
Brain-inspired methods for boosting
temporal computing and learning capabilities

of spiking neural networks

by

Darjan Salaj

DISSERTATION
submitted for the degree of

Doctor Technicae

Institute for Theoretical Computer Science

Graz University of Technology

Thesis Advisor

Prof. Dr. Wolfgang Maass

Graz, Feb 2021

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
material other than from the declared sources/resources, and that I have
explicitly marked all material which has been quoted either literally or by
content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Despite many decades of active research in different fields of neuroscience,
psychology, and artificial intelligence, understanding the relationship be-
tween the biophysical mechanisms of the brain and their role in the processes
of cognition and task solving is still a standing challenge. Even for many
simple behaviours that are exhibited by non-human brains, reliable theories
about the way the brain works from the cognitive perspective is missing.
A major hurdle to understanding the brain is the fact that the brain has
developed under strict energy constraints. Thus it is difficult to decipher
which of the biophysical mechanisms support the cognitive processes, which
support the energy efficiency aspect, and which are critical for the cognition
and the energy efficiency of the brain. One prominent aspect of a brain is
the ability to remember which is vital for the emergence of most cognitive
abilities. Most temporal computation tasks encountered by brains — like
every-day human activities such as speech, reading, building and playing
games — rely on some form of memory. Spike-frequency adaptation is a
prominent biophysical mechanism present in a substantial fraction of neu-
rons. It describes a property of biological neurons where their firing activity
is transiently dampened by the neurons preceding firing activity. Thus this
mechanism is well known for its role in the energy efficiency aspect of brain
networks. We demonstrate that, in addition to the energy efficiency role,
this mechanism can be exploited and is sufficient to develop a robust form
of memory in networks of spiking neurons which supports a variety of
temporal computations. We find many similarities between this emergent
form of memory and the activity-silent form of working memory previously
observed in biological neural networks. Further, we develop the negative
imprint hypothesis that offers an explanation about how this mechanism is
exploited for the function of short-term and working memory.

v

Zusammenfassung

Trotz jahrzehntelanger Forschung am Gehirn aus der Perspektive der Neuro-
wissenschaften, Psychologie und künstlichen Intelligenz ist das Verständnis
der Beziehung zwischen den biophysikalischen Mechanismen des Gehirns
und ihrer funktionalen Rolle in der Kognition und Aufgabenlösung immer
noch eine ständige Herausforderung. Auch für die einfachsten, selbst bei Tie-
ren beobachtbaren Verhaltensweisen, fehlen verlässliche Theorien über die
Rolle und Funktionsweise des Gehirns. Eine große Hürde für das Verständ-
nis des Gehirns ist die Tatsache, dass sich das Gehirn evolutinär auf hohe
Energieeffizienz hin entwickeln musste. Daher ist auch für einen einzelnen
biophysikalischen Prozess schwer zu entschlüsseln, ob er für die kognitive
Funktion, die Energieeffizenz oder gar für beides kritisch ist. Ein wichtiger
Aspekt des Gehirns ist die Fähigkeit, sich zu erinnern — unabdingbar für
die Entstehung der meisten kognitiven Fähigkeiten. Die meisten Aufgaben,
mit denen das Gehirn konfrontiert ist — beispielsweise alltägliche Aktivi-
täten wie Sprechen, Lesen, Bauen und Spielen — brauchen in irgendeiner
Form ein Arbeitsgedächtnis. Diese Arbeit untersucht den Zusammenhang
zwischen Spike Frequency Adaptation und der Fähigkeit zur Verarbeitung
von Informationen mit zeitlichem Kontext. Spike Frequency Adaptation ist
ein wohlbekannter biophysikalischer Mechanismus, der in dem meisten
Neuronen vorhanden ist. Durch diesen wird deren Feueraktivität durch
eigene vorhergehende Aktivität vorübergehend gedämpft, was bekannter-
maßen zu verbesserter Energieeffizienz führt. Wir zeigen in dieser Arbeit,
dass dieser Mechanismus zusätzlich auch eine funktionale Rolle hat: Er
reicht, eine robuste Art von Gedächtnis in Netzwerken von Spike-Neuronen
zu entwickeln. Wir finden viele Ähnlichkeiten zwischen dieser emergenten
Form von Gedächtnis und bereits in den Neurowisschenschaften beobachte-
ten aktivitätsfreien Formen von Arbeitsgedächtnis. Weiter entwickeln wir
die Hypothese des negativen Abdrucks (negative imprint hypothesis), die

vii

eine Erklärung dafür bietet, wie dieser Mechanismus für die Funktion des
Kurzzeit- und Arbeitsgedächtnisses genutzt wird.

viii

Acknowledgements

First, I would like to thank my supervisor Wolfgang Maass for giving me the
opportunity to work on very exciting scientific problems, and for his support
and guidance during my time as a PhD student. I would especially like to
thank him for understanding and support for my unique circumstances and
wishes towards the end of my PhD studies.

I would also like to thank Christian Mayr for his time in being the second
referee for this thesis, and for many exciting and motivational discussions
about our research and neuromorphic applications.

A special thanks is due to Robert Legenstein for his huge help in writing
and discussions on all the research I was involved in, to Guillaume Bellec
and Anand Subramoney for extensive supervision, collaboration, advising
and many fun social interactions during my studies. I would like to extend
my gratitude to Michael Müller for many discussions during our walks and
for all the bread! A very special thanks to Anand Subramoney for all the
help in writing this thesis and our regular discussions, to Florian Unger for
the best pizzas, social events and help with translation of the abstract of
this thesis, and to Thomas Limbacher for being my first diving buddy. I am
very grateful to the administrative staff at our institute: Daniela Windisch-
Scharler, Charlotte Rumpf, Oliver Friedl and Nicoletta Kähling for their very
needed positive presence and helpful support in all administrative matters.
I would like to gratefully thank all of my colleagues: David Kappel, Franz
Scherr, Elias Hajek, Arjun Rao, Ceca Kraisnikovic, Thomas Bohnstingl, Horst
Petschenig, Philip Plank, and Martin Pernull for many fun conversations,
journal clubs and social events.

Most importantly I would like to thank my wife Anida, parents, sister and
grandmother, for their love and support in everything I do.

ix

Contents

1. Introduction 1
1.1. Working memory . 2

1.2. Temporal computing . 3

1.3. Structure of the thesis . 4

2. Models 7
2.1. The biological neuron . 7

2.2. Modelling biological neurons 10

2.3. Leaky integrate and fire (LIF) neurons 10

2.4. Spike-frequency adaptation . 11

2.5. Training method . 14

3. Long short-term memory and learning-to-learn in networks of
spiking neurons 17
3.1. Introduction . 19

3.2. LSNN model . 20

3.3. Applying BPTT with DEEP R to RSNNs and LSNNs 21

3.4. Computational performance of LSNNs 22

3.5. LSNNs learn-to-learn from a teacher 25

3.6. LSNNs learn-to-learn from reward 30

3.7. Discussion . 33

3.8. Methods . 35

3.8.1. Rewiring and weight initialization of excitatory and
inhibitory neurons . 35

3.8.2. Tasks . 36

4. Spike-frequency adaptation provides a long short-term memory
to networks of spiking neurons 47
4.1. Introduction . 48

xi

Contents

4.2. SFA provides working memory simultaneously for many
pieces of information, and yields powerful generalization
capability . 50

4.2.1. Generalization of SFA-enhanced temporal computa-
tions to unseen inputs. 51

4.2.2. Negative imprinting principle. 51

4.2.3. No precise alignment between time constants of SFA
and working memory duration is needed. 53

4.3. SFA improves the performance of SNNs for common bench-
mark tasks that require computational operations on tempo-
rally dispersed information . 55

4.4. SFA supports demanding cognitive computations on sequences
with dynamically changing rules 56

4.5. SFA enables SNNs to carry out complex operations on se-
quences of symbols . 59

4.5.1. A diversity of neural codes in LSNNs. 62

4.6. Discussion . 63

4.7. Methods . 65

4.7.1. Network models . 65

4.7.2. Tasks . 66

5. Contributions of other biophysical mechanisms to the temporal
computing capability of SNNs 73
5.1. Introduction . 73

5.2. Comparison of the four mechanisms on the one-dimensional
STORE-RECALL task. 76

5.3. Comparison of the four mechanism for the time series classi-
fication task sMNIST. 76

5.4. Methods . 77

5.4.1. Network models . 77

5.4.2. Tasks . 78

6. A biologically plausible learning method for recurrent networks
of spiking neurons 83
6.1. Introduction . 84

6.2. Variants of e-prop . 88

6.3. Adaptive e-prop and weight decay regularization 89

xii

Contents

6.4. Learning phoneme recognition with e-prop 90

6.5. Solving difficult temporal credit assignment 92

7. Outlook 97

Appendices 99

A. Appendix to Chapter 4: Spike frequency adaptation supports
network computations on temporally dispersed information 101
A.1. Autocorrelation based intrinsic time scale of neurons trained

on STORE-RECALL task . 101

A.2. sMNIST task with sparsely connected SNN 102

A.3. Google Speech Commands . 103

A.4. Delayed-memory XOR . 104

B. Appendix to Chapter 6: A solution to the learning dilemma for
recurrent networks of spiking neurons 109
B.1. Supplementary Figures . 109

B.1.1. Figure B.1 Comparison of learning algorithms for
training LSNNs on the TIMIT task 109

B.1.2. Figure B.2 Performance of e-prop on the framewise
TIMIT task for LSNNs without recurrent connections . 109

B.1.3. Figure B.3 LSTM networks trained with BPTT and
e-prop on the TIMIT task 109

B.1.4. Figure B.4 Impact of the length of the simulation time
step on the learning performance of e-prop for the
task of Figure 6.3 . 109

Bibliography 115

xiii

List of Figures

2.1. Morphology of a biological neuron: (A) Projected top view
of a neuron from human temporal lobe (Donor H16.03.005,
ID 526714733, Allen Institute, 2018). (B) Projection of a partial
3D reconstruction of the same neuron with marked neuron
morphology (Allen Institute, 2018). Dendrites make synap-
tic connections with neurons from which they receive the
input. Soma integrates the inputs from dendrites and gen-
erates spikes which are propagated by axon to the synaptic
connections of the downstream neurons. 9

2.2. Experimental data on neurons with SFA, and a simple model
for SFA. (A) The response to a 1-second long step current
is displayed for three sample neurons from the Allen brain
cell database Allen Institute, 2018. The cell id and sweep
number identify the exact cell recording in the Allen brain
cell database. (B) The response of a simple LIF neuron model
with SFA to the 1-second long step current. Neuron param-
eters used: top row β = 0.5 mV, τa = 1 s, Iinput = 0.024 A;
middle row β = 1 mV, τa = 1 s, Iinput = 0.024 A; bottom row
β = 1 mV, τa = 300 ms, Iinput = 0.022 A. (C) Symbolic ar-
chitecture of recurrent SNN consisting of LIF neurons with
SFA. 12

xv

List of Figures

3.1. Sequential MNIST. (A) The task is to classify images of hand-
written digits when the pixels are shown sequentially pixel
by pixel, in a fixed order row by row. (B) The performance of
RSNNs is tested for three different setups: without adapting
neurons (LIF), a fully connected LSNN, and an LSNN with
randomly initialized connectivity that was rewired during
training (DEEP R LSNN). For comparison, the performance
of two ANNs, a fully connected RNN and an LSTM network
are also shown. (C) Connectivity (in terms of connection
probabilities between and within the 3 subpopulations) of
the LSNN after applying DEEP R in conjunction with BPTT.
The input population X consisted of 60 excitatory and 20

inhibitory neurons. Percentages on the arrows from X indi-
cate the average connection probabilities from excitatory and
inhibitory neurons. (D) Dynamics of the LSNN after training
when the input image from A was sequentially presented.
From top to bottom: spike rasters from input neurons (X), and
random subsets of excitatory (E) and inhibitory (I) regularly
spiking neurons, and adaptive neurons (A), dynamics of the
firing thresholds of a random sample of adaptive neurons;
activation of softmax readout neurons. 24

3.2. LSNNs learn to learn from a teacher. (Caption on the next
page.) . 28

xvi

List of Figures

3.2. LSNNs learn to learn from a teacher. (A) L2L scheme for
an SNN N . (B) Architecture of the two-layer feed-forward
target networks (TNs) used to generate nonlinear functions
for the LSNN to learn; weights and biases were randomly
drawn from [-1,1]. (C) Performance of the LSNN in learning
a new TN during (left) and after (right) training in the outer
loop of L2L. Performance is compared to that of an optimal
linear predictor fitted to the batch of all 500 experiments for
a TN. (D) Network input (top row, only 100 of 300 neurons
shown), internal spike-based processing with low firing rates
in the populations R and A (middle rows), and network
output (bottom row) for 25 trials of 20 ms each. (E) Learning
performance of the LSNN for 10 new TNs. Performance
for a single TN is shown as insert, a red cross marks step 7

after which output predictions became very good for this
TN. The spike raster for this learning process is the one
depicted in C. Performance is compared to that of an optimal
linear predictor, which, for each example, is fitted to the
batch of all preceding examples. (F) Learning performance
of BP for the same 10 TNs as in D, working directly on the
ANN from A, with a prior for small weights. (G) Sample
input/output curves of TNs on a 1D subset of the 2D input
space, for different weight and bias values. (H) These curves
are all fairly smooth, like the internal models produced by
the LSNN while learning a particular TN. (I) Illustration of
the prior knowledge acquired by the LSNN through L2L for
another family F (sinus functions). Even adversarially chosen
examples (Step 4) do not induce the LSNN to forget its prior. 29

xvii

List of Figures

3.3. Meta-RL results for an LSNN. (A, B) Performance improve-
ment during training in the outer loop. (C, D) Samples of
navigation paths produced by the LSNN before and after
this training. Before training, the agent performs a random
walk (C). In this example it does not find the goal within the
limited episode duration. After training (D), the LSNN had
acquired an efficient exploration strategy that uses two pieces
of abstract knowledge: that the goal always lies on the border,
and that the goal position is the same throughout an episode.
Note that all synaptic weights of the LSNNs remained fixed
after training. 31

3.4. Meta-RL results for an LSNN. A Samples of paths after train-
ing. B Connectivity between sub-populations of the network
after training. The global connectivity in the network was
constrained to 20%. C The network dynamics that produced
the behavior shown in A. Raster plots and thresholds are
displayed as in Fig. 3.1D, only 1 second and 100 neurons are
shown in each raster plots. 42

4.1. Sample trial of 20-dimensional STORE-RECALL task. Rows
top to bottom: Stream of randomly drawn 20-dimensional
input patterns, represented by the firing activity of 20 popula-
tions of input neurons (a subsample is shown), firing activity
of two additional populations of input neurons for the STORE
and RECALL commands, firing activity of 25 sample LIF neu-
rons with SFA in the LSNN (we first ordered all neurons with
regard to the variance of their dynamic firing thresholds, and
then picked every 20th), the temporal evolution of the firing
thresholds of these 25 neurons, traces of the activation of 20

sigmoidal readout neurons, and their average value during
the 200 ms time window of the RECALL command repre-
sented by grey values. During the RECALL command (green
shading) the network successfully reproduced the pattern
that had been given as input during the preceding STORE
command (yellow shading). Coloring of the threshold traces
in blue or red was done after visual inspection to highlight
the emergent two disjoint populations of neurons. 52

xviii

List of Figures

4.2. Solving the 12AX task by a network of spiking neurons
with SFA. A sample trial of the trained network is shown.
From top to bottom: Full input and target output sequence
for a trial, consisting of 90 symbols each, blow-up for a subse-
quence of the input symbols, firing activity of 10 sample LIF
neurons without and 10 sample neurons with SFA from the
network, time course of the firing thresholds of these neurons
with SFA, activation of the two readout neurons, the resulting
sequence of output symbols which the network produced,
and the target output sequence. 58

4.3. (Caption on the next page.) . 61

4.3. Analysis of an LSNN trained to carry out operations on se-
quences. (A) Two sample episodes where the network carried
out sequence duplication (left) and reversal (right). Top to
bottom: Spike inputs to the network (subset), sequence of
symbols they encode, spike activity of 10 sample LIF neu-
rons (without and with SFA) in the LSNN, firing threshold
dynamics for these 10 LIF neurons with SFA, activation of lin-
ear readout neurons, output sequence produced by applying
argmax to them, target output sequence. (B-F) Emergent neu-
ral coding of 279 neurons in the LSNN, and Peri-Condition
Time Histogram (PCTH) plots of two sample neurons. Neu-
rons are sorted by time of peak activity. (B) A substantial
number of neurons were sensitive to the overall timing of
the tasks, especially for the second half of trials when the
output sequence is produced. (C) Neurons separately sorted
for duplication episodes (left column) and reversal episodes
(right column). Many neurons responded to input symbols
according to their serial position, but differently for differ-
ent tasks. (D) Histogram of neurons categorized according to
conditions with statistically significant effect (3-way ANOVA).
Firing activity of a sample neuron that fired primarily when:
(E) the symbol “g” was to be written at the beginning of the
output sequence. The activity of this neuron depended on
the task context during the input period; (F) the symbol “C”
occurred in position 5 in the input, irrespective of the task
context. 62

xix

List of Figures

5.1. Temporal computing performance of SNNs with different
slow biophysical mechanisms. (A) Test set accuracy of five
variants of the SNN model on the one-dimensional STORE-
RECALL task. Mean accuracy and standard deviation are
shown for 10 runs with different network initializations for all
5 network types. (B) Test set accuracy of the same five variants
of the SNN model for the sMNIST time series classification
task. Mean accuracy and standard deviation are shown for
a minimum of 4 runs with different network initializations
for all 5 network types. LSNNs do very well for both tasks,
much better than SNNs with facilitating short term plasticity
of synapses (STP-F). 75

5.2. Illustration of models for an inversely adapting ELIF neuron,
and for short-term synaptic plasticity. 81

6.1. Schemes for BPTT and e-prop (a) RSNN with network in-
puts x, neuron spikes z, hidden neuron states h, and output
targets y∗, for each time step t of the RSNN computation.
Output neurons y provide a low-pass filter of a weighted
sum of network spikes z. (b) BPTT computes gradients in
the unrolled version of the network. It has a new copy of
the neurons of the RSNN for each time step t. A synaptic
connection from neuron i to neuron j of the RSNN is replaced
by an array of feedforward connections, one for each time
step t, that goes from the copy of neuron i in the layer for time
step t to a copy of neuron j in the layer for time step t + 1.
All synapses in this array have the same weight: the weight
of this synaptic connection in the RSNN. (c) Loss gradients
of BPTT are propagated backwards in time and retrograde
across synapses in an offline manner, long after the forward
computation has passed a layer. d) Online learning dynamics
of e-prop. Feedforward computation of eligibility traces is
indicated in blue. These are combined with online learning
signals according to equation 1 in Bellec, Scherr, Subramoney,
et al., 2020). 87

xx

List of Figures

6.2. Comparison of BPTT and e-prop for learning phoneme recog-
nition (a) Network architecture for e-prop, illustrated for an
LSNN consisting of LIF and ALIF neurons. (b) Input and
target output for the two versions of TIMIT. (c) Performance
of BPTT and symmetric e-prop for LSNNs consisting of 800
neurons for framewise targets and 2400 for sequence targets
(random and adaptive e-prop produced similar results, see Sup-
plementary Figure B.1). To obtain the Global learning signal
baselines, the neuron-specific feedbacks are replaced with
global ones. 91

6.3. Solving a task with difficult temporal credit assignment.
(a) Setup of corresponding rodent experiments of Morcos and
Christopher D Harvey, 2016 and Engelhard et al., 2019, see
Supplmentary Movie 1. (b) Input spikes, spiking activity of
10 out of 50 sample LIF neurons and 10 out of 50 sample
ALIF neurons, membrane potentials (more precisely: vt

j − At
j)

for two sample neurons j, 3 samples of slow components of
eligibility traces, sample learning signals for 10 neurons and
softmax network output. (c) Learning curves for BPTT and
two e-prop versions applied to LSNNs, and BPTT applied to an
RSNN without adapting neurons (red curve). Orange curve
shows learning performance of e-prop for a sparsely connected
LSNN consisting of excitatory and inhibitory neurons (Dale’s
law obeyed). The shaded areas are the 95%-confidence in-
tervals of the mean accuracy computed with 20 runs. (d)
Correlation between the randomly drawn broadcast weights
Bjk for k = left/right for learning signals in random e-prop and
resulting sensitivity to left and right input components after
learning. fj,left (fj,right) was the resulting average firing rate of
neuron j during presentation of left (right) cues after learning. 93

A.1. Histogram of the intrinsic time scale of neurons trained on
STORE-RECALL task. 106

A.2. sMNIST time series classification benchmark task. 107

A.3. Delayed-memory XOR task. 108

xxi

List of Figures

B.1. Comparison of learning algorithms for training LSNNs on
the TIMIT task. Performance of BPTT and the three versions
of e-prop on frame-wise phoneme classification (left) and for
phoneme sequence recognition (right). 110

B.2. Performance of e-prop on the framewise TIMIT task for
variations of the LSNN from Figure 6.2 without recurrent
connections (left of dashed line). The result of the left-most
bar was achieved with the same hyperparameters as used
in Figure 6.2. For the other feedforward architectures we
modified hyperparameters to optimize the performance. The
results of Figure 6.2 c) for LSNNs with recurrent connec-
tions are redrawn on the right of the dashed line. One sees
that recurrent connections are essential for achieving good
performance on this task. 111

B.3. LSTM networks trained with BPTT and e-prop on the TIMIT
task. Performance of BPTT and the three versions of e-prop on
frame-wise phoneme classification (left) and for phoneme se-
quence recognition (right). One sees that e-prop approximates
BPTT performance also for non-spiking neural networks. The
BPTT baselines aim at reproducing the results obtained with
LSTM networks in Graves and Schmidhuber, 2005 and Graves,
Mohamed, and G. Hinton, 2013. The network architectures
and audio pre-processing settings are taken from (Graves and
Schmidhuber, 2005; Greff et al., 2017) for framewise phoneme
classifcation and from Graves, Mohamed, and G. Hinton,
2013 for phonemene sequence transcription. In comparison
to the BPTT-LSTM baselines that we could achieve in this
way, 26.9% framewise error rate was reported in Graves and
Schmidhuber, 2005 and 18.6% sequence error rate was re-
ported in Graves, Mohamed, and G. Hinton, 2013. 112

xxii

List of Figures

B.4. Impact of the length of the simulation time step on the
learning performance of e-prop for the task of Figure 6.3
(simplified version with 5 cues instead of 7). Decision error
for this task is shown as function of the number of training
iterations, and as function of wall clock time. The results are
averaged over 5 different seeds. One sees that the length of
the simulation time step has no visible impact on the learning
performance of e-prop. However, smaller simulation time
steps lead to substantially larger simulation time 113

xxiii

List of Tables

3.1. Results on the sequential MNIST task when each pixel is
displayed for 1ms. For an LSNN, DEEP R is used to optimize
the network under a sparse connectivity constraint, we report
the number of parameters including and not including the
disconnected synapses. 37

3.2. Results on the sequential MNIST task when each pixel is
displayed for 2ms. 37

4.1. Recall accuracy (in %) of network models with different
time constants of SFA (rows) for variants of the STORE-
RECALL task with different required memory time spans
(columns). Good task performance does not require good
alignment of SFA time constants with the required time span
for working memory. An SNN consisting of 60 LIF neu-
rons with SFA was trained for many different choices of SFA
time constants for variations of the one-dimensional STORE-
RECALL task with different required time spans for working
memory. A network of 60 LIF neurons without SFA trained
under the same parameters did not improve beyond chance
level (∼ 50% accuracy), except for the task instance with an
expected delay of 200 ms where the LIF network reached
96.7% accuracy (see top row). 54

A.1. Google Speech Commands. 108

xxv

1. Introduction

Contents

1.1. Working memory . 2

1.2. Temporal computing 3

1.3. Structure of the thesis 4

The human brain is the only known instance of general intelligence, and
thus it continues to serve as an inspiration for building and improving
artificial intelligence systems. Humans evolved to survive and adapt to
many challenging environments, and human brain is the substrate that
allowed the emergence of highly adaptive and complex behaviours that
ensured survival. To increase the chances of survival, brains not only had
to provide flexible problem-solving abilities but also do it under extreme
energy constraints which made the brains very specialized for efficient
problem-solving. This poses an interesting challenge for brain research:
Which mechanisms of the biological brain are serving a functional role, and
which are present only to support the energy efficiency of the system?

Despite the rich history and recent acceleration in all the research domains
relating to brain research — including many branches of neuroscience,
machine learning and artificial intelligence — we are still in the nascent
stage of comprehending intelligence and how it arises from the underlying
biological mechanisms of the brain. This can be attributed to the opaque
relation between the diverse parts of the brain — including many different
cell types, brain regions and underlying dynamical processes — and their
functional role. This problem is amplified by the sheer scale of the brain,
where not only the number of neurons and synapses make even the simplest
of simulations of the brain prohibitive, but also the extent of dynamical
processes which evolve temporally on many orders of magnitude from

1

1. Introduction

milliseconds to years. Another difficulty is due to the perspective we take
on the brain functions, which are influenced by the computational theories
and philosophical ideas from the past (György Buzsáki, 2019). Overcoming
these difficulties leads us one step closer to understanding the brains, which
enables better brain disease treatments and building better and more efficient
artificial intelligence systems.

Modeling some aspects of biological brains in artificial models is a viable
approach to elucidate inner workings of the brain (Levenstein et al., 2020).
There exists a wide variety of models that capture different details of the
networks of neurons in the brain. One of the simplest models that have
been studied in the context of brain research is the recurrent neural network
(RNN). Another class of models that go more in the direction of biological
realism are the recurrent spiking neural networks (RSNNs). RSNNs have
been used as models for investigating learning and memory in biological
brains, and have been referred to as the third generation of neural network
models (Maass, 1997).

This thesis focuses on understanding a specific biophysical mechanisms
— spike-frequency adaptation — in the context of its role in memory and
problem-solving in the temporal domain.

1.1. Working memory

One of the pre-requisites for the emergence of complex cognitive abilities
is some form of memory. For example, most human activities, such as
speech, text comprehension, sports and playing games, rely on the brain’s
ability to memorize information. In such tasks, a person needs to perform
many actions while temporarily keeping the intermediate results in mind
(Buchweitz, 2008).

The term “working memory” was originally published in cognitive psychol-
ogy publication (G. Miller, 1960) where it described the theoretical concept
that refers to the mechanism active during the performance of a cognitive
task and which is responsible for the maintenance of task-relevant infor-
mation. It has been stated that the working memory is “perhaps the most
significant achievement of the human mental evolution” (S. Goldman-Rakic,

2

1.2. Temporal computing

1992). In (Diamond, 2013; Cowan, 2008) the term is defined as “the ability
to hold information and manipulate it as opposed to short-term memory
which refers to just holding the memory”. Its significance lead to it being
studied in other fields such as cognitive neuroscience and artificial intelli-
gence. The term “working memory”, however, is ambiguous and has been
defined differently within different contexts and research communities.

In this thesis, we investigate the role of spike-frequency adaptation and
other biophysical mechanisms in both the working memory and short-term
memory, as defined in (Diamond, 2013; Cowan, 2008), but focus on the
broader computing capabilities in the temporal domain.

1.2. Temporal computing

Brains operate in dynamically changing environments and thus are able
to integrate and manipulate temporally dispersed information from con-
tinuous input streams on the behavioural timescale of seconds. We label
“temporal computing tasks”, tasks that involve such temporal computation.
Throughout this thesis, a variety of temporal computing tasks will be used
to benchmark the abilities of different RSNN models. Different instances of
temporal computing tasks can have very different requirements in order to
be solved. Broadly the tasks that appear in this thesis can be categorized in
one of the following three categories:

Memorization and recall is the simplest form of temporal task. The infor-
mation does not need to be processed but just stored and recalled reliably.
Difficulties in learning this task come in the form of noisy input streams
where the network has to learn to extract only the relevant information
on demand, and more importantly ignore the noise input before the recall
stage. Another difficulty in this type of tasks is the ability of the network to
continuously store and recall different values without explicitly resetting
the internal state.

Sequence classification or temporal pattern recognition is a very common
machine learning setup, most prominently appearing in the speech process-
ing and recognition domain. Here a longer input stream has to be classified
to one of the known classes. The major difficulty in this type of task is

3

1. Introduction

the diversity between the samples of the same class which makes strong
generalization a requirement for successfully solving such tasks.

Cognitive tasks are the most complex class of the tasks used in this the-
sis. They are often formalized as operations on sequences of symbols and
demand generalization to previously unseen strings of symbols. Realiza-
tion of such generalization requires multiple levels of working memory.
This type of generalization is considered an essential feature of cognitive
architectures (Marcus, 2003).

1.3. Structure of the thesis

The results in this thesis are based on publications to which I have con-
tributed as first- or co-first author or unpublished material I authored during
my PhD studies. A detailed statement about author contributions is given
at the beginning of every chapter.

Chapter 2 introduces the modeling of the biological neurons and presents the
models and the training methods that are used in the following chapters.

In Chapter 3, we show how using a pseudo-derivative to make the spiking
neuron model differentiable allows us to train the RSNNs using backprop-
agation through time. In addition, we demonstrate how the inclusion of
spike-frequency adaptation leads to a significant increase in temporal com-
puting capabilities of RSNNs.

In Chapter 4, we investigate the functional role of spike-frequency adaptation
in more depth and propose the negative imprint hypothesis about how the
spike-frequency adaptation is exploited as the substrate that supports the
emergence of robust memory capabilities. We demonstrate the ability of
such RSNNs to solve cognitive tasks that involve operations on strings of
symbols or require multiple levels of working memory. Further, we find that
representations such as assembly sequences and mixed selectivity emerge
in those RSNNs.

In Chapter 5, we perform a comparative benchmarking on the temporal com-
puting capabilities of RSNNs endowed with synaptic and neural biophysical
mechanisms different from spike-frequency adaptation.

4

1.3. Structure of the thesis

Chapter 6 builds upon e-prop, the biologically plausible approximation of
backpropagation through time published in (Bellec, Scherr, Subramoney, et
al., 2020). There we demonstrate how RSNNs endowed with spike-frequency
adaptation can also be trained with biologically plausible learning rules to
solve challenging temporal tasks. Also we introduce a variant of the learning
rule labelled adaptive e-prop.

5

2. Models

Contents

2.1. The biological neuron 7
2.2. Modelling biological neurons 10
2.3. Leaky integrate and fire (LIF) neurons 10
2.4. Spike-frequency adaptation 11
2.5. Training method . 14

Brains and nervous systems in general consist of many cell types arranged
in complex structures. The most common building block of neural networks
is the spiking neuron. It produces discrete output by integrating the inputs
received from neighbouring cells. There is also an established consensus
that the main functional role of neural networks is performed by spiking
neurons. Thus, this work focuses on modelling and analysis of recurrent
networks of spiking neurons.

2.1. The biological neuron

Biological neurons themselves have many different types, however, the basic
architecture and electrical properties are common among all of them. Bio-
logical neurons are composed of three functionally distinct parts: dendrites,
soma, and axon. See Figure 2.1.

Dendrites are fibers with synapses through which a neuron connects to the
neighbouring neurons. Dendrites receive the input signals and relay them
to the soma. Soma is the central body of a neuron. Soma integrates the
incoming signals from many dendrites and generates the action potentials

7

2. Models

which are called spikes. The generated spikes are mostly uniform across
neurons in terms of duration and shape and are therefore often abstracted as
binary events (Barnett and Larkman, 2007). Axon relays the spikes generated
by soma to the dendrites of other neurons.

A synapse is a connection between the dendrite of a post-synaptic neuron
and the axon of a pre-synaptic neuron. Synapses do not propagate the spikes
between neurons, instead, the spike is processed and transmitted through
chemical processes in the synapse. This involves modulation of calcium ion
channels by pre-synaptic spikes, merging of vesicles to the axon membrane
by higher calcium concentration, vesicle release of neurotransmitter in the
synaptic cleft, binding of neurotransmitters to the receptors of the post-
synaptic dendrite, opening of the ion channels through which cations and
anions flow, and finally, the modulation of potential in post-synaptic dendrite
(Gerstner and W. Kistler, 2002).

Neurons have a dynamic electric potential between their cellular walls
which is termed membrane potential. The dynamic of membrane potential
involves the transport of different types of ions which are gated through
their corresponding ion channels. Without input, the membrane potential of
a neuron decays to the cell-specific resting potential.

The dendrites are often connected to many axons and integrate the in-
coming spike trains. Due to the heterogeneity of synapses, the integrated
post-synaptic potentials have high variance in shape and amplitude. The
soma integrates the post-synaptic potentials from all dendrites into a single
membrane potential. Synapses can contribute positively or negatively to
the membrane potential and so are functionally segregated into inhibitory
(those that decrease the membrane potential) and excitatory (those that
depolarize, increase, the membrane potential).

Every neuron has a so-called firing threshold. When the membrane potential
increases to the value of the neuron-specific firing threshold, a spike fires
(an action potential is generated). This spike is relayed by the axon to the
synapses of other neurons. After a spike fires, the membrane potential
undergoes fast repolarization, which lowers it to a value below the resting
potential, and enters a refractory period, during which it does not change.

8

2.1. The biological neuron

Fig. 2.1.: Morphology of a biological neuron: (A) Projected top view of a neuron from
human temporal lobe (Donor H16.03.005, ID 526714733, Allen Institute, 2018).
(B) Projection of a partial 3D reconstruction of the same neuron with marked
neuron morphology (Allen Institute, 2018). Dendrites make synaptic connections
with neurons from which they receive the input. Soma integrates the inputs from
dendrites and generates spikes which are propagated by axon to the synaptic
connections of the downstream neurons.

The membrane potential is only one of many neuron-specific chemical states
that evolves over time. Another prominent neuron-specific state which can
evolve over time is the firing threshold. The process which modulates firing
threshold is commonly labelled spike-frequency adaptation and it denotes a
feature of spiking neurons where their preceding firing activity transiently
increases their firing threshold. A substantial number of neurons in the
mouse visual cortex and in the human frontal lobe exhibit spike-frequency
adaptation (Allen Institute, 2018).

Communication between neurons through spike trains is modulated by
the complex dynamics of the synapses which are conditioned by previous
activity and other factors. It is commonly accepted that most learning in the
brain is primarily implemented through the adaptation of the strengths of
the synaptic connections and their rewiring.

9

2. Models

2.2. Modelling biological neurons

Different research communities have developed a variety of neuron models
with different levels of detail and biological realism. The machine learning
and deep learning community developed artificial neural networks with a
focus on solving complex tasks with efficient use of contemporary hardware.
Modern artificial neural networks are categorized as the second generation of
neural networks (Maass, 1997). Neuroscience and related fields focused more
on the biologically realistic models, such as SNNs, which are categorized as
the third generation of neural networks (Maass, 1997).

One of the earliest spiking neuron models was developed by Hodgkin,
Huxley, and Katz, 1952. It described the voltage-gated ion channels observed
during the electrophysiological experiments conducted on the giant squid
neurons. This model was developed with the goal of describing biophysical
mechanisms of the neurons in detail.

Later, simpler models were developed by describing the essential properties
of the earlier, more complex, models. One of the most popular simpler
models is the leaky integrate and fire (LIF) model (Gerstner and W. M.
Kistler, 2002). This model describes the membrane potential as a linear sum
of the all incoming signals which are modelled as currents weighted by
the synaptic weights. The membrane potential also includes a leak current
which models the decay of membrane potential in neurons to the resting
potential.

In this thesis, we exclusively explore the RSNN models and mostly use
LIF neuron models which are often extended with the spike-frequency
adaptation mechanism.

2.3. Leaky integrate and fire (LIF) neurons

A LIF neuron j spikes as soon at its membrane potential Vj(t) is above
its threshold vth. At each spike time t, the membrane potential Vj(t) is
reset by subtracting the threshold value vth and the neuron enters a strict
refractory period for 1 to 5 ms (depending on the experiment) where it

10

2.4. Spike-frequency adaptation

cannot spike again. Between spikes, the membrane voltage Vj(t) is following
the dynamic:

τmV̇j(t) = −Vj(t) + Rm Ij(t),

where τm is the membrane constant of neuron j, Rm is the resistance of the
cell membrane, and Ij the input current.

Our simulations were performed in discrete time with a time step δt = 1 ms.
In discrete time, the input and output spike trains are modeled as binary
sequences xi(t), zj(t) ∈ {0, 1

δt} respectively. Neuron j emits a spike at time t
if it is currently not in a refractory period, and its membrane potential Vj(t)
is above its threshold. During the refractory period following a spike, zj(t)
is fixed to zero. The neural dynamics in discrete time reads as follows:

Vj(t + δt) = αVj(t) + (1− α)Rm Ij(t)− vthzj(t)δt, (2.1)

where α = exp(− δt
τm
) , with τm being the membrane constant of the neuron

j. The spike of neuron j is defined by zj(t) = H
(

Vj(t)−vth
vth

)
1
δt , with H(x) = 0

if x < 0 and 1 otherwise. The term −vthzj(t)δt implements the reset of the
membrane voltage after each spike.

In all simulations, the Rm was set to 1 GΩ. The input current Ij(t) is defined
as the weighted sum of spikes from external inputs and other neurons in
the network:

Ij(t) = ∑
i

W in
ji xi(t− din

ji) + ∑
i

Wrec
ji zi(t− drec

ji), (2.2)

where W in
ji and Wrec

ji denote respectively the input and the recurrent synaptic
weights and din

ji and drec
ji the corresponding synaptic delays.

2.4. Spike-frequency adaptation

SFA denotes a feature of spiking neurons where their preceding firing ac-
tivity transiently increases their firing threshold. Experimental data from
the Allen Institute (Allen Institute, 2018) show that a substantial fraction

11

2. Models

Fig. 2.2.: Experimental data on neurons with SFA, and a simple model for SFA. (A) The
response to a 1-second long step current is displayed for three sample neurons
from the Allen brain cell database Allen Institute, 2018. The cell id and sweep
number identify the exact cell recording in the Allen brain cell database. (B) The
response of a simple LIF neuron model with SFA to the 1-second long step current.
Neuron parameters used: top row β = 0.5 mV, τa = 1 s, Iinput = 0.024 A; middle
row β = 1 mV, τa = 1 s, Iinput = 0.024 A; bottom row β = 1 mV, τa = 300 ms,
Iinput = 0.022 A. (C) Symbolic architecture of recurrent SNN consisting of LIF
neurons with SFA.

12

2.4. Spike-frequency adaptation

of excitatory neurons of the neocortex, ranging from 20% in mouse visual
cortex to 40% in the human frontal lobe, exhibit SFA, see Fig. 2.2A for sam-
ple responses of neurons with different levels of SFA. Although a rigorous
survey of time constants of SFA is still missing, the available experimental
data show that SFA does produce history dependence of neural firing on
the time scale of seconds, in fact, up to 20 seconds according to Pozzorini,
Naud, et al., 2013; Pozzorini, Mensi, et al., 2015. The biophysical mecha-
nisms behind SFA include inactivation of depolarizing currents and the
activity-dependent activation of slow hyperpolarizing or shunting currents
(Gutkin and Zeldenrust, 2014; Benda and Herz, 2003). These have already
been implicated in cellular short-term memory (Eve Marder et al., 1996;
Turrigiano, Marder, and L. Abbott, 1996). SFA has also been argued to con-
tribute to a number of other important features of brain networks Gutkin
and Zeldenrust, 2014. On the single neuron level, these features include
the enhancement of sensitivity to synchronous input and effects on the
frequency response curve (Benda, Maler, and Longtin, 2010; Ermentrout,
1998; X.-J. Wang, 1998). On the network level, SFA may influence population
coding or benefit Bayesian inference (Kilpatrick and Ermentrout, 2011; Den-
eve, 2008). The contribution of SFA to temporal computing capabilities of
recurrent SNNs had first been examined in Bellec, Salaj, et al., 2018. The role
of SFA for language processing in feedforward networks was subsequently
examined in Fitz et al., 2020.

Different ways for fitting models for neurons with SFA to data are described
in Gerstner, W. M. Kistler, et al., 2014; N. W. Gouwens et al., 2018. We employ
a very simple model for SFA, the generalized leaky integrate-and-fire model
GLIF2 from Teeter et al., 2018; Allen Institute, 2017. A practical advantage of
this simple model is that it can be very efficiently simulated and is amenable
to gradient descent training methods. It assumes that the firing threshold
A(t) of a LIF neuron contains a variable component a(t) that increases by
a fixed amount after each of its spikes z(t) (Fig. 2.2B), and then decays
exponentially back to 0. This variable threshold models the inactivation of
voltage-dependent sodium channels in a qualitative manner. We write zj(t)
for the spike output of neuron j, that switches from 0 to 1 at time t when
the neuron fires at time t, and otherwise has value 0. Between spikes of
neuron j, the membrane voltage Vj(t) and the threshold Aj(t) are following

13

2. Models

the dynamics

τmV̇j(t) = −Vj(t) + Rm Ij(t) (2.3)

τa,j Ȧj(t) = vth − Aj(t), (2.4)

where τa,j is the adaptation time constant. In discreete time one can define
the SFA model by the equations:

Vj(t + δt) = αVj(t) + (1− α)Rm Ij(t)− Aj(t)zj(t)δt, (2.5)
Aj(t) = vth + βaj(t), (2.6)

aj(t + δt) = ρjaj(t) + (1− ρj)zj(t)δt, (2.7)

where vth is the constant baseline of the firing threshold Aj(t), and β > 0
scales the amplitude of the activity-dependent component. The parameter
ρj = exp

(
−δt
τa,j

)
controls the speed by which aj(t) decays back to 0, where τa,j

is the adaptation time constant of neuron j. The term Aj(t)zj(t)δt implements
the reset of the membrane voltage after each spike. The current Ij(t) is the
weighted sum of the incoming spikes. The definition of the input current
in equation (2.2) holds also for discrete time, with the difference that spike
trains now assume values in {0, 1

δt}. In all our simulations, δt was set to
1 ms unless specified differently.

The spiking output of LIF neuron with SFA j is then defined by zj(t) =

H
(

Vj(t)−Aj(t)
Aj(t)

)
1
δt .

Adaptation time constants of neurons with SFA were chosen to match
the task requirements in individual chapters while still conforming to the
experimental data from rodents (Allen Institute, 2018; Pozzorini, Naud, et al.,
2013; Pozzorini, Mensi, et al., 2015; Mensi et al., 2012). For an analysis of the
impact of the adaptation time constants on the performance see Table 4.1 in
Chapter 4.

2.5. Training method

In order to demonstrate the contribution of SFA and other mechanisms on
temporal computing capabilities of SNNs, we optimized the weights of the

14

2.5. Training method

SNN for each temporal computing tasks. We used Backpropagation through
time (BPTT) (Werbos, 1990) for this, which is arguably the best performing
optimization method for SNNs that is currently known.

In artificial recurrent neural networks, such as LSTMs, gradients can be
computed with BPTT using the automatic differentiation libraries. For BPTT
in spiking neural networks, complications arise from the non-differentiability
of the output of spiking neurons, and from the fact that gradients need to
be propagated either through continuous time or through many time steps
if time is discretized. Therefore, in Courbariaux et al., 2016; Esser et al., 2016

it was proposed to use a pseudo-derivative that smoothly increases from 0
to 1, and then decays back to 0:

dzj(t)
dvj(t)

:= max{0, 1− |vj(t)|}, (2.8)

where vj(t) denotes the normalized membrane potential vj(t) =
Vj(t)−Aj(t)

Aj(t)
.

This made it possible to train deep feed-forward networks of deterministic
binary neurons (Courbariaux et al., 2016; Esser et al., 2016). We observed
that this convention tends to be unstable for very deep (unrolled) recurrent
networks of spiking neurons. To achieve stable performance we dampened
the increase of back propagated errors through spikes by using a pseudo-
derivative of amplitude γ < 1 (typically γ = 0.3):

dzj(t)
dvj(t)

:= γ max{0, 1− |vj(t)|}. (2.9)

Note that in adaptive neurons, gradients can propagate through many time
steps in the dynamic threshold. This propagation is not affected by the
dampening.

15

3. Long short-term memory and
learning-to-learn in networks of
spiking neurons

Contents

3.1. Introduction . 19
3.2. LSNN model . 20
3.3. Applying BPTT with DEEP R to RSNNs and LSNNs . 21
3.4. Computational performance of LSNNs 22
3.5. LSNNs learn-to-learn from a teacher 25
3.6. LSNNs learn-to-learn from reward 30
3.7. Discussion . 33
3.8. Methods . 35

3.8.1. Rewiring and weight initialization of excitatory
and inhibitory neurons 35

3.8.2. Tasks . 36

Abstract. Recurrent networks of spiking neurons (RSNNs) underlie the
astounding computing and learning capabilities of the brain. But computing
and learning capabilities of RSNN models have remained poor, at least in
comparison with artificial neural networks (ANNs). We address two possible
reasons for that. One is that RSNNs in the brain are not randomly connected
or designed according to simple rules, and they do not start learning as
a tabula rasa network. Rather, RSNNs in the brain were optimized for
their tasks through evolution, development, and prior experience. Details
of these optimization processes are largely unknown. But their functional

17

3. Long short-term memory and learning-to-learn in networks of spiking neurons

contribution can be approximated through powerful optimization methods,
such as backpropagation through time (BPTT).

A second major mismatch between RSNNs in the brain and models is that the
latter only show a small fraction of the dynamics of neurons and synapses
in the brain. We include neurons in our RSNN model that reproduce one
prominent dynamical process of biological neurons that takes place at the
behaviourally relevant time scale of seconds: spike-frequency adaptation
(SFA). We denote these networks as LSNNs because of their Long short-term
memory. The inclusion of adapting neurons — neurons that exhibit SFA
— drastically increases the computing and learning capability of RSNNs if
they are trained and configured by deep learning (BPTT combined with
a rewiring algorithm that optimizes the network architecture). In fact, the
computational performance of these RSNNs approaches for the first time
that of LSTM networks. In addition RSNNs with SFA can acquire abstract
knowledge from prior learning in a Learning-to-Learn (L2L) scheme, and
transfer that knowledge in order to learn new but related tasks from very few
examples. We demonstrate this for supervised learning and reinforcement
learning.

Acknowledgments and author contributions. This chapter is based on the
manuscript

Guillaume Bellec*, Darjan Salaj*, Anand Subramoney*, Robert

Legenstein, Wolfgang Maass (2018). “Long short-term memory and
learning-to-learn in networks of spiking neurons.” Advances in Neural
Information Processing Systems 31, 787-797.

To this study, I contributed as first author together with GB and AS. The
study was conceived by GB, DS, AS, WM. The experiments were designed
by DS, AS, GB, WM and were conducted by DS, AS, GB. The manuscript
was written by GB, DS, AS, RL, WM.

18

3.1. Introduction

3.1. Introduction

Recurrent networks of spiking neurons (RSNNs) are frequently studied
as models for networks of neurons in the brain. In principle, they should
be especially well-suited for computations in the temporal domain, such
as speech processing, as their computations are carried out via spikes,
i.e., events in time and space. But the performance of RSNN models has
remained suboptimal also for temporal processing tasks. One difference
between RSNNs in the brain and RSNN models is that RSNNs in the brain
have been optimized for their function through long evolutionary processes,
complemented by a sophisticated learning curriculum during development.
Since most details of these biological processes are currently still unknown,
we asked whether deep learning is able to mimic these complex optimization
processes on a functional level for RSNN models. We used BPTT as the
deep learning method for network optimization. Backpropagation has been
adapted previously for feed forward networks with binary activations in
(Courbariaux et al., 2016; Esser et al., 2016), and we adapted BPTT to work
in a similar manner for RSNNs. In order to also optimize the connectivity of
RSNNs, we augmented BPTT with DEEP R, a biologically inspired heuristic
for synaptic rewiring (Kappel, Legenstein, et al., 2018; Bellec, Kappel, et al.,
2018). Compared to LSTM networks, RSNNs tend to have inferior short-term
memory capabilities. Since neurons in the brain are equipped with a host
of dynamics processes on time scales larger than a few dozen ms (Hasson,
Chen, and Honey, 2015), we enriched the inherent dynamics of neurons in
our model by a standard neural SFA process.

We first show (section 3.4) that this approach produces new computational
performance levels of RSNNs for two common benchmark tasks: Sequential
MNIST and TIMIT (a speech processing task). We then show that it makes
L2L applicable to RSNNs (section 3.5), similarly as for LSTM networks. In
particular, we show that meta-RL (J. X. Wang, Kurth-Nelson, Tirumala, et al.,
2016; Duan et al., 2016) produces new motor control capabilities of RSNNs
(section 3.6). This result links a recent abstract model for reward-based
learning in the brain J. X. Wang, Kurth-Nelson, Kumaran, et al., 2018 to
spiking activity. In addition, we show that RSNNs with sparse connectivity
and sparse firing activity of 10-20 Hz can solve these and other tasks. Hence
these RSNNs compute with spikes, rather than firing rates.

19

3. Long short-term memory and learning-to-learn in networks of spiking neurons

The superior computing and learning capabilities of LSNNs suggest that
they are also of interest for implementation in spike-based neuromorphic
chips such as Brainscales (Schemmel et al., 2010), SpiNNaker (Furber, Lester,
et al., 2013), True North (Esser et al., 2016), chips from ETH Zürich (Qiao
et al., 2015), and Loihi (Davies et al., 2018). In particular, nonlocal learning
rules such as backprop are challenges for some of these neuromorphic
devices (and for many brain models). Hence alternative methods for RSNN
learning of nonlinear functions are needed. We show in sections 3.5 and 3.6
that L2L can be used to generate RSNNs that learn very efficiently even in
the absence of synaptic plasticity.

Relation to prior work: We refer to (Eliasmith, 2013; DePasquale, Church-
land, and L. Abbott, 2016; Huh and Sejnowski, 2018; Nicola and Clopath,
2017) for summaries of preceding results on computational capabilities of
RSNNs. The focus there was typically on the generation of dynamic patterns.
Such tasks are not addressed in this article, but it is shown in (Bellec, Scherr,
Subramoney, et al., 2020) that LSNNs provide an alternative model to Nicola
and Clopath, 2017 for the generation of complex temporal patterns. Huh
et al. (Huh and Sejnowski, 2018) applied gradient descent to recurrent net-
works of spiking neurons. There, neurons without a leak were used. Hence,
the voltage of a neuron could used in that approach to store information
over an unlimited length of time.

We are not aware of previous attempts to bring the performance of RSNNs
for time series classification into the performance range of LSTM networks.
We are also not aware of any previous literature on applications of L2L to
SNNs.

3.2. LSNN model

Neurons and synapses in common RSNN models are missing many of the
dynamic processes found in their biological counterparts, especially those
on larger time scales. We integrate SFA into our RSNN model. We refer to
the resulting type of RSNNs as Long short-term memory Spiking Neural
Networks (LSNNs). LSNNs consist of a population R of integrate-and-fire
(LIF) neurons (excitatory and inhibitory), and a second population A of

20

3.3. Applying BPTT with DEEP R to RSNNs and LSNNs

LIF excitatory neurons whose excitability is temporarily reduced through
preceding firing activity, i.e., these neurons exhibit SFA (see Fig. 3.1C and
Suppl.). Both populations R and A receive spike trains from a population
X of external input neurons. Results of computations are read out by a
population Y of external linear readout neurons, see Fig. 3.1C.

3.3. Applying BPTT with DEEP R to RSNNs and
LSNNs

We optimize the synaptic weights, and in some cases also the connectivity
matrix of an LSNN for specific ranges of tasks. The optimization algorithm
that we use, backpropagation through time (BPTT), is not claimed to be
biologically realistic. But like evolutionary and developmental processes,
BPTT can optimize LSNNs for specific task ranges. How the BPTT is applied
to non-differentiable activation function of spiking neurons is described
in Chapter 2. Additionaly we reduced (“dampened”) the amplitude of the
pseudo-derivative by a factor < 1 (see Suppl. for details). This enhances the
performance of BPTT for RSNNs that compute during larger time spans,
that require backpropagation through several 1000 layers of an unrolled
feedforward network of spiking neurons. A similar implementation of BPTT
for RSNNs was proposed in (Huh and Sejnowski, 2018). It is not yet clear
which of these two versions of BPTT work best for a given task and a given
network.

In order to optimize not only the synaptic weights of a RSNN but also
its connectivity matrix, we integrated BPTT with the biologically inspired
(Kappel, Legenstein, et al., 2018) rewiring method DEEP R (Bellec, Kappel,
et al., 2018) (see Suppl. for details). DEEP R converges theoretically to an
optimal network configuration by continuously updating the set of active
connections (Kappel, Habenschuss, et al., 2015; Kappel, Legenstein, et al.,
2018; Bellec, Kappel, et al., 2018).

21

3. Long short-term memory and learning-to-learn in networks of spiking neurons

3.4. Computational performance of LSNNs

Sequential MNIST: We tested the performance of LSNNs on a standard
benchmark task that requires continuous updates of short term memory
over a long time span: sequential MNIST (Le, Jaitly, and G. E. Hinton, 2015;
Costa et al., 2017). We compare the performance of LSNNs with that of
LSTM networks. The size of the LSNN, in the case of full connectivity, was
chosen to match the number of parameters of the LSTM network. This led to
120 regular spiking and 100 adaptive neurons (with adaptation time constant
τa of 700 ms) in comparison to 128 LSTM units. Actually it turned out that
the sparsely connected LSNN shown in Fig. 3.1C, which was generated
by including DEEP R in BPTT, had only 12% of the synaptic connections
but performed better than the fully connected LSNN (see “DEEP R LSNN”
versus “LSNN” in Fig. 3.1B).

The task is to classify the handwritten digits of the MNIST dataset when
the pixels of each handwritten digit are presented sequentially, one after the
other in 784 steps, see Fig. 3.1A. After each presentation of a handwritten
digit, the network is required to output the corresponding class. The grey
values of pixels were given directly to artificial neural networks (ANNs),
and encoded by spikes for RSNNs. We considered both the case of step size
1 ms (requiring 784 ms for presenting the input image) and 2 ms (requiring
1568 ms for each image, the adaptation time constant τa was set to 1400 ms
in this case, see Fig. 3.1B.). The top row of Fig. 3.1D shows a version where
the grey value of the currently presented pixel is encoded by population
coding through the firing probability of the 80 input neurons. Somewhat
better performance was achieved when each of the 80 input neurons is
associated with a particular threshold for the grey value, and this input
neuron fires whenever the grey value crosses its threshold in the transition
from the previous to the current pixel (this input convention is chosen for the
SNN results of Fig. 3.1B). In either case, an additional input neuron becomes
active when the presentation of the 784 pixel values is finished, in order
to prompt an output from the network. The firing of this additional input
neuron is shown at the top right of the top panel of Fig. 3.1D. The softmax
of 10 linear output neurons Y is trained through BPTT to produce, during
this time segment, the label of the sequentially presented handwritten digit.
We refer to the yellow shading around 800 ms of the output neuron for label

22

3.4. Computational performance of LSNNs

3 in the plot of the dynamics of the output neurons Y in Fig. 3.1D. This
output was correct.

A performance comparison is given in Fig. 3.1B. LSNNs achieve 94.7% and
96.4% classification accuracy on the test set when every pixel is presented
for 1 and 2ms respectively. An LSTM network achieves 98.5% and 98.0%
accuracy on the same task setups. The LIF and RNN bars in Fig. 3.1B show
that this accuracy is out of reach for BPTT applied to spiking or nonspiking
neural networks without enhanced short term memory capabilities. We ob-
serve that in the sparse architecture discovered by DEEP R, the connectivity
onto the readout neurons Y is denser than in the rest of the network (see
Fig. 3.1C). Detailed results are given in the supplement.

Speech recognition (TIMIT): We also tested the performance of LSNNs for
a real-world speech recognition task, the TIMIT dataset. A thorough study
of the performance of many variations of LSTM networks on TIMIT has
recently been carried out in (Greff et al., 2017). We used exactly the same
setup which was used there (framewise classification) in order to facilitate
comparison. We found that a standard LSNN consisting of 300 regularly
firing (200 excitatory and 100 inhibitory) and 100 excitatory adapting neu-
rons with an adaptation time constant of 200 ms, and with 20% connection
probability in the network, achieved a classification error of 33.2%. This
error is below the mean error around 40% from 200 trials with different
hyperparameters for the best performing (and most complex) version of
LSTMs according to Fig. 3 of (Greff et al., 2017), but above the mean of 29.7%
of the 20 best performing choices of hyperparameters for these LSTMs. The
performance of the LSNN was however somewhat better than the error rates
achieved in (Greff et al., 2017) for a less complex version of LSTMs without
forget gates (mean of the best 20 trials: 34.2%).

We could not perform a similarly rigorous search over LSNN architectures
and meta-parameters as was carried out in (Greff et al., 2017) for LSTMs. But
if all adapting neurons are replaced by regularly firing excitatory neurons
one gets a substantially higher error rate than the LSNN with adapting
neurons: 37%. Details are given in the supplement.

23

3. Long short-term memory and learning-to-learn in networks of spiking neurons

Fig. 3.1.: Sequential MNIST. (A) The task is to classify images of handwritten digits when
the pixels are shown sequentially pixel by pixel, in a fixed order row by row. (B)
The performance of RSNNs is tested for three different setups: without adapting
neurons (LIF), a fully connected LSNN, and an LSNN with randomly initialized
connectivity that was rewired during training (DEEP R LSNN). For comparison, the
performance of two ANNs, a fully connected RNN and an LSTM network are also
shown. (C) Connectivity (in terms of connection probabilities between and within
the 3 subpopulations) of the LSNN after applying DEEP R in conjunction with
BPTT. The input population X consisted of 60 excitatory and 20 inhibitory neurons.
Percentages on the arrows from X indicate the average connection probabilities
from excitatory and inhibitory neurons. (D) Dynamics of the LSNN after training
when the input image from A was sequentially presented. From top to bottom:
spike rasters from input neurons (X), and random subsets of excitatory (E) and
inhibitory (I) regularly spiking neurons, and adaptive neurons (A), dynamics of the
firing thresholds of a random sample of adaptive neurons; activation of softmax
readout neurons.

24

3.5. LSNNs learn-to-learn from a teacher

3.5. LSNNs learn-to-learn from a teacher

One likely reason why learning capabilities of RSNN models have remained
rather poor is that one usually requires a tabula rasa RSNN model to learn.
In contrast, RSNNs in the brain have been optimized through a host of
preceding processes, from evolution to prior learning of related tasks, for
their learning performance. We emulate a similar training paradigm for
RSNNs using the L2L setup. We explore here only the application of L2L to
LSNNs, but L2L can also be applied to RSNNs without adapting neurons
(Subramoney et al., 2018). An application of L2L to LSNNs is tempting,
since L2L is most commonly applied in machine learning to their ANN
counterparts: LSTM networks see e.g. (J. X. Wang, Kurth-Nelson, Tirumala,
et al., 2016; Duan et al., 2016). LSTM networks are especially suited for L2L
since they can accommodate two levels of learning and representation of
learned insight: Synaptic connections and weights can encode, on a higher
level, a learning algorithm and prior knowledge on a large time-scale. The
short-term memory of an LSTM network can accumulate, on a lower level
of learning, knowledge during the current learning task. It has recently been
argued J. X. Wang, Kurth-Nelson, Kumaran, et al., 2018 that the pre-frontal
cortex (PFC) similarly accumulates knowledge during fast reward-based
learning in its short-term memory, without using dopamine-gated synaptic
plasticity, see the text to Suppl. Fig. 3 in (J. X. Wang, Kurth-Nelson, Kumaran,
et al., 2018). The experimental results of Perich, Gallego, and L. E. Miller,
2018 suggest also a prominent role of short-term memory for fast learning
in the motor cortex.

The standard setup of L2L involves a large, in fact in general infinitely large,
family F of learning tasks C. Learning is carried out simultaneously in two
loops (see Fig. 3.2A). The inner loop learning involves the learning of a single
task C by a neural network N , in our case by an LSNN. Some parameters of
N (termed hyper-parameters) are optimized in an outer loop optimization to
support fast learning of a randomly drawn task C from F . The outer loop
training – implemented here through BPTT – proceeds on a much larger
time scale than the inner loop, integrating performance evaluations from
many different tasks C of the family F . One can interpret this outer loop
as a process that mimics the impact of evolutionary and developmental
optimization processes, as well as prior learning, on the learning capability

25

3. Long short-term memory and learning-to-learn in networks of spiking neurons

of brain networks. We use the terms training and optimization interchange-
ably, but the term training is less descriptive of the longer-term evolutionary
processes we mimic. Like in (Hochreiter, Younger, and Conwell, 2001; J. X.
Wang, Kurth-Nelson, Tirumala, et al., 2016; Duan et al., 2016) we let all
synaptic weights of N belong to the set of hyper-parameters that are opti-
mized through the outer loop. Hence the network is forced to encode all
results from learning the current task C in its internal state, in particular in
its firing activity and the thresholds of adapting neurons. Thus the synaptic
weights of the neural network N are free to encode an efficient algorithm for
learning arbitrary tasks C from F .

When the brain learns to predict sensory inputs, or state changes that result
from an action, this can be formalized as learning from a teacher (i.e.,
supervised learning). The teacher is in this case the environment, which
provides – often with some delay – the target output of a network. The
L2L results of (Hochreiter, Younger, and Conwell, 2001) show that LSTM
networks can learn nonlinear functions from a teacher without modifying
their synaptic weights, using their short-term memory instead. We asked
whether this form of learning can also be attained by LSNNs.

Task: We considered the task of learning complex non-linear functions from
a teacher. Specifically, we chose as family F of tasks a class of continuous
functions of two real-valued variables (x1, x2). This class was defined as the
family of all functions that can be computed by a 2-layer artificial neural
network of sigmoidal neurons with 10 neurons in the hidden layer, and
weights and biases from [-1, 1], see Fig. 3.2B. Thus overall, each such target
network (TN) from F was defined through 40 parameters in the range [-1,
1]: 30 weights and 10 biases. We gave the teacher input to the LSNN for
learning a particular TN C from F in a delayed manner as in (Hochreiter,
Younger, and Conwell, 2001): The target output value was given after N
had provided its guessed output value for the preceding input.

This delay of the feedback is consistent with biologically plausible scenarios.
Simultaneously, having a delay for the feedback prevents N from passing
on the teacher value as output without first producing a prediction on its
own.

Implementation: We considered a LSNN N consisting of 180 regularly
firing neurons (population R) and 120 adapting neurons (population A) with

26

3.5. LSNNs learn-to-learn from a teacher

a spread of adaptation time constants sampled uniformly between 1 and
1000 ms and with full connectivity. Sparse connectivity in conjunction with
rewiring did not improve performance in this case. All neurons in the LSNN
received input from a population X of 300 external input neurons. A linear
readout received inputs from all neurons in R and A. The LSNN received a
stream of 3 types of external inputs (see top row of Fig. 3.2D): the values
of x1, x2, and of the output C(x′1, x′2) of the TN for the preceding input pair
x′1, x′2 (set to 0 at the first trial), all represented through population coding
in an external population of 100 spiking neurons. It produced outputs in the
form of weighted spike counts during 20 ms windows from all neurons in
the network (see bottom row of Fig. 3.2D), where the weights for this linear
readout were trained, like all weights inside the LSNN, in the outer loop,
and remained fixed during learning of a particular TN.

The training procedure in the outer loop of L2L was as follows: Network
training was divided into training episodes. At the start of each training
episode, a new target network TN was randomly chosen and used to gener-
ate target values C(x1, x2) ∈ [0, 1] for randomly chosen input pairs (x1, x2).
500 of these input pairs and targets were used as training data, and pre-
sented one per step to the LSNN during the episode, where each step lasted
20 ms. LSNN parameters were updated using BPTT to minimize the mean
squared error between the LSNN output and the target in the training set,
using gradients computed over batches of 10 such episodes, which formed
one iteration of the outer loop. In other words, each weight update included
gradients calculated on the input/target pairs from 10 different TNs. This
training procedure forced the LSNN to adapt its parameters in a way that
supported learning of many different TNs, rather than specializing on pre-
dicting the output of single TN. After training, the weights of the LSNN
remained fixed, and it was required to learn the input/output behaviour of
TNs from F that it had never seen before in an online manner by just using
its short-term memory and dynamics. See the suppl. for further details.

Results: Most of the functions that are computed by TNs from the class
F are nonlinear, as illustrated in Fig. 3.2G for the case of inputs (x1, x2)
with x1 = x2. Hence learning the input/output behaviour of any such TN
with biologically realistic local plasticity mechanisms presents a daunting
challenge for a SNN. Fig. 3.2C shows that after a few thousand training
iterations in the outer loop, the LSNN achieves low MSE for learning new

27

3. Long short-term memory and learning-to-learn in networks of spiking neurons

TNs from the family F , significantly surpassing the performance of an
optimal linear approximator (linear regression) that was trained on all 500

Fig. 3.2.: LSNNs learn to learn from a teacher. (Caption on the next page.)

28

3.5. LSNNs learn-to-learn from a teacher

Fig. 3.2.: LSNNs learn to learn from a teacher. (A) L2L scheme for an SNN N . (B) Architec-
ture of the two-layer feed-forward target networks (TNs) used to generate nonlinear
functions for the LSNN to learn; weights and biases were randomly drawn from
[-1,1]. (C) Performance of the LSNN in learning a new TN during (left) and after
(right) training in the outer loop of L2L. Performance is compared to that of an
optimal linear predictor fitted to the batch of all 500 experiments for a TN. (D)
Network input (top row, only 100 of 300 neurons shown), internal spike-based
processing with low firing rates in the populations R and A (middle rows), and
network output (bottom row) for 25 trials of 20 ms each. (E) Learning performance
of the LSNN for 10 new TNs. Performance for a single TN is shown as insert, a red
cross marks step 7 after which output predictions became very good for this TN.
The spike raster for this learning process is the one depicted in C. Performance is
compared to that of an optimal linear predictor, which, for each example, is fitted
to the batch of all preceding examples. (F) Learning performance of BP for the
same 10 TNs as in D, working directly on the ANN from A, with a prior for small
weights. (G) Sample input/output curves of TNs on a 1D subset of the 2D input
space, for different weight and bias values. (H) These curves are all fairly smooth,
like the internal models produced by the LSNN while learning a particular TN. (I)
Illustration of the prior knowledge acquired by the LSNN through L2L for another
family F (sinus functions). Even adversarially chosen examples (Step 4) do not
induce the LSNN to forget its prior.

pairs of inputs and target outputs, see orange curve in Fig. 3.2C,E. In view
of the fact that each TN is defined by 40 parameters, it comes at some
surprise that the resulting network learning algorithm of the LSNN for
learning the input/output behaviour of a new TN produces in general a
good approximation of the TN after just 5 to 20 trials, where in each trial
one randomly drawn labelled example is presented. One sample of a generic
learning process is shown in Fig. 3.2D. Each sequence of examples evokes
an internal model that is stored in the short-term memory of the LSNN.
Fig. 3.2H shows the fast evolution of internal models of the LSNN for the
TN during the first trials (visualized for a 1D subset of the 2D input space).
We make the current internal model of the LSNN visible by probing its
prediction C(x1, x2) for hypothetical new inputs for evenly spaced points
(x1, x2) in the domain (without allowing it to modify its short-term memory;
all other inputs advance the network state according to the dynamics of the
LSNN). One sees that the internal model of the LSNN is from the beginning
a smooth function, of the same type as the ones defined by the TNs in F .
Within a few trials this smooth function approximated the TN quite well.

29

3. Long short-term memory and learning-to-learn in networks of spiking neurons

Hence the LSNN had acquired during the training in the outer loop of L2L
a prior for the types of functions that are to be learnt, that was encoded in
its synaptic weights. This prior was in fact quite efficient, since Fig. 3.2E and
F show that the LSNN was able to learn a TN with substantially fewer trials
than a generic learning algorithm for learning the TN directly in an artificial
neural network as in Fig. 3.2A: BP with a prior that favored small weights
and biases (see end of Sec. 3 in suppl.). These results suggest that L2L is
able to install some form of prior knowledge about the task in the LSNN.
We conjectured that the LSNN fits internal models for smooth functions to
the examples it received.

We tested this conjecture in a second, much simpler, L2L scenario. Here the
family F consisted of all sinus functions with arbitrary phase and ampli-
tudes between 0.1 and 5. Fig. 3.2I shows that the LSNN also acquired an
internal model for sinus functions (made visible analogously as in Fig. 3.2H)
in this setup from training in the outer loop. Even when we selected exam-
ples in an adversarial manner, which happened to be in a straight line, this
did not disturb the prior knowledge of the LSNN.

Altogether the network learning that was induced through L2L in the
LSNNs is of particular interest from the perspective of the design of learning
algorithms, since we are not aware of previously documented methods for
installing structural priors for online learning of a recurrent network of
spiking neurons.

3.6. LSNNs learn-to-learn from reward

We now turn to an application of meta reinforcement learning (meta-RL) to
LSNNs. In meta-RL, the LSNN receives rewards instead of teacher inputs.
Meta-RL has led to a number of remarkable results for LSTM networks, see
e.g. (J. X. Wang, Kurth-Nelson, Tirumala, et al., 2016; Duan et al., 2016). In
addition, J. X. Wang, Kurth-Nelson, Kumaran, et al., 2018 demonstrates that
meta-RL provides a very interesting perspective of reward-based learning in
the brain. We focused on one of the more challenging demos of J. X. Wang,
Kurth-Nelson, Tirumala, et al., 2016 and Duan et al., 2016, where an agent
had to learn to find a target in a 2D arena, and to navigate subsequently

30

3.6. LSNNs learn-to-learn from reward

Fig. 3.3.: Meta-RL results for an LSNN. (A, B) Performance improvement during training
in the outer loop. (C, D) Samples of navigation paths produced by the LSNN before
and after this training. Before training, the agent performs a random walk (C). In
this example it does not find the goal within the limited episode duration. After
training (D), the LSNN had acquired an efficient exploration strategy that uses two
pieces of abstract knowledge: that the goal always lies on the border, and that the
goal position is the same throughout an episode. Note that all synaptic weights of
the LSNNs remained fixed after training.

to this target from random positions in the arena. This task is related to
the well-known biological learning paradigm of the Morris water maze task
(Morris, 1984; Vasilaki et al., 2009). We study here the capability of an agent
to discover two pieces of abstract knowledge from the concrete setup of the
task: the distribution of goal positions, and the fact that the goal position is
constant within each episode. We asked whether the agent would be able to
exploit the pieces of abstract knowledge from learning for many concrete
episodes, and use it to navigate more efficiently.

Task: An LSNN-based agent was trained on a family of navigation tasks
with continuous state and action spaces in a circular arena. The task is
structured as a sequence of episodes, each lasting 2 seconds. The goal was
placed randomly for each episode on the border of the arena. When the
agent reached the goal, it received a reward of 1, and was placed back
randomly in the arena. When the agent hit a wall, it received a negative
reward of -0.02 and the velocity vector was truncated to remain inside the
arena. The objective was to maximize the number of goals reached within
the episode. This family F of tasks is defined by the infinite set of possible
goal positions. For each episode, an optimal agent is expected to explore
until it finds the goal position, memorize it and exploits this knowledge

31

3. Long short-term memory and learning-to-learn in networks of spiking neurons

until the end of the episode by taking the shortest path to the goal. We
trained an LSNN so that the network could control the agent’s behaviour in
all tasks, without changing its network weights.

Implementation: Since LSNNs with just a few hundred neurons are not
able to process visual input, we provided the current position of the agent
within the arena through a place-cell like Gaussian population rate encoding
of the current position. The lack of visual input made it already challenging
to move along a smooth path, or to stay within a safe distance from the
wall. The agent received information about positive and negative rewards
in the form of spikes from external neurons. For training in the outer loop,
we used BPTT together with DEEP R applied to the surrogate objective of
the Proximal Policy Optimization (PPO) algorithm Schulman et al., 2017.
In this task the LSNN had 400 recurrent units (200 excitatory, 80 inhibitory
and 120 adaptive neurons with adaptation time constant τa of 1200 ms),
the network was rewired with a fixed connectivity of 20%. The resulting
network diagram and spike raster is shown in Suppl. Fig. 3.4.

Results: The network behaviour before, during, and after L2L optimiza-
tion is shown in Fig. 3.3. Fig. 3.3A shows that a large number of training
episodes finally provides significant improvements. With a close look at
Fig. 3.3B, one sees that before 52k training episodes, the intermediate path
planning strategies did not seem to use the discovered goal position to make
subsequent paths shorter. Hence the agents had not yet discovered that the
goal position does not change during an episode. After training for 300k
episodes, one sees from the sample paths in Fig. 3.3D that both pieces of
abstract knowledge had been discovered by the agent. The first path in
Fig. 3.3D shows that the agent exploits that the goal is located on the border
of the maze. The second and last paths show that the agent knows that
the position is fixed throughout an episode. Altogether this demo shows
that meta-RL can be applied to RSNNs, and produces previously not seen
capabilities of sparsely firing RSNNs to extract abstract knowledge from
experimentation, and to use it in clever ways for controlling behaviour.

32

3.7. Discussion

3.7. Discussion

We have demonstrated that deep learning provides a useful new tool for
the investigation of networks of spiking neurons: It allows us to create
architectures and learning algorithms for RSNNs with enhanced computing
and learning capabilities. In order to demonstrate this, we adapted BPTT so
that it works efficiently for RSNNs, and can be combined with a biologically
inspired synaptic rewiring method (DEEP R). We have shown in section
3.4 that this method allows us to create sparsely connected RSNNs that
approach the performance of LSTM networks on common benchmark tasks
for the classification of spatio-temporal patterns (sequential MNIST and
TIMIT). This qualitative jump in the computational power of RSNNs was
supported by the introduction of adapting neurons into the model. Adapting
neurons introduce a spread of longer time constants into RSNNs, as they
do in the neocortex according to Allen Institute, 2018. We refer to the
resulting variation of the RSNN model as LSNNs, because of the resulting
longer short-term memory capability. This form of short-term memory is
of particular interest from the perspective of energy efficiency of SNNs,
because it stores and transmits stored information through non-firing of
neurons: A neuron that holds information in its increased firing threshold
tends to fire less often.

We have shown in Fig. 3.2 that an application of deep learning (BPTT and
DEEP R) in the outer loop of L2L provides a new paradigm for learning
of nonlinear input/output mappings by a RSNN. This learning task was
thought to require an implementation of BP in the RSNN. We have shown
that it requires no BP, not even changes of synaptic weights. Furthermore we
have shown that this new form of network learning enables RSNNs, after
suitable training with similar learning tasks in the outer loop of L2L, to learn
a new task from the same class substantially faster. The reason is that the
prior deep learning has installed abstract knowledge (priors) about common
properties of these learning tasks in the RSNN. To the best of our knowledge,
transfer learning capabilities and the use of prior knowledge (see Fig. 3.2I)
have previously not been demonstrated for SNNs. Fig 3.3 shows that L2L
also embraces the capability of RSNNs to learn from rewards (meta-RL). For
example, it enables a RSNN – without any additional outer control or clock –
to embody an agent that first searches an arena for a goal, and subsequently

33

3. Long short-term memory and learning-to-learn in networks of spiking neurons

exploits the learnt knowledge in order to navigate fast from random initial
positions to this goal. Here, for the sake of simplicity, we considered only
the more common case when all synaptic weights are determined by the
outer loop of L2L. But similar results arise when only some of the synaptic
weights are learnt in the outer loop, while other synapses employ local
synaptic plasticity rules to learn the current task Subramoney et al., 2018.

Altogether we expect that the new methods and ideas that we have intro-
duced will advance our understanding and reverse engineering of RSNNs in
the brain. For example, the RSNNs that emerged in Fig. 3.1-3.3 all compute
and learn with a brain-like sparse firing activity, quite different from a
SNN that operates with rate-codes. In addition, these RSNNs present new
functional uses of short-term memory that go far beyond remembering a
preceding input as in (Mongillo, Barak, and Tsodyks, 2008), and suggest
new forms of activity-silent memory (Stokes, 2015).

Apart from these implications for computational neuroscience, our finding
that RSNNs can acquire powerful computing and learning capabilities
with very energy-efficient sparse firing activity provides new application
paradigms for spike-based computing hardware through non-firing.

Acknowledgments

This research/project was supported by the HBP Joint Platform, funded from
the European Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreement No. 720270 (Human
Brain Project SGA1) and under the Specific Grant Agreement No. 785907

(Human Brain Project SGA2). We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Quadro P6000 GPU used
for this research. Research leading to these results has in parts been carried
out on the Human Brain Project PCP Pilot Systems at the Jülich Supercom-
puting Centre, which received co-funding from the European Union (Grant
Agreement No. 604102). We gratefully acknowledge Sandra Diaz, Alexander
Peyser and Wouter Klijn from the Simulation Laboratory Neuroscience of
the Jülich Supercomputing Centre for their support. The computational
results presented have been achieved in part using the Vienna Scientific
Cluster (VSC).

34

3.8. Methods

3.8. Methods

LIF neuron model, SFA, and training method are described in Chapter 2.

3.8.1. Rewiring and weight initialization of excitatory and
inhibitory neurons

In all experiments except those reported in Fig. 3.2, the neurons were either
excitatory or inhibitory. When the neuron sign were not constrained, the
initial network weights were drawn from a Gaussian distribution Wji ∼

w0√
nin
N (0, 1), where nin is the number of afferent neurons in the considered

weight matrix (i.e., the number of columns of the matrix), N (0, 1) is the zero-
mean unit-variance Gaussian distribution and w0 is a weightscaling factor
chosen to be w0 = 1Volt

Rm
δt. With this choice of w0 the resistance Rm becomes

obsolete but the vanishing-exploding gradient theory (Bengio, Simard, and
Frasconi, 1994; Sussillo and L. Abbott, 2014) can be used to avoid tuning
by hand the scaling of Wji. In particular the scaling 1√

nin
used above was

sufficient to initialize networks with realistic firing rates and that can be
trained efficiently.

When the neuron sign were constrained, all outgoing weights Wrec
ji or Wout

ji
of a neuron i had the same sign. In those cases, DEEP R Bellec, Kappel,
et al., 2018 was used as it maintains the sign of each synapse during training.
The sign is thus inherited from the initialization of the network weights.
This raises the need of an efficient initialization of weight matrices for given
fractions of inhibitory and excitatory neurons. To do so, a sign κi ∈ {−1, 1}
is generated randomly for each neuron i by sampling from a Bernoulli distri-
bution. The weight matrix entries are then sampled from Wji ∼ κi|N (0, 1)|
and post-processed to avoid exploding gradients. Firstly, a constant is added
to each weight so that the sum of excitatory and inhibitory weights onto
each neuron j (∑i Wji) is zero Rajan and L. F. Abbott, 2006 (if j has no
inhibitory or no excitatory incoming connections this step is omitted). To
avoid exploding gradients it is important to scale the weight so that the
largest eigenvalue is lower of equal to 1 (Bengio, Simard, and Frasconi, 1994).
Thus, we divided Wji by the absolute value of its largest eigenvalue. When

35

3. Long short-term memory and learning-to-learn in networks of spiking neurons

the matrix is not square, eigenvalues are ill-defined. Therefore, we first
generated a large enough square matrix and selected the required number
of rows or columns with uniform probabilities. The final weight matrix is
scaled by w0 for the same reasons as before.

To initialize matrices with a sparse connectivity, dense matrices were gen-
erated as described above and multiplied with a binary mask. The binary
mask was generated by sampling uniformly the neuron coordinates that
were non-zero at initialization. DEEP R maintains the initial connectivity
level throughout training by dynamically disconnecting synapses and recon-
necting others elsewhere. The L1-norm regularization parameter of DEEP R
was set to 0.01 and the temperature parameter of DEEP R was left at 0.

3.8.2. Tasks

Computational performance of LSNNs

MNIST setup: The pixels of an MNIST image were presented sequentially
to the LSNN in 784 time steps. Two input encodings were considered. First,
we used a population coding where the grey scale value (which is in the
range [0, 1]) of the currently presented pixel was directly used as the firing
probability of each of the 80 input neurons in that time step.

In a second type of input encoding – that is closer to the way how spiking
vision sensors encode their input – each of the 80 input neurons was associ-
ated with a particular threshold for the grey value, and this input neuron
fired whenever the grey value of the currently presented pixel crossed its
threshold. Here, we used two input neurons per threshold, one spiked at
threshold crossings from below, and one at the crossings from above. This
input convention was chosen for the LSNN results of Fig. 3.1B.

The output of the network was determined by averaging the readout output
over the 56 time steps following the presentation of the digit. The network
was trained by minimizing the cross entropy error between the softmax
of the averaged readout and the label distributions. The best performing
models use rewiring with a global connectivity level of 12% was used
during training to optimize a sparse network connectivity structure (i.e.,

36

3.8. Methods

when randomly picking two neurons in the network, the probability that
they would be connected is 0.12). This implies that only a fraction of the
parameters were finally used as compared to a similarly performing LSTM
network.

Tables 3.1 and 3.2 contain the results and details of training runs where each
time step lasted for 1 ms and 2 ms respectively.

Model # neurons conn. # params # runs mean std. max.
LSTM 128 100% 67850 12 79.8% 26.6% 98.5%
RNN 128 100% 17930 10 71.3% 24.5% 89%

LSNN 100(A), 120(R) 12% 8185 (full 68210) 12 94.2% 0.3% 94.7%
LSNN 100(A), 200(R) 12% 14041 (full 117010) 1 - - 95.7%
LSNN 350(A), 350(R) 12% 66360 (full 553000) 1 - - 96.1%
LSNN 100(A), 120(R) 100% 68210 10 92.0% 0.7% 93.3%

LIF 220 100% 68210 10 60.9% 2.7% 63.3%

Table 3.1.: Results on the sequential MNIST task when each pixel is displayed for 1ms. For
an LSNN, DEEP R is used to optimize the network under a sparse connectivity
constraint, we report the number of parameters including and not including the
disconnected synapses.

Model # neurons conn. # params # runs mean std. max.
LSTM 128 100% 67850 12 48.2% 39.9% 98.0%
RNN 128 100% 17930 12 30% 23.6% 67.9%

LSNN 100(A), 120(R) 12% 8185 (full 68210) 12 93.8% 5.8% 96.4%
LSNN 350(A), 350(R) 12% 66360 (full 553000) 1 - - 97.1%
LSNN 100(A), 120(R) 100% 68210 10 90.5% 1.4% 93.7%

LIF 220 100% 68210 11 34.6% 8.8% 51.8%

Table 3.2.: Results on the sequential MNIST task when each pixel is displayed for 2ms.

TIMIT setup: To investigate if the performance of LSNNs can scale to
real world problems, we considered the TIMIT speech recognition task. We
focused on the frame-wise classification where the LSNN has to classify
each audio-frame to one of the 61 phoneme classes.

We followed the convention of Halberstadt (Glass, Smith, and K. Halberstadt,

37

3. Long short-term memory and learning-to-learn in networks of spiking neurons

1999) for grouping of training, validation, and testing sets (3696, 400, and
192 sequences respectively). The performance was evaluated on the core test
set for consistency with the literature. Raw audio is preprocessed into 13
Mel Frequency Cepstral Coefficients (MFCCs) with frame size 10 ms and
on input window of 25 ms. We computed the first and the second order
derivatives of MFCCs and combined them, resulting in 39 input channels.
These 39 input channels were mapped to 39 input neurons which unlike in
MNIST emit continuous values xi(t) instead of spikes, and these values were
directly used in equation 2.2 for the currents of the postsynaptic neurons.

Since we simulated the LSNN network in 1 ms time steps, every input frame
which represents 10 ms of the input audio signal was fed to the LSNN
network for 10 consecutive 1 ms steps. The softmax output of the LSNN
was averaged over every 10 steps to produce the prediction of the phone in
the current input frame. The LSNN was rewired with global connectivity
level of 20%.

Parameter values: For adaptive neurons, we used β j = 1.8, and for regular
spiking neurons we used β j = 0 (i.e. Aj is constant). The baseline threshold
voltage was vth = 0.01 and the membrane time constant τm = 20 ms.
Networks were trained using the default Adam optimizer, and a learning
rate initialized at 0.01. The dampening factor for training was γ = 0.3.

For sequential MNIST, all networks were trained for 36000 iterations with
a batch size of 256. Learning rate was decayed by a factor 0.8 every 2500
iterations. The adaptive neurons in the LSNN had an adaptation time
constant τa = 700 ms (1400 ms) for 1 ms (2 ms) per pixel setup. The baseline
artificial RNN contained 128 hidden units with the hyperbolic tangent
activation function. The LIF network was formed by a fully connected
population of 220 regular spiking neurons.

For TIMIT, the LSNN network consisted of 300 regular neurons and 100
adaptive neurons which resulted in approximately 400000 parameters. Net-
work was trained for 80 epochs with batches of 32 sequences. Adaptation
time constant of adaptive neurons was set to τa = 200 ms. Refractory period
of the neurons was set to 2 ms, the membrane time constant of the output Y

38

3.8. Methods

neurons to 3 ms, and the synaptic delay was randomly picked from {1, 2}
ms.

We note that due to the rewiring of the LSNN using DEEP R Bellec, Kappel,
et al., 2018 method, only a small fraction of the weights had non-zero values
(8185 in MNIST, ∼ 80000 in TIMIT).

LSNNs learn-to-learn from a teacher

Experimental setup:

Function families: The LSNN was trained to implement a regression algorithm
on a family of functions F . Two specific families were considered: In the
first function family, the functions were defined by feed-forward neural
networks with 2 inputs, 1 hidden layer consisting of 10 hidden neurons,
and 1 output, where all the parameters (weights and biases) were chosen
uniformly randomly between [−1, 1]. The inputs were between [−1, 1] and
the outputs were scaled to be between [0, 1]. We call these networks Target
Networks (TNs). In the second function family, the targets were defined
by sinusoidal functions y = A sin(φ + x) over the domain x ∈ [−5, 5]. The
specific function to be learned was defined then by the phase φ and the
amplitude A, which were chosen uniformly random between [0, π] and
[0.1, 5] respectively.

Input encoding: Analog values were transformed into spiking trains to serve
as inputs to the LSNN as follows: For each input component, 100 input
neurons are assigned values m1, . . . m100 evenly distributed between the
minimum and maximum possible value of the input. Each input neuron has
a Gaussian response field with a particular mean and standard deviation,
where the means are uniformly distributed between the minimum and
maximum values to be encoded, and with a constant standard deviation.
More precisely, the firing rate ri (in Hz) of each input neuron i is given by
ri = rmax exp

(
− (mi−zi)

2

2 σ2

)
, where rmax = 200 Hz, mi is the value assigned to

that neuron, zi is the analog value to be encoded, and σ = (mmax−mmin)
1000 , mmin

with mmax being the minimum and maximum values to be encoded.

39

3. Long short-term memory and learning-to-learn in networks of spiking neurons

LSNN setup and training schedule: The standard LSNN model was used,
with 300 hidden neurons for the TN family of learning tasks, and 100 for
the sinusoidal family. Of these, 40% were adaptive in all simulations. We
used all-to-all connectivity between all neurons (regular and adaptive). The
output of the LSNN was a linear readout that received as input the mean
firing rate of each of the neurons per step i.e the number of spikes divided
by 20 for the 20 ms time window that the step consists of.

The network training proceeded as follows: A new target function was
randomly chosen for each episode of training, i.e., the parameters of the
target function are chosen uniformly randomly from within the ranges above
(depending on whether its a TN or sinusoidal). Each episode consisted of
a sequence of 500 steps, each lasting for 20 ms. In each step, one training
example from the current function to be learned was presented to the LSNN.
In such a step, the inputs to the LSNN consisted of a randomly chosen vector
x with its dimensionality d and range determined by the target function
being used (d = 2 for TNs, d = 1 for sinusoidal target function). In addition,
at each step, the LSNN also got the target value C(x′) from the previous
step, i.e., the value of the target calculated using the target function for the
inputs given at the previous step (in the first step, C(x′) is set to 0).

All the weights of the LSNN were updated using our variant of BPTT, once
per iteration, where an iteration consists of a batch of 10 episodes, and the
weight updates are accumulated across episodes in an iteration. The Adam
Kingma and Ba, 2014 variant of BP was used with standard parameters
and a learning rate of 0.001. The loss function for training was the mean
squared error (MSE) of the LSNN predictions over an iteration (i.e. over all
the steps in an episode, and over the entire batch of episodes in an iteration).
In addition, a regularization term was used to maintain a firing rate of 20
Hz. Specifically, the regularization term R is defined as the mean squared
difference between the average neuron firing rate in the LSNN and a target
of 20 Hz. The total loss L was then given by L = MSE + 30 R. In this way,
we induce the LSNN to use sparse firing. We trained the LSNN for 5000
iterations in all cases.

Parameter values: The LSNN parameters were as follows: 5 ms neuronal
refractory period, delays spread uniformly between 0− 5 ms, adaptation

40

3.8. Methods

time constants of the adaptive neurons spread uniformly between 1− 1000
ms, β = 1.6 for adaptive neurons (0 for regular neurons), membrane time
constant τ = 20 ms, 0.03 mV baseline threshold voltage. The dampening
factor for training was γ = 0.4.

Analysis and comparison: The linear baseline was calculated using linear
regression with L2 regularization with a regularization factor of 100 (deter-
mined using grid search), using the mean spiking trace of all the neurons.
The mean spiking trace was calculated as follows: First the neuron traces
were calculated using an exponential kernel with 20 ms width and a time
constant of 20 ms. Then, for every step, the mean value of this trace was
calculated to obtain the mean spiking trace. In Fig. 3.2C, for each episode
consisting of 500 steps, the mean spiking trace from a random subset of 450
steps was used to train the linear regressor, and the mean spiking trace from
remaining 50 steps was used to calculate the test error. The reported baseline
is the mean of the test error over one batch of 10 episodes with error bars of
one standard deviation. In Fig. 3.2E, for each episode, after every step k, the
mean spiking traces from the first k− 1 steps were used to train the linear
regressor, and the test error was calculated using the mean spiking trace for
the kth step. The reported baseline is a mean of the test error over one batch
of 10 episodes with error bars of one standard deviation.

For the case where neural networks defined the function family, the total
test MSE was 0.0056± 0.0039 (linear baseline MSE was 0.0217± 0.0046). For
the sinusoidal function family, the total test MSE was 0.3134± 0.2293 (linear
baseline MSE was 1.4592± 1.2958).

Comparison with backprop: The comparison was done for the case where
the LSNN is trained on the function family defined by target networks.
A feed-forward (FF) network with 10 hidden neurons and 1 output was
constructed. The input to this FF network were the analog values that were
used to generate the spiking input and targets for the LSNN. Therefore the
FF had 2 inputs, one for each of x1 and x2. The error reported in Fig 2F
is the mean training error over 10 batches with error bars of one standard
deviation.

The FF network was initialized with Xavier normal initialization Glorot

41

3. Long short-term memory and learning-to-learn in networks of spiking neurons

Fig. 3.4.: Meta-RL results for an LSNN. A Samples of paths after training. B Connectivity
between sub-populations of the network after training. The global connectivity in
the network was constrained to 20%. C The network dynamics that produced the
behavior shown in A. Raster plots and thresholds are displayed as in Fig. 3.1D, only
1 second and 100 neurons are shown in each raster plots.

and Bengio, 2010 (which had the best performance, compared to Xavier
uniform and plain uniform between [−1, 1]). Adam Kingma and Ba, 2014

with AMSGrad Reddi, Kale, and Kumar, 2018 was used with parameters η =
10−1, β1 = 0.7, β2 = 0.9, C = 10−5. These were the optimal parameters as
determined by a grid search. Together with the Xavier normal initialization
and the weight regularization parameter C, the training of the FF favoured
small weights and biases.

LSNNs learn-to-learn from reward

Experimental setup:

Task family: An LSNN-based agent was trained on a family of navigation

42

3.8. Methods

tasks in a two dimensional circular arena. For all tasks, the arena is a
circle with radius 1 and goals are smaller circles of radius 0.3 with centres
uniformly distributed on the circle of radius 0.85. At the beginning of
an episode and after the agent reaches a goal, the agent’s position is set
randomly with uniform probability within the arena. At every timestep, the
agent chooses an action by generating a small velocity vector of Euclidean
norm smaller or equal to ascale = 0.02. When the agent reaches the goal,
it receives a reward of 1. If the agent attempts to move outside the arena,
the new position is given by the intersection of the velocity vector with the
border and the agent receives a negative reward of −0.02.

Input encoding: Information of the current environmental state s(t) and the
reward r(t) were provided to the LSNN at each time step t as follows: The
state s(t) is given by the x and y coordinate of the agent’s position (see
top of Fig. 3.4C). Each position coordinate ξ(t) ∈ [−1, 1] is encoded by 40
neurons which spike according to a Gaussian population rate code defined
as follows: a preferred coordinate value ξi, is assigned to each of the 40
neurons, where ξi’s are evenly spaced between −1 and 1. The firing rate
of neuron i is then given by rmax exp(−100(ξi − ξ)2) where rmax is 500 Hz.
The instantaneous reward r(t) is encoded by two groups of 40 neurons (see
green row at the top of Fig. 3.4C). All neuron in the first group spike in
synchrony each time a reward of 1 is received (i.e., the goal was reached),
and the second group spikes when a reward of −0.02 is received (i.e., the
agent moved into a wall).

Output decoding: The output of the LSNN is provided by five readout neurons.
Their membrane potentials yi(t) define the outputs of the LSNN. The action
vector a(t) = (ax(t), ay(t))T is sampled from the distribution πθ which
depends on the network parameters θ through the readouts yi(t) as follows:
The coordinate ax(t) (ay(t)) is sampled from a Gaussian distribution with
mean µx = tanh(y1(t)) (µy = tanh(y2(t))) and variance φx = σ(y3(t))
(φy = σ(y4(t))). The velocity vector that updates the agent’s position is then
defined as ascale a(t). If this velocity has a norm larger than ascale, it is clipped
to a norm of ascale.

The last readout output y5(t) is used to predict the value function Vθ(t). It es-
timates the expected discounted sum of future rewards R(t) = ∑t′>t ηt′−tr(t′),
where η = 0.99 is the discount factor and r(t′) denotes the reward at time t′.

43

3. Long short-term memory and learning-to-learn in networks of spiking neurons

To enable the network to learn complex forms of exploration we introduced
current noise in the neuron model in this task. At each time step, we added
a small Gaussian noise with mean 0 and standard deviation 1

Rm
νj to the

current Ij into neuron j. Here, νj is a network parameter initialized at 0.03
and optimized by BPTT alongside the network weights.

Network training: To train the network we used the Proximal Policy Opti-
mization algorithm (PPO) Schulman et al., 2017. For each training iteration,
K full episodes of T timesteps were generated with fixed parameters θold
(here K = 10 and T = 2000). We write the clipped surrogate objective of PPO
as OPPO(θold, θ, t, k) (this is defined under the notation LCLIP in Schulman
et al., 2017). The loss with respect to θ is then defined as follows:

L(θ) = − 1
KT ∑

k<K
∑
t<T

OPPO(θold, θ, t, k) + µv (R(t, k)−Vθ(t, k))2 (3.1)

−µeH(πθ(k, t)) + µ f iring
1
n ∑

j
|| 1

KT ∑
k,t

zj(t, k)− f 0||2, (3.2)

where H(πθ) is the entropy of the distribution πθ , f 0 is a target firing rate of
10 Hz, and µv, µe, µ f iring are regularization hyper-parameters. Importantly
probability distributions used in the definition of the loss L (i.e. the trajecto-
ries) are conditioned on the current noises, so that for the same noise and
infinitely small parameter change from θold to θ the trajectories and the spike
trains are the same. At each iteration this loss function L is then minimized
with one step of the ADAM optimizer.

Parameter values: In this task the LSNN had 400 hidden units (200 ex-
citatory neurons, 80 inhibitory neurons and 120 adaptive neurons with
adaptation time constants τa = 1200 ms) and the network was rewired
with a fixed global connectivity of 20% Bellec, Kappel, et al., 2018. The
membrane time constants were similarly sampled between 15 and 30 ms.
The adaptation amplitude β was set to 1.7. The refractory period was set
to 3 ms and delays were sampled uniformly between 1 and 10 ms. The
regularization parameters µv, µe and µ f iring were respectively 1, 0.001, and
100. The parameter ε of the PPO algorithm was set to 0.2. The learning rate

44

3.8. Methods

was initialized to 0.01 and decayed by a factor 0.5 every 5000 iterations. We
used the default parameters for ADAM, except for the parameter ε which
we set to 10−5.

45

4. Spike-frequency adaptation
provides a long short-term memory
to networks of spiking neurons

Contents

4.1. Introduction . 48

4.2. SFA provides working memory simultaneously for many
pieces of information, and yields powerful generaliza-
tion capability . 50

4.2.1. Generalization of SFA-enhanced temporal compu-
tations to unseen inputs. 51

4.2.2. Negative imprinting principle. 51

4.2.3. No precise alignment between time constants of
SFA and working memory duration is needed. . . 53

4.3. SFA improves the performance of SNNs for common
benchmark tasks that require computational operations
on temporally dispersed information 55

4.4. SFA supports demanding cognitive computations on se-
quences with dynamically changing rules 56

4.5. SFA enables SNNs to carry out complex operations on
sequences of symbols 59

4.5.1. A diversity of neural codes in LSNNs. 62

4.6. Discussion . 63

4.7. Methods . 65

4.7.1. Network models 65

4.7.2. Tasks . 66

47

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

Abstract. For solving tasks such as recognizing a song, answering a ques-
tion, or inverting a sequence of symbols, cortical microcircuits need to
integrate and manipulate information that was dispersed over time during
the preceding seconds. Creating biologically realistic models for the under-
lying computations, especially with spiking neurons and for behaviorally
relevant integration time spans, is notoriously difficult. We examine the role
of spike-frequency adaptation in such computations and find that it has
a surprisingly large impact. The inclusion of this well known property of
a substantial fraction of neurons in the neocortex — especially in higher
areas of the human neocortex — moves the performance of spiking neural
network models for computations on network inputs that are temporally
dispersed from a fairly low level up to the performance level of the human
brain.

Acknowledgments and author contributions. This chapter is based on the
manuscripts

Darjan Salaj*, Anand Subramoney*, Ceca Kraisnikovic*, Guil-
laume Bellec, Robert Legenstein, Wolfgang Maass (2020).
“Spike frequency adaptation supports network computations
on temporally dispersed information.” Submitted for publication.
biorXiv:10.1101/2020.05.11.081513.

To this study, I contributed as first author together with AS and CK. The
study was conceived by DS, AS, GB, WM. The experiments were designed
by DS, AS, GB, RL, WM and were conducted by DS, AS, CK. The manuscript
was written by DS, AS, CK, RL, GB, WM.

4.1. Introduction

Since brains have to operate in dynamically changing environments, neural
networks of the brain need to be able to solve “temporal computing tasks”
that require integration and manipulation of temporally dispersed informa-
tion from continuous input streams on the behavioral time scale of seconds.

48

4.1. Introduction

Models for neural networks of the brain have inherent difficulties in model-
ing such temporal computations on the time scale of seconds since spikes
and postsynaptic potentials take place on the much shorter time scales of
milliseconds and tens of milliseconds. Most work on models for temporal
computing in neural networks of the brain has focused on networks of
non-spiking neurons and temporal computing tasks where one or a few
bits have to be stored in working memory without requiring computational
operations other than storage and recall. We address the question of how
biologically more realistic spike-based neural network models can solve a
range of generic temporal computing tasks that require extraction of a fairly
large amount of temporally dispersed information from continuous input
streams. These tasks also require information stored in working memory to
be continuously updated, as required, for example, for speech understand-
ing or manipulations of sequences of symbols. So far, these tasks could not
be solved by spiking neural network models.

In this chapter we examine the impact of SFA of neurons, see chapter 2, on
temporal computing capabilities of spiking neural networks (SNNs).

We investigate here the role of SFA for a range of demanding temporal
computing tasks, including the well-known 12AX task and manipulations
of sequences of symbols that are also used for testing cognitive capabilities
of brains. We find that SFA contributes strongly to temporal computing, in
spite of the counter-intuitive fact that SFA reduces — rather than enhances
— persistent firing. We introduce the negative imprinting principle as an
explanation for this. Finally, we discuss the neural codes that emerge in
neural networks with SFA for manipulations on sequences of symbols, and
compare them with neural codes for corresponding tasks in the brain Barone
and Joseph, 1989; Liu et al., 2019; Carpenter et al., 2018.

Spike-based neural networks are also of interest from the perspective of novel
computing technology, since spike-based neuromorphic hardware promises
to provide AI implementations with drastically reduced energy consumption
in comparison with hardware implementations of ANNs Furber, Galluppi,
et al., 2014; Davies et al., 2018. But because of deficiencies in the performance
of recurrent networks of standard spiking neurons models for temporal
computing tasks, spike-based hardware has so far not been able to reach
the performance levels of ANNs for temporal computing tasks. Since it is

49

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

easy to add SFA to neurons in spike-based hardware, our results provide
a new strategy for enabling spike-based hardware to reach competitive
performance levels for temporal computing tasks.

In this chapter we consider recurrent networks of LIF neurons where some
fraction of those is equipped with SFA, labeled Long short-term memory
Spiking Neural Networks (LSNNs). Model details are described in Chap-
ter 2.

4.2. SFA provides working memory simultaneously for
many pieces of information, and yields powerful
generalization capability

In order to elucidate the mechanisms by which SFA supports temporal
computing capabilities of SNNs we first consider simpler tasks where the
stored information does not have to be updated. Simultaneously we examine
whether the working memory contribution of SFA scales up to working
memory demands larger than in the commonly considered task where just
a single bit has to be stored in working memory. Obviously, brains have a
much larger working memory capacity insofar as they are able to store many
salient bits of information from a previously seen image or movie or text.
Furthermore, they are able to ignore irrelevant parts of complex sensory
input streams. Some of these demanding aspects are captured in the task that
is considered in Fig. 4.1. This task aims at capturing the need to remember
a fair number of higher-level features that are needed for later recall of the
content of an image in a higher visual area such as area IT (inferior temporal
cortex). There, a 20-dimensional input stream of bits provides a continuous
stream of input patterns, where each pattern can be visualized as 4 × 5

image, as indicated in the top row of Fig. 4.1. Occasionally, a pattern in the
input stream is marked as being salient through simultaneous activation of
a STORE command in a separate input channel, corresponding for example
to an attentional signal from a higher brain area. The task is to reproduce
during a RECALL command the pattern that had been presented during the
most recent STORE command. Delays between STORE and RECALL ranged
from 200 to 1600 ms. 20 binary values were simultaneously extracted as

50

4.2. SFA provides working memory simultaneously for many pieces of
information, and yields powerful generalization capability

network outputs during RECALL by rounding the output values of 20 linear
readout neurons. We found that an LSNN consisting of 500 neurons with
SFA, whose adaptive firing threshold had a time constant of τa = 800 ms,
was able to solve this task with an accuracy above 99%. SFA was essential
for this behavior, because the recall performance of a recurrent network of
LIF neurons without SFA, trained in exactly the same way, stayed at chance
level (see Methods).

4.2.1. Generalization of SFA-enhanced temporal computations to
unseen inputs.

Humans can retain previously unseen stimuli in short-term memory. In
order to probe whether LSNNs are capable of such generalization, we made
sure that none of the patterns shown during testing had occurred during
training, and in fact, had a Hamming distance of at least 5 bits to all training
patterns. The resulting recall performance of the LSNN was 99.09%, i.e.,
99.09% of the stored feature vectors were perfectly reproduced during recall.
Note that in contrast to most models for working memory, we require that
this SNN is able to store content other than what was used when the values
of its synaptic weights were determined. A sample segment of a test trial
is shown in Fig. 4.1, with the activity of input neurons at the top and the
activation of readout neurons at the bottom.

4.2.2. Negative imprinting principle.

Fig. 4.1 elucidates how neurons with SFA support temporal computing:
The 3rd to last row shows the temporal dynamics of 25 selected neurons
with SFA. One fraction of these neurons, with firing thresholds drawn
in blue (second to last row), fires strongly during a STORE command. A
complementary set of neurons with SFA, with trajectories of firing thresholds
drawn in red, fires during the subsequent RECALL command. We propose
that the non-firing of the neurons with thresholds drawn in blue during the
RECALL command signals to the readout neurons which of the 20 bits were
active during STORE, and thereby enables them to reproduce this 20-bit
pattern. We refer to this coding method as negative imprinting principle.

51

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

Fig. 4.1.: Sample trial of 20-dimensional STORE-RECALL task. Rows top to bottom:
Stream of randomly drawn 20-dimensional input patterns, represented by the
firing activity of 20 populations of input neurons (a subsample is shown), firing
activity of two additional populations of input neurons for the STORE and RECALL
commands, firing activity of 25 sample LIF neurons with SFA in the LSNN (we first
ordered all neurons with regard to the variance of their dynamic firing thresholds,
and then picked every 20th), the temporal evolution of the firing thresholds of
these 25 neurons, traces of the activation of 20 sigmoidal readout neurons, and
their average value during the 200 ms time window of the RECALL command
represented by grey values. During the RECALL command (green shading) the
network successfully reproduced the pattern that had been given as input during
the preceding STORE command (yellow shading). Coloring of the threshold traces
in blue or red was done after visual inspection to highlight the emergent two
disjoint populations of neurons.

52

4.2. SFA provides working memory simultaneously for many pieces of
information, and yields powerful generalization capability

It is of general interest insofar as one often focuses on the information
that is transmitted by spikes, and forget that non-spiking can also transmit
information — in fact in a much more energy-efficient manner.

Interestingly, the firing activity of the network was rather low during the
delay between STORE and RECALL. Furthermore, a powerful classifier — a
Support Vector Machine (SVM) trained on the network activity during the
delay — was not able to decode the stored feature vector from the firing
activity (the decoding accuracy during the delay was 4.38%, as opposed to
100% decoding accuracy during RECALL; see Methods). Hence the type of
working memory that the LSNN exhibits during the STORE-RECALL task
is related to the activity-silent form of working memory in the human brain
that had been examined in the experiments of Wolff et al., 2017.

If the content of working memory is encoded by an attractor of the network
dynamics, one would expect that the neural code for the content of the
working memory changes little between encoding and a subsequent network
reactivation. In contrast to this principle, it had been shown for the human
brain in Wolff et al., 2017 that the representation of working memory content
changes significantly between memory encoding and subsequent network
reactivation during the delay by an “impulse stimulus”: A classifier trained
on the network activity during encoding was not able to classify the memory
content during a network reactivation in the delay, and vice versa. This
experimental result from the human brain is consistent with the negative
imprinting principle. We also tested directly whether such change of neural
codes occurs in our model for the STORE-RECALL task. We found that
a classifier trained for decoding the content of working memory during
STORE was not able to decode this content during RECALL, and vice
versa (see Methods). Hence our model is in this regard consistent with the
experimental data of Wolff et al., 2017.

4.2.3. No precise alignment between time constants of SFA and
working memory duration is needed.

Experimental data from the Allen Institute database suggest that different
neurons exhibit a diversity of SFA properties. We show that correspondingly
a diversity of time constants of SFA in different neurons provides high

53

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

performance for temporal computing. We consider for simplicity the one-
dimensional version of the task of Fig. 4.1, where just a single bit needs to be
stored in working memory between STORE and RECALL commands. The
expected delay between STORE and RECALL (see the top row of Table 4.1)
scales the working memory time span that is required to solve this task.
In the upper four rows of Table 4.1, a different fixed time constant for
SFA neurons in the network is chosen. In the last two rows a power-law
distribution of these time constants for SFA, as well as a uniform distribution
is considered. One sees that the resulting diversity of time constants for SFA
yields about the same performance as a fixed choice of the time constant
that is aligned with the required memory span of the task. However, a
much larger time constant (see the row with τa = 8 s in the column with
an expected memory span of 200 ms or 2 s for the task) or a substantially
smaller time constant (see the row with τa = 2 s in the column with an
expected memory span of 8 s) tends to work well.

Expected delay between
STORE and RECALL

200 ms 2 s 4 s 8 s 16 s

without SFA (τa = 0 ms) 96.7 51 50 49 51

τa = 200 ms 99.92 73.6 58 51 51

τa = 2 s 99.0 99.6 98.8 92.2 75.2
τa = 4 s 99.1 99.7 99.7 97.8 90.5
τa = 8 s 99.6 99.8 99.7 97.7 97.1
τa power-law dist. in [0, 8]
s

99.6 99.7 98.4 96.3 83.6

τa uniform dist. in [0, 8] s 96.2 99.9 98.6 92.1 92.6

Table 4.1.: Recall accuracy (in %) of network models with different time constants of
SFA (rows) for variants of the STORE-RECALL task with different required
memory time spans (columns). Good task performance does not require good
alignment of SFA time constants with the required time span for working memory.
An SNN consisting of 60 LIF neurons with SFA was trained for many different
choices of SFA time constants for variations of the one-dimensional STORE-
RECALL task with different required time spans for working memory. A network
of 60 LIF neurons without SFA trained under the same parameters did not
improve beyond chance level (∼ 50% accuracy), except for the task instance with
an expected delay of 200 ms where the LIF network reached 96.7% accuracy (see
top row).

54

4.3. SFA improves the performance of SNNs for common benchmark tasks that
require computational operations on temporally dispersed information

4.3. SFA improves the performance of SNNs for
common benchmark tasks that require
computational operations on temporally dispersed
information

An efficient model of temporal computing must not only be able to robustly
store and recall information, but also actively manipulate the memory con-
tent. To investigate the impact of SFA in this context, we trained SNNs with
and without SFA on a standard benchmark task for time series classifica-
tion: the pixel-wise sequential MNIST (sMNIST) pattern classification task.
In this variant of the well-known handwritten digit recognition data set
MNIST, the pixels of each sample of a handwritten digit are temporally
dispersed: they are given to the network one at a time, as they arise from a
row-wise scanning pattern. This temporal computing task can apparently
not be solved by just storing some bits in a working memory and recalling
them later. Instead, evidence that speaks for or against the hypothesis that
a particular digit is represented by the currently received time series must
be updated continuously. This task also requires very good generalization
capability, since the pixel sequences for different handwriting styles of the
same digit may vary widely, and the network is tested on samples that were
not used during optimization of the weights. For details see Methods and
Supplement.

An LSNN was able to solve this task with a test accuracy of 93.7%, whereas
an SNN without SFA was only able to reach an accuracy of 51.8%. This
demonstrates the significant impact of SFA on the ability of SNNs to actively
manipulate information retained from previous inputs. See section 2 of the
Supplement for more results with sparse connectivity, enforcement of Dale’s
Law and comparison to ANNs.

We also compared the performance of LSNNs and SNNs without SFA
on the keyword spotting task Google Speech Commands Dataset Warden,
2018 (v0.02). To solve this task the network needs to learn to correctly
disambiguate between audio recordings of silence, unknown words, or one
of ten keywords. On this task, the performance of SNNs increases with
the inclusion of SFA (from 89.04% to 91.21%) and approaches the state-of-

55

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

the-art artificial recurrent model (93.18%), see section 3 of the Suppl. and
Table S1.

Finally, we tested the performance of LSNNs on the delayed-memory XOR
task, because this task has previously already been used as benchmark tasks
for SNNs in Huh and Sejnowski, 2018. In this task, the network is required
to compute the exclusive-or operation on the history of input pulses when
prompted by a go-cue signal. Across 10 different runs, an LSNN solved the
task with 95.19± 0.014% accuracy, whereas the SNN without SFA converged
at a much lower accuracy of 61.30± 0.029%, see section 4 of the Suppl. and
Fig. S3.

The good performance of LSNNs on all three tasks demonstrates the power-
ful temporal computation capability of these networks.

4.4. SFA supports demanding cognitive computations
on sequences with dynamically changing rules

The 12AX task — which can be viewed as a simplified version of the
Wisconsin Card Sorting task E. A. Berg, 1948 — tests the capability of subjects
to apply dynamically changing rules for detecting specific subsequences
in a long sequence of symbols as target sequences, and to ignore currently
irrelevant inputs O’Reilly and Frank, 2006; MacDonald III, 2008. It also
probes the capability to maintain and update a hierarchical working memory,
since the currently active rule — the context — stays valid for a longer period
of time, and governs what other symbols should be stored in working
memory.

More precisely, after processing any symbol in the sequence, the network
should output “R” if this symbol terminates a context-dependent target
sequence and “L” otherwise. The current target sequence depends on the
current context, which is defined through the symbols “1” and “2”. If the
most recently received digit was a “1”, the subject should output “R” only
when it encounters a symbol “X” that terminates a subsequence A...X. This
occurs, for example, for the 7th symbol in the trial shown in Fig. 4.2. In case
that the most recent input digit was a “2”, the subject should instead respond

56

4.4. SFA supports demanding cognitive computations on sequences with
dynamically changing rules

“R” only after the symbol “Y” in a subsequent subsequence B...Y (see the
20th symbol in Fig. 4.2). In addition, the processed sequence contains letters
“C” and “Z” that are irrelevant and serve as distractors. This task requires
a hierarchical working memory because the most recently occurring digit
determines whether subsequent occurrences of “A” or “B” should be placed
into working memory. Note also that neither the content of the higher-level
working memory — the digit — nor the content of the lower-level working
memory — the letter A or B — are simply recalled. Instead, they affect
the target outputs of the network in a more indirect way. Furthermore, the
higher-level processing rule affects what is to be remembered at the lower
level.

A simpler version of this task, where X and Y were relevant only if they
directly followed A or B respectively, and where fewer irrelevant letters
occurred in the input, was solved in O’Reilly and Frank, 2006; Martinolli,
Gerstner, and Gilra, 2018; Kruijne et al., 2020 through biologically inspired
artificial neural network models that were endowed with special working
memory modules. Note that for this simpler version no lower-order working
memory is needed, because one just has to wait for an immediate transition
from A to X in the input sequence, or for an immediate transition from B to
Y. But neither the simpler nor the more complex version, that is considered
here, of the 12AX task has previously been solved by a network of spiking
neurons.

In the version of the task that we consider, the distractor symbols between
relevant symbols occur rather frequently. Hence robust maintenance of rele-
vant symbols in the hierarchical working memory becomes crucial, because
time spans between relevant symbols become longer, and hence the task is
more demanding — especially for a neural network implementation.

Overall, the network received during each trial (episode) sequences of 90
symbols from the set {1, 2, A, B, C, X, Y, Z}, with repetitions as described
in Methods. See the top of Fig. 4.2 for an example (the context-relevant
symbols are marked in bold for visual ease).

We show in Fig. 4.2 that a generic LSNN can solve this quite demanding
version of the 12AX task. The network consisted of 200 recurrently connected
spiking neurons (100 with and 100 without SFA), with all-to-all connections
between them. After training, for new symbol sequences that had never

57

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

Fig. 4.2.: Solving the 12AX task by a network of spiking neurons with SFA. A sample trial
of the trained network is shown. From top to bottom: Full input and target output
sequence for a trial, consisting of 90 symbols each, blow-up for a subsequence of
the input symbols, firing activity of 10 sample LIF neurons without and 10 sample
neurons with SFA from the network, time course of the firing thresholds of these
neurons with SFA, activation of the two readout neurons, the resulting sequence of
output symbols which the network produced, and the target output sequence.

58

4.5. SFA enables SNNs to carry out complex operations on sequences of symbols

occurred during training, the network produced an output string with all
correct symbols in 97.79% of episodes. In contrast, a recurrent SNN with the
same architecture but no neurons with SFA could achieve only 0.39% fully
correct output strings (not shown).

Surprisingly, it was not necessary to create a special network architecture
for the two levels of working memory that our more complex version of
the 12AX task requires: A near perfectly performing network emerged from
training a generic LSNN. This shows that neurons with SFA enable generic
recurrent networks of spiking neurons to solve demanding cognitive tasks
involving dynamically changing rules and two levels of working memory.

4.5. SFA enables SNNs to carry out complex
operations on sequences of symbols

Learning to carry out operations on sequences of symbols in such a way that
they generalize to new sequences is a fundamental capability of the human
brain, but a generic difficulty for neural networks Marcus, 2003. Not only
humans, but also non-human primates are able to carry out operations on
sequences of items, and numerous neural recordings — starting with Barone
and Joseph, 1989 up to recent results such as Carpenter et al., 2018; Liu
et al., 2019 — provide information about the neural codes for sequences that
accompany such operations in the brain. One fundamental question is how
serial order of items is encoded in working memory. Behind this is the even
more basic question of how transient structural information — the serial
position of an item — is combined in the brain with content information
about the identity of the item Lashley, 1951. Obviously, this question also
lies at the heart of open questions about the interplay between neural codes
for syntax and semantics that enable language understanding in the human
brain. The experimental data both of Barone and Joseph, 1989 and Liu et al.,
2019 suggest that the brain uses a factorial code where position and identity
of an item in a sequence are encoded separately by some neurons, thereby
facilitating flexible generalization of learned experience to new sequences.

We show here that LSNNs can be trained to carry out complex operations
on sequences, are able to generalize such capabilities to new sequences, and

59

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

produce spiking activity and neural codes that can be compared with neural
recordings from the brain. In particular, they also produce factorial codes,
where separate neurons encode the position and identity of a symbol in a
sequence. One basic operation on sequences of symbols is remembering and
reproducing a given sequence Liu et al., 2019. This task had been proposed
by Marcus, 2003 to be a symbolic computation task that is fundamental for
symbol processing capabilities of the human brain. But non-human primates
can also learn simpler versions of this task, and hence one had been able
to analyze how neurons in the brain encode the position and identity of
symbols in a sequence Barone and Joseph, 1989; Carpenter et al., 2018. A
more complex operation that can also be carried out by the human brain
is the reversal of a sequence Marcus, 2003; Liu et al., 2019. We show that
an LSNN can carry out both of these operations, and is able to apply them
to new sequences of symbols that did not occur during the training of the
network.

We trained an LSNN consisting of 320 recurrently connected LIF neurons
(192 with and 128 without SFA) to carry out these two operations on se-
quences of 5 symbols from a repertoire of 31 symbols. After training, the
LSNN was able to apply duplication and reversal to new sequences also,
achieving a success rate of 95.88% (average over 5 different network ini-
tializations) for unseen sequences. The “success rate” was defined as the
fraction of test episodes (trials) where the full output sequence was gener-
ated correctly. Sample episodes of the trained LSNN are shown in Fig. 4.3A.
For comparison, we also trained a LIF network without SFA in exactly the
same way with the same number of neurons. It achieved a performance of
0.0%.

60

4.5. SFA enables SNNs to carry out complex operations on sequences of symbols

Fig. 4.3.: (Caption on the next page.)

61

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

Fig. 4.3.: Analysis of an LSNN trained to carry out operations on sequences. (A) Two
sample episodes where the network carried out sequence duplication (left) and
reversal (right). Top to bottom: Spike inputs to the network (subset), sequence
of symbols they encode, spike activity of 10 sample LIF neurons (without and
with SFA) in the LSNN, firing threshold dynamics for these 10 LIF neurons with
SFA, activation of linear readout neurons, output sequence produced by applying
argmax to them, target output sequence. (B-F) Emergent neural coding of 279

neurons in the LSNN, and Peri-Condition Time Histogram (PCTH) plots of two
sample neurons. Neurons are sorted by time of peak activity. (B) A substantial
number of neurons were sensitive to the overall timing of the tasks, especially
for the second half of trials when the output sequence is produced. (C) Neurons
separately sorted for duplication episodes (left column) and reversal episodes
(right column). Many neurons responded to input symbols according to their serial
position, but differently for different tasks. (D) Histogram of neurons categorized
according to conditions with statistically significant effect (3-way ANOVA). Firing
activity of a sample neuron that fired primarily when: (E) the symbol “g” was to
be written at the beginning of the output sequence. The activity of this neuron
depended on the task context during the input period; (F) the symbol “C” occurred
in position 5 in the input, irrespective of the task context.

4.5.1. A diversity of neural codes in LSNNs.

Emergent coding properties of neurons in the LSNN are analyzed in
Fig. 4.3B-F. Neurons are sorted in Fig. 4.3B,C according to the time of
their peak activity (averaged over 1000 episodes), like in Christopher D Har-
vey, Coen, and Tank, 2012. A number of network neurons (about one-third)
participate in sequential firing activity independent of the type of task and
the symbols involved (Fig. 4.3B). Instead, these neurons have learned to
abstract the overall timing of the tasks. This kind of activity is reminiscent of
the neural activity relative to the start of a trial that was recorded in rodents
after they had learned to solve tasks that had a similar duration Tsao et al.,
2018.

The time of peak activity of other neurons depended on the task and the
concrete content, see Fig. 4.3C. Interestingly enough, these neurons change
their activation order already during the loading of the input sequence in
dependence of the task (duplication or reversal). Using 3-way ANOVA, we
were able to categorize each neuron as selective to a specific condition or
a non-linear combination of conditions based on the effect size ω2. Each

62

4.6. Discussion

neuron could belong to more than one category if the effect size was above
the threshold of 0.14 (as suggested by Field, 2013). Similar to recordings from
the brain Carpenter et al., 2018, a diversity of neural codes emerged that
encode one or several of the variables: symbol identity, serial position in the
sequence, and type of task. In other words, a large fraction of neurons were
mixed-selective, i.e. selective to non-linear combinations of all three variables.
Peri-Condition Time Histogram (PCTH) plots of two sample neurons are
shown in Fig. 4.3E,F: One neuron is selective to symbol “g” but at different
positions depending on task context; The other neuron is selective to symbol
“C” occurring at position 5 in the input, independent of task context. Thus
one sees that a realization of this task by an LSNN, which was previously
not available, provides rich opportunities for a comparison of emergent
spike codes in the model and neuronal recordings from the brain.

4.6. Discussion

Brains are able to carry out complex computations on temporally dispersed
information, for example, on visual inputs streams, or on sequences of sym-
bols. Previous neural network solutions for similarly demanding temporal
computing tasks were based on artificial Long Short-Term Memory (LSTM)
units. These LSTM units are commonly used in machine learning, but they
cannot readily be mapped to units of neural networks in the brain. Hence it
had remained an open problem how spiking neural networks of the brain
could carry out such computations. We have shown that by adding to the
standard model for SNNs one important feature of a substantial fraction of
neurons in the neocortex, SFA, SNNs become able to solve such demanding
temporal computing tasks.

In particular, we have shown that LSNNs (SNNs that contain neurons with
SFA) are able to carry out the 12AX task (Fig. 4.2). This task has been used
to test the capability of human subjects to make online decisions while
receiving sequences of symbols. These online decisions have to be carried
out according to rules that are also encoded — and occasionally changed —
by symbols that occur in the same sequence of symbols.

63

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

We have shown in Fig. 4.3 that LSNNs can solve another cognitively demand-
ing task on temporally dispersed information: reproducing a previously
received symbol sequence, or inverting its order. Since our model consists
of spiking neurons, one can directly compare emergent neural codes for the
identity and sequence positions of previously encountered symbols with
recordings from neurons in the monkey brain for corresponding behavioral
tasks. Similarly as in the recordings of Barone and Joseph, 1989; Carpenter
et al., 2018, a diversity of neural codes emerge in the model, where neurons
encode one or several of the relevant variables – symbol identity, serial
position of a symbol, and type of task.

We have also elucidated the computational principle that enables neurons
with SFA to support temporal computing tasks. We had considered for that
purpose in Fig. 4.1 a simpler temporal computing task where no intermediate
updating of stored information was required: All preceding information was
provided at a single time point A, and had to be recalled at a well-specified
later time point B. We found there that neurons with SFA store information
through negative imprinting, i.e., neurons that fire more during time point A
fire less at time point B. Hence they encode past information in an activity-
silent manner. Such activity-silent form of working memory has been found
in the human brain for content that is currently not in the focus of attention
Wolff et al., 2017. A prediction of the negative imprinting principle is that
decoders that are trained to decode information at time point A are not
able to decode this information during a network reactivation at some
intermediate time point C between time points A and B, and vice versa
(see subsection “Decoding memory from the network activity” in Methods).
This prediction had been verified for the human brain in the experiments of
Wolff et al., 2017. It is actually well-known that negative imprinting is used
by the brain for a particular type of long-term memory called recognition
memory: Familiarity of an object is encoded through the reduced firing of
a large fraction of neurons in the perirhinal cortex and adjacent areas, see
Winters, Saksida, and Bussey, 2008 for a review.

Our model makes a number of concrete suggestions for further experiments.
It suggests that a refined decoder that takes negative imprinting into account
is able to elucidate the transformation of stored information between time
points A (encoding) and an intermediate time point C (network reactivation)
in the experiment of Wolff et al., 2017.

64

4.7. Methods

Furthermore, the strong role of SFA for temporal computing tasks that we
found predicts that SFA is more common in those brain areas that play a key
role in temporal computing tasks. At the same time, our detailed analysis of
the required alignment between the time scale of SFA and the time scale of
working memory duration can be rather loose. Even a random distribution
of time constants for SFA works well. Previous experiments have already
reported history-dependence of neural firing for up to 20 s Pozzorini, Naud,
et al., 2013; Pozzorini, Mensi, et al., 2015, but a more systematic analysis is
needed.

Finally, our results raise the question of the extent to which the distribution
of time scales of neurons with SFA in a cortical area is related to the intrinsic
time scale of that cortical area as measured via intrinsic fluctuations of
spiking activity Murray et al., 2014; Wasmuht et al., 2018. Are neurons with
SFA essential for defining the intrinsic time scale of an area, or can one find
cases where both time scales diverge? We tested the relation between time
constants of SFA and the intrinsic time scale of neurons for the case of the
STORE-RECALL task (see section 1 of the Suppl. and Fig. S1). We found that
the time constants of neurons with SFA had little impact on their intrinsic
time scale for this task. We conjecture that the network input has a stronger
impact on the intrinsic time scales of neurons for this task.

Altogether, we have shown that a well-known feature of a substantial frac-
tion of neurons in the neocortex — SFA — provides an important new facet
for our understanding of computations in SNNs: It enables SNNs to inte-
grate temporally dispersed information seamlessly into ongoing network
computations. This paves the way for reaching a key-goal of modeling — to
combine detailed experimental data from neurophysiology on the level of
neurons and synapses with the brain-like high computational performance
of the network.

4.7. Methods

4.7.1. Network models

LIF neuron model, SFA, and training method are described in Chapter 2.

65

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

Weight initialization. Initial input and recurrent weights were drawn from a
Gaussian distribution Wji ∼ w0√

nin
N (0, 1), where nin is the number of afferent

neurons and N (0, 1) is the zero-mean unit-variance Gaussian distribution
and w0 = 1 Volt

Rm
δt is a normalization constant.

4.7.2. Tasks

20-dimensional STORE-RECALL task. The input to the network consisted
of commands STORE and RECALL, and 20 bits which were represented by
subpopulations of spiking input neurons. STORE and RECALL commands
were represented by 4 neurons each. The 20 bits were represented by popu-
lation coding where each bit was assigned 4 input neurons (2 for value zero,
and 2 for value one). When a subpopulation was active, it would exhibit a
Poisson firing with a frequency of 400 Hz. Each input sequence consisted
of 10 steps (200 ms each) where a different population encoded bit string
was shown during every step. Only during the RECALL period, the input
populations, representing the 20 bits, were silent. At every step, the STORE
or the RECALL populations were activated interchangeably with probability
0.2 which resulted in the distribution of delays between the STORE-RECALL
pairs in the range [200, 1600] ms.

To measure the generalization capability of a trained network, we first
generated a test set dictionary of 20 unique feature vectors (random bit
strings of length 20) that had at least a Hamming distance of 5 bits among
each other. For every training batch, a new dictionary of 40 random bit
strings (of length 20) was generated where each string had a Hamming
distance of at least 5 bits from any of the bit string in the test set dictionary.
This way we ensured that, during training, the network never encountered
any bit string similar to one from the test set.

Networks were trained for 4000 iterations with a batch size of 256 and
stopped if the error on the training batch was below 1%. We used Adam
optimizer Kingma and Ba, 2014 with default parameters and initial learning
rate of 0.01 which is decayed every 200 iterations by a factor of 0.8. We also
used learning rate ramping, which, for the first 200 iterations, monotonically

66

4.7. Methods

increased the learning rate from 0.00001 to 0.01. To avoid unrealistically high
firing rates, the loss function contained a regularization term (scaled with
coefficient 0.001) that minimizes the squared difference of the average firing
rate of individual neurons from a target firing rate of 10 Hz. To improve
convergence, we also included an entropy component to the loss (scaled
with coefficient 0.3) which was computed as the mean of the entropies of
the outputs of the sigmoid neurons. The test performance was computed as
average over 512 random input sequences.

We trained LSNNs and SNNs without SFA, consisting of 500 recurrently
connected neurons. The membrane time constant was τm = 20 ms and the
refractory period was 3 ms. Adaptation parameters were β = 4 mV and
τa = 800 ms with baseline threshold voltage 10 mV. The synaptic delay was
1 ms. The input to the sigmoidal readout neurons were the neuron traces
that were calculated by passing all the network spikes through a low-pass
filter with a time constant of 20 ms.

We ran 5 training runs with different random seeds (initializations) for both
LSNNs and SNNs without SFA. All runs of the LSNN network converged
after ∼ 3600 iterations to a training error below 1%. At that point we
measured the accuracy on 512 test sequences generated using the previously
unseen test bit strings which resulted in test accuracy of 99.09% with a
standard deviation of 0.17%. The LIF network was not able to solve the task
in any of the runs (all runs resulted in 0% training and test accuracy with
zero standard deviation). On the level of individual feature recall accuracy,
the best one out of 5 training runs of the LIF network was able to achieve
49% accuracy which is the chance level since individual features are binary
bits. In contrast, all LSNNs runs had individual feature level accuracy of
above 99.99%.

One-dimensional STORE-RECALL task. The input to the network con-
sisted of 40 input neurons: 10 for STORE, 10 for RECALL, and 20 for
population coding of a binary feature. Whenever a subpopulation was ac-
tive, it would exhibit a Poisson firing with a frequency of 50 Hz. The input
sequences of experiments with the expected delay of 2, 4, 8, and 16 s were
constructed as a sequence of 20, 40, 80, 120 steps respectively, with each step

67

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

lasting for 200 ms. For the experiment with expected delay of 200 ms, the
input sequence consisted of 12 steps of 50 ms.

Networks were trained for 400 iterations with a batch size of 64.We used
Adam optimizer with default parameters and initial learning rate of 0.01
which was decayed every 100 iterations by a factor of 0.3. The same firing
rate regularization term was added to the loss as in the 20-dimensional
STORE-RECALL setup (see above). The test performance was computed as
the batch average over 2048 random input sequences.

Networks consisted of 60 recurrently connected neurons. The membrane
time constant was τm = 20 ms and the refractory period was 3 ms. Adap-
tation parameters were β = 1 mV with baseline threshold voltage 10 mV.
Table 4.1 defines the adaptation time constants and expected delay of the ex-
periments in that section. The synaptic delay was 1 ms. The same sigmoidal
readout neuron setup was used as in the 20-dimensional STORE-RECALL
setup (see above).

Decoding memory from the network activity. We trained a Support Vector
Machine (SVM) to classify the stored memory content from the network
spiking activity in the step before the RECALL (200 ms before the start of
RECALL command). We performed a cross-validated grid-search to find
the best hyperparameters for the SVM which included kernel type {linear,
polynomial, RBF} and penalty parameter C of the error term {0.1, 1, 10,
100, 1000}. We trained SVMs on test batches of the 5 different training
runs of 20-dimensional STORE-RECALL task. SVMs trained on the period
preceding the RECALL command of a test batch achieved an average of
4.38% accuracy with a standard deviation of 1.29%. In contrast, SVMs trained
on a period during the RECALL command achieved an accuracy of 100%.
This demonstrates that the memory stored in the network is not decodable
from the network firing activity before the RECALL input command.

Additionally, analogous to the experiments of Wolff et al., 2017, we trained
SVMs on network activity during the encoding (STORE) period and evalu-
ated them on the network activity during reactivation (RECALL), and vice
versa. In both scenarios, the classifiers were not able to classify the memory
content of the evaluation period (0.0% accuracy).

68

4.7. Methods

sMNIST task. The input consisted of sequences of 784 pixel values created
by unrolling the handwritten digits of the MNIST dataset, one pixel after
the other in a scanline manner as indicated in Fig. S2A. We used 1 ms
presentation time for each pixel gray value. Each of the 80 input neurons
was associated with a particular threshold for the grey value, and this input
neuron fired whenever the grey value crossed its threshold in the transition
from the previous to the current pixel.

Networks were trained for 36,000 iterations using the Adam optimizer with
batch size 256. The initial learning rate was 0.01 and every 2500 iterations
the learning rate was decayed by a factor of 0.8. The same firing rate regu-
larization term was added to the loss as in the STORE-RECALL setup (see
above) but with the scaling coefficient of 0.1.

Networks consisted of 220 neurons. The network with SFA had 100 neurons
out of 220 with SFA and the rest without. The neurons had a membrane
time constant of τm = 20 ms, a baseline threshold of vth = 10 mV, and a
refractory period of 5 ms. LIF neurons with SFA had the adaptation time
constant τa = 700 ms with adaptation strength β = 1.8 mV. The synaptic
delay was 1 ms. The output of the network was produced by the softmax
of 10 linear output neurons that received the low-pass filtered version of
the spikes from all neurons in the network, as shown in the bottom row of
Fig. S2B. The low-pass filter had a time constant of 20 ms. For training the
network to classify into one of the ten classes we used cross-entropy loss
computed between the labels and the softmax of output neurons.

The 12AX task. The input for each training and testing episode consisted of a
sequence of 90 symbols from the set {1,2,A,B,C,X,Y,Z}. A single episode could
contain multiple occurrences of digits 1 or 2 (up to 23), each time changing
the target sequence (A...X or B...Y) after which the network was supposed to
output R. Each digit could be followed by up to 26 letters before the next digit
appeared. More precisely, the following regular expression describes the
string that was produced: [12][ABCXYZ]{1,10}((A[CZ]{0,6}X|B[CZ]{0,6}Y)|([ABC][XYZ])){1,2}.
Each choice in this regular expression was made randomly.

The network received spike trains from the input population of spiking neu-
rons, producing Poisson spike trains. Possible input symbols were encoded

69

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

using one-hot coding. Each input symbol was signaled through a high firing
rate of a separate subset of 5 input neurons for 500 ms. The output consisted
of two readouts, one for L, one for the R response. During each 500 ms time
window, the input to these readouts was the average activity of neurons in
the network during that time window. The final output symbol was based
on which of the two readouts had the maximum value.

The neurons had a membrane time constant of τm = 20 ms, a baseline
threshold vth = 30 mV, a refractory period of 5 ms, and synaptic delays of
1 ms. LIF neurons with SFA had an adaptation strength of β = 1.7 mV, and
adaptation time constants were chosen uniformly from [1, 13500] ms.

A cross-entropy loss function was used along with a regularization term
(scaled with coefficient 15) that minimizes the squared difference of average
firing rate between individual neurons and a target firing rate of 10 Hz. The
network was trained using the Adam optimizer for 10,000 iterations with
a batch size of 20 episodes and a fixed learning rate of 0.001. An episode
consisted of 90 steps, with between 4 to 23 tasks generated according to the
task generation procedure described previously. We trained the network
with BPTT using 5 different network initializations, which resulted in an
average test success rate of 97.79% with a standard deviation of 0.42%.

Symbolic computation on strings of symbols. The input to the network
consisted of 35 symbols: 31 symbols represented symbols from the English
alphabet {a, b, c, d, ... x, y, z, A, B, C, D, E}, one symbol was for “end-of-
string” (EOS) ‘*’, one for cue for the output prompt ‘?’, and two symbols
to denote whether the task command was duplication or reversal. Each of
the altogether 35 input symbols were given to the network in the form of
higher firing activity of a dedicated population of 5 input neurons outside
of the network (“one-hot encoding”). This population of input neurons fired
at a “high” rate (200 Hz) to encode 1, and at a “low” rate (2 Hz) otherwise.
The network output was produced by linear readouts (one per potential
output symbol, each with a low pass filter with a time constant of 250 ms)
that received spikes from neurons in the network, see the row “Output” in
Fig. 4.3A. The final output symbol was selected using the readout which
had the maximum value at the end of each 500 ms time window (a softmax

70

4.7. Methods

instead of the hard argmax was used during training), mimicking winner-
take-all computations in neural circuits of the brain Chettih and C. D.
Harvey, 2019 in a qualitative manner.

The network was trained to minimize the cross-entropy error between the
softmax applied to the output layer and targets. The loss function contained
a regularization term (scaled with coefficient 5) that minimizes the squared
difference of average firing rate between individual neurons and a target
firing rate of 20 Hz.

The training was performed for 50,000 iterations, with a batch size of 50
episodes. We used Adam optimizer with default parameters and a fixed
learning rate of 0.001. Each symbol was presented to the network for a dura-
tion of 500 ms. The primary metric we used for measuring the performance
of the network was success rate, which was defined as the percentage of
episodes where the network produced the full correct output for a given
string i.e. all the output symbols in the episode had to be correct. The
network was tested on 50,000 previously unseen strings.

The network consisted of 192 LIF neurons with SFA and 128 LIF neurons
without SFA. All the neurons had a membrane time constant of τm = 20 ms,
a baseline threshold vth = 30 mV, a refractory period of 5 ms, and a synaptic
delay of 1 ms. LIF neurons with SFA in the network had an adaptation
strength of β = 1.7 mV. It was not necessary to assign particular values
to adaptation time constants of firing thresholds of neurons with SFA; we
simply chose them uniformly randomly to be between 1 ms and 6000 ms,
mimicking the diversity of SFA effects found in the neocortex Allen Institute,
2018 in a qualitative manner. All other parameters were the same as in
the other experiments. We trained the network using 5 different network
initializations (seeds) and tested it on previously unseen strings. Average
test success rate was 95.88% with standard deviation 1.39%.

Analysis of spiking data. We used 3-way ANOVA to analyze if a neuron’s
firing rate is significantly affected by task, serial position in the sequence,
symbol identity, or combination of these (similar to Lindsay et al., 2017). We
refer to these factors as “conditions”. The analysis was performed on the
activity of the neurons of the trained network during 50,000 test episodes.
For the analysis, neurons whose average firing rate over all episodes was

71

4. Spike-frequency adaptation provides a long short-term memory to networks of
spiking neurons

lower than 2Hz or greater than 60Hz were discarded from the analysis
to remove large outliers. This left 279 out of the 320 neurons. From each
episode, a serial position from the input period was chosen randomly, and
hence each episode could be used only once, i.e., as one data point. This
was to make sure that each entry in the 3-way ANOVA was completely
independent of other entries, since the neuron activity within an episode is
highly correlated. Each data point was labelled with the corresponding triple
of (task type, serial position, symbol identity). To ensure that the dataset
was balanced, the same number of data points per particular combination
of conditions was used, discarding all the excess data points, resulting in a
total of 41,850 data points. To categorize a neuron as selective to one or more
conditions, or combination of conditions, we observed p-values obtained
from 3−way ANOVA and calculated the effect size ω2 for each combination
of conditions. If the p-value was smaller than 0.001 and ω2 greater than 0.14
for a particular combination of conditions, the neuron was categorized as
selective to that combination of conditions. The ω2 threshold of 0.14 was
suggested by Field, 2013 to select large effect sizes. Each neuron can have
a large effect size for more than one combination of conditions. Thus the
values shown in Fig. 4.3D sum to > 1. The neuron shown in Fig. 4.3E had
the most prominent selectivity for the combination of Task × Position ×
Symbol, with ω2 = 0.394 and p < 0.001. The neuron shown in Fig. 4.3F was
categorized as selective to a combination of Position × Symbol category,
with ω2 = 0.467 and p < 0.001. While the 3-way ANOVA tells us if a neuron
is selective to a particular combination of conditions, it does not give us
the exact task/symbol/position that the neuron is selective to. To find the
specific task/symbol/position that the neuron was selective to, Welch’s t-test
was performed, and a particular combination with maximum t-statistic and
p < 0.001 was chosen to be shown in Fig. 4.3E,F.

72

5. Contributions of other biophysical
mechanisms to the temporal
computing capability of SNNs

Contents

5.1. Introduction . 73
5.2. Comparison of the four mechanisms on the one-dimensional

STORE-RECALL task. 76
5.3. Comparison of the four mechanism for the time series

classification task sMNIST. 76
5.4. Methods . 77

5.4.1. Network models 77

5.4.2. Tasks . 78

5.1. Introduction

We compare the contribution of SFA to the temporal computing capability
of SNNs with the contribution of the two most frequently considered other
slow processes in SNNs: facilitating short-term plasticity of synapses (STP-F)
and depressing short-term plasticity of synapses (STP-D). In addition we
consider a dual version of a neuron with SFA, a neuron model where the
firing threshold of a neuron decreases with firing of the neuron. Such neuron
model had been considered for example in Fransén et al., 2006.

We compare the contribution of these other three mechanisms to the tem-
poral computing capability of an LSNN (SNN with SFA) for two temporal

73

5. Contributions of other biophysical mechanisms to the temporal computing
capability of SNNs

computing tasks: one-dimensional STORE-RECALL and a task where the
short term memory has to be continuously updated: time series classification
(sMNIST).

Facilitating short-term plasticity of synapses, also referred to as paired pulse
facilitation, increases the amplitudes of postsynaptic potentials for the later
spikes in a spike train, see Methods. Whereas synaptic connections between
pyramidal cells in the neocortex are usually depressing H. Markram et al.,
2015, it was shown in Y. Wang et al., 2006 that there are facilitating synaptic
connections between pyramidal cells in the medial prefrontal cortex of
rodents, with a mean time constant of 507 ms (std 37 ms) for facilitation.
It was shown in Mongillo, Barak, and Tsodyks, 2008 that if one triples
the experimentally found mean time constant for facilitation, then this
mechanism supports basic working memory tasks.

Depressing short-term plasticity of synapses, also referred to as paired
pulse depression, reduces the amplitude of postsynaptic potentials for later
spikes in a spike train. The impact of this mechanism on simple temporal
computing tasks had been examined in a number of publications Maass,
Natschläger, and Henry Markram, 2002; Buonomano and Maass, 2009;
Masse et al., 2019; Hu et al., 2020.

Finally, we considered a dual version of the LIF with SFA neuron model: Its
excitability is increased through preceding firing (see Methods). We call this
neuron model the enhanced-excitability LIF (ELIF) model. Neurons with
such property have been found for example in the entorhinal cortex Fransén
et al., 2006. But a transient increase in the excitability of a neuron is also
caused by depolarization-mediated suppression of inhibition, and this effect
has been observed in many brain areas Kullmann et al., 2012.

The dynamics of the salient hidden variables in these three models is illus-
trated in Fig. 5.2.

74

5.1. Introduction

Fig. 5.1.: Temporal computing performance of SNNs with different slow biophysical
mechanisms. (A) Test set accuracy of five variants of the SNN model on the
one-dimensional STORE-RECALL task. Mean accuracy and standard deviation are
shown for 10 runs with different network initializations for all 5 network types. (B)
Test set accuracy of the same five variants of the SNN model for the sMNIST time
series classification task. Mean accuracy and standard deviation are shown for a
minimum of 4 runs with different network initializations for all 5 network types.
LSNNs do very well for both tasks, much better than SNNs with facilitating short
term plasticity of synapses (STP-F).

75

5. Contributions of other biophysical mechanisms to the temporal computing
capability of SNNs

5.2. Comparison of the four mechanisms on the
one-dimensional STORE-RECALL task.

We considered five SNNs consisting of 60 neurons, with four of them being
endowed with one of the previously discussed biophysical mechanisms, and
a fifth baseline SNN without any of these mechanisms. Their performance
for this simple temporal computing task is shown in Fig. 5.1A. An LSNN
(SNN with SFA) achieved by far the highest accuracy.

5.3. Comparison of the four mechanism for the time
series classification task sMNIST.

Fig. 5.1B shows that both LSNNs and SNNs with experimentally reported
parameters for depressing short-term synaptic plasticity (STP-D) also achieve
very high performance on sMNIST. Furthermore, the performance of SNNs
with STP-F is in the same range as the control SNN (LIF) that has no slow
mechanism.

Fig. 5.1 also shows that replacing SFA by the inverse mechanism (ELIF)
yields substantially worse temporal computing capabilities for both tasks.
One possible reason is that information that is stored in the firing threshold
of a neuron is better protected in the case of a neuron with SFA, since
an increased firing threshold suppresses subsequent accidental firing, and
hence accidental modifications of the content that is stored in the firing
threshold. In contrast, for an ELIF neuron the information that is stored in
the firing threshold is quite vulnerable, since a decreased firing threshold
invites accidental firing.

76

5.4. Methods

5.4. Methods

5.4.1. Network models

The LIF neuron model, LIF neuron model with SFA, weight initialization,
and training methods are the same as in Chapter 4.

LIF neurons with activity-dependant increase in excitability: ELIF neu-
rons. There exists experimental evidence that some neurons fire for the
same stimulus more for a repetition of the same sensory stimulus. We
refer to such neurons as ELIF neurons, since they are becoming more ex-
citable. Such repetition enhancement was discussed for example in Tartaglia,
Mongillo, and Brunel, 2015. But to the best of our knowledge, it has re-
mained open whether repetition enhancement is a network effect, resulting
for example from a transient depression of inhibitory synapses onto the cell
that is caused by postsynaptic firing Kullmann et al., 2012, or a result of
an intrinsic firing property of some neurons. We used a simple model for
ELIF neurons that is dual to the above described LIF neuron model with
SFA: The threshold is lowered through each spike of the neuron, and then
decays exponentially back to its resting value. This can be achieved by using
a negative value for β in equation (2.5).

Models for Short-Term Plasticity (STP) of synapses. We modelled the
STP dynamic according to the classical model of STP in Mongillo, Barak,
and Tsodyks, 2008. The STP dynamics in discrete time, derived from the
equations in Mongillo, Barak, and Tsodyks, 2008, are as follows:

u′ji(t + δt) = exp
(
−δt

F

)
u′ji(t) + Uji(1− uji(t))zi(t)δt, (5.1)

uji(t + δt) = Uji + u′ji(t), (5.2)

r′ji(t + δt) = exp
(
−δt
D

)
r′ji(t) + uji(t)(1− r′ji(t))zi(t)δt, (5.3)

rji(t + δt) = 1− r′ji(t), (5.4)

WSTP
ji (t + δt) = Wrec

ji uji(t)rji(t), (5.5)

77

5. Contributions of other biophysical mechanisms to the temporal computing
capability of SNNs

where zi(t) is the spike train of the pre-synaptic neuron and Wrec
ji scales the

synaptic efficacy of synapses from neuron i to neuron j. Networks with STP
were constructed from LIF neurons with the weight Wrec

ji in equation (2.2)
replaced by the time dependent weight WSTP

ji (t).

STP time constants of facilitation-dominant and depression-dominant net-
work models were based on values of experimental recordings in Y. Wang
et al., 2006 of PFC-E1 (D = 194 ± 18, F = 507 ± 37, U = 0.28 ± 0.02)
and PFC-E2 (D = 671± 17, F = 17± 5, U = 0.25± 0.02) synapse types
respectively. Recordings in Y. Wang et al., 2006 were performed in me-
dial prefrontal cortex of young adult ferrets. In the sMNIST task for the
depression-dominant network model (STP-D) we used values based on PFC-
E2, and for facilitation-dominant network model (STP-F) we used values
based on PFC-E1, see sMNIST task section below. For the STORE-RECALL
task, both facilitation and depression time constants were equally scaled
up until the larger time constant matched the requirement of the task, see
one-dimensional STORE-RECALL task section below.

5.4.2. Tasks

One-dimensional STORE-RECALL task. The input to the network con-
sisted of 40 input neurons: 10 for STORE, 10 for RECALL, and 20 for
population coding of a binary feature. Whenever a subpopulation was
active, it would exhibit a Poisson firing with frequency of 50 Hz. For ex-
periments reported in Fig. 5.1A each input sequence consisted of 20 steps
(200 ms each) where the STORE or the RECALL populations were activated
with probability 0.09 interchangeably which resulted in delays between the
STORE-RECALL pairs to be in the range [200, 3600] ms.

Networks were trained for 400 iterations with batch size of 64 in Table 4.1
and 128 in Fig. 5.1A. We used the Adam optimizer with default parameters
and initial learning rate of 0.01 which was decayed every 100 iterations
by a factor of 0.3. The same firing rate regularization term was added to
the loss as in the 20-dimensional STORE-RECALL setup (see above). The
test performance was computed as batch average over 2048 random input
sequences.

78

5.4. Methods

Networks consisted of 60 recurrently connected neurons. The membrane
time constant was τm = 20 ms. In Fig.5.1A, for LIF with SFA and ELIF
networks, we used β = 1 mV and β = −0.5 mV respectively, with τa =
2000 ms. Table 4.1 defines the adaptation time constants and expected delay
of the experiments in that section. Synapse parameters of STP-D network
were F = 51± 15 ms, D = 2000± 51 ms and U = 0.25, and of STP-F network
F = 2000± 146 ms, D = 765± 71 ms and U = 0.28. The baseline threshold
voltage was 10 mV for all models except ELIF for which it was 20 mV.
Synaptic delay was 1 ms. The same sigmoidal readout neuron setup was
used as in the one-dimensional STORE-RECALL setup (see above).

In Fig. 5.1A the LSNN (SNN with SFA) reached 96± 1.2% accuracy. The
performance of SNNs with STP-D or ELIF neurons was consistently lower
with 77± 15.1% and 81± 2.0% accuracy respectively. The SNN with STP-F
performed at chance level (50± 0.2%), similar as the baseline SNN (LIF)
without any additional biophysical mechanisms, even when the time con-
stant for factiliation was increased to a much higher value of 2000 ms than
in the recorded data Y. Wang et al., 2006.

sMNIST task. The input consisted of sequences of 784 pixel values created
by unrolling the handwritten digits of the MNIST dataset, one pixel after the
other in a scanline manner. We used 1 ms presentation time for each pixel
gray value. Each of the 80 input neurons was associated with a particular
threshold for the grey value, and this input neuron fired whenever the grey
value crossed its threshold in the transition from the previous to the current
pixel.

Networks were trained for 36,000 iterations using the Adam optimizer with
batch size 256. The initial learning rate was 0.01 and every 2500 iterations
the learning rate was decayed by a factor of 0.8. The same firing rate regu-
larization term was added to the loss as in the STORE-RECALL setup (see
above) but with the scaling coefficient of 0.1.

All networks consisted of 220 neurons. Network models labeled LIF with SFA
and ELIF in the Fig. 5.1B had 100 neurons out of 220 with SFA or transient
excitability respectively. The neurons had a membrane time constant of
τm = 20 ms, a baseline threshold of vth = 10 mV, and a refractory period
of 5 ms. The adaptation time constants of LIF with SFA and ELIF neurons

79

5. Contributions of other biophysical mechanisms to the temporal computing
capability of SNNs

were τa = 700 ms. The adaptation strength of LIF neurons with SFA was
β = 1.8 mV, and of ELIF neurons β = −0.9 mV. Synaptic delay was 1 ms.
Synapse parameters were F = 20 ms, D = 700 ms and U = 0.2 for STP-D
model, and F = 500 ms, D = 200 ms and U = 0.2 for STP-F model. The
output of the network was produced by the softmax of 10 linear output
neurons that received the low-pass filtered version of the spikes from all
neurons in the network. The low-pass filter had a time constant of 20 ms.
For training the network to classify into one of the ten classes we used
cross-entropy loss computed between the labels and the softmax of output
neurons.

80

5.4. Methods

Fig. 5.2.: Illustration of models for an inversely adapting ELIF neuron, and for short-term
synaptic plasticity. (A) Sample spike train. (B) The resulting evolution of firing
threshold for an inversely adapting neuron (ELIF neuron). (C-D) The resulting
evolution of the amplitude of postsynaptic potentials (PSPs) for spikes of the
presynaptic neuron for the case of a depression-dominant (STP-D: D�F) and a
facilitation-dominant (STP-F: F�D) short-term synaptic plasticity.

81

6. A biologically plausible learning
method for recurrent networks of
spiking neurons

Contents

6.1. Introduction . 84

6.2. Variants of e-prop . 88

6.3. Adaptive e-prop and weight decay regularization 89

6.4. Learning phoneme recognition with e-prop 90

6.5. Solving difficult temporal credit assignment 92

Abstract. Recurrently connected networks of spiking neurons underlie the
astounding information processing capabilities of the brain. But in spite
of extensive research, it has remained open how they can learn through
synaptic plasticity to carry out complex network computations. We argue
that two pieces of this puzzle were provided by experimental data from neu-
roscience. A mathematical result in Bellec, Scherr, Subramoney, et al., 2020

tells us how these pieces need to be combined to enable biologically plau-
sible online network learning through gradient descent, in particular deep
reinforcement learning. This learning method – called e-prop – approaches
the performance of backpropagation through time (BPTT), the best-known
method for training recurrent neural networks in machine learning. In addi-
tion, it suggests a method for powerful on-chip learning in energy-efficient
spike-based hardware for artificial intelligence. This chapter introduces the
adaptive e-prop variant and presents the evaluation results on two tasks.

83

6. A biologically plausible learning method for recurrent networks of spiking
neurons

Acknowledgments and author contributions. This chapter is based on the
manuscripts

Guillaume Bellec*, Franz Scherr*, Anand Subramoney, Elias Ha-
jek, Darjan Salaj, Robert Legenstein, Wolfgang Maass (2020). “A
solution to the learning dilemma for recurrent networks of spiking
neurons.” Nature Communications.

To this study, I contributed as co-author developing and conducting the
speech recognition related experiments and the adaptive version of e-prop.
The theoretical development was carried out jointly by GB and FS, after the
idea of e-prop was first sketched by GB and the research in this direction
was initiated by WM. The theorical work around reward-based e-prop was
mainly developed by FS with contributionsfrom GB and AS. All authors
contributed to the design of the experiments. The experiments concerning
Section 3.2.2 were developed and conducted by DS and GB. The experiments
concerning Section 3.2.3 were developed and conducted by EH, FS and
GB. The experiments concerningreward-based e-prop in Section 3.2.4 were
developed and conducted by FS. The manuscript was written by WM, RL,
GB, FS, EH, DS and AS.

6.1. Introduction

Networks of neurons in the brain differ in at least two essential aspects from
deep neural networks in machine learning: They are recurrently connected,
forming a giant number of loops, and they communicate via asynchronously
emitted stereotypical electrical pulses, called spikes, rather than bits or
numbers that are produced in a synchronized manner by each layer of a
deep feedforward network. We consider the arguably most prominent model
for spiking neurons in the brain: leaky integrate-and-fire (LIF) neurons,
where spikes that arrive from other neurons through synaptic connections
are multiplied with the corresponding synaptic weight, and are linearly
integrated by a leaky membrane potential. The neuron fires – i.e., emits a
spike – when the membrane potential reaches a firing threshold.

84

6.1. Introduction

But it is an open problem how recurrent networks of spiking neurons
(RSNNs) can learn, i.e., how their synaptic weights can be modified by local
rules for synaptic plasticity so that the computational performance of the
network improves. In deep learning, this problem is solved for feedforward
networks through gradient descent for a loss function E that measures im-
perfections of current network performance (LeCun, Bengio, and G. Hinton,
2015). Gradients of E are propagated backwards through all layers of the
feedforward network to each synapse through a process called backpropaga-
tion. Recurrently connected networks can compute more efficiently because
each neuron can participate several times in a network computation, and
they are able to solve tasks that require integration of information over
time or a non-trivial timing of network outputs according to task demands.
Therefore the impact of a synaptic weight on the loss function (see Fig-
ure 6.1a) is more indirect, and learning through gradient descent becomes
substantially more difficult. This problem is aggravated if there are slowly
changing hidden variables in the neuron model, as in neurons with spike-
frequency adaptation (SFA). Neurons with SFA are quite common in the
neocortex Allen Institute, 2018, and it turns out that their inclusion in the
RSNN significantly increases the computational power of the network Bellec,
Salaj, et al., 2018. In fact, RSNNs trained through gradient descent acquire
then similar computing capabilities as networks of LSTM (Long Short-Term
Memory) units, the state of the art for recurrent neural networks in machine
learning. Because of this functional relation to LSTM networks these RSNN
models are referred to as LSNNs Bellec, Salaj, et al., 2018.

In machine learning, one trains recurrent neural networks by unrolling the
network into a virtual feedforward network LeCun, Bengio, and G. Hinton,
2015, see Figure 6.1b, and applying the backpropagation algorithm to that
(Figure 6.1c). This method is called backpropagation through time (BPTT)
since it requires propagation of gradients backwards in time.

With a careful choice of the pseudo-derivative for handling the discontin-
uous dynamics of spiking neurons one can apply BPTT also to RSNNs,
and RSNNs were able to learn in this way to solve really demanding com-
putational tasks (Bellec, Salaj, et al., 2018, Huh and Sejnowski, 2018). But
the dilemma is that BPTT requires storing the intermediate states of all
neurons during a network computation, and merging these in a subsequent
offline process with gradients that are computed backwards in time (see

85

6. A biologically plausible learning method for recurrent networks of spiking
neurons

Figure 6.1c). This makes it very unlikely that BPTT is used by the brain
(T. P. Lillicrap and Santoro, 2019).

The previous lack of powerful online learning methods for RSNNs also
affected the use of neuromorphic computing hardware, which aims at a
drastic reduction in the energy consumption of AI implementations. A sub-
stantial fraction of this neuromorphic hardware, such as SpiNNaker Furber,
Galluppi, et al., 2014 or Intel’s Loihi chip Davies et al., 2018, implements
RSNNs. Although it does not matter here whether the learning algorithm is
biologically plausible, the excessive storage and offline processing demands
of BPTT make this option unappealing. Hence there also exists a learning
dilemma for RSNNs in neuromorphic hardware.

We are not aware of previous work on online gradient descent learning
methods for RSNNs, neither for supervised learning nor for reinforcement
learning (RL). There exists, however, preceding work on online approxima-
tions of gradient descent for non-spiking neural networks based on Williams
and Zipser, 1989, which we review in the Discussion Section.

Two streams of experimental data from neuroscience provide clues about
the organisation of online network learning in the brain:

Firstly, neurons in the brain maintain traces of preceding activity on the
molecular level, for example in the form of calcium ions or activated CaMKII
enzymes (Sanhueza and Lisman, 2013). In particular, they maintain a fading
memory of events where the presynaptic neuron fired before the postsy-
naptic neuron, which is known to induce synaptic plasticity if followed by
a top-down learning signal (Cassenaer and Laurent, 2012; Yagishita et al.,
2014; Gerstner, Lehmann, et al., 2018). Such traces are often referred to as
eligibility traces.

Secondly, in the brain, there exists an abundance of top-down signals such as
dopamine, acetylcholine, and neural firing (Sajad, Godlove, and Schall, 2019)
related to the event-related negativity (ERN), that inform local populations of
neurons about behavioral results. Furthermore, dopamine signals (Engelhard
et al., 2019; Roeper, 2013) have been found to be specific for different target
populations of neurons, rather than being global. We refer in our learning
model to such top-down signals as learning signals.

86

6.1. Introduction

Fig. 6.1.: Schemes for BPTT and e-prop (a) RSNN with network inputs x, neuron spikes z,
hidden neuron states h, and output targets y∗, for each time step t of the RSNN
computation. Output neurons y provide a low-pass filter of a weighted sum of
network spikes z. (b) BPTT computes gradients in the unrolled version of the
network. It has a new copy of the neurons of the RSNN for each time step t. A
synaptic connection from neuron i to neuron j of the RSNN is replaced by an array
of feedforward connections, one for each time step t, that goes from the copy of
neuron i in the layer for time step t to a copy of neuron j in the layer for time step
t + 1. All synapses in this array have the same weight: the weight of this synaptic
connection in the RSNN. (c) Loss gradients of BPTT are propagated backwards in
time and retrograde across synapses in an offline manner, long after the forward
computation has passed a layer. d) Online learning dynamics of e-prop. Feedforward
computation of eligibility traces is indicated in blue. These are combined with
online learning signals according to equation 1 in Bellec, Scherr, Subramoney, et al.,
2020). 87

6. A biologically plausible learning method for recurrent networks of spiking
neurons

A re-analysis of the mathematical basis of gradient descent learning in re-
current neural networks tells us how local eligibility traces and top-down
learning signals should be optimally combined – without requiring back-
progation of signals through time. The resulting learning method e-prop is
illustrated in Figure 6.1d. It learns slower than BPTT, but tends to approx-
imate the performance of BPTT, thereby providing a first solution to the
learning dilemma for RSNNs. Furthermore, e-prop also works for RSNNs
with more complex neuron models, such as LSNNs.

This new learning paradigm elucidates how the brain could learn to rec-
ognize phonemes in spoken language, solve temporal credit assignment
problems, and acquire new behaviors just from rewards Bellec, Scherr,
Subramoney, et al., 2020.

6.2. Variants of e-prop

e-prop (Bellec, Scherr, Subramoney, et al., 2020) is an online learning method
in a strict sense (see Figure 6.1d) where the weights are updated according
to the following equation:

dE
dWji

= ∑
t

Lt
j et

ji (6.1)

where E is the loss function to be minimized and et
ji is the eligibility trace of

the synapse from neuron i to neuron j at time t. The gradient dE
dWji

for the
weight Wji of the synapse from neuron i to neuron j tells us how this weight
should be changed in order to reduce E.

The ideal value dE
dzt

j
of the learning signal Lt

j is replaced by an approximation,

such as ∂E
∂zt

j
, which ignores these indirect influences (this partial derivative

∂E
∂zt

j
is written with a rounded ∂ to signal that it captures only the direct

influence of the spike zt
j on the loss function E). This approximation takes

only currently arising losses at the output neurons k of the RSNN into

88

6.3. Adaptive e-prop and weight decay regularization

account, and routes them with neuron-specific weights Bjk to the network
neurons j (see Figure 6.2a):

Lt
j = ∑

k
Bjk (yt

k − y∗,tk)︸ ︷︷ ︸
deviation of output k

at time t

. (6.2)

Although this approximate learning signal Lt
j only captures errors that arise

at the current time step t, it is combined in equation (6.1) with an eligibility
trace et

ji that may reach far back into the past of neuron j (see Figure 6.3b),
thereby alleviating the need to solve the temporal credit assignment problem
by propagating signals backwards in time (like in BPTT).

There are several strategies for choosing the weights Bjk for this online
learning signal.

In symmetric e-prop we set it equal to the corresponding weight Wout
kj of the

synaptic connection from neuron j to output neuron k, as demanded by ∂E
∂zt

j
.

Note that this learning signal would actually implement dE
dzt

j
exactly in the

absence of recurrent connections in the network. Biologically more plausible
are two variants of e-prop that avoid weight sharing:

In random e-prop the values of all weights Bjk – even for neurons j that are
not synaptically connected to output neuron k – are randomly chosen and
remain fixed, similar to Broadcast Alignment for feedforward networks
(Timothy P Lillicrap et al., 2016; Nøkland, 2016; Samadi, Timothy P Lillicrap,
and Tweed, 2017).

In adaptive e-prop, in addition to using random backward weights, we also
let Bjk evolve through a simple local plasticity rule that mirrors the plasticity
rule applied to Wout

kj for neurons j that are synaptically connected to output
neuron k (see subsection 6.3).

6.3. Adaptive e-prop and weight decay regularization

In adaptive e-prop all neurons are receiving learning signals with random
broadcast weights Bjk as in random e-prop. Yet, if neuron j sends activity

89

6. A biologically plausible learning method for recurrent networks of spiking
neurons

to the output neuron k via output weights Wout
kj , the broadcast weights Bjk

are subsequently adapted. This was implemented by applying an identical
weight update to the broadcast and the output weights, i.e. ∆Bjk = ∆Wout

kj
and by subtracting cdecay ·Wout

kj (resp. cdecay · Bjk) from the weight Wout
kj

(resp. Bjk) after each weight update, where cdecay > 0 is the regularization
factor (see specific experiments for the value of cdecay). This weight decay
in combination with the mirroring of the weight updates has the effect
that, despite different initialization, the output weights and the adaptive
broadcast weights converge to similar values. The remaining difference of
performance between symmetric and adaptive e-prop reported in Supplemen-
tary Figure B.1 and Supplementary Figure B.3 may be explained by the
different initializations.

Adaptive e-prop can be viewed as that version of e-prop that exploits all types
of biologically plausible learning signals that are available at individual
neurons, apart from reward prediction errors or signals from a separately
trained RSNN that sends learning signals, see Figure 3 of (Bellec, Scherr,
Hajek, et al., 2019).

6.4. Learning phoneme recognition with e-prop

The phoneme recognition task TIMIT (Garofolo et al., 1993) is one of the most
commonly used benchmarks for temporal processing capabilities of different
types of recurrent neural networks and different learning approaches Greff
et al., 2017. It comes in two versions. Both use, as input, acoustic speech
signals from sentences that are spoken by 630 speakers from 8 dialect regions
of the USA (see the top of Figure 6.2b for a sample segment). In the simpler
version, used for example in Greff et al., 2017, the goal is to recognize
which of 61 phonemes is spoken in each 10 ms time frame (frame-wise
classification). In the more sophisticated version from Graves, Mohamed,
and G. Hinton, 2013, which achieved an essential step toward human-level
performance in speech-to-text transcription, the goal is to recognize the
sequence of phonemes in the entire spoken sentence independently of their
timing (sequence transcription). RSNNs consisting only of LIF neurons do
not even reach good performance on TIMIT with BPTT Bellec, Salaj, et al.,

90

6.4. Learning phoneme recognition with e-prop

Fig. 6.2.: Comparison of BPTT and e-prop for learning phoneme recognition (a) Network
architecture for e-prop, illustrated for an LSNN consisting of LIF and ALIF neurons.
(b) Input and target output for the two versions of TIMIT. (c) Performance of BPTT
and symmetric e-prop for LSNNs consisting of 800 neurons for framewise targets
and 2400 for sequence targets (random and adaptive e-prop produced similar results,
see Supplementary Figure B.1). To obtain the Global learning signal baselines, the
neuron-specific feedbacks are replaced with global ones.

91

6. A biologically plausible learning method for recurrent networks of spiking
neurons

2018. Hence we are considering here LSNNs, where a random subset of the
neurons is a variation of the LIF model with firing rate adaptation (ALIF
neurons), see Chapter 3. The name LSNN is motivated by the fact that this
special case of the RSNN model can achieve through training with BPTT
similar performance as an LSTM network Bellec, Salaj, et al., 2018.

E-prop approximates the performance of BPTT on LSNNs for both versions
of TIMIT very well, as shown in Figure 6.2c. Furthermore, LSNNs could solve
the frame-wise classification task without any neuron firing more frequently
than 12 Hz (spike count taken over 32 spoken sentences), demonstrating that
they operate in an energy-efficient spike-coding – rather than a rate-coding
– regime. For the more difficult version of TIMIT we trained as in Graves,
Mohamed, and G. Hinton, 2013 a complex LSNN consisting of a feedforward
sequence of three recurrent networks. Our results show that e-prop can also
handle learning for such more complex network structures very well. In
Supplementary Figure B.3 we show for comparison also the performance of
e-prop and BPTT for LSTM networks on the same tasks. These data show
that for both versions of TIMIT the performance of e-prop for LSNNs comes
rather close to that of BPTT for LSTM networks. In addition, they show
that e-prop also provides for LSTM networks a functionally powerful online
learning method.

6.5. Solving difficult temporal credit assignment

A hallmark of cognitive computations in the brain is the capability to go
beyond a purely reactive mode: to integrate diverse sensory cues over time,
and to wait until the right moment arrives for an action. A large number of
experiments in neuroscience analyze neural coding after learning such tasks
(see e.g. Morcos and Christopher D Harvey, 2016; Engelhard et al., 2019). But
it had remained unknown how one can model the learning of such cognitive
computations in RSNNs of the brain. In order to test whether e-prop can
solve this problem, we considered the same task that was studied in the
experiments of Morcos and Christopher D Harvey, 2016 and Engelhard et al.,
2019. There a rodent moved along a linear track in a virtual environment,
where it encountered several visual cues on the left and right, see Figure 6.3a.
Later, when it arrived at a T-junction, it had to decide whether to turn left

92

6.5. Solving difficult temporal credit assignment

Fig. 6.3.: Solving a task with difficult temporal credit assignment. (a) Setup of correspond-
ing rodent experiments of Morcos and Christopher D Harvey, 2016 and Engelhard
et al., 2019, see Supplmentary Movie 1. (b) Input spikes, spiking activity of 10 out of
50 sample LIF neurons and 10 out of 50 sample ALIF neurons, membrane potentials
(more precisely: vt

j − At
j) for two sample neurons j, 3 samples of slow components

of eligibility traces, sample learning signals for 10 neurons and softmax network
output. (c) Learning curves for BPTT and two e-prop versions applied to LSNNs,
and BPTT applied to an RSNN without adapting neurons (red curve). Orange curve
shows learning performance of e-prop for a sparsely connected LSNN consisting
of excitatory and inhibitory neurons (Dale’s law obeyed). The shaded areas are
the 95%-confidence intervals of the mean accuracy computed with 20 runs. (d)
Correlation between the randomly drawn broadcast weights Bjk for k = left/right
for learning signals in random e-prop and resulting sensitivity to left and right input
components after learning. fj,left (fj,right) was the resulting average firing rate of
neuron j during presentation of left (right) cues after learning. 93

6. A biologically plausible learning method for recurrent networks of spiking
neurons

or right. It was rewarded when it turned to that side from which it had
previously received the majority of visual cues. This task is not easy to learn
since the subject needs to find out that it does not matter on which side the
last cue was, or in which order the cues were presented. Instead, the subject
has to learn to count cues separately for each side and to compare the two
resulting numbers. Furthermore, the cues need to be processed properly
long before a reward is given. We discuss here the case where a teacher
tells the subject at the end of each trial what would have been the right
decision. This yields a challenging scenario for any online learning method
since non-zero learning signals Lt

j arise only during the last 150 ms of a trial
(Figure 6.3b). Hence all synaptic plasticity has to take place during these
last 150 ms, long after the input cues have been processed.

Nevertheless, e-prop is able to solve this learning problem, see Figure 6.3c.
It just needs a bit more time to reach the same performance level as offline
learning via BPTT. Whereas this task can not even be solved by BPTT with
a regular RSNN that has no adapting neurons (red curve in Figure 6.3c), all
3 previously discussed variations of e-prop can solve it if the RSNN contains
adapting neurons.

But how can the neurons in the LSNN learn to record and count the input
cues if all the learning signals are identically 0 until the last 150 ms of a
2250 ms long trial (see 2nd to last row of Figure 6.3b)?

For answering this question one should note that firing of a neuron j at time
t can affect the loss function E at a later time point t′ > t in two different
ways: Via route (i) it affects future values of slow hidden variables of neuron
j (e.g., its firing threshold), which may then affect the firing of neuron j at t′

, which in turn may directly affect the loss function at time t′. Via route (ii)
it affects the firing of other neurons j′ at t′, which directly affects the loss
function at time t′.

In symmetric and adaptive e-prop, one uses the partial derivative ∂E
∂zt

j
as

learning signal Lt
j for e-prop – instead of the total derivative dE

dzt
j

which is

not available online. This blocks the flow of gradient information along
route ii. But the eligibility trace keeps the flow along route i open. Therefore
even symmetric and adaptive e-prop can solve the temporal credit assignment
problem of Figure 6.3 through online learning: The gradient information

94

6.5. Solving difficult temporal credit assignment

that flows along route i enables neurons to learn how to process the sensory
cues at time points t during the first 1050 ms, although this can affect the
loss only at time points t′ > 2100 ms when the loss becomes non-zero.

This is illustrated in the 3rd last row of Figure 6.3b: The slow component εt
ji,a

of the eligibility traces eji of adapting neurons j decays with the typical long
time constant of firing rate adaptation. Since these traces stretch from the
beginning of the trial into its last phase, they enable learning of differential
responses to left and right input cues that arrived over 1050 ms before
any learning signals become non-zero, as shown in the 2nd to last row of
Figure 6.3b.

Hence eligibility traces provide so-called highways into the future for the
propagation of gradient information. These can be seen as biologically
realistic replacements for the highways into the past that BPTT employs
during its backwards pass.

This analysis also tells us when symmetric e-prop is likely to fail to approx-
imate the performance of BPTT: If the forward propagation of gradients
along route i cannot reach those later time points t′ at which the value of
the loss function becomes salient. One can artificially induce this in the
experiment of Figure 6.3 by adding to the LSNN – which has the standard
architecture shown in Figure 6.2a – hidden layers of a feedforward SNN
through which the communication between the LSNN and the readout
neurons has to flow. The neurons j′ of these hidden layers block route i,
while leaving route ii open. Hence the task of Figure 6.3 can still be learnt
with this modified network architecture by BPTT, but not by symmetric
e-prop.

Identifying tasks where the performance of random e-prop stays far behind
that of BPTT is more difficult, since error signals are sent there also to
neurons that have no direct connections to readout neurons. For deep
feedforward networks it has been shown in (Bartunov et al., 2018) that
Broadcast Alignment, as defined in (Samadi, Timothy P Lillicrap, and Tweed,
2017; Nøkland, 2016), cannot reach the performance of Backprop for difficult
image classification tasks. Hence we expect that random e-prop will exhibit
similar deficiencies with deep feedforward SNNs on difficult classification
tasks. We are not aware of corresponding demonstrations of failures of

95

6. A biologically plausible learning method for recurrent networks of spiking
neurons

Broadcast Alignment for artificial RNNs, although they are likely to exist.
Once they are found, they will probably point to tasks where random e-prop
fails for RSNNs. Currently, we are not aware of any.

Figure 6.3d provides insight into the functional role of the randomly drawn
broadcast weights in random e-prop: The difference of these weights deter-
mines for each neuron j whether it learns to respond in the first phase of
a trial more to cues from the left or right. This observation suggests that
neuron-specific learning signals for RSNNs have the advantage that they
can create a diversity of feature detectors for task-relevant network inputs.
Hence a suitable weighted sum of these feature detectors is later able to
cancel remaining errors at the network output, similarly as in the case of
feedforward networks (Timothy P Lillicrap et al., 2016).

96

7. Outlook

In this thesis we investigated the role of SFA in the temporal computation
and learning capabilities of SNNs. We demonstrated that the LSNNs (SNNs
with SFA) have significantly more powerful memory and learning capa-
bilities over SNNs without SFA. In Chapter 3, we showed that LSNNs, in
addition to improved memory, are very amenable to optimization with BPTT.
With this we show similarities between LSTMs and LSNNs both in terms
of accuracies on machine learning benchmark tasks and their friendliness
to gradient descent training. These results have been highly attractive to
the neuromorphic industry and the LSNN model has already been imple-
mented in SpiNNaker(Furber, Galluppi, et al., 2014) and Loihi(Davies et al.,
2018) chips to demonstrate the viability of the platforms for AI applications.
The learning paradigm introduced in Chapter 6 is another highly attractive
development for the neuromorphic domain as it offers the possibility of
on-chip learning.

Following up in Chapter 4 we investigated in more depth the question of
how SFA is able to boost the temporal computation of an SNN in different
scenarios. There we developed the negative imprint hypothesis which offers
an explanation how the SFA is exploited as the mechanism that supports
robust memory and computing capabilities. This hypothesis could be used
for design of neuroscience experiments which attempt to more accurately
capture the relevance of SFA in temporal cognitive tasks.

In Chapter 5, we demonstrated that different biophysical mechanisms have
different impact on the temporal computation and learning abilities of SNNs.
Interestingly, we show that predominantly depressing short-term plasticity
of synapses is another biophysical mechanism that can strongly enhance the
computing capabilities of SNNs. This points to the promising direction of
investigating further neural and synapse dynamics that might be powerful
substrates for other unknown computing capabilities of SNNs. Furthermore,

97

7. Outlook

the combination of the different biophysical mechanisms might lead to
new capabilities which produces results greater than the sum of individual
contributions of those mechanisms.

98

Appendix

99

Appendix A.

Appendix to Chapter 4: Spike
frequency adaptation supports
network computations on temporally
dispersed information

A.1. Autocorrelation based intrinsic time scale of
neurons trained on STORE-RECALL task

We wondered whether the adaptive firing threshold of LIF neurons with
SFA affects the autocorrelation function of their firing activity — termed
intrinsic time scale in Wasmuht et al., 2018. We tested this for an SNN
consisting of 200 LIF neurons without and 200 LIF neurons with SFA that
was trained to solve a one-dimensional version of the STORE-RECALL task.
It turned out that during the delay between STORE and RECALL these
intrinsic time constants were in the same range as those measured in the
monkey cortex, see Fig. 1C in Wasmuht et al., 2018. Furthermore, neurons of
the trained SNN exhibited very similar distributions of these time constants
(see Fig. A.1), suggesting that these intrinsic time constants are determined
largely by their network inputs, and less by the neuron type.

101

Appendix A. Appendix to Chapter 4: Spike frequency adaptation supports
network computations on temporally dispersed information

A.2. sMNIST task with sparsely connected SNN

This task has originally been used as a temporal processing benchmark for
ANNs, and has successfully been solved with the Long Short-Term Memory
(LSTM) type of ANNs Hochreiter and Schmidhuber, 1997. LSTM units
store information in registers – like a digital computer – so that the stored
information cannot be perturbed by ongoing network activity. Networks
of LSTM units or variations of such units have been widely successful in
temporal processing and reach the level of human performance for many
temporal computing tasks.

Since LSTM networks also work well for tasks on larger time-scales, for
comparing SNNs with LSTM networks, we used a version of the task with 2
ms presentation time per pixel, thereby doubling the length of sequences
to be classified to 1568 ms. Grey values of pixels were presented to the
LSTM network simply as analog values. A trial of a trained SNN with
SFA (with an input sequence that encodes a handwritten digit “3” using
population rate coding) is shown in Fig. A.2B. The top row of Fig. A.2B
shows a version where the grey value of the currently presented pixel is
encoded by population coding, through the firing probability of 80 input
neurons. Somewhat better performance was achieved when each of the 80
input neurons was associated with a particular threshold for the grey value,
and this input neuron fired whenever the grey value crossed its threshold in
the transition from the previous to the current pixel (this input convention
was used to produce the results below).

Besides a fully connected network of LIF neurons with SFA, we also tested
the performance of a variant of the model, called SC-SNN, that integrates
additional constraints of SNNs in the brain: It is sparsely connected (12%
of possible connections are present) and consists of 75% excitatory and
25% inhibitory neurons that adhere to Dale’s law. By adapting the sparse
connections with the rewiring method in Bellec, Kappel, et al., 2018 during
BPTT training, the SC-SNN was able to perform even better than the fully-
connected SNN of LIF neurons with SFA. The resulting architecture of the
SC-SNN is shown in Fig. A.2C. Its activity of excitatory and inhibitory
neurons, as well as the time courses of adaptive thresholds for (excitatory)
LIF neurons with SFA of the SC-SNN are shown in Fig. A.2B. In this setup,

102

A.3. Google Speech Commands

the SFA had τa = 1400 ms. When we used an SNN with SFA, we improved
the accuracy on this task to 96.4% which approaches the accuracy of the
artificial LSTM model which reached the accuracy of 98.0%.

We also trained a liquid state machine version of the SNN model with SFA
where only the readout neurons are trained. This version of the network
reached the accuracy of 63.24± 1.48% over 5 independent training runs.

A.3. Google Speech Commands

We trained SNNs with and without SFA on the keyword spotting task
with Google Speech Commands Dataset Warden, 2018 (v0.02). The dataset
consists of 105,000 audio recordings of people saying thirty different words.
Fully connected networks were trained to classify audio recordings, that
were clipped to one second length, into one of 12 classes (10 keywords, as
well as two special classes for silence and unknown words; the remaining
20 words had to be classified as “unknown”). Comparison of the maximum
performance of trained spiking networks against state-of-the-art artificial
recurrent networks is shown in Table A.1. Averaging over 5 runs, the SNN
with SFA reached 90.88± 0.22%, and the SNN without SFA reached 88.79±
0.16% accuracy. Thus an SNN without SFA can already solve this task quite
well, but the inclusion of SFA halves the performance gap to the published
state-of-the-art in machine learning. The only other report on a solution to
this task with spiking networks is Zenke and Vogels, 2020. There the authors
train a network of LIF neurons using surrogate gradients with BPTT and
achieve 85.3± 0.3% accuracy on the full 35 classes setup of the task. In this
setup, the SNN with SFA reached 88.5± 0.16% test accuracy.

Features were extracted from the raw audio using the Mel Frequency Cep-
stral Coefficient (MFCC) method with 30 ms window size, 1 ms stride, and
40 output features. The network models were trained to classify the input
features into one of the 10 keywords (yes, no, up, down, left, right, on, off,
stop, go) or to two special classes for silence or unknown word (where the
remainder of 20 recorded keywords are grouped). The training, validation
and test set were assigned 80, 10, and 10 percent of data respectively while
making sure that audio clips from the same person stay in the same set.

103

Appendix A. Appendix to Chapter 4: Spike frequency adaptation supports
network computations on temporally dispersed information

All networks were trained for 18,000 iterations using the Adam optimizer
with batch size 100. The output spikes of the networks were averaged over
time, and the linear readout layer was applied to those values. During
the first 15,000 iterations, we used a learning rate of 0.001 and for the
last 3000, we used a learning rate of 0.0001. The loss function contained
a regularization term (scaled with coefficient 0.001) that minimizes the
squared difference of average firing rate between individual neurons and a
target firing rate of 10 Hz.

Both SNNs with and without SFA consisted of 2048 fully connected neurons
in a single recurrent layer. The neurons had a membrane time constant
of τm = 20 ms, the adaptation time constant of SFA was τa = 100 ms,
adaptation strength was β = 2 mV. The baseline threshold was vth = 10 mV,
and the refractory period was 2 ms. The synaptic delay was 1 ms.

A.4. Delayed-memory XOR

We also tested the performance of SNNs with SFA on a previously consid-
ered benchmark task, where two items in the working memory have to be
combined non-linearly: the Delayed-memory XOR task Huh and Sejnowski,
2018. The network is required to compute the exclusive-or operation on the
history of input pulses when prompted by a go-cue signal, see Fig. A.3.

The network received on one input channel two types of pulses (up or
down), and a go-cue on another channel. If the network received two input
pulses since the last go-cue signal, it should generate the output “1” during
the next go-cue if the input pulses were different or “0” if the input pulses
were the same. Otherwise, if the network only received one input pulse since
the last go-cue signal, it should generate a null output (no output pulse).
Variable time delays are introduced between the input and go-cue pulses.
The time scale of the task was 600 ms which limited the delay between input
pulses to 200 ms.

This task was solved in Huh and Sejnowski, 2018, without providing perfor-
mance statistics, by using a type of neuron that has not been documented
in biology — a non-leaky quadratic integrate and fire neuron. We are not

104

A.4. Delayed-memory XOR

aware of previous solutions by networks of LIF neurons. To compare and in-
vestigate the impact of SFA on network performance in the delayed-memory
XOR task, we trained SNNs, with and without SFA, of the same size as in
Huh and Sejnowski, 2018 — 80 neurons. Across 10 runs, SNNs with SFA
solved the task with 95.19± 0.014% accuracy, whereas the SNNs without
SFA converged at lower 61.30± 0.029% accuracy.

The pulses on the two input channels were generated with 30 ms duration
and the shape of a normal probability density function normalized in the
range [0, 1]. The pulses were added or subtracted from the baseline zero
input current at appropriate delays. The go-cue was always a positive current
pulse. The 6 possible configurations of the input pulses (+, −, ++, −−, +−,
−+) were sampled with equal probability during training and testing.

Networks were trained for 2000 iterations using the Adam optimizer with
batch size 256. The initial learning rate was 0.01 and every 200 iterations the
learning rate was decayed by a factor of 0.8. The loss function contained a
regularization term (scaled with coefficient 50) that minimizes the squared
difference of the average firing rate of individual neurons from a target
firing rate of 10 Hz. This regularization resulted in networks with a mean
firing rate of 10 Hz where firing rates of individual neurons were spread in
the range [1, 16] Hz.

Both SNNs with and without SFA consisted of 80 fully connected neurons
in a single recurrent layer. The neurons had a membrane time constant of
τm = 20 ms, a baseline threshold vth = 10 mV, and a refractory period of
3 ms. SFA had an adaptation time constant of τa = 500 ms and an adaptation
strength of β = 1 mV. The synaptic delay was 1 ms. For training the network
to classify the input into one of the three classes, we used the cross-entropy
loss between the labels and the softmax of three linear readout neurons.
The input to the linear readout neurons were the neuron traces that were
calculated by passing all the network spikes through a low-pass filter with a
time constant of 20 ms.

105

Appendix A. Appendix to Chapter 4: Spike frequency adaptation supports
network computations on temporally dispersed information

Fig. A.1.: Histogram of the intrinsic time scale of neurons trained on STORE-RECALL
task. We trained 64 randomly initialized SNNs consisting of 200 LIF neurons with
and 200 without SFA on the single-feature STORE-RECALL task. Measurements of
the intrinsic time scale were performed according to Wasmuht et al., 2018 on the
spiking data of SNNs solving the task after training. Averaged data of all 64 runs
is presented in the histogram. The distribution is very similar for neurons with
and without SFA.

106

A.4. Delayed-memory XOR

Fig. A.2.: sMNIST time series classification benchmark task. (A) Illustration of the pixel-
wise input presentation of handwritten digits for sMNIST. (B) Rows top to bottom:
Input encoding for an instance of the sMNIST task, network activity, and temporal
evolution of firing thresholds for randomly chosen subsets of neurons in the SC-
SNN, where 25% of the LIF neurons were inhibitory (their spikes are marked in
red). The light color of the readout neuron for digit “3” around 1600 ms indicates
that this input was correctly classified. (C) Resulting connectivity graph between
neuron populations of an SC-SNN after BPTT optimization with DEEP R on
sMNIST task with 12% global connectivity limit.

107

Appendix A. Appendix to Chapter 4: Spike frequency adaptation supports
network computations on temporally dispersed information

Fig. A.3.: Delayed-memory XOR task. Rows top to bottom: Input signal, Go-cue signal,
network readout, network activity, and temporal evolution of firing thresholds.

Model test accuracy (%)
FastGRNN-LSQ Kusupati et al., 2018 93.18

SNN with SFA 91.21

SNN 89.04

Table A.1.: Google Speech Commands. Accuracy of the spiking network models on the
test set compared to the state-of-the-art artificial recurrent model reported in
Kusupati et al., 2018. Accuracy of the best out of 5 simulations for SNNs is
reported.

108

Appendix B.

Appendix to Chapter 6: A solution to
the learning dilemma for recurrent
networks of spiking neurons

B.1. Supplementary Figures

B.1.1. Figure B.1 Comparison of learning algorithms for training
LSNNs on the TIMIT task

B.1.2. Figure B.2 Performance of e-prop on the framewise TIMIT
task for LSNNs without recurrent connections

B.1.3. Figure B.3 LSTM networks trained with BPTT and e-prop
on the TIMIT task

B.1.4. Figure B.4 Impact of the length of the simulation time
step on the learning performance of e-prop for the task of
Figure 6.3

109

Appendix B. Appendix to Chapter 6: A solution to the learning dilemma for
recurrent networks of spiking neurons

Fig. B.1.: Comparison of learning algorithms for training LSNNs on the TIMIT task. Per-
formance of BPTT and the three versions of e-prop on frame-wise phoneme classi-
fication (left) and for phoneme sequence recognition (right).

110

B.1. Supplementary Figures

Fig. B.2.: Performance of e-prop on the framewise TIMIT task for variations of the LSNN
from Figure 6.2 without recurrent connections (left of dashed line). The result of
the left-most bar was achieved with the same hyperparameters as used in Figure 6.2.
For the other feedforward architectures we modified hyperparameters to optimize
the performance. The results of Figure 6.2 c) for LSNNs with recurrent connections
are redrawn on the right of the dashed line. One sees that recurrent connections
are essential for achieving good performance on this task.

111

Appendix B. Appendix to Chapter 6: A solution to the learning dilemma for
recurrent networks of spiking neurons

Fig. B.3.: LSTM networks trained with BPTT and e-prop on the TIMIT task. Performance
of BPTT and the three versions of e-prop on frame-wise phoneme classification (left)
and for phoneme sequence recognition (right). One sees that e-prop approximates
BPTT performance also for non-spiking neural networks. The BPTT baselines aim at
reproducing the results obtained with LSTM networks in Graves and Schmidhuber,
2005 and Graves, Mohamed, and G. Hinton, 2013. The network architectures and
audio pre-processing settings are taken from (Graves and Schmidhuber, 2005; Greff
et al., 2017) for framewise phoneme classifcation and from Graves, Mohamed,
and G. Hinton, 2013 for phonemene sequence transcription. In comparison to the
BPTT-LSTM baselines that we could achieve in this way, 26.9% framewise error
rate was reported in Graves and Schmidhuber, 2005 and 18.6% sequence error rate
was reported in Graves, Mohamed, and G. Hinton, 2013.

112

B.1. Supplementary Figures

Fig. B.4.: Impact of the length of the simulation time step on the learning performance
of e-prop for the task of Figure 6.3 (simplified version with 5 cues instead of 7).
Decision error for this task is shown as function of the number of training iterations,
and as function of wall clock time. The results are averaged over 5 different seeds.
One sees that the length of the simulation time step has no visible impact on the
learning performance of e-prop. However, smaller simulation time steps lead to
substantially larger simulation time

113

Bibliography

Allen Institute (Oct. 2017). Allen Cell Types Database Technical white paper:
GLIF models. Tech. rep. v4. url: %5Curl%7Bhttp://help.brain-map.org/
download/attachments/8323525/GLIFModels.pdf%7D (cit. on p. 13).

Allen Institute (2018). “© 2018 Allen Institute for Brain Science. Allen Cell
Types Database, cell feature search. Available from: celltypes.brain-
map.org/data.” In: (cit. on pp. 9, 11, 12, 14, 33, 71, 85).

Barnett, Mark W and Philip M Larkman (2007). “The action potential.” In:
Practical neurology 7.3, pp. 192–197 (cit. on p. 8).

Barone, P and J-P Joseph (1989). “Prefrontal cortex and spatial sequencing in
macaque monkey.” In: Experimental brain research 78.3, pp. 447–464 (cit. on
pp. 49, 59, 60, 64).

Bartunov, Sergey et al. (2018). “Assessing the scalability of biologically-
motivated deep learning algorithms and architectures.” In: Advances in
Neural Information Processing Systems (cit. on p. 95).

Bellec, Guillaume, David Kappel, et al. (2018). “Deep Rewiring: Training
very sparse deep networks.” In: International Conference on Learning Repre-
sentations (ICLR) (cit. on pp. 19, 21, 35, 39, 44, 102).

Bellec, Guillaume, Darjan Salaj, et al. (2018). “Long short-term memory and
learning-to-learn in networks of spiking neurons.” In: Advances in Neural
Information Processing Systems, pp. 787–797 (cit. on pp. 13, 85, 90, 92).

Bellec, Guillaume, Franz Scherr, Elias Hajek, et al. (Jan. 2019). “Biologically
inspired alternatives to backpropagation through time for learning in
recurrent neural nets.” In: arXiv:1901.09049 [cs]. arXiv: 1901.09049. url:
http://arxiv.org/abs/1901.09049 (cit. on p. 90).

Bellec, Guillaume, Franz Scherr, Anand Subramoney, et al. (2020). “A solu-
tion to the learning dilemma for recurrent networks of spiking neurons.”
In: Nature Communications (cit. on pp. 5, 20, 83, 87, 88).

115

%5Curl%7Bhttp://help.brain-map.org/download/attachments/8323525/GLIFModels.pdf%7D
%5Curl%7Bhttp://help.brain-map.org/download/attachments/8323525/GLIFModels.pdf%7D
celltypes.brain-map.org/data
celltypes.brain-map.org/data
http://arxiv.org/abs/1901.09049

Bibliography

Benda, Jan and Andreas VM Herz (2003). “A universal model for spike-
frequency adaptation.” In: Neural computation 15.11, pp. 2523–2564 (cit. on
p. 13).

Benda, Jan, Leonard Maler, and André Longtin (2010). “Linear versus non-
linear signal transmission in neuron models with adaptation currents or
dynamic thresholds.” In: Journal of Neurophysiology 104.5, pp. 2806–2820

(cit. on p. 13).
Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-

term dependencies with gradient descent is difficult.” In: Neural Networks,
IEEE Transactions on 5.2, pp. 157–166. url: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=279181 (visited on 10/14/2015) (cit.
on p. 35).

Berg, Esta A (1948). “A simple objective technique for measuring flexibility
in thinking.” In: The Journal of general psychology 39.1, pp. 15–22 (cit. on
p. 56).

Buchweitz, Augusto (Apr. 2008). “Models of Working Memory: Mechanisms
of Active Maintenance and Executive Control.” In: (cit. on p. 2).

Buonomano, Dean V and Wolfgang Maass (2009). “State-dependent com-
putations: spatiotemporal processing in cortical networks.” In: Nature
Reviews Neuroscience 10.2, pp. 113–125 (cit. on p. 74).

Carpenter, Adam F et al. (2018). “Encoding of serial order in working
memory: neuronal activity in motor, premotor, and prefrontal cortex
during a memory scanning task.” In: Journal of Neuroscience 38.21, pp. 4912–
4933 (cit. on pp. 49, 59, 60, 63, 64).

Cassenaer, S. and G. Laurent (2012). “Conditional modulation of spike-
timing-dependent plasticity for olfactory learning.” In: Nature 482.7383,
p. 47 (cit. on p. 86).

Chettih, S. N. and C. D. Harvey (2019). “Single-neuron perturbations reveal
feature-specific competition in V1.” In: Nature 567.7748, pp. 334–340 (cit.
on p. 71).

Costa, Rui et al. (2017). “Cortical microcircuits as gated-recurrent neural
networks.” In: Advances in Neural Information Processing Systems, pp. 272–
283 (cit. on p. 22).

Courbariaux, Matthieu et al. (2016). “Binarized neural networks: Training
deep neural networks with weights and activations constrained to+ 1

or-1.” In: arXiv preprint arXiv:1602.02830 (cit. on pp. 15, 19).

116

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=279181
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=279181

Bibliography

Cowan, Nelson (2008). “Chapter 20 What are the differences between long-
term, short-term, and working memory?” In: Progress in Brain Research.
Elsevier, pp. 323–338. doi: 10 . 1016 / s0079 - 6123(07) 00020 - 9. url:
https://doi.org/10.1016/s0079-6123(07)00020-9 (cit. on p. 3).

Davies, Mike et al. (2018). “Loihi: A neuromorphic manycore processor with
on-chip learning.” In: IEEE Micro 38.1, pp. 82–99 (cit. on pp. 20, 49, 86, 97).

Deneve, Sophie (2008). “Bayesian spiking neurons I: inference.” In: Neural
computation 20.1, pp. 91–117 (cit. on p. 13).

DePasquale, Brian, Mark M Churchland, and LF Abbott (2016). “Using firing-
rate dynamics to train recurrent networks of spiking model neurons.” In:
arXiv preprint arXiv:1601.07620 (cit. on p. 20).

Diamond, Adele (Jan. 2013). “Executive Functions.” In: Annual Review of
Psychology 64.1, pp. 135–168. doi: 10.1146/annurev- psych- 113011-
143750. url: https : / / doi . org / 10 . 1146 / annurev - psych - 113011 -
143750 (cit. on p. 3).

Duan, Yan et al. (2016). “RL2: Fast Reinforcement Learning via Slow Rein-
forcement Learning.” In: arXiv preprint arXiv:1611.02779 (cit. on pp. 19, 25,
26, 30).

Eliasmith, Chris (2013). How to build a brain: A neural architecture for biological
cognition. Oxford University Press (cit. on p. 20).

Engelhard, Ben et al. (2019). “Specialized coding of sensory, motor and
cognitive variables in VTA dopamine neurons.” In: Nature, p. 1 (cit. on
pp. 86, 92, 93).

Ermentrout, Bard (1998). “Linearization of FI curves by adaptation.” In:
Neural computation 10.7, pp. 1721–1729 (cit. on p. 13).

Esser, Steven K. et al. (Nov. 2016). “Convolutional networks for fast, energy-
efficient neuromorphic computing.” en. In: Proceedings of the National
Academy of Sciences 113.41, pp. 11441–11446. issn: 0027-8424, 1091-6490.
doi: 10.1073/pnas.1604850113 (cit. on pp. 15, 19, 20).

Field, Andy (2013). Discovering statistics using IBM SPSS statistics. sage (cit.
on pp. 63, 72).

Fitz, Hartmut et al. (2020). “Neuronal spike-rate adaptation supports work-
ing memory in language processing.” In: Proceedings of the National Academy
of Sciences 117.34, pp. 20881–20889 (cit. on p. 13).

Fransén, Erik et al. (2006). “Mechanism of graded persistent cellular activity
of entorhinal cortex layer v neurons.” In: Neuron 49.5, pp. 735–746 (cit. on
pp. 73, 74).

117

https://doi.org/10.1016/s0079-6123(07)00020-9
https://doi.org/10.1016/s0079-6123(07)00020-9
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1146/annurev-psych-113011-143750
https://doi.org/10.1073/pnas.1604850113

Bibliography

Furber, Steve B, Francesco Galluppi, et al. (2014). “The spinnaker project.”
In: Proceedings of the IEEE 102.5, pp. 652–665 (cit. on pp. 49, 86, 97).

Furber, Steve B, David R Lester, et al. (2013). “Overview of the spinnaker
system architecture.” In: IEEE Transactions on Computers 62.12, pp. 2454–
2467 (cit. on p. 20).

Garofolo, J. S. et al. (1993). “DARPA TIMIT acoustic-phonetic continous
speech corpus CD-ROM.” In: NASA STI/Recon Technical Report N, DOI:
[http://doi.org/10.6028/nist.ir.4930] (cit. on p. 90).

Gerstner, Wulfram and Werner Kistler (2002). Spiking Neuron Models: An
Introduction. New York, NY, USA: Cambridge University Press. isbn:
0521890799 (cit. on p. 8).

Gerstner, Wulfram and Werner M Kistler (2002). Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university press (cit. on p. 10).

Gerstner, Wulfram, Werner M Kistler, et al. (2014). Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University
Press (cit. on p. 13).

Gerstner, Wulfram, Marco Lehmann, et al. (July 2018). “Eligibility Traces and
Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian
Three-Factor Learning Rules.” In: Frontiers in Neural Circuits 12. issn: 1662-
5110. doi: 10.3389/fncir.2018.00053. url: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC6079224/ (cit. on p. 86).

Glass, James, Arthur Smith, and Andrew K. Halberstadt (Feb. 1999). “Het-
erogeneous Acoustic Measurements and Multiple Classifiers for Speech
Recognition.” In: (cit. on p. 37).

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of
training deep feedforward neural networks.” In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pp. 249–256 (cit.
on p. 41).

Gouwens, Nathan W et al. (2018). “Systematic generation of biophysically de-
tailed models for diverse cortical neuron types.” In: Nature communications
9.1, pp. 1–13 (cit. on p. 13).

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech
recognition with deep recurrent neural networks.” In: 2013 IEEE interna-
tional conference on acoustics, speech and signal processing. IEEE, pp. 6645–
6649 (cit. on pp. 90, 92, 112).

118

https://doi.org/10.3389/fncir.2018.00053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079224/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079224/

Bibliography

Graves, Alex and Jürgen Schmidhuber (2005). “Framewise phoneme classifi-
cation with bidirectional LSTM and other neural network architectures.”
In: Neural Networks 18.5, pp. 602–610 (cit. on p. 112).

Greff, Klaus et al. (2017). “LSTM: A search space odyssey.” In: IEEE transac-
tions on neural networks and learning systems (cit. on pp. 23, 90, 112).

Gutkin, B. and F. Zeldenrust (2014). “Spike frequency adaptation.” In: Schol-
arpedia 9.2. revision #143322, p. 30643. doi: 10.4249/scholarpedia.30643
(cit. on p. 13).

György Buzsáki, MD (2019). The brain from inside out. Oxford University
Press (cit. on p. 2).

Harvey, Christopher D, Philip Coen, and David W Tank (2012). “Choice-
specific sequences in parietal cortex during a virtual-navigation decision
task.” In: Nature 484.7392, pp. 62–68 (cit. on p. 62).

Hasson, Uri, Janice Chen, and Christopher J Honey (2015). “Hierarchical
process memory: memory as an integral component of information pro-
cessing.” In: Trends in cognitive sciences 19.6, pp. 304–313 (cit. on p. 19).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term mem-
ory.” In: Neural computation 9.8, pp. 1735–1780 (cit. on p. 102).

Hochreiter, Sepp, A Steven Younger, and Peter R Conwell (2001). “Learning
to learn using gradient descent.” In: International Conference on Artificial
Neural Networks. Springer, pp. 87–94 (cit. on p. 26).

Hodgkin, Alan L, Andrew F Huxley, and Bernard Katz (1952). “Measure-
ment of current-voltage relations in the membrane of the giant axon of
Loligo.” In: The Journal of physiology 116.4, pp. 424–448 (cit. on p. 10).

Hu, B. et al. (2020). “Adaptation supports short-term memory in a visual
change detection task.” In: bioRxiv (cit. on p. 74).

Huh, Dongsung and Terrence J Sejnowski (2018). “Gradient descent for
spiking neural networks.” In: Advances in Neural Information Processing
Systems, pp. 1433–1443 (cit. on pp. 20, 21, 56, 85, 104, 105).

Kappel, David, Stefan Habenschuss, et al. (2015). “Network Plasticity as
Bayesian Inference.” In: PLOS Computational Biology 11.11, e1004485. (Vis-
ited on 12/05/2016) (cit. on p. 21).

Kappel, David, Robert Legenstein, et al. (2018). “Reward-based stochastic
self-configuration of neural circuits.” In: eNEURO (cit. on pp. 19, 21).

Kilpatrick, Zachary P and Bard Ermentrout (2011). “Sparse gamma rhythms
arising through clustering in adapting neuronal networks.” In: PLoS
Comput Biol 7.11, e1002281 (cit. on p. 13).

119

https://doi.org/10.4249/scholarpedia.30643

Bibliography

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic
optimization.” In: arXiv preprint arXiv:1412.6980 (cit. on pp. 40, 42, 66).

Kruijne, Wouter et al. (2020). “Flexible Working Memory through Selec-
tive Gating and Attentional Tagging.” In: Neural Computation 0.0. PMID:
33080159, pp. 1–40. doi: 10.1162/neco_a_01339. eprint: https://doi.
org/10.1162/neco_a_01339. url: https://doi.org/10.1162/neco_a_
01339 (cit. on p. 57).

Kullmann, Dimitri M et al. (2012). “Plasticity of inhibition.” In: Neuron 75.6,
pp. 951–962 (cit. on pp. 74, 77).

Kusupati, Aditya et al. (2018). “Fastgrnn: A fast, accurate, stable and tiny
kilobyte sized gated recurrent neural network.” In: Advances in Neural
Information Processing Systems, pp. 9017–9028 (cit. on p. 108).

Lashley, Karl Spencer (1951). The problem of serial order in behavior. Vol. 21.
Bobbs-Merrill Oxford, United Kingdom (cit. on p. 59).

Le, Quoc V., Navdeep Jaitly, and Geoffrey E. Hinton (2015). “A Simple
Way to Initialize Recurrent Networks of Rectified Linear Units.” In: CoRR
abs/1504.00941. arXiv: 1504.00941. url: http://arxiv.org/abs/1504.
00941 (cit. on p. 22).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.”
In: Nature (cit. on p. 85).

Levenstein, Daniel et al. (Apr. 2020). “On the role of theory and modeling in
neuroscience.” In: arXiv:2003.13825 [q-bio]. url: http://arxiv.org/abs/
2003.13825 (visited on 04/02/2020) (cit. on p. 2).

Lillicrap, T. P. and A. Santoro (2019). “Backpropagation through time and
the brain.” In: Current Opinion in Neurobiology 55, pp. 82–89 (cit. on p. 86).

Lillicrap, Timothy P et al. (2016). “Random synaptic feedback weights sup-
port error backpropagation for deep learning.” In: Nature Communications
7, p. 13276 (cit. on pp. 89, 96).

Lindsay, Grace W et al. (2017). “Hebbian learning in a random network
captures selectivity properties of the prefrontal cortex.” In: Journal of
Neuroscience 37.45, pp. 11021–11036 (cit. on p. 71).

Liu, Y. et al. (2019). “Human replay spontaneously reorganizes experience.”
In: Cell 178.3, pp. 640–652 (cit. on pp. 49, 59, 60).

Maass, Wolfgang (1997). “Networks of spiking neurons: the third generation
of neural network models.” In: Neural networks 10.9, pp. 1659–1671 (cit. on
pp. 2, 10).

120

https://doi.org/10.1162/neco_a_01339
https://doi.org/10.1162/neco_a_01339
https://doi.org/10.1162/neco_a_01339
https://doi.org/10.1162/neco_a_01339
https://doi.org/10.1162/neco_a_01339
https://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/2003.13825
http://arxiv.org/abs/2003.13825

Bibliography

Maass, Wolfgang, Thomas Natschläger, and Henry Markram (2002). “Real-
time computing without stable states: A new framework for neural com-
putation based on perturbations.” In: Neural computation 14.11, pp. 2531–
2560 (cit. on p. 74).

MacDonald III, Angus W (2008). “Building a clinically relevant cognitive task:
case study of the AX paradigm.” In: Schizophrenia bulletin 34.4, pp. 619–628

(cit. on p. 56).
Marcus, Gary F (2003). The Algebraic Mind: Integrating Connectionism and

Cognitive Science. MIT Press (cit. on pp. 4, 59, 60).
Marder, Eve et al. (1996). “Memory from the dynamics of intrinsic membrane

currents.” In: Proceedings of the national academy of sciences 93.24, pp. 13481–
13486 (cit. on p. 13).

Markram, H. et al. (2015). “Reconstruction and simulation of neocortical
microcircuitry.” In: Cell 163.2, pp. 456–492 (cit. on p. 74).

Martinolli, Marco, Wulfram Gerstner, and Aditya Gilra (July 2018). “Multi-
Timescale Memory Dynamics Extend Task Repertoire in a Reinforcement
Learning Network With Attention-Gated Memory.” eng. In: Frontiers in
computational neuroscience 12. PMC6055065[pmcid], pp. 50–50. issn: 1662-
5188. doi: 10.3389/fncom.2018.00050. url: https://doi.org/10.3389/
fncom.2018.00050 (cit. on p. 57).

Masse, N. Y. et al. (2019). “Circuit mechanisms for the maintenance and
manipulation of information in working memory.” In: Nature Neuroscience,
p. 1 (cit. on p. 74).

Mensi, Skander et al. (2012). “Parameter extraction and classification of three
cortical neuron types reveals two distinct adaptation mechanisms.” In:
Journal of neurophysiology 107.6, pp. 1756–1775 (cit. on p. 14).

Miller, G.A. (1960). Plans and the structure of behavior. A Holt - Dryden book.
Holt. isbn: 9780030100758. url: https://books.google.at/books?id=
3UgAAAAAMAAJ (cit. on p. 2).

Mongillo, Gianluigi, Omri Barak, and Misha Tsodyks (2008). “Synaptic
theory of working memory.” In: Science 319.5869, pp. 1543–1546 (cit. on
pp. 34, 74, 77).

Morcos, Ari S and Christopher D Harvey (2016). “History-dependent vari-
ability in population dynamics during evidence accumulation in cortex.”
In: Nat. Neuro. (cit. on pp. 92, 93).

121

https://doi.org/10.3389/fncom.2018.00050
https://doi.org/10.3389/fncom.2018.00050
https://doi.org/10.3389/fncom.2018.00050
https://books.google.at/books?id=3UgAAAAAMAAJ
https://books.google.at/books?id=3UgAAAAAMAAJ

Bibliography

Morris, Richard (1984). “Developments of a water-maze procedure for study-
ing spatial learning in the rat.” In: Journal of neuroscience methods 11.1,
pp. 47–60 (cit. on p. 31).

Murray, John D et al. (2014). “A hierarchy of intrinsic timescales across
primate cortex.” In: Nature neuroscience 17.12, p. 1661 (cit. on p. 65).

Nicola, Wilten and Claudia Clopath (2017). “Supervised learning in spiking
neural networks with FORCE training.” In: Nature communications 8.1,
p. 2208 (cit. on p. 20).

Nøkland, Arild (2016). “Direct feedback alignment provides learning in
deep neural networks.” In: NIPS, pp. 1037–1045 (cit. on pp. 89, 95).

O’Reilly, Randall C and Michael J Frank (2006). “Making working memory
work: a computational model of learning in the prefrontal cortex and
basal ganglia.” In: Neural computation 18.2, pp. 283–328 (cit. on pp. 56, 57).

Perich, Matthew G, Juan A Gallego, and Lee E Miller (2018). “A neural
population mechanism for rapid learning.” In: Neuron (cit. on p. 25).

Pozzorini, Christian, Skander Mensi, et al. (2015). “Automated high-throughput
characterization of single neurons by means of simplified spiking models.”
In: PLoS computational biology 11.6 (cit. on pp. 13, 14, 65).

Pozzorini, Christian, Richard Naud, et al. (2013). “Temporal whitening by
power-law adaptation in neocortical neurons.” In: Nature neuroscience 16.7,
p. 942 (cit. on pp. 13, 14, 65).

Qiao, Ning et al. (2015). “A reconfigurable on-line learning spiking neu-
romorphic processor comprising 256 neurons and 128K synapses.” In:
Frontiers in neuroscience 9, p. 141 (cit. on p. 20).

Rajan, Kanaka and L. F. Abbott (2006). “Eigenvalue spectra of random
matrices for neural networks.” In: Physical review letters 97.18, p. 188104.
url: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.
97.188104 (visited on 06/08/2017) (cit. on p. 35).

Reddi, Sashank J, Satyen Kale, and Sanjiv Kumar (2018). “On the con-
vergence of adam and beyond.” In: International Conference on Learning
Representations (cit. on p. 42).

Roeper, J. (2013). “Dissecting the diversity of midbrain dopamine neurons.”
In: Trends in neurosciences 36.6, pp. 336–342 (cit. on p. 86).

S. Goldman-Rakic, Patricia (Oct. 1992). “Working Memory and the Mind.”
In: 267, pp. 110–7 (cit. on p. 2).

Sajad, Amirsaman, David C. Godlove, and Jeffrey D. Schall (Feb. 2019).
“Cortical microcircuitry of performance monitoring.” En. In: Nature Neu-

122

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.188104
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.188104

Bibliography

roscience 22.2, p. 265. issn: 1546-1726. doi: 10.1038/s41593-018-0309-8.
url: https://www.nature.com/articles/s41593-018-0309-8 (cit. on
p. 86).

Samadi, Arash, Timothy P Lillicrap, and Douglas B Tweed (2017). “Deep
learning with dynamic spiking neurons and fixed feedback weights.” In:
Neural computation 29.3, pp. 578–602 (cit. on pp. 89, 95).

Sanhueza, Magdalena and John Lisman (2013). “The CaMKII/NMDAR
complex as a molecular memory.” In: Molecular brain 6.1, p. 10 (cit. on
p. 86).

Schemmel, Johannes et al. (2010). “A wafer-scale neuromorphic hardware
system for large-scale neural modeling.” In: Circuits and systems (ISCAS),
proceedings of 2010 IEEE international symposium on. IEEE, pp. 1947–1950

(cit. on p. 20).
Schulman, John et al. (2017). “Proximal policy optimization algorithms.” In:

arXiv preprint arXiv:1707.06347 (cit. on pp. 32, 44).
Stokes, Mark G. (2015). “‘Activity-silent’ working memory in prefrontal

cortex: a dynamic coding framework.” In: Trends in Cognitive Sciences 19.7,
pp. 394–405. (Visited on 04/26/2017) (cit. on p. 34).

Subramoney, Anand et al. (2018). “Recurrent networks of spiking neurons
learn to learn; in preparation.” In: (cit. on pp. 25, 34).

Sussillo, David and LF Abbott (2014). “Random walk initialization for train-
ing very deep feedforward networks.” In: arXiv preprint arXiv:1412.6558
(cit. on p. 35).

Tartaglia, Elisa M, Gianluigi Mongillo, and Nicolas Brunel (2015). “On the
relationship between persistent delay activity, repetition enhancement and
priming.” In: Frontiers in psychology 5, p. 1590 (cit. on p. 77).

Teeter, Corinne et al. (2018). “Generalized leaky integrate-and-fire models
classify multiple neuron types.” In: Nature communications 9.1, pp. 1–15

(cit. on p. 13).
Tsao, A. et al. (2018). “Integrating time from experience in the lateral en-

torhinal cortex.” In: Nature 561.7721, pp. 57–52 (cit. on p. 62).
Turrigiano, GINA G, E Marder, and LF Abbott (1996). “Cellular short-term

memory from a slow potassium conductance.” In: Journal of neurophysiology
75.2, pp. 963–966 (cit. on p. 13).

Vasilaki, Eleni et al. (2009). “Spike-based reinforcement learning in continu-
ous state and action space: when policy gradient methods fail.” In: PLoS
computational biology 5.12, e1000586 (cit. on p. 31).

123

https://doi.org/10.1038/s41593-018-0309-8
https://www.nature.com/articles/s41593-018-0309-8

Bibliography

Wang, Jane X, Zeb Kurth-Nelson, Dharshan Kumaran, et al. (2018). “Pre-
frontal cortex as a meta-reinforcement learning system.” In: Nature Neuro-
science (cit. on pp. 19, 25, 30).

Wang, Jane X, Zeb Kurth-Nelson, Dhruva Tirumala, et al. (2016). “Learning
to reinforcement learn.” In: arXiv preprint arXiv:1611.05763 (cit. on pp. 19,
25, 26, 30).

Wang, Xiao-Jing (1998). “Calcium coding and adaptive temporal computa-
tion in cortical pyramidal neurons.” In: Journal of Neurophysiology (cit. on
p. 13).

Wang, Yun et al. (2006). “Heterogeneity in the pyramidal network of the
medial prefrontal cortex.” In: Nature neuroscience 9.4, p. 534 (cit. on pp. 74,
78, 79).

Warden, Pete (2018). “Speech commands: A dataset for limited-vocabulary
speech recognition.” In: arXiv preprint arXiv:1804.03209 (cit. on pp. 55,
103).

Wasmuht, Dante Francisco et al. (2018). “Intrinsic neuronal dynamics predict
distinct functional roles during working memory.” In: Nature communica-
tions 9.1, p. 3499 (cit. on pp. 65, 101, 106).

Werbos, P. J. (Oct. 1990). “Backpropagation through time: what it does
and how to do it.” In: Proceedings of the IEEE 78.10, pp. 1550–1560. issn:
0018-9219. doi: 10.1109/5.58337 (cit. on p. 15).

Williams, Ronald J. and David Zipser (1989). “A learning algorithm for con-
tinually running fully recurrent neural networks.” In: Neural computation
1.2, pp. 270–280. url: http://www.mitpressjournals.org/doi/abs/10.
1162/neco.1989.1.2.270 (visited on 10/22/2015) (cit. on p. 86).

Winters, B. D., L. M. Saksida, and T. J. Bussey (2008). “Object recognition
memory: neurobiological mechanisms of encoding, consolidation and
retrieval.” In: Neuroscience & Biobehavioral Reviews 32.5, pp. 1055–1070

(cit. on p. 64).
Wolff, Michael J et al. (2017). “Dynamic hidden states underlying working-

memory-guided behavior.” In: Nature Neuroscience 20.6, p. 864 (cit. on
pp. 53, 64, 68).

Yagishita, Sho et al. (2014). “A critical time window for dopamine actions on
the structural plasticity of dendritic spines.” In: Science 345.6204, pp. 1616–
1620 (cit. on p. 86).

124

https://doi.org/10.1109/5.58337
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.2.270
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.2.270

Bibliography

Zenke, Friedemann and Tim P Vogels (2020). “The remarkable robustness
of surrogate gradient learning for instilling complex function in spiking
neural networks.” In: BioRxiv (cit. on p. 103).

125

	Introduction
	Working memory
	Temporal computing
	Structure of the thesis

	Models
	The biological neuron
	Modelling biological neurons
	Leaky integrate and fire (LIF) neurons
	Spike-frequency adaptation
	Training method

	Long short-term memory and learning-to-learn in networks of spiking neurons
	Introduction
	LSNN model
	Applying BPTT with DEEP R to RSNNs and LSNNs
	Computational performance of LSNNs
	LSNNs learn-to-learn from a teacher
	LSNNs learn-to-learn from reward
	Discussion
	Methods
	Rewiring and weight initialization of excitatory and inhibitory neurons
	Tasks

	Spike-frequency adaptation provides a long short-term memory to networks of spiking neurons
	Introduction
	SFA provides working memory simultaneously for many pieces of information, and yields powerful generalization capability
	Generalization of SFA-enhanced temporal computations to unseen inputs.
	Negative imprinting principle.
	No precise alignment between time constants of SFA and working memory duration is needed.

	SFA improves the performance of SNNs for common benchmark tasks that require computational operations on temporally dispersed information
	SFA supports demanding cognitive computations on sequences with dynamically changing rules
	SFA enables SNNs to carry out complex operations on sequences of symbols
	A diversity of neural codes in LSNNs.

	Discussion
	Methods
	Network models
	Tasks

	Contributions of other biophysical mechanisms to the temporal computing capability of SNNs
	Introduction
	Comparison of the four mechanisms on the one-dimensional STORE-RECALL task.
	Comparison of the four mechanism for the time series classification task sMNIST.
	Methods
	Network models
	Tasks

	A biologically plausible learning method for recurrent networks of spiking neurons
	Introduction
	Variants of e-prop
	Adaptive e-prop and weight decay regularization
	Learning phoneme recognition with e-prop
	Solving difficult temporal credit assignment

	Outlook
	Appendices
	Appendix to Chapter 4: Spike frequency adaptation supports network computations on temporally dispersed information
	Autocorrelation based intrinsic time scale of neurons trained on STORE-RECALL task
	sMNIST task with sparsely connected SNN
	Google Speech Commands
	Delayed-memory XOR

	Appendix to Chapter 6: A solution to the learning dilemma for recurrent networks of spiking neurons
	Supplementary Figures
	Figure B.1 Comparison of learning algorithms for training LSNNs on the TIMIT task
	Figure B.2 Performance of e-prop on the framewise TIMIT task for LSNNs without recurrent connections
	Figure B.3 LSTM networks trained with BPTT and e-prop on the TIMIT task
	Figure B.4 Impact of the length of the simulation time step on the learning performance of e-prop for the task of Figure 6.3

	Bibliography

