
Philipp Fleischhacker, BSc

Validation of Feature Models using
Semantic Web technologies

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Inf. Univ. Dr.rer.nat. Marcel Carsten Baunach

Institut für Technische Informatik
Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

Graz, April 2021

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

With the introduction of Industry 4.0, a push for automation started in
manufacturing. Companies need to adapt to this shift, which influences
the way new products are developed. Often, products share similar traits
to other products. To reduce development time, companies have started to
reuse components of previous products to create new ones. In order to do
so, these products need to be designed in a way to support reuse.

The field of Software Product Lines (SPL) aims to increase the reuse of
software components. One of the most used tools of SPL are feature models.
A feature model is a hierarchical model of all components in a product
family, and the dependencies between them. Valid combinations of features
from the model form a product.

The Semantic Web has been gaining popularity both academically and in
industry. With the recent introduction of the Shapes Constraint Language
(SHACL) standard for validating Resource Description Frame (RDF) models,
we want to investigate how well suited it is for feature modelling.

In this thesis, we build a feature model system using the Semantic Web
technologies RDF and SHACL. This system allows a user to configure a
product, and validate whether the configuration is a valid product. As
RDF is a graph based way to structure data, we directly map a feature
tree to an RDF model. We model the constraints of the feature model as
SHACL shapes. SHACL allows us to specify advanced constraints, such
as attribute constraints over aggregates of attributes, in addition to the
standard constraints of feature models (require, exclude, cardinality). We
use the features built into SHACL to describe complex constraints on the
feature model. Using Semantic Web technologies has the benefit making the
system platform independent. To facilitate the definition of these constraints,
a simple textual Domain Specific Language (DSL) was created. Writing RDF

v

by hand is cumbersome, so this gives users a way to define constraints in a
concise and readable way.

Testing shows that the system performs well, even with large models con-
sisting of only boolean constraints. When using models containing a large
amount of advanced constraints, the system still performs well with medium
size models of about 500 features and an equal number of constraints.

vi

Contents

Abstract v

1 Introduction 1
1.1 Structure of the Thesis . 3

2 Background and Motivation 5
2.1 Feature Modelling . 5

2.1.1 Structure of Feature Models 5

2.2 Semantic Web . 7

2.2.1 Resource Description Framework - RDF 8

2.2.2 Ontology Web Language - OWL 10

2.2.3 SPARQL . 10

2.2.4 Shapes Constraint Language - SHACL 13

2.3 Domain Specific Languages . 15

2.3.1 ANTLR . 16

2.4 Motivation . 18

3 Related Work 19
3.1 Feature Models . 19

3.1.1 Semantic Web Based Analysis of Product Line Variant
Model . 19

3.1.2 Applying Semantic Web Technology to Feature Mod-
eling . 21

3.1.3 Decision-making coordination and efficient reasoning
techniques for feature-based configuration 23

3.1.4 Automated Reasoning on Feature Models 25

3.2 Variant Management Approaches 27

3.2.1 Integrating Semantic Web Technologies and ASP for
Product Configuration 27

vii

Contents

3.2.2 Software Product Lines Online Tools 28

4 Design and Concept 31
4.1 Defining Feature Model Requirements 31

4.1.1 System Requirements 32

4.1.2 Requirements Summary 34

4.2 Formal Definition . 35

4.2.1 Basic Relationships . 35

4.2.2 Extended Features . 37

4.2.3 Combination of selections 38

4.2.4 Attributes . 38

4.2.5 Functions . 39

4.2.6 Global Parameters . 40

4.3 Language Design . 40

5 Implementation and Realization 43
5.1 System Architecture . 43

5.1.1 Components . 43

5.1.2 Application Flow . 45

5.2 Creating the System Model . 46

5.3 Compiling Configuration Containers 48

5.3.1 Grammar . 48

5.3.2 Rule Parser . 52

5.3.3 Visitor . 53

5.4 Building the Feature Model . 55

5.4.1 Feature tree . 56

5.4.2 Shapes Graph . 57

5.5 Validating the Model . 61

6 Building a Model 63
6.1 Model Creation . 63

6.2 Creating Rules . 65

7 Evaluation and Analysis 69
7.1 Performance Evaluation . 69

7.1.1 Setup . 69

7.1.2 Extended Constraints 71

viii

Contents

7.1.3 Results . 73

8 Conclusion and Outlook 79
8.1 Outlook . 79

8.1.1 Limitations of SHACL 80

8.2 Conclusion . 81

Bibliography 83

ix

1 Introduction

For the last decade, industrial manufacturing has been undergoing a revolu-
tion, called ”Industry 4.0” [1]. Industry 4.0 has spurred the development
of new manufacturing techniques caused by rapid changes and increas-
ing competitiveness in the manufacturing market, as well as changes of
customer demands.

Companies are required to adapt to this change of markets in order to stay
competitive [2]. This causes a paradigm shift in how products are developed.
Different products often share similar components among them. Companies
exploit these similarities in order reuse components of older products to
develop new ones. This requires products to be developed in a way to enable
this reuse with the least effort possible.

A software product line is defined as “a set of products that share a com-
mon core technology and address a related set of market applications”[3].
Software Product Lines (SPL) are the methods and technologies used to
create product lines. Fields like SPL continue to gain importance. While
SPL often concerns itself with modelling software products, the underlying
principles can be applied to any type of product.

One of the tools from SPL are feature models. Feature models are hierarchi-
cal models of all the components of a product family. They can be used to
model the variability of any product. Using feature models, it is possible
to build a structure to model the hierarchy of components of a product
family, and model dependencies between these components. By combining
components that do not violate constraints, new products can be derived
[4]. By being able to reuse components in this way, it is possible to develop
new products that cater to a customer’s need more efficiently.

In this thesis, we develop a new variant management system, that is able to
handle complex constraints between components. In addition to building

1

1 Introduction

a feature model system, we will, we will also develop a Domain Specific
Language (DSL) to define constraints for this feature model in a user friendly
manner. To do so, we will first look at the broader background of feature
modelling. We will look at the different ways how feature models and
systems that use them are built. We will build our feature modelling system
using Semantic Web technologies. Using the Semantic Web gives us a
platform independent way to both structure and validate data. In particular,
we will use the Resource Description Framework (RDF) [5] and the Shapes
Constraint Language (SHACL) [6].

RDF describes a way to structure data, while SHACL describes a way to
validate this data according to defined rules. We will take a more detailed
look at these standards in Chapter 2. The Semantic Web has been gaining
a lot of interest in both industry and academia due to its applicability in a
multitude of different fields.

One major application of the Semantic Web is to describe data on the
internet. Google uses the Semantic Web, in particular RDF to improve
search results [7]. The way this works is that google will look for structured
data that the website owner defined on the site. The data has to adhere to
guidelines for google to understand it. It can for example be a JSON-LD
object with properties such as datePublished or rating. Adding semantic data
to a website not only improves search results, but also enables special search
features, like embedding the content in a certain way in search results.

Apart from describing meta-data on the internet, RDF has found numerous
other applications. One such application is in digital libraries [8]. Digital
libary data lends itself well to the ways semantic web data is structured, as
often information can be uniquely identified and we often want to categorize
it by certain properties. Using Semantic Web technologies was found to be
a good way to make data more searchable on the web.

Semantic Web technologies also increasingly find usage in architecture,
engineering and construction [9]. In these fields Semantic Web technologies
are often used complementary to existing software. The use of Semantic
Web tools is motivated by the desire to improve interoperability between
software tools and the desire to connect multiple domains of applications.

2

1.1 Structure of the Thesis

The Semantic Web has also found applications in biology. DisGenNET-RDF
[10] has provided knowledge about the genetic basis of diseases in the RDF
format. The information is linked to other biomedical databases to support
development and research in bioinformatics.

Life science researchers use semantically annotated data to create models
more efficiently [11]. The semantic web allows the reusability and interoper-
ability of models across different model repositories.

1.1 Structure of the Thesis

Chapter 2 gives an overview of feature models and the Semantic Web. We
will introduce the history and basic concepts of variant management and
software product lines. We will also state the goals of the thesis.

In Chapter 3 we will give an overview of works related to this thesis. We
will give an in depth look into different implementations of feature models,
and what their supported features are. We will also look at different types
of variant management systems that have been implemented.

Having summarized the current state of the art, in Chapter 4, we will
introduce the design for the system we will build. This includes the feature
requirements for the system and an example of how the features will be
used.

Chapter 5 describes the implementation details of the system. We give an
overview of the architecture of the system and explain which technologies
were used for the implementation and why.

Chapter 6 gives an overview of how the system can be used from a user’s
perspective. We give an overview of how to define a feature model and how
to formulate constraints for the feature model.

In Chapter 7 we will give an evaluation on the system performance. The
evaluation is split into an evaluation of the performance of the basic func-
tionality of a feature model and an evaluation of the advanced features.

3

1 Introduction

Finally, Chapter 8 will give an outlook on what could be improved in the
future.

4

2 Background and Motivation

In this chapter we will explain the background and motivation for this
thesis. We are first going to give an overview over how feature models are
structured, then we will give an introduction to the Semantic Web, and
finally state the motivation for this thesis.

2.1 Feature Modelling

One way efficiency in product development can be improved, is by reusing
components of other products. SPL is a field that aims to do just that.

One of the most popular approaches to modelling variability of systems
that developed from SPL is Feature Modelling. Feature models are models
that contain all the components of a system and describe the relationships
between them. Feature models are built as a tree with a parent-child rela-
tionship between features. According to [3], a general definition of feature
models is: ”A feature model is a description of the commonalities and
differences between the individual software systems in a software product
family”. There are many different kinds of feature models with different
use cases and features.

2.1.1 Structure of Feature Models

Figure 2.1 shows a graphical representation of a simple feature model for a
mobile phone.

As can be seen, features are structured in a hierarchical way, forming a tree.
For example, the feature Media has the child features Camera and MP3. In the

5

2 Background and Motivation

Figure 2.1: An example for a feature model tree, containing a feature hierarchy for a mobile
phone [12]

figure we can see all the types of relationships that are are usually supported
by feature models. There are multiple types of hierarchical relationships.
According to [13], the basic set of relationships are: Mandatory, Optional,
Alternative, and Or. Mandatory and optional denote when a child feature
has to be included, while Alternative and Or constraint groups of child
features.

Cross Tree Constraints

Given the basic relationships, we can model constraints between parent
features and direct child features. Additionally, it is often needed to also
model constraints between features that are not in a direct relationship.
We call these types of constraints cross-tree-constraints. They are used to
require or exclude a feature, based on the selection of another feature.

An example for a cross tree constraint can be seen in Figure 2.1. The
dotted line between the features Camera and High Resolution represents
a requirement constraint. It means that if Camera is included then High
Resolution must also be selected.

6

2.2 Semantic Web

Attributed Feature Models

With the relationships described above we can create rules that constrain
which features can or must be selected. However, we can only make rules
that restrict the selection of a feature based on the selection of another
feature. In order to increase the expressiveness of the feature model, many
propositions include attributes to more closely describe the features. [14, 15,
16]. Feature models that support the use of attributes are called attributed
feature models [12].

While there is currently no standardized way how attributes are supposed
to be defined, they usually include a name, a value and a domain for that
value. The use of attributes allows more powerful constraints to be defined.
It allows for features to be restricted or required based on an attribute
value they have. For example, consider a feature having the attribute Power-
Consumption. We can define a constraint saying that if a specific feature is
included, then only features with a PowerConsumption of less than a certain
threshold are allowed to be selected.

Logical Operators

Many feature models have support for building logical formulas for con-
straints. This allows the combination of selections using logical operators.
This greatly increases the expressiveness of constraints.

if A && B then restrict C

These rules can often not feasibly included in the feature tree itself. There-
fore, there is often an extra way to specify these constraints.

2.2 Semantic Web

As mentioned in Chapter 1, we will use Semantic Web technologies as the
core for our feature model due to its applicability to feature modelling and

7

2 Background and Motivation

its platform independence. This section is meant to explain the background
to the Semantic Web.

The idea for the Semantic Web was first described in 2001, with the goal of
making data on the internet machine readable [17]. For this purpose, several
specifications were developed to represent semantic data and to query this
data. One of the specifications is the Resource Description Framework (RDF)
[5]. RDF is a format for storing data. Another format to store semantic data
is the Web Ontology Language (OWL) [18]. While support for Semantic
Web meta data on the internet remains somewhat low (in 2013 there were 3

million domains containing semantic markup [19]), there are useful applica-
tions in other domains such as library science ([8]) and biology ([11]), [10]).
We will describe the technologies and some of their applications in more
detail.

2.2.1 Resource Description Framework - RDF

RDF is a specification for representing semantic data from the World Wide
Web Consortium (W3C) [5]. It was first specified in 1997 and remains one
of the most common ways to represent data for the Semantic Web. RDF
allows the encoding and reuse of metadata. The language itself makes no
assumptions on the semantics of the metadata. Every resource in an RDF
model is described by an International Resource Identifier (IRI).

While originally RDF was an XML language [20], there are many different
formats in which RDF graphs can be saved. Two common ones are the
Turtle format, and JSON-LD. Turtle stores triples by seperating the IRI of
the resources by a space and ending each triple with a period. It also groups
triples by resources so that each subject only has to be stored once. JSON-LD
stores triples in the JSON format. Each JSON object has a subject IRI and
key value pairs for each property of the subject.

The IRI for a resource can be shortened by using namespace prefixes. It is
possible to define a prefix (e.g. ex:) which replaces the domain part of the
IRI. For example say we have the resource http://www.example.org/myresource.
With a namespace prefix we can define ex: to be http://www.example.org/. This
shortens it to just ex:myresource. Below is an example for an RDF model

8

2.2 Semantic Web

Figure 2.2: An example graph representation of an RDF model [5]

in the turtle format. The model consists of a university resource that has
a Name and location property, and another resource that has an owner
property pointing to the university.

<www.asu.edu> ex:Owner ex:University_1.

ex:University1 ex:Name "Arizona State University";

ex:Location "Tempe, AZ".

Resources can have properties with their own IRI. These properties point to
values, which can be other Resources in the model. We can view RDF models
as a graph, which is why they are also called RDF graphs. The graph consists
of the resources as nodes and properties as edges between nodes. Figure
2.2 shows the example described above in a graph representation. Since
each identifier for a resource should be unique, properties can also refer to
resources that are not part of the same RDF graph. Each of these structures of
resource-property-value is called a triple, consisting of a subject a predicate
and an object. Because triples can have resources as objects, which means
that resources can be connected to other resources via multiple property
paths.

There are numerous applications that support the RDF specification and
offer functionality for creating and querying models. Examples are Apache
Jena, an implementation as a Java library, DotnetRDF, an open source
implementation for C# and TopBraid Composer by TopQuadrant.

9

2 Background and Motivation

RDF Schema (RDFS) [21] is a specification that provides semantic exten-
sions to RDF. It allows resources to be grouped together and more closely
described via a group of properties. RDFS allows RDF data to be structured
in an object oriented way. To do so it provides properties such as rdf:class
to determine that a resource is a class. Accordingly, there is also an rdf:type
property to declare that a resource is an instance of a class. Class hierarchies
are possible via the rdfs:subclassOf property.

2.2.2 Ontology Web Language - OWL

OWL is another way to represent data in the Semantic Web. It’s a declarative
language that aims to make it possible to reason about the model.

OWL is a language of the Semantic Web stack [18]. The language is designed
to represent complex knowledge about things, and relationships between
things. Being a Semantic Web language, the goal is to represent data in a
way such that it can be reasoned about by software. OWL models are called
ontologies. It defines a set of precise statements about a part of the world
(the domain of interest). It is necessary to have precise descriptions in order
to be able to reason about these statements. In order to precisely describe
the domain, OWL documents usually contain a vocabulary of terms with
defined meanings.

OWL is a declarative language, describing the domain in a logical way. This
means tools called reasoners can be used to infer new information from
the ontology. OWL follows the open world assumption. Usually if a fact
is missing in a data base it is assumed to be false. This is called the closed
world assumption. In the case of OWL it is assumed that the fact might
simply be missing, but still true, the open world assumption.

OWL has been long established and is supported by many tools.

2.2.3 SPARQL

RDF and OWL only define how the data is represented. To work with it we
need other tools. SPARQL is a query language for querying RDF graphs

10

2.2 Semantic Web

[22]. The syntax of SPARQL is similar to that of SQL. There are different
types of SPARQL queries:

• SELECT queries select nodes according to the conditions specified in
the query
• ASK queries return true if a result can be found using the specified

query or false otherwise
• CONSTRUCT queries can be used to insert new triples into the graph

Below is a simple example for a SPARQL SELECT query. The examples are
from the SPARQL documentation [22].

Data graph:

ex:book1 ex:title "SPARQL Tutorial" .

Query:

SELECT ?title

WHERE

{

ex:book1 ex:title ?title .

}

This query will return a set of results corresponding to the graph pattern in
the query body. The body selects all triples in the graph that have ex:book1
as subject and ex:title as a predicate. The objects of these triples get bound to
the variable ?title. the results that are bound to the variables in the SELECT
clause form the result set for the query. In this example the nodes bound
to the ?title variable will be returned. Because the triple in the data graph
matches the pattern in the query, the result for this query is simply:

title: "SPARQL Tutorial"

11

2 Background and Motivation

Looking at a more advanced example:

_:a foaf:name "Johnny Lee Outlaw" .

_:a foaf:mbox <mailto:jlow@example.com> .

_:b foaf:name "Peter Goodguy" .

_:b foaf:mbox <mailto:peter@example.org> .

_:c foaf:mbox <mailto:carol@example.org> .

SELECT ?name ?mbox

WHERE

{ ?x foaf:name ?name .

?x foaf:mbox ?mbox }

Here the result is:

name: "Johnny Lee Outlaw" mbox: <mailto:jlow@example.com>

name: "Peter Goodguy" mbox: <mailto:peter@example.org>

Each result represents one way the variables can be bound so that they match
the data. In this example if ?x is bound to :a then ?name must be bound to
”Johnny Lee Outlaw” and ?mbox must be bound to <mailto:jlow@example.com>.

SPARQL supports several more advanced features. One of the features is
the ability to nest queries. This means a SELECT query can be specified in
the body of another query, and results of that query can be used like any
other bound variable.

Another feature is the FILTER keyword. The keyword allows filtering of the
results for a triple pattern.

SELECT ?title ?price

WHERE { ?x ns:price ?price .

FILTER (?price < 30.5)

?x dc:title ?title . }

12

2.2 Semantic Web

The example above will filter out any match for the triple ?x ns:price ?price
where the binding for the variable ?price is ≥ 30.5.

We can group the results of the query by one of the returned bindings. This
allows us to return an aggregate over all bindings for one variable.

SELECT ?title (SUM(?price) as ?sum)

WHERE { ?x ns:price ?price .

?x dc:title ?title . }

GROUP BY ?title

HAVING (SUM(?price) < 500)

2.2.4 Shapes Constraint Language - SHACL

Data validation is an important use case of the Semantic Web. However, there
was no standardized way for it until the SPARQL Inference Notation (SPIN)
[23] was introduced. SPIN is a language with the purpose of inferring
knowledge for RDF models and OWL ontologies. It is also possible to
define constraints, which makes it possible to use for data validation. Data
validation was however not it’s main purpose.

With the Shapes Constraint Language (SHACL) [6], the Semantic Web
received its first specification with data validation as its main purpose.
Specifically, SHACL is a specification to validate RDF graphs. The rules for
validating RDF graphs are part of another valid RDF graph themselves. The
first version of the specification was released in 2017 by the W3C making it
a relatively new standard. SHACL provides a wide array of properties to
validate RDF graphs. SHACL rules are defined as so called shapes which
are RDF nodes with properties that define which nodes are affected and
SHACL properties that these nodes must adhere to. We call the graph that
contains the model we want to validate the data graph and the graph that
has the SHACL rules the shapes graph.

The resources that are validated by a shape are defined by the target node
properties in the shape. sh:targetNode is the simplest node target property.
It is used to specify a specific node of the data graph as the target for the
shape. Another way to define target nodes is the sh:targetClass property

13

2 Background and Motivation

which takes all instances of a target class as target for the shape. There are
some more ways to define the targets for a shape. For example, it is possible
to use all nodes that are the subject of specific triples as target nodes.

Shapes that define target nodes are called node shapes. During the validation
process, every node shape in the shapes graph is evaluated. We can also
define shapes that can be referred to by node shapes, so called property
shapes. Property shapes are shapes that have a path property that specifies
a path from the focus node to a property. A property shape also has an
arbitrary number of SHACL properties that are validated against the nodes
found via the property path. A property shape is referenced in a node
shape by using the SHACL property sh:property These property shapes
are only evaluated when a node shape is referring to them. The limitation
for property shapes is that they cannot define node targets themselves, and
they cannot be nested.

SHACL shapes can use SPARQL queries using the sh:sparql predicate,
for validation purposes with some restrictions. It is possible to specify
either an ASK or a SELECT query. For select queries, the focus node that is
currently evaluated is pre-bound to a variable called $this and has to be
the first value returned by the query. Any returned set of notes produces a
rule violation in the report. ASK queries produce a violation if the query
evaluates to false.

The SHACL validator will go through all node shapes in the shapes graph
in order. For every node shape the validator first produces a set of nodes
using the node target predicates that are defined. It then tries to validate all
rules defined on the shape for every target node. If any of the rules failes
for a node, then a violation is produced and added to a report which is
returned after validation is finished. The report contains which node failed,
which rule produced the failure and a message explaining it.

Below is an example for a shape together with a corresponding data graph.
The shape validates that the given nodes have an ex:age property of type
integer.

14

2.3 Domain Specific Languages

Data:

ex:Alice ex:age 25 .

ex:Bob ex:age "seventeen" .

Shapes:

ex:ExampleShape

a sh:NodeShape ;

sh:targetNode ex:Alice, ex:Bob ;

sh:property [

sh:path ex:age ;

sh:datatype xsd:integer ;

] .

When validating, SHACL will report a violation for ex:Bob, because his age
property is of type string.

SHACL has been implemented in most major RDF implementations includ-
ing DotnetRDF and Apache Jena, making it a tool that can be used on most
platforms.

2.3 Domain Specific Languages

A Domain Specific Language (DSL) is a language tailored for a specific ap-
plication domain [24]. As such a DSL only includes constructs and features
needed for its respective domain. The goal in making a DSL is to provide a
high level abstraction to create programs within a domain without the need
for general programming knowledge. A DSL has a formally defined syntax.
The interface to the language can be either textual or graphical.

There are several different types of approaches to implement a DSL. Com-
mon approaches are:

Embedding, where the where mechanisms in a host language are used
to express the domain specific requirements. The DSL inherits the host

15

2 Background and Motivation

language syntax and adds constructs to express the requirements of the
application domain. Compilers, where the DSL gets compiled to constructs
in the general programming language. Compiler generators, which is similar
to compiled languages, but uses language development tools to automate
some of the compilation stages. Using a generator reduces the effort of
developing the language.

We will now take a look at one of these language development tools.

2.3.1 ANTLR

ANTLR (Another Tool for Language Recognition) is an automatic parser
generator [25]. It is implemented as a library for Java and C#. ANTLR can
be used for reading, processing or translating structured text. It is a widely
used library for creating languages. ANTLR generates a parse tree from a
given input text, using a user defined grammar.

When working with ANTLR you generally define two things:

• A grammar file that defines the rules for grammar you want to parse.
• A Visitor or Listener class that is used to actually parse text.

Grammar Structure

The rules in ANTLR grammar files are split into two parts. The first part are
lexer rules. Lexer rules are used for the first step of parsing, the lexicographic
analysis. They are used by taking the text as input and transforming it into
tokens. This token stream is then passed as input to the parser. ANTLR
automatically generates a lexer and a parser from the rules.

The rules for both parser and lexer are in the format:

<rulename> : <rulebody>;

16

2.3 Domain Specific Languages

Whether a rule is a lexer or a parser rule is determined by the first letter.
Lexer rules start with a capital letter, parser rules start with a lower case
letter. Lexer rules generally define how each token is structured. They define
if something is considered an identifier, a general text, a digit, keywords
for the language and the like. Parser rules define higher level constructs of
the language, like how a function is structured, how a statement looks like,
expressions etc.

intDeclaration : INT IDENTIFIER ’;’;

INT : ’int’;

IDENTIFIER : [a-zA-Z]+;

Rules can use zero-or-more, alternative, one-or-more operators like it is possible
in regular expressions. For example a function body may be zero or more
statements inside. An assignment may have either a literal value or an
identifier on the right hand side.

function : functionheader functionBody;

functionBody : (statement | assignment)*;

The parser uses the token stream from the lexer together with the parser
rules, defined in the grammar file to build a parse tree. It does so by
matching tokens from the token stream to rules from the grammar. The
parser returns the root node of the parse tree.

ANTLR automatically generates a base visitor or listener. The methods for
visiting can be overridden in a derived class. The visitor has a visit method
for each parser rule in the grammar. Usually after parsing, the root node of
the parse tree will get passed to the visit method of the visitor. This is the
entry point for visiting the parse tree. The passed node has it’s child rules
as methods returning a context object, which can be used to visit those rules.
Each of the methods returns ’object’ as type, so it can be used to propagate
results from visiting back up.

17

2 Background and Motivation

2.4 Motivation

Approaches using OWL to model feature trees have been becoming more
frequent recently [26] [27]. Although SHACL and OWL are very different
standards there are some commonalities with how they are used. OWL was
made for reasoning over ontologies, but with SPIN it was made possible to
also do model validation. SHACL is a relatively new standard, that has been
gaining a lot of interest. Being a new standard, many of its possibilities are
not yet tested. We want investigate how well suited SHACL is for validating
configurations, and in particular feature modelling.

Since SHACL has a large number of features, including SPARQL support
built in, we want to not only build a basic feature model with required and
optional features and feature groups. We want to take a look at how it is
possible to include attributes into this model.

Additionally we try to include more advanced feature model functionality.
The inclusion of SPARQL in SHACL makes it possible to define complex
constraints like summing over an attribute. We want to see how well this
functionality can be integrated with normal feature models, and how per-
formance is impacted by the addition of this functionality.

Apart from building the feature model itself, we also need a way to define
constraints. To include support for attributes and and extended features in
constraints, we want to develop a textual language including a parser to
facilitate construction of constraints in a user friendly manner.

18

3 Related Work

This chapter gives an overview of works related to feature modelling and
variant management.

As a feature model lies at the heart of this thesis, we will give a detailed
overview over them and explain the different types of feature models that
have been proposed. We will first give an introduction to what feature
models are, and how the most basic feature models are structured. Since the
first feature models a lot of progress has been made, making feature models
more powerful, so we will take a look at what additional features have been
proposed. Finally, we will look at some variant management systems that
already exist and which features they support.

3.1 Feature Models

Feature models model the commonalities and differences between compo-
nents in a product line. This section will give an overview over the types of
feature modelling approaches that were proposed over time.

3.1.1 Semantic Web Based Analysis of Product Line
Variant Model

Feature modelling is all about finding commonalities in a product domain.
Ontologies have shown to be well suited for capturing the common vocabu-
laries in any field [28]. An approach to map a feature model into OWL is
presented in [26].

19

3 Related Work

For modeling the features, they determined what information is saved about
a variant and created a table with the following information:

• Variant name
• Variant type (mandatory / optional)
• Sub domain (applicable area of the variant)
• Relation between sibling variants (alternative / or)
• Dependency (the variants that a variant depends on)

Additionally, the require and exclude relations are also included in the
variant model. This feature model now has to be converted to the OWL-DL
format. There are six relation types between features supported by the
feature model which also have to be mapped to OWL. The relations are:
mandatory, optional, alternative, or, optional alternative and optional or.
Additionally the require and excludes cross-tree-constraints are modelled.

First an OWL ontology is built for the features and nodes of the feature tree,
where each node is modelled as an OWL class. A rule class is defined for
each of the nodes, defining the constraints for it and an object property is
created for each type of edge in the feature model.

Now the feature relations can be translated to OWL. Figure 3.1 shows a
part of the table containing OWL definitions for the the mandatory and
optional relations. An example ontology was implemented using Protege.
The RACER reasoner was used to check for consistency. Protege can not
only show if a configuration is consistent, but also which features produce
inconsistencies.

Constraint Solving

The second part of [26] is looking at algorithms for constraint solving. Since
many constraint solving systems are created for general use, they often
perform poorly compared to a domain specific system.

Feature models can be represented as boolean formulas. These formulas
have certain properties that general boolean formulas do not necessarily
have. One of the properties is that because of the nature of feature models,
any boolean formula of the feature tree is necessarily satisfiable. Therefore,

20

3.1 Feature Models

Figure 3.1: Part of table containing OWL definitions for feature model relations [26].

a domain specific constraint solver taking these properties into account can
perform better than a generic one. The paper presents a new domain specific
constraint solver for feature trees called the feature tree constraint system
(FTCS). They provide several algorithms to check if a configuration is valid,
counting the number of possible configurations and find the minimum
configuration.

The FTCS was evaluated against the general purpose constraint solver
Choco. Testing showed that FTCS vastly outperformed Choco in counting
possible solutions. The time to count solutions was up to 100 times faster for
FTCS for feature models with 50 features and it still performed sufficiently
for feature models with 10000 features where the Choco solver timed out.

3.1.2 Applying Semantic Web Technology to Feature
Modeling

We take a look at another ontology based approach. This approach has
additional support for attribute based constraints [29].

The reason for using OWL has multiple reasons. Firstly, because OWL is
the standard Semantic Web language, it will make their approach interoper-
able with many other applications. Secondly, OWL allows the modeling of
classes along with constraints on them, which provides a seamless transition

21

3 Related Work

Figure 3.2: Overview of the system architecture [29]

from the real world model view to the ontology view. Lastly, OWL was
designed with reasoning on models in mind, making it possible to infer
rules. Similarly to [26] they translate feature models into an OWL represen-
tation and provide a representation for the needed feature model semantics.
In addition to the feature model ontology, they use Semantic Web Rule
Language (SWRL)[30] rules to ensure the consistency of the feature model.
Figure 3.2 shows an overview of the system.

The basic structure of the feature model is taken from the FODA repre-
sentation combined with concepts from FORM and FeatuRSEB. Semantics
for cardinality constraints and attributes were added. Using an ontology
allows the feature model and feature model constraints to be represented in
the same model. The ontology contains classes for features, alternative and
or relations, attributes and feature relations. The relations between classes
are represented via a set of properties. There are several constraint types.
Firstly, feature to feature constraints. These are constraints like requires and
excludes. Feature value constraints represent constraints on values attached

22

3.1 Feature Models

to features. EqualTo, GreaterThan and LessThan are supported. Attribute value
constraints constrain the value of a feature attribute. The same operations
as for feature value constraints are supported.

The situations that cause the model to become inconsistent, are described
using SWRL rules. One example is a feature both requires and excludes
another feature. This is represented as the rule:
Requires(?x,?y) && Excludes(?x,?y) then problem(?x,?y).

The rules together with the ontology get passed to a reasoner to check the
consistency of the model.

3.1.3 Decision-making coordination and efficient reasoning
techniques for feature-based configuration

The product configuration process often involves many people from dif-
ferent areas. It is important that the configuration process facilitates the
collaboration by multiple involved partes. Here, an approach is presented
for a product configuration system that makes it possible to collaborate on
the configuration task [31].

Often, there are multiple stakeholders involved in configuring a product.
When a local decision (e.g. include a feature or exclude a feature) causes an
inconsistency because of another local decision by another stakeholder, it is
often difficult to resolve those conflicts. This paper presents an approach to
resolve these conflicts that arise as part of collaborating on a configuration
task.

Constraints for feature models can often be encoded as a boolean constraint
satisfaction problem (B CSP), which can in turn be translated to a SAT
problem.

Collaborative Configuration

The approach is split in 2 parts: Generating a configuration plan and the
configuration itself. The goal of the configuration plan is to describe what

23

3 Related Work

Figure 3.3: An overview of how a product is configured using collaborative methods [31]

the configuration tasks are, and in what order they should be carried out.
The configuration part is then carried out by the stakeholders according to
the configuration plan.

Generating the configuration plan is done by splitting the configuration
decisions into more manageable groups called configuration spaces. The
splitting of the feature space has to adhere to rules so that they can be
configured by different groups of stakeholders. Once the feature model
is split into configuration spaces, the configuration plan can be created.
The plan consists of a set of configuration sessions where each session
can configure multiple configuration spaces. The order of these sessions
is specified in the plan. Sessions also have to adhere to rules so that the
configuration cannot lead to an invalid product. These rules should be
validated by an automatic system. After the plan is created, an executable
plan is generated. The configuration of the product is then carried out by
the stakeholders according to this executable plan.

Figure 3.3 depicts a rough overview of how this process is done. We start
in the plan development phase with the splitting step. After that, the plan
creation is carried out and an executable plan is generated. After that, the
plan execution phase is conducted according to the plan.

The plan splitting step is the responsibility of the product manager, as they
have an overview of the expertise of the stakeholders. In this phase the

24

3.1 Feature Models

configuration problem is split into smaller configuration spaces. Each space
contains a subset of the features that have to be configured. Certain features
can appear in more than one configuration space. This is only allowed for
so called junction points. A junction point is a feature that connects a child
configuration space to a parent. Only a single parent space can be connected
to a child. There are two types of dependencies between spaces that are
relevent. They are strong and weak dependencies. Configuration spaces are
called weakly dependent if some decisions in one space influence decisions
in the other space. These dependencies can be specified by extra constraints
for the feature model. Two spaces are strongly dependent if a decision in
one space can affect all decisions in the other space. A child space is always
strongly dependent on its parent.

After the plan is split into configuration spaces, the plan creation phase
can begin. In this phase configuration sessions are created, and configu-
ration spaces assigned to these sessions. The sessions are also scheduled
in sequential and parallel flows. Validation rules are added to the plan to
ensure its correctness. To validate plans there are two rules to be considered.
If two spaces are weakly dependent, then they have to be scheduled in
subsequent sessions. If space B is strongly dependent on space A, then
A must be scheduled before B. These rules only apply to spaces that are
placed in different configuration sessions, otherwise conflicts can be locally
resolved.

The last step is the plan generation step. In this the plan is transformed to
an executable representation. In the plan we have we assume that all config-
uration sessions will be executed and conflicts will arise. In reality, many
configuration spaces do not have to be configured, as previous decisions
excluded the space (eg: a junction point has been excluded). This workflow
is referred to as the executable plan.

3.1.4 Automated Reasoning on Feature Models

We include attributes in our features to enable the construction of more
powerful constraints. Here we have a CSP based approach for validation, that

25

3 Related Work

included attribute constraints [32]. It also introduces a way to automatically
reason over feature models.

The feature model is based on the typical feature model relations mandatory,
optional, alternative, or. Attributes are defined as a characteristic of a feature
that can be measured. For example cost or bandwidth. Extra-functional
features are defined as relations between one or more attributes of a feature.
The base feature model definition is extended by allowing relations amongst
attributes.

To resolve conflicts in the configuration, the feature model is translated into
a CSP. The features make up the set of variables for the CSP. The domain
for each variable is boolean. Extra functional features are the constraints.
The relations of the feature model become constraints in the feature model
in the following way:

Mandatory: f is a parent feature with f1 a child of f with a mandatory
relation. Then the mandatory constraint is: f1 = f.
Optional: f is a parent feature with f1 a child of f with an optional relation.
Then the optional constraint is: f1 => f.
Or: f is a parent feature with f1, ..., fn children of f in an or relation. Then
the or constraint is: f1 v ... v fn <=> f.
Alternative: f is a parent feature with f1, ..., fn children of f with an alternative
relation. Then the alternative constraint is:
(f1 <=> (~f2 ^ ... ^ f)) ^ ... ^ (fn <=> (~f1 ^ ... ^ f)).

With this mapping, features, constraints and extra functional constraints
can be handled in the same CSP. With the feature model mapped to a CSP,
reasoning can be applied. We can infer the number of valid products that
can be configured from the features model. Filtering allows users to apply
rules to the model to filter out a set of products. This is useful because users
are often not interested in the entire product set. We can calculate the entire
possible product set which are all solutions to the CSP. Lastly it is possible
to look for the optimal product according to a specified criterion.

The system was implemented using the OPL Studio CSP solver. A simple
GUI prototype was developed to showcase the system. Additionally, a
simple XML language was developed to store models and a parser to load
models.

26

3.2 Variant Management Approaches

3.2 Variant Management Approaches

3.2.1 Integrating Semantic Web Technologies and ASP for
Product Configuration

Since we want to use SHACL to validate feature models, we are looking
for other approaches that have done something similar before. Here, an ap-
proach is presented to validate configurations with SHACL shapes that are
similar to feature model constraints [33]. They are modeling a configuration
task of different types of hardware modules into RDF and define a shapes
graph that contains constraints for how these modules can be used together.
With the defined constraints it is possible to check if any given configuration
in a data graph is valid and if not, which constraints are not fulfilled.

The approach is illustrated using an example. The example consists of
hardware elements which are controlled by modules. Each module must be
placed in a frame, and each frame be mounted on a rack. There are different
types of elements, modules, racks and frames. Figure 3.4 shows graphical
representation for how an RDF data graph for such a configuration task
looks like.

A constraint for such a configuration could be that an element needs to
be connected to exactly two modules of a certain type. Below is a SHACL
representation for how such a constraint looks like. The shape targets
all elements of type ex:ElementB. Each of these elements has to fulfill the
conditions specified by the property shape defined by sh:property. The sh:path
property denotes that the focus nodes are nodes that the value nodes that the
properties are validated against are the ones reached via ex:requiredModule.
In this case the conditions these nodes have to fulfill is that there are exactly
2 of them and the have the type ex:ModuleII.

ex : ElementBRequiredModuleShape

a sh:NodeShape;

sh:targetClass ex:ElementB;

sh:property [

sh:path ex:requiredModule;

27

3 Related Work

Figure 3.4: An example RDF graph showing a possible configuration of hardware modules
[33]

sh:minCount 2;

sh:maxCount 2;

sh:class ex:ModuleII;

] .

When configuring the system, the SHACL rules tell the user if a selection
caused a rule violation. But often there is only one valid choice that can be
selected. This is why in addition to only using SHACL for validation, the
SHACL rules are translated to ASP rule. These rules can be used to infer
these decisions automatically using an ASP solver.

3.2.2 Software Product Lines Online Tools

Software Product Lines Online Tools (S.P.L.O.T) [34] are a collection of web-
based tools with the purpose of creating, configuring and validating feature
models. The functionality for creating and validating models is similar to
what we want to accomplish. SPLOT also has a repository of feature models

28

3.2 Variant Management Approaches

Figure 3.5: User interface of the S.P.L.O.T feature model editor

Figure 3.6: User Interface of the S.P.L.O.T feature model configuration tool with an example
feature model

that we can use to benchmark our system. The tools can be found on the
SPLOT website 1.

The feature model creator tool lets a user create and export a feature model.
Feature models are saved in the SXFM [35] format. SFXM is an XML based
format that stores the feature tree and its associated constraints. It is also
possible to import an existing model.

The feature model editor tool, allows creating and editing feature models
using a graphical interface. Figure 3.5 shows a screenshot of the editor
interface. In the feature diagram section, the feature tree is built. Features
or feature groups can be created. Feature groups can be Or or Alternative

1http://www.splot-research.org/

29

3 Related Work

groups. Singular child features can be marked either optional or mandatory.
The Cross-Tree-Constraints section allows the specification of additional
constraints. Constraints use identifiers for feature in the feature tree and
have to be in CNF format.

The feature model analysis tool allows analyzing an SXFM feature model
based on SAT solvers and Binary Decision Diagrams. It displays information
about the feature model (eg. number of features, tree depth, and clause
density). It also has the ability to detect dead features and count the number
of valid configurations.

The product configurator enables interactive configuration of a product.
The user can include or exclude features from the feature tree. Whenever
a feature is selected, the constraints of the feature tree are validated. Any
features that are no longer possible to be selected are crossed out in the UI.
By clicking on an excluded feature, the conflicting features can be displayed.
It is possible to automatically infer feature selections where there is no user
choice. Figure 3.6 shows the user interface for the configurator. We can see
the included and excluded features in orange and grey respectively. The
table on the right shows information about every step in the configuration
process. The configurator uses a SAT solver for validating configurations
and inferring decisions.

SPLOT has a repository of feature models in the SXFM format that can be
used for empirical testing of feature models. Most of these models contain
constraints consisting of 3-CNF formulas. They also provide a feature model
generator with which such feature models can be generated.

30

4 Design and Concept

Although feature modelling has been long established, even now many fea-
ture models only support basic boolean constraints. There are approaches
that use Semantic Web technology, most notably OWL, to implement feature
models. The Semantic web gives the big benefit that it provides a stan-
dardized format to represent models. Semantic Web specifications have
been implemented in many different languages, making models platform
independent. Recently the SHACL standard for validating RDF models has
been introduced.

RDF and SHACL provide an ideal environment to model and validate a fea-
ture models, and have the functionality built in to facilitate the construction
of complex constraints. There has been an approach already to use SHACL
for configuration tasks [33]. This model is specific to a certain domain. Our
goal is to build a domain independent model, and a system that can be used
to construct constraints. The reason we do not want to use RDF directly
is, that while it is human readable, it is cumbersome to write by hand.
Therefore we want a more user friendly way to define constraints.

In this chapter we define the requirements for the feature model we use
and design a textual language for constructing constraints for the feature
model.

4.1 Defining Feature Model Requirements

In this section we will define the requirements that our validation system
needs to support in order to properly handle model validation. To do so we
will build and example model that will cover a breadth of constraints that
appear in product configurations.

31

4 Design and Concept

4.1.1 System Requirements

The example we will build is the selection of components to build a PC. A
PC consists of multiple different components that need to be decided on.
There is a large number of possible options for each component, with a
multitude of restrictions on their selection. This makes it a good candidate
to define what a system like the proposed one needs to be capable of.

We start by defining the overall components a PC needs. The simplest
configuration for a working PC is a motherboard, a CPU, RAM, a storage
device and a power supply. These will be the component categories from
which a user will select. Each of these of course has a long list of variants
to choose from. Of course, we cannot just arbitrarily combine whichever
component we want of each component category. An example for this is
motherboards restricting the type of CPU they support. A motherboard
with an Intel CPU socket cannot use an AMD CPU and vice versa. Our PC
configuration can have only one motherboard and CPU, but it is possible to
use more than one RAM module or hard drive. Concretely, these constraints
would be as follows for our example model:

if Motherboard == IntelMotherboard then

restrict "AMD Ryzen 5";

restrict "AMD Ryzen 7";

...

maxcount(CPU) == 1;

maxcount(Motherboard) == 1;

This gives us a basis for rules we need to model the restrictions of features.
Firstly, we need rules that either restrict or require a certain component, if a
specific component is selected. Secondly, we need to be able to define how
many of a certain component must be selected.

While this approach works fine for smaller models, it becomes unfeasible
when the number of components and restrictions grows. For example:
each motherboard will only be compatible with a subset of possible CPUs,

32

4.1 Defining Feature Model Requirements

therefore we would have to define a rule to explicitly exclude any non-
compatible CPU, for a selected motherboard. In reality, the most common
restriction for CPU choice is the type of CPU socket on the motherboard.
Considering this, it would be a good idea to be able to define attributes
as name-value pairs on features. In our example we would then define
the attribute CPU-Socket on our motherboard components and give it the
specific socket it has as a value. We then need a way to define rules that will
handle these attributes. An example for how a rule would look like:

if (CPU == SomeAmdCpu) then

require Motherboard::Socket == "AM4";

Components in a PC often consist of a lot of sub-components. For example,
a motherboard will have a memory controller which has it’s own attributes.
Instead of having to define those attributes on the motherboard itself, it
would be beneficial to be able to create sub-components with their own
attributes. If for example, we want to use an M.2 PCIe SSD, then it is
required that the memory controller of the motherboard supports the NVMe
specification.

Some restrictions don’t just apply at one attribute in isolation. If we think
about the requirement for a power supply, then we need to ensure that
the sum of power consumption of all the selected components is smaller
than the capacity of the chosen power supply. Another example would be
that the amount of components that require a PCI slot has to be smaller or
equal to the amount of PCI slots on the board. So we need a way to define
aggregate functions and compare them to attributes.

Sometimes a component does not specifically require one component. A
motherboard with the mATX form factor can fit in a case that has the ATX
form factor. Therefore, it should be possible to state alternatives in rules. In
general we want to be able to combine statements using logical operators.

When building a PC, the user will often have a specific budget in mind. This
budget varies depending on the user and cannot feasibly be hard coded in
the model. We want users to be able to set certain parameters in the model
during configuration.

33

4 Design and Concept

Figure 4.1: Feature tree for PC configuration

A complete version of a feature tree for PC components can be seen in
Figure 4.1

4.1.2 Requirements Summary

This section will give a summary of the features our proposed system needs
as derived from the example in the previous section. First, there has to be a
way to define features and attributes on these features. We also need to be
able to define restrictions between the features. It should be able to easily
update the features and restrictions.

There should be an intuitive way to select features from the component
model. The system then needs to check if this selection is valid. If not there
should be feedback as to why it is not valid.

Restrictions are defined in the form of if condition then action. Conditions
are component selections that can be arbitrarily combined with and, or and
not operators.

Actions consist of an action type and an operation. The action type can
be either restrict or require. The operand can be simply be a feature or
an attribute in the simplest form. This would either require or restrict
this feature or attribute from being included in the configuration. It is also
possible to specify comparison operators when the operand is an attribute(<,
==, >). With these it is possible to restrict the possible values that an attribute

34

4.2 Formal Definition

can have. It is possible to either specify a constant as second operand, or
another attribute. Attribute rules can additionally compare to parameters,
the value of which can be set by the user during the configuration process.
Lastly it should be possible to specify that the sum of an attribute has a
certain value.

4.2 Formal Definition

In this section we will formally define the structure of the feature tree and
its constraints. We will use the example defined in Chapter 4.1 to illustrate
this definition. See Figure 4.1 for a graphical representation of this example
model.

4.2.1 Basic Relationships

We can define the structure of the feature model as follows:

model := <varpoint>*

varpoint:= <name> <variant>* <cardinality>

variant := <name> <varpoint> <attribute>* <variant>*

cardinality := <min> <max>

attribute := <name> <value> <type>

min := int

max := int

type := string | int

We call the features in the top most level of the feature hierarchy variation
points and the rest of the feature variants. In the PC example the varia-
tion points are the categories of components, while the variants are actual
instances of PC parts.

Apart from the parent-child relationships, there are other constraints on
variants. According to [13], the basic set of relationships are:

35

4 Design and Concept

Mandatory

A Mandatory relationship denotes that this feature has to be included in
any configuration where the parent feature is also included. An example
for a mandatory feature from Figure 2.1 are the Calls feature and the Screen
feature.

Optional

An Optional relationship denotes that this feature can optionally be included
in the configuration if the parent feature is also included. In Figure 2.1, the
optional features for the Mobile phone feature are the GPS feature and the
Media feature.

Alternative

Alternative relationships are cardinality constraints of a feature model. An
alternative relationship is between one parent feature and a group of it’s
child features. It means that if the parent feature is included in the configu-
ration, then exactly one of these child features is also to be included. We can
see an alternate relationship in Figure 2.1 between the Screen feature and its
children.

Or

Or relations are another type of cardinality constraint. They describe the
constraint that if a parent feature is included in the configuration, then one
or more of the child features in the specified group must also be included
in the configuration. In Figure 2.1 an Or group can be seen for the feature
Media and its children.

In addition to constraints between variation points and variants, we also
add constraints between two variants.

36

4.2 Formal Definition

The basic relationships that can be defined are require and restrict. The
require relationship is used to define that variant A requires variant B to be
selected.

require(var1, var2) := i f selected(var1) => selected(var2)
var1, var2 ∈ Variants
This can also be written as the logical implication:

var1→ var2

Similarly the restrict relationship excludes variant B if variant A is selected.
This means that if variant A was selected, variant B cannot be selected.

restrict(var1, var2) := i f selected(var1) => notselected(var2)
var1, var2 ∈ Variants

In logic terms this would be:

var1→ ¬var2

Cardinality constraints can be defined on variation points. If a variation
point has a cardinality constraint: cardinality(vp, n, m), that means that at
least n and at most m variants of this variation point have to be selected.

cardinality(vp, n, m) := count(vp) >= n ∧ count(vp) <= m
count(vp) := numbero f selectedvariantsbelongingtovp

4.2.2 Extended Features

The section above defines a feature model with basic functionality. We want
to extend the functionality of our feature model to allow for more complex
rules. The extensions we will add are attributes, which were proposed multi-
ple times as extensions for feature models([14, 15, 16]), logical combinations
of selections for rules [4], aggregate functions that work with attributes and
global parameters.

37

4 Design and Concept

4.2.3 Combination of selections

We want to extend this simple rule set to enable the combination of selections
as conditions for restriction and requirement relationships. We extend the
rule set from before with logical and, or, and not operators. This will extend
our require and restrict actions to use conditional expressions instead of
just variants.

require(condition, var) := i f isTrue(condition) => selected(var)
var ∈ Variants, condition := logic− expression

restrict(condition, var) := i f isTrue(condition) => notselected(var)
var ∈ Variants, condition ∈ logic− expression

logic-expression:

A ∧ B
A ∨ B
¬A
A, B, C ∈ Variants

These operators can be arbitrarily combined allowing to specify complex
conditions of variant selections. This operator nesting is also possible for
the statements inside the if body.

4.2.4 Attributes

We extend the feature model by attributes. Attributes provide additional
information about variants. They consist of a name and a value. The value
can be either a string or an integer. Having attributes enables us to extend
the functionality of rules. Instead of requiring or restricting a specific variant,
it is possible to require or restrict an attribute.

Because attributes can have values other than simply selected/not selected,
we can extend the require and restrict rules to include comparison operators.
This allows us to define constraints on properties of variants instead of
variants themselves which makes rules simpler to define for large feature
models. When defining an attribute rule, an attribute name, an operator

38

4.2 Formal Definition

and a value need to be specified. The resulting expression needs to hold for
every attribute with that name, that belongs to a selected variant.

For every attribute

require(cond, attr, operator, value) :=

if cond => attr.Value operator value

operator in {==, !=, <, <=, >, >=}

The statement above needs to hold for each attribute with the correct
attribute name of selected variants.

In the context of our example, each motherboard will only be compatible
with a subset of possible CPUs. If we were to use only the basic feature
set, we would have to define constraints to explicitly exclude any non-
compatible CPU for a selected motherboard. In reality, the most common
restriction for CPU choice is the type of CPU socket on the motherboard.
We add an attribute to our motherboard variants to indicate which socket it
has, and create a rule to only allow selections of motherboards with said
attribute.

4.2.5 Functions

Having defined attributes for variants in the previous section, we now want
to enhance the functionality of them by functions that aggregate a result
from all instances of an attribute. With the attributes before, we would
always evaluate all instances of an attribute in a rule separately. We add
the functions sum, and count, that calculate the sum of all instances of the
attribute and then compare the resulting value with the value given in the
rule.

In the context of our example, power supplies have a maximum of power
they can safely supply. The sum of the power consumption attributes of all
parts cannot exceed this value. So we could create a rule saying that if a
power supply with a maximum power of 500W is selected, then the sum
of all values from attributes with the name ’power consumption’ must be
smaller than 500.

39

4 Design and Concept

4.2.6 Global Parameters

We extend the model by global parameters. Without parameters, when
a rule contained a comparison operator, the values that were compared
against had to be constant literals. We allow the definition of parameters
that behave like variables with a name and value. Instead of a constant
value, we can specify the name of a parameter, the value of which will then
be used for the comparison. The value of these parameters can be adjusted
during the configuration process.

A user might want to specify a maximum price for the entire system. This
price might not be a hard limit, but just a soft cap that they might be
willing to go over, so we might want to adjust it later. With the global
parameter model extension, we can just specify the maximum price as a
global parameter and have a rule that ensures that the sum of prices does
not exceed that.

4.3 Language Design

We have defined how our feature model is structured. Now we need to
define a way to specify extra constraints. For that purpose we will define a
new textual domain specific language.

The language is split into two parts: First the requirement part, which allows
specifying constraints that always have to hold. Secondly, the conditional
rules, which are structured as if-then constraints.

There are several reasons to include a requirement construct. The main
reason is to allow the specification of cardinality constraints. Secondly it
allows the user to specify that certain features have to be included in any
configuration.

Conditional rules are the more general constraint type. They consist of
the condition and the constraint body, which can contain any number of
constraints. These have a constraint type and then the actual constraint. The
constraint type can be either require or restrict. Require means the constraint
must be fulfilled, restrict means the constraint must not be fulfilled.

40

4.3 Language Design

The simplest constraint we can define is requiring or restricting a specific
feature, in which case the constraint is simply the identifier for the feature.

if featureA then

require featureB

restrict featureC

Since the features in our model have attributes we can also specify the
identifier for them like we do for variants. Attributes also allow us to
form constraints involving the comparison of values. Therefore, if the given
identifier is an attribute, we can add a comparison operator and a value or
parameter identifier.

if featureA then

require attributeA == $parameter1

require attributeA < 100

To specify a function we write the function name followed by the attribute
the function should act on in parentheses.

if featureA then

require sum(attributeA) < 100

These were the basic methods of constraint bodies. It is possible to combine
these using logical operators to form more expressive constraints. Avail-
able operators are and, or and not. The expressions can be nested using
parentheses.

if featureA then

require attributeA < 100 || featureB

41

4 Design and Concept

When a constraint specifies an attribute, more than one feature that is
selected can have that attribute or none. In this context, there is an important
distinction to be made between two cases. Looking at the above example,
we could either mean that there has to be an attribute < 100 on a selected
feature. Or we could see this as all attributeA need to be < 100, but it is not
required that there are any. For this purpose we can specify either the each
or any modifier before a constraint. Any meaning there has to be at least one
attribute, each meaning that each attribute needs to fulfill the condition.

if featureA then

require any attributeA < 100 || featureB

comment "There has to be at least one attributeA < 100

or featureB has to be selected."

To make it possible to describe why constraints are there, it is possible
to create comments. One comment can be specified in each rule block.
These comments will also be displayed in case a rule is violated during the
validation process. An example for a comment can be seen in the example
above.

42

5 Implementation and Realization

In this chapter we will explain the implementation details of our product
configurator. We will illustrate the approach using the PC configuration
example from Chapter 4.2.1.

5.1 System Architecture

First we will briefly talk about how the application is structured and give
an overview of the general control.

5.1.1 Components

The application can be grouped into several parts:

• Model Reading
• Compiling
• Model Transformation
• Model Validation

Figure 5.1 shows an overview of the structure of the system, and how the
parts interact. We will briefly introduce each of them in turn.

43

5 Implementation and Realization

Figure 5.1: Class diagram of System components

Model Reading

The model reading part takes a model consisting of the variant model and
the rules, and reads it into an internal data structure. We create structures
here that let us look up variants by name or by identifier. This will be im-
portant for the rule compiler. The model we read is an Enterprise Architect
model. We use Enterprise Architect, because it provides an easy way to
build UML models, and also provides an interface for C# applications to
work with them. The model is split into the feature part and the rule part.
The elements are differentiated by their UML stereotype.

Compiling

The compiler is used to translate the rules from the user language into a
structure that can be transformed into SHACL rules. It contains a parser for
the grammar and a visitor for building the rule objects.

44

5.1 System Architecture

Model Transformation

The model transformation transforms the model into RDF and SHACL. It
takes the read feature model from the model reader component and the
compiled constraints from the compiler component and builds a valid RDF
model and SHACL shapes corresponding to the constraints.

Model Validation

The model validation component is the component that does the actual
validation part of the system. It takes a selection of features as input and
updates the model with this selection. Then it runs the SHACL validator
which validates the constraints in the shapes graph against the data graph.
It will then generate a report with all violated constraints.

Figure 5.1 shows an overview of the structure of the system, and how the
parts interact.

5.1.2 Application Flow

This section gives a rough overview of how the system works. After the
application is started, the user sees the interface, from which they can
select a path to the feature model that is supposed to be used. Having
selected a feature model, the user can then instruct the system to read this
model. Along with the reading process, the system also compiles the rules
defined alongside the feature model. Once both the reading and compiling
are completed the model transformer creates the actual RDF and SHACL
graphs used for validation. When this is completed, the user interface is
updated, showing all features that were defined in the model. Figure 5.2
shows a rough overview of this process.

The user can now select the components they want to be included in the
product configuration. Once all components that should be part of the
configuration have been selected, this selection can be validated. Clicking
the validate button will pass the selection to the model validator, which
validates all constraints that were defined. A report is created containing all

45

5 Implementation and Realization

Figure 5.2: Flow diagram of model building.

violated rules together with the reason why they are violated. The contents
of the report are shown to the user in the interface. We can see this illustrated
in Figure 5.2

5.2 Creating the System Model

The model we read is an Enterprise Architect model. The model is split
into the feature part and the rule part. Different types of elements are
differentiated by their UML stereotype. The feature tree starts with the
variation points. These are elements with the VariationPoint stereotype.
Their child elements are the variants belonging to them. We would have
Motherboard and CPU and the other component categories as variation
points, and concrete instances of the categories as the variants. Variants
can have multiple different types of child elements. First, variants can be
nested, so they can have child variants themselves. Secondly, rules can be

46

5.2 Creating the System Model

Figure 5.3: Flow diagram showing the process of validating a configuration

defined directly for a certain variant by defining a configuration container
as a child element. Configuration containers are described in the next
section. Attributes can be defined via the tagged value function of Enterprise
Architect. Tagged values are name-value pairs defined on the element itself.
Each feature of the Motherboard variation point has an attribute called
CPU SOCKET, denoting which type of CPU is compatible with the board.
For example, the motherboard Gigabyte B550 has the attribute CPU SOCKET:
”AM4”.

To read the elements of the model, we use the Enterprise Architect API
for C#. This gives access to elements in the model and all their associated
information. For us the properties Name, GUID, TaggedValues, as well as
ChildElements are important. We start by creating a SystemModel object.
The SystemModel contains all the information we need to create our RDF
feature model. This includes all the variation points and variants with their
attributes and configuration containers.

First, we create variation point objects with the Name and GUID of their
respective Enterprise Architect element. For each variation point, we we
create Variant objects from its child elements. Each variant also has a
reference to it’s variation point. The variant objects get added to the list
of variants of the variation point. Next, we read the attributes, defined as
tagged values on the variant elements. The Attribute object has a Type

property. This property can be either integer or string. If the value of the
attribute is enclosed in quotes, the type is string, otherwise integer. If the

47

5 Implementation and Realization

value cannot be parsed to an integer an error is thrown. We now recursively
create variant objects for the child variants. Child variants get added to
the child variant list in the variant object and the child variant gets a
reference to it’s parent. Lastly, we create configuration container objects for
any configuration container child element for the variant and add it to the
variant object.

Next, we read the configuration containers that were not already part of a
variant. These are any elements with the ConfigurationContainer stereotype
that are not a child element of a variant. Configuration containers are simply
objects with a Name, GUID, and ConfigurationText property. Configuration
containers defined on a variant also have a reference to that variant. Now
that we have a system model and configuration containers, we can compile
the latter.

5.3 Compiling Configuration Containers

The language for creating model constraints is implemented as an ANTLR
grammar. It consists of the grammar rules and a visitor for interpreting
the rules. We will first describe the implementation details for the used
grammar, and then how the configuration containers are compiled using a
visitor.

5.3.1 Grammar

We have given a short explanation of ANTLR grammars in Chapter 2. This
chapter covers the specifics of the grammar we use.

We start with the main delimiter that wraps around the actual rules. This
rule is the entry point for parsing a constraint text. The rule starts with an
optional text that can be used to describe the configuration container. The
actual rule construct starts with the #rules keyword. The actual rules start
after this. The ANTLR grammar rule is the following:

rules : (TEXT ’---’)? ’#rules ’{’ rule* ’}’ ;

48

5.3 Compiling Configuration Containers

Rules can be either a requirement or a conditional rule. For configuration
containers that are defined on a feature, it can also be a variant rule. A
variant rule is short for a conditional rule that has the selection of the
attached variant as condition.

rule : requirementRule | conditionalRule | variantRule ;

The bodies for !verb!conditionalRule! and variantRule are the same, they
only differ in their delimiter. requirementRule has mostly the same body,
except it is also possible to specify cardinality constraints.

conditionalRule : ’#if’ ’(’condExpression’)’ ’{’constraint*’}’;

variantRule : ’#rule’ ’{’ constraint* ’}’ ;

requirementRule : ’#requirement’ ’{’

(constraint | cardinalityConstraint)* ’}’ ;

The condition for conditional rules are logical expressions where each leaf
expression identifies a feature.

condExpression : condExpression BOOLEAN_OPERATOR condExpression

| NOT condExpression

| ’(’ condExpression ’)’

| IDENTIFIER (’==’ | ’!=’) IDENTIFIER;

An example for an expression like this would be the following, which
evaluates to true if either the Ryzen 5 3600X or Ryzen 9 5950X CPUs are
selected.

#if (’CPU’ == ’Ryzen 5 3600X’ || (’CPU’ == ’Ryzen 9 5950X’) { }

On the last line of the expressions rule above, the first IDENTIFIER rule is
the identifier for a variation point, the second for a variant of this variation
point. This is done to ensure that the right feature can be found if there are

49

5 Implementation and Realization

multiple features with the same name. Identifiers are delimited by single
quotes and can contain spaces and other special characters.

The body for a rule always consists of a rule type and then the constraint,
with a semicolon signaling the end of the rule. The rule type can be either
#require or #restrict. This is followed by the actual constraint, which we call
action in our system.

ruleBody : actionType actionExpression;

The actionExpression can be nested using logical operators the same way
as conditional expressions. The difference is in the leaf expressions, which
are the actual constraints of the rule. The most simple type of constraint is
just an identifier for an element. This can be either a variant or an attribute.
This is written as the type of element followed by the identifier.

constraint : ’<’ type ’>’ IDENTIFIER ;

type : ’Variant’ | ’Attribute’;

For example, if the motherboard Gigabyte B550M is selected, then the CPU
Intel i7-10700K cannot be selected:

#if (’Motherboard’ == ’Gigabyte B550M’) {

#restrict <Variant>’Intel i7-10700K’;

}

If type is an attribute, we can extend with a comparison operator and an
operand. Additionally, the any and each modifier can be added to specify
whether we want to check that there exists at least one such attribute, or
that all attributes fulfill the condition.

constraint : (’#each’ | ’#any’)? ’<’ type ’>’

IDENTIFIER (operator operand)?;

Eg. the CPU Ryzen 5 3600X requires the motherboard to have the AM4
socket:

50

5.3 Compiling Configuration Containers

#if (’CPU’ == ’Ryzen 5 3600X’) {

#require <Attribute>’Motherboard::CPU_SOCKET’ == "AM4";

}

This example illustrates the point we made above about the usefulness of
attributes. Instead of having to specify all CPUs that are incompatible with a
Motherboard, we can specify that the motherboard needs to have the correct
socket for the CPU. The rule also only needs to be updated when another
constraint is introduced via new component traits.

In addition to simply using an attribute in a constraint, we can also use
the sum function to constrain the value of the sum of all instances of an
attribute:

constraint : functionIdentifier ’(’ IDENTIFIER ’)’

(operator operand);

As an example, a power supply has a maximum load it can handle. The
sum of the power required by each component has to be less than the
corresponding value.

#if (’PSU’ == ’beQuiet Power 550’) {

#require sum(’POWER_CONSUMPTION’) < 550;

}

For attribute identifiers, it is possible to specify where in the feature tree
the search for the attribute should start. To do so, starting from the root of
the tree, each intermediate feature of the path has to be written in order,
separated by ’::’. We did this in the CPU socket example by specifying that
the attribute has to be in a variant of Motherboard.

Lastly we will define the additional rules we can specify in a requirement
body. These rules are for setting the minimum and maximum of selected
variants of a variation point.

cardinalityConstraint : (’#minCount’ | ’#maxCount’)

IDENTIFIER NUMBER;

51

5 Implementation and Realization

Naturally, every PC has one motherboard and at least one Memory mod-
ule:

#requirement {

#minCount ’Motherboard’ 1;

#maxCount ’Motherboard’ 1;

#minCount ’Memory’ 1;

}

Every rule body can have one comment to describe the rule. The grammar
rule for a comment is as follows:

comment : ’#comment’ QUOTE TEXT QUOTE;

TEXT : ~["]* ;

5.3.2 Rule Parser

The rule parser is a wrapper around the visitor. It iterates over all configu-
ration container, adding the rules for each of them to the system model. A
new visitor is created for each configuration container. Before the start rule
of the visitor is called, an ElementResolver object is created and given the
system model. This object is used to find variant objects given their name.
This resolver is assigned to a member in the visitor.

For each configuration container, the first step is to create an instance of
the lexer class generated from the grammar by ANTLR. This lexer will
create a token stream from the rule text of the configuration container. This
token stream is then handed to the parser, which was also generated by
ANTLR, which generates an abstract syntax tree, and return the root context
of it. We then call the visitor with this context as parameter to compile the
configuration container into rule objects.

52

5.3 Compiling Configuration Containers

5.3.3 Visitor

The visitor creates concrete VariantRule objects from a configuration con-
tainer. These will later be transformed to RDF. A base visitor class is gener-
ated by ANTLR. We derive from this class and overwrite the methods for
each grammar rule.

The entry point for creating rules is the VisitRules method. Here, we iterate
over all child contexts, which are the individual rule statements, so either
an if statement, a requirement or a variant rule. In the body of each rule are
the individual actions.

Condition

A condition has a selection expression at its core. There are 3 types of
expression contexts, each with their own visitor method. One type is the
leaf of the expression tree, which identifies a feature that should or should
not be selected. The other two are expressions to combine the first type or
another expression using logical operators and parentheses. Parsing starts
at the top of the tree. Each of the methods visits its child nodes and creates
an Expression object with the expressions returned from the child nodes.
The types of expressions are AndExpression, OrExpression, NotExpression,
and SelectExpression.

If the rule is a RequirementRule then the condition is simply an
AlwaysTrueCondition. In case of a VariantRule the condition is simply a
SelectExpression of the variant that the configuration container is attached
to.

Actions

Actions have an action type and an action expression. The type denotes
whether the expression has to evaluate to true or to false for the rule to be
valid. The type and parsed action expression is used to create an Action

object. Action expressions are parsed the same way conditions are. The only

53

5 Implementation and Realization

difference are the leaf nodes of the expression tree. Here, we differentiate
between variant, attribute and sum actions.

Variant actions are an action denoted by having a variant identifier pre-
fixed with <Variant>. First, the identifier for the variant is passed to the
ElementResolver to retrieve the variant object from the system model. This
is then passed to the VariantAction constructor and returned. For example,
in the rule: #require <Variant>’Motherboard::Gigabyte B550’ the ele-
ment resolver would only search for the variant in the Motherboard variation
point.

The second type are attribute actions. They are denoted by having an
identifier prefixed with <Attribute>. Optionally, there can also be the
#each or #any modifier before the identifier. Additionally, we can have an
operator and an operand. The operand can be either a string or integer
literal or a parameter. Strings are enclosed in quotes, and parameter names
start with a $. In case the parameter has not been used before in another
rule, it is added to the system model. The attribute identifier can contain
a sequence of variant names separated by ::. This denotes a path starting
from the root of the feature model. Only attributes that are found in children
of the feature at the end of this path are considered when evaluating the
expression. The identifier, along with the modifier and operand are added
to an AttributeAction object which is then returned. Lastly, we have the
sum action expression. It consists of the sum function call with an attribute
identifier as a parameter. Otherwise it’s the same as the attribute expression.
A SumAction object is created and returned. To illustrate this take the
following example:

#if(’Motherboard’ == ’Gigabyte B550’) {

#require #any <Attribute>’MEMORY_TYPE’ == "DDR4";

#require #each <Attribute>’DRIVE_CONNECTOR’ == "SATA";

}

#requirement {

#require sum(’HDD::CAPACITY’) > $minimumStorage;

}

If the motherboard Gigabyte B550 is selected, then every selected RAM
module needs to be of type DDR4. The #any keyword denotes, that there

54

5.4 Building the Feature Model

has to be at least one feature included in the configuration that has that
Attribute. Similarly, each hard drive that is included needs to use the SATA
connector. The #each keyword here means, that each selected feature with
that attribute needs to have the SATA value, but it is also valid that there are
no such features. Lastly the requirement rule, says that the sum of all hard
drive capacities in the configuration has to be at least as high as the value of
the user defined parameter minimumStorage. Note the use of the property
path HDD::CAPACITY, meaning that only the features in the sub tree with the
HDD variation point as root are looked at.

A VariantRule object is created with the condition and the action. If one of
the statements in the rule block was a comment context, then the provided
comment text will be used for the rule. Otherwise a comment is automati-
cally generated. This object is added to the list of created rules of the visitor,
which can be accessed by the RuleParser.

5.4 Building the Feature Model

We have built the system model previously and compiled the configuration
containers. Now we need to transform them into RDF. This is the purpose
of the SystemModelToRDFTransformer. Variation point, variants, attributes
and parameters form the feature tree and are transformed into an RDF
datagraph. The variant rules form the extra constraints for the feature tree
and are transformed into a SHACL shapes graph. Building the graphs is
realised using the interfaces provided by DotnetRDF. DotnetRDF works by
creating Triple objects consisting of 3 nodes objects and adding them to a
graph instance.

Each element of the SystemModel implements the IRDFSerializable inter-
face, which has the ToRDF function. This function is used to create all Triples
necessary for the element and return them in as a list.

55

5 Implementation and Realization

5.4.1 Feature tree

Generating the feature tree is fairly straight forward. We start with adding
the variation points. We start by iterating over the Variation point list of
the SystemModel. The variation point nodes themselves are added as triples
ex:root ex:VP ex:vpGUID where the subject identifies a variation point
connection, and the object is an URI with the unique identifier of the the
variation point. We add a second triple ex:root ex:vpGUID ex:vpGUID. This
is needed when a rule requires a specific path in the tree to be followed.
Now we create the triples for the variants belonging to the variation point.

Variants are also added as UriNodes containing their GUID. We also add two
triples that connect the variation point and the variant with the ex:Variant

and ex:variantGUID predicates, where variantGUID is the actual GUID of
the variant. For each variant, we first add their attributes. Each attribute
has a value associated with it. This value is reached from the attribute
node via the ex:Value predicate (fiof:attribute1 ex:Value "value"). At-
tributes are connected to their variant via their attribute name as predicate
(fiof:variant1 ex:attribute1Name fiof:attribute1). We use the param-
eter name here, because we usually need to consider all attributes with a
specific name in rules. Now we repeat this same process for all child variants
of this variant. After adding the variants we also need to add any user de-
fined parameters to the feature model graph. These are connected to the root
node via the ex:parameter predicate (ex:root ex:parameter fiof:param1).
Like attributes, parameters also have a value that is reached via the ex:Value

predicate (fiof:param1 ex:Value "value"). Here is a complete example in
turtle format:

ex:root ex:VP ft:CPU;

vp:CPU ft:CPU.

ft:CPU ex:Variant ft:Ryzen_5.

ft:Ryzen_5 attr:CLOCK_SPEED ft:CLOCK_SPEED_Ry5;

attr:SOCKET ft:SOCKET_Ry5.

ft:SOCKET_Ry5 ex:value "AM4".

ft:CLOCK_SPEEDRy5 ex:Value 3400.

ex:root ex:Parameter ft:maxPrice.

ft:maxPrice ex:Value 1200.

56

5.4 Building the Feature Model

We have one variation point, CPU, with one variant, Ryzen 5. The variant
has two attributes: clock speed, and socket with the values ”AM4” and 3400
respectively. The predicate attr:SOCKET identifies the name of the attribute,
whereas ft:CLOCK is the specific instance of the attribute. We also have one
parameter, maxPrice in the model. The parameter is directly reachable from
the root node.

5.4.2 Shapes Graph

Having established how the feature tree is built, now we will explain how
to create the extra constraints on the tree. In this text, whenever the prefix
sh: is used, this means a node that is included in the SHACL namespace.
These nodes are instructions for the SHACL validator for how to interpret
the shapes.

Constraints are split into two graphs: The condition graph which determines
which actions should be evaluated, and the action graph containing these
action shapes.

The condition of a rule object becomes a shape in the condition graph, and
the action in the action graph. We start by describing the condition shapes.

Condition Shapes

We start by declaring the root node of the shape to be a SHACL shape node:
ex:shape a sh:NodeShape. This instructs SHACL that this node has rules
to be validated. Next, we set the target node for the shape to be the root of
the feature tree by inserting the following triple:
ex:shape sh:targetNode ex:root. The logical expressions of the condition
can be directly remapped to SHACL, as it has built in support for and, or
and not operators. We use the sh:or predicate and a list of shapes as the
object. This list contains the terms of the or clause. A term can be either
another logical operator, or a shape node. An example for how an or triple
looks like is: ex:condshape sh:or (sh:and (...) ex:shapeNode).

57

5 Implementation and Realization

Now, we translate the SelectionExpression. This is realised using a prop-
erty shape. The sh:path property of the shape is a list of connections to the
variant we want to select. We use the sh:hasValue property to check that
the node from the path is found. The path can be either a generic path of
ex:Variant connections or a specific path to a node. To require the variant
Ryzen 5 3600, we would use the following property shape:

[a sh:PropertyShape;

sh:path (ex:VP [sh:zeroOrMorePath ex:Variant]);

sh:hasValue ft:Ryzen_5_3600;

]

Condition shapes always start the actual expression with sh:not, because
SHACL only reports failures in the report. So in order to get all fulfilled
conditions, the expression has to be negated.

Lastly, we add the identifier for the action shape that should be evaluated if
this condition is true.

A short but complete example for a condition shape with the condition
(’CPU’ == ’Ryzen 5 3600’ && !(’CPU’ == ’Intel i7’)):

ex:nodeshape a sh:NodeShape;

sh:targetNode ex:root;

sh:not [sh:and (co:Ryzen5Sel [sh:not co:Intel_i7Sel])];

sh:message "message";

ex:action ac:action1.

co:Ryzen5Sel a sh:PropertyShape;

sh:path ([sh:zeroOrMorePath ex:Variant]);

sh:hasValue ft:Ryzen_5_3600;

co:Intel_i7Sel a sh:PropertyShape;

sh:path ([sh:zeroOrMorePath ex:Variant]);

sh:hasValue ft:Intel_i7;

58

5.4 Building the Feature Model

Action Shapes

For action shapes the general structure of the shape with the target node
and the like stays the same as for the condition shapes. The comment that
was either defined for the rule or automatically generated is added to the
action shape using the sh:message predicate. The logical expression part
of the actual rule is also the same. The difference comes with the actual
actions, the leaves of the expression tree.

The first type of action we define is the simple requirement for a specific
variant. This is generated in the same way as the selection property shape
from the condition graph.

Next, we have attribute actions. These can have several different forms.
Attribute actions without any operators or modifiers attached are treated
the same as variant actions. We simply add the attribute name to the end of
the path of the selection shape.

For attributes with an operator and a constant as an operand we need
to differentiate between which of the each and any modifiers has been
applied. For the each modifier, we simply create a property shape with
a path to where in the tree we want to consider the attribute. Then, we
simply check this condition against any of the attribute with the right
name we find. This is done via the sh:maxInclusive, sh:minInclusive and
sh:hasValue predicates. The shape for the any modifier looks the same with
the exception that we also add the triple: [sh:minCount 1] triple to produce
a rule violation if no variant with this attribute is selected.

ac:actionShape a sh:NodeShape;

sh:targetNode ex:root.

sh:or ([sh:path (vp:Memory ex:Variant* attr:MEM_TYPE) ;

sh:hasValue "DDR4" ;

sh:minCount 1]);

ex:targetIdentifier "Memory::MEM_TYPE";

sh:message "Memory modules are required to be DDR4.";

59

5 Implementation and Realization

If the operand is a parameter, then we need to use a SPARQL query to
obtain the value for comparison, as there is no way to specifically find the
parameter value in base SHACL. We can use a SPARQL query in SHACL
by using the sh:sparql predicate with the query string as the object.

SELECT $this ?value WHERE {

$this a ex:configuration.

param:operandName ex:Value ?paramvalue.

$this ((ex:Variant*/attr:attrName>/ex:Value)) ?value.

FILTER(?paramvalue < ?value)

}

For a sum action we also need to use SPARQL, as the base SHACL functions
do not support aggregation functions like this. The query we use is the
following:

SELECT $this WHERE {

$this a ex:configuration.

$this ((ex:Variant*/attr:atName}/ex:Value) | ex:zero) ?attr.

}

group by $this

having(SUM(?attr) < $value$)

In case the operand is a parameter, we need to modify the query like this:

SELECT $this ?value WHERE {

$this a ex:configuration.

param:paramName ex:Value ?param.

$this ((ex:Variant*/attr:attributeName/ex:Value)

| ex:zero) ?attr.

}

group by $this ?value

having(SUM(?attr) < ?param)

60

5.5 Validating the Model

5.5 Validating the Model

The FeatureModelValidator is the class that handles the actual validation
of the feature model. First of all, the user defined parameters get updated
with their newest values. For each parameter, we simply need to remove the
value triple from the feature graph, and insert the same triple with the new
value.

Now the validateFeatureModel method is called with the list of currently
selected variants as parameter. We need to update the model to reflect this
selection. Selections are reflected in the feature model by their connections
with their parent node. This is a triple in the form of:

ex:parentvariant ex:Variant ex:childvariant.

First we remove these triples from the graph. Then we create triples for each
selected variant and add them.

Now, we can evaluate the conditions for our constraints. This is simply done
by validating the feature model graph with the condition shapes graph. The
ShapesGraph class of DotnetRDF has a Validate method for this purpose.
This returns a report containing all shapes that violated their rules. For us,
these are all conditions that are fulfilled, because we invert them in the
shapes graph. The shapes have a triple that points to the action that has to
be evaluated when the condition is true.

We now need to evaluate all previously obtained action shapes. By default
all action shapes are deactivated using the sh:deactivated predicate. This
causes the SHACL validator to ignore them during evaluation. We remove
this deactivated triple for all action nodes that should be evaluated.

Evaluation is, as before, simply calling the Validate method of the action
shape graph. If there are any violated constraints they are listed in the
report returned from Validate. We now create a List of validation results
that contain information important to inform the user of why the constraint
is violated. This result included the configuration container the constraint is
from, the original constraint text, and the message. This list is returned and
it’s content displayed in a form.

61

6 Building a Model

In this chapter we will take a look at how to build a feature model from
the ground up from a user’s perspective. After having defining the system
formally and discussing the implementation, this chapter should give an
overview over the actual features the system has. We will go over how to
create a project, create variation points, variants and attributes. Then take a
look at how to write constraints using configuration containers. Figure 6.1
shows the interface for selecting features.

6.1 Model Creation

Before creating the actual model we need to setup an enterprise architect
project. Simply create an empty project from the file menu. Now create a
root package with any name. This will be the package the feature model is
in. Inside it create two more packages: one for the variant information, and
one for the rules.

Variation Points

Now that we have an empty model we can start defining the variation points
of our feature model. To create a variation point, create a new element in
the variant model package and give it the stereotype VariationPoint.

63

6 Building a Model

Figure 6.1: A screenshot of the user interface for selecting features

64

6.2 Creating Rules

Variants

Now that the variation points are created we can create the variants. Variants
always belong to one variation point. To define the in Enterprise architect,
we add them as child elements of their variation point. Select the variation
point you want to add a variant to and create a new element. Give the
element the Variant stereotype.

Attributes

Are key value pairs that are used to give additional information to variants.
To define an attribute, go to the property page of the variant you want to
add it to, and then go to tagged values. Add a new tagged value and give it
the name and value you want it to have.

6.2 Creating Rules

Now that we have a base feature model, we can add restrictions to variants.
Restrictions are defined in a textual grammar inside so called configura-
tion containers. Configuration containers are defined as elements with the
ConfigurationContainer stereotype. They can be either added in their own
package, or as a child element of a variant. They act the same except that
containers of variants will have the condition that the variant is selected
on any rule. Rules are written in the description text of the configuration
container. There can be any number of rules on a container. Rules must be
written inside a rule body:

#rules {

...

}

A rule can have different forms. First we have simple if-then rules, where
there is a condition, and if the condition fulfilled the statements in the body
are evaluated. Then we have requirements, for which the statements inside

65

6 Building a Model

the body are always executed. This is used for constraints that must always
hold. For example a minimum count for a variation point, or a feature
that has to be included in any configuration. Finally, we have variant rules,
which are rules that can only be defined in configuration containers that
are created as child elements of a feature. The statements in the body of a
variant rule only get evaluated when the parent feature of the configuration
container is included in the configuration. The statements inside the body
have the same form for all rule types.

#rules {

#if (’CPU’==’Ryzen 5’) {

...

}

#requirement {

...

}

#variantrule {

...

}

}

Before we talk about the rule bodies, we will briefly discuss conditions for
if-then rules. The condition in the above example means the feature Ryzen 5
that is a child of CPU is included in the configuration. Conditions can have
combinations of logical operators to make them more expressive:

(!A && (B || C))

Here, A, B, and C are short for an expression like in the previous example.

Next we will talk about the rule bodies. Each of body can have an arbitrary
number of statements or actions inside it. Each action is delimited by a
semicolon. Actions begin with an action type and then the actual constraint
to be evaluated. Types are either #require or #restrict, require meaning the
action has to evaluate to true, restrict the opposite. For the constraint part
we first have simple feature constraints, either requiring or excluding a
specific feature from the configuration.

66

6.2 Creating Rules

#if (’CPU’ == ’Ryzen 5’) {

#require <Variant>’Gigabyte B550’;

#restrict <Variant>’MSI Z18’;

}

Next we have attribute constraints. Here we can specify an operator and a
value to check against. The value can be either a string, an integer, or an
identifier for a parameter. The actual value for a parameter can be set in
the GUI during configuration. The #each modifier means that all attributes
with the given name in the configuration adhere to the constraint. The#any
modifier means that additionally, at least one such attribute has to be
included in the configuration.

#if (’CPU’ == ’Ryzen 5’) {

#require #any <Attribute>’Motherboard::CPU_SOCKET’ == "AM4";

#require <Attribute>’Motherboard::POWER_CONSUMPTION’ < 100;

#require #each <Attribute>’Motherboard::PRICE’ == $MotherboardPrice;

}

Lastly, instead of just an attribute we can also use the same over all instance
of an attribute in the configuration:

#requirement {

#require sum(’POWER_CONSUMPTION’) < 1000;

#require sum(’PRICE’) < $maximumPrice;

}

Any of these constraints can be combined using logical operators, the same
way conditions for if-then rules can.

67

7 Evaluation and Analysis

In this chapter we will evaluate our system. We will first give an evaluation
of the performance of the model. We give an evaluation on a complete
feature model spanning the entire feature set of our model validation
system, and then evaluate the features by themselves. For an overview over
what features the system has, see Chapter 6.

7.1 Performance Evaluation

The performance evaluation will be split into two parts:

• Feature model of PC parts configuration introduced previously
• Evaluation of a big feature model with Conjunctive Normal Form

(CNF) clauses as rules provided by SPLOT
• Evaluation of attributes, parameters and sum function

7.1.1 Setup

We start with the more realistic but small feature model of a PC configura-
tion. An explanation for the model can be found in Chapter 4.2.1. For this
model, we will evaluate the time the system takes to build the model, which
includes reading the input model from Enterprise Architect, compiling the
rules, and transforming the model to RDF. We then evaluate the time needed
to validate feature selections. The model has 21 features and 31 rules. The
rules cover all capabilities of the system. An excerpt of the model can be
found in the appendix.

69

7 Evaluation and Analysis

Software Product Lines Online Tools (SPLOT) [32] provides multiple test
models designed for empirical evaluation of feature models. SPLOT pro-
vides multiple models with similar structure that have a varying number of
features and constraints. We will use multiple of these models to see how
model variations impact the performance of our system. The constraints
of the SPLOT models are 3-CNF formulas. It has been shown that 3-CNF
formulas are often harder to solve for these systems than realistic feature
models, which makes them a good candidate for benchmarking [36]. Below
is a small excerpt of one of the models, showing a part of the feature tree,
and a rule consisting of a condition shape and an action shape.

ex:root ex:VP fm:o_3,

fm:m_5,

ex:true schema:true;

ex:zero 0 ;

vp:m_5 fm:m_5;

vp:o_3 fm:o_3;

a ex:configuration.

fm:o_3 a fm:VP;

ex:Variant fm:g_2_3;

ex:Variant fm:g_2_4;

fm:m_5 a fm:VP;

ex:Variant fm:m_3_1;

fm:g_2_3 a fm:variant.

fm:g_2_4 a fm:variant.

fm:m_3_1 a fm:variant.

schema:g_2_4Selected a sh:PropertyShape;

sh:hasValue fm:g_2_4;

sh:path (ex:VP ex:Variant).

schema:conditionShape-1 a sh:NodeShape;

sh:not [sh:or (schema:g_2_4Selected schema:g_2_3Selected)];

sh:targetNode ex:root.

schema:targetAction schema:actionShape-1.

70

7.1 Performance Evaluation

schema:m_3_1Selected a sh:PropertyShape>;

sh:hasValue fm:m_3_1;

sh:path (ex:VP ex:Variant).

schema:actionShape-1 a sh:NodeShape>;

sh:targetNode ex:root;

sh:message "cnf action";

sh:or (schema:m_3_1Selected).

The SPLOT system uses the SXFM format to save feature models, therefore
we have to convert this format to one we can use. The SPLOT team has
provided a Java library for parsing the format, which we use to transform
the model and the constraints to XML in a form we can use to create our
feature model. The feature model part is transformed so that the first level of
features are variation points, and all children are variants of these variation
points. The constraint part stays mostly the same, except that we remove
the prefix of each line.

The built-in XML functionality of C# is used for parsing the model and
creating the RDF graph and shapes graph. We model the constraints such
that the first two terms of a 3-CNF clause form the condition for a rule, and
the third term is the action.

After creating the feature model, we can now test the performance. We
test the performance of our model by randomly selecting features and
measuring the time it takes to validate the model. We average this time for
each model over 50 iterations.

All tests are conducted on a Lenovo ThinkPad P51, Intel i7-7820HQ(2.9
GHz).

7.1.2 Extended Constraints

To evaluate the extended features of our model we will automatically
generate multiple models with a varying number of features and constraints.

71

7 Evaluation and Analysis

Extended features are attributes of variants, user defined parameters, and
the sum constraint.

To start with we just build models with a single feature and gradually
increase the number of rules. Each feature of the model has the attribute
we test on, and every condition is true. This means every action has to
be evaluated. This is not a realistic model, but it should give us a first
impression for how these constraints scale.

After that we analyse multiple models where we fix the number of features
and increase the number of constraints. We build multiple of these models
for each of the constraint type. Each of the types will have one model with
10, 100, 500 and 1000 features, respectively. The number of constraints will
be varied from 10 up to 10000 for each model. For evaluation we select a
varying number of random features and average over the validation times.
We performed 50 iterations per model except for the largest ones which for
which 10 were performed.

ex:root ex:VP fm:vp1;

ex:true schema:true;

ex:zero 0 ;

vp:vp1 fm:vp1;

fm:vp1 ex:Variant fm:variant1;

a fm:VariationPoint.

fm:variant1 attr:attribute1 fm:attribute1;

a fm:variant.

fm:attribute1 ex:Value 1;

schema:actionShape-1 sh:targetNode ex:root;

a sh:NodeShape>;

sh:message "attribute constraint";

sh:or ([sh:path ex:VP ex:Variant attr:attribute1 ;

sh:maxExclusive 50 ;

sh:minCount 1]).

schema:actionShape-1 sh:targetNode ex:root.

a sh:NodeShape;

72

7.1 Performance Evaluation

sh:message "sum constraint";

sh:or ([sh:sparql [sh:select """

SELECT $this WHERE {

$this a ex:configuration.

$this ((ex:VP/ex:Variant/attr:attribute1/ex:Value)

| ex:zero) ?attr.

}

group by $this

having(SUM(?attr) >= 100) """]]).

schema:actionShape-1 sh:targetNode ex:root;

a sh:NodeShape;

sh:message "parameter constraint";

sh:or ([sh:path (ex:VP ex:Variant* attr:attribute1 ex:value) ;

sh:sparql [sh:select> """

SELECT $this ?value WHERE {

$this a ex:configuration.

fm:param1 ex:Value ?paramvalue.

$this

((ex:VP/ex:Variant/attr:attribute1/ex:Value)) ?value.

FILTER(?paramvalue < ?value)

} """]]).

7.1.3 Results

PC building model

We start with the evaluation of the model building. Reading the model
elements from Enterprise Architect took up the majority of the time with
an average of 1581 ms and a standard deviation of 172 ms. Compiling the
configuration containers using ANTLR took an average of 403 ms with an
86 ms standard deviation, and transforming the model to RDF required an
average 124 ms with a 7 ms standard deviation.

73

7 Evaluation and Analysis

The average for validation over all validation runs with different features
selections is 102 ms with a standard deviation of 21 ms. The time for
evaluating conditions and actions is somewhat equal with a mean of 51

ms and a standard deviation of 12 ms for conditions and a mean of 52 ms
with a standard deviation of 15 ms for actions. The minimum was 84 ms
and the maximum 190 ms. The minimum had 15 conditions evaluating to
true, producing 6 faults. The maximum had 28 conditions evaluating to true,
producing 13 violations. The time for updating the selected features in the
graph and the active actions is negligible being at maximum 1ms.

CNF Model Results

For the models from SPLOT, we evaluated 5 models which consisted of 500,
1000, 2000, 5000 and 10000 features respectively. The number of constraints
varied between 50 and 150. For the evaluation, the time the system required
to validate a configuration was measured and averaged over multiple itera-
tions. Both the number of features that were in the configuration and which
features are in it were randomized in each iteration. Figure 7.1a shows the
results of this evaluation. Every point in the graph is the average time it took
the SHACL validator to validate the configuration with random assignments
of features. The time it takes to validate a model stays within a reasonable
frame up until 2000 features. At 5000 features the time is already above 10

seconds, and passes 20 second at 10000 features.

The time for validation is a combination of the time it takes for validation
of condition shapes and, the amount of active action shapes. Here we have
conditions that consist of an or clause of two feature selection shapes, and
actions consisting of one feature selection shape. The way the shapes work
is that at least one node in the feature tree, found using the specified path
has to be the specified node. This means that if a feature is not selected, the
entire the entire feature tree needs to be checked for this node, whereas if
the node is found, the validator can return immediately. We can observe
that the majority of the validation time is spent on validating the condition
shapes. This is natural, as condition as have twice as many feature selection
shapes per constraint as action shapes. Additionally, every condition shape

74

7.1 Performance Evaluation

(a) Fixed number of selected features (b) Variable number of selected features

Figure 7.1: Results of running validation on SPLOT models

needs to be validated, whereas only the action shapes of fulfilled conditions
are considered.

A second test was conducted with the same models, this time the number
of features in the configuration was kept constant at half the features of the
model for all iterations. The actual selected features were still randomized
for in every iteration. The results for this test run can be seen in Figure
7.1b. While the mean time between the two test runs remains about equal,
the standard deviation is very high when varying the amount of selected
features. The validation time increases linearly with the amount of selected
features, as the number of paths in the feature graph that the validator has
to consider, also increases. Naturally, this causes the standard deviation to
increase. We can see this increase for a different model in Figure 7.2

Extended Feature Results

We start with the model that has only one feature and we increase the
number of constraints in each step. Unsurprisingly, this model shows a
linear increase in the validation time with the number of rules for all
three model types. This is because there is only one path in the feature
tree that will reach an attribute value node. For the attribute constraint
model, the validator follows the path specified in the property shape, and

75

7 Evaluation and Analysis

evaluates the found nodes against the SHACL properties of the property
shape. Since there is only one path, the validator can simply iterate over
all constraint shapes, get this one attribute value and evaluate, leading to a
linear increase in validation time, with the increase in constraints. For the
sum and parameter models, the process is similar, but here the attribute
values are found in a SPARQL query, which also handles the evaluation
by filtering out the valid nodes. Validation of SPARQL queries is slower,
but the increase in validation time still stays linear. The average time per
rule validation is roughly 7 ms for a sum constraint, 2 ms for an attribute
constraint, and 4ms for a parameter constraint.

Next, the results from varying the number of constraints with a fixed amount
of features. This was done separately for all 3 constraint types. We can see
from Figure 7.3 that above 1000 constraints is the point where performance
starts to decrease. Attribute constraints perform better than sum and pa-
rameter constraints. This is because sum and parameter constraints use
a SPARQL query for validation, which has to be interpreted in addition.
Note that the models used for evaluation represent extreme cases in which
each of the features in the model, has the attribute we check for. With more
realistic models where not every feature has every attribute, the number of
paths in the feature tree SHACL has to check remains the same, while the
number of actual nodes to check against properties is lower.

We can see from Figure 7.3 that for models with up to around 500 features,
the system performs at an acceptable level. As the number of features and
rules increases, the time it takes to validate a configuration quickly becomes
too high to be reasonably used. We can clearly see the increase in validation
time caused by interpretation of SPARQL queries when comparing the
attribute and parameter plots. The constraints in both models are similar,
but parameter constraints compare attributes to a parameter stored in the
feature model instead of a constant. This requires the validation to be done
using a SPARQL query. The actual comparisons are the same between the
two constraint types otherwise.

The validation time correlates with the number of selected features in the
configuration. The higher the number of features, the more paths exist in
the feature tree which the validator has to follow to find the right value
nodes to check. This means that, in general, the more features are selected,

76

7.1 Performance Evaluation

Figure 7.2: Validation times for against number of selected features

the longer the evaluation takes on average. Take for example the model
consisting of only attribute constraints with 500 constraints and 100 features
from this evaluation. We can observe a linear increase in validation time
with the number of selected features (see Figure 7.2).

77

7 Evaluation and Analysis

(a) Attributes

(b) Parameter

(c) Sum

Figure 7.3: Average time for model validation using models with advanced constraints

78

8 Conclusion and Outlook

8.1 Outlook

We showed that the system performs well for smaller feature models how-
ever there do exist larger models in practice. The feature model for the eCos
operating system has roughly 1000 features [37]. The model uses if-then
rules, with feature selection constraints. Considering our benchmark of a
pure CNF feature model, this model should still perform well.

The feature model for the Linux kernel is comprised of around 6000 fea-
tures. With our current implementation, validating a selection in this model
would most likely take more than 10 seconds, which would make the
validation process cumbersome in practice. We can look for ways to in-
crease performance of our system. Currently all validation is done using the
DotnetRDF implementation of SHACL. There are multiple other implemen-
tations, which differ in performance. We currently also use the standard
in-memory graph storage. Performance could possibly be improved by
switching to a specialized graph database like GraphDB [38].

Many product configuration systems support automatically inferring config-
uration decisions where there is only one valid option. OWL based feature
models often use the inherent power of reasoning to make these decisions.
In our case, we could possibly make use of SHACL rules to infer config-
urations. SHACL rules allow the construction of new triples in a graph,
according to a SPARQL query.

79

8 Conclusion and Outlook

8.1.1 Limitations of SHACL

Semantic Web technologies are powerful tools to build models and also
for validation, but they do have some limitations when it comes to more
complex validation tasks, which can make it difficult to build constraints in
some cases.

SHACL-SPARQL

For cases where the built in SHACL properties are not sufficient to validate
the model, SHACL allows the creation of SPARQL queries for creating
custom validation rules. This is often useful when needing to select nodes
for comparisons that aren’t direct properties of the focus node. It also
enables the use of aggregate functions like sum and count, and use filter
expressions.

SPARQL queries for SHACL shapes need to adhere to certain conditions [6].
For example, the first returned variable of the result set always has to be the
focus node of the node shape the query is defined on. All subqueries also
need to return this node. Queries cannot have MINUS or VALUES clauses.
This means we cannot constraint variable bindings to certain values, and
cannot exclude the results from one query from the results of another.

Recursive Constraints

SHACL allows a shape to define property shapes via the sh:property pred-
icate. These shapes are used to validate all nodes that are found along a
specified path from the focus node, according to the properties defined in
the shape. A node shape can have multiple property shapes, but property
shapes cannot be defined recursively. This is important, as SHACL favors
the definition of constraints that reference other constraints [39].

80

8.2 Conclusion

8.2 Conclusion

In this thesis we approached the problem of product configuration by using
Semantic Web technologies. We do so by building a feature model using
SHACL. Feature models have been built using OWL before, but there has
not been much research into using SHACL, in part because SHACL is a
relatively new standard [6].

We developed a feature model using RDF to model the feature tree, and
SHACL to model extra constraints on the tree. Additionally, a domain
specific language was developed to enable the practical construction of
these constraints. The SHACL specification provides functionality that is
needed to validate these extra constraints. An added benefit of using the
Semantic Web is that the model is platform independent, as Semantic Web
technologies are implemented in many different languages and operating
systems.

The system handles feature models of small to medium size relatively
well. We can have several hundred features and rules, with validation of
the configuration still being fast. For larger models performance starts to
decrease considerably. We showed that our approach is still performant on
models with several hundred features and rules. Models that are purely
made of feature selection constraints in logical formulas perform better than
models with sum and attribute constraints. With larger feature models of
up to around 2000 features the system still performs well.

81

Bibliography

[1] Li Da Xu, Eric L Xu, and Ling Li. “Industry 4.0: state of the art
and future trends.” In: International Journal of Production Research 56.8
(2018), pp. 2941–2962 (cit. on p. 1).

[2] M Reza Abdi and AW Labib. “Grouping and selecting products: the
design key of reconfigurable manufacturing systems (RMSs).” In:
International journal of production research 42.3 (2004), pp. 521–546 (cit.
on p. 1).

[3] Abdelrahman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Ho. “Knowl-
edge Based Method to Validate Feature Models.” In: vol. 2. Jan. 2008,
pp. 217–225 (cit. on pp. 1, 5).

[4] Don Batory. “Feature models, grammars, and propositional formulas.”
In: International Conference on Software Product Lines. Springer. 2005,
pp. 7–20 (cit. on pp. 1, 37).

[5] Schreiber Guus and Raimond Yves. Resource Description Framework
(RDF). 2014. url: https://www.w3.org/TR/2014/NOTE- rdf11-

primer-20140624/ (cit. on pp. 2, 8, 9).

[6] Knublauch Holger and Dimitris Kontokostas. Shapes Constraint Lan-
guage (SHACL). 2017. url: https://www.w3.org/TR/shacl/ (cit. on
pp. 2, 13, 80, 81).

[7] Understand how structured data works. 2021. url: https://developers.
google.com/search/docs/guides/intro-structured-data (cit. on
p. 2).

[8] Shakeel Ahmad Khan and Rubina Bhatti. “Semantic Web and ontology-
based applications for digital libraries.” In: The Electronic Library (2018)
(cit. on pp. 2, 8).

83

https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/shacl/
https://developers.google.com/search/docs/guides/intro-structured-data
https://developers.google.com/search/docs/guides/intro-structured-data

Bibliography

[9] Pieter Pauwels, Sijie Zhang, and Yong-Cheol Lee. “Semantic web
technologies in AEC industry: A literature overview.” In: Automation
in Construction 73 (2017), pp. 145–165 (cit. on p. 2).

[10] Núria Queralt-Rosinach et al. “DisGeNET-RDF: harnessing the in-
novative power of the Semantic Web to explore the genetic basis of
diseases.” In: Bioinformatics 32.14 (2016), pp. 2236–2238 (cit. on pp. 3,
8).

[11] Maxwell Lewis Neal et al. “Harmonizing semantic annotations for
computational models in biology.” In: Briefings in bioinformatics 20.2
(2019), pp. 540–550 (cit. on pp. 3, 8).

[12] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. “Auto-
mated analysis of feature models 20 years later: A literature review.”
In: Information systems 35.6 (2010), pp. 615–636 (cit. on pp. 6, 7).

[13] Uzma Afzal et al. “Feature Selection Optimization in Software Product
Lines.” In: IEEE Access PP (Sept. 2020), pp. 1–1. doi: 10.1109/ACCESS.
2020.3020795 (cit. on pp. 6, 35).

[14] Guillaume Bécan et al. “Synthesis of attributed feature models from
product descriptions.” In: Proceedings of the 19th International Conference
on Software Product Line. 2015, pp. 1–10 (cit. on pp. 7, 37).

[15] Andreas Classen, Quentin Boucher, and Patrick Heymans. “A text-
based approach to feature modelling: Syntax and semantics of TVL.”
In: Science of Computer Programming 76.12 (2011), pp. 1130–1143 (cit. on
pp. 7, 37).

[16] Maxime Cordy et al. “Beyond boolean product-line model checking:
dealing with feature attributes and multi-features.” In: 2013 35th
International Conference on Software Engineering (ICSE). IEEE. 2013,
pp. 472–481 (cit. on pp. 7, 37).

[17] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic
web.” In: Scientific american 284.5 (2001), pp. 34–43 (cit. on p. 8).

[18] Hitzler Pascal and Krötzsch Markus. OWL 2 Web Ontology Language
Primer. 2012. url: https://www.w3.org/TR/2012/REC-owl2-primer-
20121211 (cit. on pp. 8, 10).

[19] Ramanathan V Guha. “Light at the end of the tunnel.” In: International
semantic web conference. Vol. 12. 2013 (cit. on p. 8).

84

https://doi.org/10.1109/ACCESS.2020.3020795
https://doi.org/10.1109/ACCESS.2020.3020795
https://www.w3.org/TR/2012/REC-owl2-primer-20121211
https://www.w3.org/TR/2012/REC-owl2-primer-20121211

Bibliography

[20] K Selçuk Candan, Huan Liu, and Reshma Suvarna. “Resource descrip-
tion framework: metadata and its applications.” In: ACM SIGKDD
Explorations Newsletter 3.1 (2001), pp. 6–19 (cit. on p. 8).

[21] Dan Brickley and R.V. Guha. RDF Schema 1.1. 2014. url: https://www.
w3.org/TR/rdf-schema/ (cit. on p. 10).

[22] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. 2008. url: https://www.w3.org/TR/rdf-sparql-query/
(cit. on p. 11).

[23] Knublauch Holger, Hendler James A., and Idehen Kingsley. SPIN -
Overview and Motivation. 2011. url: https://www.w3.org/Submission/
spin-overview (cit. on p. 13).

[24] Tomaž Kosar et al. “A preliminary study on various implementation
approaches of domain-specific language.” In: Information and software
technology 50.5 (2008), pp. 390–405 (cit. on p. 15).

[25] Parr Terence. ANTLR. 2014. url: https://www.antlr.org/ (cit. on
p. 16).

[26] Shamim Ripon et al. “Semantic web based analysis of product line
variant model.” In: International Journal of Computer and Electrical Engi-
neering 6.1 (2014), pp. 1–6 (cit. on pp. 18–22).

[27] Krzysztof Czarnecki et al. “Feature models are views on ontologies.”
In: 10th International Software Product Line Conference (SPLC’06). IEEE.
2006, pp. 41–51 (cit. on p. 18).

[28] Shusheng Zhang, Weiming Shen, and Hamada Ghenniwa. “A review
of Internet-based product information sharing and visualization.” In:
Computers in Industry 54.1 (2004), pp. 1–15 (cit. on p. 19).

[29] Lamia Abo Zaid, Frederic Kleinermann, and Olga De Troyer. “Apply-
ing semantic web technology to feature modeling.” In: Proceedings of
the 2009 ACM symposium on Applied Computing. 2009, pp. 1252–1256

(cit. on pp. 21, 22).

[30] Horrocks Ian and Boley Harold. SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML. 2004. url: https://www.w3.org/
Submission/SWRL/ (cit. on p. 22).

85

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/Submission/spin-overview
https://www.w3.org/Submission/spin-overview
https://www.antlr.org/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/

Bibliography

[31] Marcilio Mendonca and Donald Cowan. “Decision-making coordi-
nation and efficient reasoning techniques for feature-based configu-
ration.” In: Science of Computer Programming 75.5 (2010), pp. 311–332

(cit. on pp. 23, 24).

[32] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. “Auto-
mated reasoning on feature models.” In: International Conference on
Advanced Information Systems Engineering. Springer. 2005, pp. 491–503

(cit. on pp. 26, 70).

[33] Stefan Bischof et al. “Integrating Semantic Web Technologies and ASP
for Product Configuration.” In: (Oct. 2018) (cit. on pp. 27, 28, 31).

[34] Marcilio Mendonca, Moises Branco, and Donald Cowan. “SPLOT:
software product lines online tools.” In: Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems
languages and applications. 2009, pp. 761–762 (cit. on p. 28).

[35] SXFM Format. url: http://ec2-54-213-92-199.us-west-2.compute.
amazonaws.com:8080/SPLOT/sxfm.html (cit. on p. 29).

[36] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki.
“SAT-based analysis of feature models is easy.” In: Proceedings of the
13th International Software Product Line Conference. 2009, pp. 231–240

(cit. on p. 70).

[37] Jianmei Guo. Feature models in the wild. 2015. url: https://gsd.
uwaterloo.ca/feature-models-in-the-wild.html (cit. on p. 79).

[38] GraphDB. 2020. url: https://graphdb.ontotext.com/ (cit. on p. 79).

[39] Julien Corman, Juan L. Reutter, and Ognjen Savković. “Semantics
and Validation of Recursive SHACL.” In: The Semantic Web – ISWC
2018. Ed. by Denny Vrandečić et al. Cham: Springer International
Publishing, 2018, pp. 318–336. isbn: 978-3-030-00671-6 (cit. on p. 80).

86

http://ec2-54-213-92-199.us-west-2.compute.amazonaws.com:8080/SPLOT/sxfm.html
http://ec2-54-213-92-199.us-west-2.compute.amazonaws.com:8080/SPLOT/sxfm.html
https://gsd.uwaterloo.ca/feature-models-in-the-wild.html
https://gsd.uwaterloo.ca/feature-models-in-the-wild.html
https://graphdb.ontotext.com/

Appendix

87

PC model

Feature Tree

ex:root ex:VP fm:Motherboard,

fm:cpu,

fm:gpu,

fm:memory;

ex:param fiof:price,

fiof:clock_speed;

ex:true schema:true;

ex:zero 0 ;

vp:motherboard fm:motherboard;

vp:cpu fm:cpu;

vp:gpu fm:gpu;

vp:memory fm:memory.

fm:motherboard fm:name "Case";

ex:Variant fm:gigabyte-b550m.

fm:cpu ex:Variant fm:ryzen-5-3600.

fm:gpu ex:Variant fm:rtx-2080.

fm:memory ex:Variant fm:kingston-ddr3-1600.

fm:kingston-ddr3-1600 attr:CLOCK_RATE fm:kingston-ddr3-1600-CLOCK_RATE;

attr:POWER_CNSMPT fm:kingston-ddr3-1600-POWER_CNSMPT;

attr:PRICE fm:kingston-ddr3-1600-PRICE;

attr:SLOT fm:kingston-ddr3-1600-SLOT;

fm:name "GSkill RipJaws DDR4-3200";

a fiof:variant.

fm:kingston-ddr3-1600-CLOCK_RATE fm:name "CLOCK_RATE";

89

ex:Value 3200 .

fm:kingston-ddr3-1600-CONNECTOR fm:name "CONNECTOR";

ex:Value "DDR3" .

fm:kingston-ddr3-1600-POWER_CNSMPT fm:name "POWER_CNSMPT";

ex:Value 6 .

fm:kingston-ddr3-1600-PRICE fm:name "PRICE";

ex:Value 118 .

fm:kingston-ddr3-1600-SLOT fm:name "SLOT";

ex:Value "DDR4".

fm:hdd fm:name "HDD";

fm:rtx-2080 attr:POWER_CNSMPT fm:rtx-2080-POWER_CNSMPT;

attr:PRICE fm:rtx-2080-PRICE;

fm:name "NVIDIA RTX 2080";

fm:rtx-2080-POWER_CNSMPT fm:name "POWER_CNSMPT";

ex:Value 400 .

fm:rtx-2080-PRICE fm:name "PRICE";

ex:Value 1025 .

fm:rtx-2080-SLOT fm:name "SLOT";

ex:Value "PCIE".

fm:kingston-ddr3 attr:POWER_CNSMPT fm:kingston-ddr3-POWER_CNSMPT;

attr:PRICE fm:kingston-ddr3-PRICE;

attr:SLOT fm:kingston-ddr3-SLOT;

fm:name "Kingston Fury DDR3-1866";

fm:kingston-ddr3-POWER_CNSMPT fm:name "POWER_CNSMPT";

ex:Value 4 .

fm:kingston-ddr3-PRICE fm:name "PRICE";

ex:Value 70 .

fm:kingston-ddr3-SLOT fm:name "SLOT";

ex:Value "DDR3".

fm:gigabyte-b550m attr:CPU_SOCKET fm:gigabyte-b550m-CPU_SOCKET;

attr:FORM_FACTOR fm:gigabyte-b550m-FORM_FACTOR;

attr:POWER_CNSMPT fm:gigabyte-b550m-POWER_CNSMPT;

attr:PRICE fm:gigabyte-b550m-PRICE;

90

fm:name "Gigabyte B550M";

fm:gigabyte-b550m-CPU_SOCKET fm:name "CPU_SOCKET";

ex:Value "AM4".

fm:gigabyte-b550m-FORM_FACTOR fm:name "FORM_FACTOR";

ex:Value "mATX".

fm:gigabyte-b550m-POWER_CNSMPT fm:name "POWER_CNSMPT";

ex:Value 40 .

fm:gigabyte-b550m-PRICE fm:name "PRICE";

ex:Value 90 .

fm:ryzen-5-3600 attr:CLOCK_SPEED fm:ryzen-5-3600-CLOCK_SPEED;

attr:POWER_CNSMPT fm:ryzen-5-3600-POWER_CNSMPT;

attr:PRICE fm:ryzen-5-3600-PRICE;

attr:SOCKET fm:ryzen-5-3600-SOCKET;

fm:name "AMD Ryzen 5 3600X";

fm:ryzen-5-3600-CLOCK_SPEED fm:name "CLOCK_SPEED";

ex:Value 3800 .

fm:ryzen-5-3600-POWER_CNSMPT fm:name "POWER_CNSMPT";

ex:Value 95 .

fm:ryzen-5-3600-PRICE fm:name "PRICE";

ex:Value 217 .

fm:ryzen-5-3600-SOCKET fm:name "SOCKET";

ex:Value "AM4".

fm:corsair-hx850 attr:PRICE fm:corsair-hx850-PRICE;

fm:name "Corsair hx850";

fm:corsair-hx850-POWER fm:name "POWER";

ex:Value 850 .

fm:corsair-hx850-PRICE fm:name "PRICE";

ex:Value 216 .

Condition Shapes

schema:corsair-hx850Selected a sh:PropertyShape;

sh:hasValue fm:corsair-hx850;

91

sh:path (ex:VP ex:Variant).

schema:alwaysTrueShape schema:targetAction schema:actionShape-1;

schema:targetAction schema:actionShape-4;

a sh:NodeShape;

sh:not [

sh:path (ex:true);

sh:hasValue "true"

];

sh:targetNode ex:root.

schema:conditionShape-1 schema:targetAction schema:actionShape-2;

a sh:NodeShape;

sh:not schema:corsair-hx850Selected;

sh:targetNode ex:root.

schema:conditionShape-2 schema:targetAction schema:actionShape-3;

a sh:NodeShape;

sh:not schema:ryzen-5-3600;

sh:targetNode ex:root.

schema:conditionShape-4 schema:targetAction schema:actionShape-5;

a sh:NodeShape;

sh:not schema:kingston-ddr3Selected;

sh:targetNode ex:root.

Action Shapes

schema:actionShape-1 a sh:NodeShape;

sh:targetNode ex:root.

sh:message "Must select a minimum of 1 variants

of variation point: CPU";

sh:or (

[sh:path (vp:cpu ex:Variant*) ;

sh:minCount 1;]);

92

schema:actionShape-2 ex:actionType "RequireAction";

a sh:NodeShape;

sh:message "The sum of the all selected

attributes: POWER_CNSMPT has to be < 850.";

sh:or ([sh:sparql [sh:select """

SELECT $this WHERE {

$this a ex:configuration.

$this ((ex:VP/ex:Variant/<http://attribute.org/POWER_CNSMPT>/ex:Value)

| ex:zero) ?attr.

}

group by $this

having(SUM(?attr) >= 850)

"""]]);

schema:actionShape-3 sh:targetNode ex:root.

ex:targetIdentifier "Motherboard::CPU_SOCKET";

a sh:NodeShape;

sh:message "A selected variant of variation point: Motherboard is required

to have the attribute CPU_SOCKET::AM4.";

sh:or ([sh:path (vp:motherboard ex:Variant* attr:CPU_SOCKET ex:Value) ;

sh:hasValue "AM4"];

sh:minCount 1

).

schema:actionShape-4 sh:targetNode ex:root.

a sh:NodeShape;

sh:message> "A selected variant of variation point: CPU is required

to have the attribute CLOCK_SPEED > $clock_speed.";

sh:or ([sh:path (fm:cpu ex:Variant* attr:CLOCK_SPEED ex:Value) ;

sh:sparql [sh:select """

SELECT $this ?value WHERE {

$this a ex:configuration.

fm:clock_speed ex:Value ?paramvalue.

$this (ex:VP/ex:Variant/attr:CLOCK_SPEED/ex:Value)

?value.

FILTER(?paramvalue > ?value)

}

93

"""]]);

ex:targetIdentifier "CPU::CLOCK_SPEED".

schema:actionShape-5 a sh:NodeShape;

sh:message "All selected variants of variation point: Memory are

required to have the attribute CLOCK_RATE::1600.";

sh:or ([sh:path (vp:memory ex:Variant* attr:CLOCK_RATE ex:Value);

sh:hasValue 2400]);

sh:targetNode ex:root.

94

	Abstract
	Introduction
	Structure of the Thesis

	Background and Motivation
	Feature Modelling
	Structure of Feature Models

	Semantic Web
	Resource Description Framework - RDF
	Ontology Web Language - OWL
	SPARQL
	Shapes Constraint Language - SHACL

	Domain Specific Languages
	ANTLR

	Motivation

	Related Work
	Feature Models
	Semantic Web Based Analysis of Product Line Variant Model
	Applying Semantic Web Technology to Feature Modeling
	Decision-making coordination and efficient reasoning techniques for feature-based configuration
	Automated Reasoning on Feature Models

	Variant Management Approaches
	Integrating Semantic Web Technologies and ASP for Product Configuration
	Software Product Lines Online Tools

	Design and Concept
	Defining Feature Model Requirements
	System Requirements
	Requirements Summary

	Formal Definition
	Basic Relationships
	Extended Features
	Combination of selections
	Attributes
	Functions
	Global Parameters

	Language Design

	Implementation and Realization
	System Architecture
	Components
	Application Flow

	Creating the System Model
	Compiling Configuration Containers
	Grammar
	Rule Parser
	Visitor

	Building the Feature Model
	Feature tree
	Shapes Graph

	Validating the Model

	Building a Model
	Model Creation
	Creating Rules

	Evaluation and Analysis
	Performance Evaluation
	Setup
	Extended Constraints
	Results

	Conclusion and Outlook
	Outlook
	Limitations of SHACL

	Conclusion

	Bibliography

