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Abstract

In this master thesis we study subsets of Znm := (Z/mZ)n that do not contain progres-
sions of length m. We denote by rm(Znm) the cardinality of such subsets containing a
maximal number of elements and try to give upper and lower bounds on rm(Znm).

For odd prime numbers m = p, rp(Znp ) = (p − 1)n was already known for n = 1

and n = 2, we however prove that rp(Z3
p) ≥ (p− 1)3 + p−1

2
holds. We establish a new

method to find upper bounds, in particular we get rp(Z3
p) ≤ p3 − 2p2 + 1.

For composite m we provide the biggest side length of a hypercube in Znm that does
not contain progressions of length m and use the probabilistic method to show that
the corresponding lower bound for rm(Znm) is asymptotically not optimal in general.

For m = 6 we present constructions of progression-free sets showing r6(Zn6 ) ≥
max{3n + 2n3n−1 + n(n− 1)3n−2, 4n + n3n−1}.

Finally we use integer programming to find exact values and lower bounds for indi-
vidual m and n, in particular r5(Z3

5) ≥ 69 which can be used to give the asymptotic
lower bound 4.041n for r5(Zn5 ).

Kurzfassung

In dieser Masterarbeit untersuchen wir Teilmengen von Znm := (Z/mZ)n die keine
Progressionen der Länge m enthalten. Wir bezeichnen mit rm(Znm) die Kardinaltät
einer solchen Teilmenge mit einer maximalen Anzahl an enthaltenen Elementen und
versuchen obere und untere Schranken für rm(Znm) zu finden.

Für ungerade Primzahlen m = p wurde rp(Znp ) = (p − 1)n bereits für n = 1 und

n = 2 gezeigt, wir aber beweisen, dass rp(Z3
p) ≥ (p− 1)3 + p−1

2
gilt. Wir ermitteln eine

neue Methode um obere Schranken zu finden und bekommen so rp(Z3
p) ≤ p3−2p2 + 1.

Für zusammengesetzte m stellen wir die längste Seitenlänge eines Hyperwürfels in
Znm bereit, der keine Progressionen der Länge m enthält und benutzen probabilistis-
che Methoden um zu zeigen, dass die dazugehörige untere Schranke für rm(Znm) im
Allgemeinen asymptotisch nicht optimal ist.

Für m = 6 stellen wir Konstruktionen von progressionsfreien Mengen vor, die zeigen
dass r6(Zn6 ) ≥ max{3n + 2n3n−1 + n(n− 1)3n−2, 4n + n3n−1} gilt.

Schlussendlichen verwenden wir ganzzahlige lineare Optimierung um exakte Werte
und untere Schranken für bestimmte m und n zu finden, im Besonderen r5(Z3

5) ≥ 69
welche verwendet werden kann um die asymptotische untere Schranke 4.041n für r5(Zn5 )
zu zeigen.
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1 Introduction

Arithmetic progressions may be one of the oldest concepts in mathematics. The idea
of starting at a fixed point a and getting to every other desired point by recursively
adding a constant b is on the one hand very easy to understand and on the other hand
essential to a whole field of mathematics, as induction, which is probably the founda-
tion of all of discrete mathematics, relies on the simplest progression {1 + 1i|i ∈ N}.

One is however not restricted to natural numbers or points in space when using
progressions. One particular beautiful example are the progressions in Zp := Z/pZ for
a prime number p, where a progression reaches every possible value for every starting
point a and every non-zero step length b. The progression also repeats itself which
leads us to stop looking at an infinite series but at sets with p elements now called
p-progressions. When we go up into the multidimensional case Znp we can also change
our perspective and see p-progressions as lines or 1-dimensional affine subspaces.

Now the problem arises how to avoid p-progressions, or more precisely: Can we
find subsets of Znp that do not contain p-progression, and can we make these subsets
as large as possible? As soon as we look at these p-progression-free sets, which try
to avoid structure, we do not have any simple rules to apply and finding maximal
ones is far from trivial. There is however one property we can use: We can project
any p-progression down to one dimension and it will there again visit every possible
value. Therefore, a n-dimensional hypercube with side length p − 1 will not contain
any p-progression and we have our first trivial p-progression-free sets.

It was already shown that these hypercubes are indeed maximal p-progression-free
sets for dimension one and two and one could guess now that that the same is true
for any dimension. However, we could show that as soon as dimension three there
are larger p-progression-free sets for any odd prime p. There are also some techniques
to lift progression-free sets into higher dimensions, which means using these sets to
construct higher dimensional sets that have similar structure. Consequently, the hy-
percubes are also not maximal in every higher dimension.

When giving up on the restricting that p is a prime number and looking at m-
progression-free sets in Znm for arbitrary natural numbers m the problem changes
considerably. We can no longer guarantee that a non-zero step length b gives us an
m-progression, as the progression could end up on the starting point after an amount
of steps that is a proper divisor of m. We can no longer use facts about vector spaces
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and there is very little previous work by other authors. It will be a common theme in
this thesis that theorems either only hold for prime numbers or that the corresponding
consequences are very weak for composite numbers m.

After formally introducing the problem and discuss fundamental properties in Chap-
ter 2 we will present some lower bounds for the number of elements in a maximal
m-progression-free sets in Chapters 3 and 4. While Chapter 3 only covers the n-
dimensional hypercube, Chapter 4 deals with other techniques that lead to better
lower bounds in certain cases.

In Chapter 5 we accordingly provide some upper bounds for m-progression-free sets
and get the first exact results. This is followed by Chapter 6, where we discuss tech-
niques to lift progression-free sets into higher dimensions and look at the asymptotic
behaviour as the dimension n tends to infinity.

We finally continue to try to beat lower bounds, first in Chapter 7 with manually
constructing m-progression-free sets and then in Chapter 8 by computer calculations.
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2 Principles

In this section we provide a clear definition of what we understand by progressions
and discuss how basic number theoretic properties apply to them. We also want to
formalize our optimisation problem and lay the foundation for the following chapters
by presenting some auxiliary results.

2.1 Problem Definition

Definition 1. Let (A,+) be an abelian group and k ∈ N. A subset L ⊆ A with |L| = k
is called k-progression if there exist a, b ∈ A such that

L = {a+ bi|i ∈ [0, k − 1]}.

A subset S ⊆ A is called k-progression-free if it does not contain any k-progression.

Note that in our case of the groups of type Znm := (Z/mZ)n not every set of the
form

{a+ bi|i ∈ [0, k − 1]}

is a k-progression, not even if we assume b 6= 0. Some authors are skipping the
condition |L| = k but we will stick with it which could result in some bigger k-
progression-free sets.

Now we get to the goal of this work, to maximize progression-free sets.

Definition 2. Let (A,+) be an abelian group and k ∈ N. Let S := {S ⊆ A|S is k-progression-free}.
We define

rk(A) := max
S∈S
|S|.

Definition 3. Let m, k ∈ N. We define

αk,m := lim
n→∞

(rk(Znm))1/n

if the limit exists.

We will see that for m as a prime power the limit in Definition 3 always exists. It
is natural to measure progression-free sets in this way, as |Znm| grows exponentially as
n tends to infinity.
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2.2 Number theoretic foundation

We now take a look at how progressions in Znm behave in only one coordinate. This
will also help us determining if a set of the form

{a+ bi|i ∈ [0,m− 1]}

is an m-progression.

Lemma 1. Let m ∈ N, n ∈ N, j ∈ [1, n] and L := {a + bi|i ∈ [0,m − 1]} be an
m-progression in Znm with a := (a1, a2, ..., an) ∈ Znm and b := (b1, b2, ..., bn) ∈ Znm. If
gcd(bj,m) = 1 then

{aj + bji|i ∈ [0,m− 1]} = [0,m− 1].

Proof. bj is a unit of (Zm, ∗), therefore

{aj + bji|i ∈ [0,m− 1]} = aj + bjZm = aj + Zm = Zm = [0,m− 1].

Lemma 2. Let m ∈ N, n ∈ N, j ∈ [1, n] and L := {a + bi|i ∈ [0,m − 1]} be an
m-progression in Znm with a := (a1, a2, ..., an) ∈ Znm and b := (b1, b2, ..., bn) ∈ Znm. Let
d := gcd(bj,m) then

{aj + bji|i ∈ [0,m− 1]} = {aj + di|i ∈ [0,
m

d
− 1]}

Proof. Let k, l ∈ Z be such that 1 = km+ l
bj
d

and therefore d = dkm+ lbj. Obviously
gcd(m, l) = 1 and thus l is a unit of (Zm, ∗). It follows that

dZm = dkmZm + bjlZm = 0 + bjZm = bjZm

and consequently

{aj + bji|i ∈ [0,m− 1]} = aj + bjZm = aj + dZm = {aj + di|i ∈ [0,
m

d
− 1]}

Here we can already see how the divisors of m will play a huge role in the analysis
of progressions of Znm. Consequently, if m is a prime, we are only left with the cases
that aj + bji runs through all possible values or the coordinate does not change at all.

In most cases a notation of the form

{a+ bi|i ∈ [0,m− 1]}

will not be unique to describe a certain m-progression. The next result will show
that for prime m we can even pick an arbitrary element of the progression as a and
an arbitrary distance between two elements in the progression as b to get a correct
description.
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Figure 2.1: Example in Z2
9:

As the vector b = (1, 6) and gcd(9, 6) = 3, the progression has only points in every
third row.

Figure 2.2: Example in Z2
7:

Different vectors can generate the same progression.

Lemma 3. Let p ∈ P, n ∈ N and L := {a + bi|i ∈ [0, p− 1]} be a p-progression in Znp
with a, b ∈ Znp . Choose j, k ∈ [0, p− 1] arbitrarily with j 6= k, then we can rewrite

L = {a′ + b′i|i ∈ [0, p− 1]}

with a′ := a+ bj and b′ := b(k − j) = (a+ bk)− (a+ bj).

Proof. Since j 6= k, k − j is a unit in Zp. Therefore

{a′ + b′i|i ∈ [0, p− 1]} = a′ + b′Zp = a′ + b(k − j)Zp = a′ + bZp

and since bj ∈ bZp,

a′ + bZp = a+ bj + bZp = a+ bZp = L.

As an immediate conclusion we get that in the prime case two progressions meet at
most in one common point.

5



Corollary 1. Let p ∈ P, n ∈ N and L,L′ be different p-progressions in Zp and L∩L′ 6= ∅.
Then

|L ∩ L′| = 1.

Proof. Assume to the contrary that a, a′ are different elements of L∩L′. From Lemma
3 we know that

L = a+ (a′ − a)Zp = L′,

which contradicts the definition of L and L′.

The final Lemma in this subsection describes an easy way to check if a set is an
m-progression.

Lemma 4. Let m ∈ N, n ∈ N, j ∈ [1, n] and L := {a + bi|i ∈ [0,m− 1]} with a ∈ Znm
and b := (b1, b2, ..., bn) ∈ Znm. Then L is an m-progression in Znm if and only if

gcd(b1, b2, ..., bn,m) = 1.

Proof. Let d := gcd(b1, b2, ..., bn,m). Our goal is to count the elements of L in relation
to d. It holds that

a+ b
m

d
= a+ (

b1
d
m,

b2
d
m, ...,

bn
d
m) = a+ (0, 0, ..., 0) = a.

If we can show that

bj 6= 0, ∀j ∈ [1,
m

d
− 1]

then

a, a+ b1, a+ b2, ..., a+ b(
m

d
− 2), a+ b(

m

d
− 2), a+ b(

m

d
− 1)

are pairwise different. It follows that |L| = m
d

, which proves the lemma. Assume to

the contrary that there exists j ∈ [1, m
d
− 1] with bj = 0. Define b̃i := bi

d
for i ∈ [1, n].

It holds that m|jdb̃i for all i ∈ [1, n] and thus also

m|jd gcd(b̃1, b̃2, ..., b̃n).

Since m
d

and gcd(b̃1, b̃2, ..., b̃n) are coprime, it follows that m|jd. Now jd < m
d
d = m,

so jd = 0 contradicting the definition of d and j.

Remark 1. Note that even in the case gcd(b1, b2, ..., bn,m) = d 6= 1, the proof also
shows that L is an m

d
-progression.
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2.3 Counting progressions

Now we want to focus on counting the number of m-progressions in Znm and therefore
possible m-progressions in subsets of Znm which we try to avoid. Apart from being an
interesting topic on its own, this will also help us determine upper and lower bounds
for our maximization problem.

We start with the related topic of counting subspaces of final vector spaces over
finite fields. As one can easily see from the description of p-progressions in Znp where
p and b 6= 0is prime as

a+ bZp
, the p-progressions are exactly the affine 1-dimensional subspaces of Znp .

Lemma 5 ([18]). Let q = pn with p ∈ P and n ∈ N. Furthermore, let k, t ∈ N satisfying
t ≤ k ≤ n. Then the number of k-dimensional subspaces of Fq is

(qn − 1)(qn − q)...(qn − qk−1)
(qk − 1)(qk − q)...(qk − qk−1)

and more generally, the number of k-dimensional subspaces of Fq containing a fixed
t-dimensional subspace is

(qn−t − 1)(qn−t − q)...(qn−t − qk−t−1)
(qk−t − 1)(qk−t − q)...(qk−t − qk−t−1)

.

Lemma 6. Let p ∈ P, n ∈ N and x ∈ Znp . Then there are pn−1
p−1 pairwise different

p-progressions in Znp containing x.

Proof. W.l.o.g let x = 0. Then the p-progressions containing x are exactly the 1-
dimensional subspaces of Znp and by Lemma 5 there are

pn − 1

p− 1

of these.

Lemma 7. Let p ∈ P and n ∈ N then there are(
pn

2

)(
p
2

) =
pn−1(pn − 1)

p− 1

pairwise different p-progressions in Znp .

Proof. We prove this by double counting the set of pairs

D = {(x, L)|x ∈ Znp , L is a p-progression in Znp with x ∈ L}.

7



Let N be the number of p-progressions in Znp . By the previous lemma, we know that

|D| = pn
pn − 1

p− 1

and since every p-progressions contains p-elements, we know that

|D| = pN.

In conclusion

pN = pn
pn − 1

p− 1

⇔ N = pn−1
pn − 1

p− 1

For non-primem it is far more challenging to count the exact number ofm-progressions
but as we only need the result for an asymptotic bound, we are satisfied with the fol-
lowing rough estimate.

Lemma 8. Let m ∈ N and n ∈ N then there are at most(
mn

2

)
m

=
mn−1(mn − 1)

2
pairwise different m-progressions in Znm.
Proof. Again, we prove this by double counting. Consider the set

D = {(a, a+ b, L)|L = {a+ bi|i ∈ Zm}is an m-progression in Zm with a, b ∈ Znm}.
It holds that for fixed (a, a+ b, L) ∈ D,

{(a+ ib, a+ (i+ 1)b, L)|i ∈ [0,m− 1]} ⊆ D

and
{(a+ ib, a+ (i− 1)b, L)|i ∈ [0,m− 1]} ⊆ D,

which means that for every m-progression there are at least 2m elements in D. In
other words

|D| ≥ 2mN.

On the other hand, we consider the set

D′ := {(a, a+ b, L)|a ∈ Znm, b ∈ Znm \ {0}, L = {a+ bi|i ∈ Zm}} ⊇ D,

which contains mn(mn − 1) elements.
To sum things up

N ≤ |D|
2m
≤ |D

′|
2m

=
mn(mn − 1)

2m
=

(
mn

2

)
m

.

8



3 Trivial Lower Bounds

The first idea that comes to mind when constructing a progression-free set is to take
an n-dimensional cube

[0, l − 1]n

in Znm for which we can assure that it contains no m-progression. We can then imme-
diately conclude

rm(Znm) ≥ ln

and therefore
αm,m ≥ l

if it exists.
In this chapter we will present the best lower bounds one can achieve with this idea

and for the rest of the work it will be our objective to beat these bounds.

Theorem 1. Let m = pk with p ∈ P, k ∈ N and n ∈ N. Then

rm(Znm) ≥ (m− 1)n.

Proof. Consider the set S := [0,m − 2]n. We show that S is m-progression-free. Let
L := {a + bi|i ∈ [0,m− 1]} be an m-progression in Znm with a, b ∈ Znm. Since L is an
m-progression, there is a j ∈ [0,m − 1] with gcd(p, bj) = 1. Therefore {aj + bji|i ∈
[0,m− 1]} = [0,m− 1] and thus L 6⊆ S.

Theorem 2. Let m =
∏s

i=1 p
λi
i with s ≥ 2, n ∈ N, pi ∈ P and λi ∈ N ∀i ∈ [1, s] such

that pλ11 < pλ22 < ... < pλss . Then

rm(Znm) ≥ (m− m

pλss
)n.

Proof. Consider the set S := [0,m− m

pλss
− 1]n. We show that S is m-progression-free.

Let L := {a + bi|i ∈ [0,m − 1]} be an m-progression in Znm with a, b ∈ Znm. Since
L is an m-progression there is a j ∈ [0,m − 1] with gcd(ps, bj) = 1. We can write
{aj + bji|i ∈ [0,m− 1]} = {c+ di|i ∈ [0, k − 1]} with d a proper divisor of m, k := m

d

and c < d. Since gcd(ps, bj) = 1 it also follows that gcd(ps, d) = 1 and therefore
d ≤ m

pλss
. It follows

c+ d(k − 1) = c+m− d ≥ m− d > m− m

pλss
− 1

and thus L 6⊆ S.

9



Figure 3.1: the construction of the trivial lower bound in Z3
5:

For prime numbers and prime powers, the cube is only one step smaller than the
whole space.

Figure 3.2: [0, 4]2 is not 6-progression-free in Z2
6.

For composite numbers m m-progressions are not necessarily compatible with our
understanding of a line.

10



Figure 3.3: the construction of the trivial lower bound in Z3
6:

For composite numbers the trivial lower bound is often very disappointing (e.g. the
bound for 6 is not even larger than for 5) and one can expect much larger

progression-free sets.

Remark 2. Note that the constraint s ≥ 2 is not necessary and Theorem 1 is actually
a special case of Theorem 2.

Remark 3. This theorem is best possible, in the sense that S := [0,m − m

pλss
]n is not

m-progression-free for n ≥ s since

{( m
pλ11

i,
m

pλ22
i, ...,

m

pλss
i, 0, ...0)|i ∈ [0,m− 1]}

is an m-progression in S.

11





4 Other Lower Bounds

The next result will not only be based on combinatorial and number theoretic argu-
ments but will use a strong tool from probability theory: Lovász Local Lemma [6]. It
is used to show the existence of certain objects in a random set for many combinatorial
problems.

Lemma 9. Lovász Local Lemma
Let l ∈ N and A1, A2, ..., Al be random events and p ∈ (0, 1), d ∈ N such that

� P (Ai) ≤ p ∀i ∈ [1, l],

� every event Ai is mutually independent of all but d other events,

� 4pd ≤ 1.

Then

P (
k∧
i=1

Āi) > 0.

In our case we look at all subsets of Zmn with a elements. Now the argument is
very intuitive: If a is small enough we can guarantee that one of our subsets is m-
progression-free . The downside of Lovász Local Lemma is that it is not constructive
and therefore we can only use the results as a theoretical lower bound but it will not
help us to construct progression-free sets.

Theorem 3. Consider rk(Znm) as a function in n, then

rk(Znm) = Ω((m
k−2
k )n)

as n→∞.

Proof. Let l ∈ N be the number of k-progressions in Znm. Note that l ≤ m2n. Let

a = b(1
4
)
1
k (m

k−2
k )nc, S the set of subsets of Znm with a elements and S be chosen

uniformly at random from S. Let B1, B2, ..., Bl be the distinct k-progressions in Znm
and Ai the event that Bi ∈ S for all i ∈ [1, l]. Then

P (Ai) ≤ (
a

mn
)k ∀i ∈ [1, l]

and
4(

a

mn
)km2n ≤ 1.

13



From Lemma 9 it follows that

P (
k∧
i=1

Āi) > 0,

which means there exists S ⊂ Znm with a elements that is k-progression-free.

Corollary 2.

rm(Znm) = Ω((m
m−2
m )n).

Remark 4. This might seem like a very weak lower bound, but for composite m with
many or high prime divisors this is actually much better than the trivial lower bound.
The smallest m where this would apply is 60. It holds that 6058/69 ≈ 52.35, while the
trivial lower bound for r60(Zn60) is 48n.

Another strong lower bound was given by Frankl, Graham and Rödl [8]. It was
originally intended for the related problem of line free subspaces of vector spaces and
uses a concept called sunflowers. Its main disadvantage is that its only applicable in
high dimensions.

Theorem 4. [8] Let p ∈ P. Then

rp(Z2p
p ) ≥ p(p− 1)2p−1.

14



5 Upper Bounds

In this chapter we now try to also find upper bounds for our problem, which is of
course harder than finding lower bounds for which we could simply take the number
of elements in any m-progression-free set. A common tool for finding upper bounds is
linear optimization, so consider the following reformulation as a linear program:

max
∑
y∈Znm

Xy

s. t. Xx1 +Xx2 + ...+Xxm ≤ m− 1, ∀ m-progressions {x1, x2, ..., xm}
Xy ∈ {0, 1}, ∀ y ∈ Znm.

(5.1)

It has the following linear relaxation:

max
∑
y∈Znm

Xy

s. t. Xx1 +Xx2 + ...+Xxm ≤ m− 1, ∀ m-progressions {x1, x2, ..., xm}
0 ≤ Xy ≤ 1, ∀ y ∈ Znm.

(5.2)

Since the restrictions in 5.1 are more strict than in 5.2 we know that the solution
of 5.2 is an upper bound for 5.1. Unfortunately, Xy = m−1

m
∀y ∈ Znm is an optimal

solution for 5.2, which leaves us with the following upper bounds:

rm(Znm) ≤ (m− 1)mm−1

and the trivial bound

αm,m ≤ m

if αm,m exists.
Again, the case where m is a prime gives us some more structure to find a better

upper bound, which is due to Aleksanyan and Papikian [1].

Theorem 5. Let p ∈ P and n ∈ N. Then

rp(Znp ) ≤ pn − pn − 1

p− 1
.

15



Proof. Let S ⊆ Znp be a p-progression-free set and x ∈ S. Then there are pn−1
p−1 m-

progressions containing x (see Lemma 5). From Corollary 1 we know that each pair
of these progressions intersect only in x. Therefore, each of these progression contains
a different point not contained in S which proves the theorem.

Remark 5. This again does not give us a non-trivial upper bound for αm,m.

One can use the idea from Theorem 5 to generalize the result in a way that uses
already known upper bounds in lower dimensions. For this we must first observe that
any l-dimensional subspace of Znp is isomorphic to Zlp.

Lemma 10. Let p ∈ P, n ∈ N and l ∈ N with l ≤ n. Let U be a l-dimensional subspace
of Znp . Then

rp(Zlp) = rp(U).

Proof. Let d1, d2, ..., dl be a basis of U and let e1, e2, ..., el be the canonical basis of Zlp.
Then

φ : Zlp → U

ei 7→ di ∀i ∈ [1, l]

defines a vector space isomorphism between Zlp and U that maps p-progressions

{(a1, a2, ..., al) + (b1, b2, ..., bl)i|i ∈ Zm}

in Zlp to p-progressions

{a1d1 + a2d2 + ...+ akdk + (b1d1 + b2d2 + ...+ bldl)i|i ∈ Zm}

in U . Therefore, for every p-progression-free subset S ⊆ Zlp, φ(S) is p-progression-free
in U with the same number of elements. The same holds for every p-progression-free
set S ′ ⊆ U and φ−1(S ′).

Now we modify the proof of Theorem 5 by using (n − 1)- and (n − 2)-dimensional
subspaces instead of p-progressions and points. Note that the intersection between two
(n − 1)-dimensional subspaces is either a (n − 2)-dimensional subspace or a (n − 1)-
dimensional subspace and the subspaces are equal.

Method 1. Let p ∈ P and n ∈ N. There is a k(p, n) ≥ 1 such that

rp(Znp ) ≤ (p+ 1)rp(Zn−1p )− pk(p, n)

Proof. Let S ⊆ Znp be a p-progression-free set and let L be a (n−2)-dimensional affine
subspace of Znp that shares the most points with S. Through shifting the problem
we can assume that L is a proper subspace. Let k(p, n) := |S ∩ L|. It is clear that
k(p, n) ≥ 1.

16



Now from Lemma 5 we know that there are p2−1
p−1 = p + 1 (n − 1)-dimensional

subspaces containing L. These subspaces pairwise only intersect in L. Each of these
subspaces contains at most rp(Zn−1p ) different point contained in S, which means they
contain at least

pn−1 − rp(Zn−1p )

different point not contained in S. Now at least

pn−1 − rp(Zn−1p )− pn−2 + k(p, n) = pn−2(p− 1)− rp(Zn−1p ) + k(p, n)

of those are not contained in L and therefore unique for each subspace. Considering
also the pn−2 − k(p, n) points in L \ S the theorem follows from

rp(Znp ) ≤ pn − (pn−2(p− 1)− rp(Zn−1p ) + k(p, n))(p+ 1)− (pn−2 − k(p, n))

= pn − (pn−2((p− 1)(p+ 1) + 1)− rp(Zn−1p )(p+ 1) + pk(p, n))

= pn − (pn−2p2 − (p+ 1)rp(Zn−1p ) + pk(p, n))

= (p+ 1)rp(Zn−1p )− pk(p, n)

Remark 6. Naively applying this method with k(p, n) = 1 for n > 2 will achieve
little as then already the trivial bound rp(Znp ) ≤ rp(Zn−1p )p will be more strict. The
goal will be to find a good lower bound for the number of elements in the biggest
n− 2-dimensional subset and then apply the method with this k(p, n).

The first exact result in this thesis was first discovered by Jamison [10] and deals
with the case of prime numbers in two dimensions. The above presented proof from
Alon [2] needs the Theorem of Chevalley (see [3]), which deals with the existence of
roots of polynomials over finite fields.

Theorem 6. Theorem of Chevalley
Let f ∈ Fq[X1, X2..., Xλ] be a polynomial of degree d < λ, satisfying f(0, 0, ..., 0) = 0.

Then f has a non-trivial root in Fq.

Theorem 7. [10]
Let p ∈ P. Then

rp(Z2
p) = (p− 1)2.

Proof. Let B ⊆ Z2
p be such that Z2

p \ B is p-progression-free. Obviously, B is not
empty, so we can assume that (0, 0) ∈ B. Otherwise we can use −b+ B instead of B
for any b ∈ B. Now let B′ := B \ (0, 0). By definition B′ intersects every p-progression
in Z2

p that does not intersect (0, 0). Now we change our perspective and look at the
p-progressions as lines in Z2

p. Every line can be described as the solutions of the form
(b1, b2) ∈ Z2

p of a linear equation xb1 + yb2 = c with x, y, c ∈ Zp. If c = 0 the equation

17



describes a p-progression containing (0, 0), otherwise xb1 +yb2 = c can be transformed
to x′b1 + y′b2 = 1 by multiplying with the multiplicative inverse of c. Consequently,
for every (x, y) ∈ Z2

p there is (b1, b2) ∈ B′ such that xb1 + yb2 = 1. Now consider

f :=
∏
b∈B′

(1− b1X − b2Y ) ∈ Zp[X, Y ].

It holds that f(0, 0) = 1 and f(x, y) = 0 for all x, y ∈ Zp. Thus the following
polynomial

g := (

p−1∑
i=1

f(X1, Y1))− (p− 1) ∈ Zp[X1, X2, ...Xp−1, Y1, Y2, ..., Yp−1]

has only (0, 0, ..., 0) as a root. Now the logical negation of Theorem 6 tells us that g
has degree smaller than 2(p− 1) and therefore,

|B| = |B′|+ 1 = deg(f) + 1 = deg(g) + 1 ≥ 2(p− 1) + 1 = 2p− 1.

Hence an p-progression-free set in Z2
p can contain at most p2 − (2p − 1) = (p − 1)2

points which is also the lower bound from Theorem 1.

Remark 7. The idea of this proof is not restricted to the 2-dimensional case. Since the
intersection of any n − 1 (n − 1)-dimensional planes of Znp contains a p-progression,

we can find for every {ai,j}i∈[1,n],j∈[1,n−1] ∈ Zn(n−1)p a point (b1, b2, ..., bn) in the set B′

(defined analogously as in the above proof) such that

n∑
i=0

biai,j = 1 ∀j ∈ [1, n].

One could now try to construct a polynomial as in the proof, but the problem is that
the resulting lower bound for |B| will still be linear in p, which is not sufficient for
dimensions higher than 2.

We finish this chapter with a theorem which uses all the previous results and gives
us a reasonable upper bound for the three-dimensional case.

Theorem 8. Let p ∈ P. Then

rp(Z3
p) ≤ p3 − 2p2 + 1.

Proof. Let S ⊆ Z3
p be such that |S| is maximized. Let L be a p-progression in S ⊆ Z3

p

that shares the most point with L and let k := |S ∪L|. We can distinguish two cases:
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� Case 1: k ≤ p− 2

Since we can decompose S ⊆ Z3
p into disjoint p-progressions S contains at most

(p− 2)|Z3
p| = (p− 2)p2 < p3 − 2p2 + 1

elements.

� Case 2: k = p− 1

Since the p-progressions are exactly the 1-dimensional affine subspaces, we can
use Method 1 with k(p, 3) = k = p− 1 and get

rp(Z3
p) ≤ (p+ 1)rp(Z2

p)− p(p− 1).

Using Theorem 7 we get

rp(Z3
p) ≤ (p+ 1)(p− 1)2 − p(p− 1) = (p− 1)((p2 − 1)− p)

⇔ rp(Z3
p) ≤ p3 − 2p2 + 1.
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6 Lifting To Higher Dimensions

Now we take a deeper dive into the asymptotic behaviour of rm(Znm). The ques-
tion arises if we can use m-progression-free sets in low dimensions to construct m-
progression-free sets in one or more dimensions higher. The first idea is to just dupli-
cate the set and add them in as many layers in the next dimension as possible.

Theorem 9. Let m =
∏s

i=1 p
λi
i , n ∈ N, pi ∈ P and λi ∈ N ∀i ∈ [1, s] such that

pλ11 < pλ22 < ... < pλss . Then

rm(Zn+1
m ) ≥ rm(Znm)(m− m

pλ11
).

Proof. Let c := rm(Znm) and let S ⊆ Znm be an m-progression-free set with cardinality
c. Consider the set S ′ := [0,m− m

p
λ1
1

− 1]× S ⊆ Zn+1
m . Now

|S ′| = c(m− m

pλ11
)

and we will show that S ′ is m-progression-free. Assume to the contrary that L := {a+
bj|j ∈ [0,m−1]} is an m-progression in S with a, b ∈ Zn+1

m , where a := (a1, a2, ..., an+1)
and b := (b1, b2, ..., bn+1). Since

{a1 + b1j|j ∈ [0,m− 1]} ⊆ [0,m− m

pλ11
− 1],

Lemma 2 tells us that
gcd(b1,m) >

m

pλ11
.

Therefore pi | gcd(b1,m) and thus also pi | b1 for all i ∈ [1, s]. Because |L| = m,
gcd(b1, b2, ..., bn+1,m) = 1 and since every prime in m divides b1, gcd(b2, ..., bn+1,m) =
1 from which follows that

L′ := {(a2, ..., an+1) + (b2, ..., bn+1)j|j ∈ [0,m− 1]}

is a progression in S with cardinality m, contradicting the definition of S. Therefore,
S ′ is m-progression-free and

rm(Zn+1
m ) ≥ c(m− m

pλ11
)

.
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Remark 8. Note that for prime powers m = pk, rm(Znm) grows at least by a factor of
m − 1 for every dimension, meaning that every solution that beats the trivial lower
bound will give us a construction of a solution that beats the trivial lower bound in
every higher dimension. For numbers composed of two or more primes however this
theorem is not really practical.

Another idea is to take the tensor product of two solutions. However, this again
only works for prime powers m = pk.

Theorem 10. Let m = pk with p ∈ P, k ∈ N and n1, n2 ∈ N. Then

rm(Zn1+n2
m ) ≥ rm(Zn1

m )rm(Zn2
m ).

Proof. Let c1 := rm(Zn1
m ), c2 := rm(Zn2

m ) and let S1 ⊆ Zn1
m , S2 ⊆ Zn2

m be m-progression-
free sets with cardinality c1 and c2, respectively. Consider the set S := S1 × S2 ⊆
Zn1+n2
m . Clearly, |S| = c1c2 and we will show that S is m-progression-free. Assume

to the contrary that L := {a + bi|i ∈ [0,m − 1]} is an m-progression in S with
a, b ∈ Zn1+n2

m , where
a := (a1, a2, ..., an1 , an1+1, ..., an1+n2)

and
b := (b1, b2, ..., bn1 , bn1+1, ..., bn1+n2).

Since |L| = m, there is a i ∈ [1, n1 + n2] with p 6 | bi. W.l.o.g. let j ≤ n1, then

L′ := {(a1, a2, ..., an1) + (b1, b2, ..., bn1)i|i ∈ [0,m− 1]}

is an m-progression in S1, contradicting the definition of S1. Therefore, S is m-
progression-free and rm(Zn1+n2

m ) ≥ c1c2.

We have now seen that we can lift an m-progression-free set S from dimension n to
any dimension that is a multiple of n, such that |S|1/n keeps unchanged. This assures
that |S|1/n is a lower bound for a possibly existing αm,m. However, together with
Fekete’s Lemma about superadditive sequences [7] the above Lemma as well gives as
the existence of αm,m where m is a prime power.

Lemma 11. Fekete’s Lemma
Let {an}n∈N ∈ RN be a superadditive sequence, i.e.

a(n1 + n2) ≥ a(n1) + a(n2) ∀n1, n2 ∈ N,

then the limit
lim
n→∞

an
n

exists and is equal to

sup
n∈N

an
n
.
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Without change ((rm(Znm))1/n)n∈N is not a superadditive sequence, but with a simple
transformation that was already used by Davis and Maclagan [4] Fekete’s Lemma can
be applied.

Theorem 11. Let m = pk with p ∈ P. Then the limit

αm,m := lim
n→∞

(rm(Znm))1/n

exists and it holds that
m− 1 ≤ αm,m ≤ m.

Moreover, if S is an m-progression-free set in Zn′m then

αm,m ≥ |S|1/n
′
.

Proof. Let n1, n2 ∈ N. From Theorem 10 we know that

rm(Zn1+n2
m ) ≥ rm(Zn1

m )rm(Zn2
m )

⇔ (rm(Zn1+n2
m )

1
n1+n2 )n1+n2 ≥ (rm(Zn1

m )
1
n1 )n1(rm(Zn2

m )
1
n2 )n2

⇔ (n1 + n2) log(rm(Zn1+n2
m )

1
n1+n2 ) ≥ n1 log(rm(Zn1

m )
1
n1 ) + n2 log(rm(Zn2

m )
1
n2 ),

which means that {n log(rm(Znm)
1
n )}n∈N is a superadditive sequence. Fekete’s Lemma

now tells us that
lim
n→∞

log((rm(Znm))1/n)

and therefore
lim
n→∞

(rm(Znm))1/n

exists. From Theorem 1 we know that (m − 1)n ≤ rm(Znm) ≤ mn and therefore the
second claim follows.

As we have seen before, Theorem 10 gives us

rm(Znm) ≥ |S|k

for all k ∈ N such that n = kn′. Now as {rm(Zkn′m )}k∈N is a subsequence of {rm(Znm)}n∈N

lim
n→∞

(rm(Znm))1/n = lim
k→∞

(rm(Zkn′m ))1/kn
′ ≥ |S|1/n′

which proves the last statement.

We end this chapter with a purely theoretical result. The Density Hales-Jewett
Theorem was first proven by Furstenberg and Katznelson [9] and was originally used
to show the existence of combinatorial lines. However, as every combinatorial line in
[0,m− 1]n corresponds to an m-progression in Znm we can use the following Version.
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Theorem 12. Density Hales-Jewett Theorem
Consider rk(Znm) as a function in n, then

rm(Znm) = o(mn)

as n→∞.

Remark 9. Note that this does not give us a non-trivial upper bound for αm,m.
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7 Constructions

In this chapter we present some constructions of progression-free sets that beat the
trivial lower bound. As the first construction is set in 3-dimensional spaces it is useful
to define layers of a space and describe which points are included in each layer.

Definition 4. Let m ∈ N, S ⊆ Z3
m and j ∈ [0,m−1]. Let φ be the following projection

φ : Z3
m −→ Z2

m

(a, b, c) 7→ (b, c) ,

then
φ(S ∩ ({j} × Z2

m)) ⊆ Z2
m

is called the j-layer of S.

The first construction deals with the 3-dimensional case where m = p is a prime
number. It differs from the trivial solution only in one layer, although in that layer the
number of points stay unchanged, and p−1

2
new points in the previously empty layer.

Theorem 13. Let p ∈ P \ {2}. Then

rp(Z3
p) ≥ (p− 1)3 +

p− 1

2
.

Proof. Consider the set
S := [0, p− 3]× [0, p− 2]2

∪{p−2}×([0, p−1]2\{(i, i)|i ∈ [0, p−1]}\({p−1}× [0,
p− 3

2
])\([0,

p− 3

2
]×{p−1}))

∪{p− 1} × {(i, i)|i ∈ [0,
p− 3

2
]}.

We show that S is p-progression-free. Let L := {(a1, a2, a3) + (b1, b2, b3)i|i ∈ [0, p− 1]}
be a p-progression in Z3

p with a1, a2, a3, b1, b2, b3 ∈ Zp.
� Case 1: b1 = 0 and a1 6= p− 2 :

[0, p − 2]2 is p-progression-free and |{(i, i)|i ∈ [0, p−3
2

]}| < m, therefore L is not
contained ion S.
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Figure 7.1: the first construction in Z3
5 consisting of 66 points

� Case 2: b1 = 0 and a1 = p− 2 :

L′ := {(a2, a3) + (b2, b3)i|i ∈ [0, p− 1]} and {(i, i)|i ∈ [0, p− 1]} are both lines in
Z2
p. If they are not parallel or they are equal, they do intersect, and L is not in S.

Else we can rewrite L = {(i, c+ i)|i ∈ [0, p− 1]} with c ∈ [1, p− 1]. If c ∈ [1, p−1
2

]

then c+ (p− 1) ∈ [0, p−3
2

] (choose i = p− 1) and (p− 2, p− 1, c+ (p− 1)) ∈ L \S.
Similarly if c ∈ [p+1

2
, p − 1] then p − 1 − c ∈ [0, p−3

2
] (choose i = p − 1 − c) and

(p− 2, p− 1− c, p− 1) ∈ L \ S. Therefore, L is not contained in S.

� Case 3: b1 6= 0:

W.l.o.g. b1 = 1 and a1 = p−2. If b2 = b3 = 0 then L is not contained in S because
the (p−2)-layer and (p−1)-layer of S have no common point. Else, w.l.o.g b2 6= 0
and {a2 + b2i|i ∈ [0, p − 1]} = [0, p − 1]. Assume that L ⊆ S. Then a2 = p − 1
and a3 ∈ [p−1

2
, p− 2] because the (p− 2)-layer is the only layer containing points

with the coordinate p − 1. Since the (p − 1)-layer does not have coordinates in
[p−1

2
, p − 2], also b3 6= 0 and consequently {a3 + b3i|i ∈ [0, p − 1]} = [0, p − 1].

Like before it follows that a3 = p − 1 contradicting that L ⊆ S. Thus, L is not
contained in S and S is p-progression-free, concluding the proof.

Remark 10. It seems at first reasonable to assume that this is the best we can get for
p− 2 layers with filled with a (p− 1)× (p− 1) square and one layer that is also filled
with a maximal number of points, however as early as p = 7 there are better examples
(see Figure 8.12).

The second construction deals with the case where m is composed of exactly two
prime numbers p > q. In Theorem 2 we established that a n-dimensional cube with
side length q(p−1) is m-progression-free and it is the biggest cube with that property.
However, the only types of progressions that prevent us from taking a bigger cube are
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Figure 7.2: Example in Z3
6

Exactly two point of a progression with step length 2 and 3 are not contained in the
4× 4 square. Any shift or rotation to the progression can only lead to at least the

same number of points outside.

Figure 7.3: the second construction in Z3
6 consisting of 91 points

those that have a step length of a multiple of p in one dimension and a multiple of q in
another dimension. The structure of these progressions assures that at least q points
of each progression do not lie in the q(p− 1) side length cube (see Figure 7.2).

If we can now add points to our original cube in a way that at most q − 1 points
of each of our critical progressions are added we get a bigger set, which is still m-
progression-free. In this construction we add in every dimension a hyperrectangle
with side length p(q − 1) for all sides except one with length q − 1, therefore these
hyperrectangles do not contain q points on a line with distance p each.

Theorem 14. Let m = pq with p, q ∈ P, p > q and n ∈ N. Then

rm(Znm) ≥ ((p− 1)q)n + npn−1(q − 1)n.

Proof. Consider the set
S := [0, (p− 1)q − 1]n
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∪
n⋃
i=1

([0, p(q − 1)− 1]i−1 × [(p− 1)q, pq − 2]× [0, p(q − 1)− 1]n−i).

We show that S is m-progression-free. Let L := {(a1, a2, ..., an) + (b1, b2, ..., bn)i|i ∈
[0,m− 1]} be an m-progression in Znm with a1, a2, ..., an, b1, b2, ..., bn ∈ Zm.

� Case 1: There exists j ∈ [1, n] with gcd(bj,m) = 1:

It holds that

{aj + bji|i ∈ [0,m− 1]} = [0,m− 1],

but there is no point in S with a m− 1 coordinate, so L is not contained in S.

� Case 2: gcd(bj,m) ∈ {0, q, p} for all j ∈ [1, n]:

Since L is an m-progression, there exist k, l ∈ [1, n] with gcd(bk,m) = q and
gcd(bl,m) = p. Therefore

{(ak, al)+(bk, bl)i|i ∈ [0,m−1]} = {ak+qi1|i1 ∈ [0, p−1]}×{al+pi2|i2 ∈ [0, q−1]},

and there exist i1 ∈ [0, p− 1] and i2 ∈ [0, q − 1] with

ak + qi1 ∈ [(p− 1)q,m− 1] ⊆ [p(q − 1),m− 1]

and

al + qi2 ∈ [p(q − 1),m− 1].

For all points in S the construction allows only one coordinate to be in [p(q −
1),m− 1] so L is not contained in S.

As a consequence, S is m-progression-free.

Corollary 3. Let n ∈ N. Then

r6(Zn6 ) ≥ 4n + n3n−1.

The next construction only works for m = 6. We take the opposite approach of the
last construction and start with a cube of side length 5 and try to delete some points.
Again, only progressions with length of a multiple of 2 in one dimension a multiple of
3 in another dimension can cause trouble. As one can see in Figure 3.2 it is sufficient
to remove two corners. In higher dimensions this translates into removing all points
which have either two 0 coordinates or two 4 coordinates.

Theorem 15. Let n ∈ N. Then

r6(Zn6 ) ≥ 3n + 2n3n−1 + n(n− 1)3n−2.
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Figure 7.4: the third construction in Z3
6 consisting of 99 points

Proof. Consider the set

S := {(x1, x2, ..., xn)|(xi ∈ [0, 4],∀i ∈ [1, n])∧(@j 6= k ∈ [1, n] : xj = xk = 0∨xj = xk = 4)}.

Let L := {(a1, a2, ..., an) + (b1, b2, ..., bn)i|i ∈ [0, 5]} be a 6-progression in Zn6 with
a1, a2, ..., an, b1, b2, ..., bn ∈ Z6.

� Case 1: There exists j ∈ [1, n] with gcd(bj, 6) = 1:

It holds that
{aj + bji|i ∈ [0, 5]} = [0, 5],

but there is no point in S with a 5 coordinate, so L is not contained in S.

� Case 2: gcd(bj,m) ∈ {0, 2, 3} for all j ∈ [1, n]:

Since L is a 6-progression, there exist k, l ∈ [1, n] with gcd(bk,m) = 2 and
gcd(bl,m) = 3. Therefore

{(ak, al) + (bk, bl)i|i ∈ [0, 5]} = (a′k, a
′
l) + {(0, 0), (0, 3), (2, 0), (2, 3), (4, 0), (4, 3)},

with a′k ∈ [0, 1] and a′l ∈ [0, 2].

If a′k = 1 or a′l = 2, then L has a point with a 5 coordinate, so it is not contained
in S.

Otherwise a′k = 0 and a′l ∈ [0, 1], therefore L has a point with two 0 or two 4
coordinates, so it is not contained in S.

As a consequence, S is m-progression-free.
It remains to count the elements of S.

|S| = |{(x1, x2, ..., xn)|(xi ∈ [0, 4],∀i ∈ [1, n])∧(@j 6= k ∈ [1, n] : xj = xk = 0∨xj = xk = 4)}|
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= |{(x1, x2, ..., xn)|xi ∈ [1, 3], ∀i ∈ [1, n]}|

+|{(x1, x2, ..., xn)|(∃j ∈ [1, n] : xj = 0 ∨ xj = 4) ∧ (xi ∈ [1, 3],∀i ∈ [1, n] \ {j})}|

+|{(x1, x2, ..., xn)|(∃j, k ∈ [1, n] : {xj, xj} = {0, 4}) ∧ (xi ∈ [1, 3], ∀i ∈ [1, n] \ {j, k})}|

= 3n + 2

(
n

1

)
3n−1 + 2

(
n

2

)
3n−2

= 3n + 2n3n−1 + n(n− 1)3n−2

Remark 11. This theorem is an improvement to Corollary 3 up to Dimension 7.
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8 Computational Approach

Another approach is to use the computer to find maximal progression-free sets in Znm
for small m and n. We use the optimization software package by Laurent Perron and
Vincent Furnon called OR-tools [16]. From the package we use their mixed integer
solver which is based on a branch-and-cut approach. In this chapter we will show
how branch-and-bound work, provide a way to describe our optimization problem
as an integer program and present optimal solutions for some instances and other
not necessarily optimal solution, which however are better than any lower bounds
presented before for other instances.

8.1 Branch and Cut

Consider the following optimization problem, where we want to find an optimal solu-
tion (X1, X2, ..., Xn):

max
n∑
i=1

ciXi

s. t. aj,1X1 + aj,2X2 + ...+ aj,nXn ≤ bj ∀ j ∈ [1,m]

Xi ≥ 0, ∀ i ∈ [1, n]

(8.1)

This kind of problem is called a linear program and if it has one or more optimal
solutions, one of these can be found, most commonly by the simplex algorithm [12].
It gets more involved if we want our variables to be integers.

max
n∑
i=1

ciXi

s. t. aj,1X1 + aj,2X2 + ...+ aj,nXn ≤ bj ∀ j ∈ [1,m]

Xi ∈ N0, ∀ i ∈ [1, n]

(8.2)

This modified problem is called an integer program and we call 8.1 the linear relax-
ation of 8.2. Integer programs are NP-hard in general (see [11]) so we cannot expect
solutions for large instances.

A linear program can be divided into three categories: they can have an optimal
solution, no solution at all or they are unbounded. In this chapter we will assume
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that all linear programs are bounded, which is not a restriction since our optimization
problem is bounded and therefore all subproblems remain bounded.

Branch-and-cut is a method to deal with integer programs and is considered one of
the most promising ways to do so. We will present the branch-and-cut approach as
described by John E. Mitchell in ”Integer programming: branch and cut algorithms”
[13].

At first, note that the optimal solution of the linear relaxation will always provide
us with an upper bound for an integer program. In the case that the solution is an
integer solution it is furthermore also the solution of the integer program.

As the name suggests branch-and-bound consists of two vital steps, branching and
cutting which are alternatingly used in the algorithm.

8.1.1 Branching

The idea of branching is to divide the set of all feasible solutions into two disjoint
subsets. For that we choose i ∈ [1, n] and B ∈ N0 and add the constraints

Xi ≤ B

and accordingly

Xi ≥ B + 1

to two copies of our original problem. We know that the better of the two solutions
of the subproblems is the optimal solution of the original solution. Now the idea is
to divide every problem, where the solution of the related linear relaxation is not an
integer solution, into two subproblems and solve iteratively until an integer solution
is found.

It is now important to note, that we do not need to investigate every subproblem.
In the algorithm we store the currently best solution and every time the solution of a
linear relaxation is worse than our stored solution, we do not need to find a solution
for that subproblem nor divide it any further.

There are some choices how to divide the problem, but the most commonly used is to
to choose i ∈ [1, n] such that xi is not an integer in the current solution (x1, x2, ..., xn)
of the linear relaxation and add the inequalities

Xi ≤ bxic

and accordingly

Xi ≥ dxie.

Following these steps would result in a so-called branch-and-bound method. To get
to branch-and-cut we sometimes need to choose to cut instead of branching.
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8.1.2 Cutting

To get to branch-and-cut we sometimes need to choose to cut instead of branching
which basically means reducing the set of feasible solutions of the linear relaxation but
not of the integer program. For that purpose, cutting planes are introduced.

When our algorithm finds a non-integer solution for a subproblem we modify the
subproblem by adding an additional linear restriction, called cutting plane. This
cutting plane must have the property that all feasible integer solutions have to fulfil
the restricting, while the optimal non-integer solution does not fulfil it. After cutting
we again compute an optimal solution for the linear relaxation and continue like before.

Choosing a cutting plane can be done in various ways but it will not be discussed
here. For further information see [14]. One can choose to cut once in every subproblem,
but Mitchell suggests doing it after every eight branching steps.

8.1.3 Combining both approaches

In our algorithm we will always store the best-known integer solution and its cost and
build up a set of subproblems we need to investigate with an additional number l for
each subproblem that keeps track of the times the problem has been modified. When
we investigate a subproblem, we solve its linear relaxation, check if it has a solution
and if that solution is better than our current best integer solution. If so, we check if
the solution is an integer solution.

If it is an integer solution, we update our best known integer solution and its cost
and continue with another subproblem.

If the solution is non-integer, we either branch the problem, or if l is divisible by some
previously fixed number we cut away the optimal non-integer solution. All resulting
new instances will be added to our set of investigated problems.

Once every subproblem was investigated the algorithm stops with the optimal solu-
tion.

Note that we do not specify which subproblem should be investigated first. There
are several ways to do this, but it will not discussed here.

We assume that every integer linear program is given in the form of 8.2 and every
linear program in the form of 8.1 and for a feasible solution x = (x1, x2, ..., xn) we call

c(x) := c1x1 + c2x2 + ...+ cnxn

the cost of x.
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Algorithm Branch-and-Cut

Input: an integer program S and k ∈ N0

Output: a optimal solution y ∈ Rn with cost C ∈ R if a solution exists

1: set S := {(S, 1)}, C := −∞.
2: while S 6= ∅ do
3: choose (S ′, l) ∈ S and remove it from S
4: solve the linear relaxation of S ′

5: if we get an optimal solution x ∈ Rn of the relaxation then
6: if c(x) > C then
7: if x ∈ Nn

0 then
8: set L := c(x), y := x
9: else
10: if k|l then
11: add a cutting plane at x to S ′ to get S ′′

12: add (S ′′, l + 1) to S
13: else
14: choose i ∈ [1, n] such that xi is not integer
15: branch S ′ at Xi to get S ′1 and S ′2
16: add (S ′1, l + 1) and (S ′2, l + 1) to S
17: return y and C

8.1.4 An example

Consider the following integer program in two variables.

max 2x+ 5y

s. t. 3x+ y ≤ 15

x+ 5y ≤ 25

x, y ∈ N0

x

y

(25
7
, 30

7
)
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We apply the branch-and-cut algorithm with k = 2. The optimal solution of the
linear relaxation is (25

7
, 30

7
), so in the first round we branch the problem via x ≤ 3 and

y ≥ 4. Now we first investigate the subproblem

max 2x+ 5y

s. t. 3x+ y ≤ 15

x+ 5y ≤ 25

x ≥ 4

x, y ≥ 0

x

y

(4, 3)

and get its optimal solution (4, 3) with cost 23. Because that solution is an integer
solution, we store them in y and C, respectively. The other open subproblem

max 2x+ 5y

s. t. 3x+ y ≤ 15

x+ 5y ≤ 25

x ≤ 3

x, y ≥ 0

x

y

(3, 22
5

)

has the optimal solution (3, 22
5

) with cost 28 which is greater than C, therefore we
have to investigate further. This time we decide to cut by adding the cutting plane
x+ 3y ≤ 15.
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max 2x+ 5y

s. t. 3x+ y ≤ 15

x+ 5y ≤ 25

x+ 3y ≤ 15

x ≤ 3

x, y ≥ 0

x

y

(3, 4)

Here we finally get the optimal solution for the whole problem (3, 4) with cost 26.

8.2 Generating all progressions

Now we get back to the integer program formulation of our problem.

max
∑
y∈Znm

Xy

s. t. Xx1 +Xx2 + ...+Xxm ≤ m− 1, ∀ m-progressions {x1, x2, ..., xm}
Xy ∈ {0, 1}, ∀ y ∈ Znm

To solve the problem algorithmically it remains to generate all m-progressions. For
m = p ∈ P Lemma 3 tells us that all p-progressions are uniquely determined by two
of its elements. This allows us to generate all progressions by induction over n:

If n = 1 the whole space is a p-progression. Else all p-progressions can be generated
in two steps.

� For all i ∈ [0, p− 1] generate all p-progressions in {i}×Zn−1p , which is equivalent
to generate all p-progressions in Znp .

� For each pair (x1, x2) with x1 ∈ {1} × Zn−1p and x2 ∈ {2} × Zn−1p generate the
unique p-progression containing x1 and x2.

Lemma 1 assures that this covers all p-progressions.
The case for composite m is more involved and there is no easy way to avoid pro-

gressions being generated twice. First we generate all step lengths b ∈ [0, bm
2
c] ×

[0,m− 1]n−1 with gcd(b1, b2, ..., bn,m) = 1 as these are the step lengths that assure a
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m 3 4 5 6 7 8 9

rm(Z2
m) 4 10 16 25 36 52 66

rm(Z3
m) 9 36

Figure 8.1: the optimal values for rm(Znm) found via the computational approach

progression to have m elements. It is sufficient to take b1 ∈ [0, bm
2
c] as all other steps

are covered by progressions with step length −b. Now it remains to find all starting
points a ∈ Znm to get m-progressions in the form

{a+ bi|i ∈ [0,m− 1]}.

We again reduce the case where any bi = 0 to generating all progressions in one
dimension lower. Else we compute di = gcd(bi,m) and choose i ∈ [1, n] such that di
is smallest. Lemma 2 assures us that each m-progression with step length b contains
a point in [0,m − 1]i−1 × [0, di − 1] × [0,m − 1]n−i, we therefore just use all of these
points as our starting points. Note that if di 6= 1, which can only happen if m is not a
prime power, every m-progression with step length b is generated exactly di times. If
in this case we can find j ∈ [1, n] such that didj = m, which is in particular possible if
m is composed of exactly two prime factors, it is sufficient to take all a ∈ [0,m− 1]n

such that ai ∈ [0, di − 1] and aj ∈ [0, dj − 1]} as the starting points and all resulting
progressions are generated exactly once. This also follows from Lemma 2 since

{(ai, aj) + (bi, bj)i|i ∈ [0,m− 1]}

is a set of m elements contained in the set

({ai + dii|i ∈ [0,m− 1]} × [0,m− 1]) ∩ ([0,m− 1]× {aj + dji|i ∈ [0,m− 1]}),

which contains also m elements, therefore they are equal.

8.3 Results

In this section we present the computational values. Note that since all variables are
either 0 or 1 every branching step is setting one variable to a fixed value. Because the
current best solution is always stored in the algorithm is is also possible to stop the
algorithm and get a feasible solution that is not necessarily best possible. Those not
necessarily optimal solutions presented here are however the best known so far.
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m 3 4 5 6 7 8 9 10

rm(Z2
m) (4) (10) (16) (25) (36) (52) (66) 81

rm(Z3
m) (9) (36) 69 112 220

rm(Z4
m) 20*

Figure 8.2: some lower bounds for rm(Znm) found via the computational approach
r3(Z4

3) = 20 is already known to be optimal [4]. Values in brackets were already
presented in Figure 8.1.

Figure 8.3: optimal solution in Z2
4: r4(Z2

4) = 10

Figure 8.4: optimal solution in Z2
6: r6(Z2

6) = 25

Figure 8.5: optimal solution in Z2
8: r8(Z2

8) = 52

38



Figure 8.6: optimal solution in Z2
9: r9(Z2

9) = 66

Figure 8.7: feasible solution in Z2
10: r10(Z2

10) ≥ 81

Figure 8.8: optimal solution in Z3
3: r3(Z3

3) = 9

Figure 8.9: optimal solution in Z3
4: r4(Z3

4) = 36
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Figure 8.10: feasible solution in Z3
5: r5(Z3

5) ≥ 69

Figure 8.11: feasible solution in Z3
6: r6(Z3

6) ≥ 112
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Figure 8.12: feasible solution in Z3
7: r7(Z3

7) ≥ 220

Figure 8.13: optimal solution in Z4
3: r3(Z4

3) = 20
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9 Conclusion

Throughout this thesis we brought up the following lower and upper bounds for
rm(Znm):

� For m = 3 and m = 4 there is no improvement to the work of Potechin [17] and
Elsholtz and Pach [5] who calculated rm(Znm) up to r3(Z6

3) = 112 and r4(Z4
4) =

128, respectively as well as the corresponding lower bounds α3,3 ≥ 2.195 and
α4,4 ≥ 3.363.

� We could prove 69 ≤ r5(Z3
5) ≤ 76, where the lower bound comes from a computer

calculation and the upper bound from Theorem 8 and the corresponding lower
bound α5,5 ≥ 4.101.

� We got r6(Z2
6) = 25 and r6(Z3

6) ≥ 112 through computer calculation, however
116 ≤ r6(Z3

6) ≤ 124 was shown by Pach and Palincza [15]. We also provided
constructions to get r6(Zn6 ) ≥ 3n + 2n3n−1 + n(n − 1)3n−2 for n ∈ [4, 7] as well
as r6(Zn6 ) ≥ 4n + n3n−1 for n ≥ 8. It is not known if α6,6 exists. The same holds
for all other m that have more than one prime divisor. There is however the
asymptotic upper bound r6(Zn6 ) ≤ 5.709n by Pach and Palincza [15].

� We could prove 220 ≤ r7(Z3
7) ≤ 246, where, as in the case m = 5, the lower

bound comes from a computer calculation and the upper bound from Theorem
8. The best asymptotic value comes from the construction by Frankl, Graham
and Rödl [8] with r7(Z14

7 ) ≥ 9.142 ∗ 1010 and α7,7 ≥ 6.066 (see 9.1).

� We found r8(Z2
8) = 52, r9(Z2

9) = 66 and r10(Z2
10) ≥ 81 and the corresponding

lower bounds for the asymptotic values α8,8 ≥ 7.211 and α9,9 ≥ 8.124 through
computer calculations.

� For p ∈ P with p ≥ 11 we proved (p − 1)3 + p−1
2
≤ rp(Z3

p) ≤ p3 − 2p2 + 1 but
the the best asymptotic bound again come from from the construction by Frankl,

Graham and Rödl with αp,p ≥ (p(p− 1)2p−1)
1
2p .

� For m = pq where p, q ∈ P we came up with a construction to prove rm(Znm) ≥
((p− 1)q)n + npn−1(q − 1)n.

With Method 1 we established a way to bound rp(Znp ) from above by (p+1)rp(Zn−1p )−
pk where we choose k maximal such that for any p-progression-free subset s there has
to be a (n− 1)-dimensional subspace of Znp that shares at least k elements with S.

For composite m we found the largest hypercube in Znp that is m-progression-free

and used Lovász Local Lemma to prove rm(Znm) = Ω((m
m−2
m )n) which can in some

cases beat the hypercube asymptotically.

43



p rp(Z3
p) ≥ (p− 1)3 + p−1

2
rp(Z2p

p ) ≥ p(p− 1)2p−1 computational values

5 4.041 4.090 4.101

7 6.027 6.066 6.036

11 10.016 10.043

13 12.013 12.037

17 16.010 16.028

19 18.009 18.025

23 22.007 22.021

29 28.006 28.016

Figure 9.1: comparing lower bounds for αp,p for some small prime numbers:
Theorem 4 leads to stronger lower bounds for αp,p than Theorem 13. In the case p = 5
the computer solution in dimension three could beat this bound.
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