
submitted to

Graz University of Technology

DOCTORAL THESIS

Dipl.-Ing. Josef Steinbäck, BSc

An Environmental Perception Platform

Enabling Low-Level Sensor Fusion

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Institut für Technische Informatik

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Graz, March 2021

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

i

Acknowledgments

This thesis is the final milestone of my doctoral studies at the Graz University of Tech-
nology. It was carried out at the Institute of Technical Informatics in cooperation with
Infineon Technologies Austria in Graz. At this point, I would like to write some words of
appreciation to all the people who supported me during the process of writing this thesis.

First and foremost, I would like to thank my supervisor Prof. Eugen Brenner and
my advisor Dr. Christian Steger from the Institute of Technical Informatics for their
continuous support, valuable feedback, and contributed knowledge during the process of
this work. Further, I would like to express my sincere gratitude to Dr. Norbert Druml,
my advisor at Infineon Technologies, who convinced me to enroll in a doctoral program
after completing my Master’s degree in 2016. As a mentor, he provided me with useful
advice and insightful comments. Due to his positive attitude, he was able to prevent me
from quitting in moments of great doubt.

Furthermore, I would like to thank my colleagues at the Cooperative Research and
Exploration department of the Infineon Development Center Graz for the great working
atmosphere. Special thanks go out to my PhD student colleagues Andreas, Armin, Cata-
rina, Hannes, and Philipp. I highly appreciate all of your useful advice, comments, and
interesting discussions. Additionally, I would like to thank the funding agencies involved
in financing the research projects assigned to this thesis1. The Virtual Vehicle Research
Center in Graz, one of the project partners, largely contributed to this thesis’s research
outcome by providing their research vehicles for multiple test drives. In particular, I would
like to thank Markus Schratter for his efforts in order to make this happen.

Finally, I would like to express my very profound gratitude to my family and friends
for their support and patience during my studies and during the work on this thesis.

Graz, March 2021 Josef Steinbäck

1The work of this thesis was accomplished as part of multiple research projects. ACTIVE (Autonomous
CarTo Infrastructure communication mastering adVerse Environments) is an Austrian Research Promotion
Agency (FFG)-supported project with the number 855010. AutoDrive and PRYSTINE (Programmable
Systems for Intelligence in Automobiles) are Electronic Components and Systems for European Leadership
Joint Undertaking (ECSEL JU)-supported projects with the grant agreement numbers 737469 and 783190.

iii

Abstract

Environmental perception sensors are among the key enablers of complex autonomous
systems such as automated vehicles or autonomous robots. However, state-of-the-art per-
ception systems are incapable of providing the required level of quality and robustness in
various conditions (e.g., harsh weather). No single-sensor solution is currently available to
meet these requirements. Thus, multiple different perception sensors are integrated into
today’s perception systems. Research and the industry currently face a significant gap.
The ideal sensor composition and the best possible combination of the corresponding sen-
sor data still impose open research questions. Additionally, the research community lacks
the availability of open perception platforms to perform research on novel sensor fusion
concepts at sensor-level. Researchers either face the burden to build their own custom
sensor platform or have to rely on publicly available high-level datasets.

This work provides the research community with a blueprint on how to build an envi-
ronmental perception platform, targeting the exploration of novel sensor fusion concepts.
For that purpose, the hardware and software components of a low-level capable environ-
mental perception platform were designed and implemented from scratch. The platform
deploys multiple state-of-the-art perception sensors (radar, vision, time-of-flight) and pro-
vides the measurement data streams at various abstraction levels. The Robot Operating
System (ROS) was selected as the base framework to enable rapid development and to
provide an open interface to existing modules. Crucial implementation challenges were
addressed, including the temporal and spatial alignment of low-level sensor data and the
sensors’ dynamic reconfiguration. Multiple common perception tasks were designed and
implemented as use cases for the environmental perception platform. These use cases
utilize the low-level sensor data in order to demonstrate the capabilities of the proposed
platform and to introduce novel approaches to solve the perception tasks.

The platform was mounted on different vehicles to obtain measurement data of real-
world scenarios. This data was utilized to evaluate the platform’s perception capabilities
and the sensors’ data quality. The obtained real-world data proves that the resulting
perception quality can be increased if the perception system enables low-level access to
the sensors. The evaluation of the implemented use cases clearly displays the potential of
low-level sensor fusion for various perception applications. The proposed environmental
perception platform is well-suited to be used as a base system to develop and evaluate
novel sensor fusion concepts. Researchers can utilize this work’s approach as a reference
for the construction of similar low-level capable perception platforms. The fast and easy
access to such systems advances the associated research and contributes to increase the
quality and robustness of future perception systems.

v

Kurzfassung

Sensoren zur Umgebungswahrnehmung gehören zu den wichtigsten Voraussetzungen für
komplexe autonome Systeme wie selbstfahrende Fahrzeuge oder autonome Roboter. Aktu-
elle Systeme sind jedoch nicht in der Lage, die erforderliche Qualität und Robustheit unter
wechselnden Bedingungen zu liefern. Es gibt derzeit keine ausreichende Lösung mit nur
einem Sensor, daher werden in den heutigen Systemen mehrere verschiedene Umgebungs-
sensoren integriert. Die ideale Auswahl von Sensoren und die bestmögliche Kombination
der entsprechenden Sensordaten stellen noch offene Forschungsfragen dar. Zusätzlich fehlt
es der Forschungsgemeinschaft an frei-verfügbaren Systemen, um neuartige Sensorfusions-
konzepte auf Sensorebene zu erforschen. Forscherinnen und Forscher müssen ihre eigene
Plattform bauen, oder sich auf öffentlich-verfügbare High-Level-Datensätze verlassen.

Diese Arbeit liefert einen Entwurf für den Aufbau einer Sensorplattform, die auf
die Erforschung neuartiger Sensorfusionskonzepte abzielt. Zu diesem Zweck wurden die
Hardware- und Softwarekomponenten einer Low-Level-fähigen Sensorplattform von Grund
auf entworfen und implementiert. Die Plattform setzt mehrere hochmoderne Umgebungs-
sensoren (Radar, Vision, Time-of-Flight) ein und stellt die Messdaten auf verschiedenen
Abstraktionsebenen bereit. Das Robot Operating System (ROS) wurde als Basisframe-
work gewählt, um eine schnelle Entwicklung zu ermöglichen und eine offene Schnittstelle
zu bestehenden Modulen zu bieten. Entscheidende Herausforderungen bei der Implemen-
tierung wurden adressiert, darunter der zeitliche und räumliche Abgleich der Low-Level-
Sensordaten und die dynamische Rekonfiguration der Sensoren. Die vorgestellte Platt-
form wurde als Basissystem verwendet, um neuartige Sensorfusionskonzepte zu evaluieren.
Mehrere typische Anwendungsfälle wurden entworfen und für die Sensorplattform imple-
mentiert. Diese Anwendungsfälle nutzen die Low-Level-Sensordaten, um die Stärken der
Plattform zu demonstrieren und neue Lösungsansätze vorzustellen.

Die Plattform wurde auf verschiedenen Fahrzeugen montiert, um Messdaten von realen
Szenarien zu erhalten. Diese Daten wurden verwendet, um die Eigenschaften der Plattform
und die Datenqualität der Sensoren zu bewerten. Die gewonnenen Daten belegen, dass die
Wahrnehmungsqualität gesteigert werden kann, wenn das System den Low-Level-Zugriff
auf die Sensoren ermöglicht. Die Auswertung der implementierten Anwendungsfälle zeigt
das Potenzial der Low-Level-Sensorfusion für verschiedene Anwendungsfälle. Die Platt-
form ist gut geeignet, um als Basissystem für die Entwicklung und Evaluierung neuartiger
Sensorfusionskonzepte verwendet zu werden. Forscherinnen und Forscher können diese
Arbeit als Referenz für die Konstruktion ähnlicher Low-Level-fähiger Plattformen nutzen.
Der schnelle und einfache Zugang zu solchen Systemen bringt die zugehörige Forschung
voran und trägt zur Verbesserung zukünftiger Wahrnehmungssysteme bei.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Environmental Perception Platform . 2

1.2.1 Overview . 2

1.2.2 Problem Statement . 4

1.2.3 Research Questions and Objectives . 5

1.2.4 Contributions . 6

1.2.5 Outline . 8

2 Related Work 11

2.1 Environmental Perception Platforms . 11

2.1.1 Automated Driving Research . 11

2.1.2 Existing Perception Platforms and Datasets 15

2.1.3 Spatial Sensor Data Alignment . 21

2.1.4 Temporal Sensor Data Alignment . 21

2.1.5 Context-Aware Sensor Configuration . 23

2.1.6 Sensor Fusion . 24

2.2 Applications . 26

2.2.1 Obstacle Detection . 26

2.2.2 Environment Mapping . 27

2.2.3 Pedestrian Detection . 28

2.3 Summary and Difference to the State-of-the-Art 29

3 Background 31

3.1 Time-of-Flight Cameras . 31

3.1.1 Basic Principle . 31

3.1.2 Characteristics . 36

3.1.3 Time-of-Flight Processing . 36

3.2 Automotive Radar Sensors . 37

3.2.1 Basic Principle . 38

3.2.2 Characteristics . 43

3.2.3 Radar Processing . 44

3.3 Vision Cameras . 45

3.3.1 Basic Principle . 45

3.3.2 Characteristics . 45

3.3.3 Video Camera Processing . 46

ix

4 Design 49
4.1 Requirements . 49

4.1.1 Base Perception System . 50
4.1.2 Use Cases . 51

4.2 Base Perception System . 52
4.2.1 Sensor Selection . 52
4.2.2 Spatial Alignment . 56
4.2.3 Temporal Alignment . 65
4.2.4 Sensor Data Processing I: Low-Level Sensor Interface 68
4.2.5 Sensor Data Processing II: Sensor Pre-processing 70
4.2.6 System Parameters . 74

4.3 Use Cases . 75
4.3.1 Context-Aware Parameter Adaption . 76
4.3.2 Obstacle Detection . 77
4.3.3 Environment Mapping . 78
4.3.4 Pedestrian Detection . 79
4.3.5 Data Visualization . 80

4.4 Final Design . 81

5 Implementation 83
5.1 Development . 83

5.1.1 Workflow . 83
5.1.2 Tools . 84

5.2 Environmental Perception Platforms . 87
5.2.1 Version I: Time-of-Flight Only . 88
5.2.2 Version II: Time-of-Flight/Radar . 88
5.2.3 Version III: Time-of-Flight/Radar/Camera 89

5.3 Base Perception System . 92
5.3.1 Spatial Alignment . 92
5.3.2 Temporal Alignment . 94
5.3.3 Sensor Data Processing . 95
5.3.4 System Parameters . 96

5.4 Use Cases . 99
5.4.1 Context-Aware Parameter Adaption . 99
5.4.2 Obstacle Detection . 99
5.4.3 Environment Mapping . 100
5.4.4 Pedestrian Detection . 101
5.4.5 Data Visualization . 102

5.5 Platform Startup and Operating Modes . 102
5.5.1 Launch Files . 102
5.5.2 Sensor Platform Startup Procedure . 103
5.5.3 Operating Modes . 104
5.5.4 Use Case Startup . 107

6 Results 109
6.1 Environmental Perception Platform . 109

6.1.1 Final Platform . 109
6.1.2 Attachment to Vehicles . 110

6.2 Base Perception System . 112
6.2.1 Temporal Alignment . 112
6.2.2 Spatial Alignment . 114
6.2.3 Sensor Data Processing . 116

x

6.2.4 System Parameters . 119
6.3 Use Cases . 119

6.3.1 Context-Aware Parameter Adaption . 119
6.3.2 Obstacle Detection . 121
6.3.3 Environment Mapping . 122
6.3.4 Pedestrian Detection . 124
6.3.5 Data Visualization . 125

7 Conclusion and Future Work 129
7.1 Conclusion . 129

7.1.1 Answers to the Research Questions . 131
7.1.2 Limitations . 132

7.2 Directions for Future Work . 132
7.2.1 Research on Perception Applications . 132
7.2.2 Platform Optimization . 133
7.2.3 Dataset Recording . 134

8 Publications 137
8.1 A 3D Time-of-Flight Mixed-Criticality System for Environment Perception 141
8.2 Next Generation Radar Sensors in Automotive Sensor Fusion Systems 149
8.3 Localization and Context Determination for Cyber-Physical Systems Based on 3D

Imaging . 155
8.4 Design of a Low-Level Radar and Time-of-Flight Sensor Fusion Framework 177
8.5 Time-of-Flight Cameras for Parking Assistance: A Feasibility Study 185
8.6 Occupancy Grid Fusion of Low-Level Radar and Time-of-Flight Sensor Data . . . 189
8.7 ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse

Environments . 195
8.8 Context-Aware Sensor Adaption of a Radar and Time-of-Flight Based Perception

Platform . 201
8.9 A Hybrid Timestamping Approach for Multi-Sensor Perception Systems 207
8.10 Time of Flight Sensor Module, Method, Apparatus and Computer Program for

Determining Distance Information Based on Time of Flight Sensor Data 215

Bibliography 217

xi

List of Figures

1.1 Visualization of heterogeneous sensor data, provided by this work’s environmental
perception system. 3

1.2 Subcategorization of the research questions, the objectives, and the assigned contri-
butions of this thesis. 6

2.1 Major subsystems and processing flow of automated driving systems. 12
2.2 Different levels of perception for automated driving systems. 14

3.1 Illustration of the ToF principle. 32
3.2 Simplified structure of a photonic mixing device pixel. 32
3.3 Unambiguous range extension using the eight-phase algorithm. 34
3.4 Timing of an eight-phase ToF measurement. 34
3.5 Reflection characteristics of an infrared-illuminated object. 35
3.6 ToF raw data processing flow. 37
3.7 Overview of an automotive radar sensor’s main modules. 38
3.8 Waveform shape of fast-chirped frequency sequences. 38
3.9 Characteristics of a single frequency chirp. 39
3.10 Phase delays between the individual receive channels due to the target’s angle. . . 40
3.11 Arrangement of a virtual antenna array. 41
3.12 Temporal signal multiplexing applied to multiple transmit channels. 41
3.13 Radar raw data processing flow. 44

4.1 Proposed overall system architecture. 50
4.2 Main building blocks of the base perception system. 52
4.3 The selected perception sensors of the environmental perception platform. 53
4.4 Incorporation of the spatial alignment module in the base perception system. . . . 56
4.5 Transformations between the single sensors’ frames. 57
4.6 Alignment of two ToF point clouds, before and after the calibration. 59
4.7 Flow chart of the ToF to ToF calibration procedure. 60
4.8 Placement of artificial radar targets within the sensors’ common field-of-view. . . . 61
4.9 Point correspondences between 2D radar data and 3D ToF data. 62
4.10 Calibration images from the vision camera, before and after the calibration. 63
4.11 ToF and vision camera images, utilized to estimate their relative alignment. 63
4.12 Transformations between the sensors’ frames and the checkerboard pattern. 64
4.13 Pose estimation process between the world frame and the platform’s base frame. . 64
4.14 Transformation of the ToF camera’s pose change projected into the world frame. . 65
4.15 Incorporation of the temporal alignment module in the base perception system. . . 66
4.16 Nested triggering of multiple ToF cameras. 67
4.17 Sequence chart of a triggered data acquisition. 68
4.18 Output data streams from the perception sensors’ receive modules. 70
4.19 ToF pre-processing module: input and output data streams. 72

xiii

4.20 Radar pre-processing module: input and output data streams. 73
4.21 Vision camera pre-processing module: input and output data streams. 74
4.22 Interfaces for the adaption of the base perception system’s parameters. 75
4.23 Interaction between the base perception subsystem and the use-case subsystems. . 76
4.24 Context-aware parameter adaption: overview of the use case and its interaction with

the base perception system. 77
4.25 Obstacle detection: overview of the use case’s main modules and the data flow. . . 78
4.26 Environment mapping: overview of the subsystem’s data flow. 79
4.27 Pedestrian detection: overview of the use case’s major modules and their interactions. 79
4.28 Data visualization: overview of the use case’s data flow. 80
4.29 Final design of the environmental perception platform’s software architecture. . . . 81

5.1 Development workflow. 84
5.2 Main components of a ROS-based application. 85
5.3 Interactions between the radar interface’s different components. 87
5.4 First version of the environmental perception platform. 88
5.5 Second version of the environmental perception platform. 89
5.6 Hardware architecture of the perception platform, version II. 90
5.7 Final version of the environmental perception platform. 90
5.8 Hardware architecture of the perception platform, version III. 91
5.9 Transformation tree, organized by the ROS. 93
5.10 Simultaneous measurement acquisition via external trigger signals. 94
5.11 Simplified ROS architecture of the base perception system. 97
5.12 Composition of the top-level launch file. 103
5.13 Starting the environmental perception system’s sensors via a common startup node. 104
5.14 Livestream operating mode. 105
5.15 Record operating mode. 106
5.16 Playback operating mode. 106

6.1 Final version of the environmental perception platform. 110
6.2 Attachment of the environmental perception platform to different vehicles. 111
6.3 Influence of the external trigger strategy on the ToF measurement quality. 113
6.4 Temporal plot of a ToF camera’s measurement in regular and nested mode. 114
6.5 Spatial alignment of the platform’s frames, visualized using the ROS tool RViz. . . 115
6.6 ROS transformation tree. 115
6.7 Impact of the system parameters on the resulting perception data. 120
6.8 Degradation of a range sensor affected by bright sunlight. 121
6.9 Occupancy grid creation based on heterogeneous range data. 123
6.10 Map output of the environmental mapping use case. 124
6.11 Pedestrian detection based on fused information from vision and range data. . . . 125
6.12 Demonstration of the data visualization use case in an indoor scenario. 126
6.13 Visualization of an outdoor scenario, recorded with the platform’s final version. . . 126

8.1 Assignment of the publications to the contributions and the goals of this thesis. . . 137

xiv

List of Tables

2.1 A custom selection of recently published architectures of research vehicles and their
respective support of certain features. 16

2.2 Custom selection of open-available datasets for research on automated driving sys-
tems and an overview of their main features. 19

4.1 Selected parameters of the base perception system’s modules. 75

5.1 Selected system parameters of the base perception system’s radar nodes. 98
5.2 Obstacle detection use case: input data streams. 100
5.3 Pedestrian detection use case: input data streams. 101

6.1 Output data streams of the base perception system. 117

xv

List of Abbreviations

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance System

ADS Automated Driving System

API Application Programming Interface

BO Bayesian Optimization

CAN Controller Area Network

CCD Charge-Coupled Device

CFAR Constant False Alarm Rate

CMOS Complementary Metal–Oxide–Semiconductor

CPS Cyber-Physical System

CNN Convolutional Neuronal Networks

DNN Deep Neuronal Networks

ECU Electronic Control Unit

EKF Extended Kalman Filter

FFT Fast Fourier Transform

FMCW Frequency-Modulated Continuous-Waveform

FPGA Field-Programmable Gate Array

FPS Frames per Second

GNSS Global Navigation Satellite System

HOG Histogram of Oriented Gradients

ICP Iterative Closest Point

IF Intermediate Frequency

IMU Inertial Measurement Unit

KB Knowledge Base

NIR Near-Infrared

PCL Point Cloud Library

PMD Photonic Mixing Device

PTP Precision Time Protocol

RANSAC Random Sample Consensus

RF Radio Frequency

xvii

ROS Robot Operating System

SAE Society of Automotive Engineers

SDK Software Development Kit

SLAM Simultaneous Localization and Mapping

SNR Signal-to-Noise Ratio

SVD Singular Value Decomposition

TCP Transmission Control Protocol

ToF Time-of-Flight

UWB Ultra-wideband

V2I Vehicle to Infrastructure

VCSEL Vertical-Cavity Surface-Emitting Laser

XML Extensible Markup Language

xviii

Glossary

Environmental Perception Platform
A physical platform deploying multiple perception sensors and processing modules to per-
form certain perception tasks. The platform consists of multiple subsystems, performing
the associated processing tasks. Possible applications are the detailed analysis of individ-
ual sensor data and the evaluation of novel sensor fusion concepts for research purposes.

Base Perception Subsystem
The fundamental subsystem of the environmental perception platform, performing the
low-level interaction with multiple perception sensors. The subsystem receives the mea-
surement data and applies certain (pre-) processing steps. The base perception system
outputs structured and well-aligned data streams at different abstraction levels.

Use-Case Subsystems
The environmental perception platform incorporates one or multiple use-case subsystems.
Each use case utilizes a subset of the base perception system’s provided data streams and
performs application-specific processing (e.g., fusion, detection). Examples of use cases
are the visualization of sensor data and obstacle detection.

Data Streams
Data streams describe the continuous messages communicated between the single mod-
ules and subsystems of the environmental perception system. The streams originate from
sensor measurements or from processing modules. In addition to a message’s main data
section (e.g., raw data), a timestamp and a frame identifier are included.

Sensor Fusion
Sensor fusion describes the combination of sensor data from multiple perception sensors
into a common representation. In general, the input data originates from a composition
of multiple heterogeneous and homogeneous sensors. The fusion of multiple perception
sensors enables joint processing in order to enhance a system’s perception performance.

Spatial and Temporal Alignment
The spatial and temporal alignment of the sensor data has to be known in order to fuse the
data from multiple sensors. Timestamps are a common way to assign the measurement
time to the corresponding data streams. A data stream’s spatial alignment is indicated
with an identifier of the associated measurement frame.

xix

Time-of-Flight Camera
These cameras utilize the speed of light to determine a distance image of the scene. A
Time-of-Flight camera actively illuminates the scene with infrared light and utilizes a pixel
array to detect the reflections. The delay between the transmitted and the received light
is utilized to obtain a distance value for each pixel.

Automotive Radar Sensor
An automotive radar sensor transmits electromagnetic waves to the scene and detects the
reflections. The utilized modulation principle allows the extraction of each reflecting ob-
ject’s range, velocity, and angle. Automotive radar sensors typically utilize wavelengths
in the millimeter range, compromising frequencies between 30GHz and 300GHz.

Vision Camera
A vision camera can capture two-dimensional color or grayscale images of the scene. The
camera projects the scene’s reflections of the ambient light (e.g., from the sun) via a lens
onto the image sensor. In order to control the image acquisition, vision cameras typically
allow the adaption of multiple parameters (e.g., lens aperture, gain, exposure time).

Inertial Measurement Unit
An inertial measurement unit (IMU) is a device capable of measuring the applied specific
force, angular rate, and orientation using accelerometers, gyroscopes, and magnetometers.
Since measurement inaccuracies lead to a drift in the estimated position over time, inertial
measurement units are typically combined with other sensors.

Robot Operating System
The Robot Operating System (ROS) is an open-source software framework for robotic ap-
plications. The popular framework provides fundamental software methods to enable the
rapid prototyping of robotic systems. The active community contributes open-available
modules, which offer solutions to common robotic tasks.

xx

Chapter 1

Introduction

The first chapter of this doctoral thesis starts with a motivation, presenting why environ-
mental perception for autonomous systems is still an open research field. Major limitations
of current systems are addressed, and this work’s approach of enhancing the performance
of perception systems is introduced. The chapter lists this work’s contributions to the
scientific community and is closed by presenting this thesis’s structure.

1.1 Motivation

Environmental perception sensors can be considered the key-enabling technology of smart
devices and machines interacting with their environment. The deployment of these sen-
sors has enabled the introduction of well-established applications, such as adaptive cruise
control (ACC) for road vehicles. Nowadays, the technology market is widely shaped by
cyber-physical systems (CPS), which can benefit from context information provided by
perception sensors. Robots/vehicles/drones are equipped with multiple perception sen-
sors in order to perform autonomous operations. The automotive industry, a major driver
of new technology, is targeting to build fully automated vehicles in the near future, which
utilize perception sensors to sense the environment.

Since no single sensor is capable of solving the perception task on its own, multiple
perception sensors have to be used [1]. The combination of multiple sensor technologies
shall compensate for the weaknesses and vulnerabilities of single sensors. This diversity
and redundancy of sensor data are mandatory to provide robust perception data and
to obtain a confident model of the environment. Safety-critical applications particularly
require multiple independent inputs in order to ensure safe operation in any condition.

The first automated vehicles were presented to the public in 2005 at the DARPA
Grand Challenge, a competition for automated vehicles initiated by the United States
Department of Defense [2], [3]. During this event, five of the 23 participating teams were
able to autonomously complete a predefined path in a desert located between California
and Nevada. In 2007, at the follow-up event, the DARPA Urban Challenge, automated
vehicles of multiple teams were already able to safely navigate through city streets [4], [5],
[6]. The individual teams’ vehicles were equipped with various sensor setups, including
laser scanners, vision cameras, and radar sensors. Most competitors published the system
design of their vehicle, providing research and industry with valuable references for the

1

2 1. Introduction

development of automated vehicles and robots. However, the utilized hardware was not
feasible for mass production, and the systems were not generic enough to work in any
scenario.

With increasing processing power and communication bandwidth available on these
systems (e.g., vehicles, smartphones, robots), new abilities to handle perception data arise.
Traditional systems typically perform individual processing of data on sensor level and
provide the high-level output to a centralized processing unit. This approach is only
capable of performing a high-level fusion of the sensor data, limiting the system’s overall
perception performance. Alternative fusion strategies require the perception data from
multiple sources to also be available at low-level. However, the majority of the sensor
modules offered by the automotive suppliers do not provide the raw low-level data to
the vehicle’s processing system. One reason for this development-trend is the lack of
established high-speed automotive data buses. In addition, the expertise regarding low-
level sensor processing is still with the suppliers and is among their sensor modules’ main
selling points. Although ready-to-use, low-level capable sensor modules targeting the
automotive/robotic market are making their way into the industry, they have not appeared
on the open market yet.

Fusing multiple sensor data streams at low-level allows the consideration of the input
data’s fine granularity-aspects, resulting in an increased perception performance compared
to high-level fusion. If the data is aligned and properly combined, the output has increased
expressiveness compared to the fused high-level data from single sensors. The fusion of
heterogeneous low-level sensor data for environmental perception systems has not been
sufficiently addressed by research. This thesis tackles this shortcoming by presenting an
approach to make research on that topic more accessible and by providing novel approaches
to perform low-level fusion.

1.2 Environmental Perception Platform

This section introduces this work’s approach to building an environmental perception plat-
form consisting of multiple heterogeneous perception sensors. The environmental percep-
tion platform enables research on the low-level aspects of multi-sensor perception systems,
aiming to increase the performance of associated applications. In addition, the research
questions and objectives of this work are elaborated, and an overview of the contributions
is presented.

1.2.1 Overview

An environmental perception system describes a subcomponent of a system, able to sense
its surroundings (e.g., smart device, vehicle). The system receives data from one or mul-
tiple perception sensors and performs the assigned (pre-) processing tasks before the data
is transferred to succeeding modules for further, application-specific processing. Within
the scope of this thesis, the subset of environmental perception systems targeting the de-
ployment on vehicles and robots is explored. Since all available perception sensors have
their individual shortcomings, the utilization of a single sensor type is not sufficient for
safety-critical applications.

1. Introduction 3

(a) Vision camera image. (b) Range data.

Figure 1.1: Visualization of heterogeneous sensor data, provided by this work’s environmental
perception system [7]. The left image depicts the output from a vision camera. The right image
shows the visualization of combined range data from multiple perception sensors.

Multiple types of sensors are combined in order to build a robust perception system
capable of handling the majority of situations. Various environmental perception systems
have already been presented to the public. These systems utilize multiple heterogeneous
sensors and fuse them in order to obtain an enhanced perception performance. Figure 1.1
shows the visualization of heterogeneous data obtained from this work’s environmental
perception system. The figure shows a vision camera’s image and visualized data from
multiple range sensors.

There is ongoing research on how to fuse the data from different perception sensors
in order to provide the best-possible perception quality. Multiple research and industry
institutions have built environmental perception platforms (e.g., in the form of research
vehicles) based on a set of various perception sensors. A way to bypass the need of re-
searchers to build their own hardware is to provide them with recorded datasets. Multiple
research groups have published the sensor data from their perception platforms in order
to encourage the development of new algorithms. Some of the available datasets became
very popular (e.g., the KITTI dataset [8]) and contributed to the improvement of vari-
ous perception algorithms. Since the same dataset can be used by various researchers,
the results are well-suited to be compared to each other. However, since the data from
the available platforms mostly consists of high-level sensor data, they only advance the
development of a certain type of algorithms.

This work presents a research platform, which enables the fusion of low-level sensor
data. The platform’s implementation is based on the open-source Robot Operating System
(ROS) framework [9] and can utilize data from time-of-flight (ToF), radar, and vision sen-
sors. The system provides temporally and spatially aligned low-level sensor data streams,
which can be utilized for further application-specific processing. The low-level interface
to the sensors enables research on novel sensor fusion methods and holds the potential to
improve the performance of state-of-the-art perception systems. The presented platform’s
capabilities are demonstrated by implementing multiple use cases (e.g., object/pedestrian
detection). Researchers can utilize the proposed system architecture as a blueprint to build
a perception system, which performs synchronized low-level fusion with market-available
sensors.

4 1. Introduction

1.2.2 Problem Statement

Researchers face a high burden when it comes to entering the field of research for low-level
sensor fusion. There is only limited information available to the scientific community on
how to design and implement a perception platform containing sensors with low-level in-
terfaces. Most of the open-available automotive environmental perception sensors neither
provide full access to the raw sensor data nor offer an interface to open-source frame-
works like the ROS. A customized configuration of these sensor modules is also often not
supported or only possible to a very limited extent. The low-level processing of the raw
sensor data is typically handled by the sensor modules and isolated from the remaining
system. The high-level output can then be communicated to the remaining system via
a traditional automotive data bus, like the Controller Area Network (CAN) bus. Such
sensor modules are not feasible for low-level sensor fusion approaches, which require access
to the low-level data streams from a centralized module.

Due to the lack of ready-to-use sensor modules with full low-level access, research facil-
ities are limited to available prototype versions of low-level capable sensors. Additionally,
researchers face the burden of building their own platforms, consisting of multiple per-
ception sensors, in order to perform research on low-level sensor fusion. Since building
an environmental perception platform is a demanding task, low-level sensor fusion and
the resulting capabilities have only been insufficiently covered by the research community.
Due to the unavailability of capable perception sensors on the open market, the number
of suitable datasets for developing low-level sensor fusion concepts and associated appli-
cations is strongly limited. The limited number of low-level capable datasets lack certain
characteristics vital for a comprehensive study of low-level fusion strategies (e.g., time
synchronization or low-level interfaces). Thus, there is the need for open platforms and
open datasets capable of providing low-level sensor data to enable researchers to perform
research on that topic.

The configuration and data processing of traditional perception sensors is performed
by the sensor module, independent of the remaining subsystem. Thus, these systems
are not aware of the robot’s/vehicle’s overall context and cannot adapt their configura-
tions accordingly. Traditional perception sensors are often implemented statically and do
not support any configuration adaption after the system left the factory. Some sensors
perform automatic adaption of certain sensor parameters in the sensor module (e.g., auto-
matic exposure for vision cameras). Others allow a limited adaption of the configuration
parameters during runtime by enabling the adaption of certain module parameters. To
sum up, traditional perception sensors do typically not provide full access to the config-
uration, especially not during runtime. Consequently, these sensors are not operated at
their optimal configuration for a wide range of environmental context states. Perception
sensors with full low-level access allow the implementation of novel concepts, which can
improve the capabilities of a multi-sensor environmental perception system. The dynamic
adaption of the sensor configuration, which allows the reaction to the system’s current
context, has not been sufficiently addressed yet.

The lack of methods to provide low-level data from multiple perception sensors to a sys-
tem’s centralized fusion module creates the need for additional research in this field. Novel
system architectures and data-handling methods (pre-processing, timestamping) have to
be developed in order to efficiently provide the low-level data to centralized modules. The

1. Introduction 5

additional information contained in low-level data holds the potential to increase the per-
formance of a wide range of perception tasks. The availability of low-level sensor data to
the system’s centralized processing modules enables the development of novel algorithms
for various perception tasks. Existing perception algorithms have to be evaluated in order
to determine whether they can benefit from the inclusion of low-level data.

1.2.3 Research Questions and Objectives

Considering the highlighted research gaps and the ability to access Infineon’s state-of-the-
art sensor technology, the following three research questions for this thesis were formulated:

R1 What is a feasible design and implementation of an environmental perception platform
capable of performing a low-level fusion of heterogeneous sensors?

R2 How can single components of a sensor fusion system be configured to obtain a sat-
isfactory perception performance in changing environments?

R3 How can low-level fusion of radar and ToF data contribute to enhance the quality
of state-of-the-art environmental perception systems for robotic/automotive applica-
tions?

In order to answer these research questions, several objectives were introduced. The
work is divided into three main objectives, compromising multiple tasks for each one. The
achievement of these objectives is of key importance in order to determine answers to the
research questions.

O1 Platform development
This objective includes the selection of feasible perception sensors and the design,
implementation, and construction of a perception platform, enabling low-level sensor
access. The system shall provide interfaces to allow a custom configuration of the
sensors and the processing modules.

O2 Concept design
A feasible system architecture to enable the fusion of sensor data from multiple per-
ception sensors shall be designed. This includes the development of concepts for
sensor synchronization, spatial/temporal data alignment, and (pre-) processing of the
measurement data. In addition, the design shall incorporate a method to dynamically
adjust the system’s parameters depending on the current context.

O3 Use case design and evaluation
Based on the low-level sensor data provided by the base system, multiple use cases
shall be implemented. Each of these use cases solves a particular perception task
by fusing and processing the available data streams. The implemented use cases are
intended to highlight the benefits of including low-level data compared to existing
high/mid-level approaches.

Figure 1.2 shows an overview of the conducted work throughout this thesis. The
research questions are assigned to the major objectives, required to provide answers to
the research questions. These objectives are then further assigned to the contributions of
this thesis.

6 1. Introduction

Figure 1.2: Subcategorization of the research questions, the objectives, and the assigned
contributions of this thesis.

1.2.4 Contributions

The perception platform built as part of this work is similar to perception systems used
in today’s research vehicles and robots. The platform consists of open-available percep-
tion sensors, including ToF, radar, and vision sensors, which allow the perception of the
environment. The ROS-based architecture utilizes the low-level access to these sensors
and prepares the data streams for later fusion. This includes the spatial/temporal align-
ment, the (pre-) processing, the sensor synchronization, and the system partitioning. The
presented work provides solutions to the arising challenges during the design and the
construction of similar systems.

The presented platform’s capabilities are demonstrated with the implementation and
evaluation of several use cases. The designed environmental perception system implements
low-level interfaces to multiple perception sensors, which allow dynamic reconfiguration
during operation. This ability holds the potential to significantly improve the resulting
perception quality compared to the mostly static systems deployed nowadays. The use
cases utilize the structured data streams provided by the base perception system in order
to perform application-specific perception tasks.

The conducted work to achieve the objectives and to answer the research questions
resulted in a significant number of contributions to the scientific community. The main
contributions generated during the work on this thesis are listed below.

C1 Sensor selection
The work presents the final selection of the utilized perception sensors (radar, ToF
camera, vision camera), which are able to provide the required functionality. Addi-
tionally, a detailed description of the sensors’ working principles and the raw data
processing steps of radar and indirect ToF sensors are presented.

1. Introduction 7

C2 Architecture
The ROS-based system architecture is capable of providing structured sensor data
at multiple abstraction levels for further use-case-dependent fusion. The architec-
ture includes low-level interfaces to the perception sensors and modules for raw data
reception, spatial/temporal alignment, (pre-) processing, and reconfiguration.

C3 System parameters
The behavior of the system’s modules can be customized to the expected environment
via system parameters assigned to the system’s modules at startup. Since these
parameters control the sensor configuration and the (pre-) processing parameters,
they have a high impact on the platform’s performance.

C4 Sensor synchronization
The work introduces an approach capable of performing synchronized sensor mea-
surement acquisition and accurate timestamping. An external microcontroller is used
to generate a common trigger pulse for all perception sensors. Additionally, accu-
rate measurement timestamps are estimated and assigned to the data streams when
received by the processing system.

C5 Sensor data alignment
A method to obtain the transformations between the single perception sensors is
presented, enabling the transformation of the heterogeneous sensor data into a com-
mon coordinate frame. This includes the estimation of the relative sensor alignments
between the individual sensors’ mounting positions.

C6 Context-aware sensor configuration
The system architecture implements the functionality to adapt the sensor configura-
tion and the system parameters during runtime. This enables the dynamic adjust-
ment of the system’s perception capabilities, depending on the currently perceived
context. Additional input sensors can be utilized to enhance the system’s context
awareness (e.g., rain, light, vehicle velocity, environment type).

C7 Distance data visualization
One implemented use case handles the visualization of sensor data from multiple
perception sensors in a common coordinate system. Since the raw sensor data is
often not directly visualizable, custom pre-processing is applied in order to obtain a
visualizable format.

C8 Obstacle detection
Another use case employs the low-level data streams from multiple perception sensors
and fuses them into a common occupancy grid. The occupancy grid is then used to
obtain a better understanding of the system’s surroundings and to identify obstacles
in the environment.

C9 Pedestrian detection
The thesis presents a method to perform pedestrian detection, utilizing the structured
data streams provided by the system’s base perception system. The heterogeneous
data streams are fused into a common representation and utilized to perform an
enhanced detection of pedestrians in the sensors’ common field-of-view.

8 1. Introduction

1.2.5 Outline

This cumulative doctoral thesis is structured into the main part (Chapter 1-7) and a
collection of the publications carried out as part of this thesis (Chapter 8). A state-
of-the-art overview of environmental perception systems in general and an introduction
of related work for selected applications are presented in Chapter 2. The fundamental
working principles of radar sensors, ToF cameras, and vision cameras are described in
Chapter 3 to provide the reader with the background knowledge required to understand
the main part of this thesis. Chapter 4 outlines the requirements of the desired percep-
tion platform and introduces the system’s architecture. The selected perception sensors
are presented, and the hardware and software design of each subsystem is introduced.
Implementation-specific details of the ROS-based software architecture and the hardware
setup are described in Chapter 5. The results of the work, including real-world measure-
ment data and performance metrics, are presented in Chapter 6. Chapter 7 provides a
conclusion of the performed work and presents possible future directions based on the
outcome of this thesis.

Chapter 2

Related Work

Since the fusion of data from multiple perception sensors is a common task in various
fields (e.g., robotics, vehicles, smartphones), there already exists a vast amount of pub-
lished work in this field. This chapter starts with the presentation of open-available envi-
ronmental perception platforms (e.g., research vehicles/robots), open datasets, and their
shortcomings. Existing approaches to perform spatial and temporal alignment of hetero-
geneous perception sensors are introduced as well as approaches to fuse the corresponding
data. Finally, multiple perception applications are introduced, which could benefit from
the utilization of low-level data streams from heterogeneous perception sensors.

2.1 Environmental Perception Platforms

The current research efforts, targeting the utilization and fusion of multiple environmen-
tal perception sensors, are mainly driven by the development of automated vehicles. A
number of prominent universities (e.g., Stanford University, Carnegie Mellon University,
Massachusetts Institute of Technology) and industrial companies (e.g., Google, Tesla) con-
duct research on automated vehicles [10]. Many of these institutions have built their own
research vehicles, including the development of the environmental perception system.

This section starts with a short overview of the current path of automated vehicles and
introduces some of the remaining challenges. Currently, research is typically performed us-
ing self-constructed hardware platforms (e.g., research vehicles) or utilizing open-available
datasets. Thus, multiple research vehicles which publicly provide construction and imple-
mentation details are presented, as well as open datasets for automated driving research.
The limitations of currently available open datasets and platforms are presented, showing
the need for novel physical hardware platforms. Different approaches to solve the arising
challenges when building such a system are introduced (e.g., calibration, synchronization).

2.1.1 Automated Driving Research

Since their introduction, the reliability and confidence of automated driving systems (ADS)
have highly increased. Multiple institutions have built prototypes of automated vehicles,
which successfully demonstrated their capabilities in various environments and traffic sce-
narios. However, as accidents with current research vehicles prove, the systems still lack
reliability in harsh environmental conditions and fail in various edge cases [11].

11

12 2. Related Work

Figure 2.1: Major subsystems and processing flow of automated
driving systems, adapted from [14].

There is no blueprint yet available defining the optimal set of market-available compo-
nents (sensors/processing units) enabling fully automated vehicles. This is why research
groups utilize different sets of perception sensors (e.g., radar, lidar, cameras), mounting
strategies (e.g., front-facing, surround-view), processing units (e.g., GPU-based vs. CPU-
based, centralized vs. distributed), and even different types of vehicles (e.g., golf carts,
passenger vehicles, trucks). When considering the most successful approaches of research
and industry up to the current date, certain trends can be observed.

The research vehicles utilize proprioceptive and exteroceptive sensors. Proprioceptive
sensors provide the internal state of the vehicle (e.g., Global Navigation Satellite System
[GNSS], wheel encoders), while exteroceptive sensors sense the vehicle’s surroundings (e.g.,
camera, radar, lidar). While most groups’ environmental perception systems consist of
vision, radar, and lidar sensors, other groups try to solve the perception task solely using
vision and radar sensors.

Some research platforms utilize centralized system architectures, while others are built
upon distributed system architectures [12]. Within a centralized architecture, the majority
of processing is done on a single processing unit, while the processing load is distributed
onto several units in a distributed system. In general, high-performance computation
units are used to execute computationally expensive tasks (e.g., sensor data processing,
detection/tracking). Time-critical tasks (e.g., vehicle control) are performed on real-time
capable Electronic Computation Units (ECUs) [13]. While earlier prototypes focused on
using multiple distributed units for high-performance tasks, the current trend leads to-
wards single-board supercomputers for that task (e.g., the Nvidia Drive AGX platforms1).
Nvidia’s platform includes a safety-focused microcontroller2 responsible for the safety-
critical tasks and running system diagnostics. These supercomputers are centralized all-
in-one solutions, capable of executing multiple deep neuronal networks and real-time tasks
in parallel. They provide direct interfaces to the sensors as well as to the vehicle’s buses.

The same holds true for the software implementation of ADS. Since no flawless solution
is yet available to the public, different institutions of research and the industry have come
up with varying approaches. Most of the publicly available software architectures are
structured as modular systems, which utilize multiple processing modules between the
sensors and actuators. Figure 2.1 shows an illustration of the main processing blocks of

1Nvidia Drive: Autonomous Vehicle Development Platforms (https://developer.nvidia.com/drive).
2Infineon AURIXTM(Automotive Realtime Integrated NeXt Generation Architecture).

https://developer.nvidia.com/drive

2. Related Work 13

ADS and their interaction with the environment. The modules can be roughly assigned
to three main categories: perception, path-planning/decision-making, and control [15].
These three categories, including sort descriptions, are listed below.

� Perception
The modules of this category sense information about the vehicle’s surroundings and
its current internal state. This includes the sensor data’s reception, processing, and
combination in order to get a semantic understanding of the environment.

� Path-planning/decision-making
The vehicle plans its future actions and trajectories depending on the perceived
environment and the overall navigation goal.

� Control
Longitudinal (throttle/brake) and lateral (steering) control commands are sent to
the vehicle’s actuators in order to follow the planned trajectories and perform the
requested actions.

In addition to modular systems, end-to-end architectures are a relatively new approach
to implement the software system of automated vehicles without the need of intermediate
modules. These systems fully rely on deep neuronal networks, which generate the actuator
outputs directly from the sensor input [11]. However, although end-to-end systems are
capable of performing well in known, pre-trained scenarios, they might lead to unsafe
behavior in unconventional scenarios (not trained). Thus, safety-focused systems usually
rely on neuronal networks for subtasks only (e.g., parameter estimation, classification)
instead of using them as end-to-end systems.

One of the key requirements of ADS is the high quality and the robust perception of
its surroundings. Since this work’s main focus is on perception systems, the perception
subsystem of ADS is further analyzed in this section. The main responsibilities of the
perception subsystem include the completion of the following tasks:

� Localization
Self-localization is performed using the vehicle’s proprioceptive sensors (e.g., GNSS,
wheel odometry, inertial measurement unit [IMU]) for coarse positioning, as well as
its exteroceptive sensors for localization within an a-priori map (e.g., via point cloud
matching).

� Object detection/tracking
This task includes the detection of static and dynamic objects of interest (including
road users, traffic lights, or road signs). The detection is commonly performed with
a lidar sensor, while the vision camera is utilized for the classification task. The
movement of dynamic objects shall also be tracked over time.

� Drivable regions detection
This task includes the detection and localization of the road, the lanes, and the
drivable space. Additionally to the detection, a semantic understanding of the road
lanes and their connections is required (e.g., intersection lanes).

14 2. Related Work

Figure 2.2: Different levels of perception for automated driving systems, adapted from [15].

To accomplish the perception tasks, the sensor data is received from the sensors, fused,
and processed. The path-planning subsystem then utilizes the output of the perception
module(s) for further manipulation. Figure 2.2 shows the different levels of perception from
low-level to high-level. As seen in the illustration, the perception tasks can be classified
into different levels. The lowest level deals with the reception of the raw data, while
the highest level already deals with tracked and classified objects and their interactions
with the environment. This work mainly focuses on the lower levels of the perception
subsystem, the raw data reception, and the sensor refinement. The third level already
deals with objects, which is beyond the low-level scope of this thesis.

Traditional software architectures of ADS combine multiple modules, with each module
implementing a subtask of the corresponding overall perception task. However, since
newly arising approaches rely more heavily on neuronal networks at different system levels,
the traditional separation of the system’s single modules starts to fade. Conventional
algorithms often make use of hand-crafted heuristics, introducing a significant level of
complexity. Neuronal networks are a popular tool capable of outperforming conventional
approaches for certain (sub)tasks. These networks are capable of performing certain tasks
automatically but require intensive training with pre-labeled data.

As stated by the authors of [14] and [16], there are still several remaining challenges on
the way to fully automated driving. These include the operation in difficult weather/light
conditions and complex environments (e.g., construction sites, urban streets). Current
systems often rely on a-priori information (e.g., high-definition maps) to work properly in
complex environments. These limitations are a result of the still insufficient perception
performance of today’s ADS. Reasons are the limited quality of the available sensor data
and the limited capabilities of the state-of-the-art perception algorithms. Increasing the
capabilities of the perception subsystem could highly contribute to solving the remaining
challenges. Additionally, novel sensor setups and new sensor processing concepts have to
be evaluated in order to pave the way to more robust systems.

2. Related Work 15

2.1.2 Existing Perception Platforms and Datasets

The industry and academia target to improve the capabilities of today’s perception sys-
tems. The development of novel algorithms is generally an iterative process, requiring a
repetitive evaluation of the associated perception task(s) in real-world scenarios. In order
to perform these evaluations, researchers can either utilize data from their own research
vehicles or from open-available datasets. A number of research institutes and companies
within the industry have built their own research vehicles in order to enable them to cap-
ture data independently. This enables full control of the sensor selection/arrangement, the
data handling, and the pre-processing steps. However, a research vehicle’s construction is
a tedious task, requiring expert knowledge and a sufficiently high budget.

On the other hand, utilizing open-available datasets opens the doors for smaller groups
and individual researchers to conduct research in the field of automated vehicles without
the burden of building their own platforms. The datasets allow the implementation of novel
processing algorithms (e.g., deep learning-based methods) utilizing the open-available data
as input. Additionally, the datasets allow a quantitative comparison of newly developed
approaches to the best-performing algorithms for a particular task (e.g., object detection
performance). The downsides of the open-available datasets are the restriction to the
respective sensor selection/arrangement, the inability to influence the recorded scenarios,
and the predefined low-level data handling.

Software simulators represent a completely different approach to automated driving re-
search [17]. These simulators are capable of emulating the environment and the vehicle’s
acquired sensor data, providing researchers the option to bypass the building process of
a physical platform However, although the perception capabilities of simulators have im-
proved significantly, they cannot fully replace a real-world platform with physical sensors.
A physical platform experiences real-world effects and sensor imperfections, which today’s
simulation models cannot recreate. At its current development stage, the simulation data
can be used as an additional source to train or test algorithms but cannot entirely replace
the acquisition of real-world data.

This section presents a number of existing environmental perception platforms and
open datasets, utilizing multiple perception sensors. The knowledge of similar approaches
is essential to utilize the strengths of existing systems and to identify their restrictions. The
section starts with the introduction of multiple environmental platforms utilized in research
vehicles. Publicly available datasets are presented, which contain recorded perception data
from multiple sensors in various scenarios.

Existing Research Platforms

Multiple institutions of industry and academia have published details about the hardware
and software architecture utilized in their research vehicles. These research vehicles often
contain a high number of expensive perception sensors, requiring high processing capabil-
ities. Even though these vehicles are not feasible for mass production, they help to find
the crucial sensors and processing modules to achieve robust perception. As algorithms
improve and the prices of capable perception sensors decrease, multi-sensor environmen-
tal perception units can be expected to find their way into future mass-produced vehicles.
Table 2.1 lists a set of selected research vehicles presented to the public within the last two
decades. The table compares selected features of these vehicles’ perception systems with

16 2. Related Work

Table 2.1: A custom selection of recently published architectures of research vehicles and their
respective support of certain features.

V
is
io
n
ca
m
er
a

L
id
a
r

R
a
d
ar

L
ow

-l
ev
el

ac
ce
ss

S
y
n
ch
ro
n
iz
ed

se
n
so
rs

P
a
ra
m
et
er

a
d
ap

ti
on

S
of
tw

ar
e
d
et
a
il
s

H
ar
d
w
ar
e
d
et
ai
ls

Boss [5] ✓ ✓ ✓ ✗ ✗ ∽∽∽ ✓ ✓

Junior [4] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓

CMU vehicle [18] ✓ ✓ ✓ ✗ ✗ ✗ ∽∽∽ ✓

Bertha [19] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ∽∽∽
Autoware [20] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

MIT vehicle [21] ✓ ✓ ✗ ✗ ✗ ✗ ∽∽∽ ✓

Apollo ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Zeus [22] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

IARA [10] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Nvidia ✓ ✗ ✓ ∽∽∽ ∽∽∽ ✗ ✓ ✓

This thesis ✓ ∽∽∽ ✓ ✓ ✓ ✓ ✓ ✓

the presented platform of this thesis. Insufficiently documented features are considered as
not available in this comparison.

In 2007, at the DARPA Urban Challenge, automated vehicles were targeted to drive
through an urban environment. The research vehicle Junior from the Stanford Univer-
sity and Boss from the Carnegie Mellon University successfully completed the challenge
and placed second and first. Details about the architectures of these two vehicles were
published in [5] and [4]. Boss is a modified 2007 Chevrolet Tahoe, which utilizes multiple
lidar sensors, radar sensors, and 2D cameras as perception sensors. The implemented
perception system is capable of performing moving obstacle detection and tracking by
fusing radar/lidar/camera, as well as static obstacle detection using the lidar sensors only.
The vehicle utilizes a configuration library capable of adapting task parameters during
runtime. Junior, a modified 2006 Volkswagen Passat, is equipped with a similar set of
perception sensors (radars, lidars, cameras). The vehicle mainly relies on its Velodyne
64-beam spinning lidar sensor for static and dynamic obstacle detection. Boss and Ju-
nior utilize the publisher-subscriber principle to communicate between the single modules.
Both publications provide a valuable high-level overview of the vehicles’ architectures but
lack the description of low-level details (e.g., sensor synchronization, calibration).

The A1 research vehicle, winner of the 2012 Autonomous Vehicle Competition (AVC)
in Korea, is presented in [23]. The vehicle utilizes multiple laser scanners, cameras, an
IMU, and GNSS sensors. The authors show the software’s implementation on distributed
computation units, including two industrial computers and 13 ECUs. They provide an
overview of the utilized software architecture and provide detailed information regarding

2. Related Work 17

the communication between the distributed units (via the FlexRay bus). Since their pre-
sented approach focuses on traditional automotive buses (FlexRay, CAN) with relatively
low bandwidths, the system can only fuse perception data at higher levels. The authors
do not provide details about the sensor synchronization/calibration and the structure of
the sensor interfaces.

In 2013, scientists from the Carnegie Mellon University converted a Cadillac SRX to
an automated driving research vehicle [18]. The authors provide a detailed description of
the conversion of a regular passenger vehicle to enable drive-by-wire control. The vehi-
cle’s perception suite utilizes six lidar sensors, six radar sensors, and two vision cameras.
The processing part consists of four small-scale-factor computers (Intel QX9300s, Nvidia
GT530), cooled via the vehicle’s air conditioning system. The vehicle’s software framework
is based on the same framework, as introduced by Boss in the DARPA Urban Challenge
2007 (Tartan Racing Urban Challenge System [24]). However, even though the authors
describe the vehicle’s modifications for the drive-by-wire conversion, the publication does
not provide low-level details about the perception sensor setup. Due to the lack of an
official name, the research vehicle is listed as CMU vehicle in Table 2.1.

Researchers from Daimler introduced Bertha, a slightly modified version of a Mercedes-
Benz S-Class in 2013 [19]. The series-production vehicle was extended with close-to-
production sensors in order to prove the capability of autonomous operation on public
roads. The vehicle’s perception setup consists of two wide-angle vision cameras, a stereo
camera setup, and multiple radar sensors. In 2015, the authors of [25] further extended the
vehicle’s perception performance by enhancing its radar capabilities (eight radar sensors).
They utilized Bertha’s improved radar setup to perform tasks like generating a grid map
of the static environment and classification of pedestrians. The published work does,
however, not provide details about the calibration steps. Further, Berta deploys standard
automotive radar sensors, which only provide pre-processed data to the remaining system.

The Autoware foundation3 claims to be the first provider of an all-in-one software so-
lution for automated vehicles. The first version of their software solution for automated
vehicles is presented in [20], which utilizes components available on the open market. The
lidar and camera-based software solution can be utilized to develop algorithms for ADS.
The software platform Autoware is based on the ROS, the Point Cloud Library (PCL),
OpenCV, and other open-available frameworks and libraries. In a more recent publica-
tion, the creators of Autoware show their approach to run the framework on embedded
systems [26]. Autoware includes various modules which contribute to the development of
automated vehicles (e.g., localization, detection, planning). The software supports vari-
ous types of vision, lidar, IMU, and GNSS sensors as input for the perception module.
Radar sensors have not been integrated yet. Autoware can also be used with a number of
compatible drive-by-wire vehicles, utilizing an external controller to transfer the requested
velocity and steering values to the vehicle’s ECUs. The software does not provide details
about the temporal and spatial alignment of the sensor data, nor the low-level interface
to the sensors.

Another approach to building an automated driving research platform was published
by researchers of the Massachusetts Institute of Technology [21]. The authors converted
a 2015 Toyota Prius V into an automated driving research vehicle. The presented work

3The Autoware Foundation (https://www.autoware.org).

https://www.autoware.org

18 2. Related Work

provides details of the conversion to drive-by-wire control. The stock vehicle was extended
with relatively inexpensive sensors to be used for automated driving. The perception
system includes four 2D lidars, a USB camera, and an IMU/GNSS combination for global
positioning. A notebook is utilized as the system’s computation platform, running software
for perception (localization, object detection), planning, and control. The research vehicle
is listed in Table 2.1 as MIT vehicle.

Another full open-source hardware/software stack, the Apollo Open Platform4, is made
available by Baidu. The software can be used with compatible drive-by-wire vehicles and
includes software modules for various tasks of automated driving. The platform supports
a number of market-available hardware components that can be utilized to equip a vehicle
for automated driving. This includes an industrial-grade computer, radar/lidar sensors,
vision cameras, and GNSS receivers. In its first versions, the software stack was built
upon the ROS framework, but has recently moved to the Apollo Cyber RT framework,
which is more feasible to meet the requirements of automotive systems. The software
framework includes a calibration module capable of determining the sensors’ intrinsic and
extrinsic parameters. Since the Apollo Open Platform utilizes generic sensor data as input,
it is not directly capable of processing low-level sensor data and does not provide a low-
level interface to the sensors. Even though the platform is open source, it lacks proper
documentation of the utilized modules and their interactions.

Zeus is an automated driving research vehicle built by researchers of the University of
Toronto [22]. The team placed first in the Society of Automotive Engineers (SAE) Auto-
Drive Challenge5 in 2018 and 2019. Based on a 2017 Chevrolet Bolt, Zeus is equipped with
multiple perception sensors in order to perform basic automated driving tasks. The per-
ception sensors include a lidar sensor, a vision camera, a stereo camera, and a GNSS/IMU
combination. The computation system consists of two Intel Xeon processors with 22 cores
each, running a ROS-based automated driving software. The authors present the imple-
mentation of multiple algorithms, including lane detection, stop sign detection, and static
obstacle detection.

The Federal University of Esṕırito Santo in Brazil presents the architecture of their
Intelligent Autonomous Robotic Automobile (IARA) research vehicle in [10]. Based on
a 2011 Ford Escape Hybrid, the research vehicle is equipped with multiple perception
sensors, including a stereo vision camera, a long range lidar, and a 360° spinning lidar. The
computation platform consists of two six-core processors and an Nvidia GPU capable of
running various automated driving algorithms. Similar to the other presented approaches,
the publication provides only very limited details about the low-level handling of the sensor
data.

The Nvidia corporation offers a reference platform, the DRIVE Hyperion6, as a base
to enable the development of automated driving algorithms. The Hyperion developer
kit is built around Nvidia’s in-vehicle supercomputing platforms capable of performing
the demanding software tasks of automated vehicles. The reference kit includes multiple
sensors (eight cameras, eight radars, IMU, and GNSS) and a drive-by-wire interface in
order to be used in compatible vehicles. Nvidia also provides a multi-level software stack
for automated driving that can be used with the reference vehicle and supports a variety

4Apollo: Open Source Autonomous Driving (https://apollo.auto/).
5SAE AutoDrive Challenge (https://www.autodrivechallenge.com).
6Nvidia Drive: Hyperion Developer Kit (https://developer.nvidia.com/drive/drive-hyperion).

https://apollo.auto/
https://www.autodrivechallenge.com
https://developer.nvidia.com/drive/drive-hyperion

2. Related Work 19

Table 2.2: Custom selection of open-available datasets for research on automated driving systems
and an overview of their main features.

V
is
io
n
ca
m
er
a

S
te
re
o
v
is
io
n

H
ig
h
-l
ev
el

ra
d
a
r

L
ow

-l
ev
el

ra
d
a
r

2
D

li
d
ar

3
D

li
d
ar

G
N
S
S
/
IM

U

L
ab

el
s

P
la
tf
o
rm

d
et
ai
ls

D
at
as
et

av
a
il
a
b
le

KITTI [8] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

RobotCar [27] ✓ ✓ ✗ ✗ ✓ ∽∽∽ ✓ ✗ ✓ ✓

nuScenes [28] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

H3D [29] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Argoverse [30] ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Astyx [31] ✓ ✗ ✓ ∽∽∽ ✗ ✓ ✗ ✓ ✓ ✓

OLIMP [32] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

WAYMO [33] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

of other perception sensors (e.g., multiple lidars). The software stack includes sample
implementations of the different modules required for automated driving (e.g., mapping,
perception, planning). These modules are mainly based on deep neuronal networks (DNN)
(e.g., for obstacle/lane detection) in order to demonstrate the strengths of the Nvidia
platform. The well-documented software framework includes solutions for tasks such as
sensor calibration, accurate timestamping, efficient sensor data processing, and estimating
the vehicle’s pose. However, the ecosystem is tightly bound to the use of Nvidia hardware
and might be too bulky and restricted to perform research on low-level data handling and
low-level interactions with sensors.

Open-Available Datasets

Open-available datasets are a common tool to support the development of new perception
algorithms. The performance of new software modules for ADS is commonly evaluated us-
ing multiple datasets [11]. Labeled datasets can be utilized to train and evaluate machine
learning algorithms and to determine the performance of a detection task. Table 2.2 lists a
selection of open datasets available to the scientific community and compares certain char-
acteristics of these datasets. The datasets were introduced in associated publications, pro-
viding information about the composition, the desired purpose, and other related details.
Some of the publications also include details about the utilized perception architecture,
the data handling, and the utilized approach to record the data. These publications are
a valuable source of information when designing a perception platform based on similar
sensors.

The popular KITTI dataset provides sensor data from multiple perception sensors in
various driving scenes recorded on German roads [8]. The utilized Volkswagen Passat
station wagon was extended with a rooftop-mounted sensor rig, including a laser scanner,
four vision cameras (two stereo setups), and a GNSS/IMU system. The authors address

20 2. Related Work

the synchronization and calibration of the sensors in order to provide aligned data. In
order to allow researchers to compare their computer vision algorithms based on the KITTI
dataset, there exists an open benchmarking service on the project’s website. The downside
of the KITTI dataset is the limited 10Hz frame rate and the lack of radar data.

The authors of [27] built the Oxford RobotCar platform, a modified Nissan LEAF for
automated driving research. The vehicle was used to record the Oxford RobotCar dataset,
containing perception data from a route in central Oxford. The platform is equipped with
a stereo camera, three vision cameras, two 2D lidars, one 3D lidar, and a GNSS/IMU sys-
tem. Two Intel Xeon processors with eight cores are used as computation modules, while
solid-state drives are utilized for fast data storage. The associated publication includes in-
formation about the synchronization and calibration of the sensors. Similar to the KITTI
dataset, the RobotCar recordings are open-available and have been used extensively by
researchers worldwide.

The nuScenes dataset for research on automated driving was introduced in 2019 [28].
This dataset contains perception data from a typical sensor setup of automated vehi-
cles and claims to be the first open dataset that includes radar data. The data was
recorded with a Renault Zoe, equipped with six vision cameras, five radars, one lidar,
and a GNSS/IMU solution. The authors provide valuable information about the com-
position of the sensor setup and the utilized approach to perform sensor calibration and
synchronization.

The H3D dataset was published by the Honda Research Institute, providing perception
data of crowded urban scenarios [29]. The authors provide researchers a time-synchronized
and calibrated dataset for 3D multi-object detection and tracking. The vehicle utilized
to record the dataset was equipped with three vision cameras, a 3D spinning lidar, an
IMU/GNSS sensor, two eight-core processors, and solid-state drives for data storage.

The Argoverse dataset is provided by the automated driving company Argo AI [30].
The dataset’s main goal is to support research in the field of 3D tracking and motion
forecasting. The recording vehicles were equipped with two 3D spinning lidars, seven
vision cameras for 360°vision, a stereo camera setup, and a GNSS sensor. The authors
claim to provide synchronized data streams and include calibration data for the sensors.

A radar-centric platform, utilized to record the Astyx dataset, is presented in [31]. The
sensor setup consists of a high-resolution radar sensor, a vision camera, and a 3D lidar
sensor. The dataset’s associated publication contains information about the calibration
procedure and states that the dataset contains synchronized data. However, the dataset
only contains a very limited number of scenarios (about 500 frames), and the sensors are
operated at dissimilar frame rates.

The authors of [32] present the OLYMP dataset, an open-source dataset for advanced
environment perception. The utilized sensor platform is equipped with a vision camera,
an ultra-wideband (UWB) radar, a typical automotive radar, and a microphone. However,
the data acquisition of the different sensors is not performed simultaneously. The corre-
sponding measurement data is selected using the closest-matching reception timestamp.

Waymo, the succeeding company of the Google self-driving car project, released a large
and diverse dataset for automated driving in 2020 [33]. The sensor setup consists of five
lidar sensors and five vision cameras. The dataset consists of precisely synchronized and
calibrated camera and lidar data. Each point of the lidar data contains a vehicle pose in
order to address the varying poses between the single measurements.

2. Related Work 21

2.1.3 Spatial Sensor Data Alignment

The raw measurements from the different perception sensors are available in sensor-
dependent frames, defined by the respective sensor’s mounting position and the sensor’s
field-of-view In order to combine data streams from multiple perception sensors, the spatial
relationship between the respective frames has to be known. The static transformations
between the rigidly mounted sensors are typically determined during a separate calibra-
tion procedure of the perception system. Traditional, manual approaches require multi-
ple measurements in specific environments (e.g., with targets/markers) to estimate these
transformations. Other calibration approaches allow marker-less calibration, exploiting
features of the natural environment. Knowing the transformation between the individ-
ual sensor frames, the measurement data can be transformed into a common coordinate
system for further processing.

In general, the sensor calibration procedure can be divided into intrinsic and extrin-
sic calibration. While the intrinsic calibration targets the compensation of sensor non-
linearities (e.g., distortion), the external calibration is utilized to determine the relative
poses of the sensors to each other or to a common reference. The intrinsic calibration is
often already performed by the manufacturer and provided to the customer. In order to
obtain accurate frame transformations, the extrinsic calibration shall be performed with
sensor data, which already considers the corresponding intrinsic parameters.

A well-researched topic in that field is the calibration of multi-camera setups, a fun-
damental requirement to enable stereo vision. Traditional approaches utilize point cor-
respondences of calibration patterns to estimate the transformation between the sensors.
Other approaches utilize natural features available in the environment. The work pre-
sented in [34] utilizes street signs to obtain the extrinsic calibration of the multiple vision
cameras mounted on the vehicle. The authors of [35] introduce a method to perform ex-
trinsic calibration of multiple vision cameras mounted on a vehicle, utilizing the natural
features in the environment and wheel odometry.

The utilization of heterogeneous sensors (e.g., lidar, radar, vision camera) in modern
perception systems requires additional calibration concepts. The extrinsic calibration of
a sensor pair usually involves the detection of feature points (e.g., markers, edges) in the
scene, located in both sensors’ common field-of-view. In order to obtain easily detectable
and distinguishable features, this is typically done by placing artificial targets into the
scene (e.g., 3D targets). The authors of [36] present a custom target design capable of
being uniquely detected by radar, lidar, and vision camera. After performing multiple
measurements of the target, placed at different positions, the relative pose between the
sensors can be estimated. The authors of [37] describe a fast way to perform the extrinsic
calibration of a lidar sensor and a vision camera using a checkerboard pattern. The authors
of [22] utilized this method for the calibration of a research vehicle’s perception sensors.

2.1.4 Temporal Sensor Data Alignment

Another important aspect of a multi-sensor platform is the accurate synchronization of
the sensor data in the time domain. In order to allow spatial and temporal alignment of
multiple sensor data streams, the measurement timestamps have to be precisely known.
The relevant timestamp associated with a sensor’s raw data stream is the measurement
acquisition time, not the processing system’s reception time. The sensor data’s temporal

22 2. Related Work

alignment is crucial when considering dynamic effects, such as the vehicle’s ego-movement
or moving objects in the scene. Thus, precise temporal alignment is inevitable for high-
level perception tasks such as environment mapping or moving object tracking.

Simultaneous data acquisition, i.e., multiple perception sensors which acquire their
measurements at the exact same time, is beneficial for low-level fusion tasks. The si-
multaneous acquisition eliminates the uncertainty introduced by scene changes due to
different acquisition times. Non-simultaneous measurements are vulnerable to dynamic
scene changes caused by moving objects or an ego-movement of the vehicle. While the
effects of a vehicle’s ego-motion can be compensated in certain cases, moving objects cause
deviations in non-simultaneously acquired measurements.

However, simultaneous data acquisition has its limits in real-world sensor systems. A
measurement acquisition requires a certain amount of time to utilize the desired physical
effects to obtain the measurement data. Thus, a scene might be subject to change during
the measurement acquisition (e.g., resulting in motion blur). Perfectly simultaneous data
acquisition would additionally require equal measurement durations. This is not feasible
for most multi-sensor perception systems since the required acquisition time depends on
both the sensor type and the environment. Depending on the expected dynamics of the
desired target environment, a tolerable deviation in the acquisition times can be defined.
In the context of ADS, the dynamic behavior of the expected traffic participants is small
enough to neglect a deviation in the range of single milliseconds for most applications.

The authors of [38] show an approach to analyze the timestamps of perception sensors.
They utilize custom real-time capable hardware in order to detect the exact measurement
acquisition timestamps (e.g., using a photodiode for lidar). This timestamp is utilized
to determine the deviation from the sensor’s provided timestamp (if available) or from
the arrival time at the processing system (software timestamp). A proper analysis of the
perception sensors’ real timestamps can be utilized to compensate static deviations and
to provide temporally well-aligned data streams.

The authors of [39] address the issues caused by unsynchronized sensors and show a
method to mitigate the problem. In [40], the same authors present an approach to perform
temporal sensor synchronization in the context of automotive vehicles and advanced driver
assistance systems (ADAS). They also describe the effects caused by frame drops (lost
frames) in the data streams and show a way to cope with them.

A common way to accurately synchronize multiple clocks within a local network is the
Precision Time Protocol (PTP). The PTP requires dedicated hardware support and is able
to achieve a synchronization precision in the range of single microseconds. The authors
of [41] show an approach where they used a PTP capable microcontroller to obtain time-
synchronized measurements from multiple perception sensors. However, the protocol is
not applicable to most consumer sensors that utilize non Ethernet interfaces (e.g., USB3)
or do not come with native PTP support.

The sensors of the RobotCar platform [27] are synchronized using the TICsync library
[42]. This library provides an efficient method to synchronize multiple distributed clocks
within a few seconds up to milliseconds accuracy. The work published in [8] presents
the sensor synchronization method used for recording the KITTI dataset. The platform’s
vision cameras are synchronized with the lidar sensor by triggering the acquisition when
the spinning lidar crosses the forward-facing position. Since the GNSS/IMU data cannot
be synchronized that way, the messages with the closest receive timestamps are used.

2. Related Work 23

2.1.5 Context-Aware Sensor Configuration

Automated vehicles are intended to be deployed in various conditions (i.e., sun, snow,
daytime, nighttime) and contexts (i.e., highway, urban streets). The sensors and the
processing algorithms shall adapt their configuration to the context in order to provide
the best possible output in any scenario. The basic concept of changing sensor parameters
during runtime is presented in [43], introducing the term active perception. In order to
enable context-aware parameter modifications, internal sensor/processing parameters have
to be made available for dynamic adaptions. Even though automatic parameter adaption
holds a high potential, many of today’s perception systems are still operated in a partially
static way.

There are different approaches known to the research community to adapt parameters
dynamically. Traditional systems often require users or experts to manually adjust the
static system parameters when deployed in a new target environment. Modern approaches
utilize system knowledge, optimization techniques, or learning approaches to perform au-
tomatic parameter adaption [44]. Prominent examples of automatic parameter adaptions
are a digital camera’s exposure time and its focus distance.

One way to perform automatic parameter selection is to utilize system knowledge made
available via an earlier built knowledge base (KB). A KB can be manually defined at design
time by utilizing expert knowledge and heuristics to define a fixed set of rules. In [45], a
KB and a program supervisor are used to perform rule-based parameter tuning for road
obstacle detection. A KB can also be built during a training phase by exposing a system
to various environments [46]. Satisfactory parameters are then either determined auto-
matically (optimization techniques) or by manual human intervention. During runtime,
the system adapts the parameters based on the KB entries of similar context states.

The authors of [47] show an approach that utilizes an offline learning phase and online
parameter tuning for object tracking in video scenes. Offline learning is used to obtain
a database of contexts with associated parameter values. The online parameter tuning
extracts the current context from the video and utilizes the learned values to adapt the
tracking algorithm. The authors of [48] present an adaptive robot perception architec-
ture. Context changes are monitored during runtime and utilized to trigger an update of
the perception pipeline’s configuration. The new configuration is obtained from a reposi-
tory that contains satisfactory configurations for various conditions determined during an
earlier training phase.

For online parameter tuning, the system determines new values on-the-fly by opti-
mizing them according to the current state. Tuning algorithms to adapt the parameters
typically determine the new parameter set based on the optimization of certain metrics
(e.g., image quality). Commonly used examples of parameter optimization algorithms are
grid search, random search, and gradient descent [49]. Bayesian optimization (BO) is a
more efficient method to obtain the optimal parameters (an example is presented in [50]).

The work presented in [44] addresses the cost-intensive customization required to de-
ploy a generic robot in a certain environment. Human experts have to utilize their system
knowledge to determine satisfactory values for static robot parameters manually. Since
this process is generally time-consuming, it significantly increases the cost of deployment
processes. The authors describe an approach that automatically tunes the parameters of
a robot on-site without expert supervision.

24 2. Related Work

2.1.6 Sensor Fusion

Sensor fusion describes the process of combining data from multiple sensors in order to
enable joint processing. The authors of [51] provide a very generic definition of information
fusion:

“Information fusion is the study of efficient methods for automatically or semi-
automatically transforming information from different sources and different
points in time into a representation that provides effective support for human
or automated decision making.”

In the context of environmental perception systems, the fusion of multiple sensors is
utilized to obtain a more robust representation of the environment. Multiple perception
sensors are deployed to extend the system’s field-of-view and increase the perception task’s
robustness by compensating individual sensors’ weaknesses. Sensor fusion is then required
in order to utilize the extra information in the joint processing of the heterogeneous data.

Multiple challenges arise when the fusion of data from multiple sensors is targeted.
In order to surpass single-sensor solutions, these challenges have to be addressed and
solved. The main challenges include the temporal and spatial alignment of the data, the
different data types (i.e., structure, dimension, rates, abstraction, acquisition time), and
the handling of dynamic and conflicting data. As pointed out in [52], there are multiple
ways to classify sensor fusion techniques. The classification used in this thesis is based
on the abstraction level of the input data [53]. The fusion methods can be classified into
low-, mid-, and high-level sensor fusion.

Low-Level

Low-level sensor fusion describes the fusion of low-level perception data, e.g., at signal- or
pixel-level. This includes the fusion of raw sensor data and the fusion of the so-called ob-
servations (according to Figure 2.2). These observations describe modified versions of the
raw sensor data. Examples for low-level data include the output data after non-destructive
pre-processing (e.g., range from time-of-flight values) or after a reversible change of repre-
sentation (e.g., coordinate frame transformations). In low-level sensor fusion, the decision
about object extractions is taking place after the data was fused. This avoids loss of in-
formation during data abstraction and enables the combined recognition of objects, which
would have been lost during individual processing. The approach, however, demands a
centralized processing unit with high computational power and high bandwidth to the
sensors.

A popular way to fuse heterogeneous sensor data at a low level is via the common
representation in an occupancy grid. An occupancy grid represents the probability of
occupancy for a finite amount of grid cells around the ego-vehicle. The individual sensors’
readings can be spatially assigned to occupancy grid cells and utilized to update the cell’s
probability of occupancy.

With the advent of machine learning-based methods, low-level data from different
sensors can be directly utilized as an input to sophisticated neuronal networks [54]. The
authors of [31] present an approach to fuse radar data and vision camera images for
object detection using deep learning. The authors of [55] present a super-sensor for 360°

2. Related Work 25

environmental perception, which provides a combined low-level representation of multiple
perception sensors. They address the temporal data acquisition of the utilized sensors and
the crucial ego-motion correction to fuse the data.

Mid-Level

Mid-level sensor fusion describes the fusion of data at feature-level, i.e., after significant
data processing steps have been applied to the low-level perception data. This includes
extracted feature points from the raw data (e.g., edges/corners in an image, radar targets)
and the non-reversible conversions of the data to other representations (e.g., gradient
image, segmented image).

The work published in [56] shows an approach to fuse radar and lidar sensor data.
The proposed fusion architecture separately pre-processes the data streams in order to
perform centralized sensor fusion at feature-level. Similar to most perception platforms,
the utilized radar sensor acts as an independent sensor module and solely communicates
processed data to the remaining system. The authors of [57] present a method to fuse
radar data with images from vision cameras in order to improve the vehicle-detection
performance at high distances. They incorporate radar data into a vision-based deep
learning vehicle detection network. The utilized radar data is received from the sensor as
targets. The combination of the data in the detection network is performed at a medium
processing stage. The automated driving platform Zeus, presented by Burnett et al. [22],
performs lane detection by fusing the extracted lanes from the vision camera’s image and
the lidar range data. The camera image is transformed into a bird’s eye view in order
to detect the lanes, while the lidar approach utilizes the different reflectivity of the road
surface.

High-Level

High-level sensor fusion describes the combination of high-level perception data (e.g.,
objects, tracks) from multiple sensors. Each sensor’s raw perception data is individually
processed in order to obtain a high-level representation of the respective perception data.
One challenge in high-level sensor fusion is the data association of the perception data
(objects, tracks) from the different sensors. Additionally, high-level fusion is subject to
information loss during the data-abstraction process. Observation details contained in
the raw sensor data might not result in detected objects after the application of the
processing pipeline. High-level sensor fusion enables the deployment of a decentralized
system architecture, where each sensor module performs an individual detection up to the
object level. The data abstraction reduces the communication load, enabling the different
modules to be connected with various types of buses.

A number of approaches have been published, addressing the high-level fusion of vision
and lidar data for vehicle detection [58] and pedestrian detection [59]. The authors of [58]
compared the performance of the global nearest neighbors (GNN) and joint probabilistic
data association (JPDA) techniques for data association. Other methods rely on the
multiple hypothesis tracking (MHT) algorithm, an improvement over the JPDA technique
[60]. Baidu’s Apollo Open Platform is capable of fusing vision, lidar, and radar data on a
high-level. Each sensor performs individual object detection and tracking before the data
is fused to extract the final objects. The authors of [61] show an example of high-level

26 2. Related Work

sensor fusion, utilizing lidar, radar, and vision sensors. They present a joint probabilistic
perception algorithm for data association, tracking, and classification of vehicles. Since
the sensors complement each other, the approach enables robust perception in all weather
conditions.

Hybrid-Level

In practice, it is difficult to unambiguously assign fusion techniques to the above-mentioned
levels of fusion. Hybrid-level fusion describes the process of fusing sensor data at different
abstraction levels (i.e., observations, objects, features, tracks). A single system may also
perform various types of sensor fusion techniques, depending on the targeted application
and the individual sensor streams included in the respective fusion task.

A prominent example of hybrid-level sensor fusion is the projection of regions of inter-
est, identified in range data, into the 2D image space to perform robust obstacle classifica-
tion. In [62], mid-level perception data from the laser-scanner is included to augment the
vision camera’s low-level perception data. Boss [5] utilizes individual sensor layers within
its perception system for moving-object detection. The features obtained after low-level
processing are filtered using the currently predicted environment state from the fusion
layer. The remaining verified features are then further processed and communicated to
the fusion layer at different abstraction levels. A hybrid-level fusion is also utilized in a
submodule of the Autoware software stack [20]. The authors project the detected objects
from the 2D image into the 3D space in order to perform driving actions.

2.2 Applications

The intended purpose of an environmental perception system is the fulfillment of certain
perception tasks. The output of a perception task is provided to succeeding subsystems in
order to contribute to the accomplishment of the desired applications. In the context of
ADS, common perception tasks include object detection, localization within a map, and
the determination of drivable space. This section provides a short overview of common
perception tasks implemented as use cases in this thesis’ environmental perception system.

2.2.1 Obstacle Detection

This perception task targets the detection of objects of interest in front of a vehicle/robot.
Objects of interest include street signs, trees, other vehicles, or pedestrians. Robust ob-
stacle detection is among the most crucial requirements of automated vehicles and au-
tonomous robots. Additionally, obstacle detection acts as a base for more advanced per-
ception tasks, like object classification or tracking. Most perception systems utilize their
range sensors (e.g., lidar, radar, stereo vision) to detect obstacles and to create a local
map. The range data enables the direct estimation of the objects’ positions with respect
to the platform.

Lidar sensors are commonly used as the primary source for obstacle detection. Due
to its active illumination, the sensor is less sensitive to lighting conditions and directly
provides a 3D understanding of the scene. A common representation of static obstacles is
an occupancy grid (either in 2D top-down or in 3D with voxels). Recently also a number

2. Related Work 27

of algorithms have been developed, which utilize 3D point clouds to detect and recognize
objects directly.

The resolution of radar sensors is typically too low to utilize them as standalone solu-
tions for obstacle detection. However, since radar is resistant to harsh weather conditions,
the provided positions and radial velocities are of high value for many applications (like
obstacle detection). Thus, radar sensors are often used in today’s ADAS and will likely be
included in future perception systems of automated vehicles. The authors of [63] show a
platform that uses a custom radar sensor to create an occupancy grid from low-level radar
data.

Images from vision cameras do not comprise distance information and have to be
analyzed at a deeper level in order to detect obstacles. Vision images are rather used
for the recognition of objects by using learning-based algorithms on regions containing
obstacles. State-of-the-art methods to detect obstacles directly from the 2D image stream
are typically based on deep learning. Examples are the You Only Look Once (YOLO)
detector [64] or the Single Shot MultiBox Detector (SSD) [65]. However, these methods
are limited to pre-trained objects and tend to fail in harsh weather conditions since they
solely rely on vision camera images. Additionally, the detected regions do not hold any
information about the corresponding objects’ real sizes and scales.

As demonstrated in [66], a local occupancy grid map can be utilized for obstacle
avoidance. The authors utilize an ego-centered occupancy grid built from two radar sensors
and one lidar sensor. They also provide a detailed description of how to compensate the
ego-vehicle motion to get a consistent grid, even though the vehicle is moving.

2.2.2 Environment Mapping

Environmental perception systems can use their perception sensors to create a local rep-
resentation of the environment. This local information about the environment can then
be utilized for tasks like localization, mapping, free-space determination, or obstacle de-
tection. The work published in [67] presents an overview of commonly used localization
techniques for automated driving.

An automated vehicle’s most crucial tasks include its absolute localization (on a global
map) and relative localization (on a local map). GNSS sensors are popular for coarse
global positioning but cannot achieve a highly accurate localization in any scenario (e.g.,
due to multi-path effects or tunnels) [10]. The inclusion of IMU data and wheel odometry
results in precise relative pose-updates and counteracts GNSS fluctuations [68]. However,
as stated in [10], the GNSS-based solutions are typically not reliable enough to estimate
the vehicle’s position relative to a map with sufficient precision (e.g., within a lane).
Thus, perception sensors (e.g., lidar or vision cameras) are often used to perform local
localization.

Simultaneous localization and mapping (SLAM) algorithms are utilized to create a
local map and localize the robot/vehicle within that map. SLAM-based algorithms are
popular in environments without prior availability of a detailed map. A local map of the
environment is not only important for fine-grained localization. The knowledge about
the local environment can also be beneficial to other tasks such as obstacle detection or
local path-planning. Since SLAM algorithms are computationally expensive, the provided
rate of accurate SLAM positions is limited by the system’s computation performance and

28 2. Related Work

the utilized perception sensors’ update rates. Thus, the position obtained by the SLAM
localization is temporary also updated by the vehicle’s dead-reckoning sensors (odometry,
IMU) and GNSS, which are provided at a higher rate.

The work presented in [4] shows an approach to create a local, static map by incorpo-
rating the 3D points from a Velodyne 64-beam lidar sensor. As stated in [11] and [69], the
vehicle’s ego-motion has to be considered when new data is added to a map. The authors
of [70] present an approach, which provides high-frequency pose estimations of a vehicle
by utilizing lidar odometry, an IMU, and wheel odometry. The IMU was utilized to com-
pensate for the intra-frame distortion of the lidar measurements. The work published in
[71] incorporates lidar measurements in addition to the odometry data in order to increase
the precision of the estimated poses.

2.2.3 Pedestrian Detection

Robust pedestrian detection is among the key requirements in order to establish full ac-
ceptance of automated vehicles. The inability to reliably detect any pedestrians in the
vehicle’s surroundings is likely to lead to accidents, resulting in injuries and fatalities. The
sensitivity of that topic was revealed after the first fatal crash induced by an automated
vehicle operated in self-driving mode in 2018 [72]. Tragic accidents like this one lower the
general public’s acceptance of automated driving and further raise the demanded robust-
ness level of the ADS. Safety-critical perception tasks, like pedestrian detection, have to
be absolutely robust before their deployment. Thus, there is a high demand to raise the
quality of pedestrian detection in automated vehicles to a higher level.

Traditional object detection algorithms extract features from images, which are then
processed by a learning algorithm. Histogram of oriented gradients (HOG) features are a
popular choice in order to detect pedestrians [73]. HOG-based pedestrian detection meth-
ods introduce a relatively low computation overhead and achieve a high detection rate.
Recently, deep learning-based approaches for pedestrian detection have gained popularity.
Convolutional neuronal networks (CNN) are applied to the full vision images in order to
detect all pedestrians in the scene. Prominent examples of CNNs for pedestrian detection
(and also object detection) are the YOLO [64] and the R-CNN [74] detection systems.

The authors of [62] present an approach to fuse lidar range data with 2D vision images
for pedestrian detection. They extract laser segments from the lidar data and project them
onto the image plane in order to obtain multiple regions of interest within the 2D image.
An SVM classification is performed using multi-window detectors within the regions of
interest to detect potential pedestrians.

Mercedes Benz’s research vehicle Bertha also extracts regions of interest using its stereo
vision setup [19]. Each region of interest is subject to a multi-cue pedestrian classifica-
tion, utilizing HOG features and texture-based features. Another approach of detecting
pedestrians with Bertha’s radar sensors, utilizing the micro-Doppler effect, is presented in
[25].

The work published in [75] shows an approach to detect pedestrians using the data
from a lidar sensor and a vision camera. The lidar data is utilized to identify object
clusters in the scene, while a neuronal network (YOLO [64]) detects 2D bounding boxes of
pedestrians. The fusion of these two outputs provides the 3D information of pedestrians
in the lidar sensor’s domain and the vision camera’s domain.

2. Related Work 29

2.3 Summary and Difference to the State-of-the-Art

As elaborated in this chapter, there exists a vast amount of work about environmental
perception systems which mostly origins from robotics and automated driving research.
The systems are continuously improved, utilizing advances in perception algorithms and
refined sensor setups. In addition, the processing modules benefit from a performance
boost caused by the introduction of automotive-qualified high-end supercomputers. How-
ever, current perception modules are still far from flawless. They commonly fail in harsh
weather conditions and have disadvantages regarding speed, precision, and robustness.
Since the perception quality has a substantial impact on the overall system’s performance,
the perception module is subject to further improvements.

Within the last two decades, multiple environmental perception systems have been
presented to the research community, providing an overview of their designs and imple-
mentations. Additionally, multiple open datasets were introduced to encourage research on
perception algorithms and allow the performance comparison of developed algorithms. The
open-available perception platforms lack crucial components in order to enable research,
which targets the exploitation of low-level sensor data. The majority of the institutions do
not expose their platforms’ hardware/software details to a level required to rebuild a sim-
ilar system (e.g., sensor selection, software framework). Although open datasets provide
an excellent entry point to develop certain perception algorithms, they are incapable of
enabling research on low-level hardware and software aspects of perception systems (e.g.,
synchronization, data handling). Additionally, researchers are limited to the sensor types
and the configurations used in the respective dataset and cannot individually evaluate the
algorithm in customized scenarios.

This work presents the system design of a heterogeneous sensor fusion platform capable
of utilizing low-level radar data. The thesis extends the currently available work within
the research community with details of a custom-built platform capable of performing a
low-level fusion of sensor data. Similar open approaches (like [20] or [18]) present the
implementation of full software stacks for ADS, but lack a number of the perception
module’s design and implementation details. In contrast to existing approaches, this work
focuses solely on the perception subsystem and provides detailed information about its
composition. The presented platform provides solutions to arising challenges during the
design and the implementation of a multi-sensor perception platform. The calibration
and synchronization of the heterogeneous perception sensors are presented, enabling the
output of well-structured data streams for further processing.

The presented approach provides a detailed system architecture of a multi-sensor per-
ception system, which implements a highly adjustable low-level interface to the perception
sensors. In contrast to the majority of open-available perception platforms, the presented
platform utilizes a low-level interface to a radar sensor in addition to a vision camera and
a ToF camera. This work provides an open system, which can be utilized by the research
community in order to conduct research on low-level fusion concepts with focus on radar
data. In order to demonstrate the potential of the perception platform, multiple percep-
tion applications are implemented as use cases of the system (e.g., environment mapping,
obstacle/pedestrian detection).

Chapter 3

Background

This chapter introduces the technical fundamentals of ToF cameras, automotive radar
sensors, and vision cameras. The provided background information of the utilized sensor
technologies is essential to entirely understand the conducted work of this thesis. Thus,
this chapter is especially targeted to readers not yet familiar with the aforementioned
sensors.

3.1 Time-of-Flight Cameras

This section introduces ToF cameras for environmental perception. The working principle
of the ToF camera’s pixels in order to measure and calculate distance information is
introduced. Additionally, the most influential characteristics of ToF cameras are described.

3.1.1 Basic Principle

ToF cameras utilize the travel time of light in order to determine the distance to objects
in the scene. One efficient way to implement indirect ToF cameras is to utilize modulated
light and an array of photonic mixing device (PMD) pixels. As illustrated in Figure 3.1, the
scene is illuminated with modulated near-infrared (NIR) light. The light is backscattered
by the objects in the scene and, via an optical lens, projected onto an image sensor
consisting of an array of PMD pixels. The output of these pixels can be utilized to
efficiently determine the phase difference between the transmitted and received light. The
corresponding range value can then be calculated for every pixel by utilizing the obtained
phase difference and the speed of light.

Photonic Mixing Device

A PMD sensor is capable of measuring the cross-correlation cτ (x, y) between the reflection
of the modulated light signal r(t) and a phase-shifted version of the transmitted signal
s(t+ τ). A simplified illustration of a PMD pixel’s cross-section in complementary metal-
oxide-semiconductor (CMOS) technology is shown in Figure 3.2. The photoelectric effect
causes the incoming light to generate electrons in the CMOS substrate. The modulation
signal controls the electrons’ movement into the right and left capacitors (so-called buck-
ets). Depending on the modulation signal Umod, an electron either moves to the right

31

32 3. Background

Figure 3.1: Illustration of the ToF principle, adapted from [76].

or the left capacitor (bucket A or B). The voltage difference between the two buckets
UA and UB reflects the correlation between the incoming light and the applied reference
signal. This voltage difference is then utilized to determine the phase difference between
the reflected and the transmitted light.

Figure 3.2: Simplified structure of a photonic mixing device pixel, adapted
from [77].

Distance and Amplitude Calculation

A common way to determine the distance and the amplitude value for every pixel is the
application of the four-phase algorithm [78]. First, the correlation value between the
modulated light signal r(t) and a phase-shifted version of the transmitted signal s(t+ τ)
is determined for four different phases (0°, 90°, 180°, and 270°). The raw sensor data holds
the cross-correlation values Cx of the received signal and the phase-shifted versions of the
transmitted signal.

3. Background 33

The amplitude A of the correlation signal (also known as intensity) can be determined
via the four samples of the correlation function Cx, as seen in (3.1). The amplitude value
is a measure of the amount of received light and can be utilized as additional information
in later processing steps (e.g., as confidence indication).

A =

√
(C270◦ − C90◦)2 + (C0◦ − C180◦)2

2
(3.1)

The phase difference ∆φ can be determined with four raw phase-images by utilizing the
four-phase algorithm [78]. The arctangent function is calculated as stated in (3.2). Since
the arctangent function is the most complex component of the distance calculation process,
the selection of the arctangent algorithm has a high influence on the system’s processing
duration and latency. Popular choices are series expansion, iterative approaches, and
lookup tables. The most suitable method depends on the utilized processing architecture
and the desired application.

∆φ = arctan

(
C270◦ − C90◦

C0◦ − C180◦

)
(3.2)

The distance d to the reflecting object can be easily determined with the phase dif-
ference ∆φ, the speed of light c, and the light modulation frequency fmod, as seen in
(3.3).

d =
1

2
· c

fmod
· ∆φ

2π
(3.3)

The phase difference, determined by the four-phase algorithm, is limited by the 2π-
periodicity of the correlation signal [78]. Thus, the provided distance values of the ToF
camera are only unambiguous within the corresponding range interval. The camera’s
unambiguous range depends on the modulation frequency, which defines the spatial prop-
agation of a single signal period. The dependency of the unambiguous range du on the
modulation frequency fmod is stated in (3.4). Since a reduction of the modulation fre-
quency also decreases the measurement precision, the control of the unambiguous range
via that parameter is only possible to a limited extent.

du =
1

2
· c

fmod
(3.4)

The eight-phase algorithm is a method to expand this range by combining two four-
phase measurements acquired at different modulation frequencies. Figure 3.3 shows an
illustration of the extended unambiguous range when using the eight-phase algorithm. In
order to determine the eight-phase distance, the respective unambiguous ranges are added
to each four-phase distance until the distance values of both modulation frequencies match.
A suitable choice of the modulation frequencies and their relation can significantly extend
the combined measurement’s unambiguous range.

The different phases of an eight-phase ToF measurement are illustrated in an illumina-
tion intensity over time chart in Figure 3.4. The camera performs eight sequential phase
measurements, utilizing four measurements for each of the two modulation frequencies.
A single-phase measurement consists of an illumination phase (peaks in the chart) and a
readout phase, in which the pixel values are sampled and digitized by the sensor.

34 3. Background

Figure 3.3: Unambiguous range extension using the eight-phase algorithm,
adapted from [79].

Figure 3.4: Timing of an eight-phase ToF measurement. Plot of the illumi-
nation intensity over the time.

3. Background 35

Range and Precision

A ToF camera’s maximum range is influenced by a number of factors, including the objects’
reflectivity, the pixel size, the transmission power, and the illumination time. One of the
major factors is the scene objects’ ability to reflect the infrared light at the illuminated
wavelength. As stated in (3.5), the amplitude A of the received infrared light depends on
the surface reflexivity ρ, the distance r, and the angle of incidence θ. Figure 3.5 illustrates
an object’s reflection characteristics.

A ∝ ρ · cos(θ)
r2

(3.5)

An object can be detected if enough modulated light is received by the pixels of the
sensor. A larger pixel size results in more received light and contributes to a higher range.
The amount of transmitted light can be controlled with the illumination power and the
illumination time. While the illumination power is usually fixed due to the used hardware
(LED, laser), the illumination time can be adjusted to an arbitrary value. An increased
illumination time increases the number of received photons, the amount of noise, and the
measurement duration and may lead to saturated pixels. Additionally, eye safety has to
be considered since infrared light can harm human eyes.

State-of-the-art ToF cameras claim to achieve ranges of over 10m [80], [81]. This stated
distance, however, does not guarantee that every object within that range is detected. The
provided value states that a camera is capable of detecting standardized objects at that
range (e.g., a surface with 10% reflectivity).

Figure 3.5: Reflection characteristics of an infrared-illuminated object,
adapted from [82].

The accuracy of the detected measurement depends on a number of factors, including
the signal-to-noise ratio (SNR) and the modulation frequency. Closer, highly reflective
objects are detected at a higher accuracy than objects at a higher distance with low
reflectivity.

The presence of background illumination lowers the SNR (e.g., due to photon shot
noise). In addition, unmodulated light generates electrons into both buckets, increasing
the likelihood of single pixels to saturate. Even though modern ToF cameras include
additional circuitry to reduce the influence of background illumination [77], they still
suffer from a decreased outdoor performance.

36 3. Background

3.1.2 Characteristics

The performance of a ToF camera depends on various external and internal factors. The
most influential characteristics of a ToF camera are listed below.

� Sensor resolution
The resolution of a ToF camera defines the number of distance values provided by
the image sensor. Current ToF cameras achieve resolutions of up to 640× 480 pixels
[81].

� Field-of-view
The field-of-view of a ToF camera is given by the utilized optical lens mounted in
front of the image sensor. While a wide-angle lens enables the coverage of a larger
area, the provided image loses details. The impact area of the illumination unit has
to be aligned with the field-of-view.

� Frame rate
The maximum frame rate is limited by the illumination time and the measurement
type (four- or eight-phase). Current systems are capable of providing frame rates of
over 30 frames per second (FPS).

� Modulation frequency
The utilized modulation frequency is typically in the range between 10MHz and
100MHz. The used value determines a measurement’s unambiguous range and af-
fects certain other performance values (e.g., the measurement precision).

� Illumination unit
The illumination unit is equipped with LEDs or vertical-cavity surface-emitting lasers
(VCSELs) and illuminates the scene with modulated infrared light. In general, in-
frared light with wavelengths between 850 nm and 1600 nm is utilized. The illumi-
nation power influences a measurement’s range and quality but has to comply with
eye-safety restrictions.

� Interface
Standalone ToF cameras typically implement common interfaces (e.g., USB3 or
Ethernet) to transfer data and configure the sensor. Some cameras additionally
provide interfaces to synchronize the camera (e.g., external trigger input).

3.1.3 Time-of-Flight Processing

The eight-phase algorithm uses eight raw ToF phase-images in order to calculate the
distance and the amplitude image. The eight phase-images are sequentially captured
and transferred to the processing system after the measurement was acquired. For the
computation of the range image, the eight phase-images are split into two groups of four
images for both utilized modulation frequencies. The four-phase algorithm is applied to
each of these two groups to calculate the amplitude and distance image (according to (3.1)
and (3.3)). The eight-phase algorithm combines these two outputs to an amplitude image
and a distance image with an extended unambiguous range. Figure 3.6 shows the obtained

3. Background 37

Figure 3.6: ToF raw data processing flow.

amplitude and distance image from the raw data after the application of the eight-phase
algorithm.

The amount of raw data from a ToF measurement DToF,Raw depends on the number of
pixels (pixel cnt), the data depth of each pixel (data depth), and the measurement mode
(four- or eight-phase). The amount of raw data for a single eight-phase measurement is
stated in (3.6).

DToF,Raw = 8 · pixel cnt · data depth (3.6)

A typical ToF camera with a resolution of 352×287 pixels and a data depth of 16Bit
provides about 12.9MBit of raw data for a single eight-phase measurement. This raw
data is transferred from the sensor to the processing system in order to calculate the
amplitude and the distance image. In typical applications, the calculated amplitude image
contains 16Bit integer values, while the distance image contains 32Bit float values. While
these images can already be utilized to perform further processing, many applications
additionally calculate a point cloud in order to provide a 3D representation of the range
data.

In order to calculate the 3D point cloud from the distance an amplitude image, the
camera and lens parameters have to be known. Using this information, each pixel of the
distance image can be assigned to a 3D point in the ToF camera’s coordinate system.
The points of the resulting point cloud contain six data fields, holding the corresponding
(x/y/z) position, intensity, confidence, and noise values. The resulting data size of a ToF
camera’s point cloud DToF,PC depends on the number of pixels and the data type of the
point cloud’s fields, as stated in (3.7). A ToF point cloud consisting of 352×287 points
with 32Bit float fields amounts to a data size of about 19.4MBit.

DToF,PC = 6 · pixel cnt · data depth (3.7)

3.2 Automotive Radar Sensors

This section presents an overview of automotive radar sensors and introduces their basic
functionality. The radar sensors’ main characteristics are presented, and a short introduc-
tion of the raw data processing flow is provided.

38 3. Background

Figure 3.7: Overview of an automotive radar sensor’s main modules.

Sequence 0 f

chirp 0

t

chirp 1 chirp 2 chirp M chirp 0 chirp 1

Sequence 1

Figure 3.8: Waveform shape of fast-chirped frequency sequences, transmitted by automotive radar
sensors. The dashed signal represents the delayed response of the transmitted signal, reflected by
an object in the scene. Obtained with changes from [87].

3.2.1 Basic Principle

A radar sensor is capable of transmitting electromagnetic waves and receiving their reflec-
tions. The sensor utilizes the relationship between the transmitted and the received signal
to obtain information about the environment (e.g., distance to objects, velocity of ob-
jects). The prevalent signals utilized by automotive radar sensors are frequency-modulated
continuous-waveforms (FMCWs). This modulation principle enables the simultaneous
detection of a target’s range and velocity. A subtype of FMCW signals are sequences of
short frequency ramps, fast chirp sequences. This waveform type allows the accurate de-
tection of multiple targets located at a similar distance. Our publication [83] provides an
overview of state-of-the-art automotive radar technology (see Chapter 8, Publication 2).
Additional information regarding signal processing for automotive radar can be found in
[84], [85], and in the book chapter published in [86].

An overview of an automotive radar sensor’s main modules, utilizing fast chirp se-
quences, is illustrated in Figure 3.7. The sequences of fast frequency chirps are generated
by a waveform generator and are transmitted to the scene. The transmitted signal’s reflec-
tions are subsequently received, mixed with the transmitted signal, and low-pass filtered.
The resulting low-frequency signal is called intermediate frequency (IF) signal and con-
tains information about the distance to objects in the scene and their radial velocity. In
order to extract this information, the IF signal is sampled at a high rate and digitized
for further processing. Fast Fourier transforms (FFTs) are then applied to the sampled
data to obtain the distance and the velocity to objects in the scene. Additionally, multiple
receive channels are utilized to obtain the angular information to the reflecting objects in
the scene.

3. Background 39

Tp

Tup
Tdown

Twait

B

(a) Single frequency chirp.

fIF

f

t

t
(b) Frequency components.

Figure 3.9: Characteristics of a single frequency chirp. Multiple frequency com-
ponents in the intermediate frequency signal are caused by reflections from multiple
objects.

The signal form of the transmitted fast-chirped frequency sequences is illustrated in
Figure 3.8. One measurement sequence consists of M fast frequency chirps. In practical
applications, a single chirp period Tp consists of an upchirp Tup, a downchirp Tdown, and a
waiting portion Tdown, as shown in Figure 3.9a. Due to the waveform shape, the frequency
difference between the reflected and the transmitted signal holds information about the
distance to a reflecting object and its corresponding radial velocity. Mixing these two
signals and subsequent low-pass filtering results in the IF signal comprising that frequency
difference. Multiple objects in the scene result in multiple frequency components in the
IF signal (illustrated in Figure 3.9b).

As seen in (3.8), the frequency of the IF signal fIF consists of a range-dependent
component frange and a Doppler-dependent component fDoppler. The range component is
determined by the bandwidth B, the range to the reflecting object R, the upchirp duration
Tup, and the speed of light c. The Doppler frequency depends on the reflecting object’s
radial velocity vr, the speed of light c, and the transmitted signal’s center frequency fc.

fIF =
2BR

Tupc︸ ︷︷ ︸
frange

+
2fcvr
c︸ ︷︷ ︸

fDoppler

(3.8)

Since the upchirp duration Tup of fast-chirped frequency ramps is generally set to a
sub-millisecond interval, the obtained range component outweighs the Doppler component
by by orders of magnitudes. Thus, the impact of the Doppler frequency can be neglected
for fast-chirped sequences. The frequency of the IF signal fIF is determined utilizing an
FFT over the N samples of a single frequency chirp. The distance R to the reflecting
object in the scene can then be calculated as stated in (3.9).

R =
c Tup

2B
fIF (3.9)

40 3. Background

d1

Δx 1

θ

•

θ

RX2 RX1 RX0

d2

•

Δx2

~~
Figure 3.10: Phase delays between the individual receive channels due
to the target’s angle. The phase difference can be used to estimate the
angle of arrival [87].

In order to obtain the radial velocity component of an object, the determined range
value’s phase changes between the consecutive chirps are considered. The phase value of
an FFT bin can be utilized for that purpose since it is sensitive to a reflecting object’s
small radial movements. An object’s radial velocity vr causes small changes in the range
∆R = vr Tp for each consecutive frequency chirp with chirp duration Tp. This results in
a phase change ∆Φ between consecutive range values of the chirp sequences, as stated
in (3.10). The carrier signal’s wavelength λ = c

fc
defines the unambiguous range of the

measurement.

∆Φ = 2π
2 vr Tp

λ
(3.10)

The radial velocity causes the obtained range phasor to oscillate at an angular velocity
ω = 2π 2 vr

λ . The values of the oscillating range phasor are sampled once for each of the M
chirps, with the sample period being the chirp duration Tp. A second FFT can be utilized
to estimate of the phasor’s angular velocity ω and, subsequently, the radial velocity vr.

To obtain an angular estimation of the reflecting objects in the scene, multiple re-
ceive antennas are utilized. Figure 3.10 illustrates the different propagation paths for
the different receive antennas, caused by an angle θ to a reflecting object. As stated in
(3.11), the path difference ∆x between the different receive antennas can be calculated
using the phase difference ∆ϕ between the received signal channels and the carrier signal’s
wavelength λ.

∆x =
∆ϕ

2π
· λ (3.11)

The angle to the reflecting object θ can then be calculated using the path difference
∆x and the baseline distance between the receive antennas d, as stated in (3.12).

θ = arcsin
∆x

d
(3.12)

3. Background 41

dTXdRX

Figure 3.11: Arrangement of a virtual antenna array, ob-
tained from [87].

t

t

t

chrip 0

~ ~

fTX0

fTX1

fTX2

chrip Lchrip 1

~ ~
~ ~

Figure 3.12: Temporal signal multiplexing applied to multiple transmit channels. The
resulting virtual antenna array results inan improved angular resolution.

A well-established choice for the alignment of multiple receive antennas is the linear
array arrangement with an equal spacing distance of d = λ/2. This spacing distance
leads to the maximum aperture of the antenna while still maintaining unambiguous phase
differences between the single channels. The phase differences between the signals of the
equally-spaced receive antennas lead to an oscillating phasor, sampled at different spatial
locations. Again, an FFT can be applied to estimate this phasor’s angular velocity and,
consequently, the reflecting object’s angle. Depending on the antenna array’s alignment
(horizontal or vertical), the azimuth or the elevation angle of the detected objects can be
obtained.

A higher number of receive channels results in an increased angular resolution. Since
the number of physical receive channels is generally limited (e.g., due to size, cost, and
hardware limits), other methods are utilized to increase the angular resolution. A common
method is the formation of virtual antennas, where LTX transmit antennas are utilized
in combination with LRX receive antennas. The combined antenna results in LTX ·LRX

virtual receive channels, as seen in Figure 3.11. The transmitted signals of the multiple
transmit antennas have to be orthogonal in order to enable their separation at the receive
antennas. In this work, temporal multiplexing of the transmit channels is implemented,
where only one transmit channel is active at a time. As illustrated in Figure 3.12, the
chirps are consecutively transmitted via each of the transmit antennas to enable orthogonal
signals. Temporal multiplexing leads to an increased measurement time, limiting the frame
rate and increasing the vulnerability to motion blur.

42 3. Background

Range and Precision

The maximum range of a radar sensor depends on a number of factors. As seen in the
radar equation (3.13), the received power Pr depends on the transmitted power Pt, the
antenna gain G, the wavelength λ, the object’s range R, and the object’s radar-cross-
section σ. The radar-cross-section is a measure of an object’s ability to reflect radar waves,
directly influencing the received power. Large, metallic objects cause strong reflections of
radar waves (e.g., cars, trucks, planes) and allow a simple detection. Small, non-metallic
objects (e.g., trees, humans, birds), have a lower radar-cross-section and are more difficult
to detect. In general, the antenna gain and the radar-cross-section have a high angular
dependency.

Pr =
PtG

2 λ2 σ

(4π)3R4
(3.13)

As seen in the equation, the received power is inversely proportional to the fourth
power of the reflecting object’s range. In order to detect an object, the received signal has
to be sufficiently high to separate it from the present noise. The major influences of an
object’s detectability are its shape, material, distance, and angular position.

The maximum unambiguous range of the radar sensor is limited by the upchirp du-
ration Tup as stated in (3.14). An object at a higher range would not overlap with the
transmitted pulse, resulting in an invalid range determination. In practice, the maximum
detectable range is mainly limited by the sample frequency fs of the analog-to-digital
converter, which determines the frequency range of the FFT.

Rmax =
c Tup

2
(3.14)

The resolution of the determined radar range ∆R depends on the bandwidth B and
the speed of light c, as stated in (3.15). In practice, the number of samples N limits the
range signal’s resolution since this number determines the spacing between the FFT bins.
However, methods like zero-padding and windowing can be utilized to reduce that effect.

∆R =
c

2B
(3.15)

The maximum unambiguous radial velocity vr,max of a fast-chirped radar sensor de-
pends on the speed of light c, the chirp duration Tp, and the center frequency fc, as seen in
(3.16). The phase difference ∆Φ between two consecutive chirps has to be lower or equal
to π in order to allow an unambiguous estimation of the velocity.

vr,max = ± c

4Tp fc
(3.16)

The resolution of the radial radar velocity ∆vr depends on the number of chirps M ,
the chirp period Tp, the center frequency fc, and the speed of light c [88]. The impact of
these components on the resolution is stated in (3.17).

∆vr =
c

2M Tp fc
(3.17)

3. Background 43

The angle to a reflecting object is calculated from the estimated phase difference using
a nonlinear expression (as stated in (3.12)). Thus, the uniformly distributed bins after the
application of the third FFT do not result in uniformly distributed angular resolutions.
The estimated angle θ has its maximum resolution ∆θ = λ

dLRX
at angle of zero while

gradually decreasing towards ±π
2 .

3.2.2 Characteristics

The performance of an automotive radar sensor depends on a number of characteristics
and key parameters. A selection of the most influential parameters of FMCW-based radar
sensors is listed below.

� Radar frequency
The utilized carrier signal frequency influences the radar wave propagation charac-
teristics. Higher frequencies allow miniaturization due to smaller antennas but come
with the price of increased atmospheric attenuation. The most common frequency
band for automotive radar sensors is the 77-81GHz frequency band.

� Antennas
The number of receive antennas defines the radar’s capabilities to estimate the angle
to an object. Multiple transmit antennas can be utilized to create a virtual an-
tenna with an increased number of receive channels. Depending on the antennas’
arrangement, the targets’ azimuth and/or elevation angles can be estimated.

� Transmitted signal shape
The exact composition of the transmitted waveform has a strong influence on the
radar’s performance. For example, a higher number of transmitted chirps increases
the frequency resolution while decreasing the maximum possible frame rate. The
waveform structure has to be selected in compliance with the targeted application.

� Sample frequency
The sampling frequency directly affects the range resolution and the maximum de-
tectable range of a system. However, the maximum sample frequency is limited by
the physical limitations of the utilized ADCs. Additionally, a higher frequency also
increases the raw data size and the processing load.

� Frame rate
A high frame rate is beneficial for many applications, especially in dynamic scenarios.
The maximum possible frame rate depends on the set measurement characteristics
(e.g., number of chirps/samples, data load), defining the measurement duration. The
measurement precision can be increased by expanding the measurement duration,
limiting the maximum frame rate.

� Transmission power
A radar sensor’s transmission power mainly affects the maximum achievable range.
However, the extension of the range by increasing the transmission power is only
possible to a limited extent. As stated in the radar equation, the received signal
power decreases with the fourth power of the distance.

44 3. Background

Figure 3.13: Radar raw data processing flow. The raw sample data is processed in order to
obtain a range-velocity-angle data cube.

� Interface
The interfaces of standalone automotive radar modules are often limited to auto-
motive buses (e.g., CAN or FlexRay). These sensor modules typically provide their
output data at high compression and abstraction levels. Radar sensors, capable
of outputting raw data, typically provide USB3 or Ethernet interfaces, enabling
sufficiently high data rates.

3.2.3 Radar Processing

The digital radar signal processing starts after the analog-to-digital conversion of each
receive channel’s IF signal. As seen in Figure 3.13, a digitized measurement sequence
results in a data cube of N samples, M chirps, and L channels. The received IF signal is
sampled and converted to digital for each measurement sequence. The digitized measure-
ment samples are transferred to the radar receive module. In this software module, the
samples are reshaped into a 3D matrix of N samples, M chirps, and L receive channels
(see Figure 3.13).

A 2D FFT (J- and K-point FFTs) over the samples and the measurement channels
results in L range-Doppler images, one image for each of the receive channels (see Fig-
ure 3.13). Each image has a dimension of J velocity bins and K range bins, determined
by the bins of the 2D FFT. A range-Doppler image displays the velocity and the range
of objects in the scene. A third FFT (I-point FFT) is then calculated to obtain the
range-angle-velocity data cube from the radar data with I×K×J points. Possible repre-
sentations of the range-angle-velocity data cube are J range-angle images with one image
for each velocity bin (see Figure 3.13). In this representation, every range-angle image has
a dimension of I ×K points.

The dimensions of the raw radar data cube are the samples per chirp N , the number
of chirps M , and the receive antennas L. The utilized data of a single radar measurement
DRadar,Raw depends on the data depth of the samples data depth in addition to the di-
mensions of the data cube, as stated in (3.18). A measurement utilizing N=2048 samples,
M=128 chirps, L=16 antennas, and a data depth of 16Bit results in a data utilization of
about 67.1MBit for a single measurement.

DRadar,Raw = N · M · L · data depth (3.18)

3. Background 45

3.3 Vision Cameras

This section provides an overview of vision cameras, a commonly deployed sensor type
in environmental perception systems. Since vision cameras are well-established in the
targeted research field, only a brief introduction to the basic principle is provided. In
addition, the most influential characteristics of the sensor type are presented.

3.3.1 Basic Principle

In contrast to ToF cameras, vision cameras work without a light-emitting element. They
utilize the scene’s reflections of ambient light (e.g., sunlight, artificial light) in order to
capture an intensity image of the environment. In general, a vision camera consists of an
imaging device (with an image sensor) and an optical lens, which projects light onto the
sensor. Each pixel of the image sensor is sensitive to visible light and outputs an intensity
value after each measurement. An electronic or a mechanical shutter is used to control the
exposure time of the camera. Due to the photoelectric effect, the incoming photons result
in a charge stored in each pixel. After the exposure, the resulting voltage is amplified and
digitized to an intensity value. The major parameters to control an image’s acquisition are
the exposure time, the amplification gain, and the lens aperture. These three parameters
can be adjusted during runtime in order to provide a well-exposed image comprising the
details of a scene.

3.3.2 Characteristics

The performance of vision cameras depends on a number of characteristics and parameters.
Some of the major impact factors are presented here.

� Sensor type
The majority of available image sensors are implemented using the charge-coupled
device (CCD) or the CMOS technology. CCD sensors provide a higher dynamic
range, while CMOS sensors can be manufactured at a lower cost and be operated at
lower power consumption.

� Sensor size
A larger sensor area is able to capture more light. This is an advantage in low-light
situations and allows lower exposure times, resulting in less motion blur. However, a
larger sensor is typically also more expensive and requires larger and heavier lenses.

� Resolution
An image sensor’s resolution defines the number of pixels in the output image. More
pixels result in a more fine-grained perception of the captured image and reveal more
details of the scene. However, a higher resolution also increases the amount of data
per image, which increases the transfer and the processing time.

� Optical lens
The focal length of the utilized lens specifies the camera’s field-of-view. The aperture
of a lens defines the amount of light that can get onto the sensor. A lens has to be
compatible with the optical size of the sensor. Since the projection of real-world

46 3. Background

lenses is never optimal, effects like distortion, vignetting, and chromatic aberration
occur.

� Frame rate
The frame rate of a camera defines the number of images captured per second. A
camera’s maximum frame rate is limited by the illumination time and the sensor’s
readout capabilities. Typical frame rates for vision cameras are 30FPS, 60FPS, and
120FPS.

� Grayscale vs. color
Color cameras typically use a pattern of red, green, and blue pixels on the sensor
array. The output image is then calculated by interpolation of the neighboring pixels.
Thus, the effective resolution of grayscale cameras is higher and favorable if color
information is not needed.

� Global vs. rolling shutter
Rolling shutter cameras do not read out all pixel values simultaneously, which can
lead to a skewed output image for dynamic scenarios. Global shutter cameras per-
form the exposure and the readout of all pixels at the exact same time, but require
more complex and expensive readout circuitry.

� Interface
Two commonly used interfaces for industrial vision cameras are USB and Ethernet.
USB3 cameras are well suitable for high-speed imaging but have a limited cable
length (around 5m). Gigabit Ethernet cameras enable higher cable lengths (up to
100m) but provide lower bandwidths.

A vision camera has to be selected according to the desired application. If a camera
is used on a mobile platform or shall be able to capture moving objects, a global shutter
is beneficial. A large sensor and a lens with a large aperture are favorable if low-light
situations are targeted. When used for real-time processing, a lower resolution and a
high-speed interface are favorable to minimize the introduced data load.

3.3.3 Video Camera Processing

A vision camera typically already provides an image stream, which can be directly uti-
lized for further processing. The data size Dvision,Raw of a vision camera’s provided 8Bit
image stream depends on the number of pixels pixel cnt and the data depth of each pixel
data depth, as seen in (3.19). A Full HD image stream (pixel cnt = 2.3Mpixels) with a
data depth of 8Bit for each of the three color channels (data depth = 24Bit) results in a
data size of 55.3MBit for a single image.

Dvision,Raw = pixel cnt · data depth (3.19)

While vision cameras traditionally utilize a data depth of 8Bit for each color channel,
modern cameras are often also able to provide 10 or 12Bit values for each pixel. Some
vision cameras also offer the ability to apply certain image compression steps at sensor-
level, significantly decreasing the camera’s transfer load.

Chapter 4

Design

This chapter provides a detailed overview of the environmental perception platform’s sys-
tem design. First, the requirements of the desired perception system are elaborated and
listed. Then, a system design is presented, able to meet these requirements. The un-
derlying structure and the methodologies of the contained subsystems are described in
detail.

4.1 Requirements

This section describes the design requirements of an environmental perception platform
capable of accomplishing the goals set in Chapter 2 of this thesis. The system’s main pur-
pose is to enable fast and easy-accessible research on environmental perception systems
and their underlying concepts. The perception platform shall include multiple hetero-
geneous perception sensors, expected to be deployed in future automated vehicles and
autonomous robots.

To enable easy integration of new software modules, the system shall be based on a
modular structure. The base perception system shall perform sensor-specific communi-
cation, data alignment, low-level data handling, and fundamental processing steps. The
system’s modules shall contain adjustable parameters (e.g., for the sensor configuration)
and provide interfaces to request the dynamic adaption of these parameters during run-
time. The well-structured output data streams of these modules shall be made available
to succeeding subsystems for further processing. Certain common perception tasks (e.g.,
pedestrian detection) shall be added to the system as use cases in order to show the ca-
pabilities and the potential of the environmental perception platform. Additionally, the
system shall allow an independent and mobile operation and provide the ability to record
datasets for later evaluation.

An overview of the system architecture utilizing multiple environmental perception
sensors is shown in Figure 4.1. In order to enable a modular structure, the architecture
is split into two main parts: the base perception subsystem and multiple use-case subsys-
tems. The base perception system handles the low-level interaction with the perception
sensors. Multiple use cases utilize the base perception system’s output to perform various
perception tasks.

49

50 4. Design

Figure 4.1: Proposed overall system architecture. The architecture is divided into the base
perception system and multiple use-case subsystems.

4.1.1 Base Perception System

The base perception system is responsible for the low-level communication with the sen-
sors, the early-stage data handling, and the pre-processing (see Figure 4.1). The base
perception system’s output, a number of temporally and spatially aligned data streams at
different abstraction levels, can then be utilized by various use cases for application-specific
processing. The following requirements for the design of the base perception system were
elaborated.

� Sensor selection
The selected sensors shall be able to provide raw measurement data to the system
and shall offer the ability to adjust their configuration parameters.

� Spatial data alignment
The relative alignment between the individual sensor frames has to be determined
and considered to combine multiple sensor data streams into a common space.

� Temporal data alignment
The acquisition times of the individual sensor measurements shall be included in the
data streams in order to allow the temporal alignment of the different measurements.

� Sensor data processing
The base perception system’s data processing tasks are divided into a low-level layer
and a pre-processing layer

– Low-level sensor interface
The receive modules shall handle the low-level communication with the percep-
tion sensors. This includes the reception of the raw sensor data as well as the
configuration of the sensors.

– Sensor pre-processing
The pre-processing modules shall output processed versions of the raw sensor
data at different abstraction levels. The modules’ workload also includes error
compensations, incorporation of calibration data, and reshaping/restructuring
the data.

4. Design 51

� System parameters
Since the system parameters (sensor configurations, module parameters) have a
strong influence on the perception performance, they shall be customizable. This
enables a custom selection of the parameters according to the targeted environment.

4.1.2 Use Cases

Multiple common perception tasks shall be implemented as use cases to demonstrate the
capabilities of the environmental perception platform. The aligned and structured data
streams from the base perception system shall be used as input streams of the use-case
subsystems. The data streams shall be made available at multiple abstraction levels to
enable the evaluation of various sensor fusion concepts for each use case.

The use-case subsystems are, in general, composed of fuse and process modules. A
fusion module utilizes a subset of the base perception system’s data streams and combines
them into an application-specific representation. If a desired input data stream is not
directly available, additional pre-processing may be required by the respective use case.
After the sensor data is fused, the use case’s application-specific perception task is per-
formed. The use case’s output shall then be made available to the system for visualization
or external systems and modules for further processing (e.g., path-planning).

The following use cases shall be implemented in order to demonstrate the capabilities
of the base perception system architecture:

� Context-aware parameter adaption
The use case shall dynamically adapt the system parameters during runtime. The
current context shall be utilized to determine new parameter values and provide a
satisfactory system performance in changing environments.

� Obstacle detection
This use case shall detect obstacles (i.e., occupied space) in front of the perception
platform. The perception task shall output the information in a visualizable format
for succeeding modules.

� Environment mapping
The data from the range sensors shall be utilized in order to build a 3D map of the
environment while the platform moves through a scene.

� Pedestrian detection
Multiple perception sensors shall be combined at different abstraction levels in order
to perform an enhanced pedestrian detection.

� Data visualization
This use case shall visualize the data streams provided by the base perception system
or by other use cases. The use case shall implement different visualization approaches
of heterogeneous sensor data and enable a direct interpretation of the perception
output.

52 4. Design

Figure 4.2: Main building blocks of the base perception system.

4.2 Base Perception System

The base perception subsystem is in charge of the low-level data handling and the com-
munication with the individual perception sensors. The subsystem receives the raw data
directly from the perception sensors, pre-processes it, and outputs multiple data streams
at different abstraction levels. Additionally, the data streams are extended with tem-
poral and spatial information of the measurement. The output data streams are then
made available to the remaining system and can be utilized by further subsystems (e.g.,
subsequent use cases).

The base perception system’s overall design is depicted in Figure 4.2. The sensors
are connected to the base perception system via individual low-level receive modules,
which are in charge of receiving the raw sensor data and setting the sensor configuration.
Early processing of the sensor data (e.g., compression, error correction) is performed in
the pre-processing modules, which output multiple versions of the sensor data at differ-
ent abstraction levels. The temporal alignment module is in charge of triggering the data
acquisition and assigning measurement timestamps to the data streams. The spatial align-
ment module keeps track of the environmental perception platform’s frame positions over
time (e.g., sensor measurement frame) and can be used to obtain the platform’s position
with respect to a global reference point.

4.2.1 Sensor Selection

One of the perception sensors’ requirements is their ability to provide raw sensor data.
Another requirement is the usage of sensors, which are expected to be deployed in future
automated vehicles. Many commercially available sensor modules targeting the automotive
industry are closed-source and only available as isolated sensor modules. Since this thesis’s
perception sensors are required to be openly available and provide low-level access, the
considered sensors mainly consisted of development kits and evaluation boards. These
sensors are neither-automotive qualified nor weather-resistant but rely on similar principles
as commercially available modules. Thus, the results obtained with these sensors remain
valid for all sensors of similar types, regardless of their certification level.

4. Design 53

(a) ToF camera. (b) Radar development kit.

(c) Vision camera.

Figure 4.3: The selected perception sensors of the environmental perception platform.

Since most research vehicles for automated driving are equipped with vision cameras,
laser scanners, and radar sensors, similar sensors were desired for this work’s platform
as well. Due to the cooperation with Infineon Austria and the access to know-how and
documentation of their semiconductor chips, Infineon-based perception sensors were pri-
oritized during the selection process. A radar development kit based on Infineon’s radar
semiconductor chips was selected as the platform’s radar sensor. A ToF camera was chosen
as an infrared-based range sensor, acting as a substitute to a lidar sensor which utilizes
a strongly related technology and provides a comparable output (i.e., point clouds). In
addition, an industrial vision camera was selected, providing low-level access and offering
numerous customization options. Pictures of the utilized perception sensors are depicted
in Figure 4.3. This section presents details of the selected perception sensors and briefly
introduces the system’s additionally utilized sensors.

Time-of-Flight Camera

As ToF camera, the CamBoard pico monstar1 was selected, utilizing the indirect ToF prin-
ciple to obtain range information of the environment. Since the obtained range data from
indirect ToF sensors (e.g., ToF cameras) and direct ToF sensors (e.g., lidar) is comparable,

1CamBoard pico monstar: a 3D imaging development kit (https://pmdtec.com/picofamily/).

https://pmdtec.com/picofamily/

54 4. Design

they can be easily exchanged in existing sensor setups. Research on data processing based
on the data from one of these two sensor types can often be generalized to be valid for
both types. A picture of a CamBoard pico monstar ToF camera is shown in Figure 4.3a.

The CamBoard pico monstar is a 3D depth-sensing development kit offered by PMD
Technologies AG, a German semiconductor company focusing on 3D imaging. PMD Tech-
nologies AG is cooperating with Infineon Technologies AG in order to develop and produce
highly integrated 3D ToF image sensors. The first generation of the cooperatively devel-
oped 3D image sensors was released in 2013 [89]. Since then, the sensors have continuously
been improved, and multiple generations have been released. The offered sensor portfolio
includes products targeting the consumer market and products targeting the automotive
market.

The selected ToF camera provides frame rates of up to 60FPS and a resolution of
352×287 pixels. With the deployed wide-angle lens, the camera’s field-of-view covers an
area of 100◦×85◦. The ToF camera comes with a USB3 interface and the software library
royale, which handles the communication with the camera. Using the library, the camera
configuration (e.g., illumination time, frame rate) can be adjusted during runtime. Addi-
tionally, certain pre-processing steps (e.g., error correction) can be performed before the
data is provided to the user software. The CamBoard pico monstar can be configured to
perform measurements via an externally applied trigger signal.

In the utilized configuration, the camera provides an array of points to the user soft-
ware after an eight-phase measurement was performed. The array contains a (x/y/z)
3D position for each point, as well as an intensity value, a confidence value, and a noise
value. The calculation of that data from the raw phase measurements is performed by the
software library (for details see Chapter 3). The library provides various customization
options in order to control the behavior of the early processing steps, including flags to
en/disable certain processing steps and processing parameters (e.g., thresholds).

In [90], we evaluated the selected ToF camera’s feasibility for parking assistance (see
in Chapter 8, Publication 5). An example of a successful deployment of a ToF camera
to perform parking assistance is described in [91]. The authors utilize the ToF camera’s
intensity image as well as its distance image in order to perform parking assistance. Our
work, published in [92], presents an approach to perform localization based on the 3D
data from ToF cameras and provides an overview of multiple applications utilizing this
technology (see Chapter 8, Publication 3).

Radar Sensor

The RadarLog2 development kit was selected as the radar sensor of this work’s platform.
The development kit is equipped with a 77GHz radio frequency (RF) frontend, capable of
performing fast-chirped FMCW measurements. The RF frontend deploys four transmit
and 16 receive antennas, which provide a horizontal beamwidth of 76.5° and a vertical
beamwidth of 12.8°. The RadarLog houses an FPGA and provides a USB3 interface to
configure the sensor and to receive the raw data. Additionally, the kit provides a trigger
input to trigger measurements via an external signal. Figure 4.3b shows a picture of the
radar development kit.

2RadarLog: a platform for microwave radar data capturing and logging (http://www.inras.at).

http://www.inras.at

4. Design 55

In contrast to the isolated radar sensor modules offered by the automotive industry,
the utilized development kit is able to provide low-level data (i.e., sample data). The
transmitted waveform is highly configurable, including parameters like the number of
chirps, signal timings, or the signal’s bandwidth. Parameters of the analog processing
chain can also be adjusted (e.g., sample rate, number of active transmit/receive channels).
The sampled data is buffered in the FPGA, extended with an internal timestamp, and
transmitted via USB for further processing.

A successful application of a comparable radar development kit mounted on a vehicle
is shown in [93]. The authors mounted the radar sensor on a vehicle in order to perform
measurements and obtain real-world data. In the presented approach, the radar data is
not fused with perception data from other sensors. Another application of a similar radar
kit uses machine learning to create an occupancy grid from the radar data [63].

Vision Camera

As the platform’s vision camera, the Basler ace 2 3 vision camera was chosen, combined
with a 4mm wide-angle lens4. The camera houses a Sony IMX392 CMOS color image
sensor (1/2.3”) with a resolution of 2.3MP (1920×1200 pixels). Together with the 4mm
lens, the 1/2.3” image sensor provides an approximate field-of-view of 95°(horizontal) and
80°(vertical). The camera comes with a USB3 interface and an additional GPIO interface,
including an input line, which can be used to trigger the camera externally. The Basler ace
camera can operate at a frame rate of up to 160FPS and uses a global shutter mechanism
for image acquisitions. Figure 4.3c shows a picture of the vision camera setup (i.e., camera
and lens with an applied heat sink).

The Basler ace camera directly provides a Full HD image stream with three 8Bit color
channels. Since the vision camera captures a similar field-of-view as the ToF camera, it
provides complementary data of the same scene section. The pylon camera software suite
provides an application programming interface (API) to the camera. This interface can be
used to configure and control the camera and to receive the raw image data. The camera
allows the dynamic adjustment of the shutter speed and the pixel amplification gain to
expose the image correctly. The utilized focus and aperture settings of the deployed lens
have to be manually adjusted to the targeted environment.

Additional Sensors

The SparkFun 9DoF Razor IMU is used to keep track of the platform’s movement. This
sensor comes with a three-axis accelerometer, gyroscope, and magnetometer. The sensor
can be used to obtain the relative positional change of the platform over a small period
of time. The IMU can also be utilized to calculate an estimation of its orientation with
respect to the earth’s gravitation and magnetic field.

In addition, the analog input of a microcontroller is used to keep track of the platform’s
battery level. If the battery is low, the system initiates a controlled shutdown to prevent
data loss and avoid deep discharging of the battery.

3Basler ace 2, a2A1920-160ucBAS (https://www.baslerweb.com).
4Basler Lens C125-0418-5M F1.8 f4mm - Lenses (https://www.baslerweb.com).

https://www.baslerweb.com
https://www.baslerweb.com

56 4. Design

Figure 4.4: Incorporation of the spatial alignment module in the base perception system.

4.2.2 Spatial Alignment

The exact knowledge of the spatial relations between the individual measurements is
mandatory to fuse the data into a common representation. Each of the platform’s differ-
ent perception sensors captures data in its own coordinate space, the sensor’s individual
frame. In order to fuse the data within a common coordinate space, the relative alignment
between the single sensors’ frames has to be known. The spatial relationships between dif-
ferent frames are represented as coordinate frame transformations. Static transformations
remain constant during operation (e.g., between rigidly mounted sensors), while dynamic
transformations change during runtime.

The base perception system’s spatial alignment module handles the transformations
between the single sensors’ frames. Figure 4.4 shows an overview of the base percep-
tion subsystem with emphasis on the spatial alignment module. The module keeps track
of the transformations between all coordinate systems of the subsystem. The temporal
course of these transformations is included in the subsystem’s output to enable the spa-
tial and temporal alignment of the output data streams by consecutive subsystems. Each
transformation update is assigned with a timestamp, denoting the validity period of the
corresponding transformation.

The transformations between the single coordinate frames are expressed as rigid trans-
formations. Rigid transformations are transformations, which do not change the distances
between any transformed point pair A point, given in coordinate system A, can be trans-
ferred into coordinate system B by the multiplication with the corresponding transforma-
tion matrix TB

A , as seen in (4.1). The transformation matrix consists of rotation compo-
nents and a translation components and can be used to transform points from coordinate
system A to B. The individual components of the transformation matrix are presented in
(4.2). And as seen in the equation, homogeneous coordinates are used in order to apply
the transformation with a single matrix multiplication.

p
(B)

= T
B

A · p(A)
(4.1)

4. Design 57

Figure 4.5: Transformations between the single sensors’ frames. One ToF
camera acts as the reference frame.




px
py
pz
1




(B)

=




r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1




B

A

·




px
py
pz
1




(A)

(4.2)

The spatial alignment module manages a transformation tree, holding the relative
transformations between the tree’s connected coordinate frames. Figure 4.5 shows the
transformation tree for the different sensor frames of this work’s environmental perception
platform. The coordinate frames include the individual sensors’ measurement frames (e.g.,
radar frame), as well as certain reference frames of the platform (e.g., platform frame). As
seen in the figure, one ToF camera’s measurement frame (e.g., ToF 1 frame) acts as the
reference frame for all other sensors’ frames. Additionally, there exists a global root frame
(world frame), defining a reference point for the entire tree. The global reference frame
may be set to the ground beneath the platform or to a fixed point within the system’s
local environment if the platform’s positional changes shall be considered.

The transformations between the single sensors’ frames and the platform’s reference
frame are assumed to be static since the sensors are rigidly attached to the platform.
These static transformations are determined during an offline calibration procedure and
are statically defined in the system’s spatial alignment module (via system parameters).
The dynamic transformation is continuously re-calculated during runtime and updated in
the transformation tree. The system’s modules can query the time-accurate transformation
between any frames of the transformation tree during runtime.

The coarse transformations between the sensors can be determined manually by mea-
suring the translations and the rotations between the respective sensor pairs. However,
more accurate transformations are required in order to meet the requirements of most
perception applications. Thus, individual calibration procedures have to be conducted for
the connected sensor pairs within the transformation tree.

58 4. Design

The following static and dynamic transformations are required to build the entire
transformation tree and to provide the spatial alignment between arbitrary frames during
runtime. The calibration procedures to obtain these transformations are presented in the
upcoming subsections.

� Static transformations
The static transformations describe the spatial alignment of the system’s coordinate
frames, which do not change over time.

– ToF 1→ToF2
The transformation between the reference ToF camera’s frame and a second
ToF camera’s frame, rigidly mounted on the perception platform.

– ToF 1→ radar
The transformation between the reference ToF camera’s frame and the radar
sensor’s frame.

– ToF 1→ vision camera
The transformation between the reference ToF camera’s frame and the vision
camera’s frame.

– Platform base→ToF1
This transformation describes the spatial alignment between a reference frame
on the platform (e.g., a certain point) and the reference ToF camera.

� Dynamic transformation
The system’s only dynamic transformation describes the spatial alignment between
two coordinate frames, which may be subject to change during operation.

– World frame→platform base
The transformation between a stationary global reference frame and the plat-
form’s reference frame.

Time-of-Flight to Time-of-Flight

The ToF cameras’ point clouds are utilized to obtain the relative transformation between
the corresponding ToF cameras’ frames. This method requires the two point clouds to
contain a common region (i.e., an overlapping field-of-view). The points within this over-
lapping area are aligned to obtain the transformation between the two point clouds. An
iterative approach is used, which performs a stepwise improvement, starting from an ini-
tial estimation. A popular choice for the initial transformation is a coarse estimation of
the transformation using the sensors’ mounting positions.

The importance of correctly estimating the transformation between the ToF cameras is
shown in Figure 4.6. The alignment of the two point clouds before the calibration method
was applied is shown in Figure 4.6a. The utilized transformations of the point clouds
are based on a coarse initial estimation. Figure 4.6b depicts the two point clouds after
the application of the calibration method to estimate the transformation. As seen by the
correctly aligned point clouds, a precise estimation of the transformation was successfully
obtained.

4. Design 59

(a) Unaligned point clouds. (b) Aligned point clouds.

Figure 4.6: Alignment of two ToF point clouds, before and after the calibration.

Since the sensors are mounted rigidly on the platform, it is valid to assume that the
transformation stays valid during operation. The calibration has to be performed each
time the sensors’ alignment has changed (e.g., manual re-arrangement or re-positioning).
The calibration task estimates the spatial transformation between the two ToF cameras
based on an initial estimation. No dedicated calibration targets are required. The only
requirement is that there are enough points present in the acquired ToF point clouds’
overlapping regions. For the correct alignment (also called registration) of multiple ToF
point clouds, a customized point cloud registration technique is used. The developed
alignment algorithm is capable of efficiently and robustly determining an estimation of
the transformation. The point cloud alignment process is illustrated in Figure 4.7. As
seen in the figure, the algorithm enters an iterative phase after initial pre-processing of
the input data streams.

The algorithm is triggered when two point clouds with a similar measurement time are
available. Depending on the number of valid points within the point clouds’ overlapping
region, downsampling is performed. Reducing the number of points speeds up the algo-
rithm and decreases the chance of false alignment caused by small structures. The coarse
initial alignment estimation is utilized to extract the overlapping point cloud regions for
further processing. The iterative portion of the algorithm starts with the initial guess for
the transformation. Next, the point clouds’ fitness is evaluated, a measure for the distance
between corresponding points of both point clouds. If the fitness level is within a certain
range, the iterative closest point (ICP) algorithm [94] is used to improve the alignment
by re-calculating the transformation matrix. If the fitness level is very low, indicating a
wrong alignment, the random sample consensus (RANSAC) global registration method is
applied to obtain a new estimation of the initial alignment, which is then fine-tuned using
the ICP algorithm. The process continues until the fitness reaches the desired threshold
or the maximum number of iterations is reached. The determined transformation matrix
is then saved and can be utilized as an input parameter of the base perception system’s
spatial alignment module.

60 4. Design

Figure 4.7: Flow chart of the ToF to ToF calibration procedure.

Time-of-Flight to Radar

The radar sensor provides the range-angle information in a top-down representation (x/z
coordinates). To correctly align the radar 2D information with the ToF 3D information,
the relative 3D alignment between these two frames has to be known. Depending on the
desired precision, different approaches can be utilized to obtain the transformation.

Due to the limited absolute range resolution of the radar sensor, a manual estimation of
the alignment can be sufficient for a number of applications. The translation between the
frames can be approximately determined by utilizing the distance between the two sensors’
mounting positions. While the pitch and yaw angle can be estimated from the mounting
position, the roll angle offset can be determined when visualizing the data. Although this
approach is sufficient in many cases (especially at low ranges), it is typically incapable of
providing a highly accurate transformation.

Thus, a semi-automatic approach is introduced, which determines the full 3D position
of the radar frame with respect to the ToF frame. The transformation is obtained using
the principle of least squares fitting for 3D point sets, as published in [95]. A version of that
algorithm is utilized for this work, requiring a minimum number of three corresponding
points

A rigid transformation between the two coordinate systems can be obtained by utilizing
multiple corresponding points in the different coordinate systems. Two sets of points P
and Q contain corresponding points, expressed in the two different coordinate systems A
and B, see (4.3).

P =
[
p0 p1 p2 · · · pN

](A)
(4.3)

Q =
[
q0 q1 q2 · · · qN

](B)

4. Design 61

Figure 4.8: Placement of artificial radar targets within the sensors’ common field-of-view.

Thus, a transformation TB
A is desired which fulfills the relationship stated in (4.4).

qi = T
B

A · pi (4.4)

Due to real-world effects like noise, a transformation T shall be determined, minimizing
the error, as stated in (4.5). Similar to the approach published in [95], a singular value
decomposition (SVD)-based algorithm is used to obtain an estimate of this transformation
matrix.

T = argmin
T

N∑

i=0

∥T · pi − qi∥2 (4.5)

In order to obtain point correspondences between ToF and radar points, an artificial
target is utilized (similar to the targets presented in [96] and [97]). The target consists of
a radar corner-cube with a white, highly reflective, and triangular-shaped surface, which
can be distinctly detected by ToF and radar. Figure 4.8 shows an illustration of the radar
target and how the targets are placed into the common field-of-view of the ToF camera
and the radar sensor. The ToF camera determines the center of the triangle, while the
radar sensor determines the center of the radar reflector. The radar sensor’s detected
target distance has to be corrected in order to obtain the corresponding distance at the
surface of the target. The artificial target has to be placed in an empty space in front of
the platform in order to perform an unambiguous calibration.

Since the radar sensor only provides the (x/z) coordinates of the points, the corre-
sponding measurement points shall be acquired at a y-position of zero. This can be done
by varying the artificial target’s position at a fixed radar range and angle. The maximum
value of the target’s response is measured at the peak of the radar lobe, occurring at zero
y-position. Figure 4.9 illustrates the search space for different point correspondences in
the 3D space. The point correspondences are evaluated using (4.5).

Since a manual variation of the target on the radar sensor’s y-axis is a time-consuming
task, a software-supported method is used. For this approach, the target’s position is

62 4. Design

Figure 4.9: Point correspondences between 2D radar data and 3D ToF data.

altered around multiple desired corresponding points. The software then automatically
detects the maximum reflection power at each position and extracts the associated corre-
spondence point. The set of corresponding points, determined with this method, is then
used to estimate the transformation matrix.

Time-of-Flight to Vision Camera

In order to align the ToF camera and the vision camera, both cameras have to be in-
trinsically calibrated first. The intrinsic calibration reveals the camera matrix and the
distortion coefficients of the camera setup for the pinhole camera model. After applying
the calibration parameters, the model can be utilized to obtain the pixel positions from
the corresponding 3D points in space.

A checkerboard pattern is deployed to determine the intrinsic calibration parameters of
both cameras. For that purpose, the checkerboard pattern is placed in the scene at different
poses (altering position, distance, and skew). The OpenCV library [98] is utilized to find
the checkerboard corners in all images, which are then used to determine the camera’s
intrinsic parameters. The OpenCV library makes use of the methods presented in [99]
and [100]. Figure 4.10a shows an example image of the checkerboard pattern used for
the calibration of the camera. The intrinsic calibration parameters can also be used to
undistort the images from the camera. Figure 4.10b shows the image’s undistorted version
from the vision camera after the distortion was corrected.

In order to obtain the relative real-world poses between the two cameras, an extrinsic
calibration is utilized. Cameras with known intrinsic parameters can determine the posi-
tion and pose of the checkerboard (with a given pattern size) in the camera’s coordinate
system. The checkerboard is placed in the common field-of-view and captured by both
cameras. Figure 4.11 shows two pictures of a scene containing the checkerboard pattern,
captured with the vision camera and the ToF camera (intensity image). Using this method,
the transformation TCB

ToF between the ToF camera and the checkerboard can be obtained,
as well as the transformation between the vision camera and the checkerboard TCB

Cam. Fig-

4. Design 63

(a) Input image. (b) Undistorted image.

Figure 4.10: Calibration images from the vision camera, before and after the calibration.

(a) Vision camera image. (b) ToF intensity image.

Figure 4.11: ToF and vision camera images, utilized to estimate their relative alignment.

ure 4.12 shows an illustration of these transformations. The overall transformation TCam
ToF is

calculated from the two transformations as stated in (4.6). The transformation is deter-
mined for multiple positions of the checkerboard pattern (>10) and averaged in order to
reduce the uncertainties introduced by the single measurements.

T
Cam

ToF = T
CB

ToF ·
(
T

CB

Cam

)−1

(4.6)

World Frame to Platform Base

The transformation between the global world frame (location fixed) and the platform
dynamically changes if the platform is moved during operation. Thus, this transformation
has to be continuously determined and updated. The estimated transformation can be
utilized for multiple perception tasks, like local positioning or to create a map of the local
environment.

An extended Kalman filter (EKF) with input data from multiple sensors is utilized
to track the platform’s movement. The approach is based on the work published by
the authors of [101]. The EKF utilizes several sensor inputs to calculate the transfor-
mation between the world frame and the platform’s frame. The filter incorporates the
measurement (un)certainties as well as a dynamic model in order to estimate the current
transformation. The inputs to the EKF are the pose change (position and orientation)

64 4. Design

Figure 4.12: Transformations between the sensors’ frames and the checker-
board pattern.

Figure 4.13: Pose estimation process between the world frame and the platform’s base frame.

calculated from consecutive ToF point clouds, as well as the linear acceleration and the
angular velocity from the IMU sensor (see Figure 4.13).

Since the IMU is operated at a higher measurement frequency (>100Hz), the EKF is
frequently updated using the IMU measurements. However, since the IMU measurements
have to be integrated to obtain a position, they introduce a significant error over time
(measurement drift). The pose change obtained from two consecutive ToF measurements
is more precise but is computationally more expensive and provided at lower rates. Thus,
both sensors are combined in order to generate a smooth and accurate estimation of the
pose between the platform and the fixed-location world frame.

The pose change between two consecutive ToF point clouds is determined using the
ICP algorithm, similar to described in the approach for the ToF to ToF alignment. How-
ever, instead of point clouds from different cameras, the point clouds are obtained from
the same camera at different acquisition times. The obtained pose change between the

two ToF measurements (at time t0 and t1) is expressed by the transformation TToF
ToF

(t1→t0).
This transformation is then utilized to update the platform’s pose in the global world
frame, expressed by Tw

pl
(t1). Figure 4.14 shows relationships between the system’s trans-

formations for both time points. As seen in (4.7), the desired transformation Tw
pl
(t1) can

be calculated using the platform’s previous pose, the obtained ToF pose change, and the
static transformation Tpl

ToF between the ToF camera and the platform’s base frame.

4. Design 65

Figure 4.14: Transformation of the ToF camera’s pose change projected
into the world frame.

Tw
pl
(t1) ·TToF

pl
(t1)

= Tw
pl
(t0) ·Tpl

ToF

(t0) ·TToF
ToF

(t1→t0)
(4.7)

Tw
pl
(t1) = Tw

pl
(t0) ·Tpl

ToF

(t0) ·TToF
ToF

(t1→t0) ·
(
Tpl

ToF

(t1)
)−1

The ICP algorithm to determine the ToF pose change uses the Kalman filter’s cur-
rent pose estimate as its initial transformation. Starting the algorithm from this pose
estimation increases the speed of the ICP algorithm and prevents misalignment. Since
the obtained ToF pose changes also contain inaccuracies, the absolute pose estimation
using these relative measurements will drift over time. If necessary, the drift can be com-
pensated using additional methods (e.g., by keeping track of a 3D map) or sensors (e.g.,
GNSS). However, a valid estimation of the relative transformation within a limited period
is sufficient for many applications (e.g., local mapping).

4.2.3 Temporal Alignment

In order to allow a feasible combination of measurements from multiple sensors, the tem-
poral alignment of the single data streams has to be known and available to the fusion
module(s). For that purpose, the individual data streams are extended with an accurate
estimation of the respective measurement’s acquisition time. This is achieved by simul-
taneously triggering the perception sensors, estimating the common trigger times, and
assigning the timestamps to the corresponding data streams when they are received by
the system.

66 4. Design

Figure 4.15: Incorporation of the temporal alignment module in the base perception system.
Adapted from [102].

Synchronized Data Acquisition

Simultaneous data acquisition is advantageous for the low-level fusion of sensor measure-
ments from multiple sensors. Simultaneously acquired measurements are not affected by
the sensor platform’s movements and dynamic objects in the scene between the individual
sensors’ acquisitions. The scene objects (also dynamic) appear in the same position for
each sensor. The proposed platform is able to simultaneously acquire measurements by
triggering the utilized perception sensors via an external signal.

The synchronization of the individual measurements is achieved by generating trigger
signals for each perception sensor via a real-time capable microcontroller. The base percep-
tion system’s temporal alignment module configures the trigger activities, communicates
with the microcontroller, estimates the measurement timestamps, and forwards the deter-
mined timestamps to the respective reception modules. Figure 4.15 shows an overview of
the base perception system, emphasizing the modules involved in the temporal alignment
process.

Radar, ToF, and vision measurements can be simultaneously performed without any
interferences or disturbances. However, the simultaneous acquisition of measurements
from multiple sensors utilizing the same principle can lead to disruptions. This is the
case for the multiple ToF cameras deployed in the proposed perception platform. Even
though the cameras implement a technique called spread spectrum illumination in order
to counteract the interference, occasional disturbances were observed. In spread spectrum
illumination, the cameras vary the utilized modulation frequency during the measurement
to prevent disruption from other ToF cameras working at the same frequency. However,
if the modulation frequencies are in unfavorable compositions, disruptions can still occur.

A sequential acquisition of the full ToF measurements would introduce a significant
delay between the single data acquisitions, too high to be neglected. Thus, a nested
trigger mode for the ToF cameras is introduced, enabling an almost parallel measurement
acquisition without the drawback of possible interferences. The ToF cameras are triggered
sequentially with small delays (duration of a single illumination phase) to avoid possible

4. Design 67

Figure 4.16: Nested triggering of multiple ToF cameras (illumination
intensity over time plot). The trigger signals of the ToF cameras are
slightly delayed in order to enable an almost parallel mode.

interferences and allow an almost parallel operation. Figure 4.16 shows the temporal course
of two ToF cameras’ measurements, acquired in nested trigger mode. The readout phases
of the first ToF camera are utilized to perform the second ToF camera’s illuminations and
vice versa. The introduced delay between the measurements (<2ms) can be neglected
for the majority of applications. The radar and vision measurements are triggered at the
same time as the first ToF camera.

Timestamp Estimation

Timestamping of individual data streams is crucial in order to enable time-accurate han-
dling of multiple measurements acquired at different times. Figure 4.17 shows the indi-
vidual delays added to the data streams during the different stages of a triggered data
acquisition. After a perception sensor is triggered via an external signal, a measurement
is acquired and transferred to the base perception system for further processing. As seen
in the figure, the measurement delay includes the sensor-specific measurement duration,
the raw data transfer delay, and the reception delay. Pure software timestamping assigns
a software timestamp tsw to the individual data streams, based on the time of reception
by the processing system. The delays included in the software timestamp include non-
deterministic components (e.g., scheduling or communication). Since these delays cannot
be robustly compensated, software timestamps are often not able to meet the requirements
of time-critical applications.

This work’s approach utilizes a novel method, which enables an accurate estimation
of the exact measurement timestamp t̂meas, based on the hybrid software timestamp thsw.
One of our publications [102] presents the details of the hybrid timestamping approach and
is included in Chapter 8 of this thesis (Publication 9). In the presented approach, an ex-
ternal microcontroller sends a low-latency notification message to the trigger module, each
time a trigger signal is generated. The system then estimates the measurement time based
on the reception time of the notification message. With the help of sequence numbers, the
estimated measurement time is then assigned to the raw data streams. As seen in Fig-
ure 4.17, the short delay included in the trigger notification message can be estimated with
adequate precision. All output data streams originating from the corresponding trigger
event are then extended with the estimated measurement timestamp.

68 4. Design

Figure 4.17: Sequence chart of a triggered data acquisition. The chart shows how
a trigger notification message is utilized to timestamp the received measurement
data. Obtained, with changes from [102].

4.2.4 Sensor Data Processing I: Low-Level Sensor Interface

Each perception sensor’s receive module is in charge of receiving the associated sensor’s
output data and handling the sensor’s configuration. The receive modules perform a
sensor-specific re-structuring of the data in order to provide organized data streams to
succeeding modules. Each receive module outputs a measurement data stream and one or
multiple metadata streams, represented as standardized messages. These output streams
are available for further processing in other modules of the base perception system and
other subsystems. The two types of data streams provided by the receive modules are
composed of multiple fields (e.g., data, timestamp).

� Measurement data stream
The fields typically included in the measurement data stream are listed below.

– Sensor output data
The sensor output data is received from the sensor (e.g., sample points) and
highly depends on its configuration. Certain data manipulation steps may have
already been applied by the sensor’s hardware or by the utilized receive library.

– Sensor frame
The sensor frame identifier defines the coordinate system in which the measure-
ment data was acquired (e.g., radar frame). This identifier is defined individu-
ally for each perception sensor.

4. Design 69

– Timestamp
The timestamp field describes the estimated measurement time of the received
measurement data. The estimated timestamp is made available by the temporal
alignment module. The receive module adds the timestamp to the correspond-
ing measurement data stream.

� Metadata stream
The fields typically included in the metadata stream are listed below.

– Metadata
The metadata contains different types of supportive information for the mea-
surement data (e.g., module parameters or calibration values). Since these
parameters add expressiveness to the provided measurement data, the knowl-
edge of this additional information can be highly beneficial for later processing
steps.

– Sensor frame
The sensor frame field consists of an identifier, defining the corresponding mea-
surement’s coordinate frame (e.g., radar frame).

– Timestamp
The timestamp defines the acquisition time of the metadata stream’s corre-
sponding measurement. This field is crucial for the unambiguous assignment
of a metadata stream to the corresponding measurement stream.

The messages are made available to the pre-processing modules and upcoming sub-
systems (e.g., use cases). Subsequent processing modules can make use of the messages’
timestamps in order to synchronize the metadata and measurement data streams. Up-
coming modules can utilize the metadata streams to perform enhanced processing or as
supportive information to optimize system parameters (e.g., sensor configuration param-
eters). The low-level interface, the shape, and the structure of the provided sensor data
vary significantly for the different sensor types. Hence, the measurement data and meta-
data streams provided by the receive modules are highly sensor-dependent. Figure 4.18
shows the simplified composition of the output messages provided by the sensors’ receive
modules.

Time-of-Flight

The ToF camera’s receive module outputs a measurement data stream and two metadata
streams. The ToF camera provides the raw measurement data via its sensor interface.
The reception library can be configured to perform a number of error correction steps and
filtering steps to the raw data before it is handed over to the user program. Additionally,
the library can utilize the camera and lens parameters to calculate the point cloud from
the raw data efficiently. The provided point cloud contains entries for each point’s (x/y/z)
position, intensity, noise, and confidence. This point cloud is converted into a standardized
message, also containing the corresponding ToF camera’s coordinate frame identifier and
the estimated measurement timestamp. The ToF receive module’s parameters, relevant for
further processing, are included in a metadata message and made available to succeeding

70 4. Design

Figure 4.18: Output data streams from the perception sensors’ receive modules.

modules (e.g., illumination time, processing flags). A second metadata stream contains
information on the camera/lens setup. This includes the intrinsic parameters determined
during an earlier calibration procedure.

Radar

The radar sensor’s receive module outputs a measurement data stream and one metadata
stream. The array of sample points for each receive channel is re-structured and converted
to a one-dimensional array. The measurement data stream consists of this raw data array,
the radar sensor’s frame identifier, and the estimated measurement timestamp. The radar
receive module’s active parameters, relevant for further processing, are packed into a
metadata message and made available to succeeding modules.

Vision Camera

The vision camera’s receive module outputs a measurement data stream and two metadata
streams. The camera provides an uncompressed Full HD color image of the scene. The
measurement data stream contains this image, the camera’s frame identifier, and the
estimated measurement timestamp. One metadata stream contains a subset of the receive
module’s parameters as supportive information for succeeding processing tasks. The other
stream consists of metadata of the utilized camera/lens setup (e.g., intrinsic parameters).

4.2.5 Sensor Data Processing II: Sensor Pre-processing

The receive modules’ output messages are utilized by the pre-processing modules, which
re-structure and process the data streams. Each pre-processing module performs a cus-
tomizable, sensor-dependent amount of manipulation steps and outputs multiple data
streams at different abstraction levels. Early pre-processing of the data can be beneficial

4. Design 71

since it lowers the communication load between the base perception system and upcoming
subsystems (i.e., the use cases). Although any processing stands in contrast with low-level
sensor fusion, early non-destructive processing of the sensor data can be beneficial for later
low-level fusion. The early pre-processing tasks can be performed with minimum overhead
in the course of the raw data conversion into standardized messages.

The behavior of the pre-processing modules can be highly customized via the corre-
sponding modules’ parameters. Unused outputs and their associated processing branch(es)
can be disabled, while the processing parameters can be adapted to fit the desired use case.
This subsection provides an overview of the major pre-processing steps and the provided
output data streams of the different perception sensors’ pre-processing modules.

Time-of-Flight

The ToF pre-processing module receives the ToF point cloud from the reception module.
Further processing is performed on the input point cloud to provide the following output
streams:

� Subsampled point cloud
A voxel grid filter is used to subsample the point cloud and significantly reduce the
data size. The size of a voxel and the minimum amount of points within a voxel is
configurable via parameters.

� Cropped point cloud
An (x/y/z) bounding box is used to filter the point cloud in order to remove areas
out of interest. This is beneficial for considering points with the same height as the
ego-vehicle.

� Amplitude and distance image
The amplitude and distance image are extracted from the full point cloud and pro-
vided as additional data streams. These images can be beneficial for certain process-
ing steps (e.g., segmentation) and add additional flexibility for further processing.

Figure 4.19 illustrates the input and output data streams of a ToF camera’s pre-
processing module. The output data streams are assigned with the same measurement
timestamp as the input data stream and the corresponding frame identifiers.

Radar

The radar pre-processing module’s input data is the raw data cube, containing the samples
points of the frequency chirps for all receive channels (as described in Chapter 3). This
data cube is processed to provide the following four data streams to succeeding modules
and subsystems.

� Range-Doppler image
A 2D array containing the radar response in the range-velocity domain, useful to
detect moving targets in the scene. The resolution of the image depends on the wave-
form parameters (e.g., number of chirps, bandwidth), as well as certain processing
parameters (e.g., FFT bins).

72 4. Design

Figure 4.19: ToF pre-processing module: input and output data streams.

� Range-angle image
A 2D array containing the radar response in the range-angle domain. This repre-
sentation is beneficial to obtain the angular positions of detected targets.

� CFAR image
The CFAR image holds the range-Doppler image after applying an adaptive thresh-
old. The identified peaks can be used as a base for further tasks like object detection
or tracking.

� Peak list
The detected peaks of the CFAR image are utilized to obtain a list of radar peaks.
The list contains each detected target’s top-down position, radial velocity, and re-
flection magnitude.

An illustration of the radar pre-processing module’s input and output data streams is
shown in Figure 4.20. A 2D FFT is applied to the raw data cube in order to obtain the
range-Doppler images of the scene. An additional FFT is applied to obtain the range-
angle images. A possible method to compress the range-angle data cube and to prepare
it for further processing is to remove the velocity information and to generate the overall
range-angle image of the scene. The I ×K range-angle bins of the map are composed of
the maximum value over all J velocity bins. Thus, all peaks in the range-angle dimension
are preserved, independent of their velocity (see Figure 4.20).

One way to extract target information from the radar data is based on the range-
Doppler image. First, the range-Doppler images from all receive channels are summed up,
and a CFAR peak detection is performed to detect the peaks. These peak points are then
provided to a beam-forming algorithm in order to obtain the corresponding angle values.
All detected peaks are stored in a list containing the (x/z) position, the velocity, and the
magnitude of each target.

4. Design 73

Figure 4.20: Radar pre-processing module: input and output data streams.

The four different output data streams are packed into standardized messages and
provided to upcoming modules. All of these messages contain the estimated measurement
timestamp and the frame identifier of the corresponding coordinate system. The pre-
processing module utilizes the metadata stream from the receive module to interpret the
input data and adjust the processing parameters accordingly. Additionally, the behavior
of the pre-processing module is highly configurable via the module’s parameters.

Vision Camera

The input to the vision camera’s pre-processing module is the uncompressed Full HD color
image stream from the receive module. This input data stream is pre-processed, and the
following two output streams are provided to upcoming modules.

� Undistorted image
The Full HD color image with corrected lens distortion, utilizing the intrinsic camera
parameters. The corrected image is more feasible for further processing and allows
the application of simplified camera models.

� Subsampled image
A color image with reduced size, obtained by subsampling the Full HD image. The
reduced resolution leads to a decreased communication time but causes the loss of
image details. The subsampling factor is configurable via the module’s parameters.

The vision pre-processing module’s input and output data streams are illustrated in
Figure 4.21. The distorted input image is corrected, utilizing the camera/lens parameters
in the associated metadata stream. The rectified image is then subsampled with a custom
factor in order to reduce the file size. The rectified image (full resolution) and a subsampled
version are provided to subsequent modules via standardized messages. The messages also
include the estimated measurement timestamp and the vision camera’s frame identifier.

74 4. Design

Figure 4.21: Vision camera pre-processing module: input and output data streams.

4.2.6 System Parameters

The behavior of the base perception system’s modules can be controlled via system param-
eters. These parameters consist of two major categories: sensor parameters and processing
parameters. Sensor parameters define the sensors’ configuration settings (e.g., illumina-
tion time, sample rate) and control the sensors’ individual behavior. These parameters
are managed by the receive modules and are utilized to configure the sensors at startup.
The processing parameters control the behavior of the base perception system’s individual
modules. These parameters are used to control the data flow, enable and disable certain
processing branches, and define algorithm parameters. The applied system parameters
have a high impact on the composition and the quality of the base perception system’s
provided output streams. Thus, the values have to be selected in compliance with the
perception platform’s target environment.

The system parameters are assigned to initial values during the system’s startup and
allow dynamic adaption during runtime. The initial parameters are defined in a global
configuration file, queried by every module at startup. In addition, a subset of the modules’
parameters can be dynamically adapted during operation. Figure 4.22 illustrates the base
perception system’s modules and their ability to dynamically adjust parameters. The
base perception system’s modules provide interfaces, which can be utilized to propose
new parameter values during runtime. The corresponding module adopts newly proposed
parameter values after a basic examination (e.g., range check).

Table 4.1 shows an excerpt of the base perception system’s parameters for each of the
three utilized perception sensors. As seen in the table, the adjustable parameters include
highly influential sensor configurations and processing parameters. The optimal parameter
values depend on the system’s current environmental context state and the demands of
the active use case(s). Thus, the selection of feasible parameters is crucial in order to
provide a high perception performance.

4. Design 75

Figure 4.22: Interfaces for the adaption of the base perception system’s parameters.

Table 4.1: Selected parameters of the base perception system’s modules.

Time-of-Flight Radar Vision

Exposure time Start frequency Exposure time
Global binning End frequency Gain
Operation mode Number of samples Gamma
Frame delay Frame delay Frame rate

4.3 Use Cases

This section introduces multiple applications, making use of the data streams provided by
the base perception system. A use case is a subsystem, which utilizes the base perception
system’s structured output information to fulfill its desired functionality. As seen in Fig-
ure 4.23, use cases typically consist of multiple fusion and processing modules. A fusion
module combines different input data streams into a common representation. The extent
and the complexity of the fusion step depend on the targeted use case and the selected
input streams. One or multiple processing modules utilize the fused data in order to pro-
vide the desired use case’s functionality. Additional processing modules may be present
at arbitrary positions within the use case in order to prepare data streams for upcoming
modules.

Each of the use cases takes a subset of the base perception system’s output data
streams as input. The selection of the data streams depends on the desired task of the
corresponding use case. The three main categories of data streams provided by the base
perception system are listed below.

� Measurement data streams
A measurement data stream from the corresponding perception sensors. This may
be the sensor’s output data provided by the receive module or an already processed
version from the pre-processing module. The associated frame identifier and the
estimated measurement timestamp are included in the header of the data message.

76 4. Design

Figure 4.23: Interaction between the base perception subsystem and the
use-case subsystems.

� Metadata streams
A data stream containing supportive data to the measurement data stream. This
data stream may contain calibration values or the current sensor configuration of
the corresponding measurement. The stream also contains the frame identifier and
the measurement timestamp.

� Transformations
In contrast to the other two categories, the transformations are not directly made
available as streams. They are provided to the system via a globally available buffer.
This buffer enables upcoming subsystems to query time-accurate transformations
for the currently processed data. Some of the available transformations are static
(e.g., between rigidly mounted sensors). Others change dynamically and have to be
updated continuously (e.g., between the platform and the world frame).

4.3.1 Context-Aware Parameter Adaption

A static selection of the system parameters does, in general, result in a poor perception per-
formance in changing environments. To guarantee a satisfactory perception performance,
the system parameters have to be dynamically adapted to the environmental state. This
use case has the goal to automatically adapt the perception platform’s parameters during
runtime. The subsystem considers the system’s current state (e.g., measurement data
streams) and uses data from context sensors (e.g., IMU, rain sensor, light sensor). The
context-aware parameter adaption enables the system to react to changing environmental
conditions, which would otherwise lead to a decreased perception quality. For example, a
system might benefit from a high frame rate in dynamic scenarios, while the focus on a
high precision may be advantageous in static scenarios.

Figure 4.24 shows an overview of the use case’s modules. The parameter handlers
determine whether certain parameters within the base perception system shall be changed
and calculate values for the adaption. The proposed parameter values are passed on
to the base perception system’s modules. These parameters are then inspected by the
corresponding modules and, if feasible, changed in the module. One parameter handler
is in charge of one or more parameters, but any parameter may only be changed by one
handler. A subset of the available data streams is additionally pre-processed before being

4. Design 77

Figure 4.24: Context-aware parameter adaption: overview of the use case and its interaction
with the base perception system.

passed to the parameter handlers, while other data streams are directly provided to the
parameter handlers.

In addition to adapting parameters of the base perception system, this subsystem is
also able to adapt parameters of other use cases’ modules. One possible application is to
limit the confidence range of a sensor’s measurement data stream based on the system’s
environmental context state. Certain environmental conditions affect the perception sen-
sors’ data quality, leading to faults in the perception output if not handled by the system.
For that purpose, dedicated parameter handlers are used to degrade a perception sensor’s
measurement data stream by adjusting its confidence value in the associated fusion mod-
ule. The fusion modules can make use of the additional information in order to discard
the sensor values outside the high-confidence range.

The parameter handlers determine the proposed parameter values by using models,
heuristics, and system knowledge. Parameters are only changed if the estimated gain
(e.g., an increase of the perception quality) exceeds the cost (e.g., duration, processing
effort). Certain parameters are adapted in multiple iterative steps. In that case, the re-
sulting impact of the previous adjustments is included in the determination of the iterative
parameter updates.

4.3.2 Obstacle Detection

This use case detects obstacles in the perception sensors’ common field-of-view. The goal
is to recognize free and occupied areas in front of the platform. In the robotic/automotive
context, occupied spaces are not drivable and have to be avoided in the path-planning
process. Occupancy grids are commonly used to represent free and occupied space within
a robot’s/vehicle’s local environment. In this use case, an obstacle grid is created by
fusing data from multiple perception sensors into a common representation. The obstacle
detection module then utilizes the occupancy grid in order to locate obstacles in front of
the platform.

Figure 4.25 shows an overview of the obstacle detection’s data flow. The fusion module
inputs the subsampled and filtered ToF point cloud(s) and two radar data streams at
different abstraction levels (range-angle image and peak list). If multiple ToF cameras are
utilized, the individual point clouds are combined before the fusion with the radar data.

78 4. Design

Figure 4.25: Obstacle detection: overview of the use case’s main modules and the data
flow.

The ToF pre-processing chain is configured to perform z-filtering of the point cloud in
order to discard points originating from the ground floor. Individual grid structures are
created for each input stream, assigning the likelihood of occupancy to all grid cells. These
individual grids are then fused into a common occupancy grid, holding a probability of
occupancy for each of the cells. The fusion algorithm considers the individual grids and a
combined grid structure to create the overall occupancy grid.

The obstacle detection module considers the last N occupancy grids in order to deter-
mine whether a cell is occupied or not. The module applies a threshold to the integrated
occupancy grids in order to find occupied cells. The output of the obstacle detection mod-
ule is a 2D occupancy grid. We published a more detailed description of this occupancy
grid creation approach in [7] (see Chapter 8, Publication 6).

4.3.3 Environment Mapping

The environmental mapping use case utilizes data from the ToF cameras and an IMU
sensor to create a 3D map of the environment. The use case requires the dynamic trans-
formation between the platform and a global coordinate system (world frame) to be known
at all included measurement times. This transformation and the point clouds from one or
multiple ToF cameras are then utilized to create a map of the environment while the plat-
form is moving. The base perception system’s spatial alignment module can be configured
to constantly determine this transformation and include it in the provided transformation
tree. In this case, the spatial alignment module utilizes an EKF in order to fuse ToF and
IMU sensor with the goal to estimate the pose changes of the platform.

An overview of the environmental mapping subsystem is depicted in Figure 4.26. The
fusion module transforms the ToF point cloud(s) into the world frame and combines the
point cloud(s) with the latest map. The mapping module keeps track of a common en-
vironmental map and outputs it as a point cloud. In order to reduce the file size of the
output map, subsampling of the ToF point clouds can be performed on the input point
cloud(s) as well as on the continuously updated map (e.g., using a voxel grid filter). Sta-
tionary periods are recognized in order to disable the extension of the map if the platform
is not moving.

4. Design 79

Figure 4.26: Environment mapping: overview of the subsys-
tem’s data flow.

Figure 4.27: Pedestrian detection: overview of the use case’s major modules
and their interactions.

4.3.4 Pedestrian Detection

The pedestrian detection use case is able to detect human persons within the perception
sensors’ common field-of-view. A simplified flow chart of the pedestrian detection use case
is depicted in Figure 4.27. The use case takes the data streams from the vision camera, the
radar sensor, and one ToF camera as input and synchronizes them using their timestamps.
The range measurements from multiple perception sensors are combined to enhance the
performance of a vision-only pedestrian detection flow.

The range data is projected onto the vision camera’s image by utilizing the spatial
alignment between the sensors and the vision camera’s intrinsic parameters. The 3D points
from the ToF camera are added to corresponding positions on the vision camera’s image
as single dots. The radar targets are projected onto the image in the form of vertical
lines since the elevation angle of the radar targets is not available. The implemented
pedestrian detection approach uses the vision camera’s image to perform a coarse, low-
threshold detection of regions within the image, which potentially contain pedestrians.
For this step, a HOG-based classifier is utilized with a low detection threshold. A window
of multiple scales is shifted over the image in order to detect bounding boxes of potential
pedestrians at different positions and distances. The range data from the other perception
sensors is then utilized to amplify the bounding boxes and to obtain the most confident
ones. These bounding boxes are then marked as pedestrians in the final image. We
published a more detailed description of this approach in [102]. The published conference
paper is also included in Chapter 8 of this thesis (Publication 9).

80 4. Design

Figure 4.28: Data visualization: overview of the use case’s data flow.

4.3.5 Data Visualization

This use case performs the visualization of data streams from the base perception sys-
tem as well as from other use cases. The visualization module uses the transformation
tree, the data stream’s timestamp, and the data stream’s frame identifier to correctly
visualize the data in a common coordinate space. A human-interpretable visualization of
the data streams is beneficial for evaluating the system’s perception quality and general
performance of the overall system and its components.

The visualization subsystem is highly configurable and can be adapted to the environ-
mental perception system’s active composition (e.g., the active use case). While some data
streams can be directly visualized, others require additional processing in order to convert
them into a visualizable representation. Only the relevant data streams of the platform’s
targeted subsystems shall be prepared for visualization. Thus, predefined configurations
were composed for each of the environmental perception system’s subsystems (e.g., base
perception system, pedestrian detection use case). Each of these predefined configurations
activates the required processing and the visualization of the relevant data streams for the
associated subsystem. In addition to these predefined configurations, the parameters for
the visualization can be further customized. The exact composition of the subsystem (e.g.,
disabling certain modules) can be individually refined, depending on the desired output.

Figure 4.28 shows the processing flow of the visualization use case. Some data streams
have to be pre-processed since they are not directly visualizable (e.g., radar raw data cube).
In such cases, the corresponding data stream is converted to a visualizable representation
(e.g., using points and markers). The figure also illustrates the ability to visualize data
streams from other use cases. This enables the visualization of high-level data from other
use cases in combination with low-level data streams from the base perception system.

Well-suited data stream types for the visualization include ToF point clouds, vision
camera images, and radar target lists. Point cloud data streams can be directly visualized
in the 3D coordinate space. The intensity/confidence can be color-coded, while the (x/y/z)
values and the associated transformation define each point’s spatial position in the scene.
Image streams can be directly visualized as color or grayscale images. Depending on
the image type (e.g., resolution, data depth), the image requires the conversion into a
visualizable format. Targets at specific positions can be visualized with points/markers
in the 3D space using the corresponding (x/y/z) positions. The magnitude of the target’s
reflection can be indicated via the size or color of the utilized point/marker.

4. Design 81

Figure 4.29: Final design of the environmental perception platform’s software architecture.

4.4 Final Design

The final design of the environmental perception system consists of the base perception
subsystem and multiple use-case subsystems. Figure 4.29 shows a simplified overall il-
lustration of the final system architecture. The base perception system provides all data
streams of its comprised modules to the use cases for further processing. Individual use
cases subscribe to a subset of these streams in order to perform application-specific pro-
cessing. The use cases environment mapping, obstacle detection, and pedestrian detection
demonstrate the system’s abilities, based on the structured output data from the base
perception system. A customizable subset of the system’s data streams can be utilized for
direct human interpretation via the visualization use case (omitted in Figure 4.29).

All data streams are assigned with a measurement timestamp and a frame identifier,
allowing their correct spatial and temporal alignment. The spatial alignment module
maintains a transformation tree, holding the temporally accurate pose information of the
platform’s single frames. The temporal alignment module triggers the sensors, estimates
their acquisition timestamps, and makes them available to the reception modules. The
behavior of the base perception system and the use-case subsystems can be customized
via system parameters. These parameters can be defined via a global configuration file
and are provided to the system at startup. Additionally, the modules provide interfaces
to request parameter changes during runtime. The context-aware parameter adaption use
case is capable to dynamically adapt a subset of the system parameters (including sensor
configurations) during runtime.

Chapter 5

Implementation

This chapter presents the implementation details of the environmental perception plat-
form. First, the selected strategy to accomplish the implementation task is introduced,
and the utilized software tools and hardware compositions are presented. The main part
of the chapter describes the ROS-based implementation of the system in order to meet
the elaborated requirements.

5.1 Development

An agile method was selected to perform the platform’s development, enabling flexible re-
compositions of the planned development phases depending on the system’s performance.
Due to the novel composition of the platform and the absence of related work, an iterative
bottom-up approach was selected for the development of the perception platform. In the
utilized approach, the system’s performance was continuously evaluated and considered for
the decision about upcoming hardware and software modifications. This section introduces
the agile development workflow and presents the main software tools used during that
process.

5.1.1 Workflow

The development workflow consists of multiple modular implementation phases, enabling
dynamic decisions about upcoming phases. The five major phases of the iterative imple-
mentation workflow are listed below.

� Compose platform
In this task, the hardware composition of the platform is extended or modified.
This includes the modification of the hardware structure, adding components, or
re-aligning sensors. This development phase compromises the initial platform setup
as well as later modifications.

� Update base perception system
Within this phase, the software of the base perception system is updated. One task
is the adaption of the subsystem to hardware modifications of the platform (e.g.,
newly added sensors). Another task of this phase is the improvement of existing
modules (e.g., adding new functionality, fixing issues).

83

84 5. Implementation

Figure 5.1: Development workflow.

� Evaluate base perception system
The perception performance of the base perception system is evaluated in order to
decide whether the system meets the targeted requirements. This includes inspection
of the data quality, processing duration, data alignment, and the interaction of
the components in various environmental situations. The evaluation results are
considered in order to decide about the necessity and the priority of additional
hardware and software modifications.

� Update use cases
During this phase, the implementations of certain already existing use cases are up-
dated, or new use cases are added to the system. One reason to update use cases is
a modification of the base perception system’s provided data structure (e.g., hard-
ware/software modifications). Other reasons include the improvement of existing
use cases (e.g., algorithm improvements, fixing issues) and the implementation of
additional use cases.

� Evaluate use cases
After new use cases were added or existing use cases were modified, the correspond-
ing subsystems have to be evaluated. The evaluation criteria include the use cases’
performance and robustness in varying environmental conditions. Based on the ob-
tained performance, possible modifications of the platform’s hardware and software
modules are elaborated.

Figure 5.1 illustrates a coarse overview of the development workflow and points out
the major iteration loops during the implementation process. The utilized bottom-up
approach allowed the rapid development of a first prototype and enabled the continuous
refinements based on real-world evaluations. Additional hardware and software require-
ments were derived during the evaluation steps of the base perception system and the
use cases. After the implementation of these requirements, the iterative workflow loop
was continued by re-evaluating the system’s performance. After minor refinements, only
the associated modules were evaluated, while a complete re-evaluation of the system was
performed after major changes.

5.1.2 Tools

Multiple software applications and tools were utilized for the implementation of the en-
vironmental perception platform. This section provides a short overview of the most
extensively used components during this phase.

5. Implementation 85

Figure 5.2: Main components of a ROS-based application.

Robot Operating System

The ROS is a commonly used software framework targeting robotics as well as automotive
vehicle research. The open-source project aims to provide robotic researchers with a
fundamental base framework to speed up the development process of robotic systems. A
large number of commonly used robotic software modules and interfaces to sensors are
provided and maintained by the project’s active community.

The ROS framework allows the seamless integration of modular, distributed ROS-based
components into a common system. This thesis’s environmental perception platform is
intended to be mounted on research vehicles/robots using the ROS. Thus, the ROS is
also utilized as the base framework of this work’s perception platform in order to enable
interactions and data exchange between these two systems. This thesis’ software imple-
mentation makes use of the framework’s tenth distribution release: ROS Kinetic Kame1.
A comprehensive overview of the ROS, its functionality, and similar frameworks can be
found in [103]. This section provides a short overview of the main principles of the ROS.

Figure 5.2 shows a simplified illustration of the major ROS components. Custom user
code is executed in so-called nodes. The utilized ROS version supports python and C++

for the implementation of a node’s functionality. To exchange data between the nodes,
the ROS makes use of the publisher-subscriber principle. A node’s output data stream is
made available via topics. The providing node publishes the topic, while the system’s other
nodes can subscribe to that topic. A topic is defined by a unique name and communicates
a message of a certain type (e.g., integer value, float array). At startup, every node defines
its published and subscribed topics. Each time a message of a node’s subscribed topic is
available, the receiving node gets triggered, and a callback method is executed.

A node can additionally provide services. A service is defined by a unique name and
contains a request message and a response message. A service is called by other nodes via
a service request containing the request message. The providing node executes the service
using the request message and returns a response message to the caller. While topics are
mainly designated for continuous data streams, services are intended for non-consistent
events. In this thesis, the main application of services is to request the change of a node’s
parameters during runtime.

1ROS Kinetic Kame, released May 23, 2016 (https://www.ros.org).

https://www.ros.org

86 5. Implementation

The ROS provides a global database, the parameter server, accessible by all nodes of
the system. The nodes can read and write parameters to and from the parameter server
during runtime. For the approach presented in this thesis, the parameter server is utilized
to store each node’s startup parameters. The registration of ROS components (e.g., nodes,
services, parameters) and their interactions are administrated by the roscore entity. The
roscore handles the Transmission Control Protocol (TCP) connections between the single
nodes and keeps track of the system’s state. Additionally, the ROS provides tools to record
and playback messages while preserving the messages’ timing information. Roslaunch is
a tool, which allows the custom startup of multiple nodes and the transfer of specified
parameter values onto the parameter server. The ROS also includes RViz, a visualization
tool capable of displaying various types of data streams at different abstraction levels (e.g.,
point clouds or grid maps).

Time-of-Flight Framework

The ToF cameras come with the royale software suite, a framework containing libraries to
interact with the cameras and perform fundamental processing tasks. The software suite
provides an API for several programming languages, including C++ and python. The latest
versions of the framework also include sample code for receiving and visualizing data via
a ROS node. The royale API can be configured to provide the received measurement data
at different representations, including as raw phase-images, as distance/amplitude image,
or as point cloud. In addition, the API enables the static and dynamic configuration
of different camera parameters (e.g., exposure time, measurement mode). Multiple ToF
cameras can be simultaneously connected and managed by utilizing the cameras’ unique
serial numbers.

For this thesis, the point cloud representation is utilized, including a 3D position
(x/y/z), an intensity value, and a confidence value for each pixel. A callback can be
registered and is invoked whenever a new measurement has been received and the cor-
responding point cloud is available. The software library can be configured to perform
additional pre-processing steps before providing the point cloud (e.g., filtering, noise re-
duction). The amplitude and distance image of a ToF measurement can be re-obtained
from the point cloud. Thus, these images are not requested via the API in order to reduce
the data size of the provided sensor data.

Radar Framework

The RadarLog development kit includes a software framework to configure the radar sen-
sor and interact with the kit during runtime. The framework includes the RadServe, a
interposed tool in charge of handling the development kit’s high-speed USB3 connection.
Additionally, software libraries are included to communicate with the RadServe, to access
the raw radar data, and to send commands to the radar sensor. As seen in Figure 5.3, the
RadServe acts as intermediate software module, which efficiently handles the high-speed
USB3 interface. In addition, the RadServe provides a TCP interface to custom applica-
tions running on local or remote processing systems. An application (e.g., a ROS node)
can use the provided software libraries (python and Matlab) to communicate with the
RadServe to interact with the radar sensor.

5. Implementation 87

Figure 5.3: Interactions between the radar interface’s different components.

Camera Framework

Basler machine vision cameras come with the pylon Camera Software Suite. The software
suite includes a software development kit (SDK), providing an API interface to C/C++

applications in order to configure the camera, acquire images, and receive the image data.
Basler also provides a sample ROS node, which is able to provide the majority of the
API functions to the ROS system. The node can adjust the vision camera’s settings (e.g.,
exposure time, gain), control the camera (e.g., trigger the image acquisition), and receive
the provided stream of camera images. For the work presented in this thesis, the provided
sample ROS node was extended in order to implement the required functionality for the
desired perception tasks.

Matlab

The numeric computing application Matlab was used to develop algorithms since it pro-
vides a range of capabilities for rapid data analysis and manipulation. Matlab already
implements built-in functionalities to inspect and visualize data from various perception
sensors at different representation levels. The software also includes convenient debugging
tools to analyze the behavior of algorithms during the execution. Thus, the raw measure-
ment data from the perception sensors was saved to a file (in the ROS receive node), which
was then loaded into Matlab to visualize the data and to develop processing algorithms.
Since Matlab scripts are similar to python code, the developed algorithms could be easily
ported to ROS nodes while keeping the implementation overhead low.

Jupyter Notebooks

Jupyter Notebooks are open-source web applicationsn, which allow the creation of struc-
tured documents containing live python code. The live-code functionality allows fast
evaluation of python code snippets and can be used to visualize data (e.g., plots, images).
The tool was used to develop python code for ROS nodes since debugging and algorithm
development within the ROS ecosystem introduces a significant overhead. ROS nodes
were used to save measurement and configuration data into files, which were then loaded
into the Jupyter Notebooks in order to perform the desired processing (e.g., algorithm
development).

5.2 Environmental Perception Platforms

During the work presented in this thesis, the utilized environmental perception platform
evolved from a single-sensor solution to a highly capable multi-sensor platform. This
section presents two intermediate versions and the final version of the built environmental
perception platform.

88 5. Implementation

(a) Platform. (b) Field-of-view.

Figure 5.4: First version of the environmental perception platform.

5.2.1 Version I: Time-of-Flight Only

The first version of the environmental perception platform consists of a single ToF camera
and an automotive-qualified microcontroller as the processing unit. The utilized ToF sen-
sor evaluation kit and the microcontroller (Infineon Aurix) evaluation board were made
available by Infineon. The platform provides a CAN and an Ethernet interface, enabling
communication with external systems (e.g., a vehicle controller). Since the automotive mi-
crocontroller’s image processing capabilities are limited, only lightweight image processing
tasks are feasible to be performed on the safety-focused microcontroller. Advanced pro-
cessing can be performed externally on additional processing units connected via Ethernet.

A picture of the platform and its corresponding field-of-view is shown in Figure 5.4.
The platform is built on a solid aluminum base plate with a tripod thread, allowing easy
mounting on solid objects (e.g., mobile vehicles or robots). The perception platform can
be powered via a 7.2V battery pack or via a line power converter. Since the platform
solely deploys one ToF camera as perception sensor, the platform’s main purpose is this
sensor’s evaluation for perception tasks.

5.2.2 Version II: Time-of-Flight/Radar

The second version utilizes three ToF cameras, a radar sensor, and a fisheye vision camera
as perception sensors. The market-available ToF cameras are facing in different directions
in order to provide an extended field-of-view. We published a detailed overview of this
platform’s hardware and software architecture in [87] (see also Chapter 8, Publication 4).
The development of the sensor modules was not part of this thesis. The modules were
made available by Infineon or obtained as market-available modules.

In addition to the perception sensors, the platform is equipped with context sensors
in order to perceive various environmental conditions (e.g., the light intensity). The plat-
form’s data processing is performed on a notebook with an external hard disk to log
the measurement data. Additionally, a microcontroller is used to trigger the perception
sensors simultaneously.

5. Implementation 89

(a) Platform. (b) Field-of-view.

Figure 5.5: Second version of the environmental perception platform.

Platform Composition

A picture of the platform is presented in Figure 5.5a. The perception sensors are mounted
in front-facing direction. While one ToF camera is pointing straight ahead, the other two
are rotated by 45° in order to extend the covered field-of-view. The radar sensor provides a
narrower field-of-view but can achieve a higher range. The overlapping field-of-view of the
three ToF cameras and the radar sensor is illustrated in Figure 5.5b. The fisheye vision
camera provides a field-of-view of almost 170° and is used to obtain human-interpretable
reference measurements of the scene.

A standard notebook is utilized as the processing platform, running the ROS and
Ubuntu 16.04. Depending on the target application, all processing modules can be ex-
ecuted on a single computer but also distributed upon multiple computation units. An
external 1TB hard disk drive is connected to the notebook via USB to store data record-
ings.

The platform can be powered from a lithium-ion battery (mobile use) or the 230V line
via a power converter (stationary usage). Figure 5.6 shows the power distribution down
to the single modules of the system. The battery outputs a voltage between 21.0V and
29.4V, provides a capacity of 270Wh, and can power the platform for up to four hours.
The varying input voltage is converted to a stable level using two DC/DC converters.
Both converters output 19.5V and can, in combination, handle the maximum current
consumption of the system. One voltage converter is used to supply the notebook, while
the other supplies the radar sensor (12V - 36V) and the USB hub (7V - 24V).

5.2.3 Version III: Time-of-Flight/Radar/Camera

The third and final version of the environmental perception platform utilizes two ToF
cameras, one radar sensor, and one vision camera. Since the vision camera allows external
triggering, the platform can acquire synchronized measurements of all utilized perception
sensors. As seen in Figure 5.7a, the platform is constructed using aluminum profiles.
These profiles are robust and allow fast and easy mounting of the platform on various
surfaces.

90 5. Implementation

Figure 5.6: Hardware architecture of the perception platform, version II.

(a) Platform. (b) Field-of-view.

Figure 5.7: Final version of the environmental perception platform.

5. Implementation 91

Figure 5.8: Hardware architecture of the perception platform, version III.

Platform Composition

An overview of the platform’s major hardware components and their interconnections is
illustrated in Figure 5.8. In order to allow flexible mounting abilities, the platform can be
split up into two distinct parts: the sensing part and the processing part. As indicated in
the figure, a USB and a power cable can be used to connect the two parts. The deployment
of an active USB3 cable allows the separation of the two individual two parts for distances
of up to several meters (maximum tested: 8m).

The sensing part consists of two ToF cameras, one radar sensor, and one vision camera.
All perception sensors are mounted in front-facing direction and cover a common area in
front of the platform (see Figure 5.7b). The platform can also be equipped with multiple
context sensors, including an IMU and a light/temperature sensor. A microcontroller is
used to externally trigger the perception sensors in order to acquire the measurements
simultaneously. The development of the sensor modules was not part of this thesis. They
were either obtained from the open market or made available as development kits by
Infineon Technologies.

The final version’s processing part contains an Intel NUC as the perception system’s
processing unit2, running ROS Kinetic Kame on Ubuntu 16.04. The processing unit is
in charge of (pre-) processing the sensor data (base perception system) and can addition-
ally run one or multiple perception tasks (use cases). The processing part supplies the
platform’s components, utilizing multiple voltage converters. Similar to the second plat-
form version, the power supply can either be provided via a battery (lithium-ion battery,
integrated into the platform) or via a 230V line converter. In order to monitor the plat-
form’s remaining battery capacity, the battery level is continuously communicated to the
processing unit.

2Intel NUC8i7BEK, 16GB RAM, 1TB solid-state drive.

92 5. Implementation

5.3 Base Perception System

This section provides an overview of the base perception system’s ROS-based implemen-
tation. Particular focus is set on the assignment of the initial parameters, the interaction
between nodes, and the the system’s startup. Additionally, the platform’s different oper-
ating modes are presented, allowing live and offline operation.

5.3.1 Spatial Alignment

The ROS utilizes a tree structure to store and organize the transformations between the
system’s utilized coordinate frames. The static transformations are obtained during an
earlier one-time calibration procedure and are added to the tree at startup. The dynamic
transformations are constantly re-determined and updated during operation. This section
presents the ROS-based approach to manage multiple transformations during operation
and to perform the calibration procedures.

Transformation Tree

The ROS keeps track of the environmental perception system’s transformations by orga-
nizing them in a hierarchical transformation tree: the TF tree. Figure 5.9 illustrates the
hierarchy of the final platform’s TF tree stored in the ROS. The tree’s node names are the
unique identifiers of the corresponding coordinate frames. The individual nodes are con-
nected via the corresponding transformations. The static transformations are illustrated
as blue arrows, while the dynamic transformation is indicated with a red arrow. The trans-
formation tree can be extended or updated by broadcasting new transformation messages
within the ROS framework. A transformation message contains the transformation matrix
between a frame and its child frame, the associated frame identifiers, and a timestamp.
The TF tree enables nodes to query the time-accurate transformations between arbitrary
frames during runtime.

The base perception system’s implementation utilizes individual ROS nodes for each
of the TF tree’s transformations. Figure 5.9 shows this ROS nodes and their associated
transformation in the TF tree. These nodes are contained in the base perception system’s
spatial alignment module. One ROS node exists for each static connection of the transfor-
mation tree, which is in charge of broadcasting the transformation message. The values of
the static transformations (i.e., rotation, translation) are obtained during an earlier cali-
bration procedure and added to the global configuration file. The respective ROS nodes
fetch these parameters at startup and broadcast the corresponding TF messages. These
static messages are specially labeled and are only added to the TF tree once since the
respective transformation remains valid over time.

There also exists one separate ROS node to publish the dynamic connection of the
transformation tree (world_frame - ifx_platform_frame). The node utilizes the openly
available robot_localization ROS package [101], which provides methods for nonlinear
state estimation. This node constantly estimates the transformation between these two
frames, utilizing the platform’s sensors and an EKF. The node repeatedly broadcasts a
transformation message, defining the relationship between these two frames. In contrast
to the static transformation messages, the included timestamp of the dynamic message
allows time-accurate transformations.

5. Implementation 93

Figure 5.9: Transformation tree, organized by the ROS. The ROS nodes are in charge of updating
the respective transformations, stored within the transformation tree.

Calibration

The intrinsic calibration of the ToF cameras and the vision camera is performed via
standalone python scripts, utilizing saved and exported measurement data from the base
perception system. For this purpose, multiple images of an 8× 6 checkerboard pattern
with 40mm squares are captured with the ToF camera and the vision camera. The
checkerboard’s position, angle, and tilting are varied between the sequential acquisitions.
OpenCV is utilized to find the pixel coordinates of the given pattern’s checkerboard corners
at the different positions. Next, OpenCV’s camera calibration function is applied to this
data to obtain the corresponding camera/lens characteristics. The function provides the
camera matrix and the distortion coefficients, which can be used to correct the distorted
camera image.

Since the radar sensor’s intrinsic calibration requires specialized hardware, the cali-
bration is performed by the manufacturer and provided with the sensor. The calibration
data contains corrections of each receive antenna and information about the antenna’s
irradiation characteristics. This correction can be applied to the raw measurement data
upon its reception in the radar sensor’s receive module.

The perception sensors’ extrinsic calibration procedures are implemented as ROS
nodes, one node for each transformation. The desired calibration nodes can be manually
started in addition to the base perception system. The nodes determine the corresponding
transformations by implementing the methods described in Chapter 4. Since some of the
nodes rely on the user’s actions and feedback, the implementation supports interactive
user inputs. In order to enable the direct visual evaluation of the determined transfor-
mations, the calibration nodes publish the proposed transformation messages to the base
perception system. These messages are then received by the spatial alignment module and
used to update the corresponding entries of the base perception system’s transformation
tree.

94 5. Implementation

(a) Temporal alignment node. (b) Trigger signals.

Figure 5.10: Simultaneous measurement acquisition via external trigger signals.

5.3.2 Temporal Alignment

The sensor data’s temporal alignment is controlled by simultaneously acquiring sensor
measurements and estimating the corresponding timestamps. The timestamps are assigned
to the data streams in order to enable temporally aligned processing at data-stream level
(e.g., the synchronization of corresponding measurement streams). This section provides
implementation details of these concepts within the ROS-based perception system.

External Triggering

The perception sensors are externally triggered in order to allow the simultaneous acqui-
sition of the sensors’ measurements. A microcontroller generates the sensor-dependent
trigger signals for each of the perception sensors. As illustrated in Figure 5.10a, the tem-
poral alignment node handles the communication with the triggering microcontroller. The
ROS node can individually configure each perception sensor’s trigger characteristics. In
addition, the node implements services to reconfigure the trigger settings during runtime
(e.g., the frame rate). If a simultaneous data acquisition is desired, the individual frame
rates have to be set to integer multiples of a common base rate. Figure 5.10b shows an
example of the microcontroller’s trigger signals for each of the perception sensors. The
trigger signals are adjusted accordingly to the sensors’ different trigger signal interfaces.

Multiple ToF cameras are used and all of them actively illuminate the scene with
infrared light. Thus, an advanced trigger scheme is required to avoid any interference
between the individual ToF cameras. The trigger of the second ToF camera is delayed in
order to prevent simultaneous illuminations (see Figure 5.10b). In this nested illumination
mode, each additional ToF camera delays its measurement by the duration of a single
phase-image’s illumination duration. In this case, the ToF camera’s illuminations take
place while the other camera performs the sensor readouts. An entire ToF measurement
acquisition takes about 38ms for a single phase-image’s illumination time of 1.5ms. The
introduced delay between the individual ToF measurements (1.5ms) is small enough to

5. Implementation 95

be neglected for the proposed system. Thus, the radar, the vision, and the two ToF
measurements can be approximately assigned to a common acquisition time.

The common acquisition time of the individual measurements is considered as the ref-
erence for the temporal alignment. Since the different sensors’ measurement durations
depend on the individual configurations, the measurements’ end times are generally not
aligned. Depending on the use case, dissimilar measurement durations can have a consid-
erable impact on the output data (e.g., a long ToF exposure time vs. a short exposure
time of the vision camera). For this work’s use cases, the effect of different measurement
durations is neglected since the sensors’ measurement durations are restricted to typical
intervals.

Timestamp and Sequence Number

After a measurement has been acquired, the perception sensors transfer the measurement
data to the processing unit via USB. The base perception system’s receive nodes obtain the
transferred data via individual API calls. In order to keep the data streams synchronized,
the receiving ROS nodes add increasing sequence numbers to each measurement upon
reception. As seen in Figure 5.10a, the temporal alignment node publishes a ROS topic
containing an estimated measurement timestamp and the corresponding sequence number.
Using this information, the receive nodes can assign the estimated measurement timestamp
to their data streams.

The microcontroller sends an empty notification message to the trigger node right
after a new measurement is triggered. This message’s introduced transmission delay is
estimated using the mean transmission time of empty messages via the serial connection
between these two modules. The node estimates the acquisition time of the measurement
and assigns it to an accumulating sequence number.

A disadvantage of this approach is the vulnerability to temporary data loss from a single
sensor (i.e., frame drops). Thus, the receive nodes are capable of detecting frame drops,
which may occur if the sensor experiences connection problems or is operated outside
its limits. The nodes utilize the reception times (software timestamps) of consecutive
measurements and the configured frame rate to detect missing frames and adapt the
sequence number accordingly.

5.3.3 Sensor Data Processing

The base perception system’s main task is to implement the low-level interface to the
perception sensors and to provide structured data streams to upcoming subsystems. Since
various upcoming subsystems use the provided data streams, the base perception system’s
processing modules focus on fundamental and generic processing steps. The output data
streams consist of multiple representations of the sensors’ measurement data after certain
processing steps (e.g., compression, correction, abstraction). System parameters can be
utilized to adjust the pre-processing configuration and the provided data streams to the
desired use case(s) (e.g., disable the calculation of unused output streams).

All processing steps of the base perception system are implemented in ROS nodes. The
nodes are split into receive and (pre-) processing nodes for each perception sensor. Each
receiving node publishes a measurement data stream containing the low-level measurement

96 5. Implementation

data after a minimum amount of processing (e.g., error compensation). In addition, each
node publishes one or multiple metadata streams, including supportive information (e.g.,
node parameters, sensor settings). The pre-processing nodes subscribe to these streams,
perform further processing, and publish the processed data as additional measurement
data streams (e.g., subsampled data). Nodes of other subsystems (e.g., use cases) can
subscribe to any stream published by the base perception system’s nodes. The data
streams are exchanged as ROS messages, containing a header with a frame identifier and
a timestamp in order to allow later synchronization of multiple data streams. While the
measurement data streams contain different representations of the sensor measurement,
the metadata streams contain supportive information (e.g., current sensor parameters,
calibration parameters).

Depending on the available sensor API, the nodes are implemented using C++ or
python. Since the C++ implementation is generally more efficient, C++ was preferred
for time-critical modules. Non time-critical modules were implemented using python due
to its rapid-prototyping capabilities. The nodes of the base perception system’s vision and
ToF data flow are implemented as ROS nodelets. Nodelets allow multiple nodes to be exe-
cuted in a single process and introduce zero copy overhead for the transfer of data between
these commonly managed nodes (via shared pointers). Figure 5.11 shows an overview of
the base perception system’s ROS nodes and their input and output topics.

5.3.4 System Parameters

The designed ROS architecture allows the customization of the base perception system’s
node parameters. As indicated in Figure 5.11, there are two ways of controlling the
parameters of the subsystem’s nodes. The startup configuration for all nodes is provided
via the ROS parameter server, while the dynamic adaption of parameters is supported via
ROS services.

Startup Configuration

In the proposed architecture, the base perception system’s nodes fetch their initial pa-
rameter values from the ROS parameter server at startup. The provided values include
algorithm parameters (e.g., thresholds, gains), sensor configurations (e.g., exposure time,
sample rate), data flow parameters (e.g., name of input/output topics and services), and
debug parameters (e.g., enabling of debug output). These parameters are uploaded to the
ROS parameter server from a single configuration file containing entries for all parameters
within the base perception subsystem. In order to ensure a well-defined system behavior,
all customizable parameters of the base perception system have to be defined in the config-
uration file. If any parameter is missing on the ROS parameter server, the corresponding
node terminates the whole system’s startup process with an error message.

Table 5.1 shows a selection of default startup parameters used to configure the radar
sensor’s receive and pre-processing nodes. The presented parameters configure the radar
sensor to transmit fast chirp sequences with 128 chirps per measurement, 1024 samples per
chirp, and a bandwidth of 2GHz. These parameters result in a maximum range resolution
of 7.5 cm, a velocity resolution of about 0.17m/s, and a maximum detectable velocity of
4.8m/s. Additionally, the frame delay can be customized in order to control the rate of the

5. Implementation 97

Figure 5.11: Simplified ROS architecture of the base perception system.

98 5. Implementation

Table 5.1: Selected system parameters of the base perception system’s radar nodes.

Radar Receive Node

Parameter Startup Value

Start frequency 76GHz
Stop frequency 78GHz

Up-ramp duration 128µs
Down-ramp duration 64µs

Pulse time 200µs
Measurement time 400ms
Samples per chirp 1024
Number of chirps 128
Receive channels 16
Transmit channels 1

Frame delay 1000ms

Radar Pre-Processing Node

Parameter Startup Value

FFT bins stage 1 1024
FFT bins stage 2 256
FFT bins stage 3 256

CFAR reference length 40
CFAR guard length 4

CFAR offset 45
Minimum distance 0.25m
Maximum distance 15.0m

triggered measurements. The parameters of the pre-processing node control the behavior
of the (pre-) processing algorithms (e.g., FFT calculation, CFAR detection). Since these
algorithms have a high impact on the perception performance, the associated parameters
have to be selected in compliance with the targeted application(s).

Dynamic Configuration

The base perception system’s nodes allow the dynamic adaption of their parameters during
runtime. In order to provide this functionality, the subsystem’s nodes implement ROS ser-
vices, able to be called during runtime. A call to these services includes a request message
containing the proposed parameters for the corresponding node. In case of an incoming
service request, the respective node gets triggered, examines the requested values, and
attempts to update its parameters. After processing the service request, the node answers
with a response, indicating whether the request was successful or not. Since various system
parameters are not feasible for a dynamic adaption (e.g., name of input/output topics),
only a subset of the system’s parameters are made available for dynamic adaptation.

Some of the parameters can be changed on-the-fly, while others introduce an adaption
delay. The re-configuration of certain sensor parameters requires a restart of the sensor
(e.g., radar bandwidth or radar receive channels). During that adaption process, the
corresponding sensor cannot provide measurement data, causing an interruption of the
data stream. Parameters, which do not have to reconfigure the sensor, are immediately
active without the introduction of an additional delay.

The dynamic parameter adaption is implemented with ROS services, since the utiliza-
tion of the ROS parameter server introduces considerable drawbacks. In contrast to ROS
services, the parameter server does not support direct feedback to the calling instance and
does not include any timing information. With ROS services, a calling node can utilize
the service’s response message to gain information about the adapted parameters’ validity
period.

5. Implementation 99

5.4 Use Cases

This section presents implementation-specific details of the platform’s implemented use
cases. Use cases subscribe to a subset of the base perception system’s data streams in
order to perform application-specific tasks. The use cases are decoupled from the base
perception subsystem, enabling a distributed execution on multiple processing units.

5.4.1 Context-Aware Parameter Adaption

This use case subscribes to data streams of additional context sensors (IMU, battery sen-
sor) and to the measurement data streams of the perception sensors (ToF, radar, vision).
Multiple parameter handlers (ROS nodes) are deployed in order to dynamically adapt the
parameters of the base perception system’s nodes. Each parameter handler is realized as
a single ROS node and is in charge of adapting one or more parameters. These parameter
handlers utilize their input data streams to decide whether a certain parameter of a node
shall be updated or not. If a parameter shall be updated, the parameter handler calls
the respective node’s ROS service and requests the adaptation of the considered parame-
ter. Depending on the type of the requested parameter, the node will perform one of the
following three actions to update it.

� Update a variable
A processing-specific value (e.g., threshold, flag) is updated. The new value will be
valid, beginning with the processing of the upcoming data stream.

� Update a sensor configuration value
In order to change the sensor configuration (e.g., trigger mode, pixel binning, sample
rate), the node has to reconfigure the sensor. In general, the adjustment is initiated
by requesting a parameter update via a call to the respective sensor’s API. Depending
on the adapted parameter and sensor type, the update of the sensor’s configuration
may be valid immediately or after a temporary downtime of the sensor.

� Update of an external parameter
To change an external parameter, a service call to another node is performed. An
example is the adaption of the individual sensors’ frame intervals, which are handled
by the receive nodes but have to be adjusted in the temporal alignment node.

After a parameter adaption, the parameter handlers utilize the timestamp of the cor-
responding node’s service response in order to estimate the timestamp of the resulting
parameter update. The parameter handler can then use this timestamp to assess the
impact of the updated parameter for iterative adaptation approaches.

5.4.2 Obstacle Detection

The obstacle detection use case subscribes to ToF and radar measurement data streams in
order to generate a combined occupancy grid from the heterogeneous range data. Table 5.2
shows the input data streams of the obstacle detection use case. The subsystem synchro-
nizes the different measurement data streams, utilizing the assigned timestamps. The use
case incorporates a ROS node which merges the two subsampled ToF point clouds into a

100 5. Implementation

Table 5.2: Obstacle detection use case: input data streams.

ROS Topic Description

/tof1/pc_voxel Subsampled point cloud of the first ToF camera
/tof2/pc_voxel Subsampled point cloud of the second ToF camera
/radar/peaks Peak list of the radar sensor
/radar/ra Range-angle image of the radar sensor

common point cloud. Individual processing nodes are then used to convert the individual
streams into separate grid structures, which are then fused into a common occupancy grid.
The resulting occupancy grid is a 2D top-down grid of the area in front of the perception
platform, representing the probability of occupancy for each grid cell. An additional ROS
node subscribes to the occupancy grids and considers the temporal changes to create an
occupancy grid map of the perceived field-of-view. Numerous parameters of the occu-
pancy grid map (e.g., number of cells, number of frames) can be configured via the use
case’s node parameters. The nodes to merge the point clouds and to create the occupancy
grid from the input streams are implemented in C++, since they require advanced point
cloud processing techniques (implemented using the C++ PCL library). The mapping
node is implemented in python since the high-level programming language enables a fast
development workflow.

5.4.3 Environment Mapping

The environment mapping module utilizes chronologically acquired ToF point clouds to
create a map of the environment. The iteratively extended map is stored in an overall
point cloud, containing the correctly aligned points from previous measurements. Since
the map is represented in a fixed-position world frame, the transformation between the
ToF camera’s frame (ifx_tof1_frame) and the global world frame (world_frame) has to
be known. The mapping module utilizes the latest ToF point cloud’s timestamp in order
to fetch the corresponding transformation from the TF tree. Using this transformation,
the mapping node can transform the point cloud into the global map’s frame and merge
it with the existing map. In order to keep the stored map within a feasible file size, the
ToF camera’s point cloud is converted into a 3D voxel grid before it is inserted into the
overall map.

The environment mapping module highly depends on the quality of the transformation
between the ToF camera’s frame and the world frame. The most sensitive part of this
transformation is the dynamic transformation between the environmental perception plat-
form’s base frame and the world frame. This transformation is determined and updated
by the corresponding node of the base perception system’s spatial alignment module. The
tf_world_platform node applies an EKF to multiple sensor data streams to estimate the
platform’s absolute pose in the global world frame. The input data to the EKF are the
relative pose updates from the IMU sensor and from consecutive ToF point clouds. In
order to obtain a precise transformation, the parameters of the spatial alignment mod-
ule (including the EKF configuration) have to be set under consideration of the targeted
application.

5. Implementation 101

Table 5.3: Pedestrian detection use case: input data streams.

ROS Topic Description

/tof1/pc_voxel Subsampled point cloud of the first ToF camera
/radar/peaks Peak list of the radar sensor

/camera/image_rect Rectified full resolution camera image
/camera/camera_info Camera information (e.g., calibration values)

Although the implemented use case only utilizes the point clouds from one ToF cam-
era, the approach can be easily extended to include the second ToF camera’s point
cloud. For this purpose, the transformation between the second ToF camera’s frame
(ifx_tof2_frame) and the global world frame (world_frame) has to be considered. The
advantage of a second camera is the faster creation of the map due to the extended field-
of-view.

5.4.4 Pedestrian Detection

The pedestrian detection use case combines the vision camera’s image with the radar sen-
sor’s range data and one ToF camera in order to improve the ability to detect pedestrians.
The module’s inputs are the rectified 2D vision camera image, the subsampled point cloud
from one ToF camera, and the target list from the radar sensor (see Table 5.3). The
input data streams are synchronized using the timestamps, included in the data streams’
headers.

First, the range data is cropped to the area of interest in front of the platform (e.g.,
excluding range data from objects over 2m or at high distances). Due to its missing
vertical information, the detected radar targets are converted into vertical lines, delimited
by the sensor’s field-of-view and the ground surface. The lines are identified by a start
point and an end point in the 3D coordinate space. Using the vision camera’s calibration
values, these points are projected onto the image plane (using the OpenCV library) and
the corresponding lines are drawn on the image. Next, the subsampled points of the ToF
point cloud are projected onto the image plane and visualized as dots on the image. The
resulting image of projected range data is then converted into a binary image, containing
a positive value for areas containing range data.

The vision camera’s rectified image is used to detect pedestrians via a HOG-based
pedestrian classifier (included in the OpenCV library). This pedestrian classifier is applied
at multiple scales across the image in order to detect potential areas containing pedestrians.
The classifier is applied with a low threshold in order to increase the classifier’s detection
sensitivity. Since each positive classification provides a bounding box, this module’s output
is a list of bounding boxes distributed across the image.

The bounding boxes are then amplified by the binary range data image, resulting in
a list of weighted bounding boxes. This list of bounding boxes is then converted into a
single heatmap image. This heatmap image is thresholded and labeled in order to obtain
the resulting bounding boxes, denoting the detected pedestrians. Many parameters of the
use case can be customized, including threshold values, classification parameters, and the
size of the projected range data.

102 5. Implementation

5.4.5 Data Visualization

This use case is in charge of visualizing various data streams of the environmental percep-
tion platform. The data streams can originate from the base perception system and from
other use cases. The subsystem utilizes the ROS framework’s graphical visualization tool
RViz. The tool is able to directly visualize several standard message types of the ROS
(e.g., images, point clouds, or occupancy grids). In addition, RViz can display generic
markers to support the visualization of custom messages.

While some of the environmental perception platform’s data streams can be directly
visualized in RViz (e.g., ToF point cloud, vision camera image), others cannot be visu-
alized without further processing (e.g., radar peak list, radar range-angle image). The
data visualization use case contains nodes to convert non-visualizable data streams into
visualizable formats. For that purpose, the nodes subscribe to non-visualizable messages,
convert them to a visualizable format (e.g., using markers, point clouds), and publish them
in order to enable their visualization in RViz. Examples are the detected radar targets,
which are converted into markers with custom colors and sizes, indicating each target’s
velocity and magnitude.

The data visualization use case can be manually started in addition to the remaining
system if visualization of the sensor data is required (e.g., for visual evaluation). The
desired configuration of the data visualization use case highly depends on the active use
case(s) of the environmental perception system. Thus, individual predefined visualization
configurations (including viewing settings) are available for each use case of the environ-
mental perception system. Depending on the active use case (e.g., pedestrian detection),
the corresponding conversion nodes for non-visualizable messages are started and the view-
ing settings of the RViz tool are adjusted accordingly. The visualization use case’s system
parameters can be used to further customize the behavior of the subsystem (e.g., disable
certain conversion modules).

If the visualization use case is not started, the visualization modules are inactive (in-
cluding the conversion nodes) and the full processing capabilities can be focused on the
data processing. This can be beneficial in computationally expensive scenarios (e.g., the
processing/recording of multiple data streams at high frame rates).

5.5 Platform Startup and Operating Modes

This section presents the implemented approach to simultaneously start and configure
multiple ROS nodes via a single ROS launch file. The controlled startup procedure of the
base perception system is described, including its contained nodes and utilized sensors.
Additionally, the three operating modes (livestream, record, playback) are introduced.
Eventually, the utilized method to startup use cases and configure their nodes is presented.

5.5.1 Launch Files

A top-level ROS launch file is used to start the modules and nodes of the base percep-
tion system. The Extensible Markup Language (XML)-based launch file utilizes Boolean
arguments to enable or disable single modules (e.g., radar, IMU). The top-level launch
file includes a configuration file (also stored as launch file), which holds the initial param-

5. Implementation 103

Figure 5.12: Composition of the top-level launch file.

eters of all base perception system’s nodes. Upon startup, these initial parameters are
transferred to the ROS parameter server and consecutively fetched by the corresponding
ROS nodes. The enabled modules of the base perception system are included via sub-level
launch files, which start the associated nodes according to the top-level launch file’s argu-
ments. Figure 5.12 shows a simplified illustration of the top-level launch file’s composition
and its linked components (e.g., sub-level launch files, nodes). As seen in the figure, the
defined arguments of the top-level launch file are passed to the sub-level launch files in
order to allow submodule-specific argument handling.

5.5.2 Sensor Platform Startup Procedure

The environmental perception platform utilizes a supervised startup procedure for its per-
ception sensors. The base perception system requires all sensors to be ready for operation
in order to provide its desired functionality. The parallel startup of multiple sensors can
be problematic since all sensor nodes utilize the common USB interface. An unsupervised
startup process can lead to non-deterministic behavior, i.e., cause some sensors to enter
unresponsive states. Thus, a supervised startup routine is employed to start the sensors
in a structured way.

After startup, the base perception system’s receive nodes remain in an inactive state
(per default). The receive nodes are in charge of the low-level communication with the
physical sensors (e.g., starting the sensors and handling their data). A custom startup
node is utilized to turn these nodes into running-state, assuring that the sensors are started
in a controlled and deterministic way.

Figure 5.13 shows the flow diagram of the startup node. The node consecutively
requests the transition of the base perception system’s receive nodes into running-state.
The receive nodes respond to the service request as soon as the respective sensor is started
and the node is ready for operation. When all sensors are active and ready, the trigger
node is turned into running-state to start the acquisition of sensor measurements.

104 5. Implementation

Figure 5.13: Starting the environmental perception system’s sensors via
a common startup node.

5.5.3 Operating Modes

The environmental perception platform supports multiple operating modes. In addition to
its regular livestream operation, the environmental perception platform can be utilized to
record individual datasets and playback earlier recorded datasets. Each operating mode
employs a custom composition of launch files in order to start the associated components.
The environmental perception platform’s three operation modes of the are listed and
described below.

� Livestream mode
In livestream mode, the sensors acquire measurements and provide the obtained
data to the base perception system. The subsystem receives the measurement data,
performs various (pre-) processing steps, and provides multiple data streams at dif-
ferent abstraction levels to upcoming subsystems (e.g., use cases). As seen in Fig-
ure 5.14, the livestream launch file starts the base perception system’s ROS nodes.
The livestream launch file’s arguments can be utilized to en/disable or individual
modules, depending on the desired output.

� Record mode
In record mode, selected data streams of the base perception system are recorded
for offline evaluation. The record launch file is started in addition to the livestream
launch file, as seen in Figure 5.15. The rosbag recording node subscribes to a number
of data streams and efficiently stores them in a rosbag file. The subsect of the base
perception system’s data streams, which shall be recorded into a rosbag file, can be
customized in the record launch file. The individual modules of the base perception
system can be en/disable via the livestream launch file. The manual start of the
recording launch file enables the custom selection of the recording’s start time.

5. Implementation 105

Figure 5.14: Livestream operating mode.

� Playback mode
In playback mode, a recorded dataset is provided as input to the base perception
system. In this operating mode, the playback launch file is started on top of the
livestream launch file, as seen in Figure 5.16. The playback launch file starts the
playback node, which recalls earlier recorded data streams (ROS messages) from a
rosbag file. In addition, it starts the livestream launch file with disabled receive
nodes, causing the physical perception sensors to stay inactive. The remaining pro-
cessing modules are activated as defined in the livestream launch file.

The livestream mode is used to directly process the perceived measurement data with-
out recording any data streams. This mode may be selected if the system’s current en-
vironment shall be perceived and recording is not desired or feasible. An example is the
platform’s utilization to perform live perception tasks (e.g., pedestrian detection). Omit-
ting the recording can be beneficial since it introduces an additional processing overhead,
limiting the system’s perception performance.

The record mode can be utilized to record dedicated datasets or to additionally store
the measurement data during live processing. To record dedicated datasets, the base
perception system’s received measurement data streams are saved to the rosbag file. In
order to record the data efficiently, all nodes of the base perception system except for the
receive nodes may be deactivated (see Figure 5.15).

The playback mode is advantageous for the development of (pre-) processing modules
and new use cases. Since recorded datasets are used, the performance of different imple-
mentations can be compared, based on similar input data. The playback mode enables
a faster data evaluation than the livestream mode since the input data stream is directly
available, and the physical sensors do not have to be started. Particular edge cases and
key scenarios can be utilized as input data in order to evaluate the respective performance
of different algorithms.

106 5. Implementation

Figure 5.15: Record operating mode.

Figure 5.16: Playback operating mode.

5. Implementation 107

5.5.4 Use Case Startup

Use cases can be manually started in addition to the base perception system. Each use
case provides a standalone top-level launch file, defining the configuration of the corre-
sponding subsystem. Similar to the livestream launch file, a use case’s launch file defines
the subsystem’s parameters and starts the contained ROS nodes.

The launch file of an individual use case is typically compromised of the three main
sections listed below.

� Launch file arguments
The launch file arguments are defined in the initial section of the file and are used
to enable or disable certain modules of the launch file. Examples are the activation
of the obstacle detection use case’s mapping module or the selection of the active
parameter handlers of the context-aware parameter adaption use case.

� Node parameters
The node parameters define the parameter values of the use case’s contained ROS
nodes. These parameters include the individual nodes’ configurations (e.g., algo-
rithm parameters, topic names, debug levels). In contrast to the base perception
system, the use cases’ parameters are directly defined in the corresponding top-level
launch files.

� Node inclusions
The last section of a use case’s launch file includes the subsystem’s nodes (e.g.,
specific processing nodes, fusion nodes). The individual modules (set of the nodes)
can be enabled and disabled via the launch file arguments.

One or multiple use cases can be manually started in addition to the base perception
system. The base perception system’s presence is mandatory since the implemented use
cases depend on the base perception system’s output data streams. Also, the base percep-
tion system’s operating mode (livestream, record, playback) does not affect the use cases’
functionality and can be selected independently.

The data visualization use case provides an exception to the general structure of the
use cases. Since the visualization configuration depends on the environmental perception
system’s active setting, multiple predefined launch files exist for the visualization use case.
Individual visualization launch files exist for each use case (e.g., pedestrian detection,
obstacle detection) and the base perception system. One or multiple of these launch files
can be manually invoked to visualize the desired aspects of the environmental perception
system.

Chapter 6

Results

This chapter provides an overview of the results obtained during the evaluation of this
work’s environment perception platform. First, the platform’s final version is presented,
and its attachment to different research robots/vehicles for real-world data acquisition is
shown. The main part of the chapter presents the performance of the base perception
system’s modules and its capabilities in various scenarios. Additionally, example outputs
of the implemented use cases are presented, and each use case’s general performance is
analyzed.

6.1 Environmental Perception Platform

As part of this thesis, multiple versions of an environmental perception platform were
constructed. These perception platforms were attached to different vehicles in order to
obtain real-world data in various scenarios. This section presents the final perception
platform and shows this work’s different vehicle setups to acquire real-world measurements.

6.1.1 Final Platform

The environmental perception platform’s final version utilizes two ToF cameras, a vision
camera, and a radar sensor as perception sensors. The platform is equipped with a battery
sensor, an IMU, a processing unit, and a lithium battery, enabling independent and mobile
operation. The platform can be split into two parts in order to enable flexible mounting
options. Since the physical platform is based on aluminum profile beams, a simple attach-
ment to various surfaces is possible. Figure 6.1 shows an image of the platform with the
two distinct parts visible.

The platform can be employed in static and dynamic operating scenarios. In static
scenarios, the platform is positioned on stationary, non-moving objects/surfaces. In that
case, the perception platform’s field-of-view does not change over time. The only dynamic
behavior occurs if moving objects are present in the perceived scene. In dynamic operation
scenarios, the system is mounted on a moving base (e.g., robot or vehicle). In this case,
the platform’s position, orientation, and the corresponding field-of-view change over time.
The data acquisition in dynamic scenarios introduces real-world challenges, also faced by
perception systems of automated vehicles and autonomous robots.

109

110 6. Results

Figure 6.1: Final version of the environmental perception platform.

6.1.2 Attachment to Vehicles

Due to a cooperation with the Virtual Vehicle Research Center in Graz, different releases
of this work’s environmental perception platform were mounted on research vehicles in
order to obtain real-world measurement data in dynamic scenarios. The environmental
perception platforms were connected to the respective vehicle’s processing system, enabling
the exchange of data between the subsystems (e.g., based on the ROS). The perception
data was provided to the vehicle’s processing system, enabling the incorporation into the
vehicle’s driving tasks. Additionally, the acquired real-world perception data was recorded
in order to utilize it for offline evaluation of the processing pipeline in dynamic scenarios.

As the first step, the ToF-only perception platform (version I) was mounted on a
scaled vehicle (see Figure 6.2a) to test the perception capabilities of ToF cameras in
dynamic environments. The utilized scaled vehicle, provided by the Virtual Vehicle, is
equipped with customized control electronics, allowing wireless remote control. The ToF
measurements are directly processed by an automotive-qualified microcontroller (Infineon
Aurix) in order to detect obstacles in the vehicle’s path. The microcontroller is able to
send commands to the vehicle’s system controller in order to apply the vehicle’s brakes or
to modify its path. The work published in [106] shows a comprehensive overview of this
approach and is included in this thesis (Chapter 8, Publication 1).

The updated version of the perception platform (version II) was mounted on an un-
manned robot vehicle (see Figure 6.2b). The ROS-based robot was fully developed and
constructed by the Virtual Vehicle as part of the ACTIVE research project. The second
version of the perception platform provides data from ToF, radar, and vision sensors. A
notebook is utilized as the processing unit, running a ROS-based perception software to
process the sensor data and detect obstacles. The platform’s output is forwarded to the ve-
hicle’s processing system to integrate the perceived surrounding data into its path-planning
process. The research project’s main focus was to perform accurate positioning, utilizing
vehicle-to-infrastructure (V2I) communication. The perception platform was successfully
utilized to detect obstacles and as a reference in order to evaluate the V2I localization ac-
curacy. A more detailed description of this approach is published in [105] and is attached
to this thesis (Chapter 8, Publication 7).

6. Results 111

(a) Mount on a scaled vehicle [104]. (b) Mount on an unmanned ground vehicle [105].

(c) Mount on a passenger vehicle.

Figure 6.2: Attachment of the environmental perception platform to different vehicles.

112 6. Results

The final version of the perception platform (version III) was mounted on a ROS-based
research vehicle provided by the Virtual Vehicle Research Center (see Figure 6.2c). The
modified passenger vehicle utilizes state-of-the-art automated driving components (e.g.,
Nvidia processing unit, drive to wire control, spinning rooftop lidar). The processing/pow-
ering part of the perception platform was placed in the vehicle’s trunk. The sensing part of
the perception platform was mounted at the vehicle’s front bumper and was connected to
the processing part via a USB3 and a power cable. The perception platform can be either
powered by the vehicle’s power supply or by the perception platform’s standalone battery.
The environmental perception platform’s provided measurement streams are forwarded
to the vehicle’s processing system and utilized as additional perception information. The
setup was utilized to acquire real-world measurement data and evaluate the implemented
perception tasks.

6.2 Base Perception System

The base perception system describes the environmental perception platform’s funda-
mental subsystem. The base perception system is in charge of the interactions with the
sensors and the low-level data handling. This includes the temporal and spatial data align-
ment, the data (pre-) processing, and the configuration of the sensor/processing modules.
The software architecture of this subsystem was designed and implemented, based on
the ROS framework, enabling a data-driven processing flow using multiple independent
modules. The hardware-specific structure of the base perception system’s software ar-
chitecture allowed only limited re-use of existing software modules, openly available to
the research/robotics community. Thus, the majority of the modules were implemented
from scratch, based on open-available research, or adapted from similar modules. This
section presents results associated with this subsystem as well as performance metrics of
the included modules.

6.2.1 Temporal Alignment

In order to obtain simultaneously acquired measurements, the different perception sensors
are jointly triggered via external signals. This section presents the output of simultane-
ously triggered ToF cameras, showing the need for nested triggering to avoid interferences
between the individual cameras. Additionally, the uncertainty of the data streams’ esti-
mated measurement timestamps is analyzed. A more detailed analysis of the perception
system’s temporal alignment is presented in the associated paper, published in [102] and
included in this thesis (Chapter 8, Publication 9).

Nested Time-of-Flight Triggering

Simultaneous triggering of multiple sensors can lead to interferences. Figure 6.3a shows
the distance images acquired from three simultaneously triggered ToF cameras (platform
version II). The simultaneous illumination phases of the different cameras cause distur-
bances in the distance images due to interference effects. As seen in the figure, the center
camera is most affected, resulting in invalid pixels (black) in the image’s center.

6. Results 113

(a) Simultaneous mode.

(b) Nested mode.

Figure 6.3: Influence of the external trigger strategy on the ToF measurement quality.

In order to avoid interferences, a nested illumination scheme is implemented. In nested
illumination mode, the utilized ToF cameras are triggered with individual delays, caus-
ing small offsets between the measurement acquisitions. These individual trigger delays
cause illuminations to be performed while the other cameras are in their readout phases.
Figure 6.4a shows the illumination and readout phases of one measurement performed
by a single ToF camera (eight-phase measurement). The time plot of three ToF cam-
eras, performing eight-phase measurements in nested illumination mode, is depicted in
Figure 6.4b. The signal course was recorded with an oscilloscope, using a photodiode in
order to obtain a signal indicating the illumination phases. The plotted signals represent
the trigger signal and the illumination intensity measured with the photodiode. In nested
mode, the single illuminations do not influence each other and provide an interference-free
output (see Figure 6.3b).

In the shown example, the offset between the individual frames is set to the duration of
a single illumination (approximately 1.8ms). Since a full readout of the ToF sensor takes
about 3.8ms, a maximum of three cameras can be operated in the nested mode without
overlapping illumination phases. Consecutively triggering the ToF cameras (one full mea-
surement after each other) would introduce a measurement offset of approximately 41ms.
In contrast, the offset introduced by nested triggering is small enough to be neglected for
numerous applications, including this work’s use cases.

Timestamp Accuracy

The sensors’ measurement data streams are extended with an estimated measurement
timestamp upon their reception by the base perception system’s receive modules. The
corresponding measurement timestamp is estimated utilizing a notification message from
the trigger microcontroller. Since the timestamp is derived from the reception time of that
message, the unknown transfer time causes an uncertainty in the resulting timestamp.
The base perception system’s temporal alignment module tries to compensate for that

114 6. Results

(a) One camera.

(b) Nested mode with three cameras.

Figure 6.4: Temporal plot of a ToF camera’s measurement in regular and nested mode.

delay utilizing both the estimated transfer time and the sensors’ configured measurement
rate. The mean round trip latency of the notification message (for 15 000 transfers) was
determined during an experiment, resulting in an estimated mean transfer time of 0.825ms.
The additional incorporation of the frame rate helps to reject outliers and to keep the
timestamp uncertainty in the range of a single millisecond during regular operation.

6.2.2 Spatial Alignment

The spatial alignment between the base perception system’s individual coordinate frames
is stored and maintained by the ROS framework’s TF tree. The static transformations
between the single perception sensors’ frames are obtained during a separate calibration
phase. The dynamic transformation between the platform and a location-fixed world
frame is continuously updated during operation, utilizing the data from multiple sensors
(IMU, ToF). Figure 6.5 shows the position and orientation of the platform’s frames in
3D, graphically represented using the ROS framework’s visualization tool RViz. The
transformation tree, as stored by the ROS is depicted in Figure 6.6. As seen in this figure,
each transformation includes a timestamp, allowing the system to provide temporally
accurate transformations at the sensors’ measurement times.

Precise transformations between the single perception sensors are crucial to enable the
high-quality fusion of data from multiple sensors. The static transformations are deter-
mined during individual calibration procedures and provided to the TF tree at startup.
Since a high quality of the transformations is required, the transformations obtained dur-
ing the calibration procedures are manually re-evaluated after the calibration phase. In
order to evaluate these transformations, multiple calibration targets are placed into the
sensors’ common field-of-view. The deviations between the single sensors’ detected target
positions are then utilized to indicate the corresponding transformation quality.

6. Results 115

Figure 6.5: Spatial alignment of the platform’s frames, visualized using the ROS tool RViz.

Figure 6.6: ROS transformation tree, visualized using a built-in visualization tool.

116 6. Results

The transformation quality between two ToF point clouds is evaluated using the Eu-
clidean distance between the detected target positions. For the transformation between
radar and ToF, the 2D top-down distance between the different detected target points is
considered. The transformation quality between the vision camera and the ToF camera is
evaluated by projecting the ToF camera’s detected target position onto the vision camera’s
image plane. The pixel distance between the target positions is utilized as a measure for
the transformation quality.

For the proposed platform, the correctly executed calibrations resulted in a precise
spatial alignment between the single sensors’ frames. Since the transformation error is
minimized during the calibration process, the resulting alignment error was in the range
of the utilized sensors’ measurement uncertainties. The determined transformation qual-
ity met the requirements of the implemented perception applications. However, if the
perception platform is intended to be used for higher distances (e.g., over 20m), addi-
tional calibration steps with targets at higher distances are required. The quality of the
transformations has to be repeatedly evaluated since the sensor alignment can change
over time (e.g., due to mechanical stress). If the transformation quality drops below a
certain threshold, a re-calibration of the corresponding sensors’ spatial alignment has to
be performed.

The dynamic transformation between the world frame and the environmental percep-
tion platform drifts over time since solely relative pose changes are incorporated. However,
the relative position change within a temporarily limited time-span is sufficiently accurate
for various perception tasks (e.g., local mapping). The extent of the transformation’s drift
mainly depends on the pose estimation quality between consecutive ToF point clouds. The
major influencing factors include the ToF camera’s resolution, the number of overlapping
points, and the pose estimation’s rate. For typical system configurations, the transforma-
tion’s deviation during the latest 30 seconds was sufficiently small to be neglected for the
desired applications (e.g., the environment mapping use case).

6.2.3 Sensor Data Processing

The base perception system provides multiple measurement streams at different abstrac-
tion levels and metadata streams of supplementary measurement information. This sub-
section provides a complete list of the base perception system’s data streams (final platform
version), available to upcoming subsystems. Additionally, the base perception system’s
performance and data load are presented for typical configurations of the environmental
perception system.

Provided Data Streams

All data streams published by the base perception system’s modules are made available to
upcoming subsystems (e.g., the implemented use cases) for further processing. Table 6.1
lists the base perception system’s output data streams, eligible for subsequent processing.
As seen in the table, the data streams are composed of measurement data streams (e.g.,
ToF point cloud, radar target list) and metadata streams (e.g., vision camera info, vision
parameters). The data streams solely intended for internal use are omitted in the table
since they are not further processed by any use case (e.g., the estimated measurement

6. Results 117

Table 6.1: Output data streams of the base perception system.

Data Streams Description

ToF point cloud Full point cloud of the first/second ToF camera
ToF point cloud subsampled Subsampled point cloud of the first/second ToF camera
ToF intensity image Intensity image of the first/second ToF camera
ToF distance image Distance image of the first/second ToF camera
ToF camera info Camera metadata of the first/second ToF camera
ToF parameters Parameter metadata of the first/second ToF camera
Vision image raw Unprocessed camera image from the vision camera
Vision camera info Camera information metadata of the vision camera
Vision parameters Parameter metadata of the vision camera
Vision image undistorted Undistorted camera image from the vision camera
Vision image subsampled Subsampled camera image from the vision camera
Radar range-Doppler Range-Doppler data from the radar sensor
Radar range-angle Range-angle data from the radar sensor
Radar range-Doppler CFAR CFAR thresholded radar range-Doppler data
Radar target list List of detected radar targets
Radar parameters Parameter metadata of the radar sensor
IMU data raw Measurement data of the IMU sensor
IMU movement detection Detected movements of the IMU sensor
Battery sensor value Battery voltage from the battery monitoring module

timestamp from the trigger module). The output of individual data streams can be omitted
by disabling them in the base perception system’s parameters. In addition, entire modules
and their associated processing branches can be disabled via launch file arguments (e.g.,
radar processing, ToF measurement acquisition).

Performance

The presented platform’s performance highly depends on its utilized configuration. The
base perception system’s nodes, involved in the data (pre-) processing, introduce different
latencies. The respective nodes’ output data streams are published according to their asso-
ciated processing latency. While the sensors’ measurement data streams are made available
almost immediately after their reception, the publication of high-level data streams can
be significantly delayed (e.g., radar targets).

If the provided data rate is higher than a module’s ability to process the data, frame
drops will occur. Since a number of modules require synchronized input data streams,
missing messages can lead to starvation effects. Frame drops at fundamental modules
(e.g., within the base perception system) have to be avoided to provide the use cases with
continuous output data streams. Thus, the processing load assigned to the base perception
system’s single modules defines the overall system’s maximum feasible frame rate.

The maximum frame rate stated in this section describes the perception sensors’ max-
imum measurement rate, allowing a stable operation (i.e., no frame drops). The deac-
tivation of computationally expensive modules (e.g., point cloud manipulation) increases

118 6. Results

the maximum frame rate but limits the selection of use cases. The system parameters
can also be adapted in order to allow higher frame rates (e.g., reduce measurement data
dimensions, reduce processing effort).

The final perception platform’s performance was evaluated using its four perception
sensors and the default configuration. If only the receive modules are enabled, the system
can handle measurement rates of up to around 10FPS. At higher rates, the USB connection
is limiting the data transfer, causing frame drops to occur. If the raw measurement streams
are additionally visualized, the maximum frame rate is further decreased.

Data Load

Similar to its performance, the base perception system’s data load is also highly dependent
on the system’s active configuration. The provided data load from the employed sensors
specifies the minimum data handling capabilities of the system (e.g., processing, record-
ing). The data load of the platform’s final version was examined for two different sensor
configuration settings: high resolution and reduced resolution. Since the input data load
of the base perception system is mainly determined by the perception sensors’ measure-
ment data streams (i.e., ToF, radar, vision), the remaining data streams were neglected
for the following considerations (e.g., IMU data, battery status).

� Configuration 1: high resolution
The ToF cameras were utilized at their full resolution (pixel binning=1). The radar
sensor was configured to N=1024 samples, M=128 chirps, and L=16 antennas.

One ToF point cloud of a single measurement results in 19.4Mbit. A radar data
cube amounts to 33.6Mbit and an uncompressed Full HD image from the vision
camera contains 55.3Mbit. At a frame rate of 10FPS, the combined sensor data
results in a data rate of 159.4MB/s.

� Configuration 2: reduced resolution
In the second configuration scenario, the ToF cameras’ resolutions were reduced
(pixel binning=3). The radar sensor was configured to N=256 samples, M=64
chirps, and L=16 antennas.

The resulting data loads of the individual sensor measurements amount to 2.1Mbit
for the ToF camera, 4.2Mbit for the radar sensor, and 55.3Mbit for the vision
camera. At a frame rate of 10FPS, the combined measurement data results in a total
data rate of 79.7MB/s. In order to further reduce the data load, the vision camera’s
output, a non-essential component for several perception tasks, was disabled. In this
case, the resulting data rate dropped to 10.6MB/s.

The nodes of the base perception system have to be able to cope with these data loads.
Since an increased data load leads to an increased processing time, the system’s maximum
feasible frame rate is limited by the sensors’ data load. In order to record datasets, the
ROS has to be able to continually store these data streams into a rosbag file. Since a fast
solid-state drive is used as the platform’s data storage, the system was able to record the
raw measurement streams for both examined configurations. In order to further increase
the maximum data load for recording, the ROS framework’s recording node provides the
functionality to efficiently compress the data streams before they are written to the rosbag.

6. Results 119

6.2.4 System Parameters

The base perception system includes a large set of parameters utilized to configure its
contained nodes. The nodes can contain different types of parameters, including de-
bug parameters (e.g., flags, logging level), data flow parameters (e.g., identifiers of the
utilized topics/services/frames), processing parameters (e.g., algorithm threshold/resolu-
tion/flags), and sensor configurations (e.g., resolution, sample rate). The parameters are
defined in the global configuration launch file, transferred to the ROS parameter server at
startup, and fetched during the initialization of the system’s nodes.

The base perception system’s parameters influence the shape, structure, and quality
of the provided data streams In addition, the selection of the parameters has a significant
impact on the system’s workload (e.g., processing load, latency, data rate). Thus, the
selection of the system parameters is of paramount importance in order to provide a high
perception quality. The parameters have to be defined according to the targeted applica-
tion’s requirements, the available processing capabilities, and the expected environment.

Figure 6.7 shows the visualization of the ToF and radar measurement data for two
different system parameter sets. The data was acquired with the environmental perception
platform’s second version and shows an indoor office environment. The only differences
between the two parameter sets are the radar processing node’s FFT bins (range-angle
FFT) and the ToF receive nodes’ binning parameter. As seen in the figure, the variation
of only these two parameters results in a high-resolution output (Figure 6.7a) and a low-
resolution output (Figure 6.7b). Compared to the low-resolution parameter set, the high-
resolution parameters result in a significantly increased data load and latency.

6.3 Use Cases

This section presents the obtained results during the evaluation of the implemented use
cases. Since the main purpose of the use cases is to demonstrate the environmental per-
ception platform’s capabilities, common perception tasks were implemented (e.g., pedes-
trian detection, obstacle detection). The implemented perception tasks are based on
well-established approaches and were adapted to the custom composition of this work’s
perception platform. Each use case’s output is presented for one or multiple example
scenarios and the use cases’ general performance is evaluated.

6.3.1 Context-Aware Parameter Adaption

The context-aware parameter adaption use case utilizes the system’s perceived context
state in order to adapt various system parameters to changing environments. The data
from multiple context sensors, the data from the perception sensors, and the system’s
current state are considered to obtain information about the system’s current context.
This information is processed by the use case’s parameter handlers, which propose the
update of certain parameters in order to adapt the system to its current context.

The subsystem’s capability is demonstrated by adapting the parameters of the obstacle
detection use case’s fusion module. The context-aware parameter adaption utilizes the
available context information (e.g., the ambient light intensity) to determine a confidence
value for each of the fusion module’s input data streams. The corresponding parameter

120 6. Results

(a) High-resolution parameters.

(b) Low-resolution parameters.

Figure 6.7: Impact of the system parameters on the resulting perception data. The
ToF point cloud and the radar range-angle data are visualized for two different parameter
sets [107].

handler initiates the adaption of the fusion module’s confidence parameters (e.g., ToF
confidence range, radar confidence range). The fusion module considers the sensor-specific
confidence parameters for the fusion task in order to provide a reliable output stream. The
adaptation of the platform’s parameters to its current context state is crucial to preserve
a high perception performance in changing environments.

Figure 6.8 shows an example scenario of the context-aware parameter adaption. The
second version of the platform was placed on a stationary object and exposed to a similar
scene at daytime and nighttime. As seen in the visualization of the corresponding ToF and
radar range data, the ToF camera’s perception quality is affected in the presence of bright
sunlight. The context-aware parameter adaption subsystem recognizes this environmental
state and degrades the ToF camera’s data stream accordingly. The corresponding pa-
rameter handler determines the ToF camera’s resulting confidence range and updates this
value in the system’s respective module. As seen in the figure, the associated confidence
range is reduced, as indicated by the green area in front of the platform.

The use case also implements the context-aware adaption for additional system param-
eters of the base perception system (e.g., radar samples, ToF illumination time, processing
thresholds). The obtained results show the potential of dynamic parameter adaption for
environmental perception systems. The utilization of the current context state enables
perception systems to significantly increase their robustness in changing environments.
Our publication [107] presents a more comprehensive overview of the approach and is
attached to this thesis (see Chapter 8, Publication 8).

6. Results 121

(a) Vision image at nighttime. (b) Vision image at daytime.

(c) Range sensor data at nighttime. (d) Range sensor data at daytime.

Figure 6.8: Degradation of a range sensor affected by bright sunlight. A context-dependent
confidence value is introduced in order to degrade affected data streams [107].

6.3.2 Obstacle Detection

The obstacle detection use case creates a local occupancy grid using multiple data streams
from the ToF cameras and the radar sensor. The individual data streams are transformed
into a common coordinate system before they are combined into an occupancy grid. The
inclusion of the radar data in addition to the 3D ToF data enhances the confidence of
detected obstacles and enables a common interpretation of the perception data. The
combination of both sensors allows the platform to detect obstacles incapable of being
trustworthily detected by the individual sensors’ measurement data.

The use case is demonstrated in an outdoor scenario with multiple pedestrians in the
perception sensors’ common field-of-view. The data was recorded during a test drive with
the second version of the environmental perception platform, mounted on the unmanned
ground vehicle provided by the Virtual Vehicle. Figure 6.9b depicts an image of the
described scenario, captured via the environmental perception platform’s fisheye vision
camera. There are four pedestrians present in the image, three standing still while one is
walking away from the vehicle.

Figure 6.9a shows the use case’s data flow to create the occupancy grid of this scenario.
The input data streams consist of the merged and subsampled point cloud from three ToF
cameras, the radar range-angle data, and the list of detected radar targets. As a first
step, individual top-down grid structures are created for each of the input data streams.
These individual grids provide sensor and data-specific representations of the perceived
scenario. While the two closer pedestrians are clearly recognizable in the ToF grid, the

122 6. Results

other two pedestrians are not distinctly detected anymore. The grid obtained from the
radar peaks clearly detects the walking pedestrian due to its radial velocity, while the
other persons result in weak peaks. The range-angle data stream acts as supplementary
information, marking areas according to their radar reflectivity. During the fusion task,
the individual grid structures are combined into a common occupancy grid. The fused
occupancy grid utilizes the strengths of the individual sensors and results in a combined
grid with enhanced expressiveness. As seen in the figure, the four pedestrians are clearly
detected in the fused occupancy grid.

The resulting quality and performance of the obtained occupancy grid highly depend
on the utilized system parameters. The most influential parameters include the sensor
configurations (e.g., ToF resolution, radar sample number), the pre-processing parameters
(e.g., cropped area, radar peak detection thresholds), and the use case’s parameters (e.g.,
grid cell size, fusion parameters). These parameters have to be selected according to the
requirements of the targeted application. In addition, the use case is able to create an
occupancy grid map of the local environment. In that case, the last N occupancy grids
are incorporated into a common map, utilizing the temporally accurate transformations
between the individual measurements. More details about the use case are published in our
conference paper [7], which is also included in this thesis (see Chapter 8, Publication 6).

6.3.3 Environment Mapping

The environment mapping use case creates a three-dimensional map of the environment
utilizing the presented platform’s perception data. For that purpose, the platform is moved
through the desired environment (e.g., driven by a vehicle or manually moved) while the
data from the perception sensors is accumulated. The ToF data streams are integrated
into a common point cloud, representing a map of the environment.

In the use case’s default configuration, the point cloud data stream from one ToF
camera is transformed and added to a global point cloud, representing a map of the
environment. The dynamic transformation between the platform’s reference frame and
the world frame has to be known and up-to-date in order to correctly align the data from
different measurement times. The base perception system’s spatial alignment module
utilizes the pose change between consecutive ToF measurements and the measurement
data from continuous IMU measurements in order to provide precise estimates of this
transformation. The transformation and its change over time are managed by the ROS
framework’s TF tree and made available to all ROS nodes during runtime.

The environmental mapping use case is demonstrated using the final version of the
developed environmental perception platform. In order to create a point cloud map, the
platform was manually moved through an office environment over a time period of about
45 seconds. The utilized ToF camera was configured to a frame rate of 5 FPS, while the
IMU sensor provides data at 100Hz. The transformation between the world frame and
the platform’s frame is continuously estimated and utilized to align the consecutive point
clouds into a common map. Since estimating the pose change between subsequent ToF
point clouds is computationally expensive, the corresponding pose is provided at low rates.
In the demonstrated scenario, these pose estimations were provided at rates between 0.5
and 1FPS. The incorporation of the IMU data allows the estimation of the transformation
during these pose updates.

6. Results 123

(a) Occupancy grid data flow.

(b) Vision camera image.

Figure 6.9: Occupancy grid creation based on heterogeneous range data. The vision image is
depicted as a reference but not included in the occupancy grid cration. Obtained with changes
from [7].

124 6. Results

Figure 6.10: Map output of the environmental mapping use case.

Figure 6.10 shows the resulting output point cloud acquired during this process. The
room’s basic structure is clearly visible, containing multiple tables, shelves, and windows.
As seen in the figure, the map incorporates a slight blur since the point clouds are not
perfectly aligned. The reasons for that blur are inaccuracies of the estimated pose change,
which lead to a drift of the transformation over time. The approach fully relies on the
relative pose changes and does not utilize global measurements (e.g., GNSS) or feedback
from the created map to compensate measurement drifts. Thus, the presented approach
is limited to create maps for temporarily limited intervals (e.g., local mapping, occupancy
grid maps). The perceived map’s quality reflects the estimated transformation quality
utilized for various perception tasks.

6.3.4 Pedestrian Detection

The pedestrian detection use case combines data from multiple perception sensors to
detect pedestrians in the sensors’ common field-of-view. The approach fuses the output of
a HOG-based classifier and an augmented vision image in order to enhance the detection
capabilities of the vision-only approach. The range measurements from the radar sensor
and one ToF camera are projected onto the vision image and utilized to amplify regions,
which potentially contain pedestrians.

The pedestrian detection use case is demonstrated using the platform’s final version,
placed on a stationary object. The example test scene shows a person walking towards the
environmental perception platform. Figure 6.11 shows the data flow of the subsystem’s
modules for the example scenario. The upper-left image depicts the projected range data
onto the vision camera’s image. The radar targets are marked as blue vertical lines, while
the ToF points are added as purple dots. Due to the simultaneous data acquisition and the
synchronized data streams (via the timestamps), the range data is correctly aligned with
the vision camera’s image. The upper-right image shows the vision camera’s image with
marked bounding boxes, obtained from a moving window pedestrian detection using a
HOG-based classifier. These two intermediate data streams are combined into a heatmap,
utilizing the range data as an amplification value for the corresponding bounding boxes.
The output of the heatmap is then thresholded in order to obtain an improved detection
of the pedestrians in the scene. As seen in the output image, the walking pedestrian is
correctly detected and marked with a bounding box.

6. Results 125

Figure 6.11: Pedestrian detection based on fused information from vision and range data [102].

Compared to the vision-only pedestrian detection, this approach detects pedestrians
with increased confidence while keeping the false-positive rate low. Similar to the other
use cases, the pedestrian detection use case can be customized via various parameters
(e.g., size/shape of projected points, classification sensitivity, heatmap thresholds). In ad-
dition to the use case’s parameters, the pedestrian detection’s performance also depends
on the base perception system’s parameters (e.g., sensor configuration). In order to fur-
ther increase the use case’s performance, these parameters require additional fine-tuning
according to the target environment. A more comprehensive description of the imple-
mented pedestrian detection is available in our conference paper [102]. A reprint of that
publication is attached to this thesis (see Chapter 8, Publication 9).

6.3.5 Data Visualization

The data visualization use case represents the environmental perception platform’s data
streams graphically. The ROS tool RViz is utilized to visualize different types of data
streams provided by the base perception system or by other use cases. The visualiza-
tion of the data streams is a valuable instrument to enable the visual evaluation of the
system’s perception performance. RViz utilizes the transformations provided by the base
perception system’s spatial alignment module in order to correctly align range data in the
3D coordinate space. In addition, the use case supports the conversion of not directly
visualizable data streams to visualizable representations (e.g., detected radar targets).

126 6. Results

(a) Fisheye camera image. (b) Range data.

Figure 6.12: Demonstration of the data visualization use case in an indoor scenario, recorded
with the platform’s second version.

(a) Vision camera image. (b) Range data.

Figure 6.13: Visualization of an outdoor scenario, recorded with the platform’s final version.

The selection of visualized data streams and the corresponding display options in RViz
differ significantly for the different use cases. Thus, there exist individual predefined launch
files for each use case. These launch files include the corresponding use case’s visualization
configuration, including an associated display configuration for RViz.

The visualization use case is demonstrated in two different scenarios. The first scenario
was recorded with the second version of the environmental perception platform, statically
placed on a table. Figure 6.12a shows the acquired vision image of the corresponding
office environment. The RViz visualization of the corresponding range data is depicted in
Figure 6.12b. The tool visualizes the point clouds from the three ToF cameras and overlays
the radar sensor’s range-angle image. The second demonstrated scenario was acquired
with the platform’s final version, mounted on a passenger vehicle. The example scenario
was recorded in an outdoor scenario and shows a pedestrian running towards the vehicle
(see Figure 6.13a). The pre-processed range data of the corresponding measurement is
presented in Figure 6.13b. The visualized ToF point cloud is a subsampled and filtered
version of the full measurement. As seen in the figure, the radar range-angle data and the
ToF camera’s points of the pedestrian are correctly aligned.

Chapter 7

Conclusion and Future Work

This chapter highlights the main contributions of the thesis and states the work’s influence
on the associated research field. In addition, the research questions are answered, the
major limitations of the platform are presented, and possible directions for future work
are addressed.

7.1 Conclusion

Robust environmental perception is crucial to enable an autonomous operation of vehi-
cles and robots in open environments. A robust perception ability is among the major
safety requirements of potentially harmful machines and devices, which operate alongside
humans. Any device deploying multiple sensors to perceive the environment can benefit
from improved methods to enhance the provided output data quality. However, the re-
search on novel sensor fusion concepts is restricted due to the limited availability of open
datasets and open platforms capable of providing low-level sensor access.

This thesis presents the physical composition, the design, and the implementation of
an environmental perception system with the ability to provide sensor data at various
abstraction levels. Multiple state-of-the-art perception sensors were integrated into a
standalone platform, capable of being mounted on various types of vehicles. The work
addresses several key-challenges of perception systems, vital to enable the low-level fusion
of heterogeneous sensor data. The presented approaches include the data alignment,
the sensor synchronization, and the dynamic configuration of the system’s parameters.
Utilizing the provided sensor data, various sensor fusion concepts were implemented in
order to enhance the performance of common perception tasks (e.g., object detection).

The constructed environmental perception platform evolved from a single-sensor so-
lution to a multi-sensor perception platform. The final platform deploys a radar sensor,
multiple ToF cameras, and a vision camera as perception sensors. The selected sensors
allow the dynamic adjustment of their configurations, triggered data acquisition via an
external signal, and are capable of providing low-level measurement data. Further, the
platform includes additional context sensors (e.g., IMU, light sensor), a processing unit,
and a lithium battery to allow the platform’s independent operation. Since aluminum
profiles are utilized as the base structure, the platform can be easily mounted on various
platforms, including vehicles and robots.

129

130 7. Conclusion and Future Work

The platform’s fundamental component is the base perception system, a subsystem
for data handling and early-stage processing. This subsystem implements several data-
handling tasks and (pre-) processing steps, including the measurement data’s spatial and
temporal alignment The base perception system outputs structured and properly aligned
data streams at different abstraction levels. Succeeding subsystems can utilize these data
streams to perform application-specific processing tasks. In order to demonstrate the abil-
ities of the platform, multiple use cases were implemented. These use cases include well-
established perception tasks such as data visualization, context-aware parameter adaption,
obstacle detection, and pedestrian detection.

Due to its rapid prototyping abilities and reputation in the research community, the
ROS was selected as the base framework for the software implementation. Each subsys-
tem’s processing modules were implemented as ROS nodes. The data streams between
these nodes are exchanged via ROS messages. Built-in tools of the ROS framework and
community-provided modules were utilized to support and speed-up the implementation
process. In addition, the framework allows straightforward integration of the environmen-
tal perception platform into other ROS-based systems (e.g., research vehicles).

The provided platform enables the conduction and evaluation of various sensor fusion
concepts from low-level sensor fusion to high-level sensor fusion. Each of the base percep-
tion system’s (pre-) processing modules performs a specified amount of processing before
one or multiple output data streams are provided to succeeding modules. The perception
platform supports the custom setting of the sensors’ configuration parameters (e.g., ex-
posure time, waveform type, sample rate). This enables the evaluation and exploration
of the system’s performance depending on the applied set of sensor configurations. Since
the platform further allows the recording of datasets in addition to live processing, earlier
recorded measurements can be used for later offline evaluation. The offline evaluation of
recorded datasets enables the qualitative comparison of different processing algorithms
(e.g., during the development phase).

As a practical demonstration, the proposed platform was mounted on different research
vehicles to obtain data in real-world scenarios. Multiple datasets were recorded and uti-
lized to evaluate the capabilities of the proposed environmental perception platform. For
this purpose, the base perception system and the implemented use cases were operated
with the recorded datasets and evaluated applying different types of parameter settings.
The integration of low-level data has been shown to improve the system’s perception per-
formance for various use cases (e.g., obstacle detection or pedestrian detection). The fusion
of data from multiple sensors enables the distinct detection of objects insufficiently per-
ceived by any individual sensor. For example, the radar sensor’s velocity information can
be exploited to amplify the corresponding, low-confidence ToF points. The implemented
context-aware parameter adaption use case utilizes the perceived context information to
adapt the system’s parameters (e.g., sensor configuration, algorithm parameters). The
activation of this use case results in an improved perception performance in changing
environments.

The proposed environmental perception platform is Infineon Technologies’ first inter-
nally developed multi-sensor perception system, enabling simultaneous data acquisition
with heterogeneous sensors. The perception system enables rapid evaluation of sensor
capabilities in a multi-sensor system while preserving full control of the low-level sensor
configurations. Since the platform can be mounted on various vehicles, the provided sen-

7. Conclusion and Future Work 131

sor data can be utilized to perform state-of-the-art perception tasks in dynamic real-world
scenarios. This enables the early identification of sensor weaknesses in the targeted en-
vironment, which is of high importance in product-to-system-oriented businesses. One
limitation of the ToF camera, identified during an evaluation run (missing distance infor-
mation in the area of saturated pixels), resulted in a patent application of the mitigation
approach [108] (see Chapter 8, Patent 1).

This work’s approach can be utilized as a reference for the development of multi-sensor
perception platforms. The presented work provides solutions to numerous challenges aris-
ing during the development of low-level capable environmental perception platforms. Re-
searchers can employ this knowledge in order to speed-up the design and implementation
of similar platforms. This enables a faster advancement of research on low-level sensor
fusion and further contributes to the development of more robust and reliable perception
systems.

7.1.1 Answers to the Research Questions

In Chapter 1 of this thesis, three main research questions were formulated. The obtained
results and findings during the work on this thesis can be utilized to answer these questions.

R1 What is a feasible design and implementation of an environmental perception platform
capable of performing a low-level fusion of heterogeneous sensors?

This work’s approach separates the platform into the base perception system and multiple
use-case subsystems. The base perception system handles the low-level interaction with
the sensors and provides aligned perception data at different abstraction levels to the
use cases. The amount of (pre-) processing performed by the base perception system is
individually adjusted to the active use case(s).

R2 How can single components of a sensor fusion system be configured to obtain a sat-
isfactory perception performance in changing environments?

The context-aware parameter adaption use case presents an approach to adapt the system’s
parameters during runtime. Multiple parameter handlers utilize the current system state
to determine new values for sensor configuration parameters and system parameters (e.g.,
sample rate, illumination time). The parameters are dynamically assessed using system
knowledge, heuristics, and iterative feedback-based methods.

R3 How can low-level fusion of radar and ToF data contribute to enhance the quality
of state-of-the-art environmental perception systems for robotic/automotive applica-
tions?

As seen in the implemented use cases, the fusion of radar data with high-resolution distance
data can be beneficial for various applications. Radar sensors are capable of operating in
harsh weather conditions, whereas light-based sensors typically provide higher resolutions.
The complementary strengths of the heterogeneous sensors can be utilized to increase the
robustness of the fused data. The obtained results indicate that the additional data from
radar sensors can enhance the performance of a variety of perception tasks.

132 7. Conclusion and Future Work

7.1.2 Limitations

The platform’s main restriction is the limited selection of perception sensors, as sensor
fusion strategies can only be evaluated for the provided types of sensor data (ToF, radar,
vision). However, the modular design of the base perception system allows fast integration
of additional perception sensors.

The utilized radar sensor cannot perform a parameter adaption on-the-fly, as the de-
velopment board has to be restarted after each adaptation of the sensor’s configuration.
The introduced delay limits the platform’s adaptation speed and causes radar frames to
be dropped during that transition. The deployed ToF cameras provide a similar output
as the commonly used lidar sensors. However, the operating range of ToF cameras is
generally inferior to the range of lidar sensors.

The presented time synchronization approach relies on an estimation of a notification
message’s delay and an expected frame delay. Thus, the precision of the obtained times-
tamps is limited by the deviation of the message’s delay from the estimated delay. In
addition, the calibration approach of this thesis requires the manual placement of multiple
artificial targets and the manual engagement into the procedure.

Multiple factors limit the maximum frame rate of the platform. Although the single
sensors’ measurement durations (for standard configurations) allow frame rates of more
than 20FPS, these rates are not achievable in practice. The major limiting factors are
the system’s processing performance and the bandwidth to the sensors. For this reason,
the base perception system is incapable of handling high frame rates, especially if the
majority of processing modules are enabled. The maximum feasible rate highly depends
on the utilized system parameters (e.g., sensor resolution, algorithm parameters).

7.2 Directions for Future Work

This section presents possible directions for future work based on the outcome of this
thesis. The proposed future work is separated into three main categories: the research on
perception applications, the platform’s optimization, and the recording of datasets.

7.2.1 Research on Perception Applications

The most straightforward direction for future work is the platform’s intended usage: to
perform research on environmental perception systems and their applications. A first step
is the adaption of additional well-established perception tasks (e.g., localization, obstacle
recognition) to the presented platform. The platform’s low-level access to the sensors
enables research on all layers of the perception processing chain. Possible research areas
range from low-level tasks, such as data handling or self-adaption, to high-level tasks, such
as localization or object detection. Additionally, the low-level data streams can be utilized
to implement and evaluate novel sensor fusion concepts.

The availability of spatially and temporally synchronized perception data also enables
the utilization of machine learning-based methods on different data abstraction levels.
However, since the learning-based approaches require a high amount of training data, a
large dataset of labeled data is vital to deploy this approach successfully.

7. Conclusion and Future Work 133

Additional representations of the sensors’ raw data could be integrated in order to
evaluate their benefit for various perception tasks. This includes the radar range-Doppler
signature of targets and the variation of the corresponding radar response over time. The
so-called micro-Doppler data (as described in [109]) can be used for object recognition in
addition to the data gathered from the ToF and the vision camera.

7.2.2 Platform Optimization

Future work can also assess further improvement of the environmental perception plat-
form’s hardware and software capabilities. This subsection introduces several approaches
to optimize the proposed platform.

Hardware

Additional perception sensors of different types (e.g., lidar, thermal camera, ultrasonic)
could be added to the platform in order to provide more heterogeneous data streams.
The platform could be equipped with additional context sensors to enhance the obtained
context information and improve its self-adaptation capabilities. However, the inclusion of
additional sensors also results in an increased demand for interfaces and processing power.

The existing sensors could be exchanged with more powerful sensors of the same type
to extend the platform’s target applications. For example, the radar sensor could be
exchanged with an alternative model capable of additionally providing the azimuth angle
and adapting the sensor configuration on-the-fly. The used ToF cameras could be upgraded
to models with a more powerful illumination unit, capable of operating at distances of
up to 50m. The vision camera could be replaced by a version, which already performs
fundamental processing steps directly on the camera, like compressing the image data.

Hardware modifications could also be utilized to improve the processing performance
of the platform. The processing unit (Intel NUC) could be interchanged with powerful
CPU/GPU combinations or an automotive supercomputer (e.g., Nvidia Drive platform) to
allow computationally expensive processing (e.g., deep learning). FPGAs could be added
to the platform to perform certain low-level pre-processing in hardware (e.g., radar FFT
or ToF point cloud calculation).

From a safety viewpoint, the system could be extended with a safety-focused microcon-
troller to monitor non-deterministic processing tasks. The additional supervision enables
the system to detect failures and react accordingly, improving the its overall robustness.
Depending on the targeted applications, the microcontroller could also handle the system’s
critical real-time tasks.

Software

The proposed perception system utilizes the Kinetic Kame distribution release of the ROS
framework. In order to benefit from its most recent advancements and functionalities, an
update to the latest version is recommended in the future (support of Kinetic Kame
ends 2021). Alternatively, the software could be ported to the ROS2 framework, a major
advancement of the original ROS framework, addressing the initial framework’s limitations
(e.g., real-time performance, python 3 support).

134 7. Conclusion and Future Work

In addition, the software performance of the platform’s base perception system could
be further optimized in the future. One possibility is the utilization of ROS nodelets, a
concept that allows a zero-overhead copy of data between ROS nodes (shared pointer).
Since nodelets are only supported for C++ interfaces, all python-based nodes have to be
ported beforehand.

7.2.3 Dataset Recording

The environmental perception platform could be utilized to record more versatile datasets
in various environments. These datasets could then be used to support the development
of algorithms and to evaluate their performance in reference scenarios. Additionally, the
recorded data could be labeled with ground truth information to enable the utilization of
the datasets to train learning-based algorithms. A well-structured dataset can furthermore
be published online with the main goal to provide the research community with the low-
level perception data obtained from the platform.

Datasets can be recorded in various environments to support the development of robust
perception algorithms. The platform can be either mounted on different types of vehicles
or statically placed in the environment. Additionally, the datasets can be recorded in
different environmental conditions (e.g., highway driving, city, fog, snow, sunshine). These
datasets can then be utilized to determine a perception platform’s limits and to identify
edge cases. Identifying and mastering edge cases is of major importance to move the
technology forward and to improve the robustness of future systems.

Chapter 8

Publications

The work conducted during this thesis has resulted in multiple publications to the scientific
research community. Eight peer-reviewed conference papers, one book chapter, and one
patent application are attached to the thesis. Figure 8.1 illustrates the association of the
single papers to the contributions and the objectives, defined in Chapter 1. Identifiers
for the publications (1-9) and the patent application (P1) are put into the circles next
to one or multiple associated contributions. Due to the continuous advancement of the
perception platform, certain contributions were addressed in multiple publications. This
chapter briefly outlines each publication in order to provide an overview of the attached
publications and their connections to each other. In addition, an authors’ contribution
statement is provided for each work, describing how the workload of the publications was
distributed among the associated authors. Subsequently, reprints of the single publications
are attached to this chapter.

Figure 8.1: Assignment of the publications (1-9, P1) to the contributions (C1-C9) and
the objectives (O1-O3) of this thesis.

A practical evaluation of a ToF camera for environmental perception, implemented on
an automotive safety-focused microcontroller, is described in Publication 1. The paper
presented in Publication 2 covers the state-of-the-art of automotive radar sensors and
highlights the importance of these sensors in perception systems due to their ability to
work in harsh weather conditions. Publication 3 provides a general overview of ToF
cameras and presents a way to utilize ToF cameras to perform localization. In Publica-
tion 4, a platform is presented, capable of combining the data from radar and ToF. The

137

138 8. Publications

utilized architecture can be used as a base to fuse radar and ToF data. The feasibility of
ToF cameras for parking assistance and collision avoidance is presented in Publication 5.
The work published in Publication 6 shows an approach to fuse ToF and radar data into
a common occupancy grid. Publication 7 shows the incorporation of the environmental
perception platform into a robot research vehicle. The robot utilizes the mounted per-
ception platform in order to detect obstacles and to evaluate its localization precision.
The approach published in Publication 8 outlines the context-aware adaptation of the
environmental perception platform’s parameters during runtime. Publication 9 presents
a novel method to timestamp triggered measurements and demonstrates a use case, per-
forming pedestrian detection. A novel approach to detect and filter erroneous ToF pixels
next to overexposed areas caused by highly reflective objects is described in Patent 1.

List of Included Publications

Publication 1: J. Steinbaeck, A. Tengg, G. Holweg, and N. Druml, A 3D Time-of-
Flight Mixed-Criticality System for Environment Perception, 2017 Euromicro Conference
on Digital System Design (DSD), 30 Aug.-1 Sept. 2017, Vienna, Austria.

Author contributions: conceptualization JS, AT, and ND; state-of-the-art research JS; development of
methodology JS; hardware/software design JS; conduction of experiments JS; data analysis and interpre-
tation JS; drafting the manuscript JS; critical revision AT and ND; final approval GH.

Publication 2: J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, Next Generation
Radar Sensors in Automotive Sensor Fusion Systems, 2017 Sensor Data Fusion: Trends,
Solutions, Applications (SDF), 10-12 Oct. 2017, Bonn, Germany.

Author contributions: conceptualization JS; state-of-the-art research JS; drafting the manuscript JS; safety
considerations subsection: ND; critical revision CS and ND; final approval GH.

Publication 3: H. Plank, J. Steinbaeck, N. Druml, C. Steger, and G. Holweg, Localization
and Context Determination for Cyber-Physical Systems Based on 3D Imaging, Solutions
for Cyber-Physical Systems Ubiquity, IGI Global, 2018.

Author contributions: conceptualization HP and ND; state-of-the-art research HP and JS; development
of methodology HP; hardware/software design HP; conduction of experiments HP; data analysis and
interpretation HP; drafting the manuscript HP and JS; critical revision HP, JS, ND, and CS; final approval
GH.

Publication 4: J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, Design of a Low-Level
Radar and Time-of-Flight Sensor Fusion Framework, 2018 21st Euromicro Conference on
Digital System Design (DSD), 29-31 Aug. 2018, Prague, Czech Republic.

Author contributions: conceptualization JS, CS, and ND; state-of-the-art research JS; development of
methodology JS; hardware/software design JS; conduction of experiments JS; data analysis and interpre-
tation JS; drafting the manuscript JS; critical revision CS and ND; final approval GH.

Publication 5: J. Steinbaeck, N. Druml, A. Tengg, C. Steger, and B. Hillbrand, Time-
of-Flight Cameras for Parking Assistance: A Feasibility Study, 2018 12th International
Conference on Advanced Semiconductor Devices and Microsystems (ASDAM), 21-24 Oct.
2018, Smolenice, Slovakia.

8. Publications 139

Author contributions: conceptualization JS, ND, and BH; state-of-the-art research JS; development of
methodology AT and BH; hardware/software design AT and BH; conduction of experiments AT and BH;
data analysis and interpretation JS; drafting the manuscript JS; critical revision ND, CS, and BH; final
approval BH.

Publication 6: J. Steinbaeck, C. Steger, E. Brenner, G. Holweg, and N. Druml, Oc-
cupancy Grid Fusion of Low-Level Radar and Time-of-Flight Sensor Data, 2019 22nd
Euromicro Conference on Digital System Design (DSD), 28-30 Aug. 2019, Kallithea,
Greece.

Author contributions: conceptualization JS; state-of-the-art research JS; development and implementa-
tion of methodology JS; conduction of experiments JS; data analysis and interpretation JS; drafting the
manuscript JS; critical revision CS, EB, and ND; final approval GH.

Publication 7: J. Steinbaeck, N. Druml, T. Herndl, S. Loigge, N. Marko, M. Postl, G.
Kail, R. Hladik, G. Hechenberger, H. Fuereder, C. Steger, E. Brenner, and C. Schwarzl,
ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse Envi-
ronments, 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), 15-17 Oct.
2019, Bonn, Germany.

Author contributions: conceptualization TH, ND, HF, and C Schwarzl; development and construction of
robot SL, NM, MP, and C Schwarzl; design and implementation of road side unit GK, RH, GH, and HF;
design and implementation of environmental perception platform JS; conduction of experiments JS, SL,
NM, MP, RH, and CS; localization accuracy analysis and interpretation GK, RH, GH, and HF; perception
data analysis and interpretation JS; drafting the manuscript JS; critical revision ND, RH, C Steger, EB,
and C Schwarzl; final approval C Schwarzl.

Publication 8: J. Steinbaeck, A. Strasser, C. Steger, E. Brenner, G. Holweg, and N.
Druml, Context-Aware Sensor Adaption of a Radar and Time-of-Flight Based Perception
Platform, 2020 IEEE Sensors Applications Symposium (SAS), 9-11 Mar. 2020, Kuala
Lumpur, Malaysia.

Author contributions: parameter adaption concept JS; sensor degradation concept AS; state-of-the-art
research JS; hardware/software design JS; conduction of experiments JS and AS; data analysis and inter-
pretation JS and ND; drafting the manuscript JS; critical revision AS, CS, EB, and ND; final approval
GH.

Publication 9: J. Steinbaeck, C. Steger, E. Brenner, and N. Druml, A Hybrid Times-
tamping Approach for Multi-Sensor Perception Systems, 2020 23rd Euromicro Conference
on Digital System Design (DSD), 26-28 Aug. 2020, Kranj, Slovenia.

Author contributions: conceptualization JS, CS, and ND; state-of-the-art research JS; development and
implementation of methodology JS; conduction of experiments JS; data analysis and interpretation JS;
drafting the manuscript JS; critical revision CS, EB, and ND; final approval ND.

Patent 1: J. Steinbaeck, H. Plank, and A. Schoenlieb, Time of Flight Sensor Module,
Method, Apparatus and Computer Program for Determining Distance Information Based
on Time of Flight Sensor Data, European Patent Application, filed 2018.

Author contributions: identification of problem JS; conceptualization HP and AS; design of methodology
JS, HP, and AS; data collection JS, AS, and HP; data analysis and interpretation JS, AS, and HP; drafting
the methodology for the patent application JS, HP, and AS.

A 3D Time-of-Flight Mixed-Criticality System for
Environment Perception

Josef Steinbaeck∗, Allan Tengg†, Gerald Holweg∗, and Norbert Druml∗
∗Infineon Technologies Austria AG, Graz, Austria

{josef.steinbaeck, gerald.holweg, norbert.druml}@infineon.com
†Virtual Vehicle Research Center, Graz, Austria

allan.tengg@v2c2.at

Abstract—Automated driving systems have to operate at the
highest level of robustness and safety. Thus, redundancy and
diversity of the deployed systems are inevitable in order to
guarantee the functionality in any possible scenario. Today,
the most used sensor technologies for environment perception
are color cameras, radar, light detection and ranging (LIDAR),
and ultrasonic sensors. This work evaluates the feasibility of a
3D Time-of-Flight (ToF) camera to be used as environmental
perception sensor in robotics and automated/assisted driving.

To examine the performance of the sensor in the field, a ToF
processing platform is attached to a 1:5 scaled remote control
vehicle. An algorithm, which detects and reacts to obstacles in
real-time, is designed and implemented on an AURIX automo-
tive safety-microcontroller as major part of a mixed-criticality
application. The embedded system highly benefits from the low
computational effort required by ToF imaging (in contrast to
stereo vision). Utilizing all three cores of the AURIX, the system
achieves frame-rates of up to 30 frames per second (FPS).

Index Terms—Time-of-Flight, 3D imaging, infrared image
sensors, accident prevention, robotics, unmanned vehicles

I. INTRODUCTION

Environmental perception sensors are one of the key tech-
nologies in the robotic/automotive industry to enable au-
tonomous systems. Multiple sensor technologies are used in
parallel to wipe out weaknesses of single sensors, targeting
a very robust digital representation of the environment in any
possible scenario. The most valuable environmental perception
sensors as of today are color cameras, radar, LIDAR, and
ultrasonic sensors. Multi-sensor data fusion is crucial to miti-
gate individual weaknesses and accomplish the desired safety
standards required for automated driving functionality. Thus,
the industry is permanently aiming to discover and exploit new
sensor technologies in order to add value and robustness.

ToF cameras are an uprising technology in this sector. In
contrast to stereo-vision, they provide high frame-rate 3D
data with minimal computational overhead. Additionally, ToF
cameras are very compact and inexpensive. As the name
indicates, the travel time of light is measured to obtain distance
information of a scene. In the indirect ToF approach, the scene
is illuminated with continuously modulated infrared light and
the phase difference between the transmitted and the reflected
light is measured [1]. Utilizing the speed of light, the distance
can then be efficiently determined. A practical approach is
to place an array of photonic mixing device (PMD) pixels
behind an optical lens. The obtained sensor data is then used

3D
Scene

LED / Laser Illumination

Electrical SignalOptical Signal

Reflected
Optical Signal

Electrical Signal

Reflected
Electrical Signal

Phase Shift

Time-of-Flight Sensor

Raw
Data

Post
Processing

Depth
Data

Modulation
Block

Amplitude
Data

Fig. 1. Principle of ToF 3D imaging using continuously modulated infrared
light [2].

to calculate a distance image and an intensity image of the
scene. A graphical illustration of the ToF principle is shown
in Fig. 1. The work presented in [2] includes further details
of the ToF principle.

In this work, we evaluate the feasibility of a 3D ToF camera
in order to be used in robotics as well as automated/assisted
driving systems. For this purpose, an automotive safety micro-
controller is used to process the data from a state-of-the-art
ToF camera. The successful implementation of a basic object
detection algorithm is demonstrated by mounting the platform
on a 1:5 scaled remote controlled vehicle. To sum up, the
contributions of this paper to scientific research are:

• The design of a lightweight object detection algorithm
based on raw data from a ToF camera.

• An implementation of the algorithm on a resource-
constrained automotive safety controller as part of a
mixed-criticality application using a pipelining approach
to maximize the throughput.

• The practical evaluation of a ToF sensor for automotive
environment perception with a scaled vehicle as demon-
strator.

Section II introduces related approaches based on distance
data and ToF cameras. The design and implementation of the
image processing algorithm on an automotive microcontroller
is described in Section III. The Sections IV and V show the
performance of the ToF processing platform mounted on a
scaled vehicle and discuss the potential of ToF sensors in the
robotic/automotive industry.

8. Publications Publication 1 - DSD 2017 141

© 2017 IEEE. Reprinted, with permission, from 2017 Euromicro Conference on Digital
System Design (DSD).

II. RELATED WORK

This section gives an overview of some techniques on how
to compensate imperfections of ToF cameras. Additionally,
some related applications considering object detection are
presented.

A. Time-of-Flight Cameras

Computing the distance image from raw ToF sensor data
is a straightforward task and requires low computational
effort. However, the image values come with systematic and
random errors, such as temperature and distance dependent
errors, global offset, and fixed pattern noise. Calibration and
mathematical models can be used to compensate the well-
known systematic errors. The authors of [3] give an in-
detail overview of the different errors and methods for their
correction. However, every error compensation adds an extra
computation time to the distance data calculation and reduces
the maximum frame-rate of the system.

There exist approaches to speed-up the error compensation
by implementing parts of the distance data computation and
error compensation in hardware. The authors of [4] present an
approach to implement the 3D distance computation and var-
ious time-consuming error compensation steps on an FPGA.

Interfering infrared light, transmitted at the same wavelength
as by the ToF camera, decreases the sensor’s signal-to-noise-
ratio (SNR) and can cause pixels to saturate. Thus, ToF cam-
eras can become impractical when direct sunlight is present.
The authors of [5] show a method to minimize the influence
of ambient light by using a method called suppression of
background illumination (SBI). ToF cameras with SBI can be
used in situations where ambient light is present and are not
limited to indoor usage.

One possibility to enhance the expressiveness of the distance
image is by fusing it with a color image of the same scene, as
shown in [6]. This can however be challenging for dynamic
scenes, since it requires the ToF camera and the color camera
to be precisely synchronized.

B. Object Detection with 3D Cameras

Since the distance image obtained from ToF cameras is
similar to 3D images from stereo cameras, many existing
algorithms initially designed for stereo are also applicable to
ToF images. This is beneficial since certain applications can
profit from the characteristics of ToF imaging. Advantages
of ToF include the lowlight performance due to the active
illumination and the relatively low computational overhead.
Thus, also novel methods specializing on ToF and utilizing
these advantages have been introduced.

The work published in [7] shows an efficient way to segment
a scene and to classify pedestrians using 3D data. Existing
approaches of ToF cameras in the automotive industry target
driver monitoring [8] and human-machine-interaction (HMI)
[9]. A ToF camera as part of a front-view application is
presented in [10], where a measurement range of over 35 m
could be achieved. The authors of [11] show an approach
to utilize ToF cameras for optical vehicle-to-vehicle (V2V)

communication. General applications of ToF cameras include
pose tracking [12], indoor navigation [13] and augmented
reality.

To the best of our knowledge, there is a gap in literature
concerning real-time 3D environment perception using safety-
focused microcontrollers. This paper provides an innovative
contribution to the ongoing discussion in this important field
of research [2] [9].

III. TIME-OF-FLIGHT BASED ENVIRONMENTAL
PERCEPTION SYSTEM

This section describes the components of the setup built
in this work and shows the structure of the implemented
algorithm on the mobile platform.

A. Time-of-Flight Camera

As ToF camera, an evaluation board from Infineon Tech-
nologies was selected. It houses the IRS1020C, one of the first
generation 3D image sensors developed and produced by Infi-
neon Technologies AG in cooperation with PMD Technologies
AG. The sensor has a resolution of 352 x 188 pixels, comes
with SBI to enable outdoor applications and supports frame-
rates of over 100 FPS. The raw sensor data can be accessed
via a parallel interface (PIF) or a serial interface (CSI-2). To
increase the readout speed, 2 x 2 binning and the selection of
a centered region of interest are enabled on the imaging chip.
This reduces the transmitted resolution to 160 x 120 pixels and
improves the SNR.

A dynamic on-the-fly reconfiguration is possible via I2C.
The most influential configuration parameters and their im-
pacts are:

• the modulation frequency, influencing the unambiguous
range and accuracy,

• the exposure time, affecting the SNR and saturation
effects, and

• the frame-rate, influencing the time between two ToF
images are captured.

The evaluation board also consists of an illumination board,
equipped with two infrared LEDs. With this relatively weak,
but eye-safe illumination unit, a minimum effective working
range of 4 m can be expected. However, existing work has
shown that using a stronger illumination unit can extend the
measurement range to more than 35 m [10].

B. Automotive Microcontroller

As core component, an evaluation kit equipped with the
TC299TF automotive microcontroller from Infineon Technolo-
gies AG was chosen. This 32-bit microcontroller represents the
high-end segment of the AURIX family and offers real-time
capabilities and state-of-the-art safety features. The ISO 26262
compliant AURIX architecture supports safety requirements
up to Automotive Safety Integrity Level D (ASIL-D). The
chip consists of three independent TriCore CPUs, each based
on the combination of a RISC/DSP/MCU core. The AURIX
chip is equipped with a camera interface (CIF), directly con-
nected to the extended memory of the microcontroller. Hence,

142 Publication 1 - DSD 2017 8. Publications

Scaled vehicle

ToF processing platform

ToF module
IRS10xC evaluation kit

Car control module
VIF CAN board V1.0

AURIX safety module
TriBoard TC2X9

Steering servo

Braking servo
RF receiver

Voltage Converter
LM1084

Battery pack 1
NiMh 7.2V 2000mAh

Motor control moduleBattery pack 2
NiMh 7.2V 2300mAh

Motor

PIF / I2C

CAN

5V

7.2V

7.2V

Motor control

signals

7.2V

Fig. 2. Block diagram of the scaled vehicle’s main electronic components
and their connections.

received image data via the PIF is directly accessible by the
controller. The evaluation kit implements several interfaces to
communicate with other systems, for example Ethernet and
controller area network (CAN).

C. Scaled Vehicle

A 1:5 scaled, electrical vehicle provided by the Virtual
Vehicle Research Center in Graz is used to demonstrate the
implemented algorithm with practical sensor data in dynamic
scenes. The car can be controlled using a radio frequency (RF)
remote and reaches a maximum speed of 25 km/h.

The vehicle houses a car control module, which is in charge
of steering, braking, and controlling the engine. The module
can be configured to periodically transmit the current state of
the car via its implemented CAN bus interface. The current car
state includes the actual speed, the remote signals, the motor
voltage, and temperatures measured at significant points of
the vehicle. The car can also be driven by wire. In this case,
the control signals from the remote are overwritten by values
received via the CAN interface.

To attach the bulky ToF processing platform to the vehicle,
a flexible camera arm is used. The connection between the
AURIX microcontroller and the ToF camera is established
via the PIF and I2C using an adapter board. Additionally,
the AURIX microcontroller is connected to the car control
module via a CAN bus. The contained blocks of the connected
platform are illustrated in Fig. 2. The vehicle requires two
separate power supplies in order to avoid power line variations
of the electronic modules during high load situations of the
engine. A front-view picture of the scaled vehicle with the ToF
processing platform mounted in forward direction is depicted
in Fig. 3.

D. Algorithm Design

Due to the limited image processing capabilities of the
automotive safety microcontroller, a fast and low-complexity
algorithm is designed in order to enable a high execution-rate

Fig. 3. Front view of the scaled vehicle. The ToF processing platform,
consisting of separate boards for the automotive microcontroller and the ToF
camera, is mounted on top of the vehicle.

distance image

calculation
raw sensor data

pre-processing

object detection

decision-making
car state

car control signals

distance image

pre-processed

depth data

object list

Fig. 4. The main image processing tasks with their input and output data.

and a low latency. The algorithm consists of the four major
steps shown in Fig. 4.

1) Distance image calculation: The first processing step
takes the raw sensor data as input and calculates the distance
image as well as the amplitude image. To obtain a phase
difference from the raw sensor data, the arctangent function
has to be calculated (as shown by the authors of [1]). The
phase difference value ∆ϕ is then used together with the
modulation frequency fmod and the speed of light c0 to
determine the distance d(x, y) for every pixel (see Equation 1).

d(x, y) = ∆ϕ · 1
2
· c0
2π · fmod

(1)

Eventually, the global offset (one of the systematic errors
described in [1]) is compensated and followed by an unam-
biguous range shift in order to keep the distance values within
the unambiguous phase-interval.

8. Publications Publication 1 - DSD 2017 143

d(x,y)

(a) Before.

dconv(x,y)

(b) After.

Fig. 5. Distance conversion to extract the z-component of the distance points.

The arctangent is a high-cost function in software and
consumes the majority of the computation time within this
processing step. Thus, it is crucial to select the best fitting
arctangent algorithm for the target architecture in order to
minimize the introduced computation delay. We selected a
lookup table with linear interpolation as arctangent algorithm.
Compared to implementations of the CORDIC algorithm [14]
and series expansion, our implementation of a lookup table
with linear interpolation resulted in a better performance on
the AURIX microcontroller.

Since additional systematic error compensation adds a sig-
nificant processing delay, only the very essential global offset
compensation is performed. This design decision is mandatory
in order to keep the processing time on the target platform low
and enable high frame-rates.

2) Pre-processing: Several pre-processing steps are per-
formed to enhance the image representation with the goal to
improve the quality of the object detection.

This includes a conversion of the distance values to only
their z-component which simplifies further object detection
steps. As shown in Equation 2, the new distance values
dconv(x, y) are calculated using the horizontal pixel angle β
and the vertical pixel angle α. Knowing the field-of-view, the
pixel angles α and β are approximated with an angle of 0.5◦

for every pixel from the center. A distance vector before and
after the conversion step is shown in Fig. 5.

dconv(x, y) = d(x, y) · cos(α) · cos(β) (2)

Common neighborhood thresholding according to the method
presented in [15] is performed in order to detect and discard
erroneous pixels. The processed pixel is only considered for
further processing if enough neighboring pixels are located in
the same distance range.

Amplitude thresholding is applied to discard non-confident
pixels with a low amplitude value. This is done by comparing
the values to a reference image of a plain white surface taken
at a distance of 1 m. The processing step discards amplitude
values A(x, y) smaller than the reference value Aref (x, y)
scaled with a constant scaling factor cth1 (see Equation 3).

A(x, y) < Aref · cth1 (3)

An additional thresholding operation to avoid phase-
wrapping based on the work in [16] is applied. Phase-wrapping
occurs when objects exceeding the unambiguous range of the

(a) Top view. (b) Side view.

Fig. 6. The region directly in front of the vehicle (filled greed) corresponds
to the area of interest for the object detection. Distance values outside this
region are discarded and not considered for object detection (filled red).

system are detected. Since the amplitude value decreases with
the square of the distance, every amplitude value is scaled
with the square of its responding distance value d(x, y). If
that value is smaller than a certain threshold cth2, the pixel is
considered not confidential and is discarded (see Equation 4).

A(x, y) · d(x, y)2 < Aref · cth2 (4)

Finally, median filtering is performed in order to get a
smoother version of the image and to reduce the noise from
single pixels.

3) Object detection: To achieve a fast, low-effort object
detection, only a certain area of interest (AOI) directly in
front of the camera is considered (see Fig. 6). The first step
of the object detection is to discard pixels outside the AOI.
This processing step is executed by comparing every pixel’s
distance value to a precomputed limit for that pixel position.
For efficiency reasons, these limits are stored in a horizontal
and a vertical lookup-table. Additionally, only pixels within
the robust measurement range of the camera are considered.
Pixels outside that range are discarded as well.

Afterwards, an efficient histogram-segmentation based on
the work in [7] is performed. The difference of our approach
is that the histogram is smoothened after it is created. Then
the first derivative is calculated in order to detect the local
minima, resulting in possible segmentation borders. If the
histogram values between two local minima meet different
criteria (for example the amount of pixels or the relation to
neighboring minima), the included pixels are classified as an
object. Finally, a list of detected objects is created, containing
an area, distance, and position for each element.

4) Decision-making: The final step of the algorithm is to
decide whether it is required for the system to take over
control of the scaled-vehicle in order to avoid a collision.
The decision-making algorithm is triggered whenever a new
object list or a new car state is available. If the calculated
stopping distance at the current speed is within a certain range
to the closest detected object, the algorithm takes control and
immediately applies the brakes until the car is fully stopped.
Afterwards, the control is returned and the vehicle can be
controlled via the RF remote again.

Equation 5 shows the calculation of the stopping distance
sstop on the embedded system during runtime. The stopping

144 Publication 1 - DSD 2017 8. Publications

CPU 1 CPU 2 CPU 0

raw sensor data

pre-processed

distance image

distance image

calculation

pre-processing

pre-processed

distance image

object list

object detection

object list

decision-making

car state

car control debug data

debug data

 transmission

Fig. 7. Partitioning of the processing tasks on the three AURIX CPUs.

distance is the sum of the reaction distance sreact and the brak-
ing distance sbrake. The current speed of the car v is contained
in the car state while the reaction time Treact is the time since
the distance image was captured. The symbol µ represents the
friction factor and g the gravitational acceleration.

sstop = sreact + sbrake

= v · Treact +
v2

2µg

(5)

E. Implementation of the Processing Algorithm

The processing algorithm was designed to be equally dis-
tributed on the three AURIX CPU cores. Compared to a
single-core solution, this reduces the workload per CPU and
enables pipelined processing. Fig. 7 shows how the single data
processing tasks are partitioned onto the three CPUs.

CPU 1 starts processing after new ToF sensor data was fully
transmitted via the PIF. After processing, the pre-processed
image is transferred to CPU 2 which performs the object
detection and forwards an object-list to CPU 0. This CPU
handles the decision-making which is triggered either if a new
object list is available or a new car state is received via the
CAN bus. Depending on the result of the decision-making
task, control signals to takeover are sent to the scaled vehicle
via CAN. The data-processing on the CPUs is done on each
core’s isolated high-speed memory, while data between the
CPUs is exchanged via a globally accessible shared memory.
This simple method is favored over more complex approaches
since the data transfers between the CPUs only make up
a minor portion of the overall processing time. The chosen
approach grants each core its full local memory and keeps the
synchronization overhead low.

Additionally, the CPU 0 also transmits debug information
to other platforms (for example a PC) using the Ethernet
interface of the AURIX. The actual transferred debug data
can be configured, but typically includes intermediate image
data and the car state. The lightweight IP (lwIP) stack handles
the transmission of UDP packages via Ethernet.

A port of the real-time operating system FreeRTOS is used
on the microcontroller to utilize independent tasks, running at
defined priorities on each of the three AURIX CPUs. Low-
priority tasks (for example sending debug data via Ethernet)

1

CPU 1 CPU 2 CPU 0

process

Frame

get sensor data

save distance image

get distance image

process

save object list

get object list

process

send car-control

2

process

get sensor data

save distance image

get distance image

process

save object list

get object list

process

send car-control

3

process

get sensor data

save distance image

get distance image

process

save object list

send car-control

process

get object list

Fig. 8. Pipelining concept implemented on the three AURIX CPUs.

are interrupted if high-priority tasks (for example processing
received data via CAN) are ready for execution.

The processing algorithm is distributed on the three cores
in order to enable pipelined data processing with the goal to
significantly increase the throughput. Fig. 8 illustrates a flow
diagram of the pipelining approach. Compared to a single-core
solution, the additional data transfers between the CPUs cause
the latency to increase. But since the transfers only consume
a minor part of the overall execution time, the multi-core
approach is beneficial for the targeted application.

F. Latency

The overall system’s latency Tlat is the time delay from
a scene change (for example an appearing object) until the
system decides whether it is required to intervene or not. This
time shall be minimized and shall outperform the reaction time
of an attentive human driver (starting with 0.7 s [17]). It can
be calculated as stated in Equation 6.

8. Publications Publication 1 - DSD 2017 145

(a) Test setup.
Frame Columns

50 100 150

F
ra

m
e
 R

o
w

s

20

40

60

80

100

A
m

p
lit

u
d

e
 (

1
)

0

100

200

300

400

(b) Amplitude.
Frame Columns

50 100 150

F
ra

m
e
 R

o
w

s

20

40

60

80

100

120

D
is

ta
n
c
e
 (

m
m

)

0

2000

4000

6000

8000

(c) Distance.

Frame Columns

50 100 150

F
ra

m
e
 R

o
w

s

20

40

60

80

100

120

D
is

ta
n
c
e
 (

m
m

)

0

500

1000

1500

2000

2500

3000

3500

(d) Pre-processed image.
Distance (mm)

0 500 1000 1500 2000 2500 3000

F
re

q
u
e
n
c
y
 (

1
)

0

500

1000

1500

2000

2500

3000

(e) Histogram.
Frame Columns

50 100 150

F
ra

m
e
 R

o
w

s

20

40

60

80

100

120

D
is

ta
n
c
e
 (

m
m

)

0

500

1000

1500

(f) Detected objects.

Fig. 9. Test setup and the data at different processing stages of the algorithm.

Tlat = Tpre + Tcapt + Tproc (6)

Tpre is the elapsed time from a newly appearing object, until
the ToF camera starts to capture the following frame. In the
worst case, this can be the entire time between two captured
frames. Thus, a higher frame-rate causes this delay to decrease.
Tcapt defines the time it takes the ToF camera to capture a
frame and to transfer it to the AURIX. This introduced delay
depends on the pixel-clock of the PIF, while the illumination
time is constant during runtime. For a pixel-clock of 66.6 MHz
and an exposure time of 2 ms, the added delay Tcapt is about
13 ms. Tproc is the time the implemented algorithm takes until
the decision on whether to enable emergency braking or not is
drawn. Since the algorithm is partitioned on the three AURIX
cores, the introduced delay is the sum of the processing time
on each CPU core.

IV. RESULTS

An example for intermediate data, captured during the single
processing steps, is shown in Fig. 9. As seen in Fig. 9a,
the demonstrator was placed in a static test scene containing
different obstacles. The ToF camera was configured to run
at a frame-rate of 30 FPS, a modulation frequency fmod of
17 MHz, and an exposure time Texp of 2 ms. The distance
image calculation task results in an amplitude image (see
Fig. 9b) and a distance image (see Fig. 9c). These images
were obtained, by performing only the lightweight distance
image processing steps described in this paper. Computa-
tionally expensive image enhancement techniques are omitted

in order to enable high frame-rates. During pre-processing,
non-confidential pixels are discarded and basic smoothing
is applied resulting in the image shown in Fig. 9d. The
generated histogram only considering pixels within the AOI
is shown in Fig. 9e. The histogram-segmentation task results
in the detection of two objects, with the segmentation borders
marked by red lines. Fig. 9f shows the distance image of the
remaining pixels within the AOI. The two detected objects are
highlighted with red rectangles.

Fig. 10 shows a timing diagram of the three AURIX
CPU cores. The processing tasks on the AURIX cores meet
their deadlines with the ToF camera running at 30 FPS. The
utilization of CPU 1 is almost 90% and has no input-data
dependency. Since the execution time of the object detection
depends on the input, the utilization of CPU 2 can vary
between about 10% and almost 100%. The brief decision-
making task on CPU 0 (narrow spikes in timing diagram) is
triggered immediately after new input data is available. The
longer processing pulses on CPU 0 are related to the low-
priority transfer of debug data via Ethernet. This task does not
interfere with the high-priority tasks, since it is interrupted by
the preemptive RTOS scheduler whenever any tasks of higher
priority are ready.

At a frame-rate of 30 FPS and an exposure time of 2 ms,
the introduced delay until an object is captured Tpre is less
than 33 ms. The execution times on CPU 1 and CPU 2 have to
be below 33 ms, while the processing time on CPU 0 can be
neglected. This results in a maximum processing time Tproc

of 66 ms. Assuming a capturing delay Tcap of 13 ms, the

146 Publication 1 - DSD 2017 8. Publications

CPU 1

CPU 2

CPU 0

0 10 20 30 40 50 60 70 80

Time (ms)

90

Fig. 10. Timing diagram of the three AURIX CPU cores during operation.
Active processing is indicated by the colored pulses on each core.

latency Tlat of the system is guaranteed to be less than 112 ms
(according to Equation 6). This is significantly faster than the
average reaction time of an attentive human driver.

Benefiting from the high frame-rate and the low latency, the
simple and efficient algorithm performs well in practice. The
automotive microcontroller can take over control of the car
via the CAN bus in order to avoid collisions. After the car
is in a safe state, the control of the scaled vehicle is returned
to the remote control. In order to test the emergency braking
algorithm, the scaled vehicle was driven on a dry street with
several obstacles.When used in this setting and a maximum
speed of 25 km/h, the system detects obstacles early enough
to fully stop the vehicle before a collision occurs.

V. CONCLUSION

A high frame-rate and a low latency are crucial requirements
for environmental perception sensors in dynamic applications.
This is even more important for sensors with a short range or
a low resolution. Considering the range-restrictions of current
ToF sensors, this work proposes an efficient method to use a
ToF imaging sensor together with a safety-focused automotive
microcontroller for close proximity sensing.

We implemented a ToF processing algorithm on the resource
constrained state-of-the-art safety controller as part of a mixed-
criticality application. A pipelining approach is used on three
independent CPU cores to increase the throughput and the
frame-rate of the system. To practically demonstrate the func-
tionality of the proposed system, a scaled vehicle featuring a
simplified version of emergency braking was deployed. The
implemented algorithm enables frame-rates of up to 30 FPS
and a maximum latency of 112 ms. Intelligent re-partitioning
and excluding the transmission of debug data can further
increase the throughput of the system and enable frame-rates
of over 50 FPS.

Possible applications of ToF sensors are as successor or
as redundant system to ultrasonic sensors. The key benefit of
ToF sensors are their fine-grained data, capable to be visually
interpreted and the low computational effort to obtain 3D
images. In contrast to other range imaging techniques like
stereo-vision, ToF cameras enable real-time range imaging on
safety-focused embedded systems. We conclude that, auto-
motive applications such as parking, back-driving assistance
or close proximity perception could highly profit from ToF
sensing data.

ACKNOWLEDGMENTS

The authors of this paper would like to thank the Austrian
Research Promotion Agency (FFG) and the ARTEMIS Joint
Undertaking for funding the projects EMC2 and the ACTIVE
with the project numbers 621429 and 855010.

REFERENCES

[1] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE
Journal of Quantum Electronics, vol. 37, no. 3, pp. 390–397, March
2001.

[2] N. Druml, G. Fleischmann, C. Heidenreich, A. Leitner, H. Martin,
T. Herndl, and G. Holweg, “Time-of-flight 3d imaging for mixed-critical
systems,” in 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), July 2015, pp. 1432–1437.

[3] S. Foix, G. Alenya, and C. Torras, “Lock-in Time-of-Flight (ToF)
Cameras: A Survey,” IEEE Sensors Journal, vol. 11, no. 9, pp. 1917–
1926, September 2011.

[4] N. Druml, C. Ehrenhoefer, W. Bell, C. Gailer, H. Plank, T. Herndl,
and G. Holweg, “A fast and flexible HW/SW co-processing framework
for Time-of-Flight 3D imaging,” in 2017 IEEE 20th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), apr 2017, pp. 165–170.

[5] T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D
Measurement with PMD Sensors,” Range Imaging Day, Zürich, 2005.

[6] H. Plank, G. Holweg, T. Herndl, and N. Druml, “High performance
time-of-flight and color sensor fusion with image-guided depth super
resolution,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2016, pp. 1213–1218.

[7] X. Wei, S. L. Phung, and A. Bouzerdoum, “Object segmentation and
classification using 3-D range camera,” Journal of Visual Communica-
tion and Image Representation, vol. 25, no. 1, pp. 74–85, 2014.

[8] N. Ziraknejad, P. D. Lawrence, and D. P. Romilly, “The effect of
Time-of-Flight camera integration time on vehicle driver head pose
tracking accuracy,” in 2012 IEEE International Conference on Vehicular
Electronics and Safety (ICVES 2012), July 2012, pp. 247–254.

[9] T. Kopinski, S. Geisler, L. C. Caron, A. Gepperth, and U. Handmann,
“A real-time applicable 3D gesture recognition system for automobile
HMI,” 2014 17th IEEE International Conference on Intelligent Trans-
portation Systems (ITSC 2014), pp. 2616–2622, 2014.

[10] T. Ringbeck, T. Möller, and B. Hagebeuker, “Multidimensional measure-
ment by using 3-D PMD sensors,” Advances In Radio Science, vol. 5,
pp. 135–146, 2007.

[11] H. Plank, G. Holweg, C. Steger, and N. Druml, “Time-of-flight based
optical communication for safety-critical applications in autonomous
driving,” in Computer Safety, Reliability, and Security: SAFECOMP
2016 Workshops, ASSURE, DECSoS, SASSUR, and TIPS, Trondheim,
Norway, September 20, 2016, Proceedings. Springer International
Publishing, 2016, pp. 183–194.

[12] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, “Estimating
human 3D pose from Time-of-Flight images based on geodesic distances
and optical flow,” in 2011 IEEE International Conference on Automatic
Face Gesture Recognition and Workshops (FG 2011), March 2011, pp.
700–706.

[13] D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation in
3D environments based on depth camera data,” in 2012 12th IEEE-
RAS International Conference on Humanoid Robots (Humanoids 2012),
November 2012, pp. 692–697.

[14] J. E. Volder, “The cordic trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334,
September 1959.

[15] Y. Dalbah, S. Rohr, and F. M. Wahl, “Detection of dynamic objects
for environment mapping by time-of-flight cameras,” in 2014 IEEE
International Conference on Image Processing (ICIP), October 2014,
pp. 971–975.

[16] J. Poppinga and A. Birk, A Novel Approach to Efficient Error Correction
for the SwissRanger Time-of-Flight 3D Camera. Springer Berlin
Heidelberg, 2009, pp. 247–258.

[17] M. Green, “”How Long Does It Take to Stop?” Methodological Analysis
of Driver Perception-Brake Times,” Transportation Human Factors,
vol. 2, no. 3, pp. 195–216, 2000.

8. Publications Publication 1 - DSD 2017 147

Next Generation Radar Sensors in Automotive
Sensor Fusion Systems

Josef Steinbaeck∗, Christian Steger†, Gerald Holweg∗, and Norbert Druml∗
∗Infineon Technologies Austria AG, Graz, Austria

{josef.steinbaeck, gerald.holweg, norbert.druml}@infineon.com
†Graz University of Technology, Graz, Austria, Graz, Austria

steger@tugraz.at

Abstract—During the last decades, radar sensors have become
an established component in assisted driving systems. Light
detection and ranging (LIDAR) sensors are commonly perceived
as the key technology to enable fully autonomous driving, but
are still expensive. Recent advances in radar technology, enable
modern radar sensors to sense the environment in higher detail,
thus adding significant value to the environment perception
quality of a sensor fusion system. Due to their performance,
reliability, and cost-efficiency, modern radar sensors will be a
crucial element in future autonomous vehicles.

In this paper we give an overview of the current state-of-the-
art of automotive radar sensors and their potential in future
vehicles and data fusion systems. We want to show that modern
radar sensors add significant value to automotive environment
perception in order to enable fully automated driving. Addition-
ally, challenges arising with the integration of new radar sensors
and remaining issues are discussed.

Index Terms—radar, automotive sensors, accident prevention,
automated driving, autonomous vehicles

I. INTRODUCTION

Many automakers and tech companies are striving to deploy
fully automated driving to the roads within the next couple of
years. Fully automated vehicles will greatly rely on sensor data
to safely navigate through the streets. Today’s most valuable
environmental perception sensors are vision, radar, LIDAR,
and ultrasonic. In contrast to assisted driving, fully automated
driving platforms do not act as a backup systems for a human
driver. Fully autonomous vehicles have to stay functional in
any scenario, what increases the sensor requirements tremen-
dously.

Most prototype vehicles targeting fully automated driving
highly rely on a spinning LIDAR sensor mounted on top of the
vehicle (e.g. [1]). This single-sensor solution is very popular
among prototyping vehicles, since it directly provides a highly
accurate point cloud of the environment. The spinning LIDAR
provides an out-of-the-box platform to implement higher-level
functions for autonomous vehicles (for example path planning
or object detection) without worrying about sensor data fusing
and processing.

Unfortunately, commonly used LIDAR systems also come
with disadvantages like moving mechanical components, re-
duced performance in difficult light conditions, and the high
prices (year 2017 [2]). First prototypes of low-priced solid-
state LIDAR systems have already been introduced, and
patents were granted (e.g. [3], [4]). However, these products

TABLE I
COMPARISON OF ENVIRONMENT PERCEPTION SENSOR CAPABILITIES.

Sensor Radar LIDAR Vision

Range ++ + ++
Range resolution + ++ o

Angular resolution o ++ +
Works in bad weather ++ o -

Works in dark ++ ++ --
Works in bright ++ + +
Color/contrast -- -- ++
Radial velocity ++ o -

might also come with further limitations (e.g. smaller field-
of-view) and performance restrictions compared to expensive
spinning LIDAR systems. To sum up, LIDAR alone does not
meet the high sensor requirements to be used in future mass-
produced fully autonomous vehicles.

In order to mitigate the weaknesses of individual sensors,
multiple sensor technologies have to be used in a redundant
and diverse way. This comes with the requirement to perform
the non-trivial task to fuse the data of multiple inhomogeneous
sensors. Table I shows the strengths and weaknesses of todays
most popular automotive environmental perception sensors. A
more detailed performance comparison of currently available
environmental perception sensors is given in [2]. As seen in
the table, none of the individual sensors provides sufficient
robustness to provide an always working solution. The big
strengths of radar sensors are their ability to work in bad
weather conditions, as well as the possibility to directly
measure the relative angular velocity of the detected targets
(Doppler effect).

This work focuses on the recent advances in automotive
radar technology. Modern radar sensors can now provide high-
resolution environment data, which can be very beneficial
for sensor fusion systems. The robust measurement of radar
sensors is especially valuable, since it also works in difficult
conditions where other sensors (LIDAR, vision) are likely
to fail. This work gives an overview of the characteristics
of modern radar systems, including the antennas, modulation
techniques, sensor data processing and fabrication technolo-
gies. To sum up, the contributions of this paper to scientific
research are:

• An overview of state-of-the-art automotive radar solutions

8. Publications Publication 2 - SDF 2017 149

© 2017 IEEE. Reprinted, with permission, from 2017 Sensor Data Fusion: Trends,
Solutions, Applications (SDF).

and an outlook into the future.
• Possible opportunities for automotive radar sensors in

order to gain importance with respect to future automated
road vehicles.

• Architecture requirements for future automotive multi-
sensor fusion systems.

Section II gives an overview of the state-of-the-art of auto-
motive radar technology. Different approaches of integrating
modern radar sensors into sensor fusion systems as well as
related safety considerations are presented in section III. The
Section IV summarizes the potential of modern radar sensors
in the robotic/automotive industry and gives an outlook to
future systems.

II. RADAR SENSORS FOR AUTOMOTIVE VEHICLES

Radar sensors have been around in the automotive industry
since a few decades already. Driving assistance systems can
be divided into comfort functions and the more demanding
safety applications. First systems were mostly used for comfort
applications in the premium car segment, like adaptive cruise
control (ACC). ACC requires the vehicle to know the position
and velocities of the other vehicles in the vicinity. Since radar
technology continuously improved, recent radar sensors are
also used in safety applications like autonomous emergency
braking (AEB). The 2013 Mercedes S-Class was already
equipped with seven cameras, six radars and twelve ultra-
sonic sensors in order to enable advanced driving assistance
functions [5], [6]. Since 2014, AEB is part of the European
new car assessment program (Euro NCAP) car safety rating
system. Thus vehicles with AEB can achieve a better NCAP
safety rating. The work published in [7] gives a well-structured
overview of the history of radar systems in an automotive
context.

Radar sensors have some beneficial characteristics for au-
tomotive environment perception. Compared to other environ-
mental perception sensors, radar also works in foggy, dusty,
snowy and badly lighted environments [8], [9]. Additionally,
the price for mass-produced radar sensors is decreasing, mak-
ing them feasible for the installation in mid-range cars. Table II
shows a comparison of different radar sensors already used
in today’s vehicles. The sensors are capable of measuring
distances to objects more than 200 m away and provide high
range accuracy, but they are restricted by their limited angular
resolution. Newer generations of automotive radar sensors
implement advanced methods to overcome this limitation.
Thus next generation of radar sensors will be capable to
achieve a significantly higher resolution (azimuth as well es
elevation) and will be able to perceive the environment in
greater detail.

A. Basic Principle

Radar sensors transmit high-frequency electromagnetic
waves and receive the reflection of that wave in order to
estimate the position and velocity of present objects. The
distance to a target is determined using the temporal delay
between the transmitted and a received signal. Due to the

Range-Speed Response Pattern

-60 -40 -20 0 20 40 60
Speed (m/s)

0

20

40

60

80

100

120

140

160

180

200

Ra
ng

e
(m

et
er

s)

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

 P
ow

er
 (d

B)

Fig. 1. Radar range-velocity measurement of a target in the range of 43 m
and a speed of 10 m/s. Obtained from [13].

Doppler effect, the radial velocity of moving targets can be
calculated using the occurring frequency shift of reflected
waves.

With the simplest form, the transmission of a continuous
wave (CW), only the speed of a target can be measured uti-
lizing the Doppler effect. Transmitting a frequency modulated
continuous wave (FMCW) is one possibility to also determine
the distance to a target as well as the velocity. The received
signals are digitized and processed by a 2D FFT in order to
determine the range-velocity matrix. The output matrix after
range-doppler processing of a single target is shown in Fig. 1.
Using that output, there exist a number of algorithms to detect
obstacles using radar only [10], [11] as well as fusing it with
data from other environment perception sensors [12].

According to [14], the range resolution ∆R of an ramp-
sequence based FMCW radar system [15] depends on the
frequency-sweep bandwidth B, while the velocity resolution
∆v depends on the time-duration T of the sweep ramp and
the number of ramps N (Equations 1 and 2).

∆R =
c0
2B

(1)

∆v =
λ

2NT
(2)

B. Frequency Bands

Initially, the 77 GHz band was planned to be used for
long range radar (LRR) applications, while 24 GHz band was
planned for high-resolution short-range radar (SRR) and mid-
range radar (MRR) [16]. For long range comfort applications
like ACC, high precision is not mandatory. Thus, the band-
width of the 77 GHz band (76-77 GHz) is sufficient and the
frequency range is still used for LRR systems.

The situation for SRR in the 24 GHz range is more com-
plex. The high bandwidth of the 24 GHz UWB ranging from
22.0 GHz to 26.625 GHz allows a high resolution. However,
this frequency band has a very limited transmission power and
suffers from interferences since it is also used by several other
radio services (in Europe). Thus, only short range operations

150 Publication 2 - SDF 2017 8. Publications

TABLE II
CHARACTERISTICS OF CURRENT AUTOMOTIVE RADAR SENSORS, OBTAINED FROM [2].

Sensor Frequency Bandwidth Range Azimuth Angle Accuracy Cycle
(GHz) (GHz) (m) (◦) (ms)

Bosch LRR3 77 1 250 ±15.0 0.1m 80
Delphi ESR 77 - 174 ±10.0 1.8m 50

Continental ARS30x 77 1 250 ±8.5 1.5 % 66
SMS UMRR Type 40 24 0.25 250 ±18.0 2.5 % 79

TRW AC100 24 0.1 150 ±8.0 - -

are possible, like blind-spot detection or parking assistance.
The European Union has introduced this frequency band to
allow a fast market introduction of early SRR systems, but
restricted its usage until January 2018. The 24 GHz indus-
trial, scientific, and medical (ISM) band from 24.05 GHz to
24.25 GHz is allocated permanently and can be used for longer
ranges since it allows a higher transmission power. But since
the bandwidth of 200 MHz is too low for detecting details,
this frequency band is rather used for industrial applications
than automotive.

To solve this problem, the European Union has allocated
the 79 GHz UWB (77-81 GHz) as successor to the temporary
24 GHz UWB. This frequency band is capable to be used for
LRR as well as SRR systems [17]. Due to the high resolution,
the 79 GHz band is capable for the usage in active safety
applications like collision avoidance. The shorter wavelength
compared to the 24 GHz systems allows more compact hous-
ing and thus lower-weight systems and easier installation.
One disadvantage of higher frequencies in radar systems is
a significant signal attenuation caused by the front bumper of
the vehicle [17]. However, there already exist approaches to
mitigate this effect in real-time [18].

C. Technology
Initial automotive radar systems used discrete circuit ele-

ments while later systems consisted of multiple Monolithic
Microwave Integrated Circuits (MMIC) based on gallium
arsenide (GaAs). Infineon presented an automotive qualified
SiGe based radar system in 2008 [19], replacing the higher-
priced earlier GaAs solutions. The work presented in [20]
shows the circuit design of a multichannel 77 GHz automotive
radar transmitter. Nowadays, almost all new systems are based
on silicon-germanium (SiGe) and more and more functionality
is integrated into single chips. In order to further reduce
prices and and increase the integration, BiCMOS technology,
the combination of bipolar and complementary metal-oxide-
semiconductor (CMOS) technology, is used to efficiently add
digital parts into a single chip [21]. Fig. 2 shows an overview
on the frequency capabilities of different semiconductor ma-
terials. According to [22], there are currently six million
radar systems used in vehicles and a rise to 25 million units
is predicted. 70% of the existing radar solutions are still
manufactured in GaAs, but due to the introduction of SiGe,
this is very likely to change in the future.

SiGe bipolar and SiGe BiCMOS processes are currently
leading, but the industry is working on manufacturing a

Fig. 2. Favorable semiconductor technologies depending on the operation
frequency [20].

79 GHz single-chip radar solution in full CMOS. First proto-
types of CMOS transceiver chips have already been presented
(e.g. [23]). SiGe transistors have significant advantages com-
pared to CMOS (e.g., noise performance), but CMOS allows
a higher integration (enabling, e.g., in-sensor processing) and
has the potential to further reduce the price of radar systems.
Thus, CMOS is very attractive for future systems that ex-
ploit more antennas and thus require higher chip integration.
However, developing a CMOS solution requires very advanced
circuit design and numerous shortcomings have to be solved
in order to make the process feasible. The authors of [24]
describe challenges of 77 GHz CMOS radar systems and the
work presented in [20] points out the advantages of SiGe
compared to CMOS. Since CMOS requires more complex
circuitries than SiGe solutions, full CMOS might only reduce
the cost for solutions with a relatively large digital part. So,
even if a automotive qualified CMOS radar is available to the
market, BiCMOS solutions are very likely to co-exist for a
certain amount of time.

There has also been great progress regarding the packaging
of the radar MMIOs. Embedded wafer level BGA (eWLB) is
now the leading packaging technology for radar transceiver
chips. More details on packaging technology can be found in
[21].

D. Beamforming

Beamforming can be used to narrow the transmit beam to a
limited field-of-view (FOV) as well as to detect the direction

8. Publications Publication 2 - SDF 2017 151

Fig. 3. Four planar TRX (transmit and receive) patch antennas, connected to
a MIMO transceiver IC.

of existing targets in order to improve the efficiency of the
radar system. There exist different approaches the achieve
beamforming:

• Mechanical solutions are the most straightforward way to
implement beamforming, but come with the disadvantage
of a restricted scanning speed and the wear of mechanical
parts [25].

• In early stages of automotive radar, switched multi-beam
antennas with a narrow beam-width were used in order
to determine radar obstacles [25].

• Optical beamforming methods use lenses to steer the
beam into a limited field-of-view (FOV) [26]. The authors
of [27] present a lens-based radar system, which can be
beneficial for long range radar systems.

• Analog beamforming utilizes a high number of transmit-
ters working similar to phased array antennas. Using this
method, it is possible to electronically steer the direction
of the transmitted beam. The authors of [28] show an
approach to achieve analog beamforming.

• Digital beamforming performs the detection of the direc-
tion of arrival (DOA) at the receiver. The angle of the
detected objects is typically measured using an array of
antennas and comparing the amplitude and phase of the
detected signals.

The majority of modern automotive radar systems employ
planar patch antennas. An example of a simple planar patch
antenna is shown in Fig. 3. These antenna arrays can be used
for beamforming, with each channel directly connected to a
multiple-input multiple-output (MIMO) transceiver channel. In
practice, radar systems also use combinations of the above
mentioned beamforming approaches. There exist different
approaches to estimate the DOA in order to achieve a high-
resolution angle (e.g., [29], [30], [31]). However, only the real-
time capable algorithms are feasible for embedded automotive
systems.

E. Outlook

The decreasing price of radar sensors enables carmakers
the possibility to integrate several radar sensors into future
cars. According to [32], the market penetration of 77 GHz and

Fig. 4. Sensor fusion architecture, obtained from [35].

79 GHz radar sensors is about to rise during the next decade.
However, future highly automated driving applications are in
need of a higher range-, angle- and velocity-resolution [33].
As stated in [31], the range accuracy is mostly limited by
the bandwidth while the angular accuracy is limited by the
antenna aperture and the number of receive channels. Due to
ongoing advances in circuitry design, using higher frequencies
can significantly improve the performance of radar systems.
The authors of [34] predict that doubling the frequency can
double the angular resolution of an antenna of the same size.

According to [35] it takes several (4-6) years from the
development of a new sensor system to the mass-market
introduction of this feature. Thus, current advances in the radar
technology will take several years until the components reach
automotive qualification and appear in new vehicles.

III. MULTI-SENSOR DATA FUSION

A single environment perception sensor is not sufficient to
cover the high safety requirements of future vehicles. Thus,
multiple sensors of different technologies have to be combined
in order to accomplish redundancy and diversity. The sensor
fusion system mitigates the weaknesses of the individual
sensors and outputs a robust environment model in any sce-
nario. The individual sensors work independently, causing the
measurements from the sensors to arrive asynchronously. Ad-
ditionally, since the sensors are typically mounted on different
positions of the vehicle, each sensor has a individual point of
view. In order to perform sensor fusion, the sensors require a
common understanding of time and space and a standardized
data interface [35]. A block diagram of a typical sensor fusion
system and its main components is shown in Fig. 4.

A. Sensor Fusion Architectures

There exist three basic types of sensor fusion architectures
[36]:

• Low-level sensor fusion
• Feature-level sensor fusion
• High-level sensor fusion
In the low-level sensor fusion approach, the fusion platform

processes the raw data from all individual sensors. Disadvan-
tages are the high-data rate and the high complexity to process

152 Publication 2 - SDF 2017 8. Publications

the vast amount of raw data. The advantage is the availability
of raw measurement data on fusion level, avoiding any loss
of information through to pre-processing. Additionally, one
centralized processing platform eases time-synchronization
and is usually more cost-efficient compared to a distributed
system. The authors of [37] show a low-level sensor fusion
approach of a far infrared camera, a laser scanner and several
radars.

For sensor fusion at feature-level, pre-processing is applied
at sensor level to extract certain features. These extracted fea-
tures are then fused together by the sensor fusion system. This
architecture is a trade-off between the two other approaches.

High-level sensors fusion performs the whole processing
for each sensor individually. The object lists are then fused
together by the sensor fusion system. Advantages are a lower
communication overhead and the modularity of the system.
An example for high-level sensor fusion is presented in [38],
where a fusion of radar and LIDAR data is performed.

B. Data Alignment

In order to perform sensor fusion, the data from the different
sensors have to be aligned both temporally and spatially [36].
The temporal alignment of sensor data relies on accurate
timestamps added to each measurement of the single sensors.
To achieve this, all involved units have to work with a perfectly
synchronized global time base.

For spatial alignment, the measurements from the different
sensors have to be transferred into a common coordinate
system.

C. Safety Considerations

The authors of [39] predict that certain future applica-
tions of automated driving will require update-rates of up to
50 Hz. Thus, high-performance processing units as well as
high-bandwidth communication have to be integrated into a
vehicle’s E/E infrastructure.

The high-priority tasks of the safety critical systems are
required to guarantee a deterministic response within a certain
time-frame. Buses like controller area network (CAN) or
Flexray are getting replaced by Ethernet in order to increase
the bandwidth. Since standard Ethernet has a non deterministic
behavior, it is not applicable to safety critical tasks. Thus,
special standards for Ethernet in vehicles are required in order
to enable real-time reaction to sensor data. A central clock
for the network and known latencies between the nodes are
required for deterministic Ethernet [40].

Real-time operating systems have to be used for the pro-
cessing of these high-priority tasks. Safety critical tasks have
to run on safety-certificated hardware and operating systems.
Non-safety critical computations can be outsourced to oper-
ating systems with multi-tasking abilities running on high-
performance hardware.

According to the functional safety standard ISO26262, each
function of the autonomous vehicle is assigned an automotive
safety integrity rating (ASIL). The highest rating is ASIL D,
which is assigned to the most safety critical tasks within a

car. In order to guarantee the normal execution of these safety
critical tasks, they have to run on redundant safety-certificated
hardware and be separated from non-safety functions.

Examining the E/E market for automated driving, semi-
conductor vendors offer system-on-chip solutions dedicated
to sensor fusion applications, which are commonly based on
multiple advanced RISC machine (ARM) cores to deploy high
computational performance plus dedicated hardware accelera-
tors (e.g., for artificial intelligence) to enable vision functions.
Such fusion systems can support at maximum ASIL B or in
some cases ASIL C levels. On the other hand, microcontrollers
that have been recently developed for functional safety (e.g.
transmission control) are based on one or more lockstep cores.
These devices feature extended error checks and corrections
on internal bus and memories, analog and digital built-in
self tests, and several internal monitors (voltage, temperature,
clock integrity), enabling them to support ASIL D. These
devices, however, are constrained in terms of computational
performance. Therefore, major efforts are currently spent by
the industry and academia in order to come up with sensor
fusion systems integrating number crunching AI solutions and
supporting ASIL D at the same time.

The authors of [41] give an in-depth overview of the chal-
lenges to develop safety-critical systems for future vehicles.

IV. CONCLUSION

Although the radar technology has significantly advanced
during the last years, radar sensors alone are not sufficient to
provide a car with reliable environment information in order
to navigate autonomously. Since radar waves can propagate
through several non-translucent materials, like thin walls, fog,
rain, or snow, they can provide superhuman perception abilities
to a vehicle. Therefore, radar sensors are very valuable to
provide an environmental perception system with extra infor-
mation about the cars environment, which are not provided
by other sensors. To go even one step further, utilizing the
strengths of radar might be essential for automated vehicles
in order to meet the high requirements to sensor robustness in
future automated vehicles.

However, utilizing the full potential of radar sensors is still
a big challenge of today. The obtained data from the sensor
is significantly more challenging to interpret than data from
visual sensors (such as cameras or LIDAR).

Due to the vast amount of sensor data, high-performance
processing units are used in prototype vehicles for automated
driving. There is a lack of safety classified, deterministic
sensor processing units in order to guarantee operation also
in case of faults. Automotive qualified components have to be
utilized as safety critical nodes in future vehicles.

ACKNOWLEDGMENTS

The authors of this paper would like to thank the Aus-
trian Research Promotion Agency (FFG) for funding the
Autonomous CarTo lnfrastructure communication mastering
adVerse Environments (ACTIVE) project with the number
855010.

8. Publications Publication 2 - SDF 2017 153

REFERENCES

[1] P. Navarro, C. Fernández, R. Borraz, and D. Alonso, “A Machine
Learning Approach to Pedestrian Detection for Autonomous Vehicles
Using High-Definition 3D Range Data,” Sensors, vol. 17, no. 1, p. 18,
2016.

[2] F. de Ponte Müller, “Survey on ranging sensors and cooperative
techniques for relative positioning of vehicles,” Sensors (Switzerland),
vol. 17, no. 2, pp. 1–27, 2017.

[3] J. Heck, J. K. Doylend, D. N. Hutchison, H. Rong, and J. B. Sendowski,
“Solid state LIDAR circuit with waveguides tunable to separate phase
offsets,” US Patent US9 575 341 B2, 2017.

[4] K. T. Krastev, H. van Lierop, H. Soemers, R. H. M. Sanders, and A. J. M.
Nellissen, “Mems scanning micromirror,” US Patent US20 100 296 146
A1, 2010.

[5] W. Fleming, “Forty-Year Review of Automotive Electronics: A Unique
Source of Historical Information on Automotive Electronics,” IEEE
Vehicular Technology Magazine, vol. 10, no. 3, pp. 80–90, September
2015.

[6] J. Dickmann, N. Appenrodt, J. Klappstein, H. L. Bloecher,
M. Muntzinger, A. Sailer, M. Hahn, and C. Brenk, “Making bertha see
even more: Radar contribution,” IEEE Access, vol. 3, pp. 1233–1247,
2015.

[7] H. H. Meinel, “Evolving automotive radar - from the very beginnings
into the future,” in 2014 8th European Conference on Antennas and
Propagation (EuCAP), 2014, pp. 3107–3114.

[8] T. Peynot, J. Underwood, and S. Scheding, “Towards reliable perception
for Unmanned Ground Vehicles in challenging conditions,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems,
October 2009, pp. 1170–1176.

[9] G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-
Capehart, “Seeing through dust and water vapor: Millimeter wave radar
sensors for mining applications,” Journal of Field Robotics, vol. 24,
no. 7, pp. 527–557, July 2007.

[10] G. Reina, D. Johnson, and J. Underwood, “Radar sensing for intelligent
vehicles in urban environments,” Sensors (Switzerland), vol. 15, no. 6,
pp. 14 661–14 678, 2015.

[11] K. Kaliyaperumal, S. Lakshmanan, and K. Kluge, “An algorithm for
detecting roads and obstacles in radar images,” IEEE Transactions on
Vehicular Technology, vol. 50, no. 1, pp. 170–182, 2001.

[12] Shunguang Wu, S. Decker, Peng Chang, T. Camus, and J. Eledath,
“Collision Sensing by Stereo Vision and Radar Sensor Fusion,” IEEE
Transactions on Intelligent Transportation Systems, vol. 10, no. 4, pp.
606–614, December 2009.

[13] Eugin Hyun, Woojin Oh, and Jong-Hun Lee, “Multi-target detection
algorithm for FMCW radar,” in 2012 IEEE Radar Conference, May
2012, pp. 0338–0341.

[14] G. R. Curry, Radar system performance modeling. Artech House, 2005.
[15] V. Winkler, “Range Doppler detection for automotive FMCW radars,”

in 2007 European Radar Conference, October 2007, pp. 166–169.
[16] M. Schneider, “Automotive Radar Status and Trends,” Microwave

Techniques, pp. 3–6, 2005.
[17] H.-L. Bloecher, A. Sailer, G. Rollmann, and J. Dickmann, “79 GHz

UWB automotive short range radar Spectrum allocation and technology
trends,” Advances in Radio Science, vol. 7, pp. 61–65, May 2009.

[18] A. Melzer, F. Starzer, H. Jager, and M. Huemer, “Real-Time Mitigation
of Short-Range Leakage in Automotive FMCW Radar Transceivers,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64,
no. 7, pp. 847–851, July 2017.

[19] H. P. Forstner, H. Knapp, H. Jager, E. Kolmhofer, J. Platz, F. Starzer,
M. Treml, A. Schinko, G. Birschkus, J. Bock, K. Aufinger, R. Lach-
ner, T. Meister, H. Schafer, D. Lukashevich, S. Boguth, A. Fischer,
F. Reininger, L. Maurer, J. Minichshofer, and D. Steinbuch, “A 77GHz
4-channel automotive radar transceiver in SiGe,” in 2008 IEEE Radio
Frequency Integrated Circuits Symposium, June 2008, pp. 233–236.

[20] F. Dielacher, M. Tiebout, R. Lachner, H. Knapp, K. Aufinger, and
W. Sansen, “SiGe BiCMOS technology and circuits for active safety
systems,” in Proceedings of Technical Program - 2014 International
Symposium on VLSI Technology, Systems and Application (VLSI-TSA),
April 2014, pp. 1–4.

[21] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Wald-
schmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in
the 77 GHz Frequency Band,” IEEE Transactions on Microwave Theory
and Techniques, vol. 60, no. 3, pp. 845–860, March 2012.

[22] R. Lachner, “Industrialization of mmWave SiGe technologies: Status,
future requirements and challenges,” in 2013 IEEE 13th Topical Meeting
on Silicon Monolithic Integrated Circuits in RF Systems, January 2013,
pp. 105–107.

[23] Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated
77GHz FMCW radar system in 65nm CMOS,” in 2010 IEEE Interna-
tional Solid-State Circuits Conference - (ISSCC), February 2010, pp.
216–217.

[24] J. P. John, J. Kirchgessner, R. Ma, D. Morgan, I. To, and V. P.
Trivedi, “Si-Based Technologies for mmWave Automotive Radar,” in
2016 IEEE Compound Semiconductor Integrated Circuit Symposium
(CSICS), October 2016, pp. 1–4.

[25] W. Menzel and A. Moebius, “Antenna Concepts for Millimeter-Wave
Automotive Radar Sensors,” Proceedings of the IEEE, vol. 100, no. 7,
pp. 2372–2379, July 2012.

[26] T. Binzer, M. Klar, and V. GroB, “Development of 77 GHz Radar Lens
Antennas for Automotive Applications Based on Given Requirements,”
in 2007 2nd International ITG Conference on Antennas, March 2007,
pp. 205–209.

[27] S. Lutz, C. Erhart, T. Walter, and R. Weigel, “8 channel MIMO long
range radar concept for angular estimation in multi target scenarios,”
in 2015 IEEE MTT-S International Conference on Microwaves for
Intelligent Mobility (ICMIM), April 2015, pp. 1–4.

[28] C. Pfeffer, R. Feger, C. Wagner, and A. Stelzer, “FMCW MIMO
Radar System for Frequency-Division Multiple TX-Beamforming,”
IEEE Transactions on Microwave Theory and Techniques, vol. 61,
no. 12, pp. 4262–4274, December 2013.

[29] P. Wenig, M. Schoor, O. Gunther, B. Yang, and R. Weigel, “System
Design of a 77 GHz Automotive Radar Sensor with Superresolution
DOA Estimation,” in 2007 International Symposium on Signals, Systems
and Electronics, July 2007, pp. 537–540.

[30] C. Fischer, F. Ruf, H. L. Bloecher, J. Dickmann, and W. Menze,
“Evaluation of different super-resolution techniques for automotive
applications,” in IET International Conference on Radar Systems (Radar
2012). Institution of Engineering and Technology, 2012, pp. 1–6.

[31] F. Engels, P. Heidenreich, A. M. Zoubir, F. K. Jondral, and M. Win-
termantel, “Advances in Automotive Radar: A framework on compu-
tationally efficient high-resolution frequency estimation,” IEEE Signal
Processing Magazine, vol. 34, no. 2, pp. 36–46, March 2017.

[32] M. Kunert, H. Meinel, C. Fischer, and M. Ahrholdt, “Report on
interference density increase by market penetration forecast, MOre
Safety for All by Radar Interference Mitigation (MOSARIM),” European
Commission FP7 Project, Tech. Rep. 0, 2010.

[33] J. Dickmann, J. Klappstein, M. Hahn, M. Muntzinger, N. Appenrodt,
C. Brenk, and A. Sailer, “Present research activities and future re-
quirements on automotive radar from a car manufacturer’s point of
view,” in 2015 IEEE MTT-S International Conference on Microwaves
for Intelligent Mobility (ICMIM), April 2015, pp. 1–4.

[34] C. Waldschmidt and H. Meinel, “Future trends and directions in radar
concerning the application for autonomous driving,” in 2014 44th
European Microwave Conference, October 2014, pp. 1719–1722.

[35] R. H. Rasshofer and K. Gresser, “Automotive Radar and Lidar Systems
for Next Generation Driver Assistance Functions,” Advances in Radio
Science, vol. 3, pp. 205–209, May 2005.

[36] M. Aeberhard and N. Kaempchen, “High-level sensor data fusion
architecture for vehicle surround environment perception,” in Proc. 8th
Int. Workshop Intell. Transp, 2011.

[37] L. Walchshäusl, R. Lindl, K. Vogel, and T. Tatschke, “Detection of
Road Users in Fused Sensor Data Streams for Collision Mitigation,” in
Advanced Microsystems for Automotive Applications 2006, Berlin/Hei-
delberg, 2006, pp. 53–65.

[38] D. Gohring, M. Wang, M. Schnurmacher, and T. Ganjineh, “Radar/Lidar
sensor fusion for car-following on highways,” in The 5th International
Conference on Automation, Robotics and Applications, December 2011,
pp. 407–412.

[39] D. Caveney, “Cooperative Vehicular Safety Applications,” IEEE Control
Systems Magazine, vol. 30, no. 4, pp. 38–53, August 2010.

[40] A. Patterson, “Die Evolution von Embedded-Architekturen für die
nächste Generation von Fahrzeugen,” ATZelektronik, vol. 12, no. 2, pp.
26–33, April 2017.

[41] G. Macher, M. Stolz, E. Armengaud, and C. Kreiner, “Filling the gap
between automotive systems, safety, and software engineering,” e & i
Elektrotechnik und Informationstechnik, vol. 132, no. 3, pp. 142–148,
June 2015.

154 Publication 2 - SDF 2017 8. Publications

Localization and Context

Determination for Cyber-physical

Systems based on 3D Imaging

Hannes Plank

Infineon Technologies Austria AG, Austria

Josef Steinbaeck

Infineon Technologies Austria AG, Austria

Norbert Druml

Infineon Technologies Austria AG, Austria

Christian Steger

Graz, University of Technology, Austria

Gerald Holweg

Infineon Technologies Austria AG, Austria

ABSTRACT

In recent years, consumer electronics are becoming increasingly location and context-aware. Novel

applications, such as augmented and virtual reality, have high demands in precision, latency and

update rate in their tracking solutions.

3D imaging systems have seen a rapid development in the past years. By enabling a manifold of

systems to become location and context-aware, 3D imaging has the potential to become a part of

everyone’s daily life. In this chapter, we discuss 3D imaging technologies and their applications in

localization, tracking and 3D context determination. Current technologies and key concepts are

depicted and open issues are investigated.

The novel concept of location-aware optical communication based on Time-of-Flight depth sensors is

introduced. This communication method might close the gap between high performance tracking and

localization.

The chapter finally provides an outlook on future concepts and work-in progress technologies, which

might introduce a new set of paradigms for location-aware cyber-physical systems in the Internet of

Things.

Keywords: 3D imaging, depth sensing, internet-of-things, location-awareness, optical communication,

localization, tracking, augmented reality, tracking

INTRODUCTION

3D imaging technologies have seen rapid developments in the past years. The introduction of the

Microsoft Kinect depth sensor to the consumer market in 2010 triggered a massive research interest

and effort. In 2016, the first mass-produced smartphone appeared, featuring depth sensing based on

Time-of-Flight. The availability of such ubiquitous and miniaturized depth sensing solutions can

tremendously help any kind of electronic device to sense and understand its environment.

A crucial part of operation for certain devices is localization. While depth sensors provide geometric

information about the immediate surrounding, determining location and orientation within a certain

coordinate system is a challenge of its own. This chapter explores the opportunities depth sensing

systems provide to localization. A focus is set on applications in fields such as consumer electronics,

internet of things and autonomous robots.

8. Publications Publication 3 - SCPSU 2017 155

© 2018 IGI Global. Reprinted, with permission, from Solutions for Cyber-Physical
Systems Ubiquity, 2017.

Localization and tracking of electronic devices has a long history and has seen the use of a variety of

different principles. This work focuses on the fields of high performance localization based on optical

and sensor fusion solutions. Localization principles in general can be categorized into passive, guided

and cooperative solutions.

A passive system is able to determine its position in a local or global coordinate system without

external help. An increasing number of applications also require information about the orientation of

the device. A combination of position and rotation sensing is often referred to as pose determination.

A pose has of six degrees of freedom (dof) and completely describes the static position and orientation

of an entity in 3D space. Each axle in 3D space presents one degree of freedom for the position and

one degree for rotation around the axle. Passive 6-dof localization is often used in computer vision

based positioning systems, where features are matched with prerecorded databases. Early examples are

cruise missiles using terrain contours for navigation.

A well-known example for guided localization is GPS, where devices use the aid of satellites to

determine their position. Cooperative localization solutions use a communication channel, which is

often used for active identification and position forwarding. Optical tracking, using image sensors and

active markers is an example for cooperative tracking. In such system, an external base-station with an

image sensor can sense a tracked device equipped with active LED markers, and has the ability to

toggle the LEDs for identification. Another example are beacon based systems, where active beacons

forward information about their location.

When classifying the location-awareness of cyber-physical systems, it is important to distinguish

between localization and tracking. While these terms are sometimes used ambiguously, tracking is

commonly used in a relative context, where the registration of movements is important. Tracking the

pose of a device does not always lead to the determination of a position within a meaningful

coordinate system. However relative position and rotation changes can be detected. For certain

applications, this is sufficient and no broader localization is required. Examples for such systems are

instruments measuring rotations, such as gyroscopes or compasses, some 3D scanning solutions or

human interface devices.

Localization is often associated with position determination without focus on detecting relative pose

changes. A combination of tracking and localization is used in a lot of location-aware systems and

leads to localization at a high update rate. Tracking and localization are often performed by different

sensors, because localization solutions often lack of the desired accuracy to track relative pose

changes.

While localization can provide the position and orientation within a greater context, tracking sensors

provide the accuracy and update-rate required for the application.

A great example of sensor fusion for localization and tracking is Wikitude (2016). This smartphone

application provides augmented reality on smartphones. It annotates the video stream of the internal

camera with meaningful information about the environment and displays it on the screen. GPS or

WIFI is used for positioning. The absolute orientation is determined by the gravity and compass

sensors. The gyro sensors are used to track movements to enable a high update rate of the rotation.

This enables to robustly attach information to certain landmarks and directions in the smartphone

video stream.

Arising technologies such as virtual and augmented reality, autonomous driving and indoor

localization demand precise pose determination at very high update rates. These demands are tackled

in state-of-the-art systems with a sensor fusion approach, combining optical and inertial sensors.

Optical sensors are used in the form of 2D and 3D cameras, LiDAR (light detection and ranging) and

optical triangulation.

Data fusion with inertial sensors can compensate the flaws of optical sensors. Most optical positioning

sensors require a line of sight connection and sometimes feature a slow update rate and too much

latency as well as visual artifacts such as motion blur. Inertial sensors are commonly miniaturized,

using MEMS technology and feature high update rates. These sensors are already well-established in

mobile devices. Inertial sensors however base their measurements on differential movements and

rotations. In order to measure absolute movements and rotation, the measurements need to be

integrated. This introduces an integration error which introduces drift (Woodman, 2007). This drift can

be compensated by fusing these measurements with non drifting data, as optical systems can produce.

156 Publication 3 - SCPSU 2017 8. Publications

Using cameras for localization is traditionally accomplished by sophisticated computer vision

methods, which are often solely based on 2D images. A common approach is simultaneous

localization and mapping (SLAM), where a 3D representation of the environment is created during

localization. Depth sensors are capable to improve the performance of such monocular SLAM systems

(Steinbrücker, Sturm, & Cremers, 2011). A prominent example is Google Tango, which uses a number

of sensors, including a Time-of-Flight depth camera for SLAM based localization on mobile devices.

Depth sensing systems are devices capable to directly gather geometric information about the

immediate environment. A measurement typically consists of a coordinate in three dimensions, usually

relative to the depth sensor itself. In a depth camera, every pixel produces such measurement. If the

shutter of the camera triggers all pixels at the same time, every measurement is captured

simultaneously. Since all available depth imaging systems are limited in range and show systematic

measurement errors, some systems also attach a confidence measure to each measurement.

One of the reasons that the vast research effort on optical localization systems are based on 2D

cameras, is that the field of depth sensors is much younger than 2D sensors and they are not yet part of

common vision systems. This might change in the smartphone and tablet domain, since as of 2016 the

first smartphone featuring a Time-of-Flight depth camera appeared on the consumer market.

Measuring depth based on the Time-of-Flight principle is the most miniaturized solution available and

has the flexibility to be used in a manifold of applications.

DEPTH IMAGING FOR 6-DOF LOCALIZATION

This section introduces current depth imaging solutions with focus on Time-of-Flight technology.

Depth sensors alone are usually not directly associated with localization, although they provide 3D-

context awareness of the immediate surrounding. A sensor fusion approach, incorporating depth

sensors however offers advantages in SLAM based systems (Steinbrücker, Sturm, & Cremers, 2011),

and can improve tracking precision in general. In this work, we focus on depth sensing based on Time-

of-Flight, since it is the most miniaturized solution, and is the only depth sensor, which can be found

in mass produced smartphones. We also present a concept in this chapter, where Time-of-Flight

sensors are directly used for location-aware optical communication, closing the gap between depth

sensing and localization.

The principle of Time-of-Flight depth sensing

Time-of-Flight imaging is based on measuring how long light takes to travel from the sensing system

to the scene and back to a photosensitive sensor. These systems can be distinguished by their operating

principle, as illustrated in Fig. 1. Direct Time-of-Flight systems emit short light pulses and measure

the time between emission and reception. Each pulse corresponds with one measurement. A prominent

example is LiDAR, where bundled light pulses are emitted by a laser and detected by photodiodes.

The angle of these pulses is modulated to receive a spatial image of the surroundings. Indirect ToF

imaging sensors relay on a continuous wave approach.

8. Publications Publication 3 - SCPSU 2017 157

Time-of-Flight (ToF)

Direct ToF Measurement
D-ToF

Indirect ToF Measurement
I-ToF

Pulsed ToF
Phase-delay TOF

(PMD sensor)

transmitted

received

dt dt dt dt

dφ dφ dφ dφ

t
transmitted

received

Fig. 1 The different principles of Time-of-Flight based depth measuring

The operating principle of this indirect approach is illustrated in Fig. 2 and works by emitting pulsed

infrared light at a wide radiation angle. An image sensor receives the reflected light and is able to

measure the phase-shift between incoming and outgoing signal, which is proportional to the distance.

The emitted light pulses usually have a frequency of up to 100 MHz. They originate from an active

illumination unit, which typically consists of an infrared LED or vertical cavity surface emitting laser

(VCSEL). The pulses travel to the sensed object and back to the image sensor. The lens projects the

light onto a ToF image sensor.

Fig. 2 The working principle of continuous wave indirect Time-of-Flight 3D imaging

Each pixel of the ToF sensor contains a photonic mixer device, which produces a signal corresponding

to the phase-shift between the outgoing and incoming light (Tobias, 2005). The incoming photons

generate charge-hole pairs in the silicon, which are moved into either of two charge buckets A and B.

This is decided by the logical state of the modulation signal. This signal is generated on the ToF

sensor and is also used to emit light pulses. In order to control the PMD devices, the signal is directly

supplied to each pixel. The charge difference between bucket A and B is the output of the ToF sensor

and is related to the phase-shift of the incoming and outgoing signals.

This phase output value however also depends on the amount of incoming light. Reflection properties

of the sensed material and as well the distance influence this value. In order to determine the exact

phase-shift, the most common way is to conduct four or more different measurements. In these

158 Publication 3 - SCPSU 2017 8. Publications

measurements, the phase-shift offset between the outgoing light and the modulation signal is changed,

producing four or more different phase images.

A well-established procedure is to take four measurements 𝐼 with four equidistant phase offsets (e.g.

0°, 90°, 180°, 270°) and calculate the phase-offset by the following relation:

𝑝 = atan⁡(
𝐼0 − 𝐼180

𝐼90 − 𝐼270
)

Since 𝑝 is proportional to the phase-shift of a pulsed light signal, the phase values wrap and start again

at zero, if the distance is too long. Time-of-Flight sensors are capable to change their modulation

frequency in order to produce another different set of four phase images to unwrap these ambiguous

phases. The final measurement for a depth image consists then of eight phase-images, which results in

a larger range, while maintaining precision. The tradeoff is a decreased frame-rate and potential

motion artifacts. The eight phase mode is commonly used in SLAM applications, which prefer depth

quality over frame-rate.

The drawback of Time-of-Flight sensors is limited resolution of the depth image, since each pixel

contains the circuit of the photonic mixer device. The limited photo-sensitive area on the silicon is

compensated partly by using micro-lenses directly applied above the silicon to focus light to the

photosensitive areas of a pixel. Since continuous wave Time-of-Flight sensing is the most miniaturized

depth sensing system available, increasing the sensor size to enhance resolution or photosensitivity is

often not feasible. Another drawback is the sensitivity to incoming background light. Despite

countermeasures such as background illumination suppression (BSI) and infrared filters, very bright

light sources such as reflected sunlight can reduce the signal to noise ratio, but do not directly

influence the measurement.

Alternative Depth Imaging Approaches

Each available depth imaging system has its own trade-offs and no system is yet predominant.

Compared to Time-of-Flight, all image-sensor based approaches need a certain size to conduct

measurements based on triangulation.

Stereo depth sensors usually consist of two cameras which are mounted in parallel with a certain

distance. This baseline between these cameras is necessary, because depth is measured by the pixel

offset between features of two images. A short baseline impairs depth quality and range. However

progression in research and increased sensor resolution made rather small baselines feasible, like they

are found in form of dual camera systems in smartphones. Stereo cameras usually produce sparse

depth measurements, since it is not possible to measure feature disparities of homogenous surfaces.

The depth image’s x/y resolution however is superior to most other depth sensing principles, because

high resolution image sensors can be utilized for stereo. A sensor fusion approach, combining ToF and

stereo depth sensors (Zhu, Wang, Yang, Davis, & Pan, 2011), is a promising solution, when high

quality depth images are required.

A variation of stereo sensors is structured light (D. Scharstein, 2003). Structured light utilizes a

projector in order to project a pattern onto the scene. An infrared camera senses the projected pattern.

Since the projected pattern is predefined, the operating principle is similar to a stereo camera setup, as

both systems are based on extracting the feature disparity caused by the distance to the camera. The

famous Microsoft Kinect sensor is based on this technology. Unlike stereo, dense depth images cannot

be gathered, as the projected pattern is also reflected on homogenous surfaces.

Due to the active illumination principle, structured light based systems can also operate in low light

conditions. The drawback of this system is that the active illumination requires more energy, like ToF,

and the system is also impaired by ambient light. Unlike ToF, such systems also require a certain

distance between projector and camera.

Depth imaging based on LiDAR is most commonly used in automotive applications. Unlike image

sensor based approaches, the angular variation of LiDAR measurements does not stem from optical

8. Publications Publication 3 - SCPSU 2017 159

projection onto an imaging sensor, but from mechanical scanning devices. This mitigates multi-path

interference, and allows the usage of highly sensitive photo elements, such as single photon avalanche

diodes. This increases the effective range at the cost of more complex sensing systems.

Direct Localization with Depth Sensors

Depth imaging sensors currently are not commonly used in the field of localization of electronic

devices. One of the reasons is that most of the research on image based localization is focused on the

far more established and ubiquitous color cameras. 3D data does not have as much variation and

distinctive features as 2D images. Geometry is more generic and repetitive than reflected light. Due to

the measurement principles, 3D imaging also suffers from resolution and limited range.

Geometry however is more consistent, since it is not influenced by different illumination. With depth

sensors it is possible build dense 3D models of the environment, as demonstrated by Newcombe et al.

(2011) in their Kinect Fusion approach. Such 3D models can be used for re-localization and mapping

the environment for systems such as autonomous robots. Another application for such high-quality

depth maps is augmented reality. Due to the integration of depth data to a dense model, it is possible to

embed virtual objects, using the high quality depth data.

Biswas and Veloso (2012) present an indoor navigation system based on depth information using a

plane filtered pointcloud and Monte Carlo localization. Since solely depth sensors are used, the robots

can also dynamically avoid obstacles, which are not in the reference map.

While these approaches might work in a smaller context, with distinctive geometry, sensor fusion

approaches are more favorable for localization. Later in this chapter, we explore the concept of using

Time-of-Flight depth sensors in a novel way to establish location-aware optical communication links

to embedded devices. If these devices forward positional information, highly accurate cooperative

localization is possible by solely using miniaturized depth sensors.

Depth and Color Sensor Fusion

Depth and color cameras can be combined to create a unified RGB-D sensor, capable to capture

images containing both depth and color information. When a SLAM or visual localization system is

provided with depth information, the system can either build better 3D maps, but also benefit in

robustness from the immediately available distance data (Steinbrücker et al., 2011). The process of 3D

and 2D data fusion can also improve depth image resolution, if the required processing power is

available. This is due to the principle that depth edges often correlate with edges in color and intensity

images. Color edges without any depth discontinuity can be simply ignored, when the lower resolution

depth image does not show any variation. Since depth imaging systems usually lack high resolution,

color edge information can be used to interpolate and upscale depth images in a meaningful way.

Research has produced a large number of image-guided depth upscaling algorithms (Chetverikov,

Eichhardt, & Jankó, 2015). The input for most methods is a high resolution color image and sparse

depth measurements which are mapped into the color image space. This sparse RGB-D image is

produced by 3D measurements which are mapped to the 2D image. The requirement for such mapping

is knowledge about the intrinsic camera parameters of both cameras, which include distortion

coefficients, focal length and pixel offsets of the optical centers. These parameters are usually derived

by checkerboard calibration, which is also possible for Time-of-Flight depth cameras, since they are

able to produce a grey-scale intensity image. The extrinsic parameters of a dual camera system are in

this case a translation vector 𝑇 and a rotation matrix 𝑅, which describe the transformation from the

depth camera’s coordinate system to the color camera. These parameters can also be gathered by

capturing images of a checkerboard pattern, and using a toolchain, such as Camera Calibration toolbox

(Bouguet, 2016). If intrinsic and extrinsic camera parameters are known, depth measurements with

depth 𝑑𝑖,𝑗 and pixel position 𝑥𝑖,𝑗⁡can be mapped to 3D space of the color camera, using the

pseudoinverse 𝑃 of the intrinsic depth camera matrix:

𝑋𝑖,𝑗 = 𝑇 + 𝑅𝑑𝑖,𝑗

𝑃𝑥𝑖,𝑗

‖𝑃𝑥𝑖,𝑗‖

160 Publication 3 - SCPSU 2017 8. Publications

The 3D measurements⁡𝑋𝑖,𝑗 can be projected to 2D image space coordinates 𝑣𝑖,𝑗 by multiplication with

the intrinsic matrix 𝐼 of the color camera.

𝑣𝑖,𝑗 = 𝐼⁡𝑋𝑖,𝑗

Methods to interpolate these projected depth images involve various principles, such as energy

minimization (Ferstl, Reinbacher, Ranftl, Ruether, & Bischof, 2013), graph based methods (Dai,

Zhang, Mei, & Zhang, 2015) or edge aware interpolation (Plank, Holweg, Herndl, & Druml, 2016).

Most methods are designed with focus on depth image quality and not for efficiency. In location-

aware cyber-physical systems, interactive framerates are desired. When the depth images are used to

build 3D maps in a SLAM system, several depth images per second are desired. Methods to create

high resolution depth images on restricted hardware are relatively rare. While there are approaches,

which emphasize on low computational complexity (Dai et al., 2015), there are not many

implementations which can be executed on parallel processing systems such as GPUs. The joint

bilateral filter, developed by Kopf et al. (Kopf, Cohen, & Lischinski, 2007) can be executed in parallel

and works by weighting image filter kernels on color similarity. This works well with relatively small

upscaling factors. If however more than just a few pixels between depth values need to be interpolated,

depth values influence pixels despite edges between the interpolated pixel and the original depth value.

We therefore developed an edge-aware interpolation approach which is optimized for GPUs on mobile

devices (Plank, Holweg, Herndl, & Druml, 2016). In this approach, sparse depth values are mapped to

high-resolution color images. Each depth value propagates its influence among circular paths to the

surrounding pixels. If edges are crossed, the influence drastically decays. If no edges are crossed, the

influence is evenly distributed, suppressing sensor noise. Our prototype implementation is capable of

producing 13 frames per second, when executed on GPUs on mobile devices.

Beside the capability of SLAM systems to create better geometric models of the environment, the

availability of high resolution 1-1 mapped depth and color images, enables better context awareness,

since combined depth and color data benefits 2D object detection algorithms (Yu & Zhao, 2012).

A rather unexplored issue is synchronization among camera systems. Most academic work assumes

that color and depth sensors operate in synchronous mode, since the technical solution to a

synchronous camera system seems trivial. In practical applications however, synchronization is often

not feasible as it usually requires tight cooperation across multiple hardware vendors. The vast

majority of image sensors are developed to be integrated into monocular systems, not offering any

option for hardware synchronization. For RGB-D SLAM systems however, synchronization can be

avoided by using additional sensors. Such system is usually in motion while the environment remains

static. If color and depth cameras gather information at different times, this can be corrected by using

motion tracking data from an inertial sensor. Inertial sensors can operate at a high update-rate. If all

measurements, including the depth and color images are accurately timestamped, the actual pose

difference between depth image and color image can be calculated by transforming the depth data by

the relative pose derived by the motion tracking system. By using physical models of the tracking

system, the relative pose can be even more refined.

Ovren et al. (2013) introduce this approach in their attempt to correct the effect of rolling shutter

image sensors. A rolling shutter is caused by the pixel readout process, and means, that not all color

pixels are captured at the same time. Inertial based depth image alignment is only possible with static

scenes, because they are only able to compensate the motion of the camera system.

LOCALIZATION WITH 2D IMAGING SENSORS

Feature Based Localization

Color information alone can be directly used for localization by matching visual input data against

databases (Vedaldi & Soatto, 2008). This works by finding features, which are regions or points in

input images which are significant and distinctive. Feature descriptors are an abstract representation of

these regions with the goal of being able comparable to other features, while being resilient against

pose and intensity variations. These feature descriptions can be stored in a visual dictionary,

8. Publications Publication 3 - SCPSU 2017 161

associating these features with localization information. These databases are either generated

systematically via 3D scanning systems, or using topologic information. If these features are

recognized by a vision system, the pose of the system can be calculated by triangulation. This kind of

visual localization can also be used to initialize a visual SLAM system (Lepetit, Arth, Pirchheim,

Ventura, & Schmalstieg, 2015). SLAM can provide more accurate localization, by creating a 3D data

representation of the sensed environment.

Visible Light Localization

The motivation of visible light localization (VLC) is caused by the increasingly ubiquitous LED lights.

Due to the fast switching speed, it is possible to transmit information from repurposed existing

illumination systems. With appropriate modulation, it is possible to use lights for communication

without perceivable flickering. Visible light based localization has different applications with different

demands in precision. Current products, such as Qualcomm Lumicast (Jovicic, 2016), repurpose image

sensors for visible light localization. The distinction between vision based methods with active targets

and visible light localization is that base-stations transmit information to help with localization. This

can be either IDs or positional information of the base station.

Do and Yoo (2016) provide an extensive survey on methods and implementations of visible light

based positioning systems. Such systems usually consist of base-stations, which emit encoded light to

electronic devices, equipped with photo-detection sensors. The base stations are either re-used light

sources, such as traffic lights or lamps, or dedicated infrared beacons. The simplest solution is based

on proximity detection. Such systems can be implemented with just a photodiode as receiver. It is

however only possible to detect the base-station itself, so only a very coarse localization with an

uncertainty of several meters (Campo-Jimenez, Martin Perandones, & Lopez-Hernandez, 2013) is

possible.

Finger printing based methods can achieve more precise positioning, but require pre-recorded maps

for localization. Time difference of arrival (TDOA) is another method, which works by receiving light

signals from multiple base-stations. For 3D localization, at least three base-stations need to be in the

direct field of view. The tracked device directly measures the distance to the base-station in this

method. This is accomplished by measuring the time it takes the light pulses of each base station to

travel to the device. The position is then determined by trilateration. Such localization systems require

a good synchronization of the base stations and the localized device. A single photodiode can be used

to receive the signals, and a method to separate the received signals of the base-stations has to be

employed. This is possible by using time or frequency division multiplexing (Liu, et al., 2014). TDOA

localization is not limited to the optical domain. It is possible to also use radio or sound waves,

however multi-path effects need to be considered. Image sensors might be capable to measure time-

differences, and also offer light-source separation due to the projection via lenses. The position on the

pixel can be used to detect the angles between the base-stations. Due to the pixel readout process,

image sensors usually cannot be sampled at the required rates. It either requires dedicated image

sensors, featuring customized electronic shutter units or direct pixel readout. Dynamic vision sensors

(Censi, Strubel, Brandli, Delbruck, & Scaramuzza, 2013) are a promising development, and might be

able to conduct such measurements. An active vision sensor does not produce images, but events

which describe local pixel value changes. The difficult synchronization between device and base-

stations might deem such image sensor based approaches unfeasible, because it is also possible to

determine the position on triangulation alone. Time-of-Flight 3D imaging sensors might be capable to

support TDOA based localization, but to our knowledge, this has not yet been investigated and is

subject for future research.

Another method to determine the distance between optical receivers and LEDs is to measure the

received signal strength (RSS). Calculating the distance to light sources is based on modelling the light

source and its propagation path to photo sensors. After calibration, distances can be associated with

the output of optical receivers. When receiving the signal from multiple base-stations, the signal

differences between the base-stations can be used to calculate the distance. This mitigates the

influence of background illumination. RSS based positioning has the potential to be simply

implemented and widely adopted, since no synchronization is necessary. The problem however is that

the received signal strength depends on the orientation of the photo detector relative to the LEDs as

162 Publication 3 - SCPSU 2017 8. Publications

well. The light strength also depends on the orientation of the LEDs, since light is radiated

inhomogeneously. It is however possible to combine RSS with angle based localization methods

(Mauro Biagi, 2015).

Localization based on triangulation requires systems, which are able to measure the angle of arrival

(AOA). This can be either accomplished by an array of photodiodes (Lee & Jung, 2012) or by using

image sensors. AOA systems are in general more complicated, but do not require synchronization.

With the help of a 3D camera, it is possible to localize the relative positions of the base stations, and

combine trilateration and triangulation in order to improve the localization accuracy. It is also possible

to avoid determining the positions of the base-stations beforehand. If only relative movements need to

be detected, the base stations can be supplied with their relative locations from the 3D camera system

via optical communication. In the next section, we present our OptiSec3D approach, which enables

these concepts by combining Time-of-Flight depth sensing with optical communication.

LOCATION-AWARE OPTICAL COMMUNICATION BASED ON TIME-OF-FLIGHT
SENSORS

The operating principle of Time-of-Flight depth sensors requires an image sensor, capable of

demodulating phase differences of pulsed light. In this section, we present our effort to create a novel

location-aware optical communication system. We further go into detail, how it might benefit future

localization and tracking systems in the fields of IoT and cyber physical systems.

The most significant feature of image sensor based optical communication is the directional awareness

of the communication partner. If depth imaging sensors are used for optical communication, it is even

possible to track communication partners in 3D. While there exist a manifold of image sensor based

optical communication systems, Time-of-Flight sensors have not yet been widely explored for optical

communication.

A first attempt was made by Yuan et al. (2014), who establish a one-way communication link between

a Time-of-Flight camera and an array of modulated LED lights. The sending device avoids the

required synchronization by recovering the Time-of-Flight sensor’s modulation signal with a

photodiode. The emitting LEDs are supplied with a phase-modulated modulation signal and

manipulate depth measurements of the ToF sensor. These depth measurements are analyzed and the

received information is extracted. Since the Time-of-Flight sensor is operated in normal depth sensing

mode at relatively low frame-rates in this approach, multiple LEDs are used to transmit information in

parallel. Such multiple input approaches are limited in range, since the pixel array cannot resolve

individual LEDs when a certain distance is exceeded.

If a system however is capable of configuring and controlling Time-of-Flight 3D imaging systems

with a direct connection and a real-time system with low level configuration access, optical

communication parameters can be changed to increase readout speeds and it is also possible to use just

single modulated LEDs to send information. In our OptiSec3D approach, we utilize Time-of-Flight

sensors as optical transceivers, which are also capable to incorporate depth measurements into the

communication protocol. Our approach has the potential to reach a throughput of several kilobits per

second.

Operation Principle of the OptiSec3D approach

Indirect Time-of-Flight sensing works by emitting pulsed infrared light. The active illumination unit of

such system can be used as transmitter, since it is designed to emit pulsed infrared light at different

phase-shifts. The pixels of the receiving Time-of-Flight image sensor are capable to demodulate the

phase-shifted signal. This allows optical communication based on pulsed light phase-shift keying

(PLPSK).

The vast advantage of PLPSK is that multiple bits can be encoded in one image. In most image sensor

based approaches, simple binary modulation schemes, such as on/off keying (Roberts, 2013) or pulse

position keying are used. They support the transmission of one bit per frame at best. PLPSK takes

advantage of the photonic mixer device (PMD), located on each pixel of a Time-of-Flight sensor. The

PMD decodes phase differences of incoming light pulses, by sorting the incoming charges into charge

8. Publications Publication 3 - SCPSU 2017 163

storage buckets A and B on the pixels. After the readout process, the voltage difference of these

buckets is proportional to the phase difference between the own modulation signal and the incoming

light pulses. If these light pulses are phase-modulated, the output of the ToF sensor contains the

decoded phase offset signal. Since at least four equidistant phases are used during communication, it is

possible to decode phase differences by just using one frame, instead of at least four frames used

during depth measurement.

Channel Characteristics

Due to the measurement principle of the PMD on each pixel, the sensor is sensitive to pulsed light

within a certain frequency range. Non-pulsed background light does not have a direct influence on the

measurement. The photons of continuous light arrive during both switching states of the PMD with

near equal intensity. This fills both charge buckets equally, leading to increased noise but no

measurement bias. Due to this principle, extensive image processing is unnecessary, as it can be

assumed, that all detected signals originates from potential communication partners.

Another side-effect of the PMD pixels is that sensors can choose modulation frequencies from a large

spectrum to communicate. Stray light from different connections from different systems do not

directly influence the measurement, as long the light pulse frequency is just several thousand Hertz

apart. There exist no experimental evaluations so far, but a viable spectrum of 16 to 26 MHz can

potentially yield to 1000 different channels, with a rather large distance of 10000 Hz. Using fast-

switching VCELs, instead of LEDs, the upper boundary of the spectrum can be extended to over 100

MHz.

Image sensor based optical communication usually suffers from the low frame-rates of the sensors.

While there exist experimental dedicated communication image sensors (I. Takai, 2013), the necessary

digitization of complete frames has been holding back high speed image sensor based communication

links so far.

Time-of-Flight sensors need to capture up to eight phase images in order to create one depth image.

Therefore the readout and analog-digital conversion circuitry is often optimized for fast readout and

digitization.

In order to demodulate a line-of-sight communication signal, just a very short exposure time is

required. These characteristics enable high frame-rates during optical communication. We manage to

operate our Time-of-Flight sensor at 500 frames per second with full sensor readout. This however can

be massively increased, if the sensor is only read-out partially. By configuring the readout region to a

minimum of 16x32 pixels, we are able to reach 7300 frames per second. This can lead to a

transmission throughput of 14600 bits per second, when using 4-PLPSK. This high framerate leads to

fast light source tracking capabilities, supported by fast adoption of the readout window, to

accommodate moving targets.

Sensor Synchronization

A technical challenge throughout many communication systems is synchronization. In Time-of-Flight

based communication, it is important that the frequency of the modulation signal of a ToF camera

matches the frequency of its communication partner. If the modulation frequency of a ToF sensor is

different from the frequency of the incoming light pulses, the measured phase values start to drift.

Figure 3 shows sampled phase values, when the sender continuously emits pulsed infrared light

without phase-shift. If this signal is measured and digitized, the frequency of this signal is the absolute

modulation frequency difference between both communication partners.

Synchronization can be accomplished by sampling the incoming light pulses, and calculating the

frequency difference of the communication partner. The modulation frequency of Time-of-Flight

cameras is usually configurable to accommodate different use-cases. In the case of OptiSec3D, the

frequency is adapted by configuring a phase locked loop (PLL) on the sensor. Synchronization can be

reached, if the PLL is adapted by the measured frequency difference.

164 Publication 3 - SCPSU 2017 8. Publications

Fig. 3 The observed phase with corresponding charge bucket contents, if sender and receiver are not synchronized

Implementation of OptiSec3D

The core of each OptiSec3D communication partner is an Infineon Real3
TM

 3D imaging sensor, based

on Time-of-Flight technology of pmd technologies. The Xilinx Zynq 7000 platform is used in our

platform to operate the sensor with software executed on its integrated ARM processors, while the

FPGA is used as glue logic and for imaging data transmission. The software uses an I2C bus to

configure the ToF imaging sensor. This live-configuration of the sensor allows changing the internal

workings of a normal depth sensor in such way, that it is possible to transmit and decode data. This

works by limiting the number of digitized pixels per frame to a small area around modulated

lightsources. With this configuration, the sensor is able to sample the image of the communication

partner at over 7300 frames per second. The received signal directly contains the transmitted decoded

information, since ToF pixels are sensitive to phase-shift differences.

Communication Modes

Time-of-Flight cameras could be either used to communicate with each other, or with different

electronic devices. While it is not difficult to implement a PLPSK transmitter, receiving PLPSK is not

trivial, since a photonic mixer device is required. ToF cameras however are able employ alternative

modulation schemes, such as pulse position modulation. A receiver would just need to be able to

detect the presence of light within certain time-slots. Time-shifts could be implemented either directly

by accessing the illumination unit, by varying the frame-rate, or the number of read-out pixels.

Optical line-of-sight communication is not limited to two communication partners. The

aforementioned concepts can be employed to multiplex communication between multiple partners. For

synchronization, the adapted frequency for each communication partner can be stored, and the PLL

adapted each time, when switching the focus to a different partner. If multiple devices want to

communicate with a single node, all other devices could alternatively adjust their frequency to the

node. If the focus of an application is on low latency rather than throughput, the sensor can be read-out

completely, instead of adapting the readout region to the location of each communication partner.

Localization Principles with Location-Aware Optical Communication

Location-awareness and re-usability are the main motivations for optical communication based on

image sensors. While 2D image sensors are only capable to determine the incident angles of a line-of-

sight connection, Time-of-Flight sensors can locate communication partners in 3D.

8. Publications Publication 3 - SCPSU 2017 165

Since Time-of-Flight imaging systems can be used as optical transmitter and receiver, the simplest use

case is optical communication between two Time-of-Flight cameras. When both communication

partners measure their mutual distance, they can both locate each other in 3D. In the application of e.g.

encrypted device authentication, both partners can forward their mutual distance measurement and

check for consistency. This effectively defeats relay attacks, where an attacker relays communication

without alteration, using two relay boxes. In such relay attack, the distance between sender and relay

box A is not consistent to the distance of receiver and relay box B.

Fig. 4 Depth sensing, combined with optical communication leads to 5-dof localization with just one base-station. The

base-station is equipped with an image sensor, and transmits its position 𝑳⃗⃗ and the direction 𝒑⃗⃗ vector of the

localization device. The localization device can calculate its own position 𝑳𝑺
⃗⃗⃗⃗ and direction 𝒅𝑺

⃗⃗ ⃗⃗ by combining the

received information with a distance measurement.

Communication between Time-of-Flight cameras could also be employed in localization solutions. In

that case, a stationary camera with a light emitter serves as beacon. Electronic devices, equipped with

a Time-of-Flight camera can contact one beacon to determine its position and orientation. An example

could be an autonomous robot, desiring to navigate around a building.

The beacon’s purpose is to forward its own position and the angles relative to the device. When simple

LED beacons are used, at least three of them are necessary to determine the camera’s position, even

when the camera can determine the distance to each beacon. If the beacon however features an image

sensor, as depicted in Fig. 4, the incidence angle of the line-of-sight can be determined by the beacon

and forwarded to the device.

This enables 5-dof localization of embedded devices, using a single beacon. The only unknown degree

of freedom is the roll angle, since the beacons optical signature is invariant to rotations around this

axis. Sensor fusion with a gravity sensor or computer vision methods can effectively help reach full 6-

dof localization. In the case of autonomous robots, this angle might already be locked due to the

camera mounting method.

While beaconing with Time-of-Flight sensors enables a miniaturized localization system, simpler and

cheaper beacons might be desirable. If three or more beacons are visible at the same time, a device

using an imaging sensor can reach 6-dof localization by solving the perspective-n-point problem.

166 Publication 3 - SCPSU 2017 8. Publications

When using depth sensors, the relative 3D position between camera and each beacon is directly

available. This enhances the positioning robustness, since both trilateration and triangulation can be

used to determine the position.

When no absolute localization within a predetermined coordinate system is desired, it is sufficient to

use beacons which initially do not hold information about their location. A device can determine the

relative positions of the beacons by using a 3D camera. With optical communication, it is possible to

assign IDs to each of them and re-localize them in the local coordinate system. It is also possible to

forward localization information to these beacons, so that simpler devices with 2D cameras can later

on use them for navigation. In the last section of this chapter, the idea of forwarding positional

information to small IoT devices is further discussed.

Augmented Internet of Things

So far, the main focus of augmented reality (AR) is fusing virtual and real worlds in order to receive

an augmented world. The main mechanisms so far are putting virtual objects into a live camera stream

(e.g. Google Tango, Qualcomm Vuforia), or embedding them into the viewport of a user (e.g.

Microsoft HoloLens). We propose a concept with our OpticSec3D approach, to use 3D location-aware

optical communication in order to enable embedded devices to interact with the augmented world.

This would enable electronic devices within the viewport of an AR, to transfer information and

interaction possibilities to the augmented world. These devices could be any kind of system, requiring

human interaction, such as light switches, payment terminals, heating and climate control. They could

also serve as virtual signs, or display promotions in supermarkets, or be used for pairing with local

WIFI or Bluetooth connections.

A Time-of-Flight depth sensor on such AR system can receive optical signals from such devices and

can use distance measurements to determine the 3D position. When the 3D position relative to the AR

device is known, it can be embedded into the augmented reality. The concept, of mapping a 3D

position into AR space, is shown in Fig. 5. Since the pixel position of the depth camera is different to

the augmented color image stream, the 3D position needs to be transformed to color camera image

space and projected to the 2D image space.

8. Publications Publication 3 - SCPSU 2017 167

Fig. 5 With 3D-location-aware optical communication, electronic devices can be embedded into augmented reality. A

Time-of-Flight sensor is able to combine depth measurements with pixel coordinates (xT, yT) to calculate the 3D

coordinates (xD, yD, zD) of the augmented device. Using calibrated camera parameters, it is possible to transform and

project the 3D position to the image coordinates (xC yC) of an augmented image stream.

When the 3D position of a stationary device is determined, there are two possibilities. On the one

hand, AR device can be equipped with a variety of pose tracking sensors. In this case, the 3D position

can be placed into the augmented coordinate system and the pose tracking sensor would keep track of

the position at this point. If the AR system does not feature such additional tracking system, the

position solely relies on tracking the modulated light source. This requires continuous tracking, which

means, that depth measurements need to be incorporated into the communication protocol.

It is however sufficient to conduct these measurements infrequently, since only larger changes in

distance create different pixel mappings to the augmented reality stream. For rotations, it is possible to

track the incident angle of the modulated light sources during communication with low latency.

CASE STUDIES ON OPTICAL LOCALIZATION AND TRACKING SYSTEMS

As of 2016, the upcoming applications for high-performance localization and tracking solutions are

found in the automotive field in automated driving systems, and in consumer electronics in augmented

and virtual reality devices. In this section, we introduce such high-performance localization and

tracking mechanisms and how they already found their way into products.

Google Tango

Google started Tango with the goal to provide smartphones and tablets a human-like understanding of

the environment. The central ambition is to produce a reference design and software to enable

smartphone and tablet vendors to implement Tango’s functionality into their devices. A large part of

Tango is to support application developers by providing support, tools and development kits.

A Tango enabled mobile device is able to record and locate itself in a 3D map of its environment and

track its pose at a very high update rate. This enables indoor localization and augmented reality.

Google categorizes the aspects of its platform into motion tracking, area learning and depth

perception. These main features are mutually dependent from each other and rely on a sophisticated

software and hardware implementation.

168 Publication 3 - SCPSU 2017 8. Publications

Motion tracking:

Project Tango devices feature 6-dof motion tracking. While current mobile devices are often capable

of orientation tracking, by using gyroscopic magnetic and gravity sensors, Tango adds sophisticated

3D pose tracking. This is realized with a sensor fusion approach, including inertial sensors and a

motion tracking camera.

The motion tracking camera has a very wide field of view and records black and white images. Tango

detects features and uses frame-to-frame feature correspondences to detect camera movements. The

data from the inertial sensors complements the data of the motion tracking camera to receive a higher

update rate and to increase robustness during strong motions and featureless images.

The outcome from motion tracking is continuously available pose information, containing the position

and orientation of the device, but neither provides a reference coordinate system or localization in a

larger context.

Area learning:

The goal of area learning is to build a 3D model of the environment. This is accomplished by a

simultaneous mapping and localization approach. Data from the color, depth and motion tracking

sensors are combined to create a 3D presentation of the environment. Image features which are

especially unique are saved as landmarks. According to Google, these landmarks are saved about

every 50 cm of tracked camera displacement. Landmarks along with the available 3D data enable fast

localization within previously recorded datasets. The captured area learning data can be exported and

stored into area description files (ADF).

These files enable Tango devices to remember the environment without re-scanning. It is also possible

to use externally provided area description files for localization. An example would be indoor

navigation system, where the building was initially recorded with Tango. Waypoints for navigation

could be placed into such an area description file to directly support navigation.

The area description file along with navigation information is then provided to Google Tango enabled

devices, and they are able to precisely locate themselves in the coordinate system of the provided file.

Navigation and location based services are possible, if the ADF is associated to mapping data.

Jeon et al. (2016) enhance this concept, by scanning the indoor environment with a 3D laserscanner,

and use their own method to build a database. Google Tango enabled devices can use the database for

localization, but also to push new data to the database. This enables to update the database

automatically with change to the environments.

Depth understanding:

The latest iteration of Google Tango incorporates a depth sensor based on Time-of-Flight technology.

This sensor is important for area learning, but also gives the Tango platform an immediate

understanding of the geometric context. Since Time-of-Flight is a dense depth sensing method, it is

possible to gather 3D information on texture-less flat surfaces. This helps to create a denser map

during area learning, but also enables the augmented reality applications which are one of the most

significant selling points of the platform. With depth understanding, it is possible to integrate virtual

objects into the augmented world. Besides gaming and other entertainment purposes, depth sensing

enables to measure distances without measuring tape, and even preview furniture in its determined

surrounding before buying.

Head-mounted Virtual Reality Devices

Virtual reality is currently the most demanding application for indoor positioning and tracking

systems. The demand for operating range of consumer-grade head mounted devices (HMD) is limited,

but the precision, update rate and latency are critical. User experience motion sickness, if there is a

discrepancy between their motion and visual stimuli. A common term is the motion to photon delay,

which is the time from a user’s movement to the point, when the displays in the HMD update their

images to accommodate the movement.

The main measure to reduce this delay is a high display frame-rate. This is currently 90 frames per

second in the current top products such as the Oculus Rift and the HTC Vive. On the other hand, the

8. Publications Publication 3 - SCPSU 2017 169

tracking sensors require an even higher update rate. Since visual output and tracking are usually not

synchronized, a higher tracking update rate enables to associate frames with better tracking results.

The common denominator of current VR tracking systems is that they are based on sensor fusion

approaches, using MEMS-based inertial sensors for a high update rates in combination with optical

sensors for positioning and error correction.

For the optical tracking part, there exist two major paradigms, as illustrated in Fig. 6. While the exact

definition is debated, the main difference is the position of the optical localization device (Foxlin,

2002). An inside-out tracking system has the localization device mounted on the device, while outside-

in systems have a stationary tracking device, facing the tracked object. Fixed reference points are used

to localize the device within a given coordinate system. The fixed locations can be either active

beacons, or passive visual markers. Even normal visual features might be sufficient in future iterations

of HMD tracking systems. In 2016, Oculus invited journalists to demonstrate a prototype, based on

Inside-out tracking and just using visual features of a typical living room environment (Orland, 2016).

170 Publication 3 - SCPSU 2017 8. Publications

Fig. 6 The difference between outside-in and inside-out tracking. 2D-projections (x,y) of features or active markers

with known relations 𝒅⃗⃗ , are used to determine the 6-dof pose of the tracking device. In inside-out tracking, the

tracking device observes the static environment. In outside-in tracking systems a stationary base-station observes the

device and forwards the pose over a communication link.

The advantage of inside-out tracking is that the system is not limited to certain boundaries, as long as

enough reference points are within the field of view of the tracking sensors. A problem of practical

implementations however is that usually with 2D image sensors, only incident angles of the line-of-

sight to the reference points can be measured. Since it is not feasible in consumer electronic, to let the

user calibrate the positions of the reference points, the points need to be located. This can be achieved

by image to image correspondences, but requires view disparity and is subject to inaccuracy. Another

reason, why as of 2016, inside-out tracking is not used in virtual reality is that the pose tracking

precision of active visual markers depends on the distribution of the markers. At least three markers

are required to be in sight at the same time, and they must not be arranged in a straight line.

An outside-in tracking system has one or more localization sensors mounted on a fixed point, while

the tracked objects are observed. This currently dominant tracking paradigm can be categorized into

the following principles:

Tracking with LED Markers and Image Sensors:

This technology is currently used by Oculus Rift, OSVR and PlayStation VR. These outside-in

tracking systems are based on 2D infrared cameras, which sense active markers on the HMD. It case

of the Oculus Rift, these markers consist of LED lights, which are toggled by the tracking system for

identification. Since the positions of these markers on the HMD are fixed and known, finding the pose

of the head-mounted device can be mapped to the perspective-n-point problem. This problem

describes finding the 6-dof pose of a set of points in 3D space, by analyzing 2D projections on images,

gathered by a calibrated camera. While the pose can be determined by sensing three or more points,

the robustness and precision are enhanced by additional points. The problem with outside-in tracking

is the stationary position of the camera. This limits the usage to viewport of the tracking camera. Due

to limited sensor resolution, the precision decreases with distance limiting the tracking solution to

medium sized rooms. This can however be counteracted by using multiple tracking cameras.

Tracking with Laser Beacons and Photodiodes:

This tracking solution is used by HTC Vive HMD in its Lighthouse tracking system. It is based on

photosensitive element instead of image sensors. These elements are distributed among the surface of

the device. Two base stations are positioned in front of the user. Each features two rotating lasers,

which scan the X and Y axis of the room at precisely 60 Hz. A synchronization pulse sequence is

8. Publications Publication 3 - SCPSU 2017 171

broadcasted to all sensors. Then each element counts the time until the laser beam reaches its position.

With the timing information, it is possible to reconstruct the angle of the laser, when it reached the

element. By using two lasers, it is possible to triangulate the position of the element. Using the 3D

positions of all elements, it is possible to determine the 6-dof pose of the HMD. The advantages of this

system, are that it has an increased range, minimum computation overhead, potentially lower latency,

and the possibility to track multiple devices without additional effort in the base stations (Deyle,

2016). The update-rate however is too low for optical tracking alone, and thus sensor fusion with

inertial sensors is necessary. Another advantage is that the base-station is independent of the tracked

device. The positional information could be calculated on the tracked device itself.

The scanning principle of Lighthouse also permits 3
rd

 parties to use the base stations to develop their

own tracking solutions. Since inexpensive microcontrollers and photodiodes can be used, this tracking

system has the potential to be widely used for localization and positioning in areas like internet of

things or smart-homes.

State-of-the-art HMDs are dedicated to electronic entertainment. The devices are localized by the

tracking system into a coordinate system, defined by the base stations. This pose is then transformed

into the coordinate system of the virtual world. If the pose of the base station within a mapping system

of the real world is known, virtual reality tracking systems can provide high fidelity localization.

Another aspect is awareness of the immediate surroundings. Virtual worlds usually do not have

boundaries, so the users need to be prevented from stumbling over objects or colliding with walls. An

elegant solution would be to detect these obstacles by using a depth camera. The first generation of

consumer grade HMDs does not feature such a camera, but let the user manually define virtual

boundaries before usage.

Vehicle Localization

This section briefly introduces some special use-cases where different forms of localization and

tracking are employed in the very important vehicular context.

Fleet management:
A company owing a number of cars (for example a taxi company or a truck company) can strongly

benefit from knowing the current position of all their cars in order to improve the offered service.

Since such systems do not require a very precisely measured location they get along with a GPS

device. Those systems are inexpensive and are currently widely used for fleet management, since they

can be built up using a mobile phone with GPS capability. A famous example is the taxi company

Uber, which displays the current position of the closest available vehicles via their smartphone

application. Additionally, the GPS in the car replaces the taximeter, since it tracks the actually driven

distance and time.

Assisted driving functions:
Some assisted driving functions require environment data of the direct surroundings, for example the

detection of other cars and objects for parking assistance or collision avoidance (Winner, 2015). For

that purpose sensors for object detection are mounted on modern vehicles. Those include radar

sensors, LiDAR sensors, ultrasonic sensors and cameras. Since each of those sensors has shortcomings

in certain environments, typically more than one sensor technology is implemented and considered by

the assisted driving system.

Other assisted driving functions require the vehicle to not only know its direct surroundings, but also

know the current position on the map. It can be very beneficial for a collision avoidance system to

have information about the current context (for example an urban area or a motorway) (Levinson,

2008). This can easily be acquired using GPS localization.

Then there are also systems which communicate with infrastructure objects (Vehicle-to-infrastructure,

V2I) or other cars (Vehicle-to-vehicle, V2V) in order to gain additional knowledge of the surrounding

environment. This can be information about dangers on the upcoming road, the timing of the next

traffic lights or other relevant information for the vehicle. Today, the information is communicated

172 Publication 3 - SCPSU 2017 8. Publications

using the mobile network or a WiFi-like short range network. Yet, the presented novel optical line-of-

sight communication techniques may be used in future.

Automated driving:
Although fully autonomous driving is not reality yet, automakers are putting a lot of effort in that topic

in order to preserve their position in the market. Localization of a vehicle using only the GPS is

considered to be insufficient for the use in (partwise) automated driving systems (Bar, 2014). The

current approaches depend on up-to-date HD maps and the exact position of the vehicle within that

map. The exact position in addition with the data from multiple environmental perception sensors

enables the potential for fully autonomous driving.

The solely use of current GPS systems for localization is not precise and reliable enough for direct

mapping into HD maps. Therefore the issue can be resolved by using the environmental perception

sensors (radar, LiDAR, cameras) of the vehicle. For instance, Time-of-Flight based sensors can

measure the distance to certain points of interest in the environment and align them with the

corresponding points within the HD maps.

Using the inertial sensors and odometry data, it is possible to keep tracking the exact position on the

map even if the GPS is in a non-functional state (for example in a tunnel).

FUTURE CONCEPTS

Inside-out Tracking without Active Markers

Vision based inside-out tracking has is already extensively been used in augmented reality. Google

Tango, Microsoft HoloLens and Qualcomm Vuforia are well known examples. In these applications,

the required latency and update rate allows feature based tracking and localization.

In augmented reality, latency is more tolerable, than in virtual reality, because it does not cause motion

sickness. The 2D imaging pipeline of an inside-out tracking system introduces such latency which

creates a massive technical hurdle in high fidelity tracking and localization applications such as virtual

reality. Despite these circumstances, Oculus presented a working prototype in 2016, using four motion

capture cameras in order to provide 6-dof tracking without requiring any peripherals.

Position forwarding to IoT devices

With an increasing number of 6-dof location-aware devices on the consumer market, it is possible to

use image sensors along with optical communication to detect and localize embedded devices of all

kind. An example could be a smartphone equipped with a location-aware AR platform such as Google

Tango and an optical communication solution. By sensing the presence of embedded IoT devices, it

would be possible to localize them and use a communication channel to directly forward them their

position.

Potential applications involve secure device pairing, location-aware temperature control, geometry-

aware audio systems or all kinds of intelligent sensors. If desired, surveillance cameras could be

provided their pose in order to be able to reliably track persons throughout buildings.

8. Publications Publication 3 - SCPSU 2017 173

Fig. 7 A device is aware of its own location 𝑳⃗⃗ and orientation 𝒑⃗⃗ is able to localize embedded IoT devices in 3D. It can

forward the localization information via optical communication.

In professional settings such as fabrication, workshops or warehouses, the location of tools and parts

can be determined by using optical communication along with positioning.

CONCLUSION

This chapter discusses concepts, methods and opportunities for optical localization of cyber-physical

systems and future IoT devices. A focus is placed on Time-of-Flight depth imaging systems, and how

they can benefit existing and future localization systems. Examples of high-performance localization

and tracking systems in existing products are introduced in form of case-studies.

As the field of visible light communication shows, optical communication is a crucial aspect of

modern optical localization systems. We introduce our own location-aware optical communication

approach, based on Time-of-Flight depth sensors. With this approach, it is going to be possible to

localize communication partners in 3D with high accuracy and very low latency.

We are also confident that 3D-location aware optical communication will close the gap between

augmented reality and IoT, by enabling embedded devices to participate in an augmented world.

174 Publication 3 - SCPSU 2017 8. Publications

REFERENCES

(2016). (Wikitude GmbH) Retrieved 12 05, 2016, from Wikitude: http://www.wikitude.com/

Biswas, J., & Veloso, M. (2012). Depth Camera based Localization and Navigation for Indoor Mobile

Robots. Proceedings of IEEE International Conference on Robotics and Automation.

Boger, Y. (2016). (OSVR) Retrieved 11 21, 2016, from The VRguy's Blog: http://vrguy.blogspot.de/

Bouguet, J.-Y. (2016, 12 11). Retrieved from Camera Calibration Toolbox for Matlab:

https://www.vision.caltech.edu/bouguetj/calib_doc/#start

Campo-Jimenez, G., Martin Perandones, J., & Lopez-Hernandez, F. (2013). A VLC-based beacon

location system for mobile applications. International Conference on Localization and GNSS

(pp. 25–27). Turin: IEEE.

Censi, A., Strubel, J., Brandli, C., Delbruck, T., & Scaramuzza, D. (2013). Low-latency localization

by Active LED Markers tracking using a Dynamic Vision Sensor. IEEE/RSJ International

Conference on Intelligent Robots and Systems 2013.

Chetverikov, D., Eichhardt, I., & Jankó, Z. (2015). A Brief Survey of Image-Based Depth

Upsampling. KEPAF.

Dai, L., Zhang, F., Mei, X., & Zhang, X. (2015). Fast Minimax Path-Based Joint Depth Interpolation.

IEEE Signal Processing Letters, 623-627.

Deyle, T. (2016, 12 11). Valve's "Lighthouse" Tracking System May Be Big News for Robotics.

Retrieved from Hizook: http://www.hizook.com/blog/2015/05/17/valves-lighthouse-tracking-

system-may-be-big-news-robotics

Dhome, K. M.-B.-A. (2015). Bundle adjustment revisited for SLAM with RGBD sensors . 14th IAPR

International Conference on Machine Vision Applications (MVA).

DIY Position Tracking using HTC Vive's Lighthouse. (2016, 12 11). (Github) Retrieved 11 21, 2016,

from Github: https://github.com/ashtuchkin/vive-diy-position-sensor

Do, T.-H., & Yoo, M. (2016). An in-Depth Survey of Visible Light Communication Based Positioning

Systems. Sensors.

Ercan, A. T. (2015). Fusing Inertial Sensor Data in an Extended Kalman Filter for 3D Camera

Tracking. IEEE Transactions on Image Processing.

Ferstl, D., Reinbacher, C., Ranftl, R., Ruether, M., & Bischof, H. (2013). Image Guided Depth

Upsampling Using Anisotropic Total Generalized Variation. 013 IEEE International

Conference on Computer Vision, (pp. 993-1000). Sydney.

Foxlin, G. W. (2002). Motion tracking: no silver bullet, but a respectable arsenal. IEEE Computer

Graphics and Applications , 22(6), 24 - 38.

I. Takai, S. I. (2013). LED and CMOS image sensor based optical wireless communication system for

automotive applications. IEEE Photonics Journal.

Jeon, C. J., Ji, M., Kim, J., Park, S., & Cho, Y. (2016). Design of positioning DB automatic update

method using Google tango tablet for image based localization system. Eighth International

Conference on Ubiquitous and Future Networks (ICUFN). Vienna: 644-646.

Jovicic, A. (2016). Qualcomm Lumicast: A high accuracy indoor positioning system based on visible

light communication. Qualcomm Flarion Technologies.

Kopf, J., Cohen, M. F., & Lischinski, D. (2007). Joint Bilateral Upsampling. SIGGRAPH .

Lee, S., & Jung, S. (2012). Location awareness using Angle-of-arrival based circular-PD-array for

visible light. In Proceedings of the 18th Asia-Pacific Conference on Communications

(APCC),, (pp. 480–485). Jeju Island.

Lepetit, V., Arth, C., Pirchheim, C., Ventura, J., & Schmalstieg, D. (2015). Instant Outdoor

Localization and SLAM Initialization. Proceedings of the International Symposium on Mixed

and Augmented Reality.

Liu, M., Qiu, K., Che, F., Li, S., Hussain, B., Wu, L., & Yue, C. (2014). Towards indoor localization

using visible light. International Conference on Intelligent Robots and Systems (IROS), (pp.

143–148). Chicago.

Mauro Biagi, S. P. (2015). LAST: A Framework to Localize, Access, Schedule, and Transmit in

Indoor VLC Systems. Journal of Lightwave Technology, (pp. 1872-1887).

8. Publications Publication 3 - SCPSU 2017 175

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., . . . Fitzgibbon, A.

(2011). KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth

Camera. Proceedings of the 24th Annual ACM Symposium on User Interface Software and

Technology.

Orland, K. (2016). Oculus working on wireless headset with “inside-out tracking”. Retrieved from ars

Technica: http://arstechnica.com/gaming/2016/10/oculus-working-on-wireless-headset-with-

inside-out-tracking/

Plank, H., Holweg, G., Herndl, T., & Druml, N. (2016). High performance Time-of-Flight and color

sensor fusion with image-guided depth super resolution. Design, Automation & Test in Europe

Conference & Exhibition (DATE), (pp. 1213-1218). Dresden.

Roberts, R. D. (2013). A MIMO protocol for camera communications (CamCom) using undersampled

frequency shift ON-OFF keying (UFSOOK). Globecom Workshops, (pp. 1052-1057).

Shen, Y. L. (2015). Dense visual-inertial odometry for tracking of aggressive motions. IEEE

International Conference on Robotics and Biomimetics (ROBIO).

Steinbrücker, F., Sturm, J., & Cremers, D. (2011). Real-time visual odometry from dense RGB-D

images. 2011 IEEE International Conference on Computer Vision Workshops (ICCV

Workshops). Barcelona.

Tobias, M. H. (2005). Robust 3D Measurement with PMD Sensors. Range Imaging Day,. Zürich.

Törnqvist, H. O. (2013). Why would i want a gyroscope on my RGB-D sensor? 2013 IEEE Workshop

on Robot Vision (WORV).

Vedaldi, A., & Soatto, S. (2008). Localizing Objects With Smart Dictionaries. ECCV.

Woodman, O. J. (2007). An introduction to inertial navigation.

Yu, J., & Zhao, J. (2012). Segmentation of depth image using graph cut. Fuzzy Systems and

Knowledge Discovery (FSKD),, (pp. 1934-1938).

Yuan, W., Howard, R., Dana, K., Raskar, R., Ashok, A., Gruteser, M., & Man-dayam, N. (2014).

Phase messaging method for time-of-flight cameras. Conference on Computational

Photography (ICCP).

Zhu, J., Wang, L., Yang, R., Davis, J. E., & Pan, Z. (2011). Reliability Fusion of Time-of-Flight Depth

and Stereo Geometry for High Quality Depth Maps. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 1400-1414.

KEY TERMS AND DEFINITIONS

Active markers: A light source which serves as point of orientation for tracking and localization

systems. Infrared light is predominately used, since it is invisible to the human eye.

Beacon: An optical beacon is an active light source which transmits its ID or position to the

localization device.

Degree of Freedom: The position of an object in 3D space has a degree of freedom for position on

each 3D axis. The orientation of an object has also three degrees of freedom which are the rotations

around each 3D axle.

Head-mounted device: An electronic device, which is mounted on the head of a user. In the current

form, either information is blended into the field view user (augmented reality), or the field of view is

replaced by a displays, simulating a three dimensional space (virtual reality).

Time-of-Flight: In context of 3D sensing systems, this refers to the time photons need to travel to the

measurement point and back to the device. This time is proportional to the measured distance.

Pose: Description of the geometric position and orientation of an object. A relative pose can be used to

transfer objects to different coordinates systems or to describe movements.

Line-of-sight communication: Communication partners need to face each other for data exchange.

176 Publication 3 - SCPSU 2017 8. Publications

Design of a Low-Level Radar and Time-of-Flight
Sensor Fusion Framework

Josef Steinbaeck∗, Christian Steger†, Gerald Holweg∗, and Norbert Druml∗
∗Infineon Technologies Austria AG, Graz, Austria

{josef.steinbaeck, gerald.holweg, norbert.druml}@infineon.com
†Graz University of Technology, Graz, Austria

steger@tugraz.at

Abstract—We present an open hardware and software platform
to efficiently fuse heterogeneous sensor data in an automo-
tive/robotic context. The framework presented in this paper pro-
vides researchers a base platform in order to develop and evaluate
sensor fusion strategies. In contrast to similar approaches, this
framework exploits in particular the raw radar data and enables
the fusion at low-level.

The proposed system utilizes low-level data from radar sensors
as well as indirect (e.g. 3D imaging) and direct (e.g. LIDAR)
Time-of-Flight (ToF) sensors. After a configurable amount of
pre-processing at sensor-level, the sensor data is transferred
to a centralized platform and aligned temporally and spatially.
We demonstrate the transformation of radar data into the 3D
coordinate system in order to fuse it with point cloud data from
ToF sensors. Due to the modular structure of the framework,
it also enables the exploration of various system partitioning
concepts.

Index Terms—radar, automotive sensors, time-of-flight, au-
tonomous vehicles, sensor fusion

I. INTRODUCTION

Autonomous robots and vehicles are very popular topics
of today. Various car manufacturers have already announced
to introduce fully autonomous driving to the streets within
the next decade. However, first working systems have been
introduced as early as 2005 at the DARPA Grand Challenge
[1], [2]. At this event, autonomous vehicles were able to
drive through a 212 km path in the Mojave Desert in the
southwest of the USA. Two years later, in the DARPA Urban
Challange in 2007, vehicles of various teams navigated safely
through an urban environment [3], [4], [5]. These vehicles
already used a various number of different sensors (radar,
LIDAR, ultrasonic, 2D-camera, etc.). Thus, the environmental
perception architectures of these systems already provide a
solid foundation in order to build a state-of-the-art perception
module for a vehicle or a robot.

Since then, sensor technology has improved. New sensors
are available and the processing power has increased. Es-
pecially the higher processing capabilities have straightened
the way for machine-learning based perception approaches.
Deep learning is a commonly used approach today and has
different characteristics compared to the traditional rule-based
algorithms.

Most of the latest passenger vehicles come with at least
some sort of assisted driving functionality. The cars offer
dedicated assisting functions like adaptive cruise control, lane

assistance or blind-spot detection. These functions are usually
provided by the sensor module and are isolated from the re-
maining system. Most of the current off-the-shelf automotive-
qualified perception sensors do most of the processing in
the module itself and only communicate the output to the
remaining system via an automotive bus like CAN or FlexRay.
Thus, these sensor modules are in general not favorable
for autonomous vehicles, where decisions are made by a
centralized module using the data from many different sensors.

Today, there exist various software frameworks which al-
ready come with interfaces to different available sensors and
built-in libraries to process and utilize the sensor data. A
prominent open-source solution for robotic software develop-
ment is the ROS (Robot Operating System) [6]. The ROS
framework was initially used in robotics, but is nowadays also
used in autonomous vehicles. However, due to the lack of real-
time capabilities it is rather used for scientific proposes and/or
to demonstrate single components in the processing chain.

Due to the open-source nature of the ROS framework,
the whole ROS ecosystem is rather built for open available
robotic sensors than for automotive sensors. Thus, there is a
lack of sensor interfaces for automotive sensors, which limits
the research works in that field. In this work we present an
approach to integrate a low-level radar sensor into the ROS
framework. Additionally, we combine heterogeneous low-level
environmental perception data in a centralized point.

To summarize, the contributions of this paper to the scien-
tific community are:

• An open ROS architecture enabling the low-level fusion
of heterogeneous environmental perception sensor data
including temporal and spatial alignment.

• The integration of a low-level radar sensor into the ROS
framework.

• The demonstration of a low-level radar and the fusion
with direct/indirect ToF sensor data.

Section II gives a short overview of related approaches
in research and industry and highlights similarities to our
approach. The sensors used for the work in this paper are
presented in Section III as well as the hardware platform and
the software architecture in ROS. Additionally, we introduce a
practical project where we employ the proposed sensor fusion
framework. Afterwards, we present real-world measurement

8. Publications Publication 4 - DSD 2018 177

© 2018 IEEE. Reprinted, with permission, from 2018 21st Euromicro Conference on
Digital System Design (DSD).

Fig. 1. Recording platform of the KITTI dataset. A standard passenger car
is equipped with multiple cameras, a LIDAR scanner and a GPS localization
system. Picture obtained from [9].

data using our framework (Section IV). Finally, Section V
contains a short conclusion of the work.

II. RELATED WORK

There already exists a vast amount of published work in
the field of robotics and automated driving. However, due to
the lack of market-available sensors with low-level access,
no open sensor fusion framework exploiting low-level radar
data exists. Thus, researchers face the burden to design and
implement a custom system from scratch in order to evaluate
novel sensor fusion strategies. Nevertheless, the architecture
of already existing platforms reveals precious information in
order to build a capable framework. Thus, this section presents
previously published work including relevant information on
how to build a framework.

A prominent approach to build a sensor platform for au-
tomated vehicles is published in [7]. The researchers built
an autonomous vehicle with a set of market-available sensors
(cameras and laser scanners). The platform is intended to act as
base for researchers to develop algorithms for high-level tasks
like scene recognition or path planning. They also released
Autoware, a ROS-based software stack aimed for self-driving
vehicles.

Researchers of the Carnegie Mellon University modified a
regular passenger car in order to make it a research vehicle for
autonomous driving [8]. The authors modified a stock car to be
controllable via drive-by-wire. The vehicle uses GPS sensors,
an IMU sensor, wheel odometry, as well as RTK corrections
via mobile for an exact position detection. The environmental
perception system of the vehicle uses multiple LIDAR and
radar sensors as well as video cameras.

The authors of [9] built a recording platform which provides
the KITTI dataset. A picture of the vehicle, equipped with
various sensors is shown in Fig. 1. They built a sensor rig on
top of a standard passenger vehicle and equipped it with a
laser scanner and multiple video cameras. There exist an open
benchmarking service allowing researchers to compare their
algorithms to other existing ones.

The authors of [10] present the automotive sensor platform
used to collect the Oxford RobotCar Dataset of sensor data in
automotive environments. They use a stereo camera, monocu-
lar cameras, 2D LIDARs, a 3D LIDAR and a GPS navigation
system. This dataset is also used to evaluate the performance
of algorithms in the automotive domain (e.g. machine learning
or mapping) using real-world sensor data. Multiple datasets
of different scenes as well as a software development kit are
openly available on the project website.

A very recent work to built an autonomy research platform
is presented in [11]. They show a drive-by-wire conversion
method of a market-available Toyota Prius V. Multiple rela-
tively inexpensive sensors are mounted on the car in order to
demonstrate autonomous vehicle functionality.

In contrast to the previously mentioned approaches, the
work presented in [12] also describes the use of radar sensors
for the environmental perception on their research vehicle.
They perform radar and LIDAR sensor fusion with an architec-
ture performing pre-processing at sensor level and centralized
fusion. However, similar to other related publications, the
presented approach depends on pre-processed radar data in
the sensor module and does not exploit low-level information
of the radar sensors.

To the best of our knowledge, there is currently no open
sensor fusion platform available to the scientific community
exploiting low-level radar data. This work offers researchers an
open sensor fusion framework to explore novel sensor fusion
concepts based on low-level radar data.

III. AN ENVIRONMENTAL PERCEPTION FRAMEWORK FOR
LOW-LEVEL SENSOR FUSION

This work provides an open perception architecture avail-
able to the research community. The framework consists of off-
the-shelf market-available components and provides scientists
a ready-to-use framework to carry out research by using
multiple environmental perception sensors. The framework is
capable of making available and processing data from radar
sensors, indirect/direct ToF sensors (e.g. LIDAR or ToF 3D
imaging) and RGB cameras.

First, we present the sensors used in our setup. Afterwards,
we show the implementation of pre-processing at sensor level
as well as an open architecture to connect the heterogeneous
sensors. Finally, we show a way to combine ToF and radar data
within a common coordinate system. This common represen-
tation can be used for further data processing and algorithm
development.

A. Used Sensors

We utilize a radar development kit, ToF sensors and a
monocular camera. Each of these open-available sensors are
presented in this section.

1) Radar: We selected the RadarLog1 as radar sensor. This
evaluation platform comes with a high-speed USB 3.0 interface
capable of streaming the raw data from the radar sensor. We

1RadarLog: A platform for microwave radar data capturing and logging
(http://www.inras.at).

178 Publication 4 - DSD 2018 8. Publications

Fig. 2. RadarLog: radar development kit. The 77 GHz frontend provides 16
receive and four transmit channels.

Target Mixer
Low Pass

Filter

fb

A/D

RX

TX

Waveform

Generator

Processing

Fig. 3. Main building blocks of an FMCW radar. The transmitted and received
signal are mixed to obtain a lower frequency used for digital signal processing.

use the kit with an RF frontend providing 16 receive and four
transmit channels. Fig. 2 shows a picture of the RadarLog’s
frontend.

The radar sensor transmits electromagnetic waves and re-
ceives their reflections. In the automotive industry the ma-
jority of radar sensors use Frequency-Modulated-Continuous-
Wave (FMCW) signals. A detailed state-of-the-art overview of
automotive radar technology is published in [13]. The main
building blocks of an FMCW radar are shown in Fig. 3.
The RadarLog is capable of transmitting fast chirped FMCW
signals (see Fig. 4).

The transmitted and received signals are mixed and low-
pass filtered, resulting in the low-frequency beat signal fb. The
signal’s frequency depends on the bandwidth B, the target’s
range R, the chirp duration Tp, the speed of light c, the center
frequency fc and the target’s radial velocity vr. As seen in
Equation 1, the beat frequency consists of a range dependent

t

Sequence 2Sequence 1
f

chrip 0 chrip 1 chrip 2 chrip L chrip 0 chrip 1

Fig. 4. Fast chirped FMCW radar sequences. One measurement consists of
L chirps and every chirp is sampled at N times. This waveform enables
simultaneous range and velocity measurement.

part (frange) and a velocity dependent part (fdoppler).

fb =
2BR

Tpc︸ ︷︷ ︸
frange

+
2fcvr
c︸ ︷︷ ︸

fdoppler

(1)

If the chirp duration (Tp) is very small, the range component
outweighs the velocity component. Thus, fdoppler can be
neglected for single fast chirps and the range can be computed
as seen in Equation 2.

R =
c Tp

2B
fb (2)

The maximum unambiguous range is determined by the
duration of a full single chirp in order to not overlap the next
chirp (Equation 3).

Rmax =
c Tp

2
(3)

The range resolution depends on the bandwidth of the
frequency chirps B (Equation 4). A higher chirp bandwidth
B results in a higher range resolution.

∆R =
c

2B
(4)

The radial velocity is determined by evaluating the resulting
phase shifts between L linear chirps. In order to unambigu-
ously detect the phase difference between two consecutive
chirps ∆ϕ, it has to be lower than π (positive or negative).
Thus, the maximum unambiguous velocity of a chirp FMCW
radar is limited to the term as shown in Equation 5 [14].

vmax =
c

4Tp fc
(5)

The resolution of the radial velocity v of a chirp sequence
of L chirps is calculated as seen in Equation 6 [14].

∆v =
c

2LTp fc
(6)

Due to the low frequency of the beat signal, digital signal
processing is possible at a reasonable complexity in order to
determine the range and velocity of the targets. A 2D Fast
Fourier Transform (FFT) is calculated using the beat signal in
order to estimate the range and velocity of the radar targets.

Multiple radar receive antennas can be utilized to estimate
the direction of arrival (DoA) and thus, the angle to radar
targets (see Fig. 5). The different antennas detect the reflection
of an object in the far-field with a phase-difference of ∆φ.
Using the wavelength λ of the radar wave, the detected phase
difference ∆φ results in an additional distance ∆x to the
target:

∆x =
∆φ

2π
· λ (7)

Using that relation, the angle θ to the target can be calcu-
lated as seen in Equation 8. In practice, the angular estimation
is performed by calculating an additional FFT over the array
of equally spaced (d = λ/2) receive channels.

θ = arcsin
∆φλ

2π d
(8)

8. Publications Publication 4 - DSD 2018 179

d1

Δx 1

θ

•

θ

RX2 RX1 RX0

d2

•

Δx 2

~~

Fig. 5. Variation of the received signal phase due to the target’s angle on an
array of receive antennas. This phase difference can be used to estimate the
direction of arrival (DoA).

dTXdRX

Fig. 6. Virtual antenna array. Multiple appropriate located transmit antennas
can be used to form a bigger virtual antenna. This approach improves the
angular resolution significantly.

A common way to further improve the angular resolution
is to utilize multiple transmit antennas. The use of MTX

transmitters and MRX receivers allows to form MTX ·MRX

transmit-receive pairs, so called virtual antennas (see Fig. 6).
To achieve a maximum-sized virtual antenna, the distance
between the transmitters is set to dTX = MRX · dRX . The
distance between the receiving channels should not exceed
λ/2 in order to achieve the maximum aperture and maintain
unambiguity. The waveforms of the transmit antennas have to
be orthogonal in order to differ at the receiver side. We use
temporal multiplexing of the antennas. Thus, the single chirps
are transmitted successively by every antenna, with only one
antenna active at a time.

2) Time-of-Flight Camera: We selected ToF 3D imaging
cameras (indirect ToF principle) as range sensors in order to
capture 3D point clouds of the scene. The indirect ToF sensors
can be exchanged easily by direct ToF sensors (e.g. LIDAR),
since the obtained point cloud data is very similar.

A 3D imaging camera illuminates the scene with modulated
infrared light. An array of photonic-mixing-device (PMD)
pixels measures the phase difference between the transmitted
an the received light. Using the phase difference, it is then
efficiently possible to compute the distance for every pixel.
The authors of [15] give a more detailed overview of the ToF
principle.

The distance d to the reflected object can be determined
using the speed of light c≈ 3·108 m

s , the modulation frequency
fmod and the phase difference ∆ϕ (see Equation 9) [16].

d =
1

2
· c

fmod
· ∆ϕ

2π
(9)

Fig. 7. Time-of-flight camera: CamBoard pico monstar from pmdtechnolo-
gies. The sensor provides a resolution of 352×287 pixels and a range of up
to 6 m.

Equation 10 shows that the maximum unambiguous distance
du,max is limited by the modulation frequency [16].

du,max =
1

2
· c

fmod
(10)

The used ToF camera, a CamBoard pico monstar2 is
depicted in Fig. 7. This camera offers a resolution of
352×287 pixels and has a field of view (FOV) of 100◦×85◦.
The sensor is connected and powered via USB 3.0 and pro-
vides a frame rate of up to 60 FPS.

3) Monocular camera: Since the focus of this work is
on range data processing, we use the monocular camera
mainly for reference purposes (e.g. for visual evaluation
of measurement data). Thus, we selected a simple webcam
(PlayStation Eye), capable of outputting 640×480 pixels at a
frame rate of 60 FPS. The camera can be connected to the
processing platform via an USB 2.0 interface. The structure
of the provided data is similar to commonly used automotive
cameras which are typically also running at comparable low
resolutions in order to meet real-time processing requirements.

B. Hardware Architecture

This section describes the hardware architecture of our
approach. Additionally, we provide information about the
data rates of the used sensors. Fig. 8 shows a picture of
the used sensor setup. The two ToF cameras are operating
simultaneously with a different field of view. The radar sensor
is mounted in forward-facing direction overlapping with the
ToF camera’s field of view. The sensors are connected via
USB to low-level processing modules, capable of receiving
the raw sensor data, pre-processing and raw data logging. The
pre-processed sensor data is then transferred to a centralized
sensor fusion platform, which is in charge of combining the
heterogeneous sensor data. In the context of autonomous vehi-
cles/robots, the fused data will then be further processed and
used for higher level tasks (e.g. path-planning or localization).

Fig. 9 shows the block diagram of the used components.
The processing platform(s) are standard x86 notebooks run-
ning Ubuntu. Depending on the target application, the whole

2CamBoard pico monstar: A 3D imaging development kit of the pico family
(https://pmdtec.com/picofamily/).

180 Publication 4 - DSD 2018 8. Publications

Radar 1

Fig. 8. Sensor setup arrangement with the field-of-view of every sensor
visualized. The monocular camera is omitted in this figure for reasons of
simplicity.

Radar 1

ToF 1

ToF 2

Cam 1

Processing

Module N

USB

USB

USB

USB

Processing

Module 1

Sensor Fusion

Module

ROS Framework

Ethernet

Fig. 9. Main processing blocks of the framework. The processing module(s)
are in charge of low-level communication with the individual sensors as well
as pre-processing and logging. These modules can be distributed onto multiple
hardware platforms depending on the processing demand.

processing chain can be running on a single computer or be
distributed onto multiple hardware platforms.

The amount of raw data from one radar measurement
depends on the samples per chirp N , the number of chirps
L and the receive antennas M . Thus, for a 16 Bit digital
representation of a sample, the data size DRadar of a single
measurement is:

DRadar = N · M · L · 16Bit (11)

The number of chirps affects the velocity resolution while
the number of samples per chirp affects the range resolution.
Additionally, a higher number of receive antennas increases
the angular resolution. Thus, these parameters have to be
chosen accordingly to the target application. Similar to 2D
cameras, a more fine-grained data resolution of radar leads to
a higher data rate. Typical values of N=1024 samples, L=128
chirps, M=16 antennas, a frame rate of 10 FPS, and a sample
data depth of 16 Bit result in a data rate of about 335 MBit/s.

The ToF 3D imaging camera provides phase-difference data
for every pixel. These values are transferred as 16 Bit integers.
A popular and simple method to calculate the distance and
amplitude value is to use four phase-difference values (raw
measurements) for every pixel. Equation 12 shows the data
size DToF of a single ToF measurement.

DToF = ToF Pixels · 4 · 16Bit (12)

As a practical example, a ToF camera with a resolution of
352×287 pixels running at 15 FPS utilizes a data rate of about
194 MBit/s.

The monocular camera provides either uncompressed or
JPEG compressed video. In the uncompressed mode three 8 Bit
values per pixel are provided to the interface. Thus, the data
rate at 15 FPS is about 111 MBit/s.

The sum of the raw data rates from multiple sensors already
results in a network utilization rate exceeding the limits of
many of today’s automotive buses (CAN, Flexray). Thus, there
is the need of a certain form of data compression at sensor
level in order to enable the transfer without violating the
networks maximum data rates.

C. Software Architecture

The sensor fusion framework’s software is implemented
using ROS nodes. Fig. 10 shows an overview of the ROS
architecture. As seen in the figure, each sensor has its own
ROS interface node in charge of the sensor specific data
acquisition and the sensor configuration. In order to evaluate
the data offline, all raw sensor data can be recorded by an inde-
pendent logging node. The receive nodes add a timestamp to
the sensor data in order to temporally align the asynchronous
data correctly during further processing steps.

Every sensor type also comes with a configuration node in
charge of translating a high-level configuration into the low
level sensor specific representation. Each sensor’s processing
node performs the sensor-specific pre-processing of the raw
data. This node can also perform some form of compression
to decrease the communication overhead to the central fusion
platform.

1) Radar: The received beat signal is sampled and con-
verted to digital for each measurement sequence (see Fig. 3).
The digital samples of a measurement are then transferred to
the radar receive node. The samples are reshaped to a 3D
matrix with the dimension of N samples, L chirps and M
receive channels. Three FFTs are calculated in each dimension
in order to obtain a range-velocity-angle matrix. The full data
cube contains precious low-level information which is of high
value for a centralized sensor fusion module. We implemented
the radar ROS nodes in python, since the the evaluation kit
comes with a python interface. The FFT calculation could also
be done very efficiently in hardware. The authors of [17] show
a parallel implementation of a 3D FFT processing algorithm
on an FPGA.

In order to demonstrate a possible radar-compression, we
implemented a cell-averaging constant false alarm rate (CA-
CFAR) detection algorithm to identify peaks in the range-
doppler image [18]. Afterwards we utilize the estimated angle
of these peak points and perform clustering in the range-angle-
velocity domain. The processing node publishes a custom ROS
message ScatterCenters containing a list of all detected
scattering centers.

2) Time-of-Flight: The ToF receiver node receives the raw
sensor data (arrays of phase-difference measurements) and
calculates the distance and amplitude value for every pixel (see

8. Publications Publication 4 - DSD 2018 181

Central

Procesing

ToF Receive

Node

ToF Config Node

ToF Logging Node

Raw

sensor data

Sensor config

ToF PointCloud

Processing
Low level config

Raw sensor/

config data

Point Cloud

2D Laser Scan

High level config

ToF Camera 2

Radar Receive

Node

Rad Logging Node

Raw

sensor data

Sensor config

Rad Process Node

Low level config

Sample Points Scatter Centers

High level config

Radar Sensor

USB 3.0

USB 3.0 Python Node

ToF Receive

Node

ToF Logging Node

Raw

sensor data

Sensor config

Low level config

Point Cloud

ToF Camera 1

USB 3.0

Rad Config Node

Raw sensor/

config data

Raw sensor/

config data

Fig. 10. Overview of the ROS architecture of the sensor pre-processing. Every sensor comes with a ROS node for logging, data-processing and configuration
handling. The nodes of the monocular camera are omitted in this figure for simplicity reasons.

Equation 9. Using that information, the node calculates a point
cloud and publishes a sensor_msgs::PointCloud2
message containing the 3D points (32 Bit float) of the scene.
Additionally a depth image (32 Bit float) and a gray-scaled
amplitude image (32 Bit integer), used as a crucial low-level
confidence metric, are published as sensor_msgs::Image
messages.

The configuration node is used to dynamically configure the
ToF camera, also during runtime. The most influencing param-
eters of a ToF camera are the exposure time, the frame rate and
the modulation frequency. A higher exposure time extents the
range and improves the signal-to-noise-ratio, but also limits the
frame-rate of the system and causes motion blur/artifacts. The
modulation frequency influences the unambiguous range of the
camera, since the obtained phase value is ambiguous outside
the 2π interval. However, two measurements with different
modulation frequencies can be combined in order to extend
the unambiguous range. In rather static environments and slow
speeds, a low frame rate might be beneficial in order to enable
a higher range and image quality.

3) Monocular camera: The monocular camera node works
in a similar way as the other sensor nodes, but without actual
raw data processing. The logging node logs the uncompressed
video images while the processing node’s only job is to publish
the image data without any processing. The configuration node
is in charge of setting the exposure time if the camera is not
using auto-exposure mode.

D. Practical Application
An unmanned areal vehicle (UAV) is constructed as part of

the Autonomous Car To lnfrastructure communication master-
ing adVerse Environments (ACTIVE) project. This vehicle is
equipped with multiple environmental perception sensors as
well as an IMU, a GNSS and a vehicle to infrastructure (V2I)
antenna.

The main goal of the project is to show the ability to
achieve highly accurate positioning using V2I communication.

A stationary road side unit (RSU) sends relevant map and
positioning information to vehicles in its range. Utilizing this
additional data, a car can determine its position very precisely.
This can for example be beneficial at multi-lane intersections,
where precise lane information can help to position the vehicle
in the target lane.

The environmental perception sensors are mainly employed
for the acquisition of real-world data in adverse environments.
This data is used to evaluate the performance of the sensors
in various operating conditions. The vehicle is intended to
be used in a structured environment without obstacles or
other vehicles present. However, a basic obstacle detection
is implemented for safety reasons. This module makes use of
the environmental perception data in order to avoid collisions
during runtime.

IV. RESULTS

This section contains measurements from a test scene using
the proposed framework of this paper. The radar sensor, two
ToF 3D imaging sensors and the monocular camera are used
in order to perform environmental perception of a test scene.
The used parameters and the obtained sensor data as well as
the spatial alignment of ToF and radar data is shown in this
section.

Fig. 11 shows an image of the test scene captured with the
monocular camera. The test scene is an office space with a
radar corner cube reflector placed at a distance of about 2 m
from the sensor in an angle of about 5◦.

Table I shows the parameters we used to configure the fast
chirp sequences of the radar development kit. According to
Equation 4, the maximum range resolution is 7.5 cm for a
bandwidth of 2 GHz. The velocity resolution is about 0.17 m/s
(Equation 6) with a maximum velocity of 4.8 m/s (Equation 5).
The effective values during processing are additionally de-
pending on the sample frequency and zero padding during
the FFTs.

182 Publication 4 - DSD 2018 8. Publications

Fig. 11. RGB camera image of the office test scene. There is a corner cube
reflector positioned at a distance of about 2 m to the sensor platform.

TABLE I
RADAR WAVEFORM CONFIGURATION PARAMETERS.

Parameter Symbol Value

start frequency fstart 76 GHz
stop frequency fstop 78 GHz

up-ramp duration Tup 128µs
down-ramp duration Tdown 64µs

pulse time Tp 200µs
samples per chirp N 1024
number of chirps L 128
receive channels MRX 16
transmit channels MTX 1
measurement time Tint 1000 ms

Fig. 12 shows the range-doppler image of the test scene
using the RadarLog kit with the configuration parameters
stated in Table I. The range-doppler image calculation is
performed by the radar processing node by calculating two
FFTs. The range of the plot is cropped to 10 m in order to
show the close proximity in more detail.

The range-angle plot obtained from the radar data is shown
in Fig. 13. It shows the highly reflecting corner cube in front
of the radar. The angular resolution is distributed non-linearly
and decreases when moving away from the center line.

The ToF 3D imaging camera is used with the configuration
parameters stated in Table II. The exposure time is a maximum
value, since the exposure mode is set to auto-exposure.

4 2 0 2 4

Velocity

2

4

6

8

10

R
a
n
g
e

Range-Doppler

120

105

90

75

60

45

30

15

0

Fig. 12. Range-doppler plot of a single radar measurement. This image is
obtained after the 2D FFT calculation over the N samples and L frequency
chirps. The measured scene contains a wall at a distance of about 2 m slightly
to the right of the radar sensor.

Fig. 13. Range-angle plot of a single radar measurement. This image is
obtained after the 2D FFT calculation over the N samples and M receive
channels. The measured scene contains a wall at a distance of about 2 m
slightly to the right of the radar sensor.

TABLE II
TIME-OF-FLIGHT 3D IMAGING CONFIGURATION PARAMETERS.

Mode Range

Exposure Time 1 ms
Frame Rate 10 FPS

Modulation Frequency 20 MHz

We captured sensor data with the setup shown in Fig. 8 and
with the parameters listed in Table I and II. The radar sensor
data is pre-processed to obtain scatter centers and fused with
the ToF point clouds. A visualization of the spatially aligned
output is shown in Fig. 14. The scatter centers are visualized
using cylinders with the diameter as indicator for the peak
power for the detected reflection. As seen in the figure, the
obvious object is reflected very well.

V. CONCLUSION

A low-level sensor fusion platform was designed containing
a radar sensor, multiple ToF sensors and a monocular camera.
We are integrating the presented system as part of the envi-
ronmental perception platform on an unmanned areal vehicle.
The platform is capable of measuring real-world sensor data
for offline evaluation. Additionally, the pre-processed data is
used as an input for the emergency braking module which is
in charge of detecting obstacles during runtime.

The integration of the radar sensor into ROS allows the
utilization of low-level radar data into existing perception
systems. There exist a vast amount of ROS packages, which
can be used for further data processing and sensor fusion
depending on the target system. The hardware and software
framework built in this work is a crucial foundation to per-
form low-level radar measurements. Researchers can use the
proposed platform as a starting point to rapidly evaluate/test
novel sensor fusion strategies.

ACKNOWLEDGMENTS

The authors of this paper would like to thank the Austrian
Research Promotion Agency for funding the Autonomous
CarTo lnfrastructure communication mastering adVerse Envi-
ronments (ACTIVE) project with the number 855010.

8. Publications Publication 4 - DSD 2018 183

Fig. 14. Visualization of two ToF pointclouds and radar targets using the ROS visualization tool RViz. The radar targets are shown as cylinders with the
diameter depending on the peak power. The cylinder’s heights indicate the uncertainty in the vertical angle and depend on the radar sensor’s field-of-view.

REFERENCES

[1] C. Urmson, C. Ragusa, D. Ray, J. Anhalt, D. Bartz, T. Galatali,
A. Gutierrez, J. Johnston, S. Harbaugh, H. Yu Kato, W. Messner,
N. Miller, K. Peterson, B. Smith, J. Snider, S. Spiker, J. Ziglar,
W. Red Whittaker, M. Clark, P. Koon, A. Mosher, and J. Struble, “A
robust approach to high-speed navigation for unrehearsed desert terrain,”
Journal of Field Robotics, vol. 23, no. 8, pp. 467–508, 2006.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne-
fian, and P. Mahoney, “Stanley: The robot that won the DARPA Grand
Challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[3] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Oren-
stein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek,
D. Stavens, A. Vogt, and S. Thrun, “Junior: The Stanford entry in the
Urban Challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 569–
597, September 2008.

[4] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. R. Whittaker,
Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms,
and D. Ferguson, “Autonomous driving in urban environments: Boss
and the Urban Challenge,” Journal of Field Robotics, vol. 25, no. 8, pp.
425–466, August 2008.

[5] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata,
D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett,
A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,
R. Galejs, S. Krishnamurthy, and J. Williams, “A perception-driven
autonomous urban vehicle,” Journal of Field Robotics, vol. 25, no. 10,
pp. 727–774, October 2008.

[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[7] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An Open Approach to Autonomous Vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, November 2015.

[8] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi,
“Towards a viable autonomous driving research platform,” in 2013 IEEE
Intelligent Vehicles Symposium (IV). IEEE, June 2013, pp. 763–770.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[10] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” The International Journal of Robotics
Research, vol. 3, no. 2014, 2014.

[11] F. Naser, D. Dorhout, S. Proulx, S. D. Pendleton, H. Andersen,
W. Schwarting, L. Paull, J. Alonso-Mora, M. H. Ang, S. Karaman,
R. Tedrake, J. Leonard, and D. Rus, “A parallel autonomy research
platform,” in 2017 IEEE Intelligent Vehicles Symposium (IV), June 2017,
pp. 933–940.

[12] D. Göhring, M. Wang, M. Schnürmacher, and T. Ganjineh, “Radar/lidar
sensor fusion for car-following on highways,” The 5th International
Conference on Automation, Robotics and Applications, pp. 407–412,
2011.

[13] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Next generation
radar sensors in automotive sensor fusion systems,” in 2017 Sensor Data
Fusion: Trends, Solutions, Applications (SDF), 2017, pp. 1–6.

[14] P. Molchanov, S. Gupta, K. Kim, and K. Pulli, “Short-range FMCW
monopulse radar for hand-gesture sensing,” IEEE National Radar Con-
ference - Proceedings, vol. 2015-June, no. June, pp. 1491–1496, 2015.

[15] N. Druml, G. Fleischmann, C. Heidenreich, A. Leitner, H. Martin,
T. Herndl, and G. Holweg, “Time-of-flight 3d imaging for mixed-critical
systems,” in 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), July 2015, pp. 1432–1437.

[16] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE
Journal of Quantum Electronics, vol. 37, no. 3, pp. 390–397, March
2001.

[17] E. Hyun, W. Oh, and J. H. Lee, “Two-Step Moving Target Detection
Algorithm for Automotive 77 GHz FMCW Radar,” 2010 IEEE 72nd
Vehicular Technology Conference - Fall, pp. 1–5, 2010.

[18] F. Meinl, E. Schubert, M. Kunert, and H. Blume, “Real-Time Data
Preprocessing for High-Resolution MIMO Radar Sensors,” Towards a
Common Software/Hardware Methodology for Future Advanced Driver
Assistance Systems, p. 133, 2017.

184 Publication 4 - DSD 2018 8. Publications

Time-of-Flight Cameras for Parking Assistance: A Feasibility Study

Josef Steinbaeck1, Norbert Druml1, Allan Tengg2, Christian Steger3, and Bernhard Hillbrand2

1Infineon Technologies AG, Graz, Austria, {josef.steinbaeck, norbert.druml}@infineon.com
2Virtual Vehicle Research Center, Graz, Austria,{allan.tengg, bernhard.hillbrand}@v2c2.at

3Graz University of Technology, Graz, Austria, steger@tugraz.at

Parking assistance is one of the most demanded assisted driving functionalities of
today. In contrast to 2D cameras, time-of-flight (ToF) sensors provide real 3D
data which can be used to inform the driver about the vehicle’s surroundings.
State-of-the-art ToF cameras are compact, inexpensive and capable of providing
high frame-rate 3D data with minimal computational overhead.
In this paper, we evaluate the feasibility of ToF cameras used as perception
sensors in parking assistance applications. ToF cameras are highly capable for
parking assistance applications, but for outdoor usage, an enhanced illumination
unit is necessary.

1. Introduction

Starting with May 2018, a new regulation in the USA and Canada became effective,
making it mandatory for car manufacturers to install a rear-view camera into every new
vehicle. The law was enforced to counteract the high number of accidents that occur while
vehicles are backing up. A publication by the US National Highway Traffic Safety
Administration reports an estimation of 292 total annual back-over fatalities within the USA
[1]. Reasons include overlooking and occlusion of obstacles due to the limited field-of-view,
particularly to the vehicle’s back.

Modern technology is capable of providing additional information to the driver in order to
support maneuvers at low speed. Rear-view cameras have already been integrated into many
upper-class vehicles during the last decades. Multiple cameras around the ego vehicle can be
used to assist the parking process with a top-down bird’s view perspective of the close
environment. Ultrasonic sensors have been used as distance sensors for parking assistance
since a long time already. Many modern cars come with these sensors, since they are
comparably small, cheap and easy to integrate into the vehicle’s chassis. However, ultrasonic
sensors are not precise enough to achieve a high resolution.

ToF cameras provide resolutions of over 100k pixels, millimeter precision and frame rates
of more than 100 frames per second (FPS). In contrast to ultrasonic sensors, ToF data can be
utilized to create an accurate 3D model of the close surroundings. In this paper, we evaluate
the feasibility of a 3D ToF camera for parking assistance. We mounted one ToF camera on a
passenger vehicle and inspected the data quality in different environments. Additionally, we
designed parking assistance software which visualizes the 3D points to the driver. Considering
the results of this real-world use case, we point out the advantages and disadvantages of ToF
cameras for parking assistance. To sum up, the contributions of this paper are:

• Evaluation of ToF data for parking assistance.
• Exploration of different mounting options on a passenger vehicle.
• Visualization of the 3D data to the vehicle’s dashboard.

8. Publications Publication 5 - ASDAM 2018 185

© 2018 IEEE. Reprinted, with permission, from 2018 12th International Conference on
Advanced Semiconductor Devices and Microsystems (ASDAM).

2. Related Work

ToF cameras are used in various applications like augmented reality, face-tracking and 3D
localization. Prominent approaches in the automotive context include driver/interior
monitoring and hand-gesture recognition [2], [3]. Scheunert et al. already presented an
approach where a PMD camera is used to detect the free space of a parking slot in 2007 [4].
However, the used camera with a resolution of 16x64 pixels is by far inferior to a modern ToF
camera. Gallo et al. show an approach where a ToF camera is used to detect curbs and ramps
in order to perform safe parking [5]. Ringbeck et al. mount a ToF camera on a car with a
powerful light source (8W optical power) and achieve a range of up to 35 m [6].

A vision-based system, utilizing multiple fish-eye cameras around the vehicle to realize
automatic parking is shown by Wang et al. [7]. The authors use inverse perspective mapping
of four fish-eye images to provide a bird’s eye view of the vehicle’s close surrounding.

Compact, inexpensive and high-resolution ToF cameras are relatively new to the industry.
To the best of our knowledge, there is no work available to the scientific community,
evaluating a state-of-the-art ToF camera for parking assistance. This paper fills this gap by
presenting an approach to utilize a modern (2018) ToF camera to obtain 3D data of the ego
vehicle’s environment.

3. A Time-of-Flight Camera for Parking Assistance

We mounted a ToF camera onto a passenger vehicle in order to use it with a parking
assistance system. The ToF data is used to visualize depth information of the environment to
the vehicle’s dashboard screen.

3.1 Time-of-Flight Principle

The prevalent way to realize indirect ToF cameras is illuminate the scene with
modulated infrared light and utilize photonic mixing device (PMD) pixels to detect the
reflections. Each pixel measures a value that indicates the correlation between the received
signal and a reference signal. The so called four-phase algorithm is used to determine the
distance and amplitude for every pixel [8]. Four measurements with different phase-shifted
versions of the transmitted signal as reference signal are used to calculate the phase difference
and the amplitude for each pixel. The distance of a ToF pixel can be easily determined using
the phase difference, the speed of light and the modulation frequency.

The pixels integrated in the selected ToF camera implement a suppression of background
illumination (SBI) circuitry [6]. This circuit prevents the pixels from saturation when exposed
to an unmodulated light source with a spectral component in the same range as the ToF
working frequency (e.g., sunlight). However, the pixels still experience noise from ambient
light. Thus, in applications with bright ambient light, the illumination power has to be selected
accordingly.

3.2 Evaluation Setup

We use the CamBoard pico monstar as ToF camera. The camera comes with the
IRS1125C REAL3 3D Image Sensor developed by Infineon and pmdtechnologies. The image
sensor has a resolution of 352×287 pixels, a field-of-view of 100°×85° and provides up to 60
frames per second. The illumination is performed by four vertical-cavity surface-emitting
lasers (VCSEL) at a wavelength of 850 nm.

186 Publication 5 - ASDAM 2018 8. Publications

We mounted the ToF camera on a Ford Mondeo passenger vehicle, facing backwards,
while considering the following requirements/trade-offs:

• The camera shall capture the edges of the vehicle in order to determine the boundaries.
• The ground area captured by the field-of-view shall be maximized.
• The mounting position shall be as far to the back of the vehicle as possible.

3.3 Visualization of Time-of-Flight 3D Data

We designed and implemented software to visualize the obtained 3D data on the
dashboard screen of the vehicle. The data has to be presented in a simple enough way to even
allow an untrained driver to interpret the data without effort.

The software uses the OpenGL API for rendering the 3D point cloud on the screen. There
are several toolkits (i.e., GLUT or Open Inventor) available that simplify the visualization of
3D data. However, as the desired target platform is an automotive on-board computer, the
native OpenGL API was chosen to keep the software as portable as possible. This low level
API allows defining several properties of the scenery like the field-of-view of the camera, the
viewing distance as well as light sources.

In that virtual 3D world, the data from the ToF camera is rendered as a bunch of cubes.
Performance of both, the visualization software and the graphic hardware, is an important
issue at that point, since about 100k points have to be drawn for every frame. By adding a 3D
model of the ego vehicle, the viewer gets a better understanding of the scene. This requires an
exact calibration and registration to preserve the scale of the voxels in relation to the ego
vehicle. In the last step, the OpenGL’s virtual camera is placed in the 3D world to view the
scene from any perspective.

4. Results

The setup, as already presented in Section 3.2, was used to perform measurements in
different parking environments. The first evaluation took place in an indoor parking lot
without any sunlight present. The ToF camera provided an almost flawless amplitude and
distance image. The close surroundings including the obstacles (parked car, walls) were
clearly visible in the distance image. We performed another evaluation of the ToF data in an
outdoor parking lot in bright sunlight. As expected, this scene resulted in a noisier amplitude
image. Since low amplitude values correspond to a lower confidence, some pixels within the
distance image were discarded.

In presence of bright sunlight, the camBoard pico monstar showed reduced performance.
The main reason for this is that the camera’s illumination unit is not optimized for outdoor,
long-range applications and thus, produces insufficient laser output power. Yet, there already
exist optimized outdoor cameras that integrate the same PMD ToF sensor chip but with
stronger illumination units which achieve a working range of 35m in adverse/bright ambient
light situations.1

Two different options to visualize the ToF data are shown in Fig. 1. The visualization is
streamed to the vehicle’s dashboard screen. Especially the top-down view of the point cloud,
after removing the drivable area, is highly capable of supporting the driver in parking tasks.
This perspective enables the driver to estimate distances around the car intuitively.

1 O3M 3D sensor for mobile applications (https://www.ifm.com/at/en)

8. Publications Publication 5 - ASDAM 2018 187

Fig. 1. Visualization of ToF data during a parking task, viewed from different perspectives.

5. Conclusion

ToF cameras provide precise, high frame-rate 3D data of the environment. This data can
be used to obtain a detailed 3D model of the surroundings. We mounted a ToF camera on a
passenger vehicle and implemented software, capable of streaming the point cloud of the
surrounding environment to the dashboard and visualizing it to the driver. Considering the
results of this work, we conclude that ToF cameras are feasible to be used in parking
assistance systems. A promising scenario is the combination of a top-down surround-view
video stream with the 3D data from multiple ToF sensors. Augmenting the top-down 2D color
image with the 3D points from the ToF cameras could provide the driver with detailed and
easily-interpretable visual information about the car’s surroundings.

Acknowledgements

The authors of this paper would like to thank the Electronic Component Systems for European
Leadership Joint Undertaking for funding the IoSense: Flexible FE/BE Sensor Pilot Line for
the Internet of Everything project with the number 692480.

References

[1] R. Austin, “Fatalities and injuries in motor vehicle backing crashes,” National Highway
Traffic Safety Administration, Tech. Rep., 2008.

[2] D. Demirdjian and C. Varri, “Driver pose estimation with 3d time-of-flight sensor,” in
2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular
Systems, March 2009.

[3] P. Molchanov, S. Gupta, K. Kim, and K. Pulli, “Multi-sensor system for driver’s hand-
gesture recognition,” in 2015 11th IEEE International Conference and Workshops on
Automatic Face and Gesture Recognition (FG), May 2015.

[4] U. Scheunert, B. Fardi, N. Mattern, G. Wanielik, and N. Keppeler, “Free space
determination for parking slots using a 3D PMD sensor,” 2007 IEEE Intelligent
Vehicles Symposium, 2007.

[5] O. Gallo, R. Manduchi, and A. Rafii, “Robust curb and ramp detection for safe parking
using the Canesta TOF camera,” 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Work-shops, CVPR Workshops, 2008.

[6] T. Ringbeck, T. Möller, and B. Hagebeuker, “Multidimensional measurement by using
3-D PMD sensors,” Advances In Radio Science, 2007.

[7] C. Wang, H. Zhang, M. Yang, X. Wang, L. Ye, and C. Guo, “Automatic parking based
on a bird’s eye view vision system,” Advances in Mechanical Engineering, 2014.

[8] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE Journal of
Quantum Electronics, March 2001.

188 Publication 5 - ASDAM 2018 8. Publications

Occupancy Grid Fusion of Low-Level Radar and
Time-of-Flight Sensor Data

Josef Steinbaeck∗†, Christian Steger†, Eugen Brenner†, Gerald Holweg∗, and Norbert Druml∗
∗Infineon Technologies Austria AG, Graz, Austria

{josef.steinbaeck, gerald.holweg, norbert.druml}@infineon.com
†Graz University of Technology, Graz, Austria

{steger, brenner}@tugraz.at

Abstract—We present an approach to fuse radar and time-of-
flight (ToF) range sensor data into an occupancy grid. Fusing
the low-level data at sensor level prevents the loss of precious
information during compression and pre-processing. Construct-
ing the low-level occupancy grid from raw sensor data enables
the detection of occupied cells which are not clearly visible by
any of the single sensors. Fusion of the heterogeneous sensor
data enhances the perception quality since single sensors fail
in certain conditions. Thus, the fusion at low-level holds a high
potential to enhance the perception quality for automotive/robotic
applications.

We demonstrate our approach with real-world data from a
mobile sensor platform with three ToF cameras and a 77 GHz
high-resolution radar sensor. An occupancy grid is created
whenever synchronized sensor data from all sensors is available.
The proposed method performed successful detection of multiple
pedestrians in different test scenarios. Our approach to build an
occupancy grid from radar and optical range sensors can be used
as a base in various short-range perception applications (e.g., in
robotics or mobile devices).

Index Terms—radar, time-of-flight, robotics, sensor fusion

I. INTRODUCTION

Occupancy grids are often used as a base for map creation
or to estimate dynamic objects in a scene. However, the
quality of the representation depends on the quality of the
underlying sensor data. Single sensors are often not capable
to work under any circumstances and cannot guarantee their
functionality. Thus, multiple heterogeneous sensors are used to
mitigate weaknesses of single sensors. A prominent approach
to increase the representation quality is to fuse multiple
sensors.

Depth sensors are a popular choice to perform environ-
mental perception in the robotic/automotive context. Lidar is
superior to most other sensors in terms of precision, resolution,
speed, and range. However, lidar sensors struggle in various
conditions like rain, fog, snow, or dust, because the light pulse
is not capable to pass through these small particles. Radar
sensors are inferior to lidar in multiple aspects, like the angular
resolution. However, the mm-waves from radar are capable
to pass through small particles. Radar still performs valid
measurements in adverse weather conditions like rain, fog or
snow. Thus, most safety conscious environmental perception
platforms have both: radar and lidar. But these two sensors
have to be fused in order to get most of the provided envi-
ronmental information. In clear weather conditions, a system

Fig. 1. An example of a resulting occupancy grid after fusing radar and ToF
sensor data. The grid is visualized together with the underlying ToF and radar
data using the ROS visualization tool RViz.

might be fully confident using the lidar unit only. In more
difficult weather conditions, a radar sensor (together with
other sensors) can be crucial for the same system to ensure
functionality.

Different approaches to fuse multiple sensors have already
been presented to literature. Popular approaches are lidar and
radar fusion [1], radar and camera fusion [2], or lidar and
camera fusion [3]. Similar sensor fusion concepts are already
implemented in many of today’s research vehicles and robots.

ToF cameras (indirect range imaging) have not been inves-
tigated sufficiently for sensor fusion systems. These low-cost
cameras are capable of capturing objects in the scene very
precisely, at a high rate and with low processing effort. In
contrast to radar or direct ToF (e.g., lidar), ToF cameras are
rather designed for short-range applications. Due to the related
working principle, using ToF exclusively results in similar
vulnerabilities as lidar. Fusing the ToF sensor data with radar
has a high potential to significantly increase the perception
reliability in the short-range.

In this paper we present an approach to fuse ToF and radar
range data. We show an attempt to fuse low-level radar and
ToF data utilizing an occupancy grid. This fills one of the gaps

8. Publications Publication 6 - DSD 2019 189

© 2019 IEEE. Reprinted, with permission, from 2019 Euromicro Conference on Digital
System Design (DSD).

in scientific literature regarding the fusion of ToF and radar.
To summarize, the contributions of this paper to the scientific
community are:

• An approach to fuse ToF and radar sensor data for close-
proximity perception.

• A 2D occupancy map implementation using the Robot
Operating System (ROS).

• A novel update approach for occupancy maps using
sensor data from multiple sensors.

Section II gives a short overview of related approaches
in research and industry, and highlights similarities to our
approach. The sensors used for the work in this paper are
presented in Section III as well as the structure of the provided
raw sensor data. Additionally, we present the pre-processing
tasks of each sensor and a way to fuse the data into an
occupancy grid. Section IV shows resulting occupancy grids
from real-world measurement data. Finally, in Section V we
present a short conclusion of the work.

II. RELATED WORK

Occupancy grids where first introduced by Moravec et. al.
[4] in 1985, where they represented sonar data in an occupancy
grid. Occupancy grids have been popular since quite some
time and where first namely used for robotic navigation in [5].
The authors of [6] evaluated the performance of a navigation
task using occupancy grid fusing. They created occupancy
grids using different variations of sensors and compared their
performance.

There also exist approaches where radar and lidar data is
fused into an occupancy grid. Garcia et al. [7] present an
approach to fuse a long range radar with a laser scanner
mounted on a truck. The work presented in [8] shows an
approach to build an occupancy grid map using high-resolution
radar sensors. They use a radar sensor model to insert the
radar point into the occupancy grid and show different pre-
processing techniques for the raw data. The authors performed
experiments where the detected free space matches the free
space in the real world scene.

To the best of our knowledge, the fusion of synchronous
radar and ToF sensor data has not been sufficiently addressed
by the scientific community yet. This is why we fill this gap,
by presenting an approach to perform occupancy mapping for
short-range perception using radar and ToF range sensors.

III. FUSION OF LOW-LEVEL RADAR AND
TIME-OF-FLIGHT 3D SENSOR DATA

We utilize the sensor platform presented in [9] to obtain the
data from the different sensors. The sensors are synchronized
via an external trigger signal in order to have the measurement
data temporally aligned. The heterogeneous sensor data is
then pre-processed and transferred into a common coordinate
system. Afterwards, the data is fused into an occupancy grid,
where each cell holds a value for the probability of occupancy.
An overview of the processing steps is depicted in Fig. 2.

A. Time-of-Flight Camera

We use three CamBoard pico monstar1 ToF cameras in our
setup. These cameras utilize special photonic mixer device
(PMD) pixels in order to determine the phase difference
between transmitted and received modulated infrared light. A
distance and an amplitude value is calculated for every pixel
in the scene, by the application of the four-phase algorithm
[10]. Using the camera parameters, the pixel position and the
corresponding distance value, it is possible to calculate a 3D
point for every pixel. The resulting point cloud in the 3D space
consists of points from all pixels in the image plane. The
corresponding amplitude value of the pixels can be utilized
as a confidence value.

The used ToF cameras can be configured to run at up
to 60 frames per second and provide 352×287 pixels. The
cameras are horizontally aligned and rotated by an angle of
45◦ to each other. Since each camera has a field-ov-view of
100◦×85◦, there are overlapping areas in the captured scene.
The illumination time and the frame rate can be configured
during runtime in order to adapt to the use case and the
reflectivity of the scene. We use the cameras in slave-mode
where a new measurement is performed each time an external
trigger signal changes its level to high. USB 3.0 is used to
receive data from the cameras as well as to supply them
with power. The cameras come with a software library called
royale, providing functionality to receive the raw data from
the cameras and to perform certain pre-processing tasks (e.g.,
error corrections) as well as the point-cloud calculation.

To summarize, the output of each of the ToF camera
modules is a point-cloud containing about 100k points (Fig. 3).
Each point is characterized by the three cartesian coordinates
(x/y/z), a confidence value, an intensity value and a noise
value.

As seen in the data processing flow chart (Fig. 2), the
ToF data of every camera is first pre-processed before it is
merged with the other point clouds. Pre-processing consists
of several error correction steps, down-sampling of the point
cloud and transformation into a common coordinate frame.
Since the positions and the alignment of the sensors is known,
the transformation can be directly applied to every point. After
the pre-processed point clouds from the three ToF cameras are
ready, they are merged into a single point cloud (Fig. 4). The
merged point cloud still holds a confidence value, an intensity
value and a noise value for every point.

B. Radar Sensor

We use one radar sensor, a RadarLog2 in our setup. The
radar sensor comes with four transmit and 16 receive antennas
and is capable to perform frequency modulated continuous
wave (FMCW) measurements. In our setup, the radar is used
with sequences of fast chirps in order to enable the estimation
of range, velocity and angle. Since the radar sensor does not

1CamBoard pico monstar: 3D imaging development kit of the pico family
(https://pmdtec.com/picofamily).

2RadarLog: A platform for microwave radar data capturing and logging
(http://www.inras.at).

190 Publication 6 - DSD 2019 8. Publications

Pre-Process

ToF Camera 3

ToF Camera 2

ToF Camera 1

Radar

Pre-Process

Pre-Process

Calc RD

Raw Data

Raw Data

Merge

Sub-sampled

Point Clouds

RD Data

Peak

Detection

Calc RA

Fuse

RA Data

Radar

Peaks

Merged Point

Cloud

Occupancy

Grid

Fig. 2. Processing flow of the low-level occupancy grid creation using sensor data from three ToF cameras and one radar sensor.

Fig. 3. The full point clouds of the three ToF cameras, transformed with
individual coordinate frames. Every point holds a value for x, y, z, intensity,
confidence and noise.

Fig. 4. The down-sampled and merged point cloud from the three ToF
cameras. The color of the points depends on the respective intensity. Every
point comes with a (x/y/z) value as well as a value for intensity, noise and
confidence.

provide any elevation information, the targets are mapped to
the sensor’s mounting height without any vertical information.
The radar development kit is mounted on the platform in front-
viewing direction.

The radar transmits sequences of FMCW frequency chirps
and receives delayed responses of these sequences depending
on the objects in the scene. The transmitted and the received

Fig. 5. L range-Doppler images after 2D FFT with a dimension of J×K bins
per image. Peaks in this image correspond to a radar reflection of an object
at a certain range moving at a certain speed.

signal are then mixed and low-pass filtered in order to obtain
the so-called IF signal without any high-frequency compo-
nents. The IF signal of each receiving antenna is sampled and
converted to digital for further processing. This sampled data
is then processed by software in order to obtain information
of objects in the scene.

Every digitized measurement contains N samples for M
ramps and L antennas. Two FFTs are calculated in order to
generate the range-Doppler image of the objects in the scene
(see Fig. 5). One range-Doppler image is generated for each
of the receive antennas. Thus, after the second FFT the output
are L range-Doppler images with a dimension of J×K bins
each, depending on the FFT bins of the first two FFTs.

A third FFT is calculated over the L antennas with K
bins to obtain angular information. The output is a 3D cube
with the dimension I×J×K containing range, velocity and
angle information. A possible representation are J range-angle
images after the third FFT with a dimension of I×K bins per
image (see Fig.6).

We are interested in a single range-angle image containing
all velocities, which can be directly projected into the scene.
Our approach to generate an overall range-angle image I(i, k)

8. Publications Publication 6 - DSD 2019 191

Fig. 6. J range-angle images after the third FFT with a dimension of I×K
bins per image. There is one range-angle image for every velocity bin.

Fig. 7. Visualization of the radar range-angle map and the detected radar
peaks. Every bin of the range-angle image is projected into the corresponding
2D space (top-down) for this bin. The color corresponds to the magnitude of
the radar reflection.

is to take the maximum values of the J range-angle images
Ij(i, k).

I(i, k) = max{Ij(i, k)} (1)

The overall range-angle image can be mapped into the scene
as seen in Fig. 7. A peak in this image indicates whether there
is an object present at the corresponding position in the scene.
However, the overall range-angle image also includes all static
targets since it is composed without any velocity preselection.
Strong reflections cause side lobes in the range-angle image,
making it difficult to detect multiple targets at the same range.
Thus, the overall-range angle representation is rather feasible
for visualization purposes than to detect targets.

Another option is to perform a peak detection in the range-
Doppler image. We use a constant false alarm rate (CFAR)
algorithm to detect significant points in the range-Doppler
image. The angle of these single peaks is then calculated using
a beam-forming algorithm (Bartlett beamformer). Eventually a
list of peaks with a (range/angle/velocity) value for every point
is obtained. Knowing the alignment of the sensor, this list of
peaks can be transformed to (x/y/velocity) values for every

Fig. 8. Visualization of the sensor data before the fusion. It contains of the
down-sampled and merged ToF point cloud, the detected radar peaks and the
radar range-angle map.

Fuse
Create OGT

RA Data

Radar

Peaks

Merged Point

Cloud

Create OGRP

Create OGRA

Combine

Fused

Occupancy

Grid

Fig. 9. Detailed data flow diagram of the fusion block. We construct three
preliminary occupancy grids which are then fused to an overall occupancy
grid.

point and visualized into a common 2D coordinate space.
Detected peaks are shown in Fig. 7, together with the range-
angle map.

C. Occupancy Grid Fusion

After the data from the different sensors is pre-processed
and ready, the data fusion is initiated. At that point, the sensor
data is already available in a common coordinate space as
seen in Fig. 8. The occupancy grid fusion is triggered every
time new pre-processed data from all sensors is available. We
present an approach to fuse the merged ToF point cloud, the
radar range-angle map and the radar peak list into a common
occupancy grid.

First three individual occupancy grids are created using the
three data-streams (merged ToF point cloud, radar range-angle
map and radar peak list). In a final step, the individual grids
are fused into an overall grid (see Fig. 9). The occupancy
grids are represented as 2D top-down grids covering an area
of interest in front of a robot/vehicle. Every cell contains an
occupation probability value between zero and 100. The width,
height and resolution of the occupancy grid are customizable.
For the experiments in this paper we set the width to 10 m,
the height to 16 m and the resolution to 0.25 m.

1) Time-of-Flight: For the ToF sensor, the point cloud is
inserted into the occupancy grid. The ToF point cloud is

192 Publication 6 - DSD 2019 8. Publications

cropped to an area of interest. Points below and above a
certain z value are not included into the occupancy grid. Also
points below and above a certain range are discarded. All
remaining points are inserted into the occupancy grid at their
corresponding (x/y) position. Each point’s confidence value
is scaled to the range between zero and 100. This normed
value is then used to calculate the occupation probability. If the
normed confidence value of the point is higher than the cell’s
probability the cell’s probability is updated. The probability of
an occupancy grid cell OGT (i, j) is updated using the normed
ToF confidence conf as follows:

OGT (i, j) =

{
conf , if conf > OGT (i, j),

OGT (i, j) , otherwise.
(2)

2) Radar peaks: The list of radar peaks is used to create
another occupancy grid. Radar peaks are only considered if
they are above a certain range and within the limits of the grid.
Since the peak detection is already performing a thresholding
in the CFAR detection, every detected peak is assumed to be
a target. Thus, the probability of the occupancy grid cells is
updated with every radar peak as seen in Equation 3.

OGRP (i, j) =

{
100 , if peak at (i, j),

OGRP (i, j) , otherwise.
(3)

3) Radar range-angle: The third step is to create an occu-
pancy grid from the radar’s overall range-angle image. The
reflected magnitudes are compared to a distance-dependent
reference value in order to extract potential targets. As first
step a confidence value is calculated for every range-angle
value. The confidence values are determined by the ratio of the
reference value and the magnitude of the range-angle image.
The occupancy grid’s probability value OGRA(i, j) is then
updated as seen in Equation 5.

conf =





0 , if 20 log(mag
ref) < 0,

100 , if 20 log(mag
ref) > 100,

20 log(mag
ref) , otherwise.

(4)

OGRA(i, j) =

{
conf , if conf > OGR(i, j),

OGRA(i, j) , otherwise.
(5)

4) Fused Occupancy Grid: The final occupancy grid is
constructed by fusing the three pre-computed occupancy grids
(Equation 6). Clearly identified targets from the OGT and
OGRP are modeled to directly effect the final occupancy grid.

OG(i, j) = max





OGT (i, j),

OGRP (i, j),
OGT+OGRP+OGRA

3





(6)

Fig. 10. RGB image of the test scene captured with the fisheye camera. Two
pedestrians are standing close to the platform and two others are further away.

Fig. 11. Visualization of the raw data from the ToF and radar sensors. The
two closer pedestrians are identified by ToF point clouds, while the other two
pedestrians are captured by radar.

IV. RESULTS

In this section we demonstrate the performance of our
approach within a certain test scenario. For the scenario, the
fused low-level occupancy grid is compared to the occupancy
grid of the single sensors. In order to give humans a reference
image of the test scene, the sensor platform is also equipped
with a fisheye camera. Fig. 10 shows the fisheye camera image
of the test scene. The full ToF point cloud, the projected radar
range-angle map and the detected radar peaks are visualized
in Fig. 11. The ToF camera (in the used configuration) is able
to capture the two closer persons in detail. The radar peak
detection clearly identifies the two other pedestrians. The radar
peaks are more pronounced in the range-Doppler map since
these two persons were moving.

The individual occupancy grids are created from the already
pre-processed sensor data. The ToF-only occupancy grid out-
put of the three ToF cameras is presented in Fig. 12. As clearly
visible, the points of the ground floor are not considered in
the final occupancy grid. Fig. 13 shows the occupancy grid
generated from the radar peak data only. As seen in the figure,
the occupancy grid captures all four pedestrians, also the two
further away from the platform. Fig. 14 shows the occupancy
grid generated from the radar range-angle map only. This grid
is constructed from the range-angle map.

8. Publications Publication 6 - DSD 2019 193

Fig. 12. Occupancy grid of ToF data only. The ground floor is not included
into the grid. The two closer pedestrians are clearly detected while the third
is not marked as fully occupied.

Fig. 13. Occupancy grid of the radar peaks array. The peak too close to the
origin is discarded since it is below the minimum range.

The fusion of the three preliminary occupancy grid maps
results in the final occupancy grid shown in Fig. 15. The figure
also shows the down-sampled point cloud and the detected
radar peaks as a reference. All four pedestrians are detected
and marked as occupied cells in the fused occupancy grid. The
representation of obstacles located close to the sensors might
be incomplete since their boundaries are not fully captured.
However, in most applications the knowledge of an existing
close obstacle is sufficient to react accordingly.

V. CONCLUSION

We presented an approach to fuse heterogeneous range-
sensor data into a common occupancy grid. The grid is
constructed from the sensor data of multiple synchronized
sensors. After individual pre-processing for each sensor, three
independent occupancy grids are created. A fused occupancy
grid is then generated based on the individual grids.

Fig. 14. Occupancy grid created with the data from the radar range-angle
map.

Fig. 15. The resulting occupancy grid after fusing the three individual
occupancy grids.

The fused occupancy grid has a higher expressiveness
than the individual occupancy grids. As shown in the results
section, the additional data from the second sensor provides
valuable information for modeling the environment. Obstacles,
not detected by solely radar or ToF are more likely to be
detected by the fusion of these two sensors. Thus, the low-
level fusion at sensor-level provides a significant advantage
compared to the fusion of high-level sensor data. Since the
memory consumption of the occupancy grid is low compared
to the raw data, the grid is suitable to be transferred via
low-speed buses. Our approach can be adopted for various
applications (e.g., detection of obstacles on a mobile device).

ACKNOWLEDGMENTS

The authors of this paper would like to thank the Austrian
Research Promotion Agency for funding the Autonomous
CarTo lnfrastructure communication mastering adVerse En-
vironments (ACTIVE) project with the number 855010.

REFERENCES

[1] D. Göhring, M. Wang, M. Schnürmacher, and T. Ganjineh, “Radar/lidar
sensor fusion for car-following on highways,” in The 5th International
Conference on Automation, Robotics and Applications, Dec. 2011, pp.
407–412.

[2] K. Kim, C. Lee, D. Pae, and M. Lim, “Sensor fusion for vehicle tracking
with camera and radar sensor,” in 2017 17th International Conference on
Control, Automation and Systems (ICCAS), Oct. 2017, pp. 1075–1077.

[3] P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford, “Lidar and camera
detection fusion in a real-time industrial multi-sensor collision avoidance
system,” Electronics, vol. 7, no. 6, 2018.

[4] H. P. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” vol. 2, Apr. 1985, pp. 116–121.

[5] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Autonomous Robots, vol. 15, no. 2, pp. 111–127, Sep. 2003.

[6] P. Stepan, M. Kulich, and L. Preucil, “Robust data fusion with occupancy
grid,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 35, no. 1, pp. 106–115, Feb. 2005.

[7] “High level sensor data fusion for automotive applications using occu-
pancy grids,” 2008 10th International Conference on Control, Automa-
tion, Robotics and Vision, ICARCV 2008, no. Dec., pp. 530–535, 2008.

[8] M. Li, Z. Feng, M. Stolz, M. Kunert, R. Henze, and F. Küçükay,
“High resolution radar-based occupancy grid mapping and free space
detection,” Mar. 2018, pp. 70–81.

[9] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Design of a low-
level radar and time-of-flight sensor fusion framework,” in 2018 21st
Euromicro Conference on Digital System Design (DSD), Aug. 2018, pp.
268–275.

[10] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE
Journal of Quantum Electronics, vol. 37, no. 3, pp. 390–397, Mar. 2001.

194 Publication 6 - DSD 2019 8. Publications

ACTIVE - Autonomous Car to Infrastructure
Communication Mastering Adverse Environments

Josef Steinbaeck1,4, Norbert Druml1, Thomas Herndl1, Stefan Loigge2, Nadja Marko2,
Markus Postl2, Georg Kail3, Reinhard Hladik3, Gerhard Hechenberger4, Herbert Fuereder4,

Christian Steger5, Eugen Brenner5, and Christian Schwarzl2
1Infineon Technologies Austria AG, Graz, Austria

{josef.steinbaeck, norbert.druml, thomas.herndl}@infineon.com
2Virtual Vehicle Research Center, Graz, Austria

{stefan.loigge, nadja.marko, markus.postl, christian.schwarzl}@v2c2.at
3Siemens AG, Vienna, Austria

{georg.kail, reinhard.hladik}@siemens.com
4Siemens Mobility GmbH, Vienna, Austria

{gerhard.hechenberger, gerhard.fuereder}@siemens.com
5Graz University of Technology, Graz, Austria

{steger, brenner}@tugraz.at

Abstract—Precise localization is crucial for autonomous navi-
gation, especially for autonomous driving. GNSS localization is
prone to a number of errors and is not sufficient to provide
reliable positional data in all situations. Most existing approaches
for fine-grained positioning are not working reliably in difficult
weather conditions. In this paper we present a method to tackle
that problem by performing precise localization by exploiting the
angle-of-arrival of V2X communications.

During a 30-months project, we built an unmanned vehicle
capable of determining its precise location via V2X commu-
nication. In order to safely navigate in the environment and
detect obstacles in its path, the robot is also equipped with
environmental perception sensors (time-of-flight and radar). We
evaluated the proposed localization method during a test-drive
on a precisely mapped parking lot. The resulting localization
precision was improved by over 60 percent compared to the
standard GPS localization.

Index Terms—radar, automotive sensors, time-of-flight, au-
tonomous vehicles, sensor fusion

I. INTRODUCTION

An accurate location estimation is crucial for most au-
tonomous applications (robotic/automotive) to perform the
navigation task. Today, localization is mainly performed using
a Global Navigation Satellite System (GNSS) like the Global
Positioning System (GPS) or Galileo. The quality of the
localization accuracy strongly depends on external factors
(e.g., weather/atmospheric influences) and the surroundings.
Especially in city scenarios with tall buildings, walls and
no direct line of sight to GNSS satellites, highly accurate
localization is not reliably possible. Regular GPS can only
achieve an accuracy of up to ±3 m. Adding a fixed reference
station improves the accuracy to about ±0.1 m for a limited
geographical location. This approach is very feasible for
agricultural applications and commonly used in this sector.

Most autonomous systems of today use GNSS only for
a coarse localization since the reliability is not sufficient

Fig. 1. The SPIDER, an unmanned robot platform with four individually
controllable wheels. The Robot Operating System (ROS) framework is used to
control the robot. An environmental perception platform with multiple sensors
is mounted at the top of the robot as well as an OBU for V2X communication.

for precise driving tasks (e.g., multi-lane sections or narrow
roads). Environmental perception sensors are utilized together
with a detailed map of the environment to obtain a precise
location estimation. Particle filters are a popular tool to match
the sensor measurements with the structures of a map in
order to precisely estimate the location within that map.
However, for this approach to work robustly, the detailed map
has to be updated constantly, a difficult task in permanently
changing environments. Thus, the map features have to be as
invariant to changes as possible. Ground penetrating radar is a
sophisticated approach, where a radar is pointed to the ground
in order to localize the vehicle [1]. This localization method
is robust, since the ground material is typically independent
to weather, light and seasonal changes. But the method also

8. Publications Publication 7 - SDF 2019 195

© 2019 IEEE. Reprinted, with permission, from 2019 Sensor Data Fusion: Trends,
Solutions, Applications (SDF).

requires detailed radar maps of the ground which are often not
available.

Vehicle-to-infrastructure (V2I) and vehicle-to-everything
(V2X) communication are emerging technologies of today.
Road side units (RSU) provide the functionality to inform
vehicles in the proximity with supportive data (e.g., informa-
tions about a complex road scenario). This can for example be
the structure of lanes in a crossing section with information
about each lane’s flow directions. There exist approaches
where RSUs are extended in their functionality to also provide
localization information to the vehicles. Since the required
communication protocol is already available and standardized,
these techniques hold a high potential to support vehicle local-
ization. The works presented in [2] and [3] show approaches
where vehicle localization is performed using RSUs. Both
use time-of-arrival/time-difference methods as well as dead-
reckoning to determine the vehicle’s location on the road
without the use of GPS. Fascista et. al. [4] show a GPS-free
localization method which exploits the angle of arrival (AOA),
determined using an uniform linear array (ULA) of antennas.
They use the multiple signal classification (MUSIC) algorithm
to estimate the angle of the vehicle to the RSU [5].

The Robot Operating System (ROS) is a commonly used
tool among researchers to build robot applications. ROS [6] is
a popular choice for fast prototyping, since it provides a set
of ready-to-use open source libraries and tools for robotics. In
[7], the authors present an automated driving research platform
which utilizes Autoware, a ROS-based framework.

In this paper we focus on exact localization using a single
RSU in combination with GNSS. The RSU can send/receive
information to/from the vehicle, while also detecting the AOA.
Using the inaccurate GNSS from the vehicle, the exact location
of the RSU and the obtained angular information, a precise
localization is possible. This localization method works even
in difficult environment situations like snow, rain or fog where
vision based systems tend to fail. We built an unmanned robot
(see Fig. 1) in order to demonstrate precise localization using
an RSU with angular detection. As a safety feature, the vehicle
is also equipped with state-of-the-art perception sensors in
order detect obstacles in the vehicle’s path.

To summarize, the contributions of this paper to the scien-
tific community are:

• The electro-mechnanical construction of an unmanned
research vehicle using state-of-the-art automotive com-
ponents for electrical cars.

• A ROS architecture for organizing the robot and the data
flow between the sensors and actuators.

• A novel method for vehicle localization with V2X infras-
tructure.

• A sensor fusion approach using radar and optical range
information (ToF) for obstacle detection.

The Section II is divided into three subsections. First, we
describe the construction and the composition of the unmanned
research vehicle. Then, we present a detailed description of
the localization using an extended RSU. Eventually, we in-
troduce the environmental perception module of the platform.

Real-world measurements with the vehicle are presented in
Section III, while Section IV gives a short conclusion of the
work.

II. AUTONOMOUS CAR TO INFRASTRUCTURE
COMMUNICATION MASTERING ADVERSE ENVIRONMENTS

The goal of the work was to build an unmanned robot
platform, capable of precise localization using infrastructure
support. We built a prototype of an extended RSU, capable
of measuring signal directions to achieve that. The robot is
additionally equipped with environmental perception sensors
in order to perform basic obstacle detection.

A. SPIDER: An Unmanned Research Vehicle

The Smart PhysIcal Demonstration and Evaluation Robot
(SPIDER) is an unmanned, electrical vehicle built from
scratch. The constructed robot chassis consists of a robust
aluminum frame with a wheelbase of 1.2 m. Each of the four
robot wheels comes with an electrical drive as well as a
steering engine. Thus, the platform can change its heading
while remaining in the same location.

The SPIDER robot is equipped with multiple electronic
components. The chassis holds enough space for the battery,
drive-controllers and the processing unit in the waterproof
interior of the robot. The robot is equipped with an on-board-
unit (OBU, Cohda Wireless) for V2X communication, a WiFi
antenna in order to communicate with the on-board processing
unit and a GPS module for coarse location estimation. Addi-
tionally, the robot has a mounting point for an environmental
perception platform on top of the robot. The robot is also
equipped with an emergency-stop button on its rear end, which
can stop all operations and apply the brakes. Additionally, the
platform can be stopped manually with a remote emergency
break connected via an active-on connection.

The platform provides two different control functions: au-
tomatic control and manual control. In manual mode the plat-
form is controlled using an operator panel (e.g., a video game
controller). The communication between between these two
participants is encrypted via a session key, exchanged using
public key cryptography. In automatic mode, the platform is
capable of driving a pre-defined path. The robot calculates the
resulting controls and sends them to the actuators.

For the high-level control, the robot is equipped with
an x86-based processing unit running Linux and ROS. The
computer is located in the inside of the waterproof chassis
and is powered by the robot’s battery. The computer has to
handle requests from the operator panel, from the sensors and
to perform the respective processing. The processing unit is
capable of logging the sensor data of the robot via the ROS
tool rosbag. For low-level control, the robot is equipped with
an automotive state-of-the-art, safety-focused microcontroller
(Infineon’s AURIX). The microcontroller communicates with
the motor/steering controller of the four wheels and handles
the battery/charging management.

196 Publication 7 - SDF 2019 8. Publications

B. Precise Vehicle Localization Using V2X Infrastructure

V2I systems typically consist of an OBU and an RSU.
The OBU is a device mounted on the driving vehicle capable
to send data to infrastructure using wireless communication
(IEEE 802.11p standard). The RSU is an element of fixed-
location in the infrastructure capable of receiving and trans-
mitting messages to/from an OBU. An RSU sends the state
and timing information of upcoming traffic lights via signal
phase and timing (SPAT) messages to the vehicle. Information
about the topology of the crossing section is exchanged via
MAP messages. Siemens offers standardized products (RSUs)
capable of transmitting and receiving V2I messages. One
method to support the vehicle localization with an RSU is to
calculate an error-correction vector in the location-fixed RSU
and send this vector to the vehicle, so the vehicle can correct
the GPS error. Another method is to exploit the receiving angle
of the messages from the vehicles in order to support the
localization. In this section we combine these two methods
and extend a standard RSU with special hardware in order to
enable precise localization.

1) Extended RSU: We built a prototype capable of re-
ceiving V2X messages and determining the angle to the
vehicle. This prototype can be used with standardized V2X
infrastructure and detect the angle to the RSU for precise
localization. The Siemens RSU is extended with the following
components in order to provide precise localization.

• Antenna array with four antennas, capable of receiving
the wireless communication signals (802.11p) from the
OBU.

• Software defined radio to output the four-channel IQ
data to the field-programmable gate array (FPGA).

• Xilinx FPGA to provide the four-channel IQ data as well
as the GPS location to a PC.

• x86 PC running Linux for the AOA estimation and the
location calculation.

Fig. 2 shows the components of the V2X localization as
arranged for the test drive. The angle accuracy of the pro-
totype was evaluated in prior to the test drive in a laboratory
environment. The deviation between the real and the measured
angle was below ±2° for all measured angles.

2) Processing: The flow-diagram of the processing on the
prototype is shown in Fig. 3. The OBU of the SPIDER robot
sends cooperative awareness messages (CAM) to the RSU.
The CAM messages contain the location received from the
GPS receiver of the vehicle. These CAM messages are also
received by our prototype with an ULA with four channels.
After decoding, the GPS and the MAC information are avail-
able additionally to the raw data from the four channels.
The MUSIC algorithm is applied to the raw data in order to
obtain the angle between the OBU and the RSU. The location
calculation module calculates the offset between the vehicle’s
GPS location and its estimated real location. First it transfers
the GPS coordinate into an own coordinate frame (x,y). A
Kalman filter is then used to estimate the offset to the real
location using the GPS data and the AOA. The offset is then

V2X OBU

antennaSo�ware defined radio

with antenna array

V2X RSU

placed beside

SDR

Fig. 2. Components of the V2X localization: On Board Unit (OBU), Software
Defined Radio (SDR) and Road Side Unit (RSU).

sent back to the vehicle via a SPAT message. The vehicle can
then use this information to correct its current location.

C. Environmental Perception Platform for Obstacle Avoidance

The perception platform is equipped with multiple ToF-
cameras and a radar sensor mounted in front-facing direction.
A battery allows the independent mobile operation of the
platform. Fig. 4 shows a picture of the platform mounted on
the SPIDER.

1) Deployed sensors: Three CamBoard pico monstar1 ToF
cameras are mounted on the platform. ToF cameras use
an active infrared illumination in combination with special
photonic mixing device (PMD) pixels in order to obtain a
distance image of the scene [8]. In addition to the distance
value, an amplitude value can be determined for every pixel
in the scene. The CamBoard pico monstar comes with a
resolution of 352×287 pixels and runs with up to 60 frames
per second. Compared to other range sensors, ToF cameras are
compact, inexpensive and only introduce a minimal processing
overhead. A point cloud of the scene can be calculated from
the distance image using the camera properties and the lens
parameters. To summarize, the output of each of the ToF
cameras is a point-cloud containing about 100k points. Each
point is characterized by the three cartesian coordinates (x,y,z),
a confidence value, an intensity value and a noise value.

We use the RadarLog2 radar development kit on our plat-
form. This kit comes with a 77 GHz radar frontend with
16 receive and four transmit antennas. The RF frontend of
the radar is capable of transmitting fast chirped frequency
modulated continuous wave (FMCW) signals. Reflections of
the mm-waves in the scene are received by the antennas,
mixed, low pass filtered and converted to digital. After certain

1CamBoard pico monstar: 3D imaging development kit of the pico family
(https://pmdtec.com/picofamily/).

2RadarLog: A platform for microwave radar data capturing and logging
(http://www.inras.at).

8. Publications Publication 7 - SDF 2019 197

ULA

antennaarray

So�ware

Defined

Radio

Gnu Radio

V2X 802.11p

decoder4 channel

IQ data

4 channel

IQ data

+ 802.11p

MAC+GPS

payload

AoA

calcula�on

MUSIC

algorithm

Siemens

Road

Side

Unit

angle of

arrival

+ 802.11p

MAC+GPS

payload

Loca�on

calcula�on

Kalman filter

SPAT transmit request

With GPS offset calculated with

angle of arrival and GPS posi�on

SPIDER

+ V2X OBU

CAM message

with MAC address

and GPS posi�on

SPAT message

With calculated

GPS offset

to the true posi�on

data-flow

data-flow

Fig. 3. Signal flow of the V2X localization using the extended RSU.

Fig. 4. The environmental perception platform consists of three ToF cameras,
one radar and one fisheye camera.

signal processing steps, the range, velocity and angle to targets
in the scene are obtained. The deployed radar sensor has a
horizontal beamwidth of 76.5° and a vertical beamwidth of
12.8°.

2) Mobile sensing platform: The sensors are attached to
a platform (Fig. 4) which can be directly mounted on the
SPIDER robot. The platform comes with an individual power
supply (lithium battery) to allow an independent operation.
All sensors are mounted in front-facing direction. The three
cameras are mounted with overlapping field-of-views in order
to provide redundancy in the area in front of the vehicle.
Fig. 5 shows an overview of the signal flow between the single
components of the system. The processing unit is connected
to the sensors via USB as well as to an USB HDD in order
to log the raw sensor data.

All sensors are integrated into the platform via the ROS
framework. ROS nodes are used to receive the raw data from
the sensors and to perform individual (pre-)processing. After
processing, the data is fused into a common representation,
an occupancy grid. The occupancy grid is then transferred to
the SPIDER’s processing module and consulted for obstacle
avoidance. A detailed description of the occupancy grid cre-
ation can be found in [9].

ToF 1

ToF 2

ToF 3

Radar 1

USB Hub 2

Processing Unit

Microcont

roller

Fisheye

Camera
USB Hub 1

USB HDD

USB/Serial

USB 2.0

USB 3.0

USB 3.0

USB 3.0

USB 3.0

USB 3.0

USB 3.0

USB 3.0

2.5 V

0 V

3.3 V

0 V

3.3 V

0 V

3.3 V

0 V

Fig. 5. The signal flow of the environmental perception platform. Two USB
hubs are used to connect all sensors to a single processing unit.

3) Temporal and spatial synchronization: The sensors are
synchronized using external trigger signals for the ToF cam-
eras as well as for the radar sensor. These external signals are
generated on a dedicated microcontroller. The trigger sequence
ensures that the radar and the ToF sensors capture the same
scene. The ToF cameras are triggered sequentially with a
short delay, in order to not influence each other. The radar
measurement is triggered at the same time as the first ToF
sensor.

Since each of the sensors operates in their own frame, the
data also has to be spatially aligned into a common coordinate
frame. The transformations between the single ToF cameras
can be implicitly obtained by aligning the overlapping regions
of the point clouds. This is done by applying the iterative
closest point (ICP) algorithm to the three point clouds. The
initial alignment of this iterative algorithm is set to the
manually measured offsets, given by the mounting positions.
The transformation between the radar and the ToF cameras is
obtained by manual calibration. A special target (well-visible
in ToF and radar data) is placed in the common field of view
in order to obtain the sensor disalignment.

198 Publication 7 - SDF 2019 8. Publications

0° 10°

30°

40°

50°

20°

-10°
-20°

-30°

-40°

-50°

Received

GPS posi�ons CAM

messages

measured

angle of arrival of

one

CAM message

True posi�on

of vehicle

Reference

measurement

RSU

SDR and antenna posi�on

origin of coordinates

(0.0 m, 0.0 m)

x

y

calculated

posi�ons

Fig. 6. Visualization of the precise localization obtained from the extended
RSU during the test drive. The original data from the GPS is displayed as
well as the ground truth location data from a reference system.

III. RESULTS

In order to test the system in a real world scenario, we
placed the SPIDER in an empty parking lot and performed
different evaluations. The RSU and the SDR were positioned
close to each other at a precisely known location in order to
perform the best possible corrections. We extracted multiple
reference points of the parking lot using a highly accurate
GNSS RTK rover. In order to evaluate the quality of the
environmental perception platform, we placed several targets
on the parking lot. The targets for the ToF camera consisted of
high-reflective materials (e.g., street signs) and low-reflective
materials (e.g., neoprene), while the radar targets were corner
cube retroreflectors.

For the V2X localization evaluation, we drove a trajectory
on the parking lot and performed GNSS corrections using our
extended RSU prototype. The angular data from the RSU was
used to correct the vehicle’s location on the track. Fig. 6 shows
the measured points of the SPIDER’s GPS, the corrected GPS
points using our prototype and the ground truth locations
from a reference system. The original GPS data from the
SPIDER was off by up to eight meters from the ground truth
locations, while the error of the corrected points was always
below three meters. The precision was improved by at least 60
percent for all measurement points. Fig. 7 shows a comparison
of the distance error of the of the SPIDER’s GPS and the
corrected locations with the RSU. As an additional reference,
we manually analyzed the the environmental perception data
to determine the vehicle’s location. The distances to objects
with known locations are consulted in order to determine the
vehicle’s location. The comparison of the resulting locations at
a certain timestamp is depicted in Fig. 8. The small deviation
can be explained by the mounting offset of the OBU from
the sensor platform on the vehicle. The achieved accuracy of
the RSU localization depends on multiple factors. Among the

0 5 10 15 20 25 30 35 40

measurement number

0

2

4

6

8

10

e
rr

o
r

in
 m

Distance Error

GPS only

RSU V2X localization

Fig. 7. Localization error of the extended RSU approach compared to the
GPS-only solution. The plot compares the recorded data during the test drive.

received GPS position

CAM message

error distance = 5,6 m

calculated position

V2X localization

error distance = 1,4 m

True position

reference measurement

calculated position

trilatteration of sensor data

Error distance 0,4 m

Fig. 8. Detail comparison of the localization error at a single timestamp.
Additionally to GPS and V2X localization, the data from the environmental
perception sensors is utilized to calculate the vehicle’s location.

most influential parameters are:
• the quality of vehicle’s GPS data,
• the number of received messages,
• the alignment of the antenna array to the vehicle,
• the distance of the vehicle from the antenna array, and
• the objects between the antenna array and the vehicle.
In order to test the perception capability of the platform,

multiple pedestrians were positioned in front of the robot (see
image in Fig. 9). The ToF and radar sensor data is visualized

Fig. 9. Fisheye image of the test scene. There are four pedestrians in front
of the vehicle. Obtained from [9].

8. Publications Publication 7 - SDF 2019 199

Fig. 10. Visualization of the detected radar peaks and the ToF points. The
smaller points represent the ToF points, while the larger points correspond to
radar targets.

Fig. 11. The resulting occupancy grid. The underlying radar and ToF target
points are visualized as a reference. Obtained from [9].

in Fig. 10. The detected peak points are visualized together
with the full point cloud of the three ToF cameras. The ToF
sensor (with the used settings) is capturing the closer two
pedestrians, but struggles to detect the other two. Nevertheless,
the radar sensor provides significant targets at the positions of
the two further-away pedestrians. In combination, the sensors
are capable to detect all four pedestrians. The data is then
processed to an obstacle grid and transferred to the SPIDER in
order to perform obstacle avoidance. The resulting occupancy
grid is depicted in Fig. 11. All pedestrians are recognized by
the combination of the different environmental sensors and are
marked as occupied cells in the occupancy grid.

IV. CONCLUSION

We successfully demonstrated a V2X localization prototype,
an extended RSU with angle-measurement functionality. The
prototype receives the SPIDER’s location from GPS via a
CAM message, corrects the location error and sends it back

via a SPAT message. In the executed measurements, the
localization accuracy could be improved by over 60 percent
compared to GPS only. A robust and precise localization
approach is beneficial for applications in robotics and auto-
mated driving. V2X localization infrastructure can be placed
at areas of interest in order to perform precise localization.
Possible applications are automatic lane positioning in multi-
lane crossing sections or correct positioning on temporary
lanes caused by construction sites.

Since the proposed form of localization relies on an RSU,
it can provide fast reaction times and the data quality does not
depend on the weather condition. The localization method is
not disturbed by rain, snow or fog. Thus, the approach can
be used in difficult weather situations where other localization
approaches fail (e.g., visually aided localization). In order to
further improve the robustness, RSU localization could be
fused with other methods like ground-penetrating radar. For
this approach, the RSU could communicate detailed radar
scattering information about a region of interest. Another
option to further enhance the localization quality is the fusion
of the presented approach with vision based methods.

ACKNOWLEDGMENTS

The authors of this paper would like to thank the Austrian
Research Promotion Agency for funding the Autonomous
CarTo lnfrastructure communication mastering adVerse En-
vironments (ACTIVE) project with the number 855010.

Virtual Vehicle Research Center is funded within the Com-
petence Centers for Excellent Technologies (COMET) program
by the Austrian Federal Ministry for Transport, Innovation
and Technology (BMVIT), the Federal Ministry for Digital,
Business and Enterprise (BMDW), the Austrian Research Pro-
motion Agency (FFG), the province of Styria and the Styrian
Business Promotion Agency (SFG). The COMET program is
administrated by FFG.

REFERENCES

[1] M. Cornick, J. Koechling, B. Stanley, and B. Zhang, “Localizing ground
penetrating radar: A step toward robust autonomous ground vehicle
localization,” Journal of Field Robotics, vol. 33, no. 1, 2016.

[2] C.-H. Ou, “A roadside unit-based localization scheme for vehicular ad
hoc networks,” International Journal of Communication Systems, vol. 27,
no. 1, 2014.

[3] L. Sun, Y. Wu, J. Xu, and Y. Xu, “An RSU-assisted localization method
in non-GPS highway traffic with dead reckoning and V2R communi-
cations,” 2012 2nd International Conference on Consumer Electronics,
Communications and Networks, CECNet 2012 - Proceedings, 2012.

[4] A. Fascista, G. Ciccarese, A. Coluccia, and G. Ricci, “A localization
algorithm based on V2I communications and AOA estimation,” IEEE
Signal Processing Letters, vol. 24, no. 1, 2017.

[5] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, 1986.

[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[7] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An Open Approach to Autonomous Vehicles,” IEEE Micro,
vol. 35, no. 6, November 2015.

[8] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE
Journal of Quantum Electronics, vol. 37, no. 3, March 2001.

[9] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Occupancy grid
fusion of low-level radar and time-of-flight sensor data,” in 2019 22nd
Euromicro Conference on Digital System Design (DSD), Aug 2019.

200 Publication 7 - SDF 2019 8. Publications

Context-Aware Sensor Adaption of a Radar and
Time-of-Flight Based Perception Platform

Josef Steinbaeck∗†, Andreas Strasser†, Christian Steger†, Eugen Brenner†, Gerald Holweg∗, and Norbert Druml∗
∗Infineon Technologies Austria AG, Graz, Austria

{josef.steinbaeck, gerald.holweg, norbert.druml}@infineon.com
†Graz University of Technology, Graz, Austria

{strasser, steger, brenner}@tugraz.at

Abstract—This paper presents an approach to enhance the
perception quality of a multi-sensor system by considering the
context information. The platform’s context state is obtained by
combining data from the perception sensors and from additional
context sensors. This context information is then utilized to
dynamically adapt the sensing/processing parameters to the
current context. Additionally, the system is capable to detect
a reduced perception performance of individual sensors caused
by environmental influences.

The proposed approach was implemented on a multi-sensor
platform, equipped with Time-of-Flight (ToF) cameras, radar
sensors and multiple context sensors. The static Robot Operating
System (ROS) architecture of the existing platform was extended
to support automatic parameter adaption during runtime. In
order to demonstrate the approach with real-world data, the
platform was exposed to different scenarios. The proposed
approach results in a significantly increased perception quality
compared to the output of a static implementation.

Index Terms—self-adaptive, context-aware, radar, time-of-
flight, sensor fusion, ROS

I. INTRODUCTION

The configuration of automotive/robotic environmental per-
ception sensors is among the key influence factors of a sys-
tem’s perception quality. A perception sensor cannot unleash
its full potential if it is not configured properly. Traditional per-
ception applications use static sensor configurations, selected
based on the expected target environment. If the system is
used in various environments and experiences environmental
influences, a static sensor configuration limits the perception
performance. Thus, modern sensors often have the ability to
change some of their parameters during runtime. However,
automatic adaptions based solely on the data from the sensor
itself are often not sufficient to determine a feasible configu-
ration for a varying context.

This work tackles the described shortcoming by incorporat-
ing additional context sensors into the determination process
of the sensor parameters. The approach is demonstrated on
a multi-sensor perception platform, used to evaluate sensor
fusion strategies for research purposes. The platform consists
of complementary perception sensors (Time-of-Flight (ToF)
and radar) and can be mounted on robots and vehicles. Static
parameters lead to an unsatisfactory perception performance
when the system is used in changing environments. Thus,
the platform was extended to support automatic parameter
adjustment with the goal to enhance the system’s perception

performance. The main contributions of this paper to the
research community are:

• The identification of ToF and radar sensor parameters,
feasible for dynamic self-adaption.

• The extension of an existing Robot Operating System
(ROS) perception architecture to support the dynamic re-
configuration of sensor and processing parameters.

• An approach to utilize the context information to assign
a confidence value to each sensor’s data stream.

Future perception systems deployed in changing environments
can built upon the presented approach to enable sensor self-
adaption and enhance the overall perception performance.

II. RELATED WORK

There exist several approaches which utilize context-
information in order to react to the current context. An
introduction of the term context-awareness and commonly
used concepts of context-aware systems are presented in [1].
The work presented in [2] discusses fundamental principles
of context-aware adaptive systems. Additionally, they present
a conceptual model with the ability to perform context-
aware service adaption. The task of finding appropriate scene-
dependent parameters is similar to taking a good photo of
a given scene. Automatically taking high-quality images has
not been achieved yet, but there exist works where the camera
parameters are automatically adapted to the current scene [3].

The authors of [4] show a wearable robotic device which
exploits contextual information in order to optimize the battery
life. In contrast to the approach in this paper, the context
information is only utilized by the processing modules, not
to adapt low-level sensor configurations. Bloisi et al. [5]
sketch a context-aware system architecture for an adaptive
cruise control system of an intelligent vehicle. The architecture
already sketches the use of context sensors for adaptive pro-
cessing within the sensor/processing modules. However, solely
cameras are used as perception sensors and the architecture
is only presented on a high level. The authors of [6] and
[7] present a system which allows robots to self-tune their
perception parameters on-site. The system parameters are
determined through empirical trials on-site, while this paper’s
approach tunes the parameters during operation.

To the best of our knowledge, the dynamic sensor con-
figuration of environmental perception systems has not been

8. Publications Publication 8 - SAS 2020 201

© 2020 IEEE. Reprinted, with permission, from 2020 IEEE Sensors Applications
Symposium (SAS).

Pre-Process

ToF Camera 3

ToF Camera 2

ToF Camera 1

Radar

Pre-Process

Pre-Process

Process

Merge

Sub-sampled

Point Clouds

RA Data

Radar Peaks

Merged Point

Cloud

Receive

Receive

Receive

Receive

Fuse

Full

Point

Clouds

Sample

Data

Sensor

Parameters

Processing

Parameters

Context

Sensors

ReceiveReceiveReceiveParam

Handler
Param

Handlers

Fig. 1. Overview of the ROS nodes of the context-aware sensor fusion system. The system is able to dynamically adapt to its context during runtime.

sufficiently addressed by the scientific community yet. This
paper fills this gap by presenting a ROS-based approach to
dynamically change the sensor configuration of a perception
system depending on the current context.

III. CONTEXT-AWARE SYSTEM ADAPTION

An existing environmental perception platform was selected
as base platform for this work with the goal to perform
context-aware sensor fusion. The platform consists of three
ToF cameras and one radar sensor. Details about the plat-
form’s composition and the sensor synchronization/alignment
are available in [8]. In order to get additional information
about the environment, multiple context-perception sensors
were installed on the the platform. Fig. 1 shows an overview of
the extended sensor fusion architecture implemented in ROS.
The original processing nodes were extended with services
which provide functionality to re-configure certain parameters
during runtime. Context sensors and (intermediate) outputs of
the perception system are utilized to dynamically adjust the
sensor and processing parameters.

This section presents which of the configurable parameters
of the perception system are feasible to be changed during run-
time. Popular context sensors are introduced which can be used
to support the dynamic parameter adaption. Finally, a method
to adapt the system parameters in case of context changes is
presented. This also includes the fusion module’s parameters,
which are utilized to assign a context-based confidence value
to each input stream.

A. Sensor Parameters

As seen in Fig. 1, the receive nodes are not only in charge of
receiving raw sensor data, they also (re-)configure the sensors.
These nodes implement services which provide other nodes an
interface to request re-configuration of the sensors with custom
parameters. The services are implemented as ROS services and

are capable to change all influential parameters of the corre-
sponding sensor. Some sensor parameters can be changed on-
the-fly while others require the sensor to be restarted, causing
a discontinuous data stream. The two different sensor types
(ToF and radar) provide individual interfaces with different
sensor parameters.

1) Time-of-Flight Sensor: Table I shows a selection of the
ToF sensor’s parameters. The most influential ones are:

• The exposure time affects the range of the camera and
the signal-to-noise-ratio. A too high exposure time can
have disturbing effects, like saturated pixels or motion
blur. Thus, the optimal exposure time is scene-dependent
and has to be chosen dynamically.

• The operation mode can be set to a number of pre-
selected tuples of modulation frequency and measurement
mode. This tuple defines the maximum unambiguous
range and the duration of a single measurement. The
measurement mode can be either the four-phase algorithm
or the eight-phase algorithm [9].

• The frame delay defines the rate of measurements. A
higher frame rate is advantageous for dynamic environ-
ments but increases the processing load.

• Global binning performs spatial pixel averaging in the
distance image. The ToF cameras have a resolution of
352×287 pixels. Global binning can significantly de-
crease the processing load of the system, but it also
decreases the resolution and detection ability.

Not all configurable parameters are listed in the table.
Unlisted parameters include the activation of various filters and
adaptive thresholds. An example of the impact of the sensor’s
configuration is shown in Fig. 2. This figure shows the ToF
point cloud for different settings of the exposure time and
global binning. The exposure time influences the range of the
camera, while binning affects the resolution. It can be clearly

202 Publication 8 - SAS 2020 8. Publications

TABLE I
SELECTED PARAMETERS OF A TOF RECEIVE NODE.

Parameter Symbol Default Value

exposure time texp 1500µs
operation mode mode eight-phase

frame delay tfps 200 ms
global binning bin 1

(a) texp=1700µs, bin=1. (b) texp=500µs, bin=5.

Fig. 2. The full point cloud of a single ToF camera with different sensor
parameters, visualized using the ROS tool RViz.

seen that the adaption of single sensor parameters can have a
significant influence on the output.

2) Radar Sensor: Table II shows the a selection of the radar
sensor’s parameters. These parameters are used to compose the
transmitted radar waveform, which defines certain character-
istics of the radar measurement:

• The maximum range Rmax and the maximum velocity
vmax depend on a number of parameters and the speed
of light c, as seen in (1) and (2). Typically, the number
of sampels per chirp N and the chirp duration Tp are
adjusted to change these characteristics during runtime.
The bandwidth B and the center frequency fc are typi-
cally set static.

• The range resolution ∆R and the velocity resolution ∆v
are defined as stated in (3) and (4). While the range
resolution is typically fixed with a static bandwidth B, the
velocity-resolution can be easily adapted via the number
of chirps per measurement M or the chirp duration Tp.
The angle resolution depends on the number of receive
channels LRX . Forming virtual antennas with multiple
transmit channels LTX can increase the number of
physical receive antennas.

• The frame delay defines the time between two measure-
ments and thus, the frame rate.

TABLE II
SELECTED PARAMETERS OF THE RADAR RECEIVE NODE.

Parameter Symbol Default Value

chirp duration Tp 200µs
samples per chirp N 1024

chirps per measurement M 128
receive channels LRX 16
transmit channels LTX 1

frame delay tfps 200 ms

(a) N=128, M=32. (b) N=1024, M=256.

Fig. 3. Radar range-Doppler image for two different configuration settings
for the number of chirps M and the sample rate N .

Rmax =
N c

4B
(1)

vmax =
c

4Tp fc
(2)

∆R =
c

2B
(3)

∆v =
c

2M Tp fc
(4)

The sample rate, the number of chirps and the receive an-
tennas define the amount of received raw data. More received
data enables higher precision measurements but also increases
the processing load. In combination with the frame delay, this
defines the data rate. A higher rate is beneficial for dynamic
scenarios but increases the processing load. Fig. 3 shows the
radar range-Doppler image for two different settings of the
samples N and the number of chirps M . The output clearly
shows the influence of these parameters on the maximum
range Rmax as well as on the velocity resolution ∆v.

To summarize, the parameters listed in Table I and II have
a significant impact on each sensor’s output data. Thus, these
parameters were selected for the dynamic adaption of the
perception sensors during runtime.

B. Processing Parameters

Not only the sensor parameters, but also parameters dur-
ing later processing can be adapted during runtime. Fig. 1
highlights the ROS nodes which provide services to change
processing parameters. The processing parameters can have a
great influence on the processing modules’ output and thus,
also on the output of the whole system. Examples of pro-
cessing parameters are the peak detection threshold for radar
processing or the voxel size for ToF point cloud processing.

Adjustable processing parameters can be changed on-the-fly
and are applied immediately. In contrast, the sensor parameters
are subject to a sensor-dependent delay until they become
active. The dynamic adaption of processing parameters can
be either performed online with live sensor data or offline
with earlier recorded data. The offline evaluation enables the
quantitative comparison of different self-adaption approaches

8. Publications Publication 8 - SAS 2020 203

Fuse Occupancy Grid

radar_conf

tof_conf

ToF Data

Radar Data

Fig. 4. Subscribed/published topics and provided service parameters of the
fusion node.

performed on the same dataset. The sensor parameters can
only be adapted during online evaluation, since they define
the shape and characteristics of the raw sensor data.

The approach can also be used to provide supplementary
parameters to a sensor fusion module (see Fig. 1), which
combines data streams from different sensors into a common
representation. This includes the dynamic assignment of con-
fidence values to the input data streams of the fusion module
if the corresponding sensor data is known to be disrupted. If
the system senses that a perception sensor operates outside
its ideal working conditions (e.g., heavy rain, direct sunlight),
the confidence of this sensor’s data stream is decreased for
the fusion process. The fusion module utilizes the confidence
value by assigning a lower weight to the corresponding sensor
data or by discarding (part of) the sensor data.

Fig. 4 shows the fusion module with its corresponding
inputs, outputs and supplementary parameters. The module’s
processing parameters include a confidence range for the ToF
sensor’s data stream tof conf and for the radar sensor’s data
stream radar conf. The data points within the corresponding
sensor’s confidence range are considered for fusion, while the
other data points are discarded.

C. Context Perception Sensors

This section introduces multiple sensors of various fields,
capable of providing measurement data which can be utilized
to estimate a system’s current context. The following sensors
are popular choices to obtain context information of the
environment:

• Light sensor detects the amount of light exposed to the
sensor platform. Ambient light can cause a performance
loss in vision based perception sensors.

• Battery sensor measures the remaining capacity of the
battery by analyzing the voltage of the battery.

• Rain sensor detects if a system is exposed to rainfall,
limiting the performance of certain perception sensors.

• Temperature sensor measures the ambient temperature
in order to get a better understanding of the context.

• Inertial Measurement Unit (IMU) sensor detects mo-
tions of the platform.

• Odometry sensor detects the system’s trajectory and the
velocity.

• Global Navigation Satellite System (GNSS) sensor lo-
cates the platform on a map and is capable to assign it
to a context (e.g., rural road, urban area).

A light sensor, a battery sensor, a temperature sensor and
an IMU were selected to provide context information to the

existing perception platform. Additionally, the environmental
perception sensors of the system provide valuable data about
the environment. Thus, the raw data and intermediate process-
ing data is also utilized to generate a more exact estimate of
the context.

D. Handling Context-State Changes

The most challenging task of a self-adapting system is to
utilize the available data (context sensors, perception sensors,
processed data) in order to perform re-configuration of certain
parameters. The presented approach uses a parameter handler
for each of the sensor and processing parameters (as indicated
in Fig. 1). A subset of the available context data is consulted
for the calculation of the individual parameters. Thus, each pa-
rameter handler subscribes to individual context data streams
and evaluates the input data in order to determine an optimized
value for the corresponding parameter. Finally, the parameter
handler decides whether the sensor or processing parameter is
adapted to the new value or not.

The data sources of the parameter handlers can be cat-
egorized into three categories: context sensors, perception
sensors and processed data. The context sensors provide cer-
tain context information (e.g., light intensity or accelerations).
The data provided by the environmental perception sensors
themselves (ToF, radar) can also be used to extract context
information. However, the raw data has to be processed (e.g.,
histogram) in order to act as an input for the parameter
determination. Additionally, the intermediate and output data
of the processing system is made available to the parameter
handlers. These data streams provide a performance indication
of the current parameters and can act as a feedback to the
parameter handling modules.

Each parameter handler gets triggered whenever any new
input data is available. A new parameter value is calculated
using a model, derived from known dependencies, system
knowledge and heuristics. The difference to the old parameter
is then used to calculate the gain of the proposed parameter
change. Since changing parameters is time-consuming, every
parameter change is assigned with a cost. If the gain is higher
than the cost, the parameter change is initiated. Control values
of the parameter handlers (e.g., thresholds) are fixed during
runtime but can be changed manually on every startup.

As an example, Fig. 5 shows the inputs and outputs of the
parameter handler for a ToF sensor’s global binning parameter.
As seen in the figure, the parameter handler not only receives
information from context sensors (IMU, light sensor), it also
receives data from the perception sensor itself (ToF). The IMU
data is consulted in order to detect if the system is currently
moving. The light sensor gives an indication whether the ToF
sensor is influenced by sunlight. The data from the ToF sensor
itself is consulted to inspect the data quality within the area of
interest and to gain knowledge about the presence of objects.
These parameters are then used to calculate a new value for
the ToF sensor’s global binning parameter.

204 Publication 8 - SAS 2020 8. Publications

ToF

Light Sensor

Param Handler

ToF Binning
IMU

/ToF/global_binning

Fig. 5. The parameter handler node of a ToF sensor’s global binning
parameter.

IV. RESULTS

This section presents the sensor output of the proposed
sensor platform for two different use cases. In the first exam-
ple, the system dynamically changes the sensor configuration
according to the current context. The second use-case shows
how the information of the context sensors is utilized to
provide supplementary parameters for the system’s sensor
fusion module.

A. Context-Aware Sensor Adaption

The context-aware adaption of sensor parameters is demon-
strated for two different context states while being placed in
the same scene. In the first scenario, the platform is kept static
(not moving), while it is rotated in the second scenario. When
the platform changes its field-of-view, it is beneficial to have
a high frame rate to quickly react to scene changes. Using the
full sensor data results in a high processing load and limits
the measurement rate of the system. Thus, the system shall
switch to a reduced data mode with a higher frame-rate when
the system is moving. The IMU sensor is capable to detect
movements of the platform, by measuring the specific force
and the angular rate. The parameter handlers are configured
to reduce the processing load and to increase the frame rate
while the platform is moving. The data requirement D of the
processing system’s input data, consisting of the radar’s raw
sensor data and the ToF sensors’ point clouds is stated in (5).
Each radar sample point is represented by a 16 Bit integer
value, while each ToF point cloud point is represented by six
32 Bit float values (x, y, z, intensity, noise, confidence).

D = DRadar + 3·DToF

= N ·M ·L·16Bit + 3·points·6 ·32Bit (5)

Fig. 6 shows the visualization of the combined sensor
output for the two different context states. The sensor output
is dissimilar for these two scenarios since the context-aware
parameter handlers determine different parameter values. The
determined parameters of the context-aware platform are pre-
sented in Table III. Additionally, the table shows the resulting
data load during the static and the dynamic scenario. For the
dynamic operation, the data is reduced by a factor of about 60,
resulting in a lower processing load. The maximum achievable
frame rate in the static scenario (high data density) is about 1
frame per second (FPS), while the frame-rate of the dynamic
scenario (reduced data density) is about 20 FPS.

TABLE III
PARAMETER SETTINGS FOR DIFFERENT SCENARIOS.

parameter static dynamic

Radar
samples (N) 1024 64
ramps (M) 512 32

channels (L) 16 16
ToF binning 1 6

Data 15.6 MB 0.26 MB

(a) Static scenario.

(b) Dynamic scenario.

Fig. 6. Visualization of the pre-processed sensor data for two different
configuration scenarios.

B. Context-Aware Sensor Data Fusion

This section shows how to utilize the context information in
order to provide supplementary parameters to the sensor fusion
module. The ToF camera’s distance measurement is based on
illumination with modulated infrared light. The measurement
is affected by ambient light with components in the same
wavelength area. Thus, the camera shows reduced performance
in the presence of bright sunlight. A light sensor is used as
a context sensor to measure the ambient light radiating onto
the ToF sensor. The measured light value is then transferred to
the parameter handler for the ToF sensor’s confidence range.
This parameter handler calculates the confidence range for the
affected ToF sensor and adjusts the corresponding parameter
in the Fusion module.

In order to show the influence of sunlight, the ToF sen-
sor’s output of the same scene was captured during daytime
and during nighttime. Fig. 7a and Fig. 7c show the fisheye
images of both scenarios. The clean ToF distance image
of the night scene is depicted in Fig. 7b, where the two
pedestrians are clearly visible. The distance image during
the day scene is shown in Fig. 7d. The sunlight causes an
increased noise and the pedestrians are not fully recognizable
anymore. Even though the sensor has an integrated circuit to
suppress background illumination, the quality of the sensor

8. Publications Publication 8 - SAS 2020 205

(a) Scene during night-time. (b) ToF distance image at
night-time.

(c) Scene at day-time. (d) ToF distance image at
day-time.

(e) Combined visualization of radar and ToF data with an
indication of the ToF sensor’s confidence range at night-time.

(f) Combined visualization of radar and ToF data with an
indication of the ToF sensor’s confidence range at day-time.

Fig. 7. Degradation of a disrupted ToF sensor due to influence of bright sunlight.

output is reduced when used in this environment. Detecting
that influence enables to supplement the fusion module with
a limited confidence range for the affected sensor. Fig. 7e and
Fig. 7f show the visualization of the pre-processed radar and
ToF perception data with an indication of the ToF sensor’s
confidence range. The point cloud within the green semi-
circle is assumed to be confident, while the remaining data is
assumed unreliable and marked with the red semi-circle. The
fusion module considers only the confident part of the ToF
data when fusing the radar and ToF data streams. Excluding
unreliable data from the fusion task decreases the chance
of faults in the output data and enables the application of
confidence-dependent fusion strategies.

V. CONCLUSION

The performance of environmental perception systems can
be significantly increased by incorporating context perception
sensors. Context sensors can provide valuable information in
order to adapt sensor and processing parameters. They can also
act as an additional input in order to perform sanity checks
of the system. The proper configuration of the environmental
perception sensors has a strong influence of the output data
quality. Thus, the automatic adaption of the parameters during
runtime is essential for perception systems in challenging
environments.

This paper presents an extension of an existing perception
platform in order to enable parameter self-adaption during
runtime. Multiple context sensors were added to a multi-sensor
perception platform which fuses ToF and radar sensor data.
The context data is analyzed during runtime and considered
in order to adapt the sensor and processing parameters. Using
this platform, it was possible to demonstrate multiple use cases

utilizing context-aware parameter adaption. Future perception
systems can build upon this approach and include context
information in order to enhance the perception performance.

ACKNOWLEDGMENTS

AutoDrive has received funding within the Electronic Com-
ponents and Systems for European Leadership Joint Undertak-
ing (ECSEL JU) in collaboration with the European Union’s
H2020 Framework Programme and National Authorities, un-
der grant agreement number 737469.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[2] J. Z. Sun and J. Sauvola, “Towards a Conceptual Model for Context-
Aware Adaptive Services,” Parallel and Distributed Computing, Applica-
tions and Technologies, PDCAT Proceedings, pp. 90–94, 2003.

[3] H. Ahn, D. Kim, J. Lee, S. Chi, K. Kim, J. Kim, M. Hahn, and
H. Kim, “A robot photographer with user interactivity,” in 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2006, pp.
5637–5643.

[4] D. Huen, J. Liu, and B. Lo, “An integrated wearable robot for tremor
suppression with context aware sensing,” BSN 2016 - 13th Annual Body
Sensor Networks Conference, pp. 312–317, 2016.

[5] D. D. Bloisi, D. Nardi, F. Riccio, and F. Trapani, “Context in robotics and
information fusion,” in Context-Enhanced Information Fusion: Boosting
Real-World Performance with Domain Knowledge, 2016, pp. 675–699.

[6] H. Hu and G. Kantor, “Efficient automatic perception system parameter
tuning on site without expert supervision,” in Proceedings of the Confer-
ence on Robot Learning, 2017, pp. 57–66.

[7] H. Hu and G. Kantor, “Compensating for context by learning local models
of perception performance,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018, pp. 4629–4634.

[8] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Design of a low-level
radar and time-of-flight sensor fusion framework,” in 2018 21st Euromicro
Conference on Digital System Design (DSD), 2018, pp. 268–275.

[9] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE
Journal of Quantum Electronics, vol. 37, no. 3, pp. 390–397, 2001.

206 Publication 8 - SAS 2020 8. Publications

A Hybrid Timestamping Approach for Multi-Sensor
Perception Systems

Josef Steinbaeck∗†, Christian Steger†, Eugen Brenner†, and Norbert Druml∗
∗Infineon Technologies Austria AG, Graz, Austria
{josef.steinbaeck, norbert.druml}@infineon.com
†Graz University of Technology, Graz, Austria

{steger, brenner}@tugraz.at

Abstract—Synchronized and precisely timestamped data from
perception sensors is highly advantageous for the low-level
fusion of multiple sensor data. Many open-available, low-cost
perception sensors do neither provide hardware support for
precise clock synchronization, nor provide timestamps with their
measurement data. In this work, we present an approach to
enable synchronization and accurate timestamping of hardware-
triggerable sensors in multi-sensor perception systems.

We utilize a hybrid timestamping approach, taking into ac-
count the timestamp of a hardware trigger and the software
timestamp. The presented timestamping approach utilizes the
trigger time to assign precise timestamps to the data streams
of the perception sensors. Precise timestamps are mandatory
in order to achieve a high perception performance in dynamic
applications which utilize low-level data streams.

Additionally, we present an implementation of the approach
on a multi-sensor perception platform, archiving a timestamp
precision in the range of 2 ms. An existing Robot Operating
System (ROS) architecture of the platform is extended to assign
hybrid timestamps to the data streams. Additionally, we present a
pedestrian detection implementation which fuses the timestamped
data into a representation.

Index Terms—radar, time-of-flight, robotics, sensor fusion,
ROS

I. INTRODUCTION

Environmental perception is a key-enabler of autonomous
systems (e.g., vehicles, robots, drones) and mobile cyber-
physical systems (e.g., smartphones, wearables). These sys-
tems have to react to the environmental condition in order
to fulfill their desired purpose. The perception modules of
these devices typically incorporate data from multiple sensors
in order to enhance their perception capabilities. Since all
currently available sensors have weaknesses, multiple comple-
mentary and redundant sensors are utilized and fused in order
the increase the overall perception quality and robustness.
However, in order to perform high-quality fusion and to model
temporal processes, each sensor’s measurement time has to
be known precisely. Synchronized sensor data is desirable in
many applications, i.e, having a fixed relationship between the
acquisition times of the single sensors. Sensor fusion at a low-
level often requires data from all sensors to be captured at the
same time. The data from certain sensors can not be combined
in a feasible way if scene/pose changes occurred between the
measurements.

There exist multiple methods and protocols which imple-
ment the functionality to synchronize and precisely times-

Fig. 1. Synchronized sensor data from multiple perception sensors (ToF, radar,
vision camera), visualized using the ROS visualization tool RViz.

tamp multiple perception sensors (e.g., based on the Ethernet
connection). However, since many consumer-grade sensors
do not come with a precise clock and utilize USB as data
interface, these concepts can not always be applied. Thus,
many custom-build platforms match the receive-timestamps
of non-synchronized sensor measurements in order to perform
sensor fusion, e.g., as presented in [1].

The fusion of approximately synchronized measurements
might be acceptable for certain applications, but will signifi-
cantly reduce the perception quality in others. The unknown
sensor latency contained in the receive-timestamps can result
in the fusion of measurements with significantly different
acquisition times. In dynamic scenes, this will result in a
scene change between the measurements which decreases the
perception performance.

Synchronized measurements without precise timestamps
(e.g., using hardware triggering) can utilize a sequence number
in order to assign corresponding measurements. However, if
unexpected framedrops or delays during data transfer occur,
the sensor fusion will be performed on misaligned data and
the perception quality will decrease.

In this work we introduce an approach to obtain synchro-
nized and precisely timestamped data streams from externally
triggered perception sensors. The method does not require any
additional hardware support and enables simultaneous data
acquisition and precise timestamping of the sensor measure-

8. Publications Publication 9 - DSD 2020 207

© 2020 IEEE. Reprinted, with permission, from 2020 Euromicro Conference on Digital
System Design (DSD).

ments. Framedrops during operation are detected and handled
in order to avoid misaligned data streams. The presented
approach is implemented on a Robot Operating System (ROS)-
based platform, equipped with radar, Time of Flight (ToF)
and vision sensors. Fig. 1 shows a visualization of raw
sensor data provided by the platform. A simple and efficient
pedestrian detection is implemented on the platform in order
to demonstrate the robustness of the presented approach.

To summarize, the contributions of this paper to the scien-
tific community are:

• A new approach to obtain synchronized and precisely
timestamped measurements in a multi-sensor perception
platform, consisting of market available sensors.

• A technique to detect and handle framedrops during
operation.

• An overview of the ROS-based architecture of a percep-
tion platform, implementing this approach.

• A demonstration of pedestrian detection, utilizing the
synchronized sensor data from the perception platform.

Related work, focusing on the synchronization and times-
tamping of multiple perception sensors is presented in Sec-
tion II. In Section III we present a method to perform sensor
synchronization and hybrid timestamping on a multi-sensor
perception platform. An external microcontroller is used to
synchronize the sensors, while a precise timestamp is added to
the data streams of the perception sensors. Section IV shows
the implementation of the approach on a research platform
which performs the popular use case of pedestrian detection.
Finally, Section V and VI summarize the results and give a
short conclusion of the work.

II. RELATED WORK

Since synchronization and precise timestamping is a com-
mon requirement for multi-sensor perception platforms, a
number of related works has already been published within the
research community. Brahmi et al. [2] perform a timestamp-
ing and latency analysis for multi-sensor perception systems
deployed in Advanced Driver Assistance Systems (ADAS).
They categorize sensors into three classes: sensors with global
timestamps, sensors with relative timestamps and sensors
without timing information. Different methods are presented to
analyze the latency components contained in the timestamps in
order to obtain the uncertainty of the measurement time. The
Controller Area Network (CAN) bus is used as a low-latency
bus in order to synchronize the timebase of multiple sensors.
The authors conclude that a known temporal alignment is
crucial in order to perform sensor fusion. In contrast to the
presented paper, our approach focuses on synchronized sensor
operation without automatically attached timing information.

The authors of [3] provide an overview of different syn-
chronization strategies for automotive multi-sensor fusion.
The work inspects the worst-case latency introduced by a
sensor fusion system for asynchronous and synchronous sen-
sor measurements. The authors show that non-synchronized
measurements introduce a higher worst-cast latency to the
fusion module, especially if the sensors operate at different

measurement frequencies. Since our work targets low-level
fusion of simultaneously acquired data streams, synchronized
measurements are mandatory for the fusion process. Addi-
tionally, we focus more on the process of assigning and
determining an accurate timestamp to each data stream.

Huck et al. [4] present an approach to perform exact
timestamping of asynchronous sensor measurements. They
implement a Kalman filter which estimates the sensor cycles
as well as jitter-corrected software timestamps. A calibration
method is presented to estimate and correct the different sensor
latencies in a multi-sensor setup. In contrast to our approach,
the authors utilize asynchronous sensor measurements and the
method requires an additional calibration phase.

In [5], the authors address the problem of framedrops during
the operation. The authors introduce a method to detect and
handle framedrops in order to avoid a significantly wrong
timestamp estimation. The detection of framedrops is also
considered for the method presented in this paper. Depending
on the regarded sensor we show custom methods to detect and
handle dropped frames.

Guivant et al. [6] present an autonomous platform, able to
create 3D maps of indoor and outdoor environments. They
emphasize the relevance of precise timestamps, which are
important for certain data fusion processes. The authors apply
Bayesian estimation with the goal to obtain a highly accurate
estimation of the timestamps

The Precision Time Protocol (PTP) [7] is commonly used to
synchronize the clocks of local networks, while the Network
Time Protocol (NTP) [8] is often use to synchronize the
clocks of distributed networks over the internet. NTP typically
achieves a precision in the dimension of single microseconds,
while the PTP can achieve sub-milliseconds. Since PTP is well
suitable for the sensor synchronization of perception systems,
it is supported by several Ethernet-based sensors. But many
openly available sensors do not provide an Ethernet interface
(rather USB), and also no own clock source. Thus, these
protocols are not supported by the sensors.

The authors of [9] present an approach to synchronize
multiple perception sensors of a research vehicle using ROS.
The approach utilizes a PTP time-synchronization between the
processing system and the triggering microcontroller via an
Ethernet connection. The triggering microcontroller transfers
the trigger timestamps to the processing PC which adds the
timestamps to the sensors’ data streams. We use a similar
approach to apply timestamps to the data streams, but use
a USB-connected microcontroller which does not provide
PTP support. Additionally, we show a way to deal with lost
measurements during data acquisition.

Schneider et al. [10] propose a sensor synchronization
method capable to be used for low-level fusion and in dynamic
environments. The work targets the synchronization of a lidar
and a vision sensor mounted on a research vehicle. The bearing
information of the lidar sensor is used to trigger the camera
at the exact moment, when the beams of the laser scanner
pass the camera’s field of view. A low-level real-time capable
computer is in charge of generating the trigger event for the

208 Publication 9 - DSD 2020 8. Publications

camera at the right time. The presented paper lacks detail
information about how the timestamps from the real-time
platform are unambiguously assigned to the data packets. Our
approach uses radar, ToF and vision sensors, but also makes
use of a microcontroller for trigger generation.

To the best of our knowledge, methodologies to achieve
synchronization of multiple consumer-grade perception sen-
sors have yet not been sufficiently addressed by the scientific
community. Additionally, there is a lack of openly available
work dealing with real-world effects of perception sensors, like
framedrops. This is why we fill this gap, by presenting a novel
approach and a system architecture in order to perform syn-
chronization and robust timestamping of multiple perception
sensors.

III. A HYBRID TIMESTAMPING APPROACH FOR
MULTI-SENSOR PERCEPTION SYSTEMS

This section introduces an approach to perform synchro-
nization and timestamping of multiple perception sensors used
in a ROS-based perception platform. First, we introduce the
ROS-based design of the base perception system, capable
of acquiring low-level data streams from multiple perception
sensors. An external microcontroller is utilized to synchronize
the sensors by generating trigger pulses for each of the sensors.
Afterwards, we point out some issues that come along with
software timestamping, where a timestamp is added to the data
stream at the time the processing system receives the data. We
end the section by presenting a hybrid timestamping method
and showing how it can be used to handle framedrops during
operation.

A. Base Perception System

The base perception system receives the raw data from mul-
tiple perception sensors, performs pre-processing and aligns
the data. The data is packed into standardized messages and
forwarded to other sub-systems for further processing. An
overview of the base perception system’s main modules can
be seen in Fig. 2. The reception modules control the sensor
configurations and receive the raw data from the sensors.
Additionally, each sensor’s pre-processing modules perform
low-level processing of the raw data (e.g., compression). A
trigger module is in charge of configuring the trigger micro-
controller, which triggers the single sensors. In general, the
base perception system is running on a non real-time capable
x86 computer.

All sensors provide an input for an external trigger signal
which can be used to trigger a new measurement. A micro-
controller generates a trigger signal for all perception sensors,
every time a new measurement is desired. Synchronized data
acquisition is desired for the low-level fusion of sensor mea-
surements from multiple sensors. The sensor measurements
shall be started exactly at the same time. This way it is
guaranteed that all sensors provide data from the same scene,
even in dynamic scenarios. Synchronized measurements have
the advantage that there is neither movement of the sensor

Sensor 2

Sensor N

Sensor 1

Base Perception System

Pre-Processing 1

Pre-Processing 2

Pre-Processing N

Receive 1

Receive 2

Receive N

Micro

controller

Trigger

Module

Fig. 2. Main processing blocks of the framework. The base perception sys-
tem’s modules are in charge of low-level communication with the individual
sensors as well as the pre-processing.

platform, nor movement of dynamic objects between the
sensors’ measurements.

The trigger module controls the frame rates of the single
sensors by configuring the trigger microcontroller. The frame
rate can be set for each sensor individually, but in order to
provide synchronized acquisition, the rates have to be integral
multiples of a common base rate. For the low-level fusion in
this approach, we use a common frame rate for all sensors (rate
of the slowest involved sensor). The trigger module allows a
static configuration of the frame rate at startup, but also allows
dynamic re-configuration during runtime.

The used perception sensors do not provide functionality
to synchronize the local clock with an external source. Thus,
the raw data of a measurement does not include any absolute
timing information about the acquisition time. However, a
subset of the used sensors are capable of attaching the local
clock value of the measurement to the raw data. Knowing
the oscillator frequency of the sensor, the receive module can
utilize this value to perform additional timing analyses.

Each reception module holds a running sequence number,
increased after each successfully received raw data packet
from the sensor. This sequence number is added to the data
streams provided by the base perception system. Without
any timestamping information, this sequence number can be
utilized to assign corresponding measurements in later pro-
cessing. However, since no absolute timing is available, it is
impossible to align additional (not-triggered) measurements to
the system.

B. Software Timestamps

Software timestamps utilize the system time of the base
perception platform at the time when the raw data from
the sensors is received tsw. This time does not equal the
measurement time tmeas of the sensor, it is delayed by the
measurement latency ∆tsw. The measurement latency is in-
fluenced by multiple parts, the main contributions are stated
here:

8. Publications Publication 9 - DSD 2020 209

Sensor 2

Sensor 3

Sensor 4

Sensor 1

Data

Transfer

Data

Transfer

Data

Transfer

Data

Transfer

Receive

Receive

Receive

Receive

Software
Timestamp

External
Trigger

Common
Trigger

Fig. 3. Added measurement delays to the data streams of simultaneously triggered sensors before a software timestamp is assigned.

• Measurement acquisition, the time from starting the mea-
surement until having the data digitized and ready to be
transferred.

• Data transfer, the delay added for the transfer of the raw
data via an interface.

• Reception, the time added from physical reception until
the data is available to the software process (buffering,
scheduling, etc.).

The relation between the software timestamp tsw and the actual
measurement timestamp tmeas for the i-th measurement is
shown in (1).

tsw,i = ∆tsw,i + tmeas,i. (1)

The measurement delay ∆tsw is unknown and not static.
Thus, raw data originating from the same trigger event,
will result in different software timestamps in the respective
reception modules. These different timestamps make the as-
sociation of corresponding data-streams in later processing
a difficult task to solve. Fig. 3 shows an illustration of
the non-deterministic delays added to the data streams after
the simultaneous acquisition. As indicated in the figure, the
assigned software timestamp of the received data streams can
differ significantly.

Since the sensors’ data streams are timestamped with an
unknown latency related to the measurement time, the times-
tamp cannot be used to accurately model dynamic processes.
For example, the estimation of an object’s velocity (and future
positions) highly depends on accurate timestamps. Although
estimation techniques can be used to reduce the effects of
the latency component, the impact is still severe for many
applications. Additionally, it is also not possible to add further
sensor data to the measurement, which is not triggered by the
same microcontroller. Software timestamps might be sufficient
in cases which do not require real-time (e.g., visualization,
buffered systems). But if the perception system is used for
the estimation of dynamic scenarios (e.g., pose estimation,
mapping, etc.), accurate timestamps are crucial. Thus, software
timestamps are not sufficient for the targeted platform.

C. Hybrid Timestamps

A more feasible approach is to utilize the time of the
microcontroller’s trigger event which starts the perception
sensors’ measurements. The base perception system is notified
at each trigger event in order to determine a precise estimation
of the real measurement timestamp. We present an easily
integrable method for the approximation of the trigger time
with millisecond accuracy.

Since the trigger is generated on a non-synchronized mi-
crocontroller, the absolute time of the trigger activation can
not be directly obtained. Thus, the microcontroller notifies
the trigger module after every new trigger event, which in re-
sponse estimates the measurement timestamp. This timestamp
is then forwarded to the reception modules and added to the
corresponding data streams. Fig. 2 shows the connection of
the trigger module to the reception modules as well as to the
microcontroller. The trigger module adds a sequence number
to the timestamp, indicating the measurement number of the
corresponding timestmap.

Fig. 4 shows the temporal interaction between the micro-
controller, a perception sensor and a receive module for a
single measurement. The microcontroller sends a notification
to the trigger module at the time the trigger is activated. The
trigger module creates a hybrid software timestamp thsw at
the reception time of this notification. Based on that value,
the module estimates the measurement timestamp t̂meas and
forwards it to the reception modules. The timestamp of the
i-th measurement arrives to the reception module before the
i-th raw sensor data is received. At the time the reception
module receives the raw data, it can directly assign it with
the earlier received i-th timestamp. Additionally, the reception
module generates a software timestamp tsw when the raw data
is received, used for additional error detection.

A short message is used to notify the trigger module of
a new measurement, in order to keep the hybrid timestamp’s
latency as low as possible. The hybrid timestamp contains zero
acquisition latency and the latencies introduced by the data
transfer and for the reception are minimal. Thus, the hybrid
software timestamp thsw contains a much lower uncertainty
than the software timestamp tsw. In order to further reduce

210 Publication 9 - DSD 2020 8. Publications

Fig. 4. Temporal interaction between the single modules involved in the
hybrid timestamping procedure.

the included uncertainty, the latency is estimated based on
prior measurements of the communication delay. The round
trip delays of short messages between the microcontroller
and the trigger module were measured. The half of the
average round trip delay is then used as an estimate of the
hybrid timestamp’s latency ∆̂thsw. The estimation of the i-th
measurement timestamp t̂meas,i can be calculated as stated in
(2).

t̂meas,i = thsw,i − ∆̂thsw. (2)

In order to improve the robustness against single out-
liers in the communication time, the delay between hybrid
software timestamps is analyzed. The duration Tfps between
two measurements is defined by the frame rate, and equals
the expected time difference between two consecutive hybrid
software timestamps ∆thsw. If these two delays differ too
much, the new timestamp is calculated from the last timestamp
using the known frame delay, as seen in (3).

t̂meas,i =

{
t̂meas,i , if ∆thsw ≈ Tfps,

t̂meas,i−1 + Tfps , otherwise.
(3)

D. Handling Framedrops

During the operation of the platform, measurements can
occasionally get lost before they are received by the platform.
These framedrops can have various reasons, like transmission

errors, acquisition errors or overheating. Adapting the sensor
parameters during runtime can also cause framedrops until
the new settings are active. We show an approach to detect
framedrops in the reception module by utilizing the estimated
measurement timestamp and the software timestamp.

If the reception module does not receive raw data for a lost
measurement, the module’s sequence number gets misaligned
in respect to the global sequence number. This causes a
significant error in the timestamp assignment, since the receive
module uses the sequence number to pick the corresponding
timestamp. After two lost measurements, the receive module
would permanently pick the timestamp corresponding to the
the trigger event of two measurement cycles earlier. Thus, the
detection and handling of framedrops is of major importance in
order to perform robust timestamping in real-world conditions.

In order detect framedrops, the receive module compares
the software timestamp of the current measurement tsw,i with
the software timestamp of the previous measurement tsw,i−1.
If this difference ∆tsw is significantly higher than the frame
delay Tfps, then at least one framedrop is likely to have
occurred. The estimated number of skipped frames is then
calculated using (4), where ttresh denotes a custom threshold
in order to compensate small fluctuations of the software
timestamp’s cycle. The sequence number of the receive module
is then updated accordingly and normal operation is continued.

Nskipped =

⌊
∆tsw + ttresh

Tfps

⌋
− 1 (4)

If a sensor is capable to attach the local clock value of the
measurement acquisition time to the raw-data, this value can
be used in a similar way to detect framedrops. In that case, the
difference between the local clock values of two consecutive
measurements is compared to the frame delay Tfps. This
method is superior to the aforementioned method, since it
excludes the unknown measurement latency (acquisition, data
transfer, etc.). Thus, if a sensor provides a local clock value,
this method is a robust way to determine framedrops.

IV. APPLICATION: PEDESTRIAN DETECTION

We implemented the proposed synchronization and times-
tamping approach on a multi-sensor perception platform. In
order to demonstrate the functionality of the method in a
real-world use case, we implemented a pedestrian detection
algorithm on the platform. This section first introduces the
ROS-based perception platform and then gives an overview of
the implemented use case.

A. Perception Platform

We utilize an existing ROS-based research platform,
equipped with multiple environmental perception sensors and
a processing unit. The system consists of two ToF cameras1, a

1CamBoard pico monstar: 3D imaging development kit of the pico family
(https://pmdtec.com/picofamily).

8. Publications Publication 9 - DSD 2020 211

Fig. 5. Front view image of the research platform, consisting of multiple
environmental perception sensors.

Fig. 6. Block schematic of the multi-sensor platform’s major components.

radar sensor2 and a vision camera3. The platform is equipped
with a microcontroller which is in charge of generating trigger
signals to control the data acquisition. A processing unit4

implements the software modules of the ROS-based processing
architecture.

The platform can be used stationary, but can also be
mounted on a moving platform (e.g., vehicle or robot). A
battery is included to power the platform in standalone-mode,
while it can also be supplied externally. A front-view picture
of the platform is presented in Fig. 5. The aluminum profile
system enables easy-mounting of the platform on various
objects/vehicles. Fig. 6 shows a simplified overview of the
hardware components integrated in the platform.

All perception sensors, as well as the microcontroller are
connected to the processing unit via USB. The sensors de-
ployed in the proposed platform (radar, ToF, camera) are
capable to be synchronized via an external trigger signal.
The individual ToF cameras are triggered with a short delay
(< 2 ms) to avoid parallel illumination of the two ToF cameras.
The radar and the vision measurement are triggered at the same

2RadarLog: A platform for microwave radar data capturing and logging
(http://www.inras.at).

3Basler ace 2: An area scan camera for machine vision applications.
(www.baslerweb.com).

4Intel NUC (NUC8i7BEK), 16 GB RAM, 1 TB HDD.

Base Perception

System

Use Case: Pedestrian Detection

Fuse Process

Data

Streams

Fig. 7. High-level overview of the dataflow for the pedestrian detection use
case. The input data of the use case is the temporally and spatially aligned
sensor data from the base perception system.

time as the first ToF sensor. The base perception system of
the platform outputs data streams of temporary and spatially
aligned, pre-processed sensor data. These data streams can
then be used by further sub-systems in order to implement
certain use cases without the need to align low-level data.

The processing modules within the base-perception system
(see Fig. 2) are implemented as ROS nodes (C++ and python).
The reception nodes implement the custom low-level interface
to the perception sensors, and provide the sensor data as
standardized ROS messages to the remaining system. All data
within the base-perception system (raw-data, pre-processed
data, timestamps, etc.) is made available to other nodes and
sub-systems via ROS messages. The ROS messages contain
the estimated measurement timestamp, the position/orientation
of the corresponding sensor as well as the raw/pre-processed
data.

The timestamping approach presented in Section III is
implemented in the trigger module (timestamp estimation)
as well as in the reception modules (framedrop handling).
The trigger module estimates a timestamp and assigns it to
the current measurement number. This information (timestamp
and measurement number) is then sent to the receive modules
via standardized ROS messages. The receive modules store
the tuple in a queue until the raw data of the corresponding
measurement is received. The raw data is then translated
into a standardized ROS message including the estimated
measurement timestamp.

B. Use Case: Pedestrian Detection

We implemented an use case for the perception system,
which performs basic pedestrian detection. Fig. 7 shows an
overview of the sub-systems involved in this application.
The base perception system provides pre-processed low-level
data streams from multiple perception sensors as well as the
spatial transformations between the sensor frames. The system
handles the sensor synchronization and adds precise timing
information to the data streams. Thus, the pedestrian detection
sub-system does not have to perform any low-level data
alignment and can directly start with fusing multiple data into
a common representation. Afterwards, a detection algorithm
is processing the fused data in order to detect pedestrians in
the scene.

212 Publication 9 - DSD 2020 8. Publications

The pedestrian detection sub-system subscribes to the fol-
lowing data streams provided by the base platform:

• The undistorted image from the vision camera in the
camera’s optical frame.

• A list of detected radar targets (position, reflection power,
Doppler velocity) in the radar sensor’s frame.

• The down-sampled point clouds after pre-processing from
the two ToF cameras in the ToF cameras’ frames.

• The transformation tree containing the transformations
between the single sensors’ coordinate systems.

These data streams contain the acquisition timestamp, as
well as the frame ID in their message header. The fusion
module makes use of the timestamp in order to synchronize the
data streams, according to their acquisition time. The fusion
is performed each time, all inputs with the same timestamp
are available to the module. Knowing the relative alignment
between the sensors’ coordinate frames at the acquisition time,
the data can be transferred into a common representation.

The detected targets from the radar sensor and the point
cloud from the ToF sensor are projected onto the camera image
plane by utilizing the camera’s intrinsic parameters. Since the
radar sensor is not capable to measure the elevation angle, the
detected targets have unknown height and are projected onto
the image as vertical lines. The point clouds from the ToF
sensors is projected onto the image plane as single points.
The output of the fusion module is an augmented five-channel
image, containing two extra channels for the each projected
range data type (ToF and radar). This image can then be used
by a pedestrian detection module in order to detect pedestrians
in the image.

The augmented image is utilized to perform pedestrian
detection, with enhanced sensitivity in regions of interest
which contain range data. We adapted a Histogram of Oriented
Gradients (HOG) based algorithm, as presented in [11], in
order to detect pedestrians. OpenCV provides a pre-trained
Support Vector Machine (SVM) classifier, which utilizes HOG
to perform pedestrian detection. This classifier is applied to the
RGB image with a low threshold in order to identify regions of
potential pedestrians (using a multi-scale sliding window). The
depth data of the augmented image is then utilized to amplify
bounding boxes which contain feasible range information. The
resulting heat-map is then thresholded in order to detect and
label pedestrians in the scene.

V. RESULTS

In this section, we present the performance of the synchro-
nization and hybrid timestamping approach presented in this
paper. Additionally, we demonstrate the implementation of
an use case, which utilizes the synchronized sensor data to
perform pedestrian detection.

The importance of synchronized data for fusion is depicted
in Fig. 8. Improperly timestamped data and underhanded
framedrops can result in the fusion of data from different
measurement times. The resulting misalignment leads to errors
and significantly decreases a system’s performance.

(a) Non-synchronized.

(b) Synchronized.

Fig. 8. Comparison of the fusion output for synchronized and non-
synchronized data streams.

TABLE I
ROUND TRIP LATENCY, EVALUATED FOR 15 000 ROUND TRIP TRANSFERS.

Latency Value

minimum 0.11 ms
maximum 8.19 ms

mean 1.65 ms
standard deviation 0.14 ms

The presented approach utilizes a microcontroller to gener-
ate the trigger signals, which is connected to the computation
unit via USB. Thus, an inevitable delay is added when data
is transferred from the microcontroller to the system’s main
processing unit. We measured the round trip latency of the
USB/UART connection between the processing system and the
microcontroller at a baud-rate of 115 200 Bd. For that purpose,
15 000 messages were sent to the trigger microcontroller and
returned afterwards. Table I shows a statistical evaluation of
the round trip latencies. As seen in the table, the average round
trip delay is 1.65 ms, which leads to the an estimated one-way
latency of 0.825 ms. The measurement acquisition duration of
the sensors is in the range of 5 ms to 30 ms (depending on the
sensor and the configuration). Thus, a timestamp precision in
the range of single milliseconds is sufficient to be neglected
in most use cases dealing with these heterogeneous sensors.

The presented timestamping approach is capable to work
very robustly, even for high frame rates, if framedrops occur
infrequently. Since a high workload leads to data inconsisten-
cies, the maximum frame rate of the proposed system is lim-
ited by its framedrop handling (based on software timestamps).
The system is capable to robustly provide synchronized and
timestamped data at frame rates of up to 8 fps.

Fig. 9 shows an example of the pedestrian detection use

8. Publications Publication 9 - DSD 2020 213

Fig. 9. Overview of the pedestrian detection use case’s dataflow. The module
utilizes the projected range data and potential pedestrian bounding boxes in
order to robustly detect pedestrians in the scene.

case. The outdoor scene contains a pedestrian walking towards
the perception platform on a flat ground. The range data from
the radar and ToF sensors is projected onto the vision camera’s
image plane. As seen in the figure, the synchronized data
streams are correctly projected onto the image plane (ToF:
purple points, radar: blue lines). A HOG-based pedestrian
classification is performed on the RGB image in order to detect
bounding boxes potentially containing pedestrians. Based on
the range data, the pedestrian detection module then creates
a heat-map which amplifies feasible bounding boxes. In the
final step, the enhanced heat-map is used to identify and label
one or multiple pedestrians in the scene.

Since the sensors are synchronized, the approach also works
in dynamic scenes, i.e., when the pedestrians and/or the system
is moving. Non-synchronized sensors would sense a moving
pedestrian at different positions in the image (see Fig. 8). De-
pending on the algorithm parameters, the pedestrian detection
algorithm achieves a frame rate of 2-5 fps on the presented
platform. The inclusion of range information enables a more
sensitive pedestrian detection, increasing the detection rate.
The detection performance especially benefits in open spaces,
where all included range data originates from pedestrians.
However, the approach struggles to detect pedestrians which
are not directly facing the camera (e.g., laterally walking).
The robustness of the detection could be further improved
by re-training the HOG classifier with more general data, or
by incorporating multiple consecutive images in the detection
process (e.g., tracking).

VI. CONCLUSION

Synchronized and precisely timestamped sensor data is
a key-enabler for the fusion of heterogeneous sensor data
in multi-sensor perception systems. Improperly synchronized
data can introduce effects like ghost-targets to the fusion
module and decrease the quality of the perception system’s
output. In this work, we presented an approach to perform

synchronization and timestamping of heterogeneous percep-
tion sensors. The presented method enables the synchroniza-
tion of low-cost perception sensors, without built-in hardware
synchronization. Additionally, we showed a way to recognize
and handle framedrops, in order to ensure a robust operation.

We implemented the presented approach on a ROS-based
perception platform deploying radar, ToF and vision sensors.
The presented approach achieves a timestamping precision in
the range of milliseconds, which is sufficient for a wide range
of perception applications. Additionally, we demonstrated the
fusion of the sensor data for the use case of pedestrian
detection. Due to the hybrid timestamping, the range data
is correctly projected onto the vision camera’s image plane,
enabling the detection of pedestrians in the scene.

The presented approach provides researchers a method
to perform robust synchronization and timestamping with
consumer-grade sensors. Non-synchronized, ROS-based per-
ception platforms can utilize the approach in order to imple-
ment synchronization and to perform precise timestamping.

ACKNOWLEDGMENTS

AutoDrive has received funding within the Electronic Com-
ponents and Systems for European Leadership Joint Undertak-
ing (ECSEL JU) in collaboration with the European Union’s
H2020 Framework Programme and National Authorities, un-
der grant agreement number 737469.

REFERENCES

[1] A. Mimouna, I. Alouani, A. B. Khalifa, Y. El Hillali, A. Taleb-Ahmed,
A. Menhaj, A. Ouahabi, and N. E. B. Amara, “OLIMP: A heterogeneous
multimodal dataset for advanced environment perception,” Electronics
(Switzerland), vol. 9, no. 4, pp. 1–21, 2020.

[2] M. Brahmi, K. Schueler, S. Bouzouraa, M. Maurer, K. Siedersberger,
and U. Hofmann, “Timestamping and latency analysis for multi-sensor
perception systems,” in SENSORS, 2013 IEEE, 2013, pp. 1–4.

[3] N. Kaempchen and K. Dietmayer, “Data synchronization strategies
for multi-sensor fusion,” in Proceedings of the IEEE Conference on
Intelligent Transportation Systems, vol. 85, no. 1, 2003, pp. 1–9.

[4] T. Huck, A. Westenberger, M. Fritzsche, T. Schwarz, and K. Dietmayer,
“Precise timestamping and temporal synchronization in multi-sensor
fusion,” in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp.
242–247.

[5] A. Westenberger, T. Huck, M. Fritzsche, T. Schwarz, and K. Dietmayer,
“Temporal synchronization in multi-sensor fusion for future driver
assistance systems,” in 2011 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control and Communication,
2011, pp. 93–98.

[6] J. E. Guivant, S. Marden, and K. Pereida, “Distributed multi sensor data
fusion for autonomous 3d mapping,” in 2012 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), 2012, pp. 1–11.

[7] “Ieee standard for a precision clock synchronization protocol for
networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–300, 2008.

[8] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[9] A. Fregin, M. Roth, M. Braun, S. Krebs, and a. Flohr, “Building a
computer vision research vehicle with ros,” 2017.

[10] S. Schneider, M. Himmelsbach, T. Luettel, and H. Wuensche, “Fusing
vision and lidar - synchronization, correction and occlusion reasoning,”
in 2010 IEEE Intelligent Vehicles Symposium, 2010, pp. 388–393.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, 2005, pp. 886–893
vol. 1.

214 Publication 9 - DSD 2020 8. Publications

8. Publications Patent 1 - Patent Application 215

Bibliography

[1] B. Schoettle, “Sensor Fusion: A Comparison of Sensing Capabilities of Human
Drivers and Highly Automated Vehicles,” 2017.

[2] C. Urmson et al., “A robust approach to high-speed navigation for unrehearsed
desert terrain,” Journal of Field Robotics, vol. 23, no. 8, pp. 467–508, 2006.

[3] S. Thrun et al., “Stanley: The robot that won the DARPA Grand Challenge,”
Journal of Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[4] M. Montemerlo et al., “Junior: The Stanford entry in the Urban Challenge,” Journal
of Field Robotics, vol. 25, no. 9, pp. 569–597, September 2008.

[5] C. Urmson et al., “Autonomous driving in urban environments: Boss and the Urban
Challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, August 2008.

[6] J. Leonard et al., “A perception-driven autonomous urban vehicle,” Journal of Field
Robotics, vol. 25, no. 10, pp. 727–774, October 2008.

[7] J. Steinbaeck, C. Steger, E. Brenner, G. Holweg, and N. Druml, “Occupancy Grid
Fusion of Low-Level Radar and Time-of-Flight Sensor Data,” in 2019 22nd Euromi-
cro Conference on Digital System Design (DSD), 2019, pp. 200–205.

[8] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, 2013.

[9] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on
Open Source Software, 2009.

[10] C. Badue et al., “Self-Driving Cars: A Survey,” Expert Systems with Applications,
2020.

[11] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A Survey of Autonomous
Driving: Common Practices and Emerging Technologies,” IEEE Access, vol. 8, 2020.

[12] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of Autonomous
Car—Part I: Distributed System Architecture and Development Process,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7131–7140, 2014.

217

218 Bibliography

[13] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware implementation
for visual perception system in autonomous vehicle: A survey,” Integration, vol. 59,
pp. 148–156, 2017.

[14] J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Autonomous vehicle
perception: The technology of today and tomorrow,” Transportation Research Part
C: Emerging Technologies, vol. 89, pp. 384–406, 2018.

[15] D. Gruyer, V. Magnier, K. Hamdi, L. Claussmann, O. Orfila, and A. Rakotonirainy,
“Perception, information processing and modeling: Critical stages for autonomous
driving applications,” Annual Reviews in Control, vol. 44, pp. 323–341, 2017.

[16] L. Fridman et al., “MIT Advanced Vehicle Technology Study: Large-Scale Natural-
istic Driving Study of Driver Behavior and Interaction With Automation,” IEEE
Access, vol. 7, p. 102021–102038, 2019.

[17] F. Rosique, P. Navarro Lorente, C. Fernandez, and A. Padilla, “A Systematic Review
of Perception System and Simulators for Autonomous Vehicles Research,” Sensors,
vol. 19, p. 648, February 2019.

[18] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi, “Towards
a viable autonomous driving research platform,” in 2013 IEEE Intelligent Vehicles
Symposium (IV). IEEE, June 2013, pp. 763–770.

[19] U. Franke, D. Pfeiffer, C. Rabe, C. Knoeppel, M. Enzweiler, F. Stein, and R. G. Her-
rtwich, “Making Bertha See,” in 2013 IEEE International Conference on Computer
Vision Workshops, 2013, pp. 214–221.

[20] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, “An
Open Approach to Autonomous Vehicles,” IEEE Micro, vol. 35, no. 6, pp. 60–68,
November 2015.

[21] F. Naser et al., “A parallel autonomy research platform,” in 2017 IEEE Intelligent
Vehicles Symposium (IV), June 2017, pp. 933–940.

[22] K. Burnett, A. Schimpe, S. Samavi, M. Gridseth, C. W. Liu, Q. Li, Z. Kroeze,
and A. P. Schoellig, “Building a Winning Self-Driving Car in Six Months,” in 2019
International Conference on Robotics and Automation (ICRA), May 2019, pp. 9583–
9589.

[23] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of Autonomous
Car—Part II: A Case Study on the Implementation of an Autonomous Driving
System Based on Distributed Architecture,” IEEE Transactions on Industrial Elec-
tronics, vol. 62, no. 8, pp. 5119–5132, 2015.

[24] M. McNaughton, C. R. Baker, T. Galatali, B. Salesky, C. Urmson, and J. Ziglar,
“Software infrastructure for an autonomous ground vehicle,” Journal of Aerospace
Computing, Information, and Communication, vol. 5, no. 12, pp. 491–505, 2008.

Bibliography 219

[25] J. Dickmann, N. Appenrodt, J. Klappstein, H. L. Bloecher, M. Muntzinger, A. Sailer,
M. Hahn, and C. Brenk, “Making Bertha See Even More: Radar Contribution,”
IEEE Access, vol. 3, pp. 1233–1247, 2015.

[26] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,
A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on Board: Enabling
Autonomous Vehicles with Embedded Systems,” April 2018, pp. 287–296.

[27] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km: The Oxford
RobotCar Dataset,” The International Journal of Robotics Research, vol. 3, 2014.

[28] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom, “nuScenes: A multimodal dataset for autonomous
driving,” 2019.

[29] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The H3D Dataset for Full-Surround
3D Multi-Object Detection and Tracking in Crowded Urban Scenes,” 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pp. 9552–9557, 2019.

[30] M. Chang et al., “Argoverse: 3D Tracking and Forecasting With Rich Maps,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 8740–8749.

[31] M. Meyer and G. Kuschk, “Automotive Radar Dataset for Deep Learning Based 3D
Object Detection,” in 2019 16th European Radar Conference (EuRAD), 2019, pp.
129–132.

[32] A. Mimouna, I. Alouani, A. Ben Khalifa, Y. El hillali, A. Taleb-Ahmed, A. Menhaj,
A. Ouahabi, and N. ESSOUKRI BEN AMARA, “OLIMP: A Heterogeneous Mul-
timodal Dataset for Advanced Environment Perception,” vol. 9, pp. 1–24, March
2020.

[33] P. Sun et al., “Scalability in Perception for Autonomous Driving: Waymo Open
Dataset,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020, pp. 2443–2451.

[34] B. Lamprecht, S. Rass, S. Fuchs, and K. Kyamakya, “Extrinsic Camera Calibration
for an On-board Two-Camera System without overlapping Field of View,” pp. 265–
270, 2007.

[35] L. Heng, B. Li, and M. Pollefeys, “CamOdoCal: Automatic intrinsic and extrinsic
calibration of a rig with multiple generic cameras and odometry,” 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1793–1800, 2013.

[36] J. Domhof, J. F. P. Kooij, and D. M. Gavrila, “An Extrinsic Calibration Tool for
Radar, Camera and Lidar,” in 2019 International Conference on Robotics and Au-
tomation (ICRA), May 2019, pp. 8107–8113.

[37] R. Unnikrishnan and M. Hebert, “Fast Extrinsic Calibration of a Laser Rangefinder
to a Camera,” Carnegie Mellon University, Pittsburgh, PA, Tech. Rep., July 2005.

220 Bibliography

[38] M. Brahmi, K. Schueler, S. Bouzouraa, M. Maurer, K. Siedersberger, and U. Hof-
mann, “Timestamping and latency analysis for multi-sensor perception systems,” in
SENSORS, 2013 IEEE, 2013, pp. 1–4.

[39] T. Huck, A. Westenberger, M. Fritzsche, T. Schwarz, and K. Dietmayer, “Precise
timestamping and temporal synchronization in multi-sensor fusion,” in 2011 IEEE
Intelligent Vehicles Symposium (IV), 2011, pp. 242–247.

[40] A. Westenberger, T. Huck, M. Fritzsche, T. Schwarz, and K. Dietmayer, “Tempo-
ral synchronization in multi-sensor fusion for future driver assistance systems,” in
2011 IEEE International Symposium on Precision Clock Synchronization for Mea-
surement, Control and Communication, 2011, pp. 93–98.

[41] A. Fregin, M. Roth, M. Braun, S. Krebs, and a. Flohr, “Building a Computer Vision
Research Vehicle with ROS,” September 2017.

[42] A. Harrison and P. Newman, “TICSync: Knowing when things happened,” in 2011
IEEE International Conference on Robotics and Automation, 2011, pp. 356–363.

[43] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no. 8, pp. 966–
1005, 1988.

[44] H. Hu and G. Kantor, “Efficient Automatic Perception System Parameter Tuning
On Site without Expert Supervision,” in Proceedings of (CoRL) Conference on Robot
Learning, November 2017, pp. 57–66.

[45] M. Thonnat, S. Moisan, and M. Crubézy, “Experience in Integrating Image Process-
ing Programs,” in Computer Vision Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 200–215.

[46] V. Klös, T. Göthel, and S. Glesner, “Adaptive Knowledge Bases in Self-Adaptive
System Design,” in 2015 41st Euromicro Conference on Software Engineering and
Advanced Applications, 2015, pp. 472–478.

[47] D. P. Chau, M. Thonnat, F. Brémond, and E. Corvée, “Online parameter tuning
for object tracking algorithms,” Image and Vision Computing, vol. 32, no. 4, pp.
287–302, 2014.

[48] N. Hochgeschwender, M. A. Olivares-Mendez, H. Voos, and G. K. Kraetzschmar,
“Context-based selection and execution of robot perception graphs,” in 2015 IEEE
20th Conference on Emerging Technologies Factory Automation (ETFA), 2015, pp.
1–4.

[49] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,”
Journal of machine learning research, vol. 13, no. 2, pp. 281–305, February 2012.

[50] J. Kim, Y. Cho, and A. Kim, “Exposure Control Using Bayesian Optimization Based
on EntropyWeighted Image Gradient,” Proceedings - IEEE International Conference
on Robotics and Automation, pp. 857–864, 2018.

Bibliography 221

[51] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor data fusion:
A review of the state-of-the-art,” Information Fusion, vol. 14, no. 1, pp. 28–44, 2013.

[52] F. Castanedo, “A review of data fusion techniques,” The Scientific World Journal,
2013.

[53] R. C. Luo, C. C. Chang, and C. C. Lai, “Multisensor Fusion and Integration: Theo-
ries, Applications, and its Perspectives,” IEEE Sensors Journal, vol. 11, no. 12, pp.
3122–3138, 2011.

[54] F. Nobis, M. Geisslinger, M. Weber, J. Betz, and M. Lienkamp, “A Deep Learning-
based Radar and Camera Sensor Fusion Architecture for Object Detection,” in 2019
Sensor Data Fusion: Trends, Solutions, Applications (SDF), October 2019, pp. 1–7.

[55] R. Varga, A. Costea, H. Florea, I. Giosan, and S. Nedevschi, “Super-sensor for 360-
degree environment perception: Point cloud segmentation using image features,”
in 2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC), 2017, pp. 1–8.

[56] D. Göhring, M. Wang, M. Schnürmacher, and T. Ganjineh, “Radar/Lidar sensor
fusion for car-following on highways,” The 5th International Conference on Au-
tomation, Robotics and Applications, pp. 407–412, 2011.

[57] S. Chadwick, W. Maddern, and P. Newman, “Distant Vehicle Detection Using Radar
and Vision,” in 2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 8311–8317.

[58] F. Garcia, D. Martin, A. de la Escalera, and J. M. Armingol, “Sensor Fusion Method-
ology for Vehicle Detection,” IEEE Intelligent Transportation Systems Magazine,
vol. 9, no. 1, pp. 123–133, 2017.

[59] A. Garćıa-Moreno, J. Gonzalez-Barbosa, J. B. Hurtado-Ramos, and F. Ornelas-
Rodriguez, “Mobile remote sensing platform: An uncertainty calibration analysis,”
in 2014 11th International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2014, pp. 64–69.

[60] Z. Wang, Y. Wu, and Q. Niu, “Multi-Sensor Fusion in Automated Driving: A
Survey,” IEEE Access, vol. 8, pp. 2847–2868, 2020.

[61] P. Radecki, M. Campbell, and K. Matzen, “All Weather Perception: Joint Data
Association, Tracking, and Classification for Autonomous Ground Vehicles,” arXiv
preprint, 2016.

[62] O. Ludwig, C. Premebida, U. Nunes, and R. Araújo, “Evaluation of Boosting-SVM
and SRM-SVM cascade classifiers in laser and vision-based pedestrian detection,”
in 2011 14th International IEEE Conference on Intelligent Transportation Systems
(ITSC), 2011, pp. 1574–1579.

[63] N. Engelhardt, R. Pérez, and Q. Rao, “Occupancy Grids Generation Using Deep
Radar Network for Autonomous Driving,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), 2019, pp. 2866–2871.

222 Bibliography

[64] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv
preprint, 2018.

[65] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“SSD: Single Shot MultiBox Detector,” in European conference on computer vision.
Springer, 2016, pp. 21–37.

[66] C. Gálvez del Postigo Fernández, “Grid-based multi-sensor fusion for on-road ob-
stacle detection: Application to autonomous driving,” Master’s thesis, 2015.

[67] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis,
“A Survey of the State-of-the-Art Localization Techniques and Their Potentials for
Autonomous Vehicle Applications,” vol. 5, no. 2, pp. 829–846, 2018.

[68] T.-N. Nguyen, B. Michaelis, A. Al-Hamadi, M. Tornow, and M.-M. Meinecke,
“Stereo-camera-based urban environment perception using occupancy grid and ob-
ject tracking,” IEEE Transactions on Intelligent Transportation Systems, vol. 13,
no. 1, pp. 154–165, 2011.

[69] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool, “Dynamic 3D Scene Analysis
from a Moving Vehicle,” in 2007 IEEE Conference on Computer Vision and Pattern
Recognition, 2007, pp. 1–8.

[70] H. Xue, H. Fu, and B. Dai, “IMU-Aided High-Frequency Lidar Odometry for Au-
tonomous Driving,” Applied Sciences, vol. 9, no. 7, 2019.

[71] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-
based SLAM,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp.
31–43, 2010.

[72] D. Wakabayashi, “Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots
Roam,” The New York Times, March 2018, https://www.nytimes.com/2018/03/19
/technology/uber-driverless-fatality.html.

[73] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1, 2005, pp. 886–893 vol. 1.

[74] L. Zhang, L. Lin, X. Liang, and K. He, “Is Faster R-CNN Doing Well for Pedestrian
Detection?” pp. 443–457, 2016.

[75] L. Pang, Z. Cao, J. Yu, S. Liang, X. Chen, and W. Zhang, “An Efficient 3D Pedes-
trian Detector with Calibrated RGB Camera and 3D LiDAR,” in 2019 IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO), 2019, pp. 2902–2907.

[76] M. Lindner, “Calibration and Realtime Processing of Time-of-Flight Range Data,”
PhD Thesis, Computer Graphics Group, University of Siegen, December 2010.

[77] T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D Measurement
with PMD Sensors,” Range Imaging Day, Zürich, vol. 7, no. 8, 2005.

https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html

Bibliography 223

[78] R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE Journal of
Quantum Electronics, vol. 37, no. 3, pp. 390–397, March 2001.

[79] A. P. P. Jongenelen, D. G. Bailey, A. D. Payne, D. A. Carnegie, and A. A. Dor-
rington, “Efficient FPGA implementation of homodyne-based time-of-flight range
imaging,” Journal of Real-Time Image Processing, vol. 7, no. 1, pp. 21–29, March
2012.

[80] Sense Photonics, “Sense Photonics Introduces Osprey, the First Modular FLASH
LiDAR for Autonomous Vehicles,” Press Release, January 2020, https://sensepho
tonics.com/osprey-modular-flash-lidar-press-release.

[81] Infineon Technologies, “State-of-the-art photography results and immersive AR ex-
periences: Infineon and pmd offer 3D-imager with longest range in the market,”
Press Release, October 2020, https://www.infineon.com/cms/en/about-infineon/pr
ess/press-releases/2020/INFPSS202010-005.html.

[82] J. Mure-Dubois and H. Hügli, “Real-time scattering compensation for time-of-flight
camera,” in Proceedings of the ICVS Workshop on Camera Calibration Methods for
Computer Vision Systems, 2007.

[83] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Next generation radar sensors in
automotive sensor fusion systems,” in 2017 Sensor Data Fusion: Trends, Solutions,
Applications (SDF), 2017, pp. 1–6.

[84] F. Roos, J. Bechter, C. Knill, B. Schweizer, and C. Waldschmidt, “Radar Sensors
for Autonomous Driving: Modulation Schemes and Interference Mitigation,” IEEE
Microwave Magazine, vol. 20, no. 9, pp. 58–72, 2019.

[85] I. Bilik, O. Longman, S. Villeval, and J. Tabrikian, “The Rise of Radar for Au-
tonomous Vehicles: Signal Processing Solutions and Future Research Directions,”
IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 20–31, 2019.

[86] M. Parker, “Automotive Radar,” in Digital Signal Processing 101, second edition ed.,
M. Parker, Ed. Newnes, 2017, ch. 20, pp. 253–276.

[87] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Design of a Low-Level Radar
and Time-of-Flight Sensor Fusion Framework,” in 2018 21st Euromicro Conference
on Digital System Design (DSD), 2018, pp. 268–275.

[88] P. Molchanov, S. Gupta, K. Kim, and K. Pulli, “Short-range FMCW monopulse
radar for hand-gesture sensing,” IEEE National Radar Conference - Proceedings,
no. June, pp. 1491–1496, 2015.

[89] Infineon Technologies, “Infineon 3D Image Sensor, IRS10x0C,” Product Brief, May
2013.

[90] J. Steinbaeck, N. Druml, A. Tengg, C. Steger, and B. Hillbrand, “Time-of-Flight
Cameras for Parking Assistance: A Feasibility Study,” in 2018 12th International
Conference on Advanced Semiconductor Devices and Microsystems (ASDAM), 2018,
pp. 1–4.

https://sensephotonics.com/osprey-modular-flash-lidar-press-release
https://sensephotonics.com/osprey-modular-flash-lidar-press-release
https://www.infineon.com/cms/en/about-infineon/press/press-releases/2020/INFPSS202010-005.html
https://www.infineon.com/cms/en/about-infineon/press/press-releases/2020/INFPSS202010-005.html

224 Bibliography

[91] L. P. Peláez, M. E. V. Recalde, E. D. M. Muñóz, J. M. Larrauri, J. M. P. Rastelli,
N. Druml, and B. Hillbrand, “Car parking assistance based on Time-or-Flight cam-
era,” in 2019 IEEE Intelligent Vehicles Symposium (IV), June 2019, pp. 1753–1759.

[92] H. Plank, J. Steinbaeck, N. Druml, C. Steger, and G. Holweg, Localization and Con-
text Determination for Cyber-physical Systems based on 3D Imaging. IGI Global,
2018, pp. 1–26.

[93] X. Gao, G. Xing, S. Roy, and H. Liu, “Experiments with mmWave Automotive
Radar Test-bed,” in 2019 53rd Asilomar Conference on Signals, Systems, and Com-
puters, 2019, pp. 1–6.

[94] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–
256, February 1992.

[95] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3-D
Point Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-9, no. 5, pp. 698–700, 1987.

[96] L. Stanislas and T. Peynot, “Characterisation of the Delphi Electronically Scan-
ning Radar for Robotics Applications,” in Australasian Conference on Robotics and
Automation (ACRA 2015), vol. 2, 2015, p. 4.

[97] J. Peršić, I. Marković, and I. Petrović, “Extrinsic 6DoF calibration of 3D LiDAR
and radar,” in 2017 European Conference on Mobile Robots (ECMR), September
2017, pp. 1–6.

[98] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[99] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[100] J.-Y. Bouguet, “Camera Calibration Toolbox for Matlab,” 2001.

[101] T. Moore and D. Stouch, “A Generalized Extended Kalman Filter Implementation
for the Robot Operating System,” in Proceedings of the 13th International Confer-
ence on Intelligent Autonomous Systems (IAS-13). Springer, July 2014.

[102] J. Steinbaeck, C. Steger, E. Brenner, and N. Druml, “A Hybrid Timestamping
Approach for Multi-Sensor Perception Systems,” in 2020 23rd Euromicro Conference
on Digital System Design (DSD), 2020, pp. 447–454.

[103] A. Koubaa, Robot Operating System (ROS): The Complete Reference. Springer,
2017, vol. 1.

[104] J. Steinbaeck, “Integration of a Time-of-Flight 3D Camera into a Mobile Densing
Platform,” Master’s thesis, Graz University of Technology, 2016.

[105] J. Steinbaeck et al., “ACTIVE - Autonomous Car to Infrastructure Communication
Mastering Adverse Environments,” in 2019 Sensor Data Fusion: Trends, Solutions,
Applications (SDF), 2019, pp. 1–6.

Bibliography 225

[106] J. Steinbaeck, A. Tengg, G. Holweg, and N. Druml, “A 3D Time-of-Flight Mixed-
Criticality System for Environment Perception,” in 2017 Euromicro Conference on
Digital System Design (DSD), 2017, pp. 368–374.

[107] J. Steinbaeck, A. Strasser, C. Steger, E. Brenner, G. Holweg, and N. Druml,
“Context-Aware Sensor Adaption of a Radar and Time-of-Flight Based Perception
Platform,” in 2020 IEEE Sensors Applications Symposium (SAS), 2020, pp. 1–6.

[108] J. Steinbaeck, H. Plank, and A. Schoenlieb, “Time of Flight Sensor Module, Method,
Apparatus and Computer Program for Determining Distance Information based on
Time of Flight Sensor Data,” European Patent Application EP 3 663 801 A1, 2018.

[109] V. C. Chen, F. Li, S. . Ho, and H. Wechsler, “Micro-Doppler effect in radar: phe-
nomenon, model, and simulation study,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 42, no. 1, pp. 2–21, 2006.

	Title
	Affidavit
	Acknowledgements
	Abstract
	Kurzfassung
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Environmental Perception Platform
	1.2.1 Overview
	1.2.2 Problem Statement
	1.2.3 Research Questions and Objectives
	1.2.4 Contributions
	1.2.5 Outline

	2 Related Work
	2.1 Environmental Perception Platforms
	2.1.1 Automated Driving Research
	2.1.2 Existing Perception Platforms and Datasets
	2.1.3 Spatial Sensor Data Alignment
	2.1.4 Temporal Sensor Data Alignment
	2.1.5 Context-Aware Sensor Configuration
	2.1.6 Sensor Fusion

	2.2 Applications
	2.2.1 Obstacle Detection
	2.2.2 Environment Mapping
	2.2.3 Pedestrian Detection

	2.3 Summary and Difference to the State-of-the-Art

	3 Background
	3.1 Time-of-Flight Cameras
	3.1.1 Basic Principle
	3.1.2 Characteristics
	3.1.3 Time-of-Flight Processing

	3.2 Automotive Radar Sensors
	3.2.1 Basic Principle
	3.2.2 Characteristics
	3.2.3 Radar Processing

	3.3 Vision Cameras
	3.3.1 Basic Principle
	3.3.2 Characteristics
	3.3.3 Video Camera Processing

	4 Design
	4.1 Requirements
	4.1.1 Base Perception System
	4.1.2 Use Cases

	4.2 Base Perception System
	4.2.1 Sensor Selection
	4.2.2 Spatial Alignment
	4.2.3 Temporal Alignment
	4.2.4 Sensor Data Processing I: Low-Level Sensor Interface
	4.2.5 Sensor Data Processing II: Sensor Pre-processing
	4.2.6 System Parameters

	4.3 Use Cases
	4.3.1 Context-Aware Parameter Adaption
	4.3.2 Obstacle Detection
	4.3.3 Environment Mapping
	4.3.4 Pedestrian Detection
	4.3.5 Data Visualization

	4.4 Final Design

	5 Implementation
	5.1 Development
	5.1.1 Workflow
	5.1.2 Tools

	5.2 Environmental Perception Platforms
	5.2.1 Version I: Time-of-Flight Only
	5.2.2 Version II: Time-of-Flight/Radar
	5.2.3 Version III: Time-of-Flight/Radar/Camera

	5.3 Base Perception System
	5.3.1 Spatial Alignment
	5.3.2 Temporal Alignment
	5.3.3 Sensor Data Processing
	5.3.4 System Parameters

	5.4 Use Cases
	5.4.1 Context-Aware Parameter Adaption
	5.4.2 Obstacle Detection
	5.4.3 Environment Mapping
	5.4.4 Pedestrian Detection
	5.4.5 Data Visualization

	5.5 Platform Startup and Operating Modes
	5.5.1 Launch Files
	5.5.2 Sensor Platform Startup Procedure
	5.5.3 Operating Modes
	5.5.4 Use Case Startup

	6 Results
	6.1 Environmental Perception Platform
	6.1.1 Final Platform
	6.1.2 Attachment to Vehicles

	6.2 Base Perception System
	6.2.1 Temporal Alignment
	6.2.2 Spatial Alignment
	6.2.3 Sensor Data Processing
	6.2.4 System Parameters

	6.3 Use Cases
	6.3.1 Context-Aware Parameter Adaption
	6.3.2 Obstacle Detection
	6.3.3 Environment Mapping
	6.3.4 Pedestrian Detection
	6.3.5 Data Visualization

	7 Conclusion and Future Work
	7.1 Conclusion
	7.1.1 Answers to the Research Questions
	7.1.2 Limitations

	7.2 Directions for Future Work
	7.2.1 Research on Perception Applications
	7.2.2 Platform Optimization
	7.2.3 Dataset Recording

	8 Publications
	8.1 A 3D Time-of-Flight Mixed-Criticality System for Environment Perception
	8.2 Next Generation Radar Sensors in Automotive Sensor Fusion Systems
	8.3 Localization and Context Determination for Cyber-Physical Systems Based on 3D Imaging
	8.4 Design of a Low-Level Radar and Time-of-Flight Sensor Fusion Framework
	8.5 Time-of-Flight Cameras for Parking Assistance: A Feasibility Study
	8.6 Occupancy Grid Fusion of Low-Level Radar and Time-of-Flight Sensor Data
	8.7 ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse Environments
	8.8 Context-Aware Sensor Adaption of a Radar and Time-of-Flight Based Perception Platform
	8.9 A Hybrid Timestamping Approach for Multi-Sensor Perception Systems
	8.10 Time of Flight Sensor Module, Method, Apparatus and Computer Program for Determining Distance Information Based on Time of Flight Sensor Data

	Bibliography

