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Abstract

Autonomous driving has the potential to establish an entirely new form of mobility,
while utilizing existing road infrastructure. Self-driving vehicles use a variety of sensors
to perceive their environment and plan their future actions. Established automotive
assessment processes, such as the V-Model, have a limited scope and will not be
sufficient to test every aspect of this technology. This thesis introduces a state of the
art assessment process for automated driving systems, that can help to push a future
market release.

Automated vehicles must be able to react properly on every occurring traffic situa-
tion, when being introduced to open streets with other road users. Therefore, extensive
testing is necessary to ensure the safety of all traffic participants. Realistic and precise
simulations can improve this assessment process, by replacing real-world tests with
virtualized scenarios.

This work introduces a potential way to generate realistic sensor data from test
cases, that can be used to simulate the real-world perception of an automated vehicle.
The main focus lies in the development of a perception model that is implemented
using machine learning methods. A perception model is the combination of all sensor
models and the sensor fusion algorithm, that comprise the perception system of an
autonomous vehicle, in a single software interface. The presented model is based on
neural networks and is necessary to predict the vehicle’s environment view from a test
case. Further, an evaluation method to examine the performance of the implemented
model in a virtualized environment is developed. As a final step, the results of this
application are presented and possible extensions are discussed.

v





Kurzfassung

Autonomes Fahren hat das Potenzial, eine völlig neue Form der Mobilität zu etablieren
und dabei vorhandenen Straßeninfrastruktur zu nutzen. Selbstfahrende Fahrzeuge
verwenden eine Vielzahl von Sensoren, um ihre Umgebung wahrzunehmen und ihre
zukünftigen Bewegungen zu planen. Etablierte Prozesse wie das V-Modell werden
nicht ausreichen, um jeden Aspekt dieser Technologie zu testen. Diese Arbeit stellt
einen Prozess für die Bewertung von automatisierten Fahrsysteme vor, der dazu beitra-
gen kann eine zukünftige Marktfreigabe voranzutreiben.

Autonome Fahrzeuge müssen in der Lage sein, auf jede auftretende Verkehrssituation
richtig zu reagieren, wenn sie mit anderen Verkehrsteilnehmern in den Straßenverkehr
eingeführt werden. Daher sind umfangreiche Tests erforderlich, um die Sicherheit aller
Verkehrsteilnehmer zu gewährleisten. Realistische und präzise Simulationen können
diesen Bewertungsprozess verbessern, indem sie reale Tests durch virtuelle Szenarien
ersetzen.

Diese Arbeit stellt einen möglichen Weg vor, um realistische Sensordaten aus
Testfällen zu generieren. Diese können verwendet werden, um die reale Wahrnehmung
eines autonomen Fahrzeugs zu simulieren. Das Hauptaugenmerk liegt hierbei auf der
Entwicklung eines Modells für die Wahrnehmung von Fahrzeugen, das mithilfe von
Methoden des maschinellen Lernens implementiert wird. Dieses Wahrnehmungsmod-
ell umfasst die Kombination aller Sensordaten und des Sensorfusionsalgorithmus
in einer einzigen Software-Schnittstelle. Das vorgestellte Modell basiert auf einem
neuronalen Netzwerk und ist in der Lage, Sensordaten aus Testfällen zu generieren.
Des Weiteren wird eine Bewertungsmethode zur Untersuchung des implementierten
Modells, in einer virtualisierten Umgebung, entwickelt. Als letzter Schritt werden die
Ergebnisse dieser Anwendung vorgestellt und mögliche Erweiterungen diskutiert.
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1 Introduction

The European Road Safety Observatory (ERSO) states that the by far largest group of
fatalities in road accidents in the European Union, are cause by car users [1]. The reason
for the majority of these accidents is human misbehavior [2], [3]. Fully autonomous
vehicles can help to drastically reduce this number by step-wise removing the human
factor from the road [4], [5].
The introduction of Autonomous Driving (AD) brings several other advantages. A
reduction of CO2 emission is expected, since autonomous vehicles ease the access to
car-sharing options and improve the fuel economy [6]. In addition, the recovery of
personal freedom for elderly or handicapped persons, by enabling traffic participation,
is another advantage of this technology [7].
The Society of Automotive Engineers (SAE) defines the 6 levels of automation to
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Driving
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Driving
Automation
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Full

Driving
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No
Automation

ADAS AD

Assessment Leap

Figure 1.1: The 6 levels of automation as defined by the SAE [8]. The green parts symbolize the ratio of
automation at the current level. Based on [9].

categorize the autonomous capabilities of a vehicle [8]. Vehicles in the automation level
0 (”No automation”) are described as fully manual vehicles, where every driving aspect
is controlled by humans. Level 1 (”Driver Assistance”) describes vehicles with a single
automated aspect, such as active Lane Keeping Assistant System (LKAS) to assist in
steering or Active Cruise Control (ACC) to assist in distance control. Level 2 (”partial
driving automation”) categorizes a combination of Level 1 functionalities. The vehicle is
capable to assist in more than one domain at once such as self parking features serve
as assistant in steering while also controlling the throttle and brake system. A key
distinction has to be made between level 2 and level 3 (”conditional driving automation”).
From level 2 downwards, the driver is at all time responsible for supervision of the
driving task and has to intervene immediately when necessary. Level 3 relaxes the time
constraint of this supervision task for specific scenarios. That means the driver is given
a predefined time period in which he has to react. This distinction is critical in the
assessment of associated driving functions, since it shifts the responsibility form the
driver to the vehicle.
Vehicles capable of level 4 (”high driving automation”) take over the responsibility for
the driving task. They can perform all driving functions in specified locations and/or
conditions. In contrast to level 3, level 4 driving functions don’t require a fall-back
user in the specific domain e.g. highway. Level 5 (”full driving automation”) vehicles do
not require any human interaction with the driving task at all. They can handle every
possible traffic situation by themselves, to an extent a human driver would be able to
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1 Introduction

do. Figure 1.1 pictures the 6 levels of automation and shows the underlying driving
technologies. Advanced Driver Assistant Systems (ADAS) assist the driver but don’t
assume responsibility of the supervision task, whereas AD functions are capable of
doing so [2].
Altough the predictions for the public availability of level 3 and level 4 capable vehicles
where fairly optimistic in the last decade [10], [11], the final assessment process before
market release has yet to be defined. The standard norm ISO-26262 [12] specifies this
procedure for ADAS with a final evaluation through real-world testing. For a specific
ADAS functionality, such as LKAS, a vector space for possible test cases can be covered
by a test-set due to limited scope. However, this does not account for partial or fully
automated driving functions because of the complexity of the systems [9]. The amount
of test cases that would need coverage tends towards infinity, which makes real-world
tests over the whole test space economically infeasible [13].

1.1 Virtual Assessment of Automated Driving

This section serves as an introduction on the virtual assessment process as possible
extension to conventional automotive assessment methods. Therefore, the V-Model [14],
as an example for a conventional assessment method, is discussed and the possible
benefits that come with the addition of a virtual assessment are pointed out.
Established automotive procedures, that are used for the development and integration
of ADAS, are not sufficient to establish and assess fully automated driving functions
[15]. The classic V-model, shown in Figure 1.2, represents a standard system develop-
ment process that is used in the automotive domain. It describes the design process
of functions and requirements in multiple levels of detail. The development starts
at the top left corner with the definition of the requirements at vehicle level. In a
step-wise approach, these requirements are refined and split into smaller components,
as progressing down the path on the left side. In addition, the possible hazards and
risks are analyzed and assessed at each level [16]. The technical implementation is
placed at the bottom of the model, which is usually a software domain in the context
of automated driving. Once the implementation is finished, the right side of the model
is approached in an upward direction. Every level validates the components of the
associated level and verifies the compliance with the safety requirements. The refine-
ment of the requirements on the left side of the model would need to extend towards
every possible, unforeseeable use-case to guarantee safety. Due to the structure of this
process, this would lead to an inapplicable amount of required test cases, which makes
it economically infeasible [17]. Using agile development methods, modern software
development became extremely efficient in adapting to changes in the requirements at
every stage of the development process [18]. On the contrary, the V-Model is typically
not designed for that use-case. The extension of the test domain through virtual and
hybrid testing, such as Hardware in the Loop (HiL) and Software in the Loop (SiL) tests,
can help to reduce this drawback and increase the overall flexibility of the development
process [19].

The following section summarizes the method of virtual assessment as a possible im-
provement for the assessment of autonomous driving and points out its key advantages
over approaches like the V-Model. A distinct definition of the terms, used to describe
this process, is required to avoid misconception. Ulbrich et.al. [21] formulate a scenario
as a time-series of scenes that are characterized by a temporal correlation. A scenario
can also be referred to as test case and is an unambiguous and consistent description of
what happened during a test [22]. A scene consists of all static and dynamic information

2
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Figure 1.2: V-Model development process. The green boxes point out the problems with this approach when
applied to development of ADS. (Based on [9], [20])

that is available at a certain point in time. In the following, simulation defines the virtual
replication of a scenario that is used for the evaluation of the vehicles AD function.
Further, the term Ego labels the vehicle that is used for the recording of test-data and
the evaluation in the simulation environment. The Ego vehicle is able to perceive its
environment and is equipped with an AD function.
The virtual assessment, as referred to in [9], uses the simulation of real-world scenar-
ios and their evaluation in compliance with the ISO 26262. It uses a scenario-based
approach that extends real-world tests with virtualized, slightly modified versions
of that scenarios to increase test coverage. Virtual tests are parallelizable and can be
executed at a high speed [23]. Ground Truth (GT) and Sensor Data (SD) can both be
used as basis for the scenario-generation. GT is a fault-free representation the vehicle’s
environment, whereas SD represents the sensor-view of the vehicle. Because of sensor
effects SD is a shifted version of the GT and contains a higher number of errors. The
key assumption of this assessment process is that a scenario in the virtual domain
can be used to replace a real-world test, if the experiments result can be replicated
accurately enough by virtualization [9].

1.2 Motivation

In the previous section, a virtual assessment is outlined and its components are
described briefly. The following part explains possible improvements to this procedure,
by introducing a Sensor Model (SM) to the simulation. Groh et.al [22] state, that
having a consistent and unambiguous scenario-description does not guarantee an
exact simulation of a traffic-scenario. The simulation based on SD does not comply
with the scenario-description, since at time of the recording, the AD function can only
approximate the exact position of the vehicle and makes its decision base on that. On
the other hand, relying only on GT data when simulating a scenario does not guarantee
the same behavior of the AD function in the real- and virtual world because of the
perception mismatch caused by sensor and Sensor Fusion (SF) errors [22].
In the following, the combination of all sensor models and SF into one model is labeled
as Perception Model (PM) [24]. Applying a PM can recreate the sensor-view of the
vehicle during the Field Operating Test (FOT), solely based on the GT information
[25]. Figure 1.3 shows the closed-loop perception of an automated vehicle and the
flow of information. The vehicle perceives its environment through different sensors
and extracts information about its surroundings via SF. This information is further
processed in the AD functions plan and act. In the simulation, the GT data is used as
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1 Introduction

input for the PM. The decision making and AD function in the simulation consist of
the same software components that run on the vehicle.

Sensor 1

Sensor 2

...

Sensor n Se
ns

or
Fu

si
on

AD-Functionality
Decision Making

Vehicle
Maneuver

Figure 1.3: Perception path of an autonomous vehicle. The modeling of the environment is highlighted in
green. (Based on [24])

1.3 Goals

The goal of this thesis is the development and evaluation of a PM in the context of
the virtual assessment of autonomous driving. The introduced virtual assessment
process uses the simulation of scenarios to extend the spectrum of real-world tests with
virtualized versions. The implemented PM should be able to reproduce the sensor-error
that is caused by the onboard sensors of the vehicle, while recording the test case. The
sensor-error ∆S represents the difference between the GT and SD and can be expressed
as

∆S = GT − SD. (1.1)

The task can be interpreted as identification of a nonlinear system that uses GT data
as input to approximate SD. This leads to the formulation of the first research question
of this thesis:

(1) Is a perception model capable of offline reproducing the sensor-error ∆S?

Using the PM in the simulation environment for the virtual assessment should
increase the accuracy of the process. The model will be provided with GT data and has
to output the predicted SD accordingly. After this, the performance of the simulation
is evaluated and compared to the real-world test case. The second research question
formulates therefore to:

(2) Does the inclusion of a perception model improve the quality of the virtual
assessment process?

To answer those questions, this thesis shows the implementation of a PM and the
integration of this model into the provided simulation environment.
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1.4 Structure of this Thesis

1.4 Structure of this Thesis

The rest of this work is structured in the following way. Chapter 2 shows the methodol-
ogy that is used to accomplish the stated results and explains the experimental setup.
An explanation of the necessary background information, needed to understand the full
scope of this thesis is provided in Chapter 3. In chapter 4, parallels to relevant scientific
publications are drawn and the practical part of this work is explained in depth. Finally,
chapter 5 highlights the results of the experiments and chapter 6 concludes the thesis
and points out possible extensions to this work.
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2 Methodology

This chapter describes the research methodology that is applied in this thesis. Figure
2.1 shows all methodological parts that are applied and highlights implementation
tasks. Blocks that describe literature research and the general framework are labeled
as gray. Blocks that involve implementation or integration tasks are colored in green
and make up the main tasks of this work. Arrows symbolize dependencies, where gray
describes a knowledge dependency and green an implementation dependency.

Literature

Simulation

Deep
Learning

Sensor
Models

Virtual
Assessment

Data
Collection

Test Case
Description

Autonomous
Driving

Derivation of PM
PM is able to repro-
duce offline error ∆S

Data
Preparation

Scenario
Generation

Integration of PM
PM improves the quality of
virtual assessment process

AD-Functionality
Decision Making

Knowledge
Dependency
Implementation
Dependency

Literature
Research
Main
Tasks

Figure 2.1: Block diagram of the applied research methodology.

The top row consist of blocks describing the literature research that is necessary to
understand the concepts of this project. Focus thereby lies on the predefined assessment
process, as well as the fundamentals for the derivation of the PM. The bottom row
highlights blocks involved in the simulation chain and their dependencies.
A short introduction to deep learning and SMs is done in chapter 3. Hereby the
main focus is set on processing sequences using Neural Networks (NNs). In addition,
nonlinear-system identification is explained briefly. The introduction to virtual assess-
ment for the evaluation of Autonomous Driving Systems (ADS) started in chapter 1

and continues in chapter 3. Main focus is the assessment process itself, as well as the
scenario-description. Further, chapter 3 describes how data is collected and how the
generation of scenarios is solved by reprocessing the collected data.
The derivation of a PM, that is based on machine learning methods, addresses the first
research question of this thesis. The task is to derive a network structure that is able
to learn the sensor-error ∆S from collected data and predict accurate sensor values
when fed with GT information. The integration of this PM into the provided simulation
framework attempts to answer the second research question of this thesis. Therefore an
open-loop evaluation is performed to showcase if the accuracy of the simulation can be
improved by this addition.
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3 Background

This chapter serves as introduction to the topics that are covered in this thesis and
provides the necessary background form different fields of study. It starts by explaining
the identification of unknown systems and provides a brief introduction on machine
learning. Further, a closer look is taken on the virtual assessment process and sensor
models are explained.

3.1 System Identification of Black Box Systems

The identification and modeling of an unknown system forms the basis of the first
research question of this thesis. Figure 3.1 shows a system S with its input u(t) and
output y(t). System identification describes the process of finding the dynamics of
an unknown system, given only its inputs and corresponding outputs [26]. White box
models are derived by first principle differential equations, such as physical laws and
require knowledge about the systems composition and its parameters. In case no prior
knowledge exists about a model and the description is based solely on measurements,
the model is referred to as black box. A combination of those two classifications is la-
beled as gray box model and can be characterized using a combination of first principle
equations and measurements [27]. This chapter sets its main focus on the identification
of unknown black box systems.

System S
u(t) y(t)

Figure 3.1: Unknown System S with inputs u(t) and outputs y(t). (Based on [27])

An unknown system can be classified by the relation of its inputs to outputs into
linear and nonlinear and further by its system description into parametric and non-
parametric systems [27]. In the book by Stephen A. Billings [26], a nonlinear system is
defined as any system that does not fulfill the superposition principle. This theorem
states that the response of a system caused by a sum of stimuli, corresponds to the sum
of responses that would have been caused by each stimulus individually. The theorem
can be reformulated as principle of additivity (eq. 3.1) and homogeneity (eq. 3.2)

S(u1 + u2) = S(u1) + S(u2), (3.1)
S(cu) = cS(u), (3.2)

where S(·) represents a linear system with inputs u and c is an arbitrary constant.
Opposed to linear systems, nonlinear system do not have a linear correlation between
input and output.
A parametric system can be fully described by a finite set of parameters. For the identi-
fication of a parametric model, the underlying structure is usually known beforehand
[27]. Basis for these structures are typically physical relations which require a lot of
prior knowledge about the system [28]. Nonparametric systems do not assume a prior

9



3 Background

definition of the model structure and require an infinite number of parameters for an
exact description. A standard procedure for identifying nonparametric models analyz-
ing the model output as response of a known input [26]. Finding this input-output
relation is challenging when there exists no prior knowledge about the system itself.
Identifying the behavior of a system is important for analyzing existing and developing
new processes. An accurate system model can provide a better understanding of a
systems behavior and can help to improve the efficiency of a process [27].

System S

System
model M(θ)

u(t) y(t)

ŷ(t)

ε(t)

η(t)

+

−

Figure 3.2: Identification of nonparametric systems. (Based on [27])

Figure 3.2 shows the process of system identification by approximating the systems
behavior using a system model. The vector u(t) = [u1(t), ..., un(t)]T symbolizes the
input parameters of the system. For the identification the input parameters (or a
representative subset) are also fed into the system model M. The system model is
further described by a parameter vector θ, so its approximated output can be expressed
as ŷ = f (u(t), θ). The process output y(t) is usually disturbed by a source of noise
η(t) in a real-world application. For simplicity, Figure 3.2 only shows an additive
source of noise η(t). The model output ŷ(t) is compared to the disturbed system
output y(t) + η(t), which yields the error signal ε(t). The performance of the model
is measured by the magnitude of error ε(t). Minimizing ε(t) by correctly adjusting
the parameter vector θ is usually the goal of a system identification process, since
it leads to a better approximation of the system behavior. In order to do so, a set of
fundamental design questions concerning the structure of the system model has to be
answered.

• What subset of inputs is used for the system model?
• What model architecture is best suited for the problem?
• What is the necessary model complexity to approximate the system behavior?
• What are the choices for the parameters of the model?
• What methods are used for the validation of the result?

Chapter 4 describes the approach that is chosen for this thesis and provides answers
for this design questions.

3.2 Machine Learning

Applying Machine Learning (ML) to problems that search for patterns in data has a
long and successful history [29]. This section presents principles of this discipline that
are applied in this thesis.

10



3.2 Machine Learning

History of Machine Learning

The section provides a brief historic roundup by pointing out milestones in Artificial
Intelligence (AI) and ML, that are relevant for this thesis. The era of AI started in
the year 1958 by the invention of Frank Rosenblatts basic perceptron [30] and the
perceptron convergence theorem by Novikoff [31] five years later. The convergence
theorem states that the perceptron learning algorithm converges in a finite amount
of time for any linearly separable problem. This attribute lead researchers to make
predictions about the future of AI and ML as solution to a variety of applications. Since
computational capabilities were limited and high level applications such as computer
vision demands huge amounts of resources, many problems were not solvable back
then. This led to the public loosing interest in AI, since companies and scientists were
not able to satisfy the high expectations they have set. The following 20 years became
known as the first ”AI winter” [32].
In the mid 1980’s, the backpropagation algorithm was rediscovered and the Recurrent
Neural Network (RNN) was introduced by Rumelhart et.al. [33]. His book also made
the Multi Layer Perceptron (MLP) very popular, which until today is considered the
standard form of a NN. With the introduction of the universal approximation theorem
in 1989 by Cybenko [34], proof was found that NNs with at least one hidden layer,
are universal approximators. The utilization of Graphic Processing Unit (GPU) in 2009

[35] to parallelize tensor operations brought an immense speedup to the processes of
training NN and led to commercialization of the field.

Deep Feedforward Networks

This section gives an introduction on Deep Neural Networks (DNNs) that use a
feedforward architecture and explains their basic properties. Further references to
topics about ML and the formal derivation of DNNs are provided in [29], [36]. Deep
feedforward networks are the standard architecture of DNNs and applicable for
numerous tasks [36]. The premise of DNNs is to approximate a function f ∗(x), by
finding a mapping

ŷ = f (x; θ) ≈ f ∗(x), (3.3)

where x labels the input vector of the network, θ defines an adjustable parameter vector
and ŷ is the model output. In order to find a suitable mapping, the network needs to
learn how to adjust θ in a way, that results in the approximation of f ∗(x) with sufficient
accuracy.

The term feedforward describes the underlying network structure. In a feedforward
network, information flows in one direction, starting from the input layer and progress-
ing towards the output through intermediate steps. These intermediate steps are known
as hidden layers in the context of DNNs [36]. The model shown in Figure 3.3 shows an
example of a feedforward network with a single hidden layer. The input layer is labeled
as x = [x0, ..., xL], the hidden layer h = [h0, ..., hM] and the output layer y = [y0, ..., yN ].
Input and hidden units with an index 0 are set to a fixed value of 1 by default and
their outgoing weight connections are commonly referred to as bias. These bias units
do not depend on incoming connections, even when placed inside a hidden layer. The
network shown in Figure 3.3 is fully connected, which means each cell in a layer has a
connection to every cell (except the bias unit) in the successive layer. Every connection
labels the scaling with a weight unit. The feedforward nomenclature strictly forbids
feedback and cross connections within single layers. Feedforward DNNs are labeled as
networks since they are a composition of different functions that are structured in an
directed graph [36]. The most commonly used structure is chaining a set of functions
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f (1), f (2), f (3) together to create a dependency between them e.g. f (3)( f (2)( f (1)(x))).
In that case, f (1) labels the first layer of the network, f (2) the second layer and so on.
The term deep learning emerged from the process of stacking a number of layers on top
of each other [29]. The number of stacked layers defines the depth of a DNN [36].

xL

x1

x0

hM

h1

h0

ŷN

ŷ1

w(1)
ML w(2)

NM

w(2)
10

Inputs
Outputs

Hidden Units

Figure 3.3: Network diagram showing the feed forward architecture of a DNN as a directed graph. The
network consists of one hidden layer h = [h0, ..., hM]. (Based on [29])

Training a DNN describes the process of learning information from data by adjusting
the network parameters and evaluating the output of a model. During training, the
network tries to find the best approximation f (x; θ) of the mapping f ∗(x). In supervised
learning, the training data provides examples of f ∗(x), evaluated at different training
points x(i). Bishop [29] suggests the linear rescaling of every dimension of the input
variables to a common interval such as [0, 1]. This avoids the increased significance
that comes with dimensions of larger scale. Every example is accompanied by a cor-
responding label y(i) = f ∗(x(i)). Those labels specify what the output layer has to do
when the network is exposed to a specific training example. However, labels do not
define the behavior of the intermediate layers to achieve this mapping. Utilizing a
learning algorithm, the network tries to find the correct adjustment of θ, that results
in the a sufficient approximation of f ∗(x) [36]. Via backpropagation, the error between
label y and network prediction ŷ is assigned to each weight parameter. This is done
by calculating derivatives of the error with respect to each weight and then adjusting
the weight with a scaled version of this gradient. The learing rate is a positive scaling
factor for the gradient update in this context. A state of the art approach is to set the
learning rate to a small constant value [36]. Other forms of training are unsupervised
and reinforcement learning and not covered here. Hidden layers are called that way
since they are not directly observable from the networks inputs and outputs [36]. The
dimension of the hidden layers define the width of the network. Every layer consists
of many smaller units acting in parallel, called neurons. The name neuron is based on
their inspiration on neural brain cells. Similar to neural cells, every neuron inside a
DNN receives input from many other cells and calculates its activation. The activation
of a neuron defines its output, based on incoming data. Combining this information of
every neuron in the network defines its overall output vector.

A common way to describe DNNs is to start with a model for linear regression
and add parts that enable the model to overcome the limitation of strictly linear
approximations [29]. A model for linear regression maps a set of multiple inputs
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x = [x0, ...xL] to a single output ŷ

ŷ = f
(

xTw
)
≈ f ∗(x) with x0 = 1. (3.4)

w is the weight parameter and needs to be adjusted to find a solution for this equation.
In case of linear regression, f (·) is the unit function. To extend the linear model and
enable the approximation of nonlinear functions, x is transformed using a basic function
φ(x; θ) and f (·) becomes a nonlinear activation function. The structure of the resulting
model is defined by the sum of linear combinations of fixed basis functions φ(x; θ) in
the form

ŷ = f (x; θ, w) = f
(

φ(x; θ)Tw
)

. (3.5)

DNNs need to learn the properties of the basis function φ(·) to find a suitable mapping
between inputs and outputs. In the context of DNNs, φ(·) resemble the hidden layers
of the network. The parameters θ are used to define φ(x; θ) and the weight parameters
w are used to map from φ(x; θ) to the desired output [36]. The key idea of DNNs is to
make the parameters θ adjustable along with the coefficients w [29]. This can be done
by applying Equation (3.5) to define the basis function itself. As a result, each basis
function forms a nonlinear function consisting of a linear combination of inputs with
adaptive coefficients. The output of the network shown in Figure 3.3 then calculates to

ŷ = f (2)
(

f (1)
(

xTw(1)
)T

w(2)
)

. (3.6)

Recurrent Neural Networks

This section summarizes the properties of RNNs and highlights the differences to
feedforward MLPs. RNNs are a family of NNs that are mainly used for processing
sequential data [33]. The feedforward architecture of conventional MLPs is character-
ized by a structure that does not involve loops and for this reason only operates on
fixed-sized input vectors. RNNs break with this convention and are able to work with
input data that does not necessarily have to be of a fixed length. This key difference
is achieved with recurrent connections that share parameters across the network [36].
In case of the vanilla RNNs, the shared parameters are the weights of the network. A
recursive, dynamic system with a momentary system state ht and a parameter-vector
θ, is formulated as

ht = f (ht−1; θ) , (3.7)

where subscript t represents the current time-step and t− 1 the previous one. By adding
a dependency on an input sequence xt ∈ [x1, ..., xτ ], the reformulation of Equation (3.7)
leads to the description of the hidden state of a RNN as

ht = f (ht−1, xt; θ) . (3.8)

Figure 3.4 shows the unfolding of the computational graph. This representation clarifies
the temporal structure of the RNN and visualizes the dependency of the previous
system state for the calculation of the output. Based of Equation (3.6) the hidden state
at time instance t can be formulated as

ht = f
(

xT
t wx + hT

t−1wh

)
. (3.9)

According to Figure 3.4, the output at the same time t can further be expressed as

ŷt = f (2)
(

f (1)
(

xT
t wx + hT

t−1wh

)T
wy

)
. (3.10)

13



3 Background

ŷ
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Figure 3.4: Unfolding the computational graph of a RNN. The left side shows the recurrent connection that
is unfolded on the right side. (Based on [29])

RNNs use their internal state representation ht to store information on previously
exposed data. The required length of the remembered history depends on the task.
RNNs have limited capabilities to remember previous data due to the mapping of a
sequence of arbitrary length to a fixed sized system state. Networks often have to make
predictions based on long-term dependencies, as Graves [37] shows by generating
sequences for different applications. In that case, the problem of vanishing gradients
may arise, when RNNs operate on long sequences [38]. During training, the weights of
a RNN are adjusted using an algorithm called Backpropagation Through Time (BPTT)
[39]. Hereby the gradient of the loss function with respect to the network weights is
propagated back in time. Small values in the weight matrices cause the gradient to
decrease exponentially with each time step. For this reason, RNNs are often biased to
prefer short-term dependencies in the training data.

Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) network was introduced by Hochreiter and
Schmidhuber in 1997 [40] to solve the problem of vanishing gradients and enable the
forming of long-term dependencies in sequential data. They achieve this by maintaining
a cell state that is separate from the output. Similar to other NN architectures, LSTM
networks are structured in layers that consist of at leas one cell. The number of layers
and cells influences the performance of the network and has to be chosen according
to the task. LSTM networks utilize a structure of gated cells to selectively control
the flow of information forward in time. In addition, these gated structures enable
the uninterrupted flow of the gradient backwards to mitigate the vanishing gradient
problem during BPTT. A gate describes a unit that is able to add or remove information
to a signal, as shown in Figure 3.5. A LSTM cell is formed by combining these gated

σ ×
it

ot

Figure 3.5: Components of a gate-cell. A sigmoid unit maps incoming data (0, 1) scales an output via
element-wise multiplication.

structures to control the effect that previous seen information and newly added data
has on the cell state. The structure of a single LSTM cell is depicted in Figure 3.6.
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Figure 3.6: Structure of a LSTM-cell. Cell inputs are previous cell state ct−1 and concatenated previous
hidden state ht−1 and input features xt as input. Four gate units update the cell state ct and
output ŷt. Round blocks label element-wise operations. (Based on [41])

Training a LSTM network is similar to the training of RNNs. The update procedure
affecting the forward path can be split into 4 steps:

• Forget irrelevant information (eq. 3.11).
• Store relevant, new information (eq. 3.12).
• Update the cell state (eq. 3.15).
• Output transformed cell state (eq. 3.16).

In mathematical terms, the updating of a cell state can be formulated as: ∀t ∈ τ =
[1, ..., τ]

f t = σ
(

xT
t wx f + hT

t−1wh f

)
, (3.11)

it = σ
(

xT
t wxi + hT

t−1whi

)
, (3.12)

ot = σ
(

xT
t wxo + hT

t−1who

)
, (3.13)

gt = tanh
(

xT
t wxg + hT

t−1whg

)
, (3.14)

ct = f t ◦ ct−1 + it ◦ gt, (3.15)
yt = ht = ot ◦ tanh (ct) . (3.16)

Hereby xt labels the input features at time-step t. The weight matrices w are shared
across every LSTM cell state and therefore don’t have a time index.

3.3 Virtual Assessment

This section provides a deeper insight into the virtual assessment process. Section 1.1
introduced virtual assessment as method to improve processes that are unsuitable for
the assessment of autonomous driving functions, such as the V-Model. This is done by
extending the test domain with virtualized versions of test cases.
The base data for a scenario is recorded by a test vehicle. SD is retrieved from the
recorded onboard sensors of a prototype vehicle, whereas GT information about other
Traffic Objects (TOs) is recorded with a high precision reference sensor system, such as
LiDAR[24].
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In the context of virtual assessment, the term scenario is used as unambiguous and
consistent description of a test case. Therefore, the description of a scenario needs to
fulfill a set of requirements [17], [42]

• Restriction: The Ego vehicle is free to perform in the described scenario in an
unrestricted way after starting from a fixed condition.

• Unambiguity: The description of other TOs and the environment has to be
unambiguous. There are no triggers, conditions or driver models involved.

• Accuracy: A scenario-description needs to be accurate enough, so it contains all
relevant information for the AD function to base its decision on.

• Consistency: Describing a scenario has to be done in a consistent way, which
means in case redundant information is present in the description, it has to be
coherent in itself.

In their work, Wagner et al. [43] represent object traces of a scenario-description as a
dynamic set of splines of cubic polynomials. Groh et.al [22] state, that a conversion from
recorded data into a scenario can be based on either GT or SD. Both variants introduce
a description error ∆D, that will be noted as ∆DGT and ∆DSD, respectively. Data that
originates from multiple sensors can have a higher rate of uncertainty than each of
the individual sensors, in case the sources provide inconsistent data [44], [45]. Since
SD is comprised of information coming from different sources, it is hard to achieve
a low conversion error in case of inconsistencies in the sensor readings. As opposed
to this, using GT data as base for the scenario generation provides a high consistency
and is therefore preferable over SD [22]. Wagner et al. [43] state that the description
error ∆DGT is only responsible for a small portion of the difference between real-world
and simulated data. Other simplifications, such as a simplified vehicle model and an
approximated environment model negatively affect the result.
A scenario needs to be unambiguously mapped to a single point in a scenario-space,
which means the simulation cannot have any degree of freedom for the interpretation
of the scenario, when compared to the real-world test case [9]. To justify the comparison
of simulation results from different frameworks, an unambiguous description of a
scenario is absolute necessary [43]. Wachenfeld and Winner [17] point out the high
complexity of the scenario-space for the assessment of ADS, since it has to cover typical
traffic-situations but also unforeseeable scenarios, that may arise with the introduction
of autonomous vehicles. A scenario can be classified in terms of complexity, criticality
and occurrence [46]. Certain traffic situations are highly unlikely but pose high risk for
the safety of the occupants, whereas traffic situations with a high occurrence usually
have lower risk [17].
The simulation framework is a SiL system that processes scenario-descriptions and
simulates them. For this, it provides an environmental model that consists of all nec-
essary information for the Ego vehicle to understand and current scene. Examples
for the content of an environmental model are road maps, lane markings and other
TOs [22]. To interpret a scene, the AD function needs to classify perceived objects and
localize them inside the road model. The AD function then makes predictions about
the movement of the TOs and proceeds with a decision on how to plan and act. The
decision on a maneuver starts at a high level, such as lane-keeping or overtaking and
proceeds on a lower level describing the desired trajectory. After that, the required
actions are taken and returned back to the simulation framework. Figure 3.7 shows
this behavior as a feedback-loop. The virtual assessment process compares scenarios
that are recorded in different test domains, using quantities that are labeled as Key
Performance Indices (KPIs) [42]. KPIs express all requirements on an AD function and
are used to compare the results of FOTs and their corresponding simulations. The
requirements of an AD function can be classified by measurements of accident risk,
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Figure 3.7: Representation of the simulation process. The environmental model is used to predict a trajectory
for every TO. An action is taken and fed back into the environmental model. (Based on [42])

compliance to traffic rules and passenger comfort [9]. To compare two scenarios, binary
classifications such as accident or no accident are not sufficient [22]. In the automotive
domain, examples for KPIs are Time to Collision (TTC) and Time to React (TTR) [47].
Wagner et al. [48] state that uncertainties in human behavior have to be considered by
the assessment method and that a solely focus on the most probable future path a TO
might take does not fulfill that criteria. They therefore predict single variations around
the most probable future path for every TO in the scene. Later, they use a stochastic
approach based on TTR, which reveals a single risk value for every driving scene. Ac-
cumulating this risk value over the length of a scenario results in a risk over time signal.

Test
Drives

Simulation
(SiL/HiL/ViL)

Assessment Assessment

Scenario

Cross validation

Figure 3.8: Explanation of the virtual assessment process. (Based on [9])

Figure 3.8 summarizes the virtual assessment procedure. Scenarios are generated
from FOTs or Naturalistic Driving Studies (NDS) and characterized in an unambiguous
way. The recorded scenarios are then simulated using in-the-loop tests. The scenarios
from both paths are separately assessed via KPIs and then cross-validated. According
to [9], in case the evaluated KPIs are comparable accurately enough, the simulated
scenario can be used as a replacement for the real-world test. In addition, this procedure
enables the creation of additional test kilometers by applying adequate small variations
to the simulation of the scenario [42].

3.4 Sensor Models

Automated vehicles perceive the environment through sensors and therefore perceive a
shifted version of the GT [46]. Via SF, information is extracted from raw sensor data
and passed to the AD function of the vehicle. Based on this information, the vehicle
decides on how to plan and act accordingly.
Hugh F. Durrant-Whyte [49] describes a SM as an abstraction of a physical sensing
process. SMs have the purpose to approximate the ability of real sensors to extract
information about their environment in terms of the information available to the sensor
itself. In other words, a SM aims to reproduce the output of a real sensor with all its
characteristics. SMs are used as probabilistic or quantitative approximations of real
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sensors in simulated environments [49]. In the simulation, GT information coming
from a scenario-description is used as input for the SM. The aim of the SM is then to
reproduce SD from GT.

Physical
Model

Phenomenological
Model

Maneuver-Based
Statistical Model

Statistical
Model

Abstract
Model

Abstraction Level

Figure 3.9: Order of a SMs according to its level of abstraction. The chosen model for this work, the maneuver-
based statistical model, is highlighted in green. (Based on [46])

According to Notz et.al. [46], SMs can be classified by their level of abstraction. Figure
3.9 visualizes 5 types of models and sorts them by this criterion. An abstract SM usually
simplifies the behavior of a sensor in an idealistic way, without any interfering noise
[50]. Statistical models use statistical methods to estimate the probability distribution of
an output variable [51]. A phenomenological model utilizes simplified physical effects
and statistical properties to emulate the behavior of a sensor on signal level [52]. The
physical model of a sensor-setup has the profoundest modeling depth. The sensor
behavior is approximated by applying physical laws such as wave propagation via
ray-tracing, which comes with a huge increase in computational complexity [53]. Based
on the evaluation of their collected data and generation of GT, Groh et.al. [22] show a
decrease of perceptual accuracy during highly dynamic maneuvers. In order to include
the maneuver-based variance of the noise level and also keep the model complexity
simple enough they propose the ”maneuver-based statistical model” [46]. This model is a
non-parametric approach and derives the correlation of sensor output and perceived
objects in a statistical way by comparing SD and GT information.

Soft Sensors

The term soft sensor combines ”software” and ”sensors” and refers to the estimation of
unknown process variables based on mathematical models or empirical measurements.
The Kalman filter [54] is a prominent model-based soft sensor for estimating the state
of an object. In industrial processes, soft sensors are often proposed for estimating
quality variables, in cases where online measurements are technically or economically
infeasible. They can be applied as data-driven methods to model unknown black box
systems, only using empirical observations of a process [55]. Soft sensors approximate
quality variables in real-time, by finding patterns in related process variables, which
are easier to measure. Recent publications in the field of industrial processes showed a
successful application of RNNs based soft sensors on different real-world applications
[56], [57]. The estimated quality variables often describe highly nonlinear, dynamic
processes, which have similarities to vehicle dynamics in automotive domain.
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This chapter gives an overview of the practical implementation of this thesis and
provides detailed explanations of the design choices. To answer the first research
question of this work, the implementation of a PM that is able to predict Model Sen-
sor Data (MSD) from GT information, is necessary. For a successful experiment, the
predicted output has to approximate the real SD with an error that is smaller than ∆S.
Beyond that, this thesis aims to decrease ∆S to a minimum. A data-driven black box
approach is chosen for the PM and is covered in Section 4.1. The model is implemented
in a Python1

3.6 framework, that includes the Tensorflow2 library. The underlying
operating system is Ubuntu 3

20.04.
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Figure 4.1: General approach of implementing and testing the PM.

For the full implementation and evaluation of the PM, a pipeline is established that is
pictured in Figure 4.1. The development process starts with the analysis of the training
data, which is covered in Section 4.2. The preprocessed data is the input for the offline
evaluation that is shown on the left side of Figure 4.1. A configuration is chosen for the
PM and during the training process, the prediction error between real-world SD and
model output MSD is minimized. The trained model is exported and evaluated using
a separate test-set. The evaluation results are compared to the sensor-error ∆S. In case
the accuracy of the model is insufficient, the training process starts from the beginning
with a new set of hyperparameters, which is shown as feedback loop in Figure 4.1.

1https://www.python.org/ (last access 15.02.2021)
2https://www.tensorflow.org/ (last access 15.02.2021)
3https://ubuntu.com/ (last access 15.02.2021)
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In case the performance of the model is sufficient, the trained model is imported in
the simulation framework for the online evaluation. This framework is implemented
in C++ and uses the Tensorflow C++ API for importing the model. As an additional
input for the simulation, the description of a scenario is loaded. While running the
simulation, the PM predicts MSD in real-time. For the final evaluation, the simulation
output is compared to the GT information.

This chapter describes the main contributions of this work and is structured in the
following way. Section 4.1 compares the properties of the implemented PM with sensor
models that are introduced in Section 3.4. Next, Section 4.2 analyzes the available
training data and its preprocessing. Section 4.3 shows the application of the LSTM
architecture to implement PMs and provides a connection between Sections 3.1 and 3.2.
Section 4.4 highlights the properties of the training process and Sections 4.5 and 4.6
summarize two different approaches for the implementation of the PM.

4.1 Perception Model

This section points out the differences between the concept of a PM, which is used in
this thesis and a SM, described in Section 3.4. It defines the scope of the model and
points out the main advantages of a PM over individual SMs.
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on

GT

SD1
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SDN

MSD

Perception Model

Figure 4.2: The PM is comprised of different sensors and a SF algorithm. The input is GT information, the
output is labeled as MSD (Based on [24]).

Section 3.4 introduces SMs and categorizes them by their level of abstraction. The
most suitable approach for this thesis is the maneuver-based statistical model, since
it includes the decreasing perceptual accuracy that comes with dynamic driving
maneuvers [22]. This decreased accuracy can be a high uncertainty of an object’s
position or the misjudgment of its velocity, which can result in a malfunction of the AD
function, such as the delayed recognition of a critical situation. Figure 4.2 pictures a set
of sensors n = 1, ..., N, that receive GT information, coming from a scenario-description,
as input. The output of each sensor n is labeled as SDn and contains sensor-errors ∆S.
In further processing steps a SF algorithm combines the sensor outputs SD1,...,N into an
object-list that contains information about every perceived TO [24].
In oppose to a single SM, a PM comprises different SMs, as well as the SF algorithm. In
this work, the PM covers the whole sensor setup of an Autonomous Vehicle (AV) [58].
Figure 4.2 shows that the GT information from the scenario-description is analogously
used as input for the PM. The output of the model is labeled as MSD and is an
approximation of the fused SD at object-list-level. The goal of the PM is to recreate
SD solely based on the GT information coming from the scenario-description [24]. Its
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scope includes interacting TOs during dynamic maneuvers and does not address static
objects such as lane markings or static obstacles.
A major advantage of this approach over individual SMs is expected to come with the
inclusion of all sensors into one model. This makes the PM independent of single SMs
that originate from different suppliers [24]. In that case, a change in the sensor setup
does not necessarily lead to a change in the PM. The inclusion of the SF algorithm
into the PM brings an additional advantage. In case of a deviation of the simulation
output during cross-verification, that might emerge from a single malfunctioning SM,
the error does not have to be tracked back through the SF algorithm [24].
The sensor-error ∆S = GT− SD can be split into a static and dynamic component
∆S = ∆Sstatic + ∆Sdynamic. Thereby, the static error depends on the objects position
and orientation, relative to the Ego vehicle. An AV is equipped with different sensors
that are mounted at several locations around the vehicle. Those sensors have varying
precision, which affects the static error ∆Sstatic. To evaluate the influence of the static
error on the overall ∆S, Sigl et al. [24] use a discretization model containing the positions
around an AV based on its sensor setup. The dynamic error ∆Sdynamic is linked to the
dynamic state of the perceived TO, such as its velocity and acceleration. Groh et.al
showed a correlation of the error magnitude and the dynamic state of the vehicle [22].
For the conversion of GT data into MSD and therefore an approximation of the fused
SD, the PM has to model both errors accordingly. For this, the PM receives a set of
inputs that consists of static and dynamic features of the Ego vehicle and other TOs
and is further described in Section 4.2.

4.2 Training Data Analysis

The dataset used in this thesis contains three different test-drives on German highways
of approximately 60 minutes. The weather condition ranges from sunny to cloudy and
the road is dry. The dataset contains recorded onboard sensors SD from a prototype
vehicle and reference GT information from a high precision LiDAR sensor.

Data extraction

To model sensor-errors during changing dynamics of TOs, the dataset is split into traces
for further processing. A trace describes the trajectory of a TO and is dismissed if it
is too short or does not contain any dynamic transitions. During a maneuver such as
overtaking or lane changing, the dynamic properties of a TO change, which means the
vehicle is accelerating, braking or steering [24]. Since traced vehicles do not change
their dynamics for the majority of a highway drive, dismissing this data leads to a
more equal distribution of dynamic and non-dynamic sections. Every traced TO in the
training set should perform at least one significant change of motion. Discarding data
by this criteria removes objects that are not recognized as TOs, such as traced traffic
signs or guard rails. For further processing, the GT data coming from the reference
systems and the SD coming from the onboard sensors of the Ego vehicle are matched
to receive traces that contain both information. The effective duration of the training
data after the preselection is approximately 60 minutes of single object traces. During
the test drive multiple objects can be traced at once, so the extracted traces may overlap
in time.

GT information is recorded with a high precision LiDAR sensor and contains relative
distance drel(GT) and relative heading hrel(GT) between TO and Ego vehicle and the
Ego vehicle’s pitch pego(GT). In addition, the Ego vehicle uses its onboard sensors to
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measure its own absolute velocity vego(GT). The relative velocity vto(GT) of a TO is
calculated from vego(GT) and the derivative of the relative distance d

dt drel(GT).
All features that are used for the implementation of the perception model are listed in
Table 4.1. In this listing, quantities that are marked as SD, are derived from the onboard
recordings of the test vehicle, whereas GT information originates from a reference
system, with the exception of vego(GT). Every quantity is based on the local coordinate
frame of the Ego vehicle.

Feature Unit Description
vto(GT) m/s Absolute velocity of the TO measured by a reference system
vto(SD) m/s Absolute velocity of the TO measured by onboard sensors
ato(GT) m/s2 Absolute acceleration of the TO
vego(GT) m/s Absolute velocity of the Ego vehicle
drel(GT) m Absolute distance between the Ego vehicle and the TO
hrel(GT) rad Angle between the Ego vehicle and the TO
pego(GT) rad Pitch of the Ego vehicle

Table 4.1: Input features for the implementation of the perception model.

Further progressing, this thesis only concentrates on the x component of the vehicles
motion, which always points in the lateral direction of the Ego vehicle.

Exclusion of lateral direction

Figure 4.3 shows the correlation between the vx,to(GT), vx,to(SD) and vy,to(GT),
vy,to(SD) of 2.5% randomly sampled datapoints from the full dataset. The upper
plot shows the correlation of the longitudinal, the lower plot the correlation of the
lateral components of the same quantity.

The Pearson correlation factor R [59] is a quantity that measures the statistical
relationship between two continuous variables and ranges from −1 to 1. A value of
0 implies that there is no linear correlation, a value close to the boundaries implies
perfect linear correlation between both variables.

R =
∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2(yi − ȳ)2

(4.1)

x̄ and ȳ represent mean over all samples of a signal. The GT and SD components in
longitudinal direction correlate more than the components in lateral direction. The
omnidirectional correlation between vy,to(GT), vy,to(SD) show the weak connection
of between the GT and SD components of the velocity in lateral direction. Figure 4.4
compares the lateral components of the measured velocities vy,to(GT), vy,to(SD), with
the errors between GT and SD of the same quantity.

The error components εvx and εvx, that are shown in Figure 4.4 are calculated as

εvx = vx,to(GT)− vx,to(SD), (4.2)
εvy = vy,to(GT)− vy,to(SD). (4.3)
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Figure 4.3: Correlation of GT and SD velocity in longitudinal and lateral direction.
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Figure 4.4: Comparison of the error between GT and SD velocity in longitudinal and lateral direction.

This representation of the error εvy between SD and GT shows that the margin of
the error is in a comparable range of the actual values of those quantities. As summary
for the decision to exclude the lateral component from the prediction model can be
stated with two bullet points.

• The weak correlation between the GT and SD component of the velocity vy,to
• The error magnitude εvy being in the same range as the measured values
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Restriction of distance values

An additional restriction criteria on the dataset is the relative object distance drel . Only
objects that are within a relative distance of 120m are considered as part of the dataset.
Whenever a vehicle leaves this range during a maneuver, the corresponding data is
discarded. The grey area in Figure 4.5 shows the cumulative number of samples from
the whole dataset as function of relative distance. The value is scaled in a range between
0 and 1. The number of samples with a smaller distance than 120m corresponds to
approximately 87% of the whole dataset.
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Figure 4.5: Comparison of position and velocity error.

In addition, Figure 4.5 shows the distribution of the position error εpos and the
velocity error εvx. The decrease of εvx leads to the conclusion of a biased dataset for
ranges greater than 120m. This can be interpreted as the internal data association
algorithm of the test vehicle being only able to match traced objects when the certainty
is disproportional high. In addition, optical onboard sensors have a limited range which
mostly assumes perfect weather conditions [60]–[63]. To guarantee the generalization
of the implemented PM, a restriction to distance values under 120m is appropriate.

Application specific preprocessing

To use sequential maneuvers as input for the PM, described in Sections 4.5 and 4.6, a
number of preprocessing steps is necessary. In general, LSTM networks use sequential
data as input vectors to make predictions about a quantity. Thereby, sequences of
different length can be split into overlapping chunks of a fixed size according to Figure
4.6.

In this thesis, all input traces are split into vectors that have a length of τ = 25
and overlap by 24 samples. The value of τ is derived by a set of experiments and
represents 1s of data at the Ego vehicle’s mean data rate of 25Hz. The input vector
xt =

[
xt−(τ−1), ..., xt

]
is used to make a prediction about the SD at time instant t.
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Sequence S

. . . s1 . . .
. . . s2 . . .

. . . s3 . . .

. . . sN . . .

overlapping chunks s1...sN

Figure 4.6: Splitting a sequence S into overlapping chunks s1, ..., sN .

Every sample at time-step t contains a subset of values, described in Table 4.1. For
the training process, those slices are randomly shuffled. In addition, the chosen input
features are linearly interpolated to an equidistant interval of 0.04s =̂ 25Hz to guarantee
equivalent input vectors for the PM. As a further preprocessing step, every strictly
positive input feature is scaled to a range of [0, 1] and every other feature to a range of
[−1, 1].

4.3 Network Architecture

Applying neural networks to system identification is a well established and tested
procedure [27]. Section 3.2 points out that neural networks are capable of realizing
any continuous function by learning patterns in training data. Chen et al. [64] studied
the application of single layer neural networks for the identification of discrete-time
nonlinear systems. In their work, they prove a successful modeling of simulated and
real-world systems, using machine learning methods.

Section 3.4 defines soft sensors as method for estimating unknown process variables
via empirical measurements [55]. The concept of a PM, described in Section 4.1, can
also be interpreted that way, when established as data-driven model. In their work
[56], Ke et al. apply LSTM networks as approximators for highly nonlinear, dynamic,
quality variables in chemical processes. In a data-driven approach, they use a two-layer
LSTM and achieve improved results compared to a standard RNN approach. Yuan et
al. [57] apply LSTM networks to the identification of a nonlinear, dynamic process. To
factor in the high temporal correlation of the process variables, they include the output
of the intermediate LSTM layers as inputs of their successors.
Using LSTM networks for generating sequences is a widely applied field. Alexander
Graves [37] applies LSTM networks to the generation of different complex sequences,
such as text and online handwriting, by predicting one datapoint at a time. Salinas et
al. [65] implemented a framework for time series prediction called DeepAR. In their
approach they predict the parameters of a normal distribution σt, µt and draw samples
ŷt from it at every time step t. They further use ŷt as additional input for the successive
time step t + 1, which they label as autoregressive approach.

This work uses a LSTM network to implement a PM, which is used in the virtual
assessment of AD functions. Literature suggests that the LSTM network structure is
suitable for system identification and time series prediction problems [56], [57], [65].
Further, this thesis uses inspirations from aforementioned literature to answer the first
research question outlined in Section 1.3.
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The goal of the implemented network is to predict MSD at every time step t, that
fulfills MSDt ≈ SDt. Thereby the difference between MSD and SD has to be smaller
than ∆S, as a minimum requirement for the PM. The predicted MSD estimates the
longitudinal velocity of a tracked TO. Figure 4.7 shows the abstraction of the network
model with its input and output.


vx,to
ax,to

vx,ego
drel
pego
hrel

 LSTM
Network [v̂x,to]

GT PM MSD

Figure 4.7: LSTM network as PM implementation for the prediction of MSD.

For the prediction process, the network uses previous samples [t− τ, ..., t] to update
its cell states and output MSD. In addition, the network is supposed to approximate
the dynamic noise behavior of the SD.
The proposed network architecture uses a feature vector x = [xt−τ , ..., xt] as input
to predict the components of a probability distribution µ̂t, σ̂t. Further, µ̂t, σ̂t are used
to draw samples from this distribution. This procedure implies the assumption of
a Gaussian distributed error around the predicted MSD. In their work, Sigl et al.
[24] model the perception error of an AV using a Gaussian distribution, as it fits the
measured distribution of the sensor values. To prevent numerical instabilities, that arise
with very small or negative values for the variance, σ̂t is transformed to

σ̂′t = ln
(

1 + eσ̂t
)

. (4.4)

This transformation does not affect the prediction process itself but ensures numerical
stability, since it avoids negative values for the variance. After this transformation, the
probability distribution is formulated using Gaussian properties

ŷt = N (µ̂t, σ̂′t) =
1

σ̂′t
√

2π
e
− 1

2

(
ŷt−µ̂t

σ̂′t

)2

, (4.5)

where ŷt is the sampled prediction value for time step t.
This thesis implements two variants of the prediction LSTM network, which are
explained in Sections 4.5 and 4.6.

4.4 Training Properties

For the training process, the available dataset of approximately 60 minutes of traced
TOs is split into three parts. The training set consists of 80 % of the available data
samples. Validation and test-set each contain 10 % of the data samples. The test-set is
not used for the training process and is only applied for the final evaluation. Iterating
over all training examples labels one epoch. Every epoch, the validation set is used to
calculate a validation loss, which is further used to optimize the hyperparameters of
the network [29]. In general, tuning the hyperparameters of a neural network using a
separate validation set increases its generalization ability.
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4.5 Approach: Non Autoregression

The implemented LSTM network uses Mini-Batch Gradient Descent as method to
process the input data [36]. Mini-Batch Gradient Descent has been proven to provide a
robust convergence and a better utilization of computational resources than non batched
variants [36]. A minibatch is a subset of the training set, containing N entries that are
propagated through the network at once. A single loss is calculated by averaging over
the whole batch. In this thesis the Mean Squared Error (MSE) of a single batch i is
chosen as loss function.

L(y(i)t,j , ŷ(i)t,j ) =
1
N

N

∑
j=1

(
y(i)t,j − ŷ(i)t,j

)2
(4.6)

ŷ(i)t,j is the jth predicted value and y(i)t,j is the jth true label of batch i at time step t. To
ease further reading, batch indices are omitted.
Kingma and Ba [66] introduced the Adam algorithm for optimizing DNNs, which
is applied in this thesis. The Adam algorithm optimizes the networks weights by
maintaining individual, adaptive learning rates for each separate function parameter.

4.5 Approach: Non Autoregression

The Non Autoregression (NA) approach uses a vanilla LSTM network for the imple-
mentation of the PM. The network uses a feature vector xt = [xt−τ , ..., xt] as input,
which describes a time sequence of GT features. It predicts the parameters of a Gaus-
sian distribution µ̂t, σ̂′t for every time step t and samples the final output value ŷt from
this distribution.

Training

For training, the network uses its input features to estimate the output ŷt. The output
is then compared to the true label yt and the loss value L (yt, ŷt) is calculated based on
Equation (4.6). The gradient of the loss function with respect to the network parameters
is propagated backwards through time using the BPTT algorithm. This procedure
adjusts the network weights in a way that minimizes the overall loss. Figure 4.8 shows
the forward path of the training algorithm as unfolded in time.

[xt−T]

ht−T

[xt−1]

ht−1

[xt]

ht
Y ∼

N (µ̂t, σ̂′t)

ŷt yt

L (yt, ŷt)

Figure 4.8: Training process of NA approach.

The Gaussian distribution Y ∼ N (µ̂t, σ̂′t) is parameterized by the predicted mean µ̂t
and variance σ̂′t, as shown in Equation (4.5).
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Prediction

After training, the network is able to predict MSD based on incoming data. The flow
of information during the prediction is similar to the training processes. The LSTM
propagates the input sequence xt = [xt−τ , ..., xt] through the network and outputs the
sampled value ŷt.

[xt−T]

ht−T

[xt−1]

ht−1

[xt]

ht
Y ∼

N (µ̂t, σ̂′t)

ŷt

Figure 4.9: Prediction process of NA approach.

Figure 4.9 shows the unfolded network structure during prediction. The network
estimates one sample at a time, which is collected to receive a full object trace.

4.6 Approach: Single Component Autoregression

In oppose to the approach discussed in Section 4.5, the Single Component Autoregres-
sion (SC) approach uses the output of the previous time step ŷt−1 as additional input
feature for the network.

Training

During training, the LSTM network uses feature vector xt = [xt−τ , ..., xt], as well as the
true label of the previous time step yt−1 as input. The network then proceeds similar to
the NA variant by estimating the parameters µ̂t, σ̂′t and further sampling the predicted
value ŷt. Figure 4.10 shows the information flow of the SC approach during training.

[
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]
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]
ht−1

[
xt
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]
ht

Y ∼
N (µ̂t, σ̂′t)

ŷt yt

L (yt, ŷt)

Figure 4.10: Training process of SC approach.

After sampling ŷt, the network calculates the batch MSE based on Equation (4.6) and
adjusts its weight accordingly via BPTT.
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Prediction

For the prediction, the network needs a settling time of length τ before it is able to
estimate the first value. This is because the prediction queue, shown in Figure 4.11,
must be filled with previous network predictions beforehand. To achieve a realistic
behavior during the settling time of the network, the prediction queue is initialized the
following way

µ̂t = GTt, (4.7)

σ̂′t = η. (4.8)

GTt refers to the GT value at time t and η is a constant that is defined offline in an
empirical way by calculating the global variance of all input traces.
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]
ht−T
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ŷt−2

]
ht−1

[
xt

ŷt−1

]
ht

Y ∼
N (µ̂t, σ̂′t)

ŷt

t = t + 1Prediction Queue

Figure 4.11: Prediction process of SC approach.

After the initialization phase, the network is able to predict the parameters of a
normal distribution µ̂t, σ̂′t , based on previous exposed data. The sampling process of ŷt
is similar to the described procedure in Section 4.5. To use the most recent prediction
as input for the next time step, ŷt is added to the prediction queue.
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5 Results

This chapter summarizes the assessment of the implemented PM and concludes the
final results of this thesis. The purpose of the offline evaluation, is the determination
and optimization of the network configuration. The resulting model must be able
to reproduce the SD of an AV, with a reasonable accuracy. Further on, the online
evaluation integrates the optimized model into a simulation framework, to test the PM
in an open-loop.

5.1 Offline Evaluation

The offline evaluation is performed separately from the simulation environment and
serves the purpose of finding and optimizing the parameters of the LSTM network. It
consists of all steps that are pictured on the left side of Figure 4.1 and is performed
as an iterative procedure. This section provides the results of this evaluation and the
conclusions that are drawn from it.

Hyperparameter Search

Neural networks try to find the optimal mapping of the provided input data to the
corresponding output label by reducing the cost between network prediction and
label. The base architecture of the network that is used in this thesis consists of two
different approaches, labeled as NA and SC. For each approach, the network itself has
to be parameterized by a set of hyperparameters, which define the network and training
properties. Since finding a suitable set of hyperparameters in an analytic way is a
challenging task, the development process usually resorts to the training of multiple
models and the comparison of their performance on a validation set. An unsuitable set
of parameters can lead to a non-converging loss function or an insufficient accurate
prediction.
The following hyperparameters for the LSTM network are empirically optimized in
the context of this thesis. The Number of Training Epochs (NE) defines the number
of iterations that the full input data-set is processed during training and the Learning
Rate (LR) is a measurement for the step-width, the training algorithm takes in the
direction of the steepest descent. The Number of Network Layers (NL) defines the
number of hidden layers in the LSTM network and the Number of Cells per Layer (NC)
defines the number of LSTM cells per layer.

Training Epochs and Learning Rate

The first part of the hyperparameter search aims to find a suitable combination of the
NE and the LR. For this evaluation, all input features, as listed in Table 4.1, are chosen
as input for the network, with the exclusion of vto(SD) in case of the NA approach.
The training set consists of samples that are preprocessed according to Section 4.2.
An applicable combination of LR and NE must lead to a decreasing validation loss
during the training process. To confirm this, a test series of models with different
hyperparameters is trained on the same dataset and the convergence behavior of the
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networks validation loss L(y, ŷ) is monitored during this process. All combinations of
the following hyperparameters are tested for both network approaches, resulting in a
total amount of 36 combinations.

LR ∈ [1e− 04, 5e− 05, 1e− 05], NL ∈ [1, 2], NC ∈ [4, 16, 64]

Each set of parameters is trained with 5 different models and the resulting validation
loss L1:5(y, ŷ) is averaged at every time-step. Further on, a test-set describes a set of
models that have an equal parameterization and are used to verify the consistency of
the predictions. Equation (5.1) shows the calculation of the averaged validation loss
L(y, ŷ) for every test-set.

L(y, ŷ) =
1
N

N

∑
i=1
L1:5(y, ŷ) (5.1)

The upper plots in Figure 5.1 show the convergence of L(y, ŷ) for the SC approach,
the lower plots for the NA approach. The loss function of every test-set in Figure 5.1a
converges at latest after 20 epochs. This indicates that with the chose combination of
LR and NE, the network is able to find a solution for the given task. On the contrary,
the number of epochs is not sufficient for the training of the test-sets showed in Figure
5.1b, especially for configurations that use a low NC. This is shown as the loss function
L(y, ŷ) does not converge after the specified amount of epochs for these test-sets. In
addition, the convergence behavior contains more fluctuations and starts at a higher
offset than the functions with LR=1e− 04. For this reason, the evaluation of test-sets
using smaller LRs is repeated with 128 training epochs.
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(a) Fixed parameters LR=1e− 04, NE=64.

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

L
(y
,
ŷ
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Figure 5.1: Convergence of validation loss L(y, ŷ) after 64 training epochs.
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Figure 5.2: Convergence of validation loss L(y, ŷ) after 128 training epochs.

The training with an increased epoch count of 128 is shown in Figure 5.2. Again, the
upper plots show the convergence of L(y, ŷ) for the SC approach and the lower plots
for the NA approach. The loss function of all parameter configurations converges after
the specified amount of training epochs, which confirms the update of the NE for these
LR configurations.

To further evaluate the convergence behavior of the training process, the variance
of L(y, ŷ) for each test-set is determined after the last training epoch, as shown in
Equation (5.2). This parameter is expected to provide information about the consistency
of the training procedure, as small values indicate a similar performance.

σ2 (L(y, ŷ)) =
1
N

N

∑
i=1

(Li(y, ŷ)−L(y, ŷ))2 (5.2)

Table 5.1 compares the values of L(y, ŷ) and σ2 (L(y, ŷ)) for all evaluated test-sets
after training. The top 6 rows list the results of the NA approach, the bottom 6 rows
the results of the SC approach. For this comparison, the models using LR=1e− 04 are
trained 64 epochs, the models using LR=5e− 05 and LR=1e− 05 are trained for 128
epochs.

All configurations lead to values of L(y, ŷ) with comparable magnitude and contain
small values for the variance. The highest average validation loss L(y, ŷ) = 0.0126 is
about 7.5 times higher than the lowest achieved loss value of L(y, ŷ) = 0.0017. Those
values represent the MSE between normalized quantities, which means they do not
represent the actual physical difference but a scaled version. For that reason, the results
shown in Table 5.1 are only used to evaluate relative trends that occur during training.
In case of the SC approach, the prediction quality of all test-sets with LR=1e− 04
is positively influenced by an increase NL and NC. In addition, the variance of the

33



5 Results

L(y, ŷ)
(
σ2 (L(y, ŷ))

)
Configuration LR=1e− 04 LR=5e− 05 LR=1e− 05
NA, NC=4, NL=1 0.0110 (1.0e− 06) 0.0122 (4.3e− 08) 0.0097 (4.2e− 06)
NA, NC=4, NL=2 0.0098 (2.0e− 07) 0.0126 (8.5e− 08) 0.0093 (1.4e− 06)
NA, NC=16, NL=1 0.0108 (6.1e− 06) 0.0109 (1.0e− 07) 0.0090 (3.2e− 06)
NA, NC=16, NL=2 0.0088 (1.5e− 08) 0.0095 (1.3e− 07) 0.0089 (1.8e− 07)
NA, NC=64, NL=1 0.0106 (2.2e− 06) 0.0087 (4.2e− 07) 0.0091 (8.4e− 08)
NA, NC=64, NL=2 0.0107 (7.1e− 07) 0.0088 (1.7e− 07) 0.0091 (1.6e− 07)
SC, NC=4, NL=1 0.0026 (5.5e− 07) 0.0088 (5.5e− 08) 0.0021 (1.3e− 05)
SC, NC=4, NL=2 0.0022 (2.5e− 07) 0.0059 (5.9e− 08) 0.0020 (1.2e− 06)
SC, NC=16, NL=1 0.0020 (3.5e− 07) 0.0031 (1.0e− 07) 0.0019 (6.0e− 07)
SC, NC=16, NL=2 0.0024 (1.9e− 07) 0.0031 (7.2e− 08) 0.0020 (2.7e− 07)
SC, NC=64, NL=1 0.0020 (1.2e− 07) 0.0023 (7.6e− 09) 0.0017 (3.0e− 08)
SC, NC=64, NL=2 0.0019 (4.5e− 08) 0.0023 (2.8e− 08) 0.0017 (8.9e− 08)

Table 5.1: Comparison of validation loss after training. Every cell contains the mean loss and the variance of
the test-set in brackets.

loss function decreases when using larger architectures. The NA approach shows no
recognizable trend relative to the NL and NC. The increasing performance that comes
with an increasing NL and NC continues for both approaches in case of LR=5e− 05,
as again the validation loss decreases with an increasing NL and NC. Both approaches
show the most promising results with LR=1e− 05, which is highlighted in green colour.
Decreasing the LR leads to an improved prediction ability of the model for almost
every case of this validation. The evaluation of the first test series shows the influence
that the hyperparameters have on the performance of the network. The effect of the LR
on the training process and further the approximation ability of the networks is pointed
out in this section and reasons for the preference of the combination of LR=1e− 05 and
NE=128 are provided. To further investigate the influence of the model structure on the
prediction performance, the trained models are benchmarked on a selected, separate
set of Test Tracks (TTs).

Hyperparameter Evaluation

To find the most suitable set of hyperparameters, the previously trained test-sets are
applied on the prediction task of a separate number of TTs. This independent set of TTs
is chosen to estimate the generalization ability of the trained models and consists of 5
exemplary object traces TT1:5, as summarized in Table 5.2. In oppose to the training and
validation set, the input slices for the network are not shuffled, to kept their temporal
order for this evaluation.

To verify the prediction performance of the networks, the MSE between the rescaled
MSD and SD is used as baseline. The MSE measures the offset error ε = SD−MSD
and is as single performance indicator not sufficient for the evaluation of the prediction
quality, since it provides little information about signal characteristics. Therefore, the
smoothness of the error signal ε is also taken into account by calculating the variance
σ2(ε) and using it as second performance indicator. This procedure is expected to lead
to the best suited configuration of the hyperparameters for the final evaluation. Tables
5.3-5.8 show the MSE between SD and MSD per test-set, for every TT. Every table
shows the evaluation of a fixed LR. Colored cells highlight the best performing set of
hyperparameters per approach and TT, solely based on the MSE.
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5.1 Offline Evaluation

Test-track t [s] v̄x,to [m/s] Summary
TT1 35 35 Slow acceleration after breaking
TT2 120 33 Hard breaking and acceleration
TT3 42 28 Breaking with spike in sensor values
TT4 32 28 Long breaking maneuver
TT5 26 36 Alternating breaking and acceleration

Table 5.2: Description and basic properties of TT1:5. The velocity v̄x,to is averaged over the whole track and
rounded towards the nearest integer.

Figure 5.3 visualizes the results from Tables 5.3-5.8. The left column represents the
NA approach, the right column the SC approach. Every row represents one of TT1:5
in increasing order. In this comparison, the NA approach shows a rather inconsistent
behavior regarding the correlation of model complexity and performance. Tracks TT3
and TT5 benefit from larger models, since their level of performance rises with increas-
ing model complexity. Whereas larger model architectures affect the performance on
tracks TT1 and TT2 in a negative way for all learning rates. In addition, there is no clear
preference for the value of the LR. On the contrary, the SC approach tends to perform
better using a combination of low model complexity and small LR. The orange curve,
representing LR = 1e− 05, results in the overall best performance.

To further analyze the prediction performance of the test-sets, all TTs are plotted and
the parameter σ2(ε) is evaluated. Since this evaluation leads to a large amount of plots
(i.e. 2 approaches x 18 hyperparameter configurations x 5 TTs), only one representative
example is presented in this section to demonstrate occurring trends. Figures 5.4-5.6
show the predictions for TT2, made by test-sets with respective LR = 1e− 04 and
LR = 1e− 05. Every subplot shows the evaluation of the labeled test-set using the
SC approach at the top and the NA approach at the bottom. A large value of the
MSE between vx,to(SD) and vx,to(MSD) mostly corresponds to a large offset error, as
the network is not able to approximate the correct velocity value. The gray outlines
visualize the ±2σ distance for each test-set. A large value of σ2(ε) corresponds to a
large difference in the noise behavior between vx,to(SD) and vx,to(MSD). This effect is
particularly visible in Figures 5.4c-5.4d.
In general, the NA approach is significantly more consistent in its result than the SC
approach, as the average values for ±2σ is lower for almost every test-set. High model
complexities tend to result in higher loss values for both approaches. In case of the
SC approach, the model predictions also become increasingly inconsistent with larger
model architectures, which is represented by a large ±2σ distance. In that case, the
model is not capable of finding a suitable minimum um L(y, ŷ), as shown in Figures
5.5a-5.6b and 5.6c-5.6d. The combination of a small network architecture and a large
value for the LR leads to a good approximation of the noise behavior. In contrast, com-
bining small network architectures with small LRs increases the uncertainty. Evaluating
all test-tracks concludes that the best results are achieved with following combination
of hyperparameters

LR = 1e− 05, NL = 1, NC = 16.

This set of hyperparameters has the overall lowest values for the MSE, while keeping
σ2(ε) at a reasonable low level for both approaches. In addition, the consistency of
the prediction, shown as small ±2σ distance, has a promising low level. All further
networks are therefore trained with this combination of hyperparameters.
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5 Results

MSE{vx,to(SD), vx,to(MSD)}
TT NL=1, NC=4 NL=2, NC=4 NL=1, NC=16 NL=2, NC=16 NL=1, NC=64 NL=2, NC=64

TT1 0.4614 0.4834 0.4885 0.4987 0.5594 0.7696
TT2 0.1251 0.1425 0.1247 0.1604 0.1853 0.2046
TT3 0.0923 0.0790 0.0711 0.0757 0.1086 0.1253
TT4 1.2153 1.7957 1.4143 1.1391 1.1672 1.1104
TT5 0.1900 0.1737 0.1185 0.1198 0.1473 0.1566

Table 5.3: Evaluation of grid search for NA approach and LR=1e− 04.

MSE{vx,to(SD), vx,to(MSD)}
TT NL=1, NC=4 NL=2, NC=4 NL=1, NC=16 NL=2, NC=16 NL=1, NC=64 NL=2, NC=64

TT1 0.4085 0.6299 0.6166 0.6510 0.4203 0.5158
TT2 0.1128 0.1991 0.1965 0.1431 0.1038 0.1592
TT3 0.0988 0.0853 0.0971 0.0708 0.0764 0.0778
TT4 1.2527 1.5433 1.5144 1.3155 2.0977 2.0237
TT5 0.1506 0.1209 0.1003 0.0936 0.1204 0.1085

Table 5.4: Evaluation of grid search for NA approach and LR=5e− 05.

MSE{vx,to(SD), vx,to(MSD)}
TT NL=1, NC=4 NL=2, NC=4 NL=1, NC=16 NL=2, NC=16 NL=1, NC=64 NL=2, NC=64

TT1 0.4401 0.5742 0.5174 0.5685 0.5857 0.6031
TT2 0.1476 0.1109 0.1541 0.1858 0.2324 0.1723
TT3 0.1885 0.1165 0.0846 0.0770 0.0933 0.0759
TT4 1.3680 1.2953 2.0615 1.5570 1.5585 1.4041
TT5 0.4025 0.3660 0.1446 0.1658 0.0729 0.0812

Table 5.5: Evaluation of grid search for NA approach and LR=1e− 05.

MSE{vx,to(SD), vx,to(MSD)}
TT NL=1, NC=4 NL=2, NC=4 NL=1, NC=16 NL=2, NC=16 NL=1, NC=64 NL=2, NC=64

TT1 0.5681 0.4664 1.0714 0.5532 0.4147 0.5248
TT2 0.2364 0.0912 0.1511 0.2097 0.9385 0.3936
TT3 0.0834 0.0905 0.1447 0.1170 0.4233 0.0974
TT4 1.2354 2.4748 1.9201 1.8050 2.0759 2.4100
TT5 0.7114 0.2718 0.1792 0.3501 0.3773 0.2216

Table 5.6: Evaluation of grid search for SC approach and LR=1e− 04.

MSE{vx,to(SD), vx,to(MSD)}
TT NL=1, NC=4 NL=2, NC=4 NL=1, NC=16 NL=2, NC=16 NL=1, NC=64 NL=2, NC=64

TT1 0.6122 0.7996 0.6199 0.5212 0.5722 0.4857
TT2 0.1345 0.1918 0.2678 0.1878 0.1232 0.2122
TT3 0.1983 0.1532 0.0947 0.0950 0.2150 0.0501
TT4 2.4048 3.3452 2.9948 3.2621 2.0977 2.0237
TT5 0.5748 0.3381 0.3686 0.3277 0.2376 0.2604

Table 5.7: Evaluation of grid search for SC approach and LR=5e− 05.

MSE{vx,to(SD), vx,to(MSD)}
TT NL=1, NC=4 NL=2, NC=4 NL=1, NC=16 NL=2, NC=16 NL=1, NC=64 NL=2, NC=64

TT1 0.3189 0.4376 0.5299 0.4927 0.5579 0.5467
TT2 0.0778 0.1905 0.1190 0.1282 0.3910 0.2292
TT3 0.1172 0.1344 0.0639 0.0639 0.0838 0.0571
TT4 1.1213 1.2273 1.4854 1.9845 3.5642 3.9202
TT5 0.2383 0.2518 0.2074 0.2059 0.3949 0.3418

Table 5.8: Evaluation of grid search for SC approach and LR=1e− 05.
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Figure 5.3: Comparison of MSE{vx,to(SD), vx,to(MSD)} based on the feature selection. The left side shows
the NA approach, the right side the SC approach. Every row represents one of TT1:5.
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(a) Fixed parameters LR=1e− 04, NL=1, NC=4.
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(b) Fixed parameters LR=1e− 04, NL=2, NC=4.
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(c) Fixed parameters LR=1e− 05, NL=1, NC=4.
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(d) Fixed parameters LR=1e− 05, NL=2, NC=4.

Figure 5.4: Comparison of TT2 using LR ∈ [1e− 04, 1e− 05], NL ∈ [1, 2] and NC = 4 for the training. The
dotted curve labels vx,to(GT), the orange curve vx,to(SD) and the blue curve vx,to(MSD). The
gray, dashed outlines show the ±2σ distance for each test-set.
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(a) Fixed parameters LR=1e− 04, NL=1, NC=16.
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(b) Fixed parameters LR=1e− 04, NL=2, NC=16.
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(c) Fixed parameters LR=1e− 05, NL=1, NC=16.
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(d) Fixed parameters LR=1e− 05, NL=2, NC=16.

Figure 5.5: Comparison of TT2 using LR ∈ [1e− 04, 1e− 05], NL ∈ [1, 2] and NC = 16 for the training. The
dotted curve labels vx,to(GT), the orange curve vx,to(SD) and the blue curve vx,to(MSD). The
gray, dashed outlines show the ±2σ distance for each test-set.
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(a) Fixed parameters LR=1e− 04, NL=1, NC=64.
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(b) Fixed parameters LR=1e− 04, NL=2, NC=64.
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(c) Fixed parameters LR=1e− 05, NL=1, NC=64.
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(d) Fixed parameters LR=1e− 05, NL=2, NC=64.

Figure 5.6: Comparison of TT2 using LR ∈ [1e− 04, 1e− 05], NL ∈ [1, 2] and NC = 64 for the training. The
dotted curve labels vx,to(GT), the orange curve vx,to(SD) and the blue curve vx,to(MSD). The
gray, dashed outlines show the ±2σ distance for each test-set.
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5.1 Offline Evaluation

Choice of Feature-Set

The final part of the offline evaluation investigates the influences, that the choice of
input features has on the models performance. The training of all previous models
uses the whole available data-set and every input feature listed in Table 4.1. The usage
of a subset of input features can lead to an increased performance, since potentially
wrong conclusions, that are drawn from inconsistencies in redundant information,
can be avoided. An examples for this can be inconsistencies between the change of
vx,to(GT) and the timely corresponding values of ax,to(GT). In addition, removing
irrelevant parts from the full input set can be beneficial for the predictive ability of
the models. As previously cited, the error of the perceived SD depends amongst other
things on the performed maneuver and has a higher magnitude during track segments
with increased vehicle dynamics. For this reason, the input set is pruned into four
dynamic levels, based on the acceleration of the perceived TO. A set of three metrics
is established to quantify this pruning. On the example of 02 − 17 − 25, an input
track must have a variance σ2(ax,to(GT)) ≥ 0.2 (first value) and an absolute value
of |ax,to(GT)| ≥ 1.7m/s2 for at least 2.5s (second and third value). The four levels of
dynamics and the resulting number of input tracks after pruning are listed in Table 5.9.

full data 02− 17− 25 03− 21− 31 04− 25− 36
Nr. of Traces 164 24 18 11

Table 5.9: Pruning of input data based in dynamic properties.

Table 5.10 shows the combination of input features, that are used with the pruned
data-sets for the final evaluation of this chapter.

Abbreviation Base Features Additional Features
Fall vx,to(GT), dx,rel(GT) ax,to(GT), vego(GT), pego(GT), hrel(GT)
Fvra vx,to(GT), dx,rel(GT) ax,to(GT)
Fvrv vx,to(GT), dx,rel(GT) vego(GT)
Fvrp vx,to(GT), dx,rel(GT) pego(GT
Fvrh vx,to(GT), dx,rel(GT) hrel(GT)

Table 5.10: Used input features and their abbreviations.

To summarize, the final evaluation of this section consists of [2 approaches x 4

dynamic levels x 5 feature selections], which leads to a total number of 40 combinations
of training parameters. Every combination is trained with 10 models, resulting in 400
trained models for this test.

Tables 5.12-5.15 show the best performing feature-sets for every approach, evaluated
on all four dynamic levels of the data-set. For enhanced readability, the values inside
the curly brackets are omitted for the labeling of MSEall and MSEtest. Every row lists
the averaged MSE between vx,to(SD) and vx,to(MSD), based on the selected input set
and each cell shows the result of a single model m. The first value in every cell repre-
sents MSEall , which is calculated between all available tracks. This value represents
the ability of the models to correctly approximate the provided input data. The second
value in brackets shows the MSEtest, which is calculated and averaged over the five
test tracks only. The green colored cells represent the overall best result for each table
and green colored text highlights the best candidate of each row, based on MSEtest.
For every approach, the feature-set containing the model with the lowest value for
MSEtest is selected and compared to the same approach using the Fall feature-set.
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5 Results

The overall best performing feature-set for the NA approach is the Fvrp set. The best
performing set for the SC approach is the Fvrh set. This comparison provides insight
on the influence that single features have on the prediction performance of the trained
models. The results from Tables 5.12-5.15 are additionally visualized in Figures 5.7-5.8
as boxplots. Here, the orange line marks the median and the lower and upper bound-
aries mark 25% and 75% of the test-data, respectively. The whiskers have a length of
1.5 times the interquartile range. All boxplots show the best three candidates for every
dynamic level of data and the highlighted feature-sets. The result is then compared to
the error between SD and GT.
The columns of Figures 5.7-5.8 show the effect that the dynamic based pruning of the
data-set has on the prediction performance. Test-sets using the Fall feature-set show a
clear trend towards a decreased accuracy for both approaches on the pruned data-set.
Reducing the amount of training data decreases the performance of the models drasti-
cally and leads to an increased MSE. This effect is also visible in case of the Fvrp and
Fvrh feature-set, but in a reduced form. Compared to test-sets using the Fall feature-set,
the usage of a smaller amount of features stabilizes the performance of the models
when applied on the pruned training data. Although both approaches show the best
performance when using the whole data-set for training, using a small number of input
features can still lead to results with reasonable accuracy, in case of a reduced data-set.

Overall, the NA approach leads to a more consist performance and models using the
SC architecture can lead to better results, but show less consistency. The SC approach,
trained on the full data-set consisting of the Fvrh feature-set, stands out as the test-set
with the highest predictive accuracy and its best candidate is chosen as model for the
online evaluation. Figure 5.9 shows the final result of the offline evaluation on the
example of TT2, using the best performing models mna,vrp,3 for the NA approach and
msc,vrh,5 for the SC approach. Hereby, mna,vrp,3 is the third model that is implemented
using the NA approach and trained on the Fvrp features-set.
Because the model shown in Figure 5.9a has no information about its previous pre-
dictions, it mainly tries the minimize the offset between vx,to(GT) and vx,to(SD), in
order to find a good approximation. This approach does not capture the full char-
acteristics of a the SD. In oppose to that, the SC approach reproduces the timely
progression of the SD very accurately. This is especially visible during the breaking
and re-accelerating maneuver at time 40− 60s. Both approaches lack the ability of
predicting the correct SD of TT2, in sections where the GT and SD signals progress
in different directions. An example can be seen during time 20− 40s. Table 5.11 com-
pares MSEtest{vx,to(SD), vx,to(GT)} and MSEtest{vx,to(SD), vx,to(MSD)} of the best
candidate msc,vrh,5. The implemented PM shows a superior performance on every TT,
compared to the error between SD and GT.

TT1 TT2 TT3 TT4 TT5

MSEtest{vx,to(SD), vx,to(GT)} 1.0222 0.8717 0.3860 1.4779 0.3613
MSEtest{vx,to(SD), vx,to(MSD)} 0.3711 0.0721 0.0890 0.8168 0.3467

Table 5.11: Comparison of MSEtest for every TT. The MSD consists of the predicted values of the best
candidate msc,vrh,5.

This result answers the first research question of this thesis and confirms that the
implemented PM is capable of offline reproducing the sensor-error ∆S, so that

MSEtest{vx,to(SD), vx,to(MSD)} < MSEtest{vx,to(SD), vx,to(GT)} ∀ TT1:5 (5.3)
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MSEall{vx,to(SD), vx,to(MSD)} (MSEtest{vx,to(SD), vx,to(MSD)})
data set mna,all,0 mna,all,1 mna,all,2 mna,all,3 mna,all,4 mna,all,5 mna,all,6 mna,all,7 mna,all,8 mna,all,9
all, full data 0.32 (0.35) 0.29 (0.31) 0.31 (0.40) 0.32 (0.44) 0.31 (0.32) 0.31 (0.37) 0.32 (0.44) 0.30 (0.39) 0.31 (0.30) 0.31 (0.37)
all, 02-17-25 2.38 (1.14) 0.99 (0.67) 1.87 (1.38) 1.41 (0.74) 1.16 (0.85) 1.46 (0.78) 1.32 (0.95) 1.68 (0.83) 1.11 (0.90) 1.74 (1.02)
all, 03-21-31 5.46 (2.32) 8.43 (3.42) 10.62 (3.13) 3.69 (2.69) 3.45 (2.06) 175.81 (41.27) 11.12 (2.88) 4.49 (1.13) 20.58 (5.59) 6.73 (3.04)
all, 04-25-36 193.56 (73.23) 240.02 (74.25) 237.64 (66.18) 333.36 (108.45) 153.61 (39.41) 121.86 (31.25) 106.08 (41.18) 263.82 (110.71) 128.81 (52.78) 317.57 (87.79)

Table 5.12: NA approach: Final evaluation of models mna,all,1:10, using the Fall feature-set.

MSEall{vx,to(SD), vx,to(MSD)} (MSEtest{vx,to(SD), vx,to(MSD)})
data set mna,vrp,0 mna,vrp,1 mna,vrp,2 mna,vrp,3 mna,vrp,4 mna,vrp,5 mna,vrp,6 mna,vrp,7 mna,vrp,8 mna,vrp,9
vrp, full data 0.40 (0.27) 0.38 (0.26) 0.36 (0.27) 0.39 (0.25) 0.37 (0.26) 0.38 (0.26) 0.41 (0.28) 0.39 (0.27) 0.38 (0.27) 0.39 (0.27)
vrp, 02-17-25 0.98 (0.94) 0.83 (0.89) 0.67 (0.52) 0.61 (0.45) 0.99 (0.88) 0.88 (0.68) 0.80 (0.65) 0.65 (0.69) 0.66 (0.55) 0.69 (0.48)
vrp, 03-21-31 0.88 (0.39) 0.88 (0.56) 1.33 (0.72) 0.92 (0.83) 0.89 (0.53) 0.61 (0.31) 0.85 (0.57) 1.46 (0.96) 1.64 (1.11) 1.50 (1.07)
vrp, 04-25-36 9.98 (11.00) 12.46 (13.84) 7.27 (5.91) 11.52 (11.90) 4.43 (4.09) 14.20 (19.09) 6.71 (3.39) 8.73 (8.49) 12.83 (12.56) 5.32 (5.09)

Table 5.13: NA approach: Final evaluation of models mna,vrp,1:10, using only Fvrp feature-set.

MSEall{vx,to(SD), vx,to(MSD)} (MSEtest{vx,to(SD), vx,to(MSD)})
data set msc,all,0 msc,all,1 msc,all,2 msc,all,3 msc,all,4 msc,all,5 msc,all,6 msc,all,7 msc,all,8 msc,all,9
all, full data 0.35 (0.37) 0.31 (0.51) 0.40 (0.60) 0.30 (0.33) 0.33 (0.44) 0.27 (0.36) 0.28 (0.32) 0.30 (0.33) 0.30 (0.28) 0.33 (0.41)
all, 02-17-25 1.21 (0.90) 25.05 (0.73) 0.99 (0.57) 2.76 (1.34) 2.52 (1.16) 1.99 (1.04) 2.56 (1.60) 1.42 (0.75) 5.41 (3.77) 4.09 (0.69)
all, 03-21-31 5.97 (3.51) 4.02 (2.23) 11.78 (3.83) 21.94 (8.74) 68.41 (35.51) 84.00 (4.62) 40.99 (10.58) 3.31 (1.66) 46.27 (15.55) 19.08 (5.65)
all, 04-25-36 302.99 (90.27) 288.36 (231.36) 33.87 (5.90) 429.79 (154.04) 318.55 (154.16) 234.59 (76.73) 487.56 (153.25) 104.20 (28.66) 121.57 (46.30) 137.46 (16.78)

Table 5.14: SC approach: Final evaluation of models msc,all,1:10, using the Fall feature-set.

MSEall{vx,to(SD), vx,to(MSD)} (MSEtest{vx,to(SD), vx,to(MSD)})
data set msc,vrh,0 msc,vrh,1 msc,vrh,2 msc,vrh,3 msc,vrh,4 msc,vrh,5 msc,vrh,6 msc,vrh,7 msc,vrh,8 msc,vrh,9
vrh, full data 0.43 (0.39) 0.42 (0.26) 0.43 (0.25) 0.45 (0.26) 0.41 (0.29) 0.40 (0.23) 0.41 (0.25) 0.44 (0.28) 0.44 (0.25) 0.57 (0.61)
vrh, 02-17-25 0.91 (0.93) 1.04 (0.66) 1.44 (2.48) 0.63 (0.43) 1.55 (3.64) 0.67 (0.37) 0.47 (0.27) 0.63 (0.48) 0.80 (1.87) 0.69 (0.40)
vrh, 03-21-31 1.76 (3.39) 1.53 (1.96) 0.99 (1.36) 1.01 (2.02) 0.87 (0.50) 1.33 (1.83) 0.91 (0.75) 1.27 (0.94) 1.00 (0.82) 0.69 (0.48)
vrh, 04-25-36 1.51 (0.93) 3.76 (8.42) 2.83 (1.85) 4.02 (2.39) 4.48 (16.32) 2.91 (2.69) 2.94 (3.72) 6.37 (128.25) 3.02 (10.40) 3.30 (5.78)

Table 5.15: SC approach: Final evaluation of models msc,vrh,1:10, using the Fvrh feature-set.43
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(a) NA approach with feature-set: Fall , full data
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(b) NA approach with feature-set: Fvrp, full data
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(c) NA approach with feature-set: Fall , 02-17-25
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(d) NA approach with feature-set: Fvrp, 02-17-25
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(e) NA approach with feature-set: Fall , 03-21-31
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(f) NA approach with feature-set: Fvrp, 03-21-31
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(g) NA approach with feature-set: Fall , 04-25-36
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(h) NA approach with feature-set: Fvrp, 04-25-36

Figure 5.7: NA approach: Comparison of feature selection.
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(a) SC approach with feature-set: Fall , full data
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(b) SC approach with feature-set: Fvrh, full data
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(c) SC approach with feature-set: Fall , 02-17-25

vx(GT ) vx(MSD, 0) vx(MSD, 1) vx(MSD, 2)

0.0

0.5

1.0

1.5
M

S
E

(d) SC approach with feature-set: Fvrh, 02-17-25
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(e) SC approach with feature-set: Fall , 03-21-31
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(f) SC approach with feature-set: Fvrh, 03-21-31
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(g) SC approach with feature-set: Fall , 04-25-36
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(h) SC approach with feature-set: Fvrh, 04-25-36

Figure 5.8: SC approach: Comparison of feature selection.
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(a) Model mna,vrp,3 as best candidate of the NA approach.
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(b) Model msc,vrh,5 as best candidate of the SC approach.

Figure 5.9: Prediction of TT2 using the best candidates of both approaches. The dotted curve labels vx,to(GT),
the orange curve vx,to(SD) and the blue curve vx,to(MSD).
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5.2 Online Evaluation

5.2 Online Evaluation

The online evaluation is performed without the Ego vehicle’s driving function in a
virtualized environment and consists of the steps that are shown on the right side of
Figure 4.1. This process takes a scenario-description and a pre-trained PM as input
to simulate the scenario as SiL. The goal of this procedure is the online estimation of
the sensor-error ∆S, which is done by processing GT information from the scenario-
description with the PM to approximate SD. As in Section 5.1, the PM is trained on
a training data-set before it can be used in the online evaluation. The input-scenario
for the simulation is based on a real-world test-drive on a German highway and is
approximately 10 minutes long. For further usage, the data is reprocessed to extract
the scenario-description. Through this process a description error ∆DGT is introduced
to the data-set, as cited in Section 3.3. Further on, all reprocessed variables, that are
affected by ∆DGT , are labeled as GTr.

Splitting the 10 minute long input-scenario results in 245 separate object traces.
These tracks consist of TOs that move in the direction of the Ego vehicle, but also static
objects and vehicles approaching from the opposite direction. The model is trained
on a data-set, which only contains information about vehicles moving in a positive
direction. A data-driven model is in general not capable of producing meaningful
results, when evaluated on features that deviate too much from the training data. The
generalization ability of the PM does not cover categorical differences, such as the
movement of a TO in the opposite direction. For this reason, tracks are filtered for
the evaluation by the following criteria to ensure comparable results. TOs that have
a negative-oriented absolute velocity vx,to(GTr) are removed from the data-set, since
they are not represented by the training data. In addition, TOs with a relative distance
dx,rel(GTr) greater than 120 meters are removed from the set, as listed in Section 4.2.
To receive reasonable estimates for models that use the SC approach, a settling time
of at least one second must be ensured to fill the prediction queue of the PM. For this
reason, traces that are shorter than four seconds are removed from the set. Applying
these criteria prunes the list of tracks to a total number of 31 traces, with an average
length of 14 seconds.

The model that leads to the best offline prediction is selected to evaluate the per-
formance of the PM in the online prediction. The best candidate is based on the SC
approach and uses NL = 1, NC = 16 as configuration of the LSTM network. This
model is trained on the previously used input-data with the Fvrh feature-set, for a total
amount 128 epochs, while using a LR = 1e− 05.

For the evaluation of the online prediction capabilities of the PM, two examples of the
resulting model output are chosen to analyze the occurring effects. The selected predic-
tions are shown in Figure 5.10. The black dotted and orange functions represent the re-
processed parameters vx,to(GTr) accx,to(GTr) and the blue function labels the predicted
vx,to(MSD). The MSE is calculated between vx,to(GTr) and vx,to(MSD) to quantify the
difference. The reprocessed velocity vx,to(GTr) and acceleration accx,to(GTr) in Figure
5.10 show a non-naturalistic behavior. vx,to(GTr) is represented as an artificially smooth
progressing function and accx,to(GTr) consists of only piece-wise linear segments. As
cited in Section 3.3, vx,to(GTr) is the extracted version of vx,to(GT) and is approxi-
mated as dynamic set of splines. This set of splines does not contain any recognizable
fluctuations. The source of the piece-wise linear progression of accx,to(GTr) can not
be clearly identified. One possible explanation for the origin of accx,to(GTr) is that is
calculated by taking the derivative over time of vx,to(GTr). A function of vx,to(GTr), that
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is represented as splines of quadratic polynomials, would therefore lead to a piece-wise
linear progression of accx,to(GTr).

To assess the online evaluation, the comparison with real-world or reprocessed SD is
crucial, similar to the offline evaluation. At the time of this thesis, no corresponding
SD is available for this comparison. Using a full scenario-description, that consists of
multiple object traces, as input for the PM, leads to a cumulative error that affects the
positioning of the Ego vehicle. As cited in Section 3.3, the description error ∆DGT is
only responsible for a small portion of the difference between real-world and simulated
data. Other simplifications, such as a simplified model for the Ego vehicle and an
approximated environment model also affect this misalignment. Since this error affects
the positioning of the Ego vehicle, the matching of corresponding SD and MSD is
challenging. One possible solution to reduce the influence of this cumulative error
is the generation of a separate scenario-description for every single object trace. This
comes with a major increase in effort that exceeds the time scope of this thesis. In
addition, the introduction of a matching algorithm, that is able to fit SD to the timely
corresponding GT frames and therefore the predicted MSD, can help to avoid this
problem. A comparison of MSD and SD is therefore not possible.

To qualitatively the performance of the PM, the same scenario is simulated with
five separate models, that use different training configurations. Due to limitations in
the simulation, models that use the Fvrp and Fall feature-set are excluded from the
evaluation, since the required pitch of the Ego vehicle pego(GTr) is not accessible in
the simulation environment. The resulting predictions of this test-series confirm, that
models that are trained on real-world data struggle with the synthesized approxima-
tions. The noise-free inputs always result in a noise-free prediction of the SD, even
though the PMs are trained on real-world data. In addition, not being able to access
the SD, that corresponds to the predicted MSD, makes a quantitative statement of the
assessment procedure difficult. Using the implemented PM for the online estimation
can lead to promising results, since the system is able to process successively incoming
data to make prediction on the corresponding SD. Also, the predicted MSD shown in
Figure 5.10 follows the GT input and shows characteristics, such as a small time delay
and an overshooting of changes in the velocity, similar to the MSD that is presented in
Figure 5.9.

The online evaluation shows the analysis of the implemented PM in the simulation
environment and examines its performance in a qualitatively assessment. The achieved
results are promising, but the implemented solution cannot be evaluated to an extent,
that would be sufficient for fully answering the second research question of this
thesis. Therefore, a statement on the improvement of the virtual assessment process by
including the PM cannot be provided entirely and only an outlook on the improvement
abilities of this PM is presented.
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(a) Accelerating maneuver in online evaluation.
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(b) Breaking maneuver in online evaluation.

Figure 5.10: Comparison of two tracks from the online evaluation. The black dotted line labels vx,to(GTr), the
orange line labels accx,to(GTr) coming from the scenario description. The blue function labels
the estimated vx,to(MSD).
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6 Conclusions and Outlook

This Section summarizes the results that are obtained while working on this thesis and
provides possible extensions to further develop this project. The goal of this work is the
implementation of a PM, that is capable of estimating the perceived SD of an AV, when
provided with GT information about a scenario. The PM is implemented using machine
learning methods in the form of a LSTM network. Two different approaches are de-
signed to find a solution for this task and a series of models is compared to optimize the
parameterization of the network. After being trained on real-world data, the resulting
PM is able to reproduce SD with an accuracy that exceeds the model requirements. In
the offline evaluation, the PM manages to reproduce the signal characteristics of the
SD, solely based on GT information. Due to difficulties in the evaluation process, the
online evaluation can only provide a qualitative statement on the performance of the
model inside the simulation framework.

At first, this thesis investigates the influence, that the composition and size of the
training set has on the performance of the LSTM network. For this, the data-set is
pruned by its underlying levels of dynamic. Both NA and SC approaches show a clear
trend towards a better performance, when provided with a larger data-set for training.
This evaluation focuses on the predictive capabilities, that the implemented PM has
during highway drives. Even in this narrow field of traffic scenarios, the addition of
more training data is beneficial for the overall performance of the PM. Neural networks
are capable of finding correlations in large amounts of data and the LSTM architecture
has proven to be a suitable solution for the processing of sequenced data. This thesis
uses a combination of all available input features or single additional feature to GT
velocity and relative distance between the Ego vehicle and traced TO. The result of
this analysis is that a reduced number of features can lead to better predictions than
using the full data-set. A different selection of feature-combinations can therefore
be beneficial for the performance of the PM and could be investigated further. Data
analysis tools such as Principal Component Analysis (PCA) can help to find a more
sophisticated selection of input features, by maximizing the variance of the data set.

To improve the assessment process, stricter requirements on the performance of the
PM can be beneficial. This work aims to implement a PM that is able to reproduce SD
with a higher accuracy than the direct comparison with GT data. The offline evalua-
tion shows that this minimum requirement can be exceeded by both chosen network
architectures. A more detailed definition of test cases can also improve the assess-
ment during different situations and can expose potential weaknesses of the model.
Since this work concentrates on common maneuvers during highway-drives, such as
following a vehicle or overtaking, a detailed assessment of specific traffic situations
cannot be provided. Therefore, a more detailed description of tested scenarios can help
the comparison with other model architectures and opens up the way of potential
hybrid solutions. The comparison with classic solutions from control theory can further
investigate the suitability of the implemented PM on this prediction task.

Even though this thesis covers a variety of training configurations, a more elaborate
inspection of those possibilities can improve the performance of the model. The most
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promising SC approach uses a prediction queue to feed previous outputs back into
the network. The prediction queue is implemented using a static length of 25 values,
which correspond to one second of test-data. The introduction of a dynamic queue
that changes its size depending on the performed maneuver could not only have a
positive influence on the computational performance, but also improve the accuracy of
the PM. Since the dynamic change of the network architecture during the prediction
phase is not possible, a solution for this approach is not trivial. In addition, the in-
clusion of more than one time-step as input for each layer of the LSTM can be beneficial.

To receive results for the online evaluation that are comparable to those coming
from the offline evaluation, the access to all input parameters during the simulation is
crucial. The most promising candidate of the first evaluation step uses the pitch of the
Ego vehicle to make a prediction about the SD. Adding this feature to the simulation
environment enables a broader selection of PMs. The most important improvement
of the online testing procedure is the addition of a trace-matching algorithm, that
is able to match corresponding SD and MSD. Only with a profound comparison of
these quantities, the second research question of this thesis can be answered to a full
extent. To bring additional benefits to the virtual assessment of automated driving,
a closed-loop evaluation using the implemented PM is advisable. The goal of this
procedure is the replication of all decisions an AV takes during a real-world drive
inside the simulation environment. A congruent base for this decision enables the
replacement of real-world test with a virtualized version.

This thesis shows the successful development and implementation of a PM, that
is able to approximate the SD of an AV. The implemented software pipeline consists
of all components that are necessary to prepare the input sequences for the model,
train the neural network for the prediction task and import the fully trained model
into the provided simulation framework. Therefore, two different network structures
are designed and optimized. The predicted MSD shows similar characteristics as the
real-world SD and results in a smaller estimation error than the corresponding GT.
The influence of different training properties to increase the performance of the PM
are reviewed and improved. Furthermore, a framework for the online estimation of
SD inside the provided simulation environment has been prepared and tested. Future
work can use the results of this thesis as a baseline to further improve the prediction
capabilities of PMs.
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Acronyms

ACC Active Cruise Control

AD Autonomous Driving

ADAS Advanced Driver Assistant System

ADS Autonomous Driving System

AI Artificial Intelligence

AV Autonomous Vehicle

BPTT Backpropagation Through Time

DNN Deep Neural Network

ERSO European Road Safety Observatory

FOT Field Operating Test

GPU Graphic Processing Unit

GT Ground Truth

HiL Hardware in the Loop

KPI Key Performance Index

LKAS Lane Keeping Assistant System

LR Learning Rate

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi Layer Perceptron

MSD Model Sensor Data

MSE Mean Squared Error

NA Non Autoregression

NC Number of Cells per Layer

NDS Naturalistic Driving Study

NE Number of Training Epochs

NL Number of Network Layers

NN Neural Network

PCA Principal Component Analysis

PM Perception Model

RNN Recurrent Neural Network

SAE Society of Automotive Engineers

SC Single Component Autoregression

SD Sensor Data

SF Sensor Fusion

SiL Software in the Loop

SM Sensor Model

TO Traffic Object

TT Test Track

TTC Time to Collision

TTR Time to React
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