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Abstract

Climate change affects everyone. A primary culprit is CO2 emission. Re-
duction of CO2 emission could curb climate change. Process optimization
can save energy and thereby reduce CO2emission. In Industry 4.0, a digital
twin (DT) is a key-enabler for process optimization. This work is part of an
Austrian Research Promotion Agency (FFG) project. The FFG project aims
to build a digital twin for an electroplating plant. Within this thesis, the
main goals are the improvement, simplification, and extension of existing
parts. This thesis consists of two parts. The first part is the extension of a DT
model with control mechanisms for machines and processes. The second
part describes the development of data models. The data models deliver
data as input for the digital twin model. In the first place, the DT needs an
approximation for the electroplating process. A lab experiment took place to
collect data about the process. Data models are generated with the collected
data, which delivers the energy consumption depending on various input
parameters. Besides the electroplating, there are a lot of other components.
The plant provides a massive amount of sensor data. However, it is too
much data; thus, the computations for the DT get too time-consuming. An
automated function-based approximation of the data solves the problem.
The DT is implemented in Modelica. Modelica is a multidomain modeling
language for physical models. The results of the modeling part are control
extensions for the existing machines and processes. Various programming
languages, such as Python, can provide input for the Modelica models.
Thus all approximations and data models are Python programs. The lab
experiment took place at the TU Graz physics department. The data models
use various machine learning algorithms like polynomial regression, de-
cision tree regression, random forest regression, and neural networks to
generate input for the Modelica model. There is also a discussion about the
machine learning methods and their performance to handle a problem and
when it is better to find another prediction method, such as function-based
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approximation. It uses optimizer functions to fit the given functions best to
real data and return the functions’ parameters. Thus the function predicts
future events. The result is a framework that creates predictions for machine
data in arbitrary time frames. Altogether the separately developed parts
work well together. With the optimizations, the computations are faster.
The predictions are not as exact as real data, but they approximate the real
data well, and therefore, it is an excellent trade to lose a little precision but
receive better computation times. This leads to faster development and has
benefits for the progress of the whole project.
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1. Introduction

Die Klimakrise ist im vergangenen Jahr durch die Pandemie aus den
Schlagzeilen gerutscht. Sie ist aber deswegen nicht verschwunden - im
Gegenteil. [. . . ]
Wir stehen vor der größten Herausforderung der Menschheit in diesem
Jahrtausend. Einer größeren Herausforderung als jener durch die Pan-
demie. Und gegen die Klimakrise wird es keine Impfung geben. Da sind
wir alle selbst gefordert. Es wird ein Wettlauf mit der Zeit. Aber wir
können ihn gewinnen. Wir müssen ihn gewinnen, wollen wir diesen
Planeten für uns Menschen gut bewohnbar halten. - Alexander Van
der Bellen (president of austria) in Austria’s Virtual New Year’s
Reception 2021

Due to the presence of Sars-CoV-2 in the daily news, climate change has
moved into the background again, but it is still essential and will affect our
daily lives more and more - a few examples: Food prices rise because raw
ingredients, like wheat, are threatened by heatwaves (Hasegawa et al., 2018).
The number of natural disasters rose in the past few years (Wuebbles et al.,
2017). Drinking water is becoming less and less, or more challenging to tap
(Watts et al., 2016).

Greenhouse gases (GHG) are responsible for climate change. IPCC (Intergov.
Panel Clim. Change), 2018 and Owusu and Asumadu-Sarkodie, 2016 define
Carbon dioxide (CO2), Methane (CH4), Nitrous oxide (N2O), Hydrofluoro-
carbons (HFCs), Perfluorocarbons (PFCs) and Sulphur hexafluoride (SF6) as
GHGs. The GHGs block the radiation from earth towards space. Thus more
radiation stays within the atmosphere and raises the temperature on earth
(El Zein and Chehayeb, 2015).

CO2 has the greatest impact on the ozone layer. It has increased by more
than 35% since the pre-industrial time (Reay et al., 2007; Owusu and
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1. Introduction

Asumadu-Sarkodie, 2016). As Reay et al., 2007 shows, the two main sectors
of CO2emission are energy production and industrial processes. Since these
two sectors are the biggest CO2producers, small reductions in these sectors
have a massive impact on overall CO2 emissions. Nowadays, the industry
grows nearly every year, with two exceptions in the past twenty years. The
first exception was the economic crisis in 2008 and the second exception is
the current corona crisis. The crises had a massive impact on the industry
and the gross domestic product (GDP). The GDP is an indicator of the
development in industry and economy. Over the past ten years, the GDP
grows by 0.7% every year on average in Austria (WKO Austria, 2020). A
growing industry leads to increased energy consumption. Flauger et al.,
2020 say that the need for energy will rise tremendously in the next years.
They see one of the main reasons for the increasing consumption in the
electrification of industrial processes. Instead of using coal, oil, and gas for
heating, cooling, and energy-intensive processes, the industry uses electric
energy to generate heat for processes. Currently, the primary sources of
electric energy are coal, oil, and gas (International Energy Agency, 2019),
but electricity can also be created from renewable sources like water, wind,
or solar power. Then electric energy is renewable and CO2-neutral energy.
Forecasts say that the rise of renewable energy resources cannot cover the
demand of energy needed in the next years. The world cannot achieve
100% renewable energy without (i) a decline in energy consumption, (ii)
improvement of the efficiency in energy generation, and (iii) the increase of
the share of renewable energy (Masson-Delmotte et al., 2018).

The growing industry does not only mean growing energy consumption. It
also implies modernization, which newer plants reach. In contrast to earlier
plants, newer ones use a massive number of sensors to collect data. The data
is meaningful for the product’s quality, process monitoring, energy supply
monitoring, controlling, and various other parameters. The gathered data
controls the machines’ process and allows a fine-grained setting because the
controller can react faster with the permanently added data. The permanent
measurements and the resulting settings lead to products of higher quality
and a lower rejection rate.
Digitization and the continuous increase of computational power are fun-
damental parts of Industry 4.0 (Lasi et al., 2014; Bendel, 2019). In Industry
4.0, machines and production equipment are capable of decision-making.
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With the data from sensors, connections to other devices, and Artificial
intelligence (AI), which processed the data, it is possible to autonomously
monitor the system and support operators and decision-makers in defining
the next steps. With continuous learning, AI can more and more make its
own decisions.

System control and control optimization are important features in Industry
4.0 (Uhlemann, Lehmann, and Steinhilper, 2017). The first step requires a
digital copy of the system. With the collected data, the digital copy can
emulate the represented system, and in the last step, the digital system
can control the real system. This system is called a Digital Twin (DT). For
more details on DT, see Chapter 2.1. With a DT, it is possible to perform
optimization on a digital level and simulate its new behavior. With this
setup, it is easy to optimize the system for different parameters without
affecting the real production system. One of these parameters is energy
consumption and, in conclusion, the reduction of CO2emissions.

There are multiple ways to reduce CO2emissions. On the one hand, there
is renewable energy, and on the other hand, there is energy optimization.
Since the industry is strongly dependent on the environmental conditions,
it is not always possible to rely on renewable energy, but reducing energy
consumption by energy optimization is still a possibility. The optimization
needs monitoring, screening, and data analysis to retrieve knowledge from
the massive amount of data generated by sensors and measuring systems.
The data elaboration is part of Industry 4.0. The amount of data also allows
the creation of DTs. DTs are a key-enabler for optimization and, therefore,
even an introductory module in CO2 reduction.

This thesis is part of the Austrian Research Promotion Agency (FFG) project
DigitalEnergyTwin in cooperation with AT&S Austria as industry partner.
It is part of a vast project and tries to improve, simplify, and extend existing
parts in a DT project. The thesis has two main parts. One part is the DT
modeling of an electroplating plant, and the second part is data prediction
as input for the DT model. The model was developed in cooperation with
project partners within the FFG project. AEE INTEC provides a model of
the general structure of the electroplating plant. This thesis adds the control
logic for the machines, various processes, and safety measures in the plant.
The prediction part is split up into two subparts. The first prediction part is
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1. Introduction

the electroplating process. In this part, the electroplating process from the
electroplating plant is recreated in a lab experiment. During the experiment,
data about the process is collected. With the gathered data, various machine
learning algorithms are trained and tested. The primary purposes are to
understand the electroplating process, collect data for data models, and
develop them. The output of the models is then input for the DT model. This
part is a collaboration with Michael Grömer from the physics department at
TU Graz. The second prediction part is about the approximation of sensor
data. The plant operators collect a massive amount of sensor data from their
plants. This amount of data is too big, so it is impossible to process this in
the DT model. A lightweight alternative is needed to get results without
loading all the data at once. The result is an algorithm to approximate the
outcome. Further, it also allows predicting data in the future.

The thesis is divided into five chapters. Chapter 2 describes the basics of
used methods and implementations. It furthermore links the independent
parts together to create an overview of the work. The chapter is about
Digital Twins, the modeling language Modelica, and its user interface
Dymola. Further, it holds information about electroplating, various data
models, and approximation methods. Afterwards, Chapter 3 presents the
evaluation and the individual components’ results. Chapter 4 is about the
current status of the project and how the thesis results work are included. It
also contains personal assessments and interpretations. Chapter 5 completes
the work and gives an outlook on further work and upcoming issues based
on the thesis. Appendix A contains the overview of energy flows which is
the basis for the DT model. For the sake of completeness and traceability,
Appendix B and Appendix C hold the handwritten and digitized data of
the lab experiments.
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2. Methods

2.1. Digital Energy Twin

2.1.1. Digital Twin

A Digital Twin is an integrated multiphysics, multiscale, probabilistic
simulation of an as-built vehicle or system that uses the best available
physical models, sensor updates, fleet history, etc., to mirror the life of
its corresponding [. . . ] twin. (Glaessgen and Stargel, 2012)

A Digital Twin (DT) uses a real-world object as an example and mimics it.
The first definition was given by Grieves, 2002 during a presentation for
the product lifecycle management and was then defined by Tao et al., 2018.
It is a digital counterpart to the physical object. Instead of a controller in
the physical object, algorithms replace the control logic. The algorithms
mirror the behavior. The mirroring uses an ”as best as possible” approach,
where the algorithms are optimized to act like they can replace the real-
world controller. The use of digital twins can have different purposes. A
primary goal is the accurate and precise representation of the behavior
of the physical object. A further objective is to decouple the digital object
from the real-world object, do experiments on it, and see the influence of
various changes on the system’s different parameters without bothering
the real-world processes. The experiments can have multiple purposes of
use. Optimization is one of them. The main targets for optimizations are
energy optimizations, duration reduction, lower costs, or CO2 reduction.
DT allows investigating different control strategies that minimize energy
consumption (thus CO2). Duration improvement reduces the needed time
to produce output with consistent quality (Gaul, 2018).
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2. Methods

Kritzinger et al., 2018 has created an overview of different papers aiming at
the DT and gives a classification for different categories of DTs. Figure 2.1
shows these classifications. The DT has several classes. The basic class
is the Digital Model (DM). The DM has a physical object and a digital
object, which represents the physical object. Data exchange between the two
objects works manually. The user both extracts the physical object’s data
and after that inserts it into the digital object by hand. It has the advantage
that the user can check inserted data beforehand, so no damage to the
physical object happens. Checking data from the physical objects also has
the advantage that the user gets an overview of the data and detects failed
measurement. The user can use the knowledge to improve the digital object
and make it more fault tolerant. This is the first stage in the development
process. It helps to improve the safety of the digital object cleverly. A Digital
Shadow (DS) is a more advanced model. There is also a physical object
and a digital object in the DS, but data transfers are different. The data
from the physical object to the digital object works automatically. Thus,
the objects have a common interface which they use to transfer data to
the digital object. Various patterns fulfill automatic data transfer. A simple
approach is a file-based transfer, where the physical object writes to a
file, and the digital object reads the file and processes the data. A more
advanced approach is a sender and receiver pattern where the physical
object sends data, and the digital object receives it. The digital object returns
the processed data manually to the physical object. Thus, the digital object
computes suggestions, depending on the physical object’s data, but the
decision of implementing them is up to the operator. The most advanced
class in this classification is the Digital Twin (DT). This class transfers all
data automatically. In extension to the DS, the DT also has automatic data
transfer from the digital object to the physical object. It means that the
digital object is aware of control for the physical object. The computed data
controls the physical object actively. With a DT, the digital object has huge
power over the physical object.
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2.1. Digital Energy Twin

Figure 2.1.: Digital Twin vs. Digital Shadow vs. Digital Model (Kritzinger et al., 2018)
Digitization has a physical object as a role model. The digital object tries to
reproduce the behavior of the physical object. Depending on the way of data
transfer, it is possible to distinguish between 3 types:
In a Digital Model, the data transfer is completely manual. Data from the
physical object are transferred by hand to the digital object and vice versa. With
a Digital Shadow, the transfer from the physical object to the digital object
is automated. Still, the transfer back to the physical object has to be done by
hand. A Digital Twin automates every connection between the physical and
the digital object.
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2. Methods

2.1.2. From Digital Twin to Digital Energy Twin

A DT represents a physical object in various ways. A special derivate is the
Digital Energy Twin (DET). As the name already says, the main target of
the DET is energy. First, it simulates the energy consumption of a physical
object with given data of any kind. The data can be energy consumptions or
any process data, enabling energy consumption calculation or prediction.

In the course of this thesis, the electroplating process is of special importance.
The computations of the energy consumption for an electroplating plant
need current, voltage, and plating duration. Computing energy consumption
of pumps needs information about workload, degree of efficiency, and
a function mapping to energy consumption. Secondly, the comparison
between the plant’s calculated energy consumption and the real measured
energy consumption happens. When there are several measuring points, the
process is more straightforward because a divide and conquer approach is
used by dividing the whole energy consumption into smaller chunks and
compare these chunks with the calculated one. This approach finds errors
in the calculations more quickly.
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2.2. Modelica and Dymola

2.2. Modelica and Dymola

This section is about Modelica, Dymola, and the implementation of an
electroplating plant using these tools. The combination of Chapter 2.1 and
Chapter 2.2 create a functional simulation of the plant. For results, see
Chapter 3.1.

2.2.1. Modelica

Modelica (Ramı́rez et al., 2017) is an open-source, object-oriented modeling
language for physical systems. Modelica compiles models into C-code.
Thus, models are computed efficiently on the CPU. Modelica uses acausal
modeling; this means that the system is described via differential-algebraic
equations (DAE). A equation has the form F(ẋ(t), x(t), y(t)) = 0. With
given conditions, Modelica solves the equations for unknowns. This acausal
approach supports the user by focusing on the modeling part rather than
on Modelica’s background. Variables have a special syntax, which allows
adding further information to them. The listing below shows a definition
of a parameter with details describing the unit of the parameter and an
explanation of the parameter.

parameter Real duration(unit="s")"Duration time in process X";

The unit system enables Modelica to evaluate given equations for correctness.
By default, Modelica supports a vast set of physical models. The standard
library contains elements to model mechanical, electrical, thermal, fluid, and
many other physical systems (Modelica Association, 2020). Furthermore, a
lot of free libraries provided by the community are available. This project
mainly uses the opensource library Buildings (Wetter et al., 2014). The library
offers great support for every kind of heating, cooling, and general energy
supplies in any existing kind.
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2. Methods

2.2.2. Dymola

Modelica has multiple graphical user interfaces (GUI). Widely used GUIs
are Dymola1, SimulationX2, Wolfram SystemModeler3, and Openmodelica4.
This project uses Dymola as its GUI. Peter Fritzson, 2011 and Fritzson
and Thiele, 2016 explain Modelica and present details about the langauge.
Modelica is text-based. The GUI adds graphical elements for coding. The
user can place blocks on the program surface. The blocks act as placeholders
for classes. Wires connect blocks in a bi-directional way. The connectors
are inputs and outputs simultaneously, which is useful for physical models
when for example, two containers connected via a pipe exchange a fluid.
When the fluid flows from container A to container B, the connector at
container A works as output, and the connector at container B works as
input. Vice versa, when the fluid flows from container B to container A, B’s
connector is the output, and A’s connector works as input. The GUI also
has an interface for simulation. This section shows the simulation results
in graphs and can display the results of a simulation. Figure 2.2 shows a
screenshot of the Dymola GUI with a loaded example program.

1https://www.3ds.com/de/produkte-und-services/catia/produkte/dymola/
2https://www.simulationx.de/
3https://www.wolfram.com/system-modeler/
4https://www.openmodelica.org/
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2.2. Modelica and Dymola

Figure 2.2.: A screenshot of the Dymola GUI
On the left side, the GUI shows the package browser, where all available
packages and modules are listed. The main windows show a heating system
model. In the right bottom corner is the switch between the modeling interface
and the simulation interface.
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2. Methods

2.3. Electroplating

Electroplating (Jelinek, 2013; Kanani, 2009; Unruh, 2016) is the electrochem-
ical process of deposing metal ions on a conductive material. Figure 2.3
shows a basic setup for electroplating. The main components are an energy
source, a cathode, an anode, and an electrolyte. The energy source must
be direct current (DC). Alternating current (AC) would reverse the ongo-
ing electrochemical process twice per swinging period. The anode consists
either of the material which plates the cathode or of inert material. Inert
material does not dissolve during the electroplating process. It is just a
tool to close the electric circuit. In this case, the dissolved metal ions in
the electrolyte plate the cathode. The concentration of deposing metal ions
in the electrolyte determines the maximum plating thickness. When the
anode is a non-inert material, it dissolves during the process. In this case,
the anode and the electrolyte must match. The electrolyte must have the
same ions dissolved as the anode delivers when it dissolves. When the
anode is copper, the electrolyte also must be made of a copper ion. Thus a
copper(II) sulfate (CuSO4) solution suits well. One would use silver nitrate
(AgNO3) as an electrolyte for a silver anode. The electrolyte’s main purpose
is the transportation of ions to the cathode, where they got deposited. When
there is a dissolvable anode, the concentration of metal (ME+/2+) ions stays
constant during the process. The electrolyte creates a concentration gradient
from the anode to the cathode because the anode adds ions to the solution,
and the cathode removes them. Mixing the liquid reduces this counterpro-
ductive effect. Metal ions deposit on the cathode. The process plates every
part of the cathode’s surface, which is in touch with the electrolyte. The
plating’s quality measurements are the surface quality, the plating thick-
ness, and the layer’s ionic structure. Electric field lines, the current density,
process duration, and temperature are responsible for the plating quality.
The temperature influences the ionic structure of the electroplated layer. It
does not have an impact on the plating thickness. Current density and the
process duration mainly define the plating thickness. Straight field lines are
essential for an even overall layer thickness.

12



2.3. Electroplating

Figure 2.3.: Schema electroplating
Electroplating has four main parts. The energy source delivers direct current
electricity for the reaction. The anode dissolves or is inert to the electrochemical
process, while on the cathode, the material deposits. The electrolyte dissolves
the metal ions and is responsible for the ion transport to the cathode, where
the ions solidify. Adapted from Unruh, 2016.
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2. Methods

Figure 2.4.: Field lines experiment
The experiment shows field lines in a magnetic ambient. The experiment uses a
magnet with north-pole (-) and south-pole (+) and iron filings. The iron filings
are magnetized and align themselves according to the field lines. Figure 2.5
vividly illustrates the result of the experiment. (Black and Davis, 1922)
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Figure 2.5.: Electric field lines schema
Electric field lines emerge between a positive and a negative electric charge
and represent the Coulomb force. They always flow from the positive to the
negative pole in a directed way. Electroplating needs as many straight field
lines as possible. Curved field lines generate edge cases where more material
deposits and result in an uneven layer. Adapted from Black and Davis, 1922;
Unruh, 2016.
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2. Methods

Figure 2.4 shows field lines in an experiment. The iron filings align them-
selves according to the field lines. The curvature of the field lines leads to
an uneven distribution of the iron filings on the poles’ edges. The same
effect also takes place in electroplating. In areas where many field lines hit,
more material deposits than in areas where fewer field lines hit. Figure 2.5
shows a comparison between straight and curved field lines. The upper case
represents the experiment in Figure 2.4. The lower case is an ideal setup
for an even deposition of material on a workpiece. The lab experiment (see
Chapter 2.3.1) and the industrial process aim to have straight field lines.
Both cannot use the ideal setup because of various reasons. On the one hand,
a workpiece does not always have a cylindric shape, and on the other hand,
it is way more expensive to build the anode as a cylinder and fill it with
electrolyte. It is also hard to transfer the workpiece through the cylindric
anode in an automated, continuous way.

The base of electroplating are redox reactions. Redox reactions are a com-
bination of reduction reactions and oxidation reactions. Redox reactions
include the movement of electrons (e– ) from the reduction reaction to the
oxidation reaction. In electroplating, the reduction reaction takes place on
the cathode. Reaction R1 shows the general reaction of deposing a metal
ion. X ∈N is the number of charges. For metal ions, it is usually 1 or 2. For
example copper is a doubly positively charged ion Cu2+, here X = 2.

MeX+ + X · e– Me [R1]

On the anode, the oxidation reaction takes place. Reaction R2 shows the
general reaction of dissolving metal.

Me MeX+ + X · e– [R2]

In sum, both reactions take place at the same time. The redox reaction is the
resulting reaction. Reaction R3 shows the whole redox reaction.

Me Me [R3]

The reactions do not work automatically, they need an additional energy
source. Figure 2.3 shows the energy source. Electroplating uses a direct
current energy source, which transfers the electrons from the anode to
the cathode. In other words: Transfering the electrons from the oxidation
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2.3. Electroplating

reaction to the reduction reaction. The plus pole of the energy source is an
electron sink, and the minus pole is an electron source. This explains why
the layer thickness depends on the time and the Amperage. The longer the
process lasts, the longer electrons can move, and the higher the amperage,
the more electrons move in a specific time interval.

2.3.1. Lab-scale experiment

The lab experiment aims to understand the electroplating process, the
influence of various parameters on the layer thickness, and the layer quality.
With the gathered data, a data model is created to describe the electroplating
process. All these steps help to better understand the process on an industrial
scale. The experiment took place at the department of experimental physics
at TU Graz. Within three weeks, over 200 electroplating experiments took
place. The experiment uses copper as anode and as cathode. Resulting, the
electrolyte is a CuSO4 solution. The energy source is a laboratory power
supply. To keep a constant temperature, water baths are used.

The varied parameters are duration time (t), temperature (T), and current
density (~j). Duration time and current density directly impact the coating
thickness, while temperature does not directly impact the coating thick-
ness. Temperature influences the structure of the crystal lattice. Its results
are smoother and trouble-free surfaces and layers. Equation 2.1 (Unruh,
2016) shows the influence of the parameters on the coating thickness and
Equation 2.2 explains the term current density.

te =
Ae
$
∗~j ∗ t ∗ ηi (2.1)

where:

te = Coating thickness
Ae = Electrochemical equivalent, Ae(Cu) = 1.19 g A−1 h−1

$ = Density of the layer material, $(Cu) = 8.96 g cm−3

~j = Current density, see Equation 2.2
t = Duration time
ηi = Current efficiency, ηi(Cu) ∼ 0.97
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2. Methods

~j =
I
A

(2.2)

where:

~j = Current density
I = Current
A = Coating area

2.4. Data models

2.4.1. Machine learning

Machine learning (ML) (Aggarwal, 2020) is a method to generate knowledge
from existing data. During training, machine learning algorithms learn
parameters for statistic models using training data. After the training, the
ML algorithm can predict further unknown data and does not need the
training data anymore. During the training phase, the algorithm finds
patterns and correlations in the given data. The project uses supervised
learning for the training phase. It means that the training data consists
of input values and the corresponding output value (= result), and the
algorithm tries to fit the data in the best possible way. A problem of ML
is overfitting. Figure 2.6 shows an example of overfitting. Here, a linear
and a polynomial model approximate a noisy linear function. While the
polynomial function has excellent results on the training set by overfitting
the values, it fails on the test data set. There are various models for ML. The
next sections give an overview of the used models in this thesis.

Neural Networks

The neural network is this kind of technology that is not an algorithm,
it is a network that has weights on it, and you can adjust the weights
so that it learns. You teach it through trials. – Howard Rheingold
(M. B. Patel, J. N. Patel, and Bhilota, 2020)
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2.4. Data models

Figure 2.6.: Overfitting
The data (blue and orange dots) shows a noisy linear function. The blue dots
represent the training data set, and the orange dots represent the test set. With
the training set, two models are trained. The green line represents the linear
model, and the red line represents a polynomial model. The linear model has
a R2 of 0.96 on the training data, while the polynomial model fits the data
perfectly and has a R2 of 1. But when the models apply to the test data, the R2

differ a lot. The R2 of the linear model is 0.99, while the R2 of the polynomial
model drops to 0.84. It is a typical case of overfitting. The model fits the training
data without having the background of the data in mind, and so it fails on
further data.
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The idea of Neural Networks (NN)(Rojas, 1996; Rashid, 2017; Yiu, 2019a;
Sai Ajay, 2020) is based on the way the human brain works. Neurons send
signals when they are triggered. But instead of chemical reactions triggering
the signal, mathematical equations are the reason for the reaction.

A NN has an input layer, an output layer and arbitrary many hidden layers.
The input layer takes the input to the NN. The inputs are called features. A
feature can be a measurement when we want to do regression, or it can be
a pixel of an image for classification. The output layer represents the result
of the prediction from the NN. In regression, the output layer consists of
one neuron, which holds the result. In classification, the output layer has
n neurons, where n is the number of classes. Each of the n neurons then
holds the probability that the input matches the represented class. Each
neuron in a layer is connected with each neuron in the next and the previous
layer. Each connection has a weight, which is multiplied by the value of the
outgoing neuron before it comes to the incoming neuron. A neuron holds a
bias, which is added to the incoming values, and the result is then the input
parameter for a non-linear function that produces the output of the neuron.
The non-linear function can, for example, be a sigmoid function.

The training of the NN is based on forward propagation and backward
propagation. During the learning phase, the features traverse the NN, and
the output is compared to the set’s label using a cost function. Adapting
the weights and biases can minimize the cost function. So backward prop-
agation uses the result of the cost function to traverse the neural network
backward from the output to the input. In the backward propagation, the
algorithm adapts the weights and biases to minimize the cost function. For
the implementation, scikit-learn (Pedregosa et al., 2011) as one of the most
popular and established Python packages is used.

Linear regression

Linear regression (LR) (Rohith, 2018) is a statistical method used in ML. The
main goal is to fit given data with a linear function. The primary condition
is to minimize the mean square error (MSE) between the predicted value
and the real data. The LR uses a cost function and minimizes it. The cost
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function (= MSE)

J =
1
n

n

∑
i=1

(predi − yi)
2 (2.3)

where:

n = Number of data points
predi = Predicted value, see Equation 2.4
yi = Data point

describes the error between the prediction and the real data. The predicted
value (predi) is calculated by a linear function.

predi = d +
m

∑
j=1

wj ∗ xj (2.4)

where:

w = Weight of the parameter
x = Dependend variables
d = Initial value

The LR uses the equations and finds the best fitting parameters (wj, d) to
minimize the MSE. For this, it uses a gradient descend method.

Polynomial regression

Polynomial regression (PR) (Nocedal, 2006) uses the same methods as LR,
but instead of a linear function, it uses a polynomial function as a cost
function. The degree of the polynomial is a choosable parameter. The choice
of the degree determines whether the calculated function overfits or not.
Choosing the degree in about the number of variables leads to a well-fitting
polynomial. If the degree is 1, the polynomial regression becomes a linear
regression.

21



2. Methods

Decision tree regression

Decision tree regression (DTR) (Li, 2019) is also a supervised machine learn-
ing algorithm. During the training phase, the algorithm builds a binary tree
with the decision results in the leafs. Each node has a true/false question,
which is answered with the given data to create a prediction. The informa-
tion gained by the split determines the splitting of the data in the left or
right subtree. The algorithm maximizes the information gain (IG) for each
split. For this, it optimizes the objective function.

IG(Dp, f ) = I(Dp)−
(

Nl
Np

I(Dl) +
Nr

Np
I(Dr)

)
(2.5)

where:

IG = Information gain
I = Impurity function
f = The feature for the node’s criterion
Dp = Dataset in the parent node
Dl = Dataset in the left child node
Dr = Dataset in the right child node
Np = Number of data points in the parent node
Nl = Number of data points in the left child node
Nr = Number of data points in the right child node

This means that the higher the parent node’s impurity and the smaller the
child node’s impurity, the higher the information gain. In regression, the
impurity function is the MSE between the real and the predicted value, as it
was already in LR and PR. The DTR regression also gives information about
the importance of the features. Figure 2.7 shows a decision tree of depth 2 for
the lab experiment. It shows that the most important features are the current
density and duration. The DTR is likely to overfit, so the tree’s maximal
depth is an important parameter to reduce this error. Figure 2.8 shows the
result of the decision tree from Figure 2.7. All predictions are in one of
the four possible categories. Deeper trees result in more categories and
subsequently also in more precise predictions. The bucket behavior of the
DTRs leads to a further disadvantage. It is impossible to detect correlations
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between the data; the model can only make new predictions within the
training data set. Outliers are always assigned to the nearest bucket.

Figure 2.7.: Decision tree
The tree has a maximal depth of 2. In each node, the first line shows the
condition, the second line shows the calculated MSE, and the third line shows
the number of samples. The last line is the corresponding value.

Random forest regression

Random forest regression (RFR) (Yiu, 2019b) is a successor of DTR. It uses
many uncorrelated DTR trees to vote for a result. The significant advantage
is that this algorithm uses the wisdom of the crowd as a key feature. It means
that there are many votes for the result, and when there is a maleficent
vote, it is overruled by many other correct votes. The single DTR trees
are uncorrelated. This ensures the statistical correctness of the algorithm.
Two mechanisms grant it. The first one is Bootstrap Aggregation (Bagging).
Small changes in training data lead to a totally different tree. When the
training data consists of N data points, each tree chooses a random set of
the training data. The newly selected data set has a size of N again; it also
means that some of the new data sets contain the same data points multiple
times. With many different training sets, many varied decision trees are
generated. The second mechanism also builds on the sensitivity of the trees.
Feature randomness lets each of the trees choose features randomly for all
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Figure 2.8.: DTR data and predictions
The black dots represent the training data. The black crosses stand for the test
data. Training data trains a DTR model of depth 2. The red dots represent the
predictions of the model. The R2 is 0.72 on the training set and 0.59 on the test
set. The model is not very accurate, but it shows the concept of DTRs quite
well. Deeper DTRs are more accurate.
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existing features. So various combinations of features a tree can choose from
are created.

2.5. Function-based approximation of data

During the project, the partners had recorded an enormous amount of data,
which is used in the DT models. Most of the data describe temperature
curves, voltage, and amperage values. All the values follow a specific pattern
influenced by the laws of physics and the plant’s control strategy. For
example, the temperature curves are nearly constant during production.
They only vary slightly around the set temperature. When the plant gets
turned off, the temperature falls according to the cooling curve of fluids

T(t) = TA + (T0 − TA) ∗ e−cct. (2.6)

where:

T(t) = Temperature at a given time t
t = The time to calculate the temperature
TA = The temperature of the ambient
T0 = The temperature of the fluid at the beginning of the cooldown

cc =
A coefficient affected by the volume of the fluid, the surface,
thermal capacity, and the density of the fluid

When production starts again, a linear function describes a head up

T(t) = T0 + cht. (2.7)

where:

T(t) = Temperature at a given time t
t = The time to calculate the temperature
T0 = The temperature of the fluid at the beginning of the head up

ch =
A coefficient affected by the volume of the fluid, the surface,
thermal capacity, and the density of the fluid
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Using the given data for further processing leads to a massive computing
overhead. The shown equations serve the same purpose but have a lot less
computing overhead. The collected data are still in use. With the data, the
functions are parametrized. The parametrization is a one-time overhead that
can be reused. For results see Chapter 3.3.
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3.1. Digital Energy Twin Model

3.1.1. The Digital Twin of an electroplating plant

This Section represents the results of Chapter 2.1 and Chapter 2.2. The model
is based on the scheme from Appendix A (ENERTEC Naftz & Partner GmbH
& Co KG, 2020). Figure 3.1 shows the created model in Dymola. The energy
scheme describes the flow of energy in the system. The scheme has two
parts. On the left-hand side, it shows the first plant (Werk 1), and on the
right-hand side, it shows the second plant (Werk 2). This thesis deals only
with the left-hand side because it is the central part of its development.
The colors of the connections stand for the pipes’ temperatures, where red
connections mean hot fluid and blue connections mean cold fluid.

The central parts of the scheme are the two tanks. One contains cold water
(KW Becken Werk 1), and the other contains warm water (WW Becken Werk
1). Whenever the warm water level rises too high, the water dumps into the
nearby river (End-Kontrolle KW 1). The cold water tank stores water for
the process. When the water level gets too low, it adds water from a well
(Brunnenwasser) and tempers it with water from the warm water tank. The
cold water tank delivers the water for process cooling, and the warm water
tank provides rinsing water. A hydraulic separator generates hot water. It
mainly uses waste heat from the other machines for the heat up. If not
enough waste heat is present, the plant has a few options to generate heat. It
can activate a heat pump (WP) and cool down warm water from the warm
water tank and bring it to the cold water tank. In the last instance, natural
gas is used to heat the hydraulic separator.
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Figure 3.1.: Energy flow model in Modelica
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The Modelica model in Figure 3.1 aims to imitate the energy scheme, the
control of the machines, and the security mechanisms. It also uses the
collected data from the real plant for the simulations. One of the main
advantages of Modelica is visualization. After studying the energy scheme,
the Modelica model looks similar to the real plant, and it is easy to navigate
in the model and find the components. The next part shows the implemented
control mechanisms. All implementations are designed as state machines
to avoid chattering. Chattering is a misbehavior in numerical methods.
At a specific point, the calculation jumps between multiple states within
milliseconds. A specific point can be a threshold determining on or off, for
example. State machines also use delays before they change to the next state.
That avoids chattering and is also used to simulate the start-up time and
the switch-off time.
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Security mechanism - Overflow detection

Figure 3.2.: Overflow detection model
On the left-hand side, the model shows the inputs. The dark blue painted arrows
are the inputs and hold values for the current water level and the maximum
water level in the tank. The model has three thresholds (Overflow, Normal,
Empty) determining the four possible levels. Logical equations transform the
input values and the thresholds into four boolean signals for the state machine
in the middle of the picture. Depending on the state machine’s boolean input,
the state, and the delays, the state machine can produce an overflow alert. The
alert is represented by a boolean signal and stored in a flip-flop register. The
right-hand side shows the outputs of the overflow detection.

Overflow detection is a safety mechanism. It controls the water level in the
tanks. When the level rises too high, it directs water into the nearby river.
Figure 3.2 shows the overflow detection. The core component is the state
machine in the middle of the model. It has six states. The initial state is the
starting point for the calculations. After the initial state, the machine has
four alternating states. In each iteration, only one of the four possible states
is active. By definition of the module, the first state that gets activated is
the prior one used in the current iteration. The four alternating states all
have a separate boolean output. It determines whether the output shows
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3.1. Digital Energy Twin Model

an overflow alert or not. The last state is an end state. It does not have
any effect. It is needed for the completeness of the program. Each state
has a transition block (black vertical bar) in front and behind it. Transitions
serve two purposes. At first, they release or block a path depending on the
boolean input they receive. If there is no input, they always release the path.
The second purpose is to introduce delays. As otherwise, the chattering
effect would happen. From the data around the water tanks, it is clear that
an overflow takes several minutes to happen, and it is not necessary to
react to an overflow within seconds. It is sufficient to respond within a few
minutes. So the transition between the last state and the initial state has a
delay of five minutes. The following equations describe the input for the
transitions.

σFULL = lcurr ≥ (lmax ∗ tFULL) (3.1)
σA.FULL = (lcurr < (lmax ∗ tFULL)) ∧ (lcurr ≥ (lmax ∗ tNORMAL)) (3.2)
σA.EMPTY = (lcurr < (lmax ∗ tNORMAL)) ∧ (lcurr ≥ (lmax ∗ tEMPTY)) (3.3)
σEMPTY = lcurr < (lmax ∗ tEMPTY) (3.4)

where:

σFULL = Signal (Boolean value) determing if tanks is full
σA.FULL = Signal (Boolean value) determing if tanks is almost full
σA.EMPTY = Signal (Boolean value) determing if tanks is almost empty
σEMPTY = Signal (Boolean value) determing if tanks is empty
lcurr = Current water level of the tank
lmax = Maximal water level of the tank
tFULL = Threshold for full water level
tNORMAL = Threshold for normal water level
tEMPTY = Threshold for low water level
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A flip-flop register stores the result of the overflow detection. For the flip-flop
register following equations hold.

S = sFULL (3.5)
R = sA.FULL ∨ sA.EMPTY ∨ sEMPTY (3.6)

where:

S = Signal to trigger the set of the flip-flop register
R = Signal to trigger the reset of the flip-flop register
sFULL = Signal determing if state FULL is active
sA.FULL = Signal determing if state ALMOST FULL is active
sA.EMPTY = Signal determing if state ALMOST EMPTY is active
sEMPTY = Signal determing if state EMPTY is active

Figure 3.3.: Overflow detection result
The upper figure shows the current, maximum, and trigger level of the overflow
detection. Every time the current level goes above the trigger level (at hour 644

and hour 662), the lower figure switches from off to on. When the level falls
below the trigger level (at hour 648 and hour 664), also the signal turns off.

Figure 3.3 shows the result of the overflow detection. The overflow detection
works as expected. Whenever the water level rises above the trigger level,
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the signal turns on, and then the water level drops again. Modelica models
crash if there is an overflow in a component. This security mechanism saves
the model from crashing and also imitates the real object well.

Process mechanism - Compressor control

Figure 3.4.: Compressor control model
The model only has one input, which is the current air consumption of the
plant. There are also parameters for the power of the compressors. The state
machine in the middle of the figure has two states. One represents the first
production mode, where two dynamic compressors handle the compressed air
production. The second state takes the case when the two dynamic compressors
do not have enough power to handle the required air, and the third compressor
needs to be activated. Depending on the state, the model calculates the dynamic
compressors’ power level and the static compressor’s control signal.
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The plant uses compressed air to drive drilling machines. Depending on the
capacity utilization of the drilling machines, the compressed air consump-
tion varies. The plant uses three compressors to produce compressed air.
Two compressors are dynamic compressors with dynamic rotation speed.
The compressors are more energy-efficient than the third compressor, which
is a static one. It can only be turned on or off. It is desired that the dynamic
compressors run as much as possible, and that the static compressor is
only active when the dynamic compressors cannot handle the current air
consumption. Figure 3.4 shows the compressor control model. It has an
input for the current air consumption and uses maximal producible air
amount as parameters. A central part is a state machine. In total, it has four
states. An initial state, which is the entry for the model. Two states represent
the production modes. The first mode handles the case that the dynamic
compressors have enough power to produce the required air consumption.
The second state assumes that all three compressors must be in operation
to fulfill the compressed air needs. The program needs the last state for
correctness reasons. To decide which state is active, the transitions (vertical
black bars) have the following conditions.

σ2C = (ηA < 0.95 ∗ (2 ∗min(pC1, pC2)))∨
((ηA < 0.75 ∗ (2 ∗min(pC1, pC2))) ∧ s2c) (3.7)

σ3C = ¬(ηA < 0.95 ∗ (2 ∗min(pC1, pC2)))

(3.8)

where:

σ2C = Signal (Boolean value) determining if 2 compressors needed
σ3C = Signal (Boolean value) determining if 3 compresser needed
ηA = The current compressed air consumption
min() = A function returning the minimal value of its parameters
pC1 = Power of dynamic compressor 1

pC2 = Power of dynamic compressor 2

s2C = Boolean value determing if 2 compresser mode active
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Depending on which transition is activated, a flip-flop register R stores the
result. If R is one, then two compressors are active; otherwise, all three
compressors are used. The flip-flop register directly influences the static
compressor. If R is one, then the static compressor is off and if R is zero, then
the static compressor is on. The power level for the dynamic compressors
calculates as following.

plC1 =

{
( ηA

2 ) ∗ p−1
C1 2 compressor mode

( ηA−pS
2 ) ∗ p−1

C1 3 compressor mode
(3.9)

plC2 =

{
( ηA

2 ) ∗ p−1
C2 2 compressor mode

( ηA−pS
2 ) ∗ p−1

C2 3 compressor mode
(3.10)

where:

plC1 = Power level of compressor 1

plC2 = Power level of compressor 2

ηA = The current compressed air consumption
pC1 = Power of dynamic compressor 1

pC2 = Power of dynamic compressor 2

pS = Power of static compressor

Figure 3.5 shows the result of the implemented algorithm. As the require-
ments request, the dynamic compressors run as much as possible. Only in
peak times, the static compressor runs.
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Figure 3.5.: Compressor control result
The upper figure shows the current air consumption. The data are randomly
generated values from a test suit. The below figure shows the control signals
for the compressors. The static compressor has a fixed rotational speed and
has only two operating modes. It can be on or off. The dynamic compressors
can vary the rotation speed. So the control signal is the share of the maximum
power of the compressors. As long as the dynamic compressors can handle the
air consumption, the static compressor is off (for example, between hours 34 -
50). But when the air consumption rises and the dynamic compressors reach
their limits, the static compressor turns on and supports the compressed air
production (e.g., hour 50).
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Process mechanism - Tank logic

Figure 3.6.: Tank logic model
The tank logic module contains the logic for triggers depending on the tanks’
water level and the water temperature. It includes the overflow logic from
Figure 3.2 as modules twice - one time for the cold water tank and one time for
the warm water tank. Additionally, there are logical equations for heat pumps
and heat exchangers switches. The module also decides if water from the well
is needed and if the water in the cold water tank needs to heat up.

As shown in the overflow detection chapter, the tank levels are critical
measurements for the control logic, but there is more information within
the tank levels. The control state of other machines like heat exchangers
or heat pumps depends on the tank levels. Figure 3.6 shows the tank logic
module, which controls several devices based on the tank levels. The inputs
are temperatures and the water levels of the tanks. Additionally, boolean
inputs determine the need for heat for the hydraulic separator and the
low-temperature sector. As Appendix A shows, there are many devices
connected to the water tanks. A heat pump (WP) uses warm water to
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generate extra heat for the hydraulic separator by cooling the warm water
down and deliver it to the cold water tank. Another device is the heat
exchanger (WT KW), which creates load for the chillers (KM 1-3), producing
more waste heat, which heats the hydraulic separator. The last control unit
is the refilling of the tank. There is also a control part for the inlet of well
water and the cold water tank’s tempering.

The following equations describe the state of the heat pump and the heat
exchanger.

rHP = ηHS ∧ λWW ∧ ¬ωKW (3.11)
rHE = ηLT ∧ λWW ∧ ¬ωKW (3.12)
λWW = sFULL ∨ sA.FULL (3.13)

where:

rHP = On/off status of the heat pump
rHE = On/off status of the heat exchanger
ηHS = Heat demant in the hydraulic seperator
ηLT = Heat demant in the low temperature section
ωKW = Overflow detection in the cold water tank
λWW = Warm water tank contains enough water
sFULL,WW = State FULL in the warm water tank
sA.FULL,WW = State ALMOST FULL in the warm water tank

The following equations describe the water level and the water temperature
in the cold water tank.

rFT = εKW ∧ ¬rHP ∧ ¬rHE (3.14)
rHC = τCW < tTEMP,LOW ∧ ¬rHE ∧ ¬rHP (3.15)

where:

rFT = On/off status of the well inlet
rHC = On/off status of the cold water tank heat
εKW = Cold water tank level EMPTY
τCW = Temperature of the cold water tank
tTEMP,LOW = Threshold for low temperature
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Figure 3.7.: Heat pump result
The heat pump is only active if the warm water level is high enough and
the hydraulic separator needs the energy. The upper chart shows the warm
water level and the control signal from the hydraulic separator. The lower
graph shows the resulting control signal for the heat pump. The first on-phase
(hour 14 to hour 18) of the heat pump shows the case where the hydraulic
separator would need energy earlier, but there is too little water in the tank,
and the controller cannot turn on the heat pump. After a while, the water level
rises, and the heat pump turns on. The last on-phase shows the case where all
conditions meet, and the heat pump is on.
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Figure 3.8.: Heat exchanger result
The heat exchanger only works when the low-temperature sector needs coldness
and the warm water level is high enough. The first on-phase shows the case
where all conditions meet (hour 2 to hour 5). The second and the third on-phase
show that the low-temperature sector needs more cold energy, but the water
tank level is too low, so it is not always possible to provide.
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Figure 3.9.: Well inlet result
The well inlet is responsible for the refilling of the cold water tank. While the
heat pump or the heat exchanger is running, it is not needed to use well water
to refill the cold water tank because the two devices feed the cold water tank
with water. If the cold water level is shallow, the well inlet is active no matter
whether the heat exchanger or the heat pump runs. This the case for the last
on-phase in the lower chart (hour 34 to hour 38). All the other cases do not have
an urgent need, so the water feed from the heat pump and heat exchanger are
sufficient. The upper chart shows the cold water level and the control signals
for the heat pump and the heat exchanger’s control signal.
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Figure 3.10.: Cold water heater result
If the cold water gets too cold, the warm water tank heats it if some conditions
meet. The cold water tank must not have an overflow, and the warm water tank
must contain enough water. Further, the heat exchanger and the heat pump
should also be off, because otherwise they would produce tempered water. If
the cold water temperature is far too low from production set temperature,
it is acceptable to use the heat pump, the heat exchanger, and the warm
water to heat the cold water tank. The first and the last on-phase in the lower
chart show this behavior. The upper chart shows the necessary values for
decision-making.
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Figure 3.7, Figure 3.8,Figure 3.9, and Figure 3.10 show the results of the
control strategies. The inputs are generated to test all possible operating
modes and edge cases.
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List of devices (In cooperation with Grömer, 2021)

Table 3.1.: Lab experiment: Equipment and devices

ID device producer specification
3.1.1 Water bath 1 (55

◦C/60
◦C) Lauda Aqualine AL 12

3.1.2 Water bath 2 (40
◦C) Grant JB series -

3.1.3 Water bath 3 (25
◦C) - -

3.1.4 Water bath 4 (45
◦C/50

◦C) Harry Gestigkeit GmbH W16, 1480202

3.1.5 Lab power supply 1 Volttech RNG 3003 (1)
3.1.6 Lab power supply 2 Volttech RNG 3003 (2)
3.1.7 Lab power supply 3 GW DC Power Supply GPR-3030 D
3.1.8 Lab power supply 4 ELV PS 7030

3.1.9 Multimeter Keithley 179A TRMS Multimeter
3.1.10 Thermometer Voltcraft Datalogger K 204, Inv. Nr: 060600503

3.1.11 Magnetic Stirrer Carl Roth R 1000

3.1.12 Scales Ikea Drycken
3.1.13 Hair dryer - -
3.1.14 Ultrasonic bath Bandelin Sonorex 0146799

3.1.15 Thermal element - -
3.1.16 KPG stirrer Janke&Kunkel Inv.Nr: 0175973

3.1.17 Copper Substrate - -
3.1.18 Caliper - -
3.1.19 Beaker Glass Carl Roth volume: 1 l
3.1.20 Tweezer - -
3.1.21 Crocodile clip - -
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List of chemicals and materials (In cooperation with Grömer, 2021)

Table 3.2.: Lab experiment: Materials and chemicals

ID material/chemical producer specification
3.2.1 Copper sulfate pentahydrate Carl Roth Copper(III) sulphate pentahydrate
3.2.2 Copper sheet - -
3.2.3 Sulfuric acid Carl Roth 25 %
3.2.4 Destillated water - -
3.2.5 Perfume-free soap (tenside) - -

Copper sulfate pentahydrate1

H302: Harmful if swallowed.
H318: Causes serious eye damage.
H410: Very toxic to aquatic life with long lasting effects.
P273: Avoid release to the environment.
P280: Wear protective gloves/protective clothing/eye pro-
tection/face protection.
P305 + P351 + P338: IF IN EYES: Rinse cautiously with water
for several minutes. Remove contact lenses, if present and
easy to do. Continue rinsing.
P313: Get medical advice/attention.

Sulfuric acid2

H290: May be corrosive to metals.
H314: Causes severe skin burns and eye damage.
P280: Wear protective gloves/protective clothing/eye pro-
tection/face protection.
P301 + P330 + P331: IF SWALLOWED: rinse mouth. Do
NOT induce vomitting.
P303 + P361 + P353: IF ON SKIN (or hair): Remove/Take
off immediately all contaminated clothing. Rinse skin with
water/shower.
P305 + P351 + P338: IF IN EYES: Rinse cautiously with
water for several minutes. Remove contact lenses, if present
and easy to do. Continue rinsing.

1http://gestis.itrust.de/nxt/gateway.dll/gestis_de/491473.xml
2http://gestis.itrust.de/nxt/gateway.dll/gestis_de/001160.xml
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3. Results

3.2. Electroplating and Predictions

3.2.1. Lab-scale experiment

The lab-scale experiment is a cooperation with Grömer, 2021.

Lab preparation

The first thing to do in the lab is the setup of the heated water baths
(Table 3.1.1, Table 3.1.2, Table 3.1.3, Table 3.1.4). They need up to 20 minutes
to reach and stabilize the set temperature. The second step is to clean the
utilities such as beaker glasses (Table 3.1.19), stirrer (Table 3.1.16), and
tweezers (Table 3.1.20).

Production of the electrolyte

According to Jelinek, 2013, the electrolyte should have a mass concen-
tration of 100 g L−1 < β(CuSO4) < 200 g L−1. A batch of electrolyte has
760 mL. This is enough liquid to do four electroplatings parallely. First,
m(CuSO4 · 5 H2O) = 133.5 g copper sulfate pentahydrate (Table 3.2.1) are
weighed. In a second step the CuSO4 · 5 H2O is dissolved in m(H2O) = 750 g
destilled water (Table 3.2.4). The solution homogenizes for 10 minutes using
a magnetic stirrer (Table 3.1.11). By adding V(H2SO4) = 10 mL sulfuric acid
(Table 3.2.3) the pH-value is set to pH = 4. After a further homogenization
the electrolyte was divided into beakers and tempered in the heated water
baths.

Prepare the copper plates

The copper plates need a few cleaning steps each time before electroplating.
In the first step, the copper plates are cleaned with a sponge combined with
a scouring pad. It is a mechanical cleaning step to remove copper patina
and anode sludge. The copper patina is the product of the natural aging of
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copper, depending on weather conditions. It is a copper-(carbonate-sulfate-
chloride)-hydroxide mixture. Anode sludge contains all non-dissolvable
contaminations of the copper plate. The mechanical cleaning with the sponge
takes about five minutes per copper plate. The best indicator is when the
whole plate has a light copper color (pale pink color). Then the copper
plates are rinsed with water. The second cleaning step is ultrasonic cleaning
in a ultrasonic bath (Table 3.1.14). Perfume-free soap (Table 3.2.5) is added
to the bathwater as a tenside to remove grease residues. Then the copper
plates are rinsed with water again. The last step is the acid cleaning step.
Sulfuric acid (Table 3.2.3) cleans the copper plates’ surfaces and dissolves
surface contaminations. Calculating the current density (Equation 2.2) needs
the coated copper plate area. Insulation tape swathed the copper plate to
have a defined area. The area is then measured with a caliper (Table 3.1.18).
The last step is the labeling and the weighting of the copper plates.

Electroplating

After preparation, labeling, and documentation, the electroplating can start.
Crocodile clips (Table 3.1.21) connect the copper plate with the cables. The
lab power supplies (Table 3.1.5, Table 3.1.6, Table 3.1.7, Table 3.1.8) deliver
the energy for the electroplating process. The tempered beaker glasses hold
the copper plates separated from each other. Thus they do not touch each
other and produce a short circuit. The electrolyte must cover the marked
area where the material should deposit. Figure 3.11 shows the schematic
representation of the setup. The lab power supplies produce the energy for
the reaction. The parameters are set according to the experiments’ plan. Each
experiment has its own duration time, current density, and temperature.
During the electroplating process, measurements take place. For description,
see the Documentation section below. After the duration time, the process
stops by turning off the lab power supply. The operator removes the copper
plates from the beaker glass, rinses them with water, and dries them with a
hairdryer (Table 3.1.13). Figure 3.12 and Figure 3.13 show pictures taken in
the lab.
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Figure 3.11.: Experimental setup scheme
The upper part shows a view from above. It shows a heated water bath
containing the beaker glass where the electroplating takes place. It also shows
the arrangement of the copper plates and the wiring. The second figure shows
a frontal view of the electroplating process. On the left-hand side, it shows the
beaker glass with the copper plates and the wiring. It also shows the isolation
tape in green, which separates the processed copper area from the rest of the
plate. The right-hand side shows a state-of-the-art lab power supply and the
connections to the copper plates.
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Figure 3.12.: Experimental setup
The picture shows the setup from Figure 3.11 in the lab.
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Figure 3.13.: Electroplating result
The picture shows the result of the electroplating. In the top mid, it shows the
imprint of the holder. At the edges, non-perfectly linear field lines produce a
higher deposition than on the surfaces. On the surface is plane and equally
distributed deposition.
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Documentation

Figure 3.14.: Documentation template

Figure 3.14 shows the template for the documentation. It contains all rele-
vant information for the evaluation. The experiment number (VersuchsNr.)
is a sequential number to identify and separate the individual experiments.
In the target (SOLL) row, the parameters for the experiment are entered.
It holds the duration time (min.), the temperature (°C), and the current
density(A/dm∧2). The current density depends on the area and the current
(see Equation 2.2) and cannot be set directly. Thus the current must be cal-
culated. The table in the middle of the template holds relevant information
about the copper plates. It holds the label (Nummer) of the plates, their
start (Masse Start [g]), and end (Masse Ende [g]) mass, and the area (Fläche
Kathode [cm∧2]) which is in contact with the electrolyte. The copper plate
area’s length and width are used to calculate the area which is in contact
with the electrolyte. The last six lines hold information for the electroplating
process. It holds the electrolyte’s temperature at the beginning (Temp 1[°C]),
in the middle (Temp 2[°C]), and at the end (Temp 3[°C]) of the process. The
same holds for the amperage (I 1[A], I 2[A], I 3[A]). Further, the template
has a field for the voltage (U [V]), the number of the lab power supply
(Netzteil), the start (Startzeit) and end (Endzeit) time, and the duration
(Dauer [min−]) as a result of them. The results of the experiment are in
Appendix C (original values) and in Appendix B (processed values).
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Evaluation

The evaluation uses different methods to calculate the layer thickness and
the energy consumption of the electroplating process. The original data (see
Appendix C) are transferred to a spreadsheet. The transfer is validated by
reference calculations, which are in a certain range or calculated from the
data. Per definition of the experiment criteria the current density must be in
range of 0.5 A dm−2 to 5 A dm−2 (Unruh, 2016). The plating area is also a
fixed value and is between 25 cm2 and 35 cm2. The last criterion is the mass
difference. Optimally it is zero, but caused by measuring errors, this does
not always hold. So an epsilon ε = 0.07 g is added to compensate for the
errors.

Figure 3.14 shows the distributions of the influencing parameters in seper-
ated charts. Each parameter has its own bar chart. Figure 3.15(a) shows the
distribution of the current density. The value should be between 0.5 A dm−2

and 5 A dm−2. 18 results (∼ 9%) are out of range. They are still used in the
evaluation because they are valid results. The boundaries were set in the lab
experiment preparations to get a rough idea of the values. The boundaries
for the duration are 10 min as the minimum and 90 min as the maximum.
Figure 3.15(b) shows the distribution of the duration. The data set has 4
out layers (∼ 2%). The results are valid and used in the evaluation. The
temperature distribution does not have any out layers. Figure 3.15(c) shows
its distribution. During the experiments, only three results are invalid. One
was a documentation error, and two results are invalid because of technical
issues.

The valid data sets are the basis for further calculations and evaluations.
The first approach is to use Equation 2.1 to calculate the layer thickness
from the parameters and compare them to the gathered data. The coefficient
of determination R2 (Rinne and Ickler, 1986) determines the comparison.
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5320− 30 ◦C
5730− 40 ◦C

3940− 50 ◦C
4450− 60 ◦C

860− 70 ◦C

0 10 20 30 40 50 60
# experiments

(c) Temperature distribution

Figure 3.14.: Distribution of experiment parameters
The lab experiments consist of over 200 experiments. In each experiment, the
duration, the current density, and the temperature are chosen randomly within
given boundaries. The bar charts show the distribution of the parameters.

R2 =
∑ (ŷi − ȳ)2

∑ (yi − ȳ)2 (3.16)

where:

ŷi = Predicted measurement
yi = Single measurement
ȳ = Mean of y

A further step uses neural networks and other machine learning methods
to predict the layer thickness. Chapter 2.4 gives an overview of the used
methods. The methods take the duration, temperature, and current density
as input. All methods use supervised learning, so the layer thickness (resp.
the mass of deposit copper) is also a parameter for the training. The trained
models are used to predict further measurements. The results of the models
can be found in Chapter 3.2.2. The methods described map the process well.
The last step is the calculation of the needed electric energy for the procedure.
The electric power P, and the electric potential energy W (Plamann and
Schulz, 2016) can be calculated from the existing data.

W = P ∗ t (3.17)
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where:

W = Electric potential energy
P = Electric power, see Equation 3.18

t = Duration time

P = U ∗ I (3.18)

where:

P = Electric power
U = Voltage
I = Electric current

The measurements and the calculated data are used to train a model, as well.
This time the predicted value is the electric potential energy. The results of
these models are in Chapter 3.2.3.

3.2.2. Coating thickness prediction

Appendix B shows 2 tables. The first table contains the documented data
from the lab experiment. The second table contains the calculated values
from the first table. The first evaluation of the data is the calculation of the
coating thickness in two ways. The first approach is the expected coating
thickness te, using Equation 2.1. The second approach is to calculate the real
coating thickness tr from the deposit mass of copper and the coating area.

tr =
∆mC

$ ∗ A
(3.19)

where:

tr = Real coating thickness
∆mC = Mass of deposit copper
$ = Density of copper
A = Coating area
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In more than 90 % of the experiments, the deviation between the real and the
expected coating thickness is smaller than 15 %. The R2 over the whole data
set is 0.98, which is very close to 1 and, therefore, excellent. The calculated
real coating thickness tr is the label for the documented data. With data and
the corresponding label, models are trained to predict the coating thickness.
The data set is divided and 70% of the data are used as training data. The
used models are described in Chapter 2.4.

Figure 3.15.: Coating thickness model
A machine learning model needs the duration, the current density, and the
temperature to predict the coating thickness.

Figure 3.15 shows the input features and the output/label for the created
models. Chapter 4.2.1 holds the interpretation of the coating thickness
prediction results. To get comparable and reproducible results, the random
state is fixed for all methods which use it.

Linear regression

The linear regression does not need any further information than the data
as input. The R2 value determined the similarity between the predicted and
the real values. It is applied to the test set and the training set. Table 3.3
shows the results on the test set and the training set.
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Table 3.3.: Coating thickness prediction: Linear regression model
R2 on test set R2 on training set

Linear regression 0.812 0.777

Polynomial regression

The polynomial regression needs the maximal degree of the polynomial as
an additional parameter. The model is created seven times with different
maximal degree parameters. Setting the degree to one, the polynomial
regression model becomes a linear regression model. Table 3.4 shows the
results on the test set and the training set. With a degree of 7 the R2 becomes
negative. This happens when the model is worse than the null hypothesis.
This means that the model fits the data worse than a straight line.

Table 3.4.: Coating thickness prediction: Polynomial regression models

Maximal degree R2 on test set R2 on training set
1 0.812 0.777

2 0.982 0.974

3 0.977 0.979

4 0.975 0.983

5 0.974 0.986

6 0.898 0.989

7 -1.357 0.993

Decision tree regression

The Decision tree regression needs the maximal depth of the tree as an
additional parameter. The model is created 19 times with different maximal
depth parameters. Table 3.5 shows the results on the test set and the training
set.
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Table 3.5.: Coating thickness prediction: Decision tree regression models

Maximal depth R2 on test set R2 on training set
1 0.385 0.370

2 0.596 0.725

3 0.730 0.845

4 0.869 0.944

5 0.914 0.977

6 0.922 0.993

7 0.940 0.997

8 0.931 0.999

9 0.933 1.000

10 0.932 1.000

11 0.938 1.000

12 0.937 1.000

13 0.930 1.000

14 0.936 1.000

15 0.929 1.000

16 0.931 1.000

17 0.938 1.000

18 0.931 1.000

19 0.937 1.000

Random forest regression

The random forest regression does not need any further information than
the data as input. Table 3.6 shows the results on the test set and the training
set.

Table 3.6.: Coating thickness prediction: Random forest regression model
R2 on test set R2 on training set

Random forest regression 0.959 0.994
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Neural networks

The neural network consists of three hidden layers with 30 neurons each.
The input layer is also a 30 neurons layer. Table 3.7 shows the results on the
test set and the training set.

Table 3.7.: Coating thickness prediction: Neural network
R2 on test set R2 on training set

Neural network 0.946 0.991

3.2.3. Electric potential energy prediction

To calculate the real electric potential energy Equation 3.17 and Equation 3.18

are used. The results are the labels for the data models. Further, the data
models get the duration, the temperature, the amperage, and the coating
area as inputs. Each model used 70% of the data as training data. Figure 3.16

shows the structure of the data model. Chapter 4.2.2 holds the interpretation
of the power prediction results. To get comparable and reproducible results,
the random state is fixed for all methods which use it.

Figure 3.16.: Electric potential energy model
A machine learning model needs the duration, the amperage, the voltage, the
coating area, and the temperature to predict the electric potential energy.

59



3. Results

Linear regression and Polynomial regression

As stated in the last Chapter, linear regression is the same as a polynomial
regression with one as its maximal degree. Thus both evaluations are com-
bined in one section. The maximal degree parameter is varied from one to
eight. Table 3.8 shows the results for varying degrees.

Table 3.8.: Electric potential energy: Linear regression and polynomial regression models

Maximal degree R2 on test set R2 on training set
1 = Linear regression 0.816 0.813

2 0.973 0.988

3 0.999 1.000

4 1.000 1.000

5 1.000 1.000

6 0.997 1.000

7 0.959 1.000

8 -0.694 1.000

Decission tree regression

The Decision tree regression needs the maximal depth of the tree as an
additional parameter. The model is created 19 times with different maximal
depth parameters. Table 3.9 shows the results on the test set and the training
set.
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Table 3.9.: Electric potential energy: Decision tree regression

Maximal depth R2 on test set R2 on training set
1 0.574 0.474

2 0.574 0.726

3 0.728 0.863

4 0.718 0.931

5 0.758 0.978

6 0.789 0.993

7 0.842 0.997

8 0.801 0.999

9 0.895 1.000

10 0.857 1.000

11 0.885 1.000

12 0.774 1.000

13 0.884 1.000

14 0.782 1.000

15 0.788 1.000

16 0.854 1.000

17 0.869 1.000

18 0.847 1.000

19 0.859 1.000

Random forest regression

The random forest regression does not need any further information than
the data as input. Table 3.10 shows the results on the test set and the training
set.

Table 3.10.: Electric potential energy: Random forest regression model
R2 on test set R2 on training set

Random forest regression 0.887 0.987
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Neural network

The neural network consists of three hidden layers with 30 neurons each.
The input layer is also a 30 neurons layer. Table 3.11 shows the results on
the test set and the training set.

Table 3.11.: Electric potential energy: Neural network
R2 on test set R2 on training set

Neural network 0.939 0.990

3.3. Function-based approximation of data

This section presents the structure of the program and its results. The
approximation is written in Python. The script has the following steps:

• Load data
• Calculate function parameters
• Calculate off-times
• Predict data for the future

Load data

In the course of this thesis, a program was developed to perform the
function-based approximation automatically. The program has to load two
files. The first file is a comma-separated values file (CSV file). It contains
the data and the corresponding timestamps. The program uses this file
to calculate the parameters for the approximation functions and to draw
compare graphs. The second file contains information about the off times
of the plant. The program uses this data to decide whether the plant is in
production mode or turned off. Further, the data is needed to determine
the point when the plant has to start heating, so it reaches production
temperature when production begins.
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Calculate function parameters

In the first place, the program calculates the default value for production.
This value is the set point of the plant. The only known fact at this point
is that the plant is mostly in production mode and only in about 15%
(Weekend and Maintenance) off. So the program calculates the median M
and the standard derivation SD of the data from the CSV-file. The median
method sorts all n values from lowest to highest and picks the value located
at index n/2 as its result. It is very likely to choose a value that belongs
to the production phase because the production phase is about 85% of the
time. To be sure that the value is a production phase value, the standard
deviation is calculated, and then the program filters the whole data set and
removes every value which is not in the range M± SD. On the filtered data
set, the median is again calculated. This double-check removes every value
which does not belong to the production phase and results in a value used
as set point SP and the corresponding SD. In a second step, the variation
around the SP is modeled. The deviation around the SP is shaped like a
sine function. When the value gets too low, the bath starts heating and stops
when it reaches a turn-off value. This up and down makes the data look
like they are oscillating, and the sine function represents this behavior. The
program used a general sine function

f (t) = A ∗ sin(ω ∗ t + φ) + α (3.20)

where:

f (t) = Value at a given time t
A = The amplitude of the sine function
ω = Correction factor for t
φ = The shift of the phase
α = Offset in y direction

The program fits the parameters to the given data using Scipys (Virtanen
et al., 2020) optimization functions. This results in parameters A, ω, φ,
and α to describe the sine function. In the last step, the parameters for the
cooldown and the heat up are calculated. This step aims to find parameters
for the Equation 2.6 and Equation 2.7. It first identifies the sequences where
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the cooldown and the heat up happen by filtering the data and removing
the data at the SP± SD and then finds the most prolonged phase where
it happens. This way it gets the most precise values for the parameter
calculation. Then the program again fits the equations to the data using the
Scipy package. By doing this, the parameters for cooldown and heat up are
determined.

Calculate off-times

The off-times are mostly determined by the maintenance and the weekends.
During the creation of the offtime-object, the program calculates already
the point when heat up has to start. For this it solves Equation 2.6 and
Equation 2.7 for the time when they meet at the same point. It results in

t =

W
(

e
cc∗(TX−TA)

ch ∗cc∗(T0−TA)
ch

)
∗ ch − cc ∗ (TX − TA)

cc ∗ ch
(3.21)

where:

t = Time where the two functions are equal
T0 = The temperature of the fluid at the beginning of cooldown
TA = The temperature of the ambient
TX = Fictive temperature where heat up has to start at begin of cooldown

cc =
A coefficient affected by the volume of the fluid, the surface,
thermal capacity, and the density of the fluid

ch =
A coefficient affected by the volume of the fluid, the surface,
thermal capacity, and the density of the fluid

W = LambertW function

The precalculation makes the prediction less compute intensely. Instead of
checking each time in which phase of the off-time a given timestamp is, the
program has to check if the timestamp is smaller than t, then it is in the
cooldown phase; otherwise, it is in the heat-up phase.
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Predict data for the future

After all the preparations, the prediction is an easy task. For each given
timestamp, the program checks if it is in an off-time or not. If it is not,
then it uses the calculated sine parameters to get the prediction value. If
it is an off-time phase, then the program checks if it is before or after the
turning point and selects the cooldown curve with the calculated cooldown
parameters if it is before the turning point. IF not it uses the heat-up function
and the computed parameters. Figure 3.17, Figure 3.18 and Figure 3.19 show
the results of the prediction in general and in detail.

Figure 3.17.: Real data vs. prediction data
The orange curve shows the real data, and the blue curve shows the predicted
data. The predicted data follows the real data quite well. There is a gap in the
real data from a recording error in the middle of the graph, but the prediction
does still work because it does not depend on the real data. For more details,
see Figure 3.18 and Figure 3.19.
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Figure 3.18.: Real data vs. prediction data: Off-time phase
The orange curve shows the real data, and the blue curve shows the predicted
data. This graph is a more detailed view of the off-time phase. The prediction
is pretty accurate. Only in the heat-up phase, there is a small drop in the real
data, which cannot be considered in the forecast.
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Figure 3.19.: Real data vs. prediction data: Production phase
The orange curve shows the real data, and the blue curve shows the predicted
data. This graph is a more detailed view of the production phase. It shows
the real data and the approximated sine function. The approximations fit the
real data well. In some cases, the prediction is shifted, and the real data and
the prediction data are inversed. It is not an actual fault because it can even
happen in actual production that the data shift, caused by ambient conditions
or shortstops in production.
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The key feature of the DET model is the imitation of the real plant. It is the
main feature for the digital model’s energy calculation and makes the twin
more comparable with its real antagonist. The thesis’s main parts are the
DT model, the data models for the electroplating as preparatory study for
the DT model, and sensor data approximation. All aspects brought good
results. The DT model handles various control mechanisms that are essential
for the operation of the plant and the correctness of the model. The data
model for the electroplating works well. They show accurate results and fit
the actual data well. Since the plant uses quite the same plating method,
a transfer from the lab-scale model to the real-world model is likely and
can be done in follow-up work. The current solution for the sensor data
approximations works well for liquid tanks, which have cool-down and
heat-up phases. Adopting other scenarios is possible, but it is an effort to
find proper functions and optimize them to fit the data. The DET project
is ongoing; thus the methods and tools developed in this thesis are a vital
part of the project.

4.1. Digital Energy Twin Model

The development of the DET model is an ongoing process, and many parts
of the model are still in development or haven’t even started. The primary
air consumers, the drilling machines, were not modeled yet. Due to these
circumstances, it is impossible to test the control models developed in the
thesis with real data inputs; thus, it is impossible to show the control logic
under real conditions. The results show the control module structure and
experiments with test data to see if the implementation works as expected.
Also, the water consumers and water return devices are not implemented in
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the DET model by now. This affects the tank logic and the overflow logic. All
control signals generated by these two modules depend on the water level
in the tanks. So the evaluation of the model also took place with test data
instead of real data. When the other parts will be finished, another test with
real data should evaluate the actual scenario’s control models’ functionality.
With new insights and further developement of the other parts it can happen
that the created models need to be adapted, but the underlaying concept
stays the same.

4.2. Electroplating and Predictions

Overall, the data models work well (see Chapter 4.2.1 and Chapter 4.2.2),
but there are also limitations by the mathematical foundation of the models.
The training set heavily limits the decision tree regression and the random
forest regression. Both regressions cannot predict outside of the limits of the
training set parameters. For them, it is not possible to see patterns in the data.
A pattern would be a direct proportion between the duration time and the
coating thickness in the electroplating data set. The longer the coating takes,
the thicker the layer becomes. Also, polynomial regression is not aware of
such outlying data. The ML cannot consider physical constraints, which
are not covered by the training set. A perfect example would be the whole
consumption of the anode. If there is no anode left, the reaction cannot
occur anymore, and then the duration time can be infinite long without
depositing any copper. But it is not possible to take all these effects into
account. The data models represent a working, non-malicious environment.
In future work, it would be interesting to integrate physical knowledge in
ML algorithms. Rueden et al., 2019 show approaches for this.

4.2.1. Coating thickness prediction

The R2 value is a relevant measurement and a good indicator of the quality
of data models. Chapter 3.2.2 shows this information for the used data
models. Table 4.1 shows the best results for each of the data models on the
test set.
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Table 4.1.: Best results for the data models

Data model R2 on test set R2 on training set
Polynomial regression (degree = 2) 0.982 0.974

Decision tree regression (depth = 7) 0.940 0.997

Random forest regression 0.949 0.994

Neural networks 0.946 0.991

Linear regression and polynomial regression are combined into one line
in the table because the linear regression is a polynomial regression of
the degree at most one. Polynomial regression performs well for this data
model, and even a small polynomial degree has excellent results on the
test set and the training set. The other methods also perform well on the
data and are very close to the polynomial regression results. Decision tree
regression and random forest regression are very similar because they are
based on the same background. Separating the data into a test set and a
training set is crucial to detect and reduce overfitting. Most data models
overfit when they get too confident on the training data. This especially
happens to higher degrees for the polynomial regression.

4.2.2. Electric potential energy prediction

The R2 value is a relevant measurement and a good indicator of the quality
of the method. Chapter 3.2.3 shows this information for the used data
models. Table 4.2 shows the best results for each of the data models on the
test set.

Table 4.2.: Best results for the data models

Data model R2 on test set R2 on training set
Polynomial regression (degree = 4) 1.000 1.000

Decision tree regression (depth = 9) 0.895 1.000

Random forest regression 0.887 0.987

Neural networks 0.939 0.990
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4. Discussion

For the electric potential energy, a polynomial regression has the best
performance as well. The model is based on more parameters than the
coating thickness model, so it is not surprising that also the polynomial
regression needs a higher degree to have the best performance. The other
data models also perform excellently on the training set, but they have
weaknesses in finding the real context of the features, and so they do not
perform so well on the test data set. Decision tree regression and Random
forest regression have a lousier performance than neural networks and
polynomial regression. Neural networks work the same for both data model
scenes.

4.3. Function-based approximation of data

The method approximated the data well. The main point of good approxi-
mation is to know the off-times of the plant. For past data, it is a look at the
data to see when production ends and when it starts again. Nevertheless,
for future predictions, this is not possible since the data does not exist
yet. A reference point is the plant’s shift plan, which is planned for the
future and gives information on when production is on and when not. It
leads to a rough estimation that works, but it negatively influences future
predictions based on the approximation; they get inaccurate. The further
the prediction is in the future, the more inaccurate it gets. A compromise
is a limitation of future predictions. For example, limit them to two weeks.
Thus the prognosis does not get too imprecise.

A fool with a tool is still a fool! – Parker and HP OpenView Business
Unit, 2001

Function-based approximation of data is an excellent method to generate
predictions. Like every other prediction method, it has some advantages and
some drawbacks. The structure is apparent, and there are no hidden parts
that are defined by a training algorithm. The underlying data determine
every parameter, and the connections are visible. It is easy to see how a
program calculates the result of the prediction. It makes function-based
approaches easy to understand and, therefore, suitable, controllable and
adaptable. But this also leads to drawbacks. To create such a function-based
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approximation, one needs to understand the system and the underlying
data. This is an easier task on data with a physical background than on
natural-based data like speech recognition. On natural-based data, function-
based approximations come to their limits. In general, the user has to know
how to use the tools and where the boundaries are.
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5. Conclusion

This thesis contributed to the development of Digital Energy Twins for
Industry 4.0. DETs are important to optimize systems for various parameters
without affecting the real production system. This thesis addressed three
research topics. The research aimed to calculate the electroplating process’s
energy consumption with ML methods, to optimize sensor data usage by
function-based approximation, and further developed the DT model with
Modelica.
Based on the lab experiment and the collected data, the energy consumption
was calculated. With various ML techniques, it is possible to predict the
energy consumption for an electroplating process. The ML methods’ main
features are the voltages, amperage, temperature, coating area, and the
duration of the plating process. A data model fed with these features creates
a prediction very close to the real energy consumption. The R2 value of
the polynomial regression with a degree of two is 1.000. It is an excellent
value, and R2 is the right measurement for the method’s quality. The chosen
method provides a good estimate of the energy consumption. The accuracy
is sufficient for the whole electroplating plant’s energy calculation since all
components scatter around their real values.
The function-based approximation of sensor data is a crucial method for
the development of digital energy twins. It has some main advantages.
First of all, it allows creating an interface for the DT model and gather the
data in a computationally effective way. Further, the approximation also
allows predicting data in the future. It only needs information about the
weekends’ shutdown or machine maintenance. It is possible to generate
this information with the shift plan, the maintenance plan, and the plant’s
utilization schedule. Since these plans only contain rough estimations when
the events happen, and unplanned events entail maintenance, predictions
in the far future are inaccurate. The created program for function-based
approximation can make these predictions, but it is not recommended
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to predict too far into the future. Up to two weeks should be reasonable
because it normally contains four events (two times weekends and two
times maintenance), and then the expected behavior does not differ too
much from the real one. Thus further calculations on the predictions, like
energy calculations for the tempering, are possible without the risk of heavy
miscalculation.
The DT model is a work in progress. The research in this thesis is a integral
part of the whole model, impacting the DT model’s work. The control
models allow a precise control of the individual machines. Since each device
has its own control model, it is easy to maintain and test. The delays in the
control strategies cover the start-up time for the real machines. The start-up
and run-on time of the the real machine are the most significant differences
between the model and the real-world object, because Modelica libraries do
not take such effects into account.

Here are some recommendations for the project and the handling of the
tool created within this thesis.
The basis for the function-based approximations tool is the sensor data. The
collection of the data started in October 2020. The tool needs the data to
calculate the parameters for the functions. Even if there is already enough
data for the tool to work, it is still recommended to collect further data
for at least a year or even more. The current measurements were taken in
autumn and winter, so the temperature was low, and the humidity was high.
These or other seasonal effects may affect the measurements and lead to
fluctuations in the data. It could then affect the tool’s calculations because
real data changes, but the function-based approximation parameters stay
the same.
The prediction of the function-based approximations tool is based on pro-
duction plans. The plans cannot take unexpected failures into account. The
further the prediction reaches into the future, the higher the chance that
an unexpected failure happens. It leads to the recommendation that the
prediction should not be longer than two weeks into the future. This recom-
mendation is not based on expert assessment within the project.
The energy models from the lab experiment are a standalone tool. The
validation of this tool was done with the lab data. When the model was
developed, the plant’s data was not available, so it was impossible to cross-
validate. As described in Chapter 3.2 the electroplating process is similar,
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but the lab process still differs from the plant process. Before using the elec-
troplating data models created, it is recommended to validate the model’s
results with the plant’s energy consumption.

It is still a long way for the project to cross the finish line. The presented
thesis supports the success of the project in various ways. The modeling
part allows the model to generate more accurate results. With more complex
control sequences, the model gets closer to the real system and allows
a better and more precise energy calculation. The data models for the
electroplating process are an alternative for the real process in the plant.
They allow the simplification of a complex process without losing accuracy.
Since not the process but the process’s energy consumption is the project’s
primary goal, it is a suitable simplification that saves a lot of modeling work
to represent the process. The function-based approximation predicts data
for the future. Having information for the future also allows calculating
future energy consumptions and simulating future events with the DET
model, and this is one of the main goals of a DET. All this drives the project
towards its goal of creating a Digital Energy Twin.
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Gaul, Bernhard (2018). Österreichs Klimaplan für 2030: Milliardenstrafe aus
Brüssel droht. url: https://kurier.at/politik/inland/oesterreichs-
klimaplan - fuer - 2030 - milliardenstrafe - aus - bruessel - droht /

400346833 (Accessed on 11/02/2020) (cit. on p. 5).

79

https://wirtschaftslexikon.gabler.de/definition/industrie-40-54032/version-368841
https://wirtschaftslexikon.gabler.de/definition/industrie-40-54032/version-368841
https://www.handelsblatt.com/unternehmen/energie/energie-steigender-energiebedarf-deutschland-droht-die-oekostrom-luecke/25385468.html
https://www.handelsblatt.com/unternehmen/energie/energie-steigender-energiebedarf-deutschland-droht-die-oekostrom-luecke/25385468.html
https://www.handelsblatt.com/unternehmen/energie/energie-steigender-energiebedarf-deutschland-droht-die-oekostrom-luecke/25385468.html
https://kurier.at/politik/inland/oesterreichs-klimaplan-fuer-2030-milliardenstrafe-aus-bruessel-droht/400346833
https://kurier.at/politik/inland/oesterreichs-klimaplan-fuer-2030-milliardenstrafe-aus-bruessel-droht/400346833
https://kurier.at/politik/inland/oesterreichs-klimaplan-fuer-2030-milliardenstrafe-aus-bruessel-droht/400346833


Bibliography

Glaessgen, Edward and David Stargel (2012). “The digital twin paradigm for
future NASA and US Air Force vehicles.” In: 53rd Structures, Structural
Dynamics, and Materials Conference, p. 1818 (cit. on p. 5).

Grieves, Michael (2002). “Conceptual ideal for PLM.” In: Presentation for the
Product Lifecycle Management (PLM) center, University of Michigan (cit. on
p. 5).
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Appendix A.

Overview energy flow

ENERTEC Naftz & Partner GmbH & Co KG created the overview on the
next page. It is the basis for the DET model. It shows the structure of the
plant and how the energy flows of the machines are connected. The overview
has small modifications caused by regulations. The modifications hide the
name of the company and the location of the plant. All modifications are
marked with three red crosses.
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Appendix B.

Lab values table

The following table holds the values of the lab experiment. The table only shows the cleaned values.
For original data, see Appendix C. The data set was created in cooperation with Michael Grömer
(Grömer, 2021).

No. = Experiment number
mC,t1 = Mass of the cathode before the experiment
mA1,t1 = Mass of anode 1 before the experiment
mA2,t1 = Mass of anode 2 before the experiment
mC,t2 = Mass of the cathode after the experiment
mA1,t2 = Mass of anode 1 after the experiment
mA2,t2 = Mass of anode 2 after the experiment
d = duration time
U = Voltage
T = Temperature
I = Amperage95
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

1 17.42 15.70 15.88 17.81 15.50 15.70 30.05 0.700 39.0 0.6480

2 17.80 15.51 15.70 18.71 15.05 15.28 45 1.200 39.0 0.9833

4 18.69 15.04 15.26 19.40 14.74 14.91 50 0.600 60.0 0.6567

5 20.10 14.35 14.54 20.77 14.01 14.21 25 1.500 39.0 1.3253

6 14.73 15.04 15.32 15.30 14.77 15.04 35.5 0.700 25.5 0.8023

7 16.61 15.87 15.67 17.11 15.63 15.40 52 0.600 39.0 0.4850

8 15.15 14.78 15.04 15.53 14.58 14.87 55 0.250 60.2 0.3303

9 20.73 14.01 14.20 21.67 13.54 13.73 68 1.100 22.0 0.6867

10 15.52 14.58 14.85 16.01 14.33 14.62 38 0.600 59.0 0.6187

12 17.30 15.52 15.30 17.72 15.31 15.10 25 1.100 23.5 0.7933

13 17.08 16.65 16.82 17.84 16.23 16.39 22 1.800 39.0 1.7113

14 15.99 14.32 14.61 16.46 14.09 14.38 16.5 1.200 59.0 1.3893

15 18.17 12.74 13.09 18.47 12.60 12.95 25 0.800 21.7 0.5870

16 18.49 14.63 15.49 19.72 14.04 14.82 35 0.300 39.1 1.7187

17 18.46 15.02 16.63 18.94 14.79 16.39 61 0.300 60.2 0.3770

18 18.24 14.38 16.23 18.49 14.24 16.10 65 0.350 24.3 0.1953

19 15.76 14.09 16.40 16.71 13.61 15.88 45 1.100 39.5 1.0467

20 15.80 14.55 14.73 16.14 14.38 14.53 35 0.300 58.3 0.4937

21 17.06 19.03 17.85 18.57 18.20 17.16 75 1.300 25.0 0.9837

22 15.37 18.39 12.94 15.95 18.08 12.67 45 0.600 38.8 0.6470

23 15.61 12.59 14.02 16.16 12.31 13.77 40 0.500 59.7 0.6480

24 15.95 18.07 12.67 16.19 17.96 12.56 24 0.400 39.2 0.4130

25 16.12 14.37 14.53 16.28 14.32 14.48 42 0.100 58.7 0.1493

26 18.49 14.25 16.09 19.50 13.74 15.60 41 1.800 25.1 1.1917
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

27 16.17 17.96 12.56 16.64 17.73 12.32 20 1.100 38.5 1.1217

28 16.68 15.53 17.90 17.07 15.37 17.71 36 0.419 59.5 0.4990

29 15.96 17.52 17.43 16.25 17.39 17.28 33 0.318 39.2 0.4150

30 16.95 15.44 16.67 17.08 15.37 16.61 51 0.207 24.1 0.1215

31 16.03 14.93 15.01 16.22 14.83 14.92 39 0.234 59.2 0.2570

32 16.71 13.62 15.89 16.92 13.51 15.79 33 0.368 39.0 0.3030

33 16.24 14.30 14.47 16.38 14.23 14.40 17 0.670 24.8 0.4325

34 16.24 17.38 17.28 17.00 17.02 16.89 41 1.014 39.4 0.8930

35 16.38 14.24 14.40 16.62 14.10 14.27 32 0.582 26.1 0.3763

36 16.60 17.72 16.02 17.19 17.42 15.73 18 2.171 26.4 1.5290

37 16.53 14.96 17.14 17.67 14.35 16.56 40 1.398 28.2 1.3987

38 21.85 16.77 13.44 22.32 16.51 13.27 40 0.352 38.0 0.2853

39 15.92 15.35 17.40 16.35 15.15 17.17 45 0.420 58.4 0.4293

40 18.13 16.19 13.70 18.56 15.95 13.52 45 0.383 44.8 0.4390

41 17.42 14.82 13.51 18.06 14.51 13.18 25 1.411 39.7 1.2420

42 17.94 14.25 14.08 18.34 14.07 13.85 45 0.388 59.0 0.4497

43 17.76 16.54 15.58 18.71 16.07 15.09 35 1.800 28.0 1.3093

44 18.63 17.78 17.15 18.79 17.69 17.08 15 0.445 44.8 0.4767

45 18.17 14.33 15.01 18.44 14.19 14.88 45 0.254 60.3 0.3013

46 17.05 17.25 16.09 17.23 17.16 15.99 50 0.180 45.7 0.1657

47 17.68 14.35 15.71 19.03 13.65 15.06 50 1.026 60.6 1.1573

48 17.41 15.15 12.91 17.72 15.00 12.77 50 0.360 38.2 0.3227

49 16.27 13.74 18.71 18.00 12.94 17.80 80 0.717 44.4 1.3497

50 14.36 15.32 18.19 14.96 15.03 17.89 35 0.833 38.8 0.815397
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

51 15.70 13.25 13.84 15.84 13.18 13.75 50 0.213 25.2 0.1577

52 17.12 14.06 17.14 17.26 13.98 17.06 50 0.174 38.7 0.1460

53 16.59 14.51 15.99 16.78 14.40 15.89 50 0.153 48.3 0.1610

54 16.97 13.51 13.18 17.14 13.42 13.09 50 0.154 58.9 0.1867

55 18.05 19.10 19.54 18.50 17.85 19.34 50 0.630 24.9 0.4470

56 19.10 19.83 18.77 19.55 19.60 18.55 50 0.533 37.0 0.4460

57 19.00 18.62 18.72 19.28 18.48 18.59 50 0.380 48.3 0.4507

58 19.11 18.04 16.36 19.58 17.82 16.11 50 0.325 58.1 0.4447

59 19.47 17.68 13.63 20.27 17.32 13.19 50 1.020 26.6 0.7710

60 19.24 12.75 17.06 20.03 12.40 16.65 50 0.835 38.8 0.7543

61 18.59 14.85 14.17 19.35 14.46 13.77 50 0.582 61.1 0.7343

62 19.13 15.04 14.99 19.94 14.62 14.59 50 0.656 49.8 0.7767

63 18.91 17.04 16.10 20.06 16.49 15.49 50 1.322 27.8 1.1007

64 19.75 17.81 13.96 20.85 17.30 13.36 50 1.170 38.4 1.0740

65 20.08 18.54 18.56 21.20 17.95 18.02 50 0.817 60.3 1.0583

66 19.10 17.83 15.87 20.21 17.30 15.26 50 0.839 49.5 1.0523

67 15.81 17.27 16.46 15.91 17.22 16.40 30 0.261 26.4 0.1560

68 18.45 15.23 14.45 18.65 15.13 14.36 30 0.410 38.6 0.3027

69 18.28 13.76 13.33 18.56 13.61 13.19 30 0.464 39.4 0.4540

70 17.56 16.63 17.30 17.93 16.43 17.11 30 0.705 49.2 0.5990

71 18.06 13.18 18.06 18.36 13.03 17.86 30 0.755 26.3 0.5060

72 21.18 17.34 19.67 21.47 17.19 19.52 30 0.667 38.5 0.4923

73 19.57 13.16 14.40 19.87 13.00 14.23 30 0.549 59.4 0.4977

74 20.85 12.37 17.70 21.15 12.20 17.55 30 0.666 49.3 0.4957
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

75 18.78 16.39 17.21 19.25 16.15 16.97 30 1.172 25.8 0.7857

76 19.34 13.74 14.57 19.82 13.50 14.32 30 0.913 38.5 0.8010

77 20.01 19.05 18.17 20.50 18.81 17.92 30 0.740 59.4 0.7700

78 19.55 13.40 13.17 20.04 13.14 12.94 30 0.813 49.3 0.7980

79 19.88 19.46 13.58 20.61 19.04 13.26 30 1.494 27.3 1.1893

80 15.91 14.34 15.11 16.63 13.94 14.77 30 1.541 38.6 1.1859

81 21.49 18.14 17.08 22.23 17.81 16.69 30 1.065 58.5 1.1913

82 21.15 17.62 18.66 21.86 17.25 18.30 30 0.118 33.4 1.1155

83 18.41 21.56 13.04 19.36 21.10 12.54 30 1.259 49.2 1.0410

84 20.04 19.51 17.86 20.96 19.04 17.41 30 1.934 29.6 1.4883

85 18.53 17.18 17.55 19.47 16.73 17.05 30 1.637 38.8 1.4977

86 17.12 12.20 13.00 18.02 11.73 12.51 30 1.457 58.5 1.4833

87 16.17 14.59 14.65 16.23 14.56 14.61 30 0.174 28.9 0.1057

88 16.75 15.38 14.20 16.81 15.35 14.16 30 0.148 38.3 0.1083

89 18.50 14.17 14.23 18.56 14.14 14.19 30 0.125 59.5 0.1243

90 17.71 16.40 13.08 17.78 16.37 13.05 30 0.131 48.9 0.1087

91 18.37 19.02 13.90 18.48 18.95 13.84 30 0.365 23.7 0.2010

92 17.22 13.03 16.35 17.35 12.97 16.29 30 0.291 38.6 0.2100

93 15.86 18.28 14.73 15.99 18.20 14.66 30 0.240 59.7 0.2063

94 17.27 13.24 17.24 17.38 13.18 17.18 29.5 0.236 50.0 0.2043

95 17.77 17.91 16.71 18.20 17.68 16.48 30 1.048 24.2 0.7013

96 20.04 16.94 17.80 20.46 16.73 17.58 30 0.833 38.5 0.6973

97 18.56 17.03 16.66 18.98 16.83 16.42 30 0.710 59.4 0.7000

98 20.49 17.40 21.08 20.91 17.16 20.86 30 0.742 49.4 0.704799
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

99 16.81 18.96 14.66 17.14 18.80 14.50 20 1.165 25.7 0.8190

100 21.85 13.13 12.52 22.17 12.97 12.35 20 0.877 38.5 0.7910

101 20.94 18.20 17.18 21.25 18.04 17.00 20 0.713 58.2 0.7917

102 16.23 12.93 13.84 16.56 12.76 13.67 20 0.822 50.1 0.8160

103 15.98 12.97 12.50 16.14 12.88 12.42 20 0.632 25.6 0.2947

104 17.34 14.55 14.61 17.51 14.47 14.52 20 0.493 37.4 0.3987

105 18.48 14.11 15.33 18.65 14.03 15.25 20 0.360 59.5 0.4063

106 17.38 14.16 14.18 17.55 14.07 14.09 20 0.434 50.0 0.4040

107 16.57 16.72 18.01 16.77 16.61 17.90 40 0.436 25.7 0.2537

108 22.17 17.14 16.45 22.37 17.05 16.34 40 0.342 37.8 0.2517

109 21.25 14.47 16.81 21.44 14.35 16.71 40 0.235 59.6 0.2547

110 17.13 16.38 12.93 17.33 16.29 12.84 40 0.282 49.9 0.2510

111 16.61 16.27 11.69 17.12 16.03 11.46 45 0.903 23.4 0.5507

112 19.26 17.66 17.55 19.76 17.43 17.30 45 0.651 38.0 0.5473

113 19.82 20.84 15.23 20.33 20.57 14.99 45 0.477 59.6 0.5500

114 19.45 16.97 18.97 19.98 16.71 18.71 45 0.597 49.9 0.5543

115 16.66 17.03 14.33 16.94 16.88 14.20 15 1.437 23.8 0.9830

116 16.66 16.08 14.50 16.96 15.93 14.35 16 0.897 38.0 0.9725

117 16.96 18.77 17.89 17.25 18.60 17.75 14.5 1.103 60.4 0.9915

118 17.05 18.55 12.82 17.36 18.38 12.67 15 0.940 47.8 0.9955

119 21.45 14.01 12.40 21.86 13.81 12.18 60 0.555 24.6 0.3520

120 22.37 12.35 13.17 22.78 12.14 12.94 59 0.472 39.1 0.3493

121 16.77 14.08 12.72 17.17 13.88 12.51 58 0.337 59.1 0.3473

122 17.33 14.45 12.86 17.74 14.25 12.65 57 0.379 49.2 0.3533
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

123 21.86 20.12 17.36 22.14 19.98 17.24 25 0.818 24.7 0.5557

124 22.78 17.81 19.80 23.05 17.65 19.69 25 0.635 37.8 0.5497

125 17.16 18.41 17.72 17.44 18.26 17.57 25 0.477 58.5 0.5510

126 17.73 16.89 19.57 18.01 16.74 19.42 25 0.573 49.5 0.5557

127 16.79 14.06 13.64 16.87 14.01 13.59 21 0.289 37.7 0.2063

128 16.97 15.45 17.01 17.06 15.41 16.96 22 0.355 25.7 0.2040

129 16.77 21.71 17.29 16.84 21.66 17.25 18.5 0.187 64.9 0.2060

130 15.83 17.05 17.41 15.94 16.98 17.36 24.5 0.250 49.2 0.2063

131 19.74 14.97 12.64 20.35 14.67 12.33 25.5 1.524 26.5 1.1530

132 17.11 14.23 12.66 17.70 13.94 12.35 26 1.375 38.5 1.1390

133 16.94 18.69 18.58 17.54 18.36 18.29 25.5 0.987 58.0 1.1563

134 16.94 16.70 18.37 17.54 16.42 18.02 25 1.165 48.6 1.1520

135 17.05 18.27 12.33 17.45 18.06 12.16 70 0.375 26.5 0.2433

136 16.83 13.92 14.65 17.23 13.72 14.46 70 0.368 34.7 0.2470

137 16.87 16.92 18.35 17.28 16.70 18.14 70 0.260 53.6 0.2553

138 15.90 18.01 19.68 16.34 17.77 19.49 70 0.294 44.0 0.3307

139 17.24 12.32 16.86 17.82 12.02 16.58 20 1.872 27.7 1.4290

140 17.53 17.24 16.73 18.19 16.90 16.41 20 1.844 34.4 1.5800

141 17.53 17.34 17.57 18.32 16.97 17.14 20 1.264 54.4 1.7603

142 17.43 19.97 21.63 18.03 19.61 21.35 20 1.315 44.6 1.3694

143 18.77 15.39 17.63 19.59 14.99 17.22 60 0.904 27.5 0.6843

144 20.33 17.22 19.39 21.16 16.80 18.97 60 0.890 34.0 0.6897

145 17.34 13.58 18.63 18.20 13.16 18.17 60 0.595 55.2 0.6957

146 18.01 14.00 16.94 18.86 13.61 16.49 60 0.655 45.1 0.6923101
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

147 18.62 16.40 19.42 18.82 16.30 19.33 90 0.204 25.0 0.1053

148 15.34 16.79 18.97 15.53 16.69 18.88 90 0.169 24.1 0.1040

150 22.97 13.16 21.62 23.15 13.06 21.51 90 0.154 46.0 0.1043

151 17.22 13.71 12.01 17.58 13.52 11.84 15 1.560 27.2 1.1950

152 17.44 16.67 19.48 17.80 16.50 19.29 15 1.548 31.9 1.1817

153 17.27 16.40 16.57 17.64 16.22 16.37 15 0.953 55.5 1.1867

154 16.33 17.75 18.13 16.69 17.55 17.95 15 1.073 46.2 1.1827

155 18.80 12.92 13.43 19.92 12.36 12.87 80 0.951 27.2 0.6950

156 23.15 14.24 15.90 24.25 13.62 15.41 80 0.801 34.0 0.6880

157 17.80 12.17 13.78 18.94 11.55 13.26 80 0.601 54.7 0.6897

158 18.19 12.12 20.51 19.34 11.48 19.99 80 0.595 43.2 0.6977

159 18.17 14.45 21.34 18.66 14.18 21.09 15 1.965 27.7 1.5860

160 15.52 19.59 12.15 16.00 19.34 11.90 15 1.737 35.2 1.5687

161 17.70 16.87 17.12 18.21 16.58 16.88 15 1.216 54.8 1.5870

162 19.94 18.04 16.94 20.43 17.78 16.68 15 1.317 44.6 1.5870

163 19.74 11.81 16.48 19.95 11.72 16.38 10 1.200 27.3 0.9835

164 17.09 19.32 17.92 17.28 19.22 17.80 10 1.240 34.3 0.9875

165 18.30 17.52 20.34 18.51 17.41 20.24 10 0.820 54.8 0.9855

166 17.13 17.56 17.91 17.34 17.45 17.81 10 0.900 45.1 0.9920

167 19.59 14.15 13.05 21.18 13.42 12.17 80 1.300 27.1 0.9880

168 17.88 14.32 11.42 19.45 13.53 10.64 80 1.100 33.1 0.9823

169 17.65 15.99 21.50 19.32 15.18 20.56 80 0.791 54.7 0.9900

170 18.84 13.85 12.47 20.48 13.03 11.64 80 0.867 43.2 0.9927

171 21.56 16.21 13.48 21.84 16.07 13.34 70 0.320 26.8 0.2020
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

172 24.24 16.68 13.51 25.28 16.19 12.97 70 0.828 33.9 0.7273

173 15.98 12.80 12.35 16.25 12.70 12.21 70 0.195 55.0 0.2037

174 18.92 13.61 15.39 19.20 13.46 15.25 70 0.232 44.2 0.2043

175 25.26 15.24 13.33 26.33 14.69 12.81 65 1.090 25.8 0.8140

176 16.25 16.18 12.21 17.42 15.60 11.60 65 0.890 34.6 0.8693

177 19.20 12.69 13.44 20.37 12.13 12.82 65 0.628 53.4 0.8450

178 21.84 12.95 16.06 22.93 12.47 15.44 65 0.771 44.6 0.8230

179 17.80 16.36 13.25 18.27 16.11 13.02 45 0.750 27.0 0.5260

180 19.84 11.55 16.86 20.30 11.30 16.63 45 0.622 34.0 0.5193

181 16.70 19.31 19.97 17.18 19.07 19.70 45 0.396 55.3 0.5157

182 18.50 18.87 11.46 18.99 18.62 11.20 45 0.560 43.7 0.5310

183 17.59 18.24 14.17 18.91 17.54 13.52 45 2.013 28.6 1.4600

184 19.42 19.82 17.83 20.67 19.24 17.09 45 1.421 34.5 1.3730

185 19.93 16.29 11.90 21.26 15.67 11.20 45 1.051 54.9 1.5065

186 17.28 16.26 18.86 18.65 15.63 18.11 45 1.260 44.5 1.3460

187 19.75 11.58 12.11 20.14 11.42 11.89 10 1.590 30.5 1.2690

188 17.34 15.43 12.46 17.72 15.24 12.25 10 1.581 34.8 1.2775

189 17.42 16.67 12.79 17.82 14.47 12.59 10 0.960 55.0 1.2625

190 22.93 12.80 15.59 23.33 12.61 15.39 10 1.080 42.5 1.2630

191 18.98 11.18 12.59 19.35 11.01 12.40 85 0.380 25.9 0.2257

192 20.13 19.68 11.19 20.49 19.49 11.01 84 0.356 33.2 0.2513

193 17.73 14.45 12.58 18.10 14.26 12.40 83 0.200 54.4 0.2237

194 17.17 12.24 15.23 17.54 12.06 15.03 82 0.244 44.8 0.2283

195 19.25 15.17 11.71 19.89 14.83 11.41 55 0.840 27.9 0.5775103
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No. mC,t1 mA1,t1 mA2,t1 mC,t2 mA1,t2 mA2,t2 d U T I
[g] [g] [g] [g] [g] [g] [min] [V] [◦C] [A]

196 19.78 18.07 17.43 20.42 17.75 17.09 55 0.694 34.0 0.5615

197 17.65 20.63 15.38 18.31 20.28 15.05 55 0.464 55.0 0.5695

198 19.75 10.62 15.61 20.41 10.28 15.30 55 0.537 44.5 0.5805

199 21.14 11.28 13.39 21.58 11.11 13.16 15 1.780 28.9 1.4375

200 16.29 12.17 20.27 16.71 11.99 19.95 15 1.657 24.8 1.3765

201 18.41 11.62 13.51 18.84 11.43 13.28 15 1.105 54.9 1.3825

202 17.39 13.01 17.79 17.86 12.76 17.57 15 1.200 43.9 1.4170

Table B.1.: Documented lab values
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The following table holds the calculated values for each experiment based on the original values from
Table B.1.

No. = Experiment number
~j = Current density
A = Platting area
∆mC = Cathode mass difference before and after the experiment
∆mA1 = Anode 1 mass difference before and after the experiment
∆mA2 = Anode 2 mass difference before and after the experiment
te = expected layer thickness
tr = real layer thickness
∆t = Deviation of expected to real layer thickness
P = Electric power
W = Electric potential energy

No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

1 2.012 32.20 0.39 -0.20 -0.18 12.9844 13.5176 4.1065 0.4536 0.2272

2 3.054 32.20 0.91 -0.46 -0.42 29.5064 31.5411 6.8958 1.1800 0.8850

4 2.549 25.76 0.71 -0.30 -0.35 27.3671 30.7613 12.4025 0.3940 0.3283

5 4.116 32.20 0.67 -0.34 -0.33 22.0937 23.2226 5.1096 1.9880 0.8283

6 2.492 32.20 0.57 -0.27 -0.28 18.9927 19.7565 4.0218 0.5616 0.3323

7 1.883 25.76 0.50 -0.24 -0.27 21.0213 21.6629 3.0522 0.2910 0.2522

8 1.026 32.20 0.38 -0.20 -0.17 12.1149 13.1710 8.7179 0.0826 0.0757

9 2.133 32.20 0.94 -0.47 -0.47 31.1357 32.5810 4.6419 0.7553 0.8560

10 1.921 32.20 0.49 -0.25 -0.23 15.6763 16.9837 8.3399 0.3712 0.2351
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No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

12 3.080 25.76 0.42 -0.21 -0.20 16.5314 18.1968 10.0744 0.8727 0.3636

13 5.315 32.20 0.76 -0.42 -0.43 25.1050 26.3421 4.9274 3.0804 1.1295

14 4.315 32.20 0.47 -0.23 -0.23 15.2860 16.2905 6.5712 1.6672 0.4585

15 1.877 31.28 0.30 -0.14 -0.14 10.0733 10.7040 6.2614 0.4696 0.1957

16 5.189 33.12 1.23 -0.59 -0.67 38.9968 41.4483 6.2865 0.5156 0.3008

17 1.301 28.98 0.48 -0.23 -0.24 17.0385 18.4857 8.4932 0.1131 0.1150

18 0.700 27.90 0.25 -0.14 -0.13 9.7711 10.0006 2.3488 0.0684 0.0741

19 3.291 31.81 0.95 -0.48 -0.52 31.7959 33.3355 4.8420 1.1513 0.8635

20 1.477 33.43 0.34 -0.17 -0.20 11.0962 11.3497 2.2845 0.1481 0.0864

21 3.308 29.73 1.51 -0.83 -0.69 53.2731 56.6772 6.3899 1.2788 1.5985

22 2.099 30.82 0.58 -0.31 -0.27 20.2835 21.0033 3.5485 0.3882 0.2912

23 2.058 31.48 0.55 -0.28 -0.25 17.6768 19.4969 10.2961 0.3240 0.2160

24 1.317 31.35 0.24 -0.11 -0.11 6.7891 8.5446 25.8585 0.1652 0.0661

25 0.452 33.05 0.16 -0.05 -0.05 4.0745 5.4029 32.6009 0.0149 0.0105

26 4.201 28.37 1.01 -0.51 -0.49 36.9841 39.7402 7.4522 2.1450 1.4658

27 3.578 31.35 0.47 -0.23 -0.24 15.3654 16.7332 8.9022 1.2338 0.4113

28 1.736 28.74 0.39 -0.16 -0.19 13.4193 15.1434 12.8481 0.2091 0.1254

29 1.382 30.03 0.29 -0.13 -0.15 9.7919 10.7779 10.0699 0.0000 0.0000

30 0.389 31.25 0.13 -0.07 -0.06 4.2578 4.6432 9.0509 0.0252 0.0214

31 0.791 32.48 0.19 -0.10 -0.09 6.6258 6.5287 1.4655 0.0601 0.0391

32 0.938 32.31 0.21 -0.11 -0.10 6.6458 7.2551 9.1680 0.1115 0.0613

33 1.469 29.44 0.14 -0.07 -0.07 5.3631 5.3081 1.0250 0.2898 0.0821

34 2.974 30.03 0.76 -0.36 -0.39 26.1782 28.2456 7.8974 0.9055 0.6188

35 1.278 29.44 0.24 -0.14 -0.13 8.7842 9.0996 3.5908 0.2190 0.1168
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No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

36 4.622 33.08 0.59 -0.30 -0.29 17.8650 19.9071 11.4306 3.3195 0.9958

37 4.319 32.38 1.14 -0.61 -0.58 37.0940 39.2886 5.9164 1.9553 1.3036

38 0.866 32.96 0.47 -0.26 -0.17 7.4353 15.9155 114.0513 0.1004 0.0670

39 1.419 30.26 0.43 -0.20 -0.23 13.7105 15.8616 15.6895 0.1803 0.1352

40 1.313 33.44 0.43 -0.24 -0.18 12.6855 14.3526 13.1420 0.1681 0.1261

41 4.072 30.50 0.64 -0.31 -0.33 21.8572 23.4177 7.1398 1.7525 0.7302

42 1.515 29.68 0.40 -0.18 -0.23 14.6403 15.0432 2.7518 0.1745 0.1309

43 4.350 30.10 0.95 -0.47 -0.49 32.6897 35.2248 7.7551 2.3568 1.3748

44 1.494 31.90 0.16 -0.09 -0.07 4.8124 5.5976 16.3179 0.2121 0.0530

45 0.901 33.43 0.27 -0.14 -0.13 8.7097 9.0144 3.4991 0.0765 0.0574

46 0.547 30.28 0.18 -0.09 -0.10 5.8730 6.6338 12.9536 0.0298 0.0249

47 3.562 32.49 1.35 -0.70 -0.65 38.2457 46.3789 21.2657 1.1874 0.9895

48 1.040 31.03 0.31 -0.15 -0.14 11.1628 11.1492 0.1219 0.1162 0.0968

49 4.249 31.76 1.73 -0.80 -0.91 72.9890 60.7882 16.7159 0.9677 1.2903

50 2.642 30.87 0.60 -0.29 -0.30 19.8510 21.6952 9.2900 0.6792 0.3962

51 0.522 30.22 0.14 -0.07 -0.09 5.6017 5.1710 7.6896 0.0336 0.0280

52 0.496 29.43 0.14 -0.08 -0.08 5.3260 5.3093 0.3132 0.0254 0.0212

53 0.505 31.91 0.19 -0.11 -0.10 5.4173 6.6462 22.6847 0.0246 0.0205

54 0.565 33.06 0.17 -0.09 -0.09 6.0617 5.7390 5.3230 0.0287 0.0240

55 1.465 30.50 0.45 -1.25 -0.20 15.7329 16.4656 4.6568 0.2816 0.2347

56 1.472 30.31 0.45 -0.23 -0.22 15.7986 16.5714 4.8915 0.2377 0.1981

57 1.461 30.84 0.28 -0.14 -0.13 15.6891 10.1336 35.4100 0.1713 0.1427

58 1.462 30.42 0.47 -0.22 -0.25 15.6950 17.2459 9.8818 0.1445 0.1204

59 2.473 31.18 0.80 -0.36 -0.44 26.5508 28.6402 7.8694 0.7864 0.6554
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No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

60 2.439 30.93 0.79 -0.35 -0.41 26.1818 28.5054 8.8745 0.6299 0.5249

61 2.428 30.25 0.76 -0.39 -0.40 26.0648 28.0438 7.5927 0.4274 0.3562

62 2.476 31.36 0.81 -0.42 -0.40 26.5849 28.8236 8.4209 0.5095 0.4246

63 3.493 31.51 1.15 -0.55 -0.61 37.4974 40.7292 8.6187 1.4551 1.2126

64 3.358 31.98 1.10 -0.51 -0.60 36.0530 38.3878 6.4758 1.2566 1.0472

65 3.472 30.48 1.12 -0.59 -0.54 37.2757 41.0095 10.0166 0.8647 0.7205

66 3.499 30.07 1.11 -0.53 -0.61 37.5671 41.1945 9.6560 0.8829 0.7358

67 0.531 29.39 0.10 -0.05 -0.06 3.4195 3.7980 11.0674 0.0407 0.0204

68 1.032 29.33 0.20 -0.10 -0.09 6.6482 7.6117 14.4924 0.1241 0.0620

69 1.571 28.90 0.28 -0.15 -0.14 10.1190 10.8131 6.8596 0.2107 0.1053

70 2.057 29.12 0.37 -0.20 -0.19 13.2509 14.1818 7.0252 0.4223 0.2111

71 1.616 31.30 0.30 -0.15 -0.20 10.4119 10.6958 2.7264 0.3820 0.1910

72 1.572 31.33 0.29 -0.15 -0.15 10.1233 10.3317 2.0587 0.3284 0.1642

73 1.633 30.47 0.30 -0.16 -0.17 10.5202 10.9879 4.4465 0.2732 0.1366

74 1.594 31.09 0.30 -0.17 -0.15 10.2697 10.7696 4.8680 0.3301 0.1651

75 2.392 32.84 0.47 -0.24 -0.24 15.4111 15.9736 3.6504 0.9208 0.4604

76 2.623 30.53 0.48 -0.24 -0.25 16.8986 17.7285 4.9109 0.7313 0.3657

77 2.562 30.06 0.49 -0.24 -0.25 16.5016 18.1946 10.2597 0.5698 0.2849

78 2.673 29.86 0.49 -0.26 -0.23 17.2154 18.3156 6.3909 0.6488 0.3244

79 3.889 30.59 0.73 -0.42 -0.32 25.0477 26.6378 6.3483 1.7769 0.8884

80 4.007 29.60 0.72 -0.40 -0.34 25.8078 27.1485 5.1952 1.8275 0.9137

81 3.813 31.25 0.74 -0.33 -0.39 24.5579 26.4303 7.6241 1.2688 0.6344

82 3.544 31.47 0.71 -0.37 -0.36 22.8310 25.1782 10.2808 0.1316 0.0658

83 3.093 33.66 0.95 -0.46 -0.50 19.9204 31.4979 58.1185 1.3106 0.6553
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No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

84 4.703 31.65 0.92 -0.47 -0.45 30.2949 32.4465 7.1023 2.8784 1.4392

85 4.523 33.12 0.94 -0.45 -0.50 29.1321 31.6807 8.7487 2.4517 1.2258

86 4.459 33.26 0.90 -0.47 -0.49 28.7240 30.1967 5.1272 2.1612 1.0806

87 0.327 32.29 0.06 -0.03 -0.04 2.1076 2.0736 1.6160 0.0184 0.0092

88 0.334 32.41 0.06 -0.03 -0.04 2.1530 2.0661 4.0377 0.0160 0.0080

89 0.398 31.26 0.06 -0.03 -0.04 2.5618 2.1420 16.3868 0.0155 0.0078

90 0.346 31.39 0.07 -0.03 -0.03 2.2297 2.4887 11.6125 0.0142 0.0071

91 0.630 31.89 0.11 -0.07 -0.06 4.0595 3.8492 5.1783 0.0734 0.0367

92 0.690 30.44 0.13 -0.06 -0.06 4.4432 4.7658 7.2594 0.0611 0.0306

93 0.667 30.93 0.13 -0.08 -0.07 4.2974 4.6913 9.1655 0.0495 0.0248

94 0.676 30.22 0.11 -0.06 -0.06 4.2832 4.0629 5.1442 0.0482 0.0237

95 2.285 30.69 0.43 -0.23 -0.23 14.7214 15.6388 6.2320 0.7350 0.3675

96 2.321 30.05 0.42 -0.21 -0.22 14.9500 15.6013 4.3567 0.5809 0.2904

97 2.304 30.39 0.42 -0.20 -0.24 14.8380 15.4255 3.9591 0.4970 0.2485

98 2.303 30.60 0.42 -0.24 -0.22 14.8330 15.3181 3.2706 0.5229 0.2614

99 2.647 30.94 0.33 -0.16 -0.16 11.3672 11.9038 4.7207 0.9541 0.3180

100 2.549 31.03 0.32 -0.16 -0.17 10.9460 11.5089 5.1420 0.6937 0.2312

101 2.552 31.02 0.31 -0.16 -0.18 10.9603 11.1544 1.7705 0.5645 0.1882

102 2.552 31.97 0.33 -0.17 -0.17 10.9605 11.5201 5.1057 0.6708 0.2236

103 0.963 30.59 0.16 -0.09 -0.08 4.1370 5.8382 41.1210 0.1862 0.0621

104 1.306 30.51 0.17 -0.08 -0.09 5.6103 6.2177 10.8260 0.1965 0.0655

105 1.309 31.03 0.17 -0.08 -0.08 5.6229 6.1141 8.7349 0.1463 0.0488

106 1.368 29.53 0.17 -0.09 -0.09 5.8746 6.4246 9.3629 0.1753 0.0584

107 0.789 32.16 0.20 -0.11 -0.11 6.7753 6.9418 2.4564 0.1106 0.0737
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No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

108 0.804 31.32 0.20 -0.09 -0.11 6.9012 7.1269 3.2706 0.0861 0.0574

109 0.815 31.25 0.19 -0.12 -0.10 6.9995 6.7861 3.0486 0.0598 0.0399

110 0.802 31.28 0.20 -0.09 -0.09 6.8917 7.1360 3.5449 0.0708 0.0472

111 1.833 30.05 0.51 -0.24 -0.23 17.7084 18.9444 6.9797 0.4973 0.3729

112 1.694 32.31 0.50 -0.23 -0.25 16.3702 17.2740 5.5208 0.3563 0.2672

113 1.810 30.39 0.51 -0.27 -0.24 17.4877 18.7310 7.1094 0.2624 0.1968

114 1.704 32.52 0.53 -0.26 -0.26 16.4675 18.1867 10.4396 0.3309 0.2482

115 3.323 29.58 0.28 -0.15 -0.13 10.7030 10.5646 1.2935 1.4126 0.3531

116 2.978 32.66 0.30 -0.15 -0.15 10.2295 10.2517 0.2177 0.8723 0.2326

117 3.372 29.40 0.29 -0.17 -0.14 10.4996 11.0089 4.8503 1.0936 0.2643

118 3.355 29.67 0.31 -0.17 -0.15 10.8062 11.6610 7.9100 0.9358 0.2339

119 1.045 33.67 0.41 -0.20 -0.22 13.4682 13.5904 0.9073 0.1954 0.1954

120 1.113 31.39 0.41 -0.21 -0.23 14.0981 14.5775 3.4009 0.1649 0.1621

121 1.083 32.09 0.40 -0.20 -0.21 13.4813 13.9139 3.2091 0.1171 0.1131

122 1.125 31.40 0.41 -0.20 -0.21 13.7739 14.5752 5.8174 0.1339 0.1272

123 1.607 34.58 0.28 -0.14 -0.12 8.6256 9.0370 4.7698 0.4545 0.1894

124 1.775 30.96 0.27 -0.16 -0.11 9.5301 9.7332 2.1308 0.3490 0.1454

125 1.699 32.43 0.28 -0.15 -0.15 9.1202 9.6361 5.6572 0.2628 0.1095

126 1.628 34.13 0.28 -0.15 -0.15 8.7406 9.1575 4.7698 0.3184 0.1327

127 0.694 29.75 0.08 -0.05 -0.05 3.1272 3.0012 4.0304 0.0596 0.0209

128 0.668 30.53 0.09 -0.04 -0.05 3.1564 3.2901 4.2371 0.0724 0.0266

129 0.684 30.10 0.07 -0.05 -0.04 2.7185 2.5955 4.5246 0.0385 0.0119

130 0.695 29.67 0.11 -0.07 -0.05 3.6583 4.1378 13.1071 0.0516 0.0211

131 3.492 33.02 0.61 -0.30 -0.31 19.1213 20.6210 7.8432 1.7572 0.7468
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No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

132 3.679 30.96 0.59 -0.29 -0.31 20.5379 21.2688 3.5589 1.5661 0.6787

133 3.788 30.53 0.60 -0.33 -0.29 20.7375 21.9339 5.7695 1.1413 0.4851

134 3.527 32.66 0.60 -0.28 -0.35 18.9337 20.5035 8.2907 1.3421 0.5592

135 0.795 30.61 0.40 -0.21 -0.17 11.9486 14.5851 22.0655 0.0913 0.1065

136 0.821 30.08 0.40 -0.20 -0.19 12.3402 14.8395 20.2535 0.0909 0.1060

137 0.930 27.44 0.41 -0.22 -0.21 13.9853 16.6757 19.2369 0.0664 0.0775

138 1.118 29.57 0.44 -0.24 -0.19 16.8092 16.6090 1.1909 0.0972 0.1134

139 4.816 29.67 0.58 -0.30 -0.28 20.6808 21.8155 5.4869 2.6751 0.8917

140 4.830 32.71 0.66 -0.34 -0.32 20.7430 22.5196 8.5649 2.9135 0.9712

141 5.799 30.36 0.79 -0.37 -0.43 24.9023 29.0452 16.6366 2.2251 0.7417

142 4.180 32.76 0.60 -0.36 -0.28 17.9500 20.4409 13.8765 1.8007 0.6002

143 2.250 30.41 0.82 -0.40 -0.41 28.9914 30.0952 3.8072 0.6186 0.6186

144 2.128 32.41 0.83 -0.42 -0.42 27.4135 28.5815 4.2606 0.6138 0.6138

145 2.311 30.10 0.86 -0.42 -0.46 29.7726 31.8856 7.0973 0.4139 0.4139

146 2.170 31.90 0.85 -0.39 -0.45 27.9594 29.7381 6.3616 0.4535 0.4535

147 0.348 30.31 0.20 -0.10 -0.09 6.7157 7.3645 9.6615 0.0215 0.0322

148 0.344 30.20 0.19 -0.10 -0.09 6.6555 7.0225 5.5141 0.0176 0.0264

150 0.347 30.10 0.18 -0.10 -0.11 6.6974 6.6734 0.3587 0.0161 0.0241

151 3.934 30.38 0.36 -0.19 -0.17 12.6687 13.2253 4.3941 1.8642 0.4661

152 3.817 30.96 0.36 -0.17 -0.19 12.2918 12.9767 5.5720 1.8292 0.4573

153 4.311 27.52 0.37 -0.18 -0.20 13.8859 15.0034 8.0474 1.1309 0.2827

154 3.944 29.99 0.36 -0.20 -0.18 12.7012 13.3976 5.4827 1.2690 0.3173

155 2.282 30.46 1.12 -0.56 -0.56 39.1939 41.0388 4.7070 0.6609 0.8813

156 2.293 30.01 1.10 -0.62 -0.49 39.3790 40.9083 3.8836 0.5511 0.7348
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[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

157 2.315 29.79 1.14 -0.62 -0.52 39.7632 42.7061 7.4010 0.4145 0.5527

158 2.111 33.05 1.15 -0.64 -0.52 36.2593 38.8340 7.1007 0.4151 0.5535

159 5.209 30.45 0.49 -0.27 -0.25 16.7752 17.9598 7.0617 3.1165 0.7791

160 4.993 31.42 0.48 -0.25 -0.25 16.0821 17.0527 6.0356 2.7248 0.6812

161 5.231 30.34 0.51 -0.29 -0.24 16.8485 18.7627 11.3614 1.9298 0.4824

162 4.729 33.56 0.49 -0.26 -0.26 15.2322 16.2976 6.9943 2.0901 0.5225

163 3.282 29.97 0.21 -0.09 -0.10 7.0472 7.8215 10.9884 1.1802 0.1967

164 3.182 31.03 0.19 -0.10 -0.12 6.8328 6.8336 0.0113 1.2245 0.2041

165 3.347 29.45 0.21 -0.11 -0.10 7.1859 7.9594 10.7631 0.8081 0.1347

166 3.151 31.49 0.21 -0.11 -0.10 6.7646 7.4435 10.0374 0.8928 0.1488

167 3.224 30.64 1.59 -0.73 -0.88 55.3796 57.9072 4.5641 1.2844 1.7125

168 3.238 30.34 1.57 -0.79 -0.78 55.6191 57.7574 3.8445 1.0806 1.4408

169 3.588 27.59 1.67 -0.81 -0.94 61.6268 67.5451 9.6034 0.7831 1.0441

170 3.049 32.56 1.64 -0.82 -0.83 52.3683 56.2149 7.3453 0.8606 1.1475

171 0.667 30.28 0.28 -0.14 -0.14 10.0261 10.3198 2.9298 0.0646 0.0754

172 2.394 30.39 1.04 -0.49 -0.54 35.9770 38.1996 6.1780 0.6022 0.7026

173 0.670 30.40 0.27 -0.10 -0.14 10.0686 9.9117 1.5585 0.0397 0.0463

174 0.680 30.05 0.28 -0.15 -0.14 10.2215 10.4009 1.7544 0.0474 0.0553

175 2.649 30.73 1.07 -0.55 -0.52 36.9654 38.8575 5.1184 0.8873 0.9612

176 2.842 30.59 1.17 -0.58 -0.61 39.6654 42.6905 7.6264 0.7737 0.8382

177 2.790 30.29 1.17 -0.56 -0.62 38.9375 43.1138 10.7257 0.5307 0.5749

178 2.686 30.64 1.09 -0.48 -0.62 37.4900 39.7065 5.9122 0.6345 0.6874

179 1.709 30.78 0.47 -0.25 -0.23 16.5124 17.0429 3.2125 0.3945 0.2959

180 1.695 30.63 0.46 -0.25 -0.23 16.3818 16.7608 2.3132 0.3230 0.2423
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No. ~j A ∆mC ∆mA1 ∆mA2 te tr ∆t P W
[A cm−2] [cm2] [g] [g] [g] [µm] [µm] [%] [W] [W h]

181 1.721 29.96 0.48 -0.24 -0.27 16.6283 17.8788 7.5207 0.2042 0.1532

182 1.791 29.64 0.49 -0.25 -0.26 17.3074 18.4481 6.5913 0.2974 0.2230

183 4.820 30.29 1.32 -0.70 -0.65 46.5671 48.6318 4.4338 2.9390 2.2042

184 4.444 30.89 1.25 -0.58 -0.74 42.9421 45.1588 5.1622 1.9510 1.4633

185 5.040 29.89 1.33 -0.62 -0.70 48.6985 49.6613 1.9771 1.5833 1.1875

186 4.465 30.15 1.37 -0.63 -0.75 43.1404 50.7201 17.5697 1.6960 1.2720

187 4.226 30.03 0.39 -0.16 -0.22 9.0746 14.4966 59.7480 2.0177 0.3363

188 4.186 30.52 0.38 -0.19 -0.21 8.9889 13.8983 54.6163 2.0197 0.3366

189 4.066 31.05 0.40 -2.20 -0.20 8.7293 14.3761 64.6877 1.2120 0.2020

190 4.135 30.54 0.40 -0.19 -0.20 8.8782 14.6155 64.6225 1.3640 0.2273

191 0.759 29.71 0.37 -0.17 -0.19 13.8612 13.8978 0.2647 0.0858 0.1215

192 0.829 30.32 0.36 -0.19 -0.18 14.9531 13.2537 11.3649 0.0895 0.1253

193 0.722 30.99 0.37 -0.19 -0.18 12.8634 13.3264 3.5988 0.0447 0.0619

194 0.762 29.98 0.37 -0.18 -0.20 13.4092 13.7738 2.7191 0.0557 0.0761

195 1.911 30.22 0.64 -0.34 -0.30 22.5640 23.6328 4.7365 0.4851 0.4447

196 1.901 29.53 0.64 -0.32 -0.34 22.4532 24.1868 7.7209 0.3897 0.3572

197 1.916 29.72 0.66 -0.35 -0.33 22.6297 24.7856 9.5267 0.2642 0.2422

198 1.751 33.15 0.66 -0.34 -0.31 20.6790 22.2199 7.4513 0.3117 0.2858

199 4.728 30.40 0.44 -0.17 -0.23 15.2290 16.1531 6.0684 2.5588 0.6397

200 4.605 29.89 0.42 -0.18 -0.32 14.8320 15.6825 5.7339 2.2809 0.5702

201 4.637 29.81 0.43 -0.19 -0.23 14.9345 16.0966 7.7816 1.5277 0.3819

202 4.360 32.50 0.47 -0.25 -0.22 14.0435 16.1415 14.9395 1.7004 0.4251

Table B.2.: Calculated lab values113





Appendix C.

Lab values

The following pages contain the original documentation of the lab experi-
ment.
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