
Maximilian Baronig, BSc

Extending Recurrent Neural Networks
with Hebbian Memory

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme:
Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Robert Legenstein

Institute of Theoretical Computer Science
Graz University of Technology, Austria

Graz, March 2021

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Memory in the brain is crucial. Not only does it enable humans to remem-
ber specific events, it also enables complex cognitive abilities of the brain.
Inspired by the utilization of memory mechanisms like synaptic plasticity
in the brain, artificial neural networks are sought to enhance their cognitive
capabilities by incorporating memory into their computational processes.
To find out how neural networks can benefit if they are extended with some
sort of working memory, challenging tasks are developed to prove the supe-
riority of this type of neural network models. One example of such a task
is an artificial question answering task, where the model needs to answer
questions about previously shown facts, requiring the intermediate storage
and retrieval of previously provided information. In recent years, many of
those models were developed, with numerous different architectures and
memory types. In this work, some of the existing neural network models
augmented with some type of memory are examined and two novel models,
HebbLSTM and H-HebbLSTM are proposed. These models consist of a
recurrent neural network architecture similar to Long short-term memory
(LSTM) networks and contain a biologically inspired memory mechanism
often referred to as Hebbian learning which can be trained end-to-end using
gradient descent. H-HebbLSTM is shown to achieve state-of-the-art results
on artificial question answering tasks.

iii

Zusammenfassung

Ohne jegliche Form von Gedächtnis wären komplexe kognitive Vorgänge im
menschlichen Gehirn nicht möglich. Das Gedächtnis ist nicht nur notwendig,
um sich an gewisse Ereignisse erinnern zu können, sondern auch, um
unvollständige Information kurzzeitig zwischenzuspeichern und sie im
Anschluss für weitere Berechnungsvorgänge weiterzunutzen. Inspiriert
durch solche Vorgänge, welche unter anderem stark mit der Plastizität
der Synapsen zusammenhängen, werden künstliche neuronale Netze mit
vereinfachten Formen eines Gedächtnisses erweitert. Um zu testen, ob die
Modelle aus jenen Gedächtniszellen einen Nutzen ziehen können, wur-
den komplexe Aufgaben, die insbesondere gedächtnisrelevante Vorgänge
zur Lösung voraussetzen, entwickelt. Ein Beispiel solcher Aufgaben sind
künstliche Frage-Antwort Tests. Bei solchen Tests werden dem neuronalen
Netzwerk sequenziell Fakten präsentiert, die es zwischenspeichern muss,
um später durch Kombination dieser eine Antwort zu ermitteln. Wie die
Kombination solcher Fakten auszusehen hat, beispielsweise eine Verkettung
mehrerer Informationen, hängt von der jeweiligen Instanz des Tests ab. In
den vergangenen Jahren wurden zahlreiche neuronale Netzwerk-Modelle
vorgestellt, die bereits das Konzept eines Gedächtnisses, im Sinne einer Er-
weiterung bestehender Architekturen, beinhalten. In dieser Arbeit werden
einige ausgewählte dieser Architekturen im Überblick beschrieben, sowie
zwei neuartige Netzwerk-Architekturen, HebbLSTM und H-HebbLSTM,
vorgestellt. Diese beiden Netzwerke ähneln der ”Long short-term memory”-
Architektur und beinhalten eine biologisch inspirierte Form eines Gedächt-
nisses, oft als ”Hebb’sches” Gedächtnis bezeichnet. Des Weiteren können
diese Netzwerke end-to-end durch einen auf Gradienten basierenden Algo-
rithmus trainiert werden. Es wird gezeigt, dass das Modell H-HebbLSTM
state-of-the-art Ergebnisse auf künstlichen Frage-Antwort Tests erreichen
kann.

iv

Contents

Abstract iii

1 Introduction 1
1.1 Summary . 2

1.2 Related Work . 3

2 Recurrent Neural Networks 5
2.1 Architectures . 10

2.1.1 Elman Networks . 10

2.1.2 Long Short-Term Memory 12

2.2 Training . 14

2.2.1 Learning Weights with Gradient Descent 15

2.2.2 Training Deep Networks by Backpropagating Errors . 19

2.2.3 Backpropagation Through Time 20

2.2.4 Unfolding of RNNs . 21

2.2.5 The Vanishing or Exploding Gradient Problem 21

2.2.6 Regularization and Validation 22

2.2.7 Training Improvements 24

3 Memory Augmented Neural Networks 25
3.1 Neural Turing Machines . 25

3.2 Dynamic Neural Turing Machine 26

3.3 Memory Networks . 28

3.4 End-to-End Memory Networks 29

3.5 Metalearned Neural Memory 30

3.6 Fast Weight Memory . 31

3.7 H-Mem . 32

v

Contents

4 Hebbian Plasticity 34
4.1 The Hebbian learning rule . 34

4.2 Hebbian Associative Memory 37

5 Hebbian Long Short-Term Memory Networks 39

6 Hebbian Long Short-Term Memory Networks with Hidden Value 44

7 Results 48
7.1 Dictionary Learning . 48

7.2 Question Answering . 50

7.3 Memory Analysis for bAbI Tasks 54

8 Discussion 58
8.1 Conclusion . 59

8.2 Future Work . 59

Bibliography 61

vi

List of Figures

2.1 Difference between feed-forward and recurrent neural networks. 8

2.2 Different settings of RNNs for different types of sequential
tasks . 9

2.3 Basic architecture of an Elman network 12

2.4 Architecture of LSTM . 14

2.5 Perceptron consisting of one single neuron. 17

2.6 Unfolding of a RNN . 22

3.1 Architecture of the Neural Turing Machine 26

3.2 Architecture of the H-Mem model 33

4.1 The principle of locality for Hebbian weight updates. 35

5.1 Schema of the HebbLSTM architecture 40

6.1 Schema of the H-HebbLSTM architecture 46

7.1 Learning curves of task 3 and 16 of the bAbI tasks 54

7.2 Similarity matrices for key-vectors k(t) and value-vectors v(t)
for a sample of task 1 of the bAbI tasks. 55

7.3 Similarity matrices for key-vectors k(t) and value-vectors v(t)
for a sample of task 16 of the bAbI tasks. 57

vii

1 Introduction

To build artificial models capable of solving problems, which otherwise can
only be solved by humans or other intelligent beings, a common practice is to
implement mechanisms and patterns which are inspired by biological brains.
This way, the whole research area of connectionism was born [1]. Recent
success on complex cognitive tasks like for example the game of Go [2] justify
the assumption, that artificial connectionist models are capable of solving a
variety of problems requiring some kind of intelligent reasoning [3]. The
development of novel demanding tasks [4] encourages the engineering of
more and more sophisticated models, trying to perform advanced cognitive
processes. Creating a potent model able to solve challenging tasks by using
state-of-the-art biologically inspired concepts was the main driver for this
work.

A recently proposed data set of toy tasks for artificial question answering [4]
aims to probe an artificial model’s abilities to perform cognitive processes
like reasoning, induction and chaining of associated patterns. This data
set introduces tasks, easily solvable for humans but very challenging for
conventional network architectures [4]. Recent proposals [5], [6] show that
specific biologically inspired memory mechanisms allow models to perform
a process referred to as associative inference [7], where tasks like this can be
solved by deriving information from previously stored association patterns.
In this terms, a specific form of memory, the neural associative memory
(NAM) [8] has gained special attention [9], [10]. The reason for that is that
this kind of memory is naturally capable of storing and retrieving pattern
associations [11]. These mechanisms are based on work proposed by Donald
Hebb in 1949 [12], who established a theory of how synapses can change
their efficacy in order to persist patterns of stimuli, referred to as Hebbian
synaptic plasticity.

1

1 Introduction

The model proposed in this work aims to utilize a memory based on this
theory by using state-of-the-art network architectures and algorithms. Its
capability of performing associative inference is evaluated by its performance
on an artificial dictionary learning task inspired by [6] and the bAbI [4]
artificial question-answering data set.

This thesis consists of three parts, the theoretical background (Chapters 2 to
4), the description of the proposed model including the experiment results
(Chapter 5 and 7) and the discussion (Chapter 8).

1.1 Summary

In this work, the recurrent neural network models HebbLSTM and an im-
proved version, H-HebbLSTM are proposed. The models combine multiple
established concepts from connectionist models into a potent new model
architecture, yielding state-of-the-art results on a challenging question-
answering task [4].

The model is implemented as recurrent neural network combining fea-
tures from long short-term memory (LSTM) [13] and a key-value store
implemented as a Hebbian associative memory [14]. The LSTM architec-
ture operates as controller and learns to extract keys and values from the
data to be written to the memory, as well as to extract read-out keys from
data to retrieve previously stored information. In this work, two different
architectures are proposed:

• The first architecture, HebbLSTM, passes the key and value of the
previous time-step to the next time-step.

• The second architecture, H-HebbLSTM, passes a computed hidden
value to the next time-step instead of the key and value. The model
can therefore learn to pass arbitrary relevant information to the next
time-step by maintaining a hidden state. The second architecture is
considered more general, since the model can decide which informa-
tion is contained in the hidden value passed to the next time-step.

In the first experiment, the toy dictionary translation task, the one-shot
learning and memorization capabilities are tested. In this task, each sample

2

1 Introduction

consists of two parts: the facts and the query. The facts are translation rules
and are shown once to the model. In order to apply those rules on the query,
the model must store the rules intermediately. Then, during the processing
of the query, the model must retrieve the previously stored rules accurately
and apply them on-the-fly. This task is similar to the toy translation problem
proposed by Munkhdalai et al. [6].

The second experiment is the artificial question-answering bAbI data set
proposed by Weston et al. [4]. It consists of 20 different tasks which are
inspired by abilities associated with human cognition like associative infer-
ence and induction. It is shown that the second variant of the HebbLSTM
model (H-HebbLSTM) is capable of solving all of the 20 bAbI tasks on the
10k data set.

1.2 Related Work

Multiple neural network models combining a neural network as controller
and some sort of additional memory mechanism have been proposed. One
important work and basis for further architectures was the Neural Turing
Machine (NTM) [15], a combination of neural network as controller and a
Turing-machine-like memory band as memory. The key feature is that the
NTM is differentiable end-to-end, enabling the model to learn algorithms
involving memory simply by gradient descent.

Weston et al. [16] recently developed a framework to standardize the termi-
nology and find common features in memory-augmented neural networks.
They divide the principle architecture of such a network into four basic
building blocks (further explained in Section 3.3). The authors further pro-
pose a memory-augmented network model themselves, MemNN, showing
an exemplary implementation of their framework.

Metalearned Neural Memory (MNM) proposed by Munkhdalai et al. [6] uses
an LSTM cell as controller and an additional memory network as working
memory. The controller architecture is similar to the one in H-HebbLSTM
proposed in this work, where the keys and values are calculated from the
input and the hidden state of the LSTM cell. The differences are, that MNM

3

1 Introduction

performs all memory operations in parallel without a read-out in advance
to the write operation, as well as that MNM uses a very different memory
architecture. The memory in MNM is a multi-layered fast-weight network
trained by gradient descent or, alternatively, by a learned local update rule
based on the perceptron learning rule [17]. The term ”fast” weights [18],
[19] refers to the property of some weights in the neural network model,
which are updated during inference to act as memory. In contrast, the ”slow”
weights are the weights which are learned during training and stay fixed
for inference. The fast weights are similar to synaptic plasticity in biological
neural networks, where information is stored in the efficacy of synaptic
connections [20].

In consideration of the biologically inspired principle of synaptic plasticity,
memory based on the Hebbian learning theory [12] was developed and im-
plemented as neural memory network [9], [21], [22]. The Hebbian learning
theory is thereby used to update a single layer network acting as neural
associative memory [8], [11] in order to map a key pattern to a value pattern.
The value pattern can then be retrieved later on by performing a read oper-
ation on this neural memory using a key similar to the one used for storing.
Via this mechanism, the network model is capable of storing associations as
variable-bindings instead of activities. This storing capability is considered
crucial to perform cognitive operations as for example associative inference
[7].

Similar to the proposed model H-HebbLSTM, Schlag et al. [7] proposed Fast
Weight Memory (FWM), a model where an LSTM network is implemented
as controller to operate an associative memory subject to a Hebbian learning
rule. The major difference to H-HebbLSTM is, that in FWM the memory
matrix is a third-order tensor instead of a two-dimensional weight matrix.
This results from the fact that FWM calculates a tensor product representa-
tion [23] of two key-vectors, based on the idea that this procedure creates a
unique representation for every possible combination of key vectors. The
authors claim that this way, the model is capable of storing previously
unseen association patterns.

4

2 Recurrent Neural Networks

Artificial neural networks (ANNs) are computational models which are
inspired by biological neural networks. The goal of ANNs in general is not
to model a biological brain as accurate as possible, but rather to solve a
variety of tasks accurately and efficiently. ANNs consist of a number of small
computational units called neurons, loosely modeling biological neurons,
which are connected via directed weighted connections, similar to synapses
in biological networks. To conduct a computation, an input is shown to
a specific subset of neurons, called the input neurons, and passed along
the weighted connections from neuron to neuron. Each neuron performs a
pre-determined function, called activation function, on the sum of its inputs,
weighted by the scalar weight of the corresponding input connection, to
calculate the further propagated output, which is passed to the adjacent
neurons. The activation function of neurons in ANNs is a non-linear function
and is inspired by the non-linear behavior of biological neurons, although
it is a very loose abstraction [24]. In simple terms, biological neurons are
activated if the sum of incoming impulses reaches a certain threshold.
This behavior introduces non-linearities into the computation process [25].
Finally, the signal reaches some output neurons which have no further
connections. The value of these neurons is then considered as network
output [24]. Neural networks are often organized in layers, where the input
neurons are the first layer and the output neurons are the last layer. In
between, a number of hidden layers might be situated, the number of which
is declared as depth of the network [26]. The reason why neural networks
are often constructed as deep networks, networks with multiple hidden
layers, is that each layer can represent an additional layer of abstraction.
For example in the task of image processing, the first layer can learn to
detect the edges, the second layer learns to combine this information to
detect structures and each successive layer can then learn to combine the
information extracted by the previous layer. The application of deep neural

5

2 Recurrent Neural Networks

models, referred to as deep learning [26], achieved great success on several
tasks by learning such deep representations of data [27]. The reason why
non-linearities are necessary in any ANN is, that a neural network where
each neuron calculates a linear combination of the inputs, the network
would only be able to map a linear function. However, in most machine
learning tasks, the function that needs to be learned is more complex and
cannot be represented sufficiently well with a linear function [26].

A feed-forward network is a restricted form of a neural network, where
the computational elements, the neurons, are connected in a way that no
cyclic connections occur. For one given input vector the network calculates
one specific output vector, independent of the previous or successive input
vectors. However, for a number of tasks the constraint of independence
between data points in input data is not fulfilled [24].

An example of a family of such tasks would be the processing of sentences
in natural language processing (NLP), where the input and/or output is
a sentence represented as a sequence of word vectors. If the feed-forward
network processes one word of a sentence after another without preserving
any information about the previous words, the semantic of the sentence will
get lost. Another example would be the classification of music into different
genres. In this case the input, the composition, could be represented by a
sequence of small data vectors representing notes and the output as single
vector representing the genre. Processing one note after another without
any preservation of information about the previously obtained notes is not
sufficient to solve this task. For dealing with such sequential time-series
data feed-forward networks are not well suited due to their static nature
and the lack of preserving information about previous inputs [28].

An approach to overcome this issue is the use of recurrent neuron con-
nections, yielding the class of recurrent neural networks (RNNs) [26]. Per
definition [29], a neural network is a RNN if it contains at least one recurrent
connection between its neurons. In contrast to connections in feed-forward
networks, where each neuron is only connected to downstream neurons into
the direction of the output, recurrent connections create cycles in the net-
work graph. A network graph is a method of visualizing a neural network
by showing neurons as points and connections between them as arrows.

6

2 Recurrent Neural Networks

Network graphs help to understand the process of computation and infor-
mation flow inside a neural network. Figure 2.1 visualizes two example
graphs to illustrate the difference between feed-forward and recurrent net-
works. The cycles in a recurrent network are evaluated iteratively, which
requires the network to operate in time-steps, either continuously [30] or
discrete [31]. For each time-step, the recurrent feed-back connections pass
the output values of the source neurons from the current time-step to the
target neurons in the next time-step. Via these connections, information
of the previous inputs can be preserved and used for the computation
in the next time-step [24]. The recurrent connections act as memory and
enable the network to temporarily store information that shall be passed
along multiple time steps [28]. Due to the dynamic nature of the recurrent
connections, which are able to maintain an internal state between separate
items of sequences, recurrent neural networks are a natural choice when it
comes to tasks including sequences. Figure 2.2 illustrates how using RNNs
for different settings of such tasks looks like.

Except from the above mentioned loss of context information, feed-forward
neural network architectures have additional drawbacks when dealing
with sequential time-series data [32]. Firstly, sequential data, for example
a sentence in natural language, can vastly vary in input length. Since a
feed-forward network processes data in one forward pass (separating the
data into multiple forward-passes would result in the above described loss
of context information), the whole sequence needs to be passed to the
network at once. This can be achieved, if the input vector is composed in
a way, that the first element corresponds to the first item in the sequence,
the second one to the second item, and so on. Elman et al. [32] refer to this
representation as spatial encoding. If the sequences are very long, the model
would require a large number of input neurons, making it unpractical.
Secondly, the absolute position of the key features in the sequence is often
not relevant, but rather the relative position of multiple features at different
time-steps to each other. If a sequence is passed to a feed-forward network
in one time-step, it might be hard to learn to extract features relative to each
other and ignore their absolute position. Goodfellow et al. [26] pointed out,
that a traditional feed-forward network would have to learn the extraction
of the same features for every possible position. For example, a network
shall extract the feature ”2019” from the two sentences ”I went to Nepal

7

2 Recurrent Neural Networks

a) b)

Figure 2.1: Two examples of neural network architectures to demonstrate the difference
between feed-forward and recurrent neural networks. a) denotes an example of a feed-
forward architecture with two hidden layers, b) denotes an example recurrent architecture
with one fully-recurrent hidden layer. Each circle represents a neuron, input neurons are
blue, hidden neurons are orange and output neurons are green. Arrows denote weighted
connections between neurons, whereas the black arrows show feed-forward connections
and the red dotted arrows show recurrent connections. The significant difference between
the two architectures is, that each connection in feed-forward networks is only chosen in a
way, that the target neuron is fewer connections away from the output layer than the source
neuron. Therefore, no cycles appear in the network graph. In recurrent neural networks,
this restriction does not exist, so that cyclic connections are allowed. Adapted from [24].

in 2009” and ”In 2009, I went to Nepal”. If a traditional fully connected
feed-forward network is trained on a fixed-size version of such sentences, it
would have to learn the extraction of the required feature for each position
separately.

With the use of recurrent connections, the RNN can process one element of
a sequence after another and still preserve the context and extract relevant
features to pass them to subsequent time-steps. Since the same weights
are used for each element in the sequence, the model can, in principle,
generalize to previously unseen sequence lengths and scale to sequences
of arbitrary length. These advantages make RNNs a natural choice for

8

2 Recurrent Neural Networks

sequential data like sentences in NLP as mentioned in the paragraph above.
When sequential data needs to be processed, some information about the
previous items of the sequence is often required in order to gain an accurate
prediction. RNNs can learn to preserve a lossy summary of the task-relevant
information of previously shown sequence elements to include them in
the processing of future elements [26]. The recurrent connections therefore
act as an activity-based memory. In Chapter 3 RNNs with other types of
memory are introduced.

a) b) c)

d) e)

Figure 2.2: Different settings of RNNs for different types of tasks with or without sequences
shown as unfolded computational graphs (see Section 2.2.4 for details about unfolding).
Blue nodes are input neurons, green nodes represent hidden neurons, red nodes are output
neurons. In (a), a fixed-size input vector is processed to produce a fixed-size output vector.
This is the basic setting for any feed-forward neural network. No sequences are involved,
each input vector is processed independently. (b) shows the setting where one sequence of
input vectors produces one fixed-size output vector. The horizontal arrows between green
elements show the unfolded recurrent connections, which pass information along through
the computational time-steps. This setting appears in sequence labeling tasks, for example
text classification, video classification and music classification [24]. In (c), a fixed-size input
vector is used to generate an output sequence. Image captioning is an example of a task for
this kind of architecture. (d) and (e) both show variations of a sequence-to-sequence model.
Language translation would be an example of a task where one sequence is translated
into another. The difference between (d) and (e) is that in (e), the model reads the input
sequence to the end before the output sequence is generated, whereas in (d) the model
produces one output sequence item for each input sequence item. Adapted from [33].

9

2 Recurrent Neural Networks

In the supervised learning setting, each sample consists of an input and a
target [26]. Via training, the neural network weights are are optimized in a
way that the network performs well on a task by successfully estimating the
target values for previously unseen examples [24]. The network training is
discussed in detail in Section 2.2.

2.1 Architectures

Several fundamental architectures of recurrent neural networks evolved over
time. For example Jordan networks [34], which contain recurrent connections
from the output to a hidden layer in the network or Time-Delay Networks
[35], which accumulate neuron states over multiple time-steps. Jaeger et al.
introduced Echo State Networks (ESNs), those are recurrent networks with
randomly assigned and fixed connections, not organized in layers, where the
recurrent dynamics are used to map the input to higher-dimensional space
and the only learned weights are the ones of the connections incorporating
output neurons [36]. This approach is also referred to as reservoir computing
[37]. One further fundamental architecture is the one proposed by Elman et
al. [32] and is discussed further in section 2.1.1. The basic idea is to extend a
two-layer feed-forward network by adding fully recurrent self-connections
to the hidden layer. This allows the network to maintain an internal state
and pass along context information to the next time-step.

2.1.1 Elman Networks

Elman et al. [32] stated, that time plays a major role in cognitive tasks. The
authors point out, that the explicit representation of time, for example by
implementing a spatial time representation, introduces multiple additional
challenges (some of them were covered in the beginning of this chapter).
In contrast, if time is represented implicitly by the effect it has on process-
ing, some of these challenges can be solved. Therefore they proposed an
architecture for recurrent neural networks (named Elman networks) to cope
with time-dependence of sequential time-series data. The authors propose a
method to encode time implicitly in the form of step-wise computational

10

2 Recurrent Neural Networks

processes rather than explicitly via a spatial representation in the input
[32].

The network architecture represents a very basic architecture of RNNs and
is therefore also referred to as Simple Recurrent Network (SRN) [38]. The
Elman network architecture is in principle similar to a feed-forward network
with one hidden layer and consists of an input layer, a hidden layer and
an output layer. The difference is in the context neurons, which copy the
content of the hidden layer at each time-step. The content of those context
neurons is then passed to the hidden layer alongside with the next element
of the input sequence in the next time step. In mathematical formulation
the output vector of the hidden layer at a time-step t can be stated as

h(t) = ah(Whx(t) + Uhh(t− 1)) (2.1)

where ah denotes the activation function of the hidden layer, Wh ∈ Rd×m

the weight matrix storing the connection weights from the d input neurons
x to the m hidden neurons h and Uh ∈ Rm×m the weights of the recurrent
self-connections in the hidden layer [39]. The output of the network is then
calculated by

y(t) = f (Wyh(t)) (2.2)

with output function f .

Hence, the hidden layer of the Elman network is a recurrently self-connected
layer with learned weights. Figure 2.3 illustrates this basic architecture
graphically. The feed-forward connections therefore yield the output of each
time-step and the feed-back connections allow the network to maintain a
state which is passed to the computation in the next time-step, when the
next item of the input sequence will be presented to the input neurons. For
each time-step, the network uses the same weights. This allows the network
in principle to generalize over time.

The architecture of Elman networks is often referred to as most simple, basic
RNN architecture [24], [26]. It is shown, that an RNN with as few as one
recurrently connected hidden layer, like in the Elman network, is sufficient
to approximate any open dynamical system with arbitrary accuracy [40].

11

2 Recurrent Neural Networks

Input Units

Hidden Units

Output Units

Context Units

copy

Figure 2.3: Basic architecture of an Elman network. Feed-forward connections are repre-
sented as solid black lines, red lines denote feed-back (recurrent) connections. The dashed
red line denotes a copy operation which is performed at each time-step. The context
neurons allow the network to preserve relevant information from sequence items which
previously were processed. Adapted from [32].

2.1.2 Long Short-Term Memory

Commonly used training algorithms for RNNs often incorporate error
gradients (see Section 2.2 for details) [41]. These algorithms calculate an
error between the actual output of the RNN and a desired target. To find
network weights which minimize this error, a gradient of the error function
is calculated and propagated from the output neurons all the way back to the
input neurons. However, since for each neuron this gradient is multiplied
with the associated weight of the connection it traverses back, the gradient
tends to either vanish or explode exponentially with increasing network
depth [42] (see Section 2.2.5). The computational depth of a RNN increases
with increasing sequence size, therefore the vanishing gradient problem
negatively affects the training on long sequences. Long short-term memory is
an approach to tackle this kind of problem and was introduced by Hochreiter
et al. [13].

The approach to counter the vanishing gradient problem is to keep the
gradient stable through the unfolded network. To achieve this, Hochreiter et
al. [13] introduce LSTM, a gated memory cell maintaining an internal state.
The main property of this internal state is that it is recurrently connected to
itself via a constant-weighted connection of weight 1. In the Backpropagation
through time (BPTT) algorithm [41] the gradient is back-propagated by

12

2 Recurrent Neural Networks

multiplying it with the incoming weights of a neuron. If the incoming
weight is fixed to the value 1, as it is with the internal state in LSTM, the
gradient gets multiplied by 1, keeping it constant through all time-steps. The
internal state which is recurrently connected to itself ”traps” the gradient in
this constant loop. The authors call this effect the constant error carousel
(CEC) and describe it as the central feature of LSTM. Despite the CEC, a
full-blown LSTM cell implements several other features to enable the cell to
be trainable in the context of a RNN. The internal state, also called hidden
state, enables the network to store information over a longer period of
time to preserve it for later use. To utilize this hidden state, read and write
operations are necessary. The RNN learns how to utilize the memory by
learning to perform these read and write operations via using a mechanism
which the authors call gate units. A gate unit is a neuron which controls
the flow of information into the memory or from the memory. The vanilla
LSTM architecture contains two gates, an input gate which controls the flow
into the memory (i.e. the hidden state) and an output gate to control the
flow of information from the memory.

Gers et al. [43] introduced an extension to the vanilla LSTM architecture,
called the forget gate. The forget gate can trigger the cell to erase the
previous value, so that it can be replaced by a new one more easily. The
authors showed, that this feature improved the capabilities of the LSTM cell
when dealing with sequences, which are not segmented a priori. In a further
publication, Gers et al. [44] introduced another improvement to the vanilla
LSTM cell, called the peephole connections. These connections enable the
gates to incorporate the state of the memory cell into the calculation of the
gate values. The authors show, that these connections enhance the LSTM
cell’s performance on tasks, where precise timing measurement is important.
In figure 2.4, the peephole connections are indicated with dashed lines.

13

2 Recurrent Neural Networks

x x+

x
Cell Input

Input Gate Output Gate

Forget Gate

s

1.0

Cell Output

Figure 2.4: The basic architecture of a vanilla LSTM cell including the extensions from Gers
et al. [43]. The arrows outside of the block denote connections from and to other neurons.
The circles with sigmoidal curves denote the activation functions of the gate units and the
cell unit, whereas different activation functions may be used for the different gates. The
circles with an ”x” denote element-wise vector multiplications, which are the points where
the gate-values are applied. The circle with the ”s” label in the center is the memory unit,
which is connected to itself via a recurrent connection (dashed red arrow) of weight 1, and
no activation function. This recurrent connection implements the constant error carousel
(CEC), which is the core of the LSTM cell. The dashed blue lines are called ”peephole
connections” and are alongside with the forget gate an extension to LSTM, proposed by
Gers et al. [43], [44]. Adapted from [24].

2.2 Training

Goodfellow et al. [26] describe the overall goal of any machine learning
algorithm to perform well on unseen examples. This capability is called
generalization, and can be measured by testing the machine learning model
on a set of data examples, which were not used to train the model, namely
a test set. Before the model can be tested using the test set, it needs to be
trained. For example, if a neural network should learn to classify a photo-
graph of an animal into one of the three classes ”horse”, ”cat” and ”other”,
it has to learn how to approximate the function y = f ∗(x) which maps

14

2 Recurrent Neural Networks

the input image x to the correct class vector y. It does that by learning the
network parameters θ, so that the function y = f (x; θ), which the network
employs, approximates f ∗ as good as possible [26]. Neural networks with
only one hidden layer can, in theory, approximate any function with arbi-
trary accuracy, as long as the number of hidden units is sufficiently high
and the activation functions are sufficiently smooth [45]. The actual gener-
alization performance of a neural network however, is in very dependent
on its training. Training algorithms like gradient descent (see Section 2.2.1)
optimize the weights of the network, which are a subset of the network
parameters θ. The other parameters are for example the network architec-
ture (in particular the number of layers and hidden units) or the activation
functions. These parameters are not learned by the optimization algorithm
and are called hyperparameters. The hyperparameters are the input to the
training algorithm and need to be determined differently beforehand, either
manually or by using separate algorithms [26].

The above described method of learning is called supervised learning,
because the target value (for example the class label) is explicitly determined
for each of the input examples. In addition to supervised learning, other
settings are unsupervised learning, where no target value is provided and
reinforcement learning, where the target is not modeled explicitly, but rather
as a reward, assigning a score to the calculated result [28].

2.2.1 Learning Weights with Gradient Descent

The goal of a learning algorithm is to find network parameters to achieve
the best possible approximation of the desired function. It is common in
a machine learning setup, to do so by designing a function that yields a
numerical error value given an input, prediction and a desired target, where
the prediction is the calculated output of the machine learning model. This
function is task-dependent and often referred to as cost function or error
function. A learning algorithm uses this cost function to calculate how the
model parameters, in the context of neural networks the weights, need to
be adjusted in order to achieve accurate results [46]. The tasks can be rather
complex, therefore the analytic calculation of the error surface is mostly not
solvable in practice, resulting in the problem that the absolute values of

15

2 Recurrent Neural Networks

the best-performing parameters cannot be calculated, because the absolute
positions of the minima of the error function are not known. A widely used
algorithm for the training of feed-forward neural networks is to iteratively
adjust the weights of the network, so that the cost function is reduced [47].

To get an understanding of how an algorithm can successfully adjust neural
network weights, the most simple form of a neural network is considered
first. This simple form is a network consisting of only one feed-forward layer
and is called a perceptron, which was described by Rosenblatt et al. [17].
More complex neural networks including hidden layers or recurrent con-
nections, as introduced in Chapter 2, are called multi-layer perceptrons.

Figure 2.5 shows the most simple form of a perceptron, consisting of only
one neuron. This neuron has input weights w1...wn which are multiplied
element-wise with inputs x1...xn, and summed up to a single scalar value.
Via a step function using this weighted sum as input, it calculates an output
o of −1 or 1. This perceptron can then be used to perform some (very simple)
tasks, for example classification into two classes, where the values −1 and
1 correspond to the different classes respectively. To solve this task, the
perceptron must approximate the underlying function which determines
the class for a given point in the feature space. It does this, by adjusting the
weights of the inputs, using the perceptron learning rule [46].

The perceptron learning rule for the weight update of weight wi with input
xi is denoted as

wi ← wi + ∆wi (2.3)

with

∆wi = (tp − op)xip = δpxip (2.4)

where the index p indicates the training example from data set P. tp is the
desired output for this training example p, op the output of the perceptron
for training example p. δp, which is equal to the term (tp − op) can be
interpreted as error signal at the output neuron, which is the deviation of
the output op from the desired target tp. If this error is zero, the weights
are already correct and hence ∆wi in Equation 2.4 equals to zero. This
learning rule is proven to find the optimal set of weights, if, and only if,

16

2 Recurrent Neural Networks

Figure 2.5: Simple perceptron consisting of one single neuron with a threshold activation
function. The input values are multiplied with the corresponding weights and summed up
before the threshold is applied. w0 is called bias and is equivalent to a shift in the threshold
value. Adapted from [46].

such set of weights exists. In the case of the simple single-layer perceptron,
this condition requires the data set to be linearly separable. Unfortunately,
this is not always the case. A trivial example of a not linearly separable
function would be the XOR function [48]. To solve such a task, a more
generic learning rule is needed, which is capable of training the weights of
more complex networks.

A more generic form of a learning rule is the generalized delta rule. The
basis of this rule is an error function, which in general should be minimized,
as well as a mechanism called gradient descent, firstly appearing in [49].
The error function denotes the deviation of the network output from the
desired target output and can look different for different setups. The idea
of gradient descent is to calculate the direction of the steepest decrease of
the error in a given point of the error surface, then follow this direction for
a small step. Re-applying the procedure of following the direction of the
steepest descent will converge to a local minimum, if such exists [26]. This
procedure can be illustrated by a person, always walking into the direction
of the steepest downhill to climb down a mountain. For the explanation
of the generalized delta rule, a single layer network consisting of K output
neurons is assumed. Also, this procedure is not applicable to a perceptron

17

2 Recurrent Neural Networks

with a step function, since the gradient at the step is not defined.

One example of an error function which shall be minimized using gradient
descent is the sum squared error denoted by

E = ∑
p∈P

Ep =
1
2 ∑

p∈P
∑
k∈K

(tpk − opk)
2 (2.5)

with data sample p of data set P, desired target value tp and network output
op.

To determine the network parameters with gradient descent, the gradient of
the error function with respect to each of the network weights needs to be
calculated. The general update rule for input weight wki for one iteration of
gradient descent for one data example p results in

wki ← wki + ∆pwki (2.6)

with

∆pwki = −η
∂Ep

∂wki
(2.7)

where ∂Ep
∂wki

is the derivative of error Ep w.r.t. wki. The variable wki is the
weight of the connection from input neuron i to output neuron k and η is a
constant called learning rate which is used to moderize the weight updates
[26], [46].

The term ∂Ep
∂wki

can be interpreted as the contribution of the weight wki to the
error Ep. Note, that the absolute value of the weight update is proportional
to this contribution, meaning that weights which had a high contribution to
the error are stronger changed than others [48].

Calculating Ep for all data examples p at each iterative weight update is often
not practical. Instead, an algorithm called stochastic gradient descent (SGD)
[50], [51] is used to improve the training performance. In this algorithm
a random subset, also called minibatch, of training examples is chosen
to calculate the error gradient and weight updates for each iteration. The
batch size is a hyperparameter which can be varied to improve training
performance. For the weight update, the error is averaged over the minibatch
[26].

18

2 Recurrent Neural Networks

In neural networks it is common that each neuron is subject to a non-
linear activation function a. This can for example be the logistic sigmoid
function a(x) = 1

1+e−βx [28]. Solving the partial derivative ∂Ep
∂wki

for the sum
squared error from Equation 2.5 for an output neuron k with arbitrary, but
differentiable and monotonically increasing, activation function ak results
in

∆pwki = ηδpkopk (2.8)

with

δpk = (tpk − opk)a′k(netpk) (2.9)

where netpk is the weighted sum of inputs to neuron k, also written as
∑i∈I wkixi + biasi over input neurons I. The additional bias term biasi is
optional and can be interpreted as similar property as the threshold in a
simple perceptron [48].

Note, that the result of the generalized delta rule in 2.9 for the sum squared
error is very similar to the perceptron learning rule in Equation 2.3, except
with the difference that in the delta rule the derivative of the activation
function is included, whereas the update in the perceptron rule is linear to
xi [46].

2.2.2 Training Deep Networks by Backpropagating Errors

In the previous paragraph, the update rule for gradient descent in the case
of a single-layer perceptron is explained. However, to train deeper networks
with a number of hidden layers > 0, the calculation of the error gradient

∂E
∂wji

with respect to a weight wji from neuron i to a non-ouput neuron j
is not straight-forward, since the definition of the error (for example like
in Equation 2.5) is not explicitly a function of wji. To apply the update
rule from Equation 2.6 to a neuron which is not in the output layer of the
network, the error gradient needs to be calculated per neuron recursively
by an algorithm referred to as backpropagation [47]. In this algorithm, the
partial error gradient for each neuron is calculated backwards, beginning
from the output layer. Hence, for each neuron, the contribution of the neuron

19

2 Recurrent Neural Networks

to the global error is calculated and used for the update of its incoming
weights. This process is also called backward-pass, because in contrast to the
forward-pass, where the computation is performed from the input neurons
to the output neurons, the computation is performed backwards, starting at
the output neurons [52].

The first step of the backpropagation is to calculate δk for each output
neuron k as in Equation 2.9. Note that the index p is omitted because it
is irrelevant if the error is calculated for one training example or multiple
examples as in stochastic gradient descent.

As next steps, the error signals δj for each hidden neuron j are computed
recursively by calculating a weighted sum over the error signals of all
adjacent neurons

δj = a′j(netj) ∑
n∈N

δnwnj (2.10)

with N being the set of neurons n where a weight wnj from neuron j to
neuron n exists. This recursive computation is repeated starting at the
second-last layer and continued backwards into the direction of the input
neurons until all error signals are determined.

Then, each weight can be updated according to the generalized delta rule
(Equation 2.8) as if it was an output neuron.

2.2.3 Backpropagation Through Time

The backpropagation algorithm discussed in this Chapter assumes a feed-
forward neural network. As the partial derivatives of the errors are com-
puted by starting at the output layer and recursively backpropagating them
layer after layer until the input layer is reached, no cycles in the compu-
tational graph are allowed. However, Rumelhart et al. [47] point out that
for each recurrent neural network operating in a finite time episode, an
unfolded, equivalent feed-forward network exists. Figure 2.6 shows an
example of this process of unfolding. The algorithm of backpropagation
can then be applied on the unfolded network as discussed in the previous
paragraph, with one exception: The recurrent network re-uses the weights

20

2 Recurrent Neural Networks

for each time-step t. If the number of considered time-steps is > 2, multiple
update values ∆w(t)

ji for the same weight wji from neuron i to neuron j
are computed within the backward pass. These values need to be stored
intermediately, and are applied after the calculation of partial gradients is
finished [41].

2.2.4 Unfolding of RNNs

RNNs operating on sequential data are processing one item after another.
Recurrent connections allow to pass information to the next time-step, which
can be interpreted as additional input to the current time-step, summarizing
the information of all previous time-steps. To process a sequence of data
one by one, the network has to perform this process as often as the number
of items the sequence contains. Thus, if the size of the sequence increases,
the number of computational steps will also increase. Figure 2.6 visualizes
the computation process inside a RNN by re-drawing the computational
graph with emphasis on the time component on a very simple example
network with one input neuron and one hidden neuron. The hidden neuron
maintains a state over time which is dependent on all previous inputs.
After unfolding, the network graph results in a feed-forward network with
separate input neurons for each sequence item [26]. Because the weights are
re-used for each time-step, the absolute number of weights inside a simple
RNN is fixed and does not change with varying input size. However, since
the weights are applied on each item of a sequence, the unfolded connection
graph grows with increasing sequence sizes. As a result the computational
graph grows very large for very long sequences.

2.2.5 The Vanishing or Exploding Gradient Problem

Hochreiter et al. [42] proof, that if a conventional RNN is trained with
a gradient-based algorithm like back-propagation through time (BPTT)
[41], the gradient tends to either vanish or explode, leading to very small
or very large weight changes respectively. The resulting effect is that the
weights are either not sufficiently changed or start oscillating. The longer

21

2 Recurrent Neural Networks

a) b)

Figure 2.6: Unfolding of the computational graph of a RNN. The RNN in this figure
consists of one input neuron and one hidden neuron. The hidden neuron has a recurrent
self-directed connection, where the black square marks a time-delay of 1 time-step. In each
time-step, the input x(t) is shown to the network. For each time-step, the hidden value h(t)

is calculated via h(t) = f (h(t− 1), x(t); θ), where the network parameters θ parametrize
the network function f . Note that in the unfolded computational graph each sequence item
x(t) has its own input neuron. For each connection of these neurons to the hidden neurons,
the same weights are used. Adapted from [26]

the path in the computational graph the gradient is propagated back, the
stronger is the effect of exploding/vanishing gradients. When looking at the
unfolded computational graph in a task where a sequence is mapped to a
single output value, it appears that the first items of the input sequence are
further away from the output neurons than the latest items in a sequence.
Thus, the training with back-propagation, where the error calculation is
performed iteratively starting at the output neurons, is much more sensitive
to items which appear later in the sequence, because the gradient passes
more neurons to reach the earlier sequence inputs and is therefore more
prone to explode or vanish. This leads to problems in the overall training
performance and can be a problem if the relevant information of a sequence
is at the beginning or if large time lags of irrelevant inputs are situated
between relevant sequence elements. Long short-term memory [13] is an
approach to tackle this issue and is discussed in Section 2.1.2.

2.2.6 Regularization and Validation

Minimizing the error on the set of data vectors used for training, the training
set, does not automatically conclude that the model performs equally well
on unseen examples. In machine learning, the expected error on an unseen

22

2 Recurrent Neural Networks

example is called generalization error [53]. This generalization error is a
performance measure of how well the model generalizes over the data set,
or in other words learns the true function behind the data. Minimizing
this error is the overall goal of training. However, since the algorithm can
only train the model on a finite set of examples, only the training error
can be directly reduced by the algorithm. Under certain circumstances, the
generalization error can be very high, even though the training error is very
low. This phenomenon is called overfitting [54] and results from the fact, that
the model fits the training set very well, but does not learn the true function
of the whole data set. This can be compared to ”learning by heart” and is
something which in general shall be avoided. If the model is too simple to
represent the complex underlying function which created the data set, it
can happen that a low error on the training set cannot be achieved overall.
This phenomenon is called underfitting .

The complexity of the function a model can learn is determined by a prop-
erty called model capacity. The capacity must be chosen in a way, where the
model yields the best generalization performance. To estimate the general-
ization performance, a validation set can be used. This validation set is a set
of examples, which are neither used for training, nor for the calculation of
the test error [53]. Instead, the validation set is used to calculate a separate
validation error, which can be used to estimate if the model complexity is
appropriate for the task at hand. In general, any measure that is taken to
reduce the generalization error but not the test error, is called regularization
[26]. Regularization is used to find the simplest model which is capable of
fitting to the true underlying function which is represented by the data. An
example of regularization is weight decay, where a function of the norm of
the model parameters θ is added to the error function, to favor low weight
coefficients in the model.

23

2 Recurrent Neural Networks

2.2.7 Training Improvements

Several ways to improve the training of neural networks evolved over time,
some concepts are described briefly below.

Momentum One way to further improve the gradient descent algorithm
is to add a momentum term to the learning rule [47]. This momentum term
is simply the weight change of the last iteration, but discounted with a
factor α with 0 < α < 1. The effect can be compared to the momentum in
physics, where for example a particle slipping down a surface accelerates.
This momentum term is meant to speed up the overall learning procedure
and to filter out high-frequency variations of the error surface.

Adapting the Learning Rate The choice of the learning rate affects the
learning process of the model significantly [26]. It is common to start
with a high value of the learning rate and decay it successively during
training. This approach is called learning rate decay and aims not only to
accelerate learning by applying larger weight updates at the beginning of
the training procedure, but also to escape local minima of the error function
[53]. A different approach to adapting the learning rate is employed by the
algorithm ADADELTA [55]. In this algorithm, the learning rate is adapted
dynamically per-dimension, resulting in training which is more robust to
the choice of the learning rate.

Some algorithms, for example ADAM [56], combine multiple of such im-
provements. The name ADAM is an abbreviation for adaptive moment estima-
tion and employs both of the previously explained training improvements,
momentum and adaptive learning rates.

The previous Chapters briefly introduced RNNs and how they can be
trained. In the following Chapter some exemplary architectures of RNNs
are shown, in particular models which are additionally augmented with
different types of memory.

24

3 Memory Augmented Neural
Networks

According to Du et al. [10], memory is a system with three functions: record-
ing - storing information, preservation - persisting the information and
recalling - retrieving the stored information. The general idea of combining
memory mechanisms with neural network architectures is to enable the
network to learn how to perform these three operations on memory to
solve tasks where memory is required. One memory mechanism which was
already discussed in Section 2.1.2 is long short-term memory (LSTM) [13].
This Section introduces some alternative concepts of how different types of
memory can be utilized in neural networks.

3.1 Neural Turing Machines

Graves et al. [15] proposed a neural network model, named Neural Turing
Machine (NTM), where a neural network acts as controller to perform
read and write operations on a memory which the authors compare to
the memory band of a classical Turing machine. In contrast to classical
Turing machines, NTM is fully differentiable, which means it can be trained
end-to-end by the use of a gradient descent algorithm. Figure 3.1 shows
the basic architecture of the NTM, consisting of the controller, the memory
and the logic used for reading and writing from and to the memory. Read
and write logic are implemented in a way that the NTM can utilize two
different memory addressing schemes, content-based and location-based
addressing. The content-based mechanism is used to retrieve a pattern from
the memory by using a partial sub-pattern, similar to the mechanism of
Hopfield networks [57]. The location-based retrieval mechanism is used to

25

3 Memory Augmented Neural Networks

implement iteration over the memory or random-access, similar to the use
of pointers in Turing machines. The calculation of the memory address is
implemented in multiple steps, enabling the NTM to use either of the two
memory addressing schemes. As input for the address calculation process,
the network receives the address vector of the previous time-step in addition
to the network input. The network can then choose to either re-use and
modify the previous address vector (location-based) or to calculate a new
one using an algorithm which implements the content-based addressing
scheme. This choice is implemented by using a gating mechanism, similar
to the gated mechanisms of LSTM [13] (see Section 2.1.2). The authors show
that the NTM is capable of learning a variety of tasks, for example copying
of sequences and associative recall and thereby outperforms LSTM.

Controller

Read Heads Write Heads

Memory

External
Input

External
Output

Figure 3.1: Architecture of the Neural Turing Machine. The network can learn to utilize the
memory by using multiple read and write heads. The controller is either a recurrent or a
feed-forward neural network. Adapted from [15].

3.2 Dynamic Neural Turing Machine

Gülçere et al. [58] extended the concept of the NTM by introducing the
Dynamic Neural Turing Machine (D-NTM). As in the NTM, the main
components of the model are the controller, which in most tasks is chosen
to be an RNN, and the memory. In contrast to NTM, D-NTM implements a
learnable addressing scheme for location-based addressing. The memory
consists of a number of memory cells where each cell is divided into two

26

3 Memory Augmented Neural Networks

parts, the learnable address vector and the content vector [58]. The address
vectors of the memory are learned during training and remain unchanged
during inference. The content vectors are not fixed during inference and
represent the slots where information can be stored and are initialized with
zeros for each episode. The authors claim that this mechanism enables
the model to utilize sophisticated location-based addressing strategies. At
each time-step, the model performs a read operation on the memory by
computing a read address. The information which was read out from the
memory is then again used to calculate the network output for the time-step
and a new content vector, which is then inserted into the memory by using
a separately calculated write address. For the calculation of the addresses, a
mechanism similar to the content-based addressing scheme of NTM is used.
The authors also implement a memory operation referred to as Dynamic
Least Recently Used Addressing (LRU), where the memory address is
influenced in a way that addresses not used recently are emphasized. This
influence of this mechanism to the actual processing is controlled by a
separate shallow network.

The D-NTM can operate in two different modes, continuous and discrete.
In continuous mode, the address vector can have multiple non-zero compo-
nents which sum up to 1. In discrete mode, the address vector is converted
to a one-hot vector with only one non-zero component with the value 1.
Therefore, in discrete mode only one memory cell is addressed whereas in
continuous mode multiple cells are. The addressing operation in discrete
mode is not differentiable, thus straight-forward cost function minimization
with gradient descent is not feasible. Instead, a method similar to the RE-
INFORCE algorithm [59] is used to perform the minimization of the cost
function. To improve the training performance of the discrete D-NTM, a
binary coefficient is used to determine whether to use the continuous or
the discrete weights for a sample. This coefficient is chosen in a way, that
the network uses the continuous addresses more often in the beginning of
training and the discrete weights more often at the end [58].

27

3 Memory Augmented Neural Networks

3.3 Memory Networks

Weston et al. [16] elaborated a general framework to describe the funda-
mental components of a memory-augmented machine learning model. They
introduce the term memory neural network (MemNN), if the model is a
neural network augmented with a separate memory mechanism. These
fundamental components are abbreviated with the letters I, G, O and R.

• Input feature map I converts the network input into an internal repre-
sentation.

• Generalization component G performs operations on the memory to
update its state. This component is therefore responsible to persist
the relevant information of the input in the memory. This component
is also responsible for organization of the memory. It can potentially
perform several operations.

• Output feature map O is the component to calculate an output given
the memory state and the input. This component might perform
multiple memory operations as well, however it is not responsible for
organizing the content of the memory, but rather of using the memory
to retrieve relevant information which was stored previously.

• Response component R converts the output of O to match the desired
output format, in the example of question answering tasks this could
be one word.

Despite the definition of the general building blocks, the authors propose
a rather simple example of an implementation of such a MemNN. The
proposed implementation is designed to solve similar question answering
tasks as described in Section 7.2. The input of this task is a sequence of facts
followed by a query, provided as sentences in natural language, whereas
the output is one single word which answers the query. In the proposed
implementation, the memory consists of a band of slots, where the number
of slots is at least as high as the number of facts in the input. The input
component I does not transform the input sentence, it simply passes it to
the G component, which then stores it in its original form into the next
available memory slot. The inference is performed by the O component,
which performs a two-step operation on the stored items to calculate an
answer by the use of scoring functions. In the first step, the scoring function

28

3 Memory Augmented Neural Networks

compares the network input vector with each previously stored vector and
retrieves the vector with the highest score. In the second step, the input
vector and the previously retrieved vector are again compared to the other
stored vectors by the scoring function to again retrieve the one with the
highest score. The input vector alongside the two retrieved vectors are then
passed to the final component R. To calculate an answer from the retrieved
information and the input sentence different approaches are proposed.
The calculation can either consist of simply returning the second retrieved
sentence, or, especially for textual responses, be performed by a separate
RNN. In the case of a one-word response as in the conducted question
answering experiment, the model uses another scoring function, applies it
to each previously seen word and finally returns the word with the highest
score. Multiple tweaks to further improve the performance on the conducted
experiments are introduced, for example the computation of answers in G
is adapted to incorporate the relative write timing of facts.

3.4 End-to-End Memory Networks

Sukhbaatar et al. [5] propose a model, which in principle implements the
framework proposed in the MemNN paper by Weston et al. [16]. Their model
is an improvement from the one proposed by [16], because it is trainable
end-to-end by using input-output pairs and requires less supervision. It
does that by implementing a differentiable continuous memory mechanism.
The authors also incorporate the concept of hops, where for each output
signal the internal computation process is executed multiple times, where
each time is considered as a hop.

The model is applied to a task where an example consists of a set of facts, a
query, and an answer. The model calculates two continuous embeddings for
each of the facts and stores all of them into a memory. Then the memory is
queried by using a separate embedding for the query, yielding an output
vector, which is further combined with the embedded query and processed
by a final weight matrix. The embedding weights and the final weight matrix
are learned during training. To implement multiple hops, the authors stack
multiple of those processing layers on top of each other.

29

3 Memory Augmented Neural Networks

In addition to the basic model the authors propose position encoding (PE),
a method, where the position of each word is included in the embedding
of the sentence. In a straight-forward bag-of-words (BoW) representation,
this positional information gets lost, since the representation only includes
the information which words the sentence contains, but not where they are
located within the sentence. Furthermore, the authors propose a temporal
encoding, to include the timing information of a fact into the embedding.
In sequential tasks like the ones used to evaluate this model, temporal
information is crucial in order to answer a query. The temporal encoding is
a learned representation of the time-step, which is equivalent to the index
of the element within the sequence.

3.5 Metalearned Neural Memory

Munkhdalai et al. [6] propose a model where a LSTM network serves as a
controller for an associative memory.

Each time the network receives an input, it performs multiple read and
write operations on the memory in parallel. A write operation is defined in
the way that the memory rapidly binds a write key to a target value, a read
operation is defined by retrieving previously stored patterns by querying
the memory using one or more read keys. The model uses the hidden state
of the LSTM controller together with the read-out vector of the previous
time-step and the current input to calculate a set of write keys with their
corresponding target values, a set of read keys and a scalar rate value which
controls the strength of the memory update.

The memory is considered as an adaptive function with weights as parame-
ters. These weights are adapted each time a write operation is performed
and therefore represent the stored content. The authors propose two differ-
ent variants of the implementation how the weights of the memory function
can be trained. The first variant is a gradient descent based update, where
the loss is defined as mean-squared-error between the target output vector
and the output vector of the memory network given the input key. This
procedure however requires expensive gradient computations and a sequen-
tial back-propagation, which results in a computational bottleneck. The

30

3 Memory Augmented Neural Networks

second update is a novel gradient-free mechanism where the gradient of the
activation function is approximated and the weights updated according to a
perceptron learning rule. The authors point out, that this update mechanism
enables parallel update of weights since no backpropagation is needed
which results in faster performance. The depth of the neural memory is
determined by a hyperparameter and set to 3 for the tasks described in
the paper. Since each computation in the model is differentiable, it can be
trained end-to-end using gradient descent.

As results, the model is able to solve all 20 tasks in the word-by-word repre-
sentation of the bAbI [4] synthetic question answering tasks, outperforming
its predecessors.

3.6 Fast Weight Memory

Schlag et al. [7] recently proposed a network architecture where, similar
to MNM (see Section 3.5), a LSTM network is used to control a hetero-
associative memory. The authors refer to the memory as fast-weight memory
(FWM) since, in contrast to the LSTM controller, its weights are updated
using a Hebbian like learning rule (see Chapter 4) at every time-step during
training and testing. The weights of the LSTM model are trained via gradi-
ent descent during training and remain unchanged during inference. The
idea of the model is to improve its generalization on tasks where associative
inference, the resolution of relations between different features, is needed.
The authors claim that it is important for a model to generalize to all unseen
compositions of different features. Due to the vast number of possible com-
binations between features, the model implements a mechanism to construct
structures by combining multiple components called tensor product repre-
sentation (TPR) [23]. The idea of TPR is to store context-specific associations
via the combination of two key-vectors using the tensor product. The TPR
mechanism guarantees unique representations for all possible combinations
of components, under certain constraints [23].

To store the TPRs, the memory matrix is a third-order tensor updated by a
rule closely related to the perceptron learning rule. For each time-step two
separate key vectors k1 and k2 are calculated by the LSTM controller and

31

3 Memory Augmented Neural Networks

combined via a tensor multiplication to obtain the TPR of the key. This new
key is then multiplied with a value vector, again using the tensor product,
to obtain a third-order tensor for the memory update. An additional scalar
strength value β, bounded between 0 and 1, is calculated for each update
and acts as gate to determine the strength of the weight update for each
time-step.

The authors claim that their model is very stable, because it can be trained
with very long sequences. This property is shown in an experiment, where
the bAbI question answering task [4] (see also Section 7.2) is modified
in a way that samples are concatenated instead of processed one-by-one.
This adds the additional difficulty, that the model needs to erase entries of
previous samples as they are out of their relevance scope. Also, this results
in very long sequences and requires a model which is not prone to suffer
from exploding or vanishing gradients.

3.7 H-Mem

Limbacher et al. proposed an architecture where a controller consisting
of multiple small networks operates a hetero-associative memory subject
to Hebbian plasticity [9]. The controller networks are separated into two
branches, one for storing data in the memory and one for retrieving data
from the memory. The model uses the networks of the store branch to
extract a key and a value for each element of an input sequence and stores
an association between key and value in memory using a Hebbian learning
rule (also see Section 4.1). If the model is presented a query, the recall branch
is invoked which extracts a key vector from the query input and retrieves
the associated value vector from the memory. To implement associative
inference following a path of multiple relations (for example resolving
a→ c via {a → b, b → c}), the recall branch can perform multiple read
operations in a row. It does that, by re-computing a new key vector after
each read operation using the result of the previous read operation. The
architecture of the model is shown in figure 3.2.

The model is further improved via the concept of memory-dependent
memorization. This extension implements a read operation preceding the

32

3 Memory Augmented Neural Networks

write operation in the store branch to incorporate the current state of the
memory into the calculation of the new value. For the read operation, the
same key is used as for the write operation, allowing the model to calculate
the new value vector with additional information about the current value
retrieved by the key. This extension enables the model to join existing stored
patterns with a new one, instead of just overwriting the previously stored
pattern for a specific key.

store-
branch

read

write

recall-
branch

read n
times

facts

Hebbian memory

query

output

Figure 3.2: The architecture of the H-Mem model with memory-dependent memorization.
The input is processed either via the store branch or the recall branch respectively, depend-
ing if it is a fact or a query respectively. Before each write operation a read operation is
performed using the same key. Adapted from [9].

Despite the simple architecture, the model is capable of solving all of the 20
bAbI [4] tasks in the 10k data-set, delivering state-of-the-art results.

33

4 Hebbian Plasticity

Even though the learning and memory mechanisms in the brain are not
fully understood yet, synaptic plasticity, the change of the weights between
neurons, is believed to be the basis for the memory and learning mechanisms
in the brain [20]. Donald Hebb [12] proposed a theory about these synaptic
weight changes:

”When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells, such that A’s efficientcy, as one of the cells firing B, is

increased.”

A commonly used simplified version of this postulate is ”cells that fire
together, wire together”. Hebb proposed, that the efficacy of a synaptic
connection from one neuron to the other is increased if the activation of the
source neuron contributed in the activation of the target neuron. Neuronal
plasticity following this principle is referred to as Hebbian plasticity and is
assumed to play a major role on how memory in the brain works [60].

4.1 The Hebbian learning rule

The increase in synaptic efficacy subject to Hebbian plasticity can be applied
to neural networks by changing the weights between neurons according to
rules following the Hebbian learning principle. Gerstner et al. [61] derived
a generic mathematical formulation of the Hebbian learning rule as func-
tion of the pre- and postsynaptic activity by considering the requirements
and constraints it is bound to. The authors describe six aspects which are
important for the formulation of a Hebbian learning rule:

34

4 Hebbian Plasticity

• Locality. The weight update of a weight wji from neuron j to neuron i
must depend solely on the state of these two neurons as well as the
weight between them, but not on the state of other neurons k, this is
illustrated in figure 4.1.

• Cooperativity. The function must implement Hebb’s theory [12] whereas
the simultaneous activity of neurons i and j is required for a weight
increase of the connection between them.

• Synaptic Depression. Constantly increasing the weights without any
subtraction term would result in infinite growth of the weights. There-
fore, a depression term needs to be included in the learning rule to
avoid this issue.

• Boundedness. In biological neural networks, the weights cannot be
increased indefinitely, hence they should be bounded between 0 and
wmax, which is the upper bound for weight values.

• Competition. The idea of competition is to increase weights at the cost
of decreasing others. One example of such a competition term would
be Oja’s rule [62], which is explained below.

• Long-term stability. To avoid simple overwriting of previously stored
information, converging the weights to binary values of 0 and 1 can
be useful. However, the authors claim that mostly this aspect is disre-
garded.

Figure 4.1: The principle of locality for Hebbian weight updates. An update of weight wji
from neuron j to neuron i must solely depend on the state of neurons j and i as well as the
current state of wji, but not on states of neurons k other than i and j. Modified from [61].

To find a general formulation of the Hebbian learning rule under the locality

35

4 Hebbian Plasticity

constraint, where the weight update for ∆wji
1 can only be a function

F(wji, ai, aj) of locally available information, the authors performed a series
expansion at ai = aj = 0, yielding

∆wji ≈ ccorr
2 (wji)aiaj + cpost

2 (wji)a2
i + cpre

2 (wji)a2
j

+ cpre
1 (wji)aj + cpost

1 (wji)ai + c0(wji)

+O(a).

(4.1)

In this expression, ai and aj are the activity values of neurons i and j respec-
tively. The coefficients cpre

k (wji) and cpost
k (wji) with x ∈ {0, 1} are functions

of the current weight value wji and differ between different implementa-
tions of the learning rule. The term ccorr

2 (wji)aiaj implements the basis of
the Hebbian learning as product between the activations of the neurons
connected by wji [63]. By choosing all other coefficients to be zero and
choosing ccorr

2 (wji) > 0 results in

∆wji = ccorr
2 (wji)aiaj, (4.2)

which is the most simple implementation of a Hebbian learning rule, imple-
menting the principles of locality and cooperativity. However, this simple rule
is neither bounded nor implements synaptic depression, potentially resulting
in unlimited growth of the weights over time. An approach to introduce
synaptic depression via the principle of competition was proposed by Oja [62]
and is referred to as Oja’s rule and is denoted by

∆wji = η0aiaj − η0wjia2
i (4.3)

with a constant η0 > 0. This rule can be derived from 4.1 by setting
cpost

2 = −η0wji and ccorr
2 = η0. The quadratic subtraction term not only

assures that the weight decreases if the post-synaptic neuron i is activated
without activation of the pre-synaptic neuron j, it also regularizes the mag-
nitude of the weight update due to the term quadratic in ai. These two
properties result in a more stable weight update and a soft bound [63]. Oja’s
rule has several other properties, not further discussed in this work.

1The authors formulate the update rule in terms of the firing rate of spiking networks.
Since in this work solely discrete-time operations are considered, the weight update is
denoted as ∆wji instead of d

dw wji.

36

4 Hebbian Plasticity

The learning rule used by [9] as well as by HebbLSTM proposed in this
work is denoted by

∆wji = η0(wmax − wji)ajai − η0wjia2
j . (4.4)

This rule is similar to Oja’s rule [62], except for the additional soft bound
term (wmax − wji) to ensure wi j ≤ 1 as well as the slightly adapted sub-
traction term η0wjia2

j , where the post-synaptic activity is replaced by the
post-synaptic activity. For details on the Hebbian weight update in this work
see Chapter 5.

4.2 Hebbian Associative Memory

The Hebbian learning rule can in general be applied to train neural network
weights. For conventional neural networks, where the weights are trained
once and stay fixed for inference, gradient descent is usually the state-
of-the-art choice for a training algorithm [21]. A different application of
Hebbian learning is a neural associative memory (NAM). Formally, a NAM
is defined as a fully connected single layer network, which maps a set of
input patterns X = {x1, ..., xM} to a set of corresponding output patterns
Y = {y1, ..., yM} in a way that input pattern xµ is associated with pattern yµ

for µ ∈ {1, ..., M} [8]. The associations are learned via weight changes using
a specific learning rule, for example the Hebbian rule. Thus, association
learning is realized using synaptic plasticity [64].

One feature to classify associative memory is the kind of mapping it repre-
sents. If the memory maps input pattern x to output pattern y where pattern
x is different to pattern y, the memory is referred to as hetero-associative. If
x and y are equivalent, the memory associates a pattern to itself which is
called auto-associative. An auto-associative memory can restore the full pat-
tern x by performing a query using a pattern x̃, which must be sufficiently
close to x according to a specific metric [8].

Hebbian learning has successfully been applied in machine learning models
by combining it with conventional approaches, some examples are already
described in Sections 3.6 and 3.7. One further model using Hebbian memory

37

4 Hebbian Plasticity

is proposed by Schmidhuber et al. [18]. The authors trained a feed-forward
network to store information for short-term use by changing weights in
a separate fast-weight network. This fast-weight memory represents the
hetero-associative Hebbian memory and is similar to the Hebbian memory
used in the model proposed in this thesis. The authors point out, that the
difference between this fast-weight network and the activity-based memory
in conventional RNNs is, that the fast-weight network is naturally able
to store connections between variables, which is an important feature of
associative memories. Therefore, associative memories are helpful for tasks
where a temporary variable binding is involved.

38

5 Hebbian Long Short-Term
Memory Networks

Long short-term memory (LSTM) networks [13] (see Section 2.1.2) are shown
to solve a variety of tasks that require the extraction and temporal storage of
information in sequential data. By using a gated memory unit and feedback
connections it can solve tasks involving sequences and time-dependent
information. Furthermore it provides a viable solution to the problem of
vanishing gradients, therefore it can handle long input sequences and deal
with long time lags [13]. However, a study by [9] indicates that the more
long-term nature of Hebbian synaptic plasticity [12] is superior to the
activity-based memory of LSTM networks in many tasks. The idea behind
Hebbian long short-term memory (HebbLSTM) networks is to combine the
capabilities of LSTM networks and Hebbian plasticity.

HebbLSTM is a LSTM-like network that is augmented with a form of
Hebbian memory (see Figure 5.1). This memory is implemented as a single-
layer hetero-associative neural network subject to Hebbian plasticity. With
such a form of memory, the HebbLSTM network can learn to extract and
store associative information from its input and use this input to solve
tasks that require the resolution of such associations, while maintaining the
benefits of LSTM networks.

HebbLSTM is a recurrent neural network and hence can, in principle, be ap-
plied to input sequences of arbitrary length. It can furthermore be integrated
into larger RNN architectures. Since the model uses a gated architecture
like LSTM does, it is assumed that it does not suffer from the vanishing
gradient problem.

The hetero-associative memory module implemented in HebbLSTM is capa-
ble of storing associations between input- and output pattern pairs. These

39

5 Hebbian Long Short-Term Memory Networks

LN
+

x

+ +

+

+

x

LN

read write

Figure 5.1: Schema of the HebbLSTM architecture. At each time-step t, the cell is presented
with input-vector x(t), key-vector k(t− 1) and value-vector v(t− 1) of the previous time-
step t. Dense layers (marked with U and W with corresponding indices) followed by an
activation function σ are used to compute a forget gate vector f (t), an input gate vector
i(t) and a preliminary new key-vector k̂(t). This vector k̂(t) is then summed with the
previous key-vector k(t − 1) (which is beforehand multiplied by the input gate vector
i(t)) to calculate the final key-vector k(t). This key-vector is then used to perform a read
operation on the Hebbian memory matrix Wassoc(t). The result of this read operation is
then concatenated with a preliminary value-vector v̂(t) to calculate the final value-vector
v(t) by using a weight Wupd. Finally, in the store step, the Hebbian matrix is updated
according to the Hebbian plasticity rule using k(t) and v(t).

patterns are represented as vectors. In order to store a task-relevant as-
sociation from one vector to another, the model needs to compute these
two vectors from a given input. The first vector is the pre-synaptic vector
and acts as key and the second one is the post-synaptic vector which is
referred to as value. The Hebbian memory maps the pre-synaptic key-vector
to the post-synaptic value-vector, such that (under certain conditions) the
post-synaptic value-vector can be retrieved by querying the memory with
the pre-synaptic key-vector. To compute the key-vector and value-vector

40

5 Hebbian Long Short-Term Memory Networks

from the input, the model uses a combination of fully-connected weight
layers and gates. This section explains the computation steps in detail.

At time-step t, an input vector x(t) = [x1(t), x2(t), ... , xn(t)] of dimension
n is shown to the network. The network computes two vectors, a key-vector
k(t) ∈ Rm and a value-vector v(t) ∈ Rm from input x(t) at time-step t. The
network learns that it can establish an association between key-vector k(t)
and value-vector v(t) in memory, by using a Hebbian plasticity rule, and to
retrieve the associated value-vector later by querying the memory with a
vector similar to k(t).

The following paragraphs explain the computational steps that are per-
formed to achieve this previously described extraction of two vectors from
the input.

An input gate vector i(t) ∈ Rm and a forget gate vector f (t) ∈ Rm, similar
to a LSTM-architecture, are computed using

f (t) = σg(Wfx(t) + Ufv(t− 1)) (5.1)

i(t) = σg(Wix(t) + Uiv(t− 1)). (5.2)

where σg is a non-linear activation function, Wf ∈ Rm×n, Uf ∈ Rm×n,
Wi ∈ Rm×n and Ui ∈ Rm×n and v(t− 1) is the value-vector of the previous
time-step (the initial value-vector v(0) is set to the zero-vector).

The computation of key-vector k(t) and value-vector v(t) incorporates
two steps. The first step is to calculate preliminary key- and value-vectors
k̂(t) and v̂(t) using two weight matrices Wkey ∈ Rm×n and Ukey ∈ Rm×n

respective Wval ∈ Rm×n and Uval ∈ Rm×n for each of the vectors. More
specifically, vectors k̂(t) and v̂(t) are computed according to

k̂(t) = σg(Wkeyx(t) + Ukeyv(t− 1)) (5.3)

v̂(t) = σg(Wvalx(t) + Uvalv(t− 1)). (5.4)

For the computation of the key-vector k(t), input gate vector i(t) and forget
gate vector f (t) are used to calculate which elements of the previous key-
vector, that is k(t − 1), and which elements of the current preliminary

41

5 Hebbian Long Short-Term Memory Networks

key-vector k̂(t) are summed:

k(t) = σu(f (t) ◦ k(t− 1) + i(t) ◦ k̂(t)), (5.5)

where σu is a non-linear activation function and where ◦ denotes the
Hadamard product. This gated update is similar to the one used in LSTM,
which helps to avoid the vanishing gradient problem.

For the computation of the value-vector v(t), the model firstly performs
a read operation on the memory module, which is a matrix Wassoc of size
m× m, by using the current key-vector k(t). It is assumed that this read
step enhances the capabilities of dealing with redundant or correlating
information in the memory matrix. More specifically, the value-vector v(t)
is computed according to:

v(t) = σu(Wupd(v̂(t)ᵀ, (Wassoc(t)k(t))ᵀ)ᵀ), (5.6)

where σu is a non-linear activation function and Wupd ∈ Rm×n is a weight
matrix. The matrix Wassoc(0) is initialized with zeros.

Matrices Wf, Uf, Wi, Ui, Wkey, Ukey, Wval, Uval and Wupd are optimized
during training. Note, that Wassoc is not optimized since it is dynamic
during inference. This matrix is instead subject to Hebbian plasticity. Weight
updates of this matrix are given by

∆Wassoc
ij (t) = λ(wmax −Wassoc

ij (t))kj(t)vi(t)− λWassoc
ij (t)kj(t)2, (5.7)

where Wassoc
ij (t), with j = 0, ..., m, i = 0, ..., m, represents the weight from

the j-th input neuron to the i-th output neuron in the Hebbian memory
network at time-step t. The constant λ is an update parameter and wmax is a
constant representing the maximum weight. vi(t) and k j(t) are the i-th and
j-th element of value-vector v(t) and key-vector k(t) respectively.

The term wmax −Wassocij(t)(t) works as a soft-bound to avoid growth of
memory entries above a certain threshold wmax.

The strengthening of the weights is performed by the term

k j(t)vi(t) (5.8)

42

5 Hebbian Long Short-Term Memory Networks

which is, according to [61], the basis of a Hebbian learning rule. This term
implements the hypothesis of Hebb et al. [12] in which weights between
neurons that fire together are increased. Equation 5.8 only takes a high value
if both of the elements k j(t) and vi(t) and therefore neurons j and i have a
high value, which corresponds to firing in this implementation of neural
networks.

The term −λWassoc
ij (t)kj(t)2 is used to weaken the pre-synaptic activity

of a given key k(t). Hence, this subtraction term weakens the weights
that are activated by this specific key. More specific, if the element k j(t)
representing pre-synaptic neuron j is of high value, all outgoing weights
from this element are weakened. This term is needed because the Hebbian
learning term in Equation 5.8 only increases weights but never weakens
them (under the assumption that a neurons activation function cannot take
negative values). This means, that without a reduction term, all of the
weights would converge to wmax. The idea is to forget values which were
previously assigned to a key similar to k(t).

The association weight matrix is then updated according to

Wassoc(t + 1) = Wassoc(t) + ∆Wassoc(t). (5.9)

43

6 Hebbian Long Short-Term
Memory Networks with Hidden
Value

In the HebbLSTM model three potential drawbacks were identified:

1. The first drawback is that the model is constrained to pass only the
key and the value of the last write operation to the next time-step.
However, since the key-value pair of the last time-step was already
stored in the memory, they might not provide useful information for
the next time-step at all.

2. In a vanilla LSTM cell [13] the hidden value can be passed through
multiple time-steps without performing any operation on it. In con-
trast, if the HebbLSTM model would pass the same key through
multiple time-steps (for example to maintain a state of the cell outside
of the Hebbian memory), a write operation with this key would be
performed at each time-step. Therefore, the model is not capable of
maintaining an internal state outside the Hebbian memory without
directly influencing the write operation of the Hebbian memory.

3. LSTM is proven to solve the vanishing gradient problem [13]. Even
though there is no proof performed proving that HebbLSTM is not
prone to the vanishing gradient problem, the fact that it cannot pass a
constant value along multiple time-steps without direct influence on
the computation might be an indicator that the constant error carousel
of LSTM (for details see Section 2.1.2) is not fulfilled anymore.

To address these three issues, a second architecture called Hebbian Long
Short-Term Memory with Hidden Value (H-HebbLSTM) is proposed. The
main difference is that H-HebbLSTM maintains a hidden state in addition

44

6 Hebbian Long Short-Term Memory Networks with Hidden Value

to the Hebbian memory to enable the model to perform context-dependent
read and write operations.

Figure 6.1, illustrates the architecture of H-HebbLSTM. The model contains
several other differences to the HebbLSTM model.

1. Instead of using the same key-vector for the read and write steps, a
separate key-vector is calculated for any interaction with the memory.

2. The model interacts three times with the Hebbian memory. The first
interaction is a read operation to read out previously stored informa-
tion using a preliminary key-vector. The second interaction is a write
operation, where a new key-value-pair is written to the memory. The
third interaction is only relevant for the downstream connections and
is a final read operation, before the output value is calculated. Via this
third interaction, the model can learn different weights for reading out
solution-relevant information, whereas the first read operation does
not necessarily yield information which is relevant for the final answer,
but rather for the writing step.

3. The model can choose to not change the hidden value at all, by setting
the input gate to 0 and the forget gate to 1. It is assumed, that this
feature is needed to maintain an internal state over multiple time-steps,
for example if the model needs to ”remember” the current operation
mode of the task (query or fact).

The calculation of the key-vectors, value-vectors, the hidden vector and the
output-vector is explained in the next few paragraphs.

The input to the H-HebbLSTM memory cell is the input-vector x(t) of the
current time-step t and the hidden value-vector h(t− 1) from the previous
time-step t− 1. The first hidden vector h(0) at time-step t = 0 is set to the
zero-vector. For each time-step t, the first conducted computation is a key-
vector k̂(t) for the initial read-operation on the memory. k̂(t) is calculated
via

k̂ = σg(W k̂[h(t− 1); x(t)]) (6.1)

where W k̂ ∈ Rm×(h+d) denotes a trained weight matrix and σg an activation
function. x(t) is the input-vector of the cell at time-step t and h(t− 1) the
hidden vector of time-step t− 1. The dimension m denotes the number of

45

6 Hebbian Long Short-Term Memory Networks with Hidden Value

x

read
write

+

x

LN

LN

LN

read

LN

LN

Figure 6.1: Schema of the H-HebbLSTM architecture. Each time-step t, three memory
operations are performed. A preceding read-out using preliminary key-vector k̂(t) followed
by a write-in using key-vector k(t) and value-vector v(t) and a final read-out with key-
vector k̃(t) used for the cell output o(t). The squares with the label ”LN” denote a layer
normalization. Detailed equations can be found in the text.

memory units in the Hebbian memory, h the dimension of the hidden vector
and d the input dimension. The notation [a; b] ∈ R(da+db) corresponds to
the concatenation of two vectors a ∈ Rda and b ∈ Rdb and is equivalent to
(aᵀ, bᵀ)ᵀ.

The preliminary key-vector k̂(t) is used to perform a read operation on
the Hebbian memory matrix Wassoc(t) ∈ Rm×m to calculate a preliminary
value-vector v̂(t) via v̂(t) = Wassoc(t)k(t).

After this memory-read operation, the calculation

[k(t); v(t); k̃(t); ĥ(t)] = σu(Wu[v̂(t); h(t− 1); x(t)]) (6.2)

of key-vector k(t) ∈ Rm, value-vector v(t) ∈ Rm, read-out key-vector
k̃(t) ∈ Rm and preliminary hidden vector ĥ(t) ∈ Rh is performed using a

46

6 Hebbian Long Short-Term Memory Networks with Hidden Value

weight matrix Wu ∈ R4m×(m+h+d).

The vectors k(t) and v(t) are then used to update the Hebbian memory
matrix Wassoc(t) according to Equation 5.7.

Using the read-out key-vector k̃(t), a second read operation is performed
on the Hebbian memory matrix Wassoc(t) via ṽ(t) = Wassoc(t)k̃(t) before
the cell output o(t) is calculated. The equation for this output o(t) is then
performed by

o(t) = Wout[h(t); x(t); ṽ(t)]. (6.3)

Via the equation

[i(t); f (t)] = σg(Wg[v̂(t); h(t− 1); x(t)]), (6.4)

the forget-gate vector f (t) ∈ Rh and input-gate vector i(t) ∈ Rh are cal-
culated. Wg ∈ R2h×(m+h+d) and Wout ∈ Rd×(m+h+d) denote trained weight
matrices.

These two vectors are used in

h(t + 1) = σu(h(t) ◦ f (t) + ĥ(t) ◦ i(t)) (6.5)

for the calculation of the new hidden vector h(t). The symbol ◦ denotes the
Hadamard product.

47

7 Results

This section explains the conducted experiments and shows the performance
of HebbLSTM and H-HebbLSTM. The experiments were chosen in order to
test the associative and memory-dependent capabilities of the network.

7.1 Dictionary Learning

This task is inspired by the synthetic dictionary inference task from Munkhdalai
et al. [6]. Each sample instance of this task is divided into two parts, the
facts and the query. The facts are groups of letter-pairs, where each pair
represents a directed mapping from one letter to the other. The separator
for the source- and target-letters is ”¿”, the separator between facts is the
semicolon. For example, the fact ”tlk ¿ axs;” contains three mappings, t to
a, l to x and k to s. After the facts, the separator ”#” denotes the begin of
the query, which is a string of letters to be translated by the algorithm, by
applying all of the previously learned translation rules. If a letter does not
appear on the left side of the separator in any fact, it must stay as it is in the
query. If for example the fact from before is the only fact of a task instance,
the model is expected to translate a query rfknt into rfsna.

The facts are chosen in a way, that each letter pair appears only once
throughout all facts, to ensure that the model learns the mappings in one
shot. Each task instance consists of k facts, where each fact contains l letter-
pairs followed by a query of length q. The target value for training is the
correctly translated sequence, also of length q. Note, that the larger l is
chosen, the further away is the source-letter from its target-letter, because
each fact is constructed in a way that at first, all of the source letters are
presented, then all the target letters, with the separator in between. The

48

7 Results

Table 7.1: Data sample of the dictionary learning task with k = 6, l = 2 and q = 10.

Facts sb>hf;qr>nx;hy>wc;ei>ax;ld>sx;oz>dg;#
Query ywfbtcxwzd
Answer cwfftcxwgx

Table 7.2: Results for different combinations of fact count k, fact length l and sequence
length q for H-HebbLSTM compared to a LSTM baseline model in [% test accuracy]. The
table shows the results with the lowest validation error out of three separate runs using
different random seeds.

k l q LSTM H-HebbLSTM
26 1 10 15.8 100
2 1 100 92.4 100
2 13 100 7.5 23, 1
6 2 10 61.0 100
6 4 50 17.9 100

model must store all of the intermediate source-letters in order to assign
them to their corresponding target-letters as soon as the separator symbol
is presented.

For this task, several different combinations of the parameters k, l and q
were chosen according to Table 7.2. The data was encoded using a dictionary
encoding, where firstly all available letters are collected in a vocabulary list
and secondly all letters in the task instances are replaced by the correspond-
ing integer index within the vocabulary. Then, each letter was embedded
into continuous multidimensional fixed-size vector of dimension d = 30.
Each embedded vector represents the input of one time-step, hence the
network receives one symbol per time-step. During the presentation of the
facts, the output of the networks was ignored, whereas during the presenta-
tion of the query, the translated letter for the presented letter of the current
time-step was expected and set as target.

H-HebbLSTM is capable of solving most of the settings, a higher fact length

49

7 Results

however increases the difficulty, because firstly the corresponding inputs
are further away from each other and secondly, the model must store more
information intermediately. The network outperformed LSTM in each tested
setting.

Training and Hyperparameters The optimizer to minimize the sparse cat-
egorical cross-entropy was ADAM [56] and the networks were trained for
up to 300 epochs, but the training was stopped if a validation accuracy of
100% was achieved. The initial value of the learning rate was 0.003 and it
was decayed by the factor 0.85 every 50 training epochs. For all weights
within the models, a L2 regularizer with parameter l of 10−3 was used. For
weight initialization of all weights within the H-HebbLSTM and LSTM cells
the Glorot normal initializer [65] was applied. For the embedding layer,
the He uniform initializer [66] was used. The final output of the models
was mapped onto the target feature space by a linear fully connected layer
followed by a softmax. The number of units for the Hebbian memory was
90 (therefore the dimension m of the memory matrix was 90 × 90). For
the embedding of the input a dimension d of 30 was used. The initial key
vector k(0) and value vector v(0) were zero-vectors and the memory matrix
Wassoc was initilized with zeros for each sample. The model was trained
on a training set of 8, 100 instances and validated on a validation set of 900
instances. The test set consisted of 1000 instances. For the LSTM cell, the
tanh activation function was used for the input and output and the logistic
sigmoid function for the gates. The forget gate bias was initialized with
ones. For H-HebbLSTM, the logistic sigmoid function was used as activation
function σg for the calculation of the gate vectors i and f , the rectified linear
unit activation function was used for all other calculations as function σu.

7.2 Question Answering

Understanding stories and answering questions about them requires rapid
and flexible memory on long time scales. To see if HebbLSTM can learn
to answer questions about stories, the bAbI data set has been chosen. This
data set was proposed by Weston et al. [4] and consists of a collection of 20

50

7 Results

Table 7.3: Three example instances from different tasks of the bAbI data set. All of the three
examples require different capabilities of the model. For example, task 2 requires resolving
of chained statements. The bAbI data set consists of 20 different tasks.

Task 2: Two Supporting Facts Task 8: Lists/Sets Task 19: Path Finding
John is in the playground. Daniel picks up the football. The kitchen is north of the hallway.
John picked up the football. Daniel drops the newspaper. The bathroom is west of the bedroom.
Bob went to the kitchen. Daniel picks up the milk. The den is east of the hallway.
Q: Where is the football? John took the apple. The office is south of the bedroom.
A: playground Q: What is Daniel holding? Q: How do you go from the den to the kitchen?

A: milk, football A: west, north

question-answering tasks. The tasks are designed to test different skill sets
which the authors describe as neccessary for conversing with humans. This
skill set includes for example the chaining of facts, deduction, induction
and some more (see Table 7.3 for examples of this data set). The model
has to extract relevant information out of each sentence, then store and
later retrieve this information to answer a question. At test time, stories are
shown only once to the network, hence it must extract and store all relevant
information at once.

The data set consists of two sub sets, one with 1k training examples and
one with 10k. For this experiment, the 10k data set was chosen. Each task
instance consists of a sequence of sentences 〈x1, ..., xT〉 with T < 321 where
the last sentence is a question. The answer to the question is typically a
single word (in some tasks the answer consists of multiple words, which
were, however, interpreted as one word of the vocabulary).

To represent the tasks in a machine-readable manner, the sentences xt
were encoded into a one-hot encoding of dimension V where V is the
vocabulary size of the task. The one-hot encoded sentences were passed to an
encoding layer implementing a learned encoding given by et = ∑j f j ◦ Awt,j,
which maps the sequence of words 〈w1,t, w2,t, ..., wJ,t〉 of a given sentence
xt with J words to a continuous vector et of embedding dimension d. The
matrix A ∈ Rd×V was optimized during training. Encoding vectors f j
were also optimized during training and shared between all sentences.
The model can therefore learn a representation where all the necessary
information, for example the positioning of each word within a sentence,
is preserved. In order to enable the model to capture the temporal context
of a task, a temporal encoding for sentences as introduced in [5] was

51

7 Results

used. This encoding introduces a special matrix TA that encodes temporal
information. The modified sentence representation is then given by et =
∑j f j ◦ Awt,j + rowt(TA)

Table 7.4 provides an overview of the test results of HebbLSTM and H-
HebbLSTM compared with LSTM [13] and H-Mem [9] on the 10k data set
of the 20 bAbI tasks. All of the models were tested on a test set of 1, 000
task instances. HebbLSTM solved 14 out of 20 tasks, H-HebbLSTM solved
all tasks. A task instance is considered as solved, if the output of the model
matches the expected answer. A task is considered as solved, if more than
95% of the instances of this task are solved. The test error with the lowest
validation error out of 3 runs is shown in the table.

The proposed model HebbLSTM outperforms LSTM on the 10k bAbI task
data-set. By failing 16 tasks, LSTM does not provide the necessary capa-
bilities for solving this kind of associative tasks. In comparison, H-Mem
and H-HebbLSTM can solve all of the 20 bAbI tasks by using the Hebbian
memory module. The results of these models on the 20 bAbI task show,
that associative memory can enhance the performance of RNNs on a set of
association-based tasks compared to common LSTM networks.

Figure 7.1 shows the learning curve during training of task 3 (three support-
ing facts) and task 16 (basic induction).

Training and Hyperparameters The optimizer to minimize the sparse cat-
egorical cross-entropy was ADAM [56] and the networks were trained for
up to 300 epochs, but the training was stopped if a validation accuracy of
> 98% was achieved for 10 consecutive training epochs. The initial value of
the learning rate was 0.003 and it was decayed by the factor 0.85 every 50
training epochs. For all weights within the models, a L2 regularizer with
parameter l of 10−3 was used. For weight initialization of all weights within
the HebbLSTM and H-HebbLSTM cells the Glorot normal initializer [65]
was applied. For the embedding layer, the He uniform initializer [66] was
used. The final output of the models was mapped onto the target feature
space by a linear fully connected layer followed by a softmax. The number
of units for the Hebbian memory was 90 (therefore the dimension m of the
memory matrix was 90× 90). For the embedding of the input a dimension

52

7 Results

Table 7.4: Comparison of the error on the test set of different models on the 10k bAbI tasks
data set. The first model is an LSTM model of [4]. The second model is H-Mem, proposed
in [9]. The third and fourth models are HebbLSTM and H-HebbLSTM, proposed in this
thesis. For H-Mem, HebbLSTM and H-HebbLSTM, the test error of the run with the lowest
validation error out of 3 runs is printed.

Task LSTM H-Mem HebbLSTM H-HebbLSTM
1: Single Supporting Fact 0.0 0.0 0.0 0.0
2: Two Supporting Facts 81.9 0.0 9.9 0.6
3: Three Supporting Facts 83.1 3.7 18.4 1.8
4: Two Arg. Relations 0.2 0.0 0.0 0.0
5: Three Arg. Relations 1.2 0.3 0.6 0.6
6: Yes/No Questions 51.8 1.0 0.4 1.7
7: Counting 24.9 0.2 0.5 1.1
8: Lists/Sets 34.1 0.0 0.0 0.1
9: Simple Negation 20.2 0.1 0.2 0.0
10: Indenite Knowledge 30.1 1.5 0.4 0.0
11: Basic Coreference 10.3 0.0 0.0 0.0
12: Conjunction 23.4 0.0 0.0 0.0
13: Compound Coref. 6.1 0.0 0.0 0.0
14: Time Reasoning 81.0 0.4 8.1 1.1
15: Basic Deduction 78.7 0.0 0.0 0.0
16: Basic Induction 51.9 0.3 50.4 0.6
17: Positional Reasoning 50.1 0.0 0.0 4.7
18: Size Reasoning 6.8 0.1 0.3 1.9
19: Path Finding 90.3 4.7 39.9 1.9
20: Agent’s Motivations 2.1 0.0 0.0 0.0
Mean Error 36.4 0.6 6.5 0.8
Failed Tasks (err. > 5%) 16 0 5 0

d of 80 was used. The initial key vector k(0) and value vector v(0) were
zero-vectors and the memory matrix Wassoc was initilized with zeros for
each sample. For each of the 20 tasks, the model was trained on a training set
of 9, 000 task instances and validated on a validation set of 1, 000 instances.
The dimension of the hidden value of the H-HebbLSTM model was 90, for
all activation functions the rectified linear unit (ReLU) was used.

53

7 Results

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

H-HebbLSTM
HebbLSTM

(a) Learning curve of task 3 (three supporting facts)

0 50 100 150 200 250 300
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

H-HebbLSTM
HebbLSTM

(b) Learning curve of task 16 (basic induction)

Figure 7.1: Learning curves of the two variants HebbLSTM and H-HebbLSTM on two out of
the 20 bAbI question answering tasks using the 10k data-set. The graph shows the average
validation accuracy over 3 independent runs with different random seeds, the shaded area
shows the standard deviation of the validation accuracy between the runs. HebbLSTM
could not solve any of the two tasks, whereas H-HebbLSTM solves task 3 consistently. In
task 16, different random seeds lead to very different results.

7.3 Memory Analysis for bAbI Tasks

This section provides some insights of how the model H-HebbLSTM uses the
Hebbian memory to solve the bAbI tasks [4]. Table 7.5 shows one example
of task 1 (single supporting fact) of the bAbI tasks [4]. In Figure 7.2, the
key k(t) (in (a)) and value v(t) (in (b)) of the memory update step for each
time-step t (axis labels) are compared with each other using the cosine
similarity.

This task does not require the chaining of multiple facts, since the answer
can be derived from one of the 8 input facts (in this particular example
statement 6). The model needs to store each fact in a key-value like fashion.
By comparing which keys and values are similar to each other, it can be
assumed what the model encodes with each key and value. In the example
of Table 7.5 and Figure 7.2, one can see from (a) that the keys of fact 4 and
6 show a high similarity. In fact, both of the statements (4 and 6) contain
information about the location of ”daniel”. The same result can be seen in
(b), where the value vectors v(t) for each time-step t are compared. Value

54

7 Results

Table 7.5: Example instance of task 1 (One Supporting Fact).

1. sandra went to the office.
2. sandra travelled to the bathroom.
3. mary went back to the bedroom.
4. daniel moved to the garden.
5. john journeyed to the garden.
6. daniel went back to the hallway.
7. john journeyed to the bedroom.
8. mary travelled to the kitchen.
9. (Query) where is daniel?

Correct answer: hallway

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a) Similarity matrix of key vectors k(t).

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(b) Similarity matrix of value vectors v(t)

Figure 7.2: Similarity matrices for key-vectors k(t) and value-vectors v(t). The task instance
is described in Table 7.5. The matrices show the cosine similarity between vectors of
different time-steps t. Darker areas denote higher similarity.

vectors of time-steps 3 and 7 show a high similarity, which means that the
model probably encodes the location ”bedroom” in these values.

Since no statements are chained in task 1 it is considered very easy compared
to other tasks. In contrast, task 16 (basic induction) turned out to be very
challenging for the model, because it takes more iterations to solve than the
average of the other tasks, and does not converge for 2 out of 3 runs within
the predefined number of epochs. One example of an instance of task 16 is

55

7 Results

shown in Table 7.6 and Figure 7.3.

Table 7.6: Example instance of task 16 (Basic Induction).

1. lily is a rhino.
2. brian is a swan.
3. bernhard is a swan.
4. lily is gray.
5. brian is white.
6. bernhard is white.
7. julius is a frog.
8. julius is white.
9. greg is a frog.
10. (Query) what color is greg?

Correct answer: white

When having a look at Table 7.6, one can see that firstly, three statements
need to be chained in order to solve the task and secondly, that it is not clear
anymore what key-value association needs to be stored for each fact. To solve
the question, the relations ”greg”→ ”frog” and ”frog”→ ”white” need to
be resolved in order to be able to derive the answer ”white”. Therefore it
is not sufficient that ”frog” is either a key or a value, it needs to be both,
resulting in a mix-up of keys and values in this task. The mixture of keys
and values can also be seen when having a look at the similarity matrices
in Figure 7.3. In (a), the similarity between keys of facts 3 and 6 indicates
that ”bernhard” is encoded in both of the keys. However, since the keys of
facts 5 and 6 also show relatively high similarity, it is assumed that these
key-vectors also encode ”white”, since it is the only word which these two
facts have in common.

In conclusion, it is obvious that the model solves the samples of task 16
by some sort of mix-up between different keys and values, but the exact
processes of how the inference is performed in this task is very hard to
understand. Nevertheless, the model is capable of solving this task (see
Table 7.4).

56

7 Results

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

(a) Similarity matrix of key vectors k(t).

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

(b) Similarity matrix of value vectors v(t).

Figure 7.3: Similarity matrices for key-vectors k(t) and value-vectors v(t). The task instance
is described in Table 7.6. The matrices show the cosine similarity between vectors of
different time-steps t. Darker areas denote higher similarity.

57

8 Discussion

The improved model H-HebbLSTM vastly outperforms HebbLSTM in every
task (see Section 7 for details). It is assumed, that the improvements are
able to eliminate all the identified drawbacks of the HebbLSTM model dis-
cussed in Section 6. In the bAbI question answering tasks [4], H-HebbLSTM
performs at a state-of-the level with a mean test error of 0.8%, yielding com-
parable results to the closely related H-Mem [9] model. A very interesting
result is that H-HebbLSTM is capable of answering queries in task 3 of the
20 bAbI tasks [4], ”three supporting facts”, in only one time-step. In this
task three of the input facts need to be chained together in order to resolve
the query. In only one time-step, H-HebbLSTM is capable of resolving all of
the three relations to correctly answer the piece of information requested by
the query. It is not exactly clear how the model accomplishes this process,
however, it is assumed that on the one hand the hidden state of LSTM helps
the model preparing these one-time-step resolutions and on the other hand,
the fact that two read operations are performed in one time-step, the model
can actually query the memory twice per time-step.

58

8 Discussion

8.1 Conclusion

This work shows that a RNN with an architecture similar to LSTM [13] can
be augmented with a Hebbian-style hetero-associative neural memory to
successfully solve tasks requiring the extraction, storage and retrieval of
variable bindings. This hypothesis was justified using two different tasks,
an artificial toy dictionary learning task and an artificial question-answering
task [4]. Despite its simplicity, Hebbian learning is a powerful tool to im-
plement a working memory instance which can enrich the computational
capabilities of a RNN on tasks where association and memorization of
patterns plays a central role. Both of the proposed models are fully differen-
tiable, allowing end-to-end training for the optimization of the parameters.
Due to the nature of the RNN architecture, the model is flexible and can be
embedded in several other architectures such as convolutional networks or
encoder-decoder architectures, but that was not scope of this work.

8.2 Future Work

On examples with long sequences (with sequence length > 300), the model
shows some instabilities during gradient-based training. The architecture
can be further optimized by additional gradient stabilization mechanisms
like [67].

Further use-cases of the model can be examined, for example reinforcement
learning tasks. The combination of different types of memory could possibly
help the model to short-term memorize discoveries of an agent [6].

H-HebbLSTM uses an input and forget gate to calculate the hidden value.
According to literature [68], [69], the gates shall be bounded between 0 and
1, which is accomplished by using the logistic sigmoid function as activation
for the gate values. In H-HebbLSTM however, the best performance was
achieved by using the ReLU activation function for the gates, which is
unbounded due to the linear positive part. During development, no model
could be found to solve all of the 20 bAbI tasks using logistic sigmoid gate
activations. No explanation for this behaviour could be found so far. For

59

8 Discussion

future work, one could further examine the behaviour of the gates and
try to find a model which achieves equal performance by using logistic
sigmoid activation functions for the gating mechanisms, which might further
enhance the stability when training on long sequences.

Furthermore, H-HebbLSTM performs a layer normalization and on the
hidden value at each time-step. This is needed, since the input activation
function for the hidden value is the ReLU function, which is unbounded on
the positive side. To avoid that the hidden value grows rapidly, this layer
normalization is required, however, it is assumed that this step weakens
the back-propagation for long sequences, even though the model is capable
of solving task 3 of the bAbI tasks. This task is the longest of the task,
including sequences with up to 320 sentences.

It is worth noting, that in addition to the layer normalization, an activation
function (which was ReLU in all of the tasks) was applied on the hidden
value. Even though this seems counter-intuitive, it resulted in increased sta-
bility during training, because it counteracts the unboundedness of adding
a value determined by the ReLU activation function at each time-step.

Another approach which might be worth further examination is to replace
the single-layered networks within the cell with more complex multi-layered
network. Even though this increases the complexity of the model, it pre-
sumably enhances its computational capabilities. This might especially be
required in more complicated tasks, for example the translation of sentences
from one language to another.

60

Bibliography

[1] W. Bechtel and A. Abrahamson, Connectionism and the mind; an intro-
duction to parallel processing in networks, 1st. USA: Blackwell Publishers,
Inc., 1990.

[2] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis, “Mastering
the game of go with deep neural networks and tree search,” Nature,
vol. 529, pp. 484–489, 2016.

[3] S. J. Hanson and D. J. Burr, “What connectionist models learn: Learn-
ing and representation in connectionist networks,” Behavioral and brain
sciences, vol. 13, no. 3, pp. 471–489, 1990.

[4] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A.
Joulin and T. Mikolov, Towards AI-complete question answering: A set of
prerequisite toy tasks, 2015. arXiv: 1502.05698 [cs.AI].

[5] S. Sukhbaatar, A. Szlam, J. Weston and R. Fergus, “End-to-end mem-
ory networks,” in Advances in neural information processing systems,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama and R. Garnett, Eds.,
vol. 28, Curran Associates, Inc., 2015, pp. 2440–2448.

[6] T. Munkhdalai, A. Sordoni, T. Wang and A. Trischler, “Metalearned
neural memory,” in Advances in neural information processing systems, H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox and R.
Garnett, Eds., vol. 32, Curran Associates, Inc., 2019, pp. 13 331–13 342.

[7] I. Schlag, T. Munkhdalai and J. Schmidhuber, Learning associative
inference using fast weight memory, 2021. arXiv: 2011.07831 [cs.LG].

[8] G. Palm, F. Schwenker, F. T. Sommer and A. Strey, “Neural associative
memories,” Biological cybernetics, vol. 36, pp. 36–19, 1993.

61

https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/2011.07831

Bibliography

[9] T. Limbacher and R. Legenstein, “H-mem: Harnessing synaptic plas-
ticity with hebbian memory networks,” English, in Advances in neural
information processing systems, vol. 33, 2020.

[10] K.-L. Du and M. Swamy, “Associative memory networks,” in 2014,
pp. 187–214.

[11] T. Kohonen, Self-organization and associative memory: 3rd edition. Berlin,
Heidelberg: Springer-Verlag, 1989.

[12] D. O. Hebb, The organization of behavior: A neuropsychological theory.
New York: Wiley, 1949.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 1997.

[14] M. Tsodyks, “Associative memory in neural networks with the heb-
bian learning rule,” Modern physics letters b, vol. 03, no. 07, pp. 555–560,
1989.

[15] A. Graves, G. Wayne and I. Danihelka, Neural turing machines, 2014.
arXiv: 1410.5401 [cs.NE].

[16] J. Weston, S. Chopra and A. Bordes, Memory networks, 2015. arXiv:
1410.3916 [cs.AI].

[17] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological review, pp. 65–386,
1958.

[18] J. Schmidhuber, “Learning to control fast-weight memories: An al-
ternative to dynamic recurrent networks,” Neural computation, vol. 4,
no. 1, pp. 131–139, 1992.

[19] G. E. Hinton and D. C. Plaut, “Using fast weights to deblur old
memories,” in In proceedings of the 9th annual conference of the cognitive
science society, Erlbaum, 1987, pp. 177–186.

[20] L. Squire and E. Kandel, Memory: from mind to molecules, ser. Owl book.
Henry Holt and Company, 2003.

[21] J. Melchior and L. Wiskott, Hebbian-descent, 2019. arXiv: 1905.10585
[cs.LG].

[22] T. Munkhdalai and A. Trischler, Metalearning with hebbian fast weights,
2018. arXiv: 1807.05076 [cs.NE].

62

https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.3916
https://arxiv.org/abs/1905.10585
https://arxiv.org/abs/1905.10585
https://arxiv.org/abs/1807.05076

Bibliography

[23] P. Smolensky, “Tensor product variable binding and the representation
of symbolic structures in connectionist systems,” Artif. intell., vol. 46,
no. 1–2, pp. 159–216, 1990.

[24] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks,
ser. Studies in Computational Intelligence. Berlin: Springer, 2012.

[25] O. E. Arslan, “Chapter 3 - computational basis of neural elements,” in
Artificial neural network for drug design, delivery and disposition, M. Puri,
Y. Pathak, V. K. Sutariya, S. Tipparaju and W. Moreno, Eds., Boston:
Academic Press, 2016, pp. 29–82.

[26] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT Press,
2016, http://www.deeplearningbook.org.

[27] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[28] K.-L. Du and M. N. Swamy, Neural networks and statistical learning.
Springer Publishing Company, Incorporated, 2013.

[29] D. E. Rumelhart, G. E. Hinton and J. L. McClelland, “A general frame-
work for parallel distributed processing,” in Parallel distributed pro-
cessing: explorations in the microstructure of cognition, vol. 1: foundations.
Cambridge, MA, USA: MIT Press, 1986, pp. 45–76.

[30] K.-i. Funahashi and Y. Nakamura, “Approximation of dynamical sys-
tems by continuous time recurrent neural networks,” Neural networks,
vol. 6, no. 6, pp. 801–806, 1993.

[31] A. C. Tsoi and A. Back, “Discrete time recurrent neural network archi-
tectures: A unifying review,” Neurocomputing, vol. 15, no. 3, pp. 183–
223, 1997.

[32] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2,
pp. 179–211, 1990.

[33] Z. C. Lipton, J. Berkowitz and C. Elkan, A critical review of recur-
rent neural networks for sequence learning, 2015. arXiv: 1506.00019
[cs.LG].

[34] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” in Proceedings of the eighth annual conference of the
cognitive science society, Hillsdale, NJ: Erlbaum, 1986, pp. 531–546.

63

http://www.deeplearningbook.org
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019

Bibliography

[35] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE trans-
actions on acoustics, speech, and signal processing, vol. 37, no. 3, pp. 328–
339, 1989.

[36] H. Jaeger, “The “echo state” approach to analysing and training
recurrent neural networks,” GMD-report 148, german national research
institute for computer science, 2001.

[37] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S.
Takeda, H. Numata, D. Nakano and A. Hirose, “Recent advances in
physical reservoir computing: A review,” Neural networks, vol. 115,
pp. 100–123, 2019.

[38] D. Servan-Schreiber, A. Cleeremans and J. L. Mcclelland, “Graded
state machines: The representation of temporal contingencies in simple
recurrent networks,” Machine learning, vol. 7, pp. 161–193, 1991.

[39] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu and M. Ranzato, Learning
longer memory in recurrent neural networks, 2015. arXiv: 1412.7753
[cs.NE].

[40] A. M. Schäfer and H. G. Zimmermann, “Recurrent neural networks
are universal approximators,” in Artificial neural networks – ICANN
2006, S. D. Kollias, A. Stafylopatis, W. Duch and E. Oja, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 632–640.

[41] R. J. Williams and D. Zipser, “Gradient-based learning algorithms for
recurrent networks and their computational complexity,” in Backpropa-
gation: theory, architectures, and applications. USA: L. Erlbaum Associates
Inc., 1995, pp. 433–486.

[42] S. Hochreiter, “The vanishing gradient problem during learning re-
current neural nets and problem solutions,” Int. j. uncertain. fuzziness
knowl.-based syst., vol. 6, no. 2, pp. 107–116, 1998.

[43] F. Gers, J. Schmidhuber and F. Cummins, “Learning to forget: Contin-
ual prediction with LSTM,” Neural computation, vol. 12, pp. 2451–71,
2000.

[44] F. A. Gers, N. Schraudolph and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks,” Journal of machine learning
research, vol. 3, pp. 115–143, 2002.

64

https://arxiv.org/abs/1412.7753
https://arxiv.org/abs/1412.7753

Bibliography

[45] Kurt and Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[46] T. M. Mitchell, Machine learning. New York: McGraw-Hill, 1997.

[47] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel distributed process-
ing: explorations in the microstructure of cognition, vol. 1: foundations.
Cambridge, MA, USA: MIT Press, 1986, pp. 318–362.

[48] D. E. Rumelhart, G. E. Hinton and J. L. McClelland, “Training hidden
units: The generalized delta rule,” in Parallel distributed processing:
explorations in the microstructure of cognition, vol. 1: foundations. Cam-
bridge, MA, USA: MIT Press, 1986, pp. 121–159.

[49] A. Cauchy, “Methode generale pour la resolution des systemes d’equations
simultanees,” C.r. acad. sci. paris, vol. 25, pp. 536–538, 1847.

[50] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of
a regression function,” Ann. math. statist., vol. 23, no. 3, pp. 462–466,
1952.

[51] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
math. statist., vol. 22, no. 3, pp. 400–407, 1951.

[52] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning represen-
tations by back-propagating errors,” in Neurocomputing: foundations of
research. Cambridge, MA, USA: MIT Press, 1988, pp. 696–699.

[53] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,
3rd ed. Pearson, 2009.

[54] G. I. Webb, “Overfitting,” in Encyclopedia of machine learning, C. Sam-
mut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 744–
744.

[55] M. D. Zeiler, ADADELTA: An adaptive learning rate method, 2012. arXiv:
1212.5701 [cs.LG].

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of 3rd international conference on learning representations,
ICLR 2015, Y. Bengio and Y. LeCun, Eds., 2015.

65

https://arxiv.org/abs/1212.5701

Bibliography

[57] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554–2558, 1982. eprint: https://www.
pnas.org/content/79/8/2554.full.pdf.

[58] Ç. Gülçehre, S. Chandar, K. Cho and Y. Bengio, “Dynamic neural
turing machine with continuous and discrete addressing schemes,”
Neural computation, pp. 857–884, 2018.

[59] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. learn., vol. 8, no. 3–4,
pp. 229–256, 1992.

[60] K. Fox and M. Stryker, “Integrating hebbian and homeostatic plas-
ticity: Introduction,” Philosophical transactions of the royal society b:
biological sciences, vol. 372, no. 1715, p. 20 160 413, 2017.

[61] W. Gerstner and W. Kistler, “Mathematical formulations of hebbian
learning,” Biological cybernetics, vol. 87, pp. 404–15, 2003.

[62] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of mathematical biology, vol. 15, no. 3, pp. 267–273, 1982.

[63] Y. Munakata and J. Pfaffly, “Hebbian learning and development,”
Developmental science, vol. 7, no. 2, pp. 141–148, 2004.

[64] G. Palm, “Neural associative memories and sparse coding,” Neural
networks: the official journal of the international neural network society,
vol. 37, 2012.

[65] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in In proceedings of the international
conference on artificial intelligence and statistics (AISTATS’10). society for
artificial intelligence and statistics, 2010.

[66] K. He, X. Zhang, S. Ren and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision (ICCV),
2015.

66

https://www.pnas.org/content/79/8/2554.full.pdf
https://www.pnas.org/content/79/8/2554.full.pdf

Bibliography

[67] J. Zhang, Q. Lei and I. Dhillon, “Stabilizing gradients for deep neural
networks via efficient SVD parameterization,” in Proceedings of the
35th international conference on machine learning, J. Dy and A. Krause,
Eds., vol. 80, Stockholmsmässan, Stockholm Sweden: PMLR, 2018,
pp. 5806–5814.

[68] R. Jozefowicz, W. Zaremba and I. Sutskever, “An empirical explo-
ration of recurrent network architectures,” in Proceedings of the 32nd
international conference on international conference on machine learning -
volume 37, Lille, France: JMLR.org, 2015, pp. 2342–2350.

[69] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2017.

67

	Abstract
	Introduction
	Summary
	Related Work

	Recurrent Neural Networks
	Architectures
	Elman Networks
	Long Short-Term Memory

	Training
	Learning Weights with Gradient Descent
	Training Deep Networks by Backpropagating Errors
	Backpropagation Through Time
	Unfolding of RNNs
	The Vanishing or Exploding Gradient Problem
	Regularization and Validation
	Training Improvements

	Memory Augmented Neural Networks
	Neural Turing Machines
	Dynamic Neural Turing Machine
	Memory Networks
	End-to-End Memory Networks
	Metalearned Neural Memory
	Fast Weight Memory
	H-Mem

	Hebbian Plasticity
	The Hebbian learning rule
	Hebbian Associative Memory

	Hebbian Long Short-Term Memory Networks
	Hebbian Long Short-Term Memory Networks with Hidden Value
	Results
	Dictionary Learning
	Question Answering
	Memory Analysis for bAbI Tasks

	Discussion
	Conclusion
	Future Work

	Bibliography

