards other opinions, and to be interested in new
knowledge and respectful to others: Johann Götschl, Enrique Grabl, Wolfgang Woess, Christian
Magele Johann Hagauer, Reinhard Kamitz, Manfred Schantl, Manfred Wil�ng, and Roswitha
Fink. Also, thank you, Taz Daughtrey, your interest in my work has motivated me to keep going.

I want to thank all colleagues at the institute for the many enjoyable hours we had together. The
academic discussions in the clubroom were the best, and for that, I would like to thank the “ELITI Boys
and Girls”. Thank you for quenching my thirst (for knowledge, of course): Michael Spörk, the man
with the strongest forearm in the institute; Rainer Hofmann, who has the �nest taste in music; Mar-
tin Erb, who seems to multitask e�ortlessly and never gets distracted; Lukas Gressl, who is always
up for a good and loud discussion; Jürgen Dobaj, the connector of all ideas; Alexander Rech, the
best-dressed businessman at the institute; Johannes Iber, who likes the simple life; Tobias Rauter,
an exceptional hacker; Andrea Höller, who always �nds the right words; Thomas Ulz, the social
driver and one of the most intelligent minds; Markus Schuss, the last universal genius and jack-of-all-

– v –



trades; Michael Stocker, who likes to discuss everything; and Bernhard Großwindhager, the man
who loves practical things. I also thank Andreas Sinnhofer, the mediator; Felix Oppermann, the
man for the details; and Ralph Weissnegger, the savourer for the beautiful things in life.

Furthermore, I thank my friends and colleagues which have been part of my life for so many years
now, and went with me through thick and thin: Anton Sax, Hans-Peter Poglitsch, Armin Sch-
aberl, Markus Schreiner, Christian Seidl, Markus Harb, Teresa and Bernhard Francisci, Ulla
Mayrhofer & Anton Straka, and Sebastian Scheiber. I hope that we will see each other more often
again after this year of separation due to the Corona crisis.

Finally, I would like to thank my supervisors at the Institute of Computer Engineering. Thank you,
Kay Römer, for your constructive, honest and fair feedback – I can imagine that it is not an easy job
to supervise so many students, to keep our anthill of institute together, and still have enough time for
everyone to be helpful, constructive, and respectful as you always are. Thank you, Georg Macher, for
giving me the chance to continue working at the institute and on my dissertation. You taught me to see
a bit of sarcasm and fun everywhere and go through the world with open eyes. Thank you, Christian
Steger and Eugen Brenner, for the emotional and organizational support in stressful times and the
insightful and interesting discussions at the institute.

Graz, May 2021
Michael Krisper

– vi –



Danksagung
Die Arbeit an dieser Dissertation war ein langer, steiniger Weg über viele Jahre, der vollen Einsatz und
Ausdauer erforderte. Es war schier endloses Wirrwarr bestehend aus Literaturrecherchen, Schreiben
von Artikeln, Diskussionen, Konferenzen, Projektarbeiten, Lehre und administrativer Arbeit, das auch
einige Irrwege und Sackgassen beinhaltet hat. Ich bin außerordentlich stolz, dass ich die Dissertation
nach alledem endlich fertigstellen konnte und möchte mich bei allen danken, die mich auf diesem Weg
ein Stück weit begleitet haben. Das Schreiben dieser Arbeit wäre ohne die Unterstützung meiner Frau,
meiner Freunde, Kollegen und der vielen anderen inspirierenden und hilfreichen Menschen, die ich in
meinem Leben getro�en habe, nicht möglich gewesen.

Zuallererst möchte ich meiner Frau Melanie Krisper dafür danken, dass sie während der vielen Tage,
Nächte, Wochenenden, Monate und Jahre, die ich am Institut verbrachte, unendlich geduldig mit mir
war. Vor allem in stressigen Zeiten hat sie mich unterstützt, ermutigt und angespornt, die Arbeit an der
Dissertation fortzusetzen. Danke für die Liebe, die du mir während dieser stressigen Zeit gegeben hast.

Als Nächstes möchte ich mich bei meinen Eltern, Renate Krisper und Hermann Krisper, für die
Unterstützung während meines langwierigen Studiums bedanken. Sie waren die liebenswertesten El-
tern, die sich ein Mensch vorstellen kann. Ich danke Otto Platzer, dass er immer ein enger Freund der
Familie war und uns nach dem traurigen Verlust meines Vaters unterstützt hat. Außerdem möchte ich
meinem Bruder Martin Krisper dafür danken, dass er sich in den Zeiten, in denen ich nicht konnte,
um meine Mutter und das Familienhaus gekümmert hat.

Ohne ihn hätte ich nicht die Möglichkeit, eine Dissertation zu schreiben, und dafür bin ich unendlich
dankbar: Christian Kreiner. Wir teilten die Begeisterung und Leidenschaft für Design Patterns, kriti-
sches Denken und aufschlussreiche Diskussionen. Tragischerweise ist auch er viel zu früh verstorben
und konnte das Ende meiner Dissertation nicht mehr miterleben. Er war einer der inspirierendsten Leh-
rer und Menschen, die ich je getro�en habe. Neben ihm möchte ich auch meinen Lehrern und Vorbildern
danken, von denen ich gelernt habe, kritisch und humanistisch zu denken, tolerant und aufgeschlossen
gegenüber anderen Meinungen zu sein, sowie interessiert an neuem Wissen und respektvoll im Umgang
zu sein: Johann Götschl, Enrique Grabl, Wolfgang Woess, Christian Magele Johann Hagauer,
Reinhard Kamitz, Manfred Schantl, Manfred Wil�ng, und Roswitha Fink. Vielen Dank auch an
Taz Daughtrey, dein Interesse an meiner Arbeit hat mich motiviert, weiterzumachen.

Ich möchte mich bei allen Kolleginnen und Kollegen am Institut für die vielen schönen Stunden be-
danken, die wir zusammen hatten. Die akademischen Diskussionen im Clubraum waren die besten,
und dafür möchte ich mich bei den “ELITI Boys and Girls” bedanken. Danke, dass ihr meinen Durst
(nach Wissen) gestillt habt: Michael Spörk, der Mann mit dem stärksten Unterarm im Institut; Rai-
ner Hofmann, der den feinsten Musikgeschmack hat; Martin Erb, der scheinbar mühelos multitasken
kann und sich nie ablenken lässt; Lukas Gressl, der immer für eine gute und laute Diskussion zu haben

– vii –



ist; Jürgen Dobaj, der Verbinder aller Ideen; Alexander Rech, der bestgekleidetste Geschäftsmann am
Institut; Johannes Iber, der das einfache Leben mag; Tobias Rauter, ein außergewöhnlicher Hacker;
Andrea Höller, die immer die richtigen Worte �ndet; Thomas Ulz, der soziale Antreiber und einer
der intelligentesten Menschen; Markus Schuss, das letzte Universalgenie und Tausendsassa; Michael
Stocker, der gerne über Details diskutiert; und Bernhard Großwindhager, der Mann, der die prakti-
schen Dinge liebt. Außerdem danke ich Andreas Sinnhofer, dem Vermittler; Felix Oppermann, dem
Mann für die Details; und Ralph Weissnegger dem Genießer der schönen Dinge des Lebens.

Ein großes Danke geht auch an meine Freunde die nun schon so viele Jahre Teil meines Lebens sind
und mit mir durch dick und dünn gegangen sind: Anton Sax, Hans-Peter Poglitsch, Armin Scha-
berl, Markus Schreiner, Christian Seidl, Markus Harb, Teresa und Bernhard Francisci, Ulla
Mayrhofer & Anton Straka und Sebastian Scheiber. Ich ho�e, dass wir uns nach diesem Jahr der
Trennung durch die Corona-Krise wieder öfter sehen werden.

Abschließend möchte ich mich bei meinen Betreuern am Institut für Technische Informatik bedan-
ken. Vielen Dank, Kay Römer, für Ihr konstruktives, ehrliches und faires Feedback – ich kann mir
vorstellen, dass es kein leichter Job ist, so viele Studenten zu betreuen, unseren Ameisenhaufen von In-
stitut zusammenzuhalten und trotzdem noch genug Zeit für jeden einzelnen zu haben, um konstruktiv
und respektvoll zu sein, wie Sie es immer sind. Danke, Georg Macher, dass du mir die Chance gege-
ben hast, am Institut und an meiner Dissertation weiterzuarbeiten. Du hast mich gelehrt, überall ein
bisschen Sarkasmus und Spaß zu sehen und mit o�enen Augen durch die Welt zu gehen. Danke, Chris-
tian Steger und Eugen Brenner, für die emotionale und organisatorische Unterstützung in stressigen
Zeiten und die aufschlussreichen und interessanten Diskussionen am Institut.

Graz, Mai 2021
Michael Krisper

– viii –



Abstract
Cybersecurity incidents cause tremendous costs for the economy and damage for individuals, e.g.
through identity theft, data loss, ransomware or bribery. To �nd appropriate measures to reduce or
prevent such incidents, a system must �rst be assessed regarding its risks. In domains such as safety,
harmful events can be predicted by looking at past events, modelling them and applying these mod-
els to the future. For cybersecurity, however, such incidents are much harder to predict because they
depend mainly on the motivation and decisions of humans. To evaluate this, one has to resort to ex-
pert judgments, which are unfortunately subject to large uncertainties. In this thesis, the structured
expert judgment method is used to estimate the risks for cybersecurity incidents. The risks are calcu-
lated by forward and backward propagation of speci�c risk attributes along with their uncertainties.
This is done on risk graphs in which all attack paths are mapped. The result is a risk distribution that
can be traced back to the individual components. This supports making better decisions on the nec-
essary measures to reduce risk. Correctness, applicability, and usefulness were demonstrated using
an implemented prototype. For this purpose, a comparison of 45 publicly available studies was made
using structured expert judgment and Riskee. Furthermore, the created Riskee method was applied in
an international workshop to investigate the cybersecurity risk of car theft. Finally, the implemented
prototype was used to �nd secure solutions for chip designs in a design space exploration study.

Kurzfassung
Cybersecurity-Vorfälle verursachen enorme Kosten für die Wirtschaft und Schaden für den Einzelnen,
z. B. durch Identitätsdiebstahl, Datenverlust, Ransomware oder Bestechung. Um geeignete Maßnahmen
für die Verringerung oder Vermeidung solcher Vorfälle zu �nden, muss ein System zuerst hinsichtlich
seiner Risiken bewertet werden. In Bereichen wie der Ausfallsicherheit können Schadensereignisse gut
vorhergesagt werden, indem man sich vergangene Ereignisse ansieht, sie modelliert und diese Modelle
auf die Zukunft anwendet. Für Cybersecurity sind solche Vorfälle jedoch viel schwieriger vorherzusa-
gen, weil sie hauptsächlich von der Motivation und den Entscheidungen von Menschen abhängen. Um
das zu bewerten, muss man auf Expertenurteile zurückzugreifen, die leider mit großen Unsicherheiten
behaftet sind. In dieser Arbeit wird die Methode des strukturierten Expertenurteils verwendet, um die
Risiken für Cybersecurity-Vorfälle abzuschätzen. Die Risiken werden berechnet durch Vorwärts- und
Rückwärtspropagation spezieller Risikoattribute mitsamt ihrer Unsicherheiten. Dies geschieht auf Ri-
sikographen, in denen alle Angri�spfade abgebildet sind. Das Ergebnis ist eine Risikoverteilung über
ein System, die auf die einzelnen Komponenten rückverfolgbar ist. Dies ermöglicht bessere Entschei-
dungs�ndung für die erforderlichen Maßnahmen zur Risikominderung. Korrektheit, Anwendbarkeit,
und Nützlichkeit wurden mithilfe eines implementierten Prototyps gezeigt. Dazu wird ein Vergleich
der Resultate von 45 ö�entlich zugänglichen Studien gezogen, die mittels strukturiertem Expertenur-
teil und Riskee durchgeführt wurden. Weiters wurde die Riskee Methode in einem internationalen
Workshop angewandt, um das Cybersecurity-Risiko von Autodiebstahl zu untersuchen. Letztlich wur-
de der erstellte Prototyp in einer Design-Space-Exploration Studie eingesetzt, um sichere Lösungen für
Chip-Designs zu �nden.
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CHAPTER1
Introduction

We can be blind to the obvious, and we are
also blind to our blindness.

Daniel Kahnemann

Summary: This chapter introduces the topics of this dissertation and summarizes the problem, challenges,
and contributions. After introducing and motivating the topic of cyber-security for a general audience, the
context and domain for this thesis are described. Then the scienti�c problem, challenges, and hypothesis
are outlined. At the end of this chapter, the structure of the remaining thesis is shown.

� � �

What is the risk of your car killing you? This question might sound strange at �rst, but it is not as
far-fetched as it might sound. Cars are good examples to elaborate on cyber-security risks in Cyber-
Physical Systems (CPS). With more and more driver assistance systems in place, the risk that a malicious
attacker is taking over the control of a car while driving is getting more and more realistic. Already
today, complex driver assistance systems are built into cars and help us navigate, stay on track, adapt
the speed to the driver in front of us, or help us �nd a parking space. In a few years, when the era of
autonomous self-driving and connected cars arrives, we will drive in cars with autonomy levels of 3,
4, and even 5 [1, 2]. This means that the car will be in control of the driving. Since such cars are also
connected to the Internet or allow spontaneous wireless connections, they open up an attack surface
targeted by hackers. The connectivity combined with the control over a car allows remote control of
cars and even whole �eets. Hackers could initiate spontaneous accelerations, control the steering wheel
or brake unexpectedly. Also, theft or damaging components could be possible. Such attacks have been
made in the past [3, 4] and this trend will continue.If we do not prepare and harden our systems against
such attacks, this could result in catastrophic events with high casualties � �nancially as well as harm to
human lives.
These threats and risks introduced here for the automotive domain also apply to many other domains.
According to the currentState of Phish-study by Proofpoint [5], 88% of all surveyed organizations from
many domains have encountered some form of cyber-security attack in the year 2019. Furthermore,
theCost of Insider Threats 2020-study by IBM and Ponemon Institute stated that 60% of companies even
had 20 or more attack attempts in the year 2020 [6], and the current2021 Hacker Reportby HackerOne
found an overwhelming 1000% increase in attacks on IoT devices in 2020 [7]. Also, CrowdStrike's2021
Global Thread Reportfound an alarming increase and focus on critical infrastructure, especially the
health sector, due to phishing attacks hiding as COVID-19 information [8].
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The current megatrend of digitalization in industrial domains opens up systems and critical infrastruc-
tures as possible targets for cyber-criminality. With the Internet of Things (IoT) and Cyber-Physical
Systems (CPS), connected and smart devices will be everywhere around us. Organizations already be-
gan to open up their formerly closed and protected systems to be distributed, more �exible, and main-
tainable over the Internet. While the technological innovations in wireless communication, arti�cial
intelligence, the IoT and CPS, improve our lives, they also increase the attack surface and bring dangers
that we have never faced in history before. Cyber criminality in the forms of, e.g., malicious attacks,
data theft, and ransomware, is already in daily news and will become even worse in the future [9, 10].
How can we protect our systems against cyber-attacks? How can we evaluate which protection mea-
sures are helpful and most e�ective? What is the risk of cyber-security incidents in our systems? In
this thesis, we tackle the problem of how to assess the risk of cyber-security in distributed networked
systems. We do this by using Structured Expert Judgment (SEJ) to assess speci�c risk attributes, includ-
ing the uncertainty of the respective judgment. This is needed because estimating risk involves future
predictions, which always contain uncertainty and the possibility of error.
We use a graph structure representing the attack paths in our systems and propagate the uncertain
risk estimations through this graph. This allows us to model multi-step attacks over distributed and
complex systems. In the end, the risk is the conglomerate of all possible outcomes, with some outcomes
being more likely than others. By looking at this big informative picture of risk, it is possible to decide
if it is acceptable or if we have to take measures to lower it.

1.1 Context and Domain

This thesis was written at the Institute of Technical Informatics at Graz University of Technology.
It was �nanced by project funds from a project cooperation with Andritz Hydro AG in the HyUnify
and DHYAMONT projects between 2016 and 2020. Andritz Hydro AG is the leading company in the
hydropower domain - they build, maintain, operate, and optimize hydropower plants worldwide. Since
hydropower plants are part of the worldwide power grid, they belong to critical infrastructure. The
publications and scienti�c work in these projects focused on robustness, reliability, resilience, safety,
and security in industrial informatics.

1.2 Problem and Challenges

Cyber criminality in�icts tremendous �nancial damage and, even worse, could pose a potential threat
to human life if critical infrastructures are attacked. Current statistics show that this menace is preva-
lent in every domain, a�ects most companies, and will get even worse in the future [9, 10]. Therefore, it
is of the utmost concern to prevent cyber criminality and avoid potential damage and harm. To prevent
them, one has to �nd di�erent mitigation and prevention strategies and evaluate their e�ectiveness to
decide the appropriate ones. It is di�cult to quantify the costs, threats, and mitigation e�ects because
modern systems are highly sophisticated in their function, are distributed over the Internet, commu-
nicate with many other systems, and depend upon many other services. Examples for this would be
distributed microservice architectures and cloud structures for big companies, connected devices in
the IoT, dependable industrial systems, and Cyber-Physical-Systems. Furthermore, systems for crit-
ical infrastructure like transport, telecommunication, or government have even higher requirements
on availability and reliability and other dependability properties, even in the presence of hazardous
events. Their failure could result in fatal consequences. So besides being available, safety is also a
concern. We do not want our systems to harm any living being or the environment during its op-
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eration. Classical safety-and-system engineering takes care of these properties and ensures that the
system keeps running safely. However, nowadays, most systems also face a danger that could break
these properties: cyber-criminality. By being vulnerable to cyber-attacks, a system exposes itself to
being compromised or corrupted and unable to guarantee the safety and uninterrupted functionality
anymore. Systems have to be hardened against cyber-attacks to avoid this problem. One challenge
here is to decide on appropriate mitigation strategies because there is an abundance of possibilities,
attacks, and vulnerabilities. Mitigation and prevention strategies must be evaluated for their ability to
increase systems' resilience and resistance against cyber-security-attacks. This evaluation of risks and
the reduction thereof by mitigation strategies are the core problems discussed in this thesis:

Problem

How can the risk of cyber-security and the e�ects of mitigation strategies in a networked system
be quantitatively evaluated?

This core problem can be broken down into two sub-problems:

1. How to evaluate the current state of security in a system and assess the risks?This involves esti-
mating the plausible attackers, their capabilities, resources, and knowledge and comparing this
to the system under investigation, including its mitigation and protection measures which are
already in e�ect.

2. How to evaluate the e�ectiveness of mitigation strategies?Applying protection measures should
reduce the total risk, but the question is, by how much? By recalculating the total risk with
changed estimations due to the activated protection mechanisms, one can compare the scenarios
and see if and how much the systematic risks change.

1.2.1 Challenges

In this section, the challenges for risk estimations of cyber-security in networked systems are described.
Table 1.1 shows an overview of the challenges and the respective contributions and supporting publi-
cations. The publications for this cumulative thesis are listed and included in the Appendix. The main
challenges of risk models for cyber-security are:

ˆ High Complexity : Networked distributed systems can get very complex. Here, complexity
means the unpredictable behaviour of individual components and their impact on the state of the
networked system as a whole. For robust and dependable systems, predictability is key. When
multiple components of a system communicate and in�uence each other, it is complicated to
ensure that everything works predictably. Especially since Byzantine faults can not be ruled out,
and the remaining system has to cope with such situations.

ˆ Huge Uncertainty : It is already challenging and unintuitive to estimate the vulnerabilities and
risks of single components, let alone for whole systems. Furthermore, risk assessments are pre-
dictions, which are always uncertain. Together, this means that the uncertainty is relatively high
in risk estimations. Hence, it must be included in the model. If the uncertainty is neglected, the
results depict a wrong image of con�dence and precision.

ˆ Di�cult Predictions : Cyber-Security attacks are often a combination of several exploits and
steps, done in very creative ways. Judging the probabilities and vulnerabilities of such involve
high uncertainty. While known and already analysed attacks are easier to judge, unknown attacks
that are not even invented are challenging to predict. To also include the unknowns in a risk
assessment is crucial for getting a realistic prediction.
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In the following sections, each challenge is discussed in more detail, and also our contributions to
address them are described in summary. For a more detailed discussion about the contributions, see
Chapters 4 and 5 about the design of theRiskeemethod and the implementation of theRiskeeframe-
work. These contributions are also published in the scienti�c articles included in the Appendix, while
this thesis collects it in a more concise and continuous form.

Table 1.1: Problems, challenges, and contributions with support of the included published papers (stated in the
boxes on the right side).

Figures of Merit - What are useful metrics? Traditionally, the risk is calculated from the probabil-
ity of a hazardous event happening and the consequential outcome after the hazardous event occurred.
Consider the following example: In 2% of cases, a device is defective, and the replacement cost is¿5000
This would result in a risk value of¿100 (2% of¿5000) While this approach works quite well for project
management, business risk, and even safety, such hazardous events are not easily modelable in cyber-
security. The problem lies in evaluating the event-probability for attacks, which has a nondeterministic
nature involving the attacker's motivation and window of opportunity. This is di�erent compared to
the relative deterministic behaviour of failure rates.
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The challenges here are as follows:

1. It is challenging to come up with a single metric that represents risks for di�erent dimensions of
qualities. But using multiple metrics makes deciding on the appropriate strategies exponentially
more di�cult.

2. Measurements, predictions, and estimations of these metrics involve signi�cant uncertainty, which
is often neglected in state-of-the-art methods.

The �rst point is di�cult because several conceptions and misconceptions exist about what an impor-
tant metric could be. In project management and business circles, the �nancial impact is of utmost
importance, while in safety, the potential harm to humans is the value that must be assessed. In en-
vironmental studies, the impact on the environment is the most critical metric. Based on literature
research, our contribution is that at least two types of metrics must be used for the impact:quantitative
impact in the form of �nancial losses and qualitative impact in the form of harm to humans or the environ-
ment. While the former can be clearly stated on a ratio scale with money, the latter is not quanti�able.
It depends on the cultural background, social norms, and ethics, which all are highly subjective. In our
published work and this dissertation, we focus on the quanti�able �nancial losses (coming from several
sources, e.g., replacements, response, productivity outage, damaged reputation).
The second point is a challenge because state-of-the-art methods often use ordinal scales and single-
point metrics, thereby neglecting uncertainty at all or introducing uncertainty that does not correlate
with the actual value and may lead to inconsistent results. Recently, Cooke et al. have shown that
quantitative assessment using ranges are superior to single-point estimates [11]. The challenge is to
initiate a rethinking of existing methods and introduce easy-to-use guidelines for improving them. This
is a challenging task due to the steadiness and in�exibility of standards and established methods in the
industry. We use range predictions in the form of probability distributions that include the estimation's
inherent uncertainty.

�alitative vs �antitative Assessment - What is be�er? As mentioned before, traditional risk
assessment methods use ordinal scales with qualitative estimations of the properties. The so-called
�risk-matrices� and �tra�c-light� models have become so popular that it is tough to replace them.
However, they all have their �aws: Cox et al. [12], and others [13, 14], have proven that ordinal scales
and risk matrices have severe �aws and problems. The most severe ones are the induced quanti�ca-
tion errors, risk-inversion, range-compression, and the impression of bene�t. We add to the corpus
of scienti�c literature by showing that quantitative assessment (including uncertainty) is superior to
qualitative assessment in the cyber-security domain. The quantities are best expressed in probability
distributions or, respectively, probabilistic ranges.

System Model - How to model complex systems? Another challenge in the risk assessment do-
main for cyber-security is how to create a realistic model of the system. Using infrastructural network
models alone is not su�cient anymore since side-channel attacks became much more prevalent. Es-
pecially in the security domain, social engineering and human error are pretty standard. Since Bruce
Schneier coined the term attack trees in the 80s, computer security has gone a long way, and nowadays,
Bayesian attack graphs, cyber-security kill chain models, and Markov chains are the state-of-the-art.
However, they only consider the risk with single-point estimations and do not consider uncertainty at
all. We enhance existing graphical models of systems by using probability distributions as model param-
eters to calculate risk - we call this resulting model a risk graph.Such a risk graph models all possible
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communication and in�uence paths in a system, including possible attack paths, and allows for more
realistic risk calculations by considering the inherent uncertainty in the input estimations.

Multi-Step A�acks - How to model complicated a�acks over multiple hops? Since its begin-
nings, cyber-criminality abuses �aws and exploits gaps or errors in applications and operating systems
to achieve a speci�c goal. Nowadays, cyber-attacks are not that simple anymore and contain many
attacks and several exploits in unexpected combinations. Most attacks are, in fact, multi-step attacks
that are di�cult to detect and mitigate since they use speci�c combinations of vulnerabilities [15]. It is
not enough for a holistic risk assessment to look at single events anymore. Instead, whole attack paths
consisting of multiple steps must be considered. All those attack paths have to be combined to get a
holistic view of the system's risks.
Furthermore, di�erent attacks demand di�erent attacker strengths, motivations, and opportunities to
be successful. Such di�erences in attacker pro�les also have to be considered. Looking at the system
only from the defender side makes it di�cult to predict all eventualities.Therefore, we propose the
modelling and estimation of individual attack paths over multiple steps for each plausible attacker pro�le
in our system model.For each attack path and attacker pro�le, the frequency and vulnerability have to
be estimated on each step. This decomposed view makes it much easier to assess the respective values
(always including the uncertainty).

Propagation and Aggregation - How to get total cumulated risk estimations for a system?
The next challenge is the actual calculation of the resulting total risk of a system. Since we use proba-
bility distributions, we cannot use trivial arithmetics anymore but have to apply sophisticated methods
that consider uncertainty propagation. Moreover, we cannot rely on analytical methods since the in-
put probability distribution could be of arbitrary shape and kind.We solved this problem by applying
Monte-Carlo methods with strati�ed and adaptive sampling.Monte-Carlo sampling allows for arbitrary
combinations of any probability distribution. Stratifying them is crucial to consider the long-tails, and
adaptivity ensures that the precision and performance are balanced.To avoid consequential quanti�-
cation errors due to quantization, we apply smoothing via kernel-density estimations for the resulting
distributions.One requirement for this to work well is to have limited support on the probability dis-
tributions, which is a valid assumption since probability values are always between 0 and 1. Financial
damage is also limited by 0 and some arbitrary upper bound.
Another challenge is the combination of multiple attack paths. Since these are modelled individu-
ally, we had to develop means to aggregate them for the whole system.This is why we invented the
Riskee-propagation algorithm, which works by propagating attack frequencies and probabilities forward,
calculating the risk for the individual path, and then propagating this risk backward again.This allows
for calculating the total risk using probability distributions and identifying the individual contribution
of each node.

Mitigation E�ects - How do changes contribute to the risk of the whole system? The next
di�culty is �nding out the e�ects of applying a speci�c mitigation strategy on a system. This is di�cult
because mitigation strategies applied to a particular component in a system may have far-reaching
consequences for the overall risk due to subsequent in�uence on dependent components.In our risk
graph, this is solved via adaptive recalculation for the changed attack paths.In such a way, it is possible
to make small changes according to the applied mitigation strategy and get fast results by not having to
recalculate the whole tree but only doing the forward and backward propagation of the changed values
on the a�ected parts. The e�ects of a mitigation strategy on the overall system risk can be calculated
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and then compared to the original risk distribution to see if it achieves the intended risk reduction. It is
also possible to make a cost-bene�t analysis to get the risk �As Low As Reasonably Possible� (ALARP)
- a common technique and expression often used in risk management.

Data Sources -How to get reliable and defendable data? One of the biggest challenges in cyber-
security risk assessment is to get reliable data. While the impact or damage can be modelled in terms
of costs, e.g., replacement, response, productivity outage, the attack frequency, and the success prob-
ability are more challenging to estimate. Firstly, attacks are instantiated by humans whose behaviour
and motivations are complex, highly subjective, and nondeterministic, and therefore, are also di�cult
to model. However, there have been quite some e�orts to do so [16, 17, 18]. However, even after consid-
ering several factors like motivation, opportunity, target attractiveness, or political intentions, it still
not possible to pinpoint the amount and probability of attacks accurately. That is why probabilistic
range estimations have to be used. Such models always involve assessing input values via historical
data, inherited from other methods, or are directly judged using expert elicitation. All of these sources
contain uncertainty that has to be considered.By taking the sources' uncertainty into account, a more
realistic and defendable data corpus can be created. Speci�cally, for expert judgment, we propose to use
calibrated expert elicitation with performance-based weighting. For other data sources, a projection has to
be made, which considers and adds uncertainty.

Communication - How to communicate risk informatively and in an unbiased manner? The
�nal challenge is human bias in risk communication: How to communicate the risks calculated in the
system so that stakeholders can understand and interpret them to make informed decisions based on
that? The problem here is human bias. Humans are very biased when it comes to risks, money, and fears.
That is why often wrong or ine�cient decisions are made in this sector.Our solution is to visualize the
risk in the most informative and still intuitively understandable manner by using so-called loss exceedance
diagrams. Numerical alternatives to this would be, e.g., percentile estimations, stating, e.g., the median,
lower, and upper quartile of risk distributions.This can then be compared to the risk-appetite (or risk-
aversion), and based on that, one can decide if the risks are acceptable or not.

1.3 Hypothesis

Based on this problem and the respective challenges, we state the following hypothesis, which will be
discussed in this thesis:

Hypothesis

Cyber-security risk can be evaluated using a graphical model of attack paths in a networked sys-
tem and assessing the uncertain risk attributes of frequency, vulnerability, and impact with prob-
ability distributions based on combined structured expert judgment. By forward and backward
propagation of these uncertain estimations, the total systematic risk, as well as the individual
risks, can be evaluated.

This hypothesis consists of multiple parts and clauses, which are discussed here in more detail. The �rst
statement is the basic assumption which our hypothesis is based on:Cyber-security can be evaluated
using a graphical model of attack paths in a system.This is already established in the literature and
proven in practice, which is why we use it as the base assumption for our hypothesis statement.
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We enhance this basis by declaring the speci�c risk attributesfrequency, vulnerability, and impact.
These three attributes are needed to assess risk. Furthermore, these attributes areassessmentswhich
exhibit high uncertaintythat can be modelled usingprobability distributions. It is important not to
neglect the uncertainty or reduce it to ordinal scales since this could lead to problems. To get such
assessments in a reliable and defendable way, we proposestructured expert judgmentwhich combines
the estimations by multiple experts based on their judgment quality.
The last part of the hypothesis concerns how risk can be calculated on a risk graph with the risk
attributes as a basis. It can be calculated by usingforward and backward propagation. Forward prop-
agation forwards the incoming attacks to all reachable nodes, which result in an impact. There, the
risk emerges. This risk is then propagated back again over the paths to determine theindividual risk
contributionof each step compared to all other nodes in the risk graph.

1.4 Structure of the Thesis

The remainder of this thesis is structured as follows:

ˆ Chapter 2 describes thebackground knowledge for this thesis. This includes risk and risk man-
agement, statistics and probability distributions, uncertainty propagation, and expert elicitation.

ˆ Chapter 3 describes therelated work for this thesis. This includes many standards and method-
ologies from the areas of risk management, cyber-security, and safety.

ˆ Chapter 4 discusses thedesign of theRiskeemethod. It explains risk graphs and risk attributes,
distribution arithmetic, and expert judgment. The structure, the attributes, and the dynamics of
risk graphs are described. In this chapter, the contributions in the domain of expert judgment
and expert elicitation are discussed, and the advancements to the classical method of structured
expert judgment are shown.

ˆ Chapter 5 explains the more practical contributions of this thesis by showing and discussing
the implementation of theRiskeeframework, which consists of a prototype written in Python.
This prototype was the basis for the evaluations.

ˆ In Chapter 6, anevaluation of the Riskeemethod and framework is shown, and afterwards,
several aspects of the method are discussed. The evaluation is done in three parts: First, a com-
parison ofRiskeeexpert judgment to the classical model is made. Second, a use case in the form
of an actual expert elicitation for judging the risks of a cyber-security incident. The third part is
an application ofRiskeein design space exploration to �nd secure solutions.

ˆ Theconclusion andfuture work in Chapter 7 elaborate on the open issues and future work
as well as some �nal thoughts and take away messages.

ˆ In theAppendix , the full-texts of eleven published papers are attached, together with summaries
and descriptions of the respective contributions.
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CHAPTER2
Background

The most important questions of life are
indeed, for the most part, really only problems
of probability.

Pierre-Simon Laplace

Summary: Here, the background knowledge for the thesis is described. This chapter contains general
knowledge about risk management and risk assessment, statistics, probability distributions, error propaga-
tion, and expert judgment. It serves as a primer to these topics and provides further references to dive into
these topics more deeply if needed.

� � �

2.1 Risk Management and Risk Assessment

Risk management and risk assessment are widely applied in many domains, especially the safety and
security domains relevant to this thesis. First, we give an overview of the general de�nitions of risk, and
afterwards, the relevant security standards and norms will be covered in more detail. This overview
shows that most standards qualitatively evaluate risk using ordinal scales and risk matrices.

2.1.1 Risk

Let us �rst look at the de�nition of risk: In the Merriam-Webster Online Dictionary,risk is de�ned
as the�possibility of loss or injury�[19], the Cambridge Online Dictionary de�nes it as�the possibility
of something bad happening�[20], and the Oxford English Dictionary describes it as�(Exposure to) the
possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation involving such
a possibility�[21]. The two fundamental standards on risk, the ISO/Guide 73 [22], and the ISO 31000 [23]
describe risk similar as the�e�ect of uncertainty on objectives�, where an e�ect is very generally de�ned
as a deviation from the expected, and objectives are di�erent aspects and levels where this can be applied
to (e.g., �nancial objectives, safety, health, organisation-wide, on the process- or product-level). Based
on this de�nition, every deviation from the expected outcome is seen as a risk, critical for production,
processes, and engineering. All de�nitions have in common that risk involves a possibility (uncertainty
about some situation in the future) of a bad or unexpected result. This notion leads to an interesting
insight: That risk actually �does not exist� because it is only a prediction. Risk researcher Paul Slovic
puts it like this:
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[Risk] does not exist �out there,� independent of our minds and cultures, waiting to be measured.
Instead, the risk is seen as a concept that human beings have invented to help them understand
and cope with the dangers and uncertainties of life. Although these dangers are real, there is
no such thing as �real risk� or �objective risk.�[24]

Here, the metaphysical aspect of risk is emphasized. Risk is a concept of potential danger which exists
only virtually. Only when the dangerous event occurs, the danger becomes real. However, albeit risk
only being a virtual concept, it helps us to model, evaluate and compare dangers and threats. According
to Murphy's law, everything that can happen will happen eventually. Hence, we have to be prepared
to face the risks and cope with them. Maybe we can decrease the probabilities, decrease the impact, or
avoid some risks altogether by such preparations. This, at last, is the reason why it is required to think
about risks.

Wild and Mild Risks: Black Swans, Grey Rhinos, and Elephants in the Room In his famous
book�The Misbehavior of Markets�[25], Mandelbrot introduced the termsmild andwild risks to distin-
guish between two common risk categories: Mild risks can be modelled easily and behave according to a
normal distribution with small uncertainties, meaning that the results are almost always relatively close
to the mean value. On the contrary, wild risks behave very chaotically, are maybe multimodal, and have
long-tailed or heavy-tailed distributions, which means that it is way harder to predict the outcomes in-
side a small tolerance range. Such rare but catastrophic events are calledBlack Swanevents [26]. There
are also other classes in the risk-zoo, namely, Grey Rhinos [27], and elephants in the room [28, 29],
which represent events that have quite high probability and moderate or high impact but are neglected
due to ignorance or social/political taboos. The di�erence is that grey rhino events did not occur yet,
while elephants in the room already occurred but still are ignored. Here is a list of commonly used
terms when talking about risks:

ˆ Mild Risks : Easily to model, highly predictable.
ˆ Wild Risks : Chaotic, di�cult to predict, having heavy-tailed distributions with high uncertainty.
ˆ Black Swan: A rare but catastrophic event.
ˆ Grey Rhino : Obvious and dangerous but ignored events.
ˆ Elephant in the Room : Events that occurred but are ignored.

Risk Management

According to the ISO 31000 [23], risk management has the goal of e�ciently identifying and evaluating
risks (risk assessment) and reducing them to a tolerable level (risk treatment ). Risk assessment
is the process of risk identi�cation, analysis, and evaluation to get quanti�able values for the assets,
threats, and mitigation strategies. Risk treatment is the process of selecting, applying, and monitoring
appropriate mitigation techniques to lower the risks and ensure the e�ectiveness.
In business, the notion of risk describes possible �nancial losses, which is a signi�cant factor for
decision-making. Social and ecological factors like sustainability are only secondary factors. How-
ever, organizations slowly begin to recognize that a company's �nancial sustainability is interwoven
with social, ecological, and environmental sustainability and should therefore also be considered [30].
There are many models for market development and predictions of customer behaviour, estimating
possible developments and market reactions, and making informed decisions based on those models.
These models are often simpli�ed using risk matrices and the well-known tra�c-light concept for risk
assessment: Green equals low risk, yellow or amber representing medium risk, and red colour signals
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high-risk events. The classical formula for risk comes from this domain (see Equation 2.1):

Risk = Probability � Impact (2.1)

Here, the probability is the chance or likelihood that a risk event occurs, and impact is the �nancial
loss for such an event. This is often not estimated with quantitative values but using ordinal scales for
the respective factors, e.g., high, medium, or low probability; and high, medium, or low impact. The
scales are speci�ed completely arbitrarily and tailored to the respective context in the company. For
example, the impact ratings for a small company could be: Low is between¿0 and¿1 000, the medium
is between¿1 000 and¿10 000, and high impact is everything above¿10 000. For big companies, these
values could be somewhere in the millions. The same holds for the probability: The exact ranges for
the classes are completely arbitrarily chosen. To make things even worse, these ordinal classes are
then combined using an arbitrary de�nition in the form of a risk matrix. Anthony Cox described these
problems [31, 32], and we also summarized those �aws and pitfalls in risk matrices in [33]. However,
risk matrices are already established in safety and security, and it will be a long way to eliminate them.
As we will describe in later chapters, we propose incorporating them into a quantitative risk analysis
by transforming the classes into value ranges and using them in the calculations. In such a way, the
uncertainties are considered and can be propagated throughout the system. In the end, we can see
what the resulting uncertainties are and incorporate this information into our decisions. Risk in other
domains is commonly assessed using �nancial values. Therefore, the economic models and methods
coming from the business domain can be applied, e.g., the Gordon-Loeb model for optimal investments
in cyber-security [34].

2.2 Types of Measurement Scales

In his fundamental paper about scales, Stevens [35] de�ned four principal types of scales which di�er
by their capabilities. These scales are the nominal, ordinal, interval, and ratio scales. Each of the types
has a set of capabilities that allow certain operations. We include them here because, in later chapters,
we often refer to these scales. Especially the ordinal scale is very prevalent in existing methods of risk
assessment, being called �qualitative rating�. In this thesis, however, we mainly use ratio scales � the
details will be explained in Chapter 4 and Chapter 5.

2.2.1 Nominal Scale

A nominal scale is a classi�cation. It allows di�erentiating objects and to classify them. The only
relation it de�nes is equality, or the opposite, inequality. Examples of this are types and groups of
objects. For risk estimations, this would be a classi�cation for relevant risks and irrelevant risks. This
often concerns speci�c vulnerabilities: Is a speci�c type of software used or not? Is a particular update
installed or not?
Another example would be types of attacks: Is our encryption scheme susceptible to replay attacks?
The answer is either yes or no. There are no further distinctions. This plays a signi�cant role in cyber-
security, especially for vulnerabilities: either a system is susceptible to a vulnerability or not. There is
not �half-vulnerability�. However, for example, the strength of an encryption scheme is another story.
This would belong to higher scales like the interval or ratio scale.
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2.2.2 Ordinal Scale

The ordinal scale de�nes an order relation between the groups of objects. This means that the oper-
ations greater than or less than are de�ned. This allows ordering objects, but neither does it de�ne
how much they di�er nor does it de�ne an exact value for the object. Examples for this are sizes of
clothing: small, medium, large, x-large. This example illustrates an inherent �aw of ordinal scales: A
typical medium-sized T-Shirt has a di�erent size based on the continent and country. It could even
happen that an L-sized t-shirt from Asia is smaller than an M-sized t-shirt from America. We see that
such scales are highly subjective and coined by the cultural background.
Unfortunately, these types of scales are very prevalent in risk estimations. To de�ne risk as low,
medium, or high is a standard way of stating risks. Even the infamous FMEA uses it in its estima-
tions by de�ning, e.g., ten classes of severity types. Although each of the classes can be distinguished
and can be ordered, it cannot be measured by how far they are apart. In the related work, we describe
other methods, standards, and techniques that use such ordinal scales. In the included publication [P9],
we made a strong point against ordinal scales by describing 24 �aws and problems when using them
for risk assessments.

2.2.3 Interval Scale

An interval scale makes it possible to calculate di�erences between the groups of objects. A famous
example is a temperature value stated in Celsius or Fahrenheit. Such scales allow to calculate the
di�erences, e.g., today it is +5°C warmer than yesterday, but they do not allow ratios or multiplicative
relations. If it has 3°C today and 9°C tomorrow, the statement �it is three times as hot� is not valid
because the point for 0 and the advancement on the scales were chosen arbitrarily. However, if the
temperature is stated in Kelvin, this is another story: Here, we have an absolute point for 0, so this
belongs to the ratio scales.

2.2.4 Ratio Scales

The ratio scales de�ne a multiplicative relation among the objects on the scale. So, in addition to the
di�erence, also a ratio could be calculated. This is the scale with the highest capabilities. Typical
measurement systems, like the SI-system, are following this scale. For example, the temperature scale
in Kelvin is such a scale. It has an absolute point for zero, which allows statements like 200°K is twice
as hot as 100°K. Other examples would be, e.g., speed, distance, force, weight, electric current. Money,
attack frequencies, and probabilities are examples of ratio scales. This is why we used this scale for our
risk assessment.
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2.3 Probability Distributions

Estimations about risks contain huge uncertainty since these are based on judgments about possible
future events. Such uncertainty can be modelled using probability distributions that describe the like-
lihood of values over a speci�c value range (also called the distribution support). In this section, some
common probability distributions are described: The normal distribution, the lognormal distribution,
the uniform distribution, and the modi�ed PERT-beta distribution, which is the distribution that was
used in this thesis for modelling risk judgments. Figure 2.1 shows some examples of these distributions.

(a) Normal distribution. (b) Lognormal distribution (c) Beta distribution (d) Uniform distribution

Figure 2.1: Examples for common probability distributions.

2.3.1 Normal Distribution

Figure 2.2: The normal
distribution parametrized
with a 90% risk interval be-
tween [LL, UL].

The normal distribution is the most commonly known and widespread dis-
tribution. It also goes under the names �Gauss-curve� or �bell-curve� due
to its bell-like shape (see Figure 2.2). This distribution is a smooth, continu-
ous distribution that has in�nite support and is symmetric around the mean.
Both sides of the distribution go until in�nity, making it impossible to de�ne
a discrete maximum and minimum value. However, the likelihoods dimin-
ish the further away from the mean one gets. For example, after six standard
deviations (6� ), the likelihood is already so small that it could be neglected
for all practical purposes. However, for modelling risk judgments, it is more
practical to take the 5% percentile as the minimum and the 95% percentile as
the maximum. Thus, the estimated value range of an expert spans a prob-
ability space of 90%. By modelling it this way, there is a probability of 0.1 (10%) outside the assumed
range, which goes on until in�nity. Equation 2.2 shows the probability density function for the normal
distribution:

N (x j �; � 2) =
1

�
p

2�
� e� ( x � � ) 2

2� 2 (2.2)

Parameterisation Using Risk-Intervals: The normal distribution is parametrized using� and � .
To model a risk estimation given by a lower limit (LL), the upper limit (UL) and con�dence, we have to
parametrize the normal distribution. Lower and upper bounds are projected onto points on the distri-
bution, which re�ect the respective con�dence intervals. For example: If we have a 90% con�dence, the
lower bound represents the 5% percentile, and the upper bound represents the 95% percentile. Hence,
the area inside represents a 90% con�dence interval. Since the normal distribution is symmetric around
the mean, which is the average of the lower and upper bounds, it already is fully speci�ed, and the
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mode estimation has to be dismissed since it is not applicable. The normal distribution does not allow
further shape modi�cations. We can calculate the parameters as follows:

� =
UL + LL

2
+ LL ; � 2 =

UL � LL
P (� z� � Z � z� ) = c

(2.3)

where: UL : : : is the upper limit of the estimation (e.g., 14).
LL : : : is the lower limit of the estimation (e.g., 86).
c : : : de�nes the con�dence interval of the estimated values (e.g.,0:9 for 90%).
P : : : is the cumulative distribution functionP(X � x � ) = p or shortly FX (p).

Example An expert states the 90% con�dence interval for a value between 14 and 86, and the proba-
bility is normally distributed:X � N [14; 86](90%). From that input, we can calculate the parameters
for the normal distribution as follows:

� =
86 + 14

2
+ 14 = 50 ; � 2 =

86� 14
FX (0:95) � FX (0:05)

=
72

3:2897
= 21:9 (2.4)

2.3.2 Uniform Distribution

Figure 2.3: The uniform
distribution.

The uniform distribution is also very commonly used. Its speciality is that
it has the highest entropy a probability distribution can have � all values
inside the range are equally likely (see Figure 2.3). Other aspects are that it
is bounded on both sides.Therefore, the lower and upper limit can be taken as
absolute limits, making the con�dence parameter not applicable. A uniform
distribution has no mode since all values are equally likely. Thus, the mode
is also not applicable here, and the lower and upper limit can fully specify
the uniform distribution.

U(x j min ; max) =

(
1

max � min min � x � max

0 otherwise
(2.5)

Parametrization Using Risk-Intervals The parametrization of the uniform distribution for esti-
mations of risk intervals is straightforward: The lower limit and the upper limits are precisely the
parametersmin andmax for the distribution.

2.3.3 Lognormal Distribution

Figure 2.4: The lognormal
distribution parametrized
with a 90% risk interval be-
tween [LL, UL].

The lognormal distribution is included because it is well suited for estima-
tions with long tails, e.g., modelling black-swan events. This can be seen in
Figure 2.4. Due to this, it is commonly used in expert judgments. Here, the
lower limit is bounded, while the upper limit goes until in�nity. Here, also
the limits must be projected onto an appropriate con�dence interval, like in
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