
Dissertation

Intelligent Recommendation Techniques
for Requirements Engineering

Dipl.-Ing. Ralph Samer, BSc

Graz, February 2021

Institute of Software Technology
Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Alexander Felfernig
Second reviewer: Prof. Dr. Xavier Franch

Abstract (English)

Software systems have become an integral part of our daily life. The rising complexity as well as
the increasing extent of software systems, which are both driven by a continuously growing number
of requirements, have a direct impact on the planning and development of these systems. During
the design and development process of software systems, the requirements engineering (RE) phase
usually plays a decisive role. Precise and careful RE represents a major challenge for stakeholders
in complex software projects. Inefficient RE can lead to a high expenditure of time and tremendous
follow-up costs. In many projects, the primary cause of overspending can be attributed to misman-
agement of RE. In the worst case, a missing or an insufficient consideration of RE could even result
in project failure. In order to satisfy the needs of successful RE, technical solutions are required that
support stakeholders to make correct decisions in RE tasks. For this reason, the main focus of this
thesis lies on the application of intelligent recommendation technologies in RE. In this thesis, we shed
light on some important RE tasks which are predestined for the application of recommendation-based
solutions. This includes the prioritization of requirements, the distribution and assignment of re-
quirements to stakeholders, and the identification of dependency relationships between requirements.
Within the scope of the European research project OPENREQ, we developed and evaluated innovative
recommendation approaches to support decision-making in the aforementioned tasks. The technolo-
gies presented in this thesis include (a) innovative user interfaces for group-based prioritizations of
requirements, (b) approaches based on machine learning to recommend requirements to developers as
well as to (c) identify dependency relationships between requirements, and (d) group recommendation
services for assigning requirements to stakeholders for industrial environments. Our recommendation
approaches, including the evaluation results, represent a fundamental part of our research work and are
presented in this thesis. These approaches aim to improve the decision quality and the efficiency of the
RE process. The improvements are achieved through the use of optimized mechanisms to enhance the
quality of RE-related decisions, which differ significantly from existing solutions. These mechanisms
advance the state-of-the-art and include concepts that lead to more exchange of contrary information
between stakeholders in group decision-making processes, approaches to counteract cold-start issues,
and specific recommendation solutions for open-source communities.

i

ii

Abstract (German)

Softwaresysteme sind heutzutage ein integraler Bestandteil unseres täglichen Lebens. Die zuneh-
mende Komplexität und der größer werdende Umfang, der von einer stetig wachsenden Anzahl an
Anforderungen getrieben ist, hat direkte Auswirkungen auf die Planung und Entwicklung von Soft-
waresystemen. Bei der Entwicklung von Softwaresystemen spielt vor allem die Phase des Requi-
rements Engineering (Anforderungsanalyse) eine entscheidende Rolle. Dabei stellt die sorgfältige
Abwicklung von Requirements Engineering eine große Herausforderung bei der Entwicklung von
komplexen Softwareprojekten dar. Ineffizientes Requirements Engineering kann zu einem hohen
zeitlichen Mehraufwand und erheblichen Folgekosten führen. Bei vielen Projekten ist die Ursache
überschreitender Budgets darin zu suchen, dass Requirements Engineering von Anfang an nicht or-
dentlich durchgeführt wurde. Im schlimmsten Fall drohen bei einer mangelhaften oder fehlenden
Berücksichtigung von Requirements Engineering sogar Projektabbrüche. Um den Requirements En-
gineering Prozess bestmöglich zu begleiten, bieten sich technische Lösungen an, die Stakeholder bei
kritischen Entscheidungen in Requirements Engineering Aufgaben unterstützen. Aus diesem Grund
befasst sich diese Abschlussarbeit mit intelligenten Empfehlungstechnologien im Bereich Require-
ments Engineering. Im Rahmen dieser Arbeit beschäftigen wir uns mit einigen wichtigen Arbeits-
bereichen der Anforderungsanalyse, die für den Einsatz empfehlungsbasierter Lösungen prädesti-
niert sind. Zu den wichtigsten Schritten zählen die Priorisierung von Anforderungen, die Verteilung
der Anforderungen an die Stakeholder und die Feststellung von Abhängigkeitsbeziehungen zwischen
Anforderungen. Im Rahmen des europäischen Forschungsprojekts OPENREQ wurden verschiedene
intelligente Empfehlungssysteme für diese Bereiche entwickelt und evaluiert. Die dabei entwickel-
ten Empfehlungslösungen umfassen (a) innovative Benutzeroberflächen zur gruppenbasierten Evalu-
ierung und Priorisierung von Anforderungen, (b) Empfehlungsansätze basierend auf maschinellem
Lernen zur Vorhersage von Anforderungen sowie zur (c) Erkennung von Abhängigkeitsbeziehungen
zwischen Anforderungen und (d) Gruppenempfehlungsdienste zur Zuweisung von Anforderungen im
industriellen Umfeld. Die vorgestellten Ansätze sowie die Ergebnisse der Evaluierungen sind ein we-
sentlicher Bestandteil unserer Forschungsarbeit und werden in dieser Abschlussarbeit präsentiert. Die
Empfehlungsansätze zielen darauf ab, die Qualität von kritischen Entscheidungen in Requirements
Engineering Abläufen zu verbessern, um effizientere Entscheidungsprozesse zu erhalten. Unsere
Empfehlungsansätze wenden optimierte Mechanismen zur Verbesserung der Entscheidungsqualität

iii

an, die sich von bestehenden Lösungen maßgeblich unterscheiden. Dazu zählen sowohl Konzepte,
die zu kritischerem Informationsaustausch bei Gruppenentscheidungen führen, als auch verbesserte
Ansätze, die Cold-Start Problemen entgegenwirken und sich an Open-Source-Entwickler richten.

iv

Acknowledgement

First and foremost, I want to thank my supervisor Univ.-Prof. Dr.techn. Dipl.-Ing. Alexander Felfer-
nig for the continuous support of my PhD study. He has always challenged my mind with new and
innovative ideas and has provided me comprehensive guidance with his broad expertise and knowl-
edge throughout my time at the institute. Our team meetings and conversations were helpful and vital
in inspiring me to work even more precisely and professionally.

Moreover, I also want to express my sincerest thanks to my parents (Gerhard and Brigitte) and my
grandmother Maria, who have supported me throughout my whole studies. Special thanks also go to
my girlfriend Nilobol for her patience and encouragement as well as to all other family members, my
friends and colleagues (Martin, Georg, Müslüm, Patrick, Wolfgang, and Michael) for their essential
and unconditional support during my studies.

At this point, I also want to thank the European Union for the financial support of the OPENREQ

research project (No. 732463, Horizon 2020 program). Finally, I want to recall and thank all our
project partners from Germany (the company Vogella GmbH and the University of Hamburg), Spain
(Polytechnic University of Catalonia), Austria (the company Siemens), Finland (the research teams at
the Qt company and the University of Helsinki), and Italy (the companies Wind Tre and Engineering
Ingegneria Informatica S.p.A.) for their research contributions, the insightful discussions, and our
successful research cooperation.

Ralph Samer
Graz, 2021

v

vi

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly indicated all material which has been quoted either lit-
erally or by content from the sources used. The text document uploaded to TUGRAZonline is identical
to the present doctoral thesis.

Graz,
Place, Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die an-
gegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Text-
dokument ist mit der vorliegenden Dissertation identisch.

Graz, am
Ort, Datum Unterschrift

vii

Rallinho Geek
2021-02-19

Rallinho Geek
19.02.2021

viii

Contents

1. Introduction 1

1.1. Motivation . 1
1.2. Research Objectives . 6
1.3. Contributions . 10
1.4. Thesis Outline . 15

2. Choice Scenarios Beyond Basic Recommendation 19

2.1. Abstract . 19
2.2. Introduction . 19
2.3. Ranking . 23
2.4. Packaging . 24
2.5. Parametrization . 24
2.6. Configuration . 25
2.7. Release Planning . 26
2.8. Triage . 27
2.9. Resource Balancing . 28
2.10. Sequencing . 28
2.11. Polls and Questionnaires . 30
2.12. Voting . 31
2.13. Further Aspects of Choice Scenarios . 31
2.14. Conclusions and Research Issues . 33

3. Recommender Systems in Requirements Engineering 35

3.1. Abstract . 35
3.2. Introduction . 35
3.3. Research Methodology . 38
3.4. Related Work . 40

ix

Contents

3.5. Recommendation Technologies in Requirements Engineering 42
3.5.1. Basic Recommendation Algorithms in Requirements Engineering 43
3.5.2. Advanced Recommendation Algorithms in Requirements Engineering 48

3.6. Application Areas of Recommenders in Requirements Engineering 58
3.6.1. Recommenders in Traditional Requirements Engineering 58
3.6.2. Requirements Management Platforms . 71

3.7. Selection of Recommendation Algorithms . 80
3.8. Open Research Topics . 84
3.9. Conclusion . 86

4. New Approaches to the Identification of Dependencies between Requirements 89

4.1. Abstract . 89
4.2. Introduction . 89
4.3. User Study & Dataset . 91
4.4. Preprocessing & Feature Extraction . 92

4.4.1. Extraction of TF-IDF Features . 92
4.4.2. Extraction of Probabilistic Features . 93

4.5. Approach . 94
4.5.1. Classification (Approach I) . 94
4.5.2. Latent Semantic Analysis (Approach II) . 95

4.6. Evaluation & Discussion . 96
4.7. Conclusion & Future Work . 98

5. Group Recommender User Interfaces for Improving Requirements Prioritization 101

5.1. Abstract . 101
5.2. Introduction . 101
5.3. Group Recommendation for Requirements Prioritization 104

5.3.1. One-dimensional Rating Approach . 104
5.3.2. Multi-attribute Utility Rating Approach . 104
5.3.3. Argumentation-based Rating Approach . 109

5.4. Evaluation . 110
5.4.1. Experimental Setup . 111
5.4.2. Results & Discussion . 112

5.5. Threats to Validity . 117
5.5.1. Internal Validity . 117
5.5.2. External Validity . 117

5.6. Future Work . 118
5.7. Conclusions . 118

x

Contents

6. Group Decision Support for Requirements Management Processes 119

6.1. Abstract . 119
6.2. Introduction . 119
6.3. Application Scenario . 121

6.3.1. Traditional RM Process . 121
6.3.2. RM Process with Group Decision Support 124

6.4. Potential Issues of Group Decision Support . 126
6.5. Group Decision Support for Bidding Processes . 126
6.6. Conclusion and Future Work . 129

7. Towards Utility-based Prioritization of Requirements in Open-Source Environments 131

7.1. Abstract . 131
7.2. Introduction . 131
7.3. Utility-based Prioritization . 135
7.4. Utility-based Prioritization in BUGZILLA . 137
7.5. Taking into Account Dependencies . 139
7.6. Conclusion and Future Work . 140

8. Towards Issue Recommendation for Open-Source Communities 143

8.1. Abstract . 143
8.2. Introduction . 143
8.3. Methodology . 146

8.3.1. Datasets . 146
8.3.2. Recommendation Approach . 147

8.4. Evaluation & Discussion . 151
8.5. Future Work . 157
8.6. Conclusion . 158

9. Intelligent Recommendation & Decision Technologies for Community-Driven RE 159

9.1. Abstract . 159
9.2. Introduction . 159
9.3. OPENREQ Recommendation Technologies . 161

9.3.1. Requirements Elicitation . 162
9.3.2. Requirement Dependency Detection . 164
9.3.3. Prioritization and Evaluation of Requirements 165
9.3.4. Stakeholder Recommendation . 166
9.3.5. Release Planning and Configuration . 168
9.3.6. Quality Assurance . 168

9.4. OPENREQ User Interface . 169

xi

Contents

9.5. User Studies and Benefits . 172
9.6. Related and Future Work . 175
9.7. Conclusion . 176

10. Conclusions & Future Work 177

10.1. Conclusions . 177
10.2. Future Work . 184

A. Further Study Results of Chapter 5 189

B. Detailed Evaluation Results of Chapter 8 191

List of Figures 193

List of Tables 197

Bibliography 203

xii

Chapter 1
Introduction

1.1. Motivation

Nowadays, our life and work is highly influenced by software systems. Sometimes, software systems
are an integral part of a device which we use on a daily basis, such as a mobile phone. However,
software-based functionality often seems to be hidden, like in a car, where only the experience of a
necessary software update at the service station makes us aware that these technical machines can no
longer work without software. Thus, software systems have become indispensable. The central role
of software and its importance is also reflected in various statistics. For example, Gartner Research
(2020) reports that the global information technology spending on enterprise software has increased
by around 94% in the last 10 years (from 2010 to 2019).

Requirements engineering represents a key factor for the success of a software project. It is a complex
engineering field that involves the collection, documentation, coordination, analysis, and manage-
ment of requirements and their changes throughout the lifecycle of a product (Sommerville, 2010;
Hoffmann et al., 2004; Cant et al., 2006). In general, requirements describe what a customer can
expect from a technical product (e.g., a software product) in terms of properties, benefits, conditions,
and goals (Ebert, 2014). A requirement can either be (1) a functional requirement which is related
to a technical feature (such as, ”the camera must have an integrated timer to automatically capture a
picture”), a use case, or any other piece of functionality that should be part of the developed product,
or (2) a non-functional requirement which relates to aspects such as correctness, reliability, usability,
performance, profit, privacy, security, or technical safety.

Although requirements engineering is a discipline to organize any kind of technical projects, the fo-
cus of this thesis lies on software projects. However, the aspects, statements, and results presented in
this work can also be regarded as generally valid for all kinds of systems engineering (e.g., aircraft
engineering, aerospace engineering, railway engineering). Research in the field of requirements en-

1

Chapter 1. Introduction

gineering can be regarded as a continuously ongoing scientific undertaking (Fernández, 2018). From
the perspective of a traditional software development model (such as the waterfall model), require-
ments engineering typically appears as the initial phase in a software project’s development process
and should be completed before the software product is designed and implemented. However, agile
development methods (such as SCRUM (Darwish and Megahed, 2016)) - which have grown in popu-
larity over the last decade - consider requirements engineering as an ongoing process that continues
through the lifetime of a software project (this meets the aforementioned definition of requirements
engineering more precisely). Requirements engineering represents a comprehensive discipline em-
bedded in a process which consists of different core activities that can be overlapping, repetitive, and
iterative (see Chapter 3). These activities are the definition and elicitation of requirements, the analy-
sis and negotiation of requirements, quality assurance, and release planning. During these activities,
requirements are defined, analyzed, managed, and prioritized.

Nowadays, modern software projects typically consist of a high number of requirements which can
range up to many hundreds or thousands of requirements. This introduces high complexity to the
requirements engineering process which poses many challenges for stakeholders (stakeholders can
be, e.g., customers, project managers, technical engineers, or software developers). Examples of
such challenges include the identification of relevant requirements (requirements triage), the assign-
ment of suitable stakeholders to evaluate and take over responsibility for requirements, the identifi-
cation of dependencies between requirements (dependency detection), and resource planning (e.g.,
release planning).

In many software projects, the budget and the time to work on a project are limited. Therefore, ef-
ficient time management plays a vital role in most of these projects and it becomes imperative to
avoid all possible sources of future errors in advance which can quickly lead to costly time overruns.
Past studies reveal that around 60 percent of development errors originate from faulty requirements
engineering (Boehm, 1981). According to Gartner Research (2014), requirements represent the first
source of defects for service projects and the third source of product defects – the costs to fix defects
range from 70 USD at the requirements phase to 14,000 USD in the production phase. Consequently,
high effort investments in requirements engineering are crucial, in order to ensure that the project
keeps within budget and time expectations. Davis (2005) demonstrates that around 40 percent of
project failures are due to missing or faulty requirements engineering. Although there exists a va-
riety of different definitions of project failure in the literature (Pinto and Mantel, 1990), common
conventions of project failure include practical scenarios where a project must be cancelled (”project
failure”), an on-time delivery of the software product can not be guaranteed (”schedule overrun”),
the running costs of the project have exceeded the limits of the project budget (”budget overrun”),
some requirements can not be satisfied (”wrong or missing functionality / requirements”). Exam-
ples of common issues that can negatively affect project success are incomplete or unclear definitions

2

1.1. Motivation

of the requirements, missing or insufficient prioritizations of the requirements, and unconsidered or
overlooked relationships (dependencies) between the requirements. In particular, the late discovery of
such issues inevitably leads to significantly increased costs in terms of money and time. According
to Cleland-Huang et al. (2003), the costs for requirement changes can vary from between 40 and 90
percent of the total development costs. This comes at the risk of exceeding the limited project budget
that is available and can lead to project failure in the worst case. In order to ensure a proper completion
of a software project, strong requirements engineering efforts are needed in early phases of the project.

However, even though companies are willing to focus on requirements engineering, the high complex-
ity and large size of many software projects represents an overwhelming challenge for stakeholders
(Fucci et al., 2018; Damasiotis et al., 2017). For example, a high level of software complexity quickly
leads to a large number of requirements that have to be evaluated, and rapidly growing requirement
documents. As a result, stakeholders can easily lose track of things and even standard tasks such as,
for example, assigning suitable stakeholders to requirements manually, can become increasingly diffi-
cult. In addition, the differentiation between which paragraphs within a textual requirement document
define a new requirement and which pieces of text of the document relate to a requirement becomes
more and more difficult for stakeholders as the complexity of the software increases. Moreover, the
manual detection of dependencies between requirements is also becoming increasingly difficult and
the number of requirement pairs to analyze (in order to find dependent requirement-pairs) increases
quadratically with the number of requirements.

These aforementioned challenges trigger the increasing need for intelligent support in requirements
engineering. Specific academic interests for computer-aided support in requirements engineering can
be traced back to the early eighties with the publication of Teichroew and Sayani (1980) proposing the
use of computer-aided requirements engineering (CARE) to support requirements engineering tasks.
These interests have increased significantly with the ongoing developments and advances in the area
of recommender systems over the past 15 years. In this context, the Netflix Prize challenge (Bell et al.,
2007) from 2006 can be mentioned, which was the first major scientific competition in the area of
recommender systems. In general, recommender systems can be defined as decision-support tools
which find matching objects in large spaces of available objects or generate suitable objects as output
(Burke, 2002). More precisely, according to Ricci et al. (2010):

“Recommender systems are tools for interacting with large and complex information
spaces. They provide a personalized view of such spaces, prioritizing items likely to be of
interest to the user.”

Recommender systems can significantly accelerate the search process for users by proposing suitable
selection options – this often results in a higher decision quality (Chen et al., 2013; Isinkaye et al.,
2015; Pathak et al., 2010). The emergence of recommendation-based services led to an unprecedented

3

Chapter 1. Introduction

increase of their popularity and importance. This can be explained by the progress these systems have
made over recent years, which has extended to numerous improvements and new recommendation
approaches. Some examples were further developments in areas such as matrix factorization (Koren
et al., 2009), group-based recommenders (Felfernig et al., 2018), or deep learning (Goodfellow et al.,
2016). It is important to mention that recommendation approaches based on these new developments
work particularly well as soon as they are fed with large amounts of data. In general, this applies to the
area of requirements engineering, since software projects usually consist of large sets of requirements
which results in large amounts of requirements data. Therefore, recommender systems are also suit-
able solutions to address investments in computer-assisted requirements engineering (Mobasher and
Cleland-Huang, 2011; Felfernig et al., 2013). The use of recommender systems can help to improve
the overall quality of requirements engineering processes (Palomares et al., 2018; Felfernig et al.,
2013) by reducing risks such as cost and time overruns, as well as project failures. The reason behind
this is that requirements engineering is a very decision-driven discipline and recommender systems
are particularly helpful in complex decision scenarios. The high complexity of software leads to large
amounts of requirement data, many involved stakeholders, and many alternatives that need to be ana-
lyzed and evaluated by the stakeholders before decision-making (Johann and Maalej, 2015; Palomares
et al., 2018; Davis, 2003). Beyond that, a low quality of requirements also introduces further com-
plexity to the decision-making process (e.g., via inconsistencies or incomplete definitions) (Palomares
et al., 2018).

Recommender systems are suitable solutions to effectively tackle the aforementioned problems. They
have great potential and their benefits are manifold. These systems can provide critical decision
support for stakeholders in requirements engineering (Castro-Herrera et al., 2009; Mobasher and
Cleland-Huang, 2011; Ninaus et al., 2014). Furthermore, recommenders can provide help in complex
situations where stakeholders would otherwise not have sufficient knowledge for making high-quality
decisions (Palomares et al., 2018). Thereby, recommenders can tailor recommendations to the specific
preferences and information needs of stakeholders.

Recommenders can be applied to support many different requirements engineering tasks – starting
from the collection of project requirements, through the assignment of stakeholders to requirements,
and the prioritization of requirements. For example, content-based filtering recommendations play
an important role in this context. The basic idea of content-based approaches (van Meteren and van
Someren, 2000; Pazzani and Billsus, 2007) consists in recommending new items to users that are
similar to the items the users have preferred in the past. Requirements are often written in natural
language and can be characterized by additional attributes such as implementation effort, or the type
of a requirement (e.g., technical feature, performance requirement, or financial requirement). This
way, requirements can be seen as text documents with additional meta-data (the attributes). In such
cases, content-based recommendation approaches can be used to recommend requirements by taking

4

1.1. Motivation

into account the given textual information and attributes related to the requirements. Content-based
recommenders can help to assist stakeholders, for example, by recommending requirements from past
projects for reuse in new projects, by proposing suitable stakeholders for a requirement, or by recom-
mending new requirement dependencies.

Another recommendation approach that can be applied in requirements engineering is collaborative
filtering. Collaborative filtering is based on the concept of word-of-mouth promotions (Ekstrand et al.,
2011; Goldberg et al., 1992). In practice, people often base their decisions on suggestions received
from other individuals they know and trust. Collaborative filtering implements this concept by finding
users who are similar to the current user and by recommending items to the current user that were pre-
ferred by these similar users (Ekstrand et al., 2011). Since collaborative filtering approaches do not
take into account the content of the requirements (e.g., requirement text, requirement type, or attached
content), they can be applied as soon as sufficient evaluation / rating data is available. One example
of collaborative filtering in requirements engineering is to assist stakeholders in the identification of
relevant requirements based on past requirement evaluation / rating data. Further application exam-
ples typically follow the idea of supporting stakeholders in the navigation within large collections of
requirements or to suggest further interesting artifacts (such as use case diagrams, design documents,
or business process diagrams) based on their taste.

In contrast to the aforementioned recommendation approaches, knowledge-based recommender sys-
tems represent a completely different recommendation approach. However, these systems are also
of special interest for requirements engineering. Knowledge-based recommenders (Felfernig et al.,
2014) focus on high-involvement items (or complex items), such as financial services, digital cam-
eras, or tourist destinations. A knowledge-based algorithm determines recommendations based on
predefined recommendation settings (including stakeholder preferences), as well as specific domain
knowledge and meta-information about the item assortment. In the context of requirements engineer-
ing, knowledge-based recommenders can be used to generate and recommend release plans based on
given constraints (such as release deadlines, requirement dependencies, resource limitations) or to
find inconsistencies (e.g., contradictory requirement dependencies) in a requirements model.

Another relevant recommendation approach is group recommender systems. Group recommenders
(Masthoff, 2015; Felfernig et al., 2018) aim at fostering decision-consensus among stakeholders where
decisions are made in groups. A major benefit of these systems is that they can foster discussions.
Group recommenders are based on the principle of aggregating preferences of individual group mem-
bers (stakeholders) into a single recommendation for the group1. In order to generate group rec-
ommendations, there are different aggregation functions that represent the upper layer of the group
recommendation system. The predictions are generated by the aforementioned recommendation ap-

1Note that there also exist group recommendation solutions which aggregate single-user recommendations of each group
member (see Section 3.5.2).

5

Chapter 1. Introduction

proaches which represent the underlying layer of the system. In requirements engineering, there also
exist many application scenarios for group recommenders. Some application examples (Boehm et al.,
2001; Felfernig et al., 2011; Ninaus, 2012; Farshidi et al., 2018) address the evaluation and prioritiza-
tion of requirements or the group-based elicitation of requirements.

1.2. Research Objectives

Within the scope of the European research project OPENREQ, we developed numerous recommen-
dation tools with the goal of improving the quality of requirements engineering. OPENREQ!LIVE

represents a CARE environment (see Section 1.1) that includes these recommendation tools. In con-
trast to existing recommender applications that focus on specific requirements engineering tasks, the
OPENREQ project addresses the complete requirements engineering process as a whole (see Chap-
ter 9). The following research objectives were identified for this thesis.

1. Support stakeholders in the identification of requirement dependencies
Many requirements engineering tasks are well supported by recommendation solutions. Ex-
amples thereof are the automated identification and recommendation of paragraphs in require-
ments documents that represent requirements (Winkler and Vogelsang, 2016; Abualhaija et al.,
2019), the suggestion of requirements from past projects to reuse in new projects (Dumitru
et al., 2011; Ivan et al., 2016), or recommendations to improve quality assurance (Fitzgerald
et al., 2011; Ninaus et al., 2014). These approaches aim to improve the quality of requirements
engineering by proactively assisting stakeholders. However, one important task that lacks intel-
ligent decision support is the identification of dependency relationships between requirements.
A dependency relationship expresses in which way requirements depend on each other. Depen-
dencies are essential for the detection of redundancies and inconsistencies between the require-
ments (Aguilar et al., 2012). Furthermore, requirements and dependencies define the basis for
release planning (Ruhe, 2010). There exist different types of requirement dependencies such
as requires, includes, or excludes. Among these types, the type requires is the most frequently
occurring dependency type (Ferber et al., 2002). Hence, special attention should be given to this
dependency type. An early identification of dependencies is essential for a project, since the
late discovery of these dependencies can lead to negative consequences such as increased costs
or unfulfilled deadlines (Leffingwell, 1997; Mobasher and Cleland-Huang, 2011; Ruhe, 2010;
Vogelsang and Fuhrmann, 2013) (see also Section 1.1). In most cases, requirements represent
text that has been written in natural language (Berry and Kamsties, 2004; Ferrari et al., 2014).
Due to the high complexity and size of software projects, the manual identification of require-
ment dependencies is very time-intensive (Vogelsang and Fuhrmann, 2013; Deshpande et al.,
2019). This triggers the need for intelligent tool support that assists stakeholders in finding

6

1.2. Research Objectives

dependencies by exploiting the textual descriptions of the requirements. To that end, a major
research objective of this thesis is dedicated to address this important subject area.

(Q1.1) How can we automatically identify dependency relations between textually-defined re-
quirements?

One major problem that most recommender systems have in common is the cold-start problem
(Schein et al., 2002; Xu et al., 2015). In general, the cold-start problem describes situations
where no or only very sparse information about an item, a user, or both, is available and thus
no useful recommendation can be presented to the user. In the context of dependency detec-
tion, cold-start scenarios typically occur at the beginning of a project when no or only a few
dependencies have been defined by the stakeholders. As mentioned before, the identification
of requirement dependencies in large sets of textually-defined requirements is very challenging
for stakeholders. The major reason for this is the number of possible requirement combina-
tions / pairs that have to be analyzed – this number increases quadratically with the number of
requirements. Due to the quadratic growth in the number of requirement pairs, it is challenging
to get and collect complete dependency datasets from many different (large) software projects
that consist of many requirements. However, situations with incomplete dependencies of the
current project and few dependency datasets from past projects present a challenge for many
existing dependency detection approaches. This underlines the importance to the development
of proper solutions to tackle the cold-start issue of dependency detection tasks. This leads to
the next research question.

(Q1.2) What is a proper solution to handle cold-start issues in requirements dependency iden-
tification tasks?

2. Recommendation support for group-based requirements prioritization

In addition to an extensive analysis of requirement dependency relationships, requirements pri-
oritization represents another key prerequisite for successful release planning. In release plan-
ning, it is particularly important to make group decisions. Requirements prioritization repre-
sents the basis for a complete and sound release plan which is essential to successfully complete
a software project. Requirements are often prioritized on the basis of one-dimensional utility
estimates. In requirements engineering, there exist numerous techniques to prioritize require-
ments, for example, binary search tree, planning game, numerical assignment technique, or
analytic hierarchy process (Sadiq et al., 2017; Qaddoura et al., 2017). However, these tech-
niques have the effect that stakeholders see the requirements as rather simple abstract units
during the prioritization process. This means that the priority of a requirement is only evaluated

7

Chapter 1. Introduction

on the basis of one dimension. Instead, it would be important that stakeholders are encouraged
to take a closer look at the individual attributes of the requirements in order to obtain a multidi-
mensional view on the requirements. This can result in a better estimation of the requirements’
priority. Requirement attributes (also called interest dimensions) represent important metadata
(information) to enrich the definition of a requirement (Firesmith, 2005). Examples of such
attributes include the time effort to implement the requirement or the risk that the success of
the project is jeopardized when the requirement is not considered in the project (Regnell et al.,
2001). In this context, a relevant research topic that can be identified is to figure out whether
and how the inclusion of additional requirement information in the evaluation (i.e., the evalu-
ation across different dimensions of interest) can improve stakeholder evaluation behavior and
prioritization quality. This raises the next research question.

(Q2.1) How does the dimensionality of rating-schemes affect requirements evaluation behavior?

In practice, requirements are often evaluated and prioritized by stakeholders during group meet-
ings. A serious problem of such an approach is that, in many cases, only a small group of
stakeholders actively contributes to the group conversation in a meeting (these are the opin-
ion leaders). In such situations, the majority of the meeting participants hardly ever raise any
objections against an argument provided by one of the opinion leaders. This can lead to two
side effects that have to be mentioned here. On the one hand, the opinion leaders’ arguments
can influence the opinions of many other stakeholders, which then manifests itself in the form
of undesired cognitive biases (such as the anchoring effect; see Stettinger et al., 2015) that
negatively affect the group decision process. On the other hand, some decision-relevant infor-
mation / knowledge may get lost since the (mostly inactive) rest of the stakeholder group hardly
provides any valuable arguments due to their fear that they could appear uninformed or unsup-
portive, which is known to be part of the groupthink phenomenon (Janis, 1982). These two
side effects result in reduced stakeholder interaction and less information exchange. However,
a major precondition for high-quality group decisions is information exchange (Schulz-Hardt
et al., 2006; Greitemeyer and Schulz-Hardt, 2003). As a consequence, mechanisms to improve
stakeholder interaction and information exchange are essential to improve the quality of re-
quirements prioritization. This paves the way for the next research question.

(Q2.2) How can we increase stakeholder interaction in requirements evaluation to improve
the quality of requirements prioritization?

In most software projects, the number of requirements is high and the resources such as the
time and costs to work on these requirements are limited. Therefore, not all requirements can
be implemented. This requires the requirements managers to figure out which requirements are

8

1.2. Research Objectives

of the highest (overall) relevance for the stakeholders. A common approach to achieve this is to
prioritize the requirements in a group and to select the most appropriate candidates with a high
priority on the final requirements. A detailed analysis and evaluation of these requirements
represent the basis for a successful prioritization. In this context, evaluation approaches and
user interfaces are needed that support the prioritization of requirements. In particular, it would
be important to examine the influence that user interfaces have on the quality of the developed
software product and which types of user interfaces are helpful to improve the quality of group-
decisions in requirements prioritization. This gives rise to our next research question.

(Q2.3) In which way do different evaluation interfaces impact requirements prioritization and
software quality?

3. Stakeholder Identification

After a successful prioritization of the requirements, a typical succeeding decision problem for
requirements managers is to identify suitable stakeholders to whom the requirements can be
assigned. As already mentioned, software systems are becoming more complex these days and
often include large numbers of requirements. In a globalized world, large companies also have
to pay more attention to the ”truck factor” (Avelino et al., 2016), which describes the risk that
important parts of a company’s knowledge and expertise are only distributed among one or a
few employees. Therefore, it is essential to ensure that decision-making power as well as stake-
holder expertise are shared among several people in a company. However, in the context of
traditional requirements engineering, a deep involvement and integration of the requirements
managers in the requirements engineering process is common practice in many large compa-
nies. Apart from requirements prioritization, an important issue that has to be addressed in
a software project is to assign responsibilities for requirements to be implemented. As stated
by Hujainah et al. (2018), major limitations of available requirements prioritization approaches
include scalability, complexity, and lack of automation and intelligence. While most existing
recommendation approaches (Lim et al., 2010; Mobasher and Cleland-Huang, 2011; Alenezi
et al., 2013) aim to address some of these limitations, we can still identify a need for more
automated decision-support in requirements prioritization which reduces complexity and al-
lows a higher level of scalability. Moreover, there also exists a need to support more complex
stakeholder assignment processes in which not only individual actors but also large stakeholder
groups and different departments are involved. This brings us to the next research question.

(Q3.1) How can we facilitate stakeholder assignment to support decision-makers?

9

Chapter 1. Introduction

Most existing recommendation solutions work well in traditional software development envi-
ronments with clear stakeholder hierarchies (such as in public organizations or private sector
companies), but they are less applicable in open-source projects where the software develop-
ment process is more flexible and open to everyone. In open-source projects, the developers’
interests can strongly vary regardless of whether the developers have just recently joined the
project (newcomers) or have long-standing coding experience in the project (experts). A major
task of open-source development is to constantly promote the commitment of the contributors
and to take into account the individual interests as well as the different strengths and weaknesses
of the developers. This is due to the reason that volunteers from all over the world can join and
leave the communities at any point in time and there are no fixed working times. This intro-
duces high fluctuations of contributors and the approach of how requirements are selected in
open-source development follows a more first-come, first-serve principle. The high fluctuation
of contributors is a common problem of most open-source projects – while a few contributors
tend to dedicate their life to the project, many of them dig into the project and leave it after some
time. Most developers find it difficult to find their way into these projects because they often
fail at various initial hurdles during onboarding. A common issue at the beginning is to get an
overview and the first (and correct) elements to start. But even for more experienced develop-
ers, the question arises on which requirements they should focus. Although existing works that
address these open-source-specific issues suggest suitable requirements to developers, many of
these solutions only focus on a specific target group (e.g., only newcomers or experienced de-
velopers) or on the whole developer community (Stanik et al., 2018; Tian et al., 2015). Other
approaches offer solutions for a larger variety of contributors. Improved approaches, however,
should try to close the aforementioned gaps by counteracting high developer fluctuations, as
well as by providing help to more experienced developers. In this context, another topic for
research can be derived in the terms of the following research question.

(Q3.2) How can we foster stakeholder engagement in open-source development while taking
into account different stakeholder types (e.g., newcomers and experts)?

1.3. Contributions

The main contribution of this thesis is the provision of recommendation technologies that support and
improve decision-making in requirements engineering. Based on the research questions defined in
Section 1.2, we investigate various aspects and scenarios in requirements engineering where the ap-
plication of recommendation technologies can lead to improvements in decision-making. The results
of our investigations are based on the evaluation results of studies and experiments that we carried

10

1.3. Contributions

out as part of the European research project OPENREQ2. The contributions of this thesis are related
to the research questions which were introduced in Section 1.2. Table 1.1 presents an overview of
these contributions.

Research Questions Contributions
(Q1.1) How can we automati-
cally identify dependency rela-
tions between textually-defined
requirements?

This contribution aims to promote the automated identi-
fication of requirement dependencies, since dependencies
play an essential role in the creation of release plans. To
answer this research question, we have evaluated a small
real-world dataset that consists of 30 textually-defined re-
quirements. In order to identify dependency relationships
between requirements on a textual level, we have imple-
mented two different content-based recommendation ap-
proaches. Both approaches were based on automated clas-
sification – the first approach was fed with TFIDF-features
and the other used probabilistic features as input for train-
ing. To increase the comparability of the evaluation re-
sults, we have evaluated both approaches with a variety
of different classifiers such as Linear Support Vector Ma-
chine, k-Nearest Neighbors, and Random Forest. The pre-
diction quality of the different classifiers was compared,
and an approach based on Latent Semantic Analysis was
used as a baseline approach. The main outcome of our
comparison (see Section 4.6) is that our recommendation
approach based on Random Forest using probabilistic fea-
tures achieved the highest prediction quality of all evalu-
ated approaches.

(Q1.2) What is a proper solution
to handle cold-start issues in re-
quirements dependency identifi-
cation tasks?

At the beginning of a project, the known set of exist-
ing requirement dependencies is small and limited. In
such cases, classification-based approaches can be trained
with dependency information extracted from other soft-
ware projects that stem from the same domain. However,
software projects are often filled with hundreds of require-
ments and these projects sometimes belong to a domain for

2OPENREQ: https://openreq.eu

11

https://openreq.eu

Chapter 1. Introduction

which not enough dependency data exists to learn a
classification-based recommendation model. For this rea-
son, we have investigated how alternative text-based learn-
ing approaches are suitable to identify dependencies be-
tween requirements when no domain-specific data records
are available. To that end, we have developed a recom-
mendation approach based on Latent Semantic Analysis
(LSA), which divides the text of the requirements on the
basis of semantic characteristics and detects requirement
dependencies based on the similarity of these characteris-
tics. Our approach was evaluated with a real-world dataset
and compared with several classification-based algorithms;
related evaluation results are presented in Section 4.6.

(Q2.1) How does the dimen-
sionality of rating-schemes af-
fect requirements evaluation be-
havior?

During requirements prioritization, requirements are often
viewed as single one-dimensional abstract units. However,
requirements usually contain additional meta-information
(attributes) that can be used as evaluation criteria to ex-
tend a one- to a multidimensional rating scheme. To com-
pare the evaluation behavior of stakeholders between one-
and multidimensional rating schemes, we have conducted
a large-scale user study with 313 participants. The partici-
pants worked in groups and the OPENREQ!LIVE platform
was used to support the groups with the task of defining
and prioritizing requirements for the development of a soft-
ware project. Following a between-subjects study design
approach (Charness et al., 2012), the groups had to use ei-
ther a one- or a multidimensional rating scheme to evaluate
and prioritize the requirements. Our study results indicate
that stakeholders tend to evaluate requirements more fre-
quently and critically when they are confronted with mul-
tidimensional (instead of one-dimensional) rating schemes
(see Section 5.4).

(Q2.2) How can we increase
stakeholder interaction in re-
quirements evaluation to im-
prove the quality of requirements
prioritization?

In requirements engineering, requirements are often eval-
uated by groups of stakeholders. The aggregation of dif-
ferent stakeholder evaluations constitutes a group deci-
sion which benefits from the variety of different opinions
(Schulz-Hardt et al., 2006). Moreover, mechanisms that

12

1.3. Contributions

lead to more contrary opinions can trigger more informa-
tion exchange among stakeholders and tweak the outcome
of requirements prioritizations (Schulz-Hardt et al., 2006;
Al-Rawas and Easterbrook, 1996; Coughlan and Macredie,
2002). To that end, we introduced an argumentation-based
evaluation approach that allows stakeholders to create ar-
guments for and against requirements (instead of evaluat-
ing them numerically). The main idea of argumentation-
based evaluations is to encourage stakeholders to deal
more intensively with the requirements in order to trig-
ger more discussions. To measure the effect of informa-
tion exchange, we conducted a user study with 313 stu-
dents who worked in small groups (4-6 group members)
on the OPENREQ!LIVE platform to define and prioritize
requirements for the development of a software product.
The groups had to evaluate the requirements using ei-
ther numeric ratings or arguments. One key finding of
the evaluation is that groups which evaluated requirements
using arguments interacted with the system and adapted
the requirements more often than other groups using nu-
meric evaluation interfaces - further results are presented
in Section 5.4.

(Q2.3) In which way do differ-
ent evaluation interfaces impact
requirements prioritization and
software quality?

To investigate the impact of rating interfaces on the qual-
ity of the software product, we compared three user in-
terfaces with different (one- and multidimensional) rating
schemes. In a user study, 313 computer science students
had to work in groups to define and prioritize the require-
ments of a software project using OPENREQ!LIVE, and to
develop the software product based on the prioritized list of
finally selected requirements. The groups were randomly
assigned to one of three user interfaces and used the user
interface to evaluate the requirements. The set of rating
schemes included a basic one-dimensional, a basic multidi-
mensional, and an argumentation-based multidimensional
rating scheme. To assess the quality of the developed soft-
ware products, we analyzed the grades the students have re-
ceived for the final software product as well as the number

13

Chapter 1. Introduction

of completed requirements. A comparison of the groups
(see Section 5.4) reveals that a higher fraction of completed
requirements as well as a higher quality of the final soft-
ware product can be observed for the groups which used
the multidimensional rating interfaces.

(Q3.1) How can we facilitate
stakeholder assignment to sup-
port decision-makers?

In this contribution, we investigate how to accelerate and
improve stakeholder assignment tasks in traditional re-
quirements engineering scenarios. In Chapter 6 of this the-
sis, we propose a recommendation environment which fol-
lows the approach of distributing the stakeholder assign-
ment task among several stakeholders. The recommen-
dation environment includes two recommender systems
which provide guidance on the stakeholder selection pro-
cedure throughout the entire stakeholder assignment pro-
cess. Our approach aims to minimize the workload of re-
quirements managers and is particularly useful for large
and complex software projects. This work was regarded
as one of the best contributions at the International Work-
shop on Configuration Systems (ConfWS 2018) and for this
work we received the Siemens Best Student Paper Award.

(Q3.2) How can we foster stake-
holder engagement in open-
source development while tak-
ing into account different stake-
holder types (e.g., newcomers
and experts)?

In order to promote stakeholder engagement in open-
source software development, we developed a content-
based recommender system. The recommender system
provides support in the time-consuming search for suit-
able requirements by proposing requirements to contrib-
utors (stakeholders) which are tailored to their personal
preferences and skills. We have published the recommen-
dation environment together with a plugin for the ECLIPSE

community which presents the recommended requirements
to stakeholders and allows them to interact with the rec-
ommendations. The underlying recommendation approach
creates user profiles for developers from resolved require-
ments and proposes new requirements with the support of
classification algorithms. To take into account the indi-
vidual characteristics and working methods of the differ-
ent stakeholder types, we optimized the recommendation

14

1.4. Thesis Outline

model to focus on precision rather than on recall. This ba-
sically means that the model makes fewer but more correct
recommendations (quality over quantity) instead of many
recommendations where more predictions are incorrect
(quantity over quality). We have evaluated our approach
with three large datasets from open-source projects includ-
ing ECLIPSE, MOZILLA, and LIBREOFFICE. Section 8.4
presents the evaluation results. The results are promising
and indicate that our prediction models are able to recom-
mend suitable requirements for stakeholders with a high
level of prediction quality. For this work, we received the
Runner Up for the Best Student Paper Award at the Inter-
national Conference on Web Intelligence (WI 2019).

Table 1.1.: Contributions of this thesis with regard to the corresponding research questions.

1.4. Thesis Outline

This thesis consists of ten chapters. The documentation of related and future work is organized ac-
cording to the subject matter and divided into topic-specific sections. These sections are assigned to
the respective chapters based on their topic and are included in these chapters. The thesis is structured
as follows.

Chapter 1 gives an introduction and a motivation for the main topics of this thesis. This chapter also
summarizes and consolidates the relevant research questions, and highlights the main research contri-
butions of this thesis. The chapter is concluded with a brief overview of the structure of this thesis.

Chapter 2 introduces common choice scenarios that occur in the context of group decisions. In this
chapter, we shed light on a detailed categorization of choice scenarios along the dimensions of knowl-
edge representation and the inclusion of constraints. In addition, we also provide some examples that
demonstrate how to determine group recommendations. The content of this chapter represents essen-
tial background knowledge for the following chapters of this thesis. For example, the choice scenario
configuration affects the recommendation solutions discussed in Chapter 4. The recommendation ap-
proaches presented in Chapters 5, 7, and 8 cover a combination of different choice scenarios including
ranking, release planning, and configuration. Moreover, the recommendation environment introduced
in Chapter 6 represents a combination of the choice scenarios resource balancing and configuration
implemented as a multi-stage decision process.

15

Chapter 1. Introduction

Chapter 3 provides an overview of research in the field of recommender systems in requirements
engineering. In this chapter, we introduce suitable recommendation approaches for requirements en-
gineering. Furthermore, we give an overview of existing recommendation solutions that address com-
mon requirements-engineering-related tasks and present application scenarios where these solutions
can be applied. In addition, the chapter also presents selection criteria that can help to find suitable
solutions to be applied in different application environments. The chapter ends with a conclusion and
a discussion of open research issues.

After an overview of recommender systems in the field of requirements engineering has been con-
veyed, the subsequent chapters present our research topics and research questions that were examined
in this thesis. An in-depth analysis of various research areas in the field of requirements engineering
has shown that the detection of requirement dependencies represents an open research area where
there is still plenty of space left for improved decision-support. Moreover, this area plays a crucial
role for subsequent requirements engineering tasks and thus represents our first focus of the thesis. In
Chapter 4, we propose two novel recommendation approaches to identify dependency relationships
between requirements. Within the scope of a user study, we evaluated a real-world dataset by combin-
ing expert knowledge from requirements engineering practitioners with crowd-knowledge from study
participants in order to obtain a reliable ground truth of requirement dependency data that was then
used to train and evaluate our approaches.

An extensive analysis and identification of all requirement dependencies represents the prerequisite
for a successful prioritization of requirements. In Chapter 5, we focus on this topic and compare
three group recommender user interfaces to support the prioritization of requirements. Our recom-
mendation approach aims to increase stakeholder engagement by involving the whole stakeholder
group in the decision-making process. This is achieved by encouraging the stakeholders to evaluate
the requirements using the presented user interfaces. As part of a large-scale user study, the three user
interfaces were compared. In this user study, the participants had to work in small groups and develop
a software product. The groups could either use a one-dimensional 5-star rating interface, a multi-
dimensional rating interface, or a multidimensional argument-based rating interface to evaluate and
prioritize requirements. We analyzed the rating behavior of the users more precisely and measured
the general impact of the prioritization results on the software quality.

In the context of requirements prioritization, the assignment of requirements to suitable stakeholders
represents another related follow-up decision problem for requirements managers. Chapter 6 in-
troduces a group-based recommendation solution to support requirements managers in this complex
decision problem. The discussed approach facilitates the decision process of stakeholder assignment
by fostering group-based decision-making. The recommendation environment includes two recom-

16

1.4. Thesis Outline

mendation services which provide guided decision support throughout the whole decision process.
Further support in the form of stakeholder evaluations / ratings helps to involve the whole stakeholder
group in the decision-making process and is important in order to achieve time savings and a reduced
involvement of requirements managers.

In addition to conventional industrial software development, the field of open-source development
defines another interesting research area that needs to be addressed. In Chapter 7, we propose a
utility-based recommendation approach for open-source communities to provide decision-support in
stakeholder assignment tasks. The primary role of our approach is to support open-source developers
in the identification of the most relevant and interesting requirements3 to be implemented next. To
demonstrate the potential of our approach, we use the ECLIPSE community as a showcase example.
The approach generates recommendations that are tailored to the interests of the developers and the
ECLIPSE community in order to avoid time-consuming and inefficient search processes. Moreover,
we also show how to model and integrate requirement dependencies into such utility-based require-
ments prioritization processes.

In contrast to Chapter 7 where the main focus lies on the perspective of the developer community,
Chapter 8 presents a content-based approach that suggests requirements3 which are tailored to the
individual preferences of the developers. In this chapter, we also introduce a plugin for ECLIPSE

developers that presents the recommended list of requirements and allows them to give feedback on
the recommendations. Our approach uses supervised classification techniques to predict and recom-
mend suitable requirements to a developer. We have evaluated our approach with three classifiers
(Multinomial Naı̈ve Bayes, Decision Tree, Random Forest) and compared the prediction quality of
all classifiers.

The recommendation approaches presented in the previous chapters were developed and evaluated as
part of the European research project OPENREQ. Chapter 9 gives an overview of intelligent rec-
ommendation and decision tools which were developed within the scope of the OPENREQ project.
In this context, we also present OPENREQ!LIVE which is a user-friendly requirements engineering
platform that provides users central access to the developed recommendation tools. Beyond that,
OPENREQ!LIVE fosters the cross-fertilization of ideas between stakeholders by empowering them to
take advantage of the full recommendation power, and to work together on requirements in a collabo-
rative way. Finally, the chapter summarizes the study results and the major outcomes of the project.

Chapter 10 concludes this thesis and presents an overview of open research issues.

3In the specific context of open-source development, requirements are usually considered as ”issues” or ”bugs”.

17

18

Chapter 2
Choice Scenarios Beyond Basic
Recommendation

The contents of this chapter are based on Felfernig et al. (2018). The author of this thesis provided
the design of the working samples that are presented throughout the chapter.

2.1. Abstract

In this chapter, we present different choice scenarios that typically occur outside the scope of basic
recommendations. In addition to choice scenarios in which a group recommender selects items from
a set of explicitly defined (enumerated) items (e.g., the selection of a restaurant for a dinner, or the
selection of a holiday destination), further choice scenarios exist. These choice scenarios differ in
the way alternatives are represented and recommendations are determined. In this context, we in-
troduce a categorization of these scenarios and discuss knowledge representation as well as group
recommendation aspects on the basis of examples.

2.2. Introduction

In this chapter, we analyze scenarios that go beyond the ranking and selection of explicitly defined
items (alternatives). We first characterize these scenarios with regard to the aspects of (1) the in-
clusion of constraints (constraints allow the definition of restrictions regarding the combination of
choice alternatives) and (2) the approach to define alternatives (alternatives can be either represented
explicitly or in terms of parameters). Thereafter, we discuss these scenarios in more detail on the
basis of examples. There are hierarchical relationships between some scenarios. Examples thereof
are release planning, triage, resource balancing, and sequencing. These scenarios can be consid-
ered as subtypes of configuration differing in the type of variables and constraints used. We also
differentiate between (1) basic choice problems (ranking, packaging, parametrization, configuration,

19

Chapter 2. Choice Scenarios Beyond Basic Recommendation

release planning, resource balancing, sequencing, and triage) and (2) methods for getting people’s
input concerning choice problems (voting, questionnaires, and parametrization). The choice scenar-
ios introduced in this chapter are the following (see Figure 2.1).

Figure 2.1.: Choice scenarios categorized with regard to (1) constraint inclusion and (2) the represen-
tation of alternatives (as parameters or items).

Ranking. The overall goal of ranking is to derive a ranked list of items as a recommendation for a
group. Ranking scenarios typically do not include constraints and choice alternatives are represented
in the form of a list of explicitly defined items, for example, restaurants or holiday destinations.

Packaging. Package recommendation goes beyond basic ranking (Qi et al., 2016, 2017; Xie et al.,
2010). The overall goal is to recommend combinations of items while taking into account constraints
that restrict the way in which different items can be combined. For example, in holiday trip planning,
a package recommendation problem is to find a set of destinations for the group that takes into account
global constraints such as upper price limit and maximum total distance between the destinations, but
also constraints related to individual items. For example, specific destinations should be excluded,

20

2.2. Introduction

or either one or the other should be visited but not both. Items in packaging problems are specified
explicitly, for example, a list of museums and a list of restaurants. Another example of packaging
is a group decision regarding the composition of a Christmas party menu. Decision alternatives are
represented by lists of menu items where each item is associated with one of the categories starter,
main dish, and dessert. Constraints can be specified, for example, according to the maximum number
of menu items and the upper price limit of a menu.

Parametrization. Parametrization decisions are related to detailed aspects of an item – related al-
ternatives are represented as parameter values. In parametrization, no restrictions exist between the
parameter values. In the context of group decision making, an example is the parametrization of an
already selected travel destination or the parametrization of intended properties of an already selected
hotel. Examples of parameters of a travel destination are number of days to be spent at the destina-
tion and time of the year. Parameters describing intended properties of hotels are the availability of a
beauty farm, whirlpool, fitness studio, and massage service (Jameson et al., 2004).

Configuration. Configuration (Aldanondo and Vareilles, 2008; Felfernig et al., 2014; Stumptner,
1997) is one of the most successful applications of artificial intelligence techniques. In terms of
knowledge representation, configuration scenarios are similar to parametrization, i.e., decision alter-
natives are represented in terms of parameters. In contrast to parametrization, configuration tasks
include a set of constraints that restrict the combination of individual parameter values. Examples
thereof are the group-based configuration of smart home installations and the group-based configura-
tion of a car (e.g., a new company car) (Felfernig et al., 2016; Leitner et al., 2016). Further examples
of group-based configuration are release planning (Felfernig et al., 2011), resource balancing, se-
quencing, and triage. Because of their wide-spread application, these scenarios will be discussed in
separate subsections.

Release Planning. Both, in terms of knowledge representation and inclusion of constraints, a release
planning task is a specific type of configuration task (Ninaus et al., 2014). In software engineering,
release planning refers to the task of assigning a set of requirements to one of a defined set of releases.
This scenario is usually a group decision scenario, since stakeholder groups engaged in a software
project have to make release-related decisions. An example of a related constraint is: since the overall
effort is too high, requirement x and requirement y must not be implemented in the same release.

Triage. Similar to release planning, triage can be considered a specific type of configuration task.
Triage decisions can occur in domains such as medical decision making and software engineering.
The overall goal of the underlying decision is to determine a tripartition1 of a given set of alternatives.
In early requirements engineering (Ninaus et al., 2014), triage can be applied to figure out (1) require-

1We limit our discussions to scenarios with three partitions.

21

Chapter 2. Choice Scenarios Beyond Basic Recommendation

ments that are essential for a company and must be implemented immediately, (2) requirements that
can be implemented if the resources are available, and (3) unimportant requirements with no need
for implementation in the near future. As opposed to this, the focus of release planning is to decide
a.o. about the time of implementation. Constraints are similar to those occurring in the context of
release planning. Further examples of triage-based decisions are selection and assignment of students
to open research projects of a research group (students with high potential should be preferred, stu-
dents with a low probability of successfully completing their tasks should be assigned to standard
projects but not research projects, and all other students should receive a research project position
if possible), funding decisions (distribute the available budget between high-potential projects while
taking into account an upper funding limit, do not fund low-potential projects, and fund ’in-between’
projects if additional money is available), idea management (focus on high-potential ideas, filter out
low-potential ideas, and take into account ideas ’in-between’ if the needed resources are available),
and product line scoping (Schmid, 2000) (include the most relevant product features, features with
potentials for new markets if possible, and filter out low-potential ones).

Resource Balancing. The goal of resource balancing is to assign consumers to resources in such a
way that a given set of constraints is satisfied. In this context, consumers and resources can represent
humans as well as physical equipment or software. The assignment of resources to consumers can
be represented in terms of parameters. Resource balancing often includes a set of constraints, for
example, each student should be assigned exactly one paper and paper assignments should be equally
distributed. Thus, resource balancing can also be interpreted as a specific kind of configuration task.
In configuration scenarios, resource balancing is often included as a subtask, for example, to balance
power supply and consumption (Felfernig et al., 2014).

Sequencing. Sometimes, alternatives have to be arranged in a sequence. For example, when planning
a trip around the island of Iceland, the sequence of venues (when to visit which destination) has to be
clear from the outset since hotel reservations have to be arranged correspondingly. Items in sequenc-
ing tasks are often represented in terms of parameters. Constraints are related to user preferences
(e.g., three waterfalls should not be visited directly one after another) and further restrictions (e.g.,
the distance between two destinations in a sequence should be below 100 kilometers and the overall
length of the round trip should be minimized).

Polls and Questionnaires. Polls and questionnaires are basic means to better understand the opinions
of a group or a community. Thus, both can be considered as basic decision support mechanisms.
In poll scenarios, the group giving the feedback is in many cases not directly engaged in a decision
making process. Polls are defined in terms of a question (parameter) and possible answers. No con-
straints are defined with regard to the choice alternatives. Questionnaires are a concept similar to polls
with the difference that more than one question is typically posed and new questions are sometimes

22

2.3. Ranking

selected depending on answers that have already been provided.

Voting. Compared to questionnaires and polls, voting has a strong decision aspect, since a group or a
community decides on which alternative(s) should be chosen (Levin and Nalebuff, 1995). This takes
place on the basis of a predefined process. The underlying options are represented in an explicit fash-
ion, like presidency candidates or candidate soccer players for the ’goal of the month’. In voting, there
are no constraints regarding the alternatives.2

Due to the high diversity of existing choice scenarios, we do not claim completeness. The scenarios
presented must be seen as examples, i.e., different variants thereof exist. In the following, we will
discuss knowledge representations of the choice scenarios shown in Figure 2.1, and sketch approaches
to include group recommendation techniques.

2.3. Ranking

In basic ranking scenarios (Felfernig et al., 2014), choice alternatives are enumerated and no con-
straints are applied to the alternatives. A group’s task is to identify a ranking and then select one item
(e.g., in the context of selecting a restaurant for dinner or a logo for a new product) or a couple of
items (e.g., when selecting the n best conference papers or selecting the n best proposals submitted
to a funding organization). Alternatives do not necessarily need to be specified completely before the
decision process starts, for example, in idea competitions and open innovation scenarios, alternatives
can be added during the decision process. A simple example of a ranking scenario is depicted in Table
2.1. Each item ti received one ranking per group member. A score is associated with each rank, for
example, rank 1 receives 3 points, rank 2 receives 2 points, etc. The item with the highest borda count
(BRC) scoring is recommended (in our case item t4 which is indicated with

p
in Table 2.1).3

Item ranking (score) BRC ranking
u1 u2 u3

t1 4 (0) 4 (0) 4 (0) 0 4
t2 2 (2) 3 (1) 2 (2) 5 2
t3 3 (1) 2 (2) 3 (1) 4 3
t4 1 (3) 1 (3) 1 (3) 9 1

p

Table 2.1.: A basic group-based ranking scenario. Group members ui provide ranks for items ti 2 I
(alternatively, rankings can be derived by a recommender). Thereafter, an aggregation
function such as borda count (BRC) can be used to derive a corresponding ranking for the
group. The

p
symbol indicates the recommended item.

2For a discussion of the potential impacts of voting strategies we refer to Levin and Nalebuff (1995).
3The aggregation functions used in this and other scenarios are considered as convenient, however, other alternatives might

exist.

23

Chapter 2. Choice Scenarios Beyond Basic Recommendation

2.4. Packaging

In a packaging scenario (see Table 2.2) (Qi et al., 2016, 2017), each item ti j is associated with a
specific item type i. Choice alternatives are explicitly defined per item type and constraints related
to the alternatives have to be taken into account. A group has to select items of different item types
and compose these into a corresponding package. An example of a constraint that is defined in such
a scenario is: the number of selected items per item type must be exactly 1 (see constraint c1 in Table
2.2). Table 2.2 depicts an example of a group-based packaging scenario. Each item receives a ranking
per group member and the item with the highest borda count (BRC) score within a specific item
type i is the group recommendation for item type i. The recommended package in our example is
{t11, t21, t31}. In some scenarios, more than one item per item type is requested or less items than
defined types are allowed to be included in a package recommendation. In more complex scenarios,
constraints are also specified at the individual item level. An example of such a constraint is an
incompatibility between the items t22 and t33, i.e., these items must not be part of the same package.
In the case of such constraints, solution search in packaging scenarios can be implemented on the
basis of conjunctive (database) queries.

item ranking (score)
item type 1 item type 2 item type 3

t11 t12 t13 t21 t22 t23 t31 t32 t33
u1 1 (3) 2 (2) 3 (1) 2 (2) 1 (3) 3 (1) 1 (3) 2 (2) 3 (1)
u2 2 (2) 3 (1) 1 (3) 1 (3) 2 (2) 3 (1) 1 (3) 2 (2) 3 (1)
u3 1 (3) 2 (2) 3 (1) 1 (3) 2 (2) 3 (1) 3 (1) 2 (2) 1 (3)
BRC 8 5 5 8 7 3 7 6 5
type-wise ranking 1

p
2 2 1

p
2 3 1

p
2 3

c1 : 8i : #proposeditems(type i) = 1

Table 2.2.: A group-based packaging scenario. Users provide ranks for items ti j (jth item of type i).
Thereafter, an aggregation function such as borda count (BRC) can be used for deriving a
proposed package (in our case, {t11, t21, t31}). The

p
symbol indicates the recommended

items part of the package.

2.5. Parametrization

The alternatives are defined in terms of parameters and there are no constraints related to the al-
ternatives. In such a scenario, a group’s task is to select one value per parameter. An example of a
group-based parametrization scenario is presented in Table 2.3. Each group member specifies his / her
preferences with regard to the different parameters and then the values that were selected in the ma-
jority of the cases are considered as candidates for the group recommendation. The recommendation
(parametrization) in our example is {par1 = a, par2 = 1, par3 = 2}.

24

2.6. Configuration

parameter preferences MAJ
u1 u2 u3

par1(a,b,c) a a c a
p

par2(1,2,3) 1 1 1 1
p

par3(1,2) 2 2 1 2
p

Table 2.3.: Group-based parametrization. Users define preferences with regard to the parameters pari.
Thereafter, an aggregation function such as majority voting (MAJ) can be used for recom-
mending a parametrization (in our case, {par1 = a, par2 = 1, par3 = 2}). The

p
symbol

indicates recommended parameter values.

2.6. Configuration

In group-based configuration scenarios (Felfernig et al., 2016), the alternatives are defined by parame-
ters and corresponding domain definitions. In most configuration scenarios, constraints restrict possi-
ble combinations of parameter values. Similar to parametrization scenarios, a group’s task is to select
one value per parameter such that the set of parameter value assignments is consistent with the defined
constraints (Felfernig et al., 2014). An abstract example of a group-based configuration scenario is
shown in Table 2.4. Each group member specifies his / her preferences with regard to the values of
the parameters {par1, ..., par4}. An example constraint is c1 : par3 = u ! par4 = 1. Table 2.4 also
depicts the solution candidates, i.e., complete sets of parameter assignments that take into account the
defined constraints. These configurations include trade-offs in terms of neglecting some of the user
preferences due to the fact that the union of all user preferences would be inconsistent (Felfernig et al.,
2012). In our example shown in Table 2.4, least misery (LMS) is applied to evaluate the configura-
tion candidates (to determine a recommendation). Misery in this context is defined as the number of
times the preferences of an individual user are not taken into account by a configuration. In contrast to
rating-based approaches, the higher the value the lower the quality of the corresponding configuration.

parameter preferences configuration (solution) misery LMS
u1 u2 u3 id par1 par2 par3 par4 u1 u2 u3

par1(a,b,c) a a c 1 a 1 u 1 1 1 1 1
p

par2(1,2) 1 1 1 2 c 1 u 1 2 2 0 2
par3(u,v) u u u 3 b 1 u 1 2 2 1 2
par4(1,2) 2 2 1

c1 : par3 = u ! par4 = 1,c2 : par2 6= 2,c3 : par3 6= v

Table 2.4.: A group-based configuration scenario. Users ui specify their preferences in terms of pa-
rameter values. Constraints ci specify the restrictions, a configuration must take into
account. Thereafter, an aggregation function such as least misery (LMS) can be used
for deriving a recommended configuration (in our case, {par1 = a, par2 = 1, par3 =
u, par4 = 1}). The

p
symbol indicates the configuration parameter values recommended

to the group.

25

Chapter 2. Choice Scenarios Beyond Basic Recommendation

Solving Configuration Tasks. Configuration tasks can be solved using constraint solvers (Felfernig
et al., 2014; Tsang, 1993). Thus, constraint solvers take over the role of determining candidate rec-
ommendations. These solvers generate solutions (candidate recommendations) consistent with the
defined set of constraints. Due to the combinatorial explosion, it is often not possible to generate all
possible solutions and then to filter out the best ones by using an aggregation function (Falkner et al.,
2011). In order to deal with such situations, search heuristics that help to increase the probability of
finding solutions that are optimal with regard to a selected aggregation function must be integrated into
the constraint solver. A more lightweight integration of aggregation functions can be achieved with
majority voting (MAJ). The votes of group members can be applied to derive preferences (Alanazi
et al., 2012). For example, for par1 we can derive a preference ordering a � c � b indicating that a is
preferred by a majority of group members (over c and b) and that c is preferred over b. Such prefer-
ences can be directly encoded as variable (domain) orderings into a constraint solver (Polat-Erdeniz
et al., 2017).4

2.7. Release Planning

Release planning is a configuration task (Ninaus et al., 2014) where the alternatives (possible assign-
ments of requirements to releases) are defined as parameters and corresponding domain definitions.
In most release planning scenarios, constraints restrict the possible assignments of requirements to
releases. A group’s task is to find one value per parameter (each requirement needs to be assigned to
a release) in such a way that all assignments are consistent with the defined constraints. An example
of a group-based release planning task is shown in Table 2.5.

parameter preferences release plan misery LMS
u1 u2 u3 id req1 req2 req3 req4 u1 u2 u3

req1(1..2) 1 1 2 1 1 1 2 2 1 0 4 4
req2(1..2) 1 1 2 2 1 2 1 2 1 2 2 2

p

req3(1..2) 1 2 1 3 2 1 1 2 1 2 2 2
p

req4(1..2) 2 2 1 4 2 2 1 1 3 4 0 4
c1 : req3  req4, c2 : 8i : numreqreli  2

Table 2.5.: A group-based release planning scenario. Users can specify their preferences in terms of
assignments of requirements (reqi) to releases. Additionally, constraints ci specify proper-
ties a release plan must take into account. Thereafter, an aggregation function such as least
misery (LMS) can be used for deriving a proposed release plan (in our case, for example,
release plan 2). The

p
symbol indicates recommended release plans.

Each group member specifies his / her preferences with regard to the assignment of requirements
to releases. Example constraints are c1 : req3  req4, c2 : 8i : numreqreli  2 which denote the fact

4For example, https://choco-solver.org.

26

https://choco-solver.org

2.8. Triage

that (1) requirement req3 must not be implemented after requirement req4 and (2) no more than two
requirements should be assigned to the same release. Similar to the aforementioned configuration
scenario, the preferences of individual users are aggregated using least misery (LMS). In this context,
LMS denotes the maximum number of times the preferences of an individual user are neglected by a
release plan. For example, release plan 1 ignores the preferences of user u3 four times which is the
maximum for release plan 1. Both release plan 2 and 3 have the lowest LMS. Consequently, release
plans 2 and 3 can be recommended. Techniques that can be used to determine individual release plans
are the same as those discussed in the context of solving configuration tasks.

2.8. Triage

Triage can be regarded as a configuration task. In the context of software requirements engineering,
alternative requirements have to be assigned to one of the three triage categories: accept (a) = re-
quirement must be implemented, maybe accept (m) = requirement can be implemented if resources
are available, and reject (r) requirement will not be implemented (now). As in release planning, con-
straints can restrict the assignment of requirements to the three categories. Table 2.6 includes an
example of a simple triage task.

parameter preferences triage misery LMS
u1 u2 u3 id req1 req2 req3 req4 u1 u2 u3

req1(a,m,r) a r a 1 a m a m 2 2 2 2
p

req2(a,m,r) r m r 2 a r a r 0 4 0 4
req3(a,m,r) a r a 3 m a m a 4 4 4 4
req4(a,m,r) r m r 4 r a r a 4 2 4 4

c1 : req1 = req3,c2 : req2 = req4
c3 : a(req1)+a(req2)+a(req3)+a(req4) = 2

Table 2.6.: Group-based triage. Users specify their preferences by categorizing requirements (reqi)
into a (accept), m (maybe accept), and r (reject). Constraints c1 and c2 specify dependen-
cies between requirements, c3 specifies that two requirements have to be accepted (a). An
aggregation function such as least misery (LMS) can be used for deriving a triage solution
(in our case, triage 1). The

p
symbol indicates the triage recommended to the group.

A group’s task is to assign one category to each requirement in such a way that all assignments are
consistent with the defined constraints. In this example, the proposed triage follows the recommen-
dation determined by least misery (LMS). Techniques that can be used to determine individual triage
solutions are the same as those discussed in the context of solving configuration tasks.

27

Chapter 2. Choice Scenarios Beyond Basic Recommendation

2.9. Resource Balancing

A resource balancing task is defined on the basis of parameters riu j indicating the assignment of a
consumer (user) u j to a resource ri (riu j = 1 $ consumer (user) j is assigned to resource i). In the
example given in Table 2.7, each consumer (user) u j provided a preference evaluation (on a scale 1..5)
with regard to all potential assignments riu j.5 The outcome is a resource assignment that indicates
which consumer is assigned to which resource(s). In our example, resource balancing is interpreted
in such a way that each resource should be assigned to nearly the same number of consumers and
each consumer should be assigned to exactly one resource (see constraints c1–c4 in Table 2.7; nri are
parameters / variables representing the quantity of users assigned to resource i).

parameter preference resource assignment (rating) LMS
rating (riu j) id r1u1 r1u2 r1u3 r2u1 r2u2 r2u3

r1u1(0,1) 5 1 1 (5) 1 (5) 0 0 0 1 (2) 2
r1u2(0,1) 5 2 1 (5) 0 1 (4) 0 1 (1) 0 1
r1u3(0,1) 4 3 1 (5) 0 0 0 1 (1) 1 (2) 1
r2u1(0,1) 4 4 0 1 (5) 1 (4) 1 (4) 0 0 4

p

r2u2(0,1) 1 5 0 1 (5) 0 1 (4) 0 1 (2) 2
r2u3(0,1) 2 6 0 0 1 (4) 1 (4) 1 (1) 0 1

c1 : nr1 = r1u1 + r1u2 + r1u3
c2 : nr2 = r2u1 + r2u2 + r2u3

c3 : |nr1 �nr2|<= 1
c4 : r1u1 + r2u1 = 1^ r1u2 + r2u2 = 1^ r1u3 + r2u3 = 1

Table 2.7.: Group-based resource balancing. Users specify their preferences with regard to resource
assignments in terms of ratings. Constraints ci specify properties a resource assignment
must take into account. Least misery (LMS) denotes the lowest user-specific evaluation of
a resource assignment. The

p
symbol indicates the recommended assignment (in our case,

assignment 4).

Choice scenarios similar to resource balancing in terms of the used knowledge representation are
task assignment (e.g., a set of tasks has to be assigned to the members of a group) and production
scheduling (e.g., a set of orders has to be assigned to machines taking into account the preferences of
different customers).

2.10. Sequencing

Sequencing can be regarded as a configuration task where sequential numbers have to be assigned
to items. As in configuration, constraints can restrict the assignment. Table 2.8 depicts an example
of a sequencing task. A group’s task is to assign one sequential number to each item in such a way
that all assignments are consistent with the defined constraints (in our case c1). If sequences have

5In order to reduce evaluation efforts, a user could specify only preferred items and the system would assume negative
evaluations for items a user did not evaluate.

28

2.10. Sequencing

already been pre-defined, sequencing can also be implemented as a ranking task where users evalu-
ate sequences and an aggregation function determines the recommendations. An example thereof is
shown in Table 2.9.

parameter preferences sequence misery LMS
u1 u2 u3 id t1 t2 t3 u1 u2 u3

t1(1..3) 1 1 1 1 1 2 3 2 0 2 2
p

t2(1..3) 3 2 3 2 1 3 2 0 2 0 2
p

t3(1..3) 2 3 2 3 2 1 3 3 2 3 3
4 2 3 1 2 3 2 3
5 3 1 2 2 3 2 3
6 3 2 1 3 2 3 3

c1 : 8ui : uit1 = x ! uit2 6= x^uit3 6= x...

Table 2.8.: Group-based sequencing. Users specify their preferences in terms of assignments of se-
quential numbers to items ti. Additionally, constraints ci specify properties a sequence
must take into account. Here, uit j is a parameter representing a user’s (ui) assignment of
item t j to a specific sequence position. Least misery (LMS) denotes the number of times, a
user preference is neglected by a sequence. Sequences id = 1 and id = 2 can be regarded
as recommendation candidates.

Different aspects of sequencing have been investigated by Masthoff (2004) in the context of select-
ing television items (e.g., news and commercials). In the scenarios investigated until now, the primary
inputs for determining recommendations are the ratings provided by individual group members. How-
ever, as mentioned in Masthoff (2004), a group member’s evaluation of an item does not only depend
on his / her personal preferences, but also on the context in which the item is shown. The evaluation of
an item also depends a.o. on a user’s mood. For example, in the context of TV commercials, it is often
the case that viewers prefer to see sad commercials in the middle of sad TV programs and humorous
commercials are preferred in humorous programs. This indicates a need for consistency, i.e., users
try to maintain a specific mood throughout a TV program (Masthoff, 2004). Masthoff presents an
in-depth analysis of different influence factors in group decision making in the context of sequencing.
Particularly, different social choice functions are compared with regard to their applicability in the
domain of television item sequencing. Results of the presented studies show that group members try
to avoid individual misery and care about fairness in group decision making. Interestingly, ratings are
used in a non-linear way, i.e., differences between extreme values are considered higher compared to
rating values near the average. For further related details we refer to Masthoff (2004). Due to the
possibility of compensating for items that are perceived suboptimal with better ones, especially in the
context of sequencing, it is usually possible to make sure that no one is miserable.

29

Chapter 2. Choice Scenarios Beyond Basic Recommendation

sequence evaluation AVG
id t1 t2 t3 u1 u2 u3
1 1 2 3 5 4 3 4

p

2 1 3 2 3 3 5 3.67
3 2 1 3 2 3 5 3.33
4 2 3 1 3 1 1 1.67

Table 2.9.: A sequencing scenario where different sequences are explicitly defined, i.e., the choice
task is ’reduced’ to a ranking scenario. In this example, sequence 1 has the highest average
(AVG) value, i.e., it will be recommended first.

2.11. Polls and Questionnaires

A poll is a kind of sampling of opinions on a specific subject which is collected from a selected
or a randomized group of persons. A micro-poll is a technical term for a short poll that is added, for
example, to a website. Polls are used in situations where one is interested in the feedback of a group or
a community with regard to a specific topic or question. Thus, polls are used to collect feedback which
can be related to a decision, though the group asked is not necessarily affected by the result. Typical
examples of such polls are ’how did you like the new version of our software?’ or ’which version of
the software do you use, the Android or the iOS-based implementation?’. Users participating in polls
can be allowed to select one or more alternatives. A poll on the selection of the employee of the year
could allow only one voting per user whereas a poll related to the selection of the best performer of
a casting show could allow more than one vote. Systems supporting polls do not include any type of
group recommendation functionality, in terms of supporting users in their decision making process.
The aggregation mechanism applied in the context of polls is used to summarize the feedback of users
(ADD-based aggregation) in terms of relative percentages per alternative (e.g., number of persons who
voted for a candidate; see example in Table 2.10). In contrast to polls, questionnaires often consist of a
collection of questions where the answer type of the questions can be defined in a flexible fashion (e.g.,
free text answers, multiple-choice answers, and single-choice answers). In some cases, questionnaires
are defined on the basis of decision trees that specify in which context a question should be posed.

u1 u2 u3 feedback (ADD)
q1(1,2) 1 1 1 1 (100%)
q2(1,2,3) 2 3 2 2 (67%) 3(33%)
q3(1,2) 1 1 2 1 (67%) 2(33%)
q4(1,2,3) 1 2 3 1 (33.3%) 2(33.3%) 3(33.3%)

Table 2.10.: Evaluation scheme of polls and questionnaires – persons providing feedback often do not
participate in the related decision making process.

30

2.12. Voting

2.12. Voting

Voting has a structure that is similar to polls, however, there is a decision aspect in voting since a
group or a community decides on which alternative should be chosen, i.e., there is a clear pragmatics
of the decision outcome. Typical examples of the application of voting are the player of the month
(e.g., in soccer), the reporter of the year, and the president of a country. In many cases, the goal of
voting is to select one alternative (e.g., the president), however, there are also scenarios where more
than one alternative is selected. For example, in the context of a best paper award: if majority voting
is used for determining a best paper and there is a tie (depending on the process) multiple alternatives
could be selected as best papers. In the context of elections, the determined ranking of the alternatives
has clear pragmatics. For example, the identified person becomes the new president. Elections can be
single shot or iterative and different tie-breaking rules can be applied (an example thereof can also be
a new election). An example of a voting process is shown in Table 2.11.

u1 u2 u3 result (ADD)
a1(0,1) 1 0 1 2

p

a2(0,1) 0 1 0 1
a3(0,1) 0 0 0 0
a4(0,1) 0 0 0 0

Table 2.11.: A voting process. Each user is allowed to give only one vote – a decision is made on the
basis of the ADD aggregation function.

2.13. Further Aspects of Choice Scenarios

Tie-Breaking. Rules can help in situations where there is no clear winner but a decision has to be
made. A tie-breaking method could be selected before the decision making process starts. This is
used in situations where all group members agree on the method (or the method has to be accepted
’per-se’). Elections are an example of a situation where a group (in this case, a community) has to
decide, and the method is already pre-defined. Further related examples are voting procedures in
(public) organizations and companies, for example, when selecting a new rector for a university, se-
lecting a new pope, or selecting the new president of the labor union. Situations where groups try
to determine the tie-breaking method ahead of time also occur in less business-related decision pro-
cesses. For example, what is the impact (weight) of the expert jury compared to the opinion of the
audience collected via SMS votes in a TV show (in a situation where the jury ranking combined with
the ranking of the audience does not result in a clear winner). Similar situations occur when it comes
to the selection of the best paper at a conference – example resolution strategies in this context can be
a simple majority-rules vote or the average rating the paper received from the reviewers.

Further examples of tie-breaking rules are toss a coin (useful, for example, in the context of low-

31

Chapter 2. Choice Scenarios Beyond Basic Recommendation

involvement items such as restaurants), least misery (useful in situations where two or more high-
involvement alternatives have the same evaluation), authority voting (if a group did not agree on a
specific decision rule and accepts the decision of a single authority), and fairness (in the context of
repetitive decisions, users who were treated less favorably in previous decisions have priority). In
many situations, a formalized and pre-defined rule for making a final decision does not exist, but the
final decision is made on the basis of an internal discussion. In the ’best paper’ scenario this means
that the members of the jury simply analyze all the given alternatives and articulate their preferences,
for example, in terms of an initial ranking. Given that every jury member has defined his / her pref-
erences, a discussion can be started with the overall goal of achieving consensus between the group
members. Such group decision-making requires the inclusion of forums which allow the discussion
and exchange of views regarding (dis)advantages of alternatives (Nguyen and Ricci, 2017).

Multi-stage Processes. Multi-stage choice is performed if the decision making task can be separated
into multiple phases (e.g., first decide about the date of the holidays and then decide on the location
and the hotel), or the process itself may consist of the phase of identifying a consideration set (a set of
candidate items that could potentially be chosen) and then selecting items from the identified consid-
eration set. Examples thereof are personnel selections where the relevant candidates are pre-selected
and – on the basis of the consideration set – hiring interviews are conducted. Further related examples
are idea management (e.g., the selection of a name for a new product or the selection of topics that
should be chosen for the next project proposal) or strategic planning (e.g., the definition and selection
of new topics for professorships to be announced as open positions in the upcoming years).

Process Iterations. Iterative decisions (in contrast to single-shot decisions) are typically made in
the context of high-involvement items, i.e., items with a higher negative impact triggered by a sub-
optimal decision (compared to low-involvement items). In the context of such decisions, different
types of conversational recommendation approaches, such as constraint-based recommendation and
critiquing-based recommendation, are useful (Felfernig and Burke, 2008). Decisions related to high-
involvement items are typically made in an iterative fashion, i.e., before the decision is made, a couple
of iterations in terms of evaluations and discussions are performed. Examples thereof are manifold.
For instance, a family purchases a new car, a new CEO is hired for a company, a group of students
selects a new shared apartment, or a new ERP system is purchased by a company. Gamification-based
approaches are a special case of iterative decision making, for example, planning poker (Haugen,
2006) is a consensus- and gamification-based approach to effort estimation (often used in require-
ments engineering; see Felfernig et al., 2017) where group members play cards. Each member holds
a full deck of cards where each card represents a time effort ascending from, for example, 5 minutes
to one month. After each group member has played a card (face-down), these cards are disclosed and
the estimates of individual group members are discussed. After the discussion, each member plays
another card until consensus is achieved. Examples of single-shot decisions are the selection of a

32

2.14. Conclusions and Research Issues

restaurant and the selection of a movie to be watched on the weekend.

Degree of Participation. Active participation is given if the persons providing preference feedback
on the choice options are also engaged in the corresponding choice process (see also Felfernig et al.,
2018). This is the case with most of the aforementioned scenarios, i.e., decision makers are also
engaged in the feedback process and provide their preferences with regard to the given set of alterna-
tives. The exception to the rule are polls and questionnaires, where communities provide feedback to
decision makers but often do not actively participate in the decision making process.

2.14. Conclusions and Research Issues

In this chapter, we discussed choice scenarios that lie outside the scope of basic recommendations.
We introduced a categorization of these scenarios along the dimensions of knowledge representation
(items vs. parameters) and the inclusion of constraints. For a more in-depth understanding of these
scenarios, we provided a couple of examples that show how to determine group recommendations.
A couple of research issues also exist in this context. For example, the overall idea of group-based
configuration is to engage user groups in configuration processes for complex products and services
(Felfernig et al., 2016). Examples of such scenarios are the group-based configuration of software
release plans, the configuration of smart homes, and the configuration of holiday packages. In all
of these scenarios, approaches are required that support solution search that takes into account the
preferences of individual group members. A specific issue is how to guide heuristic search when
confronted with the preferences of a group of users. Initial related work can be found, for example, in
Polat-Erdeniz et al. (2017). Similar aspects play a role when supporting groups in achieving consensus
in the case of contradicting preferences. The research issue to be solved is how to include social choice
mechanisms into preference elicitation, and corresponding diagnosis and repair processes. Initial work
on the inclusion of personalization into diagnosis processes is presented, for example, in Felfernig
et al. (2009, 2013).

33

34

Chapter 3
Recommender Systems in Requirements
Engineering

This chapter is based on the contents presented in Samer et al. (2021). The author of this thesis
provided major parts of this chapter in terms of writing and literature research.

3.1. Abstract

Requirements engineering (RE) can be considered as one of the most critical phases in a software
project. One of the main reasons of project failure is incomplete or missing RE. Intelligent approaches
are needed to support stakeholders in the RE process to minimize the risk of project failure. In partic-
ular, there exists a high demand for intelligent tools such as recommender systems to increase the deci-
sion quality in the RE process, as the RE process is mainly driven by decision-making. In this article,
we discuss a variety of recommendation approaches which have been proven to work well in the area
of RE. Moreover, we depict how the application of modern concepts (e.g., gamification approaches
or machine learning) can reshape the way of future RE. Extending beyond this scope, the article also
provides an overview of tool support in RE and RE platforms which apply these technologies.

3.2. Introduction

Nowadays, technical systems and products play an important role in our society. Often, these sys-
tems are very feature-rich and complex. In particular, large software systems are usually planned,
designed, managed, and developed in a project. Systems engineering usually starts with the investiga-
tion of the users’ needs, which is known as requirements engineering (RE) today. After the analysis
of the requirements, an optimal architecture is selected. This procedure is then followed by the de-
velopment, integration, and evaluation of the system. RE plays a central role for the success of such
projects (Hofmann and Lehner, 2001). In general, RE can be considered as a discipline which deals

35

Chapter 3. Recommender Systems in Requirements Engineering

with the elicitation and management of requirements. From an abstract point of view, a requirement
describes what a customer or user expects from a (software) product in terms of properties, conditions,
goals, and benefits (Ebert, 2014). According to Mobasher and Cleland-Huang (2011), requirements
specify the functionality, constraints, and behavior of the proposed system. More formally, a require-
ment can be classified as (1) a functional requirement corresponding to a certain software feature,
use case, or any other piece of functionality that should be included in the software product, or (2)
a non-functional requirement which often refers to aspects such as reliability, correctness, perfor-
mance, usability, profit, privacy, or software security. The whole process in which these requirements
are defined and managed is called the requirements engineering process. Typically, this process is
composed of different phases (also known as the core activities) which are often overlapping (see
Table 3.6). These are the definition and elicitation of requirements, the analysis and negotiation of
requirements, quality assurance (including the validation and management of the requirements), and
release planning.

As mentioned, RE is crucial for the success of a software project. This is due to the reason that in-
complete RE processes mostly lead to project failures (Felfernig et al., 2017; Hofmann and Lehner,
2001; Mobasher and Cleland-Huang, 2011). For example, Davis (2005) reports that 40% of project
failures are caused by poorly defined requirements. Moreover, Krasner (2018) points out that up to
80% of the issues that lead to customer dissatisfaction regarding the delivered software originate from
poor RE. According to Fucci et al. (2018), requirements are the third source of product defects and
the main source of defects for service projects. The cost for fixing defects in the production phase
can range up to huge extra costs that cannot be financed with the available project budget, whereas
fixing defects in the requirements phase is much cheaper in comparison. Furthermore, Bokhari and
Siddiqui (2010) point out that the specification of a requirement must be complete, correct, consis-
tent, unambiguous, verifiable, and traceable. In order to reliably prevent possible project failures,
each core activity / phase of the RE process has to be tested as well as carefully reviewed by RE
experts. Even though requirements engineering (if done correctly) can prevent project failures and
can also avoid defects in the final software product, only 2-4% of project resources are spent on it in
many of today’s software projects (Ninaus, 2016). A good design of the software as well as a clear
and complete definition of the functionality a software system must provide, can eliminate potential
sources of errors in the release planning phase and lower the risk of project failure. This is espe-
cially true for very complex software projects which is the default case in practice today (Damasiotis
et al., 2017). The number of requirements a software project has, depends on the complexity of the
project and can range from a few to up to many thousands (in case of a typical industrial software
project). The increasing amount of functionality a typical software system must provide nowadays,
leads to an overwhelming number of requirements which further increases the size and the complexity
of the software and thus makes the RE process more challenging for engineers. Another problem is
that a stakeholder who defines and describes a requirement is usually not the same stakeholder (e.g.,

36

3.2. Introduction

developer) who will implement it later on. This leads back to the aforementioned issue of having
incompletely and inaccurately defined requirements (Fucci et al., 2018). Furthermore, dependencies
between requirements could exist which also have to be found and considered before release planning
can take place. Unless all dependencies are found, planned releases may be in danger of not con-
taining all of the planned features. Also, the identification of the right stakeholders responsible for
a requirement appears to be a complex and challenging task in case of large software projects with
hundreds or thousands of requirements. In other words, no single stakeholder can have the complete
domain and background knowledge necessary to permanently make wise / smart and well-thought
decisions. This is not only due to the fact that large projects consist of a large number of requirements
but also due to the reason that these requirements often cover a broad variety of topics and different
aspects of the project. This enormous amount of domain / background knowledge usually exceeds the
level of knowledge a human stakeholder can possess. Hence, this has a negative impact on the quality
of the decisions taken by the stakeholders in nearly all phases of the requirements engineering process.

The complexity of today’s software projects as well as the fundamental importance of the decision
quality of RE-related decisions, give rise to the application of intelligent methods in RE (Mobasher
and Cleland-Huang, 2011). The mentioned complexity necessitates assistance in RE decision-making,
to counteract situations where stakeholders can quickly become bogged down in a morass of details
and find themselves spending a disproportionate amount of time seeking for information at the high
expense of working on more productive tasks. To that end, recommender systems (RS), which are de-
cision support systems, can be used to support RE-related decisions and to provide helpful assistance
to stakeholders. Beyond the improvement of RE by using RS, the application of such systems has the
potential to update current software engineering methodologies and to introduce new roles in software
organizations (Samer et al., 2020). As a concrete example of state-of-the-art research in the field of
RE conducted in recent years, we will shed some light on the European research project OPENREQ.
In the scope of OPENREQ, research has been conducted in the field of RE with a focus on the applica-
tion of intelligent recommendation technologies. OPENREQ offers intelligent recommendation tools
and solutions for many RE-related problems. Samer et al. (2020) present the major outcomes of the
project which touch a broad set of different communities, and the authors provide detailed descriptions
and evaluations of the tools developed within the scope of the project. OPENREQ provides a variety
of novel contributions in the field of RE, a good orientation for the scientific community, and solid
foundations for the open-source community. As part of this overview article, we briefly highlight the
major outcomes of the project that are most relevant for RE.

The major contributions of this overview article are threefold. First, we give an overview of current
research related to the use of RS in RE. Second, we explain and compare different recommendation
techniques that are of particular interest for typical RE scenarios. Furthermore, we also underpin the
importance of RS for RE by providing basic RE-related examples that help to develop a better under-

37

Chapter 3. Recommender Systems in Requirements Engineering

standing of the presented recommendation techniques. Third, we provide new ideas regarding future
work on how to improve the proactive support of users in RE by refining existing as well as exploiting
new recommendation techniques.

In this overview, we explain basic recommendation technologies for RE, discuss the benefits of RS in
RE for stakeholders, and provide a brief outlook on what they might do in the near future. Although
RE is an engineering discipline that encompasses many different areas and domains such as traditional
technical projects (e.g., in domains such as railway, telecommunication, etc.), it is necessary to limit
and narrow down the scope to software projects, in order to orient the discussion topics of this chapter.
The work presented in this chapter describes and analyzes current methodologies for (1) stakeholder
and user involvement in the software life-cycle, (2) intelligent requirements engineering, and (3) ma-
jor outcomes / results of central studies conducted within the scope of the OPENREQ project. The
article summarizes related work regarding these techniques and thereby helps to develop a solid un-
derstanding of the area.

The remainder of this chapter is structured as follows. Section 3.3 explains the research methodology
used to evaluate and determine relevant articles and publications from different literature databases.
Section 3.4 presents related work with respect to the general application and use of RS in the context
of RE. In Section 3.5, we describe the use of different recommendation approaches in various phases
of the RE process. Section 3.6 provides a practical view of typical application scenarios of recommen-
dation technologies. Additionally, some examples of RE tools which aim to support the stakeholders
in this process, are presented. In Section 3.7, we discuss different selection criteria that allow to select
appropriate recommendation solutions to be applied in various application contexts. Finally, at the
end of this chapter, we recap our findings and give a summary of future research topics in RE (see
Section 3.8 and 3.9).

3.3. Research Methodology

In order to provide decent insight into the current literature of existing recommendation technologies
in the requirements engineering domain, we conducted a systematic analysis following the guidelines
presented by Kitchenham and Charters (Kitchenham and Charters, 2007). At the beginning, we iden-
tified some key search terms that directly correspond to our topic. Examples of such search terms
were “recommender systems”, “recommendation techniques”, “intelligent approaches”, “intelligent
systems”, “requirements engineering”, and “software engineering”. Based on these terms, we gath-
ered relevant papers from six well-known scientific database libraries including Springer Link1, IEEE

1Springer: https://link.springer.com

38

https://link.springer.com

3.3. Research Methodology

Xplore Library2, ACM Digital Library3, Research Gate4, Science Direct5, and Google Scholars6. In
order to further extend our review pool of paper candidates, we also searched for further papers in the
proceedings of the most influential conferences related to software development and RE (see below).
We reviewed the title, the abstract, and the conclusion of these papers in order to select potential can-
didates to be further analyzed and reviewed. Moreover, we selected our candidates according to the
following criteria:

• Studies from prestigious journals, conferences, and workshops, such as conferences on ACM
Recommender Systems (RecSys), ACM World Wide Web (WWW), ACM User Modeling, Adapta-
tion and Personalization (UMAP), IEEE International Requirements Engineering Conference
(RE), IEEE/ACM International Conference on Software Engineering (ICSE), IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), International Working
Conference on Requirements Engineering (REFSQ), ACM International Systems and Software
Product Line Conference (SPLC).

• Only papers that have been published in English and after the year 2000.

• Significant impact in terms of relevance for the RE community as well as the range of influence.

In total, we collected 132 papers that meet all of the mentioned criteria. Among these candidates, we
selected our final candidates based on their content using the following specifications:

• The work presented in this chapter clearly focuses on the topic recommender systems or intelli-
gent techniques in RE.

• The authors’ work presents clear objectives regarding the domain of interest.

• The paper provides interesting findings or conducted studies that show confident tests and good
experimental or evaluation results.

This way, we identified 90 papers (out of the 132 papers) which are of high relevance and show a
strong relationship to the discussion topics of this overview article. The most relevant studies and
contributions of the reviewed papers have been cited or will be discussed in detail in the following
sections of this chapter. Finally, we want to mention that the main contribution of this chapter is to
not only provide a review report, but also a means to classify existing works into different categories
based on taxonomical criteria presented in the remainder of this chapter (see Section 3.6).

2IEEE Xplore Library: https://ieeexplore.ieee.org
3ACM Digital Library: https://dl.acm.org
4Research Gate: https://www.researchgate.net
5Science Direct: https://www.sciencedirect.com
6Google Scholars: https://scholar.google.at

39

https://ieeexplore.ieee.org
https://dl.acm.org
https://www.researchgate.net
https://www.sciencedirect.com
https://scholar.google.at

Chapter 3. Recommender Systems in Requirements Engineering

3.4. Related Work

In order to tackle the challenges described in Section 3.2, a lot of research has been conducted with
respect to the aspects explained in Section 3.2. Different works identify a need for intelligent tool
support to help requirements engineers and stakeholders in the different stages of the RE process
(Castro-Herrera et al., 2009; Mobasher and Cleland-Huang, 2011; Ninaus et al., 2014). In particu-
lar, Mobasher and Cleland-Huang (2011) describe common RE tasks that require decision support
and outline a variety of recommendation concepts applicable to solve different RE-related problems.
Moreover, Hariri et al. (2014) discuss potential uses of RS in RE. The authors describe how RS can be
used to extract requirements (in terms of feature requests) from discussions in online forums. Hariri
et al. (2014) show that RS are suitable tools to discover new useful features in online discussions
which can be included in new (software) products. The authors’ work also sheds light on further
application scenarios for RS in this particular context. For example, RS can propose experts among
a stakeholder group for each forum topic and recommend relevant topics to all stakeholders. Ear-
lier work of Castro-Herrera et al. (2008) also focuses on similar recommendation scenarios where
stakeholders are assigned to different forums where they have to define formal requirements and work
together in a collaborative fashion. In contrast to Hariri et al. (2014), the work of Castro-Herrera et al.
(2008) deals with large-scale software systems and presents combined approaches of data mining and
recommendation techniques to facilitate requirements elicitation in large-scale software projects.

Fucci et al. (2018) present more recent research of general application use cases for RS in RE. The
case studies conducted by Fucci et al. (2018) identify the different areas which should be addressed
by recommendation tools. The authors show that data analytics reduces information overload for indi-
vidual stakeholders and help them to prioritize and even to find new requirements. To grasp the large
amount of data, visualization support is needed for the decision-making process in the planning phase.
In order to meet all of the given deadlines and to provide a better planning environment, tool support
for time-wise project (and requirement) effort estimation is highly valued by companies. Moreover,
RE tools should integrate with currently used upstream tools such as Salesforce7 to better identify
customer needs.

Even though we can observe a strong trend of using RS in the context of RE, the aforementioned
articles and research works primarily focus on some specific RE tasks but do not provide a general
coverage of the entire RE process as a whole. Palomares et al. (2018) describe a general approach
called THE OPENREQ APPROACH that guides the reader on how this issue can be addressed, in order
to provide continuous recommendation support throughout the different phases of the whole RE pro-
cess. The approach described by Palomares et al. (2018) has been successfully applied in the context
of the European research project OPENREQ by different partners from the industry (e.g., SIEMENS,
WINDTRE, and QT) and represents an innovative strategy for further industrial partners to support

7Salesforce: https://www.salesforce.com

40

https://www.salesforce.com

3.4. Related Work

RE in different real-world settings. Apart from the work presented by Palomares et al. (2018), more
earlier work from Felfernig et al. (2013) also outlines common scenarios for RS in RE and the authors
give a brief overview of basic recommendation concepts that can be applied in the different phases
of the RE process. However, it is important to point out that the articles of Palomares et al. (2018)
and Felfernig et al. (2013) only give a very rough overview of RS in RE and cannot convey a detailed
picture of this broad research field. In contrast, this chapter gives a more broad as well as a more de-
tailed and up-to-date overview of state-of-the-art research in this particular research field and presents
existing recommendation technologies as well as results and key findings of modern recommendation
approaches that have been developed in recent years. Moreover, the article also discusses latest re-
search issues that may be of interest for RE practitioners in general as well as researchers working in
the field of RE.

As already mentioned in Section 3.2, recommender systems (described in Section 3.5.1) are an appro-
priate solution to support the decision-driven RE discipline. A clear research agenda for recommender
systems in the context of RE was defined by Maalej and Thurimella (2009). As part of their work, the
authors provide a guideline that explains different approaches recommendation technologies should
follow to assist stakeholders in the RE process. These approaches aim to foster a more efficient iden-
tification, analysis, and management of the requirements by exploiting important characteristics from
the requirement data.

The fact that most RE tasks can only be completed by humans, complicates the usage of intelligent
techniques. Consequently, the definition and elicitation of requirements, the negotiation and imple-
mentation of requirements as well as the quality assurance are still responsibilities for humans, no
matter which technique was chosen. However, there are still remaining phases of the RE process
where support by an intelligent technique may eliminate potential sources of errors. A recommen-
dation approach, for example, may be helpful to suggest requirements to a stakeholder, who already
dealt with the same topic in the past. As for finding dependencies between requirements, natural
language processing (NLP) techniques combined with artificial intelligence algorithms can be used.
Moreover, the creation of a release plan can be considered as a configuration problem. Although there
already exist several individual tools for the different tasks in the RE process, the unique nature of
the process makes it rather inconvenient and complex to combine these tools. INTELLIREQ (Ninaus
et al., 2014) (see Section 3.6.2) addresses this problem and provides a web-based user interface that
offers central access to an intelligent RE recommendation tool suite. Thereby, INTELLIREQ provides
recommendation tools that allow stakeholders to save time and effort by reusing requirements and
unveiling relationships (dependencies) between various requirements. The recommendation concepts
developed for INTELLIREQ are either based on heuristic approaches or use basic content-based and
collaborative filtering methods.

41

Chapter 3. Recommender Systems in Requirements Engineering

Similar to INTELLIREQ, the European research project OPENREQ (Samer et al., 2020; Palomares
et al., 2018) also aims to tackle the aforementioned challenge by providing intelligent tools, ap-
proaches, and techniques for different RE scenarios to the RE community. In contrast to INTELLIREQ,
OPENREQ’s tool suite covers a much broader range of recommendation functionality to support stake-
holders in different RE tasks and aims to update current software engineering methodologies. Further-
more, the work conducted in OPENREQ focuses on systems that go beyond the basic heuristic rules
or search mechanisms provided by INTELLIREQ. The developed systems use more sophisticated rec-
ommendation techniques which are mostly based on traditional as well as modern machine-learning
techniques. As main part of this research project, a requirements engineering platform called OPEN-
REQ!LIVE8 (see Section 3.6.2 and Samer et al., 2020) has been developed. Similar to the RE platform
INTELLIREQ, OPENREQ!LIVE is a free web-based RE platform that allows users to jointly work on
RE projects. The development of OPENREQ!LIVE was inspired by INTELLIREQ and follows the idea
to offer a user-friendly access point to OPENREQ’s recommendation tool suite. The suite includes
recommendation approaches to help stakeholders (1) in the definition of requirements, (2) in the iden-
tification of stakeholders responsible for the evaluation and implementation of a requirement, (3) in
the improvement of the quality of the defined requirements, (4) in the prioritization and evaluation
of requirements, and (5) during release planning. The OPENREQ!LIVE platform allows stakeholders
to take advantage of the full recommendation power provided by the complete tool suite and fosters
the cross-fertilization of ideas between stakeholders. On the platform, stakeholders find all necessary
functionality to create and maintain a requirements model. In OPENREQ!LIVE, a requirements model
consists of releases, requirements, dependencies (between the requirements), and release-related con-
straints such as the maximum capacity of a release (limiting the maximum number of requirements
which can be included in the release) or the release’s deadline (date until when the implementation
of the release must be complete, i.e., all requirements of the release are implemented). OPENREQ’s
developed recommendation approaches constitute a fundamental basis of recent research in the field
of recommender systems to enhance software requirements engineering. The results of OPENREQ as
well as of international research conducted beyond this project represent innovative achievements in
the RE community which are also presented throughout the remainder of this chapter.

3.5. Recommendation Technologies in Requirements Engineering

The rise of RS over the last decade, has led to an extensive development of different recommendation
techniques. RS have also been successfully applied in the RE domain to help stakeholders to solve
common tasks in the different phases of the RE process. In the field of computer science, RS are a
very broad and popular research area. Many international conferences (e.g., ACM RecSys9) focusing
on RS take place every year which receive broad attention as well as support from large companies
and IT giants, such as Google, Amazon, Alibaba, Apple, Huawei, Facebook, or Microsoft. According

8OPENREQ!LIVE: https://github.com/OpenReqEU/openreq-live
9The ACM Conference Series on Recommender Systems: https://recsys.acm.org

42

https://github.com/OpenReqEU/openreq-live
https://recsys.acm.org

3.5. Recommendation Technologies in Requirements Engineering

to Ricci et al. (2010), Mahmood and Ricci (2009), and Burke (2007), a RS can be considered as a
combination of several different software techniques and software tools which suggests items to a
user that are relevant for him or her. Such items represent kinds of objects, e.g., buyable goods, music
albums, news articles, holiday trips, or any other arbitrary kind of an intangible product or service
such as a financial service. Normally, a RS primarily focuses on recommending a specific type of
item as explained by Ricci et al. (2010). Many RS often have to deal with a large number of items and
a fast growing number of users. This also applies to the RE process where software projects typically
consist of a large number of requirements (e.g., these could be the items in some recommendation
scenarios) and also quite often many stakeholders (e.g., they could be the users who receive the rec-
ommendations in some recommendation scenarios) are involved in the process. As a consequence,
RS are predestined to be used in the context of RE and are appropriate tools to improve the quality of
RE processes.

In the remainder of this section, we present different basic recommendation techniques relevant and
applicable to support common RE-related tasks. The recommendation techniques presented in this
section are based on single-user recommendation concepts, such as content-based filtering, collabo-
rative filtering, and knowledge-based recommendation approaches. Additionally, we also explain the
concept of group RS (Masthoff, 2015; Felfernig et al., 2018) which focus on recommending items
to a group of users. The main objective of the discussed recommendation techniques is to improve
and optimize the quality as well as the efficiency in requirements elicitation and management. Apart
from the aforementioned recommendation concepts, there also exists a variety of more specific recom-
mendation approaches, such as time-aware (Campos et al., 2014), attribute-aware (Liu et al., 2019),
context-aware (Haruna et al., 2017), or demographic (Wang et al., 2012) algorithms which, however,
lie out of scope of this chapter and are of minor or limited relevance for RE (despite of some specific
application scenarios). For a more detailed analysis of the presented techniques, we refer to Jannach
et al. (2010).

3.5.1. Basic Recommendation Algorithms in Requirements Engineering

In order to develop a basic understanding of recommendation technologies in general, basic concepts
including content-based filtering as well as collaborative filtering, are explained in this section. Fur-
thermore, we also provide small examples to demonstrate how these concepts can be used in the
context of RE. This background knowledge represents the basis for the remainder of this chapter.

Content-based Approaches

Content-based recommendation approaches are used for the recommendation of content-based items.
Often, content-based items are text documents such as newspaper articles, publications, newsgroup
messages, or web pages (Pazzani and Billsus, 1997; van Meteren and van Someren, 2000; Pazzani and
Billsus, 2007). However, content-based systems can also be effectively applied in the context of other

43

Chapter 3. Recommender Systems in Requirements Engineering

application domains (e.g., songs, movies, travel destinations, persons, products, etc.) where items are
characterized by attributes (e.g., keywords, tags, metadata, title, author, words of description, etc.).

The underlying idea of content-based recommendations is to suggest new (yet unseen) items to users
that are similar to the ones they preferred in the past, i.e., the recommended items share a similar
content with the items previously liked / preferred by the user. The algorithm automatically extracts
relevant feature values from the content of the items (or from the existing meta-information / attributes
attached to the items) the user has previously rated mainly positive or liked. Given this extracted infor-
mation, a user profile is created by the algorithm. The user profile reflects the individual preferences
of the user on a general level (Pazzani and Billsus, 2007) and represents a model explaining the user’s
preferences based on the extracted features. The user profile is used to find and recommend similar
items to the user. The similarity between the user profile and the individual items can be calculated
by using an appropriate similarity metric such as the Sørensen Dice coefficient. The Sørensen Dice
coefficient metric is shown in Formula 3.1. In general, the formula computes the similarity of two sets
by measuring the relation between the number of elements common to both sets and the sum of the
number of elements in each individual set. In this formula, keywords(ua) represents the set of profile
keywords of user ua and keywords(rx) corresponds to the keyword set of requirement rx.

sim(ua,rx) =
2⇤ |keywords(ua)\ keywords(rx)|
|keywords(ua)|+ |keywords(rx)|

(3.1)

In RE, requirements are usually described using natural language and characterized by additional
attributes, such as the effort to implement the requirement, the general type (non-functional vs. func-
tional), or a more specific category (technical feature, performance requirement, financial require-
ment, etc.). Hence, requirements can be interpreted as text-documents with meta-data (the attributes).
Due to this reason, content-based approaches represent (in many cases) the most appropriate tech-
nique for requirements-related recommendation tasks. For example, a content-based recommendation
approach could support stakeholders during the initial phase of a project when new requirements
are defined. Such a content-based approach could help to reuse requirements from past (or other
active) projects in the current project by recommending the relevant requirements related to the cur-
rent project. This helps to avoid the redefinition of requirements which have already been defined in
other projects by reusing these requirements. Content-based RS can also be used to identify relevant
requirements for a stakeholder which are similar to the requirements the stakeholder has already in-
vestigated in the past. In both of the mentioned examples, a content-based RS can help to mitigate the
risk of overseeing important requirements which saves time, reduces costs, and keeps the quality of
the development on a high level.

Table 3.1 depicts a basic example consisting of two software projects. In this example, project B
represents a new project (the current project) which deals with the development of a web interface to

44

3.5. Recommendation Technologies in Requirements Engineering

control a smart home infrastructure. This project is currently undergoing the requirements definition
and elicitation phase and we assume that the stakeholders have already defined two requirements (1
and 2) to be included in project B. Project A is an already completed software project and is related
to the implementation of an analytics software for a sports watch. For demonstration purposes, only
a small set of example requirements for both projects is shown. In this scenario, a content-based
recommender system could recommend requirement 2 and 5 from project A to be included in the
current project B since both requirements are related to the description / content of requirement 1 in
project B. Moreover, the recommender could also propose to include requirement 1 from project A in
the current project as there also exists a relation between this one and the requirement 2 of project B.

Collaborative Filtering Approaches

Collaborative filtering represents the most popular recommendation approach. In contrast to content-
based recommendation, collaborative filtering follows the approach to model the concept of word-
of-mouth suggestions between like-minded users (Ekstrand et al., 2011; Goldberg et al., 1992). In
fact, one can observe that people usually tend to base their decisions on recommendations from other
persons they know and trust, apart from their own experiences in their everyday lives. The authors of
Tapestry (Goldberg et al., 1992), which was the first online RS, coined the term collaborative filtering
and defined it as a concept based on social collaboration between users. Based on the behavior of
like-minded users, new (yet unseen) items are recommended to the active / current user. For example,
assuming that two users rated similar items in a similar fashion in the past, a recommender system
based on collaborative filtering would recommend new items to one user that the other user has al-
ready rated positively. In other words, the approach first tries to find users who share similar tastes
with the current user by considering those users who prefer the same items as the current user, and
then recommends other items that are also preferred by the similar users but have not been viewed by
the current user so far.

Collaborative filtering uses the concept of a rating matrix R (see Definition 3.2), also known as utility
matrix or user-item matrix, for describing the user preferences. R contains all user-item interactions
(explicit or implicit ratings) and represents a m⇥n matrix, where m denotes the number of users and
n represents the number of items. We define the item i as an element in the set of all items I (i 2 I)
and the user u as an element of the set of all users U (u 2U). The element ru,i of the m⇥n matrix R
represents the rating of the item i by user u. Using collaborative filtering, the rating ru,i of item i for
the current user u is estimated based on the ratings r(u0, i) assigned to the same item i by those users
u0 2U who are similar (in terms of their rating preferences) to the current user u.

The collaborative filtering algorithm is responsible for finding similar users and for the prediction of
ratings. There exist two different types of collaborative filtering approaches which are neighborhood-

45

Chapter 3. Recommender Systems in Requirements Engineering

Project A

(past project)
Smartphone Analytics Software for a Sports Watch

ID Requirement Description

1 For data privacy and security reasons, the software requires user authen-
tication. This includes the registration of new users, login and account
management. Users should be able to reset their password and to change
their username and password.

2 The application requires a central database. The data should be stored in
the database. The database storage is used for saving collected informa-
tion.

3 For evaluating recorded training data, an evaluation algorithm is required. The
software requires the connection and the access to the clock’s internal memory.

4 Based on the data on height, weight, body fat, age and gender, the software
should be able to calculate the ideal BMI for a user.

5 The software should be able to automatically transfer, backup and syn-
chronize data collected by the device once a wireless connection has been
established.

Project B

(current project)
Web Interface to Control a Smart Home Infrastructure

ID Requirement Description

1 Using wireless communication, sensor values can be read and saved in the
database.

2 The user should be able to access his personal data in a restricted way by taking
into account data privacy issues.

Table 3.1.: Basic example to demonstrate the potential of content-based recommendation approaches
that foster the reuse of requirements in RE. In this example, the requirements 1, 2, and 5
(highlighted in bold) of an existing project A are recommended to be included in a new
project which is project B.

based approaches and model-based approaches10. Neighborhood-based (also known as memory-
based) collaborative filtering approaches generate recommendations by heuristically analyzing the
utility matrix. Neighborhood-based approaches aim to find similar users (or items) based on similar
tastes (ratings) with the current user (or current item). The underlying idea is that if users share the

10To limit the scope of this chapter, our discussion focuses on the explanation of collaborative filtering on the basis of
neighborhood-based approaches.

46

3.5. Recommendation Technologies in Requirements Engineering

same interests in the past, they will also have similar tastes / interests in the future. Items consumed
by similar users are then recommended to the current user. Examples of commonly used similarity
metrics (in this context) are the Cosine similarity and the Pearson correlation coefficient. The Cosine
similarity (see Formula 3.3) describes the angle between two vectors in Euclidean space. In our case,
the two vectors are the user vectors (~u and ~v) that consist of the item-ratings of user u and user v,
respectively. Iu as well as Iv refer to the two sets of all items that have been rated by user u and v,
respectively. The Pearson correlation measure (see Formula 3.4) is a statistical metric that expresses
the linear correlation between two (statistical) variables which are, in this case, the two user-vectors~u
and~v. In Formula 3.4, Iuv represents the set of items that have been rated by both users.

R =

0

BBBB@

r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn

1

CCCCA
(3.2)

s(~u,~v) = cos(~u,~v) =
~u ·~v

||~u||⇥ ||~v|| (3.3)

s(~u,~v) =
Â

i2Iuv

(ru,i � r̄u)(rv,i � r̄v)

r
Â

i2Iuv

(ru,i � r̄u)2 Â
i2Iuv

(rv,i � r̄v)2
(3.4)

Table 3.2 shows a basic example of a simplified requirements evaluation scenario. In this example,
we demonstrate how collaborative filtering can be used to assist stakeholders in the finding of rele-
vant requirements. For simplicity, we assume that a collection of 4 requirements is evaluated by 4
stakeholders using 5-star ratings. In this example, the ratings indicate the preference a stakeholder
has for a certain requirement. Using standard collaborative filtering (i.e., user-based neighborhood
collaborative filtering) and assuming that Bob is our current / active user, we would first try to find
similar / neighbor users by comparing the similarity. In this example, Bob has only evaluated require-
ment 2 and requirement 3. Both requirements have also been evaluated by Ann and Chris, whereas
Susan has only evaluated requirement 3 in common with Bob. Since Susan’s rating of requirement 3
strongly differs from Bob’s rating, she cannot be considered as a neighbor / similar user. However,
Ann has rated both requirements in a quite similar fashion than Bob, and Chris has given the same
ratings for both requirements as Bob. Hence, Ann and Chris can be considered as potential neighbors.
According to Table 3.2, these potential neighbors (Ann and Chris) have also given a positive feedback
for requirement 4. Consequently, the algorithm would recommend Bob to take a look at requirement 4.

Note that the ratings shown in Table 3.2 just represent a basic scenario where stakeholders provided
explicit feedback to requirements in terms of ratings. However, in practice, such feedback could also

47

Chapter 3. Recommender Systems in Requirements Engineering

be implicitly derived from log data (e.g., the number of times a requirement has been viewed by the
stakeholder) that expresses the degree of preference a stakeholder may have for a certain requirement
(for more details on implicit feedback, we refer to (Hu et al., 2008)).

The main advantage of a collaborative-filtering-based approach over a content-based filtering ap-
proach is that this approach does not rely on the content of the requirements (textual description
of the requirements, attachments, etc.) and can be applied once a sufficient amount of rating data ex-
ists. Moreover, content-based approaches do not support serendipity aspects (Kotkov et al., 2016) (see
also Section 3.7). This means that only items / requirements can be recommended that share a similar
content with the already rated items, but not items / requirements which are completely unrelated to
the items / requirements that have been rated before. However, collaborative filtering is capable of
providing serendipity-based recommendations which represents a significant advantage over standard
content-based recommendation approaches. Hence, collaborative filtering helps to provide more di-
versity in the recommendations and empowers stakeholders to explore a broader set of potentially
relevant requirements which are not related to each other on the level of their (descriptive) content.

Stakeholder Requirement 1 Requirement 2 Requirement 3 Requirement 4
Ann - 5 4 5
Chris 1 4 5 5
Susan 3 - 2 -
Bob - 4 5 -

Table 3.2.: Basic example to demonstrate the potential of collaborative filtering approaches in RE.
Ann and Chris have rated the same requirements (requirement 2 and 3) in a similar fashion
as the active user Bob. Hence, Ann and Chris are considered as similar / neighbor users
and requirement 4 (which is highlighted in bold and has been highly rated by them but has
not been seen by Bob yet) is recommended to Bob.

3.5.2. Advanced Recommendation Algorithms in Requirements Engineering

In addition to the already presented concepts, more specific recommendation techniques are explained
in the remainder of this section. These techniques represent approaches that are applicable in more
complex recommendation scenarios. To demonstrate the functionality of these approaches for RE, we
provide basic examples along with detailed explanations.

Knowledge-based Recommendation

In sharp contrast to the previously discussed approaches, knowledge-based systems (Felfernig et al.,
2014) are usually used to recommend high-involvement or complex items such as digital cameras,
financial services, or tourist destinations. In contrast to high-involvement, low-involvement items are

48

3.5. Recommendation Technologies in Requirements Engineering

typically often consumed or bought items in the everyday life, which require little decision effort
from the user. Examples thereof are consumer goods (such as books, mobile phones, etc.), consumer
services (such as music songs, cinema movies, etc.), food (such as milk, bread, toothpicks, etc.), and
any other kind of mass-produced goods (e.g., toys for children, kitchenware, etc.), for which there are
no major differences in quality. When deciding for such items, the user does not have to deal with
the alternatives in detail so much. Often such low-involvement items also have a low price and the
consequences of a wrong decision taken by the user are very limited. With high-involvement items,
the willingness to obtain information is much higher and often vital for the decision taken by the
user. One example is the purchase of a new car, since cars are very costly (when compared to most
low-involvement items) and often seen as status symbols. Further examples include the purchase of a
new house, or important business decisions taken at large companies. In the case of high-involvement
items, the consequences of a wrong decision can be very serious and sometimes even unforeseeable
(e.g., a wrong impactful business decision could result in a situation where the company goes out
of business). As already mentioned before, the focus of knowledge-based systems (Felfernig et al.,
2014) lies on high-involvement items. Normally, for such items no sufficient and no up-to-date pur-
chase data as well as rating data is available as these items are usually not purchased often. Thereby,
the knowledge-based algorithm generates recommendations based on predefined recommendation set-
tings / rules (including user preferences) as well as specific domain knowledge and meta-information
about the item assortment.

Formally explained, a RS (in general) can be interpreted as any system which is used in a large space
of possible options to guide a user in a personalized fashion to objects that are potentially interest-
ing or useful for the user (Burke et al., 2011; Ninaus et al., 2014). However, a RS in terms of a
knowledge-based recommender, can also be a system which produces such objects / solutions as main
output / result (Burke, 2000). Knowledge-based RS are of special interest to be applied in the context
of RE. In this context, a generated solution could be a release plan that satisfies a given set of con-
straints, such as interdependencies between the requirements, the maximum amount of requirements
that can be assigned to each release, or the release deadline until when all requirements of the release
have to be implemented.

Table 3.3 demonstrates an example scenario for the generation of a release plan. In this simplified
example, a release plan solution of a software project is determined using a knowledge-based RS.
The knowledge-based RS works as a configuration system and receives a requirements model as input
(see left column). The requirements model consists of 4 requirements, 2 releases, and 3 constraints.
One constraint ”Requirement 2 ! Requirement 4” describes an interdepency relationship between re-
quirement 2 and requirement 4. In this case, the notation ”Requirement 2 ! Requirement 4” expresses
that requirement 2 cannot be implemented before requirement 4 has been implemented. In order to
satisfy this constraint, a release plan must assure that requirement 4 is part of an earlier release than

49

Chapter 3. Recommender Systems in Requirements Engineering

requirement 2. The effort of the implementation of a requirement is usually estimated by experts. In
this example, the effort to solve each requirement is stated in working hours. The priorities of the
requirements signify how relevant and urgent the requirements are for the project. Considering this
information, a release plan should typically have all high-priority requirements in early releases and
all lower prioritized requirements in later releases. Moreover, there exist two further release-related
constraints in this model which define the maximum capacity of both releases in working hours (100h
for release 1 and 150h for release 2). The size of a release’s maximum capacity depends on different
factors, such as the number of stakeholders in a project, their availability to work in the project, the
date / dateline of the release, etc. The maximum capacity of a release strictly limits the maximum
working effort (in hours) that can be spent by the stakeholders to work on the release such that the
deadline of the release can be fulfilled. Depending on this constraint, the decision which requirements
and how many requirements (e.g., many low effort requirements vs. a few high effort requirements)
can be assigned to the release is limited.

A release plan solution determined by a knowledge-based configuration system for the given require-
ments model is shown on the right side of Table 3.3. The proposed release plan consists of 2 releases
containing 2 requirements that satisfy all 3 constraints. The release plan guarantees that the imple-
mentation of requirement 4 is complete before requirement 2 gets implemented. Furthermore, the
maximum capacities of both releases are not exceeded by the proposed requirement assignment (ef-
fort to implement release 1: 50h [Req. 4] + 30h [Req. 1] = 80h; effort to implement release 2: 90h
[Req. 2] + 40h [Req. 3] = 130h). Finally, the proposed release plan also aims to satisfy the individual
priorities of the requirements as best as possible (the high-priority [Req. 4] and one middle-priority
requirement [Req. 1] are part of the earlier release).

Input: Output (proposed release plan):

Requirements: Release 1 (Total effort: 80h)

- Req. 1 (Effort: 30h, Priority: MIDDLE) - Req. 4 (Effort: 50h, Priority: HIGH)
- Req. 2 (Effort: 90h, Priority: MIDDLE) - Req. 1 (Effort: 30h, Priority: MIDDLE)
- Req. 3 (Effort: 40h, Priority: LOW) Release 2 (Total effort: 130h)
- Req. 4 (Effort: 50h, Priority: HIGH)

Dependencies: - Req. 2 (Effort: 90h, Priority: MIDDLE)
- Req. 3 (Effort: 40h, Priority: LOW)

- Req. 2 ! Req. 4

Releases:

- Release 1 (Maximum Capacity: 100h)
- Release 2 (Maximum Capacity: 150h)

Table 3.3.: Basic example of a recommended release plan (requirements are abbreviated as ”Req.”)
considering requirement- and release-related constraints such as requirement effort, re-
quirement priority, interdependencies between the requirements, and the maximum capac-
ity of the releases

50

3.5. Recommendation Technologies in Requirements Engineering

Group Recommendation Approaches

In general, there exist two different types of group recommendation approaches. The first type are
group recommender systems that extend the basic concept of single-user recommender systems and
are able to discover new (yet) unseen items. Basically, this type of group recommender systems can ei-
ther (a) utilize basic single-user recommendation algorithms to combine the (single-user) recommen-
dations for each group member to a single recommendation list presented to the group, or (b) utilize
these single-user recommendation algorithms to generate group recommendations given a user profile
representing the preferences of all group members (instead of a single user). In both cases, already
discussed (see also Section 3.5.1) single-user recommendation algorithms (such as content-based or
collaborative filtering algorithms) are applied. One application scenario of such systems can be the
recommendation of a new holiday destination to a tourist group. However, such systems are usually of
limited interest for RE since there hardly exists any use-case in RE where a group of users / stakehold-
ers wants to jointly discover new items. Due to this reason, this type of group recommender systems
is not further discussed in this section and for more details we refer to Felfernig et al. (2018).

The second type of group recommender systems are systems that do not recommend new (yet) unseen
items to a user, but provide a prioritization of already seen / known items to a group of users. These
kind of group recommenders are applied in scenarios where a group of users has to decide for and
choose one item among a list of different candidate items (e.g., different family members who decide
on the travel destination for their next vacation trip among different candidate destinations). In order
to generate a prioritization, the system requires from each group member to rate all candidate items.
The focus of such group recommender systems does not lie on the discovery of new items for a user,
but on deciding for an item among a set of known and rated items. The purpose of such group recom-
mender systems is to generate and propose a prioritized list of items to the user, in order to help the
user in making the decision of selecting the final candidate. In this context, the recommendations are
often made using group decision heuristics (Masthoff, 2015; Felfernig et al., 2018). For example, the
heuristic least misery tries to find recommendable items for the group by ignoring as much as possible
those items that are disliked the most by the group members (see Formula 3.5). In contrast to that,
most pleasure (see Formula 3.6) is another heuristic that recommends the item with the highest of all
individual ratings, but does not consider the number of group members who really like the item.

LMS = argmax
(r2I)

(min(eval(r))) (3.5)

MPL = argmax
(r2I)

(max(eval(r))) (3.6)

51

Chapter 3. Recommender Systems in Requirements Engineering

The concept of multi-attribute utility theory (MAUT) (Ninaus et al., 2014; Felfernig et al., 2018; Atas
et al., 2018; Samer et al., 2020) represents an alternative to the aforementioned group decision heuris-
tics. Utility-based recommendation approaches utilize the concept of combining multiple attributes in
a linear fashion. The attributes (also known as interest dimensions) of an item are rated individually
by each group member. In terms of RE, examples of such attributes are the potential profit (p) of
an implemented requirement, the effort (e) related to the implementation of the requirement, or the
risk (r) that the requirement cannot be implemented. Using the attribute-ratings provided by all group
members for a requirement (item), MAUT-based group recommenders can determine the priority of
the requirement by calculating its utility.

Formula 3.7 shows the basic calculation of a requirement’s utility for a single user s using a linear
combination of the user’s attribute-ratings. This linear combination ob the attribute-ratings can be
interpreted as a weighted average of the attribute-ratings where the attributes (interest dimensions)
have different weights. These weights are called importance-weights, since every importance-weight
imp(d) of an attribute d defines the degree of importance the attribute d has. The importance-weights
can either be learned from historic data or manually defined by experts. In Formula 3.7, eval(r,d)
refers to the attribute-rating of the attribute d for requirement r provided by user s and imp(d) corre-
sponds to the importance of attribute d.

util(r,s) = Âd2D eval(r,d)⇤ imp(d)
Âd2D imp(d)

(3.7)

Formula 3.8 extends Formula 3.7 and explains the concept of MAUT for a group of users. In this
formula, the set of group members is defined as S. Each attribute-rating of every individual group
member (s 2 S) is also weighted by another weight factor which is called the expertise weight w(s,d)
and represents the skill-level of a stakeholder s for attribute d. Similar to the dimension-weights, all
expertise weights can either be learned from historic data or manually defined by the project man-
agers. In order to determine a utility value for the requirement r (i.e., util(r)), the weighted sum of all
attribute-ratings provided by the group members is divided by the number of group members |S|.

util(r) =
Âs2S

Âd2D eval(r,s,d)⇤imp(d)⇤w(s,d)
Âd2D imp(d)⇤w(s,d)

|S|
(3.8)

Table 3.4 presents an overview of a basic group-based requirements evaluation example. In this ex-
ample, three stakeholders evaluate three requirements {r1,r2,r3} with regard to the three attributes
profit, effort, and risk. The expertise of the three stakeholders (skill-level) w(s,d) is defined on the
level of the three interest dimensions (see Table 3.5). The values of the stakeholders’ skill-levels lie

52

3.5. Recommendation Technologies in Requirements Engineering

in the range between 0 and 1, and can either be defined by the stakeholders or automatically deter-
mined from previous evaluation activities. All attribute-ratings lie in the range between 1 and 5. In
terms of profit, a rating value of 5 indicates that the requirement highly contributes to the profit of
the project, whereas a rating value of 1 signifies that the requirement has a very low impact on the
project’s profit. Likewise, the attribute risk reflects how risky the non consideration of the requirement
is for the project. A high rating value for the attribute risk expresses a higher risk for the project and
vice versa. In contrast, a rating value of 1 for effort means that the effort related to the implementa-
tion of the requirement is very high, whereas a rating value of 5 corresponds to a minimal amount of
implementation effort.

Stakeholder r1 r2 r3
profit effort risk profit effort risk profit effort risk

Susan 4 4 2 4 5 5 2 5 5
Patrick 2 5 4 5 4 5 2 5 4
Olivia 5 3 5 5 3 5 1 5 5

Utility value (priority) 4.05 4.71 3.83
Priority ranking 2 1 3

Table 3.4.: Three stakeholders (S={Ann, Chris, Susan}) evaluated the requirements {r1,r2,r3} with
regard to the attributes profit, effort, and risk. The calculation of the utility values is based
on Formula 3.8. The priority ranking defines the suggested ranking of the requirements
based on their determined utility.

In order to recommend a prioritization of the requirements to the group (in terms of a ranked list), the
utility value for each requirement is calculated using Formula 3.8. For each requirement, we apply
Formula 3.8 to the attribute-ratings shown in Table 3.4 by using the expertise weights from Table 3.5
and different importance weights for each attribute. In this example, we use the importance weights
imp(”profit”)=0.4, imp(”effort”)=0.3, imp(”risk”)=0.5 which can either be learned from historic
data or manually defined by experts (as already mentioned before). The calculated utility values for
the requirements r1,r2,r3 are shown in Table 3.4. After the calculation of the utility values for all
requirements, the group recommender system suggests a list of prioritized requirements sorted by
their utility values in reverse order (a high utility / priority corresponds to a low rank in the prioritized
list and vice versa). By using this basic concept of requirements prioritization (based on the group
member attribute-ratings), the group recommender system is able to take into account as much as pos-
sible the preferences of the whole group. In this example, the recommended sequence of prioritized
requirements is [r2, r1, r3] (see last row of Table 3.4) which represents a recommendation that the
three requirements should be implemented in this chronological order (r2, then r1 and finally r3).

53

Chapter 3. Recommender Systems in Requirements Engineering

Stakeholder profit effort risk
Susan 0.2 0.8 0.1
Patrick 0.2 0.3 0.3
Olivia 0.5 0.3 0.4

Table 3.5.: Expertise level w(s,d) of the individual stakeholders in the range between 0.0 (minimum)
and 1.0 (maximum) with respect to the interest dimensions profit, effort, and risk.

Further Approaches and Extensions

Liquid Democracy. A more sophisticated approach which recently emerged in the RE commu-
nity and aims to make the preference elicitation of the previously discussed group recommendation
approaches more flexible, is based on the idea of liquid democracy. In the context of RE, liquid
democracy is a vote-delegation concept that extends the existing group recommendation approaches
by allowing users / stakeholders to transfer their votes to other experts. In general, group recom-
mendation systems are more powerful tools to evaluate and prioritize requirements (than single-user
recommenders) as they allow to combine the expertise of many stakeholders (group members). One
reason for this is that stakeholders have a varying background knowledge and different viewpoints.
Existing research shows that group-decision tasks (such as the evaluation and prioritization of re-
quirements) can benefit from this variety of background knowledge and opinions (Johann and Maalej,
2015; Zhang and Zhou, 2017; Atas et al., 2018; Samer et al., 2020). However, not every stakeholder
can have the full expertise to evaluate requirements with regard to all different aspects. In reference
to the previously shown group recommendation example in Section 3.5.2 (see Tables 3.4 and 3.5),
liquid democracy allows stakeholders to delegate their votes / ratings either for a certain attribute (in-
terest dimension) or a requirement to another stakeholder. In particular, a vote transfer on the level of
attributes can provide a highly qualitative benefit to the entire requirements evaluation process. For
example, if there is a software developer called Olivia in a software project who does not feel confi-
dent to evaluate / rate requirements with regard to the attribute profit, then she can decide to delegate
the vote for this certain attribute to the project manager Susan. Moreover, Susan can further decide
to delegate all her votes for the attribute effort to a more technical person such as Olivia. The dele-
gation of all attribute-votes for a certain requirement also represents another option towards a more
fruitful evaluation of requirements in group-based environments. This allows stakeholders who can-
not rate a requirement (for any reason), to increase the voting power of an expert by delegating all
his / her attribute-votes for the requirement to this expert instead of only abstaining from voting the
requirement without delegating the attribute-votes to the expert.
The most effective way to consider attribute- or requirement-specific vote delegations in a simple
manner, is by controlling the expertise weights of the recipient stakeholder who receives a vote. At
the beginning of the requirements evaluation process, the expertise weights of all stakeholders (S)
can be initialized based on the different expertise levels the stakeholders have for the corresponding
attributes. As already mentioned in Section 3.5.2, these (initial) expertise weights can be learned

54

3.5. Recommendation Technologies in Requirements Engineering

from historic data or manually defined by project managers. In the most simplest case, all initial
expertise weights can also be set to 1 for all stakeholders and solely be adapted / learned by using liquid
democracy. Regardless of the initialization, the procedure of expertise weight adaptations remains the
same. Whenever a stakeholder s transfers a vote to stakeholder s0 for a certain attribute d, then the
expertise weight w(s0,d) of s0 is incremented by the value w(s,d) which is the expertise weight of
stakeholder s for attribute d. After that, the stakeholder s is no longer allowed by the system to
evaluate requirements with regard to attribute d. Moreover, stakeholder s0 who received a vote from
stakeholder s for a certain attribute d can decide to further delegate the vote (now including the vote
of s and s0) to another stakeholder. This delegation process can be repeated any number of times by
the next recipient and all delegations can be visualized in a directed graph.
Figure 3.1 presents a basic example of such a vote-delegation graph showing an entire chain of vote
delegations. Each node in this graph corresponds to a stakeholder and every directed edge between
two stakeholder-nodes represents a delegated vote. The graph depicts the complete vote-delegation
hierarchy for a certain attribute (in case of delegations made on the level of attributes) or a certain re-
quirement (in case of delegations made on the level of requirements). In order to allow the calculation
of the expertise weight for the (last) recipient-stakeholder (s1 in this example), the delegation mech-
anism must always ensure that no recipient-stakeholder (i.e., s4, s2, s3, and s1) can delegate his / her
vote back to any of the previous stakeholders in the graph. This guarantees that the vote-delegation
graph will never have cycles and always keeps its (directed) acyclic graph structure. A simple mecha-
nism that can detect undesired back-votes is based on the depth-first search algorithm (Tarjan, 1971).
The mechanism must be triggered before a stakeholder delegates the vote and it checks whether the
recipient-stakeholder (selected by the delegating person) already appears in the delegation-graph of
the delegating person. Since every stakeholder can only delegate his / her vote once, this directed
acyclic graph always represents a directed tree regardless of a stakeholder’s delegation behavior.
Given this directed acyclic vote-delegation tree structure, the calculation of the expertise weight is
a trivial task where only the expertise weight of the last recipient stakeholder must be calculated.
The expertise weight of the last recipient stakeholder is the sum of the initial expertise weights of
all stakeholders who delegated the vote either directly or indirectly to this (last) recipient. In case of
Figure 3.1, stakeholder s1 is the (last) recipient. The expertise weight of s1 is the sum of the initial
weights of all stakeholders (stakeholders s2 � s6) who delegated the vote directly or indirectly to s1.
Assuming that the initial weights of all stakeholders are 1 at the beginning, the expertise weight of s1

is 6 (i.e., w(s1,d) = 6).
The utility of the requirements and the prioritization (list of requirements ranked by their utility value)
can be determined by using Formula 3.8, the attribute-ratings provided by the voters, and the adapted
expertise weights. In case of requirement-specific vote delegations, the same procedure is applied,
however not only for a single expertise weight but for all expertise weights of s. Moreover, in this
case, all expertise weights of the recipient stakeholder s0 are only updated for the corresponding re-
quirement and not in general.

55

Chapter 3. Recommender Systems in Requirements Engineering

Figure 3.1.: Liquid democracy. Example of a vote-delegation tree for a single attribute or a single
requirement, respectively. All vote-transfers are visualized as (directed) edges and all
stakeholders are represented as nodes.

Supervised Classification. In many of today’s scenarios, recommender systems have to cope with a
growing number of users and a growing amount of user activity. This leads to situations where the
capacity limits of standard content-based and collaborative filtering algorithms are typically reached.
For that reason, content-based and collaborative filtering algorithms have to utilize more efficient and
powerful learning concepts such as supervised classification. In general, supervised classification
belongs to the category of supervised machine learning approaches. Algorithms based on supervised
classification can range from traditional machine learning algorithms (such as Logistic Regression,
Random Forest, Decision Tree, Support Vector Machines, etc.) to modern deep learning algorithms
which utilize the concept of deep neural networks. Regardless of the used algorithm, the algorithm
builds a model that learns a function from given pairs of input samples and their corresponding output
labels. The samples usually refer to entities such as items or objects (e.g., products, newspaper articles,
movies, etc.). Each sample consists of features (characteristic information) and a label (the class). The
features are (quantitative or qualitative) numeric values and can be mathematically described using a
vector representation (the feature vector).
Formula 3.9 expresses the approach of classification in terms of a mathematical representation, where
the function fW is a parametrized function that refers to the learned prediction model with parameters
W . Formally explained, the learned prediction model represents a mathematical function fW which
receives a multidimensional feature vector of a sample (~x 2 RD) as input and returns a predicted
label (ŷ 2 {0, ...,k � 1}). The supervised learning algorithm should produce a function f : RD !
{0, ...,k� 1} given the samples in terms of feature vectors (~x 2 RD) and their corresponding labels
(y 2 {0, ...,k� 1}) such that the prediction model learns the association to which of the k categories
(classes) each of the given samples belong to (i.e., ŷ ⇡ y). This is achieved by adapting the entries of
the model parameter matrix W 2 RIxJ during training.

ŷ = fW (~x) (3.9)

56

3.5. Recommendation Technologies in Requirements Engineering

The goal of supervised classification is that after several arithmetic operations with different inputs
and outputs / labels, the model is trained to create associations between the samples and their labels. In
order to work, supervised classification algorithms require a label assigned to every sample. Examples
of supervised classification applications are diverse and include email spam detection, handwriting
recognition, object or face recognition in images, and speech recognition.
In terms of RE, supervised classification is typically used for ambiguity detection in requirements
to find ambiguous, unclear, or malformed descriptions in the text of the requirements. Another RE-
related use case represents sentiment analysis, which can be used, for example, to automatically deter-
mine and prioritize more critical requirements rather than less critical ones. Moreover, classification
can also be used to classify requirements based on their type (e.g., non-functional requirements re-
lated to project-specific details, requirements that describe software bugs, requirements that describe
technical features, etc.).
As mentioned, the use of supervised classification requires the existence of labeled data samples.
Sometimes, the labels are already available or they can be automatically collected together with the
sample data in some real-world scenarios. However, in many practical scenarios, the samples have
to be manually labeled by humans. The manual labelling of a large number of samples is often too
expensive and not practical due to a limited amount of available human power, time, and budget re-
sources. In such cases, it is a common way to apply unsupervised machine learning techniques such
as clustering.

Clustering. Another recommendation technique is recommendation based on clustering. Clustering
is a method which falls into the category of unsupervised machine learning approaches. In general,
clustering is used to identify similarity structures in (usually relatively large) databases. In sharp con-
trast to supervised classification techniques which require labeled data samples that are assigned to
existing classes, clustering does not depend on the previous knowledge of the classes to which the
samples belong to. Clustering works with unlabeled data samples (representing items) and it groups
together the similar samples based on the similarity of characteristic information (e.g., attributes, tex-
tual content, etc.) related to the items. Basically, clustering represents an agglomeration analysis of a
set of different items / objects, where these items are compared based on a similarity score, and closely
related (i.e., similar) items are grouped together. The groups of similar items that are found in this
way are called clusters and the assignment of these groups is referred to as clustering. There exists
a variety of different clustering algorithms which are based on different modelling approaches. Ex-
amples thereof include graph-theoretical, hierarchical, partitioning, fuzzy, or optimizing models (Xu
and Tian, 2015). The numerous clustering algorithms primarily differ in terms of similarity, their
cluster model, their algorithmic procedure, and the tolerance to strongly varying data. Under certain
circumstances, a clustering algorithm can reproduce existing knowledge by finding groups that refer
to known classes or categories (for example, divide personal data into the well-known groups ”fe-
male” and ”male”), or also generate groups that may not directly refer to known classes or categories.

57

Chapter 3. Recommender Systems in Requirements Engineering

In the latter case, the determined groups / clusters can often not be described verbally (e.g., ”female
persons”) and common characteristics of the clusters can usually only be identified through a subse-
quent analysis. When using cluster analysis, it is often necessary to try different methods and different
parameters, to preprocess the data and, for example, to select or omit some attributes / dimensions.
The clusters determined using clustering can be used, for example, for market segmentation or to
recognize patterns in images.
In the context of RE, software projects often consist of a large assortment of unlabeled requirements
which belong to a certain category / type. Clustering-based approaches help requirements engineers to
automatically group the unlabeled requirements based on their (textual) content, to different groups or
requirement types for further evaluation. This allows stakeholders not only to find duplicates, depen-
dencies (between requirements), and outliers more easily, but also to develop a better understanding
on how the pool of requirements is structured (Cleland-Huang et al., 2009; Deshpande et al., 2019;
Samer et al., 2019). Another use case of clustering in RE is to automatically group similar stakehold-
ers for the evaluation of requirements and to recommend relevant requirements to these groups, which
are related to the skills of these stakeholders. This way, clustering can be interpreted as a method that
extends the set of the presented recommendation techniques.

3.6. Application Areas of Recommenders in Requirements Engineering

In this section, we discuss different recommendation approaches and tools which are related to tra-
ditional RE as well as to more agile and open-source oriented areas of application. These tools are
based on the previously discussed recommendation technologies which have been presented in Sec-
tion 3.5. Moreover, we present two representative RE platforms which combine the functionality of
the selected set of existing tools and provide a single user interface for stakeholders to access these
RE tools.

3.6.1. Recommenders in Traditional Requirements Engineering

Traditional RE (Nuseibeh and Easterbrook, 2000) follows a predefined procedure that can be re-
ferred to as the RE process. This procedure includes different phases / activities (see also Felfernig
et al., 2013). In the literature, these activities are usually described as being independent and chrono-
logically ordered. However, in practice, these activities are often iterative, repetitive, and interleaved
phases that can be distributed throughout the entire development life cycle of a software product. This
subsection provides an overview of recommendation approaches and their application areas in the RE
process. Table 3.6 presents an overview of these recommendation approaches grouped by the different
RE activities in which these approaches can typically be applied.

Definition And Elicitation of Requirements In the initial phase of the RE process, requirements,
which are potentially relevant for the software project, are collected by the different stakeholders.

58

3.6. Application Areas of Recommenders in Requirements Engineering

Activities Paper references

I. Definition & Elici-
tation

Navarro-Almanza et al. (2017), Ivan et al. (2016), Kanchev et al.
(2017b), Slankas and Williams (2013), Falkner et al. (2019), Winkler and
Vogelsang (2016), Goldin and Berry (2015), Oriol et al. (2018), Lu and
Liang (2017), Baker et al. (2019), Casamayor et al. (2010), Binkhonain
and Zhao (2019), Khan et al. (2020), Dhinakaran et al. (2018), Abual-
haija et al. (2019), Dalpiaz et al. (2019), Stanik and Maalej (2019),
Kanchev et al. (2017a), Johann et al. (2017), Kurtanović and Maalej
(2017), Khan et al. (2019), Stanik et al. (2019), Dekhtyar and Fong
(2017), Groen et al. (2015), Guzman et al. (2017), Mahmoud (2015),
Tizard et al. (2019), Abad et al. (2017), Williams and Mahmoud (2017),
Dumitru et al. (2011)

II. Analysis & Nego-
tiation

Castro-Herrera et al. (2008), Samer et al. (2018), Mobasher and Cleland-
Huang (2011), Kifetew et al. (2017), Sadiq et al. (2017), Ninaus et al.
(2014), Lim et al. (2010), Karlsson (1996), Castro-Herrera and Cleland-
Huang (2010), Felfernig and Ninaus (2012), Samer et al. (2019), Ruhe
et al. (2002), Samer et al. (2020), Felfernig et al. (2018), Perini et al.
(2013), Duan et al. (2009), Stanik et al. (2018), Tonella et al. (2013)

III. Quality Assur-
ance

Deshpande et al. (2019), Danylenko and Löwe (2012), Atas et al. (2018),
Linsbauer et al. (2013), Tiwari and Laddha (2017), Parra et al. (2018),
Fitzgerald et al. (2011), Mezghani et al. (2019), Ninaus et al. (2014),
Mahmoud and Niu (2011), Felfernig et al. (2013), Ferrari and Esuli
(2019), Ferrari et al. (2018), Ferrari and Gnesi (2012), Cleland-Huang
et al. (2009), Felfernig et al. (2010), Gleich et al. (2010), Samer et al.
(2019), Linsbauer et al. (2015), Mezghani et al. (2018), Wilmink and
Bockisch (2017), Dalpiaz et al. (2018), Niu et al. (2014), Femmer et al.
(2017), Rosadini et al. (2017)

IV. Release Planning del Sagrado et al. (2011), Li et al. (2010), Araújo et al. (2017), Baker
et al. (2006), Mougouei and Powers (2020), Li et al. (2014), Zhang
et al. (2007), Yang and Wang (2009), Przepiora et al. (2012), Mougouei
(2016), Ngo-The and Ruhe (2008), Greer and Ruhe (2004), Pitangueira
et al. (2016), Raatikainen et al. (2018), Pitangueira (2015), Pitangueira
et al. (2017), Finkelstein et al. (2009)

Table 3.6.: Overview of the RE process and its tasks. The table includes references of relevant recom-
mendation approaches used during the different activities of the process. Activities that are
not an integral part of RE (such as the design, implementation, and testing of the software
as well as the maintenance of the software project), are not shown in this table.

59

Chapter 3. Recommender Systems in Requirements Engineering

Requirements can be expressed in terms of textual descriptions, use cases, scenario descriptions,
or mock-up illustrations of prototypical user interfaces. An old but still common way for require-
ments elicitation (Nuseibeh and Easterbrook, 2000) is that stakeholders have to write a structured
requirements document and formulate their intentions and needs in the document using natural lan-
guage. Once a requirements document is complete, the requirements engineers have to extract the
requirements from the documents and to import the extracted requirements into a requirements man-
agement software tool (such as IBM DOORS). A very effortful challenge thereby is to distinguish
between those paragraphs in a document which define a requirement and those which contain re-
lated content that has to be attached and linked to the requirements. In order to tackle this challenge,
Falkner et al. (2019) present a recommendation approach which is based on supervised classification
and assists requirements engineers in the automated extraction of requirements in large requirement
document repositories. The approach analyzes text documents (Microsoft Word documents). It clas-
sifies paragraphs into requirements and descriptions. Paragraphs which cannot be classified with
high confidence are marked as unclassified and have to be manually classified by a requirements
manager. In addition to the aforementioned approach, Winkler and Vogelsang (2016) and Abual-
haija et al. (2019) introduce comparable classification systems to identify requirements in requirement
document repositories.
Another important task of requirements elicitation that poses a special demand for decision-support,
is to group requirements into multiple categories (such as functional vs. non-functional requirements
or feature requests vs. software bugs). There exist plenty of recommendation approaches that are
based on supervised classification or data mining techniques that have been developed under the ban-
ner of RE research (Dalpiaz et al., 2019; Kurtanović and Maalej, 2017; Abad et al., 2017; Binkhonain
and Zhao, 2019; Slankas and Williams, 2013; Mahmoud, 2015; Lu and Liang, 2017; Dhinakaran
et al., 2018). These approaches use document classification techniques to classify requirements based
on their textual description and content. For example, Casamayor et al. (2010) present an semi-
supervised learning approach that focuses on the discovery of non-functional requirements in require-
ments specifications and exploits feedback from users as additional input source to enhance the overall
classification performance. In recent years, more advanced document classification approaches have
been introduced (Dekhtyar and Fong, 2017; Baker et al., 2019; Navarro-Almanza et al., 2017). These
approaches use deep learning, convolutional neural networks, and pre-trained word embeddings to
achieve higher levels of classification accuracy (Dekhtyar and Fong, 2017) compared to traditional
classification approaches (such as Naı̈ve Bayes, Support Vector Machines, and Random Forest).
The conventional way of requirements elicitation requires a direct communication between all stake-
holders (in terms of interviews, workshops, questionnaires, or consultations with experts). However,
the emerging trend of agile software development and web technologies has also influenced require-
ments elicitation practices. Nowadays, there exist additional information sources (e.g., social media
channels or online forums) which can be exploited in order to extract and collect relevant require-
ments and related user feedback. In particular, online forums have a huge potential to drastically

60

3.6. Application Areas of Recommenders in Requirements Engineering

improve requirements elicitation as these platforms allow to collect different opinions and viewpoints
of a large number of stakeholders. For this reason, the inclusion of crowd-based user feedback in RE
is known to be essential for the RE process (Groen et al., 2015; Pagano and Bruegge, 2013). This
kind of feedback represents relevant technical information for developers (Williams and Mahmoud,
2017) that can help to identify missing requirements (e.g., new features, unknown bugs, etc.) and
to improve the quality of the developed software. In contrast to the formal definition, the content
of social media channels or online forums is often massive, fragmented, or represents inconsistent
views of different stakeholders. For this reason, a variety of approaches has been developed that auto-
matically extract requirements / features and important requirements-related information from social
media channels (e.g., Twitter) (Williams and Mahmoud, 2017; Guzman et al., 2017), app stores,
online product forums (Tizard et al., 2019), or online discussion forums (Khan et al., 2019, 2020;
Kanchev et al., 2017a). These recommendation approaches help stakeholders to overcome the afore-
mentioned challenges. For example, Khan et al. (2019) introduce a crowd-based RE approach called
CROWDRE-ARG, which builds an argumentation model and identifies arguments for or against a
certain requirement. Their model represents a useful recommendation tool to support requirements
elicitation and the model is also capable of detecting conflicting arguments. Furthermore, the model
helps to reason about the most influential arguments that triggered a certain requirement decision.
The works of Kanchev et al. (2017b,a) and Khan et al. (2020) focus on the extraction of requirement-
related information from online discussion forums. The presented approaches are potentially useful
for requirements engineers and analysts to identify rationale elements, to enrich existing requirements
with relevant annotations and to use these annotations in order to judge their decisions. Groen et al.
(2015) propose an approach that combines existing requirements analysis and elicitation techniques.
Their tool collects feedback created through social user collaboration and exploits data mining tech-
niques in order to assist stakeholders in requirements elicitation. Oriol et al. (2018) present a tool
called FRAME that follows a simultaneous collection approach of user feedback and usage data in
mobile and web contexts. The collected data allows stakeholders to better understand the end-user
needs and serves as a supportive means for continuous requirements elicitation.
As part of the European research project OPENREQ, Stanik et al. (2019) (see also Stanik and Maalej,
2019) developed techniques to identify requirements in social media channels using supervised clas-
sification. The work of Stanik et al. has been inspired by existing research in the field of extract-
ing new features / requirements from app stores and online forums (Johann et al., 2017; Guzman
et al., 2017; Williams and Mahmoud, 2017). The tool of Stanik et al. extracts requirements and
requirements-related information from Twitter messages (called tweets) and app reviews11. The un-
derlying approach uses large labeled datasets (about 10,000 English and 15,000 Italian tweets from
the telecommunication domain as well as about 6,000 app reviews) to train a recommendation model
and classifies new messages into the classes problem reports, inquiries, and irrelevant. Thereby, the
classes problem reports and inquiries represent requirements in terms of issues / bugs and feature re-

11At the time of writing this chapter, the tool supports English and Italian.

61

Chapter 3. Recommender Systems in Requirements Engineering

quests, respectively. In contrast, messages classified as irrelevant are not considered as requirements.
According to the evaluation results, the trained recommendation service achieved promising results
on the aforementioned datasets using traditional machine learning as well as deep learning (in partic-
ular for English app reviews, problem report: precision: 0.83, recall: 0.75, f1-score: 0.79; inquiry:
precision: 0.68, recall: 0.76, f1-score: 0.72; irrelevant: precision: 0.88, recall: 0.89, f1-score: 0.89).
Recommendation approaches which are applied in the phase of requirements elicitation and definition
often focus on recommending potentially relevant requirements from past projects that are similar to
the current software project. The concept of re-using functionality between different software products
has been inspired from the area of software product line engineering and the goal of most approaches
is to foster the systematic reuse of requirements such that the efficiency of the RE process can be
enhanced. Dumitru et al. (2011) introduce a content-based recommendation approach which extracts
requirements from software repositories of past software projects and clusters them into requirement
groups. These groups are then recommended to be reused in future software projects. The underlying
algorithm extracts keywords from the current software project as well as past software projects and
analyzes the overlapping ratio of the current project’s keywords with other past projects. This is done
to find the most similar projects from which yet unconsidered requirements can be recommended to
be reused in the current project. By applying this approach, the overall costs of a software project
(in terms of time, resources, and budget) as well as the risk of overseeing relevant requirements (i.e.,
completeness of the current project’s requirements model) can be reduced. A more specific approach
which is tailored to small-sized software businesses is explained by Ivan et al. (2016). The authors
propose to use a software requirements catalog and present a reuse model for requirements which
has been applied in the industrial context. Finally, Goldin and Berry (2015) introduce different reuse
strategies of hardware and software requirement specifications which lead to a reduced time to market.

Requirements Negotiation and Analysis In the requirements negotiation phase, the requirements
which should be implemented in the project are analyzed, discussed, and selected by stakeholders.
According to Lim et al. (2010), a high degree of user involvement is crucial for the success of a soft-
ware project. Consequently, an early involvement of stakeholders at the beginning of the RE process
is essential. In order to ensure this, appropriate stakeholder experts, who should provide complete
and well-defined descriptions to the existing requirements, should be assigned to the requirements
(this can be regarded as being part of requirements definition). Moreover, another important task
that falls into the category of stakeholder identification / assignment is the assignment of appropri-
ate stakeholders to requirements, who should implement the requirements. This particular task of
stakeholder identification can be regarded as being part of requirements negotiation as it often comes
along with a collaborative evaluation and prioritization of the requirements. The assignment of ap-
propriate stakeholders to each requirement is a very time consuming task for requirements engineers.
Furthermore, the quality of the decision ”who to assign to which requirement” mainly depends on
these requirements experts. Hence, this task also requires much background and domain knowledge
in order to be done correctly. In order to prioritize the requirements and to identify stakeholders who

62

3.6. Application Areas of Recommenders in Requirements Engineering

should be in charge of implementing these requirements, a detailed evaluation and analysis of the
requirements is indispensable. RS are appropriate and helpful tools to assist requirements engineers
in such laborious tasks. The major objective to apply recommendation technologies in the context of
requirements negotiation and analysis, is to improve the quality of stakeholder decisions and to offer
automated support to evaluate / analyse requirements. This helps to reduce the risk of project delays
and project cancellation.
Castro-Herrera and Cleland-Huang (2010) introduce a recommendation approach which recommends
feature-requirements to stakeholders that match their individual interests and skills. Beyond that, the
approach also tries to keep stakeholders informed about relevant issues. A completely different ap-
proach to recommend stakeholders for requirements is explained by Lim et al. (2010). The authors
describe a recommendation approach called StakeNet which models recommendation relationships in
node-edge-graphs that can be visualized as social networks. In such graphs, the stakeholders are repre-
sented as nodes and the directed edges express recommendations made by the stakeholders. This way,
the graphs aim to answer the question ”who recommended whom?”. Thereafter, recommendations
are generated based on the relations in the graph by exploiting different network analysis techniques
(e.g., betweenness centrality) (see also Felfernig et al., 2013).
With an increasing number of requirements, the complexity of a group decision process becomes
higher. Typically, software projects are often very complex and consist of several hundreds or thou-
sands of requirements. In such cases, it is quite challenging and very time consuming to identify the
most qualified stakeholders and software developers for every requirement. Another consequence of
increased complexity are more decision conflicts between stakeholders caused by divergent opinions.
Decision conflicts always indicate serious issues of some of the provided arguments which trigger dis-
cussions between the stakeholders that are involved in the conflict. The decision quality does not only
depend on the different background and domain knowledge the respective decision-makers (stake-
holders) have, but it also depends on many other factors, such as cognitive and personal biases (Maq-
sood et al., 2004; Tversky and Kahneman, 1975; Schulz-Hardt et al., 2006). In general, such bias
effects become more serious whenever the complexity of a decision task and / or the time pressure
for decision-making is high. Group recommendation approaches are capable to be applied in this
context to mitigate such bias effects (Tversky and Kahneman, 1975; Schulz-Hardt et al., 2006; Samer
et al., 2020) and to support a collaborative analysis, evaluation, and prioritization of requirements.
Furthermore, group RS can be effectively applied to resolve decision conflicts between stakeholders.
For example, Felfernig et al. (2011) analyzed the impact of the application of such group recommen-
dation technologies on the outcome of this group decision process and show that these systems are
well-suited to improve the quality of decision support. The prioritization of requirements is a crucial
task as the amount of available resources in software projects are typically limited. There exists a
large variety of requirements prioritization approaches (Tonella et al., 2013; Karlsson, 1996; Ruhe
et al., 2002; Duan et al., 2009; Perini et al., 2013; Sadiq et al., 2017) based on different concepts (such
as genetic programming and negotiation-based solutions) and algorithms (such as analytic hierarchy

63

Chapter 3. Recommender Systems in Requirements Engineering

process and case-based ranking).12

Ninaus et al. (2014) present a group recommender system that supports group decision making in the
context of requirements prioritization. The authors’ work is based on the concept described in Felfer-
nig and Ninaus (2012). In their evaluation approach, stakeholders evaluate and analyse requirements
based on interest dimensions such as associated risk, feasibility, and costs (see also Section 3.5.2).
Moreover, Samer et al. (2020) developed a group recommendation approach which focuses on im-
proving requirements prioritization by making the preference elicitation process of stakeholders more
flexible. The authors introduce user interfaces that foster information exchange among stakeholders
and use liquid democracy (delegate voting) (Johann and Maalej, 2015; Zhang and Zhou, 2017; Atas
et al., 2018) to allow stakeholders to transfer voting tasks to experts based on the level of interest
dimensions. Moreover, the group RS of Samer et al. also features mechanisms (i) to resolve decision
conflicts between stakeholders and (ii) to hide / obscure preferences of the individual group members
at the beginning of the evaluation process in order to counteract cognitive biases such as anchoring
effects. The group recommendation approach was evaluated in a large-scale user study (N=313 partic-
ipants) and the evaluation results indicate that argumentation-based user interfaces lead to an increased
interaction and communication activity in stakeholder groups (around 2.3 times higher on average
compared to a standard one-dimensional 5-star rating scheme). Apart from an increased information
exchange among stakeholders and more user interactions, a statistical analysis of the study results also
reveals that stakeholders tend to adapt and update their (textual) arguments more often which effec-
tively supports the resolution of decision conflicts. The bottom line of the study is that argumentation-
based group recommendation approaches can pave the way for high-quality requirement evaluations
to support a collaborative evaluation, negotiation, and prioritization of software requirements.
Some further research conducted within the scope of the OPENREQ project, focuses on the recom-
mendation of relevant requirements to volunteer software developers in open-source projects. Felfer-
nig et al. (2018) introduce a content-based recommendation approach which recommends suitable
requirements (in terms of issues / bugs) to the stakeholders / developers. The recommended require-
ments consider relevance for the community (i.e., priority) as well as suitability for the developer (i.e.,
”Is the topic of the requirement of interest for the developer?”). Their approach involves content-
based filtering as well as recommendation aspects stemming from multi-attribute utility theory (Wal-
lenius et al., 2008). A known issue / drawback of this approach is that it requires a sufficient amount
of user data in terms of requirements which have been resolved by the developer in the past. With
insufficient developer-related data, it is not possible for the approach to create accurate user profiles.
This problem is a common issue of RS and referred to as the cold-start problem (see also Section 3.7).
An approach which tackles the cold-start problem in this specific scenario has been presented by
Stanik et al. (2018). The authors describe this scenario as onboarding and show appropriate solutions
to recommend requirements (issues / bugs) to newcomers (i.e., new developers). Their approach is
based on supervised classification and natural language processing (NLP) and can be used in issue

12For a more detailed overview, we refer to Riegel and Doerr, 2015 and Qaddoura et al., 2017.

64

3.6. Application Areas of Recommenders in Requirements Engineering

tracking environments (such as Bugzilla or Jira). In the same line of research, Samer et al. (2019) also
introduce a classification-based recommendation approach for issue tracking. While the approach
developed by Stanik et al. (2018) generates recommendations which specifically target the group
of newcomers to support onboarding as well as user retention, the approach of Samer et al. (2019)
produces user-specific recommendations for all kinds of developers. The approach of Stanik et al.
(2018) has been evaluated on three large datasets of open-source projects (QT (N=55610), ECLIPSE

(N=158843), and LIBREOFFICE (N=10958)) using different classification algorithms (Random Forest,
Naı̈ve Bayes, Decision Tree, Support Vector Machines) with the aim of generating non-personalized
recommendations of requirements / issues suitable for any type of newcomer. The results of the first
evaluation part which focused on newcomers’ onboarding revealed that Random Forest achieved the
highest prediction results on all datasets, in terms of precision (up to 0.91 precision, f1-score: 0.72).
The focus of the second evaluation part was on newcomers’ retention and according to the results,
Random Forest and Decision Tree performed the best in terms of precision, recall, and f1-score (pre-
cision and recall of up to 0.92, f1-score: 0.91). In contrast to the approach presented by Stanik et al.
which generates non-personalized recommendations for any type of newcomers, the RS developed
by Samer et al. (2019) produces personalized recommendations that best match the preferences of a
developer. The RS is a prioritization tool for the ECLIPSE community that supports the issue man-
agement platform BUGZILLA and provides decision-support for open-source developers to find the
next best matching requirements / bugs / features. The authors’ approach has been evaluated on three
large datasets of different open-source projects (ECLIPSE (N=141117), MOZILLA (N=751961), and
LIBREOFFICE (N=47542)) and the evaluation results indicate that the approach performs significantly
better with Random Forest classification (in case of ECLIPSE, precision: 0.88, recall: 0.55, f1-score:
0.68; in case of MOZILLA, precision: 0.73, recall: 0.49, f1-score: 0.59; in case of LIBREOFFICE,
precision: 0.81, recall: 0.75, f1-score: 0.78) than other comparable approaches and baselines (see
Samer et al., 2019). The RS comes along with a plugin for the ECLIPSE development environment.
The ECLIPSE plugin presents a user interface that allows its users to directly interact with the RS in
order to provide feedback to the recommendations proposed by the system (for more details, we refer
to Section 3.6.2).
In the context of developing ultra-large-scale software systems with a very high number of require-
ments and stakeholders involved, Castro-Herrera et al. (2008) as well as Mobasher and Cleland-Huang
(2011) provide solutions based on clustering to group requirements and then to recommend stakehold-
ers to the clusters by using content-based recommendation. Their clustering-based recommendation
approach ensures a decent stakeholder coverage. Kifetew et al. (2017) describe a completely different
collaborative requirements prioritization approach which is based on the idea of gamification. The
presented tool uses game elements and genetic algorithms to encourage stakeholders to contribute to
the group decision-making process of requirements prioritization. Another recommendation approach
which can be applied in the context of general large-scale industrial projects is introduced by Samer
et al. (2018). The approach exploits content-based recommendation techniques to improve the col-

65

Chapter 3. Recommender Systems in Requirements Engineering

laborative prioritization of requirements among stakeholders. The described stakeholder assignment
scenario allows human stakeholders (who are candidates proposed by the requirements manager) to
propose (further) candidates for a requirement and to evaluate all proposed candidates. In addition,
artificial stakeholders (represented by different recommendation systems) are used to automatically
propose further candidates and to evaluate all proposed candidates. The proposed stakeholders are
then evaluated with respect to the dimensions appropriateness and availability by themselves, the
requirements managers, and the artificial stakeholders. The dimension appropriateness indicates the
suitability of the candidate for the requirement, whereas the dimension availability signifies whether
the candidate has enough time and resources to take over responsibility for the requirement. Further-
more, the proposed candidates can accept themselves as final candidates, raise a veto, and / or propose
further candidates. Finally, the proposed candidates with the highest overall evaluation scores are
then suggested to the requirements manager to be assigned to the requirement. This way, the whole
stakeholder assignment process can be improved and accelerated such that the overall effort for all
involved stakeholders as well as the chance of overseeing suitable stakeholders can be reduced for the
requirements managers.

Quality Assurance The quality assurance phase deals with the aspect-oriented evaluation of a
project’s requirements. In this context, aspects which should be evaluated, represent qualitative at-
tributes, such as the feasibility (technical vs. economic feasibility), the completeness (all relevant
requirements are included in the requirements model), the consistency (no requirements conflict with
each other), the understandability (readability / understandability quality of the requirement’s descrip-
tion), and the reusability (for future software projects) (Felfernig et al., 2013).
An example of a RS which addresses the consistency aspect of a requirements model are inconsistency
recommenders (Iyer and Richards, 2004; Felfernig et al., 2010). Their goal is to detect inconsistencies
which can exist between some requirements of a software project and to recommend these as issues
that need to be fixed. In practice, inconsistencies usually occur if stakeholders do not have enough
time to check the consistency of the requirements model, their expertise and knowledge is limited to
certain topics, or their perceptions diverge from each other (Iyer and Richards, 2004). Felfernig et al.
(2010) describe a knowledge-based recommendation approach which automatically detects inconsis-
tencies and provides solutions on how to resolve inconsistencies. These solutions are presented in the
form of diagnoses which can be interpreted as instructions on how to repair the existing requirements
model. Such diagnoses are minimal sets of requirements or stakeholder preferences which need to be
adapted in order to resolve an inconsistency. In order to offer precise repairs, such an inconsistency
recommendation solution requires a complete requirements model, a complete definition of all model
constraints, and all individual requirement preferences of the stakeholders must be known (i.e., priori-
ties). Felfernig et al. (2013) introduce a collaborative recommendation approach, which recommends
relevant constraints. The underlying assumption is that if stakeholders try to understand a set of con-
straints related to a requirements model, a RS can recommend related constraints using collaborative
filtering. Such recommendations can be constraints that have been investigated by other stakeholders

66

3.6. Application Areas of Recommenders in Requirements Engineering

with a similar constraint browsing behavior. In this context, constraints which have been analyzed by
a stakeholder are associated with positive ratings (i.e., rating = 1). Beyond the scope of RS, Parra et al.
(2018) introduce a visualization approach that measures the evolution of the requirements quality. The
approach uses quality metrics to assess requirements correctness, completeness, and consistency. The
determined quality information is visualized in charts and represents a basis for providing suggestions
to stakeholders on how to improve the quality of the requirements model.
Apart from the aforementioned model-related inconsistencies, requirements defined in natural lan-
guage are also prone to suffer from textual inconsistencies. Such inconsistencies often occur in terms
of textual ambiguities that can also pose a threat to the understandability of a requirement. While a
long stream of RE research presents frameworks and guidelines on how to analyze and detect am-
biguities (Gupta and Deraman, 2019; Gervasi et al., 2019; Sabriye and Zainon, 2017; Ferrari et al.,
2016; Massey et al., 2014; Bano, 2015), some work also introduces tools that support stakeholders
in finding terminological ambiguities in requirements (Ferrari and Gnesi, 2012; Rosadini et al., 2017;
Wilmink and Bockisch, 2017; Ferrari et al., 2018). For example, Gleich et al. (2010) provide a tool
that detects ambiguities and explains corresponding sources of the detected ambiguities. Dalpiaz et al.
(2018) contribute an NLP-based approach that identifies textual defects and ambiguities in existing
requirements. Moreover, their approach also addresses the incompleteness aspect by detecting miss-
ing requirements. Another NLP-based ambiguity detector that uses the concept of word embeddings
has been developed by Ferrari and Esuli (2019). The authors’ approach tries to find ambiguous words
between different stakeholder domains and rank these words by a calculated ambiguity score.
Beyond the scope of ambiguity detection, further approaches and techniques can be applied to im-
prove the quality of requirements. Femmer et al. (2017) describe a basic requirements validation
approach to detect quality violations in textual descriptions of requirements. The authors’ approach
performs an automatic analysis (using, e.g., part-of-speech tagging, morphological analysis, and dic-
tionaries) in order to find and report relevant defects (”requirement smells”) in requirements. Tiwari
and Laddha (2017) developed a light-weight validation tool that focuses on use case based textual
specifications of functional requirements. The tool automatically assesses and validates the quality of
use cases, highlights errors, checks for completeness regarding the use cases, and provides sugges-
tions to fix quality issues / smells. Danylenko and Löwe (2012) present a general approach to foster
the development of more qualitative software applications. Their work primarily addresses the design
of efficient and fast software systems (e.g., computational software), and focuses on non-functional
requirements which relate to the efficiency of the system. The authors developed a context-aware RS
that aims to improve the software development process of such systems by helping stakeholders (in
particular, system designers and developers) to reduce the overall development effort in terms of time.
Cleland-Huang et al. (2009) describe a similarity-based approach which clusters similar requirements
in order to detect redundancies in the existing requirements model and to support the prioritization
of feature requests. In particular, the approach of Cleland-Huang et al. represents a RS to support
quality assurance in the context of large feature sets. Moreover, Fitzgerald et al. (2011) exploit ma-

67

Chapter 3. Recommender Systems in Requirements Engineering

chine learning techniques in order to reduce software failures and, hence, to improve the quality of a
software project. A more recent recommendation approach for industrial applications has been intro-
duced and developed by Mezghani et al. (2018). The presented approach is based on clustering and
uses the k-means algorithm to detect and highlight redundancies and inconsistencies between require-
ments. The recommendations that lead to a reduction of inconsistent and redundant requirements help
requirements engineers to pave the way for better quality assurance. Another important issue of RE
quality assurance represents the traceability of requirements throughout the entire software develop-
ment cycle (i.e., life of a requirement backward and forward). In particular, requirements traceability
is relevant for the development of safety-critical systems where standards and guidelines (such as ISO
26262 or Automotive SPICE) require the recording of requirements traceability in order to be able
to prove that critical requirements have been implemented and validated in an appropriate manner.
Since requirements traceability is very time-intensive for humans, automated solutions are required to
assist stakeholders in this task. Mezghani et al. (2019) present a clustering-based approach that clus-
ters and suggests linked requirements to support stakeholders in traceability management. Niu et al.
(2014) propose a recommendation approach to support traceability-enabled software refactorings.
Their approach identifies places inside software projects that should be refactored and determines
what refactorings are appropriate to be applied for the corresponding identified places. Moreover,
further approaches related to requirements traceability aim at reaching various goals, e.g., to support
an automated trace recovery or to support software product line development by building software
product portfolios consisting of similar product variants (Cleland-Huang et al., 2007; Mahmoud and
Niu, 2010, 2011; Keenan et al., 2012; Linsbauer et al., 2013, 2015).
The complete and gapless definition of dependencies between requirements is essential in order to ob-
tain consistent requirements models. The frequent occurrence of dependencies between requirements
has been demonstrated by Vogelsang and Fuhrmann (2013). The result of their work also shows that
the identification of dependencies is a challenging and time-consuming task. The authors mention
that most stakeholders are not aware of a large number of dependencies that can exist between re-
quirements. Moreover, requirement dependencies are more the rule than an exception in real-world
projects (Carlshamre et al., 2001; Vogelsang and Fuhrmann, 2013). Hence, an in-depth analysis of
the relevant requirements is essential to find all correct dependencies between the requirements. The
main challenges of detecting dependencies between requirements are two-fold, being (i) detecting and
(ii) handling these in subsequent release planning activities. The latter will be addressed later in this
section (see release planning). The former is dedicated to the currently discussed phase of the RE
process, where stakeholders have to manually find and define (i.e., manually detect) correct depen-
dencies carefully and as early as possible. It is important to point out that in the case of incorrect,
incomplete, or inconsistent dependencies, a software project can most probably not be completed suc-
cessfully. Most existing and past work in this research area follows the idea of detecting similarities
between requirements (Ninaus et al., 2014; Felfernig et al., 2013; Natt och Dag et al., 2002) using
basic content-based recommendation, information retrieval, fuzzy logic, or clustering techniques.

68

3.6. Application Areas of Recommenders in Requirements Engineering

A more optimized and advanced content-based dependency recommendation approach which goes
beyond these basic concepts, is presented by Atas et al. (2018). In their paper, the authors introduce
a tool based on supervised classification and natural language processing (NLP) that identifies depen-
dencies between requirements. The tool examines all possible pairs of requirements in a project and
then classifies them into positive and negative dependency candidates whereby the positive candidates
represent those pairs where the tool thinks that there exists a real dependency. In general, there are
different types of dependencies such as requires, excludes, part-of, etc. (see Atas et al., 2018). The
tool of Atas et al. focuses on the dependency type requires which appears as the most frequent depen-
dency type in software projects (Ferber et al., 2002; Atas et al., 2018; Deshpande et al., 2019). In this
context, a requires-dependency Rx requires Ry (denoted as Rx ! Ry) describes the relationship that the
requirement Rx can not be implemented before Ry has been implemented. Furthermore, dependencies
of type requires are unidirectional (i.e., the expression Rx ! Ry is not equivalent to the expression
Ry ! Rx). It is important to point out that the aforementioned tool is not only able to detect the ex-
istence of a dependency but also the correct direction of the dependency. Deshpande et al. (2019)
present another recommendation approach that also automatically extracts requirement dependencies.
An initial evaluation of the approach using three classification algorithms (Random Forest, Naı̈ve
Bayes, and Support Vector Machine) showed that all three algorithms achieved similarly high accu-
racy levels (f1-scores of all three classifiers were around 0.7). By applying weakly supervised learning
(WSL) (Zhou, 2017) to generate pseudo labels for the unlabeled data samples, the performance of the
trained models could be further improved (f1-scores around 0.85). Samer et al. (2019) introduce two
refined approaches to the automated detection of requirement interdependencies. They have devel-
oped two approaches – one approach feeds a supervised classification model with labeled dependency
samples and the other one is based on unsupervised learning that can be directly used with raw un-
labeled requirement samples. In contrast to the work presented by Atas et al. (2018) and Deshpande
et al. (2019), the supervised classification approach developed by Samer et al. (2019) utilizes new fea-
ture types and statistical concepts from the area of information theory. Moreover, the evaluation yields
improved and more reliable prediction results of the identified dependencies on the same dataset com-
pared with the solution of Atas et al. (2018). The unsupervised learning approach of Samer et al. is
based on Latent Semantic Analysis (Deerwester et al., 1990) and represents a soft-clustering technique
that groups related requirements based on underlying content-related concepts. It uses the (textual)
content of the requirements and transforms the descriptions into a low dimensional space representa-
tion. Each dimension of the reduced space representation corresponds to a content-related concept.
The reduction of dimensions helps to filter out noise and to group semantically-related requirements.
The approach determines requirement pairs which are closely related to each other in the semantic
space and considers such pairs as dependent pairs (i.e., both requirements of a pair are dependent).
Similar to the WSL-based approach of Deshpande et al. (2019), this unsupervised dependency detec-
tion approach can be used with unlabeled samples and it can be applied once the stakeholders have
defined all requirements in a software project. Consequently, this represents a simple and powerful

69

Chapter 3. Recommender Systems in Requirements Engineering

approach to reduce costly efforts regarding the querying of human experts in order to label a large set
of requirements.

Release Planning Prioritized requirements can be assigned to releases. Due to the limited amount
of available resources, requirements triage needs to be applied in the context of release planning
(Davis, 2003). The concept of triage stems from the medical domain where patients are usually
categorized into three types: patients who will die, patients who will survive, and patients who can
survive when appropriate medicine is given to them. In the context of release planning, the approach is
similar. There exist requirements which must not be assigned to the next release, requirements which
must be included in the release, and requirements whose assignment to the next release is optional. In
this context, the selection of a subset of suitable requirements to be implemented in the next release
is called the next release problem (NRP) (Bagnall et al., 2001). The suitability of a requirement for
a release depends on pre-defined constraints that, for example, aim to maximize the total revenue by
also keeping the costs within the limits of the budget available for the release. These requirements
have to meet specified criteria which include, for example, the expected revenue of the release or
constraints such as budget limitations.
Regarding recommendation tools which support release planning, there exist numerous research con-
tributions (Zhang et al., 2007; Yang and Wang, 2009; Finkelstein et al., 2009; Li et al., 2010; del
Sagrado et al., 2011; Pitangueira et al., 2016). For example, Raatikainen et al. (2018) introduce a
recommendation approach based on a knowledge-based configuration. In order to compute a set of
possible / feasible solutions for release plans, their prototype considers all defined constraints of the re-
quirements model and the dependencies which exist between the requirements. The computed release
plans are recommended to the requirements engineers. In case of inconsistencies (e.g., conflicting
dependencies between the requirements), repairs (in terms of diagnoses) to resolve the inconsisten-
cies are recommended. Przepiora et al. (2012) propose a basic hybrid approach that combines a
knowledge-based approach (also supporting requirement dependencies) with a release planning tool
called RELEASEPLANNER. Baker et al. (2006) apply two search-based software engineering ap-
proaches (Harman et al., 2012) using greedy and simulated annealing algorithms to tackle the NRP.
The authors also demonstrate that both approaches have the potential to outperform the ranking of
human experts. Moreover, Mougouei and Powers (2020) present an approach to support stakeholders
in release planning. Since the value / benefit of an individual software feature / requirement for an
end-user depends on the users’ preferences, it is important to determine a set of most relevant features
that can be assigned to the next release. The approach of Mougouei and Powers aims to identify such
value-related dependencies by mining user preferences for software features. Furthermore, the ap-
proach uses dependencies in order to determine an optimal subset of software features to be assigned
to a release of a software product. In an earlier work of Mougouei (2016), the author proposes an
approach for requirements selection that considers requirement dependencies and the strength-level
of these dependencies determined by using a graph-based dependency modeling approach.
Greer and Ruhe (2004) introduce an approach called EVOLVE that supports incremental software de-

70

3.6. Application Areas of Recommenders in Requirements Engineering

velopment processes. Their approach utilizes an iterative optimization technique that is based on a
genetic algorithm and assists stakeholders in the continuous planning of software projects by rec-
ommending a set of qualified candidate solutions (i.e., release plans). Ngo-The and Ruhe (2008)
introduce a more general approach to solve planning problems (also apart from release planning, e.g.,
reuse of components or selection of architectures). The authors devised a recommendation tool called
EVOLVE+ which extends EVOLVE. In contrast to EVOLVE+, EVOLVE adds diversification to miti-
gate the uncertainties of the planning problem formulation. In other words, diversification is used
to improve (release planning) decisions and the tool also provides guidance when selecting a release
plan. Pitangueira et al. (2017) describe a multi-objective approach to tackle the NRP. The approach
of Pitangueira et al. aims at improving the decision quality by minimizing the risk of stakeholder dis-
satisfaction. Another approach based on multi-objective optimization is presented by Li et al. (2014).
In contrast to traditional multi-objective optimization, the approach exploits the Monte-Carlo Simu-
lation technique to optimize requirement choices considering three different aspects which are cost,
revenue, and uncertainty. In order to find an optimal subset of candidate requirements that satisfies the
users’ demands, Pitangueira (2015) proposes an interactive approach to incorporate the preferences
of different stakeholders that assists users in the requirements selection process. Moreover, Araújo
et al. (2017) present a search-based software engineering approach which uses an interactive genetic
algorithm. In order to be more effective by taking the preferences and experiences of the decision
makers into special consideration, the approach utilizes a learning mechanism to reduce the number
of user interactions and enhances the optimization process.

3.6.2. Requirements Management Platforms

There exist many well-known and broadly used requirements management tools, such as MODERN

REQUIREMENTS13, IBM DOORS14, JAMA SOFTWARE15, ATLASSIAN JIRA16, etc. These tools pro-
vide techniques to facilitate RE tasks as well as the maintenance of requirements defined by stake-
holders. Due to a continuously increasing number of requirements management tools and a diverg-
ing variety of supported tasks (including, e.g., requirements elicitation, requirements traceability, re-
quirements prioritization, requirements testing, stakeholder reviewing), the selection of the right RE
management tools is often very challenging. Hoffmann et al. (2004) and Alghazzawi et al. (2014)
propose a list of criteria to select appropriate RE management tools according to the tool capabilities
and the conceptions that meet the individual needs of a project team. Apart from the differences in
functionalities provided by different RE tools, many do not exploit the full potential of integrating
recommendation technologies. The remainder of this section briefly introduces a selected portion of
two requirements management platforms. In addition, we present requirements management tools
that support common RE tasks relevant for open-source communities. INTELLIREQ (Ninaus et al.,

13MODERN REQUIREMENTS: https://www.modernrequirements.com
14IBM DOORS: https://www.ibm.com/products/requirements-management
15JAMA SOFTWARE: https://www.jamasoftware.com
16ATLASSIAN JIRA: https://www.atlassian.com/en/software/jira

71

https://www.modernrequirements.com
https://www.ibm.com/products/requirements-management
https://www.jamasoftware.com
https://www.atlassian.com/en/software/jira

Chapter 3. Recommender Systems in Requirements Engineering

2014) and OPENREQ!LIVE (Samer et al., 2020) are freely available and provide an easy-to-use web
user interface which facilitates stakeholder interactions with the provided recommendation tools.

IntelliReq

The INTELLIREQ environment is based on different recommendation approaches that support stake-
holders in requirements-related tasks, such as requirements definition, quality assurance, requirements
reuse, and release planning. The web user interface of INTELLIREQ allows (technical and also non-
technical) stakeholders to access different RE tools that deliver the recommendation power to improve
decision-making in RE-related tasks. For example, INTELLIREQ comes along with a group-based
evaluation and recommendation system for requirements prioritization which is discussed by Ninaus
et al. (2014). For each requirement, the group RS proposes recommendations to help a group of
stakeholders to jointly decide on the final prioritization of a requirements list (see Figure 3.2). The
system also provides functionality to detect and show evaluation conflicts which indicate stakeholder
disagreement regarding a specific interest dimension. A conflict occurs whenever two or more stake-
holders evaluate an interest dimension differently. For each interest dimension, the system shows a
traffic light symbol which appears red if there exists a conflict for the respective interest dimension
and blue if there are no conflicts. Such a conflict can be, for example, that a requirement is rated to
be infeasible by stakeholder A but considered as completely feasible by stakeholder B. By using the
traffic light symbols, the stakeholders involved in the conflict are now informed about the conflict and
are encouraged to negotiate and reevaluate the requirement with respect to this interest dimension.
Major advantages caused by the application of INTELLIREQ’s recommendation technologies in RE
are (1) an increased reuse of requirements, (2) active guidance of stakeholders, (3) increased consis-
tency in requirements models, and (4) reduced time efforts needed for the construction of requirements
models (Ninaus et al., 2014). For an in-depth discussion of recommendation approaches applied in
INTELLIREQ as well as the results of empirical studies that show in which way recommenders can
improve the quality of RE processes, we refer the reader to Ninaus et al. (2014).

OPENREQ!LIVE

OPENREQ!LIVE is a free web-based platform which offers direct access to a recommendation tool-
chain that has been developed within the scope of the Horizon 2020 research project OPENREQ17

(Palomares et al., 2018; Felfernig et al., 2017). While INTELLIREQ only supplies a reduced set
of basic recommendation functionalities for specific RE tasks where the applied recommendation
approaches do not go beyond the level of semi-automated learning, OPENREQ!LIVE exploits rec-
ommendation techniques that support a large variety of RE tasks that cover the RE process as a
whole. The OPENREQ toolchain includes a broad collection of different recommendation function-
alities. These functionalities are based on recommendation approaches which have been discussed

17OPENREQ: https://openreq.eu

72

https://openreq.eu

3.6. Application Areas of Recommenders in Requirements Engineering

Figure 3.2.: Example of a group-based requirements evaluation scenario in INTELLIREQ (see Ninaus
et al., 2014). The traffic light feedback mechanism indicates an inconsistency with respect
to the three stakeholder ratings provided for the property priority (red light).

in Section 3.5. The most relevant functionalities integrated into OPENREQ!LIVE, have already been
presented in Section 3.6.1. In order to provide stakeholders a convenient and user-friendly access
to the OPENREQ’s recommendation features, the web-based RE platform OPENREQ!LIVE has been
developed. OPENREQ!LIVE is a collaborative RE platform which proactively supports the cross-
fertilization of different ideas shared between stakeholders. The platform allows stakeholders to
manage and maintain their projects and take advantage of the recommendation features provided
by OPENREQ’s services. OPENREQ!LIVE assists stakeholders in a variety of common everyday RE
tasks stakeholders have to face in their software projects. The platform comes along with functionality
to create and maintain a requirements model of a software project. In OPENREQ!LIVE a requirements
model includes requirements, dependencies (between requirements), software releases, and release-

73

Chapter 3. Recommender Systems in Requirements Engineering

specific constraints (e.g., a strict release deadline or the maximum capacity of requirements a release
can handle) of a project. In OPENREQ!LIVE, stakeholders can directly update and modify the re-
quirements and releases on a single project page. Moreover, the system allows stakeholders to search
for and filter certain types of requirements. This allows stakeholders to keep track of recent and most
relevant changes in a requirements model. Figure 3.3 shows the main page of an example software
project. The page provides a compact overview of the project which presents the project structure
defined by the stakeholders. Requirements consisting of a unique ID, title, description, and status,
are listed on the page and ordered by a utility value. Each release has a deadline and a maximum
capacity value (in hours) which limits the possible number of requirements that can be assigned to
the release. The red labeled numbers indicate issues (e.g., requirement duplicates and ambiguities in
a requirement’s description text) reported by some of the OPENREQ services.

Figure 3.3.: OPENREQ!LIVE project overview.

Major tasks that can be supported via OPENREQ!LIVE are:

1. Requirements Elicitation

In OPENREQ!LIVE, projects can be connected to social media channels (at the moment, OPEN-
REQ!LIVE supports TWITTER). In the background, the channel identifiers are automatically
passed to a recommendation service developed by Stanik et al. (2019) (see also Stanik and
Maalej, 2019) and description in Section 3.6.1). The recommendation service uses supervised
classification to identify and classify relevant tweets in the social media channels. Relevant
tweets identified as requirements are then recommended to the stakeholders.

74

3.6. Application Areas of Recommenders in Requirements Engineering

2. Prioritization of Requirements

Figure 3.4 shows an example of an argumentation-based rating interface. Stakeholders are
asked to provide textual feedback (in terms of arguments) for every requirement. After the
stakeholders have evaluated all requirements, the group recommendation system generates a
ranking of prioritized requirements that follows the approach of Samer et al. (2020) described
in Section 3.6.1.

3. Stakeholder Recommendation

Automatic recommendations for appropriate stakeholders are marked with an ”AI” tag whereas
manually assigned stakeholders are marked with an ”ST” tag (see Figure 3.5). In order to
determine final stakeholder candidates for a requirement, the applied group recommendation
approach involves human stakeholders as well as artificial stakeholders in the evaluation pro-
cess. The underlying algorithm is based on the concept presented by Samer et al. (2018) in
Section 3.6.1.

4. Full-fledged Dependency Management

Dependencies can be added in different ways in OPENREQ!LIVE. First, dependencies can
simply be added manually by defining the left and the right side of the dependency as well as the
dependency type (i.e., implies, requires, excludes, or incompatible). Second, dependencies can
be imported by OPENREQ recommendation services (see Quality Assurance in Section 3.6.1).
In case of inconsistent dependency definitions, the system informs the user about the current
state. OPENREQ!LIVE presents the details as well as the causes of the inconsistencies. In
addition, OPENREQ!LIVE indicates ways to restore consistency (adaptation of the requirements
and / or adaptation of the dependencies) – see Figure 3.6.

5. Advanced Statistics

In a project’s statistics section of the OPENREQ!LIVE user interface, details about the change
history of a requirement are shown. Furthermore, the user sees a visualization of all dependen-
cies which shows the relation to the requirements in a very intuitive fashion.

Apart from these core tasks, OPENREQ!LIVE also features further tools which support other RE-
related tasks, such as ambiguity detection (quality assurance), requirement similarity detection (e.g.,
to identify related requirements and duplicates), and release planning. For a more detailed overview
of the recommendation services integrated into OPENREQ!LIVE, we refer to Samer et al. (2020).

Requirements Management Platforms for Open-Source Communities

The coordination and planning of open-source projects as well as of commercial software projects in
an agile development process always requires a way to communicate goals, plans, and issues between
project managers, product owners, developers, and users. These jobs can be realized by using issue

75

Chapter 3. Recommender Systems in Requirements Engineering

Figure 3.4.: Argumentation-based rating interface. Each argument must be assigned to at least one
interest dimension. Negative arguments are highlighted in red, positive ones in green, and
neutral arguments in orange.

tracking systems such as, for example, JIRA, BUGZILLA, or GITHUB. The requirements (represented
as issues in such systems) are used as a basis for decision-making.

Recommenders in QT Company The QT company (a project partner of the OPENREQ project)
uses Jira to collect and manage requirements, features, and bugs for both their open-source and com-
mercial software projects. Due to the fact that every day many more issues are being added to such
systems, keeping track of all existing issues in issue tracking systems is very cost-intensive. In most
cases, these issues are manually checked, triaged, and maintained. One big challenge is adding depen-
dencies (often called links) in issue tracking systems because this assumes that the maintainer knows
all relevant issues.
Within the scope of OPENREQ (Palomares et al., 2018; Felfernig et al., 2017), a JIRA plugin has been
developed (Lüders et al., 2019) that supports all stakeholders (product / project managers, develop-
ers, and users) in identifying dependencies and detecting inconsistencies between requirements. In

76

3.6. Application Areas of Recommenders in Requirements Engineering

Figure 3.5.: Stakeholder Assignment. In case a stakeholder accepts the assignment he / she will be
marked in green.

Figure 3.6.: Details about the inconsistencies of the current requirements model.

addition, a novel visualization technique has been implemented that presents the requirements with
the corresponding dependencies. The plugin visualizes the links between issues, recommends links
between issues and checks the consistency of release planning (see Figure 3.7).

77

Chapter 3. Recommender Systems in Requirements Engineering

Figure 3.7.: QT plugin visualization of a requirement / issue called ”QTBUG-46129”

The results of a usability study of the JIRA plugin show that the provided recommendation function-
alities were appreciated by the users. They used the tool differently depending on their role in the
company (some appreciated the link detection, others the visualization or the consistency checker). In
general, we can summarize that the OPENREQ technologies improved the processes as the developed
methodologies make the current status of requirements (especially, incorrect or missing information)
more explicit.

Recommenders for the ECLIPSE Community As part of OPENREQ, an ECLIPSE plugin has been
developed to support the ECLIPSE open-source community in stakeholder identification tasks. The
developed plugin presents a personalized prioritized list of ECLIPSE requirements to an ECLIPSE de-
veloper. The underlying concepts and algorithms have been discussed in Section 3.6.1 (see also Samer
et al., 2019) and Stanik et al., 2018). In the ECLIPSE world, everything is called a ”bug”, including
actual user requirements, tasks, as well as bug reports. We use the ECLIPSE terminology (bug) in
the remainder of this section. The recommendation solution consists of a front-end and a back-end
component. The front-end is an ECLIPSE plugin directly included into the ECLIPSE integrated devel-
opment environment (IDE). This plugin presents a prioritized list of bugs to an ECLIPSE developer
taking into consideration the developer’s personal preferences, his / her past work, and the priority
of the bug for the whole ECLIPSE project. The user has the option to give feedback to the back-end
component by rating the suggestion. Furthermore, the user is able to enter dedicated keywords, just in
case the user would like to work on topics he or she did not work on (so much) in the past. With the
feedback of the developers the back-end learns to provide better results in future recommendations –

78

3.6. Application Areas of Recommenders in Requirements Engineering

the more feedback the users provide, the better the results will be in the future.

Figure 3.8.: ECLIPSE plugin presenting a personalized prioritized list of ECLIPSE requirements for a
developer of the ECLIPSE IDE.

Furthermore, the user has the possibility to see the calculated keywords from the back-end component
to understand why the prioritization was done as it was - usually end-users want to understand to a
certain degree as to why (and how) the recommendation has been generated / calculated (Felfernig
et al., 2007). The following screenshot shows the settings page of the ECLIPSE plugin as well as the
calculated keywords in a diagram (see donut chart in Figure 3.9).

Figure 3.9.: ECLIPSE plugin settings page including calculated keywords.

In general, the back-end component works on the basis of a novel content-based recommendation
approach with the capability to adapt to user feedback (see Samer et al., 2019). With the help of the
ECLIPSE plugin, ECLIPSE contributors can easily find a bug to work on.

79

Chapter 3. Recommender Systems in Requirements Engineering

3.7. Selection of Recommendation Algorithms

The variety of different recommendation algorithms discussed in Section 3.5 consists of content-based
filtering (CB), collaborative filtering algorithms (CF), knowledge-based recommenders (KR), group
recommenders (GR), and more sophisticated recommenders based on supervised classification (SC)
and clustering (CL). Depending on the application area, different recommendation algorithms are
applicable. Table 3.7 presents general criteria to guide and assist stakeholders in the selection of a
recommendation algorithm. The selection criteria are based on the work of Felfernig et al. (2019) and
have been adapted to the RE context. The remainder of this section provides a brief discussion of
these selection criteria.

Approach CB CF KR GR SC CL
Easiness of setup 3 3 7 3 7 3

Adaptivity 3 3 7 7 3 3
Sparse data 3 3 3 7 7 3
Scalability 3 3 3 7 3 3

Serendipity effects 7 3 7 3 3 7
Cold-start problem 3 3 7 7 3 7

Transparency 7 7 3 7 7 7
High-involvement items 7 7 3 3 7 3

Table 3.7.: General overview of the different recommendation approaches and basic criteria to guide
the selection of an algorithm.

Easiness of Setup. There is a large variety of content-based, collaborative filtering, and group rec-
ommendation approaches which only require basic setup. The necessary steps to setup RS based on
one of these algorithms require the collection of basic details of the items (e.g., if the items repre-
sent requirements, then the item details may include the title, the description, and the categories of
these requirements) and user / stakeholder preference elicitation on the level of implicit or explicit
feedback. In case of clustering-based approaches, items are grouped and separated based on item-
related attributes (e.g., requirement type, textual content of the requirement description, categories
assigned to a requirement) which also makes this type of recommendation approach easy to setup
and use. Classification-based approaches rely on having enough labeled data available to train a pre-
diction / recommendation model, and the setup of these systems is often more time-consuming and
challenging, due to data preprocessing and feature engineering efforts. Knowledge-based approaches
require more specific and explicit recommendation knowledge (in terms of constraints or semantic
properties, e.g., requirement C must be part of release Y) in order to configure these systems.

Adaptivity. The term adaptivity expresses the capability of a RS to easily and automatically con-
sider newly added ratings in future recommendations without any further actions to be triggered. The
adaptivity of a RS to new as well as rapidly changing rating data in the context of RE represents

80

3.7. Selection of Recommendation Algorithms

an important selection criteria. The main reason for this is that in many RE-related scenarios (e.g.,
group bidding-process scenarios (Samer et al., 2018) or the estimation of a software product’s market
relevance) rating / evaluation changes of existing ratings as well as new ratings are given by stake-
holders throughout the RE process. Therefore, for RS in RE it is important to be able to quickly and
seamlessly adapt to new feedback and rating data. Traditional content-based filtering, collaborative
filtering, group-based, and clustering-based recommendation approaches are able to easily adapt to
new item evaluations (Felfernig et al., 2019) since they can be regarded as learning concepts which
belong to the category of instance-based learning algorithms (also referred to as memory-based learn-
ing). Moreover, knowledge-based recommenders require manual changes of the utility schemes, as
these schemes are not automatically learned (von Winterfeldt and Edwards, 1986). More sophisticated
collaborative filtering algorithms (e.g., matrix factorization) use model-based learning approaches to
learn a prediction model that generates predictions based on inferences. Likewise, supervised classi-
fication algorithms can also be divided into the two types of instance-based learning (e.g., k-Nearest
Neighbors, support vector machines, etc.) and model-based learning (e.g., logistic regression, neural
networks, etc.). Instance-based learning algorithms (e.g., k-Nearest Neighbors) can easily and con-
tinuously adapt to current changes by simply adding the new samples to the existing knowledge base
(i.e., highly adaptive). For model-based learning approaches, further training is necessary to automat-
ically adapt learned prediction models. The adaptivity of a model to quickly adapt to newly added
instances / ratings primarily depends on whether a model can be trained offline or in an incremental
fashion (batch / offline training vs. incremental / online training). Algorithms that require offline
learning have a low adaptivity since new samples / ratings require an effortful retraining of the model
using the full dataset. On the contrary, online learning usually allows a fast adaption of a model to
the new samples / ratings by just retraining the model with the new samples instead of the complete
dataset. For example, in case of neural networks (e.g., using mini-batches), the already learned net-
work weights can be used as existing weights to quickly adapt (depending on the used learning rate)
the network to the new samples (Perrone et al., 2019).

Sparse Data. In practice, the rating data available to learn a recommendation model is often sparse.
This results out of the fact that most users only rate a small set of preferred items in relation to the large
assortment of items that exists in an item database (see also Section 3.5.1). This means that most users
only evaluate a few items and the vast majority of items remains unrated by these users. In the context
of RE, large industrial software projects often consist of up to thousands of requirements. The stake-
holders of such projects are usually not able to analyze and evaluate all requirements. This leads to
challenging situations for RS in RE where sparse evaluation / rating data is available. Consequently,
sparse rating data is a challenging issue for many RS in RE. In particular, sparse rating data poses
a challenge for group-based and classification-based recommendation models, since such models re-
quire a decent amount of rating data available for every item. In particular, group-based recommenders
using heuristics to generate prioritized sequences of items / requirements require preference elicitation

81

Chapter 3. Recommender Systems in Requirements Engineering

of all users which should be as complete as possible. Knowledge-based recommenders require more
detailed information about a user’s preferences and the constraints in order to discover and recommend
appropriate solutions. Classification-based recommenders need a more dense amount of training sam-
ples (which convey sufficient details about all individual user preferences) and a well-balanced set of
training samples (i.e., enough samples for each class). Content-based filtering recommender systems
are able to handle sparse rating information quite well as long as sufficient amount of content-related
information of the items (attributes or categories) is available (Idrissi and Zellou, 2020). In case of
neighborhood-based collaborative filtering approaches, the prediction quality depends on the number
of ratings provided by other / similar users. This means that if an item has not been rated by many
users, then it cannot get recommended often. However, model-based collaborative filtering systems
(e.g., matrix factorization) represent a good and efficient alternative to solve this problem (Idrissi and
Zellou, 2020).

Scalability. An important requirement to a RS is its scalability. In many practical RE-related sce-
narios (Mobasher and Cleland-Huang, 2011), the number of items (e.g., requirements) is very large,
which significantly increases the complexity of building / learning a prediction model. Content-based
filtering and item-based collaborative filtering solutions are capable of handling large numbers of
users / stakeholders, items, and item ratings in an efficient manner. However, model-based learning
approaches (e.g., matrix factorization) usually perform more efficiently on large datasets (e.g., lower
memory consumption and prediction effort) when compared to instance-based learning algorithms
(basic content-based filtering or user-based collaborative filtering). Model-based learning also helps
to effectively counteract noise in the rating data. Moreover, knowledge-based and clustering-based
recommendation approaches are also able to scale with an increasing number of items and users. In
case of classification-based recommenders, deep learning architectures can be used to even take ad-
vantage of the full knowledge power of extremely large datasets (Goodfellow et al., 2016).

Serendipity Effects. The serendipity effect describes the event of an unexpected and fortunate dis-
covery of new items by a recommender system. It expresses a surprising moment when relevant items
are proposed to a user which the user did not expect to see. In practice, such items can be niche
products or in RE, these items can be requirements that are of high relevance for a stakeholder but
related to subsidiary domains (or relevant requirements that have not yet been thought about by the
stakeholder). Content-based approaches are based on the principle of recommending content-related
items of previously liked items and are therefore not suitable to discover new unexpected items that
do not relate to previously seen items (in terms of the content). Similar to content-based filtering,
the concept of clustering-based recommendation also follows an approach of bringing together sim-
ilar items (based on some characteristics or the content). The items recommended (or generated) by
knowledge-based recommenders conform to specified constraints, recommendation criteria, and user
preferences. In order to achieve serendipity capabilities, the existing knowledge base of knowledge-

82

3.7. Selection of Recommendation Algorithms

based recommenders has to be enriched with specific serendipity settings. In contrast, collaborative
filtering recommenders are appropriate solutions to find and unveil unexpected items, since such sys-
tems follow the approach of finding new items preferred by like-minded users. Hence, collaborative
filtering has serendipity capabilities which allow to discover new items that are not related to the con-
tent of any other item liked by the current user, but still refer to the profile of the current user (Kotkov
et al., 2016). Serendipity effects can also be observed when using supervised classification recom-
menders, as these systems learn latent patterns in the data in order to generate recommendations.
Moreover, heuristics have to be adapted to allow serendipitous recommendations in group-based rec-
ommendation settings (Masthoff, 2015).

Cold-start Problem. The cold-start problem describes a situation where no or only very sparse in-
formation about users (user cold-start problem) or items (item cold-start problem) is available. In
practice, such situations can occur, for example, at the beginning when a recommender system is used
for the first time, or during operation when new items or users are added to the system. Unlike most
general RS (e.g., movie recommenders), RS used in RE have to face different difficulties and chal-
lenges of the cold-start problem. In the context of RE, the requirements often represent the items in
a typical RE-related recommendation scenario and there exists a large number of requirements which
have not been evaluated at the beginning. In case of movie recommender systems, new items / movies
are typically continuously added over a long period of time. However, RS used in RE have to deal with
situations where only a set of unrated items / requirements is available at the beginning. Consequently,
in the context of RE, the item cold-start problem is usually more relevant than the user cold-start prob-
lem. Collaborative filtering recommenders are prone to cold-start issues as they require a sufficient
amount of rating data. In contrast, content-based recommenders can handle new items quite well since
the algorithm can make associations between existing user profiles and new item data without any new
ratings. However, user-related cold-start problems remain an issue for content-based recommenders.
Similar to content-based algorithms, knowledge-based approaches also represent a suitable solution
to tackle item-related cold-start issues. Hybrid recommendation approaches are in most cases a good
chance to tackle the typical cold-start problems.

Transparency. In terms of RS, the degree of transparency indicates how explainable the recom-
mendation results are. Explainable recommendations are important to increase the trust of the users
in a RS. In the context of RE, explainable and transparent recommendations are fundamental as the
recommendations often provide the basis for project-critical decisions (e.g., requirements triage or re-
lease planning) and the explanations of these recommendations then allow the stakeholders to justify
their decisions. Since content-based systems recommend items that are similar to items previously
consumed by the current user, recommendations can be explained by describing this principle (e.g.,
the following items have been recommended because the items that you have purchased in the past
are similar to these recommended items). Recommendations generated by collaborative systems can

83

Chapter 3. Recommender Systems in Requirements Engineering

often be explained based on the similarity between the current user and the other neighbor users from
who the recommended items have been taken / extracted (e.g., ”these requirements have been rec-
ommended for evaluation because like-minded stakeholders evaluated these requirements.” or ”most
stakeholders who have seen this requirement also have viewed the following requirements...”). Even
though these explanations of content-based and collaborative filtering systems seem to be quite sim-
ple and easy-to-understand, the explanations can not be regarded as being transparent as they do not
allow the user to obtain deep insights to the reasons of the recommendations. Likewise, explanations
of recommendations generated by systems based on supervised classification or clustering can also
be regarded as being shallow as these systems also represent a specific form of content-based or col-
laborative filtering systems on an abstract level. In contrast, explanations of items recommended by
knowledge-based recommenders provide a high degree of transparency since the explanations rep-
resent information that was gained during the reasoning process (Felfernig and Burke, 2008). The
explanations of recommendations delivered by group-based systems are also often transparent. How-
ever, the explanations primarily depend on the used heuristics (aggregation functions) to calculate the
utility value of the items (see Section 3.5.2 and Felfernig et al., 2018).

3.8. Open Research Topics

The RE process is composed of different activities where each of them involves several tasks. Al-
though there exist many recommendation tools which already cover and support many of these tasks,
we can still observe some gaps regarding decision-support in RE that should be addressed by
future work.

Prediction Quality. For example, future work should address the improvement of the efficiency and
the prediction quality of recommendation approaches applied in RE. This helps to keep up with the
upcoming increase of challenges introduced by the ongoing growth of software complexity. Deep
learning (Goodfellow et al., 2016) techniques are currently emerging to become an important means
for RE (Baker et al., 2019; Navarro-Almanza et al., 2017). Such techniques can empower RS to fur-
ther increase the prediction and decision quality by exploiting large data sources. In case of large
software projects, the relevant information to support important decisions can be qualitatively en-
riched by discovering vast amounts of data (e.g., user feedback from large social media channels).
For example, the application of more sophisticated deep neural networks and deep convolutional
neural networks as document classification solutions in large industrial RE projects, can help to sig-
nificantly increase the performance of correctly classified requirements (defined in natural language).
Moreover, existing work (e.g., Dekhtyar and Fong, 2017) demonstrates the potential that pre-trained
word embeddings (Goodfellow et al., 2016) can help to achieve higher prediction rates in specific
requirement classification tasks. However, more research has to be conducted, in order to apply such
techniques and further improved versions of existing solutions in more RE-tasks (such as requirement

84

3.8. Open Research Topics

dependency detection, requirements reuse, requirements prioritization, requirements quality analysis,
etc.). Moreover, the integration of these techniques into requirements management platforms and rec-
ommendation tools also represents an important part for future work.

Datasets. The aforementioned techniques are based on supervised classification and require a large
amount of highly qualitative labeled training data (i.e., a solid ground truth), in order to build re-
liable and correct recommendation models. Although there exist collections of public RE datasets
(e.g., Ferrari et al., 2017) from many different domains (web development, telecommunication, rail-
way, etc.), further data collection and manual processing is necessary for most of these datasets in
order to gather a sufficient amount of high-quality data that is suitable for training and evaluating
prediction models based on supervised classification (deep learning as well as traditional supervised
classification approaches). In particular, in the field of automated requirement dependency detec-
tion, more comprehensive, diverse, and high-quality requirement dependency datasets are required
to allow more expressive as well as representative studies and evaluations of different dependency
identification approaches as well as reasonable comparisons between existing solutions. For exam-
ple, existing dependency detection approaches which are based on supervised classification (Samer
et al., 2019; Deshpande et al., 2019) have only been evaluated on relatively small datasets which stem
from one single or a few specific domains. Moreover, we can also observe a need for larger datasets
from different domains that contain evaluation / rating data of requirement evaluations conducted in
groups. This can help to quickly construct evaluation baselines against which different group recom-
mendation approaches can be compared and define the basis for refined approaches that can increase
decision-making in group-based evaluation settings. Ongoing work will address these issues and
new datasets for particular RE-related recommendation tasks are planned to be published along with
improved solutions.

Explanations. The presentation of explanations related to recommendations in RE-related tasks rep-
resents another aspect on which future work should focus on. To the best of our knowledge, we
can observe that this represents an aspect where the RE community has still a huge potential for
improvements. Explanations help stakeholders to understand how certain recommendations were
generated by a RS which usually leads to more trust and to a reduced level of stakeholder uncer-
tainty in the decision-making process (Tintarev and Masthoff, 2007). For example, visualization
tools with (visual and textual) explanations can be applied in order to show more detailed statistics
that visualize requirement evaluations and deviations of diverging opinions. Such explanations can
trigger discussions which represent a prerequisite for improved RE-related decisions (in particular,
requirements prioritizations).

Gamification. Future work regarding requirements management platforms (such as OPENREQ!LIVE),
should take concepts from gamification (Sailer et al., 2017) into account, in order to increase the en-

85

Chapter 3. Recommender Systems in Requirements Engineering

gagement of stakeholders in RE decision-making. Gamification is known as the application of princi-
ples in the fields of game design, game dynamics, behavioral economics, and motivational psychology
in software platforms. The gamification concept exploits basic human behaviors such as impatience,
curiosity, fear of loss, and social influence to design software that focuses on users (Chou, 2019).
In general, we can observe that gamification techniques are very successful in software systems to-
day (Chou, 2019; Sailer et al., 2017). Modern online platforms (such as Facebook18, LinkedIn19,
or Instagram20) use these principles to motivate users to take specific actions. Examples of the suc-
cessful application of gamification mechanisms include, for example, status indicators indicating the
completeness of the user profile on a business platform using the so-called ”Need for Completion” be-
havior pattern. Lombriser et al. (2016) show that gamification can positively influence the elicitation
process in agile RE. The authors found that simulating competitions with the help of gamification can
help to collect basic as well as novel requirements, and gamification has a significant positive impact
on creativity. The successful application of gamification techniques heavily depends on the selection
of game elements, as they can influence different psychological aspects. The conducted experiment of
Lomriser et. al. shows that an individual leader-board and the possibility to win prizes encourages the
competition in a positive manner. Rivalries of different stakeholders increased requirements produc-
tion and thus resulted in a higher quality as well as more creative ideas (Lombriser et al., 2016). Due
to the fact that most requirements engineering processes are tasks for groups of users, decision biases
are very likely to arise and thus can lead to significantly lower decision outcomes (e.g., release plans).
Hence, an interdisciplinary research will be needed to take into account related decision psychological
theories (Stettinger et al., 2015).

Sustainability. Global warming represents one of the greatest challenges in our human history and
measures to combat global warming will affect all areas of our daily life. Regarding future work in the
field of RE, the focus should also lie on the development of sustainable requirements, in order to de-
velop systems that are as resource-efficient as possible. Future research should also address this topic
in order to contribute to this global human undertaking. In particular, more recommendation tools
are needed that foster sustainability aspects in the planning and development of complex sustainable
software-driven solutions (e.g., solutions for complex smart city projects).

3.9. Conclusion

This chapter gives an overview of different recommendation approaches applied in the context of re-
quirements engineering (RE). The RE process can be viewed as a complex decision-driven process
consisting of many different phases in which many stakeholders are usually involved. A high com-
plexity in the process also implicates a high risk of project failure. As a consequence, there is a high

18Facebook: https://www.facebook.com
19LinkedIn: https://www.linkedin.com
20Instagram: https://www.instagram.com

86

https://www.facebook.com
https://www.linkedin.com
https://www.instagram.com

3.9. Conclusion

demand for intelligent decision-support tools which can help to limit and reduce this risk. The variety
of intelligent recommendation techniques presented in this chapter fits seamlessly into this problem.
It ranges from basic recommendation-based methods which focus on decision support to more so-
phisticated recommendation techniques that assist groups by decreasing the information overhead in
order to improve decision-making. We have discussed different types of recommendation algorithms
and provided several basic examples to demonstrate some of the underlying algorithmic approaches.
In this chapter, we focused on a discussion of RS in RE and showed how innovative recommendation
concepts have shaped RE research in recent years. Thereby, we presented a series of recommendation
tools which are applied in different phases of the RE process. Although the general results produced
by such recommendation tools are still far away from results which can be achieved by humans,
the results are good enough to provide high qualitative suggestions to stakeholders. Throughout the
chapter, we have also provided a brief insight into the OPENREQ project which represents an exam-
ple of a large research project in the field of recommendation-applied RE. Within the scope of the
project, innovative recommendation technologies for the area of RE have been developed. Relevant
evaluation results of selected representative studies conducted by the project partners have been pre-
sented in this chapter to demonstrate the high potential of these recommendation tools to foster and
improve decision-making in RE. Moreover, we introduced the requirements management platform
OPENREQ!LIVE which has been developed within the scope of the OPENREQ project. The platform
features a rich set of intelligent decision and recommendation techniques which support various RE
tasks (reaching from requirements elicitation over stakeholder assignment till complete release plan-
ning of complex software projects). The OPENREQ project is important, not only for tool support,
but its case studies can guide research in directions that are supported by actual real-world cases from
people who are involved in the field of RE. Finally, with our outlook on topics regarding future work in
this area, we intend to motivate the development of more refined recommendation tools in RE which
satisfy emerging industrial needs.

87

88

Chapter 4
New Approaches to the Identification of
Dependencies between Requirements

This chapter is based on the results documented in Samer et al. (2019). Most parts of this chapter,
such as literature research, algorithmic recommendation approaches as well as the user study

have been provided by the author of this thesis.

4.1. Abstract

There is a high demand for intelligent decision support systems which assist stakeholders in require-
ments engineering tasks. Examples of such tasks are the elicitation of requirements, release planning,
and the identification of requirement dependencies. In particular, the detection of dependencies be-
tween requirements is a major challenge for stakeholders. In this chapter, we present two content-
based recommendation approaches which automatically detect and recommend such dependencies.
The first approach identifies potential dependencies between requirements which are defined on a
textual level by exploiting document classification techniques (based on Linear SVM, Naı̈ve Bayes,
Random Forest, and k-Nearest Neighbors). This approach uses two different feature types (TF-IDF
features vs. probabilistic features). The second recommendation approach is based on Latent Seman-
tic Analysis and defines the baseline for the evaluation with a real-world dataset. The evaluation shows
that the recommendation approach based on Random Forest using probabilistic features achieves the
best prediction quality of all approaches (f1-score: 0.89).

4.2. Introduction

Recommender systems (RS) are decision support systems which help users to select a well-collected
set of items matching their needs and preferences (Adomavicius and Tuzhilin, 2005; Resnick and Var-

89

Chapter 4. New Approaches to the Identification of Dependencies between Requirements

ian, 1997). Nowadays, these systems are applied in many well-known domains such as books, movies,
or songs. In more complex domains such as requirements engineering (RE), there is a high demand
for applying RS to support stakeholders (Felfernig et al., 2013; Mobasher and Cleland-Huang, 2011).
Recommender systems can support stakeholders in different RE tasks such as requirements defini-
tion / elicitation, release decisions, stakeholder identification, and dependency detection (Mobasher
and Cleland-Huang, 2011; Ninaus et al., 2014).

Usually, a software project consists of hundreds of different requirements which are often related to
each other. Single requirements elicitation methods such as interviews (Davis et al., 2006) are consid-
ered effective, but do not scale up for the elicitation of dependencies. The identification of dependen-
cies between the requirements is a cognitively challenging and time consuming task which requires the
use of intelligent methods (Leffingwell, 1997; Mobasher and Cleland-Huang, 2011). The traditional
method, where stakeholders detect requirement dependencies manually, entails a high risk of project
failure, since stakeholders are often not aware of the latest changes regarding the set of requirements.
In addition, stakeholders have to understand the domain-specific content of each requirement which is
also very time-consuming. Missing or incorrect dependencies will result in release plans that require
additional effort for their implementation (Ruhe, 2010). There exist different types of requirement
dependencies such as includes, excludes, and requires. In particular, requires is known to be the most
frequently occurring dependency type in the context of RE (Ferber et al., 2002). The identification of
requires-dependencies is essential for a project, because the late discovery of these dependencies can
lead to negative consequences such as increased costs or unfulfilled deadlines. In order to increase the
quality of software release planning, more sophisticated approaches are needed. Therefore, we devel-
oped two content-based recommendation approaches which support stakeholders in the identification
of such dependencies.

In the context of dependency recommendation, there exists some related work (Carlshamre et al.,
2001; Deshpande, 2019). The work of Chitchyan and Rashid (2006) describes an NLP-based (natural
language processing) approach which assists in the identification of dependencies between require-
ments on a semantic level. Ninaus et al. (2014) present an RE tool which applies recommendation
techniques to support stakeholders in RE tasks. Their tool also includes a basic dependency recom-
mendation approach which recommends similar requirements that are treated as potential dependen-
cies. Atas et al. (2018) presents an approach to automatically identify requirement dependencies of
type requires by using supervised classification techniques. Having a high prediction quality is crucial
for effectively supporting stakeholders. Our major research goal is to further improve the prediction
quality of dependency detection compared to existing approaches. Our recommenders follow the ob-
jective to provide decision support to domain experts in the task of dependency elicitation. The major
contributions of this chapter are the following. The work presented in this chapter extends the basic
approach of Atas et al. (2018) and enriches it with new feature types and a new classification approach

90

4.3. User Study & Dataset

based on aspects from the area of information theory. In contrast to Atas et al. (2018) and Ninaus et al.
(2014), our work uses (1) enhanced methods that achieve higher prediction quality and (2) a recom-
mendation environment based on the developed classification approaches. We also provide a new
dataset which can be used as baseline for related comparisons. The evaluation results indicate that our
developed approaches are able to reliably identify dependencies between requirements. In particular,
the results reveal that our content-based RS based on Random Forest classification achieves a high
prediction quality.

The remainder of this chapter is structured as follows. In Section 4.3, we explain the structure of the
used dataset and the design of an empirical study to manually detect the requirement dependencies in-
cluded in the dataset. Section 4.4 presents the used pre-processing and feature extraction techniques.
In Section 4.5, we introduce approaches to automatically detect and recommend dependencies be-
tween requirements. An experimental evaluation of our content-based RS and a short discussion of
the evaluated results is provided in Section 4.6. Finally, we conclude the chapter and provide a brief
outlook towards future work in Section 4.7.

4.3. User Study & Dataset

We used a dataset1 which consists of 30 software and hardware requirements as well as of 51 depen-
dencies that exist between these requirements. The requirements were related to the development of
a sports watch and have been defined in cooperation with software development companies (industry
partners). The industry partners are experts with longstanding experience and practical knowledge in
the RE domain. Each of the defined requirements consists of an id, a title, and a textual description (in
German). We conducted a user study in a software engineering course with N=182 computer science
students and asked them to manually detect dependencies of type requires. A requires-dependency
for an ordered requirement pair (rx, ry) is a unidirectional dependency which indicates that rx re-
quires ry (denoted as: rx ! ry). This statement does not imply that ry also requires rx. However, it
is important to mention that our work presented in this chapter only focuses on the prediction of a
requires-dependency but not on the prediction of its direction.

The major aim of our user study was the complete detection of all dependencies for the predefined
set of requirements. For the purposes of the user study, a set of 30 requirements was presented to
each participant. In order to avoid biasing effects (Murphy et al., 2006), a randomly ordered list
of these 30 requirements was shown to each participant. The identified dependencies were used for
training and testing of our content-based RS. Considering the direction of the requires-dependencies,
the number of possible dependencies is

�30
2
�
⇤ 2 = 870. In order to obtain a complete dataset and a

profound ground truth basis to train our RS, we reviewed and combined the most frequently reported

1Dataset: http://openreq.ist.tugraz.at:8080/OpenReq_dataset.zip

91

http://openreq.ist.tugraz.at:8080/OpenReq_dataset.zip

Chapter 4. New Approaches to the Identification of Dependencies between Requirements

dependencies with the dependencies of an example solution from 7 experts of our industry partners.
We cleaned the dataset in collaboration with these RE experts in order to train the RS with the correct
dependencies. Thereby, also less frequently reported (but correct) dependencies could be found and
were included in the final dataset. This way, a complete dataset could be derived which represents a
ground truth that assures completeness, preciseness, and clearness of the data.

Table 4.1 provides a brief overview of the dependencies reported by the experts and the study par-
ticipants. The study results show that the 182 participants stated 657 different dependencies. Our
7 experts stated 38 dependencies and found more unique dependencies (5.43) on average than the
participants (3.61). In order to obtain a final solution from the collected data, we took the 20% of
the students’ most frequently reported dependencies (131) and combined them with the 38 depen-
dencies reported by the experts. Considering the intersection of both sets, there was an overlap of
35 dependencies. We analyzed (together with the experts) the remaining part of the non-overlapping
dependencies ((657�35)+(38�35) = 625) reported by the students and the experts. This way, an-
other 16 dependencies could be obtained which were added to the set of 35 overlapping dependencies.
The final dataset consists of 51 requires-dependencies (35+16 = 51) and 30 requirements.

Reported Dependencies
Group Persons Amount Average
Study Participants 182 657 3.61
Experts 7 38 5.43

Overlap 35 -
Additionally added 16 -

Finally selected 51 -

Table 4.1.: Dependencies found by experts and students.

4.4. Preprocessing & Feature Extraction

Before the system could be trained and tested, the records of the final dataset had to be prepared and
converted into a format which is suitable for a recommender system based on machine learning. For
the preprocessing of our dataset, we first tokenized the title and the description of each requirement
into proper linguistic units (bag of words). Thereafter, we removed stop words and special characters,
merged synonyms, and applied lemmatisation.

4.4.1. Extraction of TF-IDF Features

For every token the term frequency–inverse document frequency (TF-IDF) was determined. After
the calculation of the TF-IDF values, tokens which do not contain any valuable information were

92

4.4. Preprocessing & Feature Extraction

removed. In our approach, the TF-IDF value was calculated for single (i.e, uni-gram) and adjacent
tokens (i.e., n-grams). Then, TF-IDF values were combined into a single vector v for a requirement
pair (rx, ry). Formula 4.1 provides a formal representation of the feature vector v whereby each TF-
IDF value of an n-gram token is wrapped in a separate mathematical set (see curly brackets) and these
sets are then merged with each other by using the union operator ”[”.

v(rx,ry) =
[

i2ngrams(rx)

{T FIDF(i)} [
[

j2ngrams(ry)

{T FIDF(j)} (4.1)

4.4.2. Extraction of Probabilistic Features

As an alternative feature representation, we also used features which take aspects from the area of in-
formation theory into account (Durme and Lall, 2009). In the remainder of this chapter, we call these
features probabilistic features. We used probabilistic features as an alternative to TF-IDF features,
since they reflect statistical correlations between the words and provide more precise descriptions of
the word-based similarity of the requirement pairs. For each pair (rx,ry), we created features that
express correlations between the words from the title and the description of a requirement. We cre-
ated features which are based on the co-occurrences of words. These features are counted values
that reflect the number of words which both requirements share in common. Further, we also intro-
duced probabilistic values as additional features. The probabilistic values are computed by using the
Pointwise Mutual Information (PMI) measure (see Formula 4.2).

pv(Tx,Ty) = Â
w2Tx

Â
v2Ty

log
p(w,v)

p(w)⇤ p(v) (4.2)

The token list of requirement rx (Tx) and requirement ry (Ty) were compared and pv(Tx,Ty) was de-
termined by summing up the PMI values of all possible token-pairs among Tx and Ty. The following
features were used:

• feat1: overlap between description-tokens of rx and all tokens of ry

• feat2: overlap between description-tokens of ry and all tokens of rx

• feat3: PMI of title-tokens of rx and ry

• feat4: PMI of description-tokens of rx and ry

• feat5: PMI of all tokens of rx and ry

93

Chapter 4. New Approaches to the Identification of Dependencies between Requirements

Feature feat1 refers to the number of description tokens of rx that also occur in the list of title-tokens
or description-tokens of ry. In other words, we quantify the absolute value of the word-overlap for
a given requirement-pair (rx,ry) between those tokens that appear in the description of rx and those
tokens which appear in the title or description of ry. Likewise, feature feat2 corresponds to the counted
value reflecting the number of those description-tokens of requirement rx that also co-occur in the list
of description-tokens of ry. In addition to these two features, we introduced three probabilistic features
which were all calculated based on Formula 4.2. The idea of these features consists in measuring the
probability for each word-pair among Tx and Ty that the word / token w 2 Tx and the token v 2 Ty

co-occur (i.e., p(w,v)) in relation to the individual probabilistic occurrence of w (i.e., p(w)) and the
individual probabilistic occurrence of v (i.e., p(v)). To compute the value of a requirement-pair (rx,ry)

for feature feat3, the title-token list of rx (denoted as Tx) and the title-token list of ry (denoted as Ty)
are compared with each other. The PMI value for each token-pair among Tx and Ty is individually
calculated and summed up. The sum of all PMI values is then used as feature feat3 for the pair
(rx,ry). Likewise, the values for feature feat4 and feature feat5 can be obtained by using the same
procedure. In case of feat4, the token list Tx is replaced with the description-tokens of rx and the token
list Ty only contains the description-tokens of ry. For feat5, Tx is considered as the list of all tokens of
requirement rx and Ty consists of all tokens of requirement ry. Once all five features for a pair (rx,ry)

are obtained, a feature vector can be constructed. Before the feature vector is passed as input to the
classifier, feature scaling is applied to each vector component individually. This ensures that every
feature value u 2 { f eat1, f eat2, f eat3, f eat4, f eat5} is normalized and equal importance is given to
all features.

4.5. Approach

We developed two different content-based recommendation approaches which follow the objective to
identify and recommend dependencies between requirements. Both approaches were trained with a
training set (T R) and tested with a test set (T E). Our implementation was based on the
Scikit-learn library2.

4.5.1. Classification (Approach I)

Our first RS used a binary classifier to predict the existence of a dependency (true vs. f alse). We
compared different classifiers based on Linear SVM (Support-Vector Machine), Naı̈ve Bayes, Random
Forest, and k-Nearest Neighbor (k-NN) and evaluated their performance (see Section 4.6). We consid-
ered all requirements from the training set T R and created training pairs which were used as training
samples. Each training sample and each test sample corresponds to a feature vector of a requirement
pair (rx, ry) and contains either the combined TF-IDF features or probabilistic features of rx and ry.
The training pairs / samples were then used to learn a prediction model. To generate all training pairs,

2Scikit-learn library: https://scikit-learn.org

94

https://scikit-learn.org

4.5. Approach

we created all possible (n�1) requirement-pairs for a requirement ra 2 T R with every other require-
ment rb 2 T R. For each pair (ra, rb) the feature vector vra of ra was combined with the feature vector
vrb of rb into a single feature vector vra,rb . The resulting feature vector was then used as a training
pair. In the case that a pair (rx,ry) was dependent (i.e., rx ! ry and / or ry ! rx), we assigned the true
class to this sample (label=true), otherwise false (label=false). Due to a significant class imbalance
between the false and true class, not all training pairs could be used to train the classifier. The num-
ber of independent pairs completely dominated the pairs where both requirements were dependent on
each other. Thus, we randomly under-sampled the f alse class.

When we used TF-IDF features, the feature vector vra,rb contained the TF-IDF values of all tokens that
occur in the title and description of ra and rb (Section 4.4.1). In the case of probabilistic features, we
used the five computed features described in Section 4.4.2. The classifier was trained with the training
pairs by using their feature vector and label. The learned prediction model was then used to predict de-
pendent requirements for a given requirement rx 2 T E. This was achieved by considering all possible
test samples / pairs (rx, ry), where rx 2 T E^ry 2 T R. These pairs were passed as input to the classifier.
The classifier then individually predicted the existence of a dependency between both requirements
for each pair. All those pairs for which the classifier predicted true were finally recommended.

4.5.2. Latent Semantic Analysis (Approach II)

In order to compare our RS based on classification, we developed a second recommender which is
based on Latent Semantic Analysis (LSA) and acts as baseline for the evaluation. LSA utilizes Singu-
lar Value Decomposition (SVD) to transform a term-document matrix into its semantic-space repre-
sentation (Deerwester et al., 1990). Given the TF-IDF values of all preprocessed title- and description-
tokens of the requirements, we created a document-term matrix X . Each training sample and each test
sample corresponds to a feature vector of one requirement and contains the TF-IDF features. The idea
of this approach consists in building a document-term matrix with the requirements from the training
set (80%) and then to use LSA to find requirements which are similar to a requirement rx from the
test set (20%). All such similar requirements are considered as being dependent on rx and are then
recommended as a requires-dependency.

In the document-term matrix X , the requirements represent the documents. The preprocessed title and
description tokens of a requirement are combined into a single document-vector. This vector contains
the tokens’ TF-IDF values and appears as a column in X . X is a m⇥ n matrix where each column
j represents the document-vector d j of requirement r j. Each row i of X corresponds to a single to-
ken / term (tT

i). After the construction of X , LSA is applied to decompose X into three matrices U ,
S, and V T such that the product of these decomposed matrices leads back to the original matrix X
(i.e., X =USV T).

95

Chapter 4. New Approaches to the Identification of Dependencies between Requirements

The three components (U , S, V T) constitute a semantic representation of X . U is a m⇥ l matrix which
maps the terms of the matrix X onto l characteristic features. Likewise, V T is a l ⇥n matrix mapping
the requirements of the matrix X onto l characteristic features. S is a l⇥ l diagonal matrix where each
diagonal entry si represents a singular value. Each singular value refers to the weight / importance
of the corresponding characteristic feature. The lowest singular values are removed from S due to
their low importance and only the k highest ones are preserved. The number of U’s columns and the
number of V T ’s rows is also reduced to k. This leads to a truncated semantic representation (Uk, Sk,
V T

k) which only contains the k most important characteristics. This way, the dimensionality of the data
is reduced and noise is removed which leads to an implicit merge of terms that share similar meanings
(e.g., synonyms).

Although also some valuable information gets lost after data reduction, the most valuable informa-
tion of the original semantic representation (U , S, V T) still remains part of the truncated semantic
representation (Uk, Sk, V T

k). The product UkSkV T
k still results in a matrix that is quite close to the

original matrix X and can be considered as a good approximation of X . The truncated semantic
representation (Uk, Sk, V T

k) is used to find requirements similar to a given requirement rx. This is
achieved by transforming the document-vector dx of rx into its reduced semantic space representation
d0

x (see Formula 4.3).

d0
x = S�1

k UT
k dx (4.3)

The transformed document-vector d0
x of rx is then compared with all other semantic document-vectors

which represent the other requirements in the low-dimensional space. In order to find the require-
ments that are most similar to rx, we measure the cosine similarity between d0

x and all other semantic
document-vectors which are the column vectors of V T

k . The underlying assumption is that the most
similar requirements can be considered as being probably dependent on requirement rx. These re-
quirements are then recommended together with rx as requires-dependencies.

4.6. Evaluation & Discussion

To evaluate both approaches described in Section 4.5, we used k-fold cross validation (k = 10). The
overall prediction quality of the recommended dependencies was measured in terms of precision,
recall, and f1-score. In the case of the first RS based on classification, TF-IDF values of unigrams,
bi-grams, and tri-grams were used, for LSA (our second RS) only unigrams were considered (see Sec-
tion 4.4). The classifier of the first RS returned a probability value for each prediction. We used this
probability value to limit the number of recommended requires-dependencies. We introduced a thresh-
old of 65% such that only predicted dependencies which had a probability above this threshold were

96

4.6. Evaluation & Discussion

recommended. Likewise, we introduced another threshold parameter for the other approach based on
LSA. This threshold parameter was set to 0.83 and it referred to the minimal cosine similarity that
another requirement ry 2 T R must have in order to be considered as being dependent on rx. The de-
pendencies of those requirements which satisfied the similarity-threshold were finally recommended.

Table 4.2 presents the evaluation results of the different algorithms. According to these results, all
algorithms performed quite well with TF-IDF and probabilistic features. This means that the requires-
dependencies between the requirements were found quite reliably by all algorithms. In particular, high
scores in terms of precision and f1-score can be observed for Linear SVM (precision: 0.997, f1-score:
0.695) and Naı̈ve Bayes (0.901, f1-score: 0.720) when TF-IDF features were used. However, al-
though the recommender using Linear SVM classification and TF-IDF features was able to accurately
predict dependencies (high precision), it also shows a low recall of 0.533 which indicates that many
dependencies could not be found and hence were never recommended by this classifier. This further
indicates that the used probability threshold of 0.65 (see Section 4.6) is too high for this classifier and
more dependencies with a lower probability should be included in the recommendation list. More-
over, it is noticeable that the LSA approach (which represents the baseline of our evaluation) shows a
low precision of 0.6 (i.e., not so many recommended dependencies were correct) but a high recall of
0.818 (i.e., most of all existing correct dependencies were found and recommended). The same also
applies to k-Nearest Neighbors (precision: 0.611, recall: 0.733). In case of LSA, this might be due
to the reason that the LSA approach can be considered to be acting like a fuzzy clustering algorithm
which tends to recommend all requirements that are very similar on a content-based level. This way,
most dependencies can be found. However, LSA’s low precision indicates that this approach seems to
lack of naı̈vety and can not develop a good sense to distinguish between those requirements that are
just similar versus those requirements that are really dependent.

TF-IDF Features Probabilistic Features
Algorithm P R F1 P R F1
LSA (Baseline) 0.600 0.818 0.692 – – –
Naı̈ve Bayes 0.901 0.600 0.720 – – –
Linear SVM 0.997 0.533 0.695 0.812 0.567 0.668
k-Nearest N. 0.611 0.733 0.667 0.786 0.733 0.759
Random Forest 0.889 0.533 0.667 0.929 0.867 0.897

Table 4.2.: Scores of the different algorithms (precision [P], recall [R], and f1-score [F1]). The highest
scores are highlighted.

3We tested different threshold-combinations and achieved the best prediction results with 65% for probab. threshold and
0.8 for dist. threshold.

97

Chapter 4. New Approaches to the Identification of Dependencies between Requirements

Since LSA requires a document-term matrix as input, it cannot be combined with our probabilistic
features. Naı̈ve Bayes is also supposed to be used only with TF-IDF features (or term frequencies).
Hence, we could only evaluate the other three classifiers with our probabilistic features. By comparing
the previously discussed results (obtained by using TF-IDF features) with the results obtained by us-
ing probabilistic features, one can observe a remarkable increase of the prediction quality for all three
classifiers (except Linear SVM). This is especially true with respect to all measures for the Random
Forest classifier which achieved the best overall prediction quality (precision: 0.929, recall: 0.867, f1-
score: 0.897) and could even significantly outperform the baseline approach in terms of recall. This
behavior can be explained by taking a look at the probabilistic feature generation approach. The idea
of probabilistic features consists in measuring the co-occurrence of words that appear in two require-
ments. This ensures that ”noisy” words of a given requirement which are unlikely to co-occur in the
context of another requirement, are considered as unimportant and hence do not contribute much to
the calculated feature values. However, the valuable words of a given requirement that co-occur in the
context of another requirement, represent valuable information and lead to a significant contribution
to the calculated feature values. Consequently, a more descriptive feature representation containing
valuable information can be provided to the recommender based on Random Forest. This empowers
the classifier to more accurately detect whether or not a dependency between two requirements exists.

4.7. Conclusion & Future Work

Conclusion. In this chapter, we introduced two recommender systems (RS) for the recommendation
of requirement dependencies of type requires. We focused on the type requires, as this type can be
considered as the most critical type among all existing dependency types (Ferber et al., 2002). The
first RS was based on classification and the second was based on Latent Semantic Analysis (LSA).
The used classifiers (Naı̈ve Bayes, Linear SVM, k-NN, Random Forest) of the first approach were fed
first with TF-IDF features and afterwards with probabilistic features. In contrast to that, only TF-IDF
features were used for LSA. The results obtained with TF-IDF features provide a clear indication that
all classifiers (except k-NN) achieve a high precision rate. However, LSA (our baseline approach)
shows a low precision which is due to its similarity-based approach that tends to find similar require-
ments instead of requirements which really dependent on a given requirement. Moreover, the analysis
reveals that Random Forest achieved the best overall prediction quality with probabilistic features in
terms of all three measures (precision: 0.929, recall: 0.867, f1-score: 0.897) and could even signifi-
cantly outperform LSA’s high recall benchmark of 0.818. Consequently, the main finding of the work
presented in this chapter is that probabilistic features can convey more valuable information to the
classifiers, in order to increase the overall prediction quality. This can be explained by the fact that
the probabilistic features reflect statistical correlations between the words which provide more precise
descriptions of the actual word-based similarity of the requirement pairs to the classifiers.

98

4.7. Conclusion & Future Work

Future Work. To counteract common cold-start problems which often occur in the early application of
a RS, we propose to migrate the existing RS to a hybrid solution which combines the LSA approach
with our classification approach based on probabilistic features. Moreover, the evaluation criteria
can be relaxed such that, for example, the transitivity of dependencies are considered during the
evaluation. A predicted dependency rx ! rz for a given requirement rx can be considered as correct
if there exist two related dependencies rx ! ry and ry ! rz in the test set. Furthermore, our approach
can be extended such that further dependency types (e.g., excludes or includes) can be identified.
This can be achieved by treating our classification problem as a multi-class classification problem.
However, this would require the use of another (larger) dataset since in the currently used one, only
dependencies of type requires are included.

99

100

Chapter 5
Group Recommender User Interfaces for
Improving Requirements Prioritization

The contents and results of this chapter are based on the research work published in Samer et al.
(2020). The author of this thesis provided major parts of this chapter in terms of the design and

evaluation of the user study, writing, and literature research.

5.1. Abstract

Requirements engineering is one of the most critical phases in the context of software development.
Unclear textual specifications of requirements, hidden dependencies between requirements, and sub-
optimal prioritizations and release plans represent the major reasons for project delays and even can-
cellation. In this chapter, we show how group recommender user interfaces can help to improve the
quality of requirements engineering processes. To that end, we developed a novel group recommen-
dation approach that focuses on the aspect of improving requirements prioritization by making prefer-
ence elicitation processes more flexible as well as by introducing innovative user interfaces that foster
information exchange among stakeholders. We conducted a large user study (N=313 participants) to
evaluate our approach. The evaluation results indicate that argumentation-based user interfaces in a
group setting trigger more rating and communication activity among the group members which sig-
nificantly improves the quality of the prioritization process. Our main contributions are twofold: (1)
more flexibility of the requirements evaluation by supporting the delegation of votes to experts and
(2) an increased engagement of the stakeholders responsible for the requirements.

5.2. Introduction

In contrast to single user recommenders (Ricci et al., 2010; Resnick and Varian, 1997), group recom-
mender systems (Masthoff, 2015; Felfernig et al., 2018; Boratto, 2016; Baskin and Krishnamurthi,

101

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

2009) focus on scenarios where recommendations are determined for groups of users. The most
common way for generating recommendations suitable for a group is to consider the variety of the
individual group members’ preferences by applying different aggregation strategies (Felfernig et al.,
2018; Ninaus, 2012). Nowadays, group recommender systems experience an increasing popularity
due to the fact that many recommendation scenarios are group-based. Some examples of such sce-
narios are the recommendation of holiday destinations (Jameson et al., 2004; Garcia et al., 2009),
music recommendations (Crossen et al., 2002; Mezei and Eickhoff, 2017), sequence recommenda-
tions (Masthoff, 2004), and resource assignments (Caballero et al., 2014; Felfernig et al., 2018).

In the domain-specific context of requirements engineering (RE), there exists a couple of research con-
tributions related to the development and application of recommender systems in RE scenarios (Ro-
billard et al., 2010; Mobasher and Cleland-Huang, 2011; Samer et al., 2019, 2018). These systems
address a variety of important application areas inside the RE process such as the detection of unclear
textual specifications of software project requirements (Shah and Jinwala, 2015; Berry, 2008) or the
detection of dependencies between requirements (Samer et al., 2019; Atas et al., 2018; Carlshamre
et al., 2001). In the context of requirements triage, another RE task which is essential for the success
of a software project, is the correct prioritization of requirements according to the relevance for the
project and the involved stakeholders. An efficient support of prioritization decisions is important as
the handling of large assortments of requirements makes manual prioritization processes become very
expensive in terms of time and project budget (Xuan et al., 2012). There exist research contributions
which aim to tackle this task (Stanik et al., 2018). For example, Alenezi and Banitaan (2013) and
Stanik et al. (2018) use machine learning techniques to calculate predictions of requirement prior-
ities. Moreover, Felfernig et al. (2018) present a utility-based prioritization approach for software
requirements (issues) in BUGZILLA which exploits relevant meta-data of the requirements in order to
determine a user-specific priority of the requirement for the active user / developer.

However, the vast majority of the aforementioned approaches solely focuses on providing recommen-
dation support for single users. Since critical RE-related decisions are usually made by a group of
persons (stakeholders), there exists a strong demand for group-based recommendation solutions. To
the best of our knowledge, there are group-based approaches which, however, do not go beyond the
level of basic manual assessment of the requirements. For example, Duan et al. (2009) introduce an
approach to the automated triage of requirements in the context of open-source communities where
users are asked to provide estimations individually. Ninaus (2012) (see also Ninaus et al., 2014)
present a requirements engineering UI (user interface) environment (INTELLIREQ) that applies pref-
erence aggregation functions (Masthoff, 2015) for proposing evaluations of individual requirements
acceptable for the whole group. In INTELLIREQ, software requirements are prioritized using group-
based multi-attribute utility theory (MAUT), where individual requirements are evaluated with regard
to different interest dimensions such as profit, effort, and risk. Based on these evaluations, a prioriti-

102

5.2. Introduction

zation can be determined by a utility function.

The major focus of this chapter is to apply group recommendation techniques on the basis of different
user interfaces (UI) with the goal to improve the quality of the prioritization of software require-
ments. The application of group recommender systems is in many cases limited to the aggregation
of individual user evaluations of requirements using aggregation functions such as average and least
misery (Masthoff, 2015; Ninaus, 2012; Ninaus et al., 2014). Applying such functions helps to stream-
line potentially contradictory evaluations. However, such approaches do not take into account the
aspects of liquid democracy (delegate voting) (Johann and Maalej, 2015; Atas et al., 2018), i.e., to
make voting processes more flexible and allow to transfer voting rights to stakeholders who are the
experts with regard to specific requirements and interest dimensions. In addition to more flexibility
on the algorithmic level, user interfaces are required that trigger more stakeholder engagement and
help to foster more information exchange between stakeholders which increases the probability of
better prioritizations (Atas et al., 2017; Schulz-Hardt et al., 2006). Summarizing, major limitations
of existing requirements prioritization approaches are that (1) stakeholder expertise is not taken into
account when distributing requirements evaluation tasks and (2) existing user interfaces do not foster
information exchange which, however, is a major precondition for assuring high-quality group deci-
sions (Schulz-Hardt et al., 2006). In sharp contrast to existing research contributions, we focus on the
development of UI-driven group recommendation approaches that are more deeply integrated into the
requirements prioritization process – on the algorithmic level as well as on the level of prioritization
user interfaces.

Our major contributions presented in this chapter are the following. First, we propose a new utility-
based (argumentation-based) preference elicitation approach that helps to increase information ex-
change among stakeholders in requirements prioritization. Second, we show how to take into account
the concepts of liquid democracy (delegate voting) also to make preference acquisition for require-
ments prioritization more flexible (on the algorithmic level). Third, we present results of an empirical
study that show that the concepts presented in this chapter can improve the quality of requirements
prioritization as well as increase the overall evaluation and development engagement of stakehold-
ers involved in a software project. Furthermore, our evaluation results show that our developed ap-
proaches had a positive impact on the success rate of the software projects which were implemented
within the scope of our empirical user study.

The remainder of this chapter is organized as follows. In Section 5.3, we introduce our approach to
liquid-democracy-based requirements prioritization. Thereafter, Section 5.4 presents initial empirical
results from a user study which has been conducted within the scope of a university course. Section 5.5
describes the threats both to internal and external validity. A discussion of different issues for future
work is given in Section 5.6. Finally, the chapter is concluded with Section 5.7.

103

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

5.3. Group Recommendation for Requirements Prioritization

The main objective of our work is to improve the quality of requirements prioritization by taking ad-
vantage of a new algorithmic vote delegation concept called liquid democracy (Johann and Maalej,
2015; Atas et al., 2018) and a UI-based group recommendation solution which fosters communication
among stakeholders. This section presents three different UI variants to determine the priority of soft-
ware requirements in group-based RE evaluation scenarios. The result of the group recommendation
task is represented by a ranked list of requirements based on computed utility values. In general, the
utility value of a requirement represents the estimated priority of the requirement based on the users’
(stakeholders’) evaluations. The used UI variants as well as the vote delegation concept integrated as
an extension of these three variants, are discussed in the following.

5.3.1. One-dimensional Rating Approach

One-dimensional ratings represent the conventional (and most convenient) way of evaluating the gen-
eral importance of a requirement for a software project. Stakeholders are asked to analyse and rate
all project’s requirements. Based on their assessment, they have to assign a simple rating value (or
symbol, e.g., negative vs. positive) to each requirement. The rating scale is often limited by a small
range (e.g., 1 to 5 or 1 to 10) which simplifies and, hence, speeds up the entire evaluation / rating
process for stakeholders. Figure 5.1 shows a basic one-dimensional 5-star rating interface to evaluate
a given requirement. The utility / priority of the requirement is determined by computing the average
(arithmetic mean) of all stakeholder star-ratings provided for the respective requirement. Note that
due to the nature of one-dimensional ratings, such ratings often only represent vague and rough esti-
mations of the actual relevance of a requirement for the project in terms of different aspects (such as
monetary and technical aspects). However, a varyingly strong consideration of different aspects by
stakeholders can often lead to different voting results. For example, a project manager might focus on
monetary aspects rather than technical aspects when evaluating a requirement. However, a developer
might focus on technical aspects instead.

5.3.2. Multi-attribute Utility Rating Approach

In contrast to one-dimensional ratings (see Section 5.3.1), our approach based on multi-attribute utility
theory (MAUT) represents a multidimensional evaluation / rating scheme. The basic idea of recom-
mendation methodology based on multi-attribute utility for groups (Ninaus et al., 2014; Felfernig
et al., 2018; Atas et al., 2018) is to extend utility-based recommendation for single users to multi-user
scenarios where the preferences (evaluations of interest dimensions d 2 D) of the individual group
members are aggregated into a recommendation that is intended to take into account as much as pos-
sible the preferences of the whole group. In general, MAUT-based algorithms for groups require from
each user to evaluate each alternative with regard to a set of specified interest dimensions. In the con-
text of RE, some examples of such interest dimensions are the potential profit (p) of an implemented

104

5.3. Group Recommendation for Requirements Prioritization

Figure 5.1.: One-dimensional 5-star rating interface. Stakeholders express their estimation of the im-
portance of a requirement using a 5-star rating scale. The average of these votes represents
the utility value (here: 3.67).

feature, the effort (e) related to the implementation of a requirement (feature), or the risk (r) of not
being able to successfully implement a requirement. Figure 5.2 presents an overview of a basic evalu-
ation example. In this example, three stakeholders evaluated a requirement based on the three interest
dimensions profit, effort, and risk. Our empirical evaluation of past research projects with industry
partners show that these three interest dimensions represent qualified criteria that were sufficient to
evaluate requirements (Ninaus et al., 2014; Atas et al., 2018).

Requirement Priority Estimation. Typically, the evaluations of such interest dimensions provided
by the group members1 are aggregated by using one or multiple (i.e., ensemble) aggregation func-
tion(s) (Felfernig et al., 2018; Masthoff, 2015; Ninaus, 2012). This aggregated result is called the
calculated utility value and represents the fundamental basis on which requirements prioritization
takes place (see Figure 5.3). The list of prioritized requirements then further serves as main input for
requirements triage as well as for release planning. In contrast to the one-dimensional rating approach
where the utility value represents the (aggregated) average of the stakeholders’ 5-star ratings, the util-
ity value in our MAUT-based approach is defined as the (aggregated) weighted average of different
evaluations / votes given by stakeholders for different interest dimensions. This weighted average
utility value directly reflects the priority of a requirement. The aggregation of the different votes (rep-
resented by the utility value) constitutes a group decision which benefits from the variety of different

1In the context of RE, the group members are stakeholders.

105

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

opinions (Schulz-Hardt et al., 2006). A high utility value indicates a high relevance / priority of the
requirement, whereas a low utility value signifies a low relevance of the requirement for the project.
The utility values of the requirements directly influence critical decisions in the release planning phase
of a software project – especially, in which releases the requirements should be implemented (which
requirements should be assigned to earlier and which requirements should be assigned to later re-
leases). Thus, an accurate estimation of the utility values plays a crucial role in the release planning
phase of a software project. This has a large impact on the success of the software project, because the
late discovery of wrong assignments (of requirements to releases) can lead to negative consequences,
such as increased costs, unfulfilled deadlines, or even project failure. Formula 5.1 shows the utility
calculation of requirement r based on the estimations of the stakeholders who evaluated r. In this for-
mula, imp(d) denotes the estimated importance / weight of the interest dimension d. The expression
eval(r,s,d) represents the rating value chosen by stakeholder s for the interest dimension d of require-
ment r. Finally, w(s,d) reflects the expertise level of stakeholder s with respect to interest dimension
d and the total number of stakeholders is represented by |S|.

Figure 5.2.: Overview of multidimensional MAUT ratings for a requirement. In this example, three
stakeholders evaluated a requirement based on the interest dimensions profit, risk, and
effort. Given these votes, the utility value can be calculated using Formula 5.1.

util(r) =
Âs2S

Âd2D eval(r,s,d)⇤imp(d)⇤w(s,d)
Âd2D imp(d)⇤w(s,d)

|S|
(5.1)

106

5.3. Group Recommendation for Requirements Prioritization

Figure 5.3.: Recommended prioritization of requirements. The utility values (see right side) reflect the
evaluated priority of a requirement and are calculated based on the evaluations provided
by the stakeholders for the specific requirement. A high utility value of a requirement
indicates a high priority which advises decision makers (e.g., requirements managers) to
consider the requirement in earlier releases rather than requirements of a lower utility.

Liquid Democracy Extension. Since different persons involved in a project usually have different
background knowledge and opinions, requirements should be evaluated by different stakeholders (i.e.,
customers, developers, project managers, etc.) individually as well as independently. In terms of liq-
uid democracy, stakeholders can either evaluate the interest dimensions directly or delegate their vote
for a specific interest dimension (or requirement) to a stakeholder who is more qualified to evaluate
this dimension / requirement. Each stakeholder s 2 S can either decide to (1) evaluate the interest
dimension (or requirement) directly or to (2) delegate the vote of an interest dimension (or require-
ment) to a different stakeholder s0 2 S \ {s}. In case of liquid democracy, the expression eval(r,s,d)
presented in Formula 5.1 denotes either the estimate of stakeholder s directly or the estimate of a
stakeholder s0 6= s to whom stakeholder s delegated the vote (i.e., the estimation task). The function
w(s,d) represents the weight of the stakeholder s reflecting the general expertise (knowledge / skill
level) of either s (if s voted) or s0 (if s delegated the vote to s0) for dimension d. Since every stake-
holder can delegate the vote for an interest dimension to only one other stakeholder, the complete
vote-inheritance graph of delegated votes of a stakeholder for one interest dimension can be visual-
ized in a (directed) tree.

Figure 5.4 shows an example of such a delegation hierarchy for one interest dimension2. Only the
stakeholder who represents the root node in a delegation tree (stakeholder s1) votes for the interest
dimension. The vote of this stakeholder is then inherited to all other stakeholders (here: s2-s6) who
appear in the same tree. In order to avoid cycles in the graph and to ensure that the graph always

2A delegation hierarchy for delegating the vote of a complete requirement instead of a single interest dimensions would
look identical to the example described in Figure 5.4.

107

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

remains a tree structure, our approach does not allow back-delegation of the votes within the tree. For
instance, if the stakeholders s5 and s6 would delegate their vote to stakeholder s4 and stakeholder s4

would further delegate the vote to stakeholder s2, stakeholder s2 would not be allowed to delegate the
vote back to stakeholder s4, s5, or s6 any more. This cycle-protection mechanism utilizes the depth-
first search (Tarjan, 1971) algorithmic approach and is triggered before a stakeholder delegates the
vote to another person.

Figure 5.4.: Basic example of a vote-inheritance tree for one interest dimension (or one requirement).
In terms of liquid democracy, stakeholders (nodes) can delegate their vote to a different
stakeholder (directed edge).

Table 5.1 depicts a basic evaluation scenario where individual stakeholders evaluate the requirements
{r1,r2,r3} with regard to the interest dimensions profit, effort, and risk. The values in brackets (Ta-
bles 5.1 and 5.2) indicate situations where an evaluation for an interest dimension has been delegated.
In our example, Ann is not an expert in evaluating the potential profit of a requirement and delegated
this evaluation task to Chris. Chris and Susan did not transfer any votes. This simplified example leads
to a situation where Ann and Chris provide the same evaluations for the dimension profit. Often, votes
are transferred on a requirement-specific but not an interest dimension-specific level. Furthermore, we
assume that stakeholder expertise is defined on the level of interest dimensions (see Table 5.2). Note
that these values can either be specified by the stakeholders directly, automatically derived from pre-
vious requirements evaluation activities3, or inherited via liquid democracy (see Ann in our example).
The utility value of r1,r2,r3 can be determined by applying Formula 5.1 to the votes presented in Ta-
ble 5.1 and by using the importance weights imp(”profit”)=0.5, imp(”effort”)=0.4, imp(”risk”)=0.3
and the (expertise) weights shown in Table 5.2. A high utility value indicates a high priority and hence
a low rank in the ordered list of prioritized requirements (see last row of Table 5.1). The prioritization
can be seen as a recommendation for a sequence in which r1,r2,r3 should be implemented (in our
example, the recommended sequence is [r2,r3,r1]).

3The automated estimation of stakeholder expertise is an issue for future research.

108

5.3. Group Recommendation for Requirements Prioritization

Stakeholder r1 r2 r3
p e r p e r p e r

Ann (3) 5 2 (5) 5 5 (2) 8 8
Chris 3 8 4 5 4 6 2 6 7
Susan 5 3 5 7 5 9 1 7 6

Utility value (priority) 4.34 5.68 4.86
Priority ranking 3 1 2

Table 5.1.: Three stakeholders evaluated the requirements {r1,r2,r3} with regard to the dimensions
profit (p), effort (e), risk (r). The calculation of the utility values is based on Formula 5.1.
The priority ranking defines the suggested ranking of the requirements based on their de-
termined utility.

Stakeholder profit(p) effort(e) risk(r)
Ann (0.3) 0.7 0.2
Chris 0.3 0.2 0.3
Susan 0.4 0.3 0.4

Table 5.2.: Assumed expertise of the stakeholders {Ann, Chris, Susan} in the range between 0.0 and
1.0 with regard to the dimensions profit (p), effort (e), and risk (r)
(0.0 = very low ... 1.0 = very high).

5.3.3. Argumentation-based Rating Approach

In order to increase the flexibility of the requirements evaluation, we also focused on fostering commu-
nication among stakeholders (Schulz-Hardt et al., 2006; Al-Rawas and Easterbrook, 1996; Coughlan
and Macredie, 2002). For this purpose, we extended the MAUT-based evaluation approach which was
introduced in Section 5.3.2. Our argumentation-based rating approach is based on the MAUT-based
approach and uses an argumentation-based user interface for eliciting dimension-specific evaluations.
The underlying idea of our approach is that a higher degree of information exchange between persons
involved in a group decision, has a positive impact on the quality of the group decision (see also Gre-
itemeyer and Schulz-Hardt, 2003 and Mojzisch and Schulz-Hardt, 2010). The rating interface of the
argumentation-based approach allows stakeholders to provide descriptive arguments (in terms of com-
ments) against a specific requirement or arguments which support a specific requirement. An example
of such an argumentation-based user interface is depicted in Figure 5.5. In order to distinguish be-
tween positive and negative arguments, stakeholders who enter an argument have to manually classify
the sentiment of the argument. Thereby, the stakeholder is asked to mark his / her argument as either
positive (PRO), neutral (NEU), or negative (CON).4 Moreover, the stakeholder also has to assign an
interest dimension (e.g., profit, effort, risk) to the argument. Every textually-defined argument can be
interpreted as a requirement rating / vote of one specific interest dimension with a sentiment type (i.e.,
PRO, CON, NEU) selected by the stakeholder.

4Future versions of our rating interface may provide support to the stakeholders with an automated sentiment classification
of the arguments based on machine learning.

109

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

In terms of MAUT, a fixed rating value can be used based on the argument’s sentiment type to calcu-
late a utility value for the requirement. For example, when using the value-scheme {PRO=3, NEU=2,
CON=1}, the positive PRO-argument ”Nice feature” for the requirement ”PDF Generation” shown
in Figure 5.5 would represent a MAUT-vote of 3 points dedicated to the interest dimension profit.
This way, a utility value for each requirement can be calculated in the same fashion as presented in
Section 5.3.2 by applying Formula 5.1.

Currently, arguments are primarily regarded as a means to foster communication among stakeholders
which is regarded as one of the major means to increase the quality of decisions in social psychology
research. In order to be able to make high-quality decisions, it is important that all group mem-
bers have the decision-relevant information available (for related details we refer to Schulz-Hardt
et al., 2006).

Figure 5.5.: Argumentation-based rating interface. In addition to the basic MAUT version, stake-
holders are enabled to exchange arguments for / against specific requirements. Positive
arguments are highlighted in green, neutral arguments in orange, and negative arguments
in red. After entering the text for an argument, the system asks for the interest dimension
that touches the user’s argument.

5.4. Evaluation

In this section we report the results of our empirical evaluation. N=313 computer science students
participated in a course on object-oriented analysis and design. Their task was to develop a tourist

110

5.4. Evaluation

information software including a recommendation functionality for tourist destinations (the 313 stu-
dents worked in development teams consisting of 4–6 students, 60 groups in total). For the purpose of
requirements prioritization, the students had to maintain their software project and apply our prioriti-
zation functionality provided by a prototype system called OPENREQ!LIVE5 which has been devel-
oped within the scope of the research project OPENREQ funded by the European Union. The students
worked in groups and defined, evaluated, and prioritized the requirements for the implementation of
the tourist information platform by using OPENREQ!LIVE directly.

5.4.1. Experimental Setup

The major focus of our empirical user study was to analyze the impact of the three different prefer-
ence elicitation user interfaces (presented in Section 5.3) on the quality of the final prioritization. For
the purpose of comparing the UI variants, we assigned different variants to the development teams
(between-subjects design). First, a rating scale based version supported the rating of requirements on
the basis of a one-dimensional 5-star rating scale. In this version, the group members had to provide
a single rating (1-5 stars) for every requirement of their project (see Section 5.3.1 and Figure 5.1).
Second, a group-based multi-attribute utility (MAUT) based approach was used to determine a prior-
itization. Here, the group members had to evaluate (1-5 points) the interest dimensions profit, effort,
and risk individually for every requirement of their project (see Section 5.3.2 and Figure 5.2). Third,
again a MAUT-based interface was provided. In contrast to the basic group-based MAUT approach,
this variant included an argumentation-based interface (see Section 5.3.3 and Figure 5.5). The stu-
dents were asked to comment on issues for every requirement. Every requirement was discussed
individually by the group (i.e., a separate discussion thread existed for each requirement). In such
a discussion thread, the group members could provide arguments and mark them as either positive
(PRO), neutral (NEU), or negative (CON) based on the sentiment of the argument. In addition to that,
every given argument had to be assigned to one interest dimension (i.e., profit, effort, or risk).

In the context of this user study, 20 teams (105 students) were assigned to the 5-star based rating scale
user interface, 20 teams (104 students) to the basic MAUT version, and 20 teams (104 students) to the
argumentation-based MAUT user interface. We equally distributed groups with different sizes (4–6
members) to the three UI variants. One team member was selected by the group to be responsible for
the administration of the group’s software project (i.e., stakeholder role: project manager). All other
team members participated in the project as developers (i.e., stakeholder role: developer). In order to
counteract cognitive biases (Tversky and Kahneman, 1975), the groups were not informed about the
existence of different UI variants during the study. Especially, to avoid anchoring effects (Mojzisch
and Schulz-Hardt, 2010; Schulz-Hardt et al., 2006; Tversky and Kahneman, 1975), the ratings which
have already been provided by the other team members as well as the current average and the utility
values of a requirement were not shown before a student evaluated / rated the requirement. In all three

5OPENREQ!LIVE: https://github.com/OpenReqEU/openreq-live

111

https://github.com/OpenReqEU/openreq-live

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

UI variants, the utility value defined the basis for the groups to prioritize the requirements and to do
their release planning (”which requirements are assigned to earlier / later releases”). In the 5-star
based rating version, the utility value of a requirement represented the average of the 5-star ratings of
this requirement. The utility values used in the basic MAUT and argumentation-based MAUT ver-
sions were calculated based on Formula 5.1. To ensure comparability of the utility values across all
versions, we used the same rating scale (from 1 to 5 points / stars) in all three versions. For all interest
dimensions and all students / stakeholders, we set w(s,d) = 1 (see Formula 5.1) at the beginning.
Based on the individual voting-delegation behavior (liquid democracy), w(s,d) was higher than 1 for
stakeholders who received delegated voting power from other students. In the argumentation-based
MAUT version there were no direct ratings but the students had to select one of three sentiment levels
(PRO, NEU, CON) for each of their arguments (corresponding to one interest dimension). Thus, in
order to compute a utility value for this version, we assigned 5 points to every PRO-argument, 3 points
to every NEU-argument, and 1 point to every CON-argument (see also Section 5.3.3). We used this
point scheme in the argumentation-based MAUT version because we wanted to use the same point
range (from 1 to 5, where 1 represents the lowest possible (CON) and 5 the highest possible rating
value (PRO)) in all three UI variants. Therefore, we mapped the whole point range to these three
sentiment levels. In contrast to the other two UI variants, we limited the argumentation-based rating
interface to only these three sentiment levels in order to allow the users to focus on writing more
qualitative arguments instead of spending too much time on giving fine-grained point-ratings (which
would include ratings of 2 and 4 points).

To assess the quality of the final requirements prioritization determined by the groups (based on the
computed utility value of the requirements), we decided to evaluate the quality of the prioritization
in terms of the overall outcome of the software development process. In our case, the software com-
ponents developed by the students were evaluated with regard to criteria such as software quality,
reusability, and completeness in terms of the coverage of the planned requirements. The final assess-
ment and grading of the software components developed by the groups with respect to the aforemen-
tioned criteria was performed by four study assistants who were not informed about which of the three
UI variants was assigned to the groups. We randomly assigned 15 groups for assessment to each study
assistant by considering an equal distribution among the three UI variants (i.e., every study assistant
had to assess 5 groups of each UI variant). This counteracts behavioral differences of the study assis-
tants in the assessment and grading process which helps to draw more solid conclusions. Moreover,
we also measured detailed statistics of the user activity and evaluated the results to look for significant
differences between the UI versions.

5.4.2. Results & Discussion

Table 5.3 provides a general overview of major observations from our study results showing the num-
ber of requirements, the number of evaluations, and the total number of rating / evaluation interactions

112

5.4. Evaluation

for all three UI versions (5-star rating, group-based MAUT, and argumentation-based MAUT). Fig-
ure 5.6 presents a visual comparison of statistical details regarding the measured information of all
three UI variants. The figure visualizes the distributions of (a) ratings per requirement, (b) rating
adaptations / interactions per requirement (this includes create, update, and delete of evaluations)6,
and (c) achieved points by the students at the end of the user study. All corresponding numeric results
of these plots can be found in the Appendix of this thesis (see Table A.1 in Appendix A).

As can be seen in Table 5.3, the groups working with the 5-star version defined more requirements
per group on average (531 requirements / 20 groups = 26.55) compared to the other versions (group-
based MAUT: 22.95, argumentation-based MAUT: 16.50). Groups that were confronted with the
argumentation-based rating system showed the highest number of average evaluations per require-
ment - they provided 5.1 arguments / evaluations for a requirement on average (see Figure 5.6a), the
groups which used the basic MAUT version created only 4.2 ratings / evaluations per requirement on
average, whereas the groups of the 5-star rating system provided only 3.9 evaluations per requirement
on average. In order to underpin our findings, we evaluated all three versions for statistical significance
using two-sample t-tests (a = 0.05). Regarding the number of ratings / evaluations per requirement,
our evaluation confirms that groups which used argumentation-based rating systems have evaluated
requirements significantly more frequently than groups using the 5-star (t-test: t =�17.89, p < 0.01)
or basic MAUT version (t-test: t =�12.76, p< 0.01). A comparison between the 5-star rating and the
basic MAUT version reveals that groups using the basic MAUT version have provided significantly
more ratings (t-test: t =�5.18, p < 0.01) than the other groups.

Furthermore, the argumentation-based MAUT version showed the highest interaction rate (3433 inter-
actions / 330 requirements = 10.4 interactions per requirement on average, standard deviation: 1.03;
see Figure 5.6b). In this context, the interaction rate represents the number of rating adaptations. The
interaction rates of the basic MAUT version (average: 5.4, standard deviation: 0.65) and the 5-star
rating UI version (avg.: 4.5, std. dev.: 0.61) were significantly lower compared to the argumentation-
based version (5-star version: t =�94.13, p < 0.01; basic MAUT version: t =�77.32, p < 0.01). A
statistical significance in terms of more rating interactions can also be observed in the basic MAUT
version when compared to the 5-star rating version (t =�23.06, p < 0.01).
This strong tendency of more rating adaptations (rating interactions) in the argumentation-based
MAUT version can be explained by a slow (but more qualitative) convergence of the decision pro-
cess due to a higher probability of having available a more decision-relevant knowledge (in terms of
more qualitative arguments) for the prioritization. Group-based MAUT without argumentation sup-
port also has a higher amount of average evaluations per requirement which can be explained by the
fact that a utility-based preference elicitation fosters a more detailed analysis of requirements along
different prioritization-relevant dimensions (Stettinger et al., 2015). Additionally, due to the existence

6However, the number of updated evaluations / arguments is 0 for argumentation-based evaluations because the system
only allows its users to create and delete arguments.

113

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

(a) Ratings (b) Adaptations of ratings

(c) Student points

Figure 5.6.: Study results of our three UI types showing statistical details about the number of (a)
rating evaluations, (b) rating adaptations / interactions, and (c) points achieved by the
students (maximum number of points = 30). In all three plots, the marker ”x” represents
the mean of the distribution and all outliers are shown in the form of the symbol ”o”. The
median values of plots (a) and (b) cannot be identified since they either overlap with the
first or the third quartile. The median values of these plots are as follows: (a) 5-star rating:
4, basic MAUT: 4, argumentation-based MAUT: 5; (b) 5-star rating: 5, basic MAUT: 5,
argumentation-based MAUT: 10.

114

5.4. Evaluation

UI type requirements evaluations rating interactions
5-star rating 531 2,084 2,393
basic MAUT 459 1,935 2,493
argumentation-based MAUT 330 1,683 3,433

Table 5.3.: Overview of our study results showing general details about the number of require-
ments, the number of evaluations, and the total number of rating / evaluation interactions
with regard to the corresponding UI version (5-star rating, basic MAUT, argumentation-
based MAUT).

of multiple dimensions in group-based MAUT which reflect different evaluation aspects (e.g., profit
vs. effort), also more oral communication might be triggered within the group. In contrast to that,
5-star based rating scales do not trigger an analysis along requirement-relevant dimensions and also
lead to a focus on achieving fast consensus (i.e., low interaction rate) without deeply taking into ac-
count decision-relevant knowledge. This results in situations where groups seem to have achieved fast
consensus without a detailed analysis of the requirements, i.e., fast convergence of the requirements
prioritization process at the cost of a limited quality. Moreover, the phenomenon that significantly
more requirements per group were defined on average in the 5-star version can also be explained
by the reason that this basic rating system does not trigger a detailed analysis of the requirements as
already mentioned before. This often leads to too optimistic and unrealistic estimations of the require-
ment’s effort and relevance (Catanio, 2006; Maguire and Bevan, 2002). The serious consequences of
such insufficient estimations (caused by 5-star rating scales) can be the implementation of useless
features, exceeding costs, or even project failure (Greer and Ruhe, 2004; Ruhe, 2010).

In order to evaluate the impact of the users’ rating tendency, we analyzed the sentiment of the ratings.
All three versions were evaluated for significance (one-sample t-test, a = 0.05). We tested each ver-
sion individually whether the ratings (ranging between 1 and 5 stars / points) tend towards a positive
(H0 : µ  3) or a negative (H0 : µ � 3) rating sentiment. Table 5.4 shows the number of evaluations
which were positive, negative, or none of both (neutral) for all three versions. In the basic MAUT
version, the presented numbers include all ratings of the three interest-dimensions as separate ratings
(1,935 requirement ratings * 3 dimensions = 5,805 total evaluations). For the purpose of comparing
our three different UI variants in terms of the sentiment, we defined an ”associative point scheme”. We
considered ratings with 1 or 2 stars / points as negative ratings, ratings with 3 points as neutral ratings,
and ratings with more than 3 points as positive ratings. In our 5-star rating version, the overall senti-
ment of the ratings (46.35% positive ratings) was positive (t-test: t = 13.55, p < 0.01). The overall
sentiment of the basic MAUT evaluations (43.84% negative ratings) was negative (t-test: t =�16.11,
p < 0.01). Likewise, the overall sentiment of arguments in the argumentation-based MAUT version
tended to be negative as well (t-test: t =�13.27, p < 0.01).

115

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

This implies that both MAUT-based versions seem to foster a more critical analysis and evaluation
of the requirements (negative sentiment of the ratings dominates) compared to 5-star ratings (positive
sentiment of the ratings dominates). This can be interpreted as a more conflict-oriented assessment
of the requirements that triggers more discussions and reevaluations of the requirements (adaptations
of evaluations). In fact, as previously mentioned, both MAUT-based versions achieved a significantly
higher rating interaction / adaptation rate than the one-dimensional 5-star version.

UI type Negative (1-2) Neutral (3) Positive (4-5)
absolute in % absolute in % absolute in %

5-star rating 473 22.69 645 30.95 966 46.35
basic MAUT 2545 43.84 1721 29.65 1539 26.51
arg.-based MAUT 1005 59.71 165 9.80 513 30.48

Table 5.4.: Statistical sentiment analysis of the requirement evaluations. Based on the rating value
(ranging from 1 to 5) we classified the requirement ratings / evaluations into three differ-
ent sentiment levels (negative: 1 and 2, neutral: 3, positive: 4 and 5). The dominating
sentiment levels for each UI type are highlighted in bold.

In order to analyze potential impacts of the three user interfaces on the output quality of the software
development process, we also compared the points the group members received for their developed
software components at the end of the course (maximum number of points = 30). As mentioned, the
developed software products have been evaluated with regard to certain criteria such as software qual-
ity, reusability, and completeness in terms of the share of originally scheduled (within the scope of the
prioritization process) and successfully implemented requirements. Figure 5.6c depicts the distribu-
tion of the points the students achieved for their developed software components. The best results (on
average) were achieved by students who used the argumentation-based MAUT version (24.31 points,
basic MAUT: 22.20 points, 5-star: 16.44 points). However, the data shows high standard deviations
of the points in case of all three versions (see Figure 5.6c and Table A.1). Hence, we conducted
two-sample t-tests (a = 0.05) in order to check statistical significance of this data pairwise between
the different versions (i.e., H0 : µx = µy). Our results indicate that there exists a significant differ-
ence in the data between the 5-star rating scale and the basic MAUT user interface (t-test: t =�3.37,
p< 0.01). The same holds true for the comparison of the 5-star rating version with the argumentation-
based MAUT version (t-test: t = �5.12, p < 0.01). However, a difference between argumentation-
based MAUT and standard MAUT can only be observed on a descriptive level (t-test: t = �1.55,
p = 0.06, p > a).

Based on the results presented in this section, we conclude that an argumentation-based MAUT UI can
improve the quality of the prioritization process by significantly increasing the number of rating adap-
tations. The (adapted) arguments also represent a better basis for the prioritization of the requirements
and for the release planning which is essential for project success. Moreover, we see one reasonable
conclusion as follows. Due to the increased rating interaction triggered by the argumentation-based

116

5.5. Threats to Validity

requirement evaluation, the quality of the resulting software projects rises as indicated by the final
points achieved by the students. More numeric results and results of significance tests, which further
confirm our findings, can be found in the appendix of this thesis (see Appendix A).

5.5. Threats to Validity

In this section, we shed light on threats to the internal and external validity of our presented group
recommender user interfaces for requirements prioritization. These threats are briefly explained and
discussed in the following.

5.5.1. Internal Validity

One potential internal threat is that our prototype has only been evaluated with computer science
students. In each group, one student was responsible for the administration of the group’s project
(project manager). The role of a developer was assigned to all other team members and hence repre-
sented the dominating stakeholder role in the study. Moreover, we used a rating scale ranging from 1
to 5 points / stars in all three UI versions in our empirical study. A different more fine-grained rating
scale (e.g., from 1 to 10) might lead to (minor) deviations of the stakeholders’ rating behavior (Gena
et al., 2011). Furthermore, the size of development teams (groups) in our study was limited to 4–6
team members. Although the evaluated results of the presented work already represent a solid founda-
tion to build upon (due to the large number of study participants (N=313) and the proven significance
of the measured data), the results may differ with larger varying group sizes (e.g., hundreds of stake-
holders). In the rare case of a few groups (less than 3%), we observed that not all team members
evaluated all requirements. Even though this might have slightly biased our data, this effect can be
safely ignored due to its small impact on the results and the fact that not all of these groups used the
same UI version for requirements prioritization.

5.5.2. External Validity

The explanatory power of the evaluation results is limited since the evaluation of our requirements
prioritization UI solutions was solely conducted within the scope of one specific domain (i.e., the
development of a tourist information system). A reevaluation of our approaches for different domains
may lead to (small) deviations of our results. Moreover, an industrial operation of our system could
also lead to minor deviations of our results because the presented results originate from a controlled
experimental setting. Another threat to external validity is that we focused our evaluation on a uni-
versity setting which provided the possibility of comparing different variants of a group-based priori-
tization interface. Finally, further research must prove the robustness of our approach against various
rating-behavioral peculiarities caused by the visual representation / appearance of the user interfaces.

117

Chapter 5. Group Recommender User Interfaces for Improving Requirements Prioritization

5.6. Future Work

There are a couple of open issues for future research. Within the scope of future work we will address
the major issues of internal and external validity (see Section 5.5). In particular, we plan to evaluate
our recommendation approaches in the context of different domains in order to confirm our evalu-
ation results. In order to obtain more representative results and to further prove the significance of
our results, our approach will be evaluated with a variety of different stakeholder roles (i.e., customers
from various branches, requirements engineers, project managers, and developers). Moreover, we will
compare our approaches with further well-known requirements prioritization approaches to prove the
potential of our approaches. Additionally, we are currently conducting user studies that focus on the
evaluation of the usability of the different user interfaces. Initial results from (early) usability tests
(and a user questionnaire) with industrial partners indicate that argumentation-based interfaces are
highly appreciated by the community. Therefore, another task for future work is to prepare the exist-
ing prototype to conduct studies in real-world industrial settings. Furthermore, we plan to integrate
functionalities that support the recommendation of project teams. An important issue in this context is
to not only provide a recommendation of a group configuration based on expertise criteria but to also
consider availability aspects of individual stakeholders. Finally, we will conduct a semantic analysis
on how liquid democracy influences the arguments given in the discussion and how the competence
of the participants can be inferred from the existing rating behavior based on specific aspects and the
flow of control.

5.7. Conclusions

In this chapter, we introduced two concepts that both can help to improve the decision quality in the
context of requirements prioritization processes. Our first contribution are liquid democracy-based ex-
tensions which represent a novel concept for multi-attribute utility evaluations that allows stakeholders
to delegate votes to other stakeholders who have more expertise on particular aspects (dimensions) of
requirements. It is a simple and elegant solution for requirement assessment that helps to capture more
and better-quality information in calculating the utility of different multi-aspect requirement-related
options which is essential in recommending a proper prioritization of requirements. Our second con-
tribution of this work represents a novel argumentation-based user interface of a chat-like forum that
allows the elicitation of requirement preferences of users and engages them to argue for or against
certain requirement dimensions. Our findings show that such argumentation-based user interfaces
lead to an increased communication and interaction rate in terms of more exchanged as well as more
frequently updated (textual) arguments. This way of completing a prioritization task serves as a basis
for high-quality prioritizations.

118

Chapter 6
Group Decision Support for Requirements
Management Processes

This chapter is based on the contents published in Samer et al. (2018). The author of this thesis
wrote most parts of this chapter and provided major contributions in terms of literature research

and the design of the presented group recommendation approach. For the innovative ideas
presented in this work and chapter, we received the SIEMENS Student Best Paper Award

at the 20th International Workshop on Configuration in 2018 (ConfWS 2018).

6.1. Abstract

Requests for proposal (RFP) trigger company-internal requirements management (RM) processes in
order to assure that offers comply with a given set of customer requirements. As traditional RM
approaches require a deep involvement of the requirements managers of a RM project especially
when it comes to assigning suitable stakeholders to requirements, the quality of the decisions and
the time effort for making correct decisions mainly depends on these experts. In this chapter, we
present a novel stakeholder assignment approach that reduces the overall involvement of these experts
and also limits the uncertainty of overseeing suitable stakeholders at the same time. The assignment
of responsible stakeholders is represented as a group decision task expressed in the form of a basic
configuration problem. The outcome of such a task is a configuration which is represented in terms of
an assignment of responsible stakeholders to corresponding requirements.

6.2. Introduction

Group-based configuration is an important application area of artificial intelligence (Felfernig et al.,
2016, 2014). It aims to support a group of users in the configuration of complex products or ser-
vices. In general, when interacting with group-based configurators, group members first articulate

119

Chapter 6. Group Decision Support for Requirements Management Processes

their preferences, then adapt inconsistent constraints, and finally, solutions are generated (i.e, reflect-
ing the given configuration). In particular, when interacting with a configurator in the context of a
typical requirements engineering task, each group member (i.e., stakeholder) has to evaluate each re-
quirement according to different dimensions such as priority, effort, and taken risk. However, for the
definition and evaluation of these requirements, first, suitable stakeholders have to be identified who
are responsible for the development of these requirements. In addition, an early involvement of these
stakeholders in the project is essential for the success of a project (Felfernig et al., 2017; Hofmann
and Lehner, 2001; Leffingwell, 1997; Mobasher and Cleland-Huang, 2011). This is because a low
involvement of stakeholders in a project can lead to project failure. Project failures are often caused
by missing or wrong assignments of stakeholders to requirements in early phases of the requirements
engineering process (Lim et al., 2010). Stakeholder recommendations can help to identify persons
who are capable of providing a complete analysis and description of software requirements. Rec-
ommended stakeholders also need to bring deep knowledge about the corresponding item domain in
order to provide precise evaluations of the requirements.

STAKENET (Lim et al., 2010) is an application that supports stakeholder identification on the basis of
social network analysis. This approach builds a social network on the basis of a set of stakeholders.
In this social network, stakeholders are represented as nodes and recommendations articulated by the
stakeholders are represented as links. On the basis of such social networks, different social network
measures are used for the prioritization of the stakeholders. One example of such a measure is be-
tweenness centrality which measures the priority of a certain stakeholder s based on the ability of this
user to play a role as a broker between separate groups of stakeholders. Castro-Herrera et al. (2008)
and Mobasher and Cleland-Huang (2011) introduce a content-based recommendation approach where
requirements are grouped by using different clustering techniques. Subsequently, stakeholders are rec-
ommended and assigned to these groups on the basis of content-based filtering.

In this chapter, a novel stakeholder assignment approach is introduced. The presented approach, acting
as basic configuration service, lets voters evaluate stakeholders based on different criteria / dimensions
and then aggregates their votes to derive possible configurations which are then recommended for the
final stakeholder assignment decision to the requirements manager. In contrast to the aforementioned
stakeholder recommendation approaches where the generated recommendations are directly suggested
to the requirements manager, the content-based recommendation service presented in this chapter only
acts as a single artificial voter in addition to some human voters. Hence, the stakeholder recommen-
dations (i.e., possible configurations) shown to the requirements manager are determined based on
a combination of votes reflecting opinions of human voters as well as votes reflecting opinions of
artificial voters.

The major contributions of this chapter are the following. First, we analyze in detail a real-world

120

6.3. Application Scenario

scenario of a typical bid project. Second, we show an approach to identify relevant stakeholders for
specific requirements and thus generate a global assignment of stakeholders to requirements. The
remainder of this chapter is organized as follows. In Section 6.3, we describe a typical application
scenario of a bid project applied in an industrial context and provide a practical view of a traditional
requirements management process commonly used for planning large industry projects. Additionally,
a novel sophisticated approach is explained which further improves and extends the traditional ap-
proach by considering group decision support techniques. Section 6.4 discusses some potential issues
and several factors this approach depends on. Subsequently, Section 6.5 explains the implementation
of such an approach from a technical viewpoint. Finally, Section 6.6 concludes with a brief recap of
this chapter and presents some ideas for future work.

6.3. Application Scenario

Whenever an organizational unit of a large company (e.g., SIEMENS1) decides to bid for a request for
proposal (RFP), a new bid project for that proposal is initiated and the necessary stakeholders of the
bid project are identified. RFPs for technical systems usually consist of a set of PDF (Portable Docu-
ment Format) or Microsoft Word documents which describe all requirements for the requested system
covering technical, financial, or legal aspects. Examples of stakeholders can be project managers,
system architects, requirements managers, quality management departments, legal departments, engi-
neering departments relevant for the bid, and potential external suppliers.

Within the context of a bid project, a requirements management (RM) process is initiated at the be-
ginning. The purpose of this process is to assure that no requirement of the RFP has been overlooked.
It involves the extraction of all the requirements contained in the RFP documents. The identified
requirements must be assessed by the relevant stakeholders. This means that requirements concern-
ing contracts must be assessed by the stakeholder(s) of the legal department, technical requirements
must be assessed by the affected engineering department, etc. The assessment may involve statements
about various criteria such as compliance, risks, or approaches. These statements are interpreted as
evaluation dimensions in the remainder of this chapter. At the end, each requirement of the RFP must
have been assessed by at least one appropriate stakeholder.

6.3.1. Traditional RM Process

The traditional requirements management process can be best explained with an example. In the
following, we describe a simplified example of a traditional RM process in a rail automation context
based on a conventional RM tool such as IBM DOORS2.

1SIEMENS: https://www.siemens.com
2IBM DOORS: https://www.ibm.com/products/requirements-management

121

https://www.siemens.com
https://www.ibm.com/products/requirements-management

Chapter 6. Group Decision Support for Requirements Management Processes

Domain Stakeholder
PM project manager
SA system architect
RM requirements manager
RAMS reliability, availability, maintainability, and safety
S(ignal) engineering department for railway signals
PS engineering department for power supply
TVD department for track vacancy detection
ETCS department for European Train Control System
Test quality management department
Supplier1 external supplier, subcontractor

Table 6.1.: Examples of domain identifiers for rail automation

At the beginning, the requirements manager of the bid project creates a new project in the RM tool.
After that, the necessary stakeholders for the current bid project are defined. In this context, stake-
holders do not necessarily correspond to persons but correspond to roles which are uniquely identified
with a unique string (called domain). These string-based identifiers are unique within the organiza-
tion. Furthermore, the RM tool supports the mapping of existing roles (i.e., domain identifiers) to
concrete persons within the bid project. This way, responsible persons are assigned to roles based on
their skills and domain knowledge.

Table 6.1 presents some examples of domain identifiers which occur in the context of rail automation.
For such large bid projects usually more than 50 different domains are defined with the RM tool.
However, in practice, most projects only use 20 different domains on average.
As a next step, the requirements manager imports all the relevant documents of the RFP into the
project by using the RM tool. The RM tool automatically converts each paragraph of the documents
into a (potential) requirement whilst the structure of the documents is preserved. The requirements
manager then classifies the (potential) requirements in the project as either an actual requirement or as
an arbitrary comment (called prose). In general, large infrastructure projects may contain more than
10,000 (potential) requirements.

Each (actual) requirement must be assessed by at least one stakeholder. The requirements manager
has to figure out which stakeholders are appropriate for which requirements and needs to assign them
accordingly. However, other stakeholders may improve such initial assignments later during the as-
sessment phase. The RM tool notifies all assigned stakeholders via e-mail to assess the requirements
they are assigned to.

Table 6.2 shows an example of an initial assignment done by the requirements manager (RM). In
this table, each row corresponds to a requirement and each column refers to a stakeholder. Each cell
represents a single decision (of a stakeholder) for a stakeholder assignment (to a requirement). At the

122

6.3. Application Scenario

Req RM PM RAMS S(ignal)
R1 {PM} - - -
R2 {PM} - - -
R3 {S} - - -
R4 {S} - - -
R5 {S, PM} - - -
...

Table 6.2.: Initial assignment of stakeholders to requirements done by requirements manager (RM).
The dash symbol (”-”) indicates that the other stakeholders have not made a decision yet.

Req RM PM RAMS S(ignal)
R1 {PM} {PM} - -
R2 {PM} {RAMS} - -
R3 {S} - - {S, RAMS}
R4 {S} - - {}
R5 {S, PM} {S, PM} - {S, PM}
...

Table 6.3.: State of assignment during assessment phase

beginning, only the RM proposes assignments of potential stakeholders to requirements based on the
manager’s expertise and knowledge. For example, the assignment of {S,PM} to the requirement R5
in the RM column indicates that R5 has been initially assigned to the signal department (S) and to the
project management department (PM) by the requirements manager (RM). As only the RM makes
assignments in this initialization phase, the values of all other columns remain empty (i.e., are filled
with the ”-” label) until the assessment phase.

Next, in the assessment phase, the affected stakeholders take a look at each of their assigned require-
ments in the RM tool and can either accept the requirement and assess it or they can veto the proposed
assignment. Additionally, they can also propose an alternative stakeholder for the requirement or sug-
gest (although rarely) an additional stakeholder for the requirement. For the remainder of this chapter,
this process is hereinafter referred to as assignment feedback. After that, the requirements manager
can either accept the veto and assign the requirement to a different stakeholder or decline the veto and
reassign the stakeholder to the requirement.

Table 6.3 shows an intermediate state during the assignment phase which demonstrates examples of
assignment feedback given by the stakeholders PM and S(ignal):

• Requirement R1 has been accepted by PM

• Requirement R2 has been vetoed by PM and RAMS has been proposed by PM as alterna-
tive stakeholder

123

Chapter 6. Group Decision Support for Requirements Management Processes

Req RM PM RAMS S(ignal)
R1 {PM} {PM} - -
R2 {RAMS} {RAMS} {RAMS} -
R3 {S, RAMS} - {S,RAMS} {S, RAMS}
R4 {S} {S} - {S}
R5 {S, PM} {S, PM} - {S, PM}
...

Table 6.4.: Final state after assessment phase. Consistent assignment of stakeholders to requirements.

• Requirement R3 has been accepted by S(ignal), but RAMS has been proposed by S(ignal) as
an additional stakeholder

• Requirement R4 has been vetoed by S(ignal)

• Requirement R5 has been accepted by all proposed stakeholders

It is important to point out the fact that in the traditional scenario, it is always the main responsibility
of the requirements manager to resolve potential conflicts. Typically, this usually involves some per-
sonal discussions with the involved stakeholders and some final decisions made by the requirements
manager. These final decisions then assure a consistent assignment of all requirements to responsible
stakeholders. Table 6.4 presents such a final state where all conflicts have been resolved.

The requirements manager periodically reminds the assigned stakeholders about their unassessed re-
quirements. This process is repeated until all requirements have been assessed and the assessment
phase is finished. Thus, the assignment of stakeholders can be considered as a manual configuration
process. The outcome of this process is a configuration in terms of a consistent assignment of stake-
holders to requirements they are responsible for. In our current implementation, the overall goal is to
achieve consensus regarding the stakeholder assignment. Future versions of our system include fur-
ther constraints that have to be taken into account in task allocation tasks as discussed in this chapter.

6.3.2. RM Process with Group Decision Support

The main idea of our novel requirements management approach is to introduce additional stakeholder
votes made by artificial stakeholders (called bots). Additionally, the bots automatically propose stake-
holders in the initial phase of the RM process. Furthermore, an intelligent group decision service is
included in the RM tool to automatically aggregate all votes given by human stakeholders as well as
artificial stakeholders. On a technical level, such a group decision service represents a group recom-
mender system which generates recommendations based on aggregated votes given by group members
of a group (i.e., the stakeholders) (Felfernig et al., 2018). Basically, there exist different strategies on
how to aggregate votes of group members (Jameson and Smyth, 2007) such as majority, average,
least misery, etc. In addition, more sophisticated aggregation functions exist - for further information

124

6.3. Application Scenario

regarding preference aggregation functions we refer to Felfernig et al. (2018) and Masthoff (2011).
To limit the scope of this chapter, we assume that the group decision service is a simple group recom-
mender using basic aggregation strategies.

The votes of the artificial stakeholders (i.e., bots) are generated by using appropriate content-based
recommendation algorithms (see Section 6.5). This way, the group decision service helps to re-
place the traditional (mainly manual) stakeholder assignment process (see Section 6.3.1) with a semi-
automatic process. As a key difference to the traditional approach, the group decision service automat-
ically aggregates the decisions of all voters and thereby allows the smart incorporation of additional
(automatic) voters, i.e., intelligent recommendation services for stakeholder assignments. From an
abstract point of view, the process can be interpreted as a basic configuration process. Like in the
traditional RM process (see Section 6.3.1), the outcome of this process represents a consistent assign-
ment of stakeholders to requirements they are responsible for.

Req GDS RS1 RM PM RAMS S(ignal)
R1 {PM} {PM:9} {PM} - - -
R2 {RAMS} {RAMS:8, PM:5} - - - -
R3 {S} {S:8, RAMS:6} - - - -
R4 {S} {S:5} - - - -
R5 {S} {S:6} {S,PM} - - -
...

Table 6.5.: State of assignment with group decision service (GDS) and stakeholder recommendation
service (RS1). The recommendation service provides a confidence value which lies in the
range between 1 and 10.

Table 6.5 illustrates a possible initial state in the presence of a group decision service (GDS) and a
stakeholder assignment recommendation service (denoted as RS1). In sharp contrast to the assign-
ments made by other stakeholders, the recommendation service does not provide a binary decision
for every stakeholder but a confidence value which lies in the range between 1 and 10, whereby a
higher number corresponds to more confidence and a lower number corresponds to a lower level
of confidence.

The column for the GDS shows the result of the group decision service for each requirement, i.e.,
the aggregated decision of all voters (including humans and bots / algorithms). Note that a clear
benefit of the group decision service is that some requirements can already be assessed by the assigned
stakeholders, even though they have not yet been proposed / assigned by the requirements manager.
In other words, stakeholders are automatically proposed by the bots / algorithms based on their skills
in the initial phase and can already evaluate their assignment to the requirements. Hence, much
assignment effort is taken away in the initial phase from the time-crunched requirements managers

125

Chapter 6. Group Decision Support for Requirements Management Processes

and the initial phase can be speeded up significantly. Moreover, it is necessary to point out that the
stakeholders GDS (perform aggregation) and RM (perform final decision) can be considered to have
a special role in this evaluation process, whereas all other stakeholders only occur as voters in the
process. Consequently, the major responsibility / task of a RM in this process is to review the decision
suggested by the GDS and to perform the final decision about the assignment of the stakeholders to
the requirements.

6.4. Potential Issues of Group Decision Support

The exact behavior of the new system presented in Section 6.3.2 will depend on various factors. Exam-
ples of such factors include the aggregation strategy used by the group decision service to aggregate
the votes (e.g., majority, average, etc.), the individual weight of the voters (e.g., “deciders”/experts
count higher than normal stakeholders), and the confidence / trust users have in different recommen-
dation algorithms.

Furthermore, the question arises how conflicting decisions (for example, stakeholder A assigns stake-
holder B and B assigns A) can be resolved or supportive advice to manually resolve such conflicts can
be given to the voters by the system. Also, inconsistencies and contradictions may occur between the
voters in the evaluation of stakeholders. These voters can be other stakeholders and artificial stake-
holders. In particular, for artificial stakeholders textual explanations can be presented to the group of
voters being in conflict. Such textual explanations can then express the concrete reason and arguments
for the votes provided by the artificial stakeholders.

Moreover, the prediction quality (i.e., performance) of the artificial stakeholders (i.e., the recom-
menders) plays a major role in the process. In particular, the generated recommendations should
be evaluated and examined with respect to completeness. In terms of common information retrieval
measures (such as precision and recall), this would, for example, mean that more emphasis should be
given to the recall of the results rather than the precision achieved by the recommender. In addition to
that, an appropriate recommendation algorithm should also be capable of giving negative indication
by telling the RM which stakeholders are definitely not suitable to be assigned to a requirement at all.
Such a negative indication can be shown as, e.g., RAMS:0. Finally, another important aspect would be
to take the availability of stakeholders into account before they get finally assigned to a requirement.
This adds another complexity dimension to the underlying basic configuration problem.

6.5. Group Decision Support for Bidding Processes

In this section, a slightly modified version of the aforementioned RM process based on group de-
cision support (see Section 6.3.2) is described. The description explains the technical implemen-

126

6.5. Group Decision Support for Bidding Processes

tation of this process provided by the requirements engineering platform OPENREQ!LIVE3 which
has been developed within the scope of the OPENREQ EU Horizon 2020 research project. At the
current stage, the implementation is already in use, however, still ongoing and ready to be further
enriched with additional features. The remainder of this section describes the current status of the
existing implementation.

In the initial phase, the requirements manager (RM) is asked by the system to propose suitable stake-
holders for each requirement. As already described in Section 6.3.2, a content-based recommender
system (RS1) helps the RM to find stakeholders based on keywords extracted from former require-
ments these stakeholders have solved. Thereby, on an abstract level, the automated stakeholder-
recommendation algorithm (of RS1) can be interpreted as a text classification task (Ikonomakis et al.,
2005) where the recommendation algorithm exploits several natural language processing (Ryan,
1993; Winkler and Vogelsang, 2016) techniques in order to correctly classify stakeholders suitable
for a given requirement.

The algorithm automatically extracts relevant keywords from the title and description text of all former
requirements to which a stakeholder was assigned, in order to build a user profile for the respective
stakeholder. First, the title and description text is cleaned by removing special characters (such as
“.”, “,”, “;”, “#”, etc.). Next, the text is split into tokens (which, basically, represent the words in the
text) and stop words4 are removed. After applying part-of-speech tagging, tokens / words of classes
(such as verbs, adjectives, or numbers) that are most probably irrelevant to be used as keywords, are
removed. Finally, the remaining tokens of each former requirement (which was assigned to the stake-
holder) are merged together into a single user profile.

By applying the same procedure to new requirements, keywords for new requirements are extracted
as well. Given the keywords of a new requirement and the user profiles of the individual stakeholders,
a similarity between a new requirement and a stakeholder is calculated for every stakeholder provided
that the stakeholder has been assigned to an (already completed) requirement in the past. Formula 6.1
shows the Dice coefficient formula (Jannach et al., 2010) which is a variation of the Jaccard coefficient
and used to compute the similarity between a stakeholder and a requirement. The similarity is mea-
sured by comparing the overlap of the keywords of the stakeholder’s user profile (denoted as Ua) and
the relevant keywords of the respective requirement (denoted as rx) with the total number of keywords
appearing in Ua as well as rx.

sim(Ua,rx) =
2⇤ |keywords(Ua)\ keywords(rx)|
|keywords(Ua)|+ |keywords(rx)|

(6.1)

Stakeholders who are most similar to a given requirement are suggested by the content-based rec-

3OPENREQ!LIVE: https://github.com/OpenReqEU/openreq-live
4Examples of stop words include prepositions (e.g., “in”, “on”, “at”, etc.) and articles (e.g., “the”, “a”, “an”).

127

https://github.com/OpenReqEU/openreq-live

Chapter 6. Group Decision Support for Requirements Management Processes

ommender to the RM. This way, the initial phase can be speeded up and the chance of overseeing
suitable stakeholders for requirements at this early stage of the process, is decreased. In the next step,
the OPENREQ!LIVE system shows a list of the initially assigned stakeholders for each requirement.
Stakeholders who are assigned to a requirement can either accept or reject their assignment. In addi-
tion, the assignments of the stakeholders for the requirement can be evaluated by all stakeholders.

Figure 6.1.: Evaluation of stakeholders in OPENREQ!LIVE. Each stakeholder-assignment is evaluated
by two evaluation dimensions (appropriateness and availability). The utility value of an
evaluated stakeholder is calculated by using Formula 6.2.

This evaluation of a stakeholder-assignment is done based on the criteria appropriateness and avail-
ability (see Figure 6.1). Both criteria are interpreted as evaluation dimensions and stakeholders are
evaluated based on both dimensions. Furthermore, an assigned stakeholder can also propose the as-
signment of further stakeholders to the requirement. These newly assigned stakeholders can then be
evaluated again. After a new vote has been given, the group decision service (GDS) is triggered to
compute a utility value for the rated stakeholder. Formula 6.2 shows the calculation of the utility
value of an evaluated stakeholder s, whereas D represents the set containing both dimensions, i.e.,
D = {Appropriateness,Availability}.

utility(s,r) =
Ât2T

Âd2D eval(s,r,d,t)·weight(d)
Âd2D weight(d)

|T | (6.2)

128

6.6. Conclusion and Future Work

The formula describes the stakeholder s to be voted by other stakeholders and T represents the set of
stakeholders t 2 T who evaluated s. More formally expressed, T is a set which contains the stake-
holders (including s) who evaluated stakeholder s (i.e., T ✓ S). Furthermore, the OPENREQ!LIVE

platform allows the RM to define different importance levels for both dimensions. In Formula 6.2,
the importance of a dimension d 2 D is expressed by the function weight(d). Moreover, eval(s,r,d, t)
refers to the dimension-specific rating given by stakeholder t for stakeholder s for the requirement r.
Finally, the result of utility(s,r) represents the aggregated utility of a stakeholder s for requirement r.

Once all assignments have been evaluated by a sufficient number of stakeholders, a stable state of the
assignment utilities is achieved. The utility values are then used as main feedback source for the RM
to make the final decision about which stakeholder(s) should be assigned to the requirement.

6.6. Conclusion and Future Work

Conclusion. In this chapter, we discussed common application scenarios of requirements engineering
in the context of industry projects. These scenarios range from traditional requirements management
processes where the assignment process of stakeholders is solely controlled by the requirements man-
ager, to more sophisticated automated approaches where the involvement of the requirements manager
is reduced to a minimum. The latter represents a basic configuration service which includes artificial
stakeholders as additional voters and a group decision support system as a vote aggregation compo-
nent in the evaluation of stakeholder assignments to requirements. On the basis of this scenario we
showed how these two components can be applied in order to improve the requirements management
process such that the overall effort and the chance of overseeing stakeholders suitable for requirements
can be reduced for the time-crunched requirements managers.

Future Work. As bidding processes can be seen as repetitive processes, mechanisms capable of learn-
ing stakeholder weights and taking individual expertise levels of stakeholders into account can be con-
sidered as potential ideas regarding future work. Moreover, the set of existing evaluation dimensions
can be further extended such that more fine-grained control is given to the evaluation process as well as
to the group decision service. Additionally, the concept of liquid democracy can be integrated into the
evaluation process (Kahng et al., 2018). This way, stakeholders who do not have sufficient knowledge
about the details of a requirement can easily delegate their votes to more well-informed and experi-
enced experts. With respect to conflicting decisions (see Section 6.4), future work should also include
mechanisms to automatically resolve such conflicts or mechanisms, providing supportive advice to the
voters, showing them how they can manually resolve such conflicts. Furthermore, the configuration
approach can be extended with further constraints taking resource management aspects of stakehold-

129

Chapter 6. Group Decision Support for Requirements Management Processes

ers into account, in order to optimize the overall allocation of human resources in release planning.
Finally, there is also still plenty of room for improvement regarding the extraction of keywords used
by the discussed content-based recommender (i.e., artificial stakeholder). For example, a more de-
scriptive and characteristic representation of the keywords can be obtained by using more advanced
content-based approaches such as Latent Semantic Analysis (Landauer et al., 1998; Mikolov et al.,
2013) or approaches supporting word embeddings (Lau and Baldwin, 2016; Mikolov et al., 2013).

130

Chapter 7
Towards Utility-based Prioritization of
Requirements in Open-Source
Environments

This chapter is based on the ideas and concepts documented in Felfernig et al. (2018). Major
parts in terms of literature research and the design of algorithmic approaches have been

provided by the author of this thesis.

7.1. Abstract

Requirements engineering in open-source projects such as ECLIPSE faces the challenge of having to
prioritize requirements for individual contributors in a more or less unobtrusive fashion. In contrast
to conventional industrial software development projects, contributors in open-source platforms can
decide on their own which requirements to implement next. In this context, the main role of priori-
tization is to support contributors in figuring out the most relevant and interesting requirements to be
implemented next and thus avoid time-consuming and inefficient search processes. In this chapter, we
show how utility-based prioritization approaches can be used to support contributors in conventional
as well as in open-source requirements engineering scenarios. As an example of an open-source en-
vironment, we use BUGZILLA. In this context, we also show how dependencies can be taken into
account in utility-based prioritization processes.

7.2. Introduction

In software projects, resources are typically limited which requires the prioritization of requirements
(Lehtola et al., 2004). Prioritization is often interpreted as a part of strategic planning where the focus
is to select and prioritize requirements that should be included in releases (long-term release planning)

131

Chapter 7. Towards Utility-based Prioritization of Requirements in Open-Source Environments

(Ameller et al., 2017; Ruhe and Saliu, 2005). Decision support in prioritization is extremely important
since especially when dealing with large assortments of requirements, manual prioritization processes
tend to become very costly (Alenezi and Banitaan, 2013; Xuan et al., 2012). In this context, subopti-
mal prioritizations trigger time wasting due to the implementation of unimportant requirements.

There are two basic approaches to prioritize requirements – for an in-depth related analysis we refer
to Achimugu et al. (2014). First, requirements prioritization can be interpreted as an optimization
task where the overall objective is to identify the middle ground, i.e., an aggregation of individual
prioritizations into a global prioritization that reflects the least possible level of dissimilarity from
all stakeholder-individual prioritizations (Kifetew et al., 2017). Second, in contrast to approximating
individual prioritizations on the basis of optimization functions, utility-based approaches focus on
(1) establishing agreement with regard to the evaluation of individual requirements and (2) thereafter
determining prioritizations (Adomavicius et al., 2011; Huang, 2011; Wiegers, 2003).

Prioritizations following the optimization approach are determined on the basis of individual priori-
tizations of stakeholders. When following a utility-based approach, preferences of stakeholders are
first aggregated and a prioritization is determined thereafter. In the line of basic approaches to de-
termine group recommendations (Felfernig et al., 2018), the first approach is based on aggregated
prioritizations where stakeholder-individual prioritizations are known and a recommendation mini-
mizes dissimilarities between the given prioritizations (preferences). The second approach is based
on aggregated models where stakeholder requirement evaluations are aggregated first and a prioriti-
zation is determined on the basis of a group profile (model) derived from requirements evaluations.

Aggregated models have the advantage that stakeholders are encouraged to focus their evaluations on
specific relevant aspects of a requirement (e.g., dimensions such as profit, risk, and effort) and thus
contribute to stable preferences and a higher degree of consensus (Stettinger et al., 2015). Aggregated
prioritizations trigger scalability issues since each stakeholder has to provide, for example, a ranked
list of requirements as input for the optimization process. Furthermore, due to the computational
complexity of the underlying problem, an optimal solution cannot be guaranteed and is often only
approximated on the basis of local search algorithms (Kifetew et al., 2017; Tonella et al., 2013; Zhang
et al., 2007). Utility-based approaches as discussed in this chapter focus on evaluations of individ-
ual requirements on the basis of different evaluation dimensions (e.g., profit, effort, and risk). This
way, stakeholders can focus on evaluating requirements they have knowledge about and the focus of
prioritization is first on establishing consensus and thereafter on figuring out the most relevant priori-
tizations (Stettinger et al., 2015).

Different algorithmic approaches can be used to support requirements prioritization – for an overview,
see, for example, Achimugu et al. (2014). Examples thereof are constraint-based reasoning (Tsang,

132

7.2. Introduction

1993), incremental preference learning (Perini et al., 2013), evolutionary algorithms (Kifetew et al.,
2017), machine learning (Alenezi and Banitaan, 2013; Tian et al., 2015), and pairwise preference-
based decision making (Saaty and Vargas, 2000). Optimization-based approaches focus on minimiz-
ing the distance between the preferences of individual stakeholders (e.g., in terms of the distance
between individual prioritizations and the prioritization determined by the optimization approach). A
similar problem also solved on the basis of optimization approaches is the next release problem (Bag-
nall et al., 2001; Xuan et al., 2012) where a subset of a given set of requirements has to be selected
in such a way that predefined cost limits are taken into account and the chosen set of requirements
represents the optimum choice in terms of criteria such as market value. The focus in this context is
more to identify subsets of requirements but not to prioritize a given list of requirements. In contrast
to next release problems, prioritization tasks in open-source scenarios do not necessarily require (and
often do not allow) a global optimum but more focus on relevant recommendations for individual
stakeholders. Also in contrast to existing release planning tasks, developers in open-source scenarios
in most of the cases do not explicitly define their preferences, i.e., preferences have to derived from
given interaction data (in our case, interaction data collected by BUGZILLA1).

Utility-based prioritization based on multi-attribute utility theory (Dyer, 1997) can be implemented in
different variants. First, requirements are simply evaluated with regard to a set of predefined interest
dimensions and the overall utility of a requirement is determined as a sum of interest dimension spe-
cific utilities. Second, weights can be introduced to emphasize on specific interest dimensions (e.g., a
lower risk is more important than high profits). Third, stakeholders can be enabled to define their per-
sonal evaluations and utility-based approaches should then be able to aggregate these evaluations and
take into account stakeholder weights. Stakeholder weights can be interpreted as ”global”, i.e., there
is a global weighting of stakeholders independent of a specific dimension or requirement. If weights
are interpreted as ”local”, the importance of a stakeholder can be defined on the level of individual
requirements or dimensions. Utility-based prioritization can also be implemented on the basis of an
analytic hierarchy process (AHP) (Karlsson and Ryan, 1997). A major disadvantage of this approach
is that requirements have to be evaluated pairwise which does not scale well when the number of
requirements increases.

Prioritization criteria differ depending on the requirements engineering scenario. The criteria effort,
risk, and profit are often used in settings where a group of stakeholders engaged in the same project
is in charge of completing a prioritization task (Achimugu et al., 2014). In contrast, in open-source
settings, developers are in most of the cases engaged in different projects and also work for differ-
ent companies. In such scenarios, prioritization is less focusing on establishing consensus between
individual stakeholders but more on supporting stakeholders in identifying requirements of relevance
to them and to prioritize the important ones by also taking into account global criteria. Examples of

1BUGZILLA: https://www.bugzilla.org

133

https://www.bugzilla.org

Chapter 7. Towards Utility-based Prioritization of Requirements in Open-Source Environments

criteria in such scenarios are personal expertise of a developer and importance of a requirement for
the community of the stakeholder and the open-source community as a whole. Thus, open-source
platform related prioritization processes completely differ from conventional software projects. A
major focus of this chapter is to introduce prioritization concepts especially applicable in open-source
development contexts.

BUGZILLA is an open-source based issue tracking system which supports users from different geo-
graphical locations to report their findings with regard to a given set of software components. Users
can submit textual descriptions of issues and corresponding meta-information, for example, associated
components, keywords, and dependencies. Reported issues can be selected by contributors to work
on. In BUGZILLA, issues can be requirements but also reported bugs. Distinguishing between these
can be performed on the basis of a meta-attribute (issue type) that can be specified for BUGZILLA

issues. There are different related approaches to support machine learning based requirements prior-
itization. The approaches operate on datasets including historical data of previous requirement (bug
report in BUGZILLA) selections and try to predict future requirement selections thereof. Utility-based
prioritization can be used in interactive scenarios (stakeholders are engaged in an interactive prioritiza-
tion process) as well as in scenarios where requirements are recommended but no further stakeholder
interaction is needed for determining a prioritization.

The contributions of this chapter are the following. We provide an overview of different application
scenarios of utility-based requirements prioritization and discuss specific aspects of requirements pri-
oritization in open-source projects. For scenarios that include dependencies between requirements, we
show how such dependencies can be taken into account on the basis of the concepts of model-based
diagnosis (Felfernig et al., 2012; Reiter, 1987). With this approach, we tackle the following research
gaps. In contrast to existing prioritization and release planning approaches, we introduce model-based
diagnosis concepts that also support re-prioritization and re-planning while not completely omitting
already existing stakeholder preferences which is still an open issue in most of the existing prioriti-
zation and release planning approaches (these approaches focus on taking into account dependencies
but do not support the aforementioned re-prioritization and re-planning scenarios). Furthermore, we
present a first version of a user interface developed to support prioritization tasks in open-source envi-
ronments – in our case, for BUGZILLA users. This approach has the potential to reduce the workload
of developers in open-source platforms by automatically proposing requirements that should be imple-
mented next instead of forcing users to analyze in detail a large number of requirements. Furthermore,
the introduced utility-based approach does not require the ”manual” evaluation of individual require-
ments but automatically derives utility models by analyzing given interaction logs taking into account
interaction data such as number of comments related to a requirement. This is a major difference
compared to existing requirements prioritization approaches which do not support automated priori-
tization based on background data. Finally, we discuss issues for future work to further advance the

134

7.3. Utility-based Prioritization

state of the art in utility-based prioritization.

The remainder of this chapter is organized as follows. In Section 7.3, we introduce variants of imple-
menting utility-based prioritization. Thereafter, we introduce our variant of utility-based prioritization
implemented for the BUGZILLA environment and provide a sketch of a related BUGZILLA user inter-
face (Section 7.4). In Section 7.5, we show how to extend utility-based prioritization in such a way
that dependencies between requirements can be taken into account. The chapter is concluded with a
discussion of future work in Section 7.6.

7.3. Utility-based Prioritization

Utility-based prioritization allows stakeholders to prioritize a requirement with regard to different
interest dimensions D = {d1,d2, ...,dn}. Examples of such interest dimensions are profit, risk, and
effort. Utility-based prioritization is based on the idea to first evaluate each requirement with regard
to the set of interest dimensions (see Table 7.1) and thereafter calculate the individual utility of each
requirement (see Formula 7.1). In general, the priority is associated with the utility of a requirement
r which results from its total contributions to all of each individual interest dimensions d (denoted
as contribution(r,d)) combined with the corresponding importance weights of individual interest di-
mensions (denoted as weight(d)).

interest dimension r1 r2 r3

profit 10 5 4
risk 7 2 8

effort 2 3 7

Table 7.1.: Contribution of requirements R = {r1,r2,r3} to the interest dimensions D =
{pro f it,risk,e f f ort}.

interest dimension weights
profit 0.3
risk 0.5

effort 0.2

Table 7.2.: Predefined weights for the interest dimensions D = {pro f it,risk,e f f ort}.

utility(r,D) = Sd2D(contribution(r,d)⇥weight(d)) (7.1)

135

Chapter 7. Towards Utility-based Prioritization of Requirements in Open-Source Environments

Applying Formula 7.1 to the entries in Tables 7.1 and 7.2 results in the ranking depicted in Table
7.3 (the higher the utility with regard to the given interest dimensions, the higher the corresponding
priority of the requirement).

requirement r1 r2 r3

utility 6.9 3.1 6.6
priority (ranking) 1 3 2

Table 7.3.: Ranking of requirements with static weights.

In the previous example, the evaluation of requirements with regard to interest dimensions and the
weighting of interest dimensions are assumed to be predefined (e.g., by a single stakeholder). How-
ever, requirements prioritization is often a group decision process (Felfernig et al., 2018) where dif-
ferent stakeholders are evaluating requirements (see, e.g., Table 7.4) and define importance weights
with regard to interest dimensions (see, e.g., Table 7.52). Both, stakeholder-individual evaluations of
interest dimensions and importance weights have to be aggregated. Formula 7.2 shows the aggrega-
tion of stakeholder-individual evaluations of requirements where S refers to the set which includes all
m stakeholders (i.e., S = {s1,s2, ...,sm}).

interest r1 r2 r3
dimension s1 s2 s3 AV G s1 s2 s3 AV G s1 s2 s3 AV G
profit 5 2 2 3.0 5 1 2 2.7 2 2 6 3.3
risk 3 3 4 3.3 2 5 6 4.3 3 2 2 2.3
effort 2 3 2 2.3 3 4 2 3.0 5 6 2 4.3

Table 7.4.: Contribution of requirements R= {r1,r2,r3} to dimensions D= {pro f it,risk,e f f ort} (de-
fined by stakeholders S = {s1,s2,s3}).

contribution(r,d,S) =
Ss2Seval(d,r,s)

|S| (7.2)

Formula 7.3 shows how to aggregate the stakeholder-specific importance weights (denoted as w(d,s))
which are related to individual interest dimensions d. Previous calculations did not take into account
potential different degrees of stakeholder expertise, for example, a stakeholder sa could have more ex-
pertise with regard to estimating the market potential of a requirement in terms of profit as estimating
the corresponding development efforts. To take into account this aspect, Formula 7.3 includes a factor
that represents the expertise of a stakeholder s with regard to a specific interest dimension d.

2In this example, expertise(d,s) was assumed to be 1 for all stakeholders and dimensions.

136

7.4. Utility-based Prioritization in BUGZILLA

weight(d,S) =
Ss2Sw(d,s)⇥ expertise(d,s)

|S| (7.3)

Similar to the basic approach, the utility of a requirement (Formula 7.4) is determined as a combination
of the contributions of a requirement to the given interest dimensions and related interest dimension
importance evaluations of stakeholders.

utility(r,D,S) = Sd2D(contribution(r,d,S)⇥weight(d,S)) (7.4)

stakeholder s1 s2 s3 weights
profit 0.5 0.3 0.6 0.47
risk 0.3 0.6 0.3 0.4

effort 0.2 0.1 0.1 0.13

Table 7.5.: Preferences of stakeholders S = {s1,s2,s3} with regard to the interest dimensions D =
{pro f it,risk,e f f ort}.

The result of applying Formulae 7.2–7.4 to the evaluation data contained in Tables 7.4 and 7.5 is
depicted in Table 7.6.

requirement r1 r2 r3

utility 3.03 3.38 3.03
priority (ranking) 2 1 2

Table 7.6.: Ranking of requirements with group weights.

7.4. Utility-based Prioritization in BUGZILLA

In Section 7.3, we took a look at different variants of utility-based prioritization. These variants
were discussed on the basis of interest dimensions (evaluation criteria) typically occurring in software
projects where a group of stakeholders is in charge of jointly defining and prioritizing requirements. In
this section, we focus on open-source scenarios where individual users (e.g., contributors in an open-
source platform) follow their individual interests regarding requirements without necessarily taking
into account the preferences of other users. This can be considered a major difference compared to
conventional software projects where stakeholders commonly develop a ”global” prioritization (see
Section 7.3). We now show how utility-based prioritization can be applied in such contexts.

137

Chapter 7. Towards Utility-based Prioritization of Requirements in Open-Source Environments

Table 7.7 represents a BUGZILLA-specific evaluation of requirements (bugs) with regard to the set of
interest dimensions {cc,geritt,blocker,comments}. In this context, cc is the number of contributors
who are in the :cc list of bug-related emails, geritt is the number of bug-related GERITT3 changes,
blocker is the number of dependent bugs (dependent requirements), and comments refers to the num-
ber of bug-related comments. These interest dimensions do need to be evaluated manually as it is
often the case in other scenarios (Laurent et al., 2007; Shao et al., 2017) but can directly be deter-
mined from corresponding user interaction data.

Formula 7.5 supports the calculation of the contribution of a requirement r to a specific interest dimen-
sion d. In sharp contrast to the previous scenarios, the contribution is not directly specified by stake-
holders but derived from BUGZILLA specific information (e.g., #comments related to a requirement).

contribution(r,d) = eval(r,d) (7.5)

Formula 7.6 supports the determination of the expertise of a stakeholder which is represented in terms
of the similarity between the keywords stored in the stakeholder profile and those extracted from
the requirement description and corresponding meta-information (e.g., name of associated compo-
nent / system). The similarity between requirement-related keywords, meta-information, and contrib-
utor profile information is interpreted as expertise (see Formula 7.6).

weight(r,s) = expertise(r,s) (7.6)

In the line of the previously discussed utility functions, the overall utility of a requirement is inter-
preted as a combination of (1) the contributions of a requirement to a set of interest dimensions and
(2) the expertise level of a stakeholder (in this context interpreted ”globally”, i.e., not on the level of
individual interest dimensions).

utility(r,s) = Sd2Dcontribution(r,d)⇥weight(r,s) (7.7)

interest dimension r1 r2 r3

cc 5 2 2
geritt 3 3 4
blocker 2 3 2
comments 2 3 2

Table 7.7.: Contribution of requirements (bugs) R = {r1,r2,r3} to the interest dimensions D =
{cc,geritt,blocker,comments}.

3A code reviewing tool – https://www.gerritcodereview.com.

138

https://www.gerritcodereview.com

7.5. Taking into Account Dependencies

stakeholder s1

r1 0.5
r2 0.3
r3 0.2

Table 7.8.: Expertise of stakeholder s1 with regard to the requirements {r1,r2,r3} determined, for
example, on the basis of the similarity between the stakeholder profile and information
associated with a requirement.

requirement r1 r2 r3

utility 6.0 3.3 2.0
priority 1 2 3

Table 7.9.: Ranking of BUGZILLA bugs with static weights.

7.5. Taking into Account Dependencies

Blocking Factor. Utility-based recommendation approaches per se do not explicitly take into account
dependencies between requirements (e.g., requirement A must be implemented before requirement B).
In the discussed open-source prioritization scenario, this aspect is taken into account by prioritizing
requirements on the basis of the number of related dependencies, i.e., the higher the number of re-
quirements dependent from a requirement x, the higher the ”global” relevance of x. In this context, the
blocking factor (i.e., how many requirements depend on the implementation of requirement x) can be
considered as interest dimension that has an impact on prioritization. In other words, this requirement
should be implemented as soon as possible since it otherwise blocks the implementation of other re-
quirements. This approach can also be applied in software development scenarios where a group of
stakeholders (e.g., an in-house software development project) is in charge of prioritizing requirements.
Such an approach helps to avoid situations where prioritizations violate dependency constraints.

Automated Repair. An alternative approach is to apply repair mechanisms from model-based diag-
nosis (Felfernig et al., 2012) that help to adapt already determined prioritizations in such a way that
all defined dependencies are taken into account. In the following, we will shortly sketch our ap-
proach. In order to trigger a diagnosis process, we are in the need of a pre-defined set of dependencies
between requirements (denoted as DEP = {dep1,dep2, ..,depn}). Furthermore, we assume that a
prioritization (represented as sequence) P = [p1, p2, .., pm] determined by a utility-based prioritization
approach is inconsistent with the given set of dependencies. In order to apply model-based diagnosis,
we assume that both, the pre-defined set of dependencies and the requirement prioritization is repre-
sented in terms of constraints (Tsang, 1993), for example, DEP = {dep1 : r3 < r1,dep2 : r3 < r2} and

139

Chapter 7. Towards Utility-based Prioritization of Requirements in Open-Source Environments

P = {p1 : r1 < r2, p2 : r2 < r3, p3 : r3 < r4, p4 : r4 < r5, p5 : r5 < r6}. As can be easily seen, DEP[P
is inconsistent. As variable domains we assume [1..#requirements].

Following the principles of model-based diagnosis (Felfernig et al., 2012; Reiter, 1987), we need to
detect all minimal conflicts (Junker, 2004) induced in P by the dependencies defined in DEP. In this
context, a conflict set is defined as follows.

Definition: Conflict Set (CS). A conflict set CS ✓ P is a set of individual prioritization elements that
are inconsistent with the elements of DEP, i.e., inconsistent(CS[DEP). A conflict set CS is minimal
if ¬9CS0 : CS0 ⇢CS.
On the basis of a set of identified minimal conflict sets, a corresponding diagnosis includes a set of
prioritization elements in P that have to be adapted such that the consistency of DEP[P is restored
(see the following definition).

Definition: Diagnosis (D). A diagnosis D ✓ P is a set of individual prioritization elements that have
to be deleted from P such that consistent(P�D[DEP).
In our example, CS : {p2} is the only conflict induced in P by the dependencies defined in DEP. CS
is minimal, i.e., we need to adapt only one of the prioritization elements in CS such that a global pri-
oritization can be found that is consistent with the elements in DEP (Junker, 2004). A corresponding
diagnosis D is {p2}. In our example, we could decide to replace p1 : r1 < r2 with the corresponding
repair r1 > r2. This is a repair action that helps to restore the consistency of DEP[P.

Our approach to the repair of inconsistent prioritizations can be used for both, interactive prioritization
where stakeholders receive feedback on the consistency of prioritizations, and automated prioritiza-
tion where repairs for inconsistent prioritizations are determined in an automated fashion. Important
issues to improve our approach are discussed in the following.

7.6. Conclusion and Future Work

Conclusion. In this chapter, we showed how to support utility-based requirements prioritization.
These scenarios range from single user prioritization where one stakeholder is in charge of complet-
ing prioritization tasks to group-based prioritization where the preferences / evaluations of different
group members have to be taken into account. On the basis of these scenarios, we showed how utility-
based prioritization can be applied in the context of open-source development projects. In this context,
we sketched our initial implementation currently provided in the BUGZILLA environment. This im-
plementation serves as a first version to support requirements prioritization in BUGZILLA.

140

7.6. Conclusion and Future Work

Future Work. Since prioritization is a repetitive process, we will include mechanisms that are capa-
ble of learning stakeholder weights and also the weights of individual requirements. This approach
will help to further increase the prediction quality of prioritizations in terms of the probability that
stakeholders accept the proposed prioritizations. Moreover, we will analyze which further features
(interest dimensions) are useful to improve prediction quality. For example, the number of redundant
bugs (issues) can be a further important relevance indicator.
A major challenge in requirements prioritization is the provision of persuasive user interfaces that
increase the preparedness of stakeholders to actively engage in requirements engineering processes
(Atas et al., 2017). Consequently we will focus on a further extension / improvement of the existing
BUGZILLA requirements prioritization user interface. Furthermore, we will analyze in which way
recommended prioritizations have to be explained to support specific group decision goals, such as
consensus, fairness, and decision quality (Du and Ruhe, 2009; Felfernig et al., 2018). Finally, we
will conduct a detailed empirical study regarding the impact of our prioritization approaches in the
ECLIPSE community.

141

142

Chapter 8
Towards Issue Recommendation for
Open-Source Communities

This chapter is based on the results documented in Samer et al. (2019). Imperative parts of this
chapter, such as literature research, algorithmic approaches and the scientific evaluation of

test results have been provided by the author of this thesis. For this work, we received the
runner-up for the Best Student Paper Award at the International Conference on

Web Intelligence in 2019 (WI 2019).

8.1. Abstract

In open-source software development, a major challenge is the prioritization of new requirements as
well as the identification of responsible developers for their implementation. Unlike conventional
industrial software development, where requirements engineers have to explicitly define who imple-
ments what, in the context of open-source development, developers (contributors) usually decide on
their own which requirements to implement next. Contributors have to deal with a huge number of
requirements where the recognition of the most relevant ones often becomes a crucial task with a high
impact on the success of a software project. This fact defines our major motivation for the develop-
ment of a prioritization tool for the ECLIPSE community which recommends relevant requirements
(issues / bugs) to open-source developers. Our tool uses real-world data from ECLIPSE in order to
build a prediction model. We trained and tested our tool with different classifiers such as Naı̈ve Bayes
(representing our baseline), Decision Tree, and Random Forest. The evaluation results indicate that
the Random Forest classifier correctly predicts issues with a precision of 0.88 (f1-score: 0.68).

8.2. Introduction

In software development projects, resources are in most of the cases limited which requires the pri-
oritization of requirements (Lehtola et al., 2004). Prioritization can be regarded as a part of strategic

143

Chapter 8. Towards Issue Recommendation for Open-Source Communities

planning with the focus of selecting and prioritizing requirements that should be included in upcoming
releases (Ameller et al., 2017; Ruhe and Saliu, 2005; Ninaus et al., 2014; Anvik et al., 2006; Alenezi
and Banitaan, 2013). Efficient support of prioritization decisions is extremely important since espe-
cially when dealing with large assortments of requirements, manual prioritization processes tend to
become very costly (Xuan et al., 2012). In this context, suboptimal prioritizations are responsible for
the implementation of unimportant requirements.

In open-source software development, developers (contributors) are spatially distributed and neverthe-
less need access to the current requirements (issues / bugs)1 of relevance. As a consequence, in many
cases an issue repository is used where contributors select issues to work on. This process has to be
supported with a centralized repository that is accessible to every contributor. Due to huge amounts
of issues as well as contributors, the management of a centralized issue repository quickly gets a her-
culean task (Anvik et al., 2006). Deciding about the relevance of an issue as well as identifying the
most appropriate contributors are major challenges.

The aim of our work is to better support developers (contributors) during the interaction with issue
tracking environments (in our context, BUGZILLA2) and to bring issue tracking technologies to the
next level. To achieve this goal, we apply recommendation technologies (Jannach et al., 2010) to
generate personalized lists of issues to be shown to contributors of an issue tracking environment.
Figure 8.1 includes a screenshot of our ECLIPSE3 plugin for issues in BUGZILLA that provides a rec-
ommendation as prioritized list of potentially relevant issues. This functionality helps to reduce time
efforts needed to identify the next relevant issues to work on, since contributors do not need to search
manually for the next relevant issue.

The improvement of issue management processes in open-source software development scenarios is
also in the focus of other research contributions. Alenezi and Banitaan (2013) introduce machine
learning techniques such as Naı̈ve Bayes, Decision Trees, and Random Forest to calculate the predic-
tions of issue priorities. An approach that uses classification-based machine learning for the calcula-
tion of the priority level of individual requirements is introduced by Tian et al. (2015) - the presented
approach exploits besides the requirement data itself also requirement-related information. In the line
of the work of Tian et al. (2015), Menzies and Marcus (2008) present an approach with the aim to
predict the degree of severity of reported software defects in NASA software projects. The presented
machine learning approach estimates the severity level of a defect. Felfernig et al. (2018) developed a
basic utility-based prioritization approach for issues in BUGZILLA which takes into account relevant
meta-information of the issues such as the number of issue-related comments or the number of depen-
dent bugs. Furthermore, Alenezi et al. (2013) introduce a content-based approach that is used for the

1In the following, we assume that the term issue entails the concept of bugs.
2BUGZILLA: https://www.bugzilla.org
3ECLIPSE IDE: https://www.eclipse.org/ide

144

https://www.bugzilla.org
https://www.eclipse.org/ide

8.2. Introduction

Figure 8.1.: ECLIPSE plugin for the contributor-specific prioritization of bugs.

automated prediction of relevant bugs based on the experience of the contributor. A slightly different
approach is presented by Stanik et al. (2018). The presented classification-based approach identifies
bugs that are (a) feasible for new contributors and (b) increase the retention rate of the contributors
working on it. To achieve this, the approach is tailored towards the understanding on which issues
new contributors (with an often low level of related experience) should work on next.

In comparison to related work, the major focus of the work presented in this chapter is to identify
personalized recommendations of issues that are tailored towards the current topics of interest of indi-
vidual contributors. Our approach offers recommendations for the mainstream and does not focus on
a specific subset of contributors as presented in the work of Stanik et al. (2018). The recommended
list of issues represents the most relevant bugs in descending order and lets the contributors decide
about the bugs to work on.

The major contributions of our work are the following. First, we introduce a content-based recom-
mendation approach based on supervised classification that generates issue prioritizations. On the
basis of such prioritizations, contributors can decide on their own on which issues they want to work
on. Furthermore, we have developed a plugin for ECLIPSE in terms of a graphical user interface for
the ECLIPSE developer community (see Figure 8.1). Finally, in order to evaluate our approach, we
used the classifiers Multinomial Naı̈ve Bayes (our baseline), Decision Tree, and Random Forest and
evaluated these with issue datasets from three different open-source projects (ECLIPSE, MOZILLA,

145

Chapter 8. Towards Issue Recommendation for Open-Source Communities

LIBREOFFICE). The evaluation results for all three datasets indicate that the classifier based on the
Random Forest algorithm is able to achieve a good prediction quality in terms of precision compared
to our baseline.

The remainder of this chapter is structured as follows. In Section 8.3, we introduce our recommen-
dation approach that supports the prioritization of issues for individual stakeholders. In Section 8.4,
we analyze the predictive quality of the proposed approach. A discussion of ideas for future work is
given in Section 8.5. The chapter is concluded with Section 8.6.

8.3. Methodology

Our work is dedicated to the development of a recommender system (Jannach et al., 2010) for de-
velopers working on open-source projects. The major objective of the recommender system is to
recommend issues to these developers that are relevant to them.

8.3.1. Datasets

We used three datasets from different open-source projects (ECLIPSE, MOZILLA, LIBREOFFICE) to
train and evaluate our system. The mentioned open-source projects share in common that they use the
same issue tracking software BUGZILLA which provides a web API to download the project’s issue
data. The BUGZILLA issue tracking system is used by these communities to coordinate and main-
tain their tasks. The dataset of each project contains bugs / issues from the last 10 years. We only
collected resolved issues which are issues that have been assigned to a (single) contributor. Every
resolved issue can be either marked as FIXED (this issue is fixed), INVALID (the reported problem
is not a bug / issue), WONTFIX (the bug cannot be fixed), DUPLICATE (the issue is a duplicate of
another existing issue), or WORKSFORME (the bug / issue seems not to be an issue as it cannot be
reproduced). Our work focused on resolved issues which are marked as FIXED because only such
issues can be regarded as to be successfully completed by their assigned developers. We also excluded
non-resolved issues (e.g., open issues, work in progress, etc.) from the dataset as these issues are not
suitable for the purpose of learning a recommendation model. Our ECLIPSE dataset contains 141,117
issues (resolved by 2,758 contributors), the MOZILLA dataset consists of 751,961 issues (resolved by
6,962 contributors), and the LIBREOFFICE dataset contains 47,542 issues (resolved by 638 contribu-
tors) (see Table 8.1). Each issue consists of a title, a textual description, an assignee (who represents
the contributor to whom the issue was assigned) and much further meta information such as the issue’s
status, attached files (e.g., screenshots), or links to other related issues.

In BUGZILLA, issue reporters (i.e., the users who report bugs / issues) must assign their newly created
issue to a (single) component which further belongs to a product. The purpose of a component is to
group issues which are related to the same or a similar topic inside a product. Furthermore, a product

146

8.3. Methodology

Type ECLIPSE MOZILLA LIBREOFFICE
Number of issues 141,117 751,961 47,542
Number of contributors 2,758 6,962 638
Number of products 229 150 7
Number of components 1,288 1,955 50
Average number of resolved issues per contributor 51.17 108.01 74.52
Median number of resolved issues per contributor 6 3 1
Average number of contributors per component 14.01 33.88 55.62
Average number of words in title 7.96 8.94 9.01
Average number of words in description 87.30 19.64 107.51

Table 8.1.: Key characteristics of our issue datasets.

usually refers to a software sub-project of the community’s project. For example, MOZILLA created
three different products for the development of their web browser in BUGZILLA to separate issues
related to the different platform versions of their web browser Firefox. These products are Firefox for
Android, Firefox for iOS, and Firefox (desktop version). Altogether, the datasets were structured as
follows. As shown in Table 8.1, the MOZILLA dataset includes 150 products and 1,955 components
in which about 34 contributors were active on average. The ECLIPSE dataset consists of 229 products
and 1,288 components in which about 14 developers were active on average. The reported issues of
the LIBREOFFICE dataset were dispersed among 7 different products and 50 components (about 56
active contributors / developers on average). According to these figures, many developers work in
more than one component. For example, if the development activity of all 2,758 ECLIPSE developers
would be equally distributed across all 1,288 ECLIPSE components and assuming that every ECLIPSE

developer only works in one component, the expected average number of developers per component
would be 2.14 instead of 14.01.

Figure 8.2 shows the histograms of the developer activity in the three different open-source communi-
ties ECLIPSE (Figure 8.2a), MOZILLA (Figure 8.2b), and LIBREOFFICE (Figure 8.2c). The histograms
represent the activity based on our offline datasets from January 2008 until December 2018. Thereby,
the developer activity directly reflects the number of developers / contributors (y-axis in logarithmic
scale) who resolved a certain amount of issues (x-axis). According to this activity (see also Table 8.1),
half of the contributors in ECLIPSE (median) did not resolve more than 6 issues (MOZILLA: 3, LI-
BREOFFICE: 1) and nearly every fourth contributor (25.5%) only worked on a single issue (MOZILLA:
35.8%, LIBREOFFICE: 54.4%).

8.3.2. Recommendation Approach

The recommendation approach presented in this section describes a content-based recommender sys-
tem which is based on supervised classification. We trained a classifier with issues resolved by the
contributors in order to learn a prediction model. This model was then used to recommend relevant

147

Chapter 8. Towards Issue Recommendation for Open-Source Communities

(a) ECLIPSE (b) MOZILLA

(c) LIBREOFFICE

Figure 8.2.: Histograms of the developer activity in different open-source communities (ECLIPSE,
MOZILLA, and LIBREOFFICE). The x-axis refers to the number of resolved issues (as-
cending order) and the y-axis reports the corresponding number of contributors in loga-
rithmic scale.

issues to the developers / contributors. Before training, the (raw) data of the issues had to be converted
into a proper format (feature vectors) which is suitable for the training of a classifier. The conversion
of the (raw) issue data happened in two phases, text preprocessing and feature extraction.

Text Preprocessing. Following recent research in the field of issue analysis (Stanik et al., 2018; Bhat-
tacharya et al., 2012; Anvik et al., 2006; Anvik and Murphy, 2011; Helming et al., 2010), we focused
on the title and the textual description of the issues and applied several natural language processing
(NLP) steps, such as tokenization, data cleaning, lemmatization, and synonym replacement.

Figure 8.3 provides an overview of the steps performed for preprocessing and feature extraction. We

148

8.3. Methodology

first lowercased the title and the textual description of every issue and combined them into a single
string. After that, we tokenized and split each issue’s string into proper linguistic units (bag of words)
and removed stop words as well as special characters from the text. Furthermore, synonyms were
replaced and lemmatization was applied to the remaining tokens by using the Python Pattern library
(De Smedt and Daelemans, 2012).

The mentioned steps were necessary to reduce the size of the token list and the dimensionality of the
vocabulary by combining a variety of inflected or similar terms sharing the same meaning (Korenius
et al., 2004). This resulted in a less complex (trained) model which can counteract overfitting scenar-
ios more efficiently.

Figure 8.3.: Steps performed for preprocessing and feature extraction.

Feature Extraction. Before feature extraction, we split the set of issues into a training (80%) and a
test set (20%). Due to the large number of contributors (see Section 8.3.1), we decided to follow a bi-
nary classification approach rather than a multi-class classification approach. Hence, the contributors
were not used as labels (i.e., categories) like in standard multi-class classification. Instead, we created
a user profile for each developer by considering the tokens of those issues from the training set which
were resolved by this developer. Moreover, for each token in the user profile we measured the number
of times the token occurred in the issues and preserved this information for further processing. The
developers who only occurred in the test set but not in the training set were removed, since we cannot
build user profiles for these persons.

Given the user profiles of the developers and our pre-processed issues, we created training and test
samples for each contributor. In order to generate the samples for a contributor, we first analyzed
in which components in the training set (see Section 8.3.1) he or she was active. Whenever there
existed issues assigned to a developer in a component (according to the training set), we considered
the respective developer as an active contributor in this component. We used all issues of these com-
ponents from the whole dataset (i.e., training and test set) and generated a contributor-sample for each
issue. Each contributor’s sample consisted of a feature vector and a label. The sample’s feature vector
contained the TF-IDF values (term-frequency inverse document frequency) of the 30 most frequent
words / tokens of the contributor (the profile tokens) and the TF-IDF values of the issue’s tokens (the
issue tokens). In addition to these (uni-gram) tokens, we also included n-gram tokens (n > 1) of the

149

Chapter 8. Towards Issue Recommendation for Open-Source Communities

profile tokens as well as n-gram tokens of the issue tokens. Furthermore, we used grid search to filter
out rarely occurring uni-gram and n-gram tokens (see Section 8.4). The label was either set to TRUE
or FALSE, depending on whether the issue was assigned to the developer or not. For example, assum-
ing a developer A was active in the components X and Y according to the training set and active in
the components X, Y, and Z according to the test set, we would generate A’s samples for every issue
which appears in component X or Y. Also, the sample’s label would be set to TRUE (i.e., indicating
that ”developer A resolved the issue corresponding to the sample”) if the sample’s issue is assigned
to developer A, otherwise the label would be set to FALSE (i.e., indicating that ”developer A did not
resolve the issue corresponding to the sample”). However, even if we create samples for A for every
issue which appears in the component X or Y, we do not create any sample for those issues which
appear in the component Z (or any other component). This is due to the reason that we only consider
the training set in which the contributor was active (in this case, X and Y) for the determination of a
contributor’s activity.

Classification. The major objective of our content-based recommender is the recommendation of
issues that are relevant for a developer / contributor. Each of the developers’ samples either uniquely
refers to a single issue from the training set (TR) or test set (TE). A sample’s label can either be set
to TRUE or FALSE, expressing whether the issue was assigned to the developer or not (our relevance
criterion). Hence, the recommendation task was to train a single binary classifier with the devel-
opers’ samples covering all issues from TR. The learned model was then used to predict whether a
(yet unseen) test sample (representing an issue from TE and a developer) is relevant for the sample’s
developer or not. As already mentioned before, these test samples cover all test issues of every com-
ponent as well as all developers who were active in the component according to the training set. We
trained binary classifiers based on Multinomial Naı̈ve Bayes, Decision Tree, and Random Forest and
compared each classifier with each other (see Section 8.4). The Multinomial Naı̈ve Bayes classifier
defined our baseline. Our implementation was based on the Scikit-learn machine learning library4.

As already presented in Figure 8.2 (see Section 8.3.1), most developers are not highly active contribu-
tors, which implies that only a small fraction of issues in a component is assigned to the same person.
This means that most of a contributor’s samples are FALSE samples (i.e., the samples’ issues are not
assigned to him / her) and only a few samples are TRUE samples (i.e., the samples’ issues are as-
signed to him / her). Hence, the FALSE class dominates in TR as well as in TE. This class imbalance
can negatively bias the classification and hinder the classifier from learning the relevant patterns in
the data. In order to consider the class imbalance in the training of the classifier, we defined a lower
class-weight (0.3) for the FALSE class and a higher class-weight for the TRUE class (0.7) and passed
these values as a configuration parameter to the classifier.

4Scikit-learn library: https://scikit-learn.org

150

https://scikit-learn.org

8.4. Evaluation & Discussion

For each classifier, a prediction model was trained with TR and tested with TE. In order to recommend
relevant issues to a developer (called A), the recommender system uses the trained prediction model
such that all test samples of A are evaluated with the model. The issues of the positively predicted
test samples are then recommended to A. Hence, the recommended issue list only includes issues for
whose corresponding samples the model predicted TRUE.

ECLIPSE plugin. As part of our work, we also developed a plugin5 and a web service to recommend
relevant issues to the developers of the ECLIPSE community (see also Section 8.2 and Figure 8.1).
Before the web service is deployed on the server, a prediction model is trained with all resolved issues
from our ECLIPSE offline dataset. In order to keep our model up to date, we refetch new issues from
the ECLIPSE BUGZILLA web API every day and retrain our prediction model with the new issues. The
ECLIPSE developers can download our ECLIPSE plugin from the ECLIPSE marketplace and install the
plugin inside their local ECLIPSE integrated development environment (IDE). Whenever a developer
opens the ECLIPSE IDE, the plugin is loaded and our web service fetches unresolved issues of the
components in which the developer was previously active, from the ECLIPSE BUGZILLA web API.
For every fetched issue, our web service generates a new contributor-sample which combines the TF-
IDF values of the 30 most frequent words / tokens of the developer as well as the TF-IDF values of
all tokens of the issue’s preprocessed title and description (see Feature Extraction). Each sample is
then individually passed to the trained model which either predicts TRUE or FALSE. The issues of
the positively classified samples are then included in the recommendation list. In addition to that, the
model also returns a probability / confidence value between 0.0 and 1.0 (values closer to 1.0 indicate
more certainty than values closer to 0.5) which is used to rank the recommendation list before it is
transferred to the ECLIPSE plugin and shown to the developer.

8.4. Evaluation & Discussion

In order to select the best hyperparameter combination for each classifier and dataset (see
Section 8.3.1), we used k-fold cross validation (k = 10) in combination with grid search (Bergstra
et al., 2011). For each of our three datasets (ECLIPSE, MOZILLA, LIBREOFFICE), we split the dataset
into a training set (80%) and a test set (20%). Furthermore, we divided the complete training set into
ten distinct folds of equal size. While nine folds were used for training, the remaining fold was used
to validate the trained model. The folds used for training and validation varied in each iteration (in to-
tal, there were 10 iterations). The best hyperparameters for each classifier are presented in Table 8.2.
The parameter max features refers to the number of used features (n-gram tokens). Depending on
this value (max features = m), only the m most frequent n-gram tokens of the training samples were
used in the feature vectors of all samples. The parameter min df indicates that n-gram tokens which
generally occur very rarely, should be ignored. For instance, the expression min df = 3 means that

5ECLIPSE plugin: https://github.com/OpenReqEU/eclipse-plugin-vogella

151

https://github.com/OpenReqEU/eclipse-plugin-vogella

Chapter 8. Towards Issue Recommendation for Open-Source Communities

n-gram tokens which occur less often than three times, are ignored. The parameter ngram range states
which types of n-grams (e.g., unigram, bigram, etc.) are part of the final feature vector. For example,
ngram range = (1,3) indicates a combination of unigrams, bigrams, and trigrams.

Classifier ECLIPSE MOZILLA LIBREOFFICE

Multinomial Naı̈ve Bayes
max features=log2
min df=2
ngram range=(1,3)

max features=sqrt
min df=3
ngram range=(1,2)

max features=sqrt
min df=3
ngram range=(1,2)

Decision Tree
max features=sqrt
min df=2
ngram range=(1,3)

max features=log2
min df=2
ngram range=(1,2)

max features=sqrt
min df=3
ngram range=(1,2)

Random Forest

max features=log2
min df=3
ngram range=(1,4)
n estimators=4000

max features=log2
min df=3
ngram range=(1,2)
n estimators=4000

max features=sqrt
min df=2
ngram range=(1,3)
n estimators=3000

Table 8.2.: Hyperparameter optimization using grid search.

Table 8.3 gives an overview of the dataset’s vocabulary size and the number of constructed contributor-
samples (data records) used for training and testing. The size of the feature vector (i.e., the num-
ber of features) depends on the vocabulary size and is limited by the hyperparameter combination
(max f eatures, min d f , and ngram range) of the respective classifier which was determined via grid
search as already mentioned before (see Table 8.2).

ECLIPSE MOZILLA LIBREOFFICE
Training records 444,078 6,332,667 252,202
Test records 111,019 1,583,167 63,051
Vocabulary Size 230,503 383,540 59,449

Table 8.3.: Overview of the number of constructed data records and the vocabulary size of the
different datasets.

It is important to mention that we optimized the hyperparameters to focus more on precision rather
than on recall. In other words, we aimed to achieve a high precision rate which indicates that most
recommended issues are correct (i.e., relevant for the developers), whereas a low precision would
mean that many recommended issues are not relevant for the developers. However, although a high
recall would have been beneficial as well, our main focus was on maximizing the precision. The
main reason for this decision was that we wanted to make more accurate predictions (high precision)
which might come at the cost of a lower recall rate (smaller list of recommended issues where most
of them are correct / relevant) instead of overwhelming the developers with a large number of is-
sues (high recall) where many of these issues are not so relevant for the developers (lower precision).
Consequently, the precision rate also served as our main measure to compare the classifiers. This
way, we could better address the majority of the developers (see Figure 8.2) who are newcomers (i.e.,

152

8.4. Evaluation & Discussion

developers who only resolved a few issues). Such newcomers can be considered as developers who
usually have less experience in the community. Due to this reason these developers should not be
overwhelmed with too many non-relevant tasks / issues. This means that for such developers a high
precision is more important than a high recall (i.e., less but correct recommendations are more useful
for newcomers than a complete set of recommendations which includes all correct recommendations
but also many incorrect recommendations). By considering this aspect, we could find the best hyper-
parameter combination of a given set of predefined hyperparameters for every classifier by using grid
search (see Table 8.2). The best hyperparameter combinations were then used for the final training of
the classifiers where we trained the classifiers with the complete training set (i.e., all ten folds of the
training set). The trained models were then used to evaluate the prediction quality of the classifiers
with the samples from the test set, which remained unseen until this step. The prediction quality of
the classifiers is expressed in terms of precision, recall, and f1-score (Davis and Goadrich, 2006).

We used two different baselines to compare the performance of our classifiers: Constant TRUE pre-
dictor and Multinomial Naı̈ve Bayes. A Constant TRUE predictor is the best random predictor and
represents a dummy-classifier which does not learn anything from the data and follows the simple
rule by always predicting TRUE. We compared the results of our classifiers with this simple baseline
because only if the results outperform this baseline, the predictions of the recommendation model can
be considered as to be obtained from learned patterns inside the data rather than from coincidence. In
addition to the simple baseline of the Constant TRUE predictor, we chose Multinomial Naı̈ve Bayes
as our second baseline. The basis of this decision was that this approach is often used as a baseline in
text classification tasks (see, for instance, Wang and Manning, 2012) and its underlying classification
approach follows basic probabilistic assumptions which are known to work well in practice for (quite)
uncorrelated features. This is due to the reason that the Naı̈ve Bayes approach only considers the rela-
tionship between single words (or n-grams) and the sample’s class, but does not take into account the
interdependencies between the non-adjacent words (or non-adjacent n-grams) which may correlate.
Especially, the correlation between a contributor’s profile tokens and the issue tokens (represented by
the same contributor-sample, see Section 8.3.2) is crucial for a classifier to predict whether the issue is
relevant for the contributor or not. In contrast to Multinomial Naı̈ve Bayes, both other algorithms (De-
cision Tree and Random Forest) used in our evaluation allow to detect such interdependencies. This
is important because the relationship / correlation between the words / n-grams represents valuable
learning information from which a classifier can benefit.

Figures 8.4, 8.5, and 8.6 present the evaluation results for all three datasets. The evaluation results
have been separated into different figures according to the used evaluation metrics precision (Fig-
ure 8.4), recall (Figure 8.5), and f1-score (Figure 8.6). In addition to these plots, the numeric results
were attached to this thesis and can be found in the appendix of this thesis (see Tables B.1, B.2,
and B.3 in Appendix B). The comparison of the results presented in Figure 8.4 and 8.6 shows that

153

Chapter 8. Towards Issue Recommendation for Open-Source Communities

all algorithms (including our Multinomial Naı̈ve Bayes baseline) could outperform the (simple) base-
line of a constant TRUE predictor, in terms of precision and f1-score. Regarding the f1-score metric,
the aforementioned constant predictor is the best random predictor with a recall rate of 1.0 (see Fig-
ure 8.5) and a precision (see Figure 8.4) depending on the rate of positive samples available in the test
set. For example, the ECLIPSE dataset contained 10.06% positive / TRUE test samples (MOZILLA:
7.42%, LIBREOFFICE: 9.23%). Hence, the expected precision rate of a constant TRUE classifier in
our experiment for the ECLIPSE dataset would be around 0.10 (MOZILLA: 0.07 and LIBREOFFICE:
0.09) and the expected f1-score considering the aforementioned recall of 1.0 would be around 0.18
(MOZILLA: 0.13 and LIBREOFFICE: 0.17). Our results show that all three classifiers (Multinomial
Naı̈ve Bayes, Decision Tree, Random Forest) could surpass this simple baseline. This allows us to
make the conclusion that all classifiers could learn relevant details / patterns from the data in order to
build a classification model which is suitable for making reliable predictions.

Figure 8.4.: Precision scores of the different classifiers and the constant predictor baseline. The high-
est precision rates for all three datasets (ECLIPSE, MOZILLA, and LIBREOFFICE) were
achieved by Random Forest.

ECLIPSE dataset. In the ECLIPSE dataset, the highest precision was achieved by Random Forest
at 88%. Furthermore, Random Forest could also outperform our Multinomial Naı̈ve Bayes base-
line as well as the Decision Tree classifer in terms of recall and f1-score. The hyperparameters which
achieved this result were: n estimators = 4000, min d f = 3, n gram range = (1,4) and
max f eatures = log2. The Decision Tree classifier also achieved acceptable results in our experi-

154

8.4. Evaluation & Discussion

Figure 8.5.: Recall rates of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, and LIBREOFFICE). The constant predictor baseline rep-
resents a very simple ”dummy” classifier that always recommends all available issues and
therefore achieves the highest possible recall rate.

ment (precision: 0.62, recall: 0.49, and f1-score: 0.55). Even though Decision Tree achieved a recall
of 49% which is similar to the recall of Random Forest, its precision rate is clearly behind the results
of Random Forest.

MOZILLA dataset. The hyperparameters of the classification model based on Random Forest that
achieved the best result (in terms of all three measures: precision, recall, and f1-score) were:
n estimators = 4000, min d f = 3, n gram range = (1,2) and max f eatures = log2. In terms of pre-
cision, the Random Forest classifier was closely followed by our (second) baseline predictor (Multi-
nomial Naı̈ve Bayes classifier), which achieved a high precision of 72% but a very low recall rate of
0.15. Even though the precision of the Decision Tree classifier could not outperform the precision
result of the baseline predictor for this dataset, its recall rate of 0.49 clearly surpasses the baseline
which is identical with the recall rate attained by Random Forest.

LIBREOFFICE dataset. The highest precision achieved with this dataset was 81% using Random
Forest. Moreover, Random Forest also attained the highest recall rate of 75% and the highest f1-score
value of 0.78 for the LIBREOFFICE dataset. The best hyperparameter combination for Random Forest
was: n estimators = 3000, min d f = 2, n gram range = (1,3) and max f eatures = sqrt. On the
contrary, the Multinomial Naı̈ve Bayes classifier achieved a similar precision (4% less) much like our

155

Chapter 8. Towards Issue Recommendation for Open-Source Communities

Figure 8.6.: F1-scores of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, and LIBREOFFICE).

Random Forest classifier, but was not able to attain a high recall rate (only 24%). The Decision Tree
classifier achieved a recall of 71% (which is comparable with the Random Forest classifier’s recall),
but only a precision of 67%.

Summary. To summarize, the presented evaluation results are quite promising. In particular, consid-
ering the difficulty of this recommendation task and our optimization towards precision (instead of
recall), the classifier based on the Random Forest algorithm achieved good results in terms of preci-
sion (see Figure 8.4) and acceptable recall rates (see Figure 8.5) on all three datasets. Random Forest
achieved its highest precision (88%) on the ECLIPSE dataset which clearly outperforms all other clas-
sifiers. Given the following three facts, the difficulty to learn a prediction model for LIBREOFFICE can
be considered as being the highest of all three datasets: (1) the LIBREOFFICE dataset was significantly
smaller when compared with the other two datasets (in terms of issues, contributors, and components;
see Table 8.1), (2) the median number of resolved issues per contributor was the lowest of all three
datasets, and (3) the average number of contributors per component was the highest. Thus, the results
achieved with Random Forest on the LIBREOFFICE dataset are even more remarkable than the results
of the other two datasets.

Even though these results indicate a first step in the right direction, one limitation of our approach is
that the trained models cannot recognize same developers working in different components. This is

156

8.5. Future Work

due to the reason that we generate a different user profile (set of profile tokens) for the same developer
in every component where he / she was active. This means that a contributor-sample always con-
tains only profile tokens of issues (resolved by the contributor) from one component even though the
contributor works in multiple components (according to the training set; see Section 8.3). By using
unique user profiles for the same developer across different components, the set of profile tokens can
be further enriched with useful tokens / keywords extracted from issues in other components. This
improves the quality of the profile tokens as well as the quality of the contributor-samples (which
contain the profile tokens). Moreover, this might also have a positive impact on the performance of
the prediction models as the classifier is fed with more / better keywords and can learn connections
between issues resolved by the same developer across different components (due to the unique set of
profile tokens).

Although all results were achieved with the set of hyperparameters listed in Table 8.2, a different com-
bination of these hyperparameters can lead to (slightly) different results. The hyperparameters can be
adjusted according to different needs (for example, in order to increase the recall) by either modifying
the hyperparameters manually or by using other techniques such as Random Search to further opti-
mize the models (Bergstra and Bengio, 2012). For certain applications (e.g., when expert users want
to review the complete set of issues relevant for them) a higher recall achieved with different hyperpa-
rameters might be more important than a high precision. The main challenge of this recommendation
task was to correctly predict and recommend those issues of a component to a developer / contributor
which were actually assigned to him / her given a possible choice of about 14 active contributors on
average per component in ECLIPSE (MOZILLA: 34 and LIBREOFFICE: 56; see Section 8.3.1). An-
other hurdle for the classifiers was that most developers were only assigned to a very few issues, which
negatively influences the quality of their user profiles. Considering these challenges, our preliminary
results of the presented work represent a good orientation towards future work.

8.5. Future Work

Within the scope of future work, we plan to evaluate our issue recommendation approach on the basis
of further open-source projects. Examples thereof are the GNU GCC project (GNU Compiler Col-
lection), the LINUX KERNEL project, the GNOME project, the KDE project and the QT project. A
known limitation of the existing solution is that our recommendation model follows a content-based
approach which can only recommend issues to a developer that are similar to issues the developer
resolved in the past. In particular, the model lacks the ability to make smarter recommendations con-
sidering serendipity aspects across different components of the same product. As shown in Figure 8.1,
we allow the users of our ECLIPSE plugin (i.e., the ECLIPSE developers) to provide feedback in terms
of issue likes, issue dislikes, or issue snoozes (”remind me later about this bug”). At the moment, we
use our users’ feedback to hide certain issues (in case of dislike) and to re-rank (in case of like) the

157

Chapter 8. Towards Issue Recommendation for Open-Source Communities

recommendation list. In the future, we plan to use this data to automatically improve and adapt our
recommendation model in order to foster serendipity and counteract the aforementioned limitation of
our current (content-based) approach. In order to reach a much broader community of developers, we
also want to address developers who are using different integrated development environments (IDEs)
such as the very popular products from the software company JETBRAINS6. Therefore, we intend to
develop an open-source plugin for some of JetBrains’ IDEs, such as IntelliJ IDEA, CLion, etc. In
addition to that, we will also provide a web UI as an alternative solution. Furthermore, we will focus
on improving our recommendation support for ramp-up (i.e., cold-start) scenarios. In particular, we
intend to increase the retention rate by recommending requirements to new developers. Finally, an-
other idea for future work is to provide the currently developed recommendation functionalities in a
similar fashion for GITHUB.

8.6. Conclusion

We introduced a novel content-based recommendation approach that supports contributors of open-
source communities in identifying the relevant requirements to work on. To demonstrate the potential
of the developed approach we implemented a plugin for the commonly used ECLIPSE platform that
supports contributors in selecting the next issues from the BUGZILLA platform. The recommendation
approach performs much better than comparable approaches in terms of prediction quality (repre-
sented by precision and recall). To underline the potential of the proposed approach we used publicly
available datasets of three different open-source projects (ECLIPSE, MOZILLA, and LIBREOFFICE).
Since we received very positive feedback from contributors of the ECLIPSE IDE, we regard the con-
tinuous extension and improvement of the recommendation approach as a major topic for future work.
In addition, we will conduct further usability studies related to the developed plugins.

6JETBRAINS: https://www.jetbrains.com/

158

https://www.jetbrains.com/

Chapter 9
Intelligent Recommendation & Decision
Technologies for Community-Driven
Requirements Engineering

The contents and results of this chapter are based on the research work published in Samer et al.
(2020). The author of this thesis provided major parts of this chapter in terms of literature

research, the user studies and wrote major parts of this chapter.

9.1. Abstract

Requirements engineering (RE) represents a critical phase in the management and planning of soft-
ware projects. One of the main reasons for project failure is missing or incomplete RE. In order to
reduce the risk of project failure, there exists a high and urgent demand for applying intelligent tech-
nologies in RE. Since the RE process is mainly decision- and community-driven, recommender sys-
tems are supposed to be applied in this particular context to support stakeholders in decision-making
and, hence, to increase the quality of the decisions taken by the stakeholders. This chapter introduces
a variety of innovative recommendation tools developed within the scope of the European Horizon
2020 research project OPENREQ. Moreover, we give an overview of user studies conducted to eval-
uate our approaches and present final results of selected studies. The study results indicate that the
developed concepts have the potential to significantly improve the quality of requirements definition
and requirements prioritization.

9.2. Introduction

Requirements engineering (RE) plays an important role in software development. In general, RE
represents a branch of systems engineering which deals with the definition and fulfilment / implemen-

159

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

tation of desired properties and constraints of software-intensive systems. The major phases of the
RE process are the elicitation and definition of requirements, the negotiation of requirements, qual-
ity assurance, and release planning. RE can be considered as a critical phase in a software project
since poor (or missing) RE can (1) cause a software project to miss important deadlines (due to a
late discovery of serious issues in the RE model), (2) lead to increased costs which can exceed the
project budget, or (3) even result in project failure (Davis, 2005; Leffingwell, 1997; Mobasher and
Cleland-Huang, 2011). In fact, research shows that the follow-up costs can add up to 40% of the over-
all project costs (Davis, 2005; Leffingwell, 1997). In the worst case, the project might miss important
deadlines or even fail. Consequently, RE constitutes a high risk factor for the success of a project.
Hence, there is a high demand for applying intelligent technologies to support stakeholders in RE,
in order to mitigate these project risks. In particular, recommender systems (RS) are predestined to
support stakeholders in different decision-making scenarios which represent the core foundation of
the RE process (Felfernig et al., 2013; Mobasher and Cleland-Huang, 2011). RS can support stake-
holders in RE tasks, such as requirements definition, release decisions, stakeholder identification, and
dependency detection (Mobasher and Cleland-Huang, 2011; Ninaus et al., 2014). Beyond the use of
RS in RE, further intelligent and automated solutions based on artificial intelligence can be used to
support stakeholders in RE.

This chapter presents innovative applications of intelligent recommendation and decision technolo-
gies in RE which are based on artificial intelligence. These technologies were developed within the
scope of the European research project OPENREQ1. The major aim of OPENREQ is to address the
aforementioned issues by providing an innovative and intelligent tool support, which might change
the way RE stakeholders think about and work with requirements. Following the objective to foster
high quality decision-making, OPENREQ offers intelligent solutions for all phases of the RE process.
OPENREQ has even the potential to update current software engineering methodologies and introduce
new roles in software organizations. For instance, with OPENREQ the boundaries between market-
ing, RE, and maintenance should be reconsidered. The outcomes of the OPENREQ project touch a
broad set of different communities. OPENREQ provides actionable feedback for novel contributions,
software practitioners for the scientific community as well as solid foundations for the open-source
community. The work presented in this chapter deals with the analysis and extension of current
methodologies on (1) stakeholder and user involvement in a software life-cycle, and (2) distributed
requirements engineering and management. We provide a framework for processes and methodolo-
gies that support stakeholders in using the OPENREQ platform to achieve high efficiency and quality
in requirements elicitation and management. The focus lies on extending agile, reuse-driven method-
ologies, community-centred participative product development, and open innovation methodologies.
The core contributions of the developed recommendation tool suite presented in this chapter, provide
genuine added value for traditional software development institutions and open-source communities

1OPENREQ: https://www.openreq.eu

160

https://www.openreq.eu

9.3. OPENREQ Recommendation Technologies

in terms of (1) more efficient information exchange among stakeholders, (2) increased RE quality by
providing quality-related feedback and advanced conflict-resolution, and (3) reduced risk of project
failure by providing immediate feedback to requirements engineers early in the process.

The remainder of this chapter is structured as follows. Section 9.3 provides an overview of the devel-
oped OPENREQ tool suite covering a broad set of different intelligent recommendation technologies.
In Section 9.4, we show the user interface of the RE platform OPENREQ!LIVE which provides a
central platform for the use of the recommendation tools. Section 9.5 presents the design and results
of several user studies that evaluate the different recommendation approaches. Section 9.6 outlines
related work and provides some ideas regarding future work for recommender systems in the field of
RE. Finally, the chapter is concluded with Section 9.7.

9.3. OPENREQ Recommendation Technologies

A broad collection of different recommendation tools has been developed within the scope of the re-
search project OPENREQ. Thereby, we focused on the techniques which are of the highest relevance
for the RE process. These recommendation tools are based on common recommendation concepts,
such as content-based filtering (Pazzani and Billsus, 2007), collaborative filtering (Ekstrand et al.,
2011; Goldberg et al., 1992), knowledge-based recommendation (Felfernig et al., 2014), and group
recommendation approaches (Masthoff, 2015; Felfernig et al., 2018). The objective of the developed
recommendation approaches is to improve the efficiency and the quality in requirements elicitation
and management. Our approaches are supposed to support stakeholders working on different RE-
related tasks, such as the assignment of stakeholders to requirements, the elicitation of requirements,
the identification of requirement dependencies, and the prioritization of requirements.

The developed techniques and tools follow the community-driven OPENREQ approach for modern
software RE. Figure 9.1 presents the general flow of the OPENREQ approach and demonstrates on a
basic level how the participants (users, communities, and stakeholders) interact with the RE process.
As shown in the figure, the basic idea of the OPENREQ approach is that users and communities
provide valuable feedback (implicit and explicit) which can be analyzed and used as learning input
for OPENREQ’s intelligent technologies. All stakeholders (requirements engineers, developers, and
users) provide expertise and define preferences which are considered as input for the RE process.
Beyond this, OPENREQ aims to use knowledge from previous / past projects and the history of current
projects as input to further optimize decision support provided by the developed recommendation and
decision support tools. An overview of these tools is given in the remainder of this section. All tools
were developed as standalone open-source web services2.

2Source code is published on GITHUB: https://github.com/OpenReqEU

161

https://github.com/OpenReqEU

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

Figure 9.1.: Overview of OPENREQ’s requirements engineering approach.

9.3.1. Requirements Elicitation

The elicitation of requirements represents a task in the initial phase of the RE process, where re-
quirements of a software project are jointly defined and collected by the project stakeholders. The
traditional way is that the stakeholders provide the fundamental elements for the definition of a re-
quirement which can be textual descriptions, scenario descriptions, use cases, or mock-up illustrations
of prototypical user interfaces. Based on these elements, stakeholders select the relevant requirements.
However, the process of distinguishing between the elements which define a new requirement and
those elements that further explain or describe an already defined requirement, is often very time-
consuming for stakeholders. To support this task, OPENREQ provides a classification service called
OPENREQ Classification Service (Falkner et al., 2019) which is based on supervised machine learn-
ing. It focuses on the classification of textual descriptions and helps to determine whether a piece of
text (paragraph) as a part of a formatted text document (Microsoft Word) defines a new requirement
(denoted as REQ) or represents a description (denoted as PROSE) which is related to a previously
defined requirement. Paragraphs classified as PROSE are automatically linked to the corresponding
requirement. The hierarchy of classified requirements and PROSE paragraphs is then converted into a
format suitable for the requirements management tool IBM DOORS3. Misclassified samples have to
be manually corrected by requirements managers.

3IBM DOORS: https://www.ibm.com/us-en/marketplace/requirements-management

162

https://www.ibm.com/us-en/marketplace/requirements-management

9.3. OPENREQ Recommendation Technologies

Another approach supporting the elicitation of requirements has been developed by Stanik et al. (2019)
(see also Stanik and Maalej, 2019). The Orchestration Service of OPENREQ applies this approach in
order to intelligently extract requirements from social media channels. The basic idea of the approach
is to bridge the gap between requirements engineers and customers in an agile development process
that relies on continuous feedback from the customer. The service opens new feedback channels for
customers to report issues and ideas regarding the developed software products. The service intelli-
gently analyzes and classifies all messages (tweets) which appear in these channels by using super-
vised machine learning (Stanik and Maalej, 2019). The classification model can either be trained by
using traditional machine learning or deep learning. Messages can be of any kind of requirement such
as a feature request (new feature which should be included in the next release), a bug report (a bug
which leads to malfunction of the software), or an inquiry (a question related to different aspects such
as usability, compatibility, or questions on how to use the software). All other messages which do not
represent (or do not refer to) a requirement are classified as irrelevant. All tweets are preprocessed and
cleaned in order to avoid obvious spam messages (i.e., irrelevant) at an early stage of the classification
process. Further (less obvious) spam messages or any other kind of unclear messages are detected by
the prediction model and automatically classified as irrelevant. The requirements engineers are re-
sponsible to review the list of recommended requirements (messages classified as requirements) and
select the final candidates which are then included in the requirements model of the software product.

Most software projects contain reusable parts of the functionality (e.g., user authentication systems
used in online applications) which often represent core components of other software projects as well.
Consequently, the requirements related to the implementation of such reusable components can be
reused in new software projects. Recommender systems aim to support stakeholders in the definition
of new requirements by suggesting requirements which are related to the content of already defined
requirements (Ninaus et al., 2014). The presentation of reusable requirements (extracted from other
software projects that are related to the current project) represents a large potential for recommender
systems during requirements elicitation. OPENREQ provides a recommendation component called
Similar-related Requirements Recommendation Service which is a web service that addresses this
aim. The main goal of the service is (1) to foster the systematic reuse of requirements such that the
efficiency of the RE process can be improved, and (2) to analyze the requirements of a project in order
to detect duplicates and related requirements. The service recommends requirements that are similar
or related to a given set of requirements by intelligently analyzing the given requirement set of the
current project (inter-project analysis) as well as requirements of different existing software projects
(cross-project analysis). The service compares the semantics of the words from the description of the
requirements to find and recommend closely related requirements. An additional part of the cross-
project analysis is the recommendation of requirements of reusable components from other projects.
Typical software projects usually have a large assortment of requirements (more than 100 or 1,000
requirements) which makes the elicitation of requirements to become one of the most important and

163

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

time-consuming tasks in RE. OPENREQ tackles the aforementioned issues and allows stakeholders
to save much time and to reduce the risk of overseeing important requirements in a project. It is
important to mention that incomplete or faulty RE (e.g., caused by the late discovery of important
requirements) can have a negative impact on software quality (Boehm, 1981; Davis, 2005; Cleland-
Huang et al., 2003). This underlines the need for using recommender systems in this critical phase of
the RE process.

9.3.2. Requirement Dependency Detection

The identification of dependencies between requirements represents another important task in RE.
In this task, requirements are typically analyzed pairwise, in order to find all dependent requirement
pairs. There exist different types of dependencies / relationships (e.g., requires, includes, excludes,
or similar (Samer et al., 2019; Felfernig et al., 2018)) expressing different meanings. The early and
complete discovery of all dependencies has a significant impact on the successful completion of a
software project (Li et al., 2012). Incomplete, inconsistent, or incorrect dependencies can induce se-
rious consequences in a project, such as increased costs which may exceed project budget, lead to
missed project deadlines, or even project failure (Samer et al., 2019; Ruhe, 2010). As already men-
tioned before, software projects often have a large number of requirements which must be fulfilled in
order to successfully complete the project. The number of requirement pairs k to be analyzed for de-
pendencies is a function of quadratic order of the number of requirements n (more formally, k =

�n
2
�
).

Hence, the manual analysis of k pairs quickly turns out to be a herculean task / effort for (human)
stakeholders. Moreover, with an increasing number of requirements in a project, the probability is
very high that a manually defined set of dependencies is incomplete and contains inconsistencies. The
complete awareness of all (correct) dependencies directly affects the release planning of a software
product since the dependencies express relevant information about the compatibility between the re-
quirements as well as the chronological time order in which the requirements should be implemented.
An extensive consideration of all dependencies fosters a more fruitful release planning which helps to
avoid effortful re-designs and re-implementations later in the project. Consequently, the application of
automated technologies which assist the stakeholders in finding requirement dependencies is essential
for a software project.

In order to address this issue, two different recommendation approaches have been implemented
within the scope of OPENREQ. The first approach is represented by OPENREQ’s Dependency Rec-
ommender Service which analyzes the requirements set of a software project to find dependent re-
quirement pairs. The underlying approach uses Latent Semantic Analysis (Deerwester et al., 1990;
Landauer et al., 1998) to transform the textual descriptions of the requirements into a low dimensional
semantic-space representation (for more details, see Samer et al., 2019). This way, noisy words can
be filtered out and more emphasis is placed on semantically-related requirements. The pairs of closely
semantically-related requirements are considered as dependent requirements. The main advantage of

164

9.3. OPENREQ Recommendation Technologies

this service is that it does not require any labeled training data and can be used once all requirements
have been defined in a project. This is due to the reason that the underlying approach uses unsuper-
vised learning (soft-clustering). Moreover, fine-tuned parameters (e.g., the minimal similarity distance
between two requirements) avoid that two too closely related (i.e., similar or duplicate) requirements
are falsely classified as a dependent pair.

Besides this unsupervised approach, we have developed another approach that is based on supervised
machine learning and requires labeled dependency data in order to learn a prediction model (Samer
et al., 2019; Atas et al., 2018). This approach goes beyond the level of similarity-based recommenda-
tion, and uses probabilistic features which take statistical aspects from the area of information theory
into account. In contrast to the previous approach, the main benefit of this approach is a significantly
increased prediction quality (see results in Samer et al., 2019).

9.3.3. Prioritization and Evaluation of Requirements

A correct prioritization and allocation of all resources and requirements is the fundamental basis for
a smooth and efficient schedule in every software project. This involves the evaluation and prioriti-
zation of a project’s requirements, the assignment of suitable stakeholders to requirements (see Sec-
tion 9.3.4), and release planning (see Section 9.3.5). In particular, an efficient support of prioritization
decisions is essential for a software project. This is due to the reason that a manual prioritization of
a large number of requirements is a very time-consuming and effortful process (Xuan et al., 2012).
However, the prioritization of requirements is often performed by a single person or a very small
group of stakeholders (e.g., by requirements / project managers).

According to research in the field of group recommender systems, more information exchange be-
tween decision-makers as well as more people involved in a decision can significantly increase the
probability of better prioritizations (Schulz-Hardt et al., 2006; Stettinger et al., 2015). Following
these scientific empirical observations, we developed new approaches for group recommendation user
interfaces (Samer et al., 2020) which (1) trigger more stakeholder engagement and (2) foster informa-
tion exchange between the stakeholders. The approaches are based on the concept of multi-attribute
utility theory (MAUT) (Felfernig et al., 2018; Ninaus et al., 2014) which represents a multidimen-
sional rating scheme. MAUT for groups extends the basic utility-based recommendation for single
users to multi-user scenarios where the preferences of the individual stakeholders are aggregated into
a recommendation such that the whole group is satisfied with the recommendation. In our approach,
we use three interest dimensions (profit, effort, risk) which must be evaluated by every stakeholder
for every requirement individually. The preferences of a single user are the user’s ratings of all spec-
ified dimensions. Strongly diverging ratings of different group members within the same dimension
indicate a strong disagreement and are considered as a conflict by the group recommender. The group
recommender automatically detects all of such conflicts and presents them to the group members who

165

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

are involved in the conflicts. For each conflict of a requirement, the group members are required
to discuss the conflict and (after the discussion) to reevaluate the requirement’s dimensions which
are affected by the conflict. This helps to trigger more communication between stakeholders which
positively influences the quality of the requirement prioritizations. Once all requirements have been
evaluated and all conflicts have been resolved by the stakeholders, a utility / priority value is deter-
mined for every requirement. Based on this priority value, an ordered list of requirements is presented
to the stakeholders for further action (e.g., release planning). In sharp contrast to traditional group
recommendation approaches which do not take into account the aspects of delegate voting (liquid
democracy) (Johann and Maalej, 2015), our approach aims to make voting processes more flexible by
allowing to transfer voting rights to stakeholders who are the experts with respect to specific require-
ments and interest dimensions. In other words, the approach harnesses the stakeholders’ knowledge
and its algorithm allows them to prioritize and delegate at scale.

Another OPENREQ service which supports the prioritization and evaluation of requirements is the
Social Popularity Indication Service. It provides further relevant input for the evaluation of the re-
quirements by estimating the relevance of a requirement given its overall sentiment and popularity in
social media networks4. The tool automatically extracts messages from Twitter which are related to
the textual content of a requirement. The cleaned messages are then further analyzed considering the
sentiment, in order to obtain a relevance score for every requirement. This relevance score is updated
every day and refers to the social popularity which serves as an indication on how relevant / popular a
requirement is for potential users / markets that a software company may want to address.

9.3.4. Stakeholder Recommendation

The task of assigning suitable stakeholders to requirements is essential for the success of a software
project (Lim et al., 2010). A complete and correct assignment in the early phases of the RE process
is indispensable. With an increasing number of requirements, this task can become very challenging
for requirements managers. Stakeholder recommendations can assist requirements managers in the
identification of suitable persons who are capable of implementing the requirement or providing a
more detailed analysis and description of the requirement. Inspired by existing research (Lim et al.,
2010), OPENREQ comes up with two new content-based recommendation approaches which have
been implemented as different services.

As described by Samer et al. (2018) (see also Palomares et al., 2018), OPENREQ’s Stakeholder Rec-
ommendation Service implements the first approach. In contrast to traditional stakeholder assignment
where requirements managers decide on who is responsible for a requirement, the basic idea fol-
lowed by this approach is to involve more stakeholders in the assignment decision process. This
includes human and artificial stakeholders. Content-based recommenders act as artificial stakehold-

4At the moment, the support for social networks is limited to Twitter.

166

9.3. OPENREQ Recommendation Technologies

ers and propose suitable stakeholder candidates for each requirement based on learned user profiles
from historical data. The (human) stakeholders5 can extend the list of already proposed candidates
(if necessary) by adding further stakeholders to the candidate list. Moreover, the human and artificial
stakeholders are asked to evaluate all proposed candidates individually. Given the complete evaluation
of the proposed candidates as input produced by the combined power of the intelligent service and the
expert knowledge of the stakeholders, a group recommendation system preselects final candidates to
be assigned to the requirement. The requirements manager can then either accept the final candidates
proposed by the group recommender (no action is required) or choose an alternative candidate (action
is required) in exceptional cases. The main benefit of this group-based evaluation approach represents
the potential to significantly reduce the overall involvement of the requirements managers in this par-
ticular task and it can also lower the risk of overseeing suitable stakeholders.

Our second approach is implemented by the Issue Prioritizer Service and it addresses a slightly dif-
ferent scenario where stakeholders receive a list of recommended requirements based on a user profile
(see Samer et al., 2019). Such scenarios typically occur in large open-source projects or in large
commercial projects with highly fluctuating groups of employees / developers. Our approach uses
content-based filtering and is based on supervised machine learning. The service builds a keyword
profile based on ”old” requirements / issues resolved by a stakeholder / contributor in the past and aims
to find new requirements which are similar in terms of the content. In contrast to standard content-
based filtering, we do not use similarity metrics but exploit the potential of machine learning by using
large requirement / issue datasets. Based on the keyword profile, relevant requirements matching
the stakeholder’s interests are recommended using supervised classification techniques. Thereby, our
content-based classification approach accepts a single feature vector (consisting of keywords of the
current requirement and the keywords of the current stakeholder’s keyword profile) as input and uses
binary classification to predict whether the given requirement is suitable for the stakeholder or not
(for more technical details, we refer to Samer et al., 2019). Since the approach is fully automated
and does not require any input from other stakeholders (such as evaluations of proposed candidates or
suggestions for candidates), the approach is more suitable to be applied in projects where stakehold-
ers / developers can start to work on a new requirement immediately (without waiting for permission
from a requirements manager) which is typically the case in large open-source projects. Moreover, the
approach also supports flexible working environments where onboarding of newcomers (i.e., new con-
tributors who want to join the project, but are not yet known by the community) is of high importance
for the project (see also Stanik et al., 2018).

5The group of stakeholders also includes the requirements manager and expert stakeholders working in the domain related
to the requirement.

167

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

9.3.5. Release Planning and Configuration

Release planning deals with the assignment of requirements to releases. It usually follows the prin-
ciple of requirements triage which is accounted for by the fact that there is only a limited amount of
available resources in a project (Ninaus et al., 2014). According to requirements triage, requirements
are classified into (1) requirements which should not be assigned to any release, (2) requirements
which have to be included in an early (or the next) release, and (3) requirements whose assignment
to an early release is optional. On an abstract level, this procedure can be regarded as a configuration
problem. Raatikainen et al. (2018) and Felfernig et al. (2018) present a recommendation approach in
terms of a configuration system which has been developed within the scope of OPENREQ. In their
prototype service (named Release Planning and Consistency Check Service), the aforementioned re-
quirements triage settings (the three types) are modelled as constraints and serve as main input for the
service. Further constraints are dependencies defined between the requirements (see Section 9.3.2),
the release dates / deadlines, and the maximum time capacity of each release which limits the number
of requirements that can be assigned to the release (based on the specified time effort of the require-
ment). In addition to these constraints, the complete sets of requirements and releases are used as
additional input for the service. Based on the input, the service uses knowledge-based configuration
techniques to automatically generate and suggest a list of different release plan candidates which sat-
isfy all defined constraints and represent possible / feasible release plan solutions. The requirements
manager can review the recommended list and select one solution as final release plan.

9.3.6. Quality Assurance

Quality assurance deals with the aspect-oriented evaluation of requirements. The aspects which
should be evaluated, represent qualitative attributes such as feasibility (economic vs. technical fea-
sibility), consistency (no requirement must conflict with another), completeness (the requirements
model must include all necessary requirements), understandability (readability / understandability
quality of the requirement’s description), and reusability (for future software projects) (Felfernig et al.,
2013). Quality assurance in RE represents the backbone of the RE process and is a highly important
measure for preventing mistakes and defects in the development of software products. To that end,
our OPENREQ team has developed two services which facilitate and foster quality assurance in RE.

The OPENREQ Orchestration Service (introduced in Section 9.3.1), also provides statistics of col-
lected community data from social media channels. More precisely, the service presents general
statistics of the analyzed tweets / messages and can automatically keep track of recent activities and
changes in the social media channels which are linked to a software project. The statistics visualized
by the tool serve as a fundamental means for requirements managers to identify, analyse, and under-
stand the users’ desires and the reported problems the users face while using the software product.

Since requirements are usually described using natural language, the textual descriptions of the re-

168

9.4. OPENREQ User Interface

quirements can often become inherently ambiguous. The serious consequences caused by such am-
biguities are often misleading information, inconsistent descriptions, or poor understandability of the
requirements. This can further lead to fatal mistakes or defects in the development phase. Common
approaches to detect ambiguities are often rule-based and follow certain guidelines. The Improving
Requirements Quality Service is based on this idea and assists stakeholders in improving ambiguous
and unclear definitions of their requirements. Besides pure ambiguity detection, the service provides
detailed explanations for each detected ambiguity to the user in terms of basic graphical visualiza-
tions. These visualizations represent indications that mark requirements that ”smell” which means
that the stakeholders should look again at the textual formulations (e.g., if there are some ambiguities
introduced by natural language). Further research will be needed to fine-tune the introduced concepts.
The ambiguity analysis of the service focuses on syntactic and semantic issues in the wording and
phrasing of the requirements. This way, the service helps to improve the quality of a project’s require-
ments model. This avoids serious consequences (mentioned above) which can cause increased time
effort and follow-up costs.

9.4. OPENREQ User Interface

In order to provide stakeholders a convenient and user-friendly central access to OPENREQ’s recom-
mendation tool suite presented in Section 9.3, we developed a web-based RE platform called OPEN-
REQ!LIVE. OPENREQ!LIVE6 is a free collaborative RE platform which fosters the cross-fertilization
of ideas between stakeholders and allows them to jointly manage their projects and take full advan-
tage of the recommendation power provided by OPENREQ’s tool suite. OPENREQ!LIVE is capable
of tackling all of the everyday RE tasks stakeholders face in their software projects. From a tech-
nical viewpoint, the platform represents a central hub which combines the functionality of the most
relevant OPENREQ services. The platform provides all necessary functionality to create and update
the requirements model of a project which includes requirements, releases, dependencies, and further
release-related constraints (such as the maximum requirement capacity defined for a release or the
release date / deadline) of a project. Moreover, on a project’s main page, the platform presents a com-
pact overview of the project which illustrates the defined project structure at a glance (see Figure 9.2).
The users of the platform can modify and update the requirements and releases directly on this page.

The evaluation of the requirements defines the basis for the utility-based prioritization discussed in
Section 9.3.3. Figure 9.3 shows an example of an argumentation-based MAUT rating interface. Stake-
holders are asked to provide textual feedback (in terms of arguments) for every requirement. The
stakeholders argue on issues related to the requirement and manually classify the sentiment of their
arguments (positive (PRO), neutral (NEUTRAL), or negative (CON)). Moreover, based on the type
of issue, every argument has to be assigned to at least one interest dimension {profit, effort, risk} (see

6OPENREQ!LIVE: https://github.com/OpenReqEU/openreq-live

169

https://github.com/OpenReqEU/openreq-live

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

Figure 9.2.: Overview of an example project in OPENREQ!LIVE. Requirements (they consist of a
unique ID, title, description, and status) are listed on the page and ordered by a utility
value. Each release has constraints such as the deadline of the release and a maximum
capacity value (in hours) which limits the possible number of requirements that can be
assigned to the release. The OPENREQ services (see Section 9.3.3) have been integrated
into the user interface. For example, the red labeled numbers indicate issues (such as
requirement duplicates, ambiguities in a requirement’s description text, etc.) reported by
some of the services.

Section 9.3.3 for more details). Strongly diverging arguments assigned to the same interest dimension
indicate strong disagreement and appear as a conflict in the interface. The involved stakeholders have
to discuss the issue and resolve the conflict by reevaluating the requirement (i.e., providing improved
arguments based on the outcome of the discussion). This leads to more information exchange between
stakeholders and has a positive impact on the quality of the prioritization process (Samer et al., 2020).
After the eliminiation of all conflicts, the system computes a utility / priority value for each require-
ment using MAUT and ranks the requirements based on their priority (see Figure 9.2).

Besides OPENREQ!LIVE, a plugin for the ECLIPSE open-source community has also been developed
within the scope of OPENREQ. The plugin aims to bring RE for open-source communities to the next
level by helping the communities to reduce time and effort in the smart assignment of their require-
ments / issues to suitable developers as well as to attract many newcomers in onboarding scenarios.
The plugin runs inside the ECLIPSE IDE7 (integrated development environment) which is the favored
IDE of most developers in the community, and fetches requirements / issues relevant for the user / de-
veloper from OPENREQ’s Issue Prioritizer Service (see Section 9.3.3). The service connects to the
web API of the issue tracking platform BUGZILLA8 and extracts new unresolved issues / requirements
from the ECLIPSE project. The plugin is available for download on the ECLIPSE MARKETPLACE9

7ECLIPSE IDE: https://www.eclipse.org/ide
8BUGZILLA: https://www.bugzilla.org
9ECLIPSE plugin: https://marketplace.eclipse.org/content/openreq-eclipse-ide-bug-prioritizer

170

https://www.eclipse.org/ide
https://www.bugzilla.org
https://marketplace.eclipse.org/content/openreq-eclipse-ide-bug-prioritizer

9.4. OPENREQ User Interface

Figure 9.3.: Argumentation-based rating interface which allows stakeholders to exchange arguments
for / against a requirement. Each argument must be assigned to one interest dimension.
Negative arguments are highlighted in red, positive arguments in green, and neutral argu-
ments in orange.

and provides a graphical user interface that shows the recommended requirements / issues to the de-
velopers (see Figure 9.4). Moreover, the plugin also allows developers to give feedback on each
recommendation. Developers can give feedback in three different ways: like button (indicates that the
recommendation was helpful), dislike button (indicates that the recommended issue is not relevant for
the developer), and snooze button (indicates that the issue is not of highest relevance at the moment
and the developer should be reminded about the issue again a few weeks later). Our recommendation
service uses the individual feedback provided by the developers as additional input, in order to further
improve the prediction quality.

To summarize, the developed user interfaces have large potential to enhance and speed up RE by mak-
ing intelligent technologies developed in OPENREQ accessible in a user-friendly fashion for software
development institutions as well as open-source communities. All user-interfaces are applicable on
different platforms, such as Windows, Linux, and MacOS. In addition to that, OPENREQ!LIVE runs
on a wide variety of web browsers and also supports various computing devices including different
mobile and desktop devices.

171

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

Figure 9.4.: ECLIPSE plugin that recommends relevant requirements / issues to the active developer
using content-based filtering based on supervised learning.

9.5. User Studies and Benefits

In this section, we present representative evaluations and study results of a narrowed list of selected
empirical and user studies. All studies have been conducted within the scope of the OPENREQ re-
search project and follow the purpose to evaluate the performance, usability, or prediction quality of
the developed tools and approaches which have been discussed in Section 9.3. Most of the presented
user studies were conducted in real-world scenarios with industry partners and some of our evaluated
recommendation tools are also currently used by these industry partners.

Issue Prioritizer Service I (Section 9.3.4). We conducted a small-scale usability study (N=11 par-
ticipants) with the developed ECLIPSE Plugin that calculates individual issue lists for the contributors
of the ECLIPSE project by taking into account the individual preferences and the history. The persons
who participated in our study were developers of the public ECLIPSE open-source project and 7 out
of 11 participants (63.63%) either rated the usability to be good (2 participants) or even excellent (5
participants). Moreover, the quality of the results of the plugin satisfied all of the participants’ expec-
tations (5 participants (45.45%) stated that the recommendations were helpful and for 6 participants
(54.55%) the recommendations were very helpful). By using the plugin, the participants of the user
study could also take a look at their keyword profile. All participants stated that suitable keywords
were found and the list of recommended requirements / issues was very accurate. Moreover, the par-
ticipants were asked to estimate their perceived time savings in finding suitable requirements by using
the plugin (compared to manual finding) within a range between 0 and 100, whereby 0 refers to no
time savings and 100 refers to significant / high time savings. The results show that the perceived
individual time savings were estimated very high on average (average: 74.18, median: 91.00, stan-
dard deviation: 31.92). Regarding future improvements, some of the participants mentioned that they
would also see huge benefits if the developed tool could also be connected to other issue tracking
systems (such as GITHUB issues or JIRA), in addition to BUGZILLA.

Issue Prioritizer Service II (Section 9.3.4). To demonstrate the potential of the content-based rec-
ommendation approach used by our Issue Prioritizer Service, we trained and tested our tool with

172

9.5. User Studies and Benefits

different classifiers (Naı̈ve Bayes (our baseline), Decision Tree, and Random Forest). We used three
large issue / requirement datasets of different open-source projects (ECLIPSE (N=141117), MOZILLA

(N=751961), and LIBREOFFICE (N=47542)) to compare the performance of the different classifiers.
The models used optimized hyperparameter combinations determined via grid search. In sharp con-
trast to already existing issue recommendation approaches, our approach is generally applicable which
means that it does not focus on a single target group (such as newcomers). Considering this difficulty,
the results show that our recommendation approach performs significantly better with Random Forest
classification (in case of ECLIPSE, precision: 0.88, recall: 0.55, f1-score: 0.68) than already avail-
able and comparable approaches. Furthermore, the approach based on Random Forest classification
also considerably outperforms our Naı̈ve Bayes baseline (in case of ECLIPSE, precision: 0.53, recall:
0.29, f1-score: 0.38) as well as the simple baseline of the best random predictor for this specific rec-
ommendation task (in case of ECLIPSE, precision: 0.10, recall: 1.0, f1-score: 0.18). Note that we also
compared our approach with a standard content-based approach that searches for k-nearest neighbor
requirements based on different similarity metrics (e.g., cosine similarity). However, the results of
this standard approach were quite poor and only slightly above the best random predictor baseline.
For this reason, we did not include the standard content-based approach as baseline and decided to
use Naı̈ve Bayes which represents a more reliable baseline for this specific recommendation task. Fur-
ther detailed results and the scores achieved on the other two datasets (MOZILLA and LIBREOFFICE)
are presented in Samer et al. (2019). The bottom line is that the developed approach represents a
good orientation towards future work which will focus on further improving the performance by us-
ing deep learning.

Argumentation-based Rating Interface (Section 9.3.3). To evaluate our argumentation-based rating
approach, we conducted a large-scale user study with N=313 students in an RE-related course at our
university (Samer et al., 2020). The students worked in groups of 4–6 students (60 teams) and each
team developed a tourist information software. All teams had to use OPENREQ!LIVE to maintain
their software project and apply OPENREQ!LIVE’s prioritization functionality (see also Section 9.4
and Figure 9.2). In this study, we compared three different prioritization approaches / versions: a one-
dimensional rating interface (baseline), a multidimensional rating interface (MAUT-based version),
and our argumentation-based rating interface (see Figure 9.3). We randomly assigned 20 teams to
each rating version and disguised all requirement ratings / arguments of other team members until the
current user evaluated the requirement to avoid psychological (cognitive) biases related to the hidden
profile theory (Felfernig et al., 2018; Tversky and Kahneman, 1975). To counteract further biases
related to anchoring effects, we did not inform the 60 groups and our 4 study assistants (who were re-
sponsible for the final assessment and grading of the student projects) about the existence of different
UI variants during the study (Schulz-Hardt et al., 2006; Tversky and Kahneman, 1975) (double-blind).
In order to ensure comparability of the study results and to compute a utility / priority value in each
rating version, we used equal rating scales in all three versions. The one- and multidimensional rat-

173

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

ing versions allowed the students to rate a requirement in the range between 1 and 5 points. In the
case of arguments, there existed three different sentiment levels (positive, neutral, negative) and we
assigned 5 points to positive, 3 points to neutral, and 1 point to negative arguments. The evaluation
results show that the argumentation-based rating interface helped to significantly increase the com-
munication and interaction rate (includes created ratings and adaptations of existing ratings) among
participants in the context of requirements prioritization. For example, groups that were confronted
with the argumentation-based rating interface had 10.4 interactions per requirement on average (stan-
dard deviation: 1.03), whereas the interaction rates of the groups using the multidimensional rating
interface (avg.: 5.4, std. dev.: 0.65) as well as the one-dimensional version (avg.: 4.5, std. dev.: 0.61)
were significantly lower. The comparison of the grades the teams achieved at the end of the course
and the quality of the developed software also reveals interesting differences / findings. The results
of our analysis indicate that the teams that used the argumentation-based and multidimensional rating
interfaces performed significantly better than our baseline (the one-dimensional version) in terms of
grades and software quality (for more details, see Samer et al., 2020). Even though the explanatory
power of the evaluation results is partly limited due to the university setting (the study was conducted
with students in a university course), the results are very significant and expressive which helps to
draw the conclusion that argumentation-based rating interfaces foster information exchange among
stakeholders and have a positive impact on the quality of requirements evaluation and prioritization.

OPENREQ Classification Service (Section 9.3.1). The classification of whether a piece of text de-
fines a requirement (REQ) or represents a textual description (PROSE) of a requirement is treated
as a binary classification task. The utility of the OPENREQ Classification Service using this binary
classification approach, was evaluated with ten datasets of different projects (30,000 requirements
altogether). The datasets consist of samples (labeled as REQ and PROSE) which represent require-
ments and descriptive paragraphs of real-world industry projects. All datasets have been cleaned from
irrelevant information, manually labeled, and evaluated by a small group of requirements managers
and RE experts working at SIEMENS in Vienna (our industry partner). The finally obtained datasets
represent a solid ground truth that reflects correctness and clearness of the data for the training of a reli-
able prediction model. Due to the nature of the datasets, there existed a high class-imbalance between
REQ and PROSE classes, whereby REQ represented the majority class in all datasets (around 90%).
The labeled datasets were used to evaluate our requirement classification tool. Our partner SIEMENS

perceived the achieved level of prediction quality very promising (considering the highly imbalanced
data) and thus integrated the developed approach into their (RE-related) business processes used in
their real-world commercial operations (see Falkner et al., 2019) for detailed results). Hence, the pri-
mary outcome of this work is that the application of the OPENREQ Classification Service can lead to
a significant work reduction for requirements managers and experts during requirements elicitation.

174

9.6. Related and Future Work

Orchestration Service (Section 9.3.1). The underlying approach was evaluated in a series of classifi-
cation experiments. In these experiments, classifiers based on traditional supervised machine learning
as well as deep learning were trained to find requirements-relevant information in English and Ital-
ian tweets as well as in English app reviews. All classifiers were trained to distinguish between the
classes problem reports, inquiries, and irrelevant (see Section 9.3.1). The Twitter datasets consisted of
labeled tweets (around 10,000 in English and 15,000 in Italian) from the telecommunication domain
and the app review datasets consisted of around 6,000 app reviews. The learned prediction models
performed well on all datasets. The best results were achieved on the dataset consisting of English
app reviews (problem report: precision: 0.83, recall: 0.75, f1-score: 0.79; inquiry: precision: 0.68,
recall: 0.76, f1-score: 0.72; irrelevant: precision: 0.88, recall: 0.89, f1-score: 0.89). In general, the
results indicate that, within the used experimental settings, the approaches based on traditional ma-
chine learning could achieve comparable results to deep learning. For more detailed results, we refer
to Stanik et al. (2019).

9.6. Related and Future Work

Related Work. In order to address the problems discussed in Section 9.2, a lot of research has been
conducted with respect to the aforementioned aspects. Different scientific works identify a need for
intelligent tool support to help requirements engineers and stakeholders in the different stages of the
RE process for complex projects (Castro-Herrera et al., 2009; Mobasher and Cleland-Huang, 2011;
Ninaus et al., 2014). A recommendation approach, for example, may be helpful to suggest require-
ments to a stakeholder, who already dealt with the same topics in the past. Alenezi et al. (2013)
present a content-based approach which is used to predict and recommend relevant bugs based on the
experience of the stakeholder. As for finding dependencies between requirements, existing research
shows that natural language processing (NLP) techniques can be applied (Chitchyan and Rashid,
2006; Deshpande, 2019). Although there already exist several tools for parts of the RE process, the
unique nature of the projects makes it rather complex to find methods which are valid for every project.
Ninaus et al. (2014) present a small RE platform called INTELLIREQ which applies recommendation
techniques to support stakeholders in different RE tasks. INTELLIREQ goes one step further and aims
to tackle this challenge by providing intelligent tools, approaches, and techniques for different RE
scenarios to the RE community. INTELLIREQ utilizes basic recommendation techniques to support
stakeholders in common RE tasks. However, when compared to OPENREQ’s RE platform OPEN-
REQ!LIVE, INTELLIREQ only provides a small and limited set of very basic features which do not go
beyond the level of semi-automated learning.

Future Work. The OPENREQ!LIVE user interface will be continuously improved in terms of inte-
grating functionalities to automatically annotate, evaluate, and group requirements as well as to open
its application for existing requirements engineering tools (such as IBM DOORS) by providing inter-

175

Chapter 9. Intelligent Recommendation & Decision Technologies for Community-Driven RE

faces to such systems. Furthermore, text processing techniques are still an active research topic which
receives contributions from several domains. In our future work, we plan to focus on this issue and
compare some of our developed content-based recommendation approaches with more sophisticated
approaches based on deep learning.

9.7. Conclusion

This chapter provided an overview of new RE recommendation tools developed in the context of the
European research project OPENREQ. The RE process can be viewed as a comprehensive decision-
driven process consisting of different phases in which many stakeholders are involved. A high com-
plexity in this process implicates a high risk of project failure. In this context, we presented the
OPENREQ project as an example of a research project in the field of RE. We introduced the OPENREQ

approach which addresses the aforementioned issue and presented OPENREQ’s RE recommendation
tool suite consisting of innovative recommendation solutions which are applicable in different RE-
related tasks. The variety of intelligent technologies and services shown in the chapter fit seamlessly
into OPENREQ!LIVE, which is an RE platform that provides a central interface for stakeholders to
access the most relevant OPENREQ services in a user-friendly way. The OPENREQ project is impor-
tant, not only for tool support, but its user studies can guide research in directions that are supported
by actual real-world cases. The OPENREQ approaches are supported by the evaluation of OPENREQ

methods by industry partners from three different areas (railway safety systems, telecommunications,
distributed open-source development). The evaluation results clearly prove the point that the devel-
oped concepts are able to significantly improve the RE process, in terms of more information exchange
among stakeholders, lower costs, reduced time effort, and increased quality of the process output.

176

Chapter 10
Conclusions & Future Work

In the field of software development, requirements engineering is a very decision-driven discipline
where decision quality has a major impact on the success of a software project. This triggers the need
to apply intelligent systems in requirements engineering to support stakeholders in critical decision
tasks. Recommender systems are proven technologies to support various aspects of decision-making
tasks (Quadrana et al., 2018), for example, prioritization tasks or the identification of preferences.
With the help of recommender systems, stakeholders can focus on more productive tasks and thus
make better decisions. Recommender systems have the potential to identify the most relevant infor-
mation pieces within complex requirements models in order to provide enhanced decision support for
stakeholders in critical decision tasks. This has motivated and inspired us to put our main research
focus on this topic. Within the scope of the European research project OPENREQ1 (part of the Euro-
pean Union Horizon 2020 program), we have developed a requirements engineering platform called
OPENREQ!LIVE. The OPENREQ!LIVE platform provides extensive decision support for the most
relevant requirements engineering tasks. OPENREQ!LIVE includes and features several recommen-
dation approaches that address various tasks of the requirements engineering process. In this chapter,
we reflect on the defined research questions (see Section 1.2) and we highlight the major contributions
that are related to our research questions. Finally, we discuss the limitations of our recommendation
approaches and provide an outlook for future research to conclude this chapter.

10.1. Conclusions

This section presents a summary of answers to the research questions which were defined in Sec-
tion 1.2. The discussion of these answers summarizes our approaches as well as our major challenges
that we have faced in our experiments and evaluations. Furthermore, we outline the major outcomes
and findings of our research work.

1OPENREQ: https://openreq.eu

177

https://openreq.eu

Chapter 10. Conclusions & Future Work

Research Question Q1.1:

How can we automatically identify dependency relations between textually-defined require-
ments?

During a first in-depth analysis of task areas for which only a few mature decision-support approaches
exist, we were able to identify the area of requirement dependency detection as an initial starting point
for our research work. The complete awareness of all dependency relationships which exist between
the requirements in a software project is crucial for release planning, and provides the ability to detect
potential redundancies and inconsistencies in a requirements model (Aguilar et al., 2012). In Sec-
tion 4.5, we present two content-based recommendation systems which advance the state-of-the-art
by achieving a high prediction quality in the automated identification of requirement dependencies.
Both systems focus on the dependency type requires since this type is the most critical type among
all existing dependency types (Ferber et al., 2002). The first system was based on supervised classifi-
cation algorithms (Naı̈ve Bayes, Linear Support Vector Machines, k-Nearest Neighbors, and Random
Forest) and the second was based on Latent Semantic Analysis (it defined our baseline for evaluation).
Both systems were evaluated with a real-world dataset consisting of 30 requirements. The dataset was
collected in an industry project. In order to assure high data quality for training and to obtain a reli-
able ground truth, we have extended the dataset with dependencies in the scope of a comprehensive
user study which we have conducted together with industry experts (see Section 4.3). The full dataset
was then used to train and evaluate our two recommendation systems – both with TF-IDF features
and the first one also with probabilistic features. While TF-IDF features only take into account how
often the individual words occur in the description text of the requirements, the idea of probabilistic
features follows the approach of sensing word-related correlations between different requirements.
The main challenges that we faced at the beginning were related to the small size of the requirements’
text and the risk of overfitting our recommendation models. By applying special mechanisms (such as
hyperparameter tuning and under-sampling of the training samples), we were able to overcome these
hurdles. Section 4.6 presents our evaluation results, which provided evidence that our first recom-
mendation approach performed reliably well with different classifiers on the given dataset. Moreover,
the recommender that used a Random Forest classifier trained with probabilistic features, was able
to outperform our baseline significantly. Our main finding is that probabilistic features represent an
effective means to improve the prediction quality in this evaluation setting (with short requirement
description texts).

Research Question Q1.2:

What is a proper solution to handle cold-start issues in requirements dependency identifica-
tion tasks?

178

10.1. Conclusions

When using recommender systems to support the identification of requirement dependencies, the
cold-start problem often represents a serious challenge whenever there are not enough data records
of other domain-related projects available. As part of this work, we present first steps on how to
tackle the cold-start problem in the context of requirement dependency identification. To that end,
we have implemented a recommendation approach (see Section 4.5) that exploits Latent Semantic
Analysis2 to detect requirement dependencies based on the similarity of semantic characteristics ex-
tracted from the text of requirements. To simulate the cold-start problem, we trained our approach
with a real-world dataset that only contained the textual content of the requirements. We compared
our approach with several classification-based algorithms and used the dependency-related data to
measure the prediction quality. During the evaluation we have observed that our approach sometimes
mistakenly considered very similar requirements to be interdependent. Due to this reason, we added
a hyperparameter to our approach, which prevents the approach from considering very similar re-
quirements as being dependent. As mentioned in Section 4.6, the evaluation of our recommendation
approach reveals that our approach is able to discover a fairly large number of correct dependencies
which is reflected by a high recall score and a good overall prediction quality. The main outcome
of our evaluation is that our approach represents a good orientation towards more sophisticated so-
lutions to overcome cold-start problems in the context of requirement dependency identification tasks.

Research Question Q2.1:

How does the dimensionality of rating-schemes affect requirements evaluation behavior?

Beyond providing recommendation support to automatically identify requirement dependency rela-
tionships, we could determine the prioritization of requirements as another important task for which
there still exists much potential for improved decision-support. The prioritization of requirements is
usually based on group-based evaluation processes. Many existing prioritization techniques do not
direct the evaluation process towards a multi-aspect oriented evaluation approach, but rather convey
the impression that requirements should be viewed as single abstract evaluation units. This can lead
to suboptimal situations where stakeholders tend to evaluate requirements on the basis of one dimen-
sion and are not encouraged to assess them individually based on different evaluation criteria. This
problem defines our next interesting research subject of this thesis. To that end, we implemented
three user interfaces equipped with different rating-schemes (a basic one-dimensional, a basic multi-
dimensional, and an argumentation-based, multidimensional rating-scheme) to evaluate and prioritize
requirements. A group recommendation approach was used to recommend a prioritized list of re-
quirements based on the stakeholder evaluations. The group recommendation approach and the user
interfaces are described in Section 5.3. In order to examine the stakeholder evaluation behavior when
using one of these rating interfaces, we conducted a large-scale user study with 313 computer sci-

2Note that this approach also served as a baseline to answer research question Q1.1.

179

Chapter 10. Conclusions & Future Work

ence students who worked in small groups of 4–6 students to develop a software application. Each
group was exposed to one rating interface (between-subject design (Charness et al., 2012)) and had to
use the rating interface to define, evaluate, and prioritize their requirements. In our empirical study,
a 5-star rating interface was used as a basic one-dimensional rating-scheme, and both multidimen-
sional rating-schemes included three interest dimensions (financial profit, project risk, and technical
effort) to introduce a higher level of depth to the evaluation process. The evaluation results (see Sec-
tion 5.4) reveal that basic one-dimensional rating schemes can affect the stakeholder behavior such
that the stakeholders tend to be very optimistic about the feasibility and the implementation of the
requirements. In contrast, groups who use the multidimensional rating interfaces showed more real-
istic estimations, which is reflected by a lower number of requirements and more critical requirement
ratings (observed as lower rating values). The main outcome that can be inferred from these results
is that multidimensional rating interfaces can make a significant contribution to better prioritization
results, which the following research questions attempt to confirm.

Research Question Q2.2:

How can we increase stakeholder interaction in requirements evaluation to improve the quality
of requirements prioritization?

Group decisions are often dominated by a small group of people. In the context of requirements
prioritization, this can negatively affect the evaluation and prioritization of requirements, especially
when opinion leaders express their opinion first and thus steer the opinions of the rest of the peo-
ple in a certain direction. This psychological effect represents a decision bias that is known as the
anchoring effect (Mojzisch and Schulz-Hardt, 2010; Stettinger et al., 2015; Tversky and Kahneman,
1975). In addition, the early disclosure of views by decision-makers can make other stakeholders
remain more passive. To counteract and mitigate these effects, we have implemented three group-
based recommendation approaches which are presented in Section 5.3. All three approaches hide
the other stakeholders’ ratings until the stakeholder has rated the requirement. One approach uses a
basic one-dimensional 5-star rating interface and the other two approaches use a multidimensional
rating interface. One multidimensional approach follows the objective of triggering more information
exchange among stakeholders by empowering them to provide ratings in the form of textual com-
ments. Every comment represents an aspect-related argument for (positive) or against (negative) a
requirement. Within the scope of an extensive user study, we evaluated and compared all three rec-
ommendation approaches. Our related research results are presented in Section 5.4. The results show
that by introducing argumentation-based assessments, we could encourage the participants to evalu-
ate and prioritize their requirements more intensively. While the one-dimensional ratings were rarely
adapted by the participants and therefore often led to a fast decision convergence within the groups,
a more dynamic decision-making behavior could be observed for groups who used the multidimen-

180

10.1. Conclusions

sional recommendation approaches. The most positive results, however, could be achieved with the
argumentation-based approach, where the arguments of the participants led to more subsequent rat-
ing adjustments / adaptations and to a more opinion-driven decision-making process. More rating
adaptations are an indication for increased information exchange, which is a major precondition for
high-quality group decisions (Schulz-Hardt et al., 2006; Greitemeyer and Schulz-Hardt, 2003).

Research Question Q2.3:

In which way do different evaluation interfaces impact requirements prioritization and soft-
ware quality?

Various research works (Boehm, 1981; Davis, 2005; Cleland-Huang et al., 2003) show that faulty,
careless, or delayed requirements engineering represents a serious problem that has a negative effect
on the software quality and the development costs of the software project. Boehm (1981) states that
around 60 percent of development errors originate from this problem (see also Section 1.1). In order
to achieve a better software quality, one possible first step is to improve the prioritization of require-
ments to identify and focus on the most relevant requirements early in the project. Requirements pri-
oritization helps to improve quality in several places. For example, this allows stakeholders to identify
important features. Furthermore, the maintainability of the software can be increased and thus the sus-
ceptibility to errors can be reduced since it is no longer necessary to add so many requirements during
the development of the software. An example would be the integration of a ”redo / undo” functionality
into an already existing software product. In this thesis, we present a group recommendation approach
that includes three different user interfaces to evaluate and prioritize requirements (see Section 5.3).
The user interfaces used a basic one-dimensional, a basic multidimensional, or an argumentation-
based multidimensional rating scheme. To examine the impact of the user interfaces on the software
quality, we conducted a large-scale user study with computer science students who had to work in
groups to define and prioritize requirements in order to develop a software project based on the prior-
itized list of finally selected requirements. To assess the software quality, we measured the number of
successfully completed requirements and the grades (grading points) the students have received for the
software product at the end of the study. As mentioned in Section 5.4, the results of our empirical study
indicate that requirements prioritization approaches supported by user-interfaces with a multidimen-
sional rating scheme can increase the software quality. In addition, slight but no significant differences
of software quality could be observed between the argumentation-based and basic multidimensional
rating schemes. However, a better prioritization outcome achieved with our argumentation-based ap-
proach (indicated by more rating adaptations and more information exchange through arguments; see
Q2.2) tends to lead to reduced costs and improved implementation schedules due to the neglect or
elimination of unnecessary requirements (Achimugu et al., 2014; Firesmith, 2004).

181

Chapter 10. Conclusions & Future Work

Research Question Q3.1:

How can we facilitate stakeholder assignment to support decision-makers?

The prioritization of requirements is often regarded as a preliminary task which is followed by the as-
signment of requirements to stakeholders. In the context of traditional requirements engineering, the
identification of suitable requirements to assign to stakeholders represents a complex decision task.
Inappropriate assignments can lead to situations where the stakeholders working on the requirements
are not those who are the most suitable candidates to take over responsibility for the requirements.
This can lead to serious consequences caused by programming errors (see Section 1.1). However,
the late detection of software errors poses a threat to the project (e.g., missed deadlines, increased
costs, project failure). Today’s software projects typically consist of many requirements. Neverthe-
less, in traditional requirements engineering scenarios only a few people (requirements managers) are
responsible for the identification and assignment of requirements. In Section 6.5, we present a novel
recommendation approach to distribute the stakeholder assignment task among several stakeholders.
Our recommendation approach consists of two different recommendation services that support the
stakeholders during the entire decision-making process of the stakeholder assignment task. A content-
based recommendation service proposes potential stakeholder candidates for the requirements. Stake-
holders (including requirements managers) can evaluate / rate these candidates and propose further
candidates. A group-based recommender ranks the candidates based on the evaluations and suggests
a final candidate to the requirements managers. Our approach represents a first step towards a more
flexible working environment that improves this complex stakeholder assignment task by reducing the
overall involvement of requirements managers. The automated recommendation of suitable require-
ments to stakeholders has the potential to reduce software weaknesses (such as bugs, other software
defects, or immature features) in the final software end product, counteract time delays, extra costs, or
even avoid project failure (in the worst case) (Lim et al., 2010; Bhattacharya et al., 2012; Pacheco and
Garcia, 2008; Pacheco and Tovar, 2007). Moreover, our approach facilitates the work of requirements
managers by distributing the stakeholder assignment task to different stakeholders in order to reduce
the time effort of the requirements managers as well as the risk that important stakeholder assignments
are overlooked.

Research Question Q3.2:

How can we foster stakeholder engagement in open-source development while taking into ac-
count different stakeholder types (e.g., newcomers and experts)?

To create a recommendation environment that supports stakeholders in the development of open-
source software, it is crucial to provide assistive guidance for stakeholders in order to relieve them
of certain standard ”minor” tasks such as ”finding the next requirement to work on”. Most exist-

182

10.1. Conclusions

ing tools to support stakeholders in the development phase of a software project were created for
working environments where developers work in hierarchies (such as in companies or organizations)
and are not expedient for use in open-source communities where often no clear (or only rudimen-
tary) stakeholder hierarchies exist. In Section 8.3, we introduce a content-based recommendation
approach that represents a first step to bridge this gap. Our approach addresses large open-source
communities and is based on machine learning (supervised classification). It supports open-source
contributors in the finding and prioritization of relevant requirements (in large requirement databases)
by suggesting a ranked list of requirements to work on next. We have developed a plugin for the
ECLIPSE community that presents a ranked list of recommended requirements to the stakeholders and
allows them to interact with the recommendations. To measure the prediction quality of our approach,
we evaluated three classifiers (Multinomial Naı̈ve Bayes, Decision Tree, Random Forest) on three
large datasets from open-source projects (ECLIPSE, MOZILLA, LIBREOFFICE). An important step
to increase stakeholder engagement for different stakeholder types was to focus on the most relevant
recommendations (quality over quantity). By following this objective, we could develop a strategy
to tune the hyperparameters of our recommendation model in order to obtain higher precision rates
rather than recall scores (quality over quantity). In combination with the Random Forest classifier, we
could gain a model achieving a high prediction quality that significantly outperforms all baselines (see
Section 8.4). The major challenges that emerged in this context were, on the one hand, the variability
of the developer’s preferences, which can change over time, and, on the other hand, the difficulty of
assigning many developers to the different work packages. We solved this by dividing the developers
into subject areas (”components”) and by creating a separate user profile for each component in which
they were active. The user interface of our ECLIPSE plugin enables the developers to select the subject
areas (or a combination of these) for which they want to receive recommendations. To evaluate the
usability of our user interface as well as the perceived quality of the recommendations, we conducted
a small-scale usability study with 11 developers from the ECLIPSE community. The results of our
study are presented in Section 9.5. The study results reveal that all participants were satisfied with the
recommendation quality and the majority of them (more than 63%) rated the usability of the plugin
to be good or very good. Moreover, the time savings in finding suitable requirements were perceived
to be very high by most participants when compared to manual finding. Given these results, we can
conclude that our approach has the potential to facilitate the stakeholder assignment process in open-
source communities. Furthermore, our recommendation approach optimizes the overall productivity
of open-source developers.

Limitations

The recommendation approaches and studies presented in this thesis have some limitations that pro-
vide a good orientation towards future work and are briefly discussed at this point of the thesis.
One limitation relates to the evaluation of our developed recommendation approaches where our
approaches were evaluated within the scope of only one specific domain. A reevaluation of our

183

Chapter 10. Conclusions & Future Work

approaches for different domains may lead to small deviations of our evaluation results. The pre-
sented recommendation solution for detecting requirement dependencies has only been evaluated with
a small dataset from one domain. Although the evaluation results give a first impression of the applica-
bility of our classification-based recommendation approach using probabilistic features, the developed
approaches were not designed for cross-domain application scenarios. Another limitation relates to
the recommendation service, which recommends suitable requirements to open-source software de-
velopers. Due to the large size and complexity of many open-source software projects, the projects
are divided into different subject areas (components). Our recommender follows the approach to cre-
ate different component-specific user profiles for the developers. On the one hand, this leads to the
limitation that the recommendation algorithms cannot suggest requirements from other components
in which the developers were not active in the past (i.e., have not resolved any requirements of the
component). On the other hand, this also gives the developers the option to specify the project compo-
nents for which they would like to receive recommendations. Regarding our group recommender user
interfaces to support requirements prioritization scenarios, we can identify a few more mentionable
limitations which are related to our user study. One limitation was that all study participants were
computer science students and the majority of participants were male students (around 10% female
and 90% male participants). Moreover, in each student group, one student was responsible for the
administration of the software project (stakeholder role: project manager) and all other students par-
ticipated in the project as a software developer (stakeholder role: software developer). Limitations
of the selected study setting relate to small group sizes (4–6 students) and to the domination of one
stakeholder role (i.e., software developer). Apart from a few other participants who were project
managers, no other stakeholder roles were considered in our study. Consequently, the participants
can be viewed as a relatively homogeneous group in an evaluation scenario, which does not ideally
reflect the conditions of a real working environment in a large company or organization. Further
limitations are the investigation of mechanisms for resolving rating conflicts (strongly differing re-
quirement evaluations of different stakeholders), as well as a textual analysis of the user-generated
arguments and requirements (e.g., measure the impact of the text length and textual ambiguities on
the final prioritization result).

10.2. Future Work

Based on the outcome of our research work and the limitations discussed (see Section 10.1), we
can identify some interesting topics regarding future work. The remainder of this section presents a
discussion of further relevant future research topics.

Further Investigations and User Studies

The evaluation results of our research works represent promising contributions which have the poten-
tial to guide and advance requirements engineering research in the future. The continuous extension

184

10.2. Future Work

of the presented recommendation approaches represents one key part of future work. In this context,
the focus must also be shifted towards a detailed investigation of further application domains. In ad-
dition, more extensive usability studies with higher numbers of participants and requirements would
be useful to improve the adaptation of the existing recommendation technologies to the way people
work and how they use these decision-support technologies. Future studies should also consider a
more balanced ratio of male and female participants, and include different types of stakeholders from
the industry (for example, project managers, customers, product designers, and software developers).
Moreover, larger datasets consisting of labeled requirement dependencies are needed to overcome
some limitations mentioned in Section 10.1. These datasets can be collected using the crowd knowl-
edge of industry experts working in the field of requirements engineering. Existing requirement de-
pendency datasets are often incomplete or contain unverified assumptions of dependency relationships
that do not represent a solid ground truth for recommendation solutions based on machine learning
predictors. In order to collect new large datasets, we propose to conduct further user studies that
involve many industry experts (as well as different types of stakeholders) from various branches of
industry. Beyond that, the use of weakly supervised learning (see initial work presented by Desh-
pande et al., 2019) represents an innovative approach to extend existing requirement data with more
artificially generated dependency labels. Weakly supervised learning helps to significantly reduce the
querying of human experts to label a large list of requirements, which is very costly. In the future,
we plan to follow a more hybrid approach that uses different classifiers, stakeholders, and experts
to identify dependencies. Experts should analyze significantly fewer requirement pairs and primarily
focus on those dependencies for which pre-trained classifiers and different stakeholders have provided
strongly diverging estimations.

Regarding our user study to compare the group recommendation user interfaces, the investigation of
the textual content of the requirements and arguments represents another interesting idea for future
work. For example, we could analyze the ranking of similar requirements in order to estimate the util-
ity of these requirements based on a statistical comparison (e.g., measure the correlation of the words
in the description of different requirements). This has the potential to improve our group recom-
mendation solution such that the recommender can detect newly defined requirements and propose a
rating which is based on former ratings of similar requirements from past projects. Moreover, a small
text length and ambiguities in the text of arguments or requirements are often a strong indication for
poorly formulated requirements / arguments (Bano, 2015; Kamsties, 2005). This can deteriorate the
understandability of the requirements which can negatively affect the requirement ratings and con-
sequently the prioritization results as well. The aforementioned aspects of detecting poorly phrased
requirements / arguments can be taken into account by future recommendation solutions in order to
improve the quality of the final prioritization.

185

Chapter 10. Conclusions & Future Work

Advanced Technologies

The fact that most of the tasks in requirements engineering can only be done by humans compli-
cates the usage of intelligent techniques. Consequently, the definition and elicitation of requirements,
negotiation of requirements, and implementation of requirements, as well as quality assurance, are
still responsibilities for humans, no matter which technique was chosen. As part of this thesis, we
presented some innovative recommendation approaches to tackle these issues and provide decision-
support to stakeholders in some of these tasks. The final outcome of the thesis represents a first step
towards advanced decision-support in requirements engineering. Based on this work, we propose the
use of more advanced technologies to further improve the prediction quality and to eliminate further
sources of error. Since requirements are very often described in natural language and much progress
has been made in the field of natural language processing with deep learning over the last several
years (Deng and Liu, 2018; Otter et al., 2020), the use of recommendation technologies based on deep
neural networks represents a proper subject for future investigations. In particular, the integration
of deep neural networks into the existing recommendation solutions can help to further improve the
overall recommendation quality of the presented recommendation approaches.

Moreover, an increased use of liquid democracy can facilitate group decisions in various group de-
cision tasks (Johann and Maalej, 2015; Zhang and Zhou, 2017; Atas et al., 2018). The underlying
principle of liquid democracy is to allow stakeholders to transfer their votes (or parts of their votes)
to experts whenever they do not feel confident to make the decision. This way, the transfer of voting
power is controlled by each stakeholder individually and the transfer of votes to individual experts or
expert groups happens in a democratic fashion. Liquid democracy has already been used in our evalu-
ation of different group recommendation user interfaces. In this context, we plan further investigations
on how to recommend suitable experts to transfer the vote for a specific decision task. Furthermore,
we want to analyze the areas in which expert knowledge is distributed in the stakeholder community,
in order to show project managers how the knowledge is distributed in a company and where critical
parts of the business knowledge are located. This can improve decision-making in group decision
tasks and allows the identification of ”hidden champions” (talents / experts) in a company. Based on
this knowledge it is possible to support the ”hidden champions” in a personalized fashion.

Enhanced Preference Elicitation

One way to improve the quality of recommendations is to continuously adapt a recommender sys-
tem to new user feedback regarding the perceived recommendation quality (Zhao et al., 2018; Zheng
et al., 2018). For example, the perceived recommendation quality can be determined by allowing
users to give direct feedback on individual recommendations. Our recommendation service which
recommends requirements to ECLIPSE developers represents an excellent area of application in which
a stronger integration of user feedback can help to better support the open-source developer commu-
nity. The most recent version of our ECLIPSE plugin already allows developers to provide feedback

186

10.2. Future Work

on recommended requirements in terms of liking, disliking, or snoozing (”remind me later about this
requirement”) the recommended requirements (see Figure 8.1 in Chapter 8). This feedback repre-
sents important knowledge to further improve the recommendation service. At the moment, we use
the feedback to re-rank the recommendation list or to hide certain requirements depending on the
type of feedback (like, dislike, snooze). However, this work can be further extended in the future to
continuously adapt the user profiles during operation time and to further improve the personality of
recommendations as well as the overall recommendation quality.

Another idea for future research is the development of configuration-based techniques to facilitate the
onboarding of new developers in open-source communities. This helps to strengthen the affiliation
and commitment of new developers to keep contributing to the project. For example, our ECLIPSE

plugin can be used to determine the preferences of newcomers more specifically. This can be achieved
by means of the integration of configuration-based recommendation approaches and more specific
preference and knowledge elicitation approaches that let newcomers answer a few initial multiple-
choice questions (e.g., What are your personal strengths and weaknesses?, What kind of tasks would
you like to solve at the beginning?, or What tasks should be reassigned to other experts?) which are
intended to prevent unsuitable requirements from being recommended to the developer. Improved
measures to avoid the recommendation of unsuitable requirements can lead to increased motivation
of newcomers. Furthermore, this also helps to overcome cold-start issues by giving developers the
opportunity to help build a more precise user profile.

Weighting of Opinions

The weighting of user opinions based on expertise represents a promising method to further enhance
decision-making. In particular, this applies to requirements engineering tasks such as the requirements
prioritization or stakeholder assignment. For example, when making group decisions to prioritize re-
quirements, it often makes sense not to assign the same voting weight to every stakeholder, but to
assign higher weights to experts or key decision-makers. Within the scope of future work, we want
to extend our group recommendation user interfaces to learn stakeholder weights (based on interest
dimensions such as profit, effort, risk) from historic data of past projects. For instance, experts can be
identified from vote delegation trends inferred from past vote delegations (liquid democracy). Regard-
ing stakeholder assignment in traditional software development, group decision processes can benefit
from the automated assignment of weights to stakeholders for different interest dimensions depending
on the department or the stakeholder role. By taking into account the participants’ feedback of our
usability study (see Section 9.5), another research focus for future work is the manual customization
of user profiles by using our ECLIPSE plugin. The basic idea is that experienced ECLIPSE develop-
ers can modify existing keywords and keyword weights of their user profile to further customize the
recommendations according to the developers’ preferences.

187

Chapter 10. Conclusions & Future Work

Explainable Recommendations and Decisions

Good explanations of recommendations (in textual or visual form) represent an efficient method to
increase satisfaction and trust of users in recommender systems (Tintarev and Masthoff, 2007). First
preparations regarding explanations have already been made within the scope of this thesis. For exam-
ple, our ECLIPSE plugin presents the most relevant keywords of a developer’s user profile in a visual
form to give the developer a rough idea on the basis of which the recommendations were generated.
The existing work can be further extended in the future in several ways. Recommended requirements
can be explained with relevant keywords extracted from the requirement which also appear in the user
profile of the developer. Moreover, we want to extend our group-based requirements prioritization
approaches and include explanations which present and highlight rating conflicts between different
stakeholders. These explanations are supposed to trigger more information exchange among stake-
holders in order to get more explainable and better results of group decisions.

188

Appendix A
Further Study Results of Chapter 5

This section includes additional statistical details of study results discussed in Section 5.4. Table A.1
provides key figures (in terms of the arithmetic mean / average and the standard deviation) of the
measured data, including the number of evaluations (ratings) per requirement, the number of rating
adaptations (interactions) per requirement, as well as the number of points achieved by the students.
The data has been separated by the used group recommendation user interface (UI); 5-star rating
(Section 5.3.1) vs. basic MAUT (Section 5.3.2) vs. argumentation-based MAUT (Section 5.3.3).

UI type avg. / stdev. interactions
per requirement

avg. / stdev. evalu-
ations per requ.

avg. / stdev. points
per student

5-star rating 4.5 / 0.61 3.9 / 0.84 16.44 / 13.33
basic MAUT 5.4 / 0.65 4.2 / 0.92 22.20 / 10.78
arg.-based MAUT 10.4 / 1.03 5.1 / 0.99 24.31 / 8.64

Table A.1.: Study results of our group recommendation UI types (5-star rating, basic MAUT,
argumentation-based MAUT) showing statistical details about the average (avg.) and
standard deviation (stdev.) of the evaluation interactions (rating adaptations), the eval-
uations / ratings, and the points achieved by the students.

In order to further strengthen and confirm the expressive power of our findings, we have also eval-
uated the significance of the observed differences between the different user interfaces using the
Mann–Whitney U test (Mann and Whitney, 1947) in addition to the t-test. In general, the t-test expects
the analyzed data to be normally distributed (which was the case for some of our evaluated compar-
isons) but can also be considered as robust for large numbers of samples (N > 30) which are not
normally distributed (which was the case for all of our comparisons; N � 30). The Mann–Whitney U
test (also known as Wilcoxon–Mann–Whitney test) is a non-parameterized test which can be used as
an alternative to the t-test if the data is not normally distributed (Hart, 2001). The Tables A.2, A.3, and
A.4 present the pairwise comparisons of our group recommendation UI types with respect to statisti-
cal differences of observed values in terms of the number of ratings, the number of rating interactions,

189

Appendix A. Further Study Results of Chapter 5

and the number of points achieved by the students. All these comparisons have been evaluated using
the t-test (see Section 5.4 as well as the Mann–Whitney U test (see Tables A.2, A.3, A.4). As can be
seen in Section 5.4 and in the aforementioned tables, both test methods lead to similar results1.

Samples X Samples Y U p Z r Stat. Significance
5-star rating basic MAUT 101290.5 < 0.01 -4.59 -0.15 yes
5-star rating arg.-based MAUT 32453.0 < 0.01 -15.55 -0.53 yes
basic MAUT arg.-based MAUT 39010.0 < 0.01 -11.63 -0.41 yes

Table A.2.: Pairwise comparison of our group recommendation UI types (5-star rating, basic MAUT,
argumentation-based MAUT) with respect to statistical differences in the number of rat-
ings / evaluations using a non-parameterized statistical (stat.) significance test (Wilcoxon-
Mann-Whitney-Test). The pairwise significance tests were calculated to determine if the
diverging observations between the different UI versions are statistically significant (i.e.,
whether significantly more ratings / evaluations were observed in Y than in X).

Samples X Samples Y U p Z r Stat. Significance
5-star rating basic MAUT 43644.5 < 0.01 -17.43 -0.55 yes
5-star rating arg.-based MAUT 0.0 < 0.01 -24.70 -0.84 yes
basic MAUT arg.-based MAUT 10.5 < 0.01 -23.98 -0.85 yes

Table A.3.: Pairwise comparison of our group recommendation UI types (5-star rating, basic MAUT,
argumentation-based MAUT) with respect to statistical differences in the number of rat-
ing adaptations / interactions using a non-parameterized statistical (stat.) significance test
(Wilcoxon-Mann-Whitney-Test). The pairwise significance tests were calculated to deter-
mine if the diverging observations between the different UI versions are statistically sig-
nificant (i.e., whether significantly more rating adaptations / interactions were observed in
Y than in X).

Samples X Samples Y U p Z r Stat. Significance
5-star rating basic MAUT 3900.5 < 0.01 -3.06 -0.21 yes
5-star rating arg.-based MAUT 4066.5 < 0.01 -3.66 -0.25 yes
basic MAUT arg.-based MAUT 5112.0 0.42 -0.18 -0.01 no

Table A.4.: Pairwise comparison of our group recommendation UI types (5-star rating, basic MAUT,
argumentation-based MAUT) with respect to statistical differences in the number of points
achieved by the students using a non-parameterized statistical (stat.) significance test
(Wilcoxon-Mann-Whitney-Test). The pairwise significance tests were calculated to de-
termine if the diverging observations between the different UI versions are statistically
significant (i.e., whether a significantly higher number of points was observed in Y when
compared to X).

1As a side note, it is important to point out that we have removed the outliers from the data samples before the calculation.
In order to ensure that the removal of these outliers does not violate the significance of our results, we have also
calculated the tests taking into account all outliers; this resulted in small deviations of the results which can be neglected
as these deviations did not have any observable influence on the statistical significance of our results.

190

Appendix B
Detailed Evaluation Results of Chapter 8

This section presents detailed evaluation results of Section 8.4. The results are divided into several
tables according to the evaluation metrics precision, recall, and f1-score. Since we optimized the
hyperparameters of our recommendation models to focus more on precision (rather than on recall),
the highest precision values in Table B.1 are highlighted in bold.

Algorithm ECLIPSE MOZILLA LIBREOFFICE
Constant Predictor (Simple Baseline) 0.10 0.07 0.09
Multinomial Naı̈ve Bayes (Baseline) 0.53 0.72 0.77
Decision Tree 0.62 0.45 0.67
Random Forest 0.88 0.73 0.81

Table B.1.: Precision scores of the different classifiers and the constant predictor baseline. The highest
precision rates for all three datasets (ECLIPSE, MOZILLA, and LIBREOFFICE).

Algorithm ECLIPSE MOZILLA LIBREOFFICE
Constant Predictor (Simple Baseline) 1.0 1.0 1.0
Multinomial Naı̈ve Bayes (Baseline) 0.29 0.15 0.24
Decision Tree 0.49 0.49 0.71
Random Forest 0.55 0.49 0.75

Table B.2.: Recall rates of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, and LIBREOFFICE).

191

Appendix B. Detailed Evaluation Results of Chapter 8

Algorithm ECLIPSE MOZILLA LIBREOFFICE
Constant Predictor (Simple Baseline) 0.18 0.13 0.17
Multinomial Naı̈ve Bayes (Baseline) 0.38 0.25 0.37
Decision Tree 0.55 0.47 0.69
Random Forest 0.68 0.59 0.78

Table B.3.: F1-scores of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, and LIBREOFFICE) were achieved by Random Forest and
are highlighted in bold.

192

List of Figures

2.1. Choice scenarios categorized with regard to (1) constraint inclusion and (2) the rep-
resentation of alternatives (as parameters or items). 20

3.1. Liquid democracy. Example of a vote-delegation tree for a single attribute or a single
requirement, respectively. All vote-transfers are visualized as (directed) edges and all
stakeholders are represented as nodes. 56

3.2. Example of a group-based requirements evaluation scenario in INTELLIREQ (see Nin-
aus et al., 2014). The traffic light feedback mechanism indicates an inconsistency with
respect to the three stakeholder ratings provided for the property priority (red light). . 73

3.3. OPENREQ!LIVE project overview. 74

3.4. Argumentation-based rating interface. Each argument must be assigned to at least one
interest dimension. Negative arguments are highlighted in red, positive ones in green,
and neutral arguments in orange. 76

3.5. Stakeholder Assignment. In case a stakeholder accepts the assignment he / she will
be marked in green. 77

3.6. Details about the inconsistencies of the current requirements model. 77

3.7. QT plugin visualization of a requirement / issue called ”QTBUG-46129” 78

3.8. ECLIPSE plugin presenting a personalized prioritized list of ECLIPSE requirements
for a developer of the ECLIPSE IDE. 79

3.9. ECLIPSE plugin settings page including calculated keywords. 79

5.1. One-dimensional 5-star rating interface. Stakeholders express their estimation of the
importance of a requirement using a 5-star rating scale. The average of these votes
represents the utility value (here: 3.67). 105

5.2. Overview of multidimensional MAUT ratings for a requirement. In this example,
three stakeholders evaluated a requirement based on the interest dimensions {profit,
risk, effort}. Given these votes, the utility value can be calculated using Formula 5.1. 106

193

List of Figures

5.3. Recommended prioritization of requirements. The utility values (see right side) reflect
the evaluated priority of a requirement and are calculated based on the evaluations
provided by the stakeholders for the specific requirement. A high utility value of a re-
quirement indicates a high priority which advises decision makers (e.g., requirements
managers) to consider the requirement in earlier releases rather than requirements of
a lower utility. 107

5.4. Basic example of a vote-inheritance tree for one interest dimension (or one require-
ment). In terms of liquid democracy, stakeholders (nodes) can delegate their vote to a
different stakeholder (directed edge). 108

5.5. Argumentation-based rating interface. In addition to the basic MAUT version, stake-
holders are enabled to exchange arguments for / against specific requirements. Pos-
itive arguments are highlighted in green, neutral arguments in orange, and negative
arguments in red. After entering the text for an argument, the system asks for the
interest dimension that touches the user’s argument. 110

5.6. Study results of our three UI types showing statistical details about the number of (a)
rating evaluations, (b) rating adaptations / interactions, and (c) points achieved by
the students (maximum number of points = 30). In all three plots, the marker ”x”
represents the mean of the distribution and all outliers are shown in the form of the
symbol ”o”. The median values of plots (a) and (b) cannot be identified since they
either overlap with the first or the third quartile. The median values of these plots are
as follows: (a) 5-star rating: 4, basic MAUT: 4, argumentation-based MAUT: 5; (b)
5-star rating: 5, basic MAUT: 5, argumentation-based MAUT: 10. 114

6.1. Evaluation of stakeholders in OPENREQ!LIVE. Each stakeholder-assignment is eval-
uated by two evaluation dimensions (appropriateness and availability). The utility
value of an evaluated stakeholder is calculated by using Formula 6.2. 128

8.1. ECLIPSE plugin for the contributor-specific prioritization of bugs. 145

8.2. Histograms of the developer activity in different open-source communities (ECLIPSE,
MOZILLA, and LIBREOFFICE). The x-axis refers to the number of resolved issues
(ascending order) and the y-axis reports the corresponding number of contributors in
logarithmic scale. 148

8.3. Steps performed for preprocessing and feature extraction. 149

8.4. Precision scores of the different classifiers and the constant predictor baseline. The
highest precision rates for all three datasets (ECLIPSE, MOZILLA, and LIBREOFFICE)
were achieved by Random Forest. 154

194

List of Figures

8.5. Recall rates of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, and LIBREOFFICE). The constant predictor baseline
represents a very simple ”dummy” classifier that always recommends all available
issues and therefore achieves the highest possible recall rate. 155

8.6. F1-scores of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, and LIBREOFFICE). 156

9.1. Overview of OPENREQ’s requirements engineering approach. 162
9.2. Overview of an example project in OPENREQ!LIVE. Requirements (they consist of

a unique ID, title, description, and status) are listed on the page and ordered by a
utility value. Each release has constraints such as the deadline of the release and a
maximum capacity value (in hours) which limits the possible number of requirements
that can be assigned to the release. The OPENREQ services (see Section 9.3.3) have
been integrated into the user interface. For example, the red labeled numbers indicate
issues (such as requirement duplicates, ambiguities in a requirement’s description text,
etc.) reported by some of the services. 170

9.3. Argumentation-based rating interface which allows stakeholders to exchange argu-
ments for / against a requirement. Each argument must be assigned to one interest
dimension. Negative arguments are highlighted in red, positive arguments in green,
and neutral arguments in orange. 171

9.4. ECLIPSE plugin that recommends relevant requirements / issues to the active devel-
oper using content-based filtering based on supervised learning. 172

195

196

List of Tables

1.1. Contributions of this thesis with regard to the corresponding research questions. . . . 15

2.1. A basic group-based ranking scenario. Group members ui provide ranks for items
ti 2 I (alternatively, rankings can be derived by a recommender). Thereafter, an ag-
gregation function such as borda count (BRC) can be used to derive a corresponding
ranking for the group. The

p
symbol indicates the recommended item. 23

2.2. A group-based packaging scenario. Users provide ranks for items ti j (jth item of type
i). Thereafter, an aggregation function such as borda count (BRC) can be used for
deriving a proposed package (in our case, {t11, t21, t31}). The

p
symbol indicates the

recommended items part of the package. 24

2.3. Group-based parametrization. Users define preferences with regard to the parameters
pari. Thereafter, an aggregation function such as majority voting (MAJ) can be used
for recommending a parametrization (in our case, {par1 = a, par2 = 1, par3 = 2}).
The

p
symbol indicates recommended parameter values. 25

2.4. A group-based configuration scenario. Users ui specify their preferences in terms of
parameter values. Constraints ci specify the restrictions, a configuration must take
into account. Thereafter, an aggregation function such as least misery (LMS) can
be used for deriving a recommended configuration (in our case, {par1 = a, par2 =

1, par3 = u, par4 = 1}). The
p

symbol indicates the configuration parameter values
recommended to the group. 25

2.5. A group-based release planning scenario. Users can specify their preferences in terms
of assignments of requirements (reqi) to releases. Additionally, constraints ci specify
properties a release plan must take into account. Thereafter, an aggregation function
such as least misery can be used for deriving a proposed release plan (in our case, for
example, release plan 2). The

p
symbol indicates recommended release plans. . . . 26

197

List of Tables

2.6. Group-based triage. Users specify their preferences by categorizing requirements
(reqi) into a (accept), m (maybe accept), and r (reject). Constraints c1 and c2 spec-
ify dependencies between requirements, c3 specifies that two requirements have to be
accepted (a). An aggregation function such as least misery (LMS) can be used for
deriving a triage solution (in our case, triage 1). The

p
symbol indicates the triage

recommended to the group. 27

2.7. Group-based resource balancing. Users specify their preferences with regard to re-
source assignments in terms of ratings. Constraints ci specify properties a resource as-
signment must take into account. Least misery (LMS) denotes the lowest user-specific
evaluation of a resource assignment. The

p
symbol indicates the recommended as-

signment (in our case, assignment 4). 28

2.8. Group-based sequencing. Users specify their preferences in terms of assignments
of sequential numbers to items ti. Additionally, constraints ci specify properties a
sequence must take into account. Here, uit j is a parameter representing a user’s (ui)
assignment of item t j to a specific sequence position. Least misery (LMS) denotes the
number of times, a user preference is neglected by a sequence. Sequences id = 1 and
id = 2 can be regarded as recommendation candidates. 29

2.9. A sequencing scenario where different sequences are explicitly defined, i.e., the choice
task is ’reduced’ to a ranking scenario. In this example, sequence 1 has the highest
average (AVG) value, i.e., it will be recommended first. 30

2.10. Evaluation scheme of polls and questionnaires – persons providing feedback often do
not participate in the related decision making process. 30

2.11. A voting process. Each user is allowed to give only one vote – a decision is made on
the basis of the ADD aggregation function. 31

3.1. Basic example to demonstrate the potential of content-based recommendation ap-
proaches that foster the reuse of requirements in RE. In this example, the require-
ments 1, 2, and 5 (highlighted in bold) of an existing project A are recommended to
be included in a new project which is project B. 46

3.2. Basic example to demonstrate the potential of collaborative filtering approaches in RE.
Ann and Chris have rated the same requirements (requirement 2 and 3) in a similar
fashion as the active user Bob. Hence, Ann and Chris are considered as similar / neigh-
bor users and requirement 4 (which is highlighted in bold and has been highly rated
by them but has not been seen by Bob yet) is recommended to Bob. 48

3.3. Basic example of a recommended release plan (requirements are abbreviated as ”Req.”)
considering requirement- and release-related constraints such as requirement effort,
requirement priority, interdependencies between the requirements, and the maximum
capacity of the releases . 50

198

List of Tables

3.4. Three stakeholders (S={Ann, Chris, Susan}) evaluated the requirements {r1,r2,r3}
with regard to the attributes profit, effort, and risk. The calculation of the utility values
is based on Formula 3.8. The priority ranking defines the suggested ranking of the
requirements based on their determined utility. 53

3.5. Expertise level w(s,d) of the individual stakeholders in the range between 0.0 (min-
imum) and 1.0 (maximum) with respect to the interest dimensions profit, effort, and
risk. 54

3.6. Overview of the RE process and its tasks. The table includes references of relevant
recommendation approaches used during the different activities of the process. Ac-
tivities that are not an integral part of RE (such as the design, implementation, and
testing of the software as well as the maintenance of the software project), are not
shown in this table. 59

3.7. General overview of the different recommendation approaches and basic criteria to
guide the selection of an algorithm. 80

4.1. Dependencies found by experts and students. 92
4.2. Scores of the different algorithms (precision [P], recall [R], and f1-score [F1]). The

highest scores are highlighted. 97

5.1. Three stakeholders evaluated the requirements {r1,r2,r3} with regard to the dimen-
sions profit (p), effort (e), risk (r). The calculation of the utility values is based on
Formula 5.1. The priority ranking defines the suggested ranking of the requirements
based on their determined utility. 109

5.2. Assumed expertise of the stakeholders {Ann, Chris, Susan} in the range between 0.0
and 1.0 with regard to the dimensions profit (p), effort (e), and risk (r) (0.0 = very low
... 1.0 = very high). 109

5.3. Overview of our study results showing general details about the number of require-
ments, the number of evaluations, and the total number of rating / evaluation in-
teractions with regard to the corresponding UI version (5-star rating, basic MAUT,
argumentation-based MAUT). 115

5.4. Statistical sentiment analysis of the requirement evaluations. Based on the rating value
(ranging from 1 to 5) we classified the requirement ratings / evaluations into three
different sentiment levels (negative: 1 and 2, neutral: 3, positive: 4 and 5). The
dominating sentiment levels for each UI type are highlighted in bold. 116

6.1. Examples of domain identifiers for rail automation 122
6.2. Initial assignment of stakeholders to requirements done by requirements manager

(RM). The dash symbol (”-”) indicates that the other stakeholders have not made a
decision yet. 123

6.3. State of assignment during assessment phase . 123

199

List of Tables

6.4. Final state after assessment phase. Consistent assignment of stakeholders to require-
ments. 124

6.5. State of assignment with group decision service (GDS) and stakeholder recommenda-
tion service (RS1). The recommendation service provides a confidence value which
lies in the range between 1 and 10. 125

7.1. Contribution of requirements {r1,r2,r3} to the interest dimensions {profit, risk, effort}. 135

7.2. Predefined weights for the interest dimensions D = {pro f it,risk,e f f ort}. 135

7.3. Ranking of requirements with static weights. 136

7.4. Contribution of requirements R= {r1,r2,r3} to dimensions D= {pro f it,risk,e f f ort}
(defined by stakeholders S = {s1,s2,s3}). 136

7.5. Preferences of stakeholders S = {s1,s2,s3} with regard to the interest dimensions D =

{pro f it,risk,e f f ort}. 137

7.6. Ranking of requirements with group weights. 137

7.7. Contribution of requirements (bugs) R = {r1,r2,r3} to the interest dimensions D =

{cc,geritt,blocker,comments}. 138

7.8. Expertise of stakeholder s1 with regard to the requirements {r1,r2,r3} determined, for
example, on the basis of the similarity between the stakeholder profile and information
associated with a requirement. 139

7.9. Ranking of BUGZILLA bugs with static weights. 139

8.1. Key characteristics of our issue datasets. 147

8.2. Hyperparameter optimization using grid search. 152

8.3. Overview of the number of constructed data records and the vocabulary size of the
different datasets. 152

A.1. Study results of our group recommendation UI types (5-star rating, basic MAUT,
argumentation-based MAUT) showing statistical details about the average (avg.) and
standard deviation (stdev.) of the evaluation interactions (rating adaptations), the eval-
uations / ratings, and the points achieved by the students. 189

A.2. Pairwise comparison of our group recommendation UI types (5-star rating, basic
MAUT, argumentation-based MAUT) with respect to statistical differences in the num-
ber of ratings / evaluations using a non-parameterized statistical (stat.) significance
test (Wilcoxon-Mann-Whitney-Test). The pairwise significance tests were calculated
to determine if the diverging observations between the different UI versions are statis-
tically significant (i.e., whether significantly more ratings / evaluations were observed
in Y than in X). 190

200

List of Tables

A.3. Pairwise comparison of our group recommendation UI types (5-star rating, basic
MAUT, argumentation-based MAUT) with respect to statistical differences in the num-
ber of rating adaptations / interactions using a non-parameterized statistical (stat.)
significance test (Wilcoxon-Mann-Whitney-Test). The pairwise significance tests were
calculated to determine if the diverging observations between the different UI versions
are statistically significant (i.e., whether significantly more rating adaptations / inter-
actions were observed in Y than in X). 190

A.4. Pairwise comparison of our group recommendation UI types (5-star rating, basic
MAUT, argumentation-based MAUT) with respect to statistical differences in the num-
ber of points achieved by the students using a non-parameterized statistical (stat.) sig-
nificance test (Wilcoxon-Mann-Whitney-Test). The pairwise significance tests were
calculated to determine if the diverging observations between the different UI ver-
sions are statistically significant (i.e., whether a significantly higher number of points
was observed in Y when compared to X). 190

B.1. Precision scores of the different classifiers and the constant predictor baseline. The
highest precision rates for all three datasets (ECLIPSE, MOZILLA, LIBREOFFICE). . 191

B.2. Recall rates of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, LIBREOFFICE). 191

B.3. F1-scores of the different classifiers and the constant predictor baseline for all three
datasets (ECLIPSE, MOZILLA, LIBREOFFICE) were achieved by Random Forest and
are highlighted in bold. 192

201

202

Bibliography

ABAD, Z. S. H., KARRAS, O., GHAZI, P., GLINZ, M., RUHE, G., AND SCHNEIDER, K. 2017. What
works better? A study of classifying requirements. In 2017 IEEE 25th International Requirements
Engineering Conference (RE). 496–501. (Cited on pages 59 and 60.)

ABUALHAIJA, S., ARORA, C., SABETZADEH, M., BRIAND, L. C., AND VAZ, E. 2019. A machine
learning-based approach for demarcating requirements in textual specifications. In 2019 IEEE 27th
International Requirements Engineering Conference (RE). 51–62. (Cited on pages 6, 59, and 60.)

ACHIMUGU, P., SELAMAT, A., IBRAHIM, R., AND MAHRIN, M. N. 2014. A systematic literature re-
view of software requirements prioritization research. Information and Software Technology 56, 6,
568–585. (Cited on pages 132, 133, and 181.)

ADOMAVICIUS, G., MANOUSELIS, N., AND KWON, Y. 2011. Multi-Criteria Recommender Systems.
Springer US, Boston, MA, 769–803. (Cited on page 132.)

ADOMAVICIUS, G. AND TUZHILIN, A. 2005. Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng. 17, 6
(June), 734–749. (Cited on page 89.)

AGUILAR, J. A., GARRIGÓS, I., MAZÓN, J.-N., AND ZALDÍVAR, A. 2012. Dealing with depen-
dencies among functional and non-functional requirements for impact analysis in web engineering.
ICCSA’12. Springer, Berlin, Heidelberg, 116–131. (Cited on pages 6 and 178.)

AL-RAWAS, B. AND EASTERBROOK, S. 1996. Communication problems in requirements engineer-
ing: A field study. In Proc. of Conf. on Prof. on Awareness in Software Engineering. 47–60. (Cited
on pages 13 and 109.)

ALANAZI, E., MOUHOUB, M., AND MOHAMMED, B. 2012. A Preference-Aware Interactive System
for Online Shopping. Computer and Information Science 5, 6, 33–42. (Cited on page 26.)

ALDANONDO, M. AND VAREILLES, E. 2008. Configuration for Mass Customization: How to Extend
Product Configuration Towards Requirements and Process Configuration. Journal of Intelligent
Manufacturing 19, 5, 521–535. (Cited on page 21.)

ALENEZI, M. AND BANITAAN, S. 2013. Bug reports prioritization: Which features and classifier
to use? In 2013 12th International Conference on Machine Learning and Applications. Vol. 2.
112–116. (Cited on pages 102, 132, 133, and 144.)

203

Bibliography

ALENEZI, M., BANITAAN, S., AND KENNETH, M. 2013. Efficient bug triaging using text min-
ing. Proceedings of the 5th International Conference on Computer Engineering and Technology,
2013. 8, 2185–2190. (Cited on pages 9, 144, and 175.)

ALGHAZZAWI, D. M., SIDDIQUI, S. T., BOKHARI, M. U., AND HAMATTA, H. S. A. 2014. Select-
ing appropriate requirements management tool for developing secure enterprises software. Inter-
national Journal of Information Technology and Computer Science (IJITCS) 6, 4, 49–55. (Cited
on page 71.)

AMELLER, D., FARRE, C., FRANCH, X., VALERIO, D., AND CASSARINO, A. 2017. Towards
continuous software release planning. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 402–406. (Cited on pages 132 and 144.)

ANVIK, J., HIEW, L., AND MURPHY, G. C. 2006. Who should fix this bug? In Proceedings of the
28th International Conference on Software Engineering. ICSE ’06. ACM, New York, NY, USA,
361–370. (Cited on pages 144 and 148.)

ANVIK, J. AND MURPHY, G. C. 2011. Reducing the effort of bug report triage: Recommenders for
development-oriented decisions. ACM Trans. Softw. Eng. Methodol. 20, 3 (Aug.), 1–35. (Cited on
page 148.)

ARAÚJO, A. A., PAIXAO, M., YELTSIN, I., DANTAS, A., AND SOUZA, J. 2017. An architecture
based on interactive optimization and machine learning applied to the next release problem. Auto-
mated Software Engineering 24, 3, 623–671. (Cited on pages 59 and 71.)

ATAS, M., FELFERNIG, A., STETTINGER, M., AND TRAN, T. 2017. Beyond item recommenda-
tion: Using recommendations to stimulate knowledge sharing in group decisions. In 9th Interna-
tional Conference on Social Informatics (SocInfo 2017). Oxford, UK, 1–10. (Cited on pages 103
and 141.)

ATAS, M., SAMER, R., AND FELFERNIG, A. 2018. Automated identification of type-specific depen-
dencies between requirements. In 2018 IEEE/WIC/ACM International Conference on Web Intelli-
gence (WI). 688–695. (Cited on pages 59, 69, 90, 91, 102, and 165.)

ATAS, M., TRAN, T. N. T., SAMER, R., FELFERNIG, A., STETTINGER, M., AND FUCCI, D. 2018.
Liquid democracy in group-based configuration. In Proceedings of the 20th Configuration Work-
shop, Graz, Austria, September 27-28, 2018. 93–98. (Cited on pages 52, 54, 64, 103, 104, 105,
and 186.)

AVELINO, G., PASSOS, L., HORA, A., AND VALENTE, M. T. 2016. A novel approach for estimating
truck factors. In 2016 IEEE 24th International Conference on Program Comprehension (ICPC).
1–10. (Cited on page 9.)

BAGNALL, A. J., RAYWARD-SMITH, V. J., AND WHITTLEY, I. M. 2001. The next release problem.
Information and Software Technology 43, 14, 883–890. (Cited on pages 70 and 133.)

204

Bibliography

BAKER, C., DENG, L., CHAKRABORTY, S., AND DEHLINGER, J. 2019. Automatic multi-class non-
functional software requirements classification using neural networks. In 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC). Vol. 2. IEEE Computer Society,
610–615. (Cited on pages 59, 60, and 84.)

BAKER, P., HARMAN, M., STEINHOFEL, K., AND SKALIOTIS, A. 2006. Search based approaches
to component selection and prioritization for the next release problem. In 2006 22nd IEEE In-
ternational Conference on Software Maintenance. IEEE Computer Society, 176–185. (Cited on
pages 59 and 70.)

BANO, M. 2015. Addressing the challenges of requirements ambiguity: A review of empirical litera-
ture. 2015 IEEE Fifth International Workshop on Empirical Requirements Engineering (EmpiRE),
21–24. (Cited on pages 67 and 185.)

BASKIN, J. AND KRISHNAMURTHI, S. 2009. Preference aggregation in group recommender systems
for committee decision-making. In Proceedings of the Third ACM Conference on Recommender
Systems. RecSys ’09. ACM, New York, NY, USA, 337–340. (Cited on page 101.)

BELL, R., KOREN, Y., AND VOLINSKY, C. 2007. The bellkor solution to the netflix prize. Tech.
rep., AT&T Research. (Cited on page 3.)

BERGSTRA, J., BARDENET, R., BENGIO, Y., AND KÉGL, B. 2011. Algorithms for hyper-parameter
optimization. In Proceedings of the 24th International Conference on Neural Information Process-
ing Systems. NIPS’11. Curran Associates Inc., USA, 2546–2554. (Cited on page 151.)

BERGSTRA, J. AND BENGIO, Y. 2012. Random search for hyper-parameter optimization. J. Mach.
Learn. Res. 13, 1 (Feb.), 281–305. (Cited on page 157.)

BERRY, D. M. 2008. Ambiguity in natural language requirements documents. In Innovations for
Requirement Analysis. From Stakeholders’ Needs to Formal Designs, B. Paech and C. Martell, Eds.
Springer, Berlin, Heidelberg, 1–7. (Cited on page 102.)

BERRY, D. M. AND KAMSTIES, E. 2004. Ambiguity in Requirements Specification. Springer, Boston,
MA, 7–44. (Cited on page 6.)

BHATTACHARYA, P., NEAMTIU, I., AND SHELTON, C. R. 2012. Automated, highly-accurate, bug
assignment using machine learning and tossing graphs. Journal of Systems and Software 85, 10
(Oct.), 2275–2292. (Cited on pages 148 and 182.)

BINKHONAIN, M. AND ZHAO, L. 2019. A review of machine learning algorithms for identification
and classification of non-functional requirements. Expert Systems with Applications: X 1, 100001.
(Cited on pages 59 and 60.)

BOEHM, B., GRUNBACHER, P., AND BRIGGS, R. O. 2001. Developing groupware for requirements
negotiation: lessons learned. IEEE Software 18, 3, 46–55. (Cited on page 6.)

205

Bibliography

BOEHM, B. W. 1981. Software Engineering Economics, 1st ed. Prentice Hall PTR, USA. (Cited on
pages 2, 164, and 181.)

BOKHARI, M. U. AND SIDDIQUI, S. T. 2010. A comparative study of software requirements tools
for secure software development. International Journal of Information Technology (BIJIT) 2, 2,
1–12. (Cited on page 36.)

BORATTO, L. 2016. Group recommender systems: State of the art, emerging aspects and techniques,
and research challenges. In Advances in Information Retrieval, N. Ferro, F. Crestani, M. Moens,
J. Mothe, F. Silvestri, G. Di Nunzio, C. Hauff, and G. Silvello, Eds. Springer, 889–892. (Cited on
page 101.)

BURKE, R. 2000. Knowledge-based recommender systems. Encyclopedia of Library and Information
Systems 69, 32, 180–200. (Cited on page 49.)

BURKE, R. 2002. Hybrid recommender systems: Survey and experiments. UMUAI Journal 12, 4,
331–370. (Cited on page 3.)

BURKE, R. 2007. Hybrid Web Recommender Systems. Springer, Berlin, Heidelberg, 377–408. (Cited
on page 43.)

BURKE, R., FELFERNIG, A., AND GOEKER, M. 2011. Recommender systems: An overview. AI
Magazine 32, 3, 13–18. (Cited on page 49.)

CABALLERO, A., MUÒOZ, A., SOTO, J., AND BOTÍA, J. A. 2014. Resource assignment in intelli-
gent environments based on similarity, trust and reputation. J. Ambient Intell. Smart Environ. 6, 2
(Mar.), 199–214. (Cited on page 102.)

CAMPOS, P. G., DIEZ, F., AND CANTADOR, I. 2014. Time-aware recommender systems: A com-
prehensive survey and analysis of existing evaluation protocols. User Modeling and User-Adapted
Interaction 24, 1-2 (Feb.), 67–119. (Cited on page 43.)

CANT, T., MCCARTHY, J., AND STANLEY, R. 2006. Tools for requirements management: A com-
parison of telelogic doors and the hive. Tech. rep., Australian Government Department of Defense,
Defence Science and Technology Organisation. (Cited on page 1.)

CARLSHAMRE, P., SANDAHL, K., LINDVALL, M., REGNELL, B., AND NATTOCH DAG, J. 2001.
An industrial survey of requirements interdependencies in software product release planning. In
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering. RE ’01.
IEEE Computer Society, Washington, DC, USA, 84–91. (Cited on pages 68, 90, and 102.)

CASAMAYOR, A., GODOY, D., AND CAMPO, M. 2010. Identification of non-functional require-
ments in textual specifications: A semi-supervised learning approach. Information and Software
Technology 52, 4, 436–445. (Cited on pages 59 and 60.)

CASTRO-HERRERA, C. AND CLELAND-HUANG, J. 2010. Utilizing recommender systems to sup-
port software requirements elicitation. In Proceedings of the 2nd International Workshop on Rec-

206

Bibliography

ommendation Systems for Software Engineering. RSSE ’10. ACM, New York, NY, USA, 6–10.
(Cited on pages 59 and 63.)

CASTRO-HERRERA, C., DUAN, C., CLELAND-HUANG, J., AND MOBASHER, B. 2008. Using
data mining and recommender systems to facilitate large-scale, open, and inclusive requirements
elicitation processes. In 16th IEEE International Requirements Engineering Conference. 165–168.
(Cited on pages 40, 59, 65, and 120.)

CASTRO-HERRERA, C., DUAN, C., CLELAND-HUANG, J., AND MOBASHER, B. 2009. A recom-
mender system for requirements elicitation in large-scale software projects. In Proceedings of the
2009 ACM Symposium on Applied Computing. SAC ’09. ACM, New York, NY, USA, 1419–1426.
(Cited on pages 4, 40, and 175.)

CATANIO, J. 2006. Requirements analysis: A review. In Advances in Systems, Computing Sciences
and Software Engineering, T. Sobh and K. Elleithy, Eds. Springer, Dordrecht, 411–418. (Cited on
page 115.)

CHARNESS, G., GNEEZY, U., AND KUHN, M. A. 2012. Experimental methods: Between-subject
and within-subject design. Journal of Economic Behavior & Organization 81, 1, 1–8. (Cited on
pages 12 and 180.)

CHEN, L., DE GEMMIS, M., FELFERNIG, A., LOPS, P., RICCI, F., AND SEMERARO, G. 2013.
Human decision making and recommender systems. ACM Trans. Interact. Intell. Syst. 3, 3 (Oct.).
(Cited on page 3.)

CHITCHYAN, R. AND RASHID, A. 2006. Tracing requirements interdependency semantics. In Work-
shop on Early Aspects. (Cited on pages 90 and 175.)

CHOU, Y. 2019. Actionable gamification: Beyond points, badges, and leaderboards. Packt Publishing
Ltd. (Cited on page 86.)

CLELAND-HUANG, J., BERENBACH, B., CLARK, S., SETTIMI, R., AND ROMANOVA, E. 2007.
Best practices for automated traceability. Computer 40, 6 (June), 27–35. (Cited on page 68.)

CLELAND-HUANG, J., CHANG, C. K., AND CHRISTENSEN, M. 2003. Event-based traceability
for managing evolutionary change. IEEE Transactions on Software Engineering 29, 9, 796–810.
(Cited on pages 3, 164, and 181.)

CLELAND-HUANG, J., DUMITRU, H., DUAN, C., AND CASTRO-HERRERA, C. 2009. Automated
support for managing feature requests in open forums. Commun. ACM 52, 10 (Oct.), 68–74. (Cited
on pages 58, 59, and 67.)

COUGHLAN, J. AND MACREDIE, R. 2002. Effective communication in requirements elicitation: A
comparison of methodologies. Requir. Eng. 7, 2 (June), 47–60. (Cited on pages 13 and 109.)

CROSSEN, A., BUDZIK, J., AND HAMMOND, K. J. 2002. Flytrap: Intelligent group music recom-
mendation. In Proceedings of the 7th International Conference on Intelligent UI. IUI ’02. ACM,
New York, NY, USA, 184–185. (Cited on page 102.)

207

Bibliography

DALPIAZ, F., DELL’ANNA, D., AYDEMIR, F. B., AND ÇEVIKOL, S. 2019. Requirements classifica-
tion with interpretable machine learning and dependency parsing. In 2019 IEEE 27th International
Requirements Engineering Conference (RE). 142–152. (Cited on pages 59 and 60.)

DALPIAZ, F., VAN DER SCHALK, I., AND LUCASSEN, G. 2018. Pinpointing ambiguity and incom-
pleteness in requirements engineering via information visualization and NLP. In Requirements
Engineering: Foundation for Software Quality. Springer, 119–135. (Cited on pages 59 and 67.)

DAMASIOTIS, V., FITSILIS, P., CONSIDINE, P., AND O’KANE, J. 2017. Analysis of software project
complexity factors. In Proceedings of the 2017 International Conference on Management En-
gineering, Software Engineering and Service Sciences. ICMSS ’17. Association for Computing
Machinery, New York, NY, USA, 54–58. (Cited on pages 3 and 36.)

DANYLENKO, A. AND LÖWE, W. 2012. Context-aware recommender systems for non-functional
requirements. In 2012 Third International Workshop on Recommendation Systems for Software
Engineering (RSSE). 80–84. (Cited on pages 59 and 67.)

DARWISH, N. R. AND MEGAHED, S. 2016. Requirements engineering in scrum framework. Inter-
national Journal of Computer Applications 149, 8 (Sep), 24–29. (Cited on page 2.)

DAVIS, A., DIESTE, O., HICKEY, A., JURISTO, N., AND MORENO, A. M. 2006. Effectiveness
of requirements elicitation techniques: Empirical results derived from a systematic review. In
Proceedings of the 14th IEEE International Requirements Engineering Conference. RE ’06. IEEE
Computer Society, Washington, DC, USA, 176–185. (Cited on page 90.)

DAVIS, A. M. 2003. The art of requirements triage. Computer 36, 3 (Mar.), 42–49. (Cited on pages 4
and 70.)

DAVIS, A. M. 2005. Just Enough Requirements Management: Where Software Development Meets
Marketing. Dorset House Publishing Co., Inc., USA. (Cited on pages 2, 36, 160, 164, and 181.)

DAVIS, J. AND GOADRICH, M. 2006. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd International Conference on Machine Learning. ICML ’06. ACM, New
York, NY, USA, 233–240. (Cited on page 153.)

DE SMEDT, T. AND DAELEMANS, W. 2012. Pattern for python. The Journal of Machine Learning
Research 13, 2063–2067. (Cited on page 149.)

DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND HARSHMAN, R. 1990.
Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 6,
391–407. (Cited on pages 69, 95, and 164.)

DEKHTYAR, A. AND FONG, V. 2017. RE data challenge: Requirements identification with word2vec
and tensorflow. In 2017 IEEE 25th International Requirements Engineering Conference (RE). 484–
489. (Cited on pages 59, 60, and 84.)

208

Bibliography

DEL SAGRADO, J., ÁAGUILA, I. M., AND ORELLANA, F. J. 2011. Requirements interaction in the
next release problem. In Proceedings of the 13th Annual Conference Companion on Genetic and
Evolutionary Computation. GECCO ’11. Association for Computing Machinery, New York, NY,
USA, 241–242. (Cited on pages 59 and 70.)

DENG, L. AND LIU, Y. 2018. Deep Learning in Natural Language Processing, 1st ed. Springer.
(Cited on page 186.)

DESHPANDE, G. 2019. Sreyantra: Automated software requirement inter-dependencies elicitation,
analysis and learning. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). 186–187. (Cited on pages 90 and 175.)

DESHPANDE, G., ARORA, C., AND RUHE, G. 2019. Data-driven elicitation and optimization of
dependencies between requirements. In 2019 IEEE 27th International Requirements Engineering
Conference (RE). 416–421. (Cited on pages 6, 58, 59, 69, 85, and 185.)

DHINAKARAN, V. T., PULLE, R., AJMERI, N., AND MURUKANNAIAH, P. K. 2018. App review
analysis via active learning: Reducing supervision effort without compromising classification ac-
curacy. In 2018 IEEE 26th International Requirements Engineering Conference (RE). 170–181.
(Cited on pages 59 and 60.)

DU, G. AND RUHE, G. 2009. Does explanation improve the acceptance of decision support for
product release planning? In 3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE, 56–68. (Cited on page 141.)

DUAN, C., LAURENT, P., CLELAND-HUANG, J., AND KWIATKOWSKI, C. 2009. Towards automated
requirements prioritization and triage. Requir. Eng. 14, 2 (Apr.), 73–89. (Cited on pages 59, 63,
and 102.)

DUMITRU, H., GIBIEC, M., HARIRI, N., CLELAND-HUANG, J., MOBASHER, B., CASTRO-
HERRERA, C., AND MIRAKHORLI, M. 2011. On-demand feature recommendations derived from
mining public product descriptions. In Proceedings of the 33rd International Conference on Soft-
ware Engineering. ICSE ’11. ACM, New York, NY, USA, 181–190. (Cited on pages 6, 59, and 62.)

DURME, B. V. AND LALL, A. 2009. Streaming pointwise mutual information. In Proceedings of
the 22nd International Conference on Neural Information Processing Systems. NIPS’09. Curran
Assoc. Inc., USA, 1892–1900. (Cited on page 93.)

DYER, J. 1997. Multi attribute utility theory. International Series in Operations Research and Man-
agement Science 78, 265–292. (Cited on page 133.)

EBERT, C. 2014. Systematisches Requirements Engineering, 5th ed. dpunkt, Heidelberg, Germany.
(Cited on pages 1 and 36.)

EKSTRAND, M. D., RIEDL, J. T., AND KONSTAN, J. A. 2011. Collaborative filtering recommender
systems. Found. Trends Hum.-Comput. Interact. 4, 2 (Feb.), 81–173. (Cited on pages 5, 45,
and 161.)

209

Bibliography

FALKNER, A., FELFERNIG, A., AND HAAG, A. 2011. Recommendation Technologies for Config-
urable Products. AI Magazine 32, 3, 99–108. (Cited on page 26.)

FALKNER, A., PALOMARES, C., FRANCH, X., SCHENNER, G., AZNAR, P., AND SCHOERGHUBER,
A. 2019. Identifying requirements in requests for proposal: A research preview. In Requirements
Engineering: Foundation for Software Quality. Springer, 176–182. (Cited on pages 59, 60, 162,
and 174.)

FARSHIDI, S., JANSEN, S., JONG, R. D., AND BRINKKEMPER, S. 2018. Multiple criteria decision
support in requirements negotiation. In Joint Proceedings of REFSQ-2018 Workshops, Doctoral
Symposium, Live Studies Track, and Poster Track. 100–107. (Cited on page 6.)

FELFERNIG, A., ATAS, M., SAMER, R., STETTINGER, M., TRAN, T. N. T., AND REITERER, S.
2018. Further Choice Scenarios. Springer, 129–144. (Cited on page 19.)

FELFERNIG, A., ATAS, M., TRAN, T. T., AND STETTINGER, M. 2016. Towards group-based con-
figuration. In International Workshop on Configuration 2016 (ConfWS’16). 69–72. (Cited on
pages 21, 25, 33, and 119.)

FELFERNIG, A., BAGLEY, C., TIIHONEN, J., WORTLEY, L., AND HOTZ, L. 2014. Chapter 4
- benefits of configuration systems. In Knowledge-Based Configuration, A. Felfernig, L. Hotz,
C. Bagley, and J. Tiihonen, Eds. Morgan Kaufmann, Boston, 29 – 33. (Cited on page 48.)

FELFERNIG, A., BORATTO, L., STETTINGER, M., AND TKALČIČ, M. 2018. Biases in Group
Decisions. Springer International Publishing, 145–155. (Cited on page 173.)

FELFERNIG, A., BORATTO, L., STETTINGER, M., AND TKALCIC, M. 2018. Group Recommender
Systems – An Introduction. Springer. (Cited on pages 4, 5, 33, 43, 51, 52, 84, 101, 102, 104, 105,
124, 125, 132, 136, 141, 161, and 165.)

FELFERNIG, A. AND BURKE, R. 2008. Constraint-based recommender systems: Technologies and
research issues. In Proceedings of the 10th International Conference on Electronic Commerce.
ICEC ’08. Association for Computing Machinery, New York, NY, USA. (Cited on pages 32
and 84.)

FELFERNIG, A., HOTZ, L., BAGLEY, C., AND TIIHONEN, J. 2014. Knowledge-based Configuration:
From Research to Business Cases, 1st ed. Elsevier/Morgan Kaufmann Publishers, San Francisco,
CA, USA. (Cited on pages 21, 22, 25, 26, and 119.)

FELFERNIG, A., JERAN, M., NINAUS, G., REINFRANK, F., AND REITERER, S. 2013. Toward
the Next Generation of Recommender Systems: Applications and Research Challenges. Springer,
Heidelberg, 81–98. (Cited on pages 59 and 66.)

FELFERNIG, A., JERAN, M., NINAUS, G., REINFRANK, F., REITERER, S., AND STETTINGER, M.
2014. Basic Approaches in Recommendation Systems. Springer, Berlin, Heidelberg, 15–37. (Cited
on pages 5, 23, 49, and 161.)

210

Bibliography

FELFERNIG, A. AND NINAUS, G. 2012. Group recommendation algorithms for requirements prior-
itization. In 2012 Third International Workshop on Recommendation Systems for Software Engi-
neering (RSSE). 59–62. (Cited on pages 59 and 64.)

FELFERNIG, A., NINAUS, G., GRABNER, H., REINFRANK, F., WENINGER, L., PAGANO, D., AND

MAALEJ, W. 2013. An overview of recommender systems in requirements engineering. Managing
Requirements Knowledge, 315–332. (Cited on pages 4, 41, 58, 63, 66, 68, 90, 160, and 168.)

FELFERNIG, A., POLAT-ERDENIZ, S., URAN, C., REITERER, S., ATAS, M., TRAN, T. N. T.,
AZZONI, P., KIRALY, C., AND DOLUI, K. 2019. An overview of recommender systems in the
internet of things. J. Intell. Inf. Syst. 52, 2 (Apr.), 285–309. (Cited on pages 80 and 81.)

FELFERNIG, A., SCHUBERT, M., FRIEDRICH, G., MANDL, M., MAIRITSCH, M., AND TEPPAN,
E. 2009. Plausible repairs for inconsistent requirements. In 21st International Joint Conference on
Artificial Intelligence (IJCAI’09). Pasadena, CA, 791–796. (Cited on page 33.)

FELFERNIG, A., SCHUBERT, M., MANDL, M., AND GHIRARDINI, P. 2010. Diagnosing inconsistent
requirements preferences in distributed software projects. In Proceedings of the 3rd International
Workshop on Social Software Engineering. 495–502. (Cited on pages 59 and 66.)

FELFERNIG, A., SCHUBERT, M., AND REITERER, S. 2013. Personalized Diagnosis for Over-
Constrained Problems. In 23rd International Conference on Artificial Intelligence (IJCAI 2013).
Peking, China, 1990–1996. (Cited on page 33.)

FELFERNIG, A., SCHUBERT, M., AND ZEHENTNER, C. 2012. An efficient diagnosis algorithm for
inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis, and Manufac-
turing (AIEDAM) 26, 1, 175–184. (Cited on pages 25, 134, 139, and 140.)

FELFERNIG, A., SPÖCKLBERGER, J., SAMER, R., STETTINGER, M., ATAS, M., TIIHONEN, J.,
AND RAATIKAINEN, M. 2018. Configuring release plans. In Proceedings of the 20th Configuration
Workshop, Graz, Austria, September 27-28, 2018. 9–14. (Cited on pages 51, 164, and 168.)

FELFERNIG, A., STETTINGER, M., ATAS, M., SAMER, R., NERLICH, J., SCHOLZ, S., TIIHONEN,
J., AND RAATIKAINEN, M. 2018. Towards utility-based prioritization of requirements in open
source environments. In 26th IEEE International Requirements Engineering Conference (RE 2018),
Banff, AB, Canada, August 20-24, 2018. 406–411. (Cited on pages 59, 64, 102, 131, and 144.)

FELFERNIG, A., STETTINGER, M., FALKNER, A., ATAS, M., FRANCH, X., AND PALOMARES,
C. 2017. OPENREQ: Recommender systems in requirements engineering. In 2nd Workshop on
Recommender Systems and Big Data Analytics. RS-BDA’17. 1–4. (Cited on pages 32, 36, 72, 76,
and 120.)

FELFERNIG, A., TEPPAN, E., AND GULA, B. 2007. Knowledge-based recommender technologies
for marketing and sales. International Journal of Pattern Recognition and Artificial Intelligence 21,
333–354. (Cited on page 79.)

211

Bibliography

FELFERNIG, A., ZEHENTNER, C., NINAUS, G., GRABNER, H., MAALEJ, W., PAGANO, D.,
WENINGER, L., AND REINFRANK, F. 2011. Group decision support for requirements negotiation.
In Proceedings of the 19th International Conference on Advances in User Modeling. UMAP’11.
Springer, Berlin, Heidelberg, 105–116. (Cited on pages 6, 21, and 63.)

FEMMER, H., FERNÁNDEZ, D. M., WAGNER, S., AND EDER, S. 2017. Rapid quality assurance
with requirements smells. Journal of Systems and Software 123, 190–213. (Cited on pages 59
and 67.)

FERBER, S., HAAG, J., AND SAVOLAINEN, J. 2002. Feature interaction and dependencies: Model-
ing features for reengineering a legacy product line. In Software Product Lines. Springer, Berlin,
Heidelberg, 235–256. (Cited on pages 6, 69, 90, 98, and 178.)

FERNÁNDEZ, D. 2018. Supporting requirements-engineering research that industry needs: The napire
initiative. IEEE Software 35, 1 (January), 112–116. (Cited on page 2.)

FERRARI, A., DELL’ORLETTA, F., SPAGNOLO, G. O., AND GNESI, S. 2014. Measuring and im-
proving the completeness of natural language requirements. In Proceedings of the 20th Inter-
national Working Conference on Requirements Engineering: Foundation for Software Quality -
Volume 8396. REFSQ 2014. Springer, Berlin, Heidelberg, 23–38. (Cited on page 6.)

FERRARI, A. AND ESULI, A. 2019. An NLP approach for cross-domain ambiguity detection in
requirements engineering. Automated Software Engineering 26, 3, 559–598. (Cited on pages 59
and 67.)

FERRARI, A. AND GNESI, S. 2012. Using collective intelligence to detect pragmatic ambiguities.
In 2012 20th IEEE International Requirements Engineering Conference (RE). 191–200. (Cited on
pages 59 and 67.)

FERRARI, A., GORI, G., ROSADINI, B., TROTTA, I., BACHERINI, S., FANTECHI, A., AND GNESI,
S. 2018. Detecting requirements defects with NLP patterns: an industrial experience in the railway
domain. Empirical Software Engineering 23, 6, 3684–3733. (Cited on pages 59 and 67.)

FERRARI, A., SPAGNOLO, G. O., AND GNESI, S. 2017. Pure: A dataset of public requirements
documents. In 2017 IEEE 25th International Requirements Engineering Conference (RE). 502–
505. (Cited on page 85.)

FERRARI, A., SPOLETINI, P., AND GNESI, S. 2016. Ambiguity and tacit knowledge in requirements
elicitation interviews. Requirements Engineering 21, 3, 333–355. (Cited on page 67.)

FINKELSTEIN, A., HARMAN, M., MANSOURI, S. A., REN, J., AND ZHANG, Y. 2009. A search
based approach to fairness analysis in requirement assignments to aid negotiation, mediation and
decision making. Requirements Engineering 14, 4, 231–245. (Cited on pages 59 and 70.)

FIRESMITH, D. 2004. Prioritizing requirements. Journal of Object Technology 3, 35–48. (Cited on
page 181.)

212

Bibliography

FIRESMITH, D. 2005. Are your requirements complete? Journal of Object Technology 4, 27–44.
(Cited on page 8.)

FITZGERALD, C., LETIER, E., AND FINKELSTEIN, A. 2011. Early failure prediction in feature
request management systems. In 2011 IEEE 19th International Requirements Engineering Confer-
ence. 229–238. (Cited on pages 6, 59, and 67.)

FUCCI, D., PALOMARES, C., FRANCH, X., COSTAL, D., RAATIKAINEN, M., STETTINGER,
M., KURTANOVIĆ, Z., KOJO, T., KOENIG, L., FALKNER, A., SCHENNER, G., BRASCA, F.,
MÄNNISTÖ, T., FELFERNIG, A., AND MAALEJ, W. 2018. Needs and challenges for a platform
to support large-scale requirements engineering: A multiple-case study. In Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. ESEM
’18. ACM, New York, NY, USA, 19:1–19:10. (Cited on pages 3, 36, 37, and 40.)

GARCIA, I., SEBASTIA, L., ONAINDIA, E., AND GUZMAN, C. 2009. A group recommender system
for tourist activities. In Proceedings of the 10th International Conference on E-Commerce and Web
Technologies. EC-Web 2009. Springer, Berlin, Heidelberg, 26–37. (Cited on page 102.)

GARTNER RESEARCH, R. 2014. Hype cycle for application development. https://www.gartner.
com/en/documents/2810920. [Online; accessed 2021-01-06]. (Cited on page 2.)

GARTNER RESEARCH, S. 2020. Information technology spending on enter-
prise software worldwide. https://www.statista.com/statistics/203428/

total-enterprise-software-revenue-forecast/. [Online; accessed 2021-01-06]. (Cited
on page 1.)

GENA, C., BROGI, R., CENA, F., AND VERNERO, F. 2011. The impact of rating scales on user’s
rating behavior. In User Modeling, Adaption and Personalization, J. Konstan, R. Conejo, J. Marzo,
and N. Oliver, Eds. Springer, Berlin, Heidelberg, 123–134. (Cited on page 117.)

GERVASI, V., FERRARI, A., ZOWGHI, D., AND SPOLETINI, P. 2019. Ambiguity in Requirements
Engineering: Towards a Unifying Framework. Springer, 191–210. (Cited on page 67.)

GLEICH, B., CREIGHTON, O., AND KOF, L. 2010. Ambiguity detection: Towards a tool explaining
ambiguity sources. In Requirements Engineering: Foundation for Software Quality, 16th Interna-
tional Working Conference, REFSQ 2010, Essen, Germany, June 30 - July 2, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6182. Springer, 218–232. (Cited on pages 59 and 67.)

GOLDBERG, D., NICHOLS, D., OKI, B., AND TERRY, D. 1992. Using collaborative filtering to
weave an information tapestry. Commun. ACM 35, 12 (Dec.), 61–70. (Cited on pages 5, 45,
and 161.)

GOLDIN, L. AND BERRY, D. M. 2015. Reuse of requirements reduced time to market at one industrial
shop: A case study. Requirements Engineering 20, 1 (Mar.), 23–44. (Cited on pages 59 and 62.)

GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. 2016. Deep Learning. MIT Press. https:

//www.deeplearningbook.org. (Cited on pages 4, 82, and 84.)

213

https://www.gartner.com/en/documents/2810920
https://www.gartner.com/en/documents/2810920
https://www.statista.com/statistics/203428/total-enterprise-software-revenue-forecast/
https://www.statista.com/statistics/203428/total-enterprise-software-revenue-forecast/
https://www.deeplearningbook.org
https://www.deeplearningbook.org

Bibliography

GREER, D. AND RUHE, G. 2004. Software release planning: an evolutionary and iterative approach.
Information and Software Technology 46, 4, 243–253. (Cited on pages 59, 70, and 115.)

GREITEMEYER, T. AND SCHULZ-HARDT, S. 2003. Preference-consistent evaluation of information
in the hidden profile paradigm: Beyond group-level explanations for the dominance of shared in-
formation in group decisions. Journal of personality and social psychology 84, 322–39. (Cited on
pages 8, 109, and 181.)

GROEN, E. C., DOERR, J., AND ADAM, S. 2015. Towards crowd-based requirements engineering a
research preview. In Requirements Engineering: Foundation for Software Quality. Springer, 247–
253. (Cited on pages 59 and 61.)

GUPTA, A. AND DERAMAN, A. 2019. A framework for software requirement ambiguity avoidance.
International Journal of Electrical and Computer Engineering 9, 5436–5445. (Cited on page 67.)

GUZMAN, E., IBRAHIM, M., AND GLINZ, M. 2017. A little bird told me: Mining tweets for re-
quirements and software evolution. In 2017 IEEE 25th International Requirements Engineering
Conference (RE). 11–20. (Cited on pages 59 and 61.)

HARIRI, N., CASTRO-HERRERA, C., CLELAND-HUANG, J., AND MOBASHER, B. 2014. Recom-
mendation Systems in Requirements Discovery. Springer, Berlin, Heidelberg, 455–476. (Cited on
page 40.)

HARMAN, M., MCMINN, P., DE SOUZA, J. T., AND YOO, S. 2012. Search Based Software Engi-
neering: Techniques, Taxonomy, Tutorial. Springer, Berlin, Heidelberg, 1–59. (Cited on page 70.)

HART, A. 2001. Mann-whitney test is not just a test of medians: differences in spread can be impor-
tant. BMJ 323, 7309, 391–393. (Cited on page 189.)

HARUNA, K., ISMAIL, M. A., SUHENDROYONO, S., DAMIASIH, D., PIEREWAN, A., CHIROMA,
H., AND HERAWAN, T. 2017. Context-aware recommender system: A review of recent develop-
mental process and future research direction. Applied Sciences 7, 1211. (Cited on page 43.)

HAUGEN, N. 2006. An Empirical Study of Using Planning Poker for User Story Estimation. In
AGILE 2006. 23–34. (Cited on page 32.)

HELMING, J., ARNDT, H., HODAIE, Z., KOEGEL, M., AND NARAYAN, N. 2010. Automatic assign-
ment of work items. ENASE 2010 - Proceedings of the 5th International Conference on Evaluation
of Novel Approaches to Software Engineering, 149–158. (Cited on page 148.)

HOFFMANN, M., KUHN, N., WEBER, M., AND BITTNER, M. 2004. Requirements for requirements
management tools. In Proceedings. 12th IEEE International Requirements Engineering Confer-
ence, 2004. 301–308. (Cited on pages 1 and 71.)

HOFMANN, H. F. AND LEHNER, F. 2001. Requirements engineering as a success factor in software
projects. IEEE Softw. 18, 4 (July), 58–66. (Cited on pages 35, 36, and 120.)

214

Bibliography

HU, Y., KOREN, Y., AND VOLINSKY, C. 2008. Collaborative filtering for implicit feedback datasets.
In 2008 Eighth IEEE International Conference on Data Mining. 263–272. (Cited on page 48.)

HUANG, S. 2011. Designing utility-based recommender systems for e-commerce: Evaluation of
preference elicitation methods. Electronic Commerce Research and Applications 10, 4, 398–407.
(Cited on page 132.)

HUJAINAH, F., BAKAR, R. B. A., ABDULGABBER, M. A., AND ZAMLI, K. Z. 2018. Software
requirements prioritisation: A systematic literature review on significance, stakeholders, techniques
and challenges. IEEE Access 6, 71497–71523. (Cited on page 9.)

IDRISSI, N. AND ZELLOU, A. 2020. A systematic literature review of sparsity issues in recommender
systems. Social Network Analysis and Mining 10, 1, 15. (Cited on page 82.)

IKONOMAKIS, E., KOTSIANTIS, S., AND TAMPAKAS, V. 2005. Text classification using machine
learning techniques. In WSEAS Transactions on Computers. Vol. 4. 966–974. (Cited on page 127.)

ISINKAYE, F., FOLAJIMI, Y., AND OJOKOH, B. 2015. Recommendation systems: Principles, meth-
ods and evaluation. Egyptian Informatics Journal 16, 3, 261 – 273. (Cited on page 3.)

IVAN, G., PACHECO, C., CALVO-MANZANO, J., AND ARCILLA, M. 2016. Reusing functional
software requirements in small-sized software enterprises: A model oriented to the catalog of re-
quirements. Requirements Engineering 22. (Cited on pages 6, 59, and 62.)

IYER, J. AND RICHARDS, D. 2004. Evaluation framework for tools that manage requirements incon-
sistency. In AWRE’04 9th Australian Workshop on Requirements Engineering. (Cited on page 66.)

JAMESON, A., BALDES, S., AND KLEINBAUER, T. 2004. Two methods for enhancing mutual aware-
ness in a group recommender system. In Proceedings of the Working Conference on Advanced
Visual Interfaces. AVI ’04. Association for Computing Machinery, New York, NY, USA, 447–449.
(Cited on pages 21 and 102.)

JAMESON, A. AND SMYTH, B. 2007. Recommendation to Groups. Springer, Berlin, Heidelberg,
596–627. (Cited on page 124.)

JANIS, I. L. 1982. Groupthink: Psychological Studies of Policy Decisions and Fiascoes. (Cited on
page 8.)

JANNACH, D., ZANKER, M., FELFERNIG, A., AND FRIEDRICH, G. 2010. Recommender Systems:
An Introduction, 1st ed. Cambridge University Press, New York, NY, USA. (Cited on pages 43,
127, 144, and 146.)

JOHANN, T. AND MAALEJ, W. 2015. Democratic mass participation of users in Requirements Engi-
neering? In 23rd International Requirements Engineering Conference (RE). Ottawa, ON, Canada,
256–261. (Cited on pages 4, 54, 64, 103, 104, 166, and 186.)

215

Bibliography

JOHANN, T., STANIK, C., BAHNEMIRI, A. M. A., AND MAALEJ, W. 2017. Safe: A simple approach
for feature extraction from app descriptions and app reviews. In 2017 IEEE 25th International
Requirements Engineering Conference (RE). 21–30. (Cited on pages 59 and 61.)

JUNKER, U. 2004. QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained
Problems. In 19th National Conference on AI (AAAI04). San Jose, CA, 167–172. (Cited on
page 140.)

KAHNG, A., MACKENZIE, S., AND PROCACCIA, A. D. 2018. Liquid democracy: An algorithmic
perspective. In Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1095–1102.
(Cited on page 129.)

KAMSTIES, E. 2005. Understanding Ambiguity in Requirements Engineering. Springer, Berlin,
Heidelberg, 245–266. (Cited on page 185.)

KANCHEV, G. M., MURUKANNAIAH, P. K., CHOPRA, A. K., AND SAWYER, P. 2017a. Canary: An
interactive and query-based approach to extract requirements from online forums. In 2017 IEEE
25th International Requirements Engineering Conference (RE). 470–471. (Cited on pages 59
and 61.)

KANCHEV, G. M., MURUKANNAIAH, P. K., CHOPRA, A. K., AND SAWYER, P. 2017b. Canary:
Extracting requirements-related information from online discussions. In 2017 IEEE 25th Interna-
tional Requirements Engineering Conference (RE). 31–40. (Cited on pages 59 and 61.)

KARLSSON, J. 1996. Software requirements prioritizing. In Proceedings of the Second International
Conference on Requirements Engineering. 110–116. (Cited on pages 59 and 63.)

KARLSSON, J. AND RYAN, K. 1997. A cost-value approach for prioritizing requirements. IEEE
Software 14, 5, 67–74. (Cited on page 133.)

KEENAN, E., CZAUDERNA, A., LEACH, G., CLELAND-HUANG, J., SHIN, Y., MORITZ, E., GETH-
ERS, M., POSHYVANYK, D., MALETIC, J., HAYES, J. H., DEKHTYAR, A., MANUKIAN, D.,
HOSSEIN, S., AND HEARN, D. 2012. Tracelab: An experimental workbench for equipping re-
searchers to innovate, synthesize, and comparatively evaluate traceability solutions. In 2012 34th
International Conference on Software Engineering (ICSE). 1375–1378. (Cited on page 68.)

KHAN, J. A., LIU, L., AND WEN, L. 2020. Requirements knowledge acquisition from online user
forums. IET Software 14, 3, 242–253. (Cited on pages 59 and 61.)

KHAN, J. A., XIE, Y., LIU, L., AND WEN, L. 2019. Analysis of requirements-related arguments in
user forums. In 2019 IEEE 27th International Requirements Engineering Conference (RE). 63–74.
(Cited on pages 59 and 61.)

KIFETEW, F., MUNANTE, D., PERINI, A., SUSI, A., SIENA, A., AND BUSETTA, P. 2017. Dmgame:
A gamified collaborative requirements prioritisation tool. In 2017 IEEE 25th International Require-
ments Engineering Conference (RE). 468–469. (Cited on pages 59 and 65.)

216

Bibliography

KIFETEW, F., SUSI, A., MUTANTE, D., PERINI, A., SIENA, A., AND BUSETTA, P. 2017. Towards
multi-decision-maker requirements prioritisation via multi-objective optimisation. In Forum and
Doctoral Consortium Papers Presented at the 29th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE’17). Essen, Germany, 137–144. (Cited on pages 132 and 133.)

KITCHENHAM, B. AND CHARTERS, S. 2007. Guidelines for performing systematic literature reviews
in software engineering. Tech. rep., Keele University and Durham University Joint Report. (Cited
on page 38.)

KOREN, Y., BELL, R., AND VOLINSKY, C. 2009. Matrix factorization techniques for recommender
systems. IEEE Computer 42, 8, 30–37. (Cited on page 4.)

KORENIUS, T., LAURIKKALA, J., JÄRVELIN, K., AND JUHOLA, M. 2004. Stemming and lemmati-
zation in the clustering of finnish text documents. In Proceedings of the Thirteenth ACM Interna-
tional Conference on Information and Knowledge Management. CIKM ’04. ACM, New York, NY,
USA, 625–633. (Cited on page 149.)

KOTKOV, D., WANG, S., AND VEIJALAINEN, J. 2016. A survey of serendipity in recommender
systems. Know.-Based Syst. 111, C (Nov.), 180–192. (Cited on pages 48 and 83.)

KRASNER, H. 2018. The cost of poor quality software in the us: A 2018 report. Tech. rep., CISQ
Consortium for IT Software Quality. (Cited on page 36.)

KURTANOVIĆ, Z. AND MAALEJ, W. 2017. Automatically classifying functional and non-functional
requirements using supervised machine learning. In 2017 IEEE 25th International Requirements
Engineering Conference (RE). 490–495. (Cited on pages 59 and 60.)

LANDAUER, T. K., FOLTZ, P. W., AND LAHAM, D. 1998. An introduction to latent semantic analy-
sis. Discourse Processes 25, 2-3, 259–284. (Cited on pages 130 and 164.)

LAU, J. H. AND BALDWIN, T. 2016. An empirical evaluation of doc2vec with practical insights into
document embedding generation. In Proceedings of the 1st Workshop on Representation Learning
for NLP. Association for Computational Linguistics, Berlin, Germany, 78–86. (Cited on page 130.)

LAURENT, P., CLELAND-HUANG, J., AND DUAN, C. 2007. Towards automated requirements triage.
In 15th International Requirements Engineering Conference. Delhi, India, 131–140. (Cited on
page 138.)

LEFFINGWELL, D. 1997. Calculating the return on investment from more effective requirements
management. American Programmer 10, 4, 13–16. (Cited on pages 6, 90, 120, and 160.)

LEHTOLA, L., KAUPPINEN, M., AND KUJALA, S. 2004. Requirements prioritization – challenges in
practice. International Conference on Product Focused Software Process Improvement (PROFES
2004), 497–508. (Cited on pages 131 and 143.)

LEITNER, G., FERCHER, A., FELFERNIG, A., ISAK, K., ERDENIZ, S. P., AKCAY, A., AND JERAN,
M. 2016. Recommending and Configuring Smart Home Installations. In International Workshop
on Configuration 2016 (ConfWS’16). 17–22. (Cited on page 21.)

217

Bibliography

LEVIN, J. AND NALEBUFF, B. 1995. An Introduction to Vote-Counting Schemes. Journal of Eco-
nomic Perspectives 9, 1, 3–26. (Cited on page 23.)

LI, C., VAN DEN AKKER, M., BRINKKEMPER, S., AND DIEPEN, G. 2010. An integrated approach
for requirement selection and scheduling in software release planning. Requirements Engineer-
ing 15, 4, 375–396. (Cited on pages 59 and 70.)

LI, J., JEFFERY, R., FUNG, K., ZHU, L., WANG, Q., ZHANG, H., AND XU, X. 2012. A business
process-driven approach for requirements dependency analysis. In Business Process Management,
A. Barros, A. Gal, and E. Kindler, Eds. Springer, Berlin, Heidelberg, 200–215. (Cited on page 164.)

LI, L., HARMAN, M., LETIER, E., AND ZHANG, Y. 2014. Robust next release problem: Handling
uncertainty during optimization. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. GECCO ’14. Association for Computing Machinery, New York, NY,
USA, 1247–1254. (Cited on pages 59 and 71.)

LIM, S. L., QUERCIA, D., AND FINKELSTEIN, A. 2010. Stakenet: Using social networks to analyse
the stakeholders of large-scale software projects. In Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1. ICSE ’10. ACM, New York, NY, USA,
295–304. (Cited on pages 9, 59, 62, 63, 120, 166, and 182.)

LINSBAUER, L., FISCHER, S., LOPEZ-HERREJON, R. E., AND EGYED, A. 2015. Using traceability
for incremental construction and evolution of software product portfolios. In Proceedings of the
8th International Symposium on Software and Systems Traceability. SST ’15. IEEE Press, 57–60.
(Cited on pages 59 and 68.)

LINSBAUER, L., LOPEZ-HERREJON, E. R., AND EGYED, A. 2013. Recovering traceability between
features and code in product variants. In Proceedings of the 17th International Software Product
Line Conference. SPLC ’13. Association for Computing Machinery, New York, NY, USA, 131–
140. (Cited on pages 59 and 68.)

LIU, T., WANG, Z., TANG, J., YANG, S., HUANG, G., AND LIU, Z. 2019. Recommender systems
with heterogeneous side information. In The World Wide Web Conference. WWW ’19. Association
for Computing Machinery, New York, NY, USA, 3027–3033. (Cited on page 43.)

LOMBRISER, P., DALPIAZ, F., LUCASSEN, G., AND BRINKKEMPER, S. 2016. Gamified require-
ments engineering: Model and experimentation. In Requirements Engineering: Foundation for
Software Quality. Springer, 171–187. (Cited on page 86.)

LU, M. AND LIANG, P. 2017. Automatic classification of non-functional requirements from aug-
mented app user reviews. In Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering. EASE’17. Association for Computing Machinery, New York,
NY, USA, 344–353. (Cited on pages 59 and 60.)

218

Bibliography

LÜDERS, C. M., RAATIKAINEN, M., MOTGER, J., AND MAALEJ, W. 2019. OPENREQ issue link
map: A tool to visualize issue links in jira. In 2019 IEEE 27th International Requirements Engi-
neering Conference (RE). IEEE Computer Society, 492–493. (Cited on page 76.)

MAALEJ, W. AND THURIMELLA, A. K. 2009. Towards a research agenda for recommendation
systems in requirements engineering. In 2009 Second International Workshop on Managing Re-
quirements Knowledge. 32–39. (Cited on page 41.)

MAGUIRE, M. AND BEVAN, N. 2002. User requirements analysis: A review of supporting methods.
In Proceedings of the IFIP 17th World Computer Congress - TC13 Stream on Usability: Gaining
a Competitive Edge. Kluwer, B.V., Deventer, The Netherlands, The Netherlands, 133–148. (Cited
on page 115.)

MAHMOOD, T. AND RICCI, F. 2009. Improving recommender systems with adaptive conversational
strategies. In Proceedings of the 20th ACM Conference on Hypertext and Hypermedia. HT ’09.
ACM, New York, NY, USA, 73–82. (Cited on page 43.)

MAHMOUD, A. 2015. An information theoretic approach for extracting and tracing non-functional
requirements. In 2015 IEEE 23rd International Requirements Engineering Conference (RE). IEEE
Computer Society, 36–45. (Cited on pages 59 and 60.)

MAHMOUD, A. AND NIU, N. 2010. Using semantics-enabled information retrieval in requirements
tracing: An ongoing experimental investigation. In 2010 IEEE 34th Annual Computer Software
and Applications Conference. IEEE Computer Society, 246–247. (Cited on page 68.)

MAHMOUD, A. AND NIU, N. 2011. Tracter: A tool for candidate traceability link clustering. In 2011
IEEE 19th International Requirements Engineering Conference. IEEE Computer Society, 335–336.
(Cited on pages 59 and 68.)

MANN, H. B. AND WHITNEY, D. R. 1947. On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Statist. 18, 1 (03), 50–60. (Cited on page 189.)

MAQSOOD, T., FINEGAN, A., AND WALKER, D. 2004. Biases and heuristics in judgment and
decision making: The dark side of tacit knowledge. In Issues in Informing Science and Information
Technology 1. 295–301. (Cited on page 63.)

MASSEY, A. K., RUTLEDGE, R. L., ANTÓN, A. I., AND SWIRE, P. P. 2014. Identifying and
classifying ambiguity for regulatory requirements. In 2014 IEEE 22nd International Requirements
Engineering Conference (RE). IEEE Computer Society, 83–92. (Cited on page 67.)

MASTHOFF, J. 2004. Group modeling: Selecting a sequence of television items to suit a group of
viewers. User Modeling and User-Adapted Interaction (UMUAI) 14, 1, 37–85. (Cited on pages 29
and 102.)

MASTHOFF, J. 2011. Group recommender systems. Recommender Systems Handbook, 677–702.
(Cited on page 125.)

219

Bibliography

MASTHOFF, J. 2015. Group Recommender Systems: Aggregation, Satisfaction and Group Attributes.
Recommender Systems Handbook, 743–776. (Cited on pages 5, 43, 51, 83, 101, 102, 103, 105,
and 161.)

MENZIES, T. AND MARCUS, A. 2008. Automated severity assessment of software defect reports. In
2008 IEEE International Conference on Software Maintenance. 346–355. (Cited on page 144.)

MEZEI, Z. AND EICKHOFF, C. 2017. Evaluating music recommender systems for groups. In
2017 Workshop on Value-Aware and Multistakeholder Recommendation (VAMS 2017). (Cited
on page 102.)

MEZGHANI, M., KANG, J., KANG, E., AND SEDES, F. 2019. Clustering for traceability managing
in system specifications. In 2019 IEEE 27th International Requirements Engineering Conference
(RE). 257–264. (Cited on pages 59 and 68.)

MEZGHANI, M., KANG, J., AND SÈDES, F. 2018. Industrial requirements classification for re-
dundancy and inconsistency detection in semios. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). 297–303. (Cited on pages 59 and 68.)

MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G., AND DEAN, J. 2013. Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2. NIPS’13. Curran Associates
Inc., USA, 3111–3119. (Cited on page 130.)

MOBASHER, B. AND CLELAND-HUANG, J. 2011. Recommender systems in requirements engineer-
ing. AI Magazine 32, 3, 81–89. (Cited on pages 4, 6, 9, 36, 37, 40, 59, 65, 82, 90, 102, 120, 160,
and 175.)

MOJZISCH, A. AND SCHULZ-HARDT, S. 2010. Knowing others’ preferences degrades the quality
of group decisions. Journal of Personality and Social Psychology 98, 5, 794–808. (Cited on
pages 109, 111, and 180.)

MOUGOUEI, D. 2016. Factoring requirement dependencies in software requirement selection using
graphs and integer programming. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ASE 2016. Association for Computing Machinery, New York,
NY, USA, 884–887. (Cited on pages 59 and 70.)

MOUGOUEI, D. AND POWERS, D. M. W. 2020. Dependency-aware software release planning
through mining user preferences. Soft Computing 24, 15, 11673–11693. (Cited on pages 59
and 70.)

MURPHY, J., HOFACKER, C. F., AND MIZERSKI, R. 2006. Primacy and recency effects on clicking
behavior. Journal of Computer-Mediated Communication 11, 2, 522–535. (Cited on page 91.)

NATT OCH DAG, J., REGNELL, B., CARLSHAMRE, P., ANDERSSON, M., AND KARLSSON, J.
2002. A feasibility study of automated natural language requirements analysis in market-driven
development. Requirements Engineering 7, 1, 20–33. (Cited on page 68.)

220

Bibliography

NAVARRO-ALMANZA, R., JUAREZ-RAMIREZ, R., AND LICEA, G. 2017. Towards supporting soft-
ware engineering using deep learning: A case of software requirements classification. In 2017 5th
International Conference in Software Engineering Research and Innovation (CONISOFT). 116–
120. (Cited on pages 59, 60, and 84.)

NGO-THE, A. AND RUHE, G. 2008. A systematic approach for solving the wicked problem of
software release planning. Soft Computing 12, 1, 95–108. (Cited on pages 59 and 71.)

NGUYEN, T. N. AND RICCI, F. 2017. A chat-based group recommender system for tourism. In
Information and Communication Technologies in Tourism 2017, R. Schegg and B. Stangl, Eds.
Springer International Publishing, 17–30. (Cited on page 32.)

NINAUS, G. 2012. Using group recommendation heuristics for the prioritization of requirements. In
Proceedings of the 6th ACM Conference on Recommender Systems. ACM, 329–332. (Cited on
pages 6, 102, 103, and 105.)

NINAUS, G. 2016. Recommendation technologies in requirements engineering. Ph.D. thesis, Graz
University of Technology. (Cited on page 36.)

NINAUS, G., FELFERNIG, A., STETTINGER, M., REITERER, S., LEITNER, G., WENINGER, L.,
AND SCHANIL, W. 2014. Intellireq: Intelligent techniques for software requirements engineering.
In Proceedings of the Twenty-first European Conference on Artificial Intelligence. ECAI’14. IOS
Press, Amsterdam, The Netherlands, The Netherlands, 1161–1166. (Cited on pages 21, 26, 49, 52,
59, 64, 71, 72, 73, 102, 103, 104, 105, 144, 160, 163, 165, 168, 175, and 193.)

NINAUS, G., REINFRANK, F., STETTINGER, M., AND FELFERNIG, A. 2014. Content-based recom-
mendation techniques for requirements engineering. In 2014 IEEE 1st International Workshop on
Artificial Intelligence for Requirements Engineering (AIRE). 27–34. (Cited on pages 4, 6, 40, 41,
59, 68, 90, and 91.)

NIU, N., BHOWMIK, T., LIU, H., AND NIU, Z. 2014. Traceability-enabled refactoring for managing
just-in-time requirements. In 2014 IEEE 22nd International Requirements Engineering Conference
(RE). 133–142. (Cited on pages 59 and 68.)

NUSEIBEH, B. AND EASTERBROOK, S. 2000. Requirements engineering: A roadmap. In Pro-
ceedings of the Conference on The Future of Software Engineering. ICSE ’00. Association for
Computing Machinery, New York, NY, USA, 35–46. (Cited on pages 58 and 60.)

ORIOL, M., STADE, M., FOTROUSI, F., NADAL, S., VARGA, J., SEYFF, N., ABELLO, A., FRANCH,
X., MARCO, J., AND SCHMIDT, O. 2018. Fame: Supporting continuous requirements elicitation
by combining user feedback and monitoring. In 2018 IEEE 26th International Requirements Engi-
neering Conference (RE). 217–227. (Cited on pages 59 and 61.)

OTTER, D. W., MEDINA, J. R., AND KALITA, J. K. 2020. A survey of the usages of deep learning
for natural language processing. IEEE Transactions on Neural Networks and Learning Systems,
1–21. (Cited on page 186.)

221

Bibliography

PACHECO, C. AND GARCIA, I. 2008. Stakeholder identification methods in software requirements:
Empirical findings derived from a systematic review. In The Third International Conference on
Software Engineering Advances. 472–477. (Cited on page 182.)

PACHECO, C. AND TOVAR, E. 2007. Stakeholder identification as an issue in the improvement of
software requirements quality. In Advanced Information Systems Engineering, J. Krogstie, A. Op-
dahl, and G. Sindre, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 370–380. (Cited on
page 182.)

PAGANO, D. AND BRUEGGE, B. 2013. User involvement in software evolution practice: A case
study. In 2013 35th International Conference on Software Engineering (ICSE). 953–962. (Cited
on page 61.)

PALOMARES, C., FRANCH, X., AND FUCCI, D. 2018. Personal recommendations in requirements
engineering: THE OPENREQ APPROACH. In Requirements Engineering: Foundation for Software
Quality, E. Kamsties, J. Horkoff, and F. Dalpiaz, Eds. Springer, 297–304. (Cited on pages 4, 40,
41, 42, 72, 76, and 166.)

PARRA, E., DE LA VARA, J. L., AND ALONSO, L. 2018. Poster: Analysis of requirements quality
evolution. In 2018 IEEE/ACM 40th International Conference on Software Engineering: Compan-
ion (ICSE-Companion). 199–201. (Cited on pages 59 and 67.)

PATHAK, B., GARFINKEL, R., GOPAL, R., VENKATESAN, R., AND YIN, F. 2010. Empirical anal-
ysis of the impact of recommender systems on sales. J. Manage. Inf. Syst. 27, 2 (Oct.), 159–188.
(Cited on page 3.)

PAZZANI, M. J. AND BILLSUS, D. 1997. Learning and revising user profiles: The identification of
interesting web sites. Mach. Learn. 27, 3 (June), 313–331. (Cited on page 43.)

PAZZANI, M. J. AND BILLSUS, D. 2007. Content-Based Recommendation Systems. Springer, Berlin,
Heidelberg, 325–341. (Cited on pages 4, 43, 44, and 161.)

PERINI, A., SUSI, A., AND AVESANI, P. 2013. A machine learning approach to software require-
ments prioritization. IEEE Transactions on Software Engineering 39, 4, 445–461. (Cited on
pages 59, 63, and 133.)

PERRONE, M. P., KHAN, H., KIM, C., KYRILLIDIS, A., QUINN, J., AND SALAPURA, V. 2019.
Optimal mini-batch size selection for fast gradient descent. Tech. rep., IBM T.J. Watson Research
Center. (Cited on page 81.)

PINTO, J. K. AND MANTEL, S. J. 1990. The causes of project failure. IEEE Transactions on
Engineering Management 37, 4, 269–276. (Cited on page 2.)

PITANGUEIRA, A. M. 2015. Incorporating preferences from multiple stakeholders in software re-
quirements selection an interactive search-based approach. In 2015 IEEE 23rd International Re-
quirements Engineering Conference (RE). 382–387. (Cited on pages 59 and 71.)

222

Bibliography

PITANGUEIRA, A. M., TONELLA, P., SUSI, A., MACIEL, R. S., AND BARROS, M. 2016. Risk-
aware multi-stakeholder next release planning using multi-objective optimization. In Proceedings
of the 22nd International Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality - Volume 9619. REFSQ 2016. Springer, Berlin, Heidelberg, 3–18. (Cited on pages 59
and 70.)

PITANGUEIRA, A. M., TONELLA, P., SUSI, A., MACIEL, R. S. P., AND BARROS, M. 2017. Min-
imizing the stakeholder dissatisfaction risk in requirement selection for next release planning. Inf.
Softw. Technol. 87, 104–118. (Cited on pages 59 and 71.)

POLAT-ERDENIZ, S., FELFERNIG, A., AND ATAS, M. 2017. Cluster-specific Heuristics for Con-
straint Solving. In International Conference on Industrial, Engineering, Other Applications of
Applied Intelligent Systems (IEA/AIE). Arras, France, 21–30. (Cited on pages 26 and 33.)

PRZEPIORA, M., KARIMPOUR, R., AND RUHE, G. 2012. A hybrid release planning method and its
empirical justification. In Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. ESEM ’12. ACM, New York, NY, USA, 115–118. (Cited
on pages 59 and 70.)

QADDOURA, R., ABU-SRHAN, A., QASEM, M. H., AND HUDAIB, A. 2017. Requirements pri-
oritization techniques review and analysis. In 2017 International Conference on New Trends in
Computing Sciences (ICTCS). 258–263. (Cited on pages 7 and 64.)

QI, S., MAMOULIS, N., PITOURA, E., AND TSAPARAS, P. 2016. Recommending Packages to
Groups. In 16th International Conference on Data Mining. IEEE, 449–458. (Cited on pages 20
and 24.)

QI, S., MAMOULIS, N., PITOURA, E., AND TSAPARAS, P. 2017. Recommending Packages with
Validity Constraints to Groups of Users. Knowledge and Information Systems, 1–30. (Cited on
pages 20 and 24.)

QUADRANA, M., CREMONESI, P., AND JANNACH, D. 2018. Sequence-aware recommender systems.
ACM Comput. Surv. 51, 4 (July). (Cited on page 177.)

RAATIKAINEN, M., TIIHONEN, J., MÄNNISTÖ, T., FELFERNIG, A., STETTINGER, M., AND

SAMER, R. 2018. Using a feature model configurator for release planning. In Proceedings of the
22nd International Systems and Software Product Line Conference - Volume 2. SPLC ’18. ACM,
New York, NY, USA, 29–33. (Cited on pages 59, 70, and 168.)

REGNELL, B., PAECH, B., AURUM, A., WOHLIN, C., DUTOIT, A., AND DAG, J. N. O. 2001.
Requirements mean decisions! - research issues for understanding and supporting decision-making
in requirements engineering. In 1st Swedish Conference on Software Engineering Research and
Practice (SERP’01). 49–52. (Cited on page 8.)

REITER, R. 1987. A theory of diagnosis from first principles. AI Journal 23, 1, 57–95. (Cited on
pages 134 and 140.)

223

Bibliography

RESNICK, P. AND VARIAN, H. R. 1997. Recommender systems. Commun. ACM 40, 3 (Mar.), 56–58.
(Cited on pages 89 and 101.)

RICCI, F., ROKACH, L., SHAPIRA, B., AND KANTOR, P. 2010. Recommender Systems Handbook,
1st ed. Springer, New York, NY, USA. (Cited on pages 3, 43, and 101.)

RIEGEL, N. AND DOERR, J. 2015. A systematic literature review of requirements prioritization
criteria. In Requirements Engineering: Foundation for Software Quality. Springer, 300–317. (Cited
on page 64.)

ROBILLARD, M., WALKER, R., AND ZIMMERMANN, T. 2010. Recommendation Systems for Soft-
ware Engineering. IEEE Software 27, 4, 80–86. (Cited on page 102.)

ROSADINI, B., FERRARI, A., GORI, G., FANTECHI, A., GNESI, S., TROTTA, I., AND BACHERINI,
S. 2017. Using NLP to detect requirements defects: An industrial experience in the railway domain.
In Requirements Engineering: Foundation for Software Quality. Springer, 344–360. (Cited on
pages 59 and 67.)

RUHE, G. 2010. Product Release Planning - Methods, Tools and Applications. CRC Press. (Cited
on pages 6, 90, 115, and 164.)

RUHE, G., EBERLEIN, A., AND PFAHL, D. 2002. Quantitative WinWin: A new method for decision
support in requirements negotiation. In Proceedings of the 14th International Conference on Soft-
ware Engineering and Knowledge Engineering. SEKE ’02. Association for Computing Machinery,
New York, NY, USA, 159–166. (Cited on pages 59 and 63.)

RUHE, G. AND SALIU, M. O. 2005. The art and science of software release planning. IEEE Soft-
ware 22, 6 (Nov.), 47–53. (Cited on pages 132 and 144.)

RYAN, K. 1993. The role of natural language in requirements engineering. In Proceedings of the
IEEE International Symposium on Requirements Engineering. 240–242. (Cited on page 127.)

SAATY, T. AND VARGAS, L. 2000. Models, Methods, Concepts & Applications of the Analytic
Hierarchy Process. Springer. (Cited on page 133.)

SABRIYE, A. O. J. AND ZAINON, W. M. N. W. 2017. A framework for detecting ambiguity in soft-
ware requirement specification. In 2017 8th International Conference on Information Technology
(ICIT). 209–213. (Cited on page 67.)

SADIQ, M., HASSAN, T., AND NAZNEEN, S. 2017. Applying analytic hierarchy process in goal
oriented requirements elicitation method for the prioritization of software requirements. In 2017
3rd International Conference on Computational Intelligence Communication Technology (CICT).
1–5. (Cited on pages 7, 59, and 63.)

SAILER, M., HENSE, J. U., MAYR, S. K., AND MANDL, H. 2017. How gamification motivates: An
experimental study of the effects of specific game design elements on psychological need satisfac-
tion. Computers in Human Behavior 69, 371–380. (Cited on pages 85 and 86.)

224

Bibliography

SAMER, R., ATAS, M., FELFERNIG, A., STETTINGER, M., FALKNER, A., AND SCHENNER, G.
2018. Group decision support for requirements management processes. In Proceedings of the 20th
Configuration Workshop, Graz, Austria, September 27-28, 2018. 19–24. (Cited on pages 59, 65,
75, 81, 102, 119, and 166.)

SAMER, R., FELFERNIG, A., AND STETTINGER, M. 2019. Towards issue recommendation for open
source communities. In 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI
2019, Thessaloniki, Greece, October 14-17, 2019. WI ’19. ACM, 164–171. (Cited on pages 59,
65, 78, 79, 102, 143, 167, and 173.)

SAMER, R., STETTINGER, M., ATAS, M., FELFERNIG, A., RUHE, G., AND DESHPANDE, G. 2019.
New approaches to the identification of dependencies between requirements. In 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI). 1265–1270. (Cited on
pages 58, 59, 69, 85, 89, 102, 164, and 165.)

SAMER, R., STETTINGER, M., AND FELFERNIG, A. 2020. Group recommender user interfaces
for improving requirements prioritization. In Proceedings of the 28th ACM Conference on User
Modeling, Adaptation and Personalization. UMAP ’20. Association for Computing Machinery,
New York, NY, USA, 221–229. (Cited on pages 52, 54, 59, 63, 64, 75, 101, 165, 170, 173,
and 174.)

SAMER, R., STETTINGER, M., AND FELFERNIG, A. 2021. An overview of recommendation tech-
nologies in software requirements engineering. Tech. rep., Graz University of Technology. (Cited
on page 35.)

SAMER, R., STETTINGER, M., FELFERNIG, A., FRANCH, X., AND A., F. 2020. Intelligent recom-
mendation & decision technologies for community-driven requirements engineering. In European
Conference on Artificial Intelligence, Santiago de Compostela, Spain, August 29 - September 5,
2020. ECAI ’20. 3017–3025. (Cited on pages 37, 42, 72, 75, and 159.)

SCHEIN, A. I., POPESCUL, A., UNGAR, L. H., AND PENNOCK, D. M. 2002. Methods and metrics
for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR con-
ference on Research and development in information retrieval. ACM, 253–260. (Cited on page 7.)

SCHMID, K. 2000. Scoping Software Product Lines. In Software Product Lines – Experience and
Research Directions. 513–532. (Cited on page 22.)

SCHULZ-HARDT, S., BRODBECK, F., MOJZISCH, A., KERSCHREITER, R., AND FREY, D. 2006.
Group decision making in hidden profile situations: Dissent as a facilitator of decision quality.
Journal of Personality and Social Psychology 91, 6, 1080–1093. (Cited on pages 8, 12, 13, 63,
103, 106, 109, 110, 111, 165, 173, and 181.)

SHAH, U. AND JINWALA, D. 2015. Resolving ambiguities in natural language software requirements:
A comprehensive survey. SIGSOFT Softw. Eng. Notes 40, 5 (Sept.), 1–7. (Cited on page 102.)

225

Bibliography

SHAO, F., PENG, R., LAI, H., AND WANG, B. 2017. DRank: A semi-automated requirements prior-
itization method based on preferences and dependencies. The Journal of Systems and Software 126,
141–156. (Cited on page 138.)

SLANKAS, J. AND WILLIAMS, L. 2013. Automated extraction of non-functional requirements in
available documentation. In 2013 1st International Workshop on Natural Language Analysis in
Software Engineering (NaturaLiSE). 9–16. (Cited on pages 59 and 60.)

SOMMERVILLE, I. 2010. Software Engineering, 9th ed. Addison-Wesley Publishing Company, USA.
(Cited on page 1.)

STANIK, C., HAERING, M., AND MAALEJ, W. 2019. Classifying multilingual user feedback using
traditional machine learning and deep learning. 2019 IEEE 27th International Requirements Engi-
neering Conference Workshops (REW), Jeju Island, South Korea, 220–226. (Cited on pages 59,
61, 74, 163, and 175.)

STANIK, C. AND MAALEJ, W. 2019. Requirements intelligence with OPENREQ analytics. In 2019
IEEE 27th International Requirements Engineering Conference (RE), Jeju Island, South Korea.
482–483. (Cited on pages 59, 61, 74, and 163.)

STANIK, C., MONTGOMERY, L., MARTENS, D., FUCCI, D., AND MAALEJ, W. 2018. A simple
NLP-based approach to support onboarding and retention in open source communities. 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 172–182. (Cited on
pages 10, 59, 64, 65, 78, 102, 145, 148, and 167.)

STETTINGER, M., FELFERNIG, A., LEITNER, G., AND REITERER, S. 2015. Counteracting anchor-
ing effects in group decision making. In User Modeling, Adaptation and Personalization, F. Ricci,
K. Bontcheva, O. Conlan, and S. Lawless, Eds. Springer, 118–130. (Cited on page 8.)

STETTINGER, M., FELFERNIG, A., LEITNER, G., REITERER, S., AND JERAN, M. 2015. Counter-
acting serial position effects in the CHOICLA group decision support environment. In 20th ACM
Conference on Intelligent User Interfaces (IUI2015). Atlanta, Georgia, USA, 148–157. (Cited on
pages 86, 113, 132, 165, and 180.)

STUMPTNER, M. 1997. An overview of knowledge-based configuration. AICOM 10, 2, 111–125.
(Cited on page 21.)

TARJAN, R. 1971. Depth-first search and linear graph algorithms. In Proceedings of the 12th Annual
Symposium on Switching and Automata Theory (Swat 1971). SWAT ’71. IEEE Computer Society,
Washington, DC, USA, 114–121. (Cited on pages 55 and 108.)

TEICHROEW, D. AND SAYANI, H. 1980. Computer-aided requirements engineering. In Proceedings
of the ACM 1980 Annual Conference. ACM ’80. Association for Computing Machinery, New York,
NY, USA, 369–381. (Cited on page 3.)

226

Bibliography

TIAN, Y., LO, D., XIA, X., AND SUN, C. 2015. Automated prediction of bug report priority using
multi-factor analysis. Empirical Software Engineering 20, 5 (Oct), 1354–1383. (Cited on pages 10,
133, and 144.)

TINTAREV, N. AND MASTHOFF, J. 2007. A survey of explanations in recommender systems. In
2007 IEEE 23rd International Conference on Data Engineering Workshop. 801–810. (Cited on
pages 85 and 188.)

TIWARI, S. AND LADDHA, M. 2017. Ucanalyzer: A tool to analyze use case textual descriptions.
In 2017 IEEE 25th International Requirements Engineering Conference (RE). 448–449. (Cited on
pages 59 and 67.)

TIZARD, J., WANG, H., YOHANNES, L., AND BLINCOE, K. 2019. Can a conversation paint a
picture? Mining requirements in software forums. In 2019 IEEE 27th International Requirements
Engineering Conference (RE). 17–27. (Cited on pages 59 and 61.)

TONELLA, P., SUSI, A., AND PALMA, F. 2013. Interactive requirements prioritization using a genetic
algorithm. Information and Software Technology 55, 1, 173 – 187. (Cited on pages 59, 63, and 132.)

TSANG, E. 1993. Foundations of Constraint Satisfaction. Academic Press, London. (Cited on
pages 26, 132, and 139.)

TVERSKY, A. AND KAHNEMAN, D. 1975. Judgment under Uncertainty: Heuristics and Biases.
Springer, Dordrecht, 141–162. (Cited on pages 63, 111, 173, and 180.)

VAN METEREN, R. AND VAN SOMEREN, M. 2000. Using content-based filtering for recommen-
dation. In Proceedings of ECML 2000 Workshop: Maching Learning in Information Age. 47–56.
(Cited on pages 4 and 43.)

VOGELSANG, A. AND FUHRMANN, S. 2013. Why feature dependencies challenge the requirements
engineering of automotive systems: An empirical study. 2013 21st IEEE International Require-
ments Engineering Conference, RE 2013 - Proceedings, 267–272. (Cited on pages 6 and 68.)

VON WINTERFELDT, D. AND EDWARDS, W. 1986. Decision Analysis and Behavioral Research.
Cambridge University Press. (Cited on page 81.)

WALLENIUS, J., DYER, J., FISHBURN, P., STEUER, R., ZIONTS, S., AND DEB, K. 2008. Multiple
criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead.
Manage. Sci. 54, 7 (July), 1336–1349. (Cited on page 64.)

WANG, S. AND MANNING, C. D. 2012. Baselines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Short Papers - Volume 2. ACL ’12. Association for Computational Linguistics, Strouds-
burg, PA, USA, 90–94. (Cited on page 153.)

WANG, Y., CHAN, S. C.-F., AND NGAI, G. 2012. Applicability of demographic recommender
system to tourist attractions: A case study on trip advisor. In Proceedings of the The 2012

227

Bibliography

IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Tech-
nology - Volume 03. WI-IAT ’12. IEEE Computer Society, Washington, DC, USA, 97–101. (Cited
on page 43.)

WIEGERS, K. 2003. Software Requirements. Microsoft Press. (Cited on page 132.)

WILLIAMS, G. AND MAHMOUD, A. 2017. Mining twitter feeds for software user requirements.
In 2017 IEEE 25th International Requirements Engineering Conference (RE). 1–10. (Cited on
pages 59 and 61.)

WILMINK, M. AND BOCKISCH, C. 2017. On the ability of lightweight checks to detect ambiguity
in requirements documentation. In Requirements Engineering: Foundation for Software Quality.
Springer, 327–343. (Cited on pages 59 and 67.)

WINKLER, J. AND VOGELSANG, A. 2016. Automatic classification of requirements based on convo-
lutional neural networks. In 2016 IEEE 24th International Requirements Engineering Conference
Workshops (REW). 39–45. (Cited on pages 6, 59, 60, and 127.)

XIE, M., LAKSHMANAN, L., AND WOOD, P. 2010. Breaking out of the Box of Recommendations:
From Items to Packages. In 4th ACM Conference on Recommender Systems. Barcelona, Spain,
151–158. (Cited on page 20.)

XU, D. AND TIAN, Y. 2015. A comprehensive survey of clustering algorithms. Annals of Data
Science 2, 2, 165–193. (Cited on page 57.)

XU, J., YAO, Y., TONG, H., TAO, X., AND LU, J. 2015. Ice-breaking: Mitigating cold-start recom-
mendation problem by rating comparison. In Proceedings of the 24th International Conference on
Artificial Intelligence. IJCAI’15. AAAI Press, 3981–3987. (Cited on page 7.)

XUAN, J., JIANG, H., REN, Z., AND LUO, Z. 2012. Solving the large scale next release problem
with a backbone-based multilevel algorithm. IEEE Transactions on Software Engineering 38, 5,
1195–1212. (Cited on page 133.)

XUAN, J., JIANG, H., REN, Z., AND ZOU, W. 2012. Developer prioritization in bug repositories. In
Proceedings of the 34th International Conference on Software Engineering. ICSE ’12. IEEE Press,
Piscataway, NJ, USA, 25–35. (Cited on pages 102, 132, 144, and 165.)

YANG, H.-L. AND WANG, C.-S. 2009. Recommender system for software project planning one
application of revised cbr algorithm. Expert Syst. Appl. 36, 5 (July), 8938–8945. (Cited on pages 59
and 70.)

ZHANG, B. AND ZHOU, H. 2017. Brief announcement: Statement voting and liquid democracy. In
Proceedings of the ACM Symposium on Principles of Distributed Computing. PODC ’17. Associa-
tion for Computing Machinery, New York, NY, USA, 359–361. (Cited on pages 54, 64, and 186.)

ZHANG, Y., HARMAN, M., AND MANSOURI, S. A. 2007. The multi-objective next release problem.
In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. GECCO

228

Bibliography

’07. Association for Computing Machinery, New York, NY, USA, 1129–1137. (Cited on pages 59,
70, and 132.)

ZHAO, X., XIA, L., ZHANG, L., DING, Z., YIN, D., AND TANG, J. 2018. Deep reinforcement learn-
ing for page-wise recommendations. In Proceedings of the 12th ACM Conference on Recommender
Systems. RecSys ’18. Association for Computing Machinery, New York, NY, USA, 95–103. (Cited
on page 186.)

ZHENG, G., ZHANG, F., ZHENG, Z., XIANG, Y., YUAN, N. J., XIE, X., AND LI, Z. 2018. Drn:
A deep reinforcement learning framework for news recommendation. In Proceedings of the 2018
World Wide Web Conference. WWW ’18. International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, 167–176. (Cited on page 186.)

ZHOU, Z. 2017. A brief introduction to weakly supervised learning. National Science Review 5, 1
(08), 44–53. (Cited on page 69.)

229

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Choice Scenarios Beyond Basic Recommendation
	2.1 Abstract
	2.2 Introduction
	2.3 Ranking
	2.4 Packaging
	2.5 Parametrization
	2.6 Configuration
	2.7 Release Planning
	2.8 Triage
	2.9 Resource Balancing
	2.10 Sequencing
	2.11 Polls and Questionnaires
	2.12 Voting
	2.13 Further Aspects of Choice Scenarios
	2.14 Conclusions and Research Issues

	3 Recommender Systems in Requirements Engineering
	3.1 Abstract
	3.2 Introduction
	3.3 Research Methodology
	3.4 Related Work
	3.5 Recommendation Technologies in Requirements Engineering
	3.5.1 Basic Recommendation Algorithms in Requirements Engineering
	3.5.2 Advanced Recommendation Algorithms in Requirements Engineering

	3.6 Application Areas of Recommenders in Requirements Engineering
	3.6.1 Recommenders in Traditional Requirements Engineering
	3.6.2 Requirements Management Platforms

	3.7 Selection of Recommendation Algorithms
	3.8 Open Research Topics
	3.9 Conclusion

	4 New Approaches to the Identification of Dependencies between Requirements
	4.1 Abstract
	4.2 Introduction
	4.3 User Study & Dataset
	4.4 Preprocessing & Feature Extraction
	4.4.1 Extraction of TF-IDF Features
	4.4.2 Extraction of Probabilistic Features

	4.5 Approach
	4.5.1 Classification (Approach I)
	4.5.2 Latent Semantic Analysis (Approach II)

	4.6 Evaluation & Discussion
	4.7 Conclusion & Future Work

	5 Group Recommender User Interfaces for Improving Requirements Prioritization
	5.1 Abstract
	5.2 Introduction
	5.3 Group Recommendation for Requirements Prioritization
	5.3.1 One-dimensional Rating Approach
	5.3.2 Multi-attribute Utility Rating Approach
	5.3.3 Argumentation-based Rating Approach

	5.4 Evaluation
	5.4.1 Experimental Setup
	5.4.2 Results & Discussion

	5.5 Threats to Validity
	5.5.1 Internal Validity
	5.5.2 External Validity

	5.6 Future Work
	5.7 Conclusions

	6 Group Decision Support for Requirements Management Processes
	6.1 Abstract
	6.2 Introduction
	6.3 Application Scenario
	6.3.1 Traditional RM Process
	6.3.2 RM Process with Group Decision Support

	6.4 Potential Issues of Group Decision Support
	6.5 Group Decision Support for Bidding Processes
	6.6 Conclusion and Future Work

	7 Towards Utility-based Prioritization of Requirements in Open-Source Environments
	7.1 Abstract
	7.2 Introduction
	7.3 Utility-based Prioritization
	7.4 Utility-based Prioritization in Bugzilla
	7.5 Taking into Account Dependencies
	7.6 Conclusion and Future Work

	8 Towards Issue Recommendation for Open-Source Communities
	8.1 Abstract
	8.2 Introduction
	8.3 Methodology
	8.3.1 Datasets
	8.3.2 Recommendation Approach

	8.4 Evaluation & Discussion
	8.5 Future Work
	8.6 Conclusion

	9 Intelligent Recommendation & Decision Technologies for Community-Driven RE
	9.1 Abstract
	9.2 Introduction
	9.3 OpenReq Recommendation Technologies
	9.3.1 Requirements Elicitation
	9.3.2 Requirement Dependency Detection
	9.3.3 Prioritization and Evaluation of Requirements
	9.3.4 Stakeholder Recommendation
	9.3.5 Release Planning and Configuration
	9.3.6 Quality Assurance

	9.4 OpenReq User Interface
	9.5 User Studies and Benefits
	9.6 Related and Future Work
	9.7 Conclusion

	10 Conclusions & Future Work
	10.1 Conclusions
	10.2 Future Work

	A Further Study Results of Chapter 5
	B Detailed Evaluation Results of Chapter 8
	List of Figures
	List of Tables
	Bibliography

