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“As humans, we have invented lots of useful kinds

of lie. As well as lies-to-children (’as much as they

can understand’) there are lies-to-bosses (’as much

as they need to know’) lies-to-patients (’they won’t

worry about what they don’t know’) and, for all sorts

of reasons, lies-to-ourselves. Lies-to-children is sim-

ply a prevalent and necessary kind of lie. Universities

are very familiar with bright, qualified school-leavers

who arrive and then go into shock on finding that bi-

ology or physics isn’t quite what they’ve been taught

so far. ’Yes, but you needed to understand that,’ they

are told, ’so that now we can tell you why it isn’t ex-

actly true.’ Discworld teachers know this, and use it

to demonstrate why universities are truly storehouses

of knowledge: students arrive from school confident

that they know very nearly everything, and they leave

years later certain that they know practically nothing.

Where did the knowledge go in the meantime? Into

the university, of course, where it is carefully dried

and stored.”

— Terry Pratchett (1948 - 2015)





Abstract

In the last years, deep learning has been increasingly successful at addressing computer

vision problems. These data-driven machine learning algorithms learn large Convolutional

Neural Networks (CNNs) from annotated training data to tackle computer vision problems

such as object categorization, object detection, image retrieval, semantic segmentation,

object tracking, etc. However, one problem with such models is over-fitting. To overcome

over-fitting and train highly accurate models, several works use ensembles consisting of

several diverse CNNs to improve performance. While these approaches achieve highly

accurate models, their runtime performance is too slow and their memory demand is too

high for use in real-world applications.

One way to overcome this problem is to let learners in an ensemble share most pa-

rameters with each other. Specifically, we divide a CNN at the end into several learners.

All learners share the same low- and mid-level feature representation. Consequently, such

ensembles have low computational overhead, since we need to compute the shared feature

representation only once for all learners. One of the main challenges for such ensembles

is to make the learners diverse from each other. As all learners share the same feature

representation and train on the same permutation of the training set, they end up highly

correlated to each other. Unfortunately, highly correlated learners in an ensemble have no

benefits, as they make the same prediction for each input sample.

To increase diversity in an ensemble, we present three contributions. First, we lever-

age spatial independence to train an ensemble of part-detectors for the problem of face

detection. As we show in our experiments, such a CNN is more accurate compared to

standard CNNs and robust to occlusions. Second, we introduce auxiliary loss functions

for generic object classification CNNs. These loss functions make learners in a parameter-

shared ensemble diverse from each other. Consequently, they complement each other well

during test time. Third, we extend our generic approach to the problem of metric learn-

ing. To this end, we improve our auxiliary loss functions to make feature vectors diverse

from each other. Further, we present a gradient boosting-based re-weighting scheme to

v



vi

make learners focus on different training samples. As we show in our evaluations, such

networks have favorable performance compared to standard CNNs without introducing

computational overhead. Our experiments suggest that such parameter-shared ensemble

networks can benefit a wide variety of different computer vision applications.

This work was partially supported by the Austrian Research Promotion Agency (FFG) projects

DARKNET (858591), and DIANGO (840824) as well as the Christian Doppler Laboratory for

Embedded Machine Learning (CDL-EML). The GeForce® Titan Xp used for parts of this research

was donated by the NVIDIA® Corporation.



Kurzfassung

In den letzten Jahren wurden Deep Learning Verfahren immer erfolgreicher beim Lösen von

Problemen im Bereich des Maschinellen Sehens. Diese datengesteuerten Machine Learn-

ing Algorithmen lernen große Convolutional Neural Networks (CNNs) von annotierten

Trainingsdaten um Probleme des Maschinellen Sehens wie Objekt Kategorisierung, Ob-

jekt Lokalisierung, Bildsuche, Semantische Segmentierung, Objekt Tracking, etc. zu lösen.

Ein Problem dieser Algorithmen ist Overfitting. Um Overfitting zu verringern und sehr

genaue Modelle zu trainieren, verwenden manche Methoden ein Ensemble bestehend aus

mehreren diversen CNNs. Solche Verfahren schaffen es zwar, sehr genaue Modelle zu

generieren, sind aber sehr rechenaufwändig und zu speicherintensiv für die meisten An-

wendungen.

Eine Möglichkeit dieses Problem zu verbessern ist es, dass sich die Lerner in einem

Ensemble die meisten Parameter miteinander teilen. Konkret teilen wir ein CNN am

Ende auf in mehrere Lerner. Diese Lerner teilen sich eine gemeinsame Low- und Mid-level

Feature Repräsentation. Dadurch hat so ein Ensemble einen geringen Rechenaufwand,

da die gemeinsame Feature Repräsentation nur einmal für das ganze Ensemble berechnet

werden muss. Ein Problem an solchen Netzen ist, dass man ein Verfahren finden muss

um die Lerner divers zueinander zu machen. Da sich alle Lerner die gleiche Feature

Repräsentation miteinander teilen und alle auf die selbe Permutation der Trainingsdaten

trainiert werden, sind diese stark korreliert zueinander. Unglücklicherweise bringen stark

korrelierte Lerner in einem Ensemble keine Vorteile, da alle Lerne für ein Eingabebild die

gleiche Ausgabe liefern.

Um dieses Problem zu lösen präsentieren wir in dieser Arbeit drei Methoden. Unsere

erste Methode verwendet örtliche Unabhängigkeit um ein Ensemble aus diversen Detek-

toren zu trainieren, die sich auf Teile von Gesichtern spezialisieren. Ein solches Ensemble

ist genauer als ein Standard-CNN und robust gegenüber Verdeckungen von Gesichtern.

Unsere zweite Methode verwendet eine zusätzliche Verlustsfunktion für generische CNNs

vii



viii

für das Problem der Objekt Kategorisierung. Während dem Training macht diese Verlusts-

funktion die Lerner in einem Ensemble mit gemeinsamer Feature Repräsentation divers

voneinander. Dadurch ergänzen sich die Lerner gegenseitig besser zur Testzeit. Unsere

dritte Methode erweitert unseren generischen Ansatz für das Lernen von Distanzmetriken.

Dazu adaptieren wir unsere Verlustsfunktionen um Vektoren divers zueinander zu machen.

Des Weiteren entwickeln wir ein Gradient Boosting basierendes Gewichtungsschema damit

sich die Lerner während dem Training auf unterschiedliche Trainingsdaten fokusieren. In

unseren Experimenten zeigen wir, dass solche Netze höhere Genauigkeit im Vergleich zu

Standard CNNs erreichen, ohne zusätzlichen Rechenaufwand zu verursachen. Unsere Ex-

perimente suggerieren, dass solche Methoden für sehr viele Bereiche in der Computer

Vision anwendbar sind.
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1
Introduction

“’Forty-two!’ yelled Loonquawl. ’Is that all you’ve

got to show for seven and a half million years’ work?’

’I checked it very thoroughly,’ said the computer,

’and that quite definitely is the answer. I think the

problem, to be quite honest with you, is that you’ve

never actually known what the question is.’ ”

— Douglas Noel Adams
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1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

The human perception system is one of the most valuable things we possess. It enables us

to see, hear, smell, taste, touch, etc. Consequently, it allows us to perceive and interact

with our environment. Mimicking several of these skills for computers is crucial for a

large number of real-world applications such as autonomous systems (e.g . autonomous

driving, intelligent robots, etc.), surveillance applications, automated medical procedures,

virtual assistants (e.g . Alexa, Siri, etc.), etc. Therefore, there is an increasingly large

research effort to enable human perception, interaction, and reasoning skills for computers,

e.g . [18, 23, 75, 112, 121, 202]. In this work, we focus on computer vision (i.e. the visual

aspect of perception), which is one of the most important parts in these applications.

1



2 Chapter 1. Introduction

aImage Source: http://reddit.com/r/aww

Figure 1.1: Imagesa are represented as numeric matrix (left). This matrix changes dramatically if
the object in the image is occluded, deformed, or subject to illumination changes. Computer vision
approaches address this problem with machine learning. Traditional approaches use handcrafted
features and feed them into a machine learning classifier (right). More recent methods use deep
learning to learn a classifier and a feature representation simultaneously (bottom).

Handcrafting such algorithms in this area is typically too complex and therefore not

possible. Consider the cat image in Figure 1.1. To detect the cat in an image, a handcrafted

algorithm needs to manipulate the pixels, i.e. some numeric matrix, in a specific way.

Unfortunately, this numeric matrix is subject to large changes if a different cat is visible

in the image, other objects occlude the cat, the illumination changes, the cat moves, etc.

Further, if we want to detect other objects, such as dogs or cars, such algorithms might

need a complete redesign. Consequently, algorithms in this line of work typically rely

on machine learning techniques to address this problem. These learning algorithms use

a dataset in a training phase to learn a model. This trained model should then be able

to make decisions on unseen test data (e.g . detect cats in new images). To train these

http://reddit.com/r/aww
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algorithms, computer vision methods extract a feature representation of the input image.

Consequently, a lot of research effort was spent on developing better feature representations

for visual perception, e.g . [7, 36, 41, 143, 227].

In the last years, due to advances in compute and large publicly available datasets,

a specific family of machine learning algorithms, i.e. deep learning, has achieved great

success in mimicking human perception in general e.g . [18, 23, 75, 112, 121, 202] and

computer vision in particular, e.g . [75, 112, 132, 176]. In computer vision, these methods

use large Convolutional Neural Networks (CNNs) to simultaneously learn the feature rep-

resentation and the classifier from large datasets. More specifically, these neural networks

are parametrized non-linear functions f(x;θ). They take an input image x and map it

to an output. The shape of the output is application-specific and might be e.g . a vector

representing the class label (e.g . cat, dog, etc.) of the input image. During the training

phase, CNNs learn the parameters θ, which are typically coefficients of convolution filters.

However, one of the main problems in machine learning with powerful non-linear mod-

els is over-fitting, e.g . [13]. As these neural networks tend to have a huge number of

parameters, they can model the training data too well. Consequently, their performance

on unseen data suffers. One popular way to reduce over-fitting and improve the accuracy

of machine learning methods is training ensembles of diverse models. During test-time,

these models then can complement each other. Several of the learners in an ensemble

might fail on a particular test sample. But as long as the majority of learners makes

correct predictions, the ensemble decision will be correct.

In computer vision, ensembles are popular for achieving highly accurate models. To

assess the performance of the state-of-the-art for a wide variety of computer vision prob-

lems, there are annual challenges, such as the ImageNet challenge [186], the MS COCO

challenge [134], the Waymo Open Dataset challenge [210], etc. (see Figure 1.2). Nearly

every winning entry in these annual challenges consists of an ensemble of several large

neural networks, which improves accuracy compared to using only a single model.

While standard deep learning ensemble approaches are successful for winning these

benchmark challenges, their practical use is limited due to their computational expense

during test-time. In CNN -based ensembles the individual learners already consist of a

computationally expensive model. Even though parallel hardware can alleviate some of

these problems during inference time, there is a large per-learner overhead of cost in

terms of hardware-demand and power-consumption. In recent years the community moved

towards increasingly computationally more efficient models, e.g . [75, 84, 214], to enable

real-world applications which need to run on low-energy devices, such as the Edge-Tensor

Processing Unit (TPU), embedded Graphics Processing Units (GPUs), etc. Building

large ensembles of such models for these hardware platforms is therefore computationally

wasteful.

In contrast, many traditional computer vision approaches, which are suitable for real-

time applications, use the benefits of ensembles. They achieved state-of-the-art accuracy

at the time of publication, e.g . [41, 148, 149, 227]. These approaches are based on Boost-
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Figure 1.2: Illustration of several computer vision benchmarks, in which ensemble approaches
are successful. From top to bottom: ImageNet [186]: Object Classification, MS-COCO [134]:
Instance Segmenation, MS-COCO [134]: Panoptic Segmentation, Waymo Open Dataset [210]: 3D
Detection.
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ing [50] or Random Forest [15] and use very small and cheap learners with low model

capacity (i.e. weak learners), such as decision-stumps or decision-trees. In contrast to

standard CNN -based ensembles, the computational per-learner overhead during test-time

and training-time is low. Further, especially Boosting-based approaches typically use

Figure 1.3: Standard ensembles (top) have a large computational overhead per learner (blue,
red, . . . ). By sharing parameters (bottom) we need to compute the shared feature representation
(white) only once for the full ensemble (blue, red, green, yellow, . . . ). Consequently, the per-learner
overhead is comparably low.

Therefore, to enable real-world applications to use the benefits of CNN -based ensem-

bles, we need to reduce the computational per-learner overhead. One way to achieve this

is to let learners share parameters with each other, as we illustrate in Figure 1.3. Specifi-
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cally, we split the CNN at the end into several learners. The ensemble consists of a shared

feature representation (illustrated in white) and several learners (illustrated in blue, red,

green, yellow, . . . ). We need to compute the shared feature representation only once for

all layers. Further, we can carefully balance the computational the per-learner overhead

of CNN ensembles vs the ensemble accuracy.

The main problem of this approach is that it is challenging to introduce diversity in

such ensembles. Unfortunately, by sharing most parameters with each other, and training

all learners on the same (permutation of) the training set, the individual learners will be

highly correlated with each other. For a specific input sample, every learner will make

the same prediction. Consequently, there are no benefits of such ensembles. This leads us

to our research question, which we address in this thesis, i.e. “How can we increase the

diversity in parameter shared ensembles?”

1.2 Contributions

In this thesis, we present three contributions to increase the diversity of such ensembles

for a variety of different computer vision problems.

Diversity by Spatial Independence: First, in Chapter 3, we introduce a face de-

tection ensemble which introduces diversity by training learners which focus on different

spatial parts of the face. These part-detectors share a common feature representation

with each other. Specifically, we divide a fully-convolutional face detector at the last hid-

den layer into several non-overlapping spatial blocks. We set the network up so that the

receptive fields of these blocks are small. They are only large enough to cover specific pro-

totypical regions in faces, such as eyes, mouth, nose, etc. By optimizing a discriminative

loss for each of our learners, we force the network to develop discriminative features for

each of these regions separately. In contrast, standard CNNs are “lazy” during training.

As soon as they develop a feature, which is good enough to classify every training sample

into face vs non-face, they have no inclination to develop further features. For example,

if the CNN develops a feature for the mouth, which can distinguish every face from the

background in the training set, it does not develop further features for the eye or nose.

Our ensemble overcomes this problem, resulting in more diverse feature representations

which are more robust to face occlusions.

Diversity by Auxiliary Loss Functions for Classification: Second, in Chapter 4.2,

we improve our method to make it more generally applicable to generic object categoriza-

tion problems. Specifically, our first contribution requires a specific CNN architecture and

pose-information of faces during training. To address this problem, we propose diversity

encouraging auxiliary loss function to make learners in parameter-shared ensembles diverse

from each other. In contrast to our first contribution, this method does not have any spe-

cific requirements on the receptive field of the network. We show in our experiments on
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small patch datasets, that such ensembles perform favorably compared to another generic

ensemble approach, i.e. dropout, and competitive to current state-of-the-art approaches

on small network architectures. Further, our experiments with the popular ResNet [75]

architecture suggest that such ensembles are more pareto-optimal (i.e. achieve higher ac-

curacy with the same computational budget) compared to widened ResNet architectures.

Diversity by Re-Weighting and Auxiliary Loss Functions for Metric Learning:

Third, we extend our generic method in Chapter 4.2 to large CNNs to the application of

metric learning for image retrieval. To this end, we improve our auxiliary loss functions

to make hidden layer representations of neural networks diverse from each other. Further,

in addition to our auxiliary loss functions, we introduce diversity by re-weighting training

samples for each learner in the ensemble according to a gradient-boosting algorithm. In our

experiments, we show that large CNNs for metric learning benefit from such ensembles.

Our method achieved state-of-the-art performance at the time of publication. Several

successive works use a similar ensemble structure and improve our approach with different

diversity encouraging methods.

1.3 Outline

The remainder of this thesis is structured as follows. First, in Chapter 2, we provide

an overview of ensemble methods in the context of deep learning for computer vision.

Further, we review the preliminaries of learning theory for ensembles and traditional en-

semble methods in computer vision. As some of our contributions focus on the application

face-detection and metric-learning, we review related work in these areas. Second, in

Chapter 3, we discuss our spatial independent ensemble and validate its effectiveness in

our experimental evaluation. Third, in Chapter 4 we extend our method to generic CNN

architectures. We introduce diversity encouraging auxiliary loss functions. Further, we

present our gradient-boosting-based metric learning extension. We evaluate our approach

on object categorization benchmarks and metric learning for image retrieval benchmarks.

Finally, in Chapter 5, we conclude our thesis and discuss possible future research direc-

tions.





2
Preliminaries and Related Work

“The current state of knowledge can be summarized

thus: in the beginning there was nothing, which ex-

ploded.”

— Terry Pratchett

Contents

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Preliminaries: Learning Theory for Ensembles . . . . . . . . . . 11

2.3 Preliminaries: Traditional Ensemble Methods . . . . . . . . . . 14

2.4 Explicit Ensembles for Deep Learning . . . . . . . . . . . . . . . 19

2.5 Implicit Ensembles with Dropout . . . . . . . . . . . . . . . . . . 25

2.6 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Overview

In this chapter, we first discuss preliminaries for ensembles in machine learning and then

give a brief overview of related work in this field. Specifically, in the context of deep

learning, we classify ensemble approaches as implicit and explicit (see Figure 2.1). Im-

plicit approaches were pioneered by dropout [208]. During training time these approaches

sample certain sub-substructures of the network. Consequently, during training time they

implicitly optimize a single network out of a larger number of networks. In contrast, ex-

plicit approaches model the ensemble in the network architecture explicitly. They either

9
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use multiple Convolutional Neural Network (CNN) models or multi-head models with a

shared low-level feature representation.

Implicit

Shake-Shake [57]

Dropout [161]

Ensembling Approaches

...

Explicit

Fast Dropout Training [240]

Dropout Distillation [19]

Spatial Dropout [219]

Expectation-Linear Regularization [145]

Stochastic Depth [85]

MC Dropout [52]

DropConnect [234]

DropBlock [60]

Object Detection

....

GridLoss (Our) [166]

Generic Approaches

Metric Learning

...

HDC [262]

TreeNet-based [119]

Distillation Approaches [78]

A-BIER (Our) [168]

Efficient Model Averaging (Our) [165]

Franken Classifiers [149]

DiVA [150]

DCES [188]

Standard CNN Ensembles

MIC [182]

Snapshot Ensembles [83]

Ensemble Soft-Margin Softmax [241]

MEAL [197]

EnsembleNet [124]

BIER (Our) [167]

On-the-Fly Ensembles [284]

Strong Part-based Pedestrian Detector [218]

Deformable Parts Model [49]

MotherNets [244]

ABE [103]

Figure 2.1: A categorization of ensemble approaches as implicit and explicit.

We further characterize ensemble approaches by the number of parameters they share

(see Figure 2.2). In implicit ensemble approaches, such as dropout, the individual learners

of the ensemble share all their parameters with each other. In contrast, explicit modeling

of ensembles allows using different parameters for individual learners, allowing them to

balance the speed and accuracy of the ensemble.

Finally, as ensemble accuracy relies on diverse learners, there are several orthogonal

methods to increase diversity in ensembles (see Figure 2.3). These methods are not limited

to deep learning approaches. Bagging and boosting based approaches typically introduce

diversity by sampling or re-weighting the training set. Next, some approaches such as
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none

Parameter Sharing

partially

(nearly) all
Standard Ensembles

Distillation Approaches (inference time) [284] [78]

MotherNets [244]

BIER (Our) [167]
Snapshot Ensembles [83]

Efficient Model Averaging (Our) [165]

Implicit Methods

GridLoss (Our) [166]

TreeNet [119]

Ensemble Soft-Margin Softmax [241]

MIC [182]

DCES [188]
On-the-Fly Native Ensemble [284]

Strong Part-based Pedestrian Detector [218]

A-BIER (Our) [168]

DiVA [150]

ABE [103]

Figure 2.2: A categorization of ensembles for CNNs by the parameters individual learners share
with each other.

Random Forest, diversify learners by sub-sampling features. Part-based methods, e.g . [49],

spatially constrain the learners and constrain them to learn specific object parts. Further,

especially deep learning based ensemble methods typically try to introduce variation in

the model (e.g . architecture, initialization, . . . ) to make learners more diverse to each

other.

Training Set Bagging

Diversity

Features

Boosting

Sampling (Random Forests, Dropout, ...)

Model

Spatial Restricted (Part-Based)

Auxiliary Diversity Functions

Different Architecture

Different Initialization

Different Hyperparameters

Figure 2.3: A categorization of methods introducing diversity in CNN ensembles.

In the remainder of this chapter, we first summarize preliminaries about learning theory

for ensembles methods (Section 2.2). Further, we review several traditional ensemble

methods, which are popular in computer vision (Section 2.3). Then, we discuss more

closely related work on ensembles for deep learning (Section 2.4). Finally, as we address

problems of face detection and metric learning for image retrieval, we give an overview of

recent works in these areas (Section 2.6 and Section 2.7, respectively).

2.2 Preliminaries: Learning Theory for Ensembles

Ensembles are a popular method to reduce over-fitting in machine learning algorithms for

computer vision, e.g . [41, 193, 227, 284]. The objective of these methods is to combine
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the predictions of multiple machine learning algorithms into a single prediction. Subse-

quently, this combination typically achieves higher accuracy compared to the individual

predictions [164]. However, to show any benefits, an ensemble must consist of a set of

diverse classifiers. If the classifiers in an ensemble are highly correlated, e.g . make the

same prediction for each input sample, the combination of these classifiers cannot show

any benefits in terms of accuracy.

The bias-variance-covariance decomposition is a theoretical result which formalizes this

effect for the Mean Square Error (MSE) loss [17, 222]. It generalizes the bias-variance de-

composition. Formally, let f(·;θ) denote the output of a classifier (e.g . a neural network),

which is parametrized by θ. f(·;θ) is optimized by a learning algorithm to predict a tar-

get y from an input sample x . During learning we want to find the parameters θ which

minimize the following expected error:

Ex,y[f(x;θ)− y)2] =

∫
(f(x;θ)− y)2p(x, y)dxdy, (2.1)

where p(x, y) denotes joint true data distribution. We typically do not have access to the

true joint data distribution. Therefore, we approximate this integral with a finite sum

from samples over a dataset D = {(x1, y1), (x2, y2), . . . , (xN , yN )}.

≈ 1

N

N∑
i=1

(f(xi;θ)− yi)2. (2.2)

However, D is only a finite sample of the true data distribution p(x, y). Therefore,

obtaining zero error on the above loss function in Equation (2.2) typically does not yield

a classifier which achieves zero generalization error in Equation (2.1). To formally express

this generalization error, we look at the expected test MSE under different samplings of

D. This is the average test MSE we would obtain if we repeatedly estimate f(·) using

a large number of training sets D. To avoid further notational clutter, we omit θ in the

following, i.e. f(x;D) = f(x;θ, D). Then, we can estimate the generalization error for

the MSE as:

Ex,y,D[{f(x;D)− y}2], (2.3)

where f(x;D) denotes the classifier, which we obtain from our learning algorithm on the

dataset D. We sample x, y from the true data distribution p(x, y) and take the expectation

of the MSE w.r.t. to x, y and D. This expected MSE loss decomposes into two terms,

i.e. the squared bias and variance, as follows:

Ex,y,D[{f(x;D)− y}2] = Ex,y,D[{(f(x;D)− ED[f(x;D)]) + (ED[f(x;D)]− y)}2]
= Ex,y,D[{(f(x;D)− ED[f(x;D)])}2 + {ED[f(x;D)]− y}2

+2 · (f(x;D)− ED[f(x;D)]) · (ED[f(x;D)]− y)].
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The third term is 0, as:

Ex,y,D[2 · (f(x;D)− ED[f(x;D)]) · (ED[f(x;D)]− y)] =

Ex,y,D[2 · (f(x;D) · ED[f(x;D)]− f(x;D) · y − ED[f(x;D)]2 + y · ED[f(x;D)])] =

Ex,y[2 · (ED[f(x;D) · ED[f(x;D)]]− ED[f(x;D) · y]− ED[ED[f(x;D)]2] + ED[y · ED[f(x;D)]])] =

Ex,y[2 · (ED[f(x;D)]2 − ED[f(x;D)] · y − ED[f(x;D)]2 + y · ED[f(x;D)])] =

Ex,y[0] = 0.

(2.4)

Therefore, the expected test MSE in Equation (2.3) decomposes into the following two

terms
Ex,y,D[{f(x;D)− y}2] =

Ex,y,D[{ED[f(x;D)]− y}2]︸ ︷︷ ︸
bias2

+Ex,y,D[{(f(x;D)− ED[f(x;D)])}2]︸ ︷︷ ︸
variance

. (2.5)

The squared bias term indicates the inherent error of the model. It is high if the model is

not able to fit the data well. The variance term indicates how specialized our individual

models are. It can be an indicator of overfitting.

Ueda and Nakano [222] further generalize this decomposition to ensemble methods.

Formally, let f̄(x;D) =
∑M

m=1 fm(x;D) denote the ensemble prediction, which is the

average of M classifier predictions. We can re-write the bias for the whole ensemble as

the average of the individual learner bias terms:

Ex,y,D

[{
ED[f̄(x;D)]− y

}2]
= Ex,y,D

[{
ED[ 1

M

∑
m fm(x;D)]− y

}2]
= Ex,y,D

[{
1
M

∑
m(ED[fm(x;D)]− y)

}2]
.

(2.6)

Further, the variance term decomposes into a covariance and a variance term:

Ex,y,D

[{
(f̄(x;D)− ED[f̄(x;D)])

}2]
= Ex,y,D

[{
( 1
M

∑
m fm(x;D)− ED[ 1

M

∑
m fm(x;D)])

}2]
= Ex,y,D

[{
1
M

∑
m(fm(x;D)− ED[fm(x;D)])

}2]
= Ex,y,D

[
1
M2 {

∑
m (fm(x;D)− ED[fm(x;D)])}2

]
= Ex,y,D

[
1
M2 (

∑
m(fm(x;D)− ED[fm(x;D)])) · (

∑
m′(fm′(x;D)− ED[fm′(x;D)]))

]
= Ex,y,D

[
1
M2 (

∑
m

∑
m′(fm(x;D)− ED[fm(x;D)]) · (fm′(x;D)− ED[fm′(x;D)]))

]
= Ex,y,D

[
1
M2

(∑
m

∑
m′ 6=m(fm(x;D)− ED[fm(x;D)]) · (fm′(x;D)− ED[fm′(x;D)])

)
+ 1

M2

∑
m (fm(x;D)− ED[fm(x;D)])2

]
.

(2.7)
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If we define the average bias, variance and covariance over the M classifiers as

variance = 1
M

∑
m variancefm

covariance = 1
M(M−1)

∑
m

∑
m′ 6=m covariancefm,fm′

bias = 1
M

∑
m biasfm ,

(2.8)

we can re-write the bias-variance decomposition for ensembles as:

Ex,y,D
[{
ED[f̄(x;D)

]
− y
}2

] + Ex,y,D

[{
(f̄(x;D)− ED[f̄(x;D)])

}2]
=

bias
2

+ (1− 1
M )covariance+ 1

M variance.
(2.9)

Consequently, the generalization performance of an ensemble depends also on the covari-

ance between the learners. Intuitively, learners need to be diverse to each other to improve

the expected MSE loss. Over the past decades, traditional machine learning ensemble ap-

proaches have developed several techniques to increase diversity in ensembles. Therefore,

we discuss several popular techniques in the following section.

2.3 Preliminaries: Traditional Ensemble Methods

In this section, we give an overview of traditional ensemble methods, i.e. ensemble methods

used for “shallow” machine learning models. Traditionally, in computer vision, popular

ensemble approaches are built upon computationally cheap classifiers such as decision

stumps, trees, histograms, etc. The most prominent approaches are Random Forest [15]

(Section 2.3.1) and AdaBoost [50] (Section 2.3.2). As one of our works uses online gradient

boosting, we review the core concepts of these algorithms. Negative Correlation Learning

(NCL) [139] tries to negatively correlate learners in a shallow neural network ensemble with

an auxiliary loss function. This method is closely related to several of our contributions.

Therefore, we review it in detail in Section 2.3.6.

2.3.1 Random Forest

Random Forest [15] is an ensemble of Decision Trees and uses random feature selection

and bootstrap aggregation (Bagging) [14] to introduce diversity in an ensemble. Bagging

increases the diversity in ensembles by sub-sampling the training set with replacement for

each learner of the ensemble (i.e. for each tree). As this trains each learner on a different

subset of the dataset, the resulting predictions will be diverse from each other. Random

feature selection further reduces the correlation between learners by constraining learners

to a different random subset of the features during training. Random Forests typically

sub-sample features and training samples at each internal split-node of each of their trees

individually.

The amount of sub-sampled features or number of sub-sampled training samples is

typically a hyper-parameter which trades off diversity with model strength. For example,
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Algorithm 1: Description of the Discrete AdaBoost algorithm.

Data: (x1, y1), . . . , (xN , yN ), where xi ∈ Rd, yi ∈ {−1,+1}.
Initialize D1(i) = 1

N for i = 1, . . . , N
for m = 1, . . . ,M do

Train weak learner fm : Rd 7→ {−1,+1}, which minimizes the weighted
misclassification error: εm =

∑N
i=1,fm(xi) 6=yi Dm(i)

Set αm = 1
2 ln(1−εmεm

)

Update Dm+1(i) = Di(i)e
−αmyifm(xi)

Zm
, where Zm is a normalization factor,

so that Dm+1 is a distribution.

The final ensemble is given by:

F (x) = sign
(∑M

m=1 αmfm(x)
)

significantly limiting the features in the split-nodes of the trees leads to underfitting of

the individual learners in the ensemble. Consequently, the bias term in the bias-variance-

covariance trade-off will be high, as the individual learners will not achieve high enough

accuracy to benefit ensemble performance.

2.3.2 Boosting

In contrast to Random Forest, AdaBoost [50] re-weights the dataset for successive learners

in the ensemble to compensate for the errors of the previous learners. Subsequently, re-

weighting also introduces diversity, as especially the first learners in the ensemble focus on

different examples compared to successive learners [200]. Further, methods which apply

boosting for computer vision problems also use random feature selection and bagging, as

this increases diversity in a boosted ensemble, e.g . [41].

More formally, AdaBoost greedily optimizes a global exponential loss function, i.e.
1
N

∑N
i=1 e

−yi·F (xi), where F (·) is the ensemble prediction, xi the i-th training sample and

yi ∈ {−1,+1} the corresponding ground-truth label. The ensemble consists of several

“weak learners” f1, f2, . . . , fM . Its prediction is a weighted combination of these learners

F (x) = sign
(∑M

m=1 αmfm(x)
)

. The algorithm learns weighting factors αm and the weak

learners fm(·) iteratively, as we illustrate in Algorithm 1.

Several traditional computer vision methods in the field of recognition use boosting,

such as real-time object detection, e.g . [41, 227], pose estimation, e.g . [97], object tracking,

e.g . [68], etc.

There are several variations of this algorithm. They all follow the same structure of

AdaBoost (i.e. learn a classifier on a weighted dataset, compute the error, re-weight the

dataset) but change specific parts of it, such as using a different re-weighting scheme for

the dataset. For example, there are variations which extend it to multi-class classification,

e.g . [50, 74], use the probability outputs of weak learners, e.g . [50], try to improve robust-

ness against outliers, e.g . [120, 122, 147], adapt it to semi-supervised learning, e.g . [146],
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transfer-learning, e.g . [35], and adapt it to the online learning setting, e.g . [68, 169].

More closely related to our work are methods which try to explicitly make individual

learners in a boosted ensemble diverse to each other, which we review in Section 2.3.3.

Another closely related work is Gradient Boosting [51] (Section 2.3.4), which allows min-

imizing arbitrary (sub-)differentiable functions in the boosting framework. More specif-

ically, our work relates to On-line Gradient Boosting, which extends standard Gradient

Boosting to the online learning setting (Section 2.3.5)

2.3.3 Explicit Diversity for Boosting

Some approaches try to explicitly encourage learners to be diverse to each other in a

boosted ensemble. They either enforce this during training by altering the re-weighting

scheme [239] or post-process a trained ensemble [4].

DivBoosting [4] post-processes a learned AdaBoost ensemble with the Coalition-based

Ensemble Design (CED) [3] algorithm. CED is a greedy forward selection algorithm to

construct an ensemble out of a set of base learners using a diversity measure. It iteratively

measures the diversity contribution of the base learners to the current ensemble on a

validation set. It then greedily adds the k most promising learners to the current ensemble.

CED iterates process until the diversity contribution is below a threshold.

In contrast, AdaBoost.NC [239] builds upon negative correlation learning [139]. It di-

rectly incorporates diversity during training by introducing an ambiguity term amb. This

term measures the deviation of the individual learners from the ensemble prediction, i.e.

amb = 1
2M |

∑M
m=1 (F (x)− fm(x)) | for fm : Rd 7→ {−1,+1} and F : Rd 7→ {−1,+1}. It

is small if the learner predictions agree with the ensemble prediction, and large other-

wise. During re-weighting, AdaBoost.NC multiplies the weights of the training samples

by (1− amb)λ, where λ is a hyper-parameter. Therefore, successive learners focus more

on misclassified samples and on samples where the ambiguity is small.

Our work similarly builds upon ideas of negative correlation learning. However, in

contrast to AdaBoost.NC we directly minimize a differentiable loss function between our

learners, which are (parts of) a deep CNN .

2.3.4 Gradient Boosting

Similar to AdaBoost, Gradient Boosting [51] iteratively builds an ensemble one learner at

a time. The main idea is to optimize a global loss function by performing gradient descent

in function space. More specifically, during training at iteration m, Gradient Boosting

tries to iteratively minimize the following loss function for N training samples (xi, yi)

w.r.t. to the current to be optimized learner fm(·):

arg min
fm(·)

N∑
i=1

`(Fm−1(xi) + fm(xi), yi), (2.10)
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where Fm−1(x) is the ensemble prediction until step m− 1.

Directly optimizing this loss function is too hard. Therefore, Gradient Boosting op-

timizes the loss function by performing gradient descent in function space. Formally, at

step m it updates the ensemble as follows:

Fm(x) = Fm−1(x)− νm
N∑
i=1

∇Fm−1`(Fm−1(xi), yi), (2.11)

where νm is a shrinkage factor and is typically set constant for all learners m = 1, . . .M .

Therefore, the new learner fm(·) has to make predictions which are proportional to the

negative gradient of the loss function. To this end, Gradient Boosting computes so-called

pseudo-residuals rim = −∇Fm−1`(Fm−1(xi), yi), which are the negative gradients of the

loss function for all training samples {(xi, yi)}Ni=1. Subsequently, Gradient Boosting trains

the new learner fm(·) to predict these pseudo-residuals by augmenting the training set to

{(xi, rim)}Ni=1.

Similar to boosting, we can interpret the negative gradient as a weight for training

samples, i.e. wim = |rim| [51, 120, 193]. Depending on the loss, samples with high loss

typically also have high gradients. Therefore, successive learners in the ensemble tend to

focus more on misclassified samples.

2.3.5 On-line Gradient Boosting

The original Random Forest, AdaBoost and Gradient Boosting algorithms assume an

offline training setting. In contrast, online algorithms update the model incrementally,

typically one sample at a time. Subsequently, online algorithms alleviate the need to

hold the entire dataset in memory. Consequently, online algorithms can train on larger

datasets compared to offline algorithms. Further, online learning enables some computer

vision applications, such as object tracking, which try adapting a classifier to a specific

video or scene without storing any additional data. There are several extensions which

address these problems of Gradient Boosting. These works are similar to online Boosting

methods and adapt Gradient Boosting to the online learning setting, e.g . [11, 12, 120].

In contrast to their offline versions, online Gradient Boosting trains a fixed number of

online learners. The main requirement of these learners is that they are online trainable.

Therefore, online Gradient Boosting can train learners such as Naive Bayes classifiers or

gradient-based learning algorithms. The latter group consists of algorithms such as linear

Support Vector Machines (SVMs), Neural Networks, etc. We summarize a simple online

Gradient Boosting algorithm [120] in Algorithm 2.

In some of our works [167, 168], we use several heads on top of a CNN as weak learners.

They all share the same underlying feature representation. Further, we train them all on

the same training set. Unfortunately, näıvely training such an ensemble yields highly

correlated classifiers. To address this problem, we optimize our model with batch online
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gradient boosting. By re-weighting the training set for each learners, the diversity of the

heads increases.

Algorithm 2: Illustration of a simplified version of the online Gradient Boosting

Algorithm of Leistner et al . [120].

Data: A training sample (xi, yi)

Set F0(xi) = 0

Set the initial weight w
(1)
i = −`′(0)

for m = 1 . . .M do

Train m-th weak learner fm(·) with sample (xi, yi) and weight w
(m)
i .

Set Fm(xi) = Fm−1(xi) + fm(xi).

Set the weight w
(m+1)
i = −`′(yiFm(xi)).

Output the final model: FM (x)

2.3.6 Negative Correlation Learning

NCL [139] tries to make neural network regression ensembles diverse to each other by ex-

plicitly negatively correlating the individual learners from the ensemble prediction during

training time. To this end, NCL trains the ensemble jointly and uses an additional penalty

in the loss function to negatively correlate each learner from the ensemble prediction.

More formally, for regression problems, we typically minimize the squared error loss

function
1

2

∑
i

(fm(xi)− yi)2 , (2.12)

where {(xi, yi)}Ni=1 denotes training dataset with samples xi and regression targets yi.

fm(·) denotes the prediction of the m-th neural network in the ensemble. Typically, the

ensemble prediction is the arithmetic mean of the learner prediction and defined as

F (x) =
1

M

M∑
m=1

fm(x). (2.13)

NCL adds an additional regularization term to the loss function

1

2

∑
i

(
(fm(xi)− yi)2 + λ · pm(xi)

)
, (2.14)

where λ is a hyper-parameter which balances the penalty with the standard L2 loss.

pm(xn) negatively correlated the learner fm(·) from the ensemble prediction as follows:

pm(x) = (fm(x)− F (x))
∑
n6=m

(fn(x)− F (x)). (2.15)

If the ensemble prediction is the arithmetic mean of the learners (as defined in Equa-
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tion (2.13)), this further simplifies to the following overall loss function:

1

2

∑
i

(
(fm(xi)− yi)2 − λ(fm(xi)− F (xi))

2
)
. (2.16)

As we see, the learners should on the one hand predict responses which are close to the

targets yi. On the other hand, they should predict responses which are different from the

ensemble prediction F (·). Naturally, this is a trade-off. Setting the hyper-parameter λ too

low yields highly correlated learners fm(·), which show no benefit in an ensemble. Choosing

λ too high impairs the model strength, i.e. the accuracy of the individual learners fm(·).
Subsequently, every model has to do different predictions from the mean. Therefore, most

models will fail to accurately predict the targets yi. Interestingly, by optimizing this loss

function on the training set, NCL also achieves diverse learners on the test set, improving

the ensemble performance.

As NCL trains the full ensemble jointly, it minimizes the penalty term pm(·) of the

loss function with standard Stochastic Gradient Descent (SGD). The main disadvantage

of this method is, that during training all learners need to be stored in memory at the

same time. Therefore, ensemble training consumes significantly more memory, which is a

limiting factor with modern Graphics Processing Unit (GPU) hardware.

NCL is related to our work as we also model the individual learners in an ensemble

explicitly and make them explicitly diverse to each other on the training set. Even though

this technique has been proposed two decades ago, it did not receive much research at-

tention in the computer vision community recently, presumably due to its computational

expense.

2.4 Explicit Ensembles for Deep Learning

In the context of deep learning, explicit ensembles are especially popular in object cat-

egorization, detection, and instance segmentation in annual challenges such as the Ima-

geNet [186] challenge or the COCO [134] challenge, where the main objective is to build

highly accurate models without regard to speed. More specifically, every winner of the

COCO challenge from 2015 to 2018 for object detection and instance segmentation uses

the benefits of ensemble learning to improve accuracy.

Besides improving accuracy, ensembles can be beneficial for predicting uncertainty

information about a sample. If many learners disagree on a particular input, uncertainty

is high. In the context of computer vision, uncertainty information is beneficial for Active

Learning [9], Reinforcement Learning [52], detecting novel classes [114], etc.

We categorize different explicit ensemble approaches by the diversity method they use

and the number of parameters individual learners share with each other in the ensemble.

Our works [165–168] focus on using the benefits of ensembles to improve a single CNN

model. We share most parameters of the individual learners with each other. To make the
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learners diverse from each other, we make use of spatial independence [166], boosting [167,

168], and auxiliary loss functions [165, 168].

Therefore, we review in the following sections methods which introduce diversity in

CNN ensembles (Section 2.4.1) and give an overview of several methods which exploit the

benefits of parameter sharing among models (Section 2.4.2). Further, as one of our goals

is to speed up ensemble training by parameter sharing, we also review several methods

which focus on rapid ensemble training (Section 2.4.3). Finally, as model distillation can

also exploit the benefits of ensembles by distilling the knowledge of an ensemble into a

student network, we give a brief outline of these methods (Section 2.4.4).

2.4.1 Diversity in Ensembles

As only diverse learners yield any benefits in ensembles, different methods have been

proposed to increase diversity for learners in ensembles. We categorize these diversity

encouraging models in methods which use training samples (Section 2.4.1.1), different

model architectures (Section 2.4.1.2), different features (Section 2.4.1.3), and auxiliary

loss functions (Section 2.4.1.4) to increase diversity in ensembles. These methods are not

mutually exclusive and ensemble methods typically can employ several of these approaches

to increase diversity.

2.4.1.1 Variation in Training Samples

Introducing diversity by varying the training set for each learner is a popular strategy

which Bagging [15] and Boosting [50] use to introduce diversity. Bagging sub-samples dif-

ferent samples for individual learners. Boosting re-weights individual samples for different

learners. In contrast to these traditional ensemble methods, most recent CNN ensemble

methods typically do not employ “hard” data sub-sampling, presumably because CNNs

benefit from large datasets to learn a diverse and discriminative feature representation.

There is a trade-off between reducing the dataset size of a specific learner and increasing

the diversity of a learner. Training a CNN with a small number of samples typically yields

a less rich and less diverse feature representation compared to training a CNN with all

training samples.

Recent work [281] tries to carefully balance this trade-off by assigning different models

in the ensemble different samples. To this end, they model the assignment as a bipartite

graph between models and training samples. They further introduce two constraints into

this assignment problem. These constraints limit the number of samples per model and

the number of models assigned to a specific sample.

Some recent approaches, i.e. [119, 188, 244], try to overcome this problem, by implicitly

or explicitly sharing parameters between learners. Specifically, Wasay et al . [244] pre-trains

the learners on the full datasets. Consequently, during fine-tuning and sub-sampling,

learners can benefit from the rich feature representation learned from all training samples.
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Other approaches [119, 188], similar to ours, use parameter-sharing in a multi-head

network architecture. Consequently, a large part of the feature representation can benefit

from all training samples. Subsequently, the network can develop a rich and diverse feature

representation. The individual learners then can specialize on a certain part of the training

set. TreeNets [119] assign samples in a mini-batch to learners based on the loss of the

learners on this sample. The method then assigns to a given training sample the k learners

with the lowest loss. This typically yields to a split of the dataset per object category, as

learners tend to specialize on certain categories.

In the context of deep metric learning, several works employ sampling and weighting to

increase diversity. Most of these works, i.e. [167, 168, 188], use parameter-sharing to allow

the CNN feature representation to benefit from all training samples. Our works [167, 168]

use online gradient boosting to re-weight the training samples for learners which all share

the same feature representation [167]. As our learners use parameter-sharing and our

weighting is a “soft” weighting, our feature representation can benefit from all training

samples. Similarly, Sanakoyeu et al . [188] also leverage the benefits of parameter sharing.

They use a two-step divide and conquer training approach to cluster the training set

and train individual learners of a parameter-shared ensemble to be discriminative for the

specific cluster. In the end, they fine-tune the ensemble on the full dataset.

Deep Randomized Ensembles for Metric Learning (DREML) [248] does not employ

feature sharing, but randomly groups class labels of samples for each learner into different

small groups. Consequently, all learners train on the full dataset, but focus on separating

different categories from each other. However, the main disadvantage of this approach

is, that it needs to train several independent learners and therefore cannot enjoy the

computational benefits of parameter sharing.

2.4.1.2 Variation in Models

Another way to make learners in a CNN ensemble diverse from each other is to vary

the models of the individual learners. This includes the CNN architecture (i.e. number of

layers, size of convolutions, etc.), the random initialization, and different hyper-parameters

of the models, e.g . [75]. The learners are then typically trained on the full training dataset

(with a different random permutation), without sub-sampling for the individual learners.

The reason for this is presumably due to the benefits of large datasets for deep neural

networks compared to traditional, shallow approaches such as Random Forests, which do

not need to learn the feature representation of the model.

Current research [9, 158] suggests that difference in initialization contributes more to

variation of network models compared to bagging the training set or random permutations

of the training set. Interestingly, variance due to initialization increases as the depth of

the network increases [158]. Consequently, as training of CNNs is a non-convex optimiza-

tion problem, due to different initializations, these networks converge to a different local

minimum of the loss function, which introduces diversity in the ensemble.



22 Chapter 2. Preliminaries and Related Work

2.4.1.3 Variation in Features

One popular way to increase diversity in an ensemble is to restrict different learners to

different features of the network, e.g . [15]. Deep learning approaches typically apply

feature sampling on a hidden layer of the network. This approach is popular for implicit

ensemble methods such as dropout [208] and its extensions (Section 2.5).

Explicit methods can employ attention as a form of soft feature selection for individual

learners to introduce diversity [103]. Each learner focuses on different features, which

introduce diversity among learners. A separate “expert” network predicts this attention

mask. Consequently, the expert decides which learner should be active for a given training

sample.

Several multi-modality (e.g . RGB-D, NIR, etc.) CNN approaches, e.g . [30, 70, 142,

226], can be interpreted as an ensemble, where learners operate on separate modalities.

Traditionally, these approaches perform late- or deep-fusion of these multiple learners.

Typically, they have one copy of the same network per input modality, and then fuse

their outputs or an intermediate feature representation. These copies are traditionally

trained separately and then fine-tuned together to build an ensemble which consists of

two learners operating on RGB and depth input, respectively. Recent methods, e.g . [226],

fuse modalities on multiple layers and use auxiliary loss functions to make the individual

modality networks discriminative alone. In contrast to these methods, we do not explore

the benefits of multi-modal inputs in our works.

Another way to introduce feature diversity are part-based models, e.g . [49, 59, 149,

250, 283]. Traditionally, these models have been successful in object detection. Learners

in these models focus on different object parts, i.e. spatial sub-regions of the input feature

representation. For example, such parts might correspond to the torso or legs of a person.

Consequently, if one part is missing due to occlusion, the ensemble can recover. Mod-

ern CNN based detectors are typically holistic detectors and have large receptive fields,

e.g . [132, 133, 176]. Consequently, dividing them into part based detectors is a challenging

problem.

There are several attempts to integrate object parts into the CNN based detection

frameworks, e.g . [218, 255, 270, 271]. Early works in this area use several large CNNs to

model each object part, i.e. [218]. Similarly, one of our works is a part-based CNN detec-

tor [166]. However, our detector shares all hidden layer features with all part detectors.

Consequently, our method is computationally more efficient. Successive works address

this problem with additional occlusion or part-location supervision, e.g . [255, 271], in

combination with attention [270].

2.4.1.4 Variation by Auxiliary Loss Functions

Introducing diversity in an ensemble by an auxiliary loss function has not received much

research attention in the recent years, presumably because during training the ensemble

has to be jointly trained. Consequently, each learner has to be stored concurrently in
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memory, which makes these approaches computationally demanding.

For neural networks, this approach has been pioneered by NCL [139], which tries to

make regression ensembles diverse from each other. It negatively correlates the prediction

from the learner to the ensemble prediction during training.

The benefits of this technique have also been used to improve boosting ensembles [239]

and gradient boosting ensembles [235].

With the availability of more computational resources and improvements in model

architecture (i.e. parameter sharing between learners), these approaches are also applicable

to modern deep neural networks. These methods have been applied to simple object

categorization [165, 241], crowd counting [199], metric learning [150, 168, 182], etc. Similar

to dropout, these methods typically employ parameter sharing between the individual

learners. Typically, only the last hidden layer has different parameters, which results in a

computationally fast training and inference time compared to standard ensembles.

Several of our contributions, i.e. [165, 167, 168], fall into this category. Compared to

standard NCL we employ parameter sharing between learners and use a different auxiliary

loss function on the hidden layer of the network to make the learners diverse from each

other.

Successive works in this category use ideas from of self-supervised learning to provide

different auxiliary supervision signals to learners. They use pseudo labels from clustering,

e.g . [182, 188], or instance-augmentation [150] to train learners on different supervision

signals.

2.4.2 Parameter Sharing

In the context of deep learning, one of the main disadvantages of ensembles is the com-

putational expense. During test time inference has to be done for each member of the

ensemble. One way to overcome this problem is to share parameters between learners of

the ensemble.

The most popular approach which employs parameter sharing is dropout [208], which

we review in Section 2.5. Dropout randomly omits neurons in the hidden layer during

training time from a large neural network. Consequently, we can interpret these “thinned”

networks as learners from a larger ensemble, which all share parameters with each other.

Another way to address this issue is to explicitly divide or replicate the network at

one hidden layer. These networks have multiple heads which correspond to the individual

learners in an ensemble. Compared to dropout, these types of networks have not received

much research attention.

We can interpret some coarse-to-fine approaches, e.g . [21, 266], as an ensemble, where

individual learners refine the predictions of previous ones. This is useful for pose estimation

and localization tasks. Some of these approaches also use parameter sharing. For example,

Cascade R-CNN [21] uses a cascade of multiple object detection heads to refine detections,

yielding more accurate bounding boxes around objects. Lower level features for Cascade
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R-CNN are shared between learners. To introduce diversity, successive heads operate on

inputs of previous heads to refine the object localization. In contrast to these approaches,

our work typically does not use the benefits of coarse-to-fine refinement and is therefore

more generally applicable.

Most similar to our work is the unpublished work of Lee et al . [119], which investigates

the effect of splitting networks for object categorization tasks. They found that jointly

training an ensemble with multiple heads actually harms performance, as it reduces di-

versity. To overcome this problem, they assign a random subset of categories to different

classification heads, which introduces diversity in their ensemble. However, this approach

has the disadvantage that gradient updates for learners become unstable, as due to the

label assignment individual learners receive only a few training samples per batch. Com-

pared to their work, we explore auxiliary loss functions [165, 168], and soft re-weighting

of samples [167, 168] to introduce diversity. Successive works further combine the benefits

of parameter-sharing with attention [103], pseudo labels obtained by clustering [182, 189],

and self-supervised auxiliary loss functions [150]. However, while most of these approaches

focus on the problem of metric learning, we also show that our contributions extend to

object categorization problems.

Further, recently Zhu et al . [284] independently also propose a multi-head architecture,

where they use knowledge distillation to convert the multiple heads back into a single

head model. They use a gating network to decide which of their heads is responsible for

classifying a sample. Compared to their work, we focus more on how to introduce diversity

in such a multi-head setup. We argue that more diverse heads could be beneficial for

distillation, consequently improving the accuracy of the student network.

Recently, Li et al . [124] propose a multi-head ensemble architecture during training and

show that such an ensemble setup can improve the accuracy of ResNet-50 and ResNet-101

on the ImageNet dataset. They just rely on random initialization to increase diversity and

might benefit from additional methods to increase diversity between learners.

2.4.3 Rapid Training of Ensembles

As training several large CNNs is computationally expensive, several works focus on speed-

ing up training of ensembles for CNNs. These approaches typically focus on reducing the

training time of the ensemble. However, during test time, they consist of several individual

CNN models. Consequently, inference time is similar to standard CNNs ensembles.

Snapshot ensembles, e.g . [56, 83, 254], combine several different snapshots from train-

ing a single model for building an ensemble. During training, they use a cyclical learning

rate schedule. Specifically, they use a cosine annealing and periodically let the model

converge into a local minimum, store a snapshot, and then re-start training with a higher

learning rate. The final ensemble consists then of the last models.

Another line of work [244] trains a large mother network and transforms it into multiple

other networks by e.g . inserting or widening layers. They preserve the predictions of
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the mother network by function preserving transformations. Finally, they fine-tune the

transformed networks on bagged datasets. Due to parameter sharing with the mother

network and bagging, the training time of these transformed networks is significantly

faster compared to ensembles trained from random initializations.

In contrast to these works, we focus on approaches which allow comparably fast infer-

ence. Our objective is that the models of the ensemble share most parameters with each

other, so that the inference time is comparable to a single model.

2.4.4 Distillation Approaches

Distillation approaches try to train a smaller so-called student network from larger teacher

networks, e.g . [78, 181, 284]. They typically use soft-labels obtained from the teachers [78]

to train the student network. These approaches obtain these soft-labels by dividing the

logits by a temperature scaling factor and then normalize them with a softmax activation

function. The student network minimizes the KL divergence between its predictions and

these soft-labels. Consequently, it learns the relative importance between the class labels

(according to the teachers) for a given input image. Further approaches extend this by

also trying to train auxiliary regressors between feature maps of student and teacher

networks [181], or using adversarial loss function and using different multiple different

teacher architectures [197]. Consequently, the learned features of the student and teachers

are similar.

These methods typically have a fast inference time, as the student network is a standard

CNN . Compared to our work, however, these distillation approaches have to train several

different models during training time. Further, their objective is to mimic a larger and

stronger model with a smaller model. In contrast, we directly aim to train a model without

teachers.

2.5 Implicit Ensembles with Dropout

Dropout [208] is a simple way to prevent neural networks from overfitting. The main

idea is to sample a binary mask from a Bernoulli distribution during training for each

sample and multiply it with the neurons of a hidden layer (see Figure 2.4). The remaining

neurons, which are multiplied by one, can be interpreted as a “thinned” version of the

larger network. Therefore, dropout samples for each training sample a different “thinned”

neural network. Consequently, one interpretation of dropout is that it trains an ensemble

of an exponential number of neural networks during training, which all share parameters

with each other.

During test time it is computationally impossible to correctly average this exponential

number of neural networks. Therefore, dropout approximates this intractable inference by

scaling the activations during test time to match the expected output of the layer during

training time [208]. More specifically, dropout scales the activations by 1.0 − p, where p
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(a) Full network. (b) Thinned network after ap-
plying the dropout mask.

Figure 2.4: Training neural networks with dropout during training time.

is the dropout probability. Consequently, standard dropout has a so-called inference gap,

as the inference during training time differs from the inference during test time.

There is another variation of dropout, which add multiplicative Gaussian noise

N (1, σ2) to the hidden layers as opposed to Bernoulli noise, where σ is a hyper-parameter

[208]. As the expectation of the hidden layers does not change during test time, Gaussian

dropout does not need to re-scale the weights during test time. However, standard

(Bernoulli) dropout is more popular. Further, Gaussian dropout is more related to

data augmentation than ensembles. Therefore, we focus our discussion on the Bernoulli

variant of dropout unless otherwise stated.

There are several works which extend standard dropout. One family of work tries to

overcome this inference gap between training and test time (Section 2.5.1). Another line

of work aims to alter the sampling strategy during training time (Section 2.5.2). Further,

there is a line of work which interprets dropout as Bayesian inference (Section 2.5.3).

Finally, a some works interpret dropout as form of data dependent regularization (Sec-

tion 2.5.4).

2.5.1 Inference Gap

Dropout suffers from an inference gap, as the method approximates the ensemble predic-

tion during test time by re-scaling the activations. However, this hampers the performance
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of the method. Therefore, there are several works which try to overcome this inference

gap.

One way to approximate this inference is Monte Carlo sampling, e.g . [52]. These

methods try to close this inference gap by averaging the prediction of several “thinned”

networks during test time. Subsequently, this typically yields more accurate results at

additional computational expense during test-time, as for each sample several forward

passes with different dropout masks are necessary to compute the ensemble prediction. To

address this computational problem, distillation [78] can distill the Monte Carlo predictions

from a teacher network trained with dropout back into a single student network [19].

Consequently, inference during test time for the student network only requires a single

forward pass through the network.

Similarly, Expectation-Linear regularization tries to make the output of dropout lay-

ers close to the standard dropout mean approximation (i.e. by scaling weights) during

training [145].

Another approach is to make some assumptions of the distribution of activations,

e.g . inputs to hidden units are Gaussian distributed. With this assumption, a Gaussian

approximation of the loss under dropout training can be derived, which can be optimized

directly [240]. During test-time, this method does not need to re-scale the weights.

2.5.2 Sampling Strategy

One further line of work tries to change the dropout sampling strategy during training

time. Standard dropout samples a random dropout mask and multiplies it with the

activations of the hidden layers. In contrast, DropConnect [234] applies dropout on the

weights. During test time DropConnect has to resort to Monte Carlo sampling to make

the inference.

ModDrop [160] and Modout [123] apply dropout on an input modality (e.g . the depth-

branch of an RGB-D network). This makes the individual modality networks discrimi-

native on their own and reduces co-adaptations between the individual per-modality net-

works.

Some works try to improve dropout specifically for CNNs. Standard dropout typically

does not show many benefits when it is applied directly to convolutional channels. To

overcome this problem these works try to integrate a form of structure in the dropout

masks. They drop entire convolution channels [219] or larger rectangular blocks from the

inputs or feature maps, e.g . [40, 60].

There are also several extensions to dropout, which try to adapt it to ResNets [75],

e.g . [57, 85, 249]. As ResNets consists of two branches, these dropout variants try to

stochastically omit the non-residual branch [85], or scale them with a random scaling

factor during the forward and backward pass [249]. Further, ResNeXt [247] is a ResNet

extension, which introduces several smaller parallel branches next to the residual branch.

For these types of networks Shake-Shake [57] does a random convex combination between
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the non-residual connections of the networks during training time. During test-time,

these variations typically scale the layers with the expectation of this random scaling

factor. Interestingly, applying Shake-Shake regularization between branches decreases the

correlation of features between branches [57]. Therefore, the authors hypothesize that the

Shake-Shake benefits are due to the increased diversity between sub-networks.

2.5.3 Bayesian Inference

Another line of work interprets dropout as Bayesian inference, e.g . [52, 53, 81, 105,

140]. Bayesian approaches model the parameters w of a neural network as distribu-

tion p(w|D), where D denotes the dataset. However, to compute this posterior, i.e.

p(w|D) = p(w)p(D|w)/P (D), intractable integrals are required. To overcome this prob-

lem, variational inference methods approximate this posterior with a simpler distribution

q(w). During training, it maximizes the evidence lower bound: Eq(w)[log p(y|x,w)] −
KL(q(w)‖p(w)), where the second term is a regularizer which makes the approximation

similar to a prior distribution p(w). During inference, the predictive distribution has to

be marginalized w.r.t. w, i.e.
∫
w p(y|x,w)q(w)dw, typically by Monte Carlo integration.

Variational Gaussian dropout approaches typically parametrize the approximate distri-

bution q(w) with mean w and standard deviation σ and assume that the weights factorize

(i.e. entries of the weight matrix are independent) [81, 105, 140]. Similarly, for Bernoulli

dropout, variational methods also assume independence and use the weight matrix w and

dropout probability p to parametrize for q(w) = w · diag[Bernoulli(1− p)] [53].

During training, all methods learn the variational parameters, i.e. p and σ, and model

parameters w jointly. During training, these methods evaluate the log-likelihood term by

a single Monte Carlo sample from the distribution q(w), which corresponds to dropout

training.

2.5.4 Data-Dependent Regularization

Dropout is also a form of data-dependent regularization, e.g . [152, 208, 228]. For shal-

low models, it is possible to derive a deterministic regularization. For example, in linear

regression, dropout corresponds to scaling the weights wi in the weight decay by the stan-

dard deviation of the i-th dimension of the data [208, 240]. Therefore, the regularizer

penalizes dimensions with high variance more compared to standard weight decay. In-

tuitively, this also explains why batch normalization [89] reduces the need for dropout.

Batch normalization transforms the input for each layer to zero mean and unit variance.

Therefore, applying L2 on the weights operating on this transformed input space has a

similar effect to dropout [152]. Consequently, it is beneficial to reduce dropout rates in

batch normalized networks.

However, for neural networks with multiple hidden layers, there is less understanding of

the effect of dropout as a data-dependent regularizer. Helmbold and Long [76] discovered

some properties of dropout in deep networks, i.e. invariance to scale of inputs and weights
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and exponential power of the regularizer with increasing depth of the network. Further,

Mou et al . [152] derive an error bound on the generalization error for dropout under the

data-dependent regularization interpretation.

Our work is related to dropout, as we also try to train an ensemble of networks which

share most parameters with each other. However, in contrast to our work, dropout typi-

cally uses a form of random noise on the hidden layers of a network to sample a “thinned”

sub-network during training time, which all share parameters which each other. Each sam-

ple typically trains a different sub-network. In our work, we use a more explicit ensemble

model. We train only a few “thinned” networks and make them different from each other

with an auxiliary loss function. We fix these networks during training and train them with

all the training samples.

2.6 Face Detection

We evaluate our spatial independent ensemble for the problem of face detection. Therefore,

we will give a brief overview of face detection methods in this section. Since there is a

vast number of works in this area, we only give a brief overview of seminal work in this

area and the most recent works in the field. We illustrate the most important historic

milestones and recent works in Figure 2.5. We categorize face detection methods into

traditional methods (Section 2.6.1) and CNN based methods (Section 2.6.2).
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Early Methods/Handcrafted Feature Methods

Viola Jones
Deformable Parts 

Model
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Figure 2.5: Overview of important and recent works for face detection.
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2.6.1 Traditional Methods

Face detectors typically have real-time requirements. Therefore, traditional methods typ-

ically were designed to be computationally efficient. We categorize traditional methods

into boosting based methods (Section 2.6.1.1) and Deformable Parts Model (DPM) (Sec-

tion 2.6.1.2 based methods.

Further, there are complementary approaches which improve existing detectors by

domain adaption techniques [125]; and exemplar based methods which use retrieval tech-

niques to detect and align faces [113, 196].

2.6.1.1 Boosting Based Methods

One seminal work in the field of boosting based face detection is the realtime detector of

Viola and Jones [227]. This detector uses an integral image representation to compute

rectangular Haar features. The integral image enables computing Haar feature responses

in constant time independent of their size. Further, the detector uses a cascade of several

classifiers. The first classifier in this cascade can already discard most “easy” background

examples, reducing the computational load of successive classifiers. Both the integral

image and the cascade structure contribute to the realtime speed of the method.

More modern boosting based detectors typically use more discriminative feature repre-

sentations, as increasingly large datasets and more computational capacity gets available.

They use linear classifiers as weak learners with SURF based features [129], exemplars [126]

or leverage landmark information with shape-indexed features for classification [26]. Suc-

cessive works [148, 252] use oriented gradient images and LUV images as feature repre-

sentation. HeadHunter [148] uses integral images on top of this representation to train

tree-based weak learners in a cascade. Further, several works apply filters on top of these

oriented gradient images, e.g . [157, 269], to make these features more discriminative. Fi-

nally, Yang et al . [253] propose CNN features for the boosting framework.

2.6.1.2 Deformable Parts Methods

In parallel, Histogram of Oriented Gradients (HOG) [36] features and DPM [49] based

detectors became popular. Standard HOG based detectors use a linear SVM to learn a

detector on oriented gradient features. DPM extends standard SVMs detectors to learn

one root and multiple part templates. The responses of these detectors are then combined

with a deformation cost function to compute the final detection score. Extensions to

DPMs have been proposed which handle occlusions [59], improve runtime speed [250] and

leverage manually annotated part positions in a tree structure [283].

2.6.2 CNN Based Methods

With the success of CNNs for computer vision, e.g . [61, 112], the first small CNN based

detectors became popular. Early works in this era (i.e. pre-2012), apply a small num-
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ber of convolution filters followed by sum pooling or average pooling on the image,

e.g . [55, 185, 224]. The first modern CNN based methods exploit the benefits of multi-

scale cascades, e.g . [127, 174]. Further works improve these detectors by including context

information [268]) and multitask learning (by predicting landmarks) to detect faces [267].

The main benefit of these types of detectors is that they can run in realtime on standard

Central Processing Unit (CPU) hardware. Our spatial independent ensemble, i.e. grid

loss [165], also falls into this family of small CNN based detectors. In contrast to these

other works, our spatial independent ensemble especially benefits detecting occluded faces

(see Chapter 4).

With the availability of larger datasets, i.e. WIDER face [256], larger GPUs, and

advances in generic object detectors for CNNs, e.g . [132, 133, 137, 176], an increasingly

larger amount of works focus on adapting these generic detectors to face detection.

These generic detectors typically tile anchor boxes over one or more convolutional

feature maps of different scales of a CNN . The detector classifies each anchor box as

an object or background and regresses the object bounding box relative to the anchor

box. R-CNN based methods [176] use a two-step approach. In the first step, they use

a Region Proposal Network (RPN) to predict object proposals from anchors on the last

convolutional map of a CNN . In the second step, they crop a Region of Interest (RoI)

around detected object proposals (i.e. foreground anchors) and feed it into a second neural

network to re-score and refine the proposal to the final prediction. In contrast, single-shot

methods [132, 133, 137] directly predict the object class and bounding box from anchors,

which are tiled over convolutional maps on different scales.

One of the main differences between generic object detection datasets and face detec-

tion datasets is the size distribution of objects [82]. Face datasets typically contain many

smaller objects compared to generic object detection datasets. However, face bounding

boxes typically only have a very limited aspect ratio, as faces are rigid objects. Therefore,

a lot of research effort focused on adapting generic detectors to detecting smaller objects.

The first family of these detectors built upon the Faster R-CNN [156, 176, 255] frame-

work, e.g . [72, 96, 236]. As single shot detectors, e.g . [137], became more popular due to

their speed, several detectors adopted this framework, e.g . [257, 273, 274]. Single-shot de-

tectors especially benefit from Feature Pyramid Networks (FPNs) [132]. These detector ar-

chitectures combine the high level (but coarse) semantic features with lower level (but fine-

grained) features by upsampling and element-wise operations. Consequently, these types

of detectors are especially beneficial for detecting small objects. Therefore, face detectors

quickly adopted this structure, e.g . [31, 38, 128, 130, 138, 155, 215, 258, 265, 272, 277, 282].

In contrast to generic object detection datasets (e.g . COCO [134], PASCAL VOC [47],

etc.), face detection datasets consist of a larger amount of tiny objects. Therefore, FPN

based face detectors typically additionally use the stride 4 FPN levels (i.e. higher reso-

lutions) to detect faces. In contrast, the lowest level in standard detectors is the stride

8 FPN level. However, this introduces a large number of negative anchor boxes during

training. To address this problem, recent methods improve the mining of anchors [128,
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130, 138, 274, 282], use cascades on the upward pass on the pyramid to reduce easy

background samples [31, 272, 277], introduce several latent background and foreground

classes [215, 274, 277] and typically use Online Hard Example Mining (OHEM) [201]. Fur-

ther, some works add explicit context modules to the CNN , which are useful in detecting

small faces by detecting body parts, e.g . [128, 130, 155, 215]. Finally, some works introduce

multitask landmarks or mesh regression losses [38, 258]. Even though FPN based detec-

tors improve upon detecting small objects, state-of-the-art methods still rely on traditional

scale-space pyramids (i.e. test-time augmentation) to achieve good results [38, 155, 274].

2.7 Metric Learning

We evaluate our parameter shared ensemble with diversity auxiliary loss functions for the

problem of deep metric learning for image retrieval. Therefore, we provide a brief summary

of related work in this field. For a more complete overview of metric learning methods,

we refer to a survey of Bellet et al . [8].

The main objective of metric learning approaches is to learn a distance function

d(·, ·) : X × X 7→ R+, which maps two inputs x ∈ X ,y ∈ X to a non-negative dis-

tance. This distance should be “small” for inputs which are semantically similar to each

other, and “big” for inputs which are semantically dissimilar to each other. Such distance

functions are useful in computer vision applications where there are no pre-defined num-

ber of categories such as face verification (e.g . [86]), image retrieval (e.g . [163]), object

tracking (e.g . [216]), person Re-ID (e.g . [198]), etc.

Traditional methods in computer vision typically rely on handcrafted features to rep-

resent x,y, e.g . [28, 79, 107]. Therefore, X = Rd, where d represents the feature di-

mensionality. These methods typically learn a Mahalanobis distance M ∈ S+, where S+

denotes the space of positive semidefinite matrices. The squared distance is then defined

as: d(x,y)2 = (x− y)>M(x− y).

As M is positive semidefinite, it is possible to factorize it into M = L>L. Conse-

quently, we can interpret the Mahalanobis distance between two feature vectors x and y

as Euclidean distance of x and y in a linear transformed feature space. Formally,

d(x,y)2 = (x− y)>M(x− y)

= (x− y)>L>L(x− y)

= (Lx− Ly)>(Lx− Ly). (2.17)

L ∈ Rd̃×d maps x ∈ Rd and y ∈ Rd into a d̃-dimensional vector via a linear projection.

Traditional metric learning approaches either learn M or the factorized transform L from

training data, e.g . [37, 63, 65, 245].

Successive works introduce kernels in these frameworks, to make non-linear distance

functions possible, e.g . [24, 220, 245]. Kernel methods express decision functions with
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so-called kernel functions k(x,y) = φ(x)>φ(y), where φ(x) is a non-linear function which

maps x into a high-dimensional space. Rather than explicitly computing φ(·), kernel

methods only need to model the kernel function k(·, ·). Some common examples are

krbf(x,y) = e
−||x−y||2

2σ2 , or kpoly(x,y) = (x>y + c)d. Consequently, kernel methods do not

need to explicitly compute the possibly expensive non-linear map φ(·).
In contrast to these kernel methods, several works try to model the non-linear map φ(·)

directly. They replace the linear function L with a parametrized non-linear function φ(·; θ)
in Equation (2.17). θ are parameters of the function which are learned during training.

Early works in this area model φ(·; θ) with a gradient boosted ensemble of decision trees,

e.g . [98], or neural networks, e.g . [32, 187].

Modern deep metric learning approaches for computer vision follow the early works in

metric learning with neural networks, e.g . [32, 187]. They use CNNs to model the non-

linear function φ(·; θ). Further, rather than using a feature vectors as input, they take

images as input. CNNs learn a suitable feature representation during training. Therefore,

for CNN based methods, X denotes the space of images.

Sample Minibatch Predict Embedding
(Ensemble)

Sample/Weight 
Pairs/Triplets/N-Tuplets

Loss + Regularization

CNN Backbone

Figure 2.6: Overview of deep metric learning systems.

We illustrate a framework of modern deep metric learning systems in Figure 2.6. In

contrast to image classification problems, deep metric learning systems predict feature

vectors and use special loss functions to make feature vectors of similar images close to

each other and dissimilar images far apart from each other. As large neural networks

tend to overfit, some works use regularization techniques to reduce overfitting. Further,

in contrast to traditional metric learning methods, modern deep learning are trained on

large datasets with mini-batch gradient descent. However, random sampling mini-batches

typically yields image pairs which are easy to categorize as similar or dissimilar. Con-

sequently, the loss function results in too small gradients, which makes training highly

accurate deep CNNs impossible. Therefore, modern architectures use sampling strategies

to explicitly construct informative mini-batches with “hard” training examples resulting

in high gradients. Finally, some works exploit the benefits of ensembles and split the

embedding up into an embedding ensemble.

We summarize recent contributions in the field in Figure 2.7. In the following, we

give a brief overview of loss functions (Section 2.7.1), sampling strategies (Section 2.7.2),
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regularization approaches (Section 2.7.3) and embedding ensembles (Section 2.7.4).

2.7.1 Loss Functions

One of the main focus of recent research is loss functions for deep metric learning. The

main objective of loss functions is to guide the network to make distances between feature

vectors of similar images close to each other and dissimilar images far apart from each

other. Most of these functions can be categorized into loss functions operating on n-tuples,

prototype-based loss functions, and ranking based loss functions.

N-Tuples N-tuple-based loss functions use pairs, triplets, or quadruplets of similar or

dissimilar images to learn the embedding. One of the most prominent works in this area

is the contrastive loss, e.g . [32, 71], and triplet loss, e.g . [191, 245], which use pairs or

triplets of similar and dissimilar images to optimize the loss. Further work generalizes this

to quadruplets, e.g . [116, 279], n-tuples [206] or uses a structural loss function [163].

The margin loss [246] extends the contrastive loss by learning a class and image specific

boundary threshold between positive and negative pairs. It combines the benefits of triplet

loss, i.e. a per image distance threshold, with the simplicity of contrastive loss, i.e. it only

requires pairs to evaluate the loss.

The hierarchical triplet loss [58] incorporates hierarchies into the triplet loss. It per-

forms a hierarchical clustering over classes and encodes this clustering into an adaptive

margin in a triplet loss function. Therefore, the loss forces semantically dissimilar classes

to lie further away in the embedding space compared to semantically similar classes. Sim-

ilarly, the log-ratio loss [102] incorporates label distance into the loss function.

As standard triplet loss and contrastive loss are not differentiable everywhere, as they

use a max(0, ·) function. Several loss functions propose smooth approximations, e.g . [163,

206, 237, 243, 259, 260], with the log-sum-exp approximation. With these approximations,

the loss functions are differentiable everywhere and consequently easier to optimize.

Further, several works L2 normalize feature vectors, e.g . [237, 243, 260]. Comput-

ing distances or similarities with L2 normalized vectors corresponds to computing angles

between vectors. Subsequently, this empirically performs favorably compared to non-

normalized vectors. Successive works try to introduce additional angular margins [260]

into these loss formulations.

Loss functions on pairs, triplets, etc. are typically closely tied to sampling strategies,

e.g . [77, 175, 191]. For example, the performance of networks trained with triplet loss is

largely impacted by which samples are chosen to evaluate the loss function. Consequently,

the samples determine the landscape of the loss function of the neural network. The multi-

similarity loss [243] casts the sample mining and weighting strategy in combination with

the loss function into a theoretical framework. It combines an elaborate mining method

with a simple binomial deviance loss [259] and achieves state-of-the-art accuracy.
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Figure 2.7: Overview of recent works in deep metric learning.
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Prototypes Prototype-based loss functions use prototype vectors to learn an embedding

space. One of the simplest prototype-based loss functions is the softmax-cross-entropy

loss function. This loss function is the standard loss function for object categorization

problems. The last layer consists of a weight matrix W , which maps the last hidden layer

x, i.e. the embedding space, to the output classification scores, i.e. Wx. We can also

be interpret this as computing the similarity between feature vectors of the hidden layers

to learned per class prototype vectors with the dot product. These prototype vectors are

the row-vectors of the weight matrix W . During inference time, prototype-based methods

discard the classification layer and prototypes. They then use the embedding vectors x of

the last hidden layer for retrieval.

One of the main benefits of prototype-based approaches is the fast convergence time,

e.g . [153]. One of the main drawbacks of prototype-based approaches is that these ap-

proaches have a memory overhead proportional to the number of classes during training

time. Further, they need datasets with class labels for training. However, in metric learn-

ing problems, the number of classes is typically large. Further, some problems do not have

a pre-defined number of classes during training time. For example, several self-supervised

learning approaches dynamically augment object instances in images [94]. These ap-

proaches use metric learning methods to learn an embedding space in which augmented

object instances are closer to each other than images from different objects.

Modern approaches in this line of work use L2 normalization of the weights and pro-

totype vectors, e.g . [39, 264]. Similarly to the n-tuplet based loss functions, under this

normalization, similarities between vectors correspond to angles between feature vectors

and prototype vectors. Successive work introduces an additional margin in the loss func-

tion, e.g . [39].

Another line of work learns multiple prototype vectors per class, e.g . [101, 153, 173,

179, 217, 285]. Early works in this area repeatedly cluster the dataset after several training

epochs to create these prototype vectors [179].

More modern approaches try to learn prototype vectors during training with backprop-

agation. Several of these works use the Neighborhood Component Analysis (NCA) loss to

learn prototype-based embeddings, e.g . [153, 217]. Compared to the softmax loss function,

the ProxyNCA loss allows a flexible allocation of prototype vectors to classes. It can share

prototypes among classes or allocate multiple prototypes to a single class. Consequently,

it allows balancing the memory footprint and the accuracy of the loss. Successive works

propose graphs to further improve the loss functions, which use multiple prototype vectors

per class [285].

Several multi-prototype-based works combine prototypes with pairwise loss functions

(e.g . [33, 101, 173]) such as the triplet loss [173] or the binomial deviance loss [101].

Consequently, they try to exploit the benefits of prototype-based loss functions, i.e. fast

convergence time, with the benefits of n-tuple based losses, i.e. take fine-grained sample-

to-sample distances into account.

Finally, some approaches try to combine prototypes with graphs over samples or other
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prototypes, e.g . [44, 285]. These works use the benefits of label propagation to improve

prototype-based methods for metric learning.

Ranking N-tuple-based loss functions and prototype-based loss functions typically focus

largely on retrieving the nearest neighbor of a query image correctly. A recent line of work

addresses this problem by also trying to retrieve successive neighbors correctly, i.e. [16,

22, 144, 180, 242] They directly optimize the ranking of the retrieved samples, i.e. the

mean Average Precision (mAP), of a metric learning system. One of the main challenges

in this line of work is that mAP is a non-differentiable function. Consequently, it is hard

to integrate these loss functions directly into the end-to-end training of CNNs.

State-of-the-art works use different strategies to approximate mAP so that the loss

function is differentiable. Several works employ sampling and weighting strategies in

combination with simple pairwise losses to optimize mAP , e.g . [144, 242]. Another strategy

is to quantize the distances between all pairs in a mini-batch, similar to [223], and optimize

mAP , e.g . [22]. Further, rather than sampling and quantizing, it is possible to approximate

mAP with a smooth function, by replacing indicator functions with sigmoid functions,

i.e. [16]. Finally, another method to minimize mAP is to use blackbox differentiation [180].

Other Apart from n-tuple, prototype, and ranking-based loss functions, there are also

loss functions which do not fall into these prototypical categories. The histogram loss [223]

operates on the histogram of distances between similar and dissimilar samples. Further,

it is possible to pose metric learning based on the F-statistics of distributions [178] and

as facility location problem [162]. Finally, there are approaches which use meta learning

to improve loss functions for metric learning [27].

2.7.2 Sampling Strategies

Another design choice in deep metric learning is the sampling, mining, or weighting strat-

egy. These methods are relevant, as we optimize deep neural networks with mini-batch

gradient descent on large datasets. Consequently, the gradient estimates are noisy. Sam-

pling methods help to overcome this problem. In contrast, traditional methods typically

use standard gradient descent or non-gradient based optimization methods during training.

Therefore, these approaches do not suffer from noisy gradients.

More specifically, when we näıvely sample mini-batches uniformly randomly, chances

are high that the samples are non-informative. Subsequently, if the number of classes

is high in the training set, the probability is high that all of them belong to different

classes. However, especially loss functions operating on n-tuples rely on positive pairs of

samples (i.e. two samples corresponding to the same class) in a mini-batch for training.

Further, most pairs of samples are easy to distinguish as either positive pairs or negative

pairs. Consequently, when we sample uniformly randomly, the probability is low that the

network sees hard to classify image pairs.
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Sampling and mining strategies in deep metric learning try to overcome this problem.

These methods sample more informative samples by considering class information and dis-

tance information between samples. N-tuple based losses typically first uniformly sample

a set of classes and then several samples for each sampled class. Subsequently, this ensures

that evaluating these loss functions is possible. Additionally, several strategies incorporate

distances between samples in their mining strategy, e.g . [73, 77, 191, 209, 246].

Most of these sampling methods focus on the triplet loss, e.g . [73, 77, 191, 209]. They

try to find semi-hard [191] or the hardest [77] triplets in a mini-batch. Further, some

extensions try to find hard triplets offline over the full training set with approximate

nearest neighbor search methods [73]. Another line of work first mines a set of similar

classes. From these classes, they sample a several hard triplets [209]. As similar classes

are close in feature space to each other, they tend to have harder triplets compared to

randomly sampled classes.

Wu et al . [246] propose to sample pairs uniformly according to their relative distance

to each other. They design their method to work with a pairwise loss, i.e. the margin loss.

Further, subtype clustering [175] re-weights the triplets according to a fuzzy clustering

approach. Finally, Roth et al . [183] pose sampling as a reinforcement learning problem,

which allows drawing samples conditioned on the current training status.

Another line of work tries to synthetically generate “hard” samples directly in the

embedding space, e.g . [25, 29, 42, 69, 100, 106, 278, 280]. In contrast to traditional

Generative Adversarial Network (GAN) based approaches, this line of work generates

feature vectors rather than images. Several of these works, e.g . [25, 69, 106] use simple

algebraic operations, such as interpolation, to generate samples. More complex works

use adversarial loss functions with generators to generate “realistic” synthetic but “hard”

examples, e.g . [29, 42, 278, 280]. Further, Kim et al . [100] use Linear Discriminant Analysis

(LDA) to generate synthetic “hard” samples between decision boundaries.

2.7.3 Regularization

Several works in metric learning add an auxiliary loss function to regularize the learned

embedding, e.g . [91, 184, 261, 276]. Several of these loss functions make feature vectors

orthogonal [276] or use spectral regularizers to encourage a large number of directions of

variance in the embeddings. Consequently, these methods reduce redundancies in embed-

dings. Further, Higher Order Regularizer for Deep Embeddings (HORDE) [91] encourages

higher-order statistics of similar images to be similar to each other, and dissimilar images

to be dissimilar to each other. Finally, the Signal to Noise Ratio (SNR) [261] loss is

motivated by the signal to noise ratio and penalizes feature vectors to be zero-mean.

2.7.4 Ensembles

Recently, another line of work became popular which use embedding ensembles to predict

multiple embeddings for an input image, e.g . [103, 150, 167, 168, 182, 189, 248, 248, 262].
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DREML [248] uses bagging to increase diversity in a large embedding ensemble. Rather

than bagging training samples, the method uses bagging to sample the training labels into

small subsets. Each learner then learns to categorize a different random grouping of

the label-space. In this ensemble the learners do not share parameters with each other.

Consequently, this method has large computational demands.

Most other works in this line of work use parameter sharing to reduce computational

complexity and memory overhead. Hardness Aware Deeply Cascaded Embedding (HDC)

uses the benefits of deeply supervised networks [118, 212] and predicts embedding vectors

at multiple hidden layers at the CNN . HDC trains each layer to handle harder examples.

Successive works split the network in the end into several embedding heads. The main

challenge with these approaches is to make the embeddings diverse from each other, as

all learners share the same feature representation and are trained on the same dataset.

We use re-weighting [167] and auxiliary loss functions [168] to increase diversity in such

ensembles.

Successive works improve this method by also including feature level attention [103].

Similar to Random Forest, different learners are encouraged to focus on different features.

To this end, the authors introduce an attention mask per learner. To make the mask

diverse, they use an auxiliary loss function on the learners.

HORDE [91] can also be interpreted as an ensemble approach, which iteratively com-

poses several learners by randomly projecting and attending previous learners with a form

of attention mechanism. Consequently, HORDE builds an ensemble which introduces

diversity by random initialization and projection of its learners.

Further, several works [182, 188] repeatedly cluster the data and make individual

heads focus on certain clusters. Finally, Diverse Visual Feature Aggregation for Deep

Metric Learning (DiVA) [150] uses different training supervision signals such as supervised

learning and self-supervised learning to diversify the embedding.

2.8 Summary

In this section we gave a brief overview of ensemble methods in the context of computer

vision and more specifically in the context of neural networks and deep learning. We

categorized ensemble methods for CNNs according to three criteria. First, we categorize

ensembles for CNN into implicit (i.e. dropout based methods) and explicit (i.e. traditional

ensembles). Second, we consider the number of parameters learners share in an ensemble

with each other. Third, we classified the diversity method they use to make the learners

diverse from each other. Further, as we address the problem of face detection and metric

learning for image retrieval, we also gave an overview over these fields. Our works fall into

the category of explicit parameter shared ensembles. In the following chapters we outline

a ensemble which exploits spatial independence to increase diversity (Chapter 3) and a

method which uses auxiliary loss functions and sampling to increase diversity (Chapter 4).
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Spatial Independence for Ensemble Diversity

“The fact is, I don’t know where my ideas come from.

Nor does any writer. The only real answer is to drink

way too much coffee and buy yourself a desk that

doesn’t collapse when you beat your head against it.”

— Douglas Noel Adams
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3.1 Motivation

In this chapter, we show the benefits of spatial independence for parameter shared CNN

ensembles. Specifically, we show this on the problem of face detection.

Traditional approaches for face detection are based on boosting [10, 41, 148, 192, 227,

253, 269] and Deformable Parts Models (DPMs) [49, 148]. After the success of deep

learning for computer vision, e.g . [112], CNN based object detection methods became

more popular, e.g . [48, 80, 127, 137, 176, 195] (see Section 2.6).

One of the most challenging problems for standard CNNs in this field are partial

occlusions of faces. Occluding objects can have arbitrary shape and texture. Subsequently,

this introduces a significant variation in facial appearance. Standard CNNs can only

41
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overcome this problem by collecting large datasets which contain a wide variety of occluded

faces. Unfortunately, collecting such datasets is prohibitively expensive.

The main problem in this context is that standard CNNs are “lazy” in learning diverse

features. As soon as they learn a few good features, e.g . mouth, which are good enough to

distinguish faces from the background in the training set, they have no inclination to learn

more features for solving this task. Consequently, they do not need to develop features for

nose or eyes, even though they might be useful for detecting occluded faces. However, such

CNNs fail during test-time if these few prototypical regions, e.g . mouth, are occluded.

To address this problem, we propose a novel loss function called grid loss. This loss

function divides the last convolutional layer of a CNN into a grid of non-overlapping

blocks. We optimize a linear classifier for each of these groups separately. Each learner

shares parameters with a global linear classifier over the full ensemble.

A single learner in our ensemble has a small receptive field, which e.g . just contains an

eye, nose, mouth, etc. (see Figure 3.1). During training, each learner needs to learn how

to distinguish faces from the background from the information in its receptive field alone.

Consequently, by applying our grid loss, the CNN ensemble has to learn a more diverse

feature representation. Our grid loss forces CNNs to learn discriminative features in all

subregions (e.g . eye, mouth, nose, etc.). As we show in our experiments (Section 3.3),

even if some learners in the ensemble fail due to occlusions, the full ensemble can still

detect the face.

As all our learners share weights with a global linear layer, we can map our learners

back to a regular CNN after training. Therefore, our grid loss does not introduce any

additional runtime overhead during test time. Further, as computing the activations of

the convolutional layers dominates training time, our method only introduces a negligible

overhead during training time in terms of memory and computational demand.

In our experiments (Section 3.3) we make a detailed ablation study of our grid loss and

compare it to the state-of-the-art. Specifically, we show that grid loss compares favorably

against standard CNNs (Section 3.3.1). Further, on a dataset with vast object occlusions,

it outperforms CNNs trained with standard loss functions (Section 3.3.4). Finally, CNNs

trained with our grid loss develop a more diverse feature representation compared to

standard CNNs (Section 3.3.5). As we show in our evaluation, this also helps to make

our method more robust to over-fitting (Section 3.3.5). Further, as we use a very small

network architecture, our detector can run in real-time on standard Central Processing

Units (CPUs).

The remainder of this chapter is structured as follows. First, we present our method

(Section 3.2), where we first outline our neural network architecture (Section 3.2.1). Then,

we discuss our novel grid loss layer (Section 3.2.2). Next, we introduce a post-hoc bounding

box and ellipse regressor (Section 3.2.3), which refines the predictions of our face detector.

Finally, we show a detailed evaluation of grid loss (Section 3.3) and conclude our findings

(Section 3.4).
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(a) Global loss layer. (b) Our grid loss layer.

Figure 3.1: Schematic overview of (a) standard global loss and (b) the proposed grid loss with
an illustrative example on FDDB.

Figure 3.2: Overview of our method: our detection CNN builds upon Aggregate Channel Features
(ACF) [41]. For each window, after pooling, we apply successive convolution filters to the input
channels. To distinguish faces from non-faces we use pose-specific classifiers. Instead of minimizing
the loss over the last full convolution map, we divide the map into small blocks and minimize a
loss function on each of these blocks independently.

3.2 Grid Loss for CNNs

Holistic object detectors for faces or pedestrians typically have realtime requirements,

as they are commonly used in video surveillance applications. Therefore, we design a

small and fast network architecture, which meets these requirements (see Figure 3.2). We

apply only two convolution layers on top of handcrafted input features, as we explain

in Section 3.2.1. During test time, we apply our detector “fully convolutional” over an

image pyramid, similar to [194]. In Section 3.2.2, we detail how we train this CNN with

our grid loss layer to obtain highly accurate part-based pose-specific classifiers. Finally,

we apply a post-hoc regressor to refine the initial bounding box locations (Section 3.2.3).

This regressor allows our face detector to skip intermediate octave levels and therefore

improves runtime performance.

3.2.1 Neural Network Architecture

We illustrate the architecture of our CNN in Figure 3.2. Rather than using raw images

as input, our network builds upon ACF [41] as low-level inputs. Compared to convolu-
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tion layers, these features are faster to compute on the CPU while achieving competitive

accuracy when combined with tree ensembles [148].

We subsample this ACF pyramid by a factor of 4, which reduces the computational cost

of the successive layers. Then, we feed these low-level features into two 5× 5 convolution

layers, which extract mid-level features. After each convolution layer, we apply a Rectified

Linear Unit (ReLU) non-linearity. Further, we normalize the responses across layers with a

Local Contrast Normalization (LCN) layer in between the two convolution layers. Finally,

we apply a small amount of dropout [161] of 0.1 after the last convolution layer. On top

of these shared feature representation, we train several pose-specific classifiers (“detection

templates”) which distinguish faces with a specific pose (e.g . front-view, side-view, etc.)

from the background. To combine the predictions from these pose-specific classifiers, we

use their maximum score.

Unless otherwise stated, we train the network from scratch. We initialize the weights

randomly with a Gaussian of zero mean and 0.01 standard deviation. We train our net-

work on patches of faces and patches of background regions of an image. We use the

pose information of our training dataset [108] to match a face patch to its corresponding

detection template.

At test-time, we apply our network fully convolutional over the feature pyramid at

several scales. We then perform greedy Non Maxima Suppression (NMS) of pairs of

bounding boxes Ba and Bb using the area of intersection over min-area overlap score.

Formally, we define their overlap score as

oNMS(Ba, Bb) =
|Ba ∩Bb|

min(|Ba| , |Bb|)
, (3.1)

where |·| denotes the area of a bounding box and · ∩ · denotes the intersection of two

bounding boxes. After detection, we sort all bounding boxes by their confidence scores

and greedily suppress them if their overlap threshold exceeds 0.3, following [148]. As face

detectors tend to detect sub-regions of faces, normalizing the overlap by the minimum

area outperforms normalization by union area of the two boxes [148].

In our evaluation, we also show the benefits of grid loss with larger neural network

architectures. To this end, similar to [205], we replace each 5 × 5 convolution layer with

two 3× 3 convolution layers. Further, we increase the number of convolution channels to

64, 256, 512, 512, respectively. We denote this architecture as Big in our experiments in

Section 3.3.8.

3.2.2 Grid Loss Layer

When we train one of our pose-specific detection templates with a standard loss function

(e.g . cross-entropy loss, hinge loss, etc.), they tend to develop non-discriminative sub-

parts. These parts have negative median responses over the positive training set, as we

illustrate in Figure 3.3a (top). The main reason for this is that standard CNNs are “lazy”.
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(a) Regular loss

(b) Grid loss

Figure 3.3: Boxplot of 2 × 2 part activations on the positive training set (i.e. by dividing the
detection template into non-overlapping parts, as in Fig. 3.2). Activations trained by regular loss
functions can have parts with negative median response. We mark parts whose 25% percentile
is smaller than 0 (red) and parts which have significant positive median activations compared to
other parts (yellow).

As soon as one region develops a discriminative feature, which works on all the training

samples, the CNN has no inclination to develop more features. Consequently, during test-

time, the CNN heavily relies on these few sub-parts on the feature map to make positive

predictions. However, if these parts are occluded during test-time, the detector tends to

miss the face.

We address this problem by dividing the last convolutional layer into small n × n

blocks and optimize a loss on each of these blocks for each of our pose-specific detection

templates separately. Consequently, we force the CNN to learn discriminative parts for

all sub-regions separately. The median response for all these parts is non-negative over

the positive training set, as we illustrate in Figure 3.3a (bottom). When a face is partially

occluded, only the corresponding sub-set of the part-classifiers will fail. As all the non-

occluded part-classifiers are unaffected by such partial occlusions, the detector has a chance

to recover.
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Formally, let x = g(a) denote a c×h×w dimensional tensor, which represents the last

convolutional layer map, consisting of c channels, h rows, and w columns. g(·) represents

our CNN , which takes as input an ACF tensor a ∈ R10×20×20. To apply our grid loss,

for each pose-specific detection template, we divide x into several small c × n × n non-

overlapping regions ri, i = 1 . . . N , where N = dhne · d
w
n e. Then, we optimize a hinge loss

on each of these regions

`local(θ) =

N∑
i=1

max(0,m− y · (w>i ri + bi)), (3.2)

where m = 1
N denotes the margin, y ∈ {−1, 1} the class label and wi and bi are weights

and bias for the i-th region. θ = [w1,w2, . . . ,wN , b1, b2, . . . , bN ] are the parameters of the

layer.

Some of these regions might correspond to non-informative areas of the face (e.g . flat

regions such as the forehead). Such regions are typically not discriminative for detect-

ing faces. Therefore, we propose to weight each of these regions, allowing the CNN to

reduce the impact of non-informative regions in its final decision. To this end, we in-

troduce a global classifier which shares weights with these local classifiers. Similar to

our local classifiers, we train this global classifier with a hinge loss. Specifically, as our

local classifiers are non-overlapping and span over the last convolutional layer, we just

concatenate their weights wi, i = 1, . . . , N and sum their biases bi to obtain the global

weight w and bias b. Formally, w = [w1,w2, . . . ,wN ] and b =
∑N

i=1 bi. Consequently,

we compute the output of one pose-specific detection template from the ACF inputs as

f(a) = w>g(a) + b =
∑

i(w
>
i ri + bi).

During training, we minimize the following multitask loss

`(θ) = max(0, 1− y · (w>x+ b)) + λ ·
N∑
i=1

max(0,m− y · (w>i ri + bi)), (3.3)

where λ is a hyper-parameter balancing the influence of the global and local loss. We

empirically set λ = 1, which we validate in our experiments (Section 3.3.3). During

training, this setup only introduces a small number of additional parameters (i.e. N − 1

biases). Due to this setup, during test time, we only need to use the global classifier

to detect faces. Consequently, compared to standard CNNs, we do not introduce any

additional computational overhead with our grid loss.

During training, local and global classifiers which do not classifies a training sample

correctly backpropagate errors back to the hidden layer of the CNN . They encourage

the CNN to learn mid-level features with which the classifier can categorize the sample

correctly. On the other hand, if the global or a local classifier classify a sample correctly,

for this specific classifier no error is backpropagated to the hidden layer. Consequently,

poorly performing local classifiers are strengthened during training, as we force the CNN
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to develop features which help them to make local decisions. Subsequently, our region

classifiers have a more uniform activation pattern, which we illustrate in Figure 3.3. As

the detection ensemble does not focus on a small number of regions for classification, it is

more robust to occlusions.

In contrast, with only a global loss function, the global classifier would stop backprop-

agating errors as soon as it finds a single feature which helps to distinguish the training

sample from the background. Subsequently, our part-classifiers have a non-uniform acti-

vation patterns. Consequently, the classifier is less robust to occlusions. Our grid loss,

however, encourages the CNN to develop further features as long as there are local clas-

sifiers which misclassify a sample.

3.2.2.1 Regularization Effect

We can interpret our grid loss is as an efficient model averaging of several part-based de-

tectors. All detectors share a common feature representation. Consequently, our method

exploits the benefits of ensembles to reduce over-fitting. We experimentally show in Sec-

tion 3.3.6 that with decreasing training set size the performance of our method increases

compared to standard loss functions.

Another interpretation of grid loss is that it creates better feature representations for

CNNs. Ideally, features are discriminative and have a low correlation from each other.

Consequently, they complement each other well when we use them in a classifier. We

experimentally verify in Section 3.3.5 that our grid loss significantly reduces correlation

in CNN features. This is due to the fact, that we force the CNN during training time

to develop features for every facial region independently to distinguish faces from the

background. In contrast, standard CNNs might solve this problem by developing only a

few features. As CNNs are “lazy”, once they find features with which they can classify the

training set correctly, there is no inclination for them to learn new features. Consequently,

they develop a highly redundant feature representation in which activations have a high

correlation.

3.2.2.2 Deeply Supervised Nets

Deeply supervised networks [126, 212] apply the cross-entropy or hinge loss as an auxiliary

loss during training on hidden layers of a network. Consequently, they encourage hidden

layers of a CNN to be discriminative on their own. As hidden layers are already discrimi-

native, successive layers in the network have a higher chance of distinguishing foreground

vs background images. Inspired by this success, we apply our grid loss on top of hidden

layers as auxiliary loss. As we show in our experiments in Section 3.3.1, this further im-

proves the performance of our method without sacrificing speed during test time, as we

use these auxiliary loss functions only during training time.
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3.2.3 Face Localization Refinement

Standard fully convolutional detectors, which only rely on classification to predict the

location of faces, tend to make a large number of localization errors. They predict high

confidence boxes, which are not well aligned with the face in the image. Unfortunately,

this results in high confidence false positive predictions. We address this problem by

applying a post-hoc regressor, which refines the initial localization of the face. This allows

our method to recover from such errors.

Further, detectors tend to detect parts of faces on higher or lower scales in the image

pyramid. By applying our regressor, we can recover the correct face pose from also from

such mislocalized detections. Consequently, when we apply our post-hoc regressor, we

need to process a fewer number of intermediate scales in the image pyramid with our fully

convolutional detector. This further increases the computational efficiency of our detector.

We illustrate our regressor in Figure 3.4. Similar to our detector, our regressor uses an

ACF representation as input. We apply several 5× 5 convolution operations with stride 1

followed by max-pooling operations of size 3× 3 and stride 2. After 3 of such convolution

and pooling layers, we apply a 2048 dimensional fully connected layer and an output

layer. Similar to our classification network, we use ReLUs as activation functions. On

face datasets, where we only have bounding box annotations, our regressor just predicts

bounding boxes (i.e. the x and y offsets and width and height of the bounding boxes).

Some datasets also provide ellipse annotations. For such datasets, we train our regressor

to predict ellipses. To this end, we parametrize our regressor to predict the length of the

major and minor axis, the offset of the centroid, and the orientation of the ellipse.

The input size of our regressor is bigger compared to our detection network (i.e. 40×40

vs 20×20), as this helps our refinement network to better localize the face boundaries. We

do not need to recompute the ACF pyramid to obtain these high-resolution inputs. We

just project the initial bounding box location from our fully convolutional classification

network into one octave lower in the ACF pyramid. We then crop the corresponding patch

and feed it into our regression network to obtain the refined face location.

Figure 3.4: Illustration of our post-hoc regression network.

During training, we initialize the weights of our regressor from a Gaussian distribution

with zero mean and 0.01 standard deviation. We apply dropout with a dropout rate of

0.5 on our 2048 dimensional fully connected layer. We train our network with Stochastic

Gradient Descent (SGD) and momentum with an initial learning rate of 0.01 and a mo-

mentum of 0.9. Following standard training protocols, we anneal the learning rate after
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50 and 100 epochs by one order of magnitude and stop training after 150 epochs.

For evaluation object detectors we use the PASCAL VOC overlap criterion to deter-

mine if a predicted bounding box or ellipse matches with the ground truth bounding box

or ellipse. Specifically, in the evaluation, we define the overlap oVOC for two faces Fa and

Fb as

oVOC(Fa, Fb) =
|Fa ∩ Fb|
|Fa ∪ Fb|

, (3.4)

where · ∩ · denotes the intersection of two bounding boxes or ellipses, and · ∪ · denotes

the union of two bounding boxes or ellipses. |·| denotes the area of the bounding box or

ellipse.

When we predict ellipses as opposed to bounding boxes, the sensitivity of the overlap

with the ground truth varies for different ellipse parameters. For example, changing the

orientation of our prediction by one radiant impacts the overlap more than changing the

minor axis length by one pixel. Optimizing the standard Sum of Squares Error (SSE) loss

between predicted and ground-truth parameters (minor axis length, major axis length,

orientation, centroid position), does not take this sensitivity into account. Similar to

[177], we try to address this problem by optimizing the Intersection over Union (IoU) of

prediction and ground truth directly.

An analytical estimation of the area of intersection between two ellipses requires com-

plex algorithms, e.g . [88]. Therefore, we approximate the IoU numerically by central

differences:

gi(r) ≈ oVOC(r + ε · ai,y)− oVOC(r − ε · ai,y)

2 · ε
, (3.5)

where gi, i = 1, . . . , 5 is the gradient of the 5 ellipse parameters. r and y is the prediction

and ground truth of the ellipse, respectively. ai denotes a one-hot vector where only the i-

th entry is 1 and the remaining entries are 0. ε denotes the step size we use to approximate

the gradient. To compute the area of intersection, we rasterize the predicted ellipse and

the ground truth ellipse in a 40 × 40 pixel window. We choose ε big enough so that this

rasterization changes at least by one pixel.

3.3 Evaluation

In this section, we do a detailed ablation study of our grid loss ensemble and compare it to

the state-of-the-art. Specifically, we first compare our grid loss ensemble with holistic loss

functions (i.e. a standard learner trained with hinge loss or logistic loss, see Section 3.3.1).

We then evaluate the choice of the spatial size of our learners in the ensemble (Section 3.3.2)

and the choice of our weighting parameter λ (Section 3.3.3). Next, we show the benefits of

our grid loss ensemble on a dataset with occluded faces (Section 3.3.4). Further, we analyze

how our grid loss ensemble reduces overfitting by increasing the diversity of the CNN

feature representations (Section 3.3.5) and achieving higher accuracy on smaller training

set sizes compared to a holistic learner trained with standard loss functions (Section 3.3.6).
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Then, we evaluate the impact of our regressor (Section 3.3.7).

Finally, we compare our method to the state-of-the-art (Section 3.3.8). We also show

a qualitative comparison of our detection ensemble trained with grid loss and our baseline

model (Section 3.3.9).

In our experiments, we collect images from the Annotated Facial Landmarks in the

Wild (AFLW) [108] dataset for training our detector. Specifically, we crop 15, 106 faces

from the dataset, and resize them to 80 × 80 pixel windows in which 60 × 60 faces are

visible. We follow the preprocessing and data augmentation steps of Mathias et al . [148].

We cluster faces into 5 discrete poses by yaw angle, which have pitch and roll between

-22 and +22 degrees. As rotated faces are underrepresented in the dataset, we create

rotated versions of each pose by rotating the images by 35 degrees. Further, we mirror

faces and add the mirrored versions to the appropriate pose cluster to increase the number

of positive faces in our dataset.

For feature extraction, we feed ACF to our CNN . We set the pre-smoothing radius to

1, the subsampling factor to 4, and the post-smoothing parameter to 0. As we subsample

our features by a factor of 4 the input faces of our CNN have a size of 20×20. Further, as

ACF features have 1 luminance channel, 2 color channels, 6 gradient orientation channels,

and one gradient magnitude channel, our input tensor is of size 10 × 20 × 20. Unless

otherwise stated, our pyramid consists of 8 intermediate-scales per octave.

As we train our detector on positive and negative image patches, we perform hard

negative mining to find negative face windows. Following [148], we first randomly sam-

ple 10, 000 easy negative samples form the non-person images of the PASCAL VOC

dataset [47]. From this preliminary dataset, we train an initial detector. We use this

detector to collect 10, 000 further hard negative windows on the non-person PASCAL

VOC dataset and add them to our training set. We then finetune our detector on this

enlarged dataset. After repeating this process 3 times, our detector cannot find any hard

negatives on our negative images anymore and training converges.

To train our regressor, we use the face image patches of our training set. We apply

data augmentation, i.e. mirroring the face and random translation, scaling on the input

to make our regressor robust to the small localization errors of our detector. Further, we

train our regressor on twice the resolution of our detector. During test-time, as we do

not apply any post-smoothing to our feature pyramid, we just crop detected face windows

from one octave lower than they are initially detected.

For evaluation, we benchmark our method on three public datasets, i.e. Face Detection

Data Set and Benchmark (FDDB) [93], Annotated Faces in the Wild (AFW) [283] and

PASCAL Faces [251]. We summarize the dataset statistics in Table 3.1.

3.3.1 Grid Loss Benefits

In this section, we show the benefits of our parameter shared ensemble trained with our

grid loss compared to a standard CNN with the same architecture. We evaluate our
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Dataset Number of Images Number of Faces Annotation Type

FDDB [93] 2, 845 5, 171 Ellipse + Bounding Box
PASCAL Faces [251] 1, 635 851 Bounding Box
AFW [283] 205 545 Bounding Box

Table 3.1: Statistics of our benchmark datasets for face detection.

CNN on the FDDB [93] dataset. For a fair comparison, we omit here our regression

refinement network and only evaluate the detection CNNs in isolation. In our experiments,

we evaluate two baseline loss functions, i.e. the logistic loss (cross-entropy) and the hinge

loss. We then extend these loss functions by dividing our network at the last hidden

layer into a detection ensemble. Further, we also explore the benefits of applying our loss

function “deeply supervised”, on the hidden layers as an auxiliary loss function to a CNN .

We report the true positive rate of all our detectors at a false positive count of

{50, 100, 284(≈ 0.1 FPPI ), 500} face windows. As we see in Table 3.2 and Figure 3.5,

detection CNNs significantly benefit from our grid loss. Our ensemble improves the true

positive rate over the standard hinge or logistic loss by 3.2% at 0.1 FPPI (=̂ 284 false

positives). Finally, when we apply our grid loss additionally as an auxiliary loss on hidden

layers (deeply supervised), we further can increase the true positive rate over the baseline

by 1%.
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Figure 3.5: ROC curve of logistic, hinge, grid + logistic, grid + hinge, grid hidden + hinge and
grid hidden + logistic loss on FDDB .
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Method 50 FP 100 FP 284 FP 500 FP

L 0.776 0.795 0.817 0.824
H 0.758 0.786 0.819 0.831

G+L 0.803 0.827 0.851 0.859
G+H 0.807 0.834 0.851 0.858

G-h+L 0.809 0.836 0.862 0.869
G-h+H 0.815 0.838 0.863 0.871

Table 3.2: True positive rates of logistic (L), hinge (H), grid + logistic (G+L), grid + hinge
(G+H), grid hidden + hinge (G-h+H) and grid hidden + logistic (G-h+L) loss functions on
FDDB at a false positive (FP) count of 50, 100, 284 and 500. Best and second best results are
highlighted.

3.3.2 Spatial Learner Size

In this section, we evaluate the spatial size of the learners in our parameter shared en-

semble. To this end, we vary the spatial input of the input regions ri of our learners. We

apply our method also deeply supervised on hidden layers of our CNN and consider spa-

tial sizes of n = 2{1,2,3,4}. We summarize our results in Table 3.3 and Figure 3.6. Similar

to our previous experiment, we report the true positive rates at {50, 100, 284, 500} false

positive detections. In our evaluation, we see that by constraining our learners to smaller

spatial feature sizes, our detector achieves higher accuracy. In contrast, when we enlarge

the region size to 16, our ensemble consists only of a small number of learners, which have

access to the full receptive input field of the face. This model is similar to CNN trained

with auxiliary loss functions on hidden layers, similar to [126, 212]. Consequently, this

model cannot benefit from spatial independence and achieves lower detection accuracy.

Method 50 FP 100 FP 284 FP 500 FP

Block-2 0.815 0.838 0.863 0.871
Block-4 0.812 0.834 0.852 0.861
Block-8 0.790 0.809 0.830 0.838
Block-16 0.803 0.816 0.834 0.843

Table 3.3: Comparison of different block sizes on FDDB .

3.3.3 Weighting Parameter

In this section, we evaluate our weighting parameter λ, which balances the impact of

our regional classifier to our global classifier (see Equation (3.3)). In our experiments,

we jointly vary λ = {5, 1, 0.1, 0.05, 0.01, 0.005, 0.001} and the spatial size of our learners

n = 2{1,2,3,4} In Figure 3.7 we report the true positive rate of our detector at a positive

count of 284 (≈ 0.1 FPPI ) on the FDDB [93] dataset.

We see that our method works best with small block sizes of 2− 4 and λ ≈ 1. When λ

decreases to 0, the benefits of our parameter shared ensemble diminish, and our detector
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Figure 3.6: Comparison of different block sizes on FDDB .

degrades toward a standard CNN detector. Further, when we set λ too high, training

becomes unstable, and performance degrades as well.

3.3.4 Robustness to Occlusions

In this section, we evaluate the robustness of our spatial independent ensemble to occlu-

sions. Therefore, we need a dataset with occlusion annotations. As FDDB does not pro-

vide such annotations, we use the Caltech Occluded Faces in the Wild (COFW) dataset [20]

to assess the performance of our detector on occluded faces. COFW provides occlusion

annotations for facial landmarks. It is a benchmark dataset for landmark detection under

occlusions. It consists of 1, 852 faces with landmarks and occlusion annotations. We split

this dataset into 329 heavily occluded faces where at least 30% of all landmarks are oc-

cluded (COFW -HO) and 1, 523 faces where less than 30% of all landmarks are occluded

(COFW -LO).

The COFW dataset is not designed for benchmarking face detection approaches, as

there is no large background variation and the scale of the faces in the dataset is similar.

Therefore, to evaluate our detectors, we use a high confidence threshold, which corresponds

to a low false-positive rate on the FDDB [93] dataset. In contrast to COFW , FDDB is a

benchmark designed for face detection approaches. Consequently, it has a large variation

in scale and background. To compare our grid loss with standard CNN , we report the

true positive rate on COFW at 0.1 FPPI on FDDB .

We report our results in Table 3.4. We see that both detectors achieve similar per-
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Figure 3.7: Evaluation of our weighting parameter λ.

formance on faces which are less than 30% occluded. However, on faces which have large

occlusions (i.e. more than 30%), grid loss detectors outperform standard detectors by a

large margin (i.e. by 7%). Therefore, this validates that our spatial independent ensemble

is especially beneficial for detecting occluded faces compared to standard CNNs.

Even though our regional detectors may fail to detect parts of faces due to occlusions,

the remaining detectors remain unaffected by occlusions. In contrast, standard CNNs

tend to rely on certain prototypical regions to distinguish faces from the background. If

these regions are missing due to occlusions, the CNN fails to detect the face.

Method COFW -HO COFW -LO

G 0.979 0.998
H 0.909 0.982

Table 3.4: True Positive Rate on COFW Heavily Occluded (COFW -HO) and Less Occluded
(LO) subsets of a grid loss detector (G) and a hinge loss detector (H).
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3.3.5 Effect on Correlation of Features

In this section, we analyze the benefits of grid loss for the diversity of our CNN features.

Ideally, feature representations are highly discriminative and lowly correlated to each other

(i.e. diverse), so that they complement each other well. By creating a spatial independent

ensemble, we force each region classifier to develop discriminative features on their own.

As regional classifiers have different receptive fields, the learned features are different from

each other.

For example, one of our regional classifier might only have access to the eye region of

the face. Therefore, our CNN has to learn an eye feature. A different regional classifier

might have only access to the mouth region of the face. Therefore, our CNN has to also

learn a mouth feature in addition to an eye feature.

In contrast, standard CNNs are lazy. As soon as they find a suitable feature, which is

good enough to distinguish a face from the background (e.g . eye) on the training set, it

has no inclination to develop further features.

More diverse features result in less correlated feature activations. For a given sample,

different feature channels should be active for different mid-level features. In contrast, non-

diverse features are highly correlated, as for a given input sample with a discriminative

mid-level feature (e.g . eye), multiple activations are always active at the same time.

To measure this effect of grid loss on the feature representation we measure the corre-

lation of our activations. As the last hidden layer of our CNN has a spatial size of 12× 12

with 128 channels, we compute for each coordinate a normalized 128 × 128 correlation

matrix. We then sum the absolute values of the off-diagonal elements of these matrices. If

two features are independent of each other, their correlation is 0. If they are positively or

negatively correlated, their corresponding off-diagonal elements are positive or negative,

respectively. Therefore, a diverse (lowly correlated) feature representation has ideally a

score of 0.

We report our results in Table 3.5. Our grid loss ensemble achieves two orders of

magnitudes lower correlation score. Therefore, it significantly increases the diversity of

feature representations compared to standard CNNs.

Method Correlation ↓
Grid loss 225.96
Hinge loss 22500.25

Table 3.5: Grid loss reduces correlation in feature maps.

3.3.6 Training Set Size

In this section, we emphasize how our ensemble performs as a regularizer for face detectors.

To this end, we subsample the positive training set by a factor of 0.75− 0.01 and evaluate

the performance on the FDDB [93] dataset. We compare a detector trained with our grid
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loss (Grid) to a standard CNN detector (Hinge). As deeply supervised networks [126, 212]

also have a regularization effect, we also compare our loss to deeply supervised CNNs.

Specifically, we train a apply a standard loss function as an auxiliary loss on the hidden

layers of a standard CNN (Hinge-hidden). Further, we combine our grid loss with the

idea of deeply supervised networks and apply grid loss on top of the hidden layers as well

as on the output layer of a CNN (Grid-hidden).

We report the true positive rate of our models at 0.1 FPPI (284 false positives) in

Table 3.6 and Figure 3.8. Interestingly, the performance gap between our spatially inde-

pendent ensembles models trained with grid loss increases compared to standard CNN

models trained with hinge loss as the training set gets smaller. Specifically, the gap in-

creases from 3.2% to 10.2%, suggesting that our grid loss especially benefits CNNs when

the training set size is small. Further, we see that CNNs also benefit from grid loss applied

as an auxiliary loss function on hidden layers.
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Figure 3.8: Impact of different training sub-sets of the positive training set on FPPI at 0.1 FPPI
using the hinge loss (Hinge), hinge loss on hidden layers (Hinge-hidden) and our grid loss (Grid)
and grid loss on hidden layers (Grid-hidden)

3.3.7 Ellipse Regressor and Layer Skipping

Fully convolutional detectors tend to make localization errors. They predict high con-

fidence bounding boxes, which miss the ground truth face by a small margin. In this

section, we show that post-hoc refinement regressors can overcome this problem. Further,

we show that applying such regressors also allows us to reduce the image pyramid size by
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M 1.00 0.75 0.50 0.25 0.10 0.05 0.01

G-h 0.863 0.858 0.856 0.848 0.841 0.833 0.802
G 0.851 0.849 0.848 0.844 0.835 0.812 0.802
H-h 0.834 0.817 0.813 0.801 0.786 0.769 0.730
H 0.819 0.799 0.795 0.770 0.761 0.747 0.700

Table 3.6: Impact of training on a sub-set (i.e. 0.75 - 0.01) of the positive training set on FDDB
at 0.1 FPPI using the hinge loss (H), hinge loss on hidden layers (H-h) and our grid loss (G) and
grid loss on hidden layers (G-h).

omitting several intermediate scales. Detectors are also sensitive to faces which are smaller

or bigger than the input receptive field. Therefore, they make predictions on scales which

are above or below the ground truth face. Regressors can also overcome these localization

errors. Consequently, we can reduce the number of intermediate scales in the scale-space

pyramid, when we use a regressor.

In Table 3.8 and Figure 3.10, we report the true-positive rate of detectors when we

apply them densely across all scales (D) or skip intermediate scales (S ) on the FDDB [93]

dataset. Further, we also compare a regressor optimized with SSE loss and a numerical

IoU loss (NUM ). We see that especially at a low false-positive count our regressor improves

the true-positive rate. The main reason for this is that our regressors can realign high

confidence localization errors from our detector. Further, even when we omit every second

intermediate scale in the image pyramid, our post-hoc regressor improves over a densely

applied detector.

We also evaluate our regressor on the continuous evaluation protocol of FDDB . In this

evaluation protocol, matches of ground truth faces and predicted faces are weighted bey

their PASCAL IoU score. In Table 3.7 and Figure 3.9, we see that by optimizing the

IoU score numerically, we achieve a small improvement (i.e. 0.1% to 0.2%) compared to

optimizing the SSE loss.

Method 50 FP 100 FP 284 FP 500 FP 1000 FP

NUM (D) 0.680 0.690 0.702 0.708 0.714
SSE (D) 0.679 0.688 0.700 0.706 0.713

Table 3.7: Continuous evaluation of the two proposed ellipse loss functions: Numerical PASCAL
VOC overlap (NUM) and SSE on FDDB.

3.3.8 Comparison to the State-of-the-Art

We compare our detector to the state-of-the-art at time of publication on the FDDB

dataset [93], the AFW dataset [283] and PASCAL Faces dataset [251], see Figs. 3.11, 3.12

and 3.13. For evaluation on AFW and PASCAL Faces we use the evaluation toolbox

provided by [148]. For evaluation on FDDB we use the original evaluation tool provided

by [93]. We report the accuracy of our small fast model and our large model. On FDDB
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Figure 3.9: Evaluation of our ellipse regressors on FDDB (continuous score).

Method 50 FP 100 FP 284 FP 500 FP

NUM (D) 0.843 0.857 0.872 0.879
NUM (S) 0.835 0.851 0.867 0.874
SSE (D) 0.844 0.857 0.872 0.878
SSE (S) 0.835 0.848 0.866 0.873
w/o (D) 0.815 0.838 0.863 0.871

Table 3.8: Effect of numerical loss (NUM), SSE loss (SSE) and no ellipse regressor (w/o) applied
densely (D) on all pyramid levels or skipping (S) layers on FDDB.

our fast network combined with our regressor retrieves 86.7% of all faces at a false positive

count of 284, which corresponds to about 0.1 FPPI on this dataset. With our larger model

we can improve the true positive rate to 89.4% at 0.1 FPPI , outperforming the state-of-

the-art at the time of publication by 0.7%. On PASCAL Faces and AFW we outperform

the state-of-the-art by 1.38% and 1.45% Average Precision (AP) respectively.

3.3.9 Qualitative Comparison

In this section, we qualitatively compare our spatial independent ensemble with standard

CNNs. We first show several qualitative results which show that grid loss compares

favorably to standard CNNs. As we see in Figure 3.14, our grid loss CNN achieves higher

detection rates for occluded faces compared to standard CNNs.
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Figure 3.10: Evaluation of our ellipse regressors on FDDB (discrete score) with and without
layer skipping.

Further, we visualize the learned detection templates of a baseline CNN and with a

CNN trained with our grid loss. To this end, we use a visualization method [204] to

analyze what our networks have learned. Specifically, we seek pixels in the input, which

maximize the prediction of the respective pose-specific classifiers. Formally, as we train

our network on an ACF representation, we seek the input tensor a ∈ R10×20×20 which

maximizes

â = arg max
a

f(a)− λviz ||a||22 , (3.6)

where f(·) denotes the output of a pose-specific classifier and λviz is a regularization

parameter.

As the ACF representation has 10 channels, we visualize the channel-wise maximum,

i.e.

I(i, j) = max
c=1,...,10

â(c, i, j). (3.7)

I ∈ R20×20 denotes the visualization image for a single pose specific detection template. It

has high pixel values, if the corresponding pixel contributes to a positive detection result.

We illustrate our visualizations in Figure 3.15. Each detection template corresponds

to a different face pose. Our grid loss templates focus especially on cheeks and the nose

of the face, suggesting that these regions are most important for distinguishing faces from

the background. In contrast, the detection templates trained with a standard loss function

tend to be noisier compared to templates trained with grid loss.
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Figure 3.11: Discrete evaluation on the FDDB [93] dataset.

3.3.10 Computational Efficiency

As we use only very small neural networks, our detector can run in realtime on a stan-

dard CPU. Specifically, we implement our method with Theano [6] and Python. For our

experiments, we use a desktop machine with a 3.20 GHz Intel Core i5 CPU. Our small

dense model with skipping intermediate scales runs in 170 ms on 640 × 480 pixels. This

is competitive to fast tree-based boosting methods, e.g . [148, 252], while outperforming

them in terms of accuracy.

On a NVIDIA GTX 770 GPU, our method runs in 200 ms when we do not use a

post-hoc regressor and apply our network densely on all intermediate scales. When we

add a regressor and skip intermediate scales, it runs in about 50 ms per image using

non-optimized Python code.

Our method can also benefit from recent speedup techniques such as image patch-

work [43, 62], factorization methods, e.g . [92, 275], or detector cascades [127].

3.4 Summary

In this chapter, we presented a novel parameter shared spatial independent ensemble for

face detection. Compared to standard CNNs, our method performs favorably, especially

on occluded faces.

The main reason for this is that standard CNNs are lazy in developing diverse features.

As soon as they develop a few discriminative features, which can correctly classify the
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Figure 3.12: Evaluation on the PASCAL Faces [251] dataset.

training set, they have no inclination to develop further features. However, if these few

prototypical features are missing during test time due to e.g . occlusions, standard CNNs

fail.

In contrast, our spatial independent CNN ensemble forces a CNN to develop more

diverse features. It uses a simple loss function, called grid loss, which optimizes a discrim-

inative loss on spatial sub-regions of a CNN feature map. Each of these sub-regions has a

spatial different receptive field. Consequently, each of these regions needs to be discrimi-

native on its own. Therefore, grid loss forces our CNN ensemble to learn a set of diverse

features. If some of these features are missing during test time due to e.g . occlusions, our

ensemble can still recover.

At the time of publication, our method achieved state-of-the-art performance on public

face detection benchmarks, while using only very small network architectures.

One of the main limitations of our work is that we need to restrict the receptive field

of each of our learners in the ensemble. Consequently, the receptive field of neurons in the

last hidden layer of the CNN needs to be small. Further, specific object parts such as eye,

nose, etc. need to be in the receptive field of the same learner for all training samples. This

is typically only possible when the pose-information of objects is available and objects are

not deformable.

However, modern CNN architectures trained on ImageNet [186] typically have very

large receptive fields. Subsequently, this allows them to use rich context information of the

scene more effectively. Further, pose annotations for objects might be expensive to collect
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Figure 3.13: Our method outperforms state-of-the-art methods on AFW [283].

and some problems might require detecting highly deformable objects. To address this

issue, we propose a different strategy in Chapter 4. We use auxiliary loss functions and

re-weighting to encourage different learners in the ensemble to be diverse from each other.

As we show in our experiments, these methods can benefit a wide variety of different CNN

architectures.

Another way to overcome these limitations might be spatial attention, e.g . [225], com-

bined with auxiliary loss functions to encourage each learner to use different attention

masks for their predictions. However, to ensure that learners are spatially independent,

these attention masks need to be inserted after one of the first layers of the CNN . Other-

wise, the receptive fields of these attention masks would be too large. Consequently, there

is a large computational overhead per additional learner, as we need to split the shared

ensemble after these attention masks.
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(a) Grid loss. (b) Standard loss. (c) Grid loss. (d) Standard loss.

(e) Grid loss. (f) Standard loss. (g) Grid loss. (h) Standard loss.

(i) Grid loss. (j) Standard loss. (k) Grid loss. (l) Standard loss.

(m) Grid loss. (n) Standard loss.

Figure 3.14: Qualitative comparison between a parameter shared spatial independent CNN
ensemble trained with grid loss and a standard CNN .
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(a) Detection templates for 5 different face poses (top) using our grid loss (middle) vs standard loss
(bottom)

(b) Detection templates for ±35◦ rotated poses (top) using our grid loss (middle) vs standard loss
(bottom)

Figure 3.15: Comparison of our detection templates learned with our grid loss with our detection
templates learned with a standard loss function.
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Diversity Loss Functions for Ensembles

“Solutions nearly always come from the direction you

least expect, which means there’s no point trying to

look in that direction because it won’t be coming from

there.”

— Douglas Noel Adams
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4.1 Motivation

In this chapter, we introduce several diversity encouraging auxiliary loss functions for

Convolutional Neural Network (CNN) ensembles with shared feature representation. Fur-

ther, we extend our method to real-world metric learning applications (Section 4.3). We

originally presented these loss functions in our previous works [165, 167, 168].

Traditional CNN ensembles use variation in model architecture and random initial-

ization, e.g . [75, 203], to make learners diverse from each other. However, such ensembles

65



66 Chapter 4. Diversity Loss Functions for Ensembles

typically consists of several large CNNs, which makes training and inference time compu-

tationally expensive.

To overcome these issues TreeNets [119] and dropout [161] use parameter sharing to

reduce the computational expense of CNN ensembles. Similar to these works we propose

to train an ensemble by sharing most parameters of the learners with each other. More

specifically, we divide the network at a hidden layer at the end into multiple groups and

optimize a classification head for each of these groups separately. All heads share a com-

mon low-level feature representation. During training- and test-time, such an ensemble

is computationally very competitive to a single CNN , as the learners share the compu-

tationally most expensive intermediate responses during training- and test-time. In fact,

if we divide the network on the last hidden layer, we can map it back to a single neural

network during test-time, causing no computational overhead at all.

However, especially for pre-trained neural networks, such a setup typically yields highly

correlated learners, as, during training, all learners are optimized on the same permutation

of the training set and share all their features. In contrast to dropout, which overcomes

this issue by randomly omitting features during training time, we introduce diversity by

auxiliary loss functions. With this loss function, we can balance the discriminativeness of

the learners and their correlation to each other. To this end, we propose DivLoss [165]

(Section 4.4.1), which introduces diversity on the classifiers.

Further, we extend our method to metric learning for image retrieval on large pre-

trained neural networks (Section 4.3). The goal of image retrieval methods is to retrieve

semantically similar images from a database of images. To this end, they map an image

to a feature vector (also called “embedding”). In this feature space, these methods use a

query image to retrieve similar images from a database (e.g . images of the same product

category or the same car) by computing distances.

Existing metric learning approaches typically learn highly correlated embeddings. Con-

sequently, they do not utilize the capacity of the embedding layer effectively. Our method

addresses this problem by reducing the correlation of the final embedding layer. To this

end, we divide the embedding layer into several learners. We pose training this ensemble

as an online gradient boosting problem. Further, we also apply diversity encouraging aux-

iliary loss functions. As our DivLoss for classification is not able to make generic vectors

or hidden layer representations diverse from each other, we propose two novel loss func-

tions which address this problem. Our ActLoss [167, 168] (Section 4.4.2) imposes a group

sparsity constraint on the hidden layer activations of the ensemble. Our AdvLoss [168]

(Section 4.4.3) is an adversarial loss function which makes the distribution of hidden layer

representations of learners dissimilar. Consequently, these loss functions are more general

than our DivLoss and also applicable to classification problems.

As we show in our experiments for object categorization (Section 4.6), our auxiliary

loss functions perform favorably compared to dropout regularization for simple object

categorization tasks. The main reason for that is that the learners in our ensemble are

stronger (i.e. more accurate) and less correlated compared to the learners of dropout.
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Further, we show that our method also benefits recent ResNet architectures on the

CIFAR-10 [111], CIFAR-100 [111] and SVHN [159] datasets (Section 4.6.5). As we see in

our experiments, by incorporating our ensemble approaches, efficient ResNet ensembles

are computationally more efficient compared to widened ResNets (i.e. increasing the con-

volutional channels by a factor k = {2, 3, 4}). Consequently, with a given computational

budget, we typically can achieve higher accuracy with efficient ResNet ensembles.

In our metric learning experiments, we show that gradient boosting-based re-weighting

combined with our auxiliary loss functions reduce the correlation in the embedding layer

and consequently significantly improve the retrieval performance of metric learning net-

works (Section 4.7).

In the remainder of this chapter, we first present our ensemble approach for object

categorization (Section 4.2). Then, we present our metric learning extension (Section 4.3).

Next, we discuss our auxiliary loss function (Section 4.4). We show the effectiveness of

our approaches in a detailed evaluation for both classification problems Section 4.6) and

metric learning problems (Section 4.7). Finally, we conclude this chapter with a brief

summary (Section 4.8).

4.2 Efficient Ensembles for Object Categorization

In this section, we apply our efficient ensembles to the problem of object categorization.

To reduce the computational costs of the ensembles, we propose an architecture in which

we share most parameters among learners (see Figure 4.1). All our learners share most

hidden layers with each other, which reduces parameters and computational cost during

training- and test-time. For most of our experiments, we divide the last hidden layer

into several non-overlapping groups. With this setup, we can map our ensemble back

to a regular neural network at test-time. Therefore, our method does not impair any

computational costs during test-time. In general, however, groups might overlap with

each other, or might consist of several hidden layers. This allows more diverse learners at

a modest increase in computational cost compared to standard ensembles.

For each group, we add a separate classification head, which represents the learners in

our ensemble. During training time, we optimize a loss function for each of the learners.

In contrast to standard ensembles, where learners are traditionally trained independently

from each other, we train our model jointly end-to-end.

We formally discuss here the simplest and most efficient architectural choice, i.e. di-

viding the last hidden layer into several learners, to avoid cluttering the notation. Let

x = [x1,x2, . . . ,xM ] ∈ RH denote the last hidden layer of our neural network, which we

divide into M non-overlapping groups xm ∈ RC , 1 ≤ m ≤ M . The hidden layer consists

of H neurons, which we divide into M groups consisting of C neurons, therefore C = H
M .

Further, let W ∈ RH×D denote the output weight matrix, which predicts the logits for
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Figure 4.1: Our ensemble architecture divides the network at the end into several learners. For
each learner we add a classification head. We use an auxiliary loss function to make these learners
diverse from each other.

the D categories. Similar to x, we can partition W into several sub-matrices as follows:

W =


W 1

W 2

. . .

WM

 , (4.1)

where Wm ∈ RC×D is the weight matrix for the m-th learner. We then can compute the

logits cm (i.e. the inputs to the last softmax layer) for the m-th learner as

cm = xmWm + bm, (4.2)

where bm denotes the bias for the m-th learner.

Further, the ensemble logit is the average of the individual learners, i.e.

o =
1

M

M∑
m=1

cm. (4.3)

We compute the final classifier output with the softmax over the ensemble logits o.

This is proportional to the geometric mean of the individual classifier softmax predictions.

Let oj denote the output for the j-th class, then the following holds:

σ(oj) =
e

1
M

∑M
m=1 cmj

Z
=

(∏M
m=1 e

cmj
) 1
M

Z
(4.4)

=

(∏M
m=1 σ(cm)j · Zm

) 1
M

Z
=

(∏M
m=1 σ(cm)j

) 1
M

Ẑ
, (4.5)
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where Z denotes the ensemble softmax normalization factor, Zm the softmax normalization

factor for the m-th learner and

Ẑ =
Z(∏M

m=1 Zm

) 1
M

=

∑D
j=1

[(∏M
m=1 Zm

) 1
M
(∏M

m=1 σ(cm)j

) 1
M

]
(∏M

m=1 Zm

) 1
M

(4.6)

=
D∑
j=1

(
M∏
m=1

σ(cm)j

) 1
M

. (4.7)

The normalizations Zm can be pulled out of the sum and then cancels with the denomi-

nator of the equation. Therefore, we see that the ensemble output is proportional to the

geometric mean of the predictions of the individual learners.

To train our ensemble, we make the full ensemble discriminiative as well as the indi-

vidual learners discriminative. To this end, we optimize the following loss function:

Ldiscr = λens · H(y, σ(o))︸ ︷︷ ︸
ensemble loss

+λpart ·

 1

M

M∑
m=1

H(y, σ(cm))︸ ︷︷ ︸
m-th learners loss

 , (4.8)

where y denotes the one-hot encoded ground-truth label and cm, o are computed from

the hidden layer response x. Further, H(·, ·) denotes the cross entropy loss:

H(y,p) = −
D∑
j=1

yj · log(pj). (4.9)

The parameters λpart, λens are hyper-parameters which can be set via (cross-)validation.

They balance the discriminativeness of the individual learners and the discriminativeness

of the full ensemble prediction.

4.3 Efficient Ensembles for Metric Learning

In this section, we extend our ensemble approach to the problem of metric learning for

image retrieval. We originally presented this extension in [167, 168]. Metric learning

approaches learn a semantic similarity function between images, where “similar” images

should be close to each other in metric space and “dissimilar” images should be far apart

from each other. Typically, these methods use specific loss functions operating on im-

age pairs (e.g . [32, 71]), triplets (e.g . [191, 245]) or quadruples (e.g . [116, 279]) to learn

such embeddings. Another line of work poses metric learning as a classification problem

(e.g . [39, 264]). They learn a large classifier over thousands of categories with specialized

softmax loss functions. After training, they remove the classification layer and use the last

hidden layer as an embedding layer.
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To avoid cluttering the notation, we focus our discussions in this section on loss func-

tions operating on pairs. However, our method is also compatible with loss functions

operating on triplets, quadruplets, or n-tuples as well as classification loss functions.

We illustrate our learning approach, called Boosting Independent Embeddings Ro-

bustly (BIER), in Figure 4.2. Similar to our ensemble method for categorization, for

metric learning, we divide a network in the end into several learners. Specifically, we use

a pre-trained ImageNet model and add an embedding layer at the end. We split this

embedding layer into several smaller layers, where each one corresponds to a learner in a

parameter shared ensemble. To make this ensemble diverse, we employ two strategies.

First, we propose online gradient boosting, which introduces weights for each training

sample. During training, each learner reweights the training samples for successive learners

in the ensemble with the negative gradient of the loss function. Consequently, successive

learners focus on samples which are misclassified by the previous learners.

Second, we employ one of our auxiliary loss functions, which can operate on the hidden

layer, to make learners diverse from each other (see Section 4.4). Specifically, we either

use our Activation Loss (Section 4.4.2) or our Adversarial Loss (Section 4.4.3) on the

last embedding layer of the network to make our learners diverse from each other. Our

standard BIER [167] uses these auxiliary loss functions only during initialization for finding

the initial weights of the embedding layers of the individual learners. We later also include

these loss functions as auxiliary loss during training [168].

During test-time, the final embedding is the concatenation of the embeddings of the

individual learners. Consequently, our method only introduces marginal computational

overhead compared to standard metric learning CNNs (i.e. only concatenation).

In the following, we briefly review our baseline CNN based metric learning system

(Section 4.3.1) and discuss our boosting based extension (Section 4.3.2).

4.3.1 Metric Learning for Deep Learning

In this section, we give an overview of our baseline metric learning system. The main

objective of CNNs for metric learning is to map an image x with a CNNs f(·) to a feature

space Rd. In this space similar images should be close to each other and dissimilar images

should be far apart from each other. The last layer of such CNN is called embedding layer

and maps the last hidden layer of size h to the embedding space Rd.
To measure similarity s(·, ·) between two images x(1) and x(2), we use the cosine

distance between the two feature vectors, i.e.

s(f(x(1)), f(x(2))) =
f(x(1))>f(x(2))∣∣∣∣f(x(1))

∣∣∣∣ · ∣∣∣∣f(x(2))
∣∣∣∣ . (4.10)

Compared to Euclidean distance, the cosine similarity has the advantage that the similarity

score is bounded between [−1,+1].

During training, we follow recent work, e.g . [163, 191, 223], and sample a minibatch
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Figure 4.2: BIER divides a large embedding into an ensemble of several smaller embeddings.
During training we reweight the training set for successive learners in the ensemble with the
negative gradient of the loss function. During test-time we concatenate the individual embeddings
of all learners into a single embedding vector.

of N samples. We compute the similarity score s(·, ·) between all pairs of samples in the

batch. We then use this similarity matrix S ∈ RN×N to optimize a loss function between

pairs or triplets of samples. In contrast to previous works, e.g . [32, 71], which employ a

Siamese CNN architecture, this approach does not need to keep several copies of the CNN

in memory. Therefore, we can decrease memory consumption and increase computational

efficiency.

In our experiments (Section 4.7) we show that our method can benefit several popular

metric learning loss functions. Specifically, we consider the binomial deviance loss `BD(·, ·),
the contrastive loss `C(·, ·) and the triplet loss `T (·, ·). We illustrate these functions and

their gradients in Figure 4.3 and formally define them as follows:

`BD(s, y) =

{
log(1 + e−β1(s−β2)) if y = 1

log(1 + eβ1(s−β2)C) otherwise,
(4.11)

`C(s, y) =

{
(s− 1)2 if y = 1

max(0, s−m) otherwise,
(4.12)

`T (s+, s−) = max(0, s− − s+ +m), (4.13)

where s = s(f(x(1)), f(x(2))) denotes the similarity score between two samples, y is 1 if

the two samples are similar and 0 if they are dissimilar. β1, β2, and C are scaling, shifting,

and class-balancing hyper-parameters for the binomial deviance loss function. We follow

previous work [223] and set these parameters to 2, 0.5, and 25, respectively. m denotes
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Figure 4.3: Illustration of triplet loss, contrastive loss (for negative samples) and binomial de-
viance loss (for negative samples) and their gradients. Triplet and contrastive loss have a non-
continuous gradient, whereas binomial deviance has a continuous gradient.

the margin for the contrastive and triplet loss, which we set to 0.5 and 0.01, respectively.

Finally, s+ denotes the similarity score of a positive (similar) training pair, and s− denotes

the similarity score of a negative (dissimilar) training pair for the triplet loss.

As we show in our experiments in Section 4.7.2, our method benefits the binomial

deviance loss more than the triplet loss and the contrastive loss. We hypothesize that this

because the gradient of the binomial deviance loss function is smooth compared to the

triplet loss and the contrastive loss. Specifically, in Figure 4.3 we see that the binomial

deviance loss is a smooth version of the contrastive loss. The gradient of the triplet and

contrastive loss is non-continuous and either 0 or 1. In contrast, the gradient of the

binomial deviance loss is continuous.

As we employ online gradient boosting for training our CNN , we use the negative gra-

dients of the loss function as weights for our training samples. Consequently, the weights

of the binomial deviance loss function are also smooth, which conveys more information

to successive learners in the ensemble compared to non-smooth weights of the contrastive

or triplet loss.

4.3.2 On-line Gradient Boosting Efficient Ensembles

In this section, we introduce our boosting based framework for training metric learning

CNNs (see Figure 4.4). Rather than optimizing a global loss function for the full ensemble,

as we did in Section 4.2 for object categorization, we use online gradient boosting for

training our learners. In contrast to optimizing a global loss function, boosting makes it

easier for individual learners to be more diverse from each other.

To train our network with online gradient boosting, e.g . [11, 12, 28, 120], we split the

last embedding layer of a metric learning CNN into M weak learners (see Figure 4.4). Our
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Figure 4.4: We divide the embedding (shown as dashed layer) of a metric CNN into several
weak learners and cast training them as online gradient boosting problem. Each learner iteratively
reweights samples according to the gradient of the loss function. Training a metric CNN this way
encourages successive learners to focus on different samples than previous learners and consequently
reduces correlation between learners and their feature representation.

learners can have different embedding sizes. Inspired by traditional cascade based boosting

approaches [227], we typically split our ensemble into a small, medium-sized, and a large

learner. During training, we sample a mini-batch of training images and compute the

responses of all the embedding layers. Next, we compute the loss function for the first

learner in the ensemble. Then, we use the negative gradient of the loss function as weights

for each sample to compute the loss function of the successive learner. We iterate this

process until we evaluate all loss functions. Finally, we backpropagate the loss for each

learner to the backbone CNN .

As misclassified samples have a higher gradient than correctly classified loss functions,

successive learners in the ensemble focus on different samples compared to previous learn-

ers. Consequently, our learners get more diverse from each other. Further, all our learners

share a common feature representation. The backbone CNN dominates the computational

and memory demands. Consequently, the computational and memory overhead imposed

by our method is negligible.

More formally, we want to find M weak learners {f1(x), f2(x), . . . , fM (x)} and their
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corresponding weights α1, α2, . . . αM . We define output F (·, ·) of the boosting model as:

F
(
x(1),x(2)

)
=

M∑
m=1

αms(fm(x(1)), fm(x(2))). (4.14)

During training, we optimize a loss function `(·) for each of the M learners. To optimize

the m-th learner, we reweight the mini-batch with the negative gradient −`′(·) of the

m− 1-th learner.

To train our learners we adapt an online gradient boosting algorithm [11]. This al-

gorithm uses fixed weights for αm and supports weak learners which can be trained by

gradient-based optimization such as Stochastic Gradient Descent (SGD) with momentum.

As our learners correspond to the last embedding layer of a CNN , we can train the full

CNN end-to-end with this approach. We extend this algorithm to work on pairs or triplets

and illustrate this training procedure in Algorithm 3. In practice, our algorithm works on

mini-batches.

During the forward pass, we first sample a batch of images x and forward propagate it

through the backbone CNN . For each learner m and each pair of samples n we iteratively

compute the similarity score smn , which is a weighted combination of the current learner

prediction s(fm(x
(1)
n ), fm(x

(2)
n )) and the previous learners’ predictions sm−1n .

During the backward pass, we backpropagate the gradients of the re-weighted loss

wmn `(s
m
n ) to the embedding layer of the m-th learner. Then, we compute the weights wm+1

n

of the m + 1-th learner in the ensemble with the negative gradient of the loss function.

We iterate this until we evaluate and backpropagate all gradients of the loss functions for

all our M learners in the ensemble. Finally, we backpropagate the gradients from the M

embeddings to the backbone CNN . The computation of the convolutional responses of

the backbone CNN dominates the computational and memory demand of such a network.

Consequently, as we split the CNN only at the end into several learners, we do not impose

any significant overhead during training and test-time with our approach.

Our online boosting method learns a convex combination of M weak learners. As

successive learners in the ensemble tend to focus on harder examples due to the re-

weighting, we also assign them a larger embedding size (i.e. a larger model capacity).

Specifically, we set the embedding size of the m-th learner proportional to its similar-

ity weight αm = ηm ·
∏M
n=m+1(1− ηn) in the training algorithm, where ηm = 2

m+1 . We

experimentally verify this design choice in our evaluation in Section 4.7.1.

During test-time, we predict a single feature-vector for an input image x. To this end,

we L2 normalize the individual weak learner predictions fm(x), 1 ≤ m ≤ M , scale them

according to their weight
√
αm and concatenate all responses to a single vector. Formally,

we define the ensemble prediction F (x) as:

F (x) =

[
√
α1

f1(x)

||f1(x)||2

∥∥∥∥√α2
f2(x)

||f2(x||2

∥∥∥∥. . .∥∥∥∥√αm fm(x)

||fm(x)||2

]
, (4.15)
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Algorithm 3: Online gradient boosting algorithm for our CNN .

Let ηm = 2
m+1 , for m = 1, 2, . . . ,M ,

M = number of learners, I = number of iterations
for n = 1 to I do

/* Forward pass */

Sample pair (x
(1)
n , x

(2)
n ) and corresponding label yn

s0n := 0
for m = 1 to M do

smn := (1− ηm)sm−1n + ηms(fm(x
(1)
n ), fm(x

(2)
n ))

Predict sn = sMn

/* Backward pass */

w1
n := 1

for m = 1 to M do

Backprop wmn `(s(fm(x
(1)
n ), fm(x

(2)
n )), yn)

wm+1
n := −`′(smn , yn)

where ·‖· denotes vector concatenation.

When we compute the similarity between two ensemble vectors with the dot prod-

uct, we see that the ensemble prediction corresponds to the weighted sum of the cosine

similarities of the individual learners. Formally, F (x(1))>F (x(2)) =[
√
α1

f1(x
(1))∣∣∣∣f1(x(1))
∣∣∣∣
2

∥∥∥∥∥. . .
∥∥∥∥∥√αm fm(x(1))∣∣∣∣fm(x(1))

∣∣∣∣
2

]> [
√
α1

f1(x
(2))∣∣∣∣f1(x(2))
∣∣∣∣
2

∥∥∥∥∥. . .
∥∥∥∥∥√αm fm(x(2))∣∣∣∣fm(x(2))

∣∣∣∣
2

]

=
√
α1

f1(x
(1))>∣∣∣∣f1(x(1))
∣∣∣∣
2

√
α1

f1(x
(2))∣∣∣∣f1(x(2))
∣∣∣∣
2

+ . . .+
√
αm

fm(x(1))>∣∣∣∣fm(x(1))
∣∣∣∣
2

√
αm

fm(x(2))∣∣∣∣fm(x(2))
∣∣∣∣
2

=α1s(f1(x
(1)), f1(x

(2))) + . . .+ αms(fm(x(1)), fm(x(2))).

(4.16)

Consequently, our method can be plugged into any off-the-shelf retrieval system and is

compatible with fast approximate search methods such as [154].

In contrast to object classification (Section 4.2), our boosting based algorithm (Algo-

rithm 3) directly optimizes Ldiscr in Equation (4.8) without introducing additional hyper-

parameters for balancing the ensemble and learner losses. The gradient boosting algorithm

balances the diversity of the learners and the discriminativenes of the ensemble.

To make our ensembles more diverse, we also introduce several auxiliary loss functions

in Section 4.4, i.e. DivLoss, ActLoss, and AdvLoss. We found that our boosting-based

ensemble benefits from such auxiliary loss functions, which operate on the embedding layer

of a metric learning CNN . Standard BIER [167] uses such loss function only initialization,

to find the initial weight for the embedding layer. Our extension [168] also uses one of these

functions as auxiliary loss during training. As we show in our evaluation (Section 4.7), this
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allows us to train our models with higher learning rates and improves retrieval accuracy.

4.4 Auxiliary Loss Functions

When we näıvely apply the loss in Equation (4.8) for object categorization, we found

that the individual learners in the ensemble typically make highly correlated predictions.

Therefore, the ensemble has no benefits compared to standard CNNs. We also show this

more formally in Section 2.2. To address this issue, we propose several loss functions

to make our learners explicitly diverse from each other. The DivLoss (Section 4.4.1),

which we originally proposed in [165], increases diversity by making the classifier outputs

dissimilar to each other. In contrast, our ActLoss (Section 4.4.2), which we originally

proposed in [167, 168], operates on the hidden layer of a classifier or the embedding layer

of a metric learning CNN and mutually suppresses their responses. Finally, our AdvLoss

(Section 4.4.3), which we originally proposed in [168], uses an adversarial loss function to

make the hidden layer or embedding layer of our learners diverse from each other.

During training time, we jointly optimize an auxiliary diversity loss Ldiv with our

discriminative loss function Ldiscr, where div ∈ {DivLoss,ActLoss,AdvLoss}, as follows:

L = Ldiscr + λdiv · Ldiv, (4.17)

where λdiv is a hyper-parameter which is typically set via (cross-)validation. There is a

natural trade-off between optimizing for discriminative learners and diverse learners on

the same training set. On the one hand, classifiers should agree on the class label during

training time. Consequently, they will make increasingly more correlated predictions as

training progresses, and the training accuracy of the learners increases. On the other hand,

the learners’ predictions in an ensemble should be diverse. The diversity loss increases

diversity by reducing the training accuracy, as learners are encouraged to be less confident

in their predictions and make different predictions compared to other learners.

For object categorization problems, we define Ldiscr in Equation (4.8) in Section 4.2.

For metric learning problems, we use online gradient boosting to optimize Ldiscr, as we

explain in the previous Section 4.3.2. In the following Sections 4.4.1, 4.4.2, and 4.4.3 we

give an overview of our auxiliary loss functions.

4.4.1 DivLoss

Our DivLoss is designed for object categorization and operates on the outputs of the

learners. It tries to make their predictions diverse from each other. One popular way to

measure agreement between two probability distributions for supervised learning is cross-

entropy. In this setting, we want the predictive distribution of a classifier to agree with

the ground-truth label distribution. To this end, neural networks typically minimize the

cross-entropy lossH(·, ·) between ground-truth y and prediction σ(o) during training-time.
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In contrast, in our loss function, we want to make the distribution of individual clas-

sifiers dissimilar to each other. To this end, we maximize the cross-entropy loss H(·, ·)
between pairs of our M learners to make them diverse from each other. Formally, we

define the DivLoss as

LDivLoss =
1

M · (M − 1)

M∑
m=1

∑
n6=m
−H(σ(cm), σ(cn)), (4.18)

where σ(cm) denotes the m-th classifier prediction (i.e. softmax activation) of our ensem-

ble. As the cross-entropy is asymmetric, i.e. H(p, q) 6= H(q,p), for learners i and j we

minimize both, −H(σ(ci), σ(cj)) and −H(σ(cj), σ(ci)).

4.4.2 Activation Loss

The Activation Loss (ActLoss) introduces diversity on the hidden layers of the individual

learners or the embedding layers of a metric learning CNN . Compared to the previous

DivLoss, which requires that the predictions of the classifiers are dissimilar, this loss

imposes a weaker constraint. More specifically, it mutually suppresses the activations in

the hidden layer of each learner (see Figure 4.5). Ideally, for a given sample only a single

learner is active, i.e. has non-zero activations. To that end, we define a suppression loss

between learner i and j as:

Lsup(i,j)(x) =
C∑
k=1

C∑
l=1

((xi)k · (xj)l)2 (4.19)

=

C∑
k=1

C∑
l=1

(
(xi)

2
k · (xj)2l

)
(4.20)

=

(
C∑
k=1

(xi)
2
k

)
·

(
C∑
l=1

(xj)
2
l

)
(4.21)

= ||xi||22 · ||xj ||22. (4.22)

As we see, this is a squared group sparsity loss on the activations. Typically, when we

initialize the weights of xi and xj randomly, we can optimize this loss function with

standard SGD . However, if both hidden layers have the same parameters, e.g . due to

initialization from the same pre-trained network, we have to break this symmetry. To this

end, we alternatingly optimize for either xi or xj during the first iterations, keeping the

other learner fixed.

Another problem with this loss is, that it allows a trivial solution by setting the weight

matrix of the hidden layer to zero. In practice, for supervised learning problems, when we

initialize the weights from scratch, we found that the supervised loss function is enough to

encourage that the weight matrix is non-zero. For metric learning problems (Section 4.3),
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Figure 4.5: Our Activation Loss mutually suppresses neurons in hidden layers of different learners.

we found that it is necessary to constrain the weight matrix to be non-zero with an

additional auxiliary loss on the weights. Formally, we add the following penalty to our

diversity loss function:

Lweight =
d∑
i=1

(w>i wi − 1)2, (4.23)

where wi (with 1 ≤ i ≤ d) are the row vectors of the weight matrix of the last embedding

layer W .

We define the final diversity loss function as average over all pairs of learners:

LActLoss(x) =
2

M · (M − 1)

∑
m6=n
Lsup(m,n)

(x) + λweight · Lweight. (4.24)

For metric learning problems, we set λweight large enough, so that our weight vectors have

a squared norm of 1 ± 1e−3. For classification problems, we do not need this constraint

and set λweight to 0.

4.4.3 Adversarial Loss

Another way to impose diversity on a hidden representation is to make the distribution

of the activations dissimilar. Compared to the ActLoss and DivLoss, this is a weaker

constraint, as we do not require zero activations for all but one hidden layer among our

learners. This way, the hidden representations can be diverse, but nonetheless discrimina-

tive for all learners.

As hidden layer feature vectors xi, xj between learner i and learner j can e.g . be a

permutation from each other, we typically cannot increase diversity between them by just

increasing the distance between them during training. Therefore, we train a regressor

which tries to make the two hidden features xi and xj as similar as possible to each other.

For this regressor, we use a non-linear projection, which maps xj to xi. Therefore, such a

regressor can e.g . easily learn to overcome simple permutations of our feature vectors, or

cope with hidden layer representations of different dimensionality. The latter is beneficial,

if we want to exploit the benefits of introducing variation by different model architectures

between different learners.
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To make the feature vectors dissimilar to each other, we add a gradient reversal

layer [54] after our hidden layers xi and xj . Therefore, during training, the hidden repre-

sentations will get diverse from each other. Compared to standard Generative Adversarial

Networks (GANs) [66], the gradient reversal layer is computationally cheaper. It not need

an alternating optimization of the generator network (i.e. the backbone CNN ) and the

discriminator network (i.e. the regressors). Therefore, it is computationally much more

efficient during training time.

Formally, let xi ∈ Rdi and xj ∈ Rdj denote the hidden layer representation of learner i

and learner j with dimensionality di and dj , respectively. Further, let g(j,i)(·) be a projec-

tion from the hidden layer representation of learner j, to the hidden layer representation

of learner i, i.e. g(j,i) : Rdj 7→ Rdi . Our regressor aims to make the projection g(j,i)(·) of

xj as similar as possible to xi by minimizing the following loss function

Lsim(i,j)
(x) = − 1

di

∑(
xi � g(j,i)(xj)

)2
, (4.25)

where � denotes the Hadamard (i.e. elementwise) product. On the other hand, the hidden

representations of our learners should maximize the above loss function, making xi and

xj dissimilar to each other, w.r.t. to the regressor g(j,i)(·). Therefore, we have a min-max

optimization problem similar to GANs:

max
θi,θj

min
g(j,i)
Lsim(i,j)

(x), (4.26)

where θi and θj denote the parameters for learners i and j, respectively. To optimize this

loss function, we insert a gradient reversal layer after the hidden layers xi and xj , as we

illustrate in Fig. 4.6.

The similarity between hidden layer representations xi and g(j,i)(xj) can be made

arbitrarily large by scaling the weights of g(j,i)(·) and the weights of the hidden layer,

where we apply the loss. To address this problem, we constrain the weights W and biases

b of the regressor and the hidden layers, where we apply the loss by

Lweight = max(0, b>b− 1) +
∑
i

(w>i wi − 1)2, (4.27)

where wi denotes the i-th row of the weight matrix W .

Our final AdvLoss is the sum over all pairs of learners and adds the penalty on the

weights of the regressor:

LAdvLoss(x) =
2

M · (M − 1)

∑
m6=n
Lsim(m,n)

(x) + λw · Lweight, (4.28)

where λw is typically set high enough so that our weight vectors have a squared norm

close to 1± 1e−3. In our experiments, we typically use non-linear regressors with a single
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Figure 4.6: Our adversarial loss function learns auxiliary regressors g(j,i) from the hidden repre-
sentation of learner j to learner i. To make the hidden representations diverse from each other,
we insert a gradient reversal layer between the auxiliary regressor layers (blue) and the network
layers (red).

hidden layer and a Rectified Linear Unit (ReLU) activation function for g(i,j)(·). We set

the hidden layer size of these regressors to the same size as the hidden layers xi and xj .

4.5 Loss Function on Multiple Hidden Layers

Typically, we apply our diversity loss function only on the last hidden layer of a CNN

to make its representation diverse. However, implicit ensemble methods such as dropout

typically can exploit the benefits of ensembles for every hidden layer in a CNN . To this

end, inspired by deeply supervised networks [117, 213], we apply our loss functions on arbi-

trary hidden layers by dividing them into multiple groups and applying the corresponding

diversity auxiliary loss. The successive layer in the network receives the full hidden layer

(i.e. without the groups) as input. Therefore, we do not change the network architecture

by this method.

As our DivLoss does not operate on the hidden representation directly, but rather on

classifiers on top of these representations, we also add several auxiliary classifiers during

training time for this loss. During test-time, we discard these classifiers. Therefore, our
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Figure 4.7: We can apply our method on top of any hidden layer in a neural network.

method does not impair any computational overhead during test-time, and only a small

additional computational overhead during training time.

4.6 Image Categorization Experiments

In this section, we evaluate the benefits of our ensembling approach for image categoriza-

tion. To this end, we run several experiments on the CIFAR-10, CIFAR-100 [111], and

SVHN [159] datasets. The CIFAR-10 and CIFAR-100 dataset consist of 50, 000 training

color images and 10, 000 test color images of size 32 × 32. The main difference between

these two datasets is the number of classes. CIFAR-10 consists of 10 classes, and CIFAR-

100 consists of 100 classes. The SVHN dataset consists of 73, 257 street view digits for

training and 26, 032 street view samples for testing. Similar to the CIFAR datasets, the

image size is also 32× 32. Unless otherwise stated, we only use simple mean subtraction

as pre-processing and do not use data augmentation.

We implement our method with TensorFlow [1] and run our experiments on an NVIDIA

Titan Xp GPU. As network architecture, we adopt the CIFAR-10 Quick architecture [95]
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and widen it by a factor 2, similar to Cogswell et al . [34]. We train our networks with

SGD and momentum for 100 epochs. We start training with a learning rate of 0.01,

and we anneal the learning rate after 50 and 90 epochs by 0.1, respectively. After each

epoch, we shuffle the training dataset. We use 10% of the training set as validation set for

hyper-parameter search and early stopping.

Unless otherwise stated, we use an ensemble consisting of 4 learners by splitting up the

last hidden layer into 4 equally sized groups. Therefore, our method is computationally

as expensive as a single network. Such networks have the same number of parameters as

a standard network. Further, we can map them back to a standard neural network. For

our ablation studies, we typically use the CIFAR-10 dataset.

In Section 4.6.1, we show the effectiveness of several of our diversity encouraging loss

functions. We further compare our loss functions with Negative Correlation Learning

(NCL) and an adapted version of NCL. Next, in Section 4.6.2, we analyze the impact

of splitting the network at a shallower hidden layer into multiple learners, similar to

TreeNets [119]. Further, we analyze the accuracy and diversity of the learners of our

ensemble in Section 4.6.3, and compare it with the strength and correlation of implicit

ensemble methods (i.e. dropout [161]). In Section 4.6.4, we compare our method against

other ensembling methods in terms of accuracy, number of parameters, and FLOPS. Fi-

nally, in Section 4.6.5, we show that our approach can also benefit recent ResNet [75]

and Wide ResNet [263] architectures on the CIFAR-10, CIFAR-100, and SVHN datasets.

Specifically, we show that with our method we can train more pareto-optimal networks

compared to (Wide) ResNets.

4.6.1 Comparison of Diversity Loss Functions

In this section, we compare our diversity loss functions to directly minimizing the correla-

tion between learners, i.e. NCL [139]. Therefore, we minimize the following auxiliary loss

function:

1

D

D∑
j=1

M∑
m6=n

(σ(cm)j − σ(o)j) · (σ(cn)j − σ(o)j) , (4.29)

where D denotes the number of classes, M the number of learners, σ(cm)j the m-th learner

prediction for the j-th class, and σ(o) the ensemble prediction.

NCL is designed for regression problems. It tries to negatively correlate the classifier

predictions. We hypothesize that for classification problems, it is more beneficial to have

learners which have zero correlation (i.e. are “independent”). Therefore, we also try

to adapt the loss function by penalizing the absolute correlation. This loss encourages

learners to have zero correlation (as opposed to negative correlation):

1

D

D∑
j=1

M∑
m 6=n
| (σ(cm)j − σ(o)j) · (σ(cn)j − σ(o)j) |. (4.30)
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We summarize our results in Table 4.1. We see that diversity encouraging loss functions

can benefit CNN performance for object categorization. Further, they do not introduce

computational overhead. When we penalize the absolute correlation of learners rather

than the signed correlation, we already improve standard NCL by a large margin. Further,

our novel loss functions outperform NCL, presumably because NCL addresses regression

problems as opposed to classification problems.

Finally, we see that making the representation of the classifier diverse directly performs

favorably compared to making the classifiers predictions diverse from each other. Directly

forcing the classifiers to be non-correlated to each other is a constraint which typically is

directly the opposite of being discriminative. On the training set, CNNs typically achieve

close to perfect accuracy. Consequently, each learner typically always predicts the correct

ground truth label for a training sample. If we require them to be weakly correlated to

each other, the prediction of several classifiers must be wrong. However, if we only require

the feature representation to be different from each other, the individual classifiers still can

make correct predictions by focusing on different high-level features. If during test-time,

some of these features are missing (e.g . due to severe pose variation, occlusion, etc.), only

some classifiers in the ensemble are affected.

Method Test Accuracy Parameters FLOPS

Baseline 80.86 0.59 · 106 84 · 106

Negative Correlation 80.90 0.59 · 106 84 · 106

Absolute Correlation 81.28 0.59 · 106 84 · 106

DivLoss (Ours) [165] 82.30 0.59 · 106 84 · 106

ActLoss (Ours) [167, 168] 83.10 0.59 · 106 84 · 106

AdvLoss (Ours) [168] 83.21 0.59 · 106 84 · 106

Table 4.1: Evaluation of different auxiliary loss functions on the CIFAR-10 dataset.

4.6.2 Splitting at Shallower Layers

In this section, we study the effect of splitting the network at shallower layers. Compared

to splitting the network at the last layer, this increases the parameters and computational

complexity of the network. In this setup, we can only share the shallow layers between the

learners. Further, we cannot map the network back to a regular neural network during

test-time. On the other hand, such a setup allows the individual learners to be more

diverse from each other, as they share fewer parameters with each other.

We train an ensemble of 4 learners with different splitting points and compare the

accuracy with and without our ActLoss regularization. Training such networks without

an auxiliary loss function is similar to TreeNets [119]. The only way learners will get

diverse from each other is due to their random initialization.

We report our results in Table 4.2. We see that accuracy typically increases with an

increase in parameters. One of the reasons for this is that with more parameters the
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ensemble benefits more from diversity by random initialization. However, if we split the

network at the last hidden layer, the diversity between learners is low from the beginning

of the training. Consequently, the learners converge in a similar local minimum and are

highly correlated to each other. By introducing an auxiliary loss function, we explicitly

make the learners diverse from each other. Subsequently, especially parameter shared

ensembles, which share a significant amount of parameters, benefit from our auxiliary loss

function.

Further, ensembles in which learners share a small number of parameters, also benefit

from our auxiliary loss function. Notably, a network with shared low-level representation

achieves comparable accuracy to an ensemble which consists of 4 separate networks (i.e. 4

times more parameters and FLOPS), which only rely on random initialization and random

permutation of the training set to introduce diversity.

Split Point No Auxiliary Loss [119] ActLoss (Ours) [167, 168] Parameters FLOPS

Input 82.54 84.25 2.38 · 106 336 · 106

Pool1 82.98 84.95 2.35 · 106 322 · 106

Pool2 82.80 84.60 2.05 · 106 164 · 106

Pool3 81.15 83.44 1.43 · 106 86 · 106

FC2 80.69 83.10 0.59 · 106 84 · 106

Table 4.2: Comparison of standard ensembles and TreeNets [119] with our diversity loss on
CIFAR-10 dataset. Each ensemble consists of 4 learners.

4.6.3 Accuracy and Diversity of Learners

In this section, we compare the accuracy and diversity of our learners to standard ensem-

bles and dropout ensembles. We measure the average disagreement between the learners.

The more learners disagree with each other, the higher diversity in the ensemble. As

dropout trains an exponential number of networks, we sub-sample 16 sub-networks and

measure their correlation and accuracy. As there might be noise due to sampling in this ex-

periment, we measure the standard deviation of the correlation and accuracy by repeating

this experiment 10 times.

In Table 4.3 we see that without an auxiliary loss function, networks in a parameter

shared ensemble tend to make highly correlated predictions, as their best prediction is

always the same. In contrast, when we introduce our auxiliary loss function, learners tend

to disagree with each other. Consequently, our ensemble is more diverse.

Compared to dropout ensembles, learners in explicit parameter shared ensembles typ-

ically achieve higher average accuracy. The main reason for this is that dropout dynami-

cally samples a learner from the ensemble for each training sample during training-time.

In contrast, in explicit ensembles, the learners are fixed during the whole training time.

Therefore, learners in explicit ensembles can achieve higher accuracy. On the other hand,

due to the random training dynamics, learners in dropout ensembles are more diverse from



4.6. Image Categorization Experiments 85

each other.

Method Avg. Disagreement Avg. Sub-Network Acc. Ensemble Acc.

Dropout 0.071± 0.0025 79.9± 0.00073 81.07

No Auxiliary Loss 0.0 80.69± 0 80.69
ActLoss [167, 168] 0.0035 83.01± 0.0002 83.10

Table 4.3: Diversity and average accuracy of learners in an ensemble.

4.6.4 Comparison with Other Ensemble Methods

In this section, we compare our method against other ensemble methods on the CIFAR-10

dataset. For a fair comparison, we use the same architecture (i.e. CIFAR-10-Quick wider)

for all our experiments. Further, we use an ensemble consisting of 4 learners. As different

methods also vary in the way they share parameters (i.e. all parameters are shared, some

parameters are shared, no parameters are shared), we also report the number of parameters

and FLOPS for each method. We summarize our results in Table 4.4. We see that our

ensemble method achieves competitive performance to state-of-the-art approaches over a

variety of different FLOPS and parameter budgets.

When we replicate the architecture at the Pool2 layer (i.e. some parameters are shared),

our method outperforms standard ensembles with more parameters, as well as an on the

fly distillation ensemble approach (ONE-E) [284]. We also provide a detailed comparison

of the on the fly distillation method and our method in Table 4.5. We see that while

in our ensemble, the individual learners have lower accuracy compared to the on the fly

distillation ensemble, our correlation is significantly lower due to our diversity loss function.

Consequently, our ensemble accuracy is higher, as learners complement each other better

during test-time. If we combine both methods, we see that the accuracy of the individual

learners increases, as they benefit more from distilling the knowledge of a better ensemble.

Compared to the on the fly ensemble, this combination has a lower correlation, which

yields significantly higher accuracy.

We also compare our method in this setup to EnsembleNet [124], which introduces

diversity by making the prediction of the learners deviate from the ensemble prediction.

We find that penalizing the features (i.e. the hidden layer), rather than the classifier

achieves more diversity (i.e. lower correlation), yielding more accurate ensembles.

In the setting where all parameters are shared, our method achieves competitive per-

formance to the student network in an on the fly ensemble distillation approach [284].

Further, when we combine our method with a distillation method (ONE), we see that

performance of the student network (ONE) benefits from our diversity loss functions. We

hypothesize that the main reason for this is, that our loss function improves the ensem-

ble accuracy from 83.65% to 85.27% by increasing the diversity of the individual learners

(ONE-E + ActLoss). The ONE method only encourages learners to be diverse from each
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Method Year Accuracy Parameters FLOPS

Standard Ensembles 83.14 2.38 · 106 336 · 106

Standard CNN 80.14 0.59 · 106 84 · 106

Dropout [161] JMLR’14 81.07 0.59 · 106 84 · 106

Dropout on FC1+FC2 [161] JMLR’14 81.83 0.59 · 106 84 · 106

TreeNets [119] arXiv’15 81.17 0.59 · 106 84 · 106

E-Softmax [241] IJCAI’18 81.12 0.59 · 106 84 · 106

EnsembleNet [124] arXiv’19 80.5 2.05 · 106 84 · 106

DivLoss (Ours) [165] ACCV’16 82.30 0.59 · 106 84 · 106

DivLoss on FC1+FC2 (Ours) [165] ACCV’16 83.44 0.59 · 106 84 · 106

ActLoss (Ours) [167] ICCV’17 83.10 0.59 · 106 84 · 106

AdvLoss (Ours) [168] TPAMI’18 83.21 0.59 · 106 84 · 106

ONE [284]a NIPS’18 83.19 0.59 · 106 84 · 106

ONE [284]a + ActLoss (Ours) [167] NIPS’18 + ICCV’17 83.99 0.59 · 106 84 · 106

Table 4.4: Comparison to state-of-the-art ensembling methods on the CIFAR-10 dataset. We
split the network at the last hidden layer into 4 learners.

a Parameters and FLOPS during training time are 2.05 · 106and 164 · 106respectively.

other by random initialization and a gating network. Explicitly introducing diversity fur-

ther reduces the correlation between learners and therefore increases ensemble accuracy.

A better ensemble accuracy yields a more accurate student network.

Method Ens. Acc. ↑ Learner Acc. (Mean) ↑ Corr. ↓ Params. FLOPS

EnsembleNet [124] 84.17 82.25± 0.001 0.9509 2.05 · 106 164 · 106

ActLoss (Ours) [167] 84.60 82.36± 0.14 0.9264 2.05 · 106 164 · 106

ONE-E [284] 83.65 83.10± 0.08 0.9892 2.05 · 106 164 · 106

ONE-E [284] +
ActLoss (Ours) [167]

85.26 83.77 ± 0.14 0.9602 2.05 · 106 164 · 106

Table 4.5: Detailled comparison between our method, ONE [284], EnsembleNet [124] and the
combination of both methods. We split the networks after the Pool2 layer into 4 learners.

4.6.5 Efficient ResNet Ensembles

In this section, we apply our method on the ResNet [75] architecture on the CIFAR-10,

CIFAR-100, and SVHN datasets. We split a ResNet-32 after the second block into multiple

classification heads. We apply our Activation Loss on the last hidden layer of each of these

heads to encourage each head to be diverse from each other.

As such ensembles have a higher number of parameters and a higher computational

complexity compared to standard ResNets, for a fair comparison, we compare our efficient

ensemble method with Wider ResNets [263]. Wider ResNets enlarge the number of con-
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volutional channels in ResNets by a factor k ∈ {1, 2, 4, 8}, where k = 1 denote standard

ResNets. Consequently, they allow to trade-off accuracy vs. computational complexity

and do not significantly change the underlying network architecture.

In our experiments on the CIFAR-10 and SVHN datasets, we train several ensembles

with the number of learners of {2, 4, 8}. For each ensemble, we train Wide ResNets with

an enlargement factor of k ∈ {1, 2, 4}. We compare the speed vs accuracy trade-off to

standard Wide ResNets with an enlargement factor of k ∈ {1, 2, 4}. Similarly, for the

CIFAR-100 dataset, we train several ensembles with the number of learners of {2, 4} and

an enlargement factor of k ∈ {1, 2, 4}. We train the standard Wide ResNets on this dataset

with an enlargement factor of k ∈ {1, 2, 4}.
We compare the accuracy and the number of FLOPS of our models and summarize our

results in Figure 4.8, 4.9, and 4.10 and Table 4.6, 4.7, and 4.8. We see that our efficient

ensembles are typically computationally more efficient compared to standard ResNets,

while achieving higher accuracy on the CIFAR-10, CIFAR-100, and SVHN datasets. Con-

sequently, with a given computational budget it is typically possible to train a better

performing efficient ensemble ResNet.
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Figure 4.8: Speed vs. accuracy trade-off on
the CIFAR-10 dataset. We highlight networks
with different widening factor k ∈ {1, 2, 3} in
red, green and yellow, respectively.

k l FLOPS ↓ Accuracy ↑
1 1 83 · 106 0.9206
1 2 110 · 106 0.9318
1 4 165 · 106 0.9328
1 8 274 · 106 0.9346

2 1 321 · 106 0.9280
2 2 430 · 106 0.9478
2 4 648 · 106 0.9474
2 8 1, 084 · 106 0.9491

4 1 1, 260 · 106 0.9491
4 2 1, 700 · 106 0.9558
4 4 2, 567 · 106 0.9587
4 8 4, 311 · 106 0.9590

Table 4.6: Speed vs. accuracy trade-off
on the CIFAR-10 dataset with a ResNet
widening factor of k ∈ {1, 2, 4} and l ∈
{1, 2, 4, 8} learners respectively.
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Figure 4.9: Speed vs. accuracy trade-off on
the CIFAR-100 dataset. We highlight networks
with different widening factor k ∈ {1, 2, 3} in
red, green and yellow, respectively.

k l FLOPS ↓ Accuracy ↑
1 1 83 · 106 0.6818
1 2 110 · 106 0.6834
1 4 165 · 106 0.6984

2 1 321 · 106 0.7359
2 2 430 · 106 0.7462
2 4 648 · 106 0.7375

4 1 1, 260 · 106 0.7551
4 2 1, 700 · 106 0.7754
4 4 2, 567 · 106 0.7797

Table 4.7: Speed vs. accuracy trade-off
on the CIFAR-100 dataset with a ResNet
widening factor of k ∈ {1, 2, 4} and l ∈
{1, 2, 4} learners respectively.
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Figure 4.10: Speed vs accuracy trade-off on
the SVHN dataset. We highlight networks with
different widening factor k ∈ {1, 2, 3} in red,
green and yellow, respectively.

k l FLOPS ↓ Accuracy ↑
1 1 83 · 106 0.9623
1 2 110 · 106 0.9695
1 4 165 · 106 0.9702
1 8 274 · 106 0.9696

2 1 321 · 106 0.9672
2 2 430 · 106 0.9704
2 4 648 · 106 0.9717
2 8 1, 084 · 106 0.9717

4 1 1, 260 · 106 0.9682
4 2 1, 700 · 106 0.9717
4 4 2, 567 · 106 0.9723
4 8 4, 311 · 106 0.9722

Table 4.8: Speed vs. accuracy trade-
off on the SVHN dataset with a ResNet
widening factor of k ∈ {1, 2, 4} and l ∈
{1, 2, 4, 8} learners respectively.

4.7 Metric Learning Experiments

In this section, we evaluate the performance of BIER, i.e. our method adapted to metric

learning, on image retrieval problems and conduct our ablation studies on the CUB-

200-2011 [229] dataset. To compare our method to the state-of-the-art, we evaluate the

performance of our method on several other popular metric learning benchmarks, i.e.

Cars-196 [109], Stanford Online Products [163], and In-Shop Clothes Retrieval [141].

We use the standard evaluation protocol on these datasets to measure our performance,

i.e. the Recall@K metric. To measure Recall@K, for each query image we retrieve the K
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nearest neighbors according to the learned similarity function. If the class label of at least

one of these K images matches with the corresponding query image, the query is correctly

retrieved. Recall@K averages all successful retrievals over all query images.

We implement our retrieval framework in TensorFlow [1]. For a fair comparison of our

method to previous works, e.g . [163, 223], we use a standard pre-trained GoogLeNet [212]

(without batch normalization) as feature extractor. As TensorFlow does not provide pre-

trained ImageNet [186] weights for the original GoogLeNet, we dump the weights of the

network from the publicly available Caffe [95] model.

In our ablation experiments, we show the benefits of adding either our adversarial

auxiliary loss function or our activation auxiliary loss function to BIER. To optimize

BIER without an auxiliary loss function, we use ADAM [104] with a learning rate of 10−6.

When we add an auxiliary loss function to our method, we can increase the learning rate

by a factor of 10 to 10−5 (see Section 4.7.6), which significantly speeds up training.

Popular loss functions in metric learning operate on pairs, triplets, or n-tuples. They

need pairs of similar images in a mini-batch to compute the loss. However, metric learning

datasets typically have a large number of categories. Consequently, when we näıvely

sample a small number of images from such datasets uniformly at random, the probability

of having images with the same class label in the same mini-batch is small. Unfortunately,

this makes it impossible to train metric learning CNNs. Therefore, we construct our

batch by first uniformly sampling a fixed number of categories from the dataset. Then,

we sample uniformly a fixed number of images for each of these categories. As a result,

each of our mini-batches consists of approximately 5-10 images per category.

We follow previous works, e.g . [163, 223], and use standard preprocessing to train our

networks. Specifically, we resize the longest axis of our images to 256 pixels and pad the

shorter axis, so that the resulting image has a resolution of 256× 256 pixels. We subtract

the ImageNet mean channel-wise from the image. Before we construct our mini-batch

during training, we randomly crop 224 × 224 patches from these 256 × 256 patches and

randomly mirror them. At test-time, we use the 224 × 224 center crop of an image to

predict the embedding.

In the following, we first do a detailed ablation study of BIER without any auxiliary

loss function during training time (i.e. we introduce diversity only by reweighting samples

and during initialization). We analyze the strength (accuracy) and correlation of BIER

without auxiliary loss function (Section 4.7.1). We then show that several popular metric

learning loss functions can benefit from BIER (Section 4.7.2). Further, we fix the size of

the last embedding layer and show the influence of the number of learners (Section 4.7.3).

Next, we vary the embedding size (i.e. the parameter budget) and show the impact on the

performance of our method (Section 4.7.4). As standard BIER uses our activation loss to

initialize the weights of the last embedding layer in our network, we also compare several

initialization methods (Section 4.7.5).

Then, we do a detailed ablation study of combining BIER with two of our auxiliary

loss function, i.e. the Activation Loss and the Adversarial Loss, as they can operate on
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hidden and embedding layers of neural networks. We analyze the impact on learning rates

and training time of this setup (Section 4.7.6) and evaluate the strength and correlation

of such ensembles (Section 4.7.7). Finally, we compare our method to the state-of-the-art

(Section 4.7.8).

4.7.1 Strength and Correlation

In this section, we analyze the impact of BIER on the ensemble performance. For these

experiments, we analyze BIER as we originally proposed it in our original work [167].

Therefore, we only use our auxiliary loss function to initialize the weights of the last

embedding layer and not during training time. We show how BIER impacts the strength

(i.e. the accuracy of individual learners) and the correlation between the learners of the

ensemble.

First, we train a baseline model with an embedding size of 512 (Baseline). Next,

we train a parameter shared ensemble model without boosting. For this ensemble, we

split the last embedding layer into three non-overlapping groups of sizes 170, 171, and

171, respectively. We initialize the embedding with our Activation Loss initialization

method. To train our network, we optimize a discriminative metric loss function on each

of these learners separately (Init-170-171-171 ). Finally, we re-weight training samples

with boosting during training (BIER-170-171-171 ).

Successive learners in our ensemble tend to focus on harder examples due to our

boosting-based training. Therefore, we propose to set the size of the embeddings of our

learners proportional to their weighting in the online boosting algorithm (Section 4.3.2).

Specifically, we set the embedding size of the first learner to 96, the second learner to 160

and the last learner to 256. We evaluate this choice for an ensemble without boosting

(Init-96-160-256 ) and with boosting (BIER-96-160-256 ).

As we show in Table 4.9, we see that by splitting the embedding into several learners we

already achieve a notable improvement in terms of accuracy. Specifically, as we initialize

our learners independently to each other with our auxiliary loss function, learners tend

to focus on different training examples during training. Consequently, we can reduce

the correlation of the embedding and improve ensemble performance. Further, when we

add online gradient boosting to our method, the correlation of our learners decreases

compared to our learners trained without boosting. The individual weak learners trained

without boosting achieve similar accuracy compared to our boosted learners (e.g . 51.94 vs

51.47 of Learner-1-170 ), but the combination of our boosted learners achieve a significant

improvement. The main reason for this is the lower correlation of our boosting based

ensemble.

4.7.2 Loss Functions

In this section, we show that many popular loss functions in metric learning, such as

the triplet loss or the contrastive loss, benefit from BIER. We train our baseline, i.e. a
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Method Clf. Corr. ↓ Feature Corr. ↓ R@1 ↑
Baseline-512 - 0.1530 51.76

Init-170-171-171 0.8362 0.1005 53.73
Learner-1-170 51.94
Learner-2-171 51.99
Learner-3-171 52.26

Init-96-160-256 0.9008 0.1197 53.93
Learner-1-96 50.35
Learner-2-160 52.60
Learner-3-256 53.36

BIER-170-171-171 0.7882 0.0988 54.76
Learner-1-170 51.47
Learner-2-171 52.28
Learner-3-171 52.38

BIER-96-160-256 0.7768 0.0934 55.33
Learner-1-96 49.95
Learner-2-160 52.82
Learner-3-256 54.09

Table 4.9: Evaluation of classifier (Clf.) and feature correlation on CUB-200-2011 [229]. Best
results are highlighted.

standard CNN without an ensemble with an embedding size of 512, with different loss

functions, i.e. the triplet loss, the contrastive loss, and the binomial deviance loss. Next,

for each of these three loss functions, we train a CNN with BIER. We split the embedding

into learners of size 96, 160, and 256.

In Table 4.10, we see that our method significantly improves performance for all three

loss functions. Interestingly, our method performs best with loss functions with a smooth

(i.e. continuous) gradient. We hypothesize that this is because loss functions with a smooth

gradient also assign smooth weights to successive learners. In contrast, loss functions with

non-smooth gradients (i.e. the triplet loss or the contrastive loss) assign only 1 or 0 as

a weight to training samples for successive learners. Consequently, smooth loss functions

can convey more information to successive learners.

Method Feature Corr. ↓ R@1 ↑
Triplet-512 0.2122 50.12
Triplet-96-160-256 0.1158 53.31

Contrastive-512 0.1639 50.62
Contrastive-96-160-256 0.1246 53.8

Binomial-Deviance-512 0.1530 51.76
Binomial-Deviance-96-160-256 0.0934 55.33

Table 4.10: Evaluation of loss functions on CUB-200-2011 [229].
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4.7.3 Number of Learners

In this section, we fix the parameter and computational budget for our embedding layer

and analyze the impact on the accuracy of the number of learners. Therefore, we set the

total embedding size to 512 and split it into M = {2, 3, 4, 5} learners and train them with

BIER.

We summarize the results of this experiment in Table 4.11. With a parameter and

computational budget of 512 neurons in the embedding layer, BIER works best with 3−4

learners. If we increase the number of learners in the ensemble, the strength (i.e. accuracy)

of individual learners is too low as the embedding dimensionality is too small to learn a

meaningful similarity function. In contrast, if we decrease the number of learners to e.g . 2,

the strength of the individual learners increases. However, the learners are more correlated

with each other, since they benefit less from our gradient boosting algorithm.

Group Sizes Clf. Corr. ↓ Avg R@1 ↑ R@1 ↑
Baseline - - 51.76

170-342 0.8252 53.06 54.66
96-160-256 0.7768 52.29 55.33
52-102-152-204 0.7091 50.67 55.62
34-68-102-138-170 0.6250 48.5 54.9

Table 4.11: Evaluation of group sizes on CUB-200-2011 [229].

4.7.4 Embedding Sizes

In contrast to the previous section, we vary the parameter and computational budget of

the last embedding layer in this experiments. We set the embedding layer size of our

baseline CNN to {384, 512, 1024}. We compare the accuracy of this baseline CNN to a

BIER ensemble. We split the 384 sized embedding into three learners of size 64, 128,

and 192. For the 512 sized embedding, we follow our previous experiments and divide

it into three learners of size 96, 160 and 256. For the large embedding of size 1024, we

train 5 learners of size 50, 96, 148, 196, 242, and 292. For all our experiments, we use the

binomial deviance loss, as it typically outperforms the triplet loss and contrastive loss in

our experiments in Section 4.7.2.

In our experiments in Table 4.12 BIER achieves consistent improvements over a base-

line CNN with a parameter and computational budget of {384, 512, 1024} for the last

embedding layer. For an embedding size of 1024, a large number of learners is more ben-

eficial for performance. The main reason for this is that learners with a size significantly

larger than 256 tend to over-fit on this dataset. Therefore, it is more beneficial to split

the embedding into a larger number of smaller learners.

In Figure 4.11 we also summarize the performance, when we vary the number of learners

in an ensemble with a parameter budget of 512 and 1024. We set the embedding sizes of the
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Method Feature Corr. ↓ R@1 ↑
Baseline-384 0.1453 51.57
BIER-64-128-192 0.0939 54.66

Baseline-512 0.1530 51.76
BIER-96-160-256 0.0934 55.33

Baseline-1024 0.1480 52.89
BIER-50-96-148-196-242-292 0.0951 55.99

Table 4.12: Evaluation of embedding size on CUB-200-2011 [229].
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Figure 4.11: Evaluation of different embedding sizes and group sizes on the CUB-200-2011 [229]
dataset.

individual learners proportional to the weight of our boosting algorithm (Section 4.3.2).

Here we also see that a larger number of learners is beneficial for an embedding of size

1024. The main reason for this is that the accuracy of individual learners tends to saturate

at an embedding size of approximately 256 for the CUB-200-2011 [229] dataset. Therefore,

to better exploit the large dimensionality of the embedding, it is more beneficial for large

embedding sizes to divide them into a larger number of learners.

4.7.5 Impact of Initialization

In our original version of BIER [167], we use our auxiliary loss function, i.e. the Activation

Loss, only for weight initialization for the last embedding layer. Therefore, in this section,

we evaluate the impact of different initialization methods, i.e. our Activation Loss and our

Adversarial Loss [168], for the embedding layer. We compare the performance to other

popular initialization methods, i.e. random initialization as proposed by Glorot et al . [64]

and an orthogonal initialization method [190].

In all these experiments we use BIER with the binomial deviance loss with 3 learners

and an embedding capacity of 512 for training. We report the R@1 on the CUB-200-

2011 [229] dataset for all four initialization methods. In Table 4.13 we see that BIER

works better with our two auxiliary loss functions as initialization method compared to
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random initialization and orthogonal initialization. The reason for this is that our auxiliary

loss functions already initialize all our learners so that they are weakly correlated with

each other. Consequently, our boosting method only needs to maintain the diversity of

our learners during training.

Method R@1

Glorot 54.41
Orthogonal 54.58

Activation Loss 55.33
Adversarial Loss 55.04

Table 4.13: Evaluation of Glorot, orthogonal and our Activation Loss and Adversarial Loss
initialization method on CUB-200-2011 [229].

4.7.6 Impact of Auxiliary Loss Functions

In this section, we evaluate the benefits of adding our auxiliary loss functions during

training time. We originally presented this as an extension to BIER together with our

adversarial loss function in [168]. For our evaluation, we run several experiments on the

CUB-200-2011 [229] dataset. We train a network without auxiliary loss function during

training (i.e. standard BIER), a network with our Activation Loss, and a network with

our Adversarial Loss during training. We follow our previous experimental setup and use

a capacity of 512 for the ensemble embedding. We split this 512 sized embedding into 3

learners (i.e. 96, 160, and 256 sized learners). Further, we observe that we can train our

networks with auxiliary loss function with an order of magnitude higher learning rate (i.e.

10−5 instead of 10−6), which results in significantly faster convergence times. We report

the R@1 accuracy of all our methods.

In Table 4.14 we see that training our original BIER [167] with an auxiliary loss

function during training time significantly improves accuracy (i.e. 57.5 vs 55.3 R@1).

Notably, with our auxiliary loss functions, we can train our network with an magnitude

higher learning rates, as they stabilize the diversity of the training. Consequently, we can

achieve faster convergence times with auxiliary loss functions. When we use the same

learning rates with standard BIER without auxiliary loss, training becomes unstable and

the performance drops (i.e. 52.3 vs 55.3 R@1).

Further, our Adversarial Loss function outperforms our Activation Loss function (i.e.

57.5 vs 56.5 R@1). We hypothesize that this is because our Adversarial Loss imposes a

weaker constraint on the diversity of the individual learners compared to our Activation

Loss. Our Activation Loss encourages that for a given training sample, only a single learner

is active (i.e. has non-zero activations). The remaining learners in the ensemble should

make predictions close to 0. However, this constraint might be too strong. In contrast,

our Adversarial Loss function uses an adversarial regressor to make learners diverse from

each other. The regressor tries to make two vector spaces of pairs of learners as similar as
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Method R@1 Learning Rate Iterations

No Auxiliary Loss 55.3 1e−6 50K
No Auxiliary Loss 52.3 1e−5 15K
Activation Loss 56.5 1e−5 15K
Adversarial Loss 57.5 1e−5 15K

Table 4.14: Comparison of auxiliary loss functions on CUB [229]. Our adversarial loss function
significantly improves accuracy over our baseline (BIER [167]) and enables higher learning rates
and faster convergence.

possible under a non-linear mapping. Consequently, as we insert a gradient reversal layer

between the embedding layer and the regressor, we encourage our learners to be diverse

from each other w.r.t. to this non-linear mapping. According to our results, this is more

effective for reducing correlation than trying to set the entire embeddings of learners to 0

by our Activation Loss.

We also evaluate the impact of the Adversarial and Activation Loss on the strength and

correlation of the learners in the ensemble in Table 4.15 and compare it to standard BIER.

We see that by including these loss functions, we can further reduce the correlation of the

feature vectors as well as the correlation between classifiers. Interestingly, the individual

learners of our Activation Loss and our Adversarial Loss achieve similar accuracy (i.e.

51.1% vs 51.3%, 53.8% vs 53.5%, and 55.3% vs 55.2%). However, our Adversarial Loss

is more effective in reducing the correlation between learners (i.e. 0.6031 vs 0.7310) and

features (i.e. 0.0731 vs 0.0882) and therefore achieves higher ensemble accuracy in terms

of R@1 (i.e. 57.5% vs 56.5%).

Our Adversarial auxiliary loss function uses a gradient reversal layer [54] to make learn-

ers dissimilar from each other. In contrast to the original work of Ganin et al . [54], which

introduces the gradient reversal layer for domain adaptation, we do not use a dynamic

schedule for the regularization parameter λdiv (see Section 4.4.3). Instead of dynamically

increasing λdiv, we keep the hyper-parameter fixed. Further, rather than scaling the gra-

dients with λdiv, we scale the loss function of our adversarial network, as we describe in

Section 4.4.3. Consequently, as λdiv is typically smaller than 1, our adversarial auxiliary

regression network trains slower compared to our metric learning network. We found that

this turns out to be beneficial for the training process, as optimizing the regression net-

work with higher learning rates results in a too strong adversarial network. Subsequently,

this degrades the performance of the base network.

4.7.7 Evaluation of the Regularization Parameter

In this section, we evaluate the impact of our regularization parameter λdiv (recall Sec-

tion 4.4) of our Activation and Adversarial Loss on the ensemble performance. We

vary λdiv and train several models with a learning rate of 10−5 on the CUB-200-2011

dataset [229].
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Method Clf. Corr. ↓ Feature Corr. ↓ R@1 ↑
BIER-96-160-256 0.7768 0.0934 55.3

Learner-1-96 50.0
Learner-2-160 52.8
Learner-3-256 54.1

Activation BIER-96-160-256 0.7130 0.0882 56.5
Learner-1-96 51.3
Learner-2-160 53.5
Learner-3-256 55.2

Adversarial BIER-96-160-256 0.6031 0.0731 57.5
Learner-1-96 51.1
Learner-2-160 53.8
Learner-3-256 55.3

Table 4.15: Impact of auxiliary loss functions on strength and correlation.

We summarize our results in Figure 4.12. The performance of our Adversarial Loss

peaks around λdiv = 10−3, whereas the performance of our Activation Loss peaks at

λdiv = 10−2. Our Adversarial Loss outperforms our Activation Loss by about 1% R@1.

However, our Activation Loss tends to perform more stable over a larger parameter range.

We hypothesize that this is because training adversarial networks typically requires to

carefully balance the strength of the generator, i.e. our metric learning CNN , and the

discriminator, i.e. our adversarial regressors. We also illustrate our baseline, i.e. standard

BIER without auxiliary loss function trained with a learning rate of 10−5, as a dotted line.

Applying any of our two auxiliary loss functions during training significantly outperforms

our baseline and improves the training stability of BIER at higher learning rates.
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Figure 4.12: Evaluation of λdiv on CUB-200-2011 [229].
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4.7.8 Comparison with the State-of-the-Art

Dataset Images Classes Comment

CUB-200-2011 [229] 11, 788 200 fine-grained birds
Cars-196 [109] 16, 185 196 car types

Stanford Online Products [163] 120, 053 22, 634
fine-grained products from 12
coarse categories (e.g . cup, bi-
cycle, etc.)

In-Shop Clothes Retrieval [141] 54, 642 11, 735 clothes

VehicleID [136] 221, 763 26, 267
vehicle instances (e.g . same
car type but different car, dif-
ferent car type, etc.)

Table 4.16: Summary of dataset statistics in our experiments.
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Figure 4.13: Visualization of the progress in retrieval accuracy over time. We color code the
backbone network architecture.

In this section, we compare our method to the state-of-the-art on the CUB-200-

2011 [229], Cars-196 [109], Stanford Online Product [163], In-Shop Clothes Retrieval [141]

and VehicleID [136] datasets. We summarize all dataset statistics, i.e. the number of im-

ages and categories of each dataset, in Table 4.16. As the overall accuracy largely depends

on implementation details, such as backbone network, embedding size, data augmenta-

tion, etc. [184], we also try to summarize these details in our comparison. Specifically, we

report publication year and conference, backbone network (GN denotes GoogLeNet [212]

without batch normalization, IBN denotes Inception with batch normalization [89], RN50

denotes ResNet-50 [75], RN50-GMP denotes ResNet-50 with global max pooling, GNx8

denotes 8 GoogLeNet [212], and RN18x48 denotes 48 ResNet-18 [75]) and embedding size.

In our experiments on CUB-200-2011, Cars-196, and Stanford Online Products, we

follow the evaluation protocol proposed in [163]. When we run our experiments on the

CUB-200-2011 dataset, we use the first 100 classes (5, 864 images) for training and the
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Method Year Net Size R@1 R@2 R@4 R@8

Contrastive [163] CVPR’16 GN 128 26.4 37.7 49.8 62.
Triplet [163] CVPR’16 GN 128 36.1 48.6 59.3 70.0
LiftedStruct [163] CVPR’16 GN 128 47.2 58.9 70.2 80.2
Binomial Deviance [223] NIPS’16 GN 512 52.8 64.4 74.7 83.9
Histogram Loss [223] NIPS’16 GN 512 50.3 61.9 72.6 82.4
Our Baseline [167] ICCV’17 GN 512 51.8 63.8 74.1 83.1
N-Pair-Loss [206] NIPS’16 GN 64 51.0 63.3 74.3 83.2
Clustering [207] CVPR’17 IBN 64 48.2 61.4 71.8 81.9
ProxyNCA [153] ICCV’17 IBN 64 49.2 61.9 67.9 72.4
Smart Mining [73] ICCV’17 GN 64 49.8 62.3 74.1 83.3
Angular Loss [238] ICCV’17 GN 512 54.7 66.3 76.0 83.9
HDML [280] CVPR’19 GN 512 53.7 65.7 75.7 85.7
NormSoftmax [264] BMVC’19 GN 512 55.3 67.0 77.6 85.4
HTG [278] ECCV’18 RN18 512 59.5 71.8 81.3 88.2
HTL [58] ECCV’18 IBN 512 57.1 68.8 78.7 86.5
RLL-H [242] CVPR’19 IBN 512 57.4 69.7 79.2 68.9
NormSoftmax [264] BMVC’19 IBN 512 59.6 72.0 81.2 88.6
NormSoftmax [264] BMVC’19 RN50 512 61.3 73.9 83.5 90.0
Margin [280] ICCV’17 RN50 128 63.6 74.7 83.1 90.0
SoftTriple [173] ICCV’19 IBN 512 65.4 76.4 84.5 90.4
MS [243] CVPR’19 IBN 512 65.7 77.0 86.3 91.2
MS+DIR [151] CVPR’20 IBN 512 66.1 77.0 85.1 91.1
CircleLoss [211] CVPR’20 IBN 512 66.7 77.4 86.2 91.2
RankMI [99] CVPR’20 RN50 128 66.7 77.2 85.1 91.0
PADS [183] CVPR’20 RN50 128 67.3 78.0 85.9 -
ProxyAnchor [101] CVPR’20 IBN 512 68.4 79.2 86.8 91.6
ProxyNCA++[217]a ECCV’20 RN50-GMP 512 69.0 79.8 87.3 92.7

Ensemble approaches:

HDC [262] ICCV’17 GN 384 53.6 65.7 77.0 85.6
BIER Learner-3 [167] ICCV’17 GN 256 54.1 66.1 76.5 84.7
BIER [167] ICCV’17 GN 512 55.3 67.2 76.9 85.1
A-BIER Learner-3 [168] TPAMI’18 GN 256 55.3 67.0 76.8 86.0
A-BIER [168] TPAMI’18 GN 512 57.5 68.7 78.3 86.2
HORDE [91]a CVPR’19 GN 512 59.4 71.0 81.0 88.0
ABE-8 [103] ECCV’18 GNx8 512 60.6 71.5 79.8 87.4
DREML [248] ECCV’18 RN18x48 9216 63.9 75.0 83.1 89.7
MIC [182] CVPR’19 RN50 128 66.1 76.8 85.6 -
RLL-(L,M,H) [242] CVPR’19 IBN 1536 61.3 72.7 82.4 89.4
D&C [188] CVPR’19 RN50 128 65.9 76.6 84.4 90.6
HORDE [91]a CVPR’19 IBN 512 66.8 77.4 85.1 91.0
DiVA [150] ECCV’20 RN50 512 69.2 79.3 - -

Table 4.17: Comparison with the state-of-the-art on the CUB-200-2011 [229] dataset. Our results
are highlighted.

a Uses non-standard data augmentation (multi-scale training, etc.).
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Method Year Net Size R@1 R@2 R@4 R@8

Contrastive [163] CVPR’16 GN 128 21.7 32.3 46.1 58.9
Triplet [163] CVPR’16 GN 128 39.1 50.4 63.3 74.5
LiftedStruct [163] CVPR’16 GN 128 49.0 60.3 72.1 81.5
Our Baseline [167] ICCV’17 GN 512 73.6 82.6 89.0 93.5
N-Pair-Loss [206] NIPS’16 GN 64 71.1 79.7 86.5 91.6
Clustering [207] CVPR’17 IBN 64 58.1 70.6 80.3 87.8
Proxy NCA [153] ICCV’17 IBN 64 73.2 82.4 86.4 87.8
Smart Mining [73] ICCV’17 GN 64 64.7 76.2 84.2 90.2
Angular Loss [238] ICCV’17 GN 512 71.4 81.4 87.5 92.1
RLL-H [242] CVPR’19 IBN 512 74.0 83.6 90.1 94.1
NormSoftmax [264] BMVC’19 GN 512 75.2 84.7 90.4 94.2
HDML [280] CVPR’19 GN 512 79.1 87.1 92.1 95.5
HTG [278] ECCV’18 RN18 512 76.5 84.7 90.4 94.0
Margin [280] ICCV’17 RN50 128 79.6 86.5 91.9 95.1
HTL [58] ECCV’18 IBN 512 81.4 88.0 92.7 95.7
NormSoftmax [264] BMVC’19 IBN 512 81.7 88.9 93.4 96.0
MS [243] CVPR’19 IBN 512 84.1 90.4 94.0 96.5
SoftTriple [173] ICCV’19 IBN 512 84.5 90.7 94.5 96.9
MS+DIR [151] CVPR’20 IBN 512 85.0 90.5 94.1 96.4
CircleLoss [211] CVPR’20 IBN 512 83.4 89.8 94.1 96.5
RankMI [99] CVPR’20 RN50 128 83.3 89.8 93.8 96.5
PADS [183] CVPR’20 RN50 128 83.5 89.7 93.8 -
NormSoftmax [264] BMVC’19 RN50 512 84.2 90.4 94.4 96.9
ProxyAnchor [101] CVPR’20 IBN 512 86.1 91.7 95.0 97.3
ProxyNCA++[217]a ECCV’20 RN50-GMP 512 86.5 92.5 95.7 97.7

Ensemble approaches:

HDC [262] ICCV’17 GN 384 73.7 83.2 89.5 93.8
BIER Learner-3 [167] ICCV’17 GN 256 76.5 84.9 90.9 94.9
BIER [167] ICCV’17 GN 512 78.0 85.8 91.1 95.1
A-BIER Learner-3 [168] TPAMI’18 GN 256 80.6 88.2 92.3 95.8
A-BIER [168] TPAMI’18 GN 512 82.0 89.0 93.2 96.1
HORDE [91]a CVPR’19 GN 512 83.2 89.6 93.6 96.3
RLL-(L,M,H) [242] CVPR’19 IBN 1536 82.1 89.3 93.7 96.7
MIC [182] CVPR’19 RN50 128 82.6 89.1 93.2 -
D&C [188] CVPR’19 RN50 128 84.6 90.7 94.1 96.5
ABE-8 [103] ECCV’18 GNx8 512 85.2 90.5 94.0 96.1
DREML [248] ECCV’18 RN18x48 9216 86.0 91.7 95.0 97.2
HORDE [91]a CVPR’19 IBN 512 86.2 92.9 95.1 97.2
DiVA [150] ECCV’20 RN50 512 87.6 92.9 - -

Table 4.18: Comparison with the state-of-the-art on the Cars-196 [109] dataset.

a Uses non-standard data augmentation (multi-scale training, etc.).
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Method Year Net Size 1 10 100 1000

Contrastive [163] CVPR’16 GN 128 42.0 58.2 73.8 89.1
Triplet [163] CVPR’16 GN 128 42.1 63.5 82.5 94.8
LiftedStruct [163] CVPR’16 GN 128 62.1 79.8 91.3 97.4
Binomial Deviance [223] NIPS’16 GN 512 65.5 82.3 92.3 97.6
Histogram Loss [223] NIPS’16 GN 512 63.9 81.7 92.2 97.7
N-Pair-Loss [206] NIPS’17 GN 64 67.7 83.8 93.0 97.8
Our Baseline ICCV’17 GN 512 66.2 82.3 91.9 97.4
Clustering [207] CVPR’17 IBN 64 67.0 83.7 93.2 -
NormSoftmax [264] BMVC’19 GN 512 69.0 84.5 93.1 -
HDML [280] CVPR’19 GN 512 68.7 83.2 92.4 -
DVML [135] ECCV’18 GN 512 70.2 85.2 93.8 -
Angular Loss [238] ICCV’17 GN 512 70.9 85.0 93.5 98.0
Margin [280] ICCV’17 RN50 128 72.7 86.2 93.8 98.0
ProxyNCA [153] ICCV’17 IBN 64 73.7 - - -
NormSoftmax [264] BMVC’19 IBN 512 73.8 88.1 95.0 -
RankMI [99] CVPR’20 RN50 128 74.3 89.7 94.9 98.3
HTL [58] ECCV’18 IBN 512 74.8 88.3 94.8 98.4
RLL-H [242] CVPR’19 IBN 512 76.1 89.1 95.4 89.7
PADS [183] CVPR’20 RN50 128 76.5 89.0 95.4 -
Our Baseline (RN) TPAMI’18 RN50 512 77.7 - - -
TML [260] ICCV’19 RN50 512 78.0 91.2 96.7 99.0
MS [243] CVPR’19 IBN 512 78.2 90.5 96.0 98.7
NormSoftmax [264] BMVC’19 RN50 512 78.2 90.6 96.2 -
DiVA Baseline (Margin) [150] ECCV’20 RN50 512 78.3 90.0 - -
SoftTriple [173] ICCV’19 IBN 512 78.3 90.3 95.9 -
CircleLoss [211] CVPR’20 IBN 512 78.3 90.5 96.1 98.6
ProxyAnchor [101] CVPR’20 IBN 512 79.1 90.8 96.2 98.7
ProxyNCA++[217]a ECCV’20 RN50-GMP 512 80.7 92.0 96.7 98.9

Ensemble approaches:

HDC [262] ICCV’17 GN 384 69.5 84.4 92.8 97.7
BIER Learner-3 [167] ICCV’17 GN 256 72.5 86.3 93.9 97.9
HORDE [91]a ICCV’19 GN 512 72.6 85.9 93.7 97.9
BIER [167] ICCV’17 GN 512 72.7 86.5 94.0 98.0
A-BIER Learner-3 TPAMI’18 GN 256 74.0 86.8 93.9 97.8
A-BIER [168] TPAMI’18 GN 512 74.2 86.9 94.0 97.8
D&C [188] CVPR’19 RN50 128 75.9 88.4 94.9 -
ABE-8 [103] ECCV’18 GNx8 512 76.3 88.4 94.8 -
MIC [182] CVPR’19 RN50 128 77.2 89.4 95.6 -
A-BIER Learner TPAMI’18 RN50 128 77.2 - - -
A-BIER TPAMI’18 RN50 512 79.0 - - -
DiVA [150] ECCV’20 RN50 512 79.6 91.2 - -
RLL-(L,M,H) [242] CVPR’19 IBN 1536 79.8 91.3 96.3 90.4
HORDE [91]a ICCV’19 IBN 512 80.1 91.3 96.2 98.7

Table 4.19: Comparison with the state-of-the-art on the Stanford Online Products [163] dataset.

a Uses non-standard data augmentation (multi-scale training, etc.).
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Method Year Net Size R@1 R@10 R@20 R@30

FashionNet
+ Joints [141]

CVPR’16 VGG 4096 41.0 64.0 68.0 71.0

FashionNet
+ Poselets [141]

CVPR’16 VGG 4096 42.0 65.0 70.0 72.0

FashionNet [141] CVPR’16 VGG 4096 53.0 73.0 76.0 77.0
HTL [58] ECCV’18 IBN 512 80.9 94.3 95.8 97.2
MS [243] CVPR’19 IBN 512 89.7 97.9 98.5 98.8

ProxyNCA++[217]a ECCV’20
RN50
GMP

512 90.4 98.1 98.8

ProxyAnchor [101] CVPR’20 IBN 512 91.5 98.1 98.8 -
MS+DIR [151] CVPR’20 IBN 512 91.7 98.1 98.7 98.9

Ensemble approaches:

HDC [262] ICCV’17 GN 384 62.1 84.9 89.0 91.2
Ours Baseline ICCV’17 GN 512 70.6 90.5 93.4 94.7
BIER Learner-3 [167] ICCV’17 GN 256 76.4 92.7 95.0 96.1
BIER [167] ICCV’17 GN 512 76.9 92.8 95.2 96.2
A-BIER Learner-3 TPAMI’18 GN 256 82.8 95.0 96.8 97.4
A-BIER TPAMI’18 GN 512 83.1 95.1 96.9 97.5
HORDE [91]a ICCV’19 GN 512 84.4 95.4 96.8 97.4
ABE-8 [103] ECCV’18 GNx8 512 87.3 96.7 97.9 98.2
HORDE [91]a ICCV’19 IBN 512 90.4 97.8 98.4 98.7

Table 4.20: Comparison with the state-of-the-art on the In-Shop Clothes Retrieval [141] dataset.

a Uses non-standard data augmentation (multi-scale training, etc.).

remaining 100 classes (5, 924 images) for testing. Similarly, we split the Cars-196 dataset

by using the first 98 classes (8, 054 images) for training and the remaining 98 classes for

testing (8, 131 images). The Stanford Online Products consists of 59, 551 training images

of 11, 318 classes and 60, 502 test images of 11, 316 classes. After training on these dataset,

for each test image, we retrieve the nearest neighbors from the remaining test images. We

then compute the Recall@K metric.

The In-Shop Clothes Retrieval dataset has predefined 25, 882 images of 3, 997 classes

for training. For evaluation the dataset defines a query set consisting of 14, 218 images

of 3, 985 classes and a gallery set consisting of 12, 612 images of 3, 985 classes. During

evaluation, for each image of the query set we retrieve the nearest neighbors from the

gallery set and compute the Recall@K metric.

VehicleID also has a predefined training set consisting of 25, 882 images of 3, 997 classes.

The dataset defines three increasingly large datasets for testing (Small, Medium, Large)

on which we evaluate our trained network with the Recall@K metric.

In our experiments, we train BIER with the binomial deviance loss and an embedding

size of 512. We set the number of learners to 3 with embedding sizes proportional to their
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boosting weights, i.e. 96, 160 and 256. When we evaluate on the CUB-200-2011 and Cars-

196 dataset, we follow previous works, e.g . [163], and report Recall@K, K ∈ {1, 2, 4, 8}. As

Stanford Online Products is larger than the Cars-196 and CUB-200-2011 dataset, similar to

previous works (e.g . [163]), we report Recall@K, K ∈ {1, 10, 100, 1000}. For the In-Shop

Clothes Retrieval and VehicleID datasets, we report Recall@K with K ∈ {1, 10, 20, 30}
and K ∈ {1, 5}, repectively.

In our experiments we also report the results of the last learner in our ensemble, i.e.

BIER Learner-3, as it achieves very competitive results an its own and was trained to

focus on the most difficult examples. Further, we report the accuracy of BIER with our

auxiliary adversarial loss function during training time (A-BIER) on all datasets, as it

outperforms our activation loss function in our ablation study experiments. Similar to

standard BIER we also report the results of our last learner in this ensemble (A-BIER

Learner-3 ).

Finally, as retrieval accuracy largely depends on the feature extractor [184], we make

BIER great again by using a more recent ResNet-50 [75] feature extractor. We evaluate

BIER with a ResNet-50 feature extractor on the Stanford Online Products [163] dataset.

For these experiments, we also follow the standard training protocols, e.g . [150, 182, 184].

Specifically, as our GoogLeNet version, we use input sizes of 224× 224 pixels, do standard

data augmentation and use an embedding size of 512. Similar to our GoogLeNet version,

we also use the binomial deviance loss function.

Results and baselines are shown in Tables 4.17, 4.18, 4.19, 4.20 and 4.21. At time of

publication, our method in combination with a simple loss function was able to achieve

competitive results or outperform state-of-the-art methods, which typically use more com-

plex loss functions, e.g . [153, 163, 206, 238], or sampling strategies, e.g . [73, 246, 262]

compared our method. When we apply our adversarial loss function during training (A-

BIER [168]), we further improve the performance of BIER [167]. Both our methods im-

prove our baseline, i.e. a network trained with binomial deviance loss, by a large margin.

Notably, most published methods, which adopt the GoogLeNet typically achieve lower

accuracy in terms of R@1 compared to our method.

Further, similar to the findings of Roth et al . [184], we find that by switching to a

more modern backbone network, we significantly can improve our method on the Stanford

Online Products dataset [163]. A-BIER trained with a ResNet-50 backbone and a simple

loss function, can still achieve very competitive results compared to modern state-of-

the-art approaches, which use a similar embedding size and feature extractor, e.g . [150,

217, 260, 264]. A single learner in our ensemble with a dimensionality of 128 achieves

also comparable results to state-of-the-art works using the same feature extractor and

dimensionality, e.g . [99, 182, 183, 188]. We also illustrate the progress in retrieval accuracy

on the Stanford Online Products in Figure 4.13. We see that the choice of feature extractor

has a large impact on retrieval accuracy.

Several successive works adopted and improved efficient ensembles for metric learning

over the years, e.g . [91, 103, 150, 182, 188, 242, 248, 262]. This confirms their success in
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Method Year Net Size Small Medium Large

1 5 1 5 1 5

Mixed Diff+CCL [136] CVPR’16 VGG 1024 49.0 73.5 42.8 66.8 38.2 61.6
GS-TRS loss [5] arxiv’17 VGG 1024 75.0 83.0 74.1 82.6 73.2 81.9

Ensemble approaches:

Ours Baseline ICCV’17 GN 512 78.0 87.5 73.0 84.7 67.9 82.4
BIER Learner-3 [167] ICCV’17 GN 512 82.6 90.5 79.3 88.0 75.5 86.0
BIER [167] ICCV’17 GN 512 82.6 90.6 79.3 88.3 76.0 86.4

A-BIER Learner-3 TPAMI’18 GN 512 86.0 92.7 83.2 88.6 81.5 88.6
A-BIER TPAMI’18 GN 512 86.3 92.7 83.3 88.7 81.9 88.7

Table 4.21: Comparison with the state-of-the-art on VehicleID [136].

metric learning.

Specifically, Attention-Based Ensemble (ABE)-8 [103] combines diversity loss functions

with attention to make learners diverse from each other. While this method typically

achieves better results compared to our method, it also has significantly higher compu-

tational cost, as the ensemble needs to be split at an early layer in the network. Deep

Randomized Ensembles for Metric Learning (DREML) [248] uses a different bagging of

the label space per learner to make the ensemble diverse. However, in their experiments,

they use a large ensemble of several ResNets. Consequently, there is a large computational

overhead. Higher Order Regularizer for Deep Embeddings (HORDE) [91] uses “higher-

order” regularization to train their ensemble. While this method achieves state-of-the-art

results, they employ non-standard data augmentation (e.g . multi-scale training, higher

input resolution, etc.). Ranked List Loss (RLL) [242] and Hardness Aware Deeply Cas-

caded Embedding (HDC) [262] use the benefits of deeply-supervised networks [118] to

train a multi-scale ensemble. This ensembling approach is orthogonal to ours. Divide

and Conquer (D&C) [188] and Mining Interclass Characteristics (MIC) [182] use cluster-

ings [182, 188] and a diversity loss function [182] to make learners diverse from each other.

In our comparison they perform worse than our ResNet implementation, because their

embedding size is too small to exploit the benefits of ensembles. Their successive work,

i.e. Diverse Visual Feature Aggregation for Deep Metric Learning (DiVA) [150], combines

our auxiliary loss function with different self-supervised auxiliary tasks for different learn-

ers. They employ a state-of-the-art loss function [184, 246], and consequently outperform

our ensemble approach.

4.8 Summary

In this chapter, we analyzed parameter shared CNN ensembles. These ensembles share

a common feature representation but have multiple classification heads. All heads try

to solve the same classification problem. The main problem of these efficient ensembles
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is that especially when they share a large number of parameters, the learner predictions

are highly correlated. To address this issue, we introduced several auxiliary loss func-

tions, i.e. the DivLoss, Activation Loss, and Adversarial Loss. We showed that auxiliary

loss functions benefit the diversity of such ensembles and consequently improve classifi-

cation performance. We showed the effectiveness of our method on several small object

categorization datasets.

In our extensive experiments, our method achieves competitive results to more recently

published ensembling methods. Compared to dropout, a traditional ensembling method,

our learners achieve higher accuracy and are more diverse from each other. However,

unlike dropout, our ensemble consists of a comparably smaller number of learners (i.e.

2-8). In contrast, dropout ensembles have an exponential number of learners.

Further, we showed that our method also benefits modern ResNet architectures. Effi-

cient ResNet ensembles can typically achieve a better speed vs accuracy trade-off on these

datasets.

Finally, we adapted our method to real-world image retrieval tasks. As we showed in

our evaluation, efficient parameter-shared ensembles trained with gradient online boosting

and with diversity auxiliary loss functions significantly benefit image retrieval performance.

In this specific field, efficient ensembles then gained a lot of research attention. A large

number of successive works, e.g . [91, 103, 150, 182, 188, 242, 248, 262], improved over our

diversity encouraging methods, and show that state-of-the-art methods in this field, can

still significantly benefit from efficient ensembles.



5
Conclusion

“Wisdom comes from experience. Experience is often

a result of lack of wisdom.”

— Terry Pratchett
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5.1 Summary

In this work, we gave an overview of several popular ensemble methods in the field of deep

learning. We categorized ensemble methods into implicit methods (e.g . dropout variants)

and explicit methods (e.g . standard ensembles). We analyzed explicit ensembles for deep

learning. The main disadvantage of these ensembles is that they are computationally too

expensive for applications with real-time requirements. Therefore, we proposed to share

most parameters in these ensembles. Consequently, such ensembles are computation-

ally cheaper and have less memory demand compared to standard ensembles. However,

one limitation of such ensembles is, that by sharing most parameters with each other,

the individual learners become increasingly correlated with each other. Consequently,

such ensembles show no benefits, according to the bias-variance-covariance decomposition

(Chapter 2).

This observation lead us to the following research question: “How can we increase the

diversity in explicit parameter shared ensembles?”. To address this question, we proposed

105
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several methods to increase the diversity in such ensembles. Specifically, we made three

contributions:

• First, in Chapter 3 we leveraged spatial independence by training discriminative

part-detectors for face detection. These part-detectors share a common feature rep-

resentation. Subsequently, we could map them back to a standard Convolutional

Neural Network (CNN) during test-time. Consequently, it does not impose any ad-

ditional runtime-overhead. However, one limitation of this approach is, that our

method has specific requirements on the network architecture. Specifically, the re-

ceptive fields in the layer, where we split our shared network into multiple learners,

should just cover the prototypical object parts (such as eye, mouth, nose, etc.) and

not the full object. In addition, our method needs pose-annotations during training

time.

• Second, in Chapter 4.2, we proposed auxiliary loss functions to increase diversity

in a parameter-shared CNN for an object categorization task. The main benefit

of this contribution is, that it addresses the limitation of our first one. It does

not impose any requirements on the network architecture and does not need ad-

ditional annotations. In our experiments, we showed that our ensembles are also

very competitive to recent state-of-the-art methods, which propose similar ideas to

ours. Further, we showed that our ensembles are typically more parameter-efficient

(i.e. achieve higher accuracy with less parameters and FLOPS) compared to (wide)

ResNet based networks.

• Third, in Chapter 4.3, we proposed a gradient-boosting based re-weighting scheme

and combined it with our second contribution for a real-world image-retrieval prob-

lem. In this setting, we showed that our approach can benefit standard CNNs in

terms of accuracy, without introducing any additional parameters and only negli-

gible additional runtime and memory overhead. Since time of publication, several

successive works in the area of metric learning for image retrieval, e.g . [103, 150, 170,

182, 188] (see Chapter 2), adopted this multi-head ensemble strategy and improved

it by using different means to encourage diversity between learners.

Most current research in visual recognition typically focuses on improving a

single model by e.g . improving architectural choices, e.g . [75, 212], improving loss

functions e.g . [58, 242], increasing the spatial resolutions of a single network, e.g . [132],

etc. Our contributions are complementary to most other research efforts. Specifically,

our contributions in Chapter 4 could benefit a wide variety of different computer vision

problems, as they do not impose any requirements on the network architecture or require

any additional supervision.

One limitation of our work is that our ensemble has a small number of learners com-

pared to traditional ensemble approaches such as Random Forest or Boosting. The main
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reason for this is that during training, we need to keep all learners simultaneously in mem-

ory, as they share parameters with each other. Further, we encourage diversity between

learners with an auxiliary loss function. These functions need to evaluate the activations

of pairs of learners during training for each sample. In contrast, standard ensembles can

be arbitrarily large, as we can train and evaluate them successively.

Another disadvantage of our work is that compared to standard architectural choices in

CNNs, our method requires changes to the last layer of a CNN . Consequently, we cannot

just pre-train a large network with our method on a large dataset (e.g . ImageNet) and re-

use it in “downstream” applications such as object detection and semantic segmentation.

We need to adapt these “downstream” tasks to properly use the ensemble, which requires

additional engineering effort.

5.2 Future Work

Due to the rapid advances in Graphics Processing Unit (GPU) hardware and special

hardware accelerators for deep learning, such as the Tensor Processing Unit (TPU), more

computational resources and more memory capacity will be available for training neu-

ral networks. Consequently, this will allow to scale parameter-shared ensembles to a

larger number of learners and to reduce the amount of shared parameters among learn-

ers. Further, more computational resources will make efficient ensembles more applicable

to memory intensive tasks such as object detection, or semantic segmentation. Further,

we showed in our experiments that parameter-shared ensembles typically achieve better

pareto-optimal results compared to standard CNNs. Consequently, with the advances in

compute, it will be possible to include these types of networks into the search space of

Neural Architecture Search (NAS) frameworks, e.g . [286].

Successive works, e.g . [103, 150, 170, 182, 188], in the area of metric learning al-

ready explored the benefits of parameter-shared ensembles and proposed novel methods

to make learners diverse from each other. These approaches could be adopted for generic

object classification tasks, making them available to a wider variety of computer vision

applications. Specifically, attention-based ensembles [103] might be beneficial for building

part-based object detectors. However, as these ensembles typically do not share most

parameters, this is currently computationally expensive. Another interesting line of work

are methods which introduce diversity by self-supervised learning methods [150]. These

methods could be adopted by e.g . biasing different learners with different auxiliary self-

supervised functions or using different unlabeled datasets for different learners. Further,

the diversity encouraging loss functions we proposed in this thesis could also be applied

to non-labelled datasets.

Another interesting future research direction for our work is trying to combine efficient

ensembles with other types of neural networks, such as Transformers [225], PointNets [172],

etc. Specifically, recent research suggests that Transformers can achieve very competitive

or better performance compared to CNNs on image classification, e.g . [221]. It might be
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beneficial for these architectures to exploit the benefits of ensembles by e.g . integrating

multiple classification tokens and bias their attention mask towards different channels, etc.

Another research direction is applying parameter-shared ensembles in applications,

where ensembles are successful. For example, uncertainty estimation, e.g . [2, 87], for deep

learning is an increasingly important problem. Standard CNNs tend to make high con-

fidence predictions on samples, which are very different from the training distribution,

e.g . [131]. To address this problem, several works use MC-Dropout to measure the varia-

tion in predictions of the individual dropout learners, e.g . [2, 87]. Uncertainty estimates

from ensembles are also useful for active learning [9]. Active learning tries to minimize

the labeling effort by carefully selecting non-annotated images for labeling. To minimize

labeling effort, such methods try to select samples for labeling, where the current network

is uncertain. By re-training the network on uncertain samples, the accuracy improves

more compared to re-training on random samples. Parameter-shared ensembles could al-

low to obtain cheaper uncertainty estimations compared to full ensembles or MC-Dropout

approaches.

Another emerging line of work is continual learning [115]. These approaches try to

incrementally train a learner (i.e. a neural network) over time. In these setting the data

distribution is not independent and identically distributed, but changes over time. One

of the challenges in this area is so-called “catastrophic forgetting”. For example, consider

a continual learning system for self-driving cars. Such a learning system should be able

to incrementally learn to navigate through changing weather conditions. In this case, the

data distribution might be sunny in the beginning, but then shift towards rainy. Neural

network tend to forget in this case the sunny data distribution, while driving in the rain.

However, if the weather gets sunny again, the network should still be able to perform

well in these conditions. Continual learning approaches address this problem. One way

parameter-shared ensembles could be useful in these settings is to allocate certain learners

to specific sub-parts of the data distribution (i.e. one learner to sunny, another to rainy).

Another way to apply ensembles is to let several learners change slower over time, so

that they have a better chance at learning the full data distribution. Another part of the

learners changes faster over time. Subsequently, they have a chance to become “experts”

for certain weather conditions.

To conclude this thesis, while compared to traditional ensembles, our method cannot

scale easily to arbitrarily large ensembles, future increase in GPU memory and compute

will alleviate this problem. Further, as we showed in our experiments, even small ensemble

sizes can benefit current CNNs and achieve a better speed-vs-accuracy trade-off. We think

that such ensembles can benefit a wide variety of computer vision problems in the field of

visual recognition. Further, they might be beneficial for emerging research works such as

uncertainty estimation or continual learning.
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“If only we had laboratories to produce self-

replicating scientists, to explore all the worlds. Ah,

but we do! They’re called university campuses.”

— Terry Pratchett

ABE Attention-Based Ensemble

ACF Aggregate Channel Features

AFLW Annotated Facial Landmarks in the Wild

AFW Annotated Faces in the Wild

AP Average Precision

BIER Boosting Independent Embeddings Robustly

CED Coalition-based Ensemble Design

CNN Convolutional Neural Network

COFW Caltech Occluded Faces in the Wild

CPU Central Processing Unit

D&C Divide and Conquer

DiVA Diverse Visual Feature Aggregation for Deep Metric

Learning

DPM Deformable Parts Model

DREML Deep Randomized Ensembles for Metric Learning

FDDB Face Detection Data Set and Benchmark

FPN Feature Pyramid Network

FPPI False Positives Per Image

GAN Generative Adversarial Network
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GPU Graphics Processing Unit

HDC Hardness Aware Deeply Cascaded Embedding

HOG Histogram of Oriented Gradients

HORDE Higher Order Regularizer for Deep Embeddings

IoU Intersection over Union

LCN Local Contrast Normalization

LDA Linear Discriminant Analysis

mAP mean Average Precision

MIC Mining Interclass Characteristics

MSE Mean Square Error

NAS Neural Architecture Search

NCA Neighborhood Component Analysis

NCL Negative Correlation Learning

NMS Non Maxima Suppression

OHEM Online Hard Example Mining

ReLU Rectified Linear Unit

RLL Ranked List Loss

RoI Region of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SNR Signal to Noise Ratio

SSE Sum of Squares Error

SVM Support Vector Machine

TPU Tensor Processing Unit
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“How many roads must a man walk down?”

— Douglas Noel Adams

My work at the Institute of Computer Graphics and Vision led to the following peer-

reviewed publications.

2016

Grid Loss: Detecting Occluded Faces

M. Opitz, G. Waltner, G. Poier, H. Possegger, and H. Bischof.

In Proceedings of the European Conference on Computer Vision (ECCV),

2016

Abstract: Detection of partially occluded objects is a challenging computer vision prob-

lem. Standard Convolutional Neural Network (CNN) detectors fail if parts of the detection

window are occluded, since not every sub-part of the window is discriminative on its own.

To address this issue, we propose a novel loss layer for CNNs, named grid loss, which mini-

mizes the error rate on sub-blocks of a convolution layer independently rather than over the

whole feature map. This results in parts being more discriminative on their own, enabling

the detector to recover if the detection window is partially occluded. By mapping our loss

layer back to a regular fully connected layer, no additional computational cost is incurred

at runtime compared to standard CNNs. We demonstrate our method for face detection on

several public face detection benchmarks and show that our method outperforms regular

CNNs, is suitable for realtime applications and achieves state-of-the-art performance.

Chapters: 3

111



112 Chapter B. List of Publications

Efficient Model Averaging for Deep Neural Networks

M. Opitz, H. Possegger, and H. Bischof.

In Proceedings of the Asian Conference on Computer Vision (ACCV),

2016

Abstract: Large neural networks trained on small datasets are increasingly prone to

overfitting. Traditional machine learning methods can reduce overfitting by employing

bagging or boosting to train several diverse models. For large neural networks, however,

this is prohibitively expensive. To address this issue, we propose a method to leverage

the benefits of ensembles without explicitely training several expensive neural network

models. In contrast to Dropout, to encourage diversity of our sub-networks, we propose to

maximize diversity of individual networks with a loss function: DivLoss. We demonstrate

the effectiveness of DivLoss on the challenging CIFAR datasets.

Chapters: 4

BaCoN: Building a Classifier from only N Samples

G. Waltner, M. Opitz, and H. Bischof.

In Proceedings of the Computer Vision Winter Workshop (CVWW),

2016

Abstract: We propose a model able to learn new object classes with a very limited

amount of training samples (i.e. 1 to 5), while requiring near zero runtime cost for learning

new object classes. After extracting Convolutional Neural Network (CNN) features, we

discriminatively learn embeddings to separate the classes in feature space. The proposed

method is especially useful for applications such as dish or logo recognition, where users

typically add object classes comprising a wide variety of representations. Another benefit

of our method is the low demand for computing power and memory, making it applicable

for object classification on embedded devices. We demonstrate on the Food-101 dataset

that even one single training example is sufficient to recognize new object classes and con-

siderably improve results over the probabilistic Nearest Class Means (NCM) formulation.

2017

BIER: Boosting Independent Embeddings Robustly

M. Opitz, G. Waltner, H. Possegger, and H. Bischof.

In Proceedings of the IEEE International Conference on Computer Vision (ICCV),

2017.

(accepted for oral presentation)

Abstract: Learning similarity functions between image pairs with deep neural networks

yields highly correlated activations of large embeddings. In this work, we show how to im-

prove the robustness of embeddings by exploiting independence in ensembles. We divide the

last embedding layer of a deep network into an embedding ensemble and formulate training
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this ensemble as an online gradient boosting problem. Each learner receives a reweighted

training sample from the previous learners. This leverages large embedding sizes more ef-

fectively by significantly reducing correlation of the embedding and consequently increases

retrieval accuracy of the embedding. Our method does not introduce any additional pa-

rameters and works with any differentiable loss function. We evaluate our metric learning

method on image retrieval tasks and show that it improves over state-of-the-art methods

on the CUB-200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and

VehicleID datasets by a significant margin.

Chapters: 4

Loss-Specific Training of Random Forests for Super-Resolution

A. Grabner, G. Poier, M. Opitz, S. Schulter, and P. Roth.

In Proceedings of the Computer Vision Winter Workshop (CVWW),

2017

Abstract: Super-resolution addresses the problem of image upscaling by reconstructing

high-resolution output images from low-resolution input images. One successful approach

for this problem is based on random forests. However, this approach has a large memory

footprint, since complex models are required to achieve high accuracy. To overcome this

drawback, we present a novel method for constructing random forests under a global train-

ing objective. In this way, we improve the fitting power and reduce the model size. In

particular, we combine and extend recent approaches on loss-specific training of random

forests. However, in contrast to previous works, we train random forests with globally

optimized structure and globally optimized prediction models. We evaluate our proposed

method on benchmarks for single image super-resolution. Our method shows significantly

reduced model size while achieving competitive accuracy compared to state-of-the art ap-

proaches.

Pedestrian Detection in RGB-D Images from an Elevated Viewpoint

C. Ertler, H. Possegger, M. Opitz, and H. Bischof

In Proceedings of the Computer Vision Winter Workshop (CVWW),

2017

Abstract: We propose an extension to the state-of-the-art Faster R-CNN detection model

for multi-modal pedestrian detection from RGB-D images. The proposed architectures

address this problem by fusing convolutional neural network (CNN) representations. We

elaborate two architectures, which primarily differ in the position of the fusion inside the

model, and further compare several static and parametrized fusion layers. Moreover, we

show how recent advances in the area of non-maximum suppression (NMS) can improve the

detection results of our models and make them more robust in applications with varying
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pedestrian densities. Our models are trained and evaluated on a custom dataset com-prising

images of crosswalk scenes taken from an elevated viewpoint. This viewpoint results in

uncommon and highly variable poses of pedestrians, demanding powerful detection models.

2018

Deep Metric Learning with BIER: Boosting Independent Embeddings Robustly

M. Opitz, G. Waltner, H. Possegger, and H. Bischof.

Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

2018

Abstract: Learning similarity functions between image pairs with deep neural networks

yields highly correlated activations of embeddings. In this work, we show how to improve

the robustness of such embeddings by exploiting the independence within ensembles. To

this end, we divide the last embedding layer of a deep network into an embedding ensemble

and formulate training this ensemble as an online gradient boosting problem. Each learner

receives a reweighted training sample from the previous learners. Further, we propose

two loss functions which increase the diversity in our ensemble. These loss functions can

be applied either for weight initialization or during training. Together, our contributions

leverage large embedding sizes more effectively by significantly reducing correlation of the

embedding and consequently increase retrieval accuracy of the embedding. Our method

works with any differentiable loss function and does not introduce any additional parameters

during test time. We evaluate our metric learning method on image retrieval tasks and show

that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford

Online Products, In-Shop Clothes Retrieval and VehicleID datasets.

Chapters: 4

An Intent-Based Automated Traffic Light for Pedestrians

C. Ertler, H. Possegger, M. Opitz, and H. Bischof.

In Proceedings of the IEEE International Conference on Advanced Video and Signal

Based Surveillance (AVSS),

2018

Abstract: We propose a fully automated, vision-based traffic light for pedestrians. Tra-

ditional industrial solutions only report people standing in a constrained waiting zone near

the crosswalk. However, reporting only people below the traffic light does not allow for

efficient traffic scheduling. For example, some pedestrians do not want to cross the street

and walk past the traffic light, or just wait for another person to arrive. In contrast, our

system leverages intent prediction to estimate which pedestrians are actually going to cross

the road by analyzing both short-term and long-term trajectory cues. In this way, we can
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decrease the waiting times and pave the road for optimal and adaptive traffic light schedul-

ing. We conduct a long-term evaluation in a European capital that proves the applicability

and reliability of our system and demonstrates that it is not only able to replace existing

push-button solutions but also yields additional information that can be used to further

optimize traffic light scheduling.

Deep 2.5D Vehicle Classification with Sparse SfM Depth Prior for Automated

Toll Systems

G. Waltner, M. Maurer, T. Holzmann, P. Ruprecht, M. Opitz, H. Possegger, F.

Fraundorfer, and H. Bischof.

In Proceedings of the IEEE Intelligent Transportation Sys tems Conference (ITSC),

2018

Abstract: Automated toll systems rely on proper classification of the passing vehicles.

This is especially difficult when the images used for classification only cover parts of the

vehicle. To obtain information about the whole vehicle. We reconstruct the vehicle as

3D object and exploit this additional information within a Convolutional Neural Network

(CNN). However, when using deep networks for 3D object classification, large amounts

of dense 3D models are required for good accuracy, which are often neither available nor

feasible to process due to memory requirements. Therefore, in our method we reproject the

3D object onto the image plane using the reconstructed points, lines or both. We utilize

this sparse depth prior within an auxiliary network branch that acts as a regularizer during

training. We show that this auxiliary regularizer helps to improve accuracy compared to

2D classification on a real-world dataset. Furthermore due to the design of the network, at

test time only the 2D camera images are required for classification which enables the usage

in portable computer vision systems.

2019

HiBsteR: Hierarchical Boosted Deep Metric Learning for Image Retrieval

G. Waltner, M. Opitz, H. Possegger, and H. Bischof.

In Proceedings of the IEEE Winter Conference on Applications of Computer Vision

(WACV),

2019

Abstract:

When the number of categories is growing into thou-sands, large-scale image retrieval be-

comes an increasingly hard task. Retrieval accuracy can be improved by learning distance

metric methods that separate categories in a trans-formed embedding space. Unlike most

methods that utilize a single embedding to learn a distance metric, we build on the idea of

boosted metric learning, where an embed-ding is split into a boosted ensemble of embed-

dings. While in general metric learning is directly applied on fine labels to learn embeddings,
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we take this one step further and incorporate hierarchical label information into the boost-

ing framework and show how to properly adapt loss functions for this purpose. We show

that by introducing several sub-embeddings which focus on specific hierarchical classes, the

retrieval accuracy can be improved compared to standard flat label embeddings. The pro-

posed method is especially suitable for exploiting hierarchical datasets or when additional

labels can be retrieved without much effort.Our approach improves R@1 over state-of-the-

art methods on the biggest available retrieval dataset (Stanford Online Products) and sets

new reference baselines for hierarchical metric learning on several other datasets (CUB-

200-2011,VegFru, FruitVeg-81). We show that the clustering quality in terms of NMI score

is superior to previous works.

Semi-supervised Detector Training with Prototypes for Vehicle Detection

G. Waltner, M. Opitz, G. Krispel, H. Possegger, and H. Bischof

In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC),

2019

Abstract:

Adapting detectors to new datasets is needed in scenarios where a user has a specific

dataset that contains novel classes or is recorded in a setting where a pretrained detector

fails. While detectors based on Convolutional Neural Networks(CNNs) are state-of-the-

art and nowadays publicly available,they suffer from bad generalization capabilities when

applied on datasets that notably differ from the one they were trained on. Finetuning the

detector is only possible if the dataset is large enough to not destroy the underlying feature

representation.We propose a method where only a few prototypes are labeled for training in

a semi-supervised manner. In particular, we separate the detection from the classification

step to avoid impairing the bounding box proposal generation. Our trained prototype

classification network provides labels to automatically source a large dataset containing 20

to 30 times more samples without further supervision, which we then use to train a more

powerful network. We evaluate our method on a private vehicle dataset with six classes

and show that evaluating on a previously unseen recording site we can gain an accuracy

increase of 9% at same precision and recall levels. We further show that finetuning with as

few as 25 labeled samples per class doubles accuracy compared to directly using pretrained

features for nearest neighbor classification

MURAUER: Mapping Unlabeled Real Data for Label AUstERity

G. Poier, M. Opitz, D. Schinagl, and H. Bischof.

In Proceedings of the IEEE Winter Conference on Applications of Computer Vision

(WACV),

2019

Abstract: Data labeling for learning 3D hand pose estimation models is a huge effort.

Readily available, accurately labeled synthetic data has the potential to reduce the effort.

However, to successfully exploit synthetic data, current state-of-the-art methods still require

a large amount of labeled real data. In this work, we remove this requirement by learning



117

to map from the features of real data to the features of synthetic data mainly using a large

amount of synthetic and unlabeled real data. We exploit unlabeled data using two auxiliary

objectives, which enforce that (i) the mapped representation is pose specific and (ii) at the

same time, the distributions of real and synthetic data are aligned. While pose specifity

is enforced by a self-supervisory signal requiring that the representation is predictive for

the appearance from different views, distributions are aligned by an adversarial term. In

this way, we can significantly improve the results of the baseline system, which does not

use unlabeled data and outperform many recent approaches already with about 1% of the

labeled real data. This presents a step towards faster deployment of learning based hand

pose estimation, making it accessible for a larger range of applications.

Detecting Out-of-Distribution Traffic Signs

M. Iyengar, M. Opitz, and H. Bischof.

In Proceedings of the Austrian Association for Pattern Recognition Workshop

(AAPR),

2019

Abstract:

This work addresses the problem of novel traffic sign detection, i.e. detecting new traffic

sign classes during test-time, which were not seen by the classifier during training. This

problem is especially relevant for the development of autonomous vehicles, as these vehicles

operate in an open-ended environment. Due to which, the vehicle will always come across

a traffic sign that it has never seen before. These new traffic signs need to be immediately

identified so that they can be used later for re-training the vehicle. However, detecting these

novel traffic signs becomes an extremely difficult task,as there is no mechanism to identify

from the output of the classifier whether it has seen a given test sample before or not.To

address this issue, we pose the novel traffic-sign detection problem as an out-of-distribution

(OOD) detection problem.We apply several state-of-the-art OOD detection methods and

novelty detection methods on the novel traffic-sign detection problem and also establish

a benchmark using the German Traffic Sign Recognition Benchmark dataset(GTSRB). In

our evaluation, we show that both out-of-distribution approaches and novelty detection

approaches are suitable for OOD traffic sign detection.

2020

FuseSeg: LiDAR Point Cloud Segmentation Fusing Multi-Modal Data

G. Krispel, M. Opitz, G. Waltner, H. Possegger, and H. Bischof.

In Proceedings of the IEEE Winter Conference on Applications of Computer Vision

(WACV),

2020

Abstract: We introduce a simple yet effective fusion method of LiDAR and RGB data to

segment LiDAR point clouds. Utilizing the dense native range representation of a LiDAR
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sensor and the setup calibration, we establish point correspondences between the two input

modalities. Subsequently, we are able to warp and fuse the features from one domain into

the other. Therefore, we can jointly exploit information from both data sources within one

single network. To show the merit of our method, we extend SqueezeSeg, a point cloud

segmentation network, with an RGB feature branch and fuse it into the original structure.

Our extension called FuseSeg leads to an improvement of up to 18% IoU on the KITTI

benchmark. In addition to the improved accuracy, we also achieve real-time performance

at 50 fps, five times as fast as the KITTI LiDAR data recording speed.
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