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Abstract

The importance of testing in software development is increasing, therefore
the availability of automatic testing solutions is crucial. However, little
work has been conducted in the domain of digital signal processing and
audio software development, and thus the focus of this work lies on testing
audio plugins used in digital audio workstations. Because professional-
grade audio plugins are developed for multiple operating systems and
against multiple SDKs, while also providing complex input models, manual
regression testing is not viable.

This thesis introduces an automatic regression testing tool for audio plugins,
intended to support developers in the course of the continuos integration cy-
cle. The tool supports automatic test case generation using combinatorial or
random strategies, and performs automatic regression testing by comparing
the rendered audio output of two different versions.

During evaluation, the effectiveness of combinatorial and random testing
is assessed by applying the tool to mutated versions of real-world audio
plugins. It is shown that for this particular problem, no relevant differences
in fault-detecting capabilities of the two strategies can be observed. The
results also show that random testing needs less tests to reach the maximal
mutation score.

After collection of code metrics in the audio plugins it is found that the
combinatorial complexity of the DSP code is rather low, explaining the good
results that are obtainable with random testing. While more work on the
complexity of DSP code and the fault-detecting capabilities of combinatorial
testing in audio plugins is necessary, this work provides first insights on the
applicability of combinatorial testing in this area of software development.
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1 Introduction

In this section, the motivation of this thesis and the problem statement is
given, the thesis contribution is stated and the overall structure of the work
is described.

1.1 Problem Statement

The importance of testing in the field of digital signal processing (DSP)
software is, analogue to the majority of fields in software development, on
the rise [22]. As processing hardware becomes more capable every year,
software that is making use of these systems also becomes more complex,
resulting in feature-rich products for end-users. This is supported by ever-
improving development tools, continuous-integration servers, collaboration
services and comprehensive coding frameworks. However, the increase in
innovation has not gone by without consequences in the context of quality
assurance in general, and testing in particular. It has been found that testing
accounts for a large percentage of the overall complexity of a project [11].

Due to the shift from traditional management techniques to more flexible
and iterative solutions, the need for automating large parts of the testing
process is more important than ever. Because traditional management styles
assume that requirements hardly change over the course of the project,
ad-hoc testing at the end of the implementation of the product is often
considered sufficient. This premise hardly holds up in real-world software
projects. Subsequently, research shows that many projects are delayed or
canceled altogether [28]. To cope with this, iterative development styles
consider the possibility for frequent change in the projects requirements by
heavily relying on testing [24]. As the need for constant testing requires a
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1 Introduction

considerable amount of resources, more automated approaches than ad-hoc
testing are necessary. The research community therefore provides valuable
solutions for a variety of problems, with examples including Combinatorial
Testing, Symbolic Execution, Random Testing, Search-Based Testing and Model-
Based Testing. However, all these techniques, possibly with the exception of
model-based testing, exhibit one fundamental flaw: They are not capable of
automatically providing ground-truth information.

While this so-called Oracle problem is equally important for the automation
of testing, far less research has been conducted on this topic [8]. It becomes
clear that formal knowledge about the systems expected behaviour must be
available, in order to automatically generate the required ground-truth data.
This is the approach taken in model-based testing (MBT), where both the test
cases and the expected outputs are derived from a formal model description
[4]. However, by adopting this technique, instead of investing resources in
writing tests, more resources are needed for developing and maintaining
the model itself. This task may in turn introduce errors or inconsistencies,
and not all systems may be expressible via such a model. Research suggests
that MBT is mainly applicable for systems based on structures, e.g. final-
state-machines or label-transition-systems [5]. For these kinds of systems,
MBT has proven to be useful not only in the research community, but also
in industry projects. While other useful strategies and tools exist, developers
are still required to invest valuable resources for defining the properties of
the system first, in order to profit from test automation.

Developers of DSP and audio software face even more problems. Since
this application domain is highly mathematical, even unit testing can be
impractical to conduct. In many cases, the result of a logical unit, which
could be easily covered by unit tests in other domains, is not more than
a matrix filled with floating point numbers. While there are situations in
which even these results may be tested thoroughly, e.g. when testing a well-
known algorithm, in most cases such a matrix would not be informative to
the human eye. This increases the maintenance costs of the tests and also
reduces the documentation value that tests hold. Although unit testing is
undoubtedly important for assessing the correctness of logical problems, it
can be argued that it is not suited for testing the majority of DSP code.
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1 Introduction

However, in research only a limited amount of work has been conducted in
the context of testing DSP software in general, and audio software testing
in particular. Even the simplest approach of ad-hoc testing is of limited
usefulness for audio development. While obviously the perceived character-
istics of sound produced by the software are important, many of the subtle
differences may not be recognizable for human ears. As the number of
different configurations of the software is in many cases high, it is often not
possible to reach a satisfactory confidence level using ad-hoc testing. This
is especially true in the case of audio plugin development, where a single
product may be used in numerous different hosting programs, multiple
operating systems and up to four different plugin standards. In the face of
these problems, other methods of assuring the quality of software products
in this domain need to be found.

1.2 Thesis Contribution

Tackling the problems described in the last section, this thesis provides three
distinct contributions for supporting the testing process.

1.2.1 Audio Plugin Regression Tool

Firstly, this thesis introduces an automatic audio regression testing tool for
audio plugins. This multi-platform tool supports three of the four major
plugin standards and is capable of performing regression testing across
operating system bounds by using a built-in server mode. It implements
two different test case generation strategies, namely combinatorial testing
and random testing. This design choice ensures that as little resources
as possible are necessary for integrating the tool into the testing process.
The tool also includes an automated test oracle, which further reduces the
resources needed for adopting the tool in a continuous integration cycle.

3



1 Introduction

1.2.2 Comparison of Combinatorial and Random Testing

Due to the fact that little research is available about testing strategies of DSP
code, this thesis conducts experiments with three real-world plugins, two
of which are considered professional-grade. The experiments address the
question whether combinatorial test case generation is beneficial compared
to random test case generation. For conducting the experiments, a number
of mutations are introduced into the signal processing code of the plugins.
Using a number of different input models, as well as the two supported
test generation strategies, it is then assessed whether or not the mutation is
detected by the tool.

1.2.3 Complexity Analysis of DSP Code

Finally, by analyzing the source code of the plugins used in the experiment,
useful metrics about the logical complexity of the signal-processing code
are collected. These results support the findings of the test case generation
comparison provided by this thesis. Using the metrics it may be possible to
make informed decisions about the testing setup that could be employed
on future projects in the context of audio development.

1.3 Thesis Structure

The remainder of this thesis is structured as follows. In Section 2, back-
ground information about the testing process and audio plugin development
is presented. Section 3 discusses the design choices, implementation, and
use of the regression testing tool itself. An evaluation of the testing tool, as
well as a comparison of the test case generation strategies is given in Section
4. This section also provides metrics about the source code complexity of
the plugins used during the course of the evaluation. A discussion about
the results of the evaluation is given in Section 5, followed by the conclusion
in Section 6.
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2 Background

In this section, relevant technologies and terms which are used throughout
the thesis are introduced. Specifically, a brief history of the evolution of
the software development cycle and software testing is given. Next, the
term Testing itself and its variants are described, including strategies for test
case generation. Furthermore, the so-called Oracle Problem and proposed
solutions are addressed. Finally, an overview of the Digital Audio Processing
ecosystem is given.

2.1 Software Development Life Cycle

In this section, the history of the software development life cycle (SDLC) is
presented. The SDLC denotes the process involved with planning, creating,
testing, and maintaining a piece of software, and hence covers the whole
lifetime of a software product. From the early days of software development
on, one of the main project management techniques has been the Waterfall-
Model and, to a lesser extend, the V-Model. Despite the heavy use of these
traditional approaches in other industries, it has been found that only 34%
of software projects have been completed successfully [28]. This revealed
the shortcomings of the traditional approaches and led to a change in mind
of software project executives. It has been found that the static succession
of project phases is not reflecting the real-world processes very well. To
counteract these shortcomings, more flexible solution have been proposed,
giving rise to the idea of Agile Programming [24]. One of the key realizations
of the agile methods is, that it seemed to be very difficult for customers to
concisely communicate their needs, and furthermore to translate the cus-
tomers problems into technical terms. Therefore, the underlying concept of
all agile methods is to develop the project in an iterative manner, instead of
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2 Background

passing through all project stages linearly. With the traditional approaches,
a customer would only see the final product after all phases of the project
are completed. This bears a great risk, since it has been found that changes
become increasingly expensive as the project is being implemented, and
delays in the project completion become more likely [47]. However, because
customer needs are often only formulated vaguely, miscommunication is
relatively likely, and project requirements may change during the imple-
mentation of the project. Therefore, the presentation of the final product to
the customer at such a late stage can be considered risky. Agile approaches
try to mitigate this fact by iteratively developing a product, and presenting
the current state of the project to the customer on a regular basis. This has
proven to have benefits for both sides: The customer can closely monitor the
progress of the product and point out misconceptions early on, increasing
confidence in the product and transparently outlines the projects progress.
On the other hand, for software developers it is possible to reduce the risk
of disappointing the customer at the end of the development process, since
the continuously held meetings and small releases require the customer to
approve the direction and state of the project on a regular basis. It can be
argued that this method embraces dialogue, improves customer satisfaction
and the chance of future cooperation, while the risk of litigation and even
development staff dissatisfaction is reduced at the same time [16] [40]. As a
result, studies have found that software projects using agile methods are
less likely to fail, which is a reason for the continuing adoption of these
techniques in modern software development [26] [40].

In the following sections both the traditional and modern approaches to
software project management are described in greater detail.

2.1.1 Traditional Strategies

In the following, the most noteworthy approaches, the Waterfall-Model and
V-Model are explained.

The traditional waterfall model as presented in [9] consists of five distinct
phases. Each successor phase may only start once the previous phase is

6
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completed. The model proposes a linear advance, it is discouraged to re-
open a previously completed phase. At the beginning of a software project
stands the Requirement Phase, at which all functional and non-functional
requirements of the projects are collected in accordance with the customer.
As a result of this stage, a requirement document is created, which, in
the best case, stays valid for the remainder of the project. As a second
step, in the Design Phase, software engineers and system architects translate
the requirements collected in the previous stage into technical terms and
draft the design and architecture of the resulting software. This is the
basis for the third stage, the Implementation Phase, where the requirements
are implemented with the agreed-upon design and architecture. In the
traditional workflow, this is followed by the Testing Phase, where functional
and non-functional tests are performed to ensure that the requirements
set by the customer are met. The last test that is performed is usually the
Acceptance Test, which ultimately determines if the customer is satisfied with
the delivered product in general. At the end of the test phase stands the
release of the product, which at the same time marks the beginning of the
final Maintenance Phase. This phase describes all activities regarding updates
and bugfixes, which are performed after the product has already been
shipped to end-users. Because the earlier phases of the project, especially
the implementation phase, are often delayed, while the release date is fixed,
in many cases the testing is cut short. This results in a reduction in software
quality and increases maintenance costs later on.

The V-Model can be seen as an extension to the waterfall-model, originating
around 1990 [38]. Its main benefit is to emphasize the importance of testing
that is required for advancing through the stages. Instead of just describing
a monolithic testing stage like the waterfall model, it clearly states that
different types of testing are required to ensure that all requirements are
met. Furthermore, it proposes that testers are involved in the project early
on, in order to develop testing strategies before the implementation phase
starts. However, it faces the same challenges as the waterfall-model, as its
similarly inflexible and does not provide an effective strategy for dealing
with problems during any later phase in the development process [12].

7



2 Background

2.1.2 Agile Development

In opposite to the static and linear approach that the traditional project
management strategies follow, agile approaches are, as the names already
suggests, more flexible. In fact, it is hard to summarize precisely what the
term agile means in this context, as a multitude of different realizations
of this concept have been developed over the years. However, all of these
strategies share a common goal, which is to reduce the risk of a project
failing by introducing shorter feedback loops. Since traditional management
approaches only contain one feedback cycle, the customer is informed
about the product at the end of the testing phase. Therefore, by regularly
showing and discussing the current state of the project with the customer,
agile strategies try to reduce the probability of misunderstandings and
miscommunication. The key concepts of the agile development are captured
in the so-called Agile Manifesto, formulated by software experts in 2001 [21].
Among other things, it emphasizes the following four points:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

The manifesto states that both sides are valuable, but when in doubt, it
makes clear which concept should be preferred. In the following three
widely-used variants of the agile development movement are described 1.

• Kanban: The Kanban strategy is one of the more lightweight manage-
ment strategies. It primarily tries to provide means for organizing the
issue backlog in projects, while respecting established responsibilities
within the team.

• Scrum: While Kanban only focuses on the way the work is visualized,
Scrum also defines roles and processes within the team. If following the
Scrum technique, the performance (or velocity) of a team is optimized
over a number of development cycles (or sprints). In order to do so, the
team engages in multiple mandatory meetings, where the performance
of the previous sprints is discussed, and the next sprint is planned

1https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-comparison/,
accessed 19.2.2021

8

https://manifesto.co.uk/kanban-vs-scrum-vs-xp-an-agile-comparison/
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together with the team. Scrum additionally defines roles within the
team, most prominently the Scrum Master, which is responsible for
maintaining and coordinating the process itself, as well as the Product
Owner, which is acting as a representative of the customer within the
development team.

• Extreme Programming: The Extreme Programming (XP) variant has
been developed by Beck in 1996 [33]. It proposes that best-practice
techniques in software development should be taken to the extreme,
resulting in a low-risk management strategy. While it also defines the
visualization of issues and introduces several mandatory roles within
the team, it also requires the team to follow a number of development
guidelines, e.g. pair-programming or test-driven development.

2.2 Software Testing

With the rise of agile software development, new ways of managing tests
needed to be introduced. When previously manual testing strategies like
ad-hoc testing were sufficient, the short iterations required more automated
testing techniques [50]. In this section, the term of Software Testing and
several different categories of software testing are described. A brief history
of software testing is given, focussing on the changes in perception and
priority of testing with the transition from traditional software management
strategies to more modern, agile approaches.

The definition of software testing has evolved over the decades. In the
early days, testing has been indistinguishable from debugging. However,
Alan Turing realized that better means to analyze whether programs are
exhibiting the desired behaviour are necessary. He proposed an operational
test, which should determine whether human and program behaviour are
similar, given the same task. In later years, researchers’ interest in software
testing theory increased, and more pronounced concepts and differentiations
were developed. Notably, the difference between debugging and testing was
defined more precisely. It was stated that the goal of testing is to show the
absence of errors, while debugging is the action of eliminating errors that
have been discovered previously. Still, in these days testing was seen as a

9



2 Background

Name Purpose
Unit Test isolated logical unit, no dependencies

Integration Test logical unit with its collaborators, real world scenario
System End-to-End tests of whole system, real world scenario

Acceptance Customer approval of the product
Regression Test if a change broke existing behaviour

Table 2.1: Goals of different testing techniques.

stage following the implementation for detecting implementation faults. It
was only in later years after 1983 [34], that the ability of testing to detect not
only mistakes made in the implementation phase, but in all previous phases,
was discovered. This phase of the software testing evolution was later
called Evaluation-Oriented [22]. However, in all evolution stages before 1988,
software testing was mainly seen as a way of detecting faults. This changed
when entering the current phase, which instead focuses on preventing faults.
In modern days, the main goal of testing is seen as preventing any faults to
even reach the product in the first place.

2.2.1 Software Testing Distinctions

As the professional focus on software testing grew, a number of different
software testing distinctions were established, a few of which are presented
in the following. The differences between this distinctions concern the focus
of the testing technique, its collaborators, the purpose and the point in time
when the testing is conducted. These properties can be seen in Table 2.1.

Unit Testing

Unit testing describes the process of assessing the correctness of a single
logical unit within a program. As a rule of thumb, a unit test should be
written as soon as a logical block of code exhibit non-trivial behaviour. A
typical candidate for a unit test could be a single function in procedural
programming languages, or a method of a class in object-oriented languages.

10



2 Background

It is important to note, that unit tests should be independent from other
functionality provided by the program, as well as being independent from
environment changes. This means that they should be reliable and repeat-
able, regardless of the context they are run in. This can be achieved via
so-called Mocking [35], where external dependencies, e.g. HTTP-requests to
an external server, are replaced with simple, reproducible, and fast coun-
terpart implementations. Doing so eliminates the risk of a unit test failing
because of some external failure, e.g. an unstable internet connection. As a
side-effect, this also improves the performance of unit tests, which is crucial
for certain techniques such as Test-Driven-Development.

Integration Testing

While unit testing focuses on a single unit, integration testing is applied to a
number of modules that interact with each other. Depending on the context,
integration tests can also make use of real-world data and assess whether
the system performs correctly, even in the presence of external dependencies.
In opposite to unit testing, integration testing may also be used to test the
compliance of the software with non-functional requirements, e.g. perfor-
mance criteria. Partly because of the external dependencies, integration
tests usually run slower than unit tests, and hence they will not be run as
frequently as unit tests.

System Testing

Also known under the term End-to-End testing, system testing examines a
programs behaviour from an user-centric standpoint. Instead of focusing on
certain parts of the source code, its primary goal is to model how users or
clients of the software will interact with the system, and assess whether the
corresponding output is correct. Due to this fact, end-to-end tests can also
be modeled as so-called Black-Box-Tests, where no knowledge of the actual
implementation is necessary.

11
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Regression Testing

Regression testing is complementary to the other testing techniques. While
it makes use of tests already written, e.g. unit-, integration- or system-tests,
it serves a different purpose. Instead of assessing the correctness of the
newly written code, it determines if the already-existing functionality still
performs as intended. This means that regression testing is performed after
integrating new functionality into the existing codebase. In many cases
when developing new functionality that is backed up with unit tests, a
developer would only run the relevant tests for the modified sections of
code, speeding up the development process. However, with regression
testing all available tests are run, in order to catch errors that were missed
or caused by non-trivial interactions.

Acceptance Testing

In opposite to the testing techniques described in the previous chapters, ac-
ceptance testing is performed by the customer, rather than the development
team. It is determined, if the software delivered to the customer meets the
functional and non-functional requirements that were put down and agreed
upon in the contract.

2.3 Test Case Generation

While it has been widely accepted that software testing is an integral part
of the development process, it still poses a significant challenge on devel-
opment teams. It has been found that testing takes up as much as 50% of
a projects budget [3], resulting in increasing interest of the research com-
munity. This chapter describes ways for improving the testing process by
automatically generating test cases, instead of requiring developers to invest
valuable resources for manually creating tests.
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2.3.1 Model-based Testing

The goal of model-based testing (MBT) is to derive test cases from an
abstract, but formal model specification. An example for such a specification
is a final state machine (FSM), where the system is defined by states, state
changes, inputs, and outputs. Using a formal model and user-defined test
requirements, abstract test cases can be derived. For a FSM this could be
a sequence of state changes, that should result in a defined sequence of
outputs. The next step is to translate the generated abstract test cases into
the systems language, such that they can be run against the system under
test (SUT). Depending on the modeling language, the so-called concretion
of abstract test cases can, in some cases, be performed by simple text
substitution. This results in a test suite at the same abstraction level as the
SUT, therefore the tests can be run against the SUT directly [1]. Although
the use of MBT may provide benefits to software projects [4], its use in the
industry poses some challenges. Foremost, the formalization of requirements
into a model is a highly complex task that requires special care. If the model
is incorrect, no valid test cases can be derived. Furthermore, it is necessary
to choose the correct level of abstraction for the model: If the model is
too abstract, MBT may not be able to detect implementation errors in the
SUT. On the other hand, if the model is too concrete, the effort required
to validate the model becomes increasingly similar to validating the SUT
directly, resulting in only limited benefits.

2.3.2 Search-based Testing

Search-based testing is a method to automatically and iteratively generate
test data. Instead of relying on a model, a so-called fitness function is used
to determine whether a test should be included in the final test suite. Over
multiple iterations and by making use of the fitness function, this approach
searches for tests that maximize the fitness function. The implementation
of the fitness function depends on the application, a common metric is to
maximize the branch coverage. One promising approach to generate test
data is the field of genetic algorithms, which is inspired by the naturally
occurring processes of evolution. Genetic algorithms start with an initial
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test suite, in this context called population, which contains test cases called
individuals. The population at a specific iteration is called generation. Starting
with the initial population, each individual is subject to a number of trans-
formations, commonly used are the mutation and the crossover operations.
When performing a mutation operation, parts of an individual are modified,
while keeping the rest of the individual unchanged. For a crossover, two
distinct individuals, called parents in this case, are used to form two child
individuals. These children then consist of parts of both parents’ informa-
tion, furthering the diversity of the population as a whole. After applying
these or more transformations, a selection process takes place, where only
a limited number of individuals featuring the highest fitness scores are
kept. This process is then repeated, until a certain number of iterations, or
a previously-defined fitness score is reached. Search-based approaches in
general and genetic algorithms in particular have been successfully applied
to a variety of problems, including image processing and environmental
research [51]. However, it is notable that all search-based optimization ap-
proaches use probabilistic rather than deterministic rules, therefore they
might not be applicable in certain fields [37].

2.3.3 Combinatorial Testing

In fields where probabilistic rules, like the ones used in search-based testing,
are undesired, one can turn to combinatorial testing (CT). CT focuses on
testing interactions of parameter [45]. While it is often unfeasible to test
all parameter-value combinations, CT can provide a tradeoff between effi-
ciency and completeness. This approach employs a sampling mechanism
to reduce the problem space, and generates combinations of sampled val-
ues as input for test cases. With this sampling and by cleverly combining
individual parameter-value combinations into a single test case, advanced
algorithms are, to a certain extent, able to avoid the test case explosion. In
modern, real-world software it is unfeasible to exhaustively test all inter-
action combinations, since the number of test cases grows exponentially.
Therefore, combinatorial testing provides means for covering scenarios that
have a higher probability of causing an error. Studies have found that most
programming errors are triggered by a combination of 6 or less distinct
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parameter-values, and that 2 distinct parameter-value combinations are
already covering as much as 60% of programming errors [29]. Therefore
it is unpractical, inefficient, and unnecessary to exhaustively covering all
combinations, and the focus on lower parameter combination degrees is
sufficient in many cases. Having a systematic measure of generating test
cases is especially important in highly safety-critical fields of the industry,
e.g. in aircraft development. Therefore, a project conducted by Lockheed
Martin alongside the National Institute of Standards and Technology (NIST)
found, that the introduction of combinatorial testing mechanisms improved
test coverage, while at the same time reducing development costs [25]. The
paper also claims that adoption of CT strategies is likely to to increase,
since the technique has been introduced into the Software Testing Standard
ISO/IEC/IEEE 29119 [2]. The US government agency NIST has been a
driving force behind the development of CT. In 2013 a tool called Advanced
Combinatorial Testing System (ACTS) is published by NIST, implementing
several algorithms for generating covering arrays, which provide the basis
for combinatorial testing. NIST also claims that some of the algorithms
developed by the institute, for example IPOG and its variants, are more
efficient than previously known algorithms for test case generation in this
context. In the following, the mathematical foundations of covering arrays
and combinatorial testing are explained in greater detail.

Covering Arrays

Covering arrays are connected to the definition of Orthogonal Arrays. An
orthogonal array OAλ = (N; t, k, v) is a N × k 2-dimensional array, where t
is called the strength, k is named factor, and v is called the order and specifies
the number of levels per factor. The definition states that for every N × t
sub-array, each t-tuple must occur exactly λ times. In testing, usually only
the case of λ = 1 is considered. Table 2.2 displays an orthogonal array
OA1 = (4; 2, 3, 3). Notice that all 2-tuples aa, ab, ba and bb are present
exactly once, regardless which two columns are considered. Therefore the
definition of the orthogonal arrays is satisfied.

However, in practical settings the requirement that each tuple is present
exactly the same number of times proved to be too strict. Therefore the
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a a a
b b a
a b b
b a b

Table 2.2: Orthogonal array OA1 = (4; 2, 3, 2). Each 2-tuple aa, ab, ba, bb is present exactly
once when considering any two columns.

a a a
b b a
a b b
b a b
a b a

Table 2.3: Covering array CA1 = (5; 2, 3, 2). Each 2-tuple aa, ab, ba, bb is present at least
once when considering any two columns.

relaxed notation of Covering Arrays CAλ = (N; t, k, v) was introduced. With
covering arrays, each t-tuple needs to be present at least a λ times, making
clear that an orthogonal array is a special case of a covering array. Table
2.3.3 depicts a covering array CA1 = (5; 2, 3, 3). The covering array number
CAN(t, k, v) specifies the minimum number of test cases (rows) in a covering
array that are necessary for fulfilling the formal definition. They can be seen
as the lower bound of test cases. Furthermore, there exists a more general
form of the covering array that is relevant in practice, called the mixed level
covering array.

In normal covering arrays, all factors have the same number of levels. A
mixed level covering array MCAλ = (N; t, k, (v1, v2, ..., vk)) provides more
flexibility, since factors may have different values. For example, the mixed
level covering array depicted in Table 2.3.3 can be written as MCA1 =
(6; 2, 3, (2, 2, 3)), or in a more concise notation MCA1 = (6; 2, 3, 223)).

Algorithms and Implementations

The construction of optimal covering arrays for 2-way interactions is a NP-
Complete problem [36] [30], therefore no optimal algorithm is known for
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a a a
b b a
a b b
b a b
a b c
b a c

Table 2.4: Mixed level covering array MCA1 = (6; 2, 3, (2, 2, 3)). In opposite to covering
arrays and orthogonal arrays, mixed level covering arrays allow factors to have
different number of levels.

the general case. However, some research on more constraint problems is
available, and even exact mathematical solutions have been produced for
certain numbers of factors, interactions, and levels. For example, the exact
covering array number (e.g. number of required test cases) is known for
2-wise combinations and 2 levels per factor, if N is even. Furthermore, it
has been found that the covering array number grows logarithmically in the
number of factors, and a probabilistic bound has been established for 2-way
interactions as [18] and [36] observe:

N =
v
2

log k(1 + o(1)) (2.1)

This results however applies only to fixed-level covering arrays, which have
limited applicability in practice [48].

In later research, an extended version of covering arrays called detecting
arrays was introduced by [19], which put further constraints on the covering
arrays. By removing irrelevant configurations in the test set, it is possible
using detecting arrays to clearly identify the location of a fault [48]. This is
done by ensuring that each t-way interaction existing in a system is covered
by an unique set of tests. More precisely, on a covering array A and any
t-way interaction of any of its factors, it defines the function ρ(A, T) to be
the set of rows in A, in which this particular interaction T is contained. In
order for a covering array to be a detecting array, the following property,
defined by [19], must hold true:

ρ(A, T1) = ρ(A, T2)⇔ T1 = T2 (2.2)
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Conversely, the set of rows covering any particular t-way interaction is
unique. This means, that if one interaction results in an failure when exe-
cuting the test suite, an unique set of individual tests will fail, which can
be used to identify the failed interaction. While theoretical foundations and
even algorithms for creation of covering arrays have been developed [19]
[48], the main focus in the research community have been covering arrays
and, to a lesser extend, mixed-level covering arrays. In the following, the
concepts behind popular algorithms and tools for combinatorial test case
generation are summarized.

• AETG: Published in 1994 by [17], the Automatic Efficient Test Generator
(AETG) is based on previous work on using orthogonal arrays for
test suite construction. However, they observed that strictly using
orthogonal arrays proved to be difficult, as it cannot be guaranteed
that for any combination of factors and levels an orthogonal array
exists. Furthermore, it is observed that the construction of such arrays
is a NP-Complete problem as shown in [30]. Therefore, different
mechanisms and heuristics had to be developed. As [31] states, AETG
uses a greedy algorithm choosing from a random pool of test cases to
construct the test suite, resulting in non-deterministic test suites [18].
One by one, individual tests are added, until all required interactions
between the factors are met. Each new test tries to cover as many
uncovered interactions as possible. At the time of publication, the
authors were able to show that by using AETG in real-world scenarios,
the number of test cases was reduced by up to 92%, compared to
then-popular ad-hoc methods for test suite generation.

• IPO: Three years later, in 1997 the In-Parameter-Order (IPO) strategy for
2-way test suite generation was published in [30]. Instead of building
the complete test set for all parameters simultaneously, as done in
AETG, the IPO method works iteratively. It constructs a 2-way test
set for the first two parameters, then continues to grow the test set
to be valid for the next parameter, and repeats this process until
all parameters are covered. Algorithms for extending the test suite
horizontally (e.g. when adding a new parameter), and vertically (e.g.
when adding a new test to the suite), are presented. It was shown
that the IPO algorithm produces results similar to the AETG strategy,
however it is not clear whether it is able to do so more efficiently [31]
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[18]. While also being a greedy algorithm, in opposite to AETG, IPO
is a deterministic algorithm.

• IPOG: The In-Parameter-Order-General (IPOG) algorithm was published
by the National Institute of Standards and Technology (NIST) in 2007,
and builds on the previously published IPO algorithm [31]. It gen-
eralizes the 2-way generation technique shown in [30] to a general
t-way generation strategy. As with IPO, it starts with constructing a
t-way test suite for the first t parameters. It then iteratively builds a
(t + 1)-way test suite by adding the next parameter, until all parame-
ters are covered. Over the years, a number of variants of this algorithm
have been published. IPOG-D reduces the number of combinations
that need to be enumerated using a recursive generation approach,
and thus being more efficient in terms of space and time [32]. IPOG-C
adds support for constraints between parameters [54]. Many of the
algorithms are implemented and available via a Java tool ACTS, which
is developed by the NIST [53].

• Hill Climbing: As described in [18], with the hill climbing approach the
task of constructing a covering array is translated into an optimization
problem. Each test suite has a cost associated that corresponds to the
number of uncovered interactions. Starting from a random test suite,
the current solution is transformed. If the cost associated with the new
solution is lower, it is accepted as the current solution. When the cost
reaches 0, a correct covering array has been found, though it may not
be the global optimum.

• Simulated Annealing: Proposed in [46], it is a variant of hill climbing
that attempts to reduce the risk of reaching a local, rather than a global
optimum. It is doing so by probabilistically accepting a higher-cost,
transformed solution as new current solution. This method has been
found to be working relatively well, resulting in a number of new
upper bounds for certain configurations when constructing covering
arrays [49].

Isolating Failure-Inducing Input

After identifying a test configuration that results in an failure, it can be
difficult to identify the root cause of the failure, if not working with a
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detecting array. As many popular tools and algorithms only support the
more general covering arrays, this situation can be faced easily. Therefore, in
an attempt to reduce the effort needed for debugging the program, several
techniques have been developed, some of which are briefly summarized in
this section.

Most notably is a technique called delta debugging, with well-known algo-
rithms based on this idea called ddmin and its extension dd [56]. Published
in 2002, the algorithms are based on work previously conducted on isolating
erroneous code changes in compilers by [55], but extend this work to be
usable for program input rather than program code. With delta debugging,
the difference (delta) in program behaviour between two similar config-
urations is observed. If the program worked correctly with the previous
configuration, and fails after changing the configuration as little as possible,
one has identified the change that was applied as the failure-inducing input.
While earlier work conducted by [44] uses a modified form of binary search
to identify errors that are caused by one individual input, in the context
of multiple interacting inputs a more sophisticated approach had to be
developed [55]. Therefore, three problems are identified that are addressed
by the dd algorithm. Firstly, in many cases not only one individual input
causes the failure, but a combination of different inputs is responsible for
the fault, which is called Interference. Secondly, under the name Inconsis-
tency, it is observed that some input configurations are invalid, thus these
configurations need to be filtered out. Lastly, it is stated that it is necessary
to break down changes into smaller chunks, in order to reach an adequate
Granularity of changes to observe the failure. Built with these concepts in
mind, the dd algorithm recursively identifies the error, making use of the
divide-and-conquer-technique. Even early experiments in the original paper
showed, that this algorithm can be successfully applied to real life programs,
e.g. the debugger tool GDB.

One algorithm for delta debugging published in 2006 that has gained
attention is the Hierarchical Delta Debugging (HDD) algorithm [42]. Since the
original dd algorithm ignored structure in input data, the test case reduction
was believed to be non-optimal. Therefore, as the authors claim, if the input
data is defined by a context-free grammar, e.g. a programming language, it
may be beneficial to use the HDD algorithm for isolating the failure [42].
The algorithm tries to build an abstract syntax tree (AST) to gain knowledge
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about the input. From there on, the well-known dd-algorithm is applied to
the different levels of the AST, in order to quickly narrow down the root
cause of the failure. However, as [43] observed in 2016, the HDD algorithm
has not been adopted to a great extend in the community. Based on the
original algorithm, a new tool called Picirency was developed. The tool tries
to improve practical aspects of the original algorithm, e.g. increasing the
number input types available for reduction, or improving the reduction
performance by 25-40% [43].

2.3.4 Random Testing

In opposite to other testing techniques, random testing does not consider
any structure of the input or the program itself. While this type of testing
was previously seen as inferior [20] [27], many researchers have since put
up with this topic and found it to be applicable and effective in a variety of
application fields [6]. If the input parameters for random testing are chosen
carefully, it can provide valuable insights on the likeliness of a program
succeeding. This property is unique to random testing, as other testing
methods can only provide information about the presence, but not about
the absence of failures [27]. For achieving reliable results, it is important to
know how a program is executed in a real-world scenario. As [27] suggests,
the viable input space needs to be partitioned, and testers need to estimate
the probability of each partition being encountered in a real-life scenario.
This so-called operational profile should be used to generate the input data.
However, if no such information is available, it is still an option use to the
uniform distribution. By using random testing it is then possible to derive
statistical metrics about the reliability of the program that is being tested,
e.g. the Mean-Time-To-Failure.

In recent years, with the concept of Adaptive Random Testing (ART) a different
variant of random testing was introduced [13]. The paper found that the
performance of testing could be improved, if the test generation takes so-
called failure patterns into account. As an example, the inputs that cause
a program to fail could be concentrated in a particular region, e.g. the
lower third of possible inputs. The authors of the initial paper conducted
an empirical study with small programs, consisting of 200 lines of code
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or less. They found that by incorporating the structural information about
the failure patterns, they were able to improve the performance by up
to 47%, compared to purely random testing with uniform distribution.
However, more recent research has found ART to be inefficient for real-
world programs, as the initial results assume unrealistically high failure
rates [7]. An empirical analysis about the use of ART finds, that the results
could not be reproduced in a real-world scenario [7].

2.4 Oracle Problem

While there are several effective techniques to generate test cases for software
programs, all of them are faced with another issue, called the Oracle Problem.
It describes the fact that it may be difficult to determine the correct output
for a given input, especially in an automated manner. As specifications are
often informal, the task of providing the output information remains in
many cases with the testers [8]. In this section, some of the main techniques
found by a comprehensive and relatively recent survey in [8] for reducing
the burden on the testers by automating test oracles are summarized.

2.4.1 Model-based Testing Oracle

The first way of automatically obtaining test reference data is to use formal
specifications. An obvious choice for doing so is to use formal models,
e.g. a state transition system or model specifications in formal languages
like the Uniform Modeling Language (UML). From this abstract, but formal
specification of the systems, it is possible to generate test cases on the one
hand (see Section 2.3.1), and the desired output of a test on the other hand.
Using a model specified by a state transition diagram, a test case consists of
a sequence of inputs that are applied to the system. The test case applies the
inputs to the system and observes the corresponding outputs in the path
until the test case ends. Therefore, after a concretion and execution of the
test cases, by observing the output and states of the actual system under
test, its correctness can be verified.
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2.4.2 Code Contracts

Another variant of formal specifications are so-called contracts. Using con-
tracts it is possible to specify the context of methods and functions in
code. Contracts usually provide three different instructions [41]. Using a
pre-condition, valid inputs to functions can be specified. An example of a
pre-condition is the requirement of many algorithms, that an input array
needs to be sorted. Secondly, using a post-condition, it can be specified in
which state the data or object should be after the execution of the function.
A sort algorithm could specify as post-condition, that the input array is
in fact sorted at the end of the function. Thirdly, a programmer can use
a invariant to specify properties of an object, that should hold true before
the start of any function and at the end of any function. This means that
while during the execution of a function the invariant may be violated, as
long as it is again met after the execution has finished. Using these formal
specifications it is possible to automatically generate tests including the
expected results. However, there are some shortcomings of this method.

One problem of practical nature is that most languages, with the exception
of Eiffel with the concept of design-by-contract [41], do not provide built-in
support for contracts. Therefore, one must rely on third-party libraries and
frameworks. While there are in fact libraries available for all of the five
most popular programming languages 2, only C# with the Pex Framework
[52] is also able to automatically generate test cases for the given contracts.
Even with this framework, the tests that are generated can only provide
probabilistic guarantees, since it is in general unfeasible to exhaustively
cover all possible inputs. Therefore, while contracts are a good method
of circumventing the oracle problem, in practice they are only of limited
usefulness in terms of automated test case generation.

2.4.3 Metamorphic Testing

The concept of metamorphic testing (MT) is based on a different approach,
and is associated with the class of derived test oracles [8]. As [14] describes,

2https://www.tiobe.com/tiobe-index/, accessed 18.02.2021
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unlike most other testing techniques, it can be used both for test case
generation and as a test oracle. MT uses existing test cases provided by
different testing techniques, to generate so-called follow-up tests [57] using
metamorphic relations (MR). Instead of specifying a specific output for a
specific input to test the program behaviour, more abstract properties of
the programs are utilized for generating the tests. For example, a function
min(a, b) that returns the lower of the two parameters, could specify the
metamorphic relation min(a,b) = min(b,a). This property can now be
checked for a multitude of automatically generated concrete inputs, and for
all of the inputs the relation must hold true. A popular implementation of
MT is quickcheck [15], a tool for testing Haskell programs using so-called
properties, that are equivalent to metamorphic relations [39]. It provides a
simple and lightweight framework for testing relations, since it generates a
number of random test cases and the corresponding expected output values
automatically.

2.4.4 Regression Testing

Finally, also regression testing can be used as a test oracle. As described
earlier in Section 2.2.1, with regression testing a previous version of the SUT
is used as a reference. Therefore, it is possible to use any test case generation
technique, since all reference output can be obtained by simply running the
test suite against the specified version of the SUT. However, this implies that
the previous version of the software is in fact correct and does not contain
any faults, which can pose problems in practice. Furthermore, since the old
test oracle cannot provide reference output for newly added functionality,
other testing strategies must be used for testing additional behaviour.
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2.5 Digital Audio Workstations and Audio Plugins

As this thesis touches the testability of audio plugins, in this section an
overview of the relevant technologies and tools is given. In the modern
music industry so-called digital audio workstations (DAWs) play a big role
[10]. DAWs are programs that allow different tracks to be created, mixed,
modified, and exported. There are many different professional vendors
of DAWs, prominent examples include Reaper 3, Pro Tools 4, FL Studio
5, or Logic Pro 6. While the mixing of the tracks and the final exporting
into a finished song is usually performed by built-in functionality of the
DAW itself, many creative changes are performed with plugins for the
DAWs. Some of the plugins even provide virtual instruments which can be
controlled by the MIDI interface.

Audio plugins are essentially shared libraries that are developed against
a number of different SDKs, which are then loaded at runtime by the
DAW. The most prominent plugin formats are VST2 and VST3 published
by Steinberg 7, AAX published by Avid 8 and Audio Unit published by
Apple 9. In an usual workflow, the DAW is the controlling component in the
setup. When the audio processing starts, the DAW will utilize the plugins
by calling dedicated functions provided by the SDKs. Most importantly,
the DAW passes the raw audio data to the plugin, so that the plugin is
able to add the desired effect by manipulating the contents of the audio
buffer. As audio processing is a real-time domain, plugin developers must
be aware of the fact that they need to complete their processing in time,
otherwise so-called glitches occur, which are clearly audible disturbances
in the audio. The plugins itself are either manipulated via a GUI, or by
a common parameter interface also provided by the SDKs, which allows
users to parameterize the plugins in the DAW directly. With this interface,

3https://reaper.fm, accessed 19.2.2021

4https://www.avid.com/pro-tools, accessed 19.2.2021

5https://www.image-line.com/, accessed 19.2.2021

6https://www.apple.com/logic-pro/, accessed 19.2.2021

7https://www.steinberg.net/en/company/technologies/vst3.html, accessed
19.2.2021

8http://apps.avid.com/aax-portal/, accessed 19.2.2021

9https://developer.apple.com/documentation/audiounit, accessed 19.2.2021
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all exposed parameters are accessed by index and provide a value interval
of [0.0, 1.0], inclusive.

Most DAWs use multiple threads to communicate with plugins, usually
with at least one dedicated thread for manipulating parameter values and
one dedicated thread for audio processing itself. This means that audio
plugins are real-time multi-threaded software, which requires extensive care
by software developers.
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In this section, the architecture and design choices of the regression testing
tool are described. The source code of the tool is available on Github 1

Furthermore, some relevant implementation details and limitations are
addressed.

3.1 Description of the Regression Testing Tool

The tool is written in C++, a widely used language for audio plugin develop-
ment. There are multiple reasons for C++ being the standard language in the
audio industry. Firstly, because it is a mature language and provides very
good performance, it is very well suitable for real-time applications. Fur-
thermore, as described earlier, audio plugins are essentially shared libraries
developed against different SDKs that are implemented in C. Therefore, a
language that is compilable to this format is necessary. Lastly, there exists a
popular open-source cross-platform development framework called JUCE2,
which provides a large number of utility functionality specifically targeted
at audio development. For example, it provides highly complex adapter
functionality that allows the targeting of different plugin standards from
the same codebase, without the need for additional configuration. In case of
the regression tool, especially the functionality of loading plugins targeting
different standards proved to be extremely useful.

1https://github.com/vallant/reta, accessed 25.3.2021

2https://github.com/juce-framework/JUCE, accessed 25.02.2021
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3.1.1 Workflow

The functionality provided by the tool is separated into five different phases,
as can be seen in Figure 3.1. These phases are intended to be run consec-
utively, with information between the phases being passed via JSON files.
This design allows for decoupling as well as extensibility.

plugins

Test

Compare Reduceresult

config

reduced

plugins

Info

plugin

Generateinfo
info
info
info
results

Figure 3.1: Workflow of the regression tool. The five phases communicate with JSON files.
After finishing the last phase, a single JSON file containing the parameter-values
and the test configuration that resulted in a difference in audio processing.

In the Info-Phase, the basic information about the plugin is collected, includ-
ing its name, or the number and configuration of parameters. Based on this
information, the Generation-Phase generates a test-suite, which is represented
as a JSON file. This generation takes place either randomly or combinatori-
ally, where each individual test includes information about the parameter
configuration and the input signal to be used. In the following Test-Phase,
the previously created suite is executed, resulting in a folder holding the test
results. Apart from general information about the test suite and the plugin
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itself, for each individual test of the test suite the folder holds an audio-file
and a companion file holding meta-information. These two files represent
the resulting audio content after the test has been executed with the given
configuration. The test phase is executed twice using the same configuration
on two different versions of the same plugin, resulting in two dedicated
folders holding the test results. In the Comparison-Phase, the signals and
meta-data produced by the plugins are compared, again writing a JSON file
holding the relevant pieces of information for further processing. For the
comparison of the rendered audio files, the sample-by-sample measure of
the Root-Mean-Squared-Error-Deviation (RMSE) is calculated and compared
against a threshold:

RMSE =

√
∑T

t=1(xre f [t]− xactual[t])2

T
(3.1)

If differences are discovered during comparison, it is not immediately
clear which, parameters are responsible for the failure. Therefore, the fi-
nal Reduction-Phase implements the ddmin algorithm (see Section 2.3.3) to
highlight the parameter-values that caused the difference. As discussed
previously, this is done by iteratively creating subsets of the failing configu-
ration and running the tests against both versions of the plugin.

As described at earlier points in the thesis, two different test case generation
modes are supported, namely random generation and combinatorial gen-
eration. To provide the combinatorial generation strategy, the well-known
ACTS tool developed by the NIST is integrated. Because ACTS is a Java
tool, the use of the Java Native Interface (JNI) is required. This means that
developers need to use the Java Development Kit (JDK) and users of the
software need to have the Java Runtime Environment (JRE) installed. As this
requirements may be undesired by users of the tool, in addition to ACTS,
also a different implementation of the IPOG algorithm written in C++ is
integrated 3. The default version of the tool therefore does not have any
runtime dependencies.

3https://github.com/jesg/dither-cxx, accessed 2.3.2021
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3.1.2 Client-Server Mode

Since professional-grade audio plugin development (at least) provides soft-
ware for Windows and MacOS, this tool also provide means for performing
the regression testing across operating system bounds. By providing this
client-server functionality, it is also possible to use the tool in a continuous-
integration environment. This is done via two special commands called
Serve and Update. The serve-command starts a simple HTTP-server, which
acts as a storage for the reference output of the plugins, alongside with
the test suite that was used to generate the output. Therefore, instead of
running through the Info and Generate phases, the server can be queried
directly during the Test-Phase.

At the time a new reference version is created and accepted by the develop-
ment team, it is necessary to update the reference regression output on the
server, which is done via the update command. For doing so, it is necessary
to go through the Info, Generate, and Test phase again. By invoking the update
command, the folder containing the new reference output is uploaded to
the server, overriding the old references.

3.2 Limitations

While the tool can help with identifying regression issues between different
versions of the plugins, there are a number of situations in which it can not
(yet) be used, which are summarized in this section.

First and foremost, because this tool is performing regression testing, previ-
ous versions of the software are used as ground-truth. While this reduces
the resources required by developers to set up testing, this type of testing
can only detect the presence of differences, not the presence of failures.
This means that if the tool recognizes differences between two versions of
the software, human knowledge is needed to classify this difference. If the
reference version contained an error that is corrected in a new version, the
tool may detect this, despite of the change being completely fine. On the
other hand, if functionality is added in the new version of the software, due
to the lack of this functionality in the reference version, testing of the new
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parts of the software is not possible. In sight of this situation it is clear that
this tool cannot provide a complete testing solution, but rather support the
process. It helps the developers and testers to focus on the changes that
happened during the latest iteration, reducing the risk of breaking existing
functionality.

Apart from only being able to highlight differences between versions, the
multi-threaded behaviour of the plugins is not assessed. As described in
Section 2.5, plugins operate in a multi-threaded and real-time environment,
as audio processing and parameter handling are in many cases handled by
dedicated threads. It is, for example, possible to change parameter-values of
the plugin, while audio processing takes place. Practice has shown that this
is a constant source of software failures. However, scheduling of threads is
usually functionality provided by the operating system. Therefore, it cannot
be guaranteed that a parameter change, that would influence the audio
processing, arrives at exactly the same time during multiple runs of the
same test suite.

The lack of support for testing the multi-threaded behaviour also means,
that this tool cannot be used to assess the compatibility of different Digital
Audio Workstations (DAW). Since the plugin standards only put limited
restrictions on the order in which the exposed functions should be called, it
has been found that DAWs utilize the plugins in very different ways. This
behaviour cannot be simulated with this particular tool, however other tools
like pluginval 4 are available, that claim to help increasing the robustness
and compatibility of plugins.

Finally, the tool does not yet provide support for MIDI messages, therefore
only effect plugins are supported at the moment.

4https://github.com/Tracktion/pluginval, accessed 25.02.2021
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4 Evaluation

In this section, the evaluation setup and the subsequent results are presented,
while a discussion of the results can be found in Section 5. The primary goal
of the evaluation is to assess the effectiveness of random and combinatorial
test case generation strategies, in conjunction with regression testing as
test oracle strategy. This is done by introducing mutations into the audio-
processing code of real-world audio plugins, in order to let them be tested
by the regression tool. Furthermore, an analysis of the mutated files is
conducted to put the results into perspective.

4.1 Evaluation Setup

As described in the previous paragraph, the evaluation setup consists of
mutating plugins, in order to test them using the regression tool with
various settings. For this purpose, three different plugins are evaluated,
two of which are considered professional-grade. Two plugins are so-called
equalizers, one being a compressor plugin. The professional-grade plugins
are provided by sonible GmbH 1.

4.1.1 Mutation Generation

The generation of the mutations is performed using universalmutator [23],
a language-agnostic mutation tool written in Python. In opposite to other
tools available for C++ that operate on byte-code level, universalmutator per-
forms the mutation on a source-code level. This property may be considered

1https://sonible.com, accessed 1.4.2021
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hindering in other contexts, since it means that after having mutated the
source code the project needs to be compiled, instead of only mutating
already translated binary code. However, in this context this is actually a
desired property, because the same set of mutated plugins should be tested
against changing test suites. Therefore, compiling the mutants only once
to re-use the resulting binaries results in a better overall performance. The
mutation tool uses a regex-based strategy, with introduced mutations includ-
ing, among others, off-by-one errors, argument swaps, literal replacements,
and condition inversion. This make this tool suitable for the task, since
mutations can be introduced into the control flow, as well as mathematical
expressions. The mutations are introduced into sections of the source code
that participate in modifying the final audio output of the plugin, therefore
a wide range of different scenarios can be covered.

4.1.2 Mutation Selection

Because the design of the mutation tool is language-agnostic and purely
based on text replacement, it does not have any understanding of the syntax
or semantics of the source files it processes. While this allows the tool to be
usable in a variety of situations and programming languages, it requires
special care when generating the mutations. A moderation and selection
process is necessary for the mutants to be usable, because the tool only
performs text replacements that, in many cases, results in syntactically in-
correct source files. Commonly used language features in C++, e.g. templates,
have proven to be a frequent source of errors, since the tool would mistake
the enclosing less-than and greater-than signs as condition in a branching
statement as can be seen in Listing 4.1.

template < c l a s s T>
c l a s s Example ( T t ) { }
−−−−−
template <= c l a s s T>
c l a s s Example ( T t ) { }

Listing 4.1: Example of an invalid mutation. The declaration of a template is interpreted as
branching condition.
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Another issue that is rooted in the design and scope of the tool also called
for a manual selection process. Because the tool should only focus on the
detection of regression errors in audio processing, by design the test suite is
incomplete. Therefore, even when a mutant is syntactically correct, it may
not be discoverable by the regression tool, if the mutation is introduced into
code that is not related to audio processing. Finally, because the mutation
tool generates a large number of mutations even for small source files, due
to practical reasons only a subset of the generated mutants is used for
evaluating the tool and the selected strategies.

To address these issues, a semi-manual mutant selection process is used, as
depicted in Figure 4.1.2.

Discover Generate Filter Select Compile

Figure 4.1: Mutation selection process. Because the test suite by design is incomplete, a
semi-manual approach for filtering and selecting mutations was used, such that
all mutations are potentially detectable by the tool.

The first step is to discover the source files contributing to the audio process-
ing of the plugin, which is mainly done by obtaining coverage information
using the LLVM compiler suite and its related tools. After having identified
the relevant source files, the mutation tool universalmutator is used to gener-
ate mutated source files, regardless whether they are syntactically correct or
the mutation is introduced in DSP code. Using the coverage information col-
lected before, a first filtering of the mutated source files is then conducted.
Sections of the code that do not contribute to the audio transformation
can be identified, and source files that contain mutations in these regions
are discarded. The same is true for mutations that obviously cannot result
in any observable difference, e.g. string replacements in comments. After
performing this first filtering, a fine-grade selection process is conducted.
In order to minimize the bias that can be introduced by manually selecting
mutations, a script is used to automatically and randomly propose mutated
source files. These proposals are then reviewed manually to ensure that
they are syntactically correct, and potentially detectable by the regression
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Plugin Number of files Number of mutations
Frequalizer 4 748

smart:comp 13 611

smart:EQ2 9 865

Table 4.1: Number of mutated files and total number of mutations per plugin.
.

tool. For this purpose the notion of a relevant mutation is introduced, which
states that a mutation is injected into a function or method that is used in
the audio processing of the plugin. When the desired number of mutations
per source file and per plugin is reached, as a final step the mutated source
files are compiled into the binaries used for evaluation.

By performing the process described in this section, the following numbers
of mutated plugins are obtained, as can also be seen in Table 4.1. For the
Frequalizer 748 mutations in 4 files are constructed, for the smart:comp 611

mutations in 13 files are generated and the experiments for the smart:EQ2
are conducted with 865 mutations in 9 files.

4.2 Test Scenarios

In the following the test scenarios are described and the results of the
experiments are presented.

4.2.1 Experiments with Random Test Generation

This section describes the experiments that are conducted using a random
test generation strategy. A total of five different scenarios are analyzed,
which differ in the choice of the input domain for random selection. Fur-
thermore, the experiments are conducted with different numbers of tests in
the test suite. All experiments are repeated three times with different seeds
provided to the random generator, in order reduce the effect of outliers.
This low number of repetitions is due fact that the test runs take a long
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time to complete, in some instances more than 24 hours. Therefore, due to
computational constraints it is unfeasible to include more data points.

Random Values for All Parameters

In the first scenario, random values from the continuous inclusive interval
[−0.1, 1.0] are taken per parameter per test. Information about the discrete-
ness of parameters is not used. A negative value means that the parameter
is not modified and the defaults as provided by the plugin itself are used in
the test. This means that for each parameter there is a 10% chance of using
a default value. The results of this experiment can be seen in Figure 4.2.
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Figure 4.2: Mutation score for random test values. The values are randomly chosen from
the interval [−0.1, 1.0].

Random Values with 10% Chance to Choose a Boundary Value

In some cases it may be the case that errors do not occur within the value
interval, but rather at the boundary values. Because it is very unlikely that
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using a random selection one of the boundary values is actually chosen, this
experiment uses a different value selection process. While in most cases still
a random value is chosen from the interval [−0.1, 1.0], with a probability
of 10%, the tool chooses one of the three boundary values {0.0, 0.5, 1.0}.
Again, negative values represent the plugins default value for the particular
parameter. The results of this experiment can be seen in Figure 4.3.
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Figure 4.3: Mutation score for random test values. The values are randomly chosen from
the interval [−0.1, 1.0]. With a chance of 10% one of the boundary values
{0.0, 0.5, 1.0} was chosen.

Random Selection from Values of Interval Sampled in 0.25-Steps

In this experiment, the possible input values are obtained by sampling
the interval [−0.25, 1.0] in 0.25-steps. Information about discreteness of
parameters is not considered, in each test case a parameters value is chosen
randomly from the sampled values, where negative values represent the
parameter default values.

Table 4.2 shows the respective input models for the three plugins. Figure 4.4
displays the result of this experiment.
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Plugin Input Model
Frequalizer 632

smart:EQ2 668

smart:comp 627

Table 4.2: Input models for random selection from sparsely sampled interval.
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Figure 4.4: Mutation score for randomly chosen value from interval [−0.25, 1.0] sampled in
0.25-steps.

38



4 Evaluation

Plugin Input Model
Frequalizer 1232

smart:EQ2 1268

smart:comp 1227

Table 4.3: Input models for random selection from finely sampled interval.

Random Selection from Values of Interval Sampled in 0.1-Steps

As in the previous experiment in Section 4.2.1, the input domain is sampled.
However, in this experiment the sampling takes place in 0.1-steps, resulting
in more possible values that can be chosen from, where negative values
again represent the parameter default values. Results of this experiment can
be seen in Figure 4.5, Table 4.3 shows the input models that were used in
the experiment.
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Figure 4.5: Mutation score for randomly chosen value from interval [−0.1, 1.0] sampled in
0.1-steps.
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Plugin Input Model
Frequalizer 37126

smart:EQ2 33478

smart:comp 39

Table 4.4: Input model for discrete parameters. The value for continuous parameters is
still chosen randomly from the interval [−0.1, 1.0] with a 10% chance of using a
boundary value.

Utilization of Information About Parameter Discreteness

In some cases audio plugins provide more information about the parameters.
Therefore, it is be possible to identify parameters that may only take discrete
values. An example for this scenario is a boolean parameter, that can only
hold values 0.0 or 1.0. This experiment takes advantage of this information,
resulting in more complex input models as shown in Table 4.4. This table
only applies to parameters that are announced to be discrete by the plugin,
while for continuous parameters a different approach is taken. As already
described in Section 4.2.1, the value for continuous parameters is randomly
chosen from the interval [−0.1, 1.0] in 90% of cases, while in the remaining
10% of cases one of the three boundary values {0.0, 0.5, 1.0} is chosen.
Results of this setup are displayed in Figure 4.6.

Comparison of Random Generation Strategies

This section provides diagrams on how the different experiments performed
in comparison, on a per-plugin basis.

4.2.2 Experiments with Combinatorial Test Generation

While the previous section described the results that are obtained by generat-
ing the test cases randomly, this section is presents the results of generating
the test cases in a combinatorial manner. Because the test generation using
IPOG is deterministic, only one round of each experiment is conducted.
There are four distinct scenarios in terms of the input domain that are
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Figure 4.6: Mutation score for test suites utilizing information of discrete parameters.
Continuous parameters values are chosen from interval [0.0, 1.0], with a chance
of using a boundary value from {0.0, 0.5, 1.0}. Discrete parameters values are
chosen randomly from the discrete values they can take.
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Figure 4.7: Comparison of random test case selection for Frequalizer.
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Figure 4.8: Comparison of random test case selection for smart:comp.
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Figure 4.9: Comparison of random test case selection for smart:EQ2.

conducted. The input domains of the first and second experiment consist of
values obtained by sampling the continuous interval [−0.1, 1.0] in 0.1-steps,
and [−0.25, 1.0] in 0.25-steps. This is consistent with the input domain of
the experiments conducted with the random generation strategies in Section
4.2.1.

The third and fourth experiment take a more advanced approach and
also include the information provided by the plugin about the parameters.
Specifically, the plugin may announce that certain parameters are discrete
and therefore can only take certain values. For example, a boolean parameter
would announce that it can only hold values {0.0, 1.0}, therefore instead of
sampling the complete interval [0.0, 1.0], a more targeted input domain can
be obtained.

The experiments are only conducted with a combinatorial strength of 2 and
3. As the following tests show, no further improvement is to be expected
by higher strengths, while the number of test cases increases considerably.
For the smart:EQ2 it is not possible to collect values for all scenarios, due to
computational constraints.
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Plugin Input Model - Sparse Input Model - Fine
Frequalizer 37126617 371261217

smart:EQ2 33478626 334781226

smart:comp 39618 391218

Table 4.5: Input models for combinatorial testing.

The data points labeled with Fine - All represent the input models as shown
in Table 4.3, Sparse - All is performed with the input model shown in Table
4.2. In case of the data points labeled with Fine - Discrete and Sparse - Discrete
a different approach is taken. Here the information provided by the plugin
regarding the discreteness of parameters is in fact used for generating the
tests. This means, that for discrete parameters the input model is the same
as shown in Table 4.4. While in the previous section the value for continuous
parameters is chosen randomly, for these tests the input interval is sampled.
Therefore, for continuous parameters the interval is sampled in 0.1-steps
in case of the Fine - Discrete data points, and sampled in 0.25-steps for the
Sparse - Discrete data points. This results in input models as shown in Table
4.2.2.

Experiments with Combinatorial Strength 2

In the following section, the mutation scores of test suites generated with a
combinatorial strength of 2 for the described input domains are shown. In
Figure 4.11, the mutation score for the plugin frequalizer is presented, Figure
4.11 depicts the mutation score for the plugin smart:comp.

Experiments with Combinatorial Strength 3

This section presents the mutation score of test suites generated with a
combinatorial strength of 3. The results of the experiments for frequalizer can
be seen in Figure 4.13, while Figure 4.14 shows the results for the smart:comp.
Note that due to computational constraints it is not possible to conduct all
experiments when the input space is sampled in 0.1-steps.
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Figure 4.10: Combinatorial tests with combinatorial strength of 2 for Frequalizer.
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Figure 4.11: Combinatorial tests with combinatorial strength of 2 for smart:comp.
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Figure 4.12: Combinatorial tests with combinatorial strength of 2 for smart:EQ2.
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Figure 4.13: Combinatorial tests with combinatorial strength of 3 for Frequalizer.
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Figure 4.14: Combinatorial tests with combinatorial strength of 3 for smart:comp.
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Figure 4.15: Combinatorial tests with combinatorial strength of 3 for Frequalizer. Due to
computational constraints it was not possible to conduct the experiments when
the input space was sampled in 0.1-steps.
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4.3 Complexity Analysis of Signal Processing
Code

To put the data presented in the previous sections into perspective, the
source files, that are chosen to be included in the mutation process, are
analyzed. The results of this analysis are presented in this section. For
performing this task, the tool metrics++ 2 is used. With its help, the number of
significant lines of code, the maximal nesting depth, and maximal cyclomatic
complexity of the source code associated with audio processing are collected.
The data is averaged on a per-plugin basis and depicted in Figure 4.16.
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Figure 4.16: Averaged code metrics. The numbers represent the per-plugin average of files
used in mutation.

2https://metrixplusplus.github.io, accessed 3.3.2021

48

https://metrixplusplus.github.io


5 Discussion

In this part of the thesis, the results presented in Section 4 are discussed
and put into context. A critical reflection on the reasons for the relatively
low mutation score is given. Furthermore, the results of the combinatorial
and random test generation strategy are compared in more detail, to reach
a conclusion on which one is better suited in which situations. For doing
so, the data on the complexity of the signal-processing source code is
interpreted.

5.1 Comparison of Test Generation Strategies

The data presented in the previous chapter reveals an interesting fact. In the
context of the experiments that are conducted by this thesis, it can be seen
that test suites generated randomly reach approximately the same mutation
score as test suites that are generated using combinatorial strategies. While
this means that both methods are potentially suitable for testing audio
plugins, the highest mutation score is reached by a different number of tests
in the test suites. The data shows, that considerably less randomly generated
tests are necessary to reach the highest mutation seen in the experiments,
than by using the combinatorial methods.

The benefits of using random testing instead of combinatorial testing are
especially visible when comparing the results of Section 4.2.1 to Section 4.2.2.
This is displayed in Figure 5.1. This diagram shows the mutation score for
an input domain sampled in 0.1-steps from the interval [−0.1, 1.0]. It can be
seen, that the mutation score of test suite generated by the random strategy
quickly converges. On the other hand, it shows that the mutation score of
test suites constructed by the combinatorial method, both for combinatorial
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strength 2 and 3, is not decisively higher than for the random method, even
though much more tests are needed.

When comparing the test suites generated with a combinatorial strength
of 2 and 3, no improvement can be observed using the higher number of
interactions. However, as expected, a much higher number of tests is needed
to satisfy the testing requirements. Therefore, the results indicate that in
context of the plugins that were used in the experiments, no significant
sections of signal processing code are controlled by complex logical expres-
sions. This is also in line with the fact that randomly generated test suites
are able to reach a similar mutation score at even lower numbers of tests.

It has to be mentioned that while the mutation score for the open-source
plugin frequalizer is quite high at about 80%, the mutation score for the
professional-grade plugins only lies in the neighborhood of 50%. It can
further be observed that in any case, the mutation score for combinatorial
and random test suites is consistent. A spot check of the mutations that
have not been killed indicates, that these mutations are located in sections
of the code that simply have not been executed by the test suite, or that do
not effect the signal processing. A reason for this could be that a number
of mutated files is not located in code belonging to the product itself, but
rather in library code that provides utility classes and functionality. This
utility code may not be used directly in the plugin, and mutations in these
sections cannot be found by the tool. In opposite to this situation, while the
frequalizer plugin also uses functionality provided by an utility library, it
utilizes nearly all of the code available for its audio processing in certain
configurations, therefore the mutation score is considerably higher.

In general, the evaluation shows that for the three plugins that are used in
the experiments the generation of test suites, using a random strategy does
not perform inferior compared to combinatorial methods in many cases.
However, random testing does so with considerably less tests.
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Figure 5.1: Comparison of random and combinatorial generation strategies. Both experi-
ments are conducted for frequalizer, and use an input domain that is obtained
by sampling the interval [−0.1, 1.0] in 0.1-steps. It can be seen that a similar
mutation score can be obtained by considerably less tests when using a random
generation strategy. Using a higher combinatorial strength for combinatorial
generation does not improve the mutation score decisively.
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5.2 Code Complexity of Mutated Source Files

While the last section describes the results of the experiments and compares
the two test suite generation techniques, in this section the complexity
metrics collected in Section 4.3 are interpreted. The metrics of nesting depth,
cyclomatic complexity and significant lines of code quite similar, as Figure
4.16 shows. It is noteworthy, that while the average nesting depth of the
classes is relatively high, the cyclomatic complexity within these functions
is quite low. This indicates that while the software is in fact complex and
deeply nested, its logical complexity is low. Therefore, it can be argued that
the probability of a fault being introduced by an interaction of two or more
different parameters is low, limiting the benefits of using combinatorial test
generation methods. The results provided by the experiments in Section 4

support this assumption, since the rigorous coverage of interaction faults
only results in a limited improvement of the mutation score, if any.

However, it is important to state that no relevant empirical data on nesting-
depth and cyclomatic complexity in professional software has been found
in literature. Therefore, more research is necessary to put these findings into
context.
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6.1 Conclusion

In this thesis, research is conducted on the use of automatic regression
testing for digital signal processing applications, specifically targeted at plu-
gins for digital audio processing. For doing so, an automatic cross-platform
regression testing tool is presented, that supports combinatorial and ran-
dom test case generation. It applies the same configuration to two different
versions of the plugin and renders test output. The result is compared
sample-by-sample, in order to discover differences in audio output. The
focus of the thesis is to assess, whether combinatorial test case generation
can outperform simple random test case generation strategies. This is done
by introducing mutations into the sections of source code associated with
audio processing in three different real-world audio plugins. Using test
suites generated by the two strategies, it is evaluated whether the regression
tool is able to detect the mutations. The results of the evaluation show, that
the use of combinatorial test case generation strategies does not provide
relevant improvements compared to random test generation. Moreover, it is
found that a similar mutation score can be achieved by a lower number of
random tests.

In order to provide more insights into the reasons for these findings, source
code related to signal processing of the plugins used in evaluation is an-
alyzed. It is discovered, that although the nesting depth of the analyzed
classes is high, its cyclomatic complexity is low. This means that there are
only a limited number of cases in which an error is only observable by
using a certain combination of input parameters. Therefore, it can be ex-
plained why the rigorous coverage of parameter-combinations, as provided
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by the combinatorial test generation strategy, does not improve the coverage
considerably.

However, as the next section describes, it may be necessary to analyze the
source code structure of a greater number of DSP applications, in order to
generalize the findings for this application domain.

6.2 Future Work

There are multiple directions in which further research could be con-
ducted.

First and foremost, in order to gather more reliable results it may be benefi-
cial to perform the mutation analysis described in Section 4 with additional
audio plugins. For doing so, it would be advisable to include different types
of plugins, namely synthesizers and plugins controlled via MIDI-messages,
since as described in Section 3.2, the tool does not yet provide support
for these kinds of plugins. The use of mutation testing for evaluating the
effectiveness of the testing techniques in general should also be compared
to real-world data. A possible research direction could be, to empirically ob-
serve software projects during a longer period of development, and observe
whether the techniques laid out in this work are able to identify regression
errors. Doing so would also provide valuable information about the ability
of mutation testing to simulate errors in real-world software projects.

Another potential research topic could be a broader empirical study, collect-
ing complexity metrics (e.g. nesting depth) for modern professional-grade
software in general and for DSP code specifically. This would make it pos-
sible to put the results presented in this thesis into context, and provide
a better foundation for the observation that signal-processing code is not
prone to be subject to faults caused by an interaction of a multitude of
parameters.

A third possible direction is to conduct experiments with different distance
metrics used in comparing audio signals. In this thesis, as described in Sec-
tion 3, the root-of-mean-squared-error (RMSE) is used as a metric for deciding
on the similarity of two signals. This sample-by-sample comparison method
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may not be suitable in all situations. For example, if a DSP application
produces nondeterministic output for any reason, obviously such a strict
distance measure does not produce the desired results. Furthermore, it
may be beneficial to employ metrics that provide more information about
the structure of the observed differences. One possibility could be to use
cross-correlation, in order to observe differences that stem from an offset in
the audio signals.

The field of audio plugin development may also be a good candidate for
implementing combinatorial testing techniques in manual quality assurance.
As described earlier, the plugins can be used in a multitude of DAWs and
operating systems with many different configurations. Therefore, it may
be interesting to generate the tests that are used in the manual quality
assurance using combinatorial methods, even if no automated test oracle is
available.

A topic that is not inherently connected to audio plugins, describes a rather
general problem, is to deal with multi-threaded environments and the
nondeterminism that is caused by it. As described, audio plugins usually
use at least two threads, a processing thread that transforms the input
signal, and a message thread that handles parameter-changes. In real-world
scenarios it is very common that users of audio plugins modify parameters
during audio processing. Because it cannot be guaranteed that the changes
are handled exactly at the same time, the behaviour of the plugins in this
multi-threaded environment cannot be tested yet. This could be overcome
by replacing the thread-handling implemented by the operating system
with deterministic scheduling techniques.
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