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Kurzfassung 

CPT Daten Interpretation mit Machine Learning 

Die Klassifizierung von Böden in Kategorien ähnlicher Eigenschaften ist einer der 

grundlegenden Prozesse in der Geotechnik. Nach Stand der Technik wird diese 

Klassifizierung auf Basis von verschiedenen zeit- und kostenintensiven Labor- 

und/oder Feldversuchen durchgeführt. Diese Untersuchungen sind essentiell für 

jedes Bauvorhaben und dienen als Grundlage für die Planung und Bemessung. 

Machine Learning könnte eine Schlüsselrolle in der Kosten- und Zeitreduktion für 

geotechnische Erkundungsmaßnahmen einnehmen, deshalb wird die grundlegende 

Fähigkeit von Machine Learning Algorithmen zur Bodenklassifizierung von CPT 

Daten untersucht. Um ein passendes Klassifizierungstool zu finden werden 

insgesamt 24 verschiedene Machine Learning Modelle basierend auf 3 

verschiedenen Algorithmen (Artificial Neural Network, Support Vector Machine 

und Random Forest) mithilfe einer Datenbank von 1339 CPTs trainiert und 

getestet. Als Input „Features“ dienen verschiedene Kombinationen von direkten 

Messdaten (Spitzendruck qc, Mantelreibung fs, Reibungsverhältnis Rf, Tiefe d) mit 

„definierten“ Daten (nicht direkt gemessene Daten wie totale und effektive 

Vertikalspannungen σv und σ’v sowie der hydrostatische Porenwasserdruck u0). 

Als „Targets“ dienen Bodenklassen, basierend auf Korngrößenverteilung sowie 

Bodenverhaltensklassen nach Robertson (1990, 2009, 2016). Die verschiedenen 

Modelle werden auf Basis ihrer Genauigkeit und ihrer Trainingszeit miteinander 

verglichen. Die besten Resultate wurden unter Verwendung eines Random Forest 

Algorithmus erzielt. Für die Bodenklassen auf Basis von Korngrößenverteilung 

konnte eine Genauigkeit von 75 % und für die Bodenverhaltensklassen nach 

Robertson eine Genauigkeit von 97-99 % erzielt werden. Zusätzlich wurden die 

Random Forest Modelle verwendet, um Bodenschichten und -klassen von neuen 

CPT Daten aus Österreich und den Niederlanden zu klassifizieren. Die Ergebnisse 

sind durchwegs akkurat und zeigen, dass Machine Learning ein nützliches Tool 

sein kann, um den Prozess der Bodenklassifizierung zu verbessern. 

 





Abstract 

CPT-Data Interpretation Using Machine Learning  

The classification of soils into categories with a similar range of properties is one 

of the fundamental procedures in geotechnical engineering. Currently, this 

classification is based on various types of cost and time intensive laboratory and/or 

in-situ tests. These soil investigations are essential for each individual construction 

site and have to be performed prior to the design of a project. Since Machine 

Learning could play a key role in reducing the costs and time needed for a suitable 

site investigation program, the basic ability of Machine Learning models to 

classify soils from Cone Penetration Tests (CPT) is evaluated. To find an 

appropriate classification model, 24 different Machine Learning models based on 

three different algorithms, namely Support Vector Machine, Artificial Neural 

Network and Random Forest are built and trained on a dataset consisting of 1339 

CPTs. As input features, different combinations of direct cone penetration test data 

(tip resistance qc, sleeve friction fs, friction ratio Rf, depth d) combined with 

“defined”, thus not directly measured data (total vertical stresses σv, effective 

vertical stresses σ’v and hydrostatic pore pressure u0) are used. As targets, standard 

soil classes based on grain size distributions and soil classes based on Soil 

Behaviour Types acc. to Robertson (1990, 2016 and 2009) are applied. The 

different models are compared with respect to their prediction performance and 

the required learning time. The best results for all targets are obtained with models 

using a Random Forest classifier. For the soil classes based on grain size 

distribution an accuracy of about 75 % and for soil classes according to Robertson 

an accuracy of about 97-99 % is reached. In addition, the models are used to predict 

soil classes and strata from unseen CPT tests from sites in Austria and the 

Netherlands. The predictions yield accurate results and show that Machine 

Learning can improve the process of soil classification. 
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Small letters 
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qt [MPa] corrected tip resistance 

fs [MPa] sleeve friction 

u0 [MPa] hydrostatic pore pressure 
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1 Introduction 

Artificial Intelligence and its subfield Machine Learning has become a constant 

companion in our daily life. Whether it’s the ability of an email program to identify 

spam or a streaming portal recommending new movies one might like, many 

processes would not be possible without the field of Artificial Intelligence. But 

besides that, Machine learning has also become a useful tool to interpret large 

datasets through regression and classification in various fields of research.  

One of the fundamental procedures in geotechnical engineering is to classify soils 

into categories with similar physical properties. This classification is usually done 

through costly and time intensive laboratory and/or field tests during the 

preliminary stages of a construction project. This often leads to high costs before 

one even knows if the planned project is feasible.  

The Cone Penetration Test (CPT) is a cost-effective field test and over the last 

years, various Soil Behaviour Type Charts were developed to classify and identify 

soil strata from the measured test data. In 2021, Oberhollenzer et. al. published a 

dataset consisting of measured and interpreted data from 1339 CPT. Additionally, 

soil classes based on grain size distribution from adjacent boreholes were added to 

490 of them.  

The aim of this master thesis is to evaluate the ability of a Machine Learning model 

to classify soils from Cone Penetration Test data. Therefore, different models 

based on different learning algorithms are built, tested and compared in order to 

find the best suitable model for this task. 

1.1 Objectives 

After a literature study to identify the state of the art of Machine Learning in 

geotechnical engineering, the objectives of this thesis are to evaluate the basic 

ability of a Machine Learning Model to classify soils from CPT data, once 

targeting Soil Behaviour Types according to Robertson (1990, 2009, 2016) and 

once targeting soil classes based on grain size distribution according to 

Oberhollenzer et. al. (2021). Therefore, different models based on learning 

algorithms like Support Vector Machine, Artificial Neural Network and Random 

Forest are built and compared with respect to their prediction accuracy and training 

time. The models which yield the best performance are then used to predict soil 

classes and generate a soil model from unseen CPT data from sites in Austria and 

the Netherlands.   
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1.2 Approach 

Based on three different algorithms, namely the Support Vector Machine, the 

Artificial Neural Network and the Random Forest, 24 different learning models 

are built using 2 different sets of input features and 4 different target classes. As 

target classes the soil classes after Oberhollenzer et. al. (2021) and the 3 different 

Soil Behaviour Types according to Robertson (1990, 2009, 2016) are used. The 

comparison and ranking of the models are predominantly based on the prediction 

accuracy and secondarily on the necessary training time.  

All models are built on a MacBook Pro 13” 2018 (CPU: INTEL core i5 2,3 GHz 

quad core, RAM: 8 GB, GPU: Intel Iris Plus Graphics 655 1536 MB) using the 

SPYDER python environment. The applied Machine Learning algorithms are part 

of the opensource software library of scikit-learn.  
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2 Literature Study 

2.1 Application of Machine Learning in soil sciences 

With an increasing amount of high-quality data sets available in various fields of 

research, the application of Machine Learning for data science increased quickly, 

especially over the last 10 years. Machine learning and its subsets (e.g., Deep 

Learning) are used in several fields of research in soil sciences reaching from crop 

prediction in agricultural sciences to determine physical soil properties like bulk 

density in geotechnical engineering. With a raising number of available open-

source algorithms (e.g., scikit-learn and TensorFlow in Python) the research output 

increased rapidly. Figure 1 shows the number of publications in this field over the 

last 20 years. 

 

Figure 1: Number of publications regarding Machine Learning in soil sciences. 

(Padarian, Minasny, & Mcbratney, 2020) 

The most common algorithms used in current research regarding Machine 

Learning in geotechnics are Artificial Neural Networks (ANN), Linear and 

Polynomial Regression (LR & PR), Support Vector Machines (SVM), Decision 

Trees and Random Forest (RF). The aforementioned techniques are mainly 

developed in Matlab (e.g. Wang, et al., 2019) and Python (e.g. Tsiaousi, et al., 

2018) environment. The operation principle and application of these approaches 

on different problems is described below. 

2.2 Frequently used algorithms  

The description of the different algorithms in this chapter is based on the book 

“Python Machine Learning” by Raschka and Mirjalili (2019).  
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 Artificial Neural Networks – ANN 

The principle of Artificial Neural Networks is based on the mechanism of the 

neural network of a human brain. A flow chart of the algorithm is visualized in 

Figure 2. A neural network consists basically of three different layer types. The 

first one is the input layer where pre-processed input data is surrendered to the 

algorithm. The second layer type is called hidden layer, here the input values are 

combined with the weights and the third layer type represents the output. A 

Network with more than one hidden layer is called Deep Artificial Neural 

Network. In the forward propagation each layer hands the data to the next one until 

the output is computed. During training of the algorithm, the output values are 

compared to the real ones of the training set and the resulting error is calculated. 

With this information the weights of the hidden layer are adjusted to get a proper 

result, this is called backpropagation.  

 

Figure 2: Pattern of an ANN algorithm (Raschka & Mirjalili, 2019) 

Artificial Neural Networks have been used to classify soils from sounding-data 

(Reale, Gavin, Librić, & Jurić-Kaćunić, 2018), to predict bearing capacity of piles 

(Samui, 2008), the cone resistance of CPT tests (Erzin & Ecemis, 2017) or identify 

soil parameter (Puri, Prasad, & Jain, 2018). Recent research shows that with 

enough data available, neural networks outperform other Machine Learning 

approaches (e.g. Regression) in accuracy, but with less quality data available, other 

algorithms (e.g. SVM) might lead to better results.  

 Regression and Classification 

Regression and Classification are tools of supervised learning. Regression is used 

to find a relationship between input (explanatory) and output (outcome) variables 

to predict an outcome. Regression is defined as linear, if the relationship can be 

described with a straight line or polynomial, if higher order functions are needed. 
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Figure 3: Linear regression (Raschka & Mirjalili, 2019) 

With Classification the examined variables can be divided into classes based on 

past observations (e.g. classification of spam mails). Similar to regression the order 

of the classification rule depends on the relationship between input and output data. 

 

Figure 4: Classification of data in two classes with a linear function (Raschka & 

Mirjalili, 2019) 

Regression analysis has been used recently for the prediction of soil parameter 

(Puri, Prasad, & Jain, 2018), estimating optimal additive content for soil 

stabilization (Gajurel, Mukherjee, & Chittoori, 2019) and in more advanced 

models (e.g. evolutional polynomial regression EPR) for an artificial intelligence 

based finite element method (Javadi, Mehravar, Faramarzi, & Ahangar-Asr, 2009), 

for the settlement and bearing capacity analysis of shallow foundations (Shahin, 

2015) and for analysis of the correlation of soil properties (Jin & Yin, 2020). 

 Support Vector Machine – SVM 

A Support Vector Machine (SVM) can be described as an advancement of the 

classification or regression. The optimization objective of a SVM is to maximize 

the margin, which is defined as the maximum distance between the variables of 

the training-set and the separating hyperplane. The training examples on the edge, 
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which define the margin are called the support vectors. The advantage of this 

approach is that decision boundaries with large margins tend to have lower 

generalization errors.  

 

Figure 5: Principle of an SVM algorithm (Raschka & Mirjalili, 2019) 

Support Vector Machines have been used to predict the bearing capacity of bored 

piles from CPT data (Alkroosh, Bahadori, Nikraz, & Bahadori, 2015), soil 

compressibility (Kirts, Panagopoulos, Xanthopoulos, & Nam, 2018) or soil 

classification (Harlianto, Adji, & Setiawan, 2017). In general, SVM perform with 

higher accuracy than ANNs if less data is available.  

 Decision Trees and Random Forest 

A Decision Tree is a non-parametric supervised learning method that can 

summarise decision rules from a series of data with features and labels and use the 

structure of the tree to present these rules to solve classification and regression 

problems (Zhang , Wang, & Wu, 2019). The advantage of Decision Trees is that 

the prediction is comprehensible, and the influence of the deciding parameter can 

be identified immediately. A schema of a decision tree is shown in Figure 6.  

 
Figure 6: Simple example of a decision tree (Raschka & Mirjalili, 2019) 

A combination of various Decision Trees is called Random Forest (RF). With RF, 

the results of different Decision Trees for the same investigated problem are 
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averaged. This leads to a more robust model which is less vulnerable to overfitting. 

Overfitting means that the model fits better to training data than to unseen data, for 

more information see chapter 4.1. 

In recent research, Random Forest and Decision Trees have been used to predict 

geotechnical parameters (Puri, Prasad, & Jain, 2018), the undrained shear strength 

(Wu, Zhong, Zhang, Li, & Wang, 2020) and the pile drivability (Zhang , Wang, & 

Wu, 2019). 

2.3 Recent publications regarding Machine Learning 

for soil classification  

One of the fundamental criteria for proper geotechnical design of any under- or on 

the ground structure is comprehensive knowledge of the type, composition and 

mechanical properties of the subsurface. To gather enough information about the 

subsurface conditions, an appropriate and usually cost-intensive testing program 

has to be planned and executed for each construction project. Based on the 

laboratory test results various soil classification systems using particle size 

distribution and Atterberg limits, e.g., the North American Unified Soil 

Classification System USCS (ASTM D2487-17e1, 2017) or the European Soil 

Classification System ESCS (EN ISO 14688-2, 2019) have been established. To 

avoid costly laboratory tests and to gain information about undisturbed in-situ 

conditions for the classification of soil types various classification systems based 

on in-situ tests i.e., Cone Penetration Test (CPT) were introduced in the past, e.g. 

soil behaviour types according to Robertson (1990). The main disadvantage of soil 

classification based on in-situ tests is that the subsoil conditions aren’t visible for 

the engineering judgement and therefore misclassification of soils which behave 

nearly similar while testing, but are actually different, is possible. The state of the 

art and current research results in the interpretation of test results and soil 

classification with the help of soft computing methods is described in the following 

chapters. 

 Artificial Neural Network – ANN 

The application of Artificial Neural Networks for soil classification has been used 

recently to interpret soil stratigraphy and determine shear wave velocity (Tsiaousi, 

Travasarou, Drosos, Ugalde, & Chacko, 2018) and to classify soils according to 

USCS from CPT data (Reale, Gavin, Librić, & Jurić-Kaćunić, 2018).  

Tsiaousi (2018) used an Artificial Neural Network based on multilayer perceptron 

(MLP) to interpret soil stratigraphy and estimate shear wave velocity based on CPT 

test data. A multilayer perceptron is able to distinguish between data which is not 
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linearly separable (more information about the function principle of a MLP is 

provided in chapter 4.2.1.). For soil classification, a supervised ANN using 

classification based on backpropagation was applied. Test data of 15 CPTs, where 

seven soil strata were identified manually, were used for training and validation of 

the algorithm. 12 for training and 3 for evaluation of accuracy. For the estimation 

of shear wave velocity, 11 seismic CPTs were used, 9 for training and 2 for 

validation. The input values which leaded to the highest accuracy were the cone 

tip resistance qc, the sleeve friction fs, the friction ratio Rf, and the elevation. The 

input features were standardized and normalized because the range of values of the 

input features varied significantly. This resulted in a more robust prediction. The 

effect of imbalanced data sets was considered by applying a sensitivity analysis 

which implements under- and oversampling techniques. Under- and oversampling 

are part of resampling techniques to avoid under- or overrepresented classes in a 

dataset, more information about class balance is provided in chapter 4.1.6. To 

avoid many interchanges in classified soil layers a minimum thickness of each 

layer was determined. The algorithm classified soil stratigraphy with an accuracy 

of about 90% and determined the shear wave velocity with a r2-score of 0.92 (best 

is 1.0). 

Reale (2018) used an ANN backpropagation algorithm for soil classification 

according to USCS based on CPT test data. Two feed forward neural networks 

trained with Levenberg-Marquardt backpropagation algorithm were developed to 

estimate on one hand the fines content and on the other hand the liquid limit and 

plasticity index. Both consist of three hidden layers and two input nodes for the 

sleeve friction and tip resistance. With these outputs, the soil is classified according 

to USCS or ESCS. Overall, 216 pairs of CPT and laboratory test data sets were 

available, all of them applied for the estimation of the fines content and 176 were 

used for the liquid limit and plasticity index. The classification with the neural 

network resulted in an r2-score of 0.95 for the fines content, 0.85 for the liquid 

limit and 0.78 for the plasticity index (best is 1.0). Almost 90% of the soils were 

classified correctly and all in all the ANN classified the samples with a better 

performance compared to other published correlations.  

 General Regression Neural Network – GRNN 

The General Regression Neural Network is a multi-layer feed forward neural 

network that performs general regression analysis directly from sample data. It 

computes the Euclidean distance (shortest distance between two points, e.g. in 2D 

space it is the length of a straight line between two points) separating the input 

values of a given testing case xi from those of each training case xij and then finds 

the weighted mean of the target values of the training cases yi closest to the testing 

case to predict the network output ŷ. A draw-back of this algorithm is that it is not 

capable of extrapolation which means that a point of a certain testing set must be 

in the range of the training data. (Kurup & Griffin, 2006) 
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Kurup & Griffin (2006) used the GRNN to classify soils from CPT test data. For 

training and testing the algorithm 142 data sets were available. 100 were used for 

training and 42 for testing, 10% of the training sets were used for fine tuning of 

the network. In data pre-processing the results of the CPT tests were scaled 

between -1 and 1. The applied network predicts the probability of a soil type in a 

specific layer i.e., for a layer between -1.2m and -2.5m the result yields to 70% 

sand, 10% silt and 20% gravel, therefore the estimated soil type for this layer is 

sand. The GRNN predicted about 86% correct with respect to the sample size.  

Goh (1999) used the GRNN to predict the coefficient of consolidation cv and to 

classify soils from particle size distributions. 60 patterns of laboratory particle size 

distribution were used for training and 10 were used for testing, additionally, 23 

patterns were used for the prediction of cv. The samples for training consisted of 

particle size distribution and the determined soil type. The algorithm yielded cv 

values with good agreement with the validation data and all soil types were 

classified correctly. 

 Bayesian Statistical Models 

In Bayesian Statistics, the likelihood of a resulting parameter is defined based on 

prior knowledge, i.e., the estimation of a parameter y (posterior) based on a set of 

parameter x is done by the combination of a maximum likelihood function with an 

already known prior (e.g., a friction angle of the soil in the prospected area must 

be between 30-35 degrees). The outcoming posterior can be set as a new prior for 

the combination with new input values. Bayesian statistics were used for several 

statistical soil classification approaches based on in-situ tests, e.g., (Wang, Huang, 

& Zijun, 2013). 

Wang (2019) developed an unsupervised learning approach based on a Bayesian 

inferential framework (contrary to common statistics, Bayesian statistics introduce 

a prior belief or knowledge to the calculation) which used CPT data to find soil 

strata and classify the different layers according to Robertson’s soil behaviour type 

chart (1990). The approach is divided into two major parts, first a pattern detection 

approach infers a spatial pattern in physical space and a statistical pattern in feature 

space from the input dataset, while in the second part the patterns get transformed 

into sets of multiple soil layers with different soil behaviour types. The advantage 

of this approach is the combination of probabilistic soil classification combined 

with spatial consistency and statistical similarity. The approach has been validated 

by two numerical studies and indicated accurate results. This method is more 

complex compared to other studies because additionally to properties of the feature 

space (qc, Qt, et.) it takes properties of physical space, e.g., depth, to account for 

the classification. The code is available for download under the following link: 

https://github.com/hwang051785/pyCPT 
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3 Dataset  

3.1 Cone Penetration Test – CPT 

The content provided in this chapter is based on the book “Cone Penetration 

Testing” by Lunne, et al. (1997) 

In a cone penetration test (CPT), a cone is pushed vertically into the subsoil under 

a constant rate (usually 2 cm/s) and the resisting forces generated by the 

penetration of the cone are measured permanently in terms of tip resistance qc and 

sleeve friction fs. In a “piezocone” test (CPTu), pore water pressures (u1, u2, u3) 

are measured to gain information about groundwater conditions and permeability 

(different pore pressures at u1, u2 and u3) of the subsoil. In a seismic cone 

penetration test (SCPT or SCPTu), shear wave velocities Vs are measured at 

different depth (usually every 50 cm or 100 cm) additionally.  

 

Figure 7: Schematic sketch of the cone (Lunne, Robertson, & Powell, 1997) 

Cone penetration tests are mainly applied for the determination of soil strata and 

identification of soil types, the estimation of geotechnical parameter, thus, to 

provide inputs for the geotechnical design. The main advantages are:  

• continuous generation of data, 

• repeatable and reliable penetration data, 

• cost efficient sampling  

• test data of undisturbed in situ soil conditions 
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Table 1: Test types and measured values 

 
 

The main disadvantage of CPT is that the composition of the subsoil is not visible 

for the engineer, therefore, a subsurface exploration program with cone penetration 

tests is usually complemented with core drillings, sampling and laboratory tests to 

verify correlations (e.g. for geotechnical parameter) or to evaluate the soil 

behaviour under proposed site-specific future loading conditions.  

 Testing and data acquisition 

The recommended rate of penetration is 20 mm/s. Due to dissipating excess pore 

water pressures the soundings should be as continuous as possible. The interval of 

readings is usually around 10-50 mm to obtain sufficient detailed data. Figure 8 

provides a comparison of the tip resistance qc, the sleeve friction fs and the 

porewater pressure u2 with the soil classification based on grain size distribution 

from adjacent core drillings. In this picture, the influence of changes in subsoil 

strata are visible in the data from the CPT measurements. (Oberhollenzer , et al., 

2021) 

 

Figure 8: Comparison of CPT measurements with soil classification based on grain 

size distribution (Oberhollenzer , et al., 2021) 

Test type Measurements

CPT qc, fs

CPTu qc, fs, u2

SCPT qc, fs, Vs

SCPTu qc, fs, u2, Vs
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3.2 Database “CPT_PremstallerGeotechnik” 

 Source 

The dataset “Cone Penetration Test Dataset Premstaller Geotechnik” was 

published in 2021 (Oberhollenzer , et al., 2021) by the Institute of Soil Mechanics, 

Foundation Engineering and Computational Geotechnics and the Institute of Rock 

Mechanics and Tunnelling at Graz University of Technology in cooperation with 

the company Premstaller Geotechnik ZT GmbH. It is available online and can be 

downloaded from the following address:  

https://www.tugraz.at/en/institutes/ibg/research/computational-geotechnics-

group/database/  

The dataset consists of test data from 1339 cone penetration tests (CPT, CPTu, 

SCPT, SCPTu) from various sites in Austria and the south of Germany. All of the 

test data is classified in soil behaviour type charts according to Robertson (1991, 

2009, 2016). Additionally, 490 of them were classified via grain size distribution 

from adjacent core drillings. More information related to the dataset is given in 

Oberhollenzer, et.al., (2021). 

 Features 

The database consists of 28 feature columns and 2.516.978 rows with test and 

interpreted data. Table 2 provides an overview of the features, their meaning, type 

and amount of available data. The features are distinguished in three different 

types, where “Defined” means that the value, or class of this feature is defined by 

an engineer, “Test data” means that it is measured raw data from in situ tests 

without any human interpretation and “Empirical correlation” means that these 

values are determined after empirical relationships according to published 

literature (e.g. Robertson 1986) from the defined and measured data. The column 

“Amount of data” describes the quantity of non-null values for each feature but 

does not represent the amount of suitable data, e.g. in column 

“Oberhollenzer_classes” 1.030.569 rows have an entry and therefore 1.486.510 

are empty. To eliminate measurement errors threshold values of -100 and +10.000 

were defined and measured points which are exceeding these numbers are left 

blank. 
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Table 2: Features of dataset 

 
 

Machine learning algorithms are usually not able to handle missing data (or null 

values) therefore, the dataset has to be adjusted for the proposed application, e.g. 

rows with missing data must be deleted or filled with synthetic data, this is part of 

the pre-processing and is discussed in chapter 4.1. 

3.3 Classification of CPT data 

 Classification based on grain size distribution 

The content provided in this chapter is mainly based on chapter 2 of the book 

“Handbuch Geotechnik” by Boley (Eigenschaften und Klassifikation von Böden, 

2019) 

The size of the soil grains is described by their equivalent grain diameter d in mm. 

The distribution of the different grain diameters is usually divided in 6 groups, 

provided in Table 3. 

Abbreviation Name Type Amount of data

ID ID of Test Defined 2516979

test_type CPT, CPTu, SCPT or SCPTu Defined 2516979

basin_valley Location of test site Test data 2516979

Depth (m) Depth of measured data Test data 2516979

qc (MPa) Tip resistance Test data 2516162

fs (kPa) Sleeve friction Test data 2515446

u2 (kPa) Generated porewater pressure Test data 798379

Vs (m/s) Shear wave velocity Test data 3981

qt (MPa) Cone resistance corrected for water effects Empirical correlation 2516853

Rf (%) Friction ratio Empirical correlation 2515663

γ (KN/m3) Specific weight Defined 2516852

σ,v (kPa) Total vertical stress Empirical correlation 2516852

u0 (kPa) Hydrostatical stress due to groundwater horizon Defined 2516852

σ',v (kPa) Buoyant  vertical stress Empirical correlation 2516852

Qt (-) Normalized cone resistance Empirical correlation 2516315

Qtn (-) Updated normalized cone resistance Empirical correlation 2516765

Fr (%) Normalized friction ratio Empirical correlation 2514275

Bq (-) Pore pressure parameter Empirical correlation 798424

U2 (-) Normalized excess pore pressure Empirical correlation 798429

SBT (-) Soil behaviour type (non-normalized) Empirical correlation 2516853

SBTn (-) Soil behaviour type (normalized) Empirical correlation 2516851

Mod. SBTn (-) Modified soil behaviour type (normalized) Empirical correlation 2516851

n Stress exponent Empirical correlation 2516851

Ic (-) Soil behaviour type index Empirical correlation 2516851

Ic-SBT (-) Soil behaviour type index Empirical correlation 2516852

Ib (-) Modified soil behaviour type index Empirical correlation 2514622

EN_ISO_14688_classes Soil classification with grain size distribution acc. to EN ISO 14688 Defined 880960

Oberhollenzer_classes Soil classification with grain size distribution acc. Oberhollenzer 2020 Defined 1030469



3 Dataset 

 

14 

Table 3: Grain size groups according to “Handbuch Geotechnik” (Zou & Boley, 

2019) 

 
 

The distribution of different grain groups is determined with laboratory tests. 

Samples with grain size > 0.063 mm are determined with a sieve and that with 

grain size < 0.063 mm by sedimentation. The resulting grain size distribution is 

usually displayed in grain size charts. In Figure 9 the grain size distribution for a 

soil sample based on sedimentation (B), sieve (A) and the combination of both (C) 

is displayed.  

 

Figure 9: Grain size distribution chart according to "Handbook Geotechnik" (Zou 

& Boley, 2019) 

Based on the grain size distribution, the soil is classified according to a 

standardized classification system, e.g. Unified Soil Classification System (ASTM 

D2487-17e1, 2017) or European Soil Classification System (EN ISO 14688-2). 

According to EN ISO 14688-2 samples where more than 50 % of mass fraction of 

particles are greater than 0.063 mm are described as coarse and their classification 

is predominantly determined based on the grain size distribution. For samples 

where more than 50 % is smaller than 0.063 mm, called fine grained soil, the 

determination is based on the plasticity (liquid limit wL and plastic limit wP), 

Name Grain size range [mm]

Clay < 0.002 

Silt 0.002 - 0.063

Sand 0.063 - 2.0

Gravel 2.0 - 63.0 

Stones 63.0 - 200

Blocks > 200
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compressibility, stiffness, etc. Figure 10 provides an overview of the soil 

classification process based on laboratory tests according to the European Soil 

Classification System. (EN ISO 14688-2, 2019) 

 

Figure 10: Soil classification according to (EN ISO 14688-2, 2019) 

3.3.1.1 Classification according to Oberhollenzer, et al. (2021) 

Oberhollenzer, et al. (2021) defined 7 soil classes containing a specific range of 

grain sizes, reaching from gravely to clayey material. (displayed in Table 4). The 

classification is based on grain size distribution from adjacent core drillings. The 

assigned core drillings have a maximum distance of about 50 m to the in-situ tests. 
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The variation of height and thickness of soil strata due to the distance between 

borehole and CPT test is considered in this classification by manually adjusting 

the depth of the strata boundaries. Soil types which could not be assigned to the 7 

classes are described as “ignored” and labelled as “0” in the dataset.  

 

Table 4: Groups of Oberhollenzer_classes 

Name Grain size range Mainly contents Label 

Group 1 Gr,sa,si’ → Gr,co gravel 1 

Group 2 Or,cl → Or,sa’ fine grained organic soils 2 

Group 3 Or,sa → Or/Sa coarse grained organic soils 3 

Group 4 Sa,gr,si → Gr,sa,si sand to gravel 4 

Group 5 Sa,si → Sa,gr,si’ sand 5 

Group 6 Si,sa,cl’ → Si,sa,gr silt to fine sand 6 

Group 7 Cl/Si,sa’ → Si,cl,sa clay to silt 7 

Ignored Group --  0 

 
 

 Soil Behaviour Types – SBT according to Robertson  

For the classification of soils from cone penetration test data, various soil 

behaviour charts were developed. Some of the most prevalent charts were 

published by Robertson (1990, 2009, 2016). In these charts the soil behaviour type 

is determined using non-normalized (qc, qt, fs, Rf) and normalized parameters (Qt, 

Qtn, Fr, Bq) from CPT tests. In normalized parameters, the influence of the 

groundwater conditions on the tip resistance and friction ratio is taken to account, 

therefore piezocone tests (CPTu or SCPTu) are required. In the used dataset, u0 

was determined from adjacent bore holes or if no information was available the 

groundwater table was assumed to be at the top of ground level. Additionally, u2 

was assumed to be 0 for the calculation of normalized values for all tests were no 

porewater pressures were measured (CPT, SCPT).  

 

The first soil behaviour type chart by Robertson was published 1986 and consisted 

of 12 behaviour types based on the friction ratio  

𝑅𝑓 = 𝑓𝑠/𝑞𝑐 (1) 

 

and the corrected tip resistance   

𝑞𝑡 =  𝑞𝑐 + 𝑢2 × (1 − 𝛼) (2) 
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where qt is the corrected tip resistance, u2 is the generated porewater pressure 

above the cone and α is the cone area ratio. Instead of qt, qc can be used either for 

the tip resistance, but this will lead to slightly different results. (Oberhollenzer , et 

al., 2021) 

In 1990, a soil behaviour type chart, using normalized parameters was published 

by Robertson which is shown in Figure 11. 

 

Figure 11: Soil behaviour type chart with normalized parameters according to 

Robertson (1990)  

 

This chart distinguishes between 9 soil behaviour types using the normalized cone 

resistance:  

𝑄𝑡 =
𝑞𝑡 − 𝜎𝑣𝑜

𝜎′
𝑣𝑜

 (3) 

 

The normalized friction ratio: 

𝐹𝑅 =
𝑓𝑠

𝑞𝑡 − 𝜎𝑣𝑜

× 100% (4) 
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The pore pressure ratio: 

𝐵𝑞 =
𝑢2 − 𝑢0

𝑞𝑡 − 𝜎𝑣𝑜

=
∆𝑢

𝑞𝑡 − 𝜎𝑣𝑜

 (5) 

 

where u0 is the in-situ pore water pressure, σvo is the in situ total vertical stress and 

σ’vo is the in situ effective vertical stress. The main advantage of this chart is that 

the effects of water pressures and cone design are considered in the normalized 

values. One disadvantage is that measurements of the porewater pressure is 

necessary and therefore, CPTu or SCPTu tests are required. Soil behaviour type 

classifications based on this chart are labelled as “SBTn” in this thesis.  

In 2009, Robertson published an updated version of his soil behaviour chart from 

1986, where the 12 initial behaviour types are reduced and adjusted to the 9 types 

from the SBTn chart from 1990 (Robertson P. , 2009). 

The updated chart is based on the dimensionless cone resistance: 

𝑞𝑐

𝑝𝑎

 (6) 

 

Where pa is the atmospheric pressure (1 bar = 100 kPa = 0.1 MPa) and with the 

friction ratio: 

𝑅𝑓 = 𝑓𝑠/𝑞𝑐 (7) 

 

Both values are shown on log scales to provide the area where Rf < 1% too. The 

chart is displayed in Figure 12 and classifications based on this chart are labelled 

as “SBT” in this thesis. 
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Figure 12: Updated soil behaviour type chart according to Robertson (2009)  

Most of the published soil behaviour type classification systems classify soils 

based on textural descriptions like silt, clay, sand or gravel. In 2016, Robertson 

published a modified chart for the determination of the soil behaviour type which 

focuses more on the behaviour, e.g., dilative or contractive, of a certain soil than 

on the name (Robertson P. , 2016). The chart is based on the updated normalized 

cone resistance: 

𝑄𝑡𝑛 = (
𝑞𝑡 − 𝜎𝑣

𝑝𝑎

) (
𝑝𝑎

𝜎′
𝑣𝑜

)
𝑛

 (8) 

 

where n is the stress exponent that varies with normalized Soil Behaviour Type, 

which is defined by 

𝑛 = 0.381(𝐼𝑐) + 0.05 (
𝜎′

𝑣𝑜

𝑝𝑎

) − 0.15 (9) 
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where n ≤ 1 and Ic is the soil behaviour type index:  

𝐼𝑐 = √(3.47 − 𝑙𝑜𝑔𝑄𝑡)2 + (𝑙𝑜𝑔𝐹𝑟 + 1.22)2 (10) 

 

Figure 13 shows the modified behaviour type chart based on a modified behaviour 

type index: 

𝐼𝐵 =
100(𝑄𝑡𝑛 + 10)

𝑄𝑡𝑛𝐹𝑟 + 70
 (11) 

 

The proposed behaviour types decreased to 7 and distinguish mainly between sand 

or clay like and contractive or dilative behaviour. This chart is labelled as 

“Mod.SBTn” in this thesis. 

 

Figure 13: Modified soil behaviour type according to Robertson (2016) 

A summary of the three different soil behaviour types and their respective inputs 

provided by Robertson is given in Table 5. 

Table 5: Overview of soil behaviour types provided by Robertson 

Label Reference Number of SBT  Parameters 

SBT Robertson, 1990 9 Rf, qt 

SBTn Robertson, 2009 9 Qt, Bq 

Mod. SBTn Robertson, 2016 7 Qtn, Fr 
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4 Building a Machine Learning Model 

The content provided in this chapter is based mainly on the book “Python Machine 

Learning” by Raschka & Mirjalili (2019) as well as on the websites of Python 

(Python Software Foundation, 2020), Pandas (The pandas development team, 

2020), Matplotlib (The Matplotlib development team, 2020), Seaborn (Waskom, 

2020) and Scikit-learn (scikit-learn developers, 2020) with the related article 

“Scikit-Learn: Machine Learning in Python” (Pedregosa, et al., 2011) 

The process of building a machine learning model can be divided into 4 major 

steps. First, the preparation of the dataset which is called pre-processing. Second, 

the training of the dataset where the model is learning from a part of the data to 

find the best relation between input and desired output. Third, the validation of the 

dataset, where the performance of the model is evaluated and improved by tuning 

hyperparameters, and fourth, the testing of the model on unseen data.  

4.1 Pre-processing  

One of the most important steps in data science using machine learning is the pre-

processing of the dataset, which means the quantity and quality of data is evaluated 

and adjusted to satisfy requirements of the proposed learning technique. Robust 

predictions are generally obtained when the following conditions are fulfilled.  

• Complete data: 

Generally, machine learning algorithms are not able to deal with empty 

inputs, so called null values or NANs. There are two possibilities to deal with 

empty inputs, first, if the number of null values compared to the whole dataset 

is small, relevant rows can be deleted, second, if there is not much data 

available, null values can be filled with synthetic data. Mostly the average or 

median value of all other inputs of one feature is taken to fill these empty 

cells. There is no general rule, which procedure should be used as it depends 

largely on the quality and quantity of the available data and the projected 

learning approach. 

• Feature selection: 

In this thesis, two types of feature selection methods are distinguished. First, 

feature selection considering geotechnical parameters, which means the 

features are selected with respect to their origin, e.g., solely measured test 

data or additional interpreted features. Second, features which are selected 

through machine learning techniques, e.g., sequential feature selection 

algorithms, to optimize the selection of features with respect to the output of 

the learning algorithm but these are not used in this thesis. With automatic 
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feature selection, a subset of features, most relevant to the problem is 

determined to improve computational efficiency or to reduce generalization 

error. Generalization errors are often related to overfitting (and underfitting), 

which generally describes the performance ratio of an algorithm on the test 

set compared to the training set. Overfitting, or high variance can be caused 

by having too many features, leading to a too complex model. Underfitting or 

high bias is often caused by applying a model which is not complex enough. 

The consequence of overfitting is that the model fits the training data better 

than the test data. The consequence of underfitting is that the model cannot 

learn from the data and therefore also not predict sufficiently from test data. 

A visualization of the aforementioned generalization errors is provided in 

Figure 14. 

 

Figure 14: Visualisation of generalization errors (Raschka & Mirjalili, 2019) 

 

• Split of test and training data: 

To evaluate the prediction performance of a learning model it has to be tested 

on unseen data. Since training and testing data is usually gained from the same 

dataset it must be split in a way that it has no influence on the statistical 

parameters of the data (e.g., mean and median) and that data is also selected 

randomly to avoid that parts of the dataset are under- or overrepresented in 

testing or training data. The most common algorithm for validation in scikit-

learn is “train-test-split”. It separates training and test data randomly based on 

a user defined ratio, where usually the data for training is of about 60-90 % 

of the dataset and the rest is used for testing. After evaluation, the train and 

test data are often reunited, and the model is retrained on the entire dataset.  

• Balanced dataset 

The balance of a dataset can be described as the ratio between the available 

target values. A balanced dataset consists of a nearly uniform amount of target 

values, whereas in an unbalanced dataset parts of the target values are 

dominating. There are two common ways to deal with unbalanced datasets. 

First, if there is much data available, balance between the targets can be 
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reached by deleting rows with overrepresented targets. Second, if there is only 

a small amount of data available, data for underrepresented targes is increased 

using synthetic data. A combination of both is also possible and it has to be 

ensured that the distribution of the data values remain the same after deleting 

data or adding synthetic data. The consequences of an unbalanced dataset can 

be described with the following example: Assuming a dataset with 1000 rows 

whereas 995 of them are related to target A and only 5 are related to target B. 

If this model gets trained and tested, it might result in an accuracy score for 

the prediction of 95% without predicting target B once. If now the goal of the 

model is to find target B it might be useless. An example for an unbalanced 

dataset is provided in Figure 15, class 3.0 is clearly underrepresented and if 

the goal of the model is to find class 3.0 in new unseen data it might result in 

very bad predictions. 

 

Figure 15: Example of an unbalanced dataset. Data taken from Oberhollenzer, et. 

al., (2021) 

• Scaling of features 

Besides the balance of features in the dataset, the model quality of many 

algorithms, except decision trees and random forest, depends on the scale of 

each feature of the dataset too. For example, if values of features “A” and “B” 

are in a range between 1 and 10 and values of feature “C” are in a range 

between 1 and 1000, the prediction of the learning algorithm will most 

probably strongly depend on feature “C”, while features “A” and “B” will 

play a minor role due to their small size compared to “C”. Two common ways 

to bring features onto the same scale are standardization and normalization. 
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Normalization is often described as rescaling features to a range of 0 and 1, 

while in standardization the feature columns are centred at mean 0 with 

standard deviation 1 that the feature columns have equal parameters 

compared to a standard normal distribution, additionally, standardization is 

less sensitive against outliers and also keeps useful information about them. 

Table 6 provides a comparison between the aforementioned scaling 

techniques. 

Table 6: Comparison of feature scaling techniques (Raschka & Mirjalili, 2019) 

 
 

The proposed procedure of pre-processing the data for this thesis is provided in 

Figure 16.  

 

Figure 16: Pre-processing procedure 

As a first step, the dataset is checked with respect to the types of entries (integers, 

strings, float, etc.) and to the number of null values. The missing entries can either 

be filled with synthetic data or deleted from the data set. After that the respective 

target for each model is determined (Note: In this thesis, features are selected only 

by considering geotechnical properties, therefore automatic feature selection 

algorithms, e.g., sequential feature selection, are not applied). The next steps are 

splitting the dataset into a training and testing dataset to measure the prediction 

performance of each model. After that, the features are scaled to ensure that each 

feature has the same influence on the training process. The last step of the pre-

processing procedure in this thesis is the evaluation of the class balance of the 

dataset. 

 Evaluation of dataset 

The first step of data pre-processing is the evaluation of the raw data. The dataset 

is checked for completeness and the type of data, e.g. integers or strings as well as 

missing values are identified. Table 7 provides an overview of the database 

“CPT_PremstallerGeotechnik”. 

Input Standardized Min-max normalized

0,0 -1,46385 0,0

1,0 -0,87831 0,2

2,0 -0,29277 0,4

3,0 0,29277 0,6

4,0 0,87831 0,8

5,0 1,46385 1,0

Determination of 
targets and features

Removal of 
missing 
values

Splitting of 
train and test 

data

Feature 
scaling

Class balance
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Except the columns “test_type”, “basin_valey” and “EN_ISO_14688_classes”, 

which will not be used for the model anyway, all columns are of type integer or 

float, therefore they don’t have to be converted for the machine learning algorithm. 

The column “NAN” displays the sum of the missing values for each feature 

column of the dataset. The processing of these values is described in chapter 4.1.3. 

Table 7: Data types and null values (NAN) of database 

 

 Determination of targets and features 

In this thesis, machine learning models based on an Artificial Neural Network, a 

Support Vector Machine or a Random Forest for four different targets 

(Oberhollenzer_classes, SBT, SBTn, Mod.SBTn) are built. For each target, two 

models, one where only raw measuring data from CPT tests and another one, 

where additional features, defined by an engineer, e.g. groundwater level and unit 

weight of soil, are used. This leads to two different approaches for each algorithm 

column Dtype NAN

ID int64 0

test_type object 0

basin_valley object 0

Depth (m) float64 0

qc (MPa) float64 0

fs (kPa) float64 0

u2 (kPa) float64 706354

Vs (m/s) float64 1027077

qt (MPa) float64 0

Rf (%) float64 0

γ (kN/m³) float64 0

σ,v (kPa) float64 0

u0 (kPa) float64 0

σ',v (kPa) float64 0

Qt (-) float64 235

Qtn (-) float64 18

Fr (%) float64 778

Bq (-) float64 706355

U2 (-) float64 706354

SBT (-) float64 0

SBTn (-) float64 0

Mod. SBTn (-) float64 0

n float64 0

Ic (-) float64 0

Ic SBT (-) float64 0

Ib (-) float64 687

EN_ISO_14688_classes object 149402

Oberhollenzer_classes float64 0
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and furthermore to overall 6 models for each target classification. Table 8 

summarizes the targets with their respective models and features.  

For each target, three algorithms with two versions of inputs, respectively are used. 

As mentioned above, one version considers only measured data from CPT tests 

and the other version considers additional interpreted or defined data (based on. 

groundwater level and unit weight of soil) as features. A sequential feature 

selection is not applied in this thesis. 

To evaluate the ability of a model to detect soil strata and determine the respective 

soil types on unseen CPT data, two arbitrary CPTu tests are selected from the 

dataset before the data is used for training and validation. The selected test datasets 

are from piezocone tests to cover all possible input and output values of the 

learning models and have the IDs 934 and 1317.  

Table 8: Targets with the respective models and features 

 
 

 

Target Model ID Classifier Features

OC1_SVM SVM Depth, qc, fs, Rf

OC2_SVM SVM Depth, qc, fs, σv, u0, σ'v, Rf

OC1_ANN ANN Depth, qc, fs, Rf

OC2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf

OC1_RF RF Depth, qc, fs, Rf

OC2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf

SBT1_SVM SVM Depth, qc, fs, Rf

SBT2_SVM SVM Depth, qc, fs, σv, u0, σ'v, Rf

SBT1_ANN ANN Depth, qc, fs, Rf

SBT2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf

SBT1_RF RF Depth, qc, fs, Rf

SBT2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf

SBTn1_SVM SVM Depth, qc, fs, Rf

SBTn2_SVM SVM Depth, qc, fs, σv, u0, σ'v, Rf

SBTn1_ANN ANN Depth, qc, fs, Rf

SBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf

SBTn1_RF RF Depth, qc, fs, Rf

SBTn2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf

MSBTn1_SVM SVM Depth, qc, fs, Rf

MSBTn2_SVM SVM Depth, qc, fs, σv, u0, σ'v, Rf

MSBTn1_ANN ANN Depth, qc, fs, Rf

MSBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf

MSBTn1_RF RF Depth, qc, fs, Rf

MSBTn2_Rf RF Depth, qc, fs, σv, u0, σ'v, Rf

SBTn

Mod.SBTn

Oberhollenzer_classes

SBT

SVM…Support Vector Machine | ANN…Artificial Neural Network | RF…Random Forest
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 Missing values  

Most Machine Learning algorithms cannot handle missing values (often called 

null-values or NAN). Generally, there are two ways to deal with this circumstance, 

first is to fill empty cells with values based on the rest of the data (e.g. mean or 

median). Second is to delete entire rows with empty cells.   

In this thesis, rows with empty cells are deleted and the data frame is updated 

gradually. The python code for this step is provided below: 

df = df.dropna(subset = ['Oberhollenzer_classes'])  
df = df.dropna(subset = ['Depth (m)'])  
df = df.dropna(subset = ['qc (MPa)'])  
df = df.dropna(subset = ['fs (kPa)'])  
df = df.dropna(subset = ['σ,v (kPa)'])  
df = df.dropna(subset = ['u0 (kPa)'])  
df = df.dropna(subset = ["σ',v (kPa)"])  
df = df.dropna(subset = ['Rf (%)'] 
 

Compared to the raw database (Table 7) the number of empty cells yields to zero 

for used features and targets. Table 9 provides the number of data available for 

training and validation of each model. 

Table 9: Amount of data for training and testing 

 
 

Target Model ID Amount of data

OC1_SVM 1025284

OC2_SVM 1029283

OC1_ANN 1025284

OC2_ANN 1029283

OC1_RF 1025284

OC2_RF 1029283

SBT1_SVM 2514264

SBT2_SVM 2514263

SBT1_ANN 2514264

SBT2_ANN 2514263

SBT1_RF 2514264

SBT2_RF 2514263

SBTn1_SVM 2514262

SBTn2_SVM 2514262

SBTn1_ANN 2514262

SBTn2_ANN 2514262

SBTn1_RF 2514262

SBTn2_RF 2514262

MSBTn1_SVM 2514262

MSBTn2_SVM 2514262

MSBTn1_ANN 2514262

MSBTn2_ANN 2514262

MSBTn1_RF 2514262

MSBTn2_Rf 2514262

Oberhollenzer_classes

SBT

SBTn

Mod.SBTn
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 Splitting of training and test data 

To measure the performance of a learning model it is necessary to split the dataset 

into train and test data. The data used for training is usually about 70 – 90 percent 

of the dataset. The complement of the training size is used for testing.  

Data Dataset 

Train_test_split Train Test 

Figure 17: Splitting the dataset into training and test data 

In python, the split of the database into two subsets is performed with the 

train_test_split algorithm from the Scikit-learn model selection: 

from sklearn.model_selection import train_test_split 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size = 0.2, random_state = 42) 
 

The size of the respective subset is defined with the arguments test_size or 

train_size. If no inputs are given, the train size is automatically set to 0.25 

(= 25 %). The argument random_state is a parameter used to reproduce the split 

at a later state and is usually set to 0 or 42.  

 Feature scaling 

Many machine learning algorithms, except Random Forests, are sensitive to the 

scale of their respective input features, which means if feature “A” is in a range 

between 1 and 10 and feature “B” ranges between 1 and 1000, feature “B” will 

most probably dominate the decision function of the model. To ensure equal 

influence of each input feature to the model, the features should be scaled.   

Two of the most common ways of scaling features are the standardization (scaling 

from -1 to 1) and scaling features to a range (usually from 0 to 1). In this thesis, 

standardization is used for scaling the features. Therefore, StandardScaler from 

the scikit-learn library is implemented in the model code: 

from sklearn.preprocessing import StandardScaler 
 
sc = StandardScaler()  
X_train = sc.fit_transform(X_train)  
X_test = sc.transform(X_test) 
 

This module standardizes features by removing the mean and scaling to unit 

variance. The mean and standard deviation is stored to be later reapplied on a 

testing set. To visualize the influence of standardization a fraction of the input 

features before and after scaling is given in Table 10 
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Table 10: Cut-out of data before and after scaling with StandardScaler() 

 
 

 Class balance 

The class imbalance of a dataset can have significant influence on the ability of a 

model to predict underrepresented classes.  

One popular way to deal with imbalanced classes during training, is to assign a 

larger penalty to wrong predictions on the minority class. This is implemented in 

various classifiers of scikit-learn, by setting the class_weight parameter to 

class_weight=’balanced’. 

Another technique to balance class proportions is to use sampling algorithms. By 

undersampling, the number of overrepresented classes is reduced to that of the less 

represented ones. By oversampling, the number of underrepresented classes is 

increased. A commonly used algorithm is Synthetic Minority Oversampling 

Technique - SMOTE. A usual practice is to combine these sampling methods. 

There are various sampling algorithms available. In this thesis SMOTEENN and 

SMOTETomek are used to evaluate the influence of class imbalance. These 

algorithms provide a combination of over- and undersampling techniques, where 

first new datapoints are generated for weaker classes (SMOTE) and after that noisy 

data is cleaned using Tomek’s link (Tomek) or edited nearest-neighbours 

Depth (m) qc (MPa) fs (kPa) Rf (%)

0,50 26,42 195,00 0,74

0,51 26,57 198,10 0,75

0,52 26,19 197,70 0,75

0,53 26,13 197,20 0,75

0,54 26,05 189,60 0,74

0,55 26,05 191,00 0,75

0,56 23,93 186,90 0,77

0,57 22,97 182,90 0,80

0,58 22,14 182,00 0,79

0,59 22,14 168,20 0,76

Depth (m) qc (MPa) fs (kPa) Rf (%)

-1,566698904 0,888468556 0,691169776 -1,025978352

-1,218543592 0,973898225 1,040131714 -0,512989176

-0,870388280 0,757476397 0,995104367 -0,512989176

-0,522232968 0,723304529 0,938820184 -0,512989176

-0,174077656 0,683437351 0,083300592 -1,025978352

0,174077656 0,677742039 0,240896306 -0,512989176

0,522232968 -0,529663947 -0,220634000 0,512989176

0,870388280 -1,076413827 -0,670907469 2,051956704

1,218543592 -1,549124661 -0,772219000 1,538967528

1,566698904 -1,549124661 -2,325662469 0,000000000

Data before scaling

Data after scaling
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(ENN).The influence of the sampling algorithms on the dataset are provided in 

Figure 19. (Lemaitre, Nogueira, Oliveira D., & Aridas , 2020)  

Since the application and evaluation of synthetic sampling algorithms on the 

dataset is beyond the scope of this thesis, the algorithms are just used once to 

visualize the effect on the data. 

 

Figure 18: Distribution of classes in unsampled data set. Data taken from 

Oberhollenzer, et.al., (2021) 

    

Figure 19: Distribution of classes after resampling with SMOTEENN (left) and 

SMOTETomek (right). 

4.2 Training, validating and testing 

 MLP Classifier – ANN 

Multi-layer Perceptron (MLP) is a supervised learning module of scikit-learn. It 

can learn a non-linear function estimator for classification and regression and 

basically consists of one input layer with features Xn, one output layer f(X) and k 

hidden layers with neurons ak in between. 
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Figure 20: Multi-layer Perceptron with one hidden layer (scikit-learn developers, 

2020) 

At each neuron, the values from the previous layer get transformed with a weighted 

linear summation function w1x1 + w2x2 +…+wkxk and with a non-linear activation 

function. The output layer transforms the values of the last hidden layers into the 

target values. The advantages of a Multi-layer Perceptron are that it is able to learn 

non-linear models and also learn models in real-time, e.g., for online applications. 

The disadvantage is that it is sensitive to feature scaling, it requires determination 

of hyperparameters, and it has a non-convex loss function which means that there 

is more than one local minimum and therefore, different random weight 

initializations can lead to different validation scores. 

The implementation of the class MLPClassifier in python is displayed below. With 

clf.fit, the model is trained with training samples X_train and associated target 

samples y_train. With clf.predict, the target values for the test samples X_test 

are predicted. These values are compared with the target values of the test samples 

y_test to compute the model performance and the classification error.  

from sklearn.neural_network import MLPClassifier  
 
clf = MLPClassifier()  
clf.fit(X_train, y_train)  
pred_clf = clf.predict(X_test) 

 

The main hyperparameters which have to be defined and are evaluated in this thesis 

are provided on the next page. 
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• hidden_layer_sizes 

The parameter hidden_layer_sizes defines the number of hidden layers with 

their respective number of neurons. An example of how to determine these 

numbers is given below. 

• max_iter 

The parameter max_iter defines the number of iterations. If the chosen 

number is too small, the learning process may not be finished, and the model 

will most probably underfit the data. If the number iterations is too big the 

model may overfit and not generalize very well. 

All other parameters which can be adjusted are provided in the user guide of the 

scikit-learn website:   

https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html  

Contrary to support vector machines and random forests, the MLPClassifier has 

no parameters to handle unbalanced data. Therefore, the class balance must be 

evaluated and if necessary improved before the model gets trained. Additionally, 

this classifier is sensitive to feature scaling, therefore, the input features must be 

scaled beforehand.  

There are a few common rules of thumb to determine the number of hidden layers 

and neurons. In this thesis the recommendations of Heaton (2015) are applied. The 

influence of the number of hidden layers is provided below: 

• None 

Only capable of representing linear separable functions and decisions 

• One 

Can approximate any function that contains a continuous mapping from on 

finite space to another  

• Two 

Can represent an arbitrary decision boundary to arbitrary accuracy with 

rational activation functions and can approximate any smooth mapping to any 

accuracy. 

• More than two  

Additional layers can learn complex representations (sort of automatic feature 

engineering for layers). 
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Some rules of thumb for the number of hidden neurons: 

• The number of hidden neurons should be between the size of the input layer 

and the size of the output layer. 

• The number of hidden neurons should be 2/3 the size of the input layer plus 

the size of the output layer  

• The number of hidden neurons should be less than twice the size of the input 

layer  

 Support Vector Classifier– SVM 

A support vector machine is a supervised learning algorithm used for 

classification, regression and outlier detection. It is effective in high dimensional 

spaces and when the number of dimensions is greater than the number of samples, 

memory efficient and versatile, because kernel functions can be adjusted for the 

decision function. The disadvantages are that it does not provide probability 

estimates directly and training of large datasets can be time intensive as it is shown 

in this thesis.   

The scikit-learn library provides multiple options for classification based on a 

support vector machine. The most common is the support vector classifier SVC 

(used in this thesis). Other modules are LinearSVC which works exclusively with 

a linear kernel and SGDClassifier which implements a SVM with stochastic 

gradient descent learning, but these are not applied in this thesis.  

The most important parameter which has to be defined for the SVC is the kernel 

type. The kernel can be chosen between a linear, polynomial, sigmoid, 

precomputed and radial basis function which is also the default option. The 

influence of the different kernels on the separating hyperplanes in 2D space is 

displayed in Figure 21 
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Figure 21: Different hyperplanes for different kernels of a SVC (scikit-learn 

developers, 2020) 

A support vector machine is implemented in a python script as follows:  

from sklearn import svm   
from sklearn.svm import SVC  
 
clf = svm.SVC()  
clf.fit(X_train, y_train)  
pred_clf = clf.predict(X_test) 
 

The complete list of parameters is available on the website of scikit-learn:  

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html. 

 Random Forest Classifier – RF 

The random forest classifier is a combination of decision tree classifiers. In scikit-

learn, the random forest combines these classifiers by averaging their probabilistic 

prediction. Decision trees typically tend to overfit and have high variance. Due to 

decoupled prediction errors, and taking the average of those predictions, some 

errors cancel out. Therefore, random forests achieve a reduction in variance at the 

price of a slightly increased bias.  

The main parameters which have to be focused for the hyperparameter tuning are 

the number of decision trees in the forest, called n_estimators , the size of random 

subsets of features to consider when splitting a node, called max_features, and the 

maximum size of each tree, called max_depth. The best combination of these 

parameters is evaluated in this thesis once for the Oberhollenzer_classes and once 

for all soil behaviour type classifications. More information is provided in chapter 

7. 
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When adjusting the aforementioned parameters in a random forest model, the 

number of trees has usually no influence on susceptibility of a model to overfitting. 

In contrary, the depth of a tree is one main parameter to control the variance of the 

model. Figure 22 displays a decision tree with a max_depth of 2 and in Figure 23 a 

decision tree with max_depth of 3 is displayed (the parameter max_depth is usually 

set to a number greater than 15). Note: To display the trees on one A4 sheet, the 

input features for these decision trees are only the tip resistance qc and the sleeve 

friction fs and the targets are only class 5-7 from Oberhollenzer classes.  

 

Figure 22: Decision tree with max_depth of 2 

The first line of the node displays the decision function found by the algorithm. 

The decision function is defined for each node independently. The second line 

provides the decision criterion.  

The default criterion for the random forest is the Gini impurity which represents 

the probability of a random datapoint to be classified wrong. The Gini Impurity 

indicates the quality of the split: A low impurity indicates a good split; a high 

impurity indicates a bad split. To calculate the impurity of a certain node, first the 

probability of each class in the node must be defined: 

𝑝𝑟𝑜𝑏 𝑥 =
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑛𝑜𝑑𝑒

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠 𝑥
 

 

(12) 

After calculating the probability of each class in the node, the Gini Impurity is 

calculated as follows:  

𝑔𝑖𝑛𝑖 = 1 − (𝑝𝑟𝑜𝑏 𝑥1 ∗ 𝑝𝑟𝑜𝑏 𝑥1 + ⋯ 𝑝𝑟𝑜𝑏 𝑥𝑖 ∗ 𝑝𝑟𝑜𝑏 𝑥𝑖) 

 

 

(13) 

  

As an example, the calculation for the Gini Impurity of the first node is provided 

in Table 11. 
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Table 11: Calculation of the Gini Impurity for one node 

 n_samples probability of class x Gini Impurity 
node 441997 

class 5 166684 0,377 
0,663 class 6 144390 0,327 

class 7 130923 0,296 
 

The third line indicates the number of samples which are observed, and the fourth 

line indicates which samples fall in each of the categories (class). The last row 

displays the most common class for each node. If a sample satisfies the condition 

of the decision function it goes left, otherwise it goes right. The main factor which 

influences the complexity of the Random Forest model is the size of each decision 

tree. The greater the trees, the more complex the model, which also means that for 

complex data structures deeper trees must be chosen. In contrary, if the trees are 

too large, the model could tend to overfit the data. Hence, a good trade-off must 

be found through model validation. Note: in Figure 22 and 23, only split nodes and 

no leaf nodes are visualized, which means that the last row of nodes in these figures 

show only the final split and not the resulting class. The predicted classes of the 

final split are described in the line “values”. 

 

Figure 23: Decision tree with max_depth of 3 

The random forest classifier is implemented in python as follows:  

from sklearn.ensemble import RandomForestClassifier 
 
clf = RandomForestClassifier(n_estimators = 50,  
max_depth=(15), max_features='auto')  
clf.fit(X_train, y_train)  
pred_rfc = clf.predict(X_test) 
 

The complete list of parameters is available on the website of scikit-learn:  

https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.ht

ml# 
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 Model evaluation and optimization  

Before the developed learning model can be used on a test data set, the quality of 

the model has to be evaluated. This is done in the validation step. Besides the 

confusion matrix and the resulting scores of predictions (accuracy, precision, 

recall, f1-score), other characteristics like bias and variance are also important 

indicators for the model quality. In this thesis, the bias-variance trade-off is 

evaluated using learning and validation curves, the prediction performance is 

determined using the accuracy score in the validation step. Other scores like, 

precision, recall and f1-score (described in chapter 4.2.5) as well as the confusion 

matrix are only used for testing. 

4.2.4.1 Validation 

Before the model can be tested on the test dataset it must be validated. Therefore, 

the training set is split again into subsets for training and validation. The simplest 

form of validation is the leave one out method, where a predefined amount of data 

is used for training and the rest is used for validation. The disadvantage of this 

method is that the data is only split once. Important characteristics of the dataset 

may not be distributed sufficiently through train and validation set and therefore, 

errors due to over- and underfitting may be overseen. A severe improvement is 

reached using cross validation techniques. The data is split multiple times into 

subsets for training and validation. This leads to smoother results for the model 

performance. Additionally, bias and variance can be visualized with learning and 

validation curves.  

A popular method for cross validation is k-fold cross validation. It basically splits 

the dataset k-times (user defined integer, a common value is between 5 and 10) 

into randomly defined test and training samples and performs the training and 

testing process k-times. Because cross validation is computationally intensive, the 

number of splits largely depends on the size of the dataset. In this thesis the number 

of splits is chosen between 3 and 5. Figure 24 displays the process of k-fold cross 

validation for k = 4. More information and other forms of cross validation 

techniques like stratified k-fold cross validation or shuffle split are provided on the 

website of scikit-learn user guide:  

https://scikit-learn.org/stable/modules/cross_validation.html 
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Data Dataset 

Train_test_split Training data Test data 
(not used 

for 
validation) 

1st fold Validate Train 
Not used 

for 
validation 

2nd fold Train Validate Train 

3rd fold Train Validate Train 

4th fold Train Validate 

Figure 24: K-fold cross validation with 4 splits 

4.2.4.2 Bias-variance trade-off 

The ability of a model to deliver accurate prediction results is basically influenced 

by two origins of errors. The error due to bias is the difference between the average 

prediction compared to the real values. The error due to variance is the difference 

between predictions for equal input features. Errors due to bias are the cause for 

underfitting models and errors due to variance for overfitting models. A 

visualisation of these errors is provided in Figure 25. 

 

Figure 25: Bias and variance (Fortmann-Roe, 2012) 

Adding more samples to a learning model, which also means raising the 

complexity leads usually to decreasing bias and increasing variance. This problem 

is called bias-variance trade-off. Figure 26 displays bias and variance contribution 

to the total error of a model. The optimum model quality is near the intersection 

point of bias and variance. 
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Figure 26: Bias and variance contribution to total error (Fortmann-Roe, 2012) 

4.2.4.3 Learning and validation curves 

The bias of a model is usually evaluated by plotting learning curves and variance 

by plotting validation curves. A learning curve is defined as the score (e.g., 

accuracy) or the error against the number of training data. A validation curve is 

defined as the score (e.g., accuracy) or error against a selected hyperparameter 

(e.g., number of trees in a random forest). The data for the curves is gained through 

the validation process of the model. The following code provides an example how 

first a learning curve and second a validation curve is generated for a MLP 

Classifier.  

To get the necessary parameters for the learning curve, the module learning curve 

of scikit-learn is applied, whereof estimator defines the classifier, X and y define 

the training data, train_sizes defines the fractions of the dataset which are used, 

cv defines the applied cross validation module, and n_jobs defines the number of 

processor cores which are used for computing (-1 means all available cores are 

used) 

from sklearn.model_selection import learning_curve 
 
train_sizes, train_scores, test_scores =\ 
 learning_curve(estimator=MLPClassifier(hidden_layer
_sizes = (100,100,100), max_iter=600), X = X_train, y = 
y_train, train_sizes = np.linspace(0.1,1,5), cv  = 3, n_jobs 
= -1) 
 

The parameters for the validation curve are generated, using the module validation 

curve of the scikit-learn library. For the validation curves, cross validations for 

various hyperparameter must be exercised. The desired hyperparameter is defined 

by param_name. The range of the defined parameter is defined by param_range. 

Fixed hyperparameter (e.g., maximum of iterations) must be defined directly in the 

estimator. All other classes are defined as above.  
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from sklearn.model_selection import validation_curve 
 
train_scores, test_scores = validation_curve(estimator = 
MLPClassifier(max_iter=500), X = X_train, y = y_train, 
param_name = 'hidden_layer_sizes',   
param_range = [(10), (10,10), (10,10,10), (10,10,10,10)], 
cv = 5) 
 

Figure 27 provides the three basic conditions of learning curves. On the upper left 

side, a model with high bias (underfitting) is displayed, contrary to that a model 

with high variance (overfitting) is displayed on the upper right side. On the lower 

left side, a desired trade-off for a model is given. Training accuracy describes the 

accuracy of the model fitting only the training data, and validation accuracy is the 

accuracy of the model fitting only the validation data.   

 

Figure 27: Explanation of learning curves (Raschka, 2020) 

 Model testing 

After the model is trained and the optimum hyperparameters are evaluated it is 

tested on unseen data to evaluate the model performance. As mentioned before a 

split of the data at the ratio of 80 % for training to 20 % for testing is chosen for 

this thesis. The data for testing is randomly selected by the module 

train_test_split of scikit-learn. The performance of the model is visualized in a 

confusion matrix. In this matrix, four different types of right or wrong 

classifications are distinguished:  

• True positive (TP) 

The model predicts positive and the actual state is positive. 

• False Negative (TP) 

The model predicts negative, but the actual state is positive. 

• False positive (FP) 

The model predicts positive, but the actual state is negative. 
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• True negative (TN) 

The model predicts negative and the actual state is negative 

The summary of these four types of right or wrong classifications in one matrix is 

shown in Figure 28.  

 actual 
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Figure 28: Confusion matrix 

The results of the confusion matrix for all classifications of the test set are 

summarized in the classification report. This report consists of four different 

classification scores, namely the accuracy, precision, f1-score and recall. 

The accuracy describes what percent of the predictions were correct and is defined 

as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

 

The precision is defined as what percent of positive predictions were correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

 

The recall describes what percent of positive cases did the model catch and is also 

a strong indicator if the model is sensitive to class balance in unbalanced datasets 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

 

The f1-score is defined as a ration between precision and recall and is often used 

as indicator for the model performance: 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (15) 

 

The ability of each algorithm to learn and predict from the dataset is evaluated in 

the following chapters. 
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5 Support Vector Machine 

The initial plan to build 8 learning models had to be discarded due to bad training 

performance of the models with respect to the time and quality. The training 

process for the model OC1_SVM lasted about 12 hours and the resulting model 

performance was not sufficient. To estimate the training time for a soil behaviour 

type model (SBT, SBTn or ModSBTn), where the dataset has more than double 

the size of the dataset for Oberhollenzer_classes, the model SBT2_SVM was 

trained vicariously. After 25 hours, the training process was cancelled manually. 

Due to the fact that the training time for models based on other algorithms (ANN, 

RF) is usually within a few minutes. Additionally, the performance of ANN and 

RF models is better than the performance of the SVM model, hence it has been 

decided that the models for the Oberhollenzer_classes are just trained and tested, 

and not validated. The SVM models targeting the different Soil Behaviour Types 

are not further evaluated due to the vast amount of necessary training times. For 

the support vector machine, only OC1_SVM and OC2_SVM are evaluated. 

5.1 Oberhollenzer_classes 

The classification of the soil samples via grain size distribution according to 

Oberhollenzer, et. al., (2021) is based on adjacent bore hole samples. The 

classification was done with laboratory tests and the resulting classes were added 

to the CPT database. Hence, there is no empirical or statistical correlation between 

the measured values of the CPT tests (tip resistance qc, sleeve friction fs, etc.) and 

the resulting classes.  

 OC1_SVM  

The first model build with a support vector classifier is called OC1_SVM. The 

model uses the depth, tip resistance, sleeve friction and friction ratio as input 

features. The 7 soil classes defined by Oberhollenzer, et. al., (2021) are used as 

targets. The only hyperparameter which is adjusted is the kernel function. The 

default kernel in scikit-learn uses a radial basis function which requires more 

computational effort than a linear one, hence it is decided to set the kernel function 

to ‘linear’. All other parameters are set to default. 

Table 12: Parameter of OC1_SVM 

Model information 

Target Features Hyperparameter 
Oberhollenzer_classes Depth, qc, fs, Rf kernel = 'linear' 
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As mentioned before, the steps of validation and evaluation of learning curves are 

omitted due to the vast amount of training time compared to the resulting scores. 

After a training time of about 10 hours, the performance of the model was 

evaluated on the test data. The model yielded an accuracy of about 45 %. Table 13 

provides the entire classification report. The scores are distinguished in macro 

average: 

𝑚𝑎𝑐𝑟𝑜 𝑎𝑣𝑔 =  
∑ 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 (16) 

 

which provides the average score for all classes and weighted average: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑔 =  
∑(𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 ∗ 𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠)

𝑛𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 (16) 

 

which provides the average score for all classes weighted with the number of 

classifications.  

Table 13: Classification report for OC1_SVM 

OC1_SVM Classification report 

macro avg weighted avg 
accuracy 0,38 
precision 0,35 0,41 

recall 0,29  0,38 
f1-score 0,28 0,35 

 

The confusion matrix is provided in Table 14. Green cells indicate right 

classifications, and all other cells are wrong classifications. Similarly to the 

classification report, the confusion matrix shows very plainly that the model is not 

able to classify the data correctly. Another thing that should be mentioned is that 

class 3 is not predicted once which indicates a high sensitivity to the class balance. 

Since the model’s ability to learn from the data is worse than a best guess approach 

(50% right), not any other improvement steps are done. The influence of the class 

balance is considered by the next model (OC2_SVM).  
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Table 14: Confusion matrix for OC1_SVM 

Confusion matrix 

OC1_SVM Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 1749 2085 505 0 129 3210 7459 657 
1 818 8049 684 0 606 7250 2397 138 
2 585 1111 9798 0 271 5578 11657 9471 
3 42 59 281 0 6 274 750 0 
4 825 3271 1411 0 999 10568 2420 48 
5 547 1384 3708 0 188 22923 11838 1161 
6 446 476 643 0 71 8584 18083 7860 
7 527 

 
117 334 0 13 1684 13473 16636 

 

 OC2_SVM 

The second model which uses a support vector machine for classification is called 

OC2_SVM. Additionally to the model OC1_SVM, the vertical total and effective 

stresses and the hydrostatic pore pressures caused by the groundwater table are 

used as input features. The kernel is again set to linear. 

Table 15: Parameter of OC2_SVM 

Model information 

Target Features Hyperparameter 
Oberhollenzer_classes Depth, qc, fs, σv, u0, σ'v, Rf 

 
kernel = 'linear'  

 

The classification report shows that even with more input features the prediction 

accuracy does not increase. Only the precision and f1-score increase slightly by 

one percent. It is assumed that the model complexity is obviously too low for the 

data.  

Table 16: Classification report for OC2_SVM 

OC2_SVM Classification report 

macro avg weighted avg 
accuracy 0.38 
precision 0,36 0,42 

recall 0,30  0,38 
f1-score 0,29 0,36 

 

Similar to the first SVM model, class 3 was not covered in the prediction, because 

of unbalanced data. The training time was about 11.5 hours.  
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Confusion matrix 

OC2_SVM Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 1161 2132 489 0 94 2819 8403 696 
1 527 8049 649 0 590 7082 2920 125 
2 264 1028 9663 0 339 5482 11996 9699 
3 28 72 264 0 0 264 781 3 
4 517 3649 1378 0 539 10697 2715 47 
5 295 1353 3550 0 145 22417 12838 1151 
6 196 437 560 0 112 8421 18742 7695 
7 229 124 349 0 9 1645 13529 16899 

 

 Influence of class balance 

To evaluate the influence of class balance in the dataset, the model OC2_SVM is 

trained a second time. The inputs stay the same, except the parameter 

class_weight is set to ‘balanced’. This leads to a larger penalty assigned to wrong 

predictions of the minority class, and therefore, the imbalance between classes gets 

considered. The inputs are provided in Table 17. 

Table 17: Parameter of OC2_SVM 'balanced' 

Model information 

Target Features Hyperparameter 
Oberhollenzer_classes Depth, qc, fs, σv, u0, σ'v, Rf 

 
kernel = 'linear'  

 

The resulting scores of this model are given in Table 18. The scores of the 

classification report clearly indicate that the model quality is decreasing with the 

class_weight set to ‘balanced’. The prediction accuracy of this model is only 

31%. 

Table 18: Classification report for OC2_SVM 'balanced' 

OC2_SVM Classification report 

macro avg weighted avg 
accuracy 0,31 
precision 0,35 0,42 

recall 0,37  0,31 
f1-score 0,29 0,33 

 

The confusion matrix shows an improvement of the model in predicting 

underrepresented classes like class 3, but overall, the prediction performance got 

worse. The training time of this model also increased compared to the unbalanced 

one to about 14.5 hours. 
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Table 19: Confusion matrix for OC2_SVM 'balanced' 

Confusion matrix 

OC2_SVM Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 3898 1987 113 6824 234 465 1532 741 
1 4043 7797 346 4149 2066 1056 334 151 
2 1303 1176 8613 6961 1871 2782 4808 10957 
3 59 56 6 1235 14 5 37 0 
4 3744 3083 1397 4236 3455 3045 490 92 
5 7396 1338 3661 6916 2503 10475 7598 1862 
6 4584 507 343 6025 962 3535 9700 10507 
7 2275 118 138 5030 117 360 6211 18535 

 

 Discussion 

The prediction performance of the evaluated SVM models is consistently below 

50% which clearly indicates underfitting. This means that the model is not 

complex enough to learn and predict from the data. Another drawback of the SVM 

models is the vast amount of time that it takes to train them. Considering the 

combination of bad prediction performances with long training times, it can be 

assumed that the support vector classifier is not a preferable tool to classify soil 

types from CPT data. Also, the change of the decision function from linear to a 

radial basis function or polynomial function does not improve the result 

significantly. 

5.2 Soil Behaviour Types – SBT 

The training of the first SVM-model is terminated after about 26 hours of elapsed 

time. The training time of other models like Random Forest and ANN is 

comparatively much lower and within a few minutes. Since all models for soil 

behaviour type classification (SBT, SBTn, ModSBTn) are very similar, it is 

decided that all of these models get discarded. Information about input values for 

the executed model is provided in Table 20. 

Table 20: Model information for SBT1_SVM 

Model information 

Target Features Hyperparameter 
Soil Behaviour type - SBT Depth, qc, fs, Rf kernel = 'linear' 
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6 Artificial Neural Network 

For the classification with neural networks, 8 different models are built and 

evaluated. The influence of different hyperparameters on the model performance 

is assessed using grid search techniques, in which the model is trained and 

validated using different combinations of predefined hyperparameters. This is 

done once, vicariously for the Oberhollenzer_classes and for the soil behaviour 

type classifications, respectively.  

All models are evaluated using learning and validation curves, before they are 

tested on the test dataset.  

6.1 Grid Search for Oberhollenzer_classes 

To identify relevant hyperparameter for the neural network model, a grid search 

model is built. In this model, a range of different values or settings for 

hyperparameters are defined. The model finds the best combination of this 

parameter via cross validation. Since the influence of the number of hidden layers 

and neurons on the model is obvious, they are set constant at one hidden layer with 

10 neurons for the first grid search. The number of maximum iterations is also set 

constant at 500. The relevant parameters which are identified are provided in Table 

21. 

Table 21: Parameter for Grid Search for Oberhollenzer_classes 

Grid Search for OC 

Parameter Defined range 

number of hidden layers 1 

number of neurons in each layer 10  
max_iter 500 

activation function 'identity', 'logistic', 'tanh', 'relu' 

learning_rate 'constant', 'adaptive' 

solver 'sgd', 'adam' 
 

The best combination of parameters is provided in Table 23. The best settings 

found for the learning rate and solver were actually default ones, additionally the 

best working setting for the activation function (‘tanh’) is not essentially better 

than the default one (‘relu’), therefore, it is decided to build all models with the 

default parameters except, the number of hidden layers, neurons and maximum 

iterations. A description of the hyperparameter according to the scikit-learn 

explanation is given in Table 22. 
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Table 22: Meaning of hyperparameter according to the scikit-learn website (scikit-

learn developers, 2020). 

 
 

Table 23: Best parameters found 

Best parameters of Grid Search for OC 

Parameter Best parameter 

number of hidden layers 1 

number of neurons in each layer 10 

activation function 'tanh' 

learning_rate 'constant' 

solver 'adam' 
 

The influence of the number of hidden layers and neurons is evaluated in another 

grid search, first, the number of hidden layers is increased, and in a second model 

the number of neurons is increased for one layer. Note: An increased number of 

layers and neurons is strongly affecting the training time of a model, therefore, the 

influence of an increased number of neurons and layers is evaluated in separate 

ways. The number of layers is evaluated with 10 neurons in each. The results are 

provided in Table 24. 

Table 24: Evaluation of the number of hidden layers 

 Grid Search for hidden layers  

Number of hidden layers  Cros_val_score relative improvement in % 

1 0,435 -- 

2 0,459 5,5 

3 0,461 0,4 

4 0,468 1,0 
 

The results show that the cross-validation score (accuracy) basically increases with 

the addition of hidden layers, but not by much. Increasing the number from one to 

four, improves the performance by only about 7.5%. Based on this result it is 

decided to build all models targeting Oberhollenzer_classes with maximum 3 

hidden layers.  

identity no-op activation, useful to implement linear bottleneck, returns f(x) = x

logistic the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x))

tanh the hyperbolic tan function, returns f(x) = tanh(x)

relu the rectified linear unit function, returns f(x) = max(0, x)

constant is a constant learning rate given by ‘learning_rate_init’.

adaptive

keeps the learning rate constant to ‘learning_rate_init’ as long as training loss keeps decreasing. 

Each time two consecutive epochs fail to decrease training loss by at least tol, or fail to increase 

validation score by at least tol if ‘early_stopping’ is on, the current learning rate is divided by 5.

sgd refers to stochastic gradient descent

adam refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba

activation 

function

learning 

rate

solver
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The influence of the number of neurons is evaluated with one hidden layer and 

shown in Table 25. 

Table 25: Evaluation of the number of neurons 

Grid Search for number of neurons  

Number of neurons   Cros_val_score relative improvement in % 

10 0,435 -- 

50 0,467 7,4 

100 0,479 2,5 

150 0,491 2,5 
 

Again, with an increased number of neurons, the cross-validation score improves 

slightly. The improvement of the model performance is about 13% when 

increasing the number of neurons from 10 to 150. The training time is increasing 

from 2 minutes and 14 seconds to 13 minutes and 46 seconds, which is roughly 

about 600%. Since the neural network built in this thesis is not a deep neural 

network with a high number of hidden layers and neurons, the number of hidden 

layers and neurons are selected according to the rule of thumbs provided in chapter 

4.2.1 and evaluated with validation and learning curves. 

6.2 Oberhollenzer_classes 

 OC1_ANN 

The first model using a neural network classifier is built with only measured data 

as input features and the 7 Oberhollenzer_classes as targets.  

Table 26: Evaluation of the number of neurons 

Model information 

Target Features Hyperparameter 
Oberhollenzer_classes Depth, qc, fs, σv 

 
hidden_layer_sizes = (10,10,10)  

 

The model performance is evaluated using the modules learning_curve and 

validation_curve of the scikit-learn library. The learning curve for the first model 

is created using 5-fold cross validation and is displayed in Figure 29. The training 

accuracy indicates how the model fits to the training data and the validation 

accuracy indicates how the model fits to the data used for validation. The 

difference, or distance between those curves is called variance (overfitting). 
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Figure 29: ANN learning curve for OC1 

The training and validation accuracy are nearly on the same line through the whole 

training process which indicates that the model is strongly underfitting and the data 

is too complex. The necessary time to generate the learning curve is about 16 

minutes. The influence of the number of hidden layers is plotted in Figure 30. 

 

Figure 30: ANN validation curve for OC1 (values from Table 24) 

Also, in the validation curve, the graph of the training and validation accuracy are 

throughout on the same level. To evaluate the robustness of this model and its 

setting of hyperparameters, the learning curve is plotted again, but now with 3 

hidden layers and 100 neurons in each. The number of folds for the cross validation 
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is decreased from 5 to 3 (which means it is only trained and validated 3 times) but 

the elapsed time still increased to about 12 hours.  

 

Figure 31: ANN learning curve for OC1 with 3 hidden layers and 100 neurons in 

each. 

The validation score increases to about 56-57% but it is still insufficient for soil 

classification. The elapsed time increases from a few minutes to several hours 

although the cross-validation folds are decreased. Also, the learning curve gets 

nearly horizontal and therefore it is assumed that the score will not exceed a 

maximum of 60% no matter how many hidden layers and neurons are introduced. 

Considering the long validation time of about 12 hours in combination with the 

small gain in validation score, it is assumed that the neural network model with 3 

hidden layers and 10 neurons is the best trade-off between model performance and 

effort of training.  

The prediction performance is evaluated with the test dataset. The classification 

report is given in Table 27. The test accuracy of the model is similar to the 

validation accuracy at 46% (Figure 29).  

Table 27: Classification report for OC1_ANN 

OC1_ANN Classification report 

macro avg weighted avg 
accuracy 0,46 
precision 0,44 0,46 

recall 0,39  0,46 
f1-score 0,40 0,45 
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The confusion matrix is displayed below. Compared to the support vector 

classifier, the MLP classifier is able to identify and predict the underrepresented 

class 3 although, the dataset is highly unbalanced.  

Table 28: Confusion matrix for OC1_ANN 

Confusion matrix 

OC1_ANN Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 5333 2401 1691 27 832 2177 2232 1101 
1 1766 8025 1498 12 3418 4327 582 314 
2 842 620 17109 43 1979 5559 4407 7912 
3 95 118 652 93 74 180 81 119 
4 1387 3819 1952 9 5072 6305 706 292 
5 944 1595 3511 6 2914 25045 5233 2501 
6 793 571 3444 21 898 9572 13397 7467 
7 534 278 2422 39 381 2653 6016 20461 

 

 OC2_ANN 

The second neural network model for the classification of Oberhollenzer_classes 

introduces the effective and total vertical stresses and the hydrostatic porewater 

pressures as additional input features.  

Table 29: Parameter for OC2_ANN 

Model information 

Target Features Hyperparameter 

Oberhollenzer_classes Depth, qc, fs, σv, u0, σ'v, Rf 
 

hidden_layer_sizes = 
(10,10,10)  

 

First, the learning and validation curves are plotted to gain information about bias 

and variance of the model. Both, the learning (Figure 32) and validation curve 

(Figure 33) show a high bias and no variance of the model which indicates that the 

model is strongly underfitting. The learning curve is generated using 3 hidden 

layers with 10 neurons, respectively. 
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Figure 32: ANN learning curve for OC2 

The validation curve (Figure 33) is plotted using one, two, three and four hidden 

layers with 10 neurons in each layer. Even with 3 more input features, the model 

performance is not significantly increasing. 

 

Figure 33: ANN validation curve for OC2 

The learning and validation curves show that the model is not complex enough to 

find and learn patterns in the data. An increased number of hidden layers and 

neurons will also increase the model performance slightly but at the cost of a highly 

increased training time. As stated before, in this thesis a good trade-off between 

model performance and training time is preferably searched.  
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In the next step the model is tested on the test dataset to generate the classification 

report and confusion matrix. The classification report shows that the prediction 

performance of the model is not essentially better than the model OC1_ANN.  

Table 30: Classification report for OC2_ANN 

OC2_ANN Classification report 

macro avg weighted avg 
accuracy 0,47 
precision 0,43 0,47 

recall 0,40  0,47 
f1-score 0,40 0,47 

 

The overall bad performance is also visible in the confusion matrix, but again, 

compared to the SVM, the ANN is able to identify the underrepresented class 3. 

Since the MLP-Classifier of scikit-learn doesn’t have an option for the class 

balance like the support vector classifier or random forest classifier, the class 

balance has to be improved manually. The elapsed time of training is about 12.5 

minutes. 

Table 31: Confusion matrix for OC2_ANN 

Confusion matrix 

OC2_ANN Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 5982 2968 1532 20 389 2135 1962 806 
1 2017 10293 1011 28 1512 4270 488 323 
2 924 1108 16576 18 1702 6046 4697 7400 
3 123 139 707 44 23 185 27 164 
4 1656 5161 1447 62 4505 5830 560 321 
5 1122 2925 2888 44 1702 25393 5326 2349 
6 1381 1053 3001 18 509 8324 15314 6563 
7 1039 523 2359 46 146 2340 6949 19382 

 

To assess if a better class balance of the dataset improves the model performance, 

the classes are balanced using the sampling algorithm of the imbalanced learn 

library “SMOTETomek”. Further information on under- and oversampling 

algorithms is provided on the website of imbalanced learn:  

https://imbalanced-learn.readthedocs.io/en/stable/api.html 

The implementation of the resampling module SMOTETomek in the learning model 

is done after splitting the data into train and test data:  

from imblearn.combine import SMOTETomek 
 
sm = SMOTETomek(random_state=42)  
X_train_res, y_train_res = sm.fit_sample(X_train, y_train) 
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After resampling the dataset, the distribution of the classifications changes as 

follows (before sampling on the left side and after sampling right): 

 

Figure 34: Distribution of classifications before (left) and after (right) resampling 

with SMOTETomek 

The classification report shows that the scores are all decreasing compared to the 

model trained on unbalanced data. The reason therefore is part of ongoing research. 

Table 32: Classification report for OC2_ANN 'balanced' 

OC2_ANN 

‘balanced’ 
Classification report 

macro avg weighted avg 
accuracy 0,42 
precision 0,40 0,46 

recall 0,49 0,42 
f1-score 0,39 0,42 

 

The confusion matrix indicates an improvement in predicting underrepresented 

classes but also here the overall decrease of the model performance is visible. The 

training time increased by 2 minutes to ca. 14.5 minutes. 

Table 33: Confusion matrix for OC2_ANN 'balanced' 

Confusion matrix 

OC2_ANN 

‘balanced’ 

Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 8863 2761 453 1001 450 928 415 923 
1 2997 10577 471 851 2957 1524 246 319 
2 3195 1655 10802 3250 3197 3574 3005 9793 
3 92 7 7 1256 13 1 1 35 
4 2231 5433 480 1095 6475 2914 622 292 
5 2966 4673 3295 1690 4252 16470 4967 3436 
6 3821 1884 1502 1585 1212 5687 11501 8971 
7 2340 669 856 1724 363 871 5574 20387 
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 Discussion 

A simple neural network model is not able to learn and predict the soil classes 

according to Oberhollenzer (2021) from the CPT test data sufficiently. The 

prediction accuracy is consistently below 50%. The performance of the models 

could basically be improved by adding hidden layers and neurons but only at the 

cost of a highly increased training time. Additionally, the class balance must be 

evaluated and optimized beforehand but the application of a resampling algorithm 

should be done carefully because the structure of the data could be changed 

completely.  

6.3 Grid Search for Soil Behaviour Types 

Since the targets of all soil behaviour type models are very similar, the influence 

of hyperparameters except the number of hidden layers and neurons is evaluated 

once using the model SBT2_ANN representative for all other behaviour type 

models (SBT, SBTn, ModSBTn). Similar to the OC1_ANN models, the learning 

rate, activation function and solver are set as variable parameters. The number of 

hidden layers and neurons is set constant at one layer with 10 neurons. The number 

of maximum iterations is set to 500.  

Table 34: Range of parameters for Grid Search 

Grid Search for Soil Behaviour Types 

Parameter Defined range 

number of hidden layers 1 

number of neurons in each layer 10  
max_iter 500 

activation function 'identity', 'logistic', 'tanh', 'relu' 

learning_rate 'constant', 'adaptive' 

solver 'sgd', 'adam' 
 

The best parameters found are again the same as the first grid search yielded. 

Except the activation function all favourable parameters are also the default ones. 

Since the difference between the activation function ‘tanh’ to the default ‘relu’ 

is very small, the default value is used for all parameters. The results are provided 

in Table 35. 
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Table 35: Results of hyperparameter tuning for SBT 

Best parameters found for Soil Behaviour Types 

Parameter Defined range 

number of hidden layers 1 

number of neurons in each layer 10  
max_iter 500 

activation function 'tanh' 

learning_rate 'constant' 

solver 'adam' 
 

The influence of the number of hidden layers and number of neurons is again 

checked in two different steps. First, the number of hidden layers is increased from 

one to four with a constant number of 10 neurons in each. Table 36 shows that the 

best result is reached with two hidden layers. The performance of the network with 

a number of hidden layers beyond two is decreasing slightly.  

Table 36: Grid search for number of hidden layers 

Grid Search for hidden layers  

Number of hidden layers  Cros_val_score relative improvement in % 

1 0,977 -- 

2 0,985 0,8 

3 0,983 -0,2 

4 0,981 -0,2 
 

The influence of the number of neurons is evaluated using one hidden layer with 

10, 50, 100 and 150 neurons. Table 37 provides the results of the grid search model.  

The cross-validation score increases slightly to 0.985% when the number of 

neurons is increased from 10 to 50. After 50 neurons the score reaches a peak of 

0.985%. Therefore, it is assumed that the model is not able to predict with a higher 

accuracy. 

Table 37: Grid search for number of neurons in hidden layer 

Grid Search for number of neurons  

Number of neurons   Cros_val_score relative improvement in % 

10 0,977 -- 

50 0,985 0,8 

100 0,985 0,0 

150 0,985 0,0 
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The evaluation of hyperparameter using grid search techniques yielded the best set 

of parameters for the soil behaviour type models. The chosen values for all models 

are given in Table 38 

Table 38: Resulting model parameters of grid search. 

Best parameters found for Soil Behaviour Types 

Parameter Defined range 

number of hidden layers 3 

number of neurons in each layer 10  
max_iter 600 

 

6.4 Learning and validation curves for Soil Behaviour 

Types 

Since the targets of all Soil Behaviour Type models are highly similar, the learning 

and validation curves are only generated and visualized once, vicariously for all. 

The chosen model for the chart is SBT2_ANN. The number of hidden layers is set 

as evaluated in the grid search model to 3 layers with 10 neurons and the maximum 

iterations are set to 600.  

The learning curve is provided in Figure 35. The model shows little to no variance 

(training and validation accuracy are nearly on the same level) and generally fits 

the data very good. The cross-validation score of the model is consistently above 

95%.  

 

Figure 35: Learning curve for Soil Behaviour Type models 
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The validation curve is displayed in Figure 36. The training and validation curve 

are throughout on the same line and at a high level. This indicates a good model 

with little to no underfitting or overfitting. 

 

Figure 36: ANN validation curve for the Soil Behaviour Type Models 

The validation step for Soil Behaviour Type models is now finished. In the next 

step, all models are tested on the test data and their respective classification report 

and confusion matrix is plotted.  

6.5 Soil Behaviour Type models 

In this chapter the results of the test procedure for all Soil Behaviour Type models 

are evaluated and discussed. Table 39 provides an overview of the models and their 

input features. 

Table 39: Soil Behaviour Type models using an ANN 

Target Model ID ML algorithm Features 

SBT 
SBT1_ANN ANN Depth, qc, fs, Rf 

SBT2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 

SBTn 
SBTn1_ANN ANN Depth, qc, fs, Rf 

SBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 

Mod.SBTn 
MSBTn1_ANN ANN Depth, qc, fs, Rf 

MSBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 
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The results as well as the learning and prediction characteristics of all neural 

network models for Soil Behaviour Type classification are quite similar, hence all 

classification reports and confusion matrices are provided in the following section 

without any respective comments. The results for all models are compared and 

discussed at the end of this chapter.  

 SBT1_ANN 

Table 40: Confusion matrix for SBT1_ANN 

Confusion matrix 

SBT1_ANN 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 10816 585 282 0 0 5 97 27 0 0 

1 290 6473 0 2 5 0 2 0 0 0 

2 5 13 16178 171 0 0 0 0 0 0 

3 0 100 381 111685 1435 0 0 0 0 4 

4 0 346 0 548 100645 935 0 0 0 5 

5 77 100 0 0 687 120078 929 0 1 3 

6 238 0 0 0 1 233 113665 49 0 0 

7 106 0 0 0 0 0 617 12620 0 0 

8 0 0 0 0 2 153 95 0 946 22 

9 0 0 0 2 44 1 0 0 0 1149 
 

Table 41: Classification report for SBT1_ANN 

SBT1_ANN 
Classification report 

macro avg weighted avg 
accuracy 0,98 
precision 0,97 0,98 

recall 0,95 0,98 
f1-score 0,96 0,98 

 

 SBT2_ANN 

Table 42: Classification report for SBT2_ANN 

SBT2_ANN 
Classification report 

macro avg weighted avg 
accuracy 0,98 
precision 0,95 0,98 

recall 0,97 0,98 
f1-score 0,96 0,98 
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Table 43: Confusion matrix for SBT2_ANN 

Confusion matrix 

SBT2_ANN 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 11030 462 123 0 0 14 101 69 0 0 

1 447 6432 0 0 3 17 0 0 0 0 

2 161 4 16083 23 0 0 0 0 0 0 

3 0 171 666 113124 208 0 0 0 0 13 

4 0 266 0 1642 100390 226 0 0 0 55 

5 57 73 0 0 1338 119815 267 0 71 0 

6 213 0 0 0 0 950 112393 176 46 0 

7 76 0 0 0 0 0 212 13010 0 0 

8 0 0 0 0 0 8 2 1 1156 42 

9 0 0 0 2 1 1 0 0 0 1213 
 

 SBTn1_ANN 

Table 44: Confusion matrix for SBTn1_ANN 

Confusion matrix 

SBTn1_ANN 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 15507 42 205 4 0 70 594 330 2 0 

1 309 5341 1 288 45 10 2 1 0 0 

2 244 34 24893 2638 0 0 0 0 0 3 

3 13 143 1894 141899 2189 6 0 0 0 432 

4 2 60 1 3189 53608 3619 0 0 69 297 

5 18 17 0 1 880 104721 4182 2 259 2 

6 27 0 0 0 0 1958 103595 743 75 0 

7 210 0 0 0 0 0 910 17601 0 0 

8 0 0 0 0 8 155 148 0 3559 44 

9 1 0 0 168 132 1 0 0 139 5313 
 

Table 45: Classification report for SBTn1_ANN 

SBTn1_ANN 
Classification report 

macro avg weighted avg 
accuracy 0,95 
precision 0,93 0,95 

recall 0,93 0,95 
f1-score 0,93 0,95 
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 SBTn2_ANN 

Table 46: Confusion matrix for SBTn2_ANN 

Confusion matrix 

SBTn1_ANN 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 16080 75 234 50 0 23 75 211 6 0 

1 343 5056 12 545 35 3 1 2 0 0 

2 172 37 24208 3390 0 0 0 0 0 5 

3 33 23 1001 144588 628 6 0 0 0 297 

4 25 30 0 1541 57893 1080 3 0 31 242 

5 72 0 0 4 354 108050 1260 0 336 6 

6 496 0 0 0 15 599 103747 1461 80 0 

7 446 0 0 0 0 0 94 18181 0 0 

8 0 0 0 0 0 8 2 1 1156 42 

9 0 0 0 2 1 1 0 0 0 1213 
 

Table 47: Classification report for SBTn2_ANN  

SBTn1_ANN 
Classification report 

macro avg weighted avg 
accuracy 0,97 
precision 0,94 0,97 

recall 0,95 0,97 
f1-score 0,94 0,97 

 

 ModSBTn1_ANN 

Table 48: Confusion matrix for ModSBTn1_ANN 'balanced' 

Confusion matrix 

ModSBTn1_ 

ANN 

Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 17058 543 168 4 208 89 367 470 
1 507 36775 1335 7 541 0 14 4 
2 33 2671 114714 3003 659 475 0 0 
3 6 4 694 33209 1 750 0 0 
4 21 575 540 0 26831 1163 1578 480 
5 5 0 26 568 696 30369 2 1036 
6 103 5 0 0 433 0 60637 4397 
7 256 0 0 2 41 946 2522 155312 
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Table 49: Classification report for ModSBTn1_ANN 

ModSBTn1_ANN 
Classification report 

macro avg weighted avg 
accuracy 0,94 
precision 0,93 0,94 

recall 0,93 0,94 
f1-score 0,93 0,94 

 

 ModSBTn2_ANN 

Table 50: Confusion matrix for ModSBTn1_ANN 'balanced' 

Confusion matrix 

ModSBTn2_ 

ANN 

Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 17619 149 90 0 168 86 360 435 
1 1042 36199 1524 0 409 0 3 6 
2 149 1327 118959 725 356 38 0 1 
3 45 0 191 33532 0 896 0 0 
4 52 90 193 1 30080 108 645 19 
5 5 0 2 111 139 31629 7 809 
6 258 1 0 0 110 0 64418 788 
7 287 2 0 0 19 175 476 158120 

 

Table 51: Classification report for ModSBTn2_ANN 

ModSBTn2_ANN 
Classification report 

macro avg weighted avg 
accuracy 0,98 
precision 0,96 0,98 

recall 0,96 0,98 
f1-score 0,96 0,98 

 

 Summary of results 

All models predict consistent results with an accuracy between 94-98%. Except 

the SBT_ANN models, the performance of all other models increases by adding σv, 

u0 and σ'v to the feature set.  
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The models for SBT predict both on a high level regardless the number of input 

features. The reason for that is that the SBT-classes have a direct empirical 

relationship to the tip resistance qc and sleeve friction fs. 

The models for SBTn and Mod.SBTn predict better when more input features, 

especially those considering the vertical stresses and groundwater table are added. 

The SBTn- and Mod.SBTn-classes have a ‘normalized’ empirical relationship to 

the measured data. Normalized means that the values are adjusted with respect to 

the influence of the groundwater table. 

Table 52: Results of SBT models 

Target Model ID Algorithm Features Accuracy 

SBT 
SBT1_ANN ANN Depth, qc, fs, Rf 0,98 

SBT2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 0,98 

SBTn 
SBTn1_ANN ANN Depth, qc, fs, Rf 0,95 

SBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 0,97 

Mod.SBTn 
MSBTn1_ANN ANN Depth, qc, fs, Rf 0,94 

MSBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 0,98 
 

6.6 Discussion 

The ANN models for Soil Behaviour Type classification predict the correct classes 

throughout with a high accuracy. In contrary, the models built for 

Oberhollenzer_classes are not able to sufficiently predict the right classes. The 

main reason for that is that compared to SBT, this soil classes have no empirical 

correlations to the CPT test data.   

In order to optimize the neural network to the best possible prediction performance 

(for Oberhollenzer_classes), building a deep neural network should be considered, 

but since this requires also an upgrade in hardware, it is not part of this thesis. 
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7 Random Forest 

Similar to the Neural Network models, 8 different models are evaluated using a 

Random Forest algorithm. The relevant hyperparameters for Random Forests are 

the number of trees n_estimators, and the maximum size of each tree max_depth. 

The influence of these parameters and the optimum combination is evaluated with 

learning and validation curves. Again, the learning and validation curves for all 

Soil Behaviour Type models are only plotted once, vicariously for all.  

7.1 Oberhollenzer_classes 

 OC1_RF 

The input parameters for generating the first learning curves are set to 100 for the 

number of trees and no limit is set for the maximum size of each tree. For the cross-

validation, the folds are set to 5. The first model yields the best cross-validation 

score so far. However, the model has also the highest variance (overfitting the data) 

which is visible in the gap between the training and validation accuracy displayed 

in Figure 37 . 

 

Figure 37: First RF Learning curve for OC1 

To evaluate the influence of the size of each tree on the bias and variance of the 

model, the validation curves are generated by setting a range for the parameter 

max_depth to 10, 15, 20, and 25. The cross-validation is again set to 5 folds. The 

influence of the tree size can be seen clearly in Figure 38. The gap between training 

and validation accuracy is strongly increasing with the size of each tree.  

variance 

accuracy 
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Figure 38: RF validation curve for OC1 

In order to get a better bias variance trade-off, the maximum size of each tree is 

set to 16. The learning curve is generated again and visualized in Figure 39. The 

variance decreased considerably, but also the cross-validation score decreased by 

about 10 %. A further reduction of the variance would also reduce the model 

accuracy. Therefore, this is assumed to be the best trade-off for this model. 

 

Figure 39: Second validation curve for OC1 

The number of trees in a Random Forest does not influence the susceptibility of 

the model to overfitting. To proof this, a validation curve is generated using 

variating number of trees. The range for n_estimators is set to 10, 25, 50 and 100. 

The validation curve in Figure 40 indicates that the bias and also the variance stays 

Variance at 

chosen depth 

bias 

variance 
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constant after a specific number of trees. Additionally, it can be assumed that the 

number of estimators set to 50 is be enough for this model and more trees do not 

increase the model quality. 

 

Figure 40: RF validation curve with varying number of estimators 

In the next step, the model performance gets evaluated on the test dataset to 

generate the confusion matrix and the classification report. The training time is 

about 3 minutes and the model reached an accuracy of 65%. Both, accuracy and 

training time are the best until now. All other scores are provided in Table 53. 

Table 53: Classification report for OC1_RF 

OC1_RF 
Classification report 

macro avg weighted avg 
accuracy 0,65 
precision 0,64 0,65 

recall 0,57 0,65 
f1-score 0,59 0,64 

 

The confusion matrix is given in Table 54. Compared to the SVM and ANN 

models, the RF performs quite well with respect to the class balance. 

Underrepresented classes like class 3 are also caught by the algorithm. 
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Table 54: Confusion matrix for OC1_RF 

Confusion matrix 

OC1_RF Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 9116 1685 1209 25 702 1573 820 664 
1 1304 12001 644 9 1977 2890 750 367 
2 578 621 26878 31 1215 4000 3192 1956 
3 75 108 457 284 81 217 103 87 
4 1037 2958 1079 7 8985 4333 746 397 
5 937 1784 1787 10 1744 29756 4156 1575 
6 995 680 2641 42 572 6540 21784 2909 
7 534 345 1554 27 299 2143 3886 23996 

 

 OC2_RF 

The second model for this soil classes is again trained using additional input 

features. Before training the model, the optimum set of hyperparameters is again 

searched by plotting the learning and validation curves. The validation curve 

(Figure 41) again indicates a growing variance when the size of the trees in the 

forest is increased. It is decided that the best bias-variance trade-off is at a 

max_depth of 18. 

 

Figure 41: RF validation curve for OC2 

The learning curve for the desired parameter is provided in Figure 42. In order to 

retain a sufficient accuracy, the variance is not further decreased. The influence of 

the maximum tree size is displayed in Figure 43. 

Variance at 

chosen depth 
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Figure 42: RF learning curve for OC2 (max_depth = 18) 

 

Figure 43: RF learning curve for OC2 with 15 (left) and 20 (right) for max_depth 

The model is tested on the test dataset. Compared to other models, the reached 

accuracy of 75% is best for the classification of Oberhollenzer_classes. The 

confusion matrix is provided in Table 55 and indicates a solid performance of the 

model both in predicting underrepresented classes as well as the overall prediction 

performance.  

Table 55: Confusion matrix for OC2_RF 

Confusion matrix 

OC2_RF Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 10789 1358 716 12 588 1322 588 421 
1 1084 13968 505 19 1240 2236 609 281 
2 474 409 30722 38 729 2630 2066 1403 
3 51 39 413 689 32 68 55 65 
4 870 2015 800 14 12104 2908 534 297 
5 719 1304 1121 13 985 33760 2805 1042 
6 800 581 1596 50 526 4713 26080 1817 
7 509 285 993 43 220 1433 2579 26722 
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The classification report is given in Table 56. The model yielded the best results 

for all evaluated scores in predicting Oberhollenzer_classes.  

Table 56: Classification report for OC2_RF 

OC2_RF 
Classification report 

macro avg weighted avg 
accuracy 0,75 
precision 0,75 0,76 

recall 0,70 0,75 
f1-score 0,72 0,75 

 

7.2 Soil Behaviour Types 

The procedure for the determination of the model parameters for all Soil Behaviour 

Type models is similar to the ANN models. The best parameter set is evaluated 

with one model, vicariously for all. Therefore, the learning curves and validation 

curves are generated using the model SBT2_RF and ModSBTn1_RF. 

To assess the bias-variance behaviour of the models, the learning curves of the 

aforementioned models are generated and visualized. The number of trees (100) 

and the maximum size of the trees (unrestricted) is set to default. Figure 44 

provides the learning curve for the model SBT2_RF. As visible in the curves, the 

model has a very high accuracy and nearly zero variance, therefore the default 

hyperparameters are obviously appropriate.  

 

Figure 44: RF learning curve for SBT2 
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The learning curve for ModSBTn1_RF and ModSBTn2_RF is provided in Figure 

45. As expected, the validation accuracy of ModSBTn1_RF is slightly lower 

compared to SBT1_RF and ModSBTn2_RF. This is mainly due to the fact that the 

ModSBTn (modified normalized Soil Behaviour Type) is calculated from 

normalized parameters and this model (ModSBTn1_RF) has no input features 

considering the vertical stresses and the groundwater conditions. However, the bias 

and variance of both Mod.SBTN models is very low and therefore the 

hyperparameter are also set to default.  

 

Figure 45: RF learning curve for ModSBTn1 

 

Figure 46: RF learning curve for ModSBTn1 

The influence of the number of trees is also checked for the Soil Behaviour Type 

Models. In Figure 47, the validation curve for the model ModSBTn2_RF is 
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displayed. The range for the number trees is set to 10, 25, 50 and 100. The curves 

indicate that only a few estimators are necessary to get the best performance.  

 

Figure 47: RF validation curve for a varying number of trees 

In the next step, the performance of all models, targeting the different Soil 

Behaviour Types is evaluated using classification reports and confusion matrices. 

The reports and matrices are provided in the following sections and their results 

are discussed at the end.  

 SBT1_RF 

Table 57: Confusion matrix for SBT1_RF 

Confusion matrix 

SBT1_RF 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 11578 116 1 0 0 8 80 28 1 0 

1 66 6676 0 9 14 7 0 0 0 0 

2 2 1 16320 44 0 0 0 0 0 0 

3 0 11 62 113237 293 0 0 0 0 2 

4 0 22 0 334 101835 278 0 0 0 10 

5 8 14 0 0 309 121238 291 0 15 0 

6 69 1 0 0 0 297 113728 87 4 0 

7 27 0 0 0 0 0 108 13208 0 0 

8 0 0 0 0 1 9 3 0 1201 4 

9 0 0 0 2 8 0 0 0 4 1182 
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Table 58: Classification report for SBT1_RF 

SBT1_RF 
Classification report 

macro avg weighted avg 
accuracy 0,99 
precision 0,99 0,99 

recall 0,99 0,99 
f1-score 0,99 0,99 

 

 SBT2_RF 

Table 59: Classification report for SBT2_RF 

SBT2_RF 
Classification report 

macro avg weighted avg 
accuracy 0,99 
precision 0,99 0,99 

recall 0,99 0,99 
f1-score 0,99 0,99 

 

Table 60: Confusion matrix for SBT2_RF 

Confusion matrix 

SBT2_RF 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 11552 101 2 0 0 8 95 41 0 0 

1 51 6810 1 8 19 10 0 0 0 0 

2 1 0 16183 87 0 0 0 0 0 0 

3 0 17 87 113691 380 0 0 0 0 7 

4 0 29 0 498 101709 325 0 0 0 18 

5 10 17 0 0 398 120832 354 0 10 0 

6 89 1 0 0 0 345 113224 117 2 0 

7 46 0 0 0 0 0 136 13116 0 0 

8 0 0 0 0 1 13 8 0 1181 6 

9 0 0 0 4 6 0 0 0 5 1202 
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 SBTn1_RF  

Table 61: Classification report for SBTn1_RF 

SBTn1_RF 
Classification report 

macro avg weighted avg 
accuracy 0,97 
precision 0,96 0,97 

recall 0,96 0,97 
f1-score 0,96 0,97 

 

Table 62: Confusion matrix for SBTn1_RF 

Confusion matrix 

SBTn1_RF 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 16487 42 75 2 0 2 75 68 3 0 

1 75 5815 4 63 32 7 1 0 0 0 

2 57 4 26708 1039 1 0 0 0 0 3 

3 0 41 641 143441 2227 6 0 0 0 220 

4 0 27 1 1267 57091 2195 0 0 49 215 

5 6 9 0 1 1193 106018 2675 0 180 0 

6 33 2 0 0 0 1597 104070 636 60 0 

7 58 0 0 0 0 0 413 18250 0 0 

8 0 0 0 0 23 154 54 0 3631 52 

9 0 0 0 115 116 0 0 0 70 5453 
 

 SBTn2_RF 

Table 63: Classification report for SBTn2_RF 

SBTn2_RF 
Classification report 

macro avg weighted avg 
accuracy 0,99 
precision 0,98 0,99 

recall 0,98 0,99 
f1-score 0,98 0,99 
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Table 64: Confusion matrix for SBTn2_RF 

Confusion matrix 

SBTn2_RF 
Predicted 

0 1 2 3 4 5 6 7 8 9 

A
ct

u
al

 

0 16471 41 85 1 0 2 79 72 3 0 

1 91 5843 4 38 16 4 1 0 0 0 

2 66 6 27107 627 1 0 0 0 0 5 

3 2 28 448 145430 589 7 0 0 0 72 

4 0 21 0 695 59509 567 0 0 5 48 

5 5 4 0 1 568 108797 634 0 73 0 

6 30 0 0 0 0 623 105506 203 36 0 

7 41 0 0 0 0 0 226 18454 0 0 

8 0 0 0 0 1 81 33 1 3769 29 

9 0 0 1 47 43 2 0 0 35 5626 
 

 ModSBTn1_RF 

Table 65: Classification report for ModSBTn1_RF 

ModSBTn1_RF 
Classification report 

macro avg weighted avg 
accuracy 0,97 
precision 0,96 0,97 

recall 0,96 0,97 
f1-score 0,96 0,97 

 

Table 66: Confusion matrix for ModSBTn1_RF 

Confusion matrix 

ModSBTn1 

_RF 

Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 18221 114 67 0 167 74 113 151 
1 108 38036 567 1 462 0 6 3 
2 16 416 118454 1836 497 336 0 0 
3 0 1 894 33193 0 576 0 0 
4 13 230 343 0 28480 897 884 341 
5 7 0 83 316 335 31134 0 827 
6 34 3 0 0 533 1 62236 2768 
7 73 0 0 0 73 510 1409 157014 
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 ModSBTn2_RF 

Table 67: Classification report for ModSBTn2_RF 

ModSBTn2_RF 
Classification report 

macro avg weighted avg 
accuracy 0,99 
precision 0,99 0,99 

recall 0,98 0,99 
f1-score 0,98 0,99 

 

Table 68: Confusion matrix for ModSBTn2_RF 

Confusion matrix 

ModSBTn2 

_RF 

Predicted 
0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 18243 114 69 0 142 78 122 139 
1 110 38476 477 0 113 0 4 3 
2 17 367 120717 286 154 13 0 1 
3 0 2 267 34202 1 192 0 0 
4 15 113 220 0 30499 89 238 14 
5 6 0 3 197 111 32106 1 278 
6 35 2 0 0 245 2 64811 480 
7 48 0 0 0 5 244 491 158291 

 

 Summary of results 

The models built with random forest algorithm predict with the highest scores for 

all targets and input features, compared to the SVM and ANN model. The Random 

Forest models for the Soil Behaviour Type classifications predict throughout with 

a high accuracy between 97 % and 99 %. The training time of the models is also 

better compared to the neural network models and lays within 10.5 to 11.5 minutes. 

Additionally, all classes were captured with nearly the same accuracy regardless 

the class balance. 

Table 69: Results of SBT models 

Target Model ID Algorithm Features Accuracy 

SBT 
SBT1_RF RF Depth, qc, fs, Rf 0,99 

SBT2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf 0,99 

SBTn 
SBTn1_RF RF Depth, qc, fs, Rf 0,97 

SBTn2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf 0,99 

Mod.SBTn 
MSBTn1_RF RF Depth, qc, fs, Rf 0,97 

MSBTn2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf 0,99 
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7.3 Discussion 

The Random Forest models predict best, both in prediction performance 

(accuracy) and training time. Additionally, the Random Forest algorithm is the 

easiest to apply compared to the SVM and ANN. For the prediction of the Soil 

Behaviour Types, no hyperparameter tuning was necessary and all models are built 

with the default parameter set. Since the Random Forest reached the best scores 

for all evaluated combinations of input features and targets, this model will be used 

for the prediction of soil classes from unknown CPT test data. 
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8 Prediction and classification of soil 
strata  

Since the best prediction accuracies obtained in this thesis are from the Random 

Forest models, these models are used to predict soil strata and classes from unseen 

CPT data from sites in Austria and the Netherlands. The accuracies of all models 

are summarized in Table 70. To compare the predicted with the actual soil classes 

and interpret the resulting soil strata, the classes are visualized over depth, together 

with qc and Rf from the respective CPT test. (Parts of the code to generate the charts 

are based on a template from the blog “Geotech_4.0” (Yogatama, 2018).) 

Table 70: Summary of the accuracies of all evaluated models 

Target Model ID Algorithm Features Accuracy 

OC 

OC1_SVM SVM Depth, qc, fs, Rf 0,38 

OC2_SVM SVM Depth, qc, fs, σv, u0, σ'v, Rf 0,38 

OC1_ANN ANN Depth, qc, fs, Rf 0,46 

OC2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf O,47 

OC1_RF RF Depth, qc, fs, Rf 0,65 

OC2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf 0,75 

SBT 

SBT1_ANN ANN Depth, qc, fs, Rf 0,98 

SBT2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 0,98 

SBT1_RF RF Depth, qc, fs, Rf 0,99 

SBT2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf 0,99 

SBTn 

SBTn1_ANN ANN Depth, qc, fs, Rf 0,95 

SBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 0,97 

SBTn1_RF RF Depth, qc, fs, Rf 0,97 

SBTn2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf 0,99 

Mod.SBTn 

MSBTn1_ANN ANN Depth, qc, fs, Rf 0,94 

MSBTn2_ANN ANN Depth, qc, fs, σv, u0, σ'v, Rf 0,98 

MSBTn1_RF RF Depth, qc, fs, Rf 0,97 

MSBTn2_RF RF Depth, qc, fs, σv, u0, σ'v, Rf 0,99 
 

8.1 CPT data from Austria 

The test data used for the prediction is also part of the dataset used in the sections 

before but was excluded for the training process. The used tests are ID_934 from 

Salzburg basin and ID_1317 from Zell basin. 
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To predict the soil strata and classes (acc. to Oberhollenzer, et.al., (2021)) and the 

modified normalized Soil Behaviour types (acc. to Robertson (2016)), the Random 

Forest models are trained again using the entire dataset (without applying train test 

split). With the input features (Depth, qc, fs, σv, u0, σ'v, Rf) from the respective test 

a soil class of Soil Behaviour Type is predicted for each depth level where data is 

measured by the CPT.  

 ID_934 

8.1.1.1 Oberhollenzer_classes 

The results for test ID_934 are visualized in Figure 48 and in Figure 49 as 

comparison to the real results. The charts of Figure 48 provide the following 

information (from left to right):  First, the CPT test data qc and Rf vs the depth, 

second, the soil classes predicted by the Machine Learning model and third the 

probability of each class vs the depth of the prediction. The last two charts of 

Figure 49 provide the actual soil classes and soil model determined by laboratory 

tests from core drilling samples by Oberhollenzer, et. al. (2021). 

 

Figure 48: Predicted soil classes of test ID_934 with probability plot 
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The yellow points in “OC predicted” and “OC real” indicated the predicted soil 

class from the CPT data and the actual soil class based on grain size distribution. 

For this example, the Machine Learning model yielded adequate predictions 

compared to the real soil model. Down to 5 m beneath ground elevation the model 

identifies a mixture of sand and gravel and from 5-10 m a mixture of sand, silt and 

clay, and below 10 m the model predicts mainly clay and silt. Parts where no 

predicted or actual soil class is visualized belong to the ignored classifications (a 

full list of the soil classes is provided in the appendix and more information about 

the determination of these classes is provided in the publication of Oberhollenzer 

et. al., (2021)). 

 

Figure 49: Predicted vs actual soil classes of test ID_934 

The confusion matrix and classification report are given in Table 72 and Table 71. 

The accuracy of this prediction is lower than obtained in the building process of 

the Random Forest model (chapter 7). 

Table 71: Confusion matrix test ID_934 

Confusion matrix 

ID_934 OC Predicted 

0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 8 21 109 2 8 19 12 145 

1 59 116 26 0 9 0 1 9 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 35 27 15 0 14 51 10 23 

6 0 0 0 0 0 0 0 0 

7 26 4 180 2 9 203 563 1443 
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Table 72: Classification report for test ID_934 

ID_934 OC 
Classification report 

macro avg weighted avg 
accuracy 0,57 
precision 0,22 0,75 

recall 0,17 0,57 
f1-score 0,19 0,65 

 

8.1.1.2 Soil Behaviour Types  

The 3 different Soil Behaviour Types (SBT, SBTn and Mod. SBTn) are quite 

similar. Therefore, the results for the prediction of the Machine Learning model 

with unseen CPT data are plotted only for the modified normalized 

Soil Behaviour Type – Mod. SBTn, representative for all. The results are displayed 

in Figure 50. As expected, the model predicted with nearly the same accuracy as 

in the building process and only a few datapoints are misclassified. Due to the 

empirical relationship between test data and Soil Behaviour Types, the accuracy is 

better than for predicting Oberhollenzer_classes. 

 

Figure 50: Predicted vs actual Soil Behaviour Type (Mod. SBTn) of test ID_934 
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The classification report and confusion matrix are provided in Table 73 and Table 

74.  

Table 73: Classification report for test ID_934 

ID_934 Mod. SBTn 
Classification report 

macro avg weighted avg 
accuracy 0,98 
precision 0,94 0,98 

recall 0,90 0,98 
f1-score 0,92 0,98 

 

Table 74: Confusion matrix test ID_934 

Confusion matrix 

ID_934 

Mod. SBTn 

Predicted 

0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 45 1 0 0 0 0 0 0 

1 0 34 18 0 0 0 0 0 

2 0 0 2468 0 0 0 0 0 

3 0 0 3 45 0 1 0 0 

4 1 6 8 0 183 1 10 2 

5 0 0 0 1 1 97 0 0 

6 0 0 0 0 10 0 88 9 

7 0 0 0 0 0 0 3 114 
 

 ID_1317 

8.1.2.1 Oberhollenzer_classes 

The results for the CPT data with the ID 1317 are provided in Figure 52. The model 

predicted mainly class 2 for the first 2 m, then up to 7 m class “0” (= ignored 

classes). From 7 to 20 m, the model predicted predominantly sand with some minor 

layers of silt and organic soils. The soil model generated by the Machine Learning 

model is quite similar to the actual soil model which was determined from adjacent 

boreholes. The obtained accuracy is 78 % and therefore higher than obtained while 

building the Random Forest model (75 %).  
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Figure 51: Predicted soil classes of test ID_1317 with probability plot 

 

Figure 52: Predicted vs actual soil classes of test ID_1317 

The classification report and the confusion matrix also indicate a solid model 

performance. They are provided in Table 75 and Table 76.  
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Table 75: Classification report for test ID_1317 

ID_1317 OC  
Classification report 

macro avg weighted avg 
accuracy 0,78 
precision 0,36 0,92 

recall 0,21 0,78 
f1-score 0,24 0,83 

 

Table 76: Confusion matrix test ID_1317 

Confusion matrix 

ID_1317 OC Predicted 

0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 520 1 71 0 0 125 42 11 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 20 6 0 4 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 80 0 47 1026 47 0 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 
 

8.1.2.2 Soil Behaviour Types  

Similar to test ID_934, the results for the Soil Behaviour Type predictions are 

plotted only once. Again, the modified normalized Soil Behaviour Type is 

predicted and the results are visualized in Figure 53 The confusion matrix and 

classification report are provided in Table 77 and Table 78. 
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Figure 53: Predicted vs actual Soil Behaviour Type (Mod. SBTn) of test ID_1317 

 

Table 77: Confusion matrix test ID_1317 

Confusion matrix 

ID_1317 

Mod.SBTn 

Predicted 

0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 8 0 0 0 0 0 2 0 

1 0 70 3 0 0 0 0 0 

2 0 6 451 2 6 0 0 0 

3 0 0 0 116 0 0 0 0 

4 0 0 0 0 105 0 0 0 

5 0 0 0 0 0 26 0 1 

6 0 0 0 0 0 0 1131 1 

7 0 0 0 0 0 0 0 72 
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Table 78: Classification report for test ID_1317 

ID_1317 Mod. SBTn 
Classification report 

macro avg weighted avg 
accuracy 0,99 
precision 0,98 0,99 

recall 0,96 0,99 
f1-score 0,97 0,99 

 

8.2 CPT data from the Netherlands 

The CPT data used for the prediction is from sites in the Netherlands and very 

generously provided by the Dutch company “Witteveen+Bos”. To compare the 

prediction of the model with the soil model from adjacent boreholes, the borehole 

classification is converted to the soil classes according to Oberhollenzer (2021). 

An example for the conversion of the test with ID 1417_NL is given in Figure 54. 

It as to be kept in mind that this conversion includes some assumptions and thus 

uncertainties. 

 

Figure 54: Conversion from soil classification of Dutch borehole samples to 

Oberhollenzer_classes 
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 ID_1417_NL 

8.2.1.1 Oberhollenzer_classes 

The resulting predicted soil classes for the Dutch CPT data with the ID 1417_NL 

are provided in Figure 55 and Figure 56. The borehole classification is available 

to a depth of about 13.5 m. For this part, the Oberhollenzer_classes are determined 

as mentioned before and it is assumed to be predominantly class 5 (sand) with 

interlayers of class 7 (clay). The Machine Learning model predicts majorly sandy 

to gravely soil until a depth of about 7 m. After that, mainly a mixture of sand and 

silt. Although the model is not able to identify the correct soil strata and classes 

for the whole core sample, it indicates the distribution of fine- and coarse-grained 

soils over the depth.  

 

Figure 55: Soil classification for CPT test ID_1417_NL from Witteveen+Bos with 

the Random Forest Model 
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Figure 56: Comparison of predicted with real soil classes of CPT ID_1417_NL 

8.2.1.2 Soil Behaviour Types 

The classification report and confusion matrix of the modified normalized Soil 

Behaviour Type prediction are also generated for the CPTs from the Netherlands 

and displayed in Figure 57.  

Similar to the predictions for Austrian CPTs, the Soil Behaviour Types are 

identified with high accuracy by the Random Forest Model for the Dutch CPTs, 

too. The confusion matrix and classification report are provided in Table 80 and 

Table 79 
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Figure 57: Predicted vs actual Soil Behaviour Type (Mod. SBTn) of 

test ID_1417_NL 

 

Table 79: Confusion matrix test ID_1417_NL 

Confusion matrix 

ID_1417_NL 

Mod. SBTn 

Predicted 

0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 3 0 0 0 2 2 0 1 

1 0 2 0 0 0 0 0 0 

2 0 0 119 1 0 0 0 0 

3 0 0 5 83 0 8 0 0 

4 0 0 4 0 58 2 0 0 

5 0 0 0 1 6 254 0 4 

6 0 0 0 0 3 0 40 2 

7 0 0 0 0 0 3 8 580 
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Table 80: Classification report for test ID_1417_NL 

ID_1417_NL 

Mod. SBTn 
Classification report 

macro avg weighted avg 
accuracy 0,96 
precision 0,94 0,96 

recall 0,87 0,96 
f1-score 0,89 0,96 

 

 

 ID_3578_NL 

8.2.2.1 Oberhollenzer_classes 

 

Figure 58: Soil classification for CPT test ID_3578_NL  

A second CPT is used to evaluate the model performance on foreign soils. The 

results are displayed in Figure 58 and Figure 59. The soils identified from the 

borehole are as follows: Until a depth of 5 m a layer of predominantly clay, at 5 m 

a layer of peat, and after 5.5 m alternate layers of sand and clay until the final depth 

of about 14 m.  
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Figure 59: Predicted vs actual Soil Behaviour Type (Mod. SBTn) of test 

ID_3578_NL 

The soils predicted by the Random Forest model are: Down to 5 m mainly sandy, 

silty clay. At 5 m a layer of soils ignored by Oberhollenzer et.al., (class 0). Between 

6 and 7 m a layer of organic soils. From 7 to 9 a mixture of sand and clay and from 

9 to 14 m predominantly a mixture of sand, silt and clay. 

The model was again not able to identify all soil classes and strata, but similar to 

the test before it indicates the distribution of fine- and coarse-grained soils in the 

subsurface. The prediction could be improved by adding more training data from 

similar ground conditions. This is part of ongoing research at the Institute of Soil 

Mechanics, Foundation Engineering and Computational Geotechnics at the Graz 

University of Technology. 
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8.2.2.2 Soil Behaviour Types 

The results for the test with ID_3578 from the Netherlands are provided in Figure 

60.  

 

Figure 60: Predicted vs actual Soil Behaviour Type (Mod. SBTn) of 

test ID_3578_NL 

The classification report and confusion matrix are provided in Table 81 and Table 

82. The model is again able to identify most of the classes and yields an accuracy 

of 96 % which is 3 % less than while building the model (chapter 7.2.6). 

Table 81: Classification report for test ID_3578_NL 

ID_3578_NL 

Mod. SBTn 
Classification report 

macro avg weighted avg 
accuracy 0,96 
precision 0,96 0,96 

recall 0,88 0,96 
f1-score 0,91 0,96 
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Table 82: Confusion matrix test ID_3578_NL 

Confusion matrix 

ID_3578_NL 

Mod. SBTn 

Predicted 

0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 4 0 2 0 2 0 1 0 

1 0 103 2 0 0 0 0 0 

2 0 4 227 0 0 0 0 0 

3 0 0 0 27 0 0 0 0 

4 0 8 8 0 94 0 0 0 

5 0 0 1 0 2 60 0 4 

6 0 0 0 0 3 0 33 1 

7 0 0 0 0 0 0 1 360 
 

 ID_14001_NL 

For the third Dutch Cone Penetration Test data is no soil classification based on 

grain size distribution available. Hence the Random Forest model is only evaluated 

with respect to the Mod. SBTn. The confusion matrix and classification report are 

provided in Table 83 and Table 84 and the results are displayed in Figure 61. The 

results show again good consistency with the Soil Behaviour Types determined 

with empirical correlations.  

Table 83: Confusion matrix test ID_14001_NL 

Confusion matrix 

ID_934 

Mod. SBTn 

Predicted 

0 1 2 3 4 5 6 7 

A
ct

u
al

 

0 6 0 0 0 1 0 0 0 

1 0 17 11 0 0 0 0 0 

2 0 0 276 6 2 0 0 0 

3 0 0 1 181 0 3 0 0 

4 0 0 3 0 105 1 1 0 

5 0 0 0 10 5 116 0 0 

6 0 0 0 0 8 0 679 41 

7 0 0 0 0 1 19 52 2129 
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Table 84: Classification report for test ID_14001_NL 

ID_934 Mod. SBTn 
Classification report 

macro avg weighted avg 
accuracy 0,96 
precision 0,93 0,96 

recall 0,89 0,96 
f1-score 0,91 0,96 

 

 

Figure 61: Predicted vs actual Soil Behaviour Type (Mod. SBTn) of 

test ID_14001_NL 
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9 Conclusion 

In this master thesis, the ability of a Machine Learning algorithm to classify soils 

from Cone Penetration Test data was evaluated. In addition, the applied algorithms 

were compared, and the best performing was then used to classify soil strata and 

classes from unseen CPT data.  

The study of the current literature and publications regarding Machine Learning in 

geotechnics revealed an increased research interest over the past 10 years in the 

fields of artificial intelligence in geosciences. In recent publications, various 

studies showed that Machine Learning could be a feasible tool for the 

interpretation of subsurface conditions.  

To evaluate if a Machine Learning model is capable of soil classification from CPT 

data, 24 models based on three different algorithms, namely Support Vector 

Machine, Artificial Neural Network and Random Forest were built and tested. As 

input features, direct measured data (raw data) like tip resistance qc and sleeve 

friction fs as well as defined data, e.g., vertical stresses σv or hydrostatic pore 

pressures u0 are used. As targets, soil classes based on grain size distribution (acc. 

to Oberhollenzer et. al., (2021)) and soil classes based on the Soil Behaviour Types 

(acc. to Robertson (1990, 2009, 2016)). Furthermore, the models were compared 

mainly based on their prediction accuracy and secondarily on the necessary 

training time.  

The studies showed that models built with a Support Vector Machine are not 

suitable for the desired problem. The models based on Artificial Neural Network 

yielded adequate results for the prediction of Soil Behaviour Types but performed 

not as good as Random Forest models when predicting soil classes based on grain 

size distribution (Oberhollenzer_classes). The models built with a Random Forest 

classifier performed best for each examined set of input features and target classes, 

hence they were used to identify soil strata and predict the respective soil class or 

type from unseen CPT data: 

• Classification based on grain size distribution 

The Random Forest model was able to classify soils into classes based on 

grain size distribution from CPT test data with an accuracy of about 75 %. In 

addition, the results of the predicted soil strata and classes compared to the 

real ones were sufficient enough to indicate the mostly present class on a 

specific depth for CPT from Austria. In contrary, the model performed worse 

on unseen CPT data from the Netherlands. This leads to the following 

concluding remarks:  
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o A random forest model is principally able to classify soils from CPT 

data into soil classes based on grain size distribution. 

o The accuracy of the prediction is, seen from a geotechnical 

perspective, amongst others also influenced by the origin of the 

training samples, therefore, the models trained on Austrian soils 

performed worse when tested on CPT data from Dutch sites. This 

could be improved by adding additional training samples from Dutch 

sites.  

o Since the learning models were able to distinguish between different 

soil types (coarse to fine grained), it can be assumed that it could 

also be a helpful tool in the determination of physical properties of 

the subsurface, e.g., determination of friction angle.  

• Classification based on Soil Behaviour Types 

The Random Forest Model was able to classify soils from CPT data targeting 

the Soil Behaviour Types with an accuracy of 96 % and beyond. The main 

findings for this type of classification can be summarized as follows: 

o A Machine Learning model is able to predict Soil Behaviour Types 

from CPT data with a high accuracy. The empirical relationship 

between the input and output is assumed to be the main reason for 

that.  

o Based on the obtained accuracies Machine Learning could be a 

helpful tool to interpret raw CPT data. 

o Besides Random Forest models, also models based on Artificial 

Neural Networks yielded accurate results. 

o The performance of the Support Vector Machine was not 

competitive compared to Random Forest and Artificial Neural 

Networks.  

The present study showed that Machine Learning can be a suitable tool for soil 

classification in geotechnical engineering. However, the models evaluated in this 

study are not yet fully developed in terms of technology and there might be room 

for optimization. Additionally, the Artificial Neural Network is only applied in a 

simple form by using a multilayer perceptron. A Deep Neural Network may help 

to improve the prediction accuracies. Furthermore, the chosen input feature sets 

are determined only with respect to geotechnical properties and sequential feature 

selection algorithms were not applied.  

The findings of this master thesis showed that Machine Learning could be a helpful 

tool in geotechnical engineering if a high amount of data is available. Besides soil 

classification, the application of Machine Learning models for parameter 

identification may be a promising field for future research. 
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11 Appendix 

11.1 Soil classification 

 Oberhollenzer_classes 

Group 1: Group 2: Group 3: Group 4: Group 5: Group 6: Group 7: 
Ignored 
classifica
tions 

Gr,sa,si’ 
→ Gr,co 

Or,cl → 
Or,sa’ 

Or,sa → 
Or/Sa 

Sa,gr,si 
→ 
Gr,sa,si 

Sa,si → 
Sa,gr,si’ 

Si,sa,cl’ → 
Si,sa,gr 

Cl/Si,sa’ → 
Si,cl,sa 

Gr,Sa Si,or Sa,Or Gr,Si 
FSa,msa,f
gr 

Sa,Si,gr- Cl,Si,fsa Si,cl,gr,co 

Gr,Sa,si- Si,or- Sa,or Gr,sa+,si CSa Si,gr,sa Cl,si,gr- 
FGr,MGr,
MSa,CSa,
fsa,si- 

Gr,sa Or 
Gr,sa,si,o
r 

Gr,sa,si FSa Si,gr Si,Cl,FSa K,sa 

Gr,sa+ Or,Si FSa,si,or Gr,sa,si+ 
FSa, msa, 
csa 

Si,gr-,fsa Si,Cl,gr 
Mgr,fsa,c
l,gr 

Gr,sa+,si- Or,si Si,fsa,or 
FGr,MGr,
cgr-,si+ 

FSa,MSa Si,gr,sa,co Cl,si,fsa Predrill 

Gr,sa,si- Or,si- FSa,Si,or 
FGr,MGr,
si 

FSa,msa Si,gr,sa,cl Cl,si,sa 
MGr,cgr,
co 

Sa,Gr, co- Or,si,cl Si,cl,sa,or 
MGr,CGr,
si 

FSa,cl- Si,sa+,gr+ Cl,Sa 
MGr,cgr,
fgr 

FGr Or,Si,sa- Or,FSa FGr,csa MSa,FSa Si,sa,gr Cl,fgr- 
FGr,MGr,
Sa,cgr,si,
co 

FGr,CGr,s
a+ 

Si,cl,or   Gr,si,sa+ 
MSa,FSa,
si-- 

Si,sa,gr- Cl,fsa M 

FGr,MGr Or,sa-   
Gr,si,sa+,
co 

Sa 
Si,FGr,sa+,c
l- 

Cl,gr- 
A,fgr,mgr
,sa 

FGr,MGr,
sa+ 

   CGr,si 
FSa,msa,c
sa,si- 

Si,gr+,sa-,cl Cl,mgr Tm 

FGr,sa+    
CGr,co,si
++,sa++ 

Sa,fgr,si 
Si,fsa,fgr,m
sa,csa 

Cl,si-,fsa 
Gr,sa,co,
si 

CGr,FGr,
CSa,FSa 

   Gr,Cl,Sa Sa,fgr- Si,sa,cgr++ Cl,si+,sa CGr,CSa 

MGr    
Gr,sa,co-
,si 

Sa,fsa,si Si,cl,sa,gr- Cl,fsa- 
Gr,sa,co,
bo 

MGr,CSa    
Sa,Gr,Co,
si 

Sa,si-,fgr- Si,gr+ Si 
Gr,co,sa,
bo- 

MGr,sa    Gr,si,sa FGr,Sa,si FSa,Si,MSa Si,grcl 
FGr,FSa,s
i 

MGr,sa+    
Gr,si,sa-
,co- 

FSa,fgr- FSa,CSi Si,cl 
Si,Cl,Sa,G
r,co,bo 
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MGr,sa-    Gr,si,co- FSa,CSa 
FSa,MSa,m
si+,cl 

Cl,Si FSa,gr,si 

Sa,FGr    
Gr,si,sa,c
o- 

FSa,CSa,si Si,Gr,sa Cl,sa-,si A,sa,si+ 

Si,Sa,Gr    Gr,si,sa- 
FSa,MSa,
si+,csa 

Si,Sa Cl,si 
FSa,MSa,
CSa 

FSa,MGr,
gr 

   
Sa,Co,Gr,
si 

FSa,sa,si-
,fgr- 

Si,FSa Si,Cl 
A,gr,sa+,
si 

Gr,Co    Gr,Sa,Si 
CSa,fgr,si
-- 

Si,FSa,MSa Si,co Tst,si 

CGr,FGr,
CSa,FSa,s
i 

   FGr,Sa CSa,si-- Si,fsa Cl Mgr,gr,sa 

A,gr,sa    
MGr,CGr,
si+,sa 

MSa,csa+ Si,fsa,fsa+ Si,cl- 
Si,Cl,Sa,G
r,co 

FGr,CSa,s
i,gr 

   
Sa,FGr,M
Gr 

Sa,fgr,mg
r,cgr- 

Si,sa Si,cl A 

A,sa,si    Sa,gr FGr,si Si,sa,cl- Si,cl+ Gst 

Gr,co,sa-    Sa,gr,co Sa,si,gr- Si,sa-   A,Gr 

Gr,sa,co-    
Sa,fgr,mg
r 

Sa,si,cl- FSa,Si   
MGr,cgr,
fgr,co 

A,sa,mgr,
fgr,cgr 

   Sa,gr,si CSa,MSa FSa,Si,cl-   
CSa,Gr,C
o 

Co,Gr,A    Sa,gr,si- CSa,si- Si,fsa-   
A,Gr,Sa,c
o,si- 

CGr,MGr    FSa,FGr CSa, fsa Si,fsa-,fsa   
A,Gr,sa,si
- 

A,msa,m
gr,cgr,co 

   FGr,FSa FSa,csa Si,fsa+   A,Gr,sa,si 

Gr,sa,co    
FGr,MGr,
Sa 

Sa,si Si,fsa+,sa   Br,Si,fsa 

MGr,CGr,
sa 

   CSa,fgr+ Sa,si+,gr- Si,fsa,gr-   
A,Gr,co,s
a,si 

A,gr,sa,si-    
Gr,csa+,
msa- 

Sa,si- Si,msa,csa-   Gr 

A,Gr,sa    FGr,csa,si FSa,csi Si,sa,gr--   Gr,si 

CGr,co    
CSa,gr,co
,sa,si 

FSa,MSa,
si+ 

Si,sa+,gr-   Sa,Si,gr 

A,Gr,sa+,
si- 

   
MGr,sa+,
si 

FSa,MSa,
si- 

FSa,cl,si   Sa,si,fgr 

A,gr,sa,si    FSa,gr 
FSa,MSa,
si-,si 

Si,CSa   Co,sa,si 

A,fsa,csa,
fgr 

   
FSa,MSa,
si, fgr+, 
mgr+ 

FSa,sa,si- Si,sa-,gr--   Z 

Gr,co,fsa,
si 

   
CSa,FSa,g
r 

FSa,si FSa,si,cl   CSa,fgr,si 
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A,sa    
MSa,CSa,
si-,mgr-
,cgr- 

FSa,si+ CSi,fsa,cl-   
MGr,FGr,
sa,si- 

MGr,CGr,
si,si+ 

   
MSa,mgr
,cgr 

FSa,si+,cl- Si,fsa-,cl   A,sa,si- 

FSa,cgr,cs
i 

   
MSa,FSa,
fgr++,csa
+ 

FSa,si- Si,fsa-,cl-   Gr,co 

Bo    Sa,si,gr 
FSa,si-
,msa- 

Si,cl,fgr-   Grn 

A,Gr,fsa+
,csa+ 

   MGr,si FSa,si-,si Si,cl,fsa   Kst 

CGr,sa    
CSa,FSa,s
i,gr,cl 

MSa, si Si,cl,fsa-   Sa,Si 

MGr,cgr    CSa,si 
FSa,MSa,
si 

Si,cl,sa-   Sa,Si,fgr 

A,sa,gr,co    
FSa,MSa,
si-,gr 

FSa,sa,si Si,fsa,cl   Tst 

Gr,co,sa    Sa,fgr,si- FSa,sa-,si Si,FSa,cl   Si,cl,gr 

MGr,cgr,s
a 

   
Sa,fsa,si-
,fgr-,mgr- 

FSa,cl Si,fsa,cl-   Co,Bo 

A,Gr,Sa    
FSa,msa,f
gr- 

FSa,si,ms
a 

Si,FSa,MSa,
Cl 

  
FGr,mgr,
sa 

FGr,CGr,f
sa 

   
MSa,CSa,
fgr-,si- 

  Si,cl,sa   FSa,si,co- 

FGr,MGr,
csa 

   Sa,gr-   Si,Sa,gr,cl   
MGr,fgr,
cgr 

FGr,MGr,
sa 

   
Si,fsa,csa
,fgr-,co- 

  Si,cl+,sa   Cl,Gr 

FGr,MGr,
sa+,si- 

   Gr,fsa,si   Si,gr,cl-   Phy 

MGr,FGr,
sa+ 

   
FSa,si,gr,
co 

  Si,cl+,fsa-   Sa,mgr- 

MGr,FGr,
si- 

   
FSa,si,gr-
- 

  Si,FSa,cl--   Cl,gr,si 

MGr,cgr-
,fgr+,sa 

   
GSa,MSa,
si,gr- 

     Gr,si,cl 

Gr,Sa,si    Sa,gr-,si-        

Gr,sa+,co    Sa,gr+,si-        

Gr,sa,cl    
CSa,fgr,fs
a 

       

Gr,sa,cl-    
FSa,si,gr,
cl- 

       

Sa,gr+,co    Sa,fgr        

MGr,CGr            
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MGr,CGr,
cl+ 

           

Si,Sa,gr            

Co,sa            

Gr,co,si-            

Co            

Gr,sa,si-
,co 

           

CGr            

MGr,co            

A,Gr,sa,si
-,co 

           

Gr,co+,sa
,si- 

           

Gr,sa,co,s
i- 

           

MGr,csa,f
gr 

           

Gr,Sa,co            

Gr,co,si-
,sa- 

           

Sa,Gr            

Gr,sa+,co
,si- 

           

Sa,Gr,si-            

Gr,Sa,co-            

Gr,si-,sa-            

CGr,MGr,
co 

              

 

 

 


