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Abstract

The upcoming 5G mobile radio standard and the concept of the Internet of Things establish
the demand of location awareness for radio devices. From a signal processing perspective,
this interest involves the analysis of (device) position information present in radio signals.
In this context, this thesis builds on parameterized models for the radio channel response
in order to fulfill three tasks.

First, (i) radio positioning systems are established, which are applicable for low-cost ultra-
wideband (UWB) devices employing directional antennas. It is shown that the trade-off
between simplicity and robustness hits a spot where sub-meter accuracy is achievable in
real environments using a single base station, only.

Next, (ii) fundamental (lower) position error bounds are derived, applicable to the UWB
positioning system from (i) and to the upcoming mm-wave radio systems. Numerical eval-
uation of the error bounds shows that directional antennas can compete with conventional
(omni-directional) antenna arrays, whereas the former do not require phase coherency.

On the basis of a simplified formulation of the error bounds, (iii) a multipath-resolved radio
environment map is formulated and applied to adaptable radio front-ends. An example
application is given by extension of the presented positioning system to reduce the number
of required measurements while achieving a comparable estimator performance.
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Kurzfassung

Mit der Einführung des 5G-Mobilfunkstandards und des Konzepts des Internets-der-
Dinge steigt das Interesse an Ortungsinformation zur Optimierung von Funknetzen. Aus
Sicht der Signalverarbeitung bedeutet dieses Interesse die Analyse von Positionsinforma-
tion, die in Funksignalen vorhanden ist. In diesem Zusammenhang baut diese Arbeit auf
parametrischen Modellen für die Radiokanalantwort auf, um drei Aufgaben zu erfüllen.

Zunächst werden (i) Funkortungssysteme mathematisch beschrieben, mit der Blickrich-
tung auf kostengünstige Ultra-wideband (UWB) Systeme mit Richtantennen. Es wird
gezeigt, dass der Trade-off zwischen Systemkomplexität und Schätzerrobustheit einen
Punkt erreicht, an dem in realen Umgebungen mit nur einer einzelnen Basisstation eine
Submeter-Genauigkeit erreicht werden kann.

Als nächstes werden (ii) theoretische Schranken des Positionsfehlers hergeleitet, die auf
das Positionierungssystem aus (i) und auf zukünftige mm-Wellen-Funksysteme anwendbar
sind. Die numerische Auswertung der Fehlerschranken zeigt, dass durch den Einsatz von
Richtantennen eine Genauigkeit erreicht werden kann, die vergleichbar ist mit herkömm-
lichen Antennenarrays, ohne dass dabei Phasenkohärenz zwischen den Richtantennen
erforderlich ist.

Auf der Grundlage einer vereinfachten Formulierung dieser Fehlerschranken wird (iii) eine
mehrwegeaufgelöste Kartierung der Funkumgebung (“radio environment map”) formuliert
und auf adaptierbare Radio-Frontends angewendet. Als Anwendungsbeispiel wird das
vorgestellte Positionierungssystem aus (i) erweitert, um die Anzahl der erforderlichen
Messungen zu reduzieren und gleichzeitig eine vergleichbare Positionsgenauigkeit zu
erzielen.
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Part I.

Overview of Researched Topics





1. Introduction

In the upcoming years we face the reality of everyday objects becoming connected to a
large network, the Internet of Things (IoT). In the same vein as our worldly fauna, this
system of things encompasses a myriad of beings, ranging from simple amoeba-like devices
such as low-power sensor nodes up to behemoths of complexity such as autonomously
driving cars. Where the IoT differs from the animal kingdom is in a strong desire of its
participants to actively communicate. While the foundation of communication for the
classic internet is a large web of wires, locking its participants into place, objects in the
IoT require the freedom of mobility which necessitates a form of wireless communication.
Ever since the dawn of mobile phones, infrastructure and mechanisms have been put in
place to enable users to communicate wirelessly. However, for the IoT with its significantly
higher number of diverse participants, an evolution of existing solutions is necessary to
tackle the challenges arising.

No matter how you look at it, the challenges of wireless communication come down to
the wireless channel, which describes how the source signal changes when traveling from
sender to receiver. In this regard, the channel of communicating radios is influenced by
two major factors: First, we have the physical radio channel which incorporates signal
reflections (multipath propagation) and scattering effects considering the surroundings
(i.e., the environment) of the involved radios. In the context of the IoT, where things can be
virtually everywhere, the arising challenges stem from cluttered environments exhibiting
severe multipath propagation, e.g., indoor and industrial environments. The second major
influencing factor is any form of man-made interference, be it competing transmissions,
unintended radiations or system attacks (e.g., jamming, eavesdropping).

The focus of this thesis and collection of works lies on the first influencing factor, where
the radio channel is analyzed on a signal processing level to outline information present in
received radio signals. To this end, the channel can be decomposed into modular entities,
the multipath components (MPCs), which will pose as the main actors of the contained
works. The most impactful of the MPCs are related to strong reflections in the environment,
which behave similar to specular reflections where incidence and reflection angles are
equal, hence these MPCs are called specular multipath components (SMCs). The SMCs
are observed and thus described in angle and delay domains, which is equivalent to space
and time behavior. In blunt terms, an observer of radio signals should ask the following
about the SMCs: “From where do they come?” and “When do they come?”. The answers
to these questions are directly related to the positions of the sender and receiver relative to
the environment they are in and knowing the answers enables them to adapt their radio
front-ends.

The keyword here is the environment, which for the thesis is comprised of room geometry
and a base station acting as transmitter, referred to as anchor due to its fixed position. To
set the stage for position-aware or environment-aware things, we propose the formulation
of a radio environment map. This map relates each position in the environment to a quality
measure which indicates how “good” the radio link is. Communicating things that have
knowledge of such a map can use it as a guidance system, either to guide their movement
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1. Introduction

or to adapt their “feelers”. For IoT devices this concerns their radio frontends and antennas.
This readies nodes of the IoT to turn into dependable cognitive systems.

1.1. Context of Work

Now, with the focal points laid out, we look at the landscape of radio technologies,
highlighting the present challenges and where to place the contributions of this thesis.
For that purpose, in the book chapter [S6] we created a taxonomy of communication and
positioning systems, demonstrating the open challenges for IoT devices. Adjusted graphs
from this work are shown in Figure 1.1 and Figure 1.2, which provide a categorization
of radio technologies according to design spaces. For both worlds (communication and
positioning), we see the dimensions of varying bandwidth on the one hand and adaptability
to the environment on the other hand.

Starting with the communication domain, the main challenge involves data recovery in
presence of fading effects, i.e., dealing with variations of the channel due to multipath
interference caused by movement and / or changes in the environment. Towards the
origin of the design space, we see well established, if not to say ancient, methods such as
matched filters, energy detectors and rake receivers, all of which are described in various
textbooks about wireless communications [24, 77, 88] and digital communications [6,
37, 83]. Moving towards the top right, we increase the bandwidth, number of employed
antennas and prior knowledge in order to cover younger technologies, some of which are
still of a more conceptual nature. This is also where fifth generation (5G) radio networks
are situated, which are expected to employ massive multiple-input multiple-output (MIMO)
array antenna systems [4, 13] due to the dramatic increase in energy efficiency and capacity,
achieved by aggressive spatial multiplexing [51, 92]. Array antennas also open the gate
towards millimeter-wave (mm-wave) systems [85, 87, 113], achieving a high array gain
which compensates the pathloss present in these frequency bands (30-300 GHz). Towards
the top right of the space, we have recent technologies that are, at the time of writing this
thesis, conceptual and not common in realized systems like time reversal processing [12,
30] and cognitive radio [36, 76]. The latter is also where the concept of “environment”
knowledge comes into play, which in this context refers to interference of competing users,
the knowledge of which, e.g. via spectral cartography, enables systems to reach certain
levels of cognition. This is also the place where the author of this thesis makes the bold
choice to put his works, since, at higher bandwidths, the physical environment can be taken
into consideration and multipath-resolved environment maps can be realized.

However, as we are examining location-aware devices that leverage environment maps,
the meat of this thesis is concerned with positioning systems. For this, a taxonomy of
positioning approaches is found in Figure 1.2, showing a design space that again spans
the domains of signal/system bandwidth over the adaptability of the system. Towards the
origin we see “old-school” systems where no prior knowledge is leveraged. Depending on
the available bandwidth, they are categorized into carrier phase, received signal strength
(RSS) or time-of-flight (ToF) in order to perform range estimates to obtain the position via
a trilateration approach. Additionally, over all bandwidths the angle-of-arrival (AoA) can
be estimated to determine the position via a triangulation approach. A detailed overview
over these methods can be found in the habilitation thesis by Mautz [68], which provides a
comprehensive survey of (indoor) positioning methods and technologies, including optical-
and audio-based systems as well as GNSS. Walking towards the right of the design space,
we reach the relevant systems for this thesis, with RSS maps and fingerprinting, and
ultra-wideband (UWB) based multipath assisted methods like the MINT system [122]
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Figure 1.1.: Design space for radio (communication) systems to mitigate fading in wireless propagation channels.

(multipath-assisted indoor navigation and tracking)1, then reaching once again systems
employing cognitive concepts. For all involved methods, in order to reach a certain position
accuracy, there is a general trade-off between bandwidth, diversity branches [121] and
antenna directivity [118]. The contributions of this thesis reside also in this space, as
indicated by three boxes, each dedicated to one of the research hypotheses to be elaborated
in the following.
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Figure 1.2.: Design space for dependable radio positioning systems.

1.2. Research Hypotheses

On the basis of the established research context, three research topics can be extracted, each
tackling one aspect of dependable positioning systems for IoT devices. In the following,
each topic is outlined and a corresponding research hypothesis is formulated.

1A detailed overview of related work for these subjects is given in Chapter 3.
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1. Introduction

Resource-efficient robust UWB Radio Positioning

In the first topic, it is considered how resource-efficient radio positioning systems are
realized, also when taking dense multipath propagation into account. This topic builds on
top of established multipath-assisted positioning methods with partial prior knowledge
of the environment, such as a given floorplan, as illustrated in Figure 1.2. The keyword
resource-efficient refers to reduced employed infrastructure such as a low number of
anchors, while robust refers to sufficient accuracy (sub-meter) and low probability of
outliers. In order to fulfill both requirements, the combination of accurate ranging via
UWB signals and application of directional antennas is leveraged to formulate algorithms
that can be implemented in real time on low-cost (IoT) devices where the number of
participating anchor / base station devices is minimized. The corresponding hypothesis
reads:

Hypothesis 1 (H1) For challenging environments with severe multipath propagation (such
as indoors), accurate (sub-meter) position estimates are possible with a single base-station,
by using UWB radio signals observed with directional antennas.

Fundamental Limits on the Accuracy of Radio Positioning

The second topic takes a theoretical perspective on radio positioning by evaluation of
accuracy bounds for IoT radio devices with regards to resources such as bandwidth and
antenna characteristics. Note that this topic covers most of the design space, as bandwidth
and antenna parameters are tunable in the mathematical analysis, which is a pre-requisite for
adaptability. Of particular interest in the analysis are non-coherent measurements (obtained
from directive antennas) and the performance difference compared to conventional coherent
antenna array processing. Hence, the corresponding hypothesis reads:

Hypothesis 2 (H2) Fundamental accuracy limits of radio positioning systems can be for-
mulated to quantify the influence of radio system parameters onto the achieved performance
of these systems. The key parameters are signal bandwidth and antenna directivity, the
latter can be given either by coherent array processing, or alternatively using observations
from multiple directional antennas non-coherently.

Multipath-resolved Radio Environment Maps

With the third and final topic, the realm of radio environment maps is entered. Opposed
to conventional RSS-based maps, it is desired to include multipath-related features. To
this end, UWB signals and directional antennas are applied to obtain a multipath-resolved
radio channel for both time and angle domains. In the design space, we are situated
in the very top right also tapping into the field of cognitive positioning and control. A
first concept of a multipath-resolved map is established based on the bounds developed
in the previous topic. We want to explore how such a map may be used in adaptable
radio frequency (RF) front-ends and multi-antenna systems to improve the accuracy and
robustness of radio positioning systems. The intended objectives are summarized in the
following hypothesis:

Hypothesis 3 (H3) Resolving multipath components in the time and angle domains allows
the construction of radio environment maps which can be used to improve the performance
of radio positioning systems.
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1.3. Organization and Contributions

This thesis is structured into one chapter that covers the basic background and then one
chapter for each formulated research question. Each of these chapters contains a section
about related work to put the contributions into perspective with existing literature. In the
following, each chapter and an overview of its contents is outlined.

Chapter 2: Background. As a starting point, a fundamental framework in terms of radio
signal models is provided. First, a formulation of the used propagation channel
models and received radio signal models is established, describing the main actors,
i.e. specular and dense multipath components of the radio channel. In particular, three
antenna setups for the received signal model are be described (single omni, multiple
coherent omni and multiple non-coherent directional) to enable later comparisons.
In the same fashion, two noise models are introduced (additive white Gaussian noise,
with and without dense multipath). The second part of this chapter deals with the
modeling of specular multipath components, in terms of geometric features (relating
to a plan of the environment) and in terms of amplitude quality models (evaluating
the strength of reflections).

Chapter 3: Resource-efficient Radio Positioning Systems. This chapter deals with H1.
Positioning algorithms are formulated based on the signal and noise models from
Chapter 2 and then selected results from two measurements campaigns are shown.
The first campaign used high-fidelity measurement equipment, the second one
low-cost devices.

Chapter 4: Fundamental Limits of Radio Positioning. This chapter deals with H2 by
means of a mathematical analysis of the established signal models to derive provable
bounds on the positioning accuracy. An overview of different error bounds is given
and the derivation of the thesis-relevant bound is outlined, which describes the influ-
ence of bandwidth and antenna patterns. Selected simulation results are discussed
for a non-trivial indoor environment.

Chapter 5: Multipath-resolved Radio Environment Maps. This chapter deals with H3.
The formulation of a radio environment map on the basis of the error bounds from
Chapter 4 is proposed and its application to the positioning methods from Chapter 3
is described and analyzed based on simulations. Selected results from a related
measurement campaign (parking garage environment) are described.

Chapter 6: Conclusions. A summary of the described contents is provided with reference
to possible future work.

In the following, two lists of publications are provided. The first list shows all papers
included in this thesis (see Part II). The second list shows further papers that the author of
this thesis has participated in as co-author. These works are also referenced throughout the
thesis showing their relevance to the covered subjects.

List of included papers

[T1] B. Großwindhager, M. Rath, J. Kulmer, M. S. Bakr, C. A. Boano, K. Witrisal,
and K. Römer. “SALMA: UWB-based Single-Anchor Localization System Using
Multipath Assistance.” In: Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. SenSys ’18. Shenzhen, China, Nov. 2018, pp. 132–144.
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2. Background

In this chapter, various models are defined for radio signals and the most significant terms
and acronyms are introduced, which poses as the foundation for the remainder of the
thesis. The model definitions follow closely the ones in [T2], with some extensions to
provide further insight. In essence, all included papers use equivalent signal models with
the same setup. The second part of this chapter deals with the main “actors” of this thesis,
the specular multipath components and how to model their geometry-related parameters
and their power-related parameters.

The starting point in Section 2.1 is a propagation channel model in its most general form,
followed by the introduction of assumptions to abstract specific signal models cumulatively.
This differs from the included papers, which start with a reduced, simplified signal model
due to space constraints and also to focus on the most relevant aspects of the respective
hypotheses. The rational behind the choice of a more detailed description is to provide
a transparent, thorough elaboration on all involved quantities, i.e., to reduce any unclear
implications to a minimum. The reader may skip the earlier subsections depending on the
desired level of detail in the elaborations.

2.1. Signal and System Models

The central element of this thesis is the wireless channel between two nodes. These two
“protagonists” will be called anchor and agent throughout this thesis1. The anchor is
situated at a fixed, known position denoted by a, whereas the agent can move around freely
and its (current) position is denoted by p. We are interested in how a signal exchanged
between anchor and agent changes due to the wave propagation within the environment,
which is described by the radio channel.

2.1.1. Multipath Channel Models

The static2 radio channel between agent and anchor is described by the spreading func-
tion

h̃pΩ,Ψ,τ;pq �
8̧

κ�1

α̃κppqδ
�
Ω� Ω̃κppq

�
δ
�
Ψ� Ψ̃κppq

�
δ
�
τ� τ̃κppq

�
(2.1)

where δp�q denotes the Dirac delta function. In further elaborations, the agent acts as
transmitter, without loss of generality. Equation (2.1) describes the superposition of in-
finitely many MPCs that originate from reflections by objects in the environment. From
the perspective of the anchor, one individual MPC, referred to by index κ, is described by

1Common alternative terms found in the literature are base station for the anchor, and mobile station,
terminal or user equipment for the agent.

2Static in this sense means that there are no (absolute) time variations, hence the time dependence is omitted.
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2. Background

its complex amplitude α̃κ, its direction of arrival Ω̃κ, its direction of departure Ψ̃κ and its
(relative) delay τ̃κ. The directions Ω̃κ and Ψ̃κ may be defined by an azimuth and elevation
angle tuple, e.g., Ω̃κ �

�
φ̃κ, θ̃κ

�
. In the literature, this model is commonly referred to as

double-directional radio channel [105]. It should be emphasized that this model is rather
generic and thus suited to describe any multipath channel. It can, e.g., also be used when
audio signals are considered. The main restriction is a static environment, i.e., no changes
in the physical surroundings and stationarity in the frequency domain are assumed.

In the following, assumptions are introduced, which are related to the used antennas to
measure the channel. The assumptions are cumulative, i.e., each assumption builds on top
of the previous one. After the formulation of each assumption, a short description of its
application to (2.1) is given.

� The MPC directions are restricted to horizontal propagation (azimuth plane), i.e.,
the direction parameters are specified solely by azimuth angles and the position
vectors are defined in R2. The elevation angle is then considered to be constant
with θ̃κ � π

2 for all κ. In many works, such as the included ones, this assumption
is justified by application of antennas at the anchor that exhibit a narrow elevation
pattern, resulting in negligible effect of MPCs arriving from elevation angles other
than π

2 . An extension to three dimensional scenarios with horizontal and vertical
propagation is straightforward, but it would lead to cumbersome notations without
bringing significant additional insights.
Application to (2.1): The directions Ω̃κ and Ψ̃κ are replaced with azimuth angles φ̃κ
and ϕ̃κ.

� The simplest form of agents are considered, equipped with a single omni-directional
antenna in the azimuth plane (e.g., a dipole antenna). Hence, we may use the
equivalent of the angle-of-departure integrated channel [105], i.e. a single-directional
channel, considering the direction of arrival domain from the perspective of the
anchor only.
Application to (2.1): The angle-of-departure ϕ̃κ vanishes as an argument and the
respective delta function is omitted.

� Radio measurements are conducted with a finite observation aperture in space and
frequency. As a result, separated MPCs are collected into a set of k � 1 . . .K SMCs
and all unresolvable MPCs originating for example from diffuse scattering are
described by a dense multipath component (DMC) [21, 90].
Application to (2.1): New summation over k and corresponding replacement of MPC
parameters with SMCs and inclusion of the DMC.

Applying these assumptions as stated, we obtain the simplified (2D) radio channel model,
described by the spreading function

hpφ,τ;pq �
Ķ

k�1

αkppqe jζkppq δ
�
φ�φkppq

�
δ
�
τ� τkppq

��νpφ,τ;pq. (2.2)

Each SMC is described by amplitude αk, phase rotation ζk, AoA φk and delay τk
3. The

latter two parameters (angle and delay) can be directly related to the agent position via a
geometric model of the environment, as will be explained in Section 2.2.2. Amplitude and
phase parameters are more delicate in terms of position-related modeling and will hence
be described in terms of quality-related quantities in Section 2.2.3.

3Note that we separated the (previously) complex-valued amplitude into its absolute value and its phase to
obtain only real-valued SMC parameters.
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2.1. Signal and System Models

Reflections that are either too weak to be of use or result from scattering are captured
by the DMC νpφ,τ;pq P C. The DMC is modeled as a complex circular (i.e. zero-mean)
Gaussian random process [41, 90]. Assuming uncorrelated scattering (US) in the delay
and angular domains, the auto-correlation function of νpφ,τ;pq is given by

Rννpφ,φ1,τ,τ1;pq � Sνpφ,τ;pqδpφ�φ1qδpτ� τ1q (2.3)

where Sνpφ,τ;pq describes the azimuth-delay power spectrum [21] at the anchor position.
Essentially, Sνpφ,τ;pq captures and characterizes the DMC for a particular environment.
Later, we will look at further refinements, e.g., treating the domains separately, which will
allow us to account for the DMC in practical applications.

With the model from (2.2) at hand, we established our main protagonists, the SMCs, which
open the door to use knowledge about the physical environment, as well as our antagonist,
the DMC, which represents faced challenges that arise in, e.g., indoor environments with
rich multipath scattering. In the next step, we examine what is seen by the anchor when
the agent instigates an actual signal transmission.

2.1.2. Received Signal Models

As a short recap, the designated propagation channel model in (2.2) was established, where
the agents are restricted to employ omni-directional antennas operating in the azimuth
plane. In order to establish a model of the signal as it is received at the anchor, we specify
the setup at the anchor to employ an antenna array that consists of m� 1 . . .M antennas.
When referring to the general anchor position, we use a which is defined to be the mass
point of the antenna array. Then, the position of the mth antenna element is denoted by
apmq. This position is determined by the distance to the array center denoted by dpmq and
the azimuth angle φpmq. An example is shown in Figure 2.1.

φpmq

a

apmq

d
pm

q

Figure 2.1.: Antenna array at anchor (in azimuth plane). As an example, the angle and distance parameters of one
array element are shown.

Now, for the transmission taking place, there are multiple ways how to treat the signal
as received at the anchor with regards to the spatial and time domains. It is common to
use equivalent image domains obtained via Fourier transforms. There is a duality from
the spatial to the angle domain and from the time to the frequency domain. In this thesis,
the choice is to treat the domains separately. First the angle domain, where we look at
the azimuth-beampattern of the mth antenna, denoted by bmp f ,φq. Then, in terms of the
time domain, the agent transmits a lowpass-equivalent signal sptq modulated by carrier
frequency fc. To obtain the received signal at antenna m denoted by rmptq, the linear channel
given by the spreading function in (2.2) has to be convolved with the transmitted signal
sptq taking beampattern bmp f ,φq into consideration. However, certain further assumptions
may be used to simplify this process and to specify the scenario arriving at a compact
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description. Analogously to Section 2.1.1, we outline assumptions cumulatively and note
the mathematical application.

� For the antennas at the anchor, in frequency domain, we assume identical beampat-
terns over all relevant frequencies. This is a basic antenna design requirement to
enable many applications. In terms of antenna polarization properties, we assume
a single (matched) polarization state at anchor and agent. That is, co- and cross-
polarization effects are not considered, however their inclusion is straight-forward.
Application to (2.2): In further reference of anchor antenna m, we use bmp f ,φq �
bmpφq for the complex-valued azimuth antenna gains.

� For the time-domain description of radio waves impinging at the antenna elements,
we make use of the far-field plane-wave assumption, i.e., we assume planar wave
fronts instead of spherical ones. This assumption is used in the majority of array
processing works, since a treatment of spherical wave fronts significantly increases
the complexity of mathematical models with insignificant gain in insights.
Application to (2.2): Treatment of the transmitted signal sptq can be performed
completely in the delay domain, i.e., the angle-domain of channel hpφ,τ;pq does not
affect the transmitted signal directly, but only the beampatterns.

� Introduced time delays at antenna elements in relation to the delay of the mass point
will be only considered in terms of (angle-dependent) phase changes, i.e., the time
delay of the signal envelope will be neglected. This is usually referred to as the
narrowband / wideband assumption, where it is assumed that the delay and angle
domains are separated, i.e., space-frequency cross-product terms are zero [19, Ch.
4.2]. This assumption is fair to use because the envelope information is negligible
with respect to the phase information in practical situations [31, 117, 118].
Application to (2.2): We introduce the antenna element phase change e jζpmqpφq, which
is multiplied by the beampatterns bmpφq to obtain the antenna response of one array
element.

Taking these assumptions into consideration, we get the received signal at antenna m when
we convolve the spreading function in (2.2) with the transmitted signal sptq and antenna
response bmpφqe jζpmqpφq as follows

rmptq �
¼

bmpφqe jζpmqpφqs
�
t� τ

�
hpφ,τqdφdτ�wmptq

�
Ķ

k�1

αke j
�

ζk�ζpmqpφkq
�

bmpφkqspt� τkq� rDM
m ptq�wmptq (2.4)

where we dropped the position dependence for the sake of legibility, i.e., all SMC-related
parameters (with subscript k) are written as xk � xkppq. (Later, for the DMC-related part,
the position dependence is dropped as well.) Similarly to the simplified channel from (2.2),
the received signal from (2.4) can be separated into three distinct parts: The first part
contains the position-related SMC parameters tαk,ζk,φk,τku which scale and shift the
transmitted signal. The second part rDM

m ptq is a stochastic process characterizing the self-
interference due to the DMC. Finally, measurement noise wmptq is modeled as additive
white Gaussian noise (AWGN) with double-sided power spectral density of N0

2 .

The SMC-related part poses as the foundation of all following chapters and will be
discussed in detail in Section 2.2. However, now we shed light onto the DMC-related part,
which is a challenging feat and hence, in most works, any signal components equivalent to
DMC are treated as AWGN. We may write the second part of (2.4) as

rDM
m ptq �

¼
bmpφqeζpmqpφqspt� τqνpφ,τqdφdτ.

14



2.1. Signal and System Models

Since we have the stochastic quantity νpφ,τq, we examine correlation properties of this
signal for a pair of antennas pm,m1q with

E
!

rDM
m ptqprDM

m1 pt 1qq�
)
�
»»»»

bmpφqb�m1pφ1qe jpζpmq�ζpm1qqspt� τqspt 1� τ1q

�E
!

νpφ,τqν�pφ1,τ1q
)

dφdφ1 dτdτ1

�
¼

Sνpφ,τqbmpφqb�m1pφqe jpζpmq�ζpm1qq

� spt� τqspt 1� τqdφdτ. (2.5)

Here, we included the azimuth-delay power spectrum from (2.3), where we applied the US
assumption. It should be noted that this assumption also allows us to use the same stochastic
process νpφ,τq for all antenna elements, because the assumption implies homogeneity in
spatial domain [80, Ch. 2.4], thus the correlation between m and m1 due to spatial separation
is effectively covered. Obviously, with (2.5) we are still deep in analytic territory without a
closed-form solution. However, entering the discrete-time domain will allow us to resolve
this issue with familiar treatable quantities such as covariance matrices. In the following,
we will enter this domain and arrive at multiple discrete-time system models, each suited
for particular applications handled in the later chapters of the thesis.

2.1.3. Discrete-time System Models

In the previous section, we established a generic received signal model in (2.4) and outlined
the challenging characterization of the DMC in (2.5). In the following, we establish multiple
system models, each suited to tackle different research hypotheses, by entering the discrete-
time domain via sampling. Hence, we will use vector notation for signals and parameters,
e.g., y � ry1, . . . ,yNsT P RN�1.

In any practical system, the anchor acquires Ns samples of the received signal using the
mth antenna element sampled with frequency fs � 1{Ts to write the samples as rrmsi �
rmpri�1s �Tsq, i � 1 . . .Ns. All sampled antenna element signals are then stacked into the
observation vector r � rrT

1 , . . . ,r
T
MsT P CMNs�1 given as

r � xpθq�n. (2.6)

Here, we have again on the one hand the SMC-related term xpθq as a function of the SMC
parameters

θ � �
φT,τT,αT,ζT�T

(2.7)

and on the other hand the DMC and noise related term n. The size of each individual
parameter vector is RK�1 e.g., α� rα1, . . . ,αKsT. An exception is the phase parameter ζ,
which differs depending on the amplitude phase processing at the anchor, hence it will be
specified later.

In the following, we outline different anchor setups and their respective signal models,
first for the SMC-related part and then for the noise-related part. The setups are denoted
as pIq, pIIq and pIIIq, and they will be referred to as such throughout the thesis. Each model
provides the finalized foundation for the tasks described in the upcoming chapters.
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Setup pIq: simple anchor

For this setup, the anchor uses the same system as the agents, i.e, it is equipped with a
single omni-directional antenna situated at (known) position a. Hence, we have for the
number of antenna elements M � 1 and for the beampattern b1pφq � 14. With this setup,
we have the deterministic part of each observation

xpIq
�
θpIq

�� �
spτ1q . . . spτKq

����α1e jζ1

...
αKe jζK

��� P CNs�1 (2.8)

with

spτkq � rsp0 �Ts� τkq, . . . ,sprN�1s �Ts� τkqsT P RNs�1.

This compact model enables the treatment of single-antenna radio channel measurements
and it has been used in multiple multipath-assisted positioning applications [70]. However,
with only a single antenna and no directional beampattern, SMC angles can not be explored
and hence we have the parameter vector

θpIq � �
τT,αT,ζT�T P R3K�1. (2.9)

Setup pIIq: conventional antenna array processing

We extend pIq, by adding additional omni-directional antennas situated at positions apmq,
thus forming an array of M elements with known geometry and fixed orientation; an
example is shown in Figure 2.1. For this setup, we describe the SMC-related signal model
with

xpIIq
�
θpIIq

��
����
spτ1qe jζp1qpφ1q . . . spτKqe jζp1qpφKq

...
. . .

...
spτ1qe jζpMqpφ1q . . . spτKqe jζpMqpφKq

����
���α1e jζ1

...
αKe jζK

��� P CMNs�1

(2.10)

with parameter vector

θpIIq � �
φT,τT,αT,ζT�T P R4K�1. (2.11)

We have the distance of the antenna elements (situated at apmq1 ) relative to the mass point
at a1, which introduces a time delay and corresponding phase change determined by

ζpmq
�
φk
�� 2π fc

dpmq

c cos
�
φk�φpmq

�
. (2.12)

4One might use b1pφq � 1{?2π in order to have the energy-normalized case with
³π
�π |b1pφq|2 dφ � 1.
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Having multiple antennas allows the system to resolve the angle domain, i.e., each element
sees a different angle-dependent phase at impinging SMCs. We refer to this as the coherent
processing case, where the SMC phase ζk can be estimated from the measured signal by
accounting for the relative phase change ζpmqpφq at the antenna elements, which requires
the array geometry and orientation to be known. Then, the phase parameter is described by
ζ � rζ1, . . . ,ζksT P RK�1, which is in line with the other parameters.

Setup pIIIq: non-coherent directional antennas

The third setup presents an alternative to pIIq, in that the SMC angles are accessed via
directional antennas instead of array processing. That is, there are again M array elements
with directional beampatterns bmpφq. The corresponding SMC-related signal model is
given by

xpIIIq
�
θpIIIq

��
����

b1pφ1qspτ1qe jζ̃1,1 . . . b1pφKqspτKqe jζ̃K,1

...
. . .

...
bMpφ1qspτ1qe jζ̃1,M . . . bMpφKqspτKqe jζ̃K,M

����
���α1

...
αK

���PCMNs�1

(2.13)

with parameter vector

θpIIIq � �
φT,τT,αT, ζ̃T�T P RKpM�3q�1. (2.14)

This model is referred to by the non-coherent processing case, where we can not separate
the SMC phase ζk and the relative phase changes ζpmqpφkq, i.e., the antenna elements
can have arbitrary position offsets from the reference position a. These phase effects are
combined to the parameter ζ̃k,m and the corresponding parameter vector is of the form

ζ̃ � rζ̃1,1, . . . , ζ̃K,1, ζ̃1,2, . . . , ζ̃K,2, . . . , ζ̃1,M, . . . , ζ̃K,MsT P RKM�1.

This concludes the outline of three different SMC-related signal models which will be
accessed later in order to formulate positioning algorithms (using pIq and pIIIq in Chapter 3),
determine position accuracy bounds (for all setups in Chapter 4) and formulate radio
environment maps (using pIIIq in Chapter 5). Next, we move to the noise-related (i.e.,
stochastic) part of the signal model denoted by n.

Noise model I: only measurement noise

The most common way to include uncertainties in signal models is by means of AWGN.
This is motivated by thermal noise being present in every (electric) measurement system
and AWGN has been used to accurately model it. Hence, we describe the noise-related
parts via

npAWGNq �w P CMNs�1 (2.15)

using the complex Gaussianw � CN p0,Cwq. Here, the covariance matrix is given by
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Cw � σ2
wIMNs P RMNs�MNs (2.16)

where σ2
w is the sample-based noise variance, which can be related to the AWGN power

spectral density from (2.4) via σ2
w � N0{Ts. This model is simple, without environment

specific assumptions, and is thus the to-go choice in most positioning algorithms, especially
when implementations on low-cost devices are considered, where there are many additional
hardware-related noise sources present. In this thesis, this model is also used for most of
the maximum-likelihood based positioning methods and we use directly the noise vectorw.
There are manifold ways to generate realizations of this noise vector given a set variance
σ2

w, a difficulty arises only in setting this variance to fulfill certain criteria, e.g., channel
quality.

Noise model II: including dense multipath

The second proposal to treat uncertainties is the more sophisticated choice of respecting
the dense multipath propagation as it is characterized in (2.5). To start, we consider the
most general model with multiple array elements with arbitrary beampatterns. We have

npDMq � ν�w P CMNs�1 (2.17)

representing the stochastic process characterizing the DMC ν and the measurement noise
w (as described before). We describe these quantities again by a Gaussian process npDMq �
CN p0,Cnq with covariance matrix

Cn �Cν �Cw (2.18)

where we made the trivial assumption that DMC and measurement noise are independent.
The measurement noise covariance matrix Cw is defined in (2.16), whereas for the DMC
covariance matrix Cν there are additionally correlations between antenna elements to be
taken into account. For this, we separate Cν into blocks of size Ns�Ns, each describing
the correlations between one pair of antennas indexed as pm,m1q. On the basis of (2.5), we
may write one block of the DMC covariance matrix as

Cpm,m1q
ν �

¼
Sνpφ,τqbmpφqb�m1pφqe jpζpmqpφq�ζpm1qpφqqspτqspτqH dφdτ. (2.19)

We simplify this covariance matrix by consideration of antennas adhering the following
assumption.

� The DMC is uncorrelated between antennas, i.e., Cν is block-diagonal. For each
of the previously described anchor antenna setups, there are different arguments
supporting this assumption: For pIIq (conventional array), the DMC becomes ap-
proximately uncorrelated for an antenna-spacing of λ{2 and a uniform angular
power spectrum [80]. For pIIIq (directional antennas), it can be argued that each
antenna at the anchor covers a different sector in the azimuth plane due to differently
aligned beampatterns. As a result, the shapes of the beampatterns are approximately
orthogonal such that»

Sνpφ,τqbmpφqb�m1pφqdφ!
»

Sνpφ,τq |bmpφq|2 dφ. (2.20)
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This expression shows that the angle-delay power spectrum has to be considered for
this assumption to be fulfilled exactly.

Taking this assumption into account, the mth DMC covariance matrix on the main diagonal
is written as

Cpmq
ν �Cpm,mq

ν �
¼

Sνpφ,τq |bmpφq|2 spτqspτqH dφdτ (2.21)

whereas all off-diagonal matrices vanish, i.e.,

Cpm,m1q
ν � 0Ns @m� m1.

Further restrictions are needed to make this noise model suitable for performance analysis
and algorithm development. First, we introduce the following assumption:

� The DMC angle-delay power spectrum is shaped such that its domains are inde-
pendent, i.e., both angle and delay domain can be treated separately. Hence, we
write

Sνpφ,τq � Spφqν pφq �Spτqν pτq (2.22)

where Spφqν pφq is the angle power spectrum and Spτqν pτq is the delay power spectrum
(DPS). The latter will play an important role later, as the delay domain yields the
most accurate position information.

With this, we can separate the double integral from (2.21) to write the DMC-related matrix
as

Cpmq
ν �

»
Spφqν pφq |bmpφq|2 dφ �

»
Spτqν pτqspτqspτqH dτ (2.23)

The DMC angle power spectrum is difficult to treat, hence we formulate the general
matrix

Cφ �

����
³

Spφqν pφq |b1pφq|2 dφ . . . 0
...

. . .
...

0 . . .
³

Spφqν pφq |bMpφq|2 dφ

���� P RM�M (2.24)

which collects the angle-related DMC contributions for each antenna. Furthermore, we
approximate the remaining integral with a sum to write»

Spτqν pτqspτqspτqH dτ�
Ns�1¸
j�0

Spτqν p j �Tsqspτqsp j �TsqH Ts

� ScCτS
H
c (2.25)

with

Sc � rsp0 �Tsq,sp1 �Tsq , . . . , sprNs �1s �Tsqs P RNs�Ns (2.26)

Cτ �

����
Spτqν p0 �Tsq . . . 0

...
. . .

...
0 . . . Spτqν prN�1s �Tsq

���� �Ts P RNs�Ns . (2.27)
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The matrix Sc is used to perform the circular convolution with respect to the signal vectors.
Combining all introduced matrices, the full DMC covariance matrix is written as

Cν �CφbpScCτS
H
c q P RMNs�MNs (2.28)

where b denotes the Kronecker product. To specify the DMC covariance matrix, we need
to choose a model for Spτqν pτq, where commonly (and in this thesis) single- and double-
exponential decay models are used. Then, the matrix Cφ contains weighting factors for
each antenna, depending on the directionality of the DMC from the perspective of the
anchor. There is no straight-forward method to properly model this matrix, hence an
alternative approach used in this thesis as well as in many publications is to assume a
uniform DMC angle power spectrum, which simplifies the respective matrix to

Ĉφ � IM. (2.29)

To obtain a realization of the DMC νpiq, given a specified covariance matrix Cν , the
Cholesky decomposition can be used to obtain

Cν �LνLH
ν (2.30)

where Lν is a lower triangular matrix. Then one can draw a standard complex Gaussian
wpiq � CN p0,IMNsq and get a DMC realization via

νpiq �Lνwpiq. (2.31)

2.2. Modeling Specular Multipath Components

The previous section has established models for the signals exchanged between agent and
anchor, which poses as a foundation for this thesis. For all analyzed signals, the main
source of position and environment information lies within the SMCs, hence this section is
dedicated to models putting SMCs into context with the considered scenarios.

In the first part of this section, we look at time and angle-resolved models for the SMCs,
the second part describes the underlying geometric models, and in the third part we look
at models for the amplitudes, more specifically, how to evaluate the quality of SMC
amplitudes for the posed hypotheses.

2.2.1. SMC Parameters

Each SMC is characterized by the parameters established in (2.7). These parameters in
turn are related to the agent position p via the geometry of the environment. In this regard,
we want to make clear that we have K SMCs, which includes the line-of-sight (LOS)
component labeled with k � 1 and K�1 reflections labeled with k � 2 . . .K. Hence for
k¡ 1, each SMC involves the reflection on flat surfaces such as wall segments of a room.

In the following, we define each geometry-related SMC parameter as a function of the
agent position p and the virtual anchor (VA) position ak. The latter represents a virtual
source [49, 123] that is determined using a geometric floorplan model as is defined in
Section 2.2.2. From this floorplan model, we also need the geometry-related quantities of
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2.2. Modeling Specular Multipath Components

SMC order Opkq (number of wall bounces), wall segment angle φseg
l (orientation of the lth

wall segment) and propagation path index gkp jq (segments index of the jth bounce).

From the parameter set (2.7), a direct relation to the geometry can be established for
delay and angle, whereas for amplitudes and phases, there are merely partial relations and
proposed models. More treatment of the latter is provided in Section 2.2.3.

We start with the SMC path length and the corresponding delay (time-of-flight) defined
as

dkppq � }ak�p} (2.32)

τkppq � 1
c dkppq (2.33)

where c is the propagation speed (unless stated otherwise, vacuum speed of light approx-
imated with c � 3 � 108 m{s is used). With this, the VAs enable a simple and compact
computation of SMC delays for reflections of arbitrary order. The complexity arises only
in determining high-order VA positions and their visibility properties.

Next, we move into angle domain and define the angle-of-departure (AoD) from the
perspective of the agent. For further usage, we write the unit vector associated with AoD
ϕkppq as

e
�
ϕkppq

�� 1
dkppq

pak�pq (2.34)

where we note that, even though the AoD is used as an argument directly, its relation arises
from the association to the corresponding VA. Then, the AoD is obtained by

ϕkppq �>
�
e
�
ϕkppq

	
(2.35)

where the angle function >
� �� can be realized in several ways on the basis of trigonometric

functions, one possibility is outlined in the segment angle description (2.45).

For SMC order Opkq, the AoD is related to the AoA (from the perspective of the anchor)
using the angles of all involved wall segments as

φkppq � p�1qOpkq�ϕkppq�π
��2

Opkq̧

j�1

p�1q j φseg
gkp jq. (2.36)

Here, gkp jq is used to access the corresponding segment angle in the propagation path.

For the treatment of first and second-order VAs, simplified computations of the AoAs may
be written as

φkppq � π�ϕkppq�2φseg
k�1 Opkq � 1 (2.37)

φkppq � ϕkppq�π�2pφseg
k�1�φseg

gkp2q
q Opkq � 2. (2.38)

It should be noted that the simple segment indexing gkp1q � k�1 was used. Furthermore,
all derived angles in this section can assume values outside the interval r0,2πs, hence
it might be necessary to obtain an equivalent angle via pφkppqmod2πq, e.g., to access
antenna pattern values from a codebook.

What remains are SMC amplitudes and phases, which depend on the materials of the
reflected surfaces and therefore a generalized modeling process is difficult. However, we
may formulate position-related models of SMC amplitudes and phases as

αkppq � PL
�
dkppq

� ��Γk
�
ϕkppq

��� (2.39)

ζkppq � 2π
λc

dkppq� arg
�

Γk
�
ϕkppq

�	
(2.40)
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where argp�q denotes the complex argument. Furthermore, PLp�q describes the path loss
(PL) for the respective propagated distance dkppq, Γkp�q is the reflection coefficient of the
corresponding VA for a given incidence angle ϕkppq and λ is the wavelength at fc. There
are various ways to model the PL for narrow-band systems where SMC separation is not
possible. However, in our case, we use the simple free space model with PLpdq � 1{d.
The reflection coefficient covers amplitude losses and carrier phase rotations, both related
to the materials and incidence angles of each bounced surface, hence we have the AoA
dependence. This physical process can turn highly complex for higher-order reflections. A
simplified model can be used by dropping the angle dependence and assuming a halving
of the amplitude power per surface bounce, i.e, |Γk| � p1{

?
2qOpkq, which means that for

the phase there is no relation to the agent position considered.

Due to the difficult reflection effects, in the later parts of Chapter 3 and Chapter 4, SMC
amplitudes and phases are treated as nuisance parameters for the position estimation prob-
lem. A better way to examine the SMC amplitudes is by looking at their statistics, which
is done in Section 2.2.3 in terms of second-order statistics that represent the amplitude
“quality”.

2.2.2. Geometry-related Modeling

As each SMC involves the reflection on flat surfaces from the environment, a detailed
description thereof is required. In the following, we define the geometry of an environment
mathematically as a combination of wall segments forming a floorplan.

Floorplan definition

In general, each reflective surface of a floorplan can be defined by a plane, using one (base)
position on the plane and the plane normal. However, in this thesis, azimuth plane operation
is considered, thus the environment is described by l � 1 . . .L line segments and the lth
segment is defined by a pair of points pwp1q

l ,w
p2q
l q which represent the segment start and

end coordinates. We stack these segment coordinates to get the floorplan matrix

W �
�
w

p1q
1 . . . w

p1q
L

w
p2q
1 . . . w

p2q
L

�
P R4�L (2.41)

i.e., each column contains the 2D coordinates of one (wall) segment. For later use, we use
a simple matrix multiplication to obtain the direction matrix

V � rv1 . . .vLs �
��1 0 1 0

0 �1 0 1

�
W P R2�L (2.42)

where the lth column vl contains the direction vector of the corresponding segment.
Another multiplication results in the matrix of normal vectors

N � rn1 . . .nLs �Rπ{2V P R2�L (2.43)

whereRπ{2 is the azimuth rotation matrix defined by

Rα �
�

cosα �sinα
sinα cosα

�
(2.44)

that rotates a 2D vector by the angle α when multiplied from the left.
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2.2. Modeling Specular Multipath Components

With the direction vectors, we can write the lth segment azimuth angle as

φseg
l �>

�
vl
�

mod π (2.45)

where the angle function >
� � � can be implemented in various ways using inverse trigono-

metric functions. To this end, a useful function for implementations is the double-argument
inverse tangent function applied onto the unit vector of the wall segment written as
atan2prvlsy, rvlsxq, where r�sx and r�sy are used to access the corresponding coordinates of
the vector. This function can determine the angle in the complete interval of r0,2πs and a
detailed description is given in Appendix A. Finally, the modulo operator is used to get
consistent segment angles regardless of the order of segment start- and end-point to fulfill
φseg

l P r0,πs.
As a summary, we define l � 1 . . .L sets

Fl �
!
w

p1q
l ,w

p2q
l ,vl ,nl ,φ

seg
l

)
(2.46)

each of which collects all characterizing quantities for the wall segment l. From an
application perspective, it is sufficient to provide the segment matrixW , then via (2.42)-
(2.45) the remaining parts of the segment set can be derived. With the segment sets at hand,
we now introduce the concept of VAs, which enables compact geometric models for the
SMC parameters, as shown in Section 2.2.1.

Virtual anchors (VAs)

Each VA is associated with one SMC and thus the VA position is written as ak, where
we include the physical anchor as the first VA with a1 � a. Further VA positions are
obtained via mirroring operations of the physical anchor a1 by all involved wall segment
surfaces in the propagation path. Such a path is determined by the sequence of interacting
segments, which can be described by an ordered array of indices among the L dedicated
wall segments. One particular segment is accessed via gkp jq which indicates the index of
the jth reflective surface for the kth SMC. The number of bounced surfaces determines the
order of SMC and VA. For the kth SMC, the reflection order is denoted by Opkq. In this
thesis, we consider reflections up to order 2, for which we will outline the VA derivation in
the following.

We start with first-order VAs, which are obtained by mirroring the physical anchor position
a1 at each wall segment as

ak �mirrpa1,Fk�1q @k P r2,L�1s (2.47)

with the mirroring operation defined by

mirrpx,Fiq � x�2
�
pwp1q

i �xqT ni
}ni}

	
ni (2.48)

where the bracket-term corresponds to the Hessian normal form of the segment line
equation5. It should be noted that for any wall segment labeled by l, the corresponding
first-order VA index is k � l�1, making the segment-to-VA association straight forward
(gkp1q � k�1 for the propagation path).

5The Hessian normal form is used to obtain the distance of any position x to the corresponding line of the
ith segment. The used position w

p1q
i could be replaced by any position on the segment line.
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2. Background

In the next step, to determine second-order VAs, further mirroring operations are performed,
this time using the established first-order VAs. Let k1 P r2,L�1s determine the index of
one first-order VA and l P r1,Ls z k1�1 is the index of the wall segment causing the second
interaction (the segment associated with the picked first-order VA is excluded). Then, the
corresponding second-order VA is obtained via

ak �mirrpak1 ,Flq @k P rL�2,L2�1s. (2.49)

For a picked first-order VA k1 and segment l, the index of the resulting second-order VA is
determined by

k � 2�pk1�1qpL�1q� l�upl� k1�1q (2.50)

where up�q is the unit-step function, which is used to take the rejected cases where l � k1�1
into account. This indexing leads to a sequential numbering, cycling through the wall
segments for each first-order VA. A demonstration is given in Figure 2.2 showing a simple
floorplan with L� 3 segments, where, if we take e.g. VA a3 (k1 � 3) and mirror it at the
wall segment with l � 3, we get the second-order VA with k � 8 and corresponding path
g8p1q � 2,g8p2q � 3.

a1

l �
3

l � 1

l
�

2

a2

a6

a5

a3

a7

a8

a4

a9

a10

Figure 2.2.: Example floorplan showing first- and second-order VAs and the corresponding indexing according
to (2.50).

For arbitrary higher VA orders Opkq, the process in (2.49) has to be repeated, whereas
the used VAs ak1 have Opk1q � Opkq�1 and the considered wall segment is chosen via
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2.2. Modeling Specular Multipath Components

gkpOpkqq. Following this method, the total number of considered SMCs amounts to

K � 1�
maxktOpkqu�1¸

i�0

LpL�1qi (2.51)

where maxkt�u describes the maximum operator for all possible values of k. In Chapter 3
and Chapter 5 we have K � L�1 (use only SMCs of order 1), whereas in Chapter 4 we
have K � L2�1 (use SMCs up to order 2).

SMC visibility

To determine if a specific SMC is usable at agent position p, visibility conditions have
to be considered, i.e., there has to be an uninterrupted path from anchor at a1 to agent
at p including all reflection surfaces. In simple terms, we may describe the visibility
condition as vispp,kq P t0,1u. The visibility is then easily considered in the models from
Section 2.1.3 by replacing all amplitudes via αkppq Ñ αkppqvispp,kq, i.e., non-visible
SMCs are basically “deleted”.

For general reflection orders, a visibility condition test can be performed with the method
of ray launching. In this method, the propagation path is traversed starting at the physical
anchor and going through all involved VAs with ascending order until the agent is reached.
For each pair of VAs (or VA and agent) on the path, intersection tests are performed, first,
with the corresponding wall segment to determine if a reflection is geometrically possible,
and second, with all other wall segments to determine if the reflection is blocked by a
different part of the floorplan.

While this procedure is computationally demanding, it is possible to perform significantly
more efficient visibility tests when simpler floorplans and lower reflection orders are
considered. When the (start- and end-) points of the wall segments form a convex polygon6

and only first-order reflections are considered, the visibility of each SMC can be determined
via

vispp,kq � 1
2 sgn

�pp�akqTñp1qk

�� 1
2 sgn

�pp�akqTñp2qk

�
(2.52)

ñ
piq
k �Rπ{2

�
w

piq
k�1�ak

�
.

Essentially, this method performs two half-plane tests for p using the lines from VA to
both segment start- and end-point. The intersection of these half-planes forms a “visibilty
cone” and p is part of this cone when the signs of the half-plane test values differ.

In implementations, this test can be optimized defining normal form equivalent vectors
and stacking multiple agent positions in a matrix as

n̄
piq
k �

�
ñ
piq
k

�aT
k ñ

piq
k

�
P R3�1

P �
�
p1 . . . pNp

1 1

�
P R3�Np . (2.53)

Then, it is possible to perform the following element-wise test to obtain a visibility vector
for all positions

pvis,k � pP Tn̄
p1q
k �lP Tn̄

p2q
k q P t0,1uNp�1 (2.54)

6In a convex polygon, the path between each possible pair of inside points (agent positions) does not intersect
with any of the polygon segments.
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where  is the logical not operator and �l is the element-wise (logical) equality. Then, to
include this visibility vector in the signal models, we perform an element-wise multiplica-
tion αkdpvis,k using a stacked vector containing the amplitudes αk for all agent positions,
i.e., we obtain αk � 0 for non-visible SMCs.

As a final geometry-related remark, it should be noted that, for a floorplan with perpendic-
ular wall segments, there can be multiple VAs with identical positions (for VAs with order
2 or higher) and hence the SMC parameters are also identical. However, only one of these
overlapping VAs is visible at any agent position, i.e., the visibility regions of the VAs are
disjoint.

2.2.3. Amplitude Quality Modeling

While delay and angle parameters can be directly modeled using the environment geometry,
for the SMC amplitudes the position-relation poses a difficult task, as described in Sec-
tion 2.2.2. For more sophisticated elaborations, we have to fall back to statistical models,
i.e., we look at power-related quantities on the basis of the noise models described in
Section 2.1.3.

In this regard, we may examine the signal-to-interference-and-noise-ratio (SINR) defined
by

SINRk,mppq � |αkppq|2
σ2

w
}spτkppqq}2Hm

(2.55)

where we have again the variance of the measurement noise σ2
w and } � }2Hm

denotes the
squared norm in the Hilbert space Hm defined by

xx,yyHm � σ2
wx

H�Cpmq
n

��1
y (2.56)

}x}2Hm
� xx,xyHm . (2.57)

This space describes the effect of self interference by the DMC at antenna m which is
accounted for via the covariance matrix of the noise model. The weighted inner product and
weighted norms are used to account for the inverse of Cpmq

n as a whitening operation [115,
121]. Clearly, we can use the covariance matrices from the described assumptions to put
the SINR in the context of certain setups, e.g.,

SNRkppq � |αkppq|2
σ2

w
}spτkppqq}2 pAWGNqCpmq

n � σ2
wINs (2.58)

SINRkppq � |αkppq|2
σ2

w
}spτkppqq}2H pDMqCpmq

n � ScCτS
H
c �σ2

wINs . (2.59)

where, in the AWGN case, we obviously have an SMC signal-to-noise-ratio (SNR). The
different SINRs act as SMC quality measures for various methods by putting directly the
“strength” of one SMC into context with the considered noise model.

We look at one more important assumption regarding overlapping SMCs:

� All SMCs are orthogonal to one another, i.e., there is no path-overlap in the resolvable
angle-and-delay domain. Formally, this means that for any two SMCs k and k1, we
have

M̧

m�1

b�mpφkqbmpφk1qxspτkq,spτk1qyHm !
M̧

m�1

|bmpφkq|2}spτkq}Hm . (2.60)
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2.2. Modeling Specular Multipath Components

For the case of directional antennas covering non-overlapping sectors in the azimuth
plane in pIIIq, the left-hand side expression of (2.60) is always close to zero, except
for the case of two SMCs arriving at the same time while also having the same AoA,
which occurs whenever the agent is very close to a reflective surface. This means
for pIIIq, a “distance-to-wall” requirement for the agent is sufficient to fulfill this
assumption. E.g., a required distance can be chosen equivalent to a path length of
1.5Tp � c, which amounts to 0.5 m for a bandwidth of 1 GHz.
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3. Resource-efficient Radio Positioning
Systems

In this chapter, we outline positioning methods for the signal models from Chapter 2.
Likelihood based algorithms are formulated using pIq and pIIIq. For the latter, both noise
models are considered. Two selected results are discussed, one based on high-fidelity
measurements to analyze the likelihoods evaluated over the whole environment, and
another result based on low-cost UWB transceivers to evaluate the positioning performance
for selected regions in the environment. The latter as a complete system is named single-
anchor localization using multipath assistance (SALMA) and a holistic description is
provided in [T1]. The algorithm descriptions summarize [T2] and [T1]. The likelihood
analysis is taken from [T4], whereas in [T3] an analysis on the channel response level is
provided. The algorithm performance results are also found in [T1].

In the following, we put the presented positioning system into context with other existing
works (Section 3.1), explain the positioning algorithms (Section 3.2) and show selected
results (Section 3.3).

3.1. Related Work

The gist of the presented indoor positioning method and realized system (SALMA) is that
it is low-cost, UWB-based, multipath assisted with a single anchor. In the following, we
will relate each of these attributes to other existing works.

In terms of accurate low-cost positioning systems, there are various realizations of optical
(LED-based) systems [3, 50, 60, 64, 127], which usually exhibit a high LOS condition
requirement and strong accuracy degradation with increased range. Realizations based on
acoustic systems [52, 63, 69, 81, 82, 137] usually struggle when dealing with multipath
propagation. In the context of RF systems, our specific system is based on UWB signals.
There are many other narrowband technologies that have been considered using RSS
fingerprints such as Wi-Fi [28, 97, 107, 124, 126], Bluetooth low energy (BLE) [20, 103,
128], and low-power narrowband adhering to IEEE 802.15.4, e.g., the ZigBee platform [7,
61]. Furthermore, for BLE, there are systems based on beacon networks with occupancy
detection [62, 79]. With lower available bandwidth, the common requirement of all these
RF systems is a high number of available anchors with corresponding setup / training
phase, which ultimately results in high deployment efforts.

UWB technology gained wide spread popularity first around 2005-2010, due to, among oth-
ers, its beneficial ranging capabilities [18, 134]. Almost a decade later, most high-accurate
(decimeter level) positioning systems were still based on UWB as was shown in the yearly
Microsoft localization competitions [65]. Similar to SALMA, many UWB systems have
also been implemented by using the low-cost DecaWave transceiver chip [32, 43–45, 53,
102, 112]. Compared to SALMA, these systems require a high number of anchors, typically
between eight [53, 112] and fifteen [45], while reaching comparable accuracies. While
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SALMA is snapshot based, in [119], a DecaWave-based platform for multi-target tracking
is described. A detailed generalized description of the applied algorithms is provided
in [74]. Großwindhager, a co-author of several included papers, worked also on runtime
adaptation of physical layer settings to improve UWB communications in [S3, S5], as well
as a DecaWave-based UWB platform named SnapLoc which realizes concurrent ranging
(any number of agents may range to multiple anchors without the need of synchronization)
in [S2, S9]. Related to the latter are also the works of Corbalán [15, 16] providing an
alternative approach to enable concurrent ranging with UWB radios. One open question of
the SALMA system, the best placement of the anchor, was addressed in [95]. The channel
impulse response (CIR) was analyzed in terms of path overlap over the whole environment
(dense agent position grid) using multiple anchor positions to determine an “effective
length” of the CIR, which can be used as a fitness value for potential anchor positions.

Several works have exploited electronically steerable or switchable antenna systems
to enable single-anchor localization using narrowband technologies [14, 93], or even
UWB-based systems [84, 108, 133], albeit either only based on simulations or lacking
a thorough performance analysis. The antennas employed to conduct the directional
measurements used in this chapter are described in detail in [S1], also with reference to
potential positioning applications.

In terms of multipath-assisted radio positioning, the foundation for the methods described
in this thesis was laid by the works of Meissner and Leitinger, starting with the early
works [71, 72], extended in [57] and developed into a simultaneous localization and
mapping (SLAM) method in [59]. Similar to the latter multipath-assisted radio SLAM
method are the works of Gentner in [23, 114]. In parallel to the works of this thesis, Kulmer
extended the multipath-assisted methods to cooperative positioning (i.e., without fixed
anchors) in [48].

3.2. Problem Formulation

The tackled objective of this chapter is estimation of the agent position p using measured
observation signals r, i.e., we may write this process as p̂� f prq. For the systems used
to obtain the observation r, we consider pIq and pIIIq from Chapter 2, which means we
describe single-anchor positioning enabled by consideration of multipath propagation. For
this purpose, we do not estimate SMC parameters (angle and delay) from the measure-
ments. Instead, for efficiency purposes, we follow a maximum likelihood (ML) approach
where we derive log-likelihood (LLH) functions. The LLHs are solely parameterized by
hypothesized agent positions. The basis for the LLH models is the simple pAWGNq noise
model given in (2.16). In terms of system models, we use both the simple system with a
single omni-directional antenna pIq given in (2.8) and the system with multiple directional
antennas pIIIq given in (2.13). All described positioning systems use only the L first-order
SMCs characterized by the VAs from (2.47). The reason for this is on the one hand the
significantly reduced signal strength of higher-order reflections, and on the other hand the
difficult geometric treatment of higher-order reflections in terms of visibility, which will be
explained later. In the following, we summarize the LLH-based methods described in [T1,
S12, S13, T2].

To start off, we return to our general observation model from (2.6), which can be written
as a circular complex Gaussian random variable

r � CN
�
xpθq,Cn

�
(3.1)
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for which the likelihood-function is written as

ppr|θq � π�MNsdettCnu�1 exp
!
� �
r�xpθq�H

C�1
n

�
r�xpθq�). (3.2)

We apply the natural logarithm and neglect all terms that do not depend on θ to obtain

Lpr|θq � ��r�xpθq�H
C�1
n

�
r�xpθq�. (3.3)

Although this term is only proportional to the LLH log ppr|θq, we will refer to Lpr|θq
as LLH for the sake of brevity. Since the objective is to determine the agent position p,
we have to use the position-dependent models for the parameters in θ. This works for τ
and φ with the geometric modeling as described in Section 2.2.2, whereas the amplitude-
related parameters α and ζ are assumed unrelated to the agent position and thus treated as
nuisance parameters. Hence, for the LLHs of specific models, we will use agent positions
and nuisance parameters as given variables.

We first assume pIq with pAWGNq, i.e., we have r P CNs�1 and we use (2.8) for xpθq, (2.9)
for θ and (2.16) for Cn to obtain

LpIqpr|pq � ���r�Spτ qα̃��2 (3.4)

where we used the auxiliary variables

Spτ q � �
spτ1q . . . spτKq

�
(3.5)

α̃� �
α1e jζ1 . . . αKe jζK

�T
. (3.6)

Note that for τ , there is a dependence on p which is determined by (2.33), but we leave
out the dependence in the notation to improve legibility. To set the nuisance parameters,
we follow a least-squares equivalent approach to maximize the right-hand side of (3.4)
with respect to α̃k � αke jζk , resulting in

α̃� pSHpτ qSpτ qq�1SHpτ qr
� SHpτ qr. (3.7)

The second line assumes that the SMCs are orthogonal in delay domain as described
in (2.60). While this assumption is stronger here due to the lack of directional antennas, its
application results in a simplification with the merit of efficient computation.

Next, we consider pIIIq where we have r P CMNs�1, we use (2.13) for xpθq and (2.14)
for θ. We formulate two variants depending on the used noise model, one where we use
pAWGNq with (2.16) for Cn and another for pDMq with (2.18) and (2.28) for Cn. For the
latter, we also assume a uniform DMC angle power spectrum following (2.29). Then, two
LLH variants are written as

LpIII,AWGNqpr|pq � �
M̧

m�1

��rm�Xmpφ,τ , ζ̃mqα
��2 (3.8)

LpIII,DMqpr|pq � �
M̧

m�1

��rm�Xmpφ,τ , ζ̃mqα
��2

H (3.9)
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with auxiliary variables

Xmpφ,τ , ζ̃mq �
�
bmpφ1qspτ1qe jζ̃1,m . . . bmpφKqspτKqe jζ̃K,m

�
(3.10)

ζ̃m �
�
ζ̃1,m . . . ζ̃K,m

�T
(3.11)

α� �
α1 . . . αK

�T
. (3.12)

Again, we have a (not explicitly shown) dependence on p for φ and τ which is determined
by (2.36) and (2.33), respectively. In (3.9), the DMC delay power spectrum is applied in
the Hilbert norm following (2.59). A generalized LLH, using different noise covariance
matrices for each antenna, is described in [T2, Section VI.A]. To determine the nuisance
parameters, we follow the approach introduced in [S12] to obtain

α̂k,m � 1
bmpφkq

xspτkq,rmyH
}spτkq}H

(3.13)

ζ̃k,m � argtα̂k,mu (3.14)

αk �
°M

m�1 |bmpφkq|2|α̂k,m|°M
m�1 |bmpφkq|2

. (3.15)

In short, these equations can be seen as a beampattern-weighted amplitude estimate whereas
the noise phase is retained.

To conclude the ML estimation method, using any of the LLHs from (3.4), (3.8) or (3.9), a
position estimate is determined via

p̂� argmax
pPP

Lp�qpr|pq (3.16)

where the set P contains selected candidate positions within communication range to the
anchor. A straight-forward choice for the positions in P would be a dense grid spanning
over the considered environment, i.e., a full LLH evaluation as was done exemplarily in [T4]
(see Section 3.3). In implementations from the included papers, a more efficient choice
for P was used, following the approach introduced in [S13] where candidate positions are
limited to a circle around a with radius d̂1 (the LOS distance estimate obtained, e.g., via a
two-way ranging approach).

3.3. Selected Results

In this section, we highlight some evaluation results that are based on the described ML
methods applied onto measured CIR data that represent the observation vector r. The
indoor environment of choice is an office-like lab room shown in Figure 3.1. The wall
materials consist of plaster board (on the left and right) and there are glass windows on
the top. On the bottom there is a metal white board which poses as a beneficial reflection
surface. We look at two evaluations in the room, both of which use one physical anchor in
the bottom right corner and slightly different furniture setup.
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Figure 3.1.: Floorplan of the evaluation environment, showing (a) the directional antennas at the anchor, the
virtual antenna array at the agent and various furniture, and (b) a different furniture setup including
shelves (light-shaded near room center) with 35 evaluation positions distributed evenly over the
room.

3.3.1. Evaluation I: High-fidelity Measurement Equipment

In the first evaluation, the agent was placed on a regular 15�14 grid with a spacing of
5 cm (see Figure 3.1a near the center), resulting in a measurement set of 210 CIRs. For
measurement equipment, the Ilmsens Correlative Channel Sounder was used [132] with
an omni-directional UWB coin antenna [47, Chapter B.3] at the agent. At the anchor
either the same coin antenna was used to represent pIq, or a switchable antenna system
with four directional UWB antennas exhibiting about 90� half-power beamwidth [S1]
was used to represent pIIIq. While the source signal used by the channel sounder covers
the whole UWB spectrum from 3 to 10 GHz, we convolve this signal with our desired
transmitted signal, being a raised-cosine (RC) pulse at fc � 5.4 GHz with a pulse width
of Tp � 2.4 ns (equivalent to a bandwidth of about 500 MHz) and a roll-off factor of
R � 0.9. This choice of bandwidth and roll-off factor leads to a signal that matches the
IEEE 802.15.4 (2011) compliant DecaWave DW1000 UWB transceiver signal, as was
shown in [S13]. The choice of center frequency was due to the operating frequency band
of the directional antennas, but it deviates from the UWB channels defined in the IEEE
802.15.4 (2011) standard [38]. However, the main determining factors for positioning
performance are bandwidth and antenna directivity (cf. Chapter 4), hence the choice of
center frequency has insignificant impact. The close spacing of the agent positions allows
various examinations such as angle-resolved amplitude models and statistical analysis of
the DMC. The latter is necessary to access the noise model pDMq, in order to make use of
the full LLH in (3.9).

For our first highlighted result, we look at the likelihood based on one measurement
taken at the center of the agent array evaluated over the complete room. The results are
shown in Figure 3.2a for pIq, evaluating (3.4) and in Figure 3.2b for pIIIq, evaluating (3.8).
Using pIq results in a flatter likelihood where ambiguities remain due to SMCs that are
unresolvable in delay domain only, whereas pIIIq enables accessing the angle domain to
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obtain a likelihood with one clear maximum.

Next, a summary of the quantitative results is provided in Figure 3.3 which shows the
cumulative frequency of position errors obtained. Some dotted lines are shown, verticals to
indicate certain error values and horizontals to indicate certain percentiles. For each result
curve, the corresponding paper describing the evaluation in detail is written in the legend.
Position error results are shown for agent positions in a small region in the center of the
room to compare the performance of pIq using (3.4), indicated by a black line, and pIIIq
using (3.8), indicated by a red line with disc markers. Due to the directivity of the antennas
in pIIIq we see a significant improvement of the accuracy with the 90% error decreasing
from 60 cm to 25 cm. Furthermore, the robustness is increased where an error of 25 cm is
achieved only by 55% of the cases with pIq compared to 90% with pIIIq. To conclude the
results of Evaluation I, we look at application of pIIIq with noise model pDMq based on the
LLH in (3.9), which is indicated by a blue line with square markers. Here, respecting the
DMC results in a significant improvement when looking at difficult cases at the 90% error,
which is improved from 25 cm to 17 cm and the amount of estimates that achieve an error
of less than 10 cm goes up from 50% to 72%.

a1

p

(a)

a1

p

(b)

Figure 3.2.: Likelihood evaluated over the lab room environment using (a) Setup pIq with (3.4) and (b) Setup pIIIq
with (3.8).

3.3.2. Evaluation II: Low-cost Devices

The second evaluation uses a set of 35 agent positions spread over the whole room to
represent both simple and challenging parts of indoor environments (see Figure 3.1b).
At each agent position 100 CIRs were measured. The lighter shaded areas indicate racks
that were filled with books and bottle crates, to increase the difficulty to obtain accurate
position estimates at certain parts of the room. The system that was used for this evaluation
was implemented on low-cost devices based on the DecaWave UWB transceiver, which
we named SALMA1. Again, there exist both setups. SALMA-light represents pIq using

1This system was first conceptualized in [S4] and then realized into a demonstrator system with a live
presentation in [S8].
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Figure 3.3.: Cumulative frequency of position error for lab room considering different anchor setups using the
channel sounder.

a single omni-directional antenna at the anchor, and SALMA-full represents pIIIq using
switchable directional antennas. The SALMA system always uses noise model pAWGNq,
because among the objectives of the system are timeliness with a reasonable update rate
and consistent performance over the whole environment. Hence, the AWGN LLHs given
in (3.4) and (3.8) are used. A key difference to the other evaluation is the (effective)
bandwidth. SALMA uses channel 7 of the IEEE 802.15.4 (2011) UWB PHY standard [38,
Section 14.4] with a claimed bandwidth of 1081.6 MHz at center frequency 6489.6 GHz.
Compared to the channel sounder measurements, the higher bandwidth is required here
to guarantee consistent performance and to remedy the hardware shortcomings. The
conducted measurements are part of a publicly available dataset2 which is described
in [S7].

The positioning results for the considered room are shown in Figure 3.4a, where for each
of the 35 evaluation positions, the average position estimates are shown connected to the
ground truth position (indicating estimation bias) and error ellipses indicating the 3-fold
standard deviation, on the basis of 100 CIR measurements. Overall, the radial position
errors are in the centimeter range, due to the good ranging capabilities with UWB signals.
The tangential position error stays in reasonable bounds with outliers for higher ranges
and for positions where the LOS is blocked by the racks (light shaded areas). However the
majority of the estimates assumes errors in the decimeter range.

Again, we consider quantitative results in terms of cumulative frequency of the position
error using all 3500 estimates, shown in Figure 3.4b. The resulting performance is shown
for two furniture setups of the racks, one where they were kept empty (purple, cross
markers), and one were the racks were filled, as mentioned, with books and bottle crates
(black, no markers). Obviously, since this evaluation considers many positions with higher
distances and with LOS obstruction, the performance degrades compared to Evaluation
I, albeit a median error of 45 cm and a 90% error of 55 cm (considering filled racks) are
respectable errors regarding the spectrum of currently available indoor positioning systems.
Also, having stronger LOS obstruction with filled racks seems to only marginally decrease
the performance, which is also a benefit compared to non-radio positioning technologies.

2See https://www.tugraz.at/en/institutes/iti/salma/database/.
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Figure 3.4.: Results for lab room showing (a) average of estimates and error ellipses (b) cumulative frequency of
position error for different furniture setup using either empty or filled racks (light shaded area in (a)).

3.4. Concluding Remarks

In this chapter, we used the established signal models to derive positioning methods that
may be implemented on low-cost UWB radios. Our aim was to tackle Hypothesis 1, i.e.
to outline how non-coherent directional measurements can be used at a single anchor to
obtain accurate agent positions. Our derivations revealed the following insights:

• The presented ML-based multipath assisted positioning methods enable single-
anchor systems sub-meter position estimates in almost real time on low-cost UWB
compliant devices.

• Application of directional antennas at the anchor tackles challenging regions in the
environment.

• The consideration of DMC enables further improvements.
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In this chapter, we analyze the position error of a single-anchor positioning system exploit-
ing SMCs with varying antenna setups at the anchor. The analysis is based on all system
and noise models described in Chapter 2, with a special focus on pIIIq. The derivation of the
Cramér-Rao lower bound (CRLB) on the position error, which is also known as position
error bound (PEB) [99], is outlined in order to evaluate the theoretical performance limit
of this positioning system, in comparison to a conventional antenna-array system pIIq and
a single-antenna setup pIq. The contents of this chapter summarize and contextualize the
derivations and results from [T2] with some selected parts from [T4].

In the following, we put the presented error bound analysis into context with other ex-
isting works (Section 4.1), derive the bound (Section 4.2) and show selected results
(Section 4.3).

4.1. Related Work

The origins of the CRLB, i.e., lower bounds on the variance of statistical parameter
estimates, go back to the namesakes of the bound, first with the early (1945) paper of
Rao [86] and then, in parallel published a year later, in the textbook of Cramér [17, Chapter
33]. First applications of these bounds towards localization were conducted in the 1970s
for acoustic signal sources on the basis of range estimates [9, 46], even considering array
signals [29]. At this time, in parallel, the GPS community developed a related position
accuracy bound for the trilateration methods used therein, called dilution of precision [54,
104], which was later shown to be in close relation to the CRLB [11].

Greater interest in performance bounds of radio positioning systems arose at the dawn
of the 21st century, with UWB radio systems getting into focus, granting availability to
high time resolution [10] and resilience to dense multipath [120]. CRLB derivations of
UWB channel parameters were conducted [39, 56], and a compact framework to evaluate
the limits of wideband localization was created by Shen and Win [99–101], including
elaborations on the effect of pathoverlap [98]. These works where extended for array
localization by Han [31].

In the years leading up to the 2020s, with the advent of realizable mm-wave systems,
antenna arrays have been upscaled towards massive MIMO systems, which raised the
interest in localization limits of these systems. With their high angle resolution, the position
information carried by multipath components has been analyzed for MIMO systems [73,
96], and in turn, position and orientation error bounds [2, 27, 96] have been developed. On
the basis of these works, specific treatment of bounds for single-anchor mm-wave systems
have been derived in [1, 40].

A detailed derivation of the CRLB is provided in the textbooks by Van Trees [115, Chapter
2.4.2] for general continuous-time systems and by Kay [42, Chapter 3] for discrete-time
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systems, the latter containing also closely related examples such as range estimation. While
these books pose as the foundation for most of the referenced works, the specific radio
channel approach used in this chapter is largely based on the thesis of Richter [90] as a
starting point, and then in more detail (for the multipath-assisted positioning paradigm) by
the works of Leitinger [58] and Witrisal [121, 123], where the former also treats anchor-to-
agent synchronization effects. On the basis of the latter works, in parallel to the included
paper [T2], Wilding derived error bounds for antenna arrays [117, 118], with a focus on the
analysis of the impact of the signal bandwidth on the ToF and AoA estimation performance
in dense multipath channels.

4.2. Problem Formulation

We are interested in the achievable position accuracy of systems that aquire measurements
described by our established signal models pIq-pIIIq, considering the noise models pAWGNq
and pDMq, i.e., dense multipath is taken into account for the analysis. This analysis reveals
what is possible with our positioning systems from the previous chapter. Our means of
obtaining lower bounds on the position error follow a two-step process: first we outline the
derivation of the Fisher information matrix (FIM) for the SMC parameters in Section 4.2.1,
second we use the established FIM to get quantifiable bounds on the agent position accuracy
in Section 4.2.2, where we also reveal which SMC parameters carry the most position
information.

4.2.1. Fisher Information of Model Parameters

On the basis of the established signal models, we can examine the useful information
present in observed signals. To this end, we will determine the FIM. The elements of this
matrix quantify the amount of information that observed radio signals carry about unknown
position-related model parameters.

For our general signal model describing the CIR observations (2.6), the FIM is well known
when using a Gaussian noise model described by covariance matrix Cn. It is defined as
[42, Chapter 15.7]

I θ � 2ℜ
 
JH
θC

�1
n Jθ

(
(4.1)

where Jθ denotes the Jacobian of the signal model with respect to the elements of a
length-Nθ parameter vector

Jθ �
��

B
Bθ1
xpθq

	
. . .

�
B

BθNθ
xpθq

	�
P RMNs�Nθ . (4.2)

The number of parameters Nθ is determined by the respective setup used, which can be
seen in (2.9), (2.11) and (2.14). Also, it should be emphasized that the FIM in (4.1) is valid
for a known Cn, i.e., the noise covariance matrix does not depend on the SMC parameters.
The columns of (4.2) are the main building blocks of the FIM. We therefore outline these
columns for each signal model in the following

B
Bθi
xpIqpθpIqq � B

Bθi

�
αie jζispτiq

	
(4.3)

B
Bθi
xpIIqpθpIIqq � B

Bθi

�
αie jζispτiqb

�
e jζp1qpφiq . . . e jζpMqpφiq

�T	
(4.4)

B
Bθi
xpIIIqpθpIIIqq � B

Bθi

�
αispτiqb

�
b1pφiqe jζ̃i,1 . . . bmpφiqe jζ̃i,M

�T	
(4.5)
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where b denotes the Kronecker product. While derivatives towards amplitudes and phases
are straight-forward, for angles and delays it is required to specify / determine the cor-
responding beampattern and (pulse) signal derivatives described by 9bpφq � Bb{Bφ and
9spτq � Bs{Bτ. From (4.3)-(4.5) it is clear that the entries of the FIM (4.1) are related to
inner-products using shifted pulses weighted by the inverse of the noise covariance matrix,
hence the Hilbert space definition from (2.56) and (2.57) may be used for a compact
description. Entries on the main diagonal, which act as the main contribution to parameter
information, are related to the SMC SINR values from (2.58) for pAWGNq and (2.59) for
pDMq. A detailed description of FIM entries for model pIIIq is provided in [T2, Appendix
A]. An equivalent description of FIM entries for model pIq is given in [58] and for model
pIIq it is given in [118].

To establish a position relation, we separate the SMC parameters into two parts with
θ � rθT

used,θ
T
nuissT where θused contains all parameters that are related to the agent position

(i.e., SMC delays τ and angles φ) and θnuis contains all remaining nuisance parameters (we
denote its length by Nnuis). The latter includes the amplitudes α and phases ζ in all three
setups, but by choice, it may also include delays and angles, whereas the respective other
is then the sole position-related parameter contained in θused in order to examine how much
position information is contained therein.

To obtain a position-related FIM, a transformation is required to analyze a new parameter
vector

ψ � �
pT,θT

nuis

�T P Rp2�Nnuisq�1 (4.6)

where a transformation is performed via

Iψ � JT
ψI θJψ P Rp2�Nnuisq�p2�Nnuisq (4.7)

with the corresponding Jacobian

Jψ �
� B
BpT θused 0pNθ�Nnuisq�Nnuis

0Nnuis�2 INnuis

�
. (4.8)

Here in the top left of the Jacobian, we have the derivative of the position-related SMC
parameters with respect to the agent position, which is also called spatial gradients. These
gradients are obtained by computing the corresponding derivative of (2.33) for delays
and (2.36) for angles,

B
Bp pτkq � � 1

c epϕkq (4.9)
B
Bp pφkq � 1

dk
p�1qOpkqepϕk� π

2 q (4.10)

where the unit vectors as introduced in (2.34) are used. Note that to compute (4.10), the
partial derivatives (of the atan2 function) described in (A.2) and (A.3) may be used.

4.2.2. Cramér-Rao Lower Bound on Position Estimate

The established FIM Iψ on the parameter vector ψ is used to obtain the CRLB [42, 115]
for an estimated parameter vector of ψ̂ via

E
!
}ψ� ψ̂}2

)
¥ tr

!
I�1
ψ

)
. (4.11)

Note that we might use θ here instead to determine the lower bound on one of the SMC
parameters directly. While (4.11) determines the lower bound on all parameters ψ, the
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main focus lies on the agent positions, hence we consider the upper left part of the inverse
of the FIM to define the PEB as

PEBp �
d

tr
"�

I�1
ψ

�
2�2

*
. (4.12)

While in the upcoming result section, a PEB analysis is presented for the full FIM, it
is possible to write a closed-form solution for the PEB by application of the concept of
equivalent FIM [101]. Hereby, only FIM sub-matrices related to angles φ and delays τ
are used to formulate a 2�2 position-related equivalent FIM, which is then used in (4.12).
This application is possible by neglecting parameter cross-dependency sub-matrices of the
FIM, justified by assumptions (2.20) and (2.60). The obtained equivalent FIM results for
the three signal models are given by

�IppIq � 8π2
Ķ

k�1

β2
0

c2
�SINRkDr pϕkq (4.13)

�IppIIq � 8π2
Ķ

k�1

�
β2

0
c2

�SINRkDr pϕkq�
D2

λpφkq
d2

k
M SINRkDr

�
ϕk� π

2

��
(4.14)

�IppIIIq � 8π2
Ķ

k�1

�
β2

0
c2 }bpφkq}2 �SINRkDr pϕkq�

D2
bpφkq
d2

k
M SINRkDr

�
ϕk� π

2

�

(4.15)

where Dr pϕq � epϕqeTpϕq is the ranging direction matrix [101] which indicates the
direction of the obtained information gain.

In this regard, we see for all three setups an information gain due to the estimated SMC
delays τk. It is oriented towards the AoA (in radial direction) of each SMC and scaled by
the (mean-square) bandwidth of the signal spτkq

β2
k �

} 9spτkq}2H
4π2 }spτkq}2H

(4.16)

β2
0 �

} 9spτq}2
4π2 }spτq}2 (4.17)

where, on the one hand in (4.16), we have the Hilbert norm accounting for a whitening
operation for noise model pDMq and on the other hand, we have (4.17) representing the
case of noise model pAWGNq, where an Euclidean norm is used and the k dependency drops.
As a second quantity to scale the radial position information, there is the effective SINR
defined as

�SINRk � SINRk γk ξdelay

k (4.18)

where γk � β2
k{β2

0 is interpreted as a whitening gain. The factor ξdelay

k P r0,1s is interpreted
as an information loss due to the cross-dependency between the delay and amplitude
estimation in presence of DMC. This information loss is explained in [T2, Appendix A].
Moreover, for pIIIq, the beampatterns in AoA direction also affect the information gain.

For pIIq and pIIIq, due to the possibility to measure the AoA via array processing or direc-
tional antennas, we also see an information gain perpendicular to the AoD (in tangential
direction) for each SMC. This gain scales with the number of antennas and the SINR
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associated with each SMC, and it decreases with the SMC path length. Additionally, we
have normalized squared aperture functions affected by array geometry for pIIq, and by the
beampattern shapes for pIIIq. The aperture functions are given by

D2
λpφq �

1
M

M̧

m�1

�
dpmq

λ

�2

sin2 �φ�φpmq
�

(4.19)

D2
bpφq �

1
4π2M

M̧

m�1

| 9bmpφq|2. (4.20)

As a concluding remark, in order to consider noise model pAWGNq for the equivalent FIMs
in (4.13)-(4.15), one has to merely replace βk with β0 and all SINRs with SNRs obtained
using (2.58).

4.3. Selected Results

In this section, representative PEB results from [T2] are outlined to compare the signal
models and to analyze contributions of different SMC parameters. The PEB from (4.12)
is evaluated numerically using the full FIM for a specific (artificial) environment, the
“L-shaped” room depicted in Figure 4.1. This geometry was chosen due to a reasonably
high amount of surfaces, leading also to a region without LOS visibility. Each SMC is
associated to one of the shown VAs and a position information gain is contributed by
each visible SMC. There are certain selected agent positions spread over the environment
(shown as blue crosses) which will be used in the following PEB evaluations to provide a
direction-resolved PEB visualization.

For the transmitted signal sptq, a root-raised-cosine pulse with roll-off β� 0.6 and band-
width 1{Tp � 1 GHz at carrier frequency fc � 7 GHz was chosen. This choice matches
with the transmitted signal of SALMA (see Section 3.3.2), only with a deviation of roughly
500 MHz for the carrier frequency (SALMA uses fc � 6489.6 GHz). In terms of DMC,
the (diagonal) matrix Cτ is specified according to (2.27) with the DPS Spτqν pτq defined as a
double exponential via

Spτqν pτq �Ω1
γ1� γrise

γ1pγ1� γrisep1�χqq
�

1�χe�τ{γrise
	

e�τ{γ1 (4.21)

where γrise and γ1 define the “rise” and “decay” times (in other literature, γ1 is denoted by
γdec) which establish the shape of the double-exponential, χ P r0,1s is used to tweak be-
tween single (χ� 0) and double-exponential (χ� 1) shape and Ω1 is the normalized power,
i.e., it is used to set a certain self-interference level for the used SINRs. Equation (4.21) is
taken from [41], where it is used to describe the power-delay-profile of the UWB channel
contribution by the non-LOS component. The parameter values chosen for the DPS in our
analysis are γ1 � 20 ns, γrise � 5 ns and χ� 0.98 which are the same values as used in [58].
The thereby established DPS resembles statistics from measurements taken in mid-sized
office environments. The normalized DPS power Ω1 was set such that |αp1mq

1 |2{Ω1� 10 dB
is achieved, i.e., the LOS component energy at a distance of 1 m from the anchor is set in
relation to the DMC power. With the signal and noise quantities set, the PEB is evaluated
over the whole environment using a uniformly sampled grid of agent positions with a
spacing of 2 cm. To obtain a PEB value from (4.12), the FIM is evaluated numerically
using (4.3)-(4.5) for the respective setup, whereby the SMC parameters are set using the
VA model following (2.36) for angles, (2.33) for delays, (2.39) for amplitudes and (2.40)
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4. Fundamental Limits of Radio Positioning

for phases. For the latter two, the free space model with simplified |Γk| � p1{
?

2qOpkq is
used.
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Figure 4.1.: Floorplan of environment used for the PEB evaluation. VAs up to order 2 are shown, the wall
segment indices are depicted as l � i and the region with non-visible LOS is indicated. The VA
indices follow (2.50), whereas there are multiple VAs with shared positions due to perpendicular
wall segments. Of special mention is the segment pl � 6q which contributes to only a single SMC
associated with a27 (propagation path g27p1q � 6,g27p2q � 5), all other possible SMCs involved
with this segment are never visible.

4.3.1. Comparison of System Setups

In the first evaluation, we compare the achieved PEB values between the setups pIq-pIIIq.
For pIIq and pIIIq, we consider small antenna arrays with M � 4, where the elements are
placed evenly on a circle with dpmq � 1.52 cm (resulting in an inter-antenna spacing of
λc{2) and φpmq � π

2 �m, for m� 1 . . .4. For the antenna patterns in pIIIq, we use

bmpφq � 1
2

¸
`

e j`pm π
2�φq, ` P t�1.5,�0.5,0.5,1.5u (4.22)

which corresponds to a Dirichlet kernel function (see (28) in [T2]) and generates a beam-
pattern that covers one sector of the azimuth plane for each cardinal direction. The antennas
used for the measurements presented in [T3] and [T1] exhibit comparable beampatterns.
In terms of nuisance parameters, we only consider amplitudes and phases, i.e., we use
θnuis � rαT,ζTsT (ζ̃ for pIIIq) in the derivations after (4.6) to explore the full potential of
geometry-related SMC parameters.

The PEB evaluated over the environment is shown in Figure 4.2 for the three models and,
for selected agent positions, the bound is also visualized in terms of radial (directed towards
anchor) and tangential (perpendicular to radial) error. First, considering pIq in Figure 4.2a,
we see overall good PEB values below half a meter even in the non-LOS region, which
is made possible by the position information from multipath components. However, in
certain regions there is a large drop due to overlapping multipath, which deteriorates the
information that can be gained from the respective SMC. Considering the results of the
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4.3. Selected Results

other two setups shown in Figure 4.2b and Figure 4.2c, this drop is reduced significantly
because the overlap can be resolved by accessing information from the angle-domain,
either via array processing in pIIq, or via application of directional antennas in pIIIq. With
pIIq, slightly better values are achieved than with pIIIq, albeit coherent processing of the
antenna measurements is necessary to achieve this. With pIIIq instead, a simpler processing
without inter-antenna coherent measurements is possible, which was also put into practice
in [T1] (see Section 3.3.2).
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Figure 4.2.: Position error bound using (a) setup pIq, (b) setup pIIq, and (c) setup pIIIq, the latter two with M � 4
antennas.

4.3.2. Comparison of Angle and Delay Information

For pIIIq, our main model of interest, we look at the contributions to the PEB in terms
of position information when only one of the geometry-related parameters (either φ or
τ ) is used. For this purpose, the PEB is evaluated while treating one of the parameters
as nuisance parameter, i.e., it is considered to be unrelated to the agent position. That
is, we use θnuis � rφT,αT, ζ̃TsT to evaluate the amount of delay information, as well as
θnuis � rτT,αT, ζ̃TsT to evaluate the angle information in (4.6). The evaluated PEB results
are shown in Figure 4.3. Considering the usage of delay information only, shown in
Figure 4.3a, we se a strong resemblance to the full PEB shown in Figure 4.2c. This clearly
identifies the SMC delays as the main contributor to position information. Only using
angle information, as shown in Figure 4.3b, achieves worse PEB values by about a factor
of 100 (note the different colorbar scaling). It is clear that mainly the tangential error is
decreased by angle information, i.e., the error in direction perpendicular to the AoD from
the perspective of the agent is smaller. The conclusion to draw from this is that the main
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4. Fundamental Limits of Radio Positioning

purpose of directional antennas is to assist in the SMC overlap resolution, whereas SMC
angle estimation alone is not suited for positioning with this low number of antennas.
In [T2], the same evaluation is performed using M � 16, showing more pronounced
accuracy improvements in tangential direction, which illustrates that with pencil-beam
antennas, eventually angle information will become as relevant as delay information,
reinforcing the present trade-off between signal bandwidth and antenna directionality.
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Figure 4.3.: Position error bound using setup pIIIq with M � 4 antennas, whereas only (a) delay information, (b)
angle information is used.

4.4. Concluding Remarks

In this chapter, we analyzed the established signal models to derive the CRLB on the
position error. Our aim was to tackle Hypothesis 2, i.e., to gain insights about the position
information contained in (UWB) signals, comparing single antenna measurements with
multi-antenna systems, processing measurements coherently and non-coherently whereas
directional antennas are used. Our analysis revealed the following insights:

• Application of multi antenna systems tackles challenging environments by opening
up the angle domain to avoid SMC path overlap.

• Achieved bounds by non-coherent directional measurements resemble bounds using
coherent (omni-directional) arrays.

• For systems with smaller arrays (such as SALMA), the main contributor to position
information lies in SMC delays.
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5. Multipath-resolved Radio
Environment Maps

In this chapter, a radio environment map is formulated to leverage a multipath-resolved
channel model (from Chapter 2) in order to improve the robustness of a multipath assisted
positioning system. The simplified PEB from Chapter 4 is used as a basis for the map
formulation. As an example application, a modified version of the algorithm used in the
SALMA system is presented and evaluated with simulated measurements. This algorithm
uses the environment map to guide an antenna selection process, in order to reduce the
number of used measurements. Both, map formulation and algorithm are conceptual and,
at the submission time of the thesis, there have not been related publications from the
author yet.

In the following, we examine radio maps in literature in context with the formulated
concepts of this chapter (Section 5.1), describe a problem formulation for the radio map
(Section 5.2), conceptualize the titular radio environment map (Section 5.3), describe and
evaluate a modified SALMA system using the map (Section 5.4), and show other related
results from one of the papers included in the thesis (Section 5.5).

5.1. Related Work

In essence, radio maps as described in this thesis are born out of two related concepts:
cognitive radio and location awareness. The former involves the first actual formulations
of radio environment maps (REMs), with the cognitive radio concept that was originally
proposed 1999 by Mitola [75, 76], where a map may indicate the available (spectrum)
resources for users to be shared efficiently in a game theoretic approach. These publica-
tions spawned a new cognitive radio and dynamic spectrum access community with a
wide breadth of works. Summarizing surveys are found in [116, 135]. Among the many
publications that followed, the works of Haykin are of note, providing a holistic view of the
concept [35, 36] and a corresponding textbook [34]. While many works are of conceptual
nature, especially considering the ambitious task of handling heterogeneous user networks,
a first standard applying the concept was developed with IEEE 802.22, which enables
spectrum sharing for TV broadcast bands [106]. Considering the term radio environment
map itself, it first appeared in [136], albeit the REM formulated in the mentioned work
is a multi-layered structure where available radio resources are just one part next to, e.g.,
service and policy aspects, and without deeper consideration of the physical environment.
Further detailed elaborations on REMs for cognitive radio are provided in [130].

Looking at the second influencing concept of location awareness, it describes the notion
of radio network participants to have knowledge about their pose and how to leverage
this information. Main motivator to use this information is a potential increase of channel
throughput by utilizing, among others, the regularity of human motion patterns [25] or
(dense) multipath spatial profiles of industrial environments [67, 109]. This made the
concept of location awareness to one of the main innovations intended for 5G [110], as the
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5. Multipath-resolved Radio Environment Maps

upcoming technologies were deemed capable to provide the necessary position estimation
accuracy [8]. This capability is given, on the one hand, by a high density of connected
devices and base stations, and on the other hand by higher bandwidths and antenna numbers
intended to be usable by a single device. While the latter poses as the basis for the map
concept given in this chapter, the former (device density) facilitated the application of
REMs on the basis of narrowband signals in the form of RSS or power spectrum maps.
Construction of these radio maps may be performed, among others, by using spectral
cartography [91, 111], or by crowd-sensing [5, 94]. Potential radio map applications have
been outlined such as channel prediction [66], which may be efficiently performed using
Gaussian processes [22, 78], or used by robot guidance systems [129] (see [125] for a
survey on robot coordination systems). For positioning systems, next to the fingerprinting
applications (see Section 3.1), RSS maps have been used for position tracking systems [55,
131].

Additionally to the results shown in Section 5.5, the author of this thesis worked together
with Nguyen on the analysis of SINRs related to SMCs in multiple works. In [S11],
SINRs of SMCs are analyzed with respect to the contribution to the channel capacity
of the wireless link. It is concluded that each SMC adds to the channel capacity and
thus the robustness of the link, i.e., redundancy is provided by each SMC resulting in a
robustness gain. In [S10] and [S14], Gaussian process regression (GPR) is used to obtain
an angle-dependent model for the SMC amplitudes using AoDs from the perspective of
the corresponding VAs. The goal is to model the reflection coefficients of the involved
walls, essentially to obtain an amplitude model as is formulated by (2.39) in Chapter 2.
The GPR is evaluated on the same data that is used in this chapter (Section 5.3), resulting
in angle-resolved SINR models for SMCs. The results indicate angle regions, and thus
wall regions, with beneficial reflection properties, which may be taken advantage of by,
e.g., an adaptive antenna system similar to what is presented in this chapter.

5.2. Problem Formulation

A general REM can be formulated as a generic spatial field function f ppq over the (agent)
position p [5]. For narrowband systems, this function describes the power spectral density
or received signal strength at p, where a high number of physical anchors are considered
as transmitters (for examples from literature, see the previous section). In contrast, we
consider REMs based on systems with high bandwidths and antenna arrays following
setups pIq-pIIIq, allowing us to leverage multipath resolved models with close relation to
geometric properties of the environment. For this matter, we propose to apply the PEB
from (4.12) considering the FIMs from (4.13)-(4.15) to formulate a multipath-resolved
REM as

f ppq � tr
!xIp�1)

. (5.1)

For the estimate of the equivalent FIM, we first look at the simplest case of pIq with

xIppIq � Ķ

k�1

zSINRkppqDr pϕkppqq (5.2)

where we use estimated SINRs to quantify the FIM for the actual radio environment. The
SINRs may be obtained from measured channel responses taken in the environment, as
is described in Section 5.3. The idea behind this formulation is related to the concept of
cognitive radio, more precisely in cognitive control [36] where agents use an entropic
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5.3. REM Concept Evaluation

reward function as a guidance system. Hence, in (5.2), we only consider quantities related
to the agent position. Furthermore, we neglected whitening gain and information loss as
described in (4.18), i.e., �SINRkppq � SINRkppq.
Of greater interest is pIIIq, for which, on the basis of (4.15), the simplified equivalent FIM
may be written as

xIppIIIq � Ķ

k�1

zSINRkppq
�

β2
0

c2

��b�φkppq
���2
Dr pϕkppqq�

D2
bpφkq
d2

k
Dr

�
ϕkppq� π

2

�
M
	

(5.3)

�
M̧

m�1

Ķ

k�1

��bm
�
φkppq

���2 zSINRkppqDr pϕkppqq . (5.4)

In the second line, we used the observation from Section 4.3.2 which identifies the delay
information as main contributor, hence the angle information part is neglected. On top
of that, we separate the individual antenna contributions in order to write REMs for each
antenna as

f pmqppq � tr

$&%
�

Ķ

k�1

��bm
�
φkppq

���2 zSINRkppqDr pϕkppqq
��1

,.- . (5.5)

This REM formulation allows adaptable antenna systems to choose which antenna to use
for radio observations. A corresponding antenna selection criterion may be formulated as
the following

mt � argmin
m

t f pmqpptqu. (5.6)

Among others, an application of this selection rule is to guide positioning systems, either
based on state space filters [33] or snapshot estimates. For the latter we present an evaluation
of an enhanced SALMA system based on simulated measurements in Section 5.4.

5.3. REM Concept Evaluation

On the basis of the measurement data described in [S14], which was recorded once again
in the lab room (see Chapter 3), we evaluate the directional multipath-resolved REM as
described in (5.5). The data is comprised of 595 channel measurements taken along a
trajectory spanning significant parts of the room (see Figure 5.1). To estimate the SINR
values of specific SMCs, we adhere to the following process:

• Determine potential VAs up to a certain order (our deliberate choice (ODC): order 2)
on the basis of an available floorplan, using all segments that surpass a certain length
and thus provide a sufficiently large surface (ODC: 50 cm). The VA positions are
then computed via mirroring operations as described in Section 2.2.2. The floorplan
with used segments and corresponding VAs is shown in Figure 5.1.

• For each VA, determine the set of visible trajectory positions, denoted by Pk. This
procedure contains a geometric visibility test (e.g., with a ray launching proce-
dure) and a path-overlap test, where for each pair of VAs, it is examined if their
corresponding SMC delays are more than Tp apart, i.e.

|τkppq� τk1ppq| ¡ Tp @k � k1,vispp,kq^vispp,k1q � 1. (5.7)
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5. Multipath-resolved Radio Environment Maps

If this condition is violated by a VA-pair pk,k1q, both VAs are assumed to be non-
visible, otherwise p is added to Pk. If the thereby established set contains less
positions than a certain threshold (ODC: require |Pk| ¡ 50 to make the SINR esti-
mator reliable enough), the VA is outright neglected and will not be used in further
processing.

• Form trajectory position clusters using the sets Pk described in the previous step.
To this end, the K-means algorithm is applied iteratively to obtain cluster point
sets C piq

k , i� 1 . . .Kmeans, starting with a significantly high enough number for the
cluster centers (ODC: Kmeans � 12) and reducing this number until the smallest
cluster contains enough points to make the SINR estimator reliable (again, ODC:
min

i
p|C piq

k |q ¡ 50 points). Examples for two VAs are shown in Figure 5.2.

• For each cluster and corresponding VA tC piq
k ,aku, perform a calibration procedure,

where a position grid is spanned to cover the vicinity of the VA position, and from
this grid array the best candidate is chosen according to

â
piq
k � argmax

āk

!
�

¸
pPC piq

k

��rppq� α̂kppqs
� 1

c }āk�p}
���) (5.8)

where rppq denotes the channel response for the corresponding trajectory position
and the amplitudes α̂kppq are estimated via (3.7). This procedure is equivalent to
a least-squares estimation method considering independent measurements. The
calibration is repeated multiple times with smaller grids spanned over the found VA
position from the previous iteration to determine a local maximum. For the result
shown below, this calibration process was performed with three repetitions using
square grids with uniform spacing of (ODC) r5,1,0.2s cm.

• Estimate the SINR using all amplitudes of one cluster in a method-of-moments
approach. The amplitudes are obtained again via (3.7) with calibrated VAs âpiqk

for p P C piq
k . Then, the first- and second-order moments of all amplitudes (|α̂piq

k |)
associated with one cluster are determined (e.g., denoted by mpiq

k,1 and mpiq
k,2) and the

SINR is computed via SINRpiq
k �

� mpiq
k,1c

pmpiq
k,1q

2�mpiq
k,2

�1
	�1

[26].

• Option 1, global SINR: for each SMC k, obtain a single SINR by averaging over all
SINRpiq

k .
• Option 2, clustered SINR: for any agent position p of interest for the REM, take the

estimated SINRs of the closest cluster centers. Example estimates are shown at the
top of Figure 5.2 for the corresponding VAs.

• The REM f pmqppq is obtained via (5.5) evaluated over an agent position grid span-
ning the whole environment, using the estimated SINRs from the previous step.
The directional antennas are simulated using the same method as in Chapter 4,
applying (4.22) to obtain beampatterns covering the four cardinal directions. The
SMC angles are obtained via the geometric model using (2.35) and (2.36).

Example results of this evaluation are shown in Figure 5.3 for a physical anchor placed
in the top right corner of the room, where SINRs on the basis of position clusters are
used. Analogously, Figure 5.4 shows the results for a physical anchor in the bottom
right corner, whereas global SINRs estimates are used. The REM values were scaled
to be in accordance with the PEB values from Chapter 4. Also, the trajectory of agent
positions is indicated for which measurements were taken and error ellipses are shown
for selected agent points. The shown REMs illustrate the benefit of activating certain
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Figure 5.1.: Floorplan of environment used for the REM evaluation. VAs up to order 2 are shown, the wall
segment indices are depicted as l � i (note that parallel segments are merged for the indices). The
VAs are labeled with consecutive indices, non-visible VAs are excluded and overlapping VAs are
merged. VAs for physical anchor 1 (top right) are colored brightly (green) and VAs for physical
anchor 2 (bottom right) are colored darker (purple). Sample positions on the trajectory and their
indices are indicated (in magenta).
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Figure 5.2.: Example of trajectory position clustering, shown for two VAs with their respective wall segments
(in magenta). The corresponding trajectory positions Pk are indicated in different colors for each
cluster and blue crosses indicate the cluster centers determined by the K-means algorithm. Note that
there are gaps in the trajectory positions due to the path overlap criterion (5.7). On the top, the SINR
values for each cluster are indicated (using a6, some clusters have SINR��8).
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directional antennas, when looking at the width of the ellipses in direction of the anchor
(radial information) and in perpendicular direction (tangential information). In cases where
SMCs overlap, it can be beneficial to use antennas that point towards reflection surfaces,
since more position information is present in some direction. As examples, in Figure 5.3,
for center-left positions at px � �5,y � 5q the “left” antenna (b), pointing towards the
agent does have good radial values, but the “up” antenna (a), pointing towards the windows,
has better tangential values and might thus be a good choice. Similar observations can be
made in Figure 5.4 at px��5,y� 5q, comparing the antennas (a) facing the agent and (c)
facing the south wall.

The corresponding evaluation of the antenna selection rule (5.6) is illustrated in Figure 5.5
for these two REM examples, showing for each agent position which antenna achieves the
highest REM value and should thus be selected by an adaptive positioning method. Similar
to the made REM observations, it can be seen how there are large regions where the best
antenna is not directly facing the agent because of beneficial SMC visibility conditions.
E.g, the antenna facing to the right is the best match towards the bottom in Figure 5.5a and
towards the top right in Figure 5.5b along the trajectory. In Appendix B, further results
are shown where the SINR estimation basis is switched, i.e., global SINRs for top right
shown in Figure B.1 and clustered SINRs for bottom right shown in Figure B.2 with the
corresponding antenna selection shown in Figure B.3.
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Figure 5.3.: REM evaluation of (5.5) for the top right anchor, using clustered SINR estimates and a directional
antenna facing (a) up (b) left (c) down (d) right.
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Figure 5.4.: REM evaluation of (5.5) for the bottom right anchor, using global SINR estimates and a directional
antenna facing (a) up (b) left (c) down (d) right.
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Figure 5.5.: Antenna selection via (5.6) based on the REM for (a) the top right anchor using clustered SINR
estimates (see Figure 5.3) and for (b) the bottom right anchor using global SINR estimates (see
Figure 5.4).
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5.4. Example Application: Adaptive SALMA

To put the formulated map concept into practice, we extend the SALMA system from
Chapter 3 to include any REM as just defined. The objective of this extension is to use
the REM for feedback control in order to reduce the number of antenna measurements
needed to obtain a position estimate, without significantly reducing the accuracy. The
main controlling quantity that should influence the algorithm is a selection similar to (5.6),
however, we want to respect the REMs of all antennas, hence, we define the selection
vector

mt � sort
m

�
f pmqpp̂t�1q

�
t P r1,Nts (5.9)

where sorti is a sort function that stacks the corresponding values for all i into a vector in
ascending order and we have t as a discrete time index for up to Nt time steps. The subscript
t�1 indicates that the position estimate from the last time step is used to determine the
used REM values and, for the evaluation, we use the ground truth position in the first time
step (p̂0 � p1).

With this selection vector, the algorithm from Chapter 3 is adapted in the LLH evaluation
from (3.8) by not using all antennas with m� 1 . . .M, but rather using the selector from
(5.9). Hence, we define

L̄pIII,AWGNq
M̂

pr|pq � �
¸

mP
�
mt

�M̂

1

��rm�Xmpφ,τ , ζ̃mqα
��2 (5.10)

where we have the parameter M̂ that determines how many of the antennas should be
selected using the REM values. This already allows the algorithm to reduce the number
of used antennas, guided by the REM. However, to make the algorithm truly adaptive,
we introduce a mechanism that varies this parameter depending on the previous position
estimate. For this, we have a time-dependent selection that starts with M̂ptq � 1 and is then
sequentially changed based on the following criteria

if
�}p̂t�1� p̂pM̂ptqq

t } ¡ dthresh
�

then M̂ptq � M̂ptq�1 (5.11)

where we have p̂t�1 as the final estimate from the last step (for the first estimate, all
antennas are used, i.e. M̂p1q �M) and the current estimate p̂pM̂ptqq

t is obtained using M̂ptq
antennas. The threshold value dthresh is set accordingly to detect outliers, i.e., “jumps”
in the estimate. For concept evaluation purposes, we use a constant threshold (ODC:
dthresh � 0.33 m), whereas a dependency on a velocity estimate or measurement may be a
reasonable further extension.

To evaluate the application of the REM, measurements for four directional antennas as
they would be conducted by SALMA were simulated for the 595 trajectory positions.
For the noise model, we used the same parameters as in Chapter 4 for the AWGN and
DMC (representing the corresponding indoor environment; for details see Section 4.3).
For each position, 100 realizations of the channel response measurements were created.
These measurements were used in the standard SALMA methods described in Chapter 3
and using (5.10) with M̂ � 1 . . .3, which we named correspondingly “solo”, “duo”, and
“trio”. Lastly, the adaptive selection from (5.11) was used and the respectively determined
M̂ptq values were stored to see the average numbers of required antennas. The used REMs

55



5. Multipath-resolved Radio Environment Maps

for the selection vector are the ones shown in Figure 5.3 for anchor 1 (top right, using
clustered SINR) and Figure 5.4 for anchor 2 (bottom right, using global SINR).

The results of the position error for all realizations are shown in Figure 5.6. Comparing
the number of antennas used, it is clear that a single directional antenna can not compete
with the omni-directional antenna used in SALMA-light, which is caused by the fact that
a single directional antenna is likely to attenuate some useful SMCs to a large degree
such that the likelihood becomes multi-modal, just as with the omni antenna. Using two
or three antennas remedies this effect, whereas the latter seems to be sufficient to reach
the SALMA-full results (especially for anchor 2). The most valuable result however,
is the application of the adaptive method, which comes very close to SALMA-full for
the outliers (higher percentiles), albeit with decreased accuracy (slope of curves) due to
reduced position information present with overall fewer measurement used.

Figure 5.7 shows position error results to compare the adaptive SALMA methods (solid
lines) to slight variations thereof (dashed lines). In these altered versions, the selection
vector mt is randomized with a random permutation of 1 . . .M. The idea behind this
simulation is to show that the REM guidance is effectively improving the results compared
to “blindly” reducing the number of used antennas. These results show that the REM
clearly improves the results for all cases were more than one antenna is used. However,
this observation is more pronounced with anchor 1. Of special note is the duo case, where
a random selection of the two used antennas leads to a significantly worse performance (on
the level of SALMA-light). Curiously, when examining the solo case, a random selection
performs slightly better than the REM-guided one. It seems that, for the cases where we
have a strong reduction of most SMCs, the REM is no longer a reliable selection criteria to
get the “best” LLH for the algorithm.

Further analysis of the adaptive method is seen in Figure 5.8, which shows the average
needed number of antennas. It is clear that for the majority (around 60%) of agent positions,
it is sufficient to use a single antenna. Only in challenging regions it is necessary to switch
on additional antennas, where the full setup is only needed in around 15% of the cases.
The average used antenna numbers are 1.8 for anchor 1 and 1.73 for anchor 2, i.e., less
directional observations are needed than with the “duo” method. However, we do note that
it may require multiple estimates, i.e., LLH evaluations have to be computed whenever
more antennas (in around 40% of the cases) are needed. The average needed numbers
are also depicted in Figure 5.9, albeit shown over the trajectory positions. This presents
a clear picture of challenging regions, e.g., for the region in the top left (index 300 and
also towards the end of the trajectory) the system commonly needs 3 or more antennas,
regardless of what anchor is used.
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Figure 5.6.: Positioning evaluation for (a) anchor 1 (top right, clustered SINR), (b) anchor 2 (bottom right, global
SINR) along trajectory using the standard SALMA methods and enhanced versions with varying
antenna numbers selected by application of the REM.
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Figure 5.7.: Positioning evaluation for (a) anchor 1 (top right, clustered SINR), (b) anchor 2 (bottom right, global
SINR) analogous to Figure 5.6. Comparison between the REM-based selection and a variation of the
method where the antenna selection is randomized.
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Figure 5.8.: Distribution of needed antennas for the adaptive SALMA method using (a) anchor 1 (top right,
clustered SINR), (b) anchor 2 (bottom right, global SINR).
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Figure 5.9.: Average number of needed antennas for each trajectory position for (a) anchor 1 (top right, clustered
SINR), (b) anchor 2 (bottom right, global SINR).
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5.5. Selected Related Results

A close resemblance to the basis of the formulated REMs is provided in [T5], where a
similar measurement campaign was performed in a parking garage using the SALMA
positioning system described in Chapter 3 and [T1]. Figure 5.10a shows the environment
with considered VAs and agent trajectory. Many of the VAs result from reflecting surfaces
at the ceiling (metal beams). The system was mounted on a moving car and channel
responses were measured over the shown trajectory switching between four directional
antennas. An SINR evaluation was performed, again considering an anchor calibration
step similar to (5.8), with agent position clusters along the trajectory denoted by ppiqC . The
resulting SINR estimates are shown in Figure 5.10b, evaluated over the trajectory position
clusters. Naturally, the LOS component is the strongest SMC, however there are regions
around index 15, which is at the center of the U-turn, where a strong SMC from the left
wall (α̂2) is present. Further elaborations of this kind are found in [T5]. More analysis of
the environment geometry and measurements is needed to calculate an REM and apply the
positioning method described in this chapter, which is open for future work [89].

5.6. Concluding Remarks

In this chapter, we proposed the concept of a directional, multipath-resolved radio envi-
ronment map on the basis of the simplified PEB described in the previous chapter. Our
aim was to create a bridge to the cognitive radio concept in terms of cognitive control,
to consider delay- / angle-resolved models in order to tackle Hypothesis 3. Our analysis
revealed the following insights:

• A database of radio channel observations can be used to obtain an insightful envi-
ronment map which takes geometric aspects into account.

• The formulated environment map can be created for radio systems equipped with
multiple directional antennas, thereby obtaining one map for each antenna. The
maps are intended to be used for adaptive systems to provide a fitness value for each
antenna.

• An application of the map was verified via inclusion in the previously presented po-
sitioning system (SALMA). In particular, when the system uses multiple directional
antennas, the map acts as a guide to select which antenna to use. The results for the
four-antenna system show that, on average, less than two antennas are needed to
achieve results close to the original (SALMA-full) system with four antennas.
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Figure 5.10.: Amplitude quality evaluation in parking garage environment showing (a) the floorplan with the
used (calibrated) VAs and (clustered) trajectory, (b) the estimated SINR values for the position
clusters over the trajectory.
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6. Conclusions and Outlook

The objective of this thesis has been to enable agents of radio networks to become location-
aware. To this end, a radio environment map (REM) is formulated providing a picture
of position information present in the environment. The REM is used to drive adaptive
RF front-ends in order to improve the dependability of wireless links between Internet of
Things (IoT) nodes.

As a foundation for REMs, Chapter 2 provides a signal processing framework for single-
link scenarios involving radio signals exchanged between a mobile agent and a static base
station (anchor). Varying degrees of complexity are considered for the system at the anchor
side to support simple IoT nodes such as sensor nodes, as well as more sophisticated
systems such as mobile phones or cars. Three systems are formulated using (i) one omni-
directional antenna, (ii) multiple omni-directional antennas coherently and (iii) multiple
directional antennas non-coherently. The provided framework has been used in the main
body of this work as a basis to tackle three research questions, formulated as hypotheses,
namely (H1) the design of resource-efficient positioning systems, (H2) fundamental limits
of positioning accuracy and (H3) formulation of multipath-resolved REMs. The hypotheses
are tackled in Chapters 3–5 which are summarized in the following, also with reference to
the included papers.

In Chapter 3, single-anchor positioning methods are described on the basis of UWB signals
and a corresponding implementation using low-cost DecaWave DWM1000 hardware is
outlined [T1]. Analysis of position likelihoods considering UWB signals indicates the
benefits of directional antennas to resolve ambiguities [T4]. Evaluations in office-like
environments exemplify an improvement of positioning performance, where outliers are
significantly diminished. Additionally, dense multipath is included in the noise model
(on top of simple AWGN), which improves the positioning performance, as is shown in
evaluations based on simulations [T2].

Moving to a more theoretical side of things, Chapter 4 deals with the fundamental limits
on position accuracy of estimators using signals from the established framework. The
position error bound (PEB) is calculated on the basis of the well established Cramér-Rao
lower bound and Fisher information for the three system setups defined in Chapter 2.
An evaluation over a challenging environment (including non line-of-sight regions) is
given via numerical analysis where it is shown that using directional measurements non-
coherently has the potential to compete with conventional array processing setups using
omni-directional antennas coherently [T2]. The trade-off between bandwidth and direction-
ality is highlighted when using the non-coherent setup. In contrast to many other works
(e.g., [2, 27, 31]), dense multipath components are respected in the noise model on top
of a simple AWGN model, enabling an analysis of different environments with varying
multipath propagation.

In Chapter 5 a multipath-resolved REM is formulated, which uses channel response signals
and geometry to inform agents about available position information. The given map uses
the simplified PEB described in Chapter 4 and map values may be used as feedback control
driving, e.g., an adaptive (switchable) antenna system. Determination of map values is
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performed using SINR values associated with specular multipath components, originating
from strong reflections in the environment. An evaluation of such SINRs was performed
in a challenging parking garage environment [T5]. An addition to the SALMA system
is formulated making use of the REM values in order to select which antennas to use.
Evaluation of this adaptive SALMA method on the basis of simulated data shows that a
performance close to the original system is achievable, while the average number of used
antennas is reduced from 4 down to less than 2. For future work, it is intended to perform
the REM and adaptive algorithm evaluation using real data from a harsh environment, such
as the parking garage described in [T5].
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Appendix





A. Four Quadrant Inverse Tangent

The inverse tangent function with two arguments can be used to determine the angle of a
two-dimensional vector rx,ysT, whereby the image covers the complete angle range r0,2πs
and the poles of the involved atanp�q function are taken care of. The function is written
atan2 : R2 ÞÑ R defined as

atan2px,yq�

$''''''''&''''''''%

atanp y
x q x¡ 0

atanp y
x q�π x  0, y¡ 0

π x  0, y� 0
atanp y

x q�π x  0, y  0
π
2 x� 0, y¡ 0
�π

2 x� 0, y  0.

(A.1)

The partial derivatives are written as

B
Bx atan2px,yq �

#
0 x� 0, y� 0
� y

x2�y2 else
(A.2)

B
By atan2px,yq �

#
0 x� 0, y� 0

x
x2�y2 else.

(A.3)

65





B. Additional REMs for Lab Room
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Figure B.1.: REM evaluation of (5.5) for the top right anchor, using global SINR estimates and a directional
antenna facing (a) up (b) left (c) down (d) right.
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Figure B.2.: REM evaluation of (5.5) for the bottom right anchor, using clustered SINR estimates and a
directional antenna facing (a) up (b) left (c) down (d) right. Note that there are regions where the
REM assumes very bad (i.e., very high) values close to the anchor. The reason for this degradation is
that, for measurements associated with this region, only the LOS is visible due to the directivity of
the antennas and hence a position estimate is not feasible.
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Figure B.3.: Antenna selection via (5.6) based on the REM for (a) the top right anchor using global SINR
estimates and for (b) the bottom right anchor using clustered SINRs estimates.
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[130] H. B. Yilmaz, T. Tugcu, F. Alagöz, and S. Bayhan. “Radio environment map
as enabler for practical cognitive radio networks.” In: IEEE Communications
Magazine 51.12 (Dec. 2013), pp. 162–169.

[131] F. Yin and F. Gunnarsson. “Distributed Recursive Gaussian Processes for RSS
Map Applied to Target Tracking.” In: IEEE Journal of Selected Topics in Signal
Processing 11.3 (Apr. 2017), pp. 492–503.
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Abstract

Setting up indoor localization systems is often excessively time-consuming
and labor-intensive, because of the high amount of anchors to be carefully
deployed or the burdensome collection of fingerprints. In this paper, we
present SALMA, a novel low-cost UWB-based indoor localization system that
makes use of only one anchor and that does neither require prior calibration
nor training. By using only a crude floor plan and by exploiting multipath
reflections, SALMA can accurately determine the position of a mobile tag
using a single anchor, hence minimizing the infrastructure costs, as well as the
setup time. We implement SALMA on off-the-shelf UWB devices based on
the Decawave DW1000 transceiver and show that, by making use of multiple
directional antennas, SALMA can also resolve ambiguities due to overlapping
multipath components. An experimental evaluation in an office environment
with clear line-of-sight has shown that 90% of the position estimates obtained
using SALMA exhibit less than 20 cm error, with a median below 8 cm.
We further study the performance of SALMA in the presence of obstructed
line-of-sight conditions, moving objects and furniture, as well as in highly
dynamic environments with several people moving around, showing that the
system can sustain decimeter-level accuracy with a worst-case average error
below 34 cm.

*authors contributed equally to this work
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1 Introduction

Localizing people and objects in a precise and accurate way is a key requirement
for future location-aware Internet of Things (IoT) applications such as assisted
living [1], health care [2], and robot navigation [3, 4]. As of today, achieving an
accurate position estimation is still a grand challenge especially indoors, where
global navigation satellite systems such as GPS, Galileo, GLONASS, and Beidou
are not applicable due to the limited signal reception [5].

Challenges of indoor positioning. When estimating the position of a device
indoors, one needs to deal with severe attenuation, multipath, and scattering of
signals due to walls, furniture, or other surrounding objects. This is, for example, a
major challenge for localization systems making use of narrowband RF technologies:
solutions based on IEEE 802.15.4 [6, 7], Bluetooth [8, 9], and Wi-Fi [10, 11] are
indeed highly susceptible to multipath fading, and can hardly achieve a sub-meter
accuracy in these settings [12].

Indoor environments are also highly dynamic: moving people and objects may
obstruct the line-of-sight (LOS) path between a source and a receiver. This is,
for example, particularly challenging for localization systems based on optical
technologies. Furthermore, the unpredictable presence of interference sources
(e.g., co-located wireless devices using the same frequency band) can cause loss of
information and fluctuations in the received signal strength that drastically affect
the accuracy of positioning algorithms.

A practical localization system needs to achieve a high positioning accuracy
despite these inherent properties of indoor environments. This task is further
complicated by the fact that an ideal indoor localization system should maximize
the accuracy, efficiency, and responsiveness of position estimation, while minimizing
deployment efforts and costs. Although a plethora of distinct approaches has been
proposed in the literature, none of them can yet achieve a high accuracy at minimal
costs and is thus widely accepted [13].

Deployment overhead still too high. After comparing the performance of
more than 100 state-of-the-art indoor localization systems under the same settings,
Lymberopoulos and Liu [13] have concluded that the set-up procedure of existing
solutions is excessively time-consuming and labor-intensive. As a consequence, the
use of most systems is still impractical in real-world deployments.

This state of affairs represents a serious problem, because recent solutions
based on Ultra-wideband (UWB) could easily achieve accuracies in the order of
decimeters [4, 14]. However, one cannot fully exploit this outstanding positioning
accuracy, because of the high overhead in deploying the required infrastructure.
These systems employ indeed multiple anchors (e.g., at least 8 [15], 9 [16], or
15 [4]), each of which needs to be carefully placed [17] in order to maximize the
system’s performance – a burden that is not sustainable on a large scale. Similarly,
localization systems based on RSS profiling [11,18] require a laborious offline data
collection process before deployment to acquire the radio maps (fingerprints). Even
worse, fingerprinting needs to be frequently repeated to cope with environmental
changes, such as furniture setup and human motion: this makes the installation
costs prohibitively high.

Minimizing the deployment effort of localization systems while still allowing to
sustain a high positioning accuracy is hence a long-due fundamental step towards
the creation of solutions that are viable for real-world IoT applications.

Contributions. In this paper we present SALMA, a novel UWB-based indoor
localization system that can sustain a decimeter-level accuracy despite the use of
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only a single anchor. SALMA removes the need of multiple anchors by exploiting
multipath propagation, i.e., specular reflections originating from static objects.
The system works out of the box without any time-consuming setup phase, as it
does not require any prior calibration, training, or position estimates (i.e., SALMA
is based on neither fingerprinting nor other learning algorithms). All that is needed
is a crude floor plan showing the geometry of the building in which the system is
installed. The map includes static objects such as walls and windows only, to avoid
adaptations if furniture or other objects are moved.

Starting from this floor plan and the known location and orientation of the
anchor, SALMA models the theoretical multipath propagation and compares it
with the estimated channel impulse response (CIR) derived by the anchor node,
as shown in Sect. 3. Exploiting the position-related information embedded in the
CIR allows to unambiguously determine the position of a tag using a single anchor
with an accuracy comparable to the one achieved by common multi-anchor UWB
systems. This way, SALMA reduces the infrastructure costs and setup time, hence
addressing the omnipresent trade-off between accuracy and deployment costs.

We implement SALMA on off-the-shelf UWB devices based on the popular
Decawave DW1000 transceiver, building – to the best of our knowledge – the first
low-cost single-anchor UWB-based indoor localization system. In particular, as
shown in Sect. 4, we support multiple tags simultaneously and shift the burden
of position estimation to the anchor node. This allows to keep the design of the
mobile tag simple, so to preserve its limited battery capacity.

We specifically implement SALMA for two-dimensional settings in order to
support map-based navigation and tracking applications such as locating patients in
hospitals [19], assistance for visually impaired, disabled, and elderly people [1,20–22],
as well as monitoring sport events [23,24]. The applicability to three-dimensional
settings and the resulting challenges are discussed in Sect. 8.

We further show how overlapping multipath components (MPCs) may limit
the performance of SALMA when using a single omni-directional antenna. To
alleviate this problem, we illustrate in Sect. 5 how to improve the robustness of
SALMA using multiple directional antennas. The latter enable the exploration of
the angular information of MPCs to enhance the system’s performance remarkably.

In Sect. 6, we carry out a thorough experimental evaluation1 of the performance
of SALMA in an office environment with clear LOS conditions. Among others,
our results reveal that 90% of position estimates obtained with SALMA exhibit
less than 20 cm error, with a median below 8 cm. This performance was obtained
with a single measurement snapshot from four directional antennas. We further
simulate how the accuracy of SALMA can be improved with a higher number of
antennas with narrower bandwidth.

In Sect. 7, we study the performance of SALMA in the presence of obstructed
LOS, showing that 90% of position estimates exhibit less than 30 cm error, with a
median below 15 cm. Furthermore, we evaluate SALMA in a challenging setting
(stockroom) reaching a 90% error of 44.5 cm, and show that moving objects and
furniture has a limited effect on the performance. We also deploy SALMA in an
office crowded with tens of people moving in/out across 24-hours, and show that –
even in such a highly dynamic environment – SALMA sustains a worst-case average
error below 34 cm. Therefore, by exploiting the redundancy offered by multipath
reflections, SALMA achieves a high accuracy even with obstructed LOS, addressing
an inherent vulnerability of traditional systems.

In summary, this paper makes the following contributions:

1All datasets are publicly accessible under http://www.iti.tugraz.at/SALMA [25].
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Figure 1: Overview of SALMA’s design (a): the system makes use of the multipath
propagation between a single anchor and a tag i. The multipath propa-
gation is characterized by the estimated CIR containing position-related
information (b).

� We present SALMA, a UWB-based indoor localization system making use
of only a single anchor and requiring neither prior profiling nor calibration
(Sect. 3);

� We implement SALMA on off-the-shelf UWB devices and support multiple
tags simultaneously (Sect. 4);

� We increase the robustness of the system to overlapping MPCs by using
multiple directional antennas (Sect. 5);

� We evaluate the performance of SALMA experimentally in different scenarios
with clear LOS and show that 90% of position estimates exhibit less than 20
cm error (Sect. 6);

� We show that SALMA is resilient to obstructed LOS situations and that it
sustains a high accuracy even in dynamic environments with objects and
people moving around (Sect. 7).

2 SALMA: Overview

Fig. 1a shows a sketch of SALMA’s design. The system consists of a single anchor
(fixed infrastructure) and multiple battery-powered mobile tags (devices to be
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localized). The anchor is connected to and powered by a central notebook running
a localization engine that computes the position of each tag.

Every tag initiates a double-sided two-way ranging (DS-TWR) with the anchor
node, following a time division multiple access scheme. The two-way ranging
process allows the anchor to estimate the distance d0 = ‖p − a‖, with p and a
being the tag and the anchor location, respectively (Fig. 1b). Upon completion of

the DS-TWR process, the anchor records the estimated distance d̂0, as well as an
estimate of the channel impulse response (CIR) provided by the UWB transceiver,
and forwards this info to the localization engine.

Exploiting multipath propagation. The CIR embeds information about the multi-
path propagation consisting of reflections from walls. Traditional UWB localization
systems employ the CIR to estimate the distance d0, which is related to the path
delay τ0 as follows: d0 = τ0 · c0, with c0 being the speed of light. Therefore, these
systems only use the path delay τ0, and forgo remaining multipath components
(MPCs). SALMA, instead, additionally uses delays of reflected multipath compo-
nents, which contain additional geometric information (cf. τk and dk in Fig. 1b for
k = 1, . . . , 4).

Localization engine. Starting from a floor plan showing the geometry of the
building in which the system is installed2, and the known location of the anchor,
SALMA models the theoretical multipath propagation by employing the concept
of virtual anchors [26] and by building a hypothesized CIR for several candidate

positions. The latter are selected on a circle of radius d̂0 centered in a, with d̂0
being the estimated distance derived from the DS-TWR. The localization engine
then compares the hypothesized CIR of each candidate point with the one measured
through the DS-TWR process, and returns the best fit using maximum likelihood
estimation.

As we will show in the next sections, exploiting the position-related information
encoded in the MPCs allows to unambiguously and accurately determine the
position of a tag using a single anchor.

3 SALMA: design principles

We describe next the mathematical principles behind the functional stages of
SALMA, showing how the system can leverage the information that is contained in
the observed CIR to accurately narrow down the tag position. First, we present a
model of the observed CIR including the multipath component (MPC) parameters
in Sect. 3.1. We then explain in Sect. 3.2 how to use the known anchor position
and floor plan to determine virtual anchors that can relate the tag position to
parameters embedded in the CIR. Third, we describe in Sect. 3.3 how these
parameters are used in combination with the observed CIR to obtain a position
estimate. Sect. 4 then outlines how these methods are implemented on off-the-shelf
hardware.

3.1 Signal model

Taking advantage of multipath propagation requires its proper modeling. In the
following, we introduce the signal model relating the effective system response

2While furniture and other objects do affect the performance of the system, the impact stays in
reasonable bounds as demonstrated in Sect. 6 and 7. Thus, there is no need to keep track of
whether tables, shelves, or other furniture have moved.
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(i.e., the observed CIR) and the parameters of multipath components. We assume
that a tag is equipped with a single omni-directional antenna, while the anchor
can carry M antennas. Each antenna with index m = 1, . . . ,M is characterized
with its beampattern bm(φ). The observed CIR rm(t) between a single tag and
the anchor’s mth antenna can be modeled as:

rm(t) =
K∑

k=0

αkbm(φk)sDW(t− τk) + wm(t). (1)

The first term on the right-hand-side describes K specular MPCs, i.e., dominant
reflections, of the transmitted signal sDW(t). The latter includes de-spreading and
filtering at the receiver. Each MPC is characterized by its complex-valued amplitude
αk, angle of departure φk and delay τk. These MPCs are resulting from reflections
at flat surfaces such as walls, windows or doors and will be further discussed in
Sect. 3.2. The last term wm(t) denotes zero-mean white Gaussian measurement
noise with variance σ2

w. Note that the proposed signal model in (1) can model
single omni-directional as well as multiple directional antenna measurements.

The signal rm(t) is sampled with frequency fs = 1/Ts and Ns samples are
acquired. Hence, we use vector notation [27,28] to compactly describe the signal
model in (1) as:

r = X(τ ,φ)α+w (2)

with


r1
...
rM


 =



X1(τ ,φ)

...
XM (τ ,φ)


α+



w1

...
wM


 (3)

and

rm = [rm(0 · Ts), . . . , rm([Ns − 1] · Ts)]T
Xm(τ ,φ) = [bm(φ0)s(τ0) . . . bm(φK)s(τK)]

s(τk) = [sDW(0 · Ts − τk), . . . , sDW([Ns − 1] · Ts − τk)]T

wm = [wm(0 · Ts), . . . , wm([Ns − 1] · Ts)]T
φ = [φ0, . . . , φK ]T; τ = [τ0, . . . , τK ]T; α = [α0, . . . , αK ]T.

Thus, the proposed signal model connects the MPC parameters (αk, φk, τk) with
the expected CIR. In Sect. 3.2, we relate these parameters to the tag position.

3.2 Geometric model and virtual anchors

The MPC parameters of the CIR contain position-related information regarding
the tag location as well as the environment [29]. Following Euclidean geometry,
simple relations can be obtained for φk and τk. In particular, we employ the
concept of virtual anchors (VAs) [26] in order to relate MPC parameters to the tag
positions (see Fig. 2). To obtain the positions of the virtual anchors ak (k > 0),
the position of the physical anchor a0 , a is mirrored at each reflective flat surface.
Fig. 2 illustrates the top-view of a single reflection. A specular MPC (black solid)
originates at the wall segment. Assignment of the specular MPC to a virtual anchor
(red cross) enables an efficient calculation of the MPC parameters, delay, and angle.
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τk

VA ak

Tag p

Anchor a0

φk
θsegk

](p− ak)

Figure 2: The concept of virtual anchors (VA) and its use in calculating the angle
of departure φk and delay τk.

The delay τk follows as geometric distance between tag and VA, divided by the
speed of light c0, according to

τk =
1

c0
‖p− ak‖. (4)

We describe the angle of departure φk via the azimuth angle between tag and VA
](p− ak) according to

φk = 2 θsegk − ](p− ak). (5)

Here, θsegk denotes the angle of the involved reflective surface that was used to
generate the VA ak (see Fig. 2).

Note that, in this work, we limit the multipath propagation to single-bounce
reflections, i.e., only a single reflective object is bounced during the path’s propaga-
tion. Hence, the number of considered surfaces also determines the number of used
MPCs K and VAs, e.g., for the floorplan shown in Fig. 1b we set K = 4 resulting
in four VAs. In principle, the virtual anchor model can be extended to cover
higher-order reflections as well. However, higher-order reflections are attenuated
strongly, due to their increased path length and additional reflection losses. It
should be also noted that, for each tag position p, the visibility of the VAs has to
be taken into account. This means that we have to check the direct path from p
to the VA position ak for intersections with any obstacles or wall segments. Only
if there is a single involved intersection with the correct wall segment, we can use
the k-th MPC in the signal model.

While the parameters τk and φk can be directly derived from the geometric
model using the known VAs, a proper model for the MPC amplitudes αk is difficult
to obtain [28]. Hence, we propose to treat αk as nuisance parameter, estimated
directly from the observation r.

3.3 Position estimation

In the following, we present a position estimator based on the CIR measurements.
We aim for a maximum likelihood (ML) estimator, derived from the signal model
in (2). To allow efficient computations, we assume complex-valued white Gaussian
measurement noise w. The likelihood p(r|p) of observation r conditioned on tag
position p follows as:

p(r|p) =
(

1
πσ2

w

)MNs
exp

{
− 1

σ2
w
‖r −X(τ ,φ)α‖2

}
(6)

where τ and φ are related to the tag position via (4) and (5). Taking the log of
(6) results in the log-likelihood function

log p(r|p) = −MNs log(πσ2
w)− 1

σ2
w
‖r −X(τ ,φ)α‖2. (7)
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This function depends on MPC amplitudes α. We propose to estimate α as least
squares solution [28] according to

α̂ = (XH(τ ,φ)X(τ ,φ))−1XH(τ ,φ)r (8)

with (·)H denoting the conjugate and transposed. The position estimate p̂ maxi-
mizing the log-likelihood function can be formulated as a non-linear optimization
problem:

p̂ = argmax
p∈P

log p(r|p) = arg min
p∈P

‖r −X(τ ,φ)α̂‖2. (9)

The parameters τ and φ are determined via the geometry, and these parameters
in turn build the hypothesized CIR X(τ ,φ)α̂, which is compared to the observed
CIR r. The position for which the hypothesis comes closest to the observation
(and thus maximizes the likelihood) is chosen as the position estimate p̂. Searching
for a global maximum requires to evaluate (9) at each feasible tag position P,
i.e., all positions within the communication range to the anchor. As shown
in [27], this exhaustive search can be limited to potential candidate points that are

located along a circle around a with radius d̂0. We consider NC candidate points
P = {p(j)}NCj=1 where each point is drawn independently with Gaussian distributed

radius d(j) ∼ N (d̂0, σ
2
DW) and uniformly distributed angle φ(j) ∼ U(0, 2π) [27].

Candidate points lying outside of the room are discarded. These can be determined
with simple line equation tests using the given floor plan. The number of candidate
points NC has a direct impact on the accuracy of the found estimate (9) and will
be studied in Sect. 6.3.

4 Implementation on Off-the-Shelf Devices

We implement SALMA on off-the-shelf UWB devices. After introducing the
hardware in Sect. 4.1, we sketch the scheme used to derive the distance between
the tag and anchor as well as the CIR rm in Sect. 4.2. We then illustrate how the
system can support multiple tags in Sect. 4.3 and describe the implementation of
the position estimation in Sect. 4.4.

4.1 Hardware

The system consists of Decawave EVB1000 platforms used for both anchor and
tags (Fig. 3a). These platforms employ the low-cost IEEE 802.15.4-compliant
UWB transceiver DW1000 [30]. The tags are battery-powered and can be moved
around freely. The anchor, instead, is located at a fixed position a and is connected
to a notebook running MATLAB. The antenna at the tag is a self-made linearly
polarized omni-directional dipole antenna (Fig. 3b), but any off-the-shelf omni-
directional UWB antenna is suitable. At the anchor, instead, we employ either
a single omni-directional antenna (Sect. 4.4) or multiple directional antennas
(Sect. 5.2).

Transmitted pulse shape. The proposed signal model in (1) requires a known
transmitted pulse shape sDW(t). The IEEE 802.15.4-2015 standard allows the
generation of an arbitrary pulse shape, as long as it fulfills certain requirements
on its cross-correlation with a standard reference signal, a root raised cosine pulse
with a roll-off factor of β = 0.5 [31]. Decawave follows the IEEE 802.15.4-2015
standard, but does not provide information regarding the transmitted signal of the

SALMA: UWB-based Single-Anchor Localization System using Multipath Assistance

90



(a) (b) (c)

Figure 3: Decawave EVB1000 node (a) with self-made omni-directional dipole
antenna (b) and switchable directional antenna system employed in
Sect. 5.2 (c).

DW1000. Therefore, we identify sDW(t) in a measurement campaign. We place a
transmitter and receiver 1 m apart from each other in clear LOS conditions. The
receiver logs 1000 CIRs. In a post-processing step, we separate the LOS from the
CIR and calculate an average over these signals, which defines the transmitted
pulse shape sDW(t) of the DW1000.

4.2 Acquiring CIR and ranging

As shown in Fig. 1a, the localization engine of SALMA requires to estimate the
distance d̂0 between the tag and the anchor, and to derive information about the
multipath propagation by acquiring the CIR provided by the DW1000.

Two-way ranging. Due to the missing synchronization between anchor and tags,
we employ a double-sided two-way ranging scheme (DS-TWR) to estimate the

distance d̂0 = ‖p− a‖ between each tag and the anchor (see Fig. 4). The DS-TWR
scheme consists of three messages, each of which contains an 11-byte MAC header
embedding source and destination address, as well as a 16-bit checksum. The
payload of the first message (INIT ) and the second message (RESP) is 1 byte long
(MSG ID). The last message (FINAL) is 16 bytes long and contains the message

ID as well as three 5-byte timestamps [32]. The uncalibrated distance d̂TWR is
calculated in the DS-TWR scheme with [33, pp. 213]:

d̂TWR =
Tround1 · Tround2 − Treply1 · Treply2
Tround1 + Tround2 + Treply1 + Treply2

(10)

To calibrate the distance estimate, we perform 5000 DS-TWR trials between
the anchor and a tag placed 2 m apart from each other. The derived variance and
mean of the difference between the reported distance d̂TWR and the true distance
d0 = 2 m is σ2

DW = (0.054 m)2 and µ = 0.26 m, respectively. Hence, the calibrated

distance estimate follows as d̂0 = d̂TWR − µ. The distance d̂0 and the variance σ2
DW

define the distribution of the candidate points around the anchor, as shown in
Sect. 3.3.

Acquisition of CIR. Besides deriving the distance d̂0 between anchor and
tag, the anchor acquires the CIR rm from the FINAL message received from
the tag. Fig. 1b illustrates an exemplary rm. The sampling period is set to
Ts = 1/fs = 1/(2 · 499.2 MHz) = 1.0016 ns. Each sample consists of a 16-bit real
integer and a 16-bit imaginary integer resulting in a total size of 4048 Bytes. To
reduce the amount of data read via SPI from the DW1000, we limit the length of
the CIR to Ns = 100 samples.
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TAG ANCHOR

Figure 4: Double-sided two-way ranging scheme.

Having the tags initiate the DS-TWR lets the anchor receive the required
information to run the localization algorithm (i.e., the INIT and FINAL message).
At the same time, it also allows to shift the burden on the anchor, which is typically
static and much more powerful than tags, as it is line-powered and connected to a
backbone localization engine that performs the CPU-intensive calculations. This is
advantageous in real-world deployments, as tags are able to control the position
update rate based on their energy budget. For example, by equipping a tag with
an accelerometer, one can initiate a position update only in case of a movement,
and remain in low-power mode otherwise.

4.3 Supporting multiple tags

We have so far considered only a single tag placed at an unknown position p.
SALMA can support up to Nt tags placed at positions pi (with i = 1...Nt) by
employing a slotted ALOHA scheme. The duration of a time-slot is related to the
computation time necessary to obtain a position estimate (evaluated experimentally
in Sect. 6.4) plus a guard interval of 1 ms at the start/end of each time-slot to
overcome mis-alignments due to clock drifts.

In our current implementation, the anchor periodically broadcasts beacon mes-
sages embedding information about the time-slots’ occupancy every 30 seconds3.
Tags are not assigned to specific time-slots, but have instead the freedom to use
any of the unoccupied ones: this enables a tag to use several time-slots in case
it requires a higher update rate. In principle, this scheme may lead to collisions
if two tags pick the same time-slot. This is, however, a well-known issue that
has been largely studied in RFID systems where the reader sends a request and
tags pick a random slot to answer [34,35]. Existing anti-collision schemes can be
readily applied also in SALMA. For example, the anchor can monitor the number
of occupied slots and adjust their number accordingly, or adapt the slot duration
by changing the number of candidate points.

3Due to the stable clock of the EVB1000 board (10 ppm), an even higher interval between
beacon messages can be safely selected.
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4.4 SALMA-light: Position estimation using omni-directional
antennas

After the anchor has acquired the estimated distance d̂0 and the CIR rm, SALMA
needs to carry out the position estimation as described in Sect. 3.3. We provide a
first implementation of such a position estimation by equipping the anchor node
with a single omni-directional antenna: we call this implementation SALMA-light.
When using a single antenna, only a single CIR observation is available, which
greatly simplifies the signal model from (3) with M = 1.

Obtaining a position estimate. We use d̂0 to obtain candidate points, as
described in Sect. 3.3. At each candidate point, only the MPC delays τk are
calculated using (4), since the beampattern has no effect on the estimate. The
amplitude estimate from (8) requires a computationally demanding matrix inversion,
and, in the case of overlapping MPCs, the matrix might not even be invertible.
Hence, we approximate the log-likelihood value from (9) iteratively [27]:

init : r(0) = r

for k = 1 . . .K : αk = sH(τk)r(k−1) (11)

r(k) = r(k−1) − αks(τk) (12)

Essentially, we take the observed CIR r and sequentially subtract sub-hypotheses
(αks(τk)) by using pulses shifted to the respective τk and weighted by single
amplitude estimates αk. The resulting r(K) is then the left-over ‘residual’ signal.
The latter represents how similar the hypothesized and measured CIRs are, and is
thus used as an approximation of the log-likelihood. This procedure is repeated for
each candidate point and the one with highest log-likelihood value is chosen to be
the tag position estimate p̂.

Limitation: multipath ambiguities. While this method is simple, the non-
accessible beampattern restricts the algorithm to delay information only. This
restriction makes the algorithm sensitive to overlapping MPCs, as well as to
ambiguities in the delay times of MPCs, which may degrade the positioning
performance significantly, as shown in Sect. 6.2.

5 Tackling multipath ambiguities

As discussed in Sect. 4.4, SALMA-light uses measurements from a single antenna
only, which makes the algorithm sensitive to overlapping MPCs and ambiguities.
In this section, we introduce SALMA-full : an enhanced version of the system in
which the anchor makes use of multiple switchable directional antennas4. Hence,
we may now take advantage of the full signal model from (3), where each antenna
m is characterized by its beampattern bm(φ) covering one sector of the azimuth
plane.

The combined observations of the antennas enable the system to separate closely-
arriving MPCs in the spatial domain. However, the combination of several antenna
measurements requires phase-coherency between the measurements, which is not
given by low-cost transceivers. In the following, we tackle the phase-coherency
issue (Sect. 5.1), describe how to carry out position estimation using directional
antennas (Sect. 5.2), and highlight the key differences in the employed hardware
compared to SALMA-light (Sect. 5.3).

4This system was showcased at SenSys’17 [36].
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5.1 Non-phase-coherent amplitude estimates

Phase-coherency demands accurate radio clocks, which are not provided by off-the-
shelf UWB transceivers like the DW1000. In our case, this affects the implementa-
tion of the presented amplitude estimates in (8). Inaccurate clocks between consec-
utive measurements are perceived as a phase change in the baseband-equivalent
CIR. Thus, amplitude estimates from consecutive measurements differ in their
complex-valued phase αk,m ≈ ejϕαk,m′ , where ϕ denotes the unknown phase offset.
However, the unkown phase offset ϕ is required for the position estimate in (9).

To overcome the necessity of phase coherency, we follow the approach presented
in [28]. Assuming non-overlapping MPCs (s(τk)Hs(τk) ≈ 0), an MPC amplitude

αk can be estimated independently as projection of the normalized signal sH(τk)
sH(τk)s(τk)

onto the m-th measurement rm according to

αk,m =
sH(τk) rm
sH(τk)s(τk)

. (13)

Furthermore, the amplitude estimate in (8) can be written as complex-valued
average. Relaxing the complex-valued weighted average by an absolute-valued
average [37] results in an estimate of the k-th MPC amplitude αavg

k according to

αavg
k =

M∑
m=1
|αk,m| · |bm(φk)|2

M∑
m′=1

|bm′(φk)|2
. (14)

The remaining phase ∠αk,m is extracted from the individual antenna measurements
and the amplitude estimate α̂avg

k,m of the m-th antenna and k-th MPC results in

α̂avg
k,m = αavg

k exp(j∠αk,m). (15)

This approximation combines MPC amplitudes from non-phase-coherent measure-
ments, taking into account the directivity of the M antennas.

5.2 SALMA-full: position estimation using directional antennas

In contrast to SALMA-light, SALMA-full collects observations from M directional
antennas. The antennas are physically separated (see Fig. 3c), which results in
different range estimates from tag to each antenna. Since this difference is smaller
than the standard deviation of the DW1000 ranging, this error can be neglected.
However, to create the candidate points as described in Sect. 3.3, we use the mean
value of all ranges.

For each candidate point, the MPC parameters τ and φ are calculated using
the VA positions in (4) and (5), respectively. For the amplitude estimates, the
same iterative approach is followed as in Sect. 4.4, but it is adapted to use the
stacked observed CIRs r = [rT1 , . . . , r

T
M ]T and to take the non-coherent amplitude

estimates from the previous section into account. For this, in the iteration step
(11), we use αavg

k from (14), and for step (12), we use

r(k)m = r(k−1)m − bm(φk)α̂avg
k,ms(τk).

This gives us a (stacked) residual r(K) =
[
(r

(K)
1 )T, . . . , (r

(K)
M )T

]T
representing

the similarity between the hypothesized and measured CIR that is used as an
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approximation for the log-likelihood. The final estimate p̂ is obtained by evaluating
the log-likelihood for each candidate point and by picking the one achieving the
maximum.

Two aspects are worth of note regarding the beampatterns bm(φ) of the antennas:
first, we use 36 sampled values bm(i · Φs) with a spacing of Φs = 10◦ obtained from
a measurement campaign. Second, when the anchor is employed, it can be oriented
with Φo = j · 10◦, where j might be chosen as desired. For the implementation, this
value has to be known. SALMA then uses bm

(
bφk+Φo+5

10
c mod 36

)
to approximate

bm(φk), also taking the orientation into account.

5.3 Hardware differences

In contrast to SALMA-light, in SALMA-full we exploit four self-made and low-cost
directional antennas with a half-power beamwidth of about 150◦ (see Fig. 3c). The
antennas are mounted such that each one points in a different cardinal direction.
The evaluation in Sect. 6.2 shows that, even with this wide beamwidth, SALMA
achieves an error below 20 cm for 90% of the estimated positions. The higher
number of antennas increases the acquisition time of CIRs and distance estimates.
Hence, the acquisition duration is higher than that of SALMA-light, as discussed
in Sect. 6.4.

6 Evaluation

We evaluate the positioning capabilities of SALMA in challenging indoor environ-
ments: an office (Room A, see Fig. 5a and 6a), and a stockroom (Room B, see
Fig. 5b and 6b). After describing the experimental setup in Sect. 6.1, we answer
the following questions:

� What is the benefit of using SALMA-full over SALMA-light? (Sect. 6.2);

� What is the accuracy achieved by SALMA, and at which computational
costs? (Sect. 6.3);

� How long does it take to estimate a position, and what are the implications
on scalability? (Sect. 6.4);

� Do more (and better) antennas improve the performance of SALMA? (Sect. 6.5).

We answer all these questions in Room A under clear LOS conditions. In Sect. 7,
we will then specifically evaluate how SALMA performs in more challenging
environments with obstructed LOS (both rooms), and a dynamic environment due
to moving objects and people (Room A).

6.1 Experimental setup

We carry out the evaluation in an office containing obstacles and scattering objects
such as desks, chairs, shelves, and PC monitors, as shown in Fig. 5a and 6a (Room
A). We place the tag in NEP = 35 evenly distributed evaluation points, while fixing
the anchor next to the table. We mount both anchor and tag on a tripod at a
height of 1.50 m, i.e., well above the obstacles, so to have clear LOS conditions.
The anchor is connected to a Lenovo ThinkPad T450s notebook running MATLAB.
The tag, instead, is battery-powered and can move freely. The only pre-processing
required by SALMA is to enter the anchor location and orientation as well as the
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Figure 5: Evaluation setup (2D-plan): we consider 35 evaluation points (red crosses)
in two different environments.

(a) Room A (office): Picture

(b) Room B (stockroom): Picture

Figure 6: Evaluation setup (Picture): the white dashed line marks the measurement
height under obstructed LOS.
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Figure 7: Evidence of multipath ambiguities.

coordinates of the surrounding four wall segments. The following settings are used
by the DW1000: maximum data rate (6.8 Mbps), pulse repetition frequency of 64
MHz, and a preamble symbol repetition of 1024. Channel 7 is used due to its high
bandwidth (900 MHz) and since our self-made directional antennas are optimized
for this band. At each evaluation point (denoted by pEP), we perform 100 position
estimates, hence carrying out 3500 evaluations in total for both SALMA-light and
SALMA-full. We denote the i-th position estimate by p̂i, and obtain the absolute
position error with

Erri = ‖p̂i − pEP‖. (16)

Statistically, we look at the cumulative distribution function (CDF) over the errors
Erri using all evaluation points (i.e., 3500 estimates) for different configurations,
as illustrated in the upcoming sections.

6.2 SALMA-light vs. SALMA-full

In this section we examine the performance of both SALMA implementations
comparatively.

Handling ambiguities. SALMA-light relies solely on the position information
contained in the arrival times of MPCs. Hence, the resulting likelihood for the
positions is highly multimodal, or in other words, there are multiple regions that
seem to best fit the observed signal. This is demonstrated in Fig. 7, which shows
the positioning result using SALMA-light (Fig. 7a) and SALMA-full (Fig. 7b)
for one estimation run on position 34 (cf. Fig. 5a). The colored dots indicate
the candidate point positions, where the color represents the likelihood values
(red=high, blue=low). SALMA-light has three regions showing similarly high
likelihood values (red and orange dots), caused by similarly long MPC paths, which
results in a completely wrong estimate. In contrast, SALMA-full can narrow the
estimate down to find the true position of the tag. This is possible due to the
combined directional antenna observations, where wrong candidate points have low
likelihood values because amplitude values do not fit to the antenna patterns.

97



Quantitative comparison. We show the improvement quantitatively by account-
ing for all 3500 estimates via the CDF of the absolute position error. Fig. 8 shows
the CDF for SALMA-light (dashed blue line) and SALMA-full (solid orange line).
With SALMA-light, 67.3% of all evaluations have a position error below 25 cm. On
the other hand, 21.7% of the evaluations have an error above 1 m: these outliers
are caused by the multipath ambiguities, as just explained. By using directional
antennas, SALMA-full can mitigate these outliers: 90% of all evaluations are below
20.17 cm, whilst 99% of the evaluations are below 29.72 cm.

We can hence conclude that SALMA-full clearly outperforms SALMA-light
thanks to the additional angular information. Hence, we focus the next evaluations
on SALMA-full only.

6.3 Localization accuracy

With the promising results shown in Sect. 6.2, we investigate the accuracy of
SALMA in more detail, and focus also on the computational costs.

Role of candidate points. We examine the impact of the number of candidate
points used by SALMA-full. To this end, we perform 3500 estimates for different
number of candidate points NC ∈ {50, 100, 200, 500, 1000}. Fig. 9 shows the
resulting CDF: even when using only 50 candidate points (blue, star), 90% of the
estimates have an error below 30 cm. However, there are outliers for about 5%
of the estimates. Increasing the number of candidate points removes the outliers
and improves the performance to a “saturation point” at about 200 candidate
points (i.e., a higher number of points gives negligible improvements). Hence, we
make NC=200 our preferred setup and use it for all further evaluations, unless
stated otherwise. The number of candidate points increases the computation time
linearly, so NC can act as a trade-off between computational costs and accuracy,
as illustrated in Sect. 6.4.

Individual evaluation points. A more detailed display of the accuracy is shown
in Fig. 10a. For the 100 estimates at each position of Room A, the mean (blue
circle) and the 3-fold standard deviation (black error ellipse) are shown. The former
indicates that there is little estimation bias (distance to ground truth). As for the
standard deviation, with the good ranging precision of UWB, the ranging deviation
is small (facing the LOS), while info gained by the MPCs determines the angle
deviation (perpendicular to the LOS). Overall, the good performance is reinforced,
while there are certain positions (e.g., 9, 16, and 18) with a slightly higher bias.
Of special note is that the accuracy of SALMA does not degrade at higher ranges:
pos. 8, 16, and 24 are placed more than 4 meters apart from the anchor, but
their estimates are as accurate as the ones obtained at positions much closer to
the anchor. This is highlighted in Fig. 11 showing the average position error with
respect to the real distance between anchor and tag. This stands in contrast to
many other indoor positioning techniques, where the inaccuracy increases quickly
with the range, e.g., visual systems [38].

6.4 Scalability

The number of supported tags by SALMA is limited by (i) the computation time
of the position estimation, (ii) the duration of the DS-TWR, as well as (iii) the
time needed to stream the CIR and additional info to the notebook via USB. The
duration of a DS-TWR is mainly defined by the packet length of its three packets,
which is 3.49 ms. Streaming one CIR to MATLAB takes 4.62 ms.

SALMA: UWB-based Single-Anchor Localization System using Multipath Assistance
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Figure 8: SALMA-light sustains an accuracy below 30 cm only in 70% of the
cases due to multipath ambiguities. By exploiting the angular domain,
SALMA-full exhibits an error below 30 cm in 99% of the cases (Room
A).
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Figure 9: Impact of the number of candidate points on SALMA’s accuracy: NC=200
acts a good trade-off.

The computation time of the position estimation depends on the notebook’s
performance and on the number of candidate points. In the evaluations, the
algorithms are performed in MATLAB on a Lenovo ThinkPad T450s with 2.59
GHz clock and 8 GB RAM. An increase in the number of candidate points scales
the computation time linearly. Thus, we evaluate the time needed per candidate
point. SALMA-light takes 174.77±12.2 µs and SALMA-full requires 955.13±23.5
µs per candidate point. Thus, with NC = 200 candidate points, the algorithms take
34.95 ms and 191.03 ms, respectively. The overall duration of a position estimation
with SALMA-light when using NC = 200 is hence 43.06 ms, resulting in an update
rate of 23 Hz. Using NC = 50, instead, gives an update rate of 60 Hz.

When using SALMA-full, for each antenna a DS-TWR trial is performed and four
CIRs are acquired: this reduces the achievable update rate. In total, SALMA-full
requires 223.5 ms for NC = 200 and 79.8 ms for NC = 50, resulting in an update
rate of about 4.5 Hz and 12.5 Hz, respectively. Thus, SALMA can easily compete
with comparable solutions and outdoor positioning systems like GPS.
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Figure 10: Error ellipses showing position bias and three-fold standard deviation
(Room A).

6.5 The role of the antenna

We examine next how SALMA would perform when using more antennas with
more directive beampatterns. As such antennas are not yet commercially available,
we simulate artificial CIRs (r) and ranging (d̂0) for the same tag positions shown
in Fig. 5a. For any tag position p, we can create an artificial CIR in two steps:

1. Specular part: we shift and add pulses sDW(t− τk) weighted by beampattern
b(φk) and amplitude αk using the known delays τk and angles φk. The am-
plitude exhibits free-space path-loss and each reflection halves the magnitude.
We consider MPCs up to order two.

2. Scattering part: we simulate diffuse multipath by drawing realizations of a
Gaussian random process whose variance is defined by a double exponential
power delay profile according to equation (9) from [39]. Additionally we
simulate AWGN measurement noise with an SNR of 29.5 dB at 1 m.

This simulation setup allows us to adjust the half-power beamwidth (HPBW) of
the antennas and to recreate the effect of clutter by setting a signal-to-interference5

ratio (SIR). The latter is defined by the ratio between LOS and scattering energy.
We determined empirically that an SIR of 3 dB properly describes the environment.

To recreate the performance behavior from the SALMA-full measurement runs
described in Sect. 6.3, we set the HPBW to 150◦, matching the properties of the
used antennas. Additionally, we carry out simulations using six antennas with a
HPBW of 90◦, reflecting a higher quality implementation. Fig. 12 shows the results.
On the one hand, we can see that the SALMA-full simulation (red curve) fits the
measured results (purple curve) closely. A slightly better performance is achieved
in the simulation, because the impact of bias due to floor plan inaccuracies is not
present. On the other hand, we can notice that, when simulating six antennas
(blue curve), the performance of SALMA improves significantly: the 90% error

5Interference, in this case, refers to self-interference due the scattering part.
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Figure 11: Average position error w.r.t. the real distance.
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Figure 12: Simulated performance of SALMA when using multiple antennas with
more directive beampatterns.

decreases by about 10 cm to almost reach the sub-decimeter mark, whilst 99% of
the estimates achieve an error below 20 cm.

7 Robustness to non-line-of-sight and dynamic
environments

Indoor environments are inherently highly dynamic due to moving humans and
objects. Thus, the value of a localization system strongly depends on (i) its
performance under obstructed LOS, (ii) its behavior in different environments and
(iii) its robustness in crowded settings. In this section, we discuss the performance
of SALMA under non-line-of-sight (NLOS) conditions (Sect. 7.1), when furniture is
moved without updating the map (Sect. 7.2) and in the case of a highly-dynamic
and crowded environment (Sect. 7.3).

7.1 Performance under NLOS conditions

In situations of a blocked LOS, range-based systems suffer from a positive bias [40].
This is either caused by the lower propagation speed in case the signal propagates
through the obstacle, or, in case of a fully blocked LOS, due to the misinterpretation
of a reflection as the direct path.
Distance bias. SALMA requires the distance estimate d̂0 between anchor and
tag to distribute the candidate points on a circle around the anchor as described
in Sect. 3.3. Thus, an obstructed LOS causes an increase in the radius of the
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Figure 13: Performance of SALMA in clear LOS, obstructed MPC, and obstructed
LOS situations in Room A.

circle. First, we analyze the impact of different objects on d̂0. We place tag and
anchor 2 m apart from each other and perform 1000 DS-TWR trials with different
objects blocking the LOS. The objects included: a metal plate (800×450×3 mm),
PC monitors, and humans. The threshold-based mechanism of the DW1000 was
able to detect a leading edge corresponding to the LOS in each of the trials. But,
indeed, the obstructed LOS leads to a positive bias in the range estimate. Metal
plate and PC monitor caused a range bias of 11 cm and 13.1 cm, respectively. Even
in the case of humans blocking the LOS, the leading edge was successfully detected,
but two humans blocking the LOS already led to a range bias of 41.8 cm. Further
evaluations will show that SALMA is robust even in the case of a range bias.

Accuracy evaluation. SALMA is not just making use of the LOS component,
but also of specular MPCs. Thus, we evaluate SALMA also in situations of blocked
MPCs. We repeat the evaluation in Room A described in Sect. 6.1: this time,
however, we mount the tag and the anchor at a height of 1.20 m, corresponding to
the height of monitors, shelves, and people in the room. Depending on the position
of the evaluation points, this results in obstructed LOS for twelve of these points
EPOLOS = {3, 8, 9, 10, 15, 16, 18, 19, 25, 26, 33, 34}, which results in 1200 evaluations.
Note that, for all these evaluation points, there were also specular MPCs blocked
by objects. For twenty points, instead, the LOS was still clear but specular MPCs
were blocked EPOMPC = {1, 2, 4 − 7, 11 − 14, 17, 20 − 24, 27, 28, 32, 35}. In total,
2000 evaluations were acquired in these situations. The remaining 300 evaluations
are still in clear LOS with no blocked MPCs, thus, they are ignored. Fig. 13
(magenta dash dotted line) shows the CDF of all evaluations under blocked LOS
(EPOLOS). The median is at 14.5 cm and the error for 90% of the estimates is still
below 30.7 cm. The blue dashed line in Fig. 13 shows the CDF just considering
evaluations where significant multipath components are blocked by obstacles or
humans (EPOMPC). The median is at 10.25 cm and the error for 90% of the
estimates is below 30.52 cm. This shows that SALMA remains robust even in the
case of blocked MPCs.

Qualitative evaluation. In Fig. 10b, we see again the accuracy for individual
evaluation points, now for the obstructed LOS case. While the position bias
(distance blue circles to red crosses) did not increase significantly, we can see that
the variance in the angular direction increases for most of the evaluation points.
The error ellipses shown in Fig. 10b indicate two evaluation points with significantly
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Figure 14: Error ellipses showing position bias and three-fold standard deviation
with empty racks in Room B.
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Figure 15: Performance of SALMA in Room B in the case of moving obstacles
(storage racks are empty or filled).

higher variances (no. 17 and 18) as the other points. The reason is the unfortunate
position of the anchors in this case. The PC monitors and obstacles at the left
and right wall block the respective MPCs, thus, the position information obtained
at these positions comes only from the LOS and the reflection from the window.
Since these two reflections are arriving at the same angle, SALMA suffers from a
poor geometric configuration. This results in ambiguities similar to the ones shown
in Sect. 6.2. Due to significant MPCs from the left and right wall, this situation
was not evident in the clear LOS case (see Fig. 10a).
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Figure 16: Snippet of a 24-hours experiment in dynamic environments. The dashed
blue line depicts the mean error of 50 position estimates over time, whilst
the solid orange line shows the 90% error. Despite the people moving
in/out of the room (green line), SALMA can sustain a decimeter-level
position accuracy.

7.2 Performance in stockroom with moving obstacles

In Sect. 6 and 7.1, we have performed all the measurements in Room A. To prove the
capabilities of SALMA also in more challenging environments and in the presence
of moving obstacles, we have evaluated its performance also in Room B (see Fig. 5b
and 6b).

Performance in more challenging environments. To challenge SALMA,
we chose a stockroom that is larger than Room A (46.7 m2 vs. 31.6 m2) and
cluttered with desks, storage racks (bright rectangles in Fig. 5b) and several other
metal objects (see Fig. 6b). We have mounted anchor and tag at a height of
1.20 m. Fig. 15 (solid orange line) shows the CDF of all evaluations in Room B.
The median is at 18.6 cm and 90% of all estimates obtain an error below 44.5
cm. Thus, compared to the evaluation in Room A, the performance of SALMA is
slightly worse due to the larger room with more clutter and wall materials with
unfavorable reflective properties (see Sect. 8). Fig. 14 shows the accuracy for
individual evaluation points. Similar to Room A (see Sect. 7.1), some positions
(e.g., 4, 5, 12, 18, 24) suffer from an unfavorable anchor placement as the LOS is
arriving from the same angle as strong reflections.

Moving obstacles. The performance of localization systems based on RSS
profiling and fingerprinting is highly affected by moving obstacles. Thus, changing
the furniture in a room often requires to update or repeat measurements. To
evaluate the performance of SALMA in the case of moving obstacles or furniture,
we have stocked up the storage racks in Room B with full beer crates and other
objects (see Fig. 6b). As the goal of SALMA is to minimize the setup effort, we
do not model reflections from obstacles such as the full storage racks. Fig. 15
shows that the position error (dashed blue line), while higher due to the range
bias introduced by obstructed LOS, still stays in reasonable bounds, relatively
unaffected by the additional reflections. Thus, SALMA only slightly loses accuracy
in favor of practicability and setup time.

SALMA: UWB-based Single-Anchor Localization System using Multipath Assistance
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7.3 Performance in a crowded environment

For a final stress test of SALMA and to evaluate its behavior in a dynamic
environment including NLOS situations, we employed our system again in the office
scenario (Room A) for a non-stop 24 hours run. The system was exposed to the
usual ongoing work flow that involves multiple people passing by the system, thereby
blocking the LOS or MPCs, hence creating a dynamic environment. During the 24
h experiment, SALMA localized three tags at representative positions (positions 3,
15, and 33) simultaneously. The positions were deliberately chosen to be under
obstructed LOS. Every five seconds we estimated the tag positions resulting in
51840 position estimates. We evaluate the performance of the system on multiple
levels. Fig. 16 shows the mean error (dashed blue line) and the 90% error (solid
orange line) over 50 position updates from 07:00 - 21:00 o’clock. Additionally,
we track the number of present people in the room during the experiment (green
stairstep graph). The figure focuses on daytime, since over night no one was in
the room and the performance remained constant. It can be seen that the usual
working environment (with the two designated working people present) does not
impair the performance of the system providing an average error below 11.2 cm. In
terms of present people, there are two events prominent in Fig. 16: at 11:00 o’clock
there was a meeting with five people and at 14:00 o’clock we have presented SALMA
to thirteen people making it in total fifteen people in the room simultaneously.
We asked people to move around the room freely during the presentation, thus,
the LOS and the MPCs were obstructed in a dynamic fashion. Even though the
error increases during these periods, still, when the room was completely filled with
people, the average error was below 34 cm and the 90% error below 79 cm. The
latter indicates that SALMA is robust also in a highly dynamic environment and
under NLOS conditions.

Comparison to other multi-anchor systems. Comparing the accuracy of
SALMA with other UWB-based systems is difficult, as they are either evaluated in
mobile 2D [14, 15, 41] or static 3D [4, 16] scenarios. Silva et al. [42] report a 2D
static LOS mean error of 16.6 cm. SALMA instead achieves an average error of
just 9.85 cm in clear LOS. Kempke et al. [4,16] report a 90% error of 77 cm and 50
cm in static 3D, respectively. In contrast, SALMA achieves a 90% error of 50 cm
between 14:00-14:30 o’clock, thus, under obstructed LOS and when up to fifteen
people were walking around. Therefore, it is fair to say that SALMA can compete
and even outperform existing systems, despite using just a single anchor.

8 Discussion

Our evaluation demonstrates the capabilities of SALMA to perform accurate
positioning in typical indoor environments. However, it has also highlighted a
number of challenges and open questions that we will elaborate in detail in this
section.

Sensitivity to chosen anchor position. Due to SALMA’s principle, just one
anchor per room is required. In our evaluations, we examined two typical choices
for anchor positions, namely, in the vicinity of the room center (Room A) and in
the corner of the room (Room B). Both variants have pros and cons: in Room
A we have a full candidate point circle for many ranges, which increases the risk
of ambiguities, especially for SALMA-light. However, SALMA-full can take full
advantage of the beampatterns in all directions to stay relatively unaffected (as
we have demonstrated in Sec. 6.2). In Room B, we have, at most, a quarter circle
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of candidate points: on the one hand, this reduces possible ambiguities. However,
on the other hand, this results in higher ranges with reduced signal strength and
reduced benefit from the angular information. We also pointed out some difficult
positions in both rooms where LOS and the strongest reflection come from the
same direction, resulting in a plateau in the likelihood which leads to a dilution of
precision. These cases exist no matter what anchor position is chosen.

The anchor orientation can be set arbitrarily, but it has to be fixed and known
to correctly weight the amplitudes.

Including the third dimension. SALMA is designed specifically to perform
2D positioning. This choice is rather pragmatic: physical and algorithmic setup
of the system are simplified dramatically, enabling a practical implementation
with short setup time and efforts, while only using a single anchor. Also, many
applications (e.g., navigation tasks) do not require any height information. In
principle, the methods can be extended to the third dimension: (i) determining the
VAs can be done by mirroring at plane surfaces, (ii) for the MPC angle one needs
to take the elevation beampatterns into account and (iii) the candidate points are
placed on a range sphere rather than circle. However, this drastically increases the
computational complexity and makes the position likelihood even more multimodal.
A 3D model of the environment could help to avoid ambiguities due to floor or
ceiling reflections, however, our antennas exhibit a fairly narrow elevation pattern,
hence, the impact of ceiling, floor, and other reflections is limited significantly.

Effect of wall materials. The main setup effort for SALMA is the determination
of reflecting surfaces in the considered environment. However, additional care
has to be taken with regard to the material of the surfaces. Preferably, materials
such as glass and metal enable good reflectors and including them in the models
enhances the position estimate. On the other hand, plaster boards or wooden
surfaces, even if they are flat and smooth, give little to no contribution in terms
of specular reflections and can in fact decrease the performance. For example,
in Room B, the eastern wall, even though close to the anchor, is made out of
plasterboard and does not contribute with a specular multipath component. Thus,
it should not be included in the signal model as a source of a virtual anchor.

9 Related Work

Indoor localization technologies. Many RF technologies have been investigated
for indoor localization, such as Wi-Fi [10], Bluetooth [8,9], and IEEE 802.15.4 [6,43].
However, these systems hardly achieve an accuracy below 1 m, require a high
amount of reference nodes, and typically come with a high deployment effort.
Optical systems are among the most accurate indoor localization systems, but
cannot inherently operate in NLOS conditions [38]. SALMA, instead, reaches a
median error of 15 cm and a 90% error of 30 cm even in obstructed LOS conditions.
Acoustic systems can also achieve decimeter-level accuracy, but their biggest enemy
– multipath propagation – is SALMA’s best friend [44,45].

UWB indoor localization systems. UWB-based systems can also achieve
decimeter-level accuracy [13, 46]. Recently, several systems have been implemented
using low-cost UWB transceivers [4, 14–16,41, 42]. However, these systems require
a high amount of anchors, typically between eight [14, 15] and fifteen [4]. SALMA,
instead, uses a single anchor and – to the best of our knowledge – no comparable
solution exists. In terms of accuracy, as discussed in Sect. 7.3, it is fair to say that
SALMA can compete and even outperform existing systems, despite using just a

SALMA: UWB-based Single-Anchor Localization System using Multipath Assistance
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single anchor.

Multipath-assisted localization systems. Theoretical works have discussed the
performance bounds of multipath-assisted indoor localization via simulation [47–49]
and using very expensive, bulky and wired-synchronized equipment [26, 50, 51].
Instead, with SALMA, we are the first to enable the exploitation of multipath
reflections for low-cost, low-power wireless localization systems.

Directional antennas to enable single-anchor systems. Several works have
exploited electronically steerable or switchable antenna systems to enable single-
anchor localization using narrowband technologies [52, 53]. However, SALMA
outperforms all these systems due to the exploitation of the position-related
information provided by the MPCs. Sun et al. [54] presented a UWB-based system
claimed to achieve decimeter-level accuracy. However, their measurement setup
is vague and a thorough analysis of the system performance is missing. Quing
et al. [55] and Zhang et al. [56] presented similar systems, but solely based on
simulation.

Although not exploiting directional antennas, also Chronos [57] requires just
a single access point to estimate the position of another device. In particular,
Chronos uses an omni-directional antenna array and emulates a wideband radio on
commodity Wi-Fi systems. Still, due to the position-related information provided
by the MPCs, SALMA outperforms Chronos in terms of accuracy. Furthermore, by
using the license-free ISM bands, Chronos interferes and is prone to the interference
of other devices using the 2.4 GHz band.

10 Conclusions and Future Work

In this paper, we present SALMA, a low-cost UWB-based indoor localization
system that exploits multipath reflections to tear down the position estimation
to a unique solution while only using a single anchor. Besides a crude floor plan
and the position of the anchor, the system does not need any prior calibration
or training phase. By using directional antennas, we increased the robustness of
SALMA against overlapping MPCs. We extensively evaluated the performance of
SALMA under LOS and NLOS conditions, as well as during a 24 h stress-test to
challenge SALMA in dynamic settings. Under LOS, SALMA achieved a median
error below 8 cm and an error below 20 cm for 90% of the position estimates. Even
under obstructed LOS and in a highly dynamic environment SALMA sustains a
high accuracy.

Our aim in this paper was to show the outstanding capabilities of SALMA without
using a tracking filter and solely utilizing single-shot single-anchor measurements.
In future work, we will combine SALMA with a particle filter and an inertial
measurement unit to benefit from past position estimates. Moreover, we will
perform an exhaustive evaluation of SALMA in mobile environments.
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Abstract

High-accuracy indoor radio positioning can be achieved by using (ultra)
wideband (UWB) radio signals. Multiple fixed anchor nodes are needed
to compute the position or alternatively, specular multipath components
(SMCs) extracted from radio signals can be exploited. In this work, we study
a multipath-based, single-anchor positioning system that acquires directional
measurements non-coherently. These non-coherent measurements can be
obtained, e.g., from a single-chain mm-wave transceiver with analog beam
steering or from a low-complexity ultra-wideband transceiver with switched
directional antennas. The directional antennas support the separation of
SMCs and the suppression of the undesired diffuse multipath component
(DMC) with the benefit that the required signal bandwidth can be drastically
reduced. The paper analyzes the Cramér-Rao lower bound (CRLB) on the
position estimation error to gain insight in the influence of the system design
parameters as well as the impact of the DMC on the position error. The CRLB
is compared between the non-coherent antenna setup, a conventional array
with coherent processing, and a single-antenna setup. A maximum-likelihood
position estimation algorithm is formulated. Its performance is evaluated
with synthetically generated data as well as with UWB measurements. We
show that the accuracy and robustness are significantly improved due to
the processing of angular information. Analyzing the measured data for a
line-of-sight link, the median error decreases from 22 down to 7 cm, the
measurements better than 20 cm increase from 46 to 95 %, and outliers above
50 cm reduce from 12 to 0 %.
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Figure 1: Exemplary environment in a room corner. There is one physical anchor at
position a1, either equipped with a conventional coherent array indicated
by red boxes (top right) or with directional antennas, each covering one
sector of the azimuth plane (top left). Empty blue circles outside the
room at a2,a3 indicate virtual anchors obtained by mirroring the anchor
position a1 at reflective wall surfaces. The mobile agent at position p is
indicated by a green filled box.

1. Introduction

1.1. Motivation and State of the Art

Fifth generation (5G) radio networks are expected to employ massive multiple-input
multiple-output (MIMO) array antenna systems [1, 2] due to the dramatic increase
in energy efficiency and capacity, achieved by aggressive spatial multiplexing [3, 4].
Array antennas in MIMO systems also open the gate to use millimeter-wave
(mm-wave) based systems, since the array gain with a high number of antennas
compensates the high pathloss present in these frequency bands (30-300 GHz) [5–7].

For positioning, large bandwidth enables good time resolution, whereas MIMO
processing enables good angle resolution by exploiting array processing [8–14].
This conclusion has been drawn from the analysis of the Cramér-Rao lower bound
(CRLB) on the position (and orientation) estimation error(s). The CRLB is a
powerful tool to analyze the performance of positioning systems with regards
to the impact of system parameters, such as bandwidth, carrier frequency, and
antenna configuration. Additionally, the analysis of the CRLB gives insights about
the impact of model-dependent multipath component (MPC) parameters, i.e.,
specular multipath component (SMC) and dense multipath component (DMC)
parameters [10–15]. An increased signal bandwidth improves the delay resolution
of SMCs and also the capability to suppress the DMC [10,12,14,15], and therefore
it improves the delay information that can be extracted from received radio signals.
Similarly, the angular information is enhanced by increasing the array aperture, as
analyzed in detail in [11]. Here, the number of antenna elements is also related to a
diversity gain in (dense) multipath channels [12–14], which reduces the bandwidth
needed for a targeted performance.
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Recent works [8, 15–18] build on leveraging SMCs for positioning if a sufficient
signal bandwidth and/or number of antennas is accessible to enable high time and
angle resolution. Each SMC carries position-related information stemming from its
delay only [15] or from its delay, angle-of-departure (AoD), and angle-of-arrival
(AoA) [16,17], leading to a reduced need for infrastructure (number of fixed anchors)
and/or an increased redundancy (robustness). However, to exploit this information,
it is necessary to model the relationship between parameters that characterize the
SMCs and the position/orientation of a mobile agent. A geometric model of the
environment can serve for this purpose. In the most simple case, this model consists
of a set of virtual anchors (VAs) — mirror images of the physical anchor at flat
surfaces [8,19] — as illustrated in Fig. 1. Multipath-based positioning systems face
the challenge of acquiring such maps of environment features. The works in [16,17]
consider the impact of estimating these map features on the Fisher information of the
position and orientation error. In [20–24], simultaneous localization and mapping
algorithms are presented that estimate the environment map from consecutive
measurements, achieving accurate and robust position tracking of a mobile agent
in challenging indoor environments. In [8, 25], the use of mm-wave antenna arrays
was discussed for multipath-based indoor positioning.

All these references show that coherent antenna array systems are advantageous
for robust high-accuracy positioning. However, their common drawback is the
increased hardware complexity and the resulting (peak) power consumption. Each
additional transceiver chain multiplies the hardware needed for the signal acquisi-
tion/generation and the corresponding frontend signal processing steps. This makes
the use of parallel, coherent processing of all the antenna signals very expensive,
in particular for ultra-wide bandwidth (UWB) signals with sampling frequencies
in the GHz-range. Hybrid analog-digital architectures have been proposed as an
alternative for massive-MIMO mm-wave base-stations aiming at very high antenna
directivities [26–28]. In this architecture, the number of radio frequency chains is
much smaller than the number of antennas [29]; potentially only one transceiver
chain is implemented. The main idea is to use analog beamforming (e.g. phase
shifters or directive antenna elements) to gain directivity and only process one or a
few received signals coherently [30].

A similar principle has been employed in [31], where a single-anchor, multipath-
based positioning system has been described for high-accuracy (indoor) positioning
for low-cost Internet-of-Things applications. A switched antenna system with four
directive antenna elements is used, pointing in the four cardinal directions, in order
to facilitate the reliable separation of MPCs [32]. As an example, the top left of
Fig. 1 illustrates the antenna configuration from [31,32], where UWB radios are
used according to the IEEE802.15.4 standard.

With the newly proposed “phase-based ranging” extension [33], accurate delay
and angle estimation also becomes applicable to Bluetooth Low Energy signals.
However, it remains to be investigated if a multipath-based positioning system can
be realized with this technology. Furthermore, switched directive antennas were
also proposed for RSS-based indoor positioning [34, 35]. In [36], the CRLB was
derived for RSS-based indoor positioning using switched directive antennas.

Both analog/hybrid beamforming as well as switched antenna systems are not
capable of acquiring coherent measurements for conventional phase-based array
processing, because signals from multiple antennas are measured consecutively
rather than in parallel. Phase coherence between such consecutive measurements
is very hard to achieve, given the high demands on radio-frequency oscillators and
the potential dynamics of the environment, especially with mm-wave radios [28].
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1.2. Contributions of the Paper

In this work, we analyze a single-anchor positioning system exploiting SMCs, which
is capable of acquiring channel impulse response measurements with a set of different
directive antennas. Potentially, these measurements are not phase-coherent with
respect to one another. We derive the CRLB on the position error to evaluate
the theoretical performance limit of this positioning system, in comparison to a
conventional antenna-array system and a single-antenna setup. An illustration
of both antenna setups is shown in Fig. 1. For conventional coherent processing,
the anchor is equipped with an array of antennas of known geometry radiating
in an isotropic manner (shown on the right for a rectangular constellation). For
so-called “non-coherent” processing, a set of directional antennas is used with
known beampatterns (as shown on the left). We also consider the DMC to model
the interference effect of non-specular multipath components in a more realistic
form in contrast to an AWGN model.

We significantly extend our initial error bound analysis provided in [32], in
particular, a detailed analysis of AoA information has been included yielding
guidelines for the design of antenna radiation patterns. Furthermore, we describe
a positioning algorithm based on our previous work in [31,37,38] and analyze its
performance in comparison to the CRLB, using synthetically generated data as
well as measured data. Our specific contributions are:

� We analyze the CRLB for a multipath signal model, considering non-coherent
antenna arrays with directional beampatterns in comparison to conventional
coherently processed antenna arrays (Sections 3 & 4).

� We quantify the contributions of delay and angle information of SMCs to
the position information, taking into account self-interference by the DMC
(Section 5).

� We develop and analyze positioning algorithms for the non-coherent direc-
tional antenna array (Section 6).

1.3. Notations

Boldface upper case letters represent matrices. Boldface lower case letters denote
column vectors. Superscripts T, ∗ and H denote matrix transpose, complex conju-
gation and Hermitian transpose, respectively. The Kronecker product is denoted
with ⊗. ‖·‖ is the Euclidean norm. | · | represents the absolute value. Â denotes
an estimate of A. I[ · ] represents the identity matrix with dimension denoted in

the subscript [ · ]. E
{
·
}

denotes the expectation operator.

2. Problem Formulation

We consider the task of finding the position p of an agent node using radio signal
measurements from one anchor node located at known position a1. We first examine
the complete channel model and extract an approximation that contains position-
related parameters. Then, we consider the received signal model to describe the
recorded observations that will be used to determine the agent position. Finally, we
describe how the channel parameters are related to the geometry of the environment.
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2.1. Channel Model

The radio channel between the agent at position p and the anchor at position a1

is described with the spreading function [39] according to

h(φ, τ) =
K∑

k=1

αke
jζk δ(φ− φk) δ(τ − τk) + ν(φ, τ) (1)

where δ(·) denotes the Dirac delta function. This equation describes the superposi-
tion of MPCs that originate from reflections in the environment. For the sake of
simplicity, we assume a two-dimensional scenario with horizontal-only propagation
(in the azimuth plane).1 The rational behind the selection of the model in (1) is
that for radio measurements conducted with a finite observation aperture in space
and frequency, not all MPCs can be resolved in distinct SMCs. Therefore, we
assume that separated MPCs are collected into a set of k = 1 . . .K SMCs and all
unresolvable MPCs originating for example from diffuse scattering are described
by a DMC [39, 40]. Each SMC is described by amplitude αk, phase ζk, AoA φk
and delay τk. The latter two parameters can be related to the agent position
via the geometry of the environment as exemplified in Fig. 1 (for the delay, the
corresponding path length dk is shown). This will be described in detail in Sec. 2.4.
The DMC ν(φ, τ) ∈ C is modeled as a complex circular (i.e. zero-mean) Gaussian
random process [40,41]. Assuming uncorrelated scattering (US) in the delay and
angular domains, the auto-correlation function of ν(φ, τ) is given by

Rνν(φ, φ′; τ, τ ′) = Sν(φ, τ) δ(φ− φ′) δ(τ − τ ′) (2)

where Sν(φ, τ) describes the azimuth-delay power spectrum [39] at the anchor
position.

2.2. Received Signal Model

The anchor node employs an antenna array which consists of M antennas, each
of which exhibits a beampattern bm(f, φ). When referring to the general anchor
position, we use a1 which is defined to be the mass point of the antenna array. On
the other hand, the position of the mth antenna element at the anchor is denoted

by a
(m)
1 . The agent transmits a lowpass-equivalent signal s(t) modulated by carrier

frequency fc and the anchor receives signal rm(t) using antenna m.2 We aim for a
compact description and introduce the following assumptions.

� For the antennas at the anchor, in frequency domain, we assume identical
beampatterns over all relevant frequencies, i.e., we use bm(f, φ) = bm(φ) for
the complex-valued azimuth antenna gains.

� For the time-domain description of radio waves impinging at the antenna
elements, we make use of the far-field plane-wave assumption, i.e., we assume
planar wave fronts instead of spherical ones.

1An extension to three dimensional scenarios with horizontal and vertical propagation is straight-
forward, but it would lead to cumbersome notations without bringing significant additional
insights.

2Note that we assume that the anchor and the agent are synchronized. This can be achieved by
using a two-way transmission protocol [42]. However, the proposed model can be extended to
non-synchronized anchor-agent links along the lines of [15] (based on the fact that the relevant
geometric information is also contained in the time differences of the SMCs).
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� Introduced time delays at antenna elements in relation to the mass point
will be only considered in terms of a phase change, i.e., the time delay of
the signal envelope will be neglected. This is usually referred to as the
narrowband/wideband assumption3 and it is fair to use since the envelope
information is negligible with respect to the phase information, especially in
practical situations [11,13,14].

We apply these assumptions to obtain the received signal at antenna m via
convolution of the spreading function in (1) with the transmitted signal s(t) and

antenna response bm(φ)ejζ
(m)(φ) resulting in

rm(t) =

∫∫
bm(φ)ejζ

(m)(φ)s
(
t− τ

)
h(φ, τ) dφdτ + wm(t)

=
K∑

k=1

bm(φk)αke
jζk,m s(t− τk) + rDM

m (t) + wm(t) (3)

which can be separated in three distinct parts: The first part contains the position-
related SMC parameters {φk} and {τk} which shift and scale the transmitted signal.
The second part rDM

m (t) is a stochastic process characterizing the self-interference
due to the DMC. Finally, measurement noise wm(t) is modeled as additive white
Gaussian noise (AWGN) with double-sided power spectral density of N0

2 . The
SMC-related phase shifts are given as

ζk,m = ζ(m)(φk) + ζk (4)

where ζ(m)(φ) captures the antenna related phase shift and ζk the radio channel
related one.

In the case of coherent array processing, only the K radio channel related phase
shifts ζk are unknown in (4) and the systematic phase-offset introduced by the
placement of antenna m w.r.t. reference position a1 is given as

ζ(m)(φ) = 2πfcτ
(m)(φ)

= 2π d
(m)

λ cos
(
φ− φ(m)

)
(5)

where τ (m)(φ) is the time delay due to the distance of the antenna elements (situated

at a
(m)
1 ) relative to the phase center at a1, d(m) and φ(m) denote the distance and

angle of the mth antenna w.r.t. a1 (cf. Fig. 1), and λ is the wavelength at fc. In
the case of non-coherent processing, all measurements at the M antennas have
unknown phase-offsets meaning that all K ·M phase shifts ζk,m given by (4) are
unknown.

The second part of (3) characterizes self-interference caused by the DMC and it
is given as

rDM

m (t) =

∫∫
bm(φ)ejζ

(m)(φ)s(t− τ) ν(φ, τ) dφdτ.

We look at correlation properties of this signal for a pair of antennas

E
{
rDM

m (t)(rDM

m′ (t′))∗
}

=

∫∫
Sν(φ, τ)bm(φ) b∗m′(φ)

× ej(ζ(m)(φ)−ζ(m′)(φ′))s(t− τ) s(t′ − τ) dφdτ (6)

3With the narrowband/wideband model, it is assumed that delay and angle domains are
separated, i.e., space-frequency cross-product terms are zero [43, Ch. 4.2].
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where we applied the US assumption from (2). It should be noted that this
assumption also allows us to use the same stochastic process ν(φ, τ) for all antenna
elements, because the assumption implies homogeneity in the spatial domain [44,
Ch. 2.4].

2.3. Discrete-Time Signal Model

In a practical system, the anchor acquires N samples of the received signal sampled
with frequency fs = 1/Ts such that [rm]i = rm([i− 1] · Ts), i = 1 . . . N and stacks
them into the observation vector r = [rT1 , . . . , r

T
M ]T ∈ CMN×1, given as

r = x(θ) + n. (7)

Here, we have on the one hand the SMC-related term x(θ) as a function of the
SMC parameters θ, and on the other hand the DMC and noise related term n. In
the following, we will describe these two terms in detail.

2.3.1. SMCs

The SMC part of the observation in (7) is described by

x(θ) = [b(φ1)⊗ s(τ1), . . . , b(φK)⊗ s(τK)]α (8)

with

s(τk) = [s(0 · Ts − τk), . . . , s([N − 1] · Ts − τk)]
T ∈ RN×1

α = [α1, . . . αK ]
T ∈ RK×1

b(φk) =
[
b1(φk)ejζk,1 , . . . , bM (φk)ejζk,M

]T ∈ CM×1.

The parameter vector θ contains the SMC parameters

θ =
[
φT, τT,αT, ζT

]T
(9)

where its components are of dimension RK×1. Of special mention is the phase
parameter ζ, which is only of the same dimension if coherent processing is performed,
i.e., if the antenna phases are determined by (5). However, our focus will be on the
non-coherent case where ζ ∈ R(KM)×1 contains all phase shifts ζk,m, since they are
all unknowns. Hence, in this case, the stacked parameter vector θ is of dimension
R(3K+KM)×1.

2.3.2. DMC and Noise

The vector n = nν +w ∈ CMN×1 represents the DMC process and the measure-
ment noise as a Gaussian process with covariance matrices

Cn = Cν + σ2
wIMN ∈ CMN×MN (10)

where σ2
w = N0/Ts is the measurement noise variance andCν is the DMC covariance

matrix. For the DMC covariance matrix we need to take correlations between
antenna elements into account. To this end, we can separate Cν into blocks of size
N ×N , each describing the correlations between one pair of antennas indexed as,
e.g., (m,m′). We may use (6) to write one block of the DMC covariance matrix as

C(m,m′)
ν =

∫∫
Sν(φ, τ) bm(φ) b∗m′(φ) ej(ζ

(m)(φ)−ζ(m′)(φ))

× s(τ)s(τ)H dφdτ. (11)
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2.4. Relating SMCs to geometry

We describe the SMC parameters contained in θ in more detail, considering their
relation to the agent position. It should be emphasized that we will use the
environment geometry, that is, we assume that each SMC involves the reflection
on flat surfaces such as wall segments, as shown in Fig. 1. These segments can be
described by a surface normal, or rather in the case of azimuth plane operation,
by a single segment angle as will be described later. We aim for a compact and
efficient computation of the parameters when anchor and surface positions are
known. The SMC delay (time-of-flight) τk is related to the path length dk by

τk = 1
cdk = 1

c‖ak − p‖ (12)

where c is the propagation velocity. Here, ak is the position of a VA [8, 45]
that results from mirroring the anchor position on a known reflective surface
in the environment, as exemplified in Fig. 1 by a2 and a3. Note that Fig. 7.10
in [19, Chapter 7.5] provides a detailed description of this operation called the image-
source principle. For higher-order reflections, the mirroring process is repeated in
the sequence of reflecting surfaces along the propagation path.

Considering the angle domain, the AoD ϕk at the agent is given by ϕk = ](ak−p).
Using the angles of all involved wall segments, the AoD ϕk at the agent can be
related to the AoA at the anchor node by

φk = (−1)O(k)
(
ϕk − π

)
− 2

O(k)∑

j=1

(−1)j φ(k)
segj

(13)

where O(k) denotes the order of the reflection associated with MPC k, and φ
(k)
segj

denotes the angle of the jth involved reflective segment in the propagation path
with j = 1, . . . ,O(k) ordered according to the sequence of bounced surfaces. As an
example, see Fig. 1 for the segment angle related to VA a3.

What remains is the amplitude αk and phase ζk,m. The amplitude incorporates
effects such as path-loss and reflection losses, whereas the phase incorporates the
influence of reflections depending on the involved materials. These parameters are
not easily related to the geometry and are thus treated as nuisance parameters in
the position estimation problem.

3. Fisher information of channel parameters

On the basis of the signal model in (7) and (8), we can examine the useful
information present in observed signals. To this end, we will determine the Fisher
information matrix (FIM). The elements of this matrix quantify the amount of
information that the observable vector r carries about the unknown parameters θ.

3.1. Fisher information matrix

The FIM Iθ on the parameter vector θ is used to obtain the Cramér-Rao lower
bound (CRLB) [46,47] for an estimated parameter vector of θ̂ via

E
{
‖θ − θ̂‖2

}
≥ tr

(I−1
θ

)
. (14)

The CRLB provides a lower bound on the variance of any unbiased estimator for
the model parameters. The FIM, considering the Gaussian model with known
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covariance matrix Cn, is defined as [47, Chapter 15.7]

Iθ = 2<
{
JH
θ C

−1
n Jθ

}
(15)

where Jθ denotes the Jacobian of the signal model with respect to the elements of
a length-Lθ parameter vector

Jθ =
[(

∂
∂θ1
x(θ)

)
, . . . ,

(
∂

∂θLθ
x(θ)

)]
∈ RMN×Lθ . (16)

In our case, using non-coherent processing, the number of parameters is Lθ =
K(3 + M). We define sub-matrices Iϑϑ′ [15], where ϑ,ϑ′ ∈ {φ, τ ,α, ζ}. These
sub-matrices cover all combinations of parameter types to assemble the full FIM
from (15). The structure of the full FIM Iθ using these sub-matrices can be found
in (50), whereas one element [·]k,k′ of Iϑϑ′ is outlined in (51), both shown in
Appendix A.

3.2. Towards CRLB: Equivalent FIM

Our main interest concerns the lower bound on the estimation of the delays τk
and AoAs φk, and the resulting position estimation performance. Hence, we want
to determine sub-matrices of the inverse FIM, in particular the respective block
matrices on the main diagonal related to one type of parameter. For this purpose,
it is beneficial to define the equivalent FIM (EFIM) [10] as

Ĩϑ = Iϑϑ − Iϑϑ I−1

ϑϑ
IH
ϑϑ

(17)

where ϑ stacks the vectors of all remaining parameters, i.e. ϑ = θ \ ϑ. The CRLB
on the corresponding parameter can be obtained by computing the inverse of the
respective EFIM. It should be noted that we rearrange the sub-matrices in (50)
such that any desired parameter type is in the top left to make use of this inversion
lemma. Numeric evaluation of (17) will allow for the evaluation of the CRLB for
the respective parameter vector. The benefit of the EFIM definition is that the
cross-dependence of the estimation of the parameters in ϑ on any other parameters,
described by the matrix Iϑϑ, turns approximately to 0 in many cases. Thus, it
becomes sufficient to derive the inverse of the sub-matrix Iϑϑ, yielding far more
insightful formulations. In the following, we will present the derivations of the
EFIM for the SMC delay and angle estimation using the assumptions given in
Appendix B that allow further insightful discussions in terms of contributions to
position information. Note that in general (17) can be used to compute the CRLB
on the position error numerically without using the assumptions given in (65), (66)
and (69). However, to gain more insights into the structure of the CRLB, we use
these assumptions in what follows.

3.3. EFIM for SMC delay estimation

Based on the assumptions (65), (66) and (69) in Appendix B, the EFIM for delay
estimation can be derived as (62) given in Appendix A. It can be rearranged in
the following form

[Ĩτ
]
k,k

= 8π2 β2
k ‖b(φk)‖2 SINRk ξ

delay

k (18)

where

β2
k =

‖ṡ(τk)‖2H
4π2 ‖s(τk)‖2H

(19)
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is the (mean-square) bandwidth of the whitened signal s(τk) and ṡ(τ) = ∂s/∂τ
denotes the derivative of the signal s(τ) w.r.t. the delay τ , and

SINRk =
|αk|2
N0
‖s(τk)‖2H Ts (20)

is the signal-to-interference-plus-noise-ratio (SINR), quantifying the level of DMC
plus noise interference in one SMC. We use ‖ · ‖2H to denote the squared weighted
norm (taking the noise model into account) which is described by (68) in Appendix B.
The factor ξdelay

k ∈ [0, 1] can be interpreted as the information loss on the SMC
delay estimation induced by the complex amplitude estimation in the DMC [12,15],
and it is given in (62) in Appendix A. We introduce the whitening gain γk = β2

k/β
2
0 ,

where β2
0 = ‖ṡ(τ)‖2/(4π2‖s(τ)‖2) is the mean-square bandwidth of signal s(τ), and

the effective SINR, S̃INRk = SINRk γk ξ
delay

k . Then, the EFIM for delay estimation
in (18) can be rewritten as

[Ĩτ
]
k,k

= 8π2 β2
0

M∑

m=1

|bm(φk)|2 S̃INRk (21)

which is equivalent to what was shown in [12], with the difference that there is
a weighting by the squared beampattern values, hence a gain dependent on the
directionality.

3.4. EFIM for SMC AoA Estimation

We follow an analogous approach for the EFIM of the AoA estimation, i.e., we use
the assumptions (65), (66) and (69) in Appendix B. The EFIM for AoA estimation
in (63), in Appendix A, can be rearranged in the following form

[Ĩφ
]
k,k

= 2 SINRk ‖ḃ(φk)‖2 ξangle

k

= 2 SINRk ξ
angle

k

M∑

m=1

|ḃm(φk)|2 (22)

where ḃ(φ) = ∂b/∂φ with ḃm(φ) = ∂b/∂φ denoting the derivative of the mth an-
tenna’s beampattern w.r.t. φ. The factor ξangle

k ∈ [0, 1] can be interpreted as the
information loss on the SMC AoA estimation induced by the complex amplitude
estimation in the DMC, and it is given in (63) in Appendix A.

A common property of antenna characteristics is an approximately symmetric
beampattern, i.e., the beampattern can be described by an even function. In this
case, due to the property of even functions exhibiting an odd function as deriva-
tive, there is orthogonality between the function and its derivative amounting to〈
ḃ(φk), b(φk)

〉
≈ 0. Therefore, we have ξangle

k ≈ 1 in (63) neglecting the information
loss related to the angles in the upcoming derivations. Introducing the non-coherent
normalized square array aperture

D2
b (φ) =

1

4π2M

M∑

m=1

|ḃm(φ)|2 (23)

the EFIM for AoA estimation in (22) can be rewritten as

[Ĩφ
]
k,k

= 8π2 SINRkM D2
b (φk) . (24)
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3.5. Comparison to Coherent Processing

For a conventional antenna array with coherent processing, we obtain (cf. [11, 13])

[Ĩφ
]
k,k

= 8π2SINRkM D2
λ(φk) (25)

with

D2
λ(φ) =

1

M

M∑

m=1

(
d(m)

λ

)2

sin2
(
φ− φ(m)

)
(26)

which will serve as a reference result. The factor (26) has been interpreted as a
coherent normalized squared aperture that scales the amount of angle information
available. (Note the similarity to the scaling of delay information by the squared
bandwidth.) The accompanying array response beampattern using (5) is given by

bλ(φ) =
1

M

M∑

m=1

exp
(
j2π d

(m)

λ cos
(
φ− φ(m)

))
. (27)

For a numeric comparison of the squared apertures from (23) and (26), it is
convenient to write the beampattern of antenna m as a Fourier series,

bm(φ) = b(φ+m 2π
M ) =

∞∑

`=−∞
c`e

j`m 2π
M ej`φ (28)

where coefficients c` describe the generic beam pattern b(φ) which is rotated by
m 2π
M for antenna m. For non-coherent processing, a real-valued beampattern is

assumed, hence c` = c∗−`. Straightforward manipulations yield

‖b(φ)‖2 = M
∞∑

η=−∞

∞∑

`=−∞
c`c
∗
`−ηMe

jηMφ (29)

where the inner sum is the autocorrelation of the Fourier coefficients, c`, at lags
ηM . For η = 0, this expression corresponds to a constant squared norm, whereas
for |η| ≥ 1, deviations from this constant are quantified. The deviations have a
periodicity of 2π

M , obviously.
We can use this insight to design antenna patterns that minimize or avoid

fluctuations of ‖b(φ)‖2 as a function of φ, which is important to yield uniform
delay information, independent of φk, cf. (18). Such constant delay informa-
tion will be obtained when only coefficients c` 6= 0 for |`| ≤ (M − 1)/2, yielding
‖b(φ)‖2 = M

∑
` |c`|2. Normalizing the energy of the beam pattern to one, i.e.

‖b(φ)‖2 =
∑
` |c`|2 = 1, we get ‖b(φ)‖2 = M . It is seen that an SINR gain by

a factor of M is obtained, which is identical to the SINR gain obtained with
conventional coherent processing [12,13].

To gain insight in the equivalent aperture value of the non-coherent antenna
configuration, we analyze the expression (23). We re-use the Fourier series repre-
sentation of bm(φ) from (28), to reformulate (23) as

D2
b (φ) =

1

4π2

∞∑

η=−∞

∞∑

`=−∞
`c`(`− ηM)c∗`−ηMe

jηMφ (30)

where the inner sum is the autocorrelation of the Fourier coefficients of the beam-
pattern derivative, `c`, at lags ηM . Again, this expression corresponds to a
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Figure 2: Beampattern design using M = 4 antennas to generate (a) a Dirich-
let shape and (b) a raised-cosine shape. The left plots show the
choice of Fourier coefficients c` for (a) ` = {−1.5,−0.5, 0.5, 1.5} and (b)
` = −2 . . . 2 (where c` = 0 for |`| > 2); the right plots show the resulting
beampatterns and the equivalent apertures obtained via (28)-(30).

constant for η = 0, whereas for |η| ≥ 1, deviations from this constant are quantified,
which are periodic with 2π

M . We can use this insight to design antenna patterns
that minimize or avoid fluctuations of the angle information as a function of φ.
In particular, constant angle information will be obtained when only coefficients
c` 6= 0 for |`| ≤ (M − 1)/2, yielding

D̃b

2
(φ) =

1

4π2

(M−1)/2∑

`=−(M−1)/2

`2|c`|2. (31)

Choice of a constant c` = 1/
√
M for |`| ≤ (M − 1)/2 yields a Dirichlet kernel for

the beam pattern with normalized energy ‖b(φ)‖ = 1. It will have an equivalent
squared aperture

D̃b

2
(φ) =

1

4π2

M2 − 1

12
(32)

which scales quadratically in the number of array elements. Fig. 2 exemplifies
beampattern designs for a setup of M = 4 antennas. On the one hand, we have
the previously described choice of uniform Fourier coefficients, shown on the left
of Fig. 2a and the accompanying shape shown on the right, where a constant
equivalent aperture is achieved. For comparison, in Fig. 2b we show a choice of
coefficients that results in a raised-cosine shape, which means reduced sidelobes
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Figure 3: Array responses of coherent antenna arrays using M = 4 antennas, steered
towards an angle of π2 for (a) a uniform linear array and (b) a rectangular
array. The left plots show the array geometry (anchor antenna positions)
and the right plots show the resulting array responses and equivalent
apertures obtained via (26) and (27).

for the beampattern shape at the cost of a ripple in the equivalent aperture, i.e.,
varying delay and AoA information for different directions.

Comparison to a uniform linear array with coherent processing and λ/2-spacing
[13, Eq. (33)] reveals the same scaling with M and an increase by a factor of π2 in
broadside direction. The improvement is apparently at the cost of information in
end-fire direction. In a uniform circular array, a constant D2

λ(φ) ≈M2/(16π2) is
obtained (for M � 1) which differs from (32) by a factor of 3. Fig. 3 shows illustra-
tions of these array geometries with accompanying array responses (see [48, Sec.3])
and information gains for a steering in direction π

2 . These results demonstrate the
close correspondence between the angle information retrieved from the non-coherent
antenna setup and a conventional, coherent array. The root-EFIM of the angle
parameter will be reduced by a factor of

√
3 for the non-coherent case. We will

further evaluate and compare the two antenna configurations in Section 5 by means
of numerical results.

4. Error bound for positioning

This far, we derived the full FIM and EFIMs for our parameter vector θ. In the
following, we evaluate the obtainable position accuracy for our measurement model.
For that matter, we determine the CRLB for the agent position, termed position
error bound (PEB) [10]. The PEB acts as a comprehensible quality measure that
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can be used as a benchmark for practical estimators.

4.1. General PEB

When the FIM is available for the observation model parameters, we can relate it
to the PEB via a parameter transformation [10]. As a first step, we introduce a
new parameter vector

ψ =
[
pT,αT, ζT

]T ∈ RLψ×1. (33)

Here, we have the actual desired quantity, the agent position p, but we still have
to include the SMC amplitudes and phases as nuisance parameters. Since we have
D = 2 dimensional positions and again phases ζk,m, we obtain Lψ = D +K(M + 1)
for the respective number of parameters. We relate the original parameter vector
to the new one via the Jacobian

Jψ =

[
Jp

02K×K(M+1)

IK(M+1)

]
(34)

where matrix Jp describes the spatial gradients defined by

Jp = ∂
∂pT θ =

[(
∂
∂p1
θ
)
, . . . ,

(
∂
∂pD

θ
)]
∈ RLθ×D. (35)

Together with the parameter FIM from (50), we obtain the FIM for the new
parameters

Iψ = JT
ψIθJψ ∈ RLψ×Lψ . (36)

The CRLB for ψ is related to the inverse of this matrix (cf. (14)). However, we
are interested in the positions only, hence we look at the trace of the top left of
the inverse that defines the PEB with

PEBp =

√
tr

([
I−1
ψ

]
D×D

)
. (37)

Taking the square of the right-hand side results in what is commonly known as the
squared PEB, which quantifies the lower bound on the variance of the absolute
position error.

4.2. Spatial gradients

For the spatial gradients (35), we apply the derivative with respect to the agent
position to the parameter definitions in (12) and (13), resulting in

∂
∂p (τk) = 1

c e(ϕk)

∂
∂p (φk) = 1

dk
(−1)O(k)e(ϕk − π

2 )

∂
∂p (αk) = 0 ; ∂

∂p (ζk,m) = 0

where e(ϕ) denotes a unit vector pointing in the direction of the AoD ϕ. Further-
more, we assume that the amplitudes α do not depend on the agent position p.
Since the phases ζ stem from reflection properties and the measurement device, it
is evident that they are also unrelated to the agent position. With this, we can
assemble the Jacobian from (34) and follow the derivations until (37) to obtain the
PEB.

Single-Anchor Positioning: Multipath Processing w. Non-Coh. Directional Measurements

126



4.3. PEB using EFIM

We use the EFIMs (21) and (24) to get a closed-form solution for (37), in order
to obtain an insightful formulation. To make use of the EFIMs, it is beneficial
to define subsets of the Jacobian from (35) that contain only the position-related
parameters described by

Jτ = ∂
∂pT τ , Jφ = ∂

∂pTφ ∈ RK×2.

The parameter transformation (36) enables the use of the inversion lemma (17) to
compactly obtain the EFIM for the agent position via

Ĩp = [Iψ]2×2 = JT
τ ĨτJτ + JT

φ ĨφJφ.

With this, the full EFIM for the agent position is described by

Ĩp = 8π2
K∑

k=1

(
β2
k

c2
‖b(φk)‖2 S̃INRkDr (ϕk)

+
D2
b (φk)

d2
k

M SINRkDr

(
ϕk − π

2

))
(38)

where Dr (ϕ) = e(ϕ)eT(ϕ) is the ranging direction matrix [10]. For each SMC, we
can see an information gain in radial direction via delay information (quantified
by the squared bandwidth and the speed of light, i.e., β2

k/c
2) and in tangential

direction via angle information (quantified by the non-coherent squared antenna
aperture and the SMC distance, i.e., D2

b (φk)/d2
k).

5. Numerical results

This section aims at a numeric validation of the potential of the beampattern-
enhanced, non-coherent positioning system. We evaluate the PEB for specific
scenarios in indoor environments. Three setups are used to compare the performance
obtained by the proposed non-coherent array with a conventional coherent array
and a reference setup with a single antenna.

5.1. Evaluation setup

We assume given wall segments that form rooms with simple geometries and a given
anchor position a1. The number of dedicated wall segments is denoted by Kseg.
The anchor position is used together with the wall segments to determine VAs
via mirroring operations, as described in Section 2.4. With the VA positions, the
parameters τk and φk are determined as described by (12) and (13), respectively.
We consider up to second-order reflections, which means the number of considered
SMCs is given by K ≤ Kseg(Kseg − 1) + 1. Note that for each agent position, VA
visibility tests are performed, which may reduce this number on an individual
basis [49]. The real-valued amplitudes αk are simulated using the free space path-
loss model, whereas each reflection results in a loss of 3 dB. Additionally, phases
are applied to the amplitudes according to ej2πfcτk . For the agent positions, a
uniformly sampled grid is spanned over the floorplan of the room with a spacing of
2 cm.

To provide a context to previous work, we consider an “L-shaped” room, as
shown in Fig. 5, which was also used in [15]. Hence, with Kseg = 6 wall segments
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present, the number of usable SMCs amounts to K ≤ 31. We also consider the
same pulse signal for s(t) as in [15], using a root-raised-cosine waveform with
roll-off β = 0.6 and bandwidth 1/Tp = 1 GHz at a carrier frequency of fc = 7
GHz. For the DMC, we use the assumptions in (65) and (69), resulting in a block
diagonal covariance matrix Cn with identical blocks for each antenna. We use a
delay power spectrum Sν(τ) which exhibits a double-exponential shape as defined
in [41] by Eq. (9) and illustrated in Figs. 4a and 4b. The used parameters are
γ1 = 20 ns, γrise = 5 ns and χ = 0.98, representing the decay and rise exponents
and the relative power at excess delay zero, respectively. The power parameter

Ω1 is chosen such that we reach a Ricean K-factor of |α(1m)
1 |2/Ω1 = 10 dB for the

line-of-sight (LOS) component energy, where α
(1m)
1 is the complex amplitude of

the LOS component at a distance of 1 m from the anchor. The power spectrum
was aligned in time with the LOS component, i.e., it was shifted by τ1. To define
the signal-to-noise ratio (SNR) of the synthetically generated measurements, we
introduce the SNR at 1 m, i.e.,

SNR(1m) =
|α(1m)

1 |2
N0

(39)

which relates the received LOS component energy at a distance of 1 m from the
anchor to the noise power spectral density. Additionally, we define the receiver
SNR as

SNRr =

∥∥∑K
k=1 αks(τk)

∥∥2
Ts

N0
(40)

where the parameters αk and τk are determined for a specific agent (“receiver”)
position. This quantity takes distance and visibility conditions of the SMCs into
account (e.g., K might be reduced due to non-visible SMCs) and thus relates to
the impact of the propagation channel for a selected measurement noise level.

Fig. 4 illustrates the channel parameters (SMC and DMC) for two example
agent positions, in Fig. 4a for an agent position where the LOS and four SMCs
are visible, and in Fig. 4b for an agent position where the LOS is blocked and
only two SMCs are visible. For visualization purposes, only first-order SMCs are
considered, i.e., we have K ≤ 7. The AWGN level is shown for two N0 values where
SNR(1m) = 30 dB and SNR(1m) = 50 dB. In Sec. 6, a positioning algorithm will be
presented and evaluated on these simulated data.

5.2. PEB results for different setups

We evaluate the PEB described in (37) for each agent position, where we use both
the full FIM, whose elements were computed using (50) (the respective sub-matrices
are given in (52)-(57)), as well as the simplified, canonical EFIM from (38). We
also select representative agent positions to show the respective scaled error ellipses
that illustrate the components of the PEB in 2D-space. Throughout this section,
we choose N0 (and in turn σ2

w) such that we get SNR(1m) = 29.5 dB as a reference
value.

Setup 1: Single omni. First, we recreate the results from [15], examining the PEB
for the multipath model considering only a single omni-directional antenna at the
anchor. Hence, we set M = 1 and bm(φ) = 1√

2π
. The resulting PEB values are

shown in Fig. 5a. While the setup allows for overall low PEB values due to the good
resolution in delay domain, we can clearly see regions where the bound sharply
decreases, caused by non-resolvable SMC path overlap.
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Figure 4: Visualization of the synthetic data: the power of used SMCs, DMC
and AWGN is illustrated in log-scale (dB) for (a) a LOS case at
agent position p = [6, 6]T and (b) a non-LOS case at agent position
p = [3.7, 1.8]T. Two reference AWGN levels are shown using (39) with

the given SNR(1m) values. The respective SNRr values obtained using (40)
are (a) SNRr = 20 dB / 40 dB; and (b) SNRr = 9 dB / 29 dB.

Fig. 8 shows the cumulative frequency of PEB values over the agent positions
to quantitatively compare the positioning performance for the results illustrated
in Fig. 5. The degradation in positioning accuracy due to path overlap is visible
when considering the 90 percentile and above, where the error increases to multiple
decimeter.

Setup 2: Array processing (coherent). We increase the antenna number to M = 4
and assume a conventional array with coherent phase processing. The antennas
are on a circle with a constant radius d(m) and φ(m) = π

2 ·m, such that an inter-
antenna spacing of λ/2 is achieved, as illustrated in Fig. 3b. To use phase coherent
processing, this setup requires the antenna phases ζm(φ) to be determined by the
respective AoA φ. Hence, for this setup, we change the vector ζ to only include
the K random SMC phases ζk, cf. (1).

The PEB for this constellation is shown in Fig. 5b. This time, the angle
information helps resolving SMC path overlap while also increasing the overall
accuracy, leading to a PEB that is dominated by SMC visibility properties. Non-
resolvable path overlap remains only in a few regions, due to a smaller set of visible
SMCs.

These performance improvements compared to the single omni setup are quanti-
fied in the cumulative frequency plot shown in Fig. 8, specifically when regarding
the 90 percentile where sub-decimeter levels are achieved.

Setup 3: Directional beampatterns (non-coherent). Finally, we apply the proposed
non-coherent array of M = 4 directional antennas. We use a Dirichlet kernel as
defined in (28), described with M non-zero Fourier coefficients c` = 1/

√
M for

` ∈ {−1.5,−0.5, 0.5, 1.5}, which is illustrated in Fig. 2a. Each antenna uses the
same pattern but is pointed towards one of the four cardinal directions. For this
setup we consider the full vector of K ·M unknown phases ζk,m. The resulting PEB
is shown in Fig. 5c. The achieved accuracy comes close to Setup 2, i.e., directional
antennas show a similar capability of resolving the path overlap, only slightly
worse than the coherent omni-array setup. This observation is also confirmed
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when regarding the quantitative evaluation shown in Fig. 8, where we note the
resemblance between the results of the coherent and non-coherent setups.

Additionally, in Fig. 5d, the PEB is shown for the simplified, canonical EFIM (38).
It can be seen that the simplified PEB follows closely the full form, justifying the
assumption in (66). The only significant differences are present in selected regions
where SMC path overlap occurs. For the top left position, it is shown how the
Fisher information from (38) affects both the radial and tangential position error
via the information gains from delay and angle information, respectively.
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Figure 5: Position error bound using (a) M = 1 omni-directional antenna coher-
ently, (b) M = 4 omni-directional antennas (spaced by λ/2) coherently,
(c) M = 4 directional antennas non-coherently, and (d) M = 4 directional
antennas non-coherently with the canonical FIM according to (38). At
sample positions, 20-fold standard deviation error ellipses are shown.

Time vs. angle information. With the good achievable accuracy of the non-coherent
setup, we want to determine the main contributor to the bounds in terms of position-
related parameters. Specifically, we aim to show how much information the SMC
delays add compared to the SMC angles. Also, we are interested in the effect of an
increased number of antennas at the anchor, which puts the system in the context
of mm-wave pencil-beam setups. We use the full FIM of the non-coherent model
with M = 4 and M = 16 antennas to evaluate the PEB using only delays or angles,
respectively, where the respective unused parameter (either τk or φk) is treated as
another nuisance parameter.

The PEB results, considering delay information only, are shown in Fig. 6. From
Fig. 6a, it is evident that the SMC delays carry the main contribution to the
achieved accuracy, because the results come close to what was achieved with the
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Figure 6: Position error bound for the non-coherent case using only delay infor-
mation with (a) M = 4 and (b) M = 16 antennas. At sample positions,
20-fold standard deviation error ellipses are shown.
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Figure 7: Position error bound for the non-coherent case using only angle infor-
mation with (a) M = 4 and (b) M = 16 antennas. At sample positions,
standard deviation error ellipses are shown, 1-fold in (a) and 3-fold in
(b).
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Figure 8: Cumulative frequency of the PEB values evaluated over the agent position
grid for different antenna setups at the anchor (quantifying the results
shown in Fig. 5).

full parameter set (cf. Fig 5c). Fig. 6b shows the same evaluation using M = 16
antennas, which achieves overall slightly better results, however the improvement
is not significant.

In contrast, Fig. 7 shows the PEB results considering angle information only.
Please note that the PEB is now shown in meter, due to the significanty higher
error values compared to the delay information case. The error ellipses show
that, predominantly, tangential information is provided. Furthermore, a large
degradation is evident with an increased distance from the anchor. This is a
well-known drawback of angle measurements, which can be seen mathematically
from the inverse distance-scaling of the angle term in (38). Using M = 16 antennas
greatly increases the positioning performance, which stands in stark contrast to the
delay information improvements. The 3-fold standard deviation ellipses show that,
for positions in LOS conditions, the tangential deviation is minimized. Note that,
for visualization purposes, these ellipses are scaled by a larger factor for M = 16,
due to the significantly lower PEB values.

Fig. 9 shows again a quantitative evaluation in terms of cumulative frequency
for the PEB values of the described setups using delay and angle information
respectively (cf. Figs. 6 and 7). With delay information, a significantly better
performance is achieved. This confirms the observations from the qualitative PEB
analysis, which identifies the delay information as the main contributor to accurate
position estimates, justified by the large bandwidth. Increasing the number of used
antennas to M = 16 decreases the error consistently. For the delay information
case the accuracy scales by a factor of about 2. Considering the angle information
case, the number of antennas has a higher impact. Here, using M = 16, the error
decreases by a factor of 10. It is expected that the angle information will surpass
the delay information when M is increased by a factor of 8 to M = 128. However,
this result also depends on the room geometry, since angle information drops with
d2
k.

6. Positioning algorithm

In this section, we leverage the gained insights and present a positioning algorithm
capable of estimating the agent position p given a measurement r. We derive
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Figure 9: Cumulative frequency of the PEB values evaluated over the agent position
grid for the non-coherent antenna setup at the anchor with varying number
of antennas M , considering only information gained from the angles φ
or delays τ (quantifying the results shown in Figs. 6 and 7).

the algorithm based on the received signal model (7) where we identify τ , φ, α
and ζ as unknown variables. While τ and φ can be expressed as function of p
(see Section 2.4), we need to estimate the nuisance parameters α̂ ≡ α̂(r,p) and

ζ̂ ≡ ζ̂(r,p) jointly with p̂.
The positioning is performed by a maximum likelihood (ML) approach, on the

basis of the log likelihood function L(r|p,α, ζ) derived from (7), which will be
formulated later. Two algorithm variants will be given that vary in the noise model.
The ML optimization problem can be formulated as

p̂ = argmax
p̄∈P

L(r|p̄, α̂, ζ̂) (42)

where the estimates (α̂, ζ̂) result from

(α̂, ζ̂) = argmax
(α,ζ)

L(r|p̄,α, ζ) (43)

evaluated for one specific position p̄. The non-linear relations in (42) prevent

a closed-form solution for p̂. Moreover, an independent estimation of α̂, ζ̂ is
infeasible which sacrifices computational efficiency. As a remedy, we propose to
evaluate the log likelihood function in (42) numerically for positions p̄ ∈ P within
the communication range. A straight-forward choice for the set of evaluation
positions P is a reasonably dense position grid spanned over the floorplan of the
considered environment, whereas the granularity of this grid poses a lower limit
on the position error. Alternatively, prior range estimates can be used to reduce
the set to a sphere around the anchor as proposed in [37] and evaluated in [31].
Then, to obtain the position estimate via (42), the likelihood is evaluated for all
the chosen agent positions. To further enhance the feasibility of the algorithm, we
relax the joint estimation in (43), as shown in the following.

6.1. Derivation of the positioning algorithm

An independent estimation of α and ζ is intractable for the original optimization
problem, but possible by assuming that the measurements rm are independent
across m and by assuming the absence of overlapping SMCs. Following the
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derivations from [38], we start by factorizing L(r|p,α, ζ) using assumption (64),
resulting in

L(r|p,α, ζ) =
∑

m

Lm(rm|p,α, ζ) (44)

with

Lm(rm|p,α, ζ) =− det{C(m)
n } − σ−2

w ‖rm − xm(p,α, ζ)‖2Hm . (45)

The covarianceC
(m)
n of themth antenna is defined in (65) and the vector xm(p,α, ζ)

∈ CN is

xm(p,α, ζ) =
K∑

k=1

αk,mbm(φk)s(τk) (46)

where we introduced an auxiliary variable αk,m = αke
jζk,m .

For an independent estimate of the parameters in α and ζ, we assume that
specular reflections do not overlap in the delay domain as stated in assumption (66).
Then, maximizing (45) w.r.t. αk,m yields

α̂k,m =
1

bm(φk)

〈s(τk), rm〉Hm
‖s(τk)‖Hm

. (47)

Subsequently, we maximize (44) w.r.t. ζ̂k,m, contained in ζ̂, and the results can be
expressed as

ζ̂k,m = ∠α̂k,m (48)

using α̂k,m obtained from (47). The SMC amplitudes α̂k result from maximizing
(44) w.r.t αk. Again, we assume no SMC path overlap, and obtain after some
derivations

α̂k =

∑M
m=1 |bm(φk)|2|α̂k,m|∑M

m=1 |bm(φk)|2
. (49)

The steps performed by the position estimator can be summarized as follows. To
evaluate L(r|p̄, α̂, ζ̂) from (42) for a specific p̄ ∈ P, first, SMC parameters τ and
φ are calculated using (12) and (13) respectively, followed by estimating α̂k,m
via (47). Subsequently, ζ̂ and α̂ result from (48) and (49), respectively. Finally,

these estimates are plugged into (44) to calculate L(r|p̄, α̂, ζ̂). This procedure is
repeated for all p̄ ∈ P and p̄ with the highest associated likelihood is chosen as
position estimate p̂ (cf. (42)).

6.2. Evaluation of the Positioning Algorithm

We assess the performance of the presented positioning algorithm by comparing
the mean-squared error (MSE)

ε =

√√√√ 1

NMC

NMC∑

i=1

‖p̂i − p‖2

between the true p and estimated position p̂i, on the basis of observation data
taken from NMC realizations of rm, where we use both synthetically created data
and measurement data. We compare the performance using two kinds of estimators
which vary depending on the used noised model: First, we follow the derivations in
Section 6.1 where we assumed knowledge regarding the noise covariance, described
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by C
(m)
n (see (45)), resulting in an algorithm that makes use of the DMC statistics,

hence we refer to this algorithm as DMC-based (note that the AWGN is also
included in the covariance matrix).4 Second, as a simpler alternative, we use

an estimator with non-accessible C
(m)
n where no DMC is used (this follows the

algorithm described in [38]), which can be accomplished by replacing C
(m)
n in (45)

and (47) with an identity matrix IN . We refer to this variant of the algorithm as
AWGN-based.

6.2.1. Synthetically Generated Data

In the first evaluation, we obtain observations by performing NMC = 1000 Monte-
Carlo runs. We focus on the potential to estimate positions in LOS as well as in
non-LOS conditions, located in the L-shaped room from Section 5 where agent
positions [6, 6]T and [3.7, 1.8]T correspond to the LOS and non-LOS case. The
signal parameters and beampatterns are identical to Section 5. For the SMCs,
we use only first-order reflections, hence, we have K ≤ 7. The observations are
created using (7). In the first experiment, we keep the DMC power constant. The
experiment is performed for varying AWGN levels, whereas the noise variance
σ2
w = N0/Ts is set using (39) such that SNR(1m) values in the range of 10 to 60 dB

are obtained. Fig. 4a illustrates the used SMCs in comparison with DMC and
AWGN for the two agent positions and two AWGN levels.

Fig. 10 presents the MSE achieved comparing the DMC-based (solid blue) and
AWGN-based (dashed cyan) estimators using M = 3 antennas for various AWGN
levels. The corresponding PEB (black) from (37) is shown for comparison. In
general, we can observe that the PEB for the LOS case is lower, showing the vital
position information contained in the LOS component. In non-LOS conditions the
achievable accuracy is decreased and moreover, the PEB is approached at a higher
SNR(1m) value of 45 dB (SNRr = 24 dB) in comparison to LOS conditions where

the PEB is approached at SNR(1m) = 25 dB (SNRr = 15 dB).

A comparison between the two proposed estimators illustrates the importance of
considering the DMC power in the estimation procedure. At SNR(1m) values above
50 dB, the position error of the AWGN-based estimator saturates and diverges
from the PEB. At these high SNR(1m) values, the AWGN level is very low, hence
the DMC is clearly the limiting factor and only the DMC-based estimator is able
to approach the PEB.

To illustrate the impact of the DMC on the achievable performance, we calculate
a position error bound PEBAWGN

p assuming presence of AWGN only (replacing

C
(m)
n in (65) with σ2

wIN ). Fig. 10 presents PEBAWGN
p (gray) showing that at low

SNR(1m) values both PEBp and PEBAWGN
p approach similar values. Increasing

SNR(1m) (and thus SNRr), both PEBs decrease but PEBp saturates due to the
constant DMC power. This saturation demonstrates again that dense multipath
effectively limits the achievable accuracy regardless of the AWGN levels of the
observations. It has to be emphasized that this unavoidable effect of the radio
channel itself cannot be reduced by increasing SNR(1m). However, the insight from
the theoretical results shows how it can be eased by increasing the signal bandwidth
and the number of the antennas or by using directional antennas.

In the second experiment, we evaluate the impact of number of antennas M .
The beampattern is obtained using (28) with M non-zero Fourier-coefficients

4The proposed DMC-based algorithm can be extended in line with [40,50] to jointly estimate
the DMC statistics.
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Figure 10: Mean-squared error ε achieved by the proposed position estimators
in LOS (indicated by ) and non-LOS (indicated by ) conditions
using M = 3 antennas. The position error bounds considering dense
multipath and AWGN (PEBp) as well as AWGN only (PEBAWGN

p ) are

shown for comparison. The AWGN level N0 is set using the SNR(1m)

values from the x-axis in (39). SNRr values obtained using (40) are
shown for both the LOS and non-LOS case at representative points.

c` = 1/
√
M with ` ∈ [−M−1

2 , . . . , M−1
2 ]. Fig. 11 illustrates the MSE for LOS and

non-LOS conditions achieved by the DMC-based (solid blue) and AWGN-based

(dashed cyan) estimators. For the AWGN, we set N0 such that SNR(1m) = 40 dB,
whereas the remaining parameters are equal to the first experiment. In general, we
can observe that the PEB is less sensitive to M , e.g. increasing M by a factor of
four accompanies with a reduction of the PEB by a factor of two, as anticipated
in Section 3. However, at large M the position estimator has more independent
observations which enhances the suppression of the DMC, as demonstrated in the
non-LOS case.

6.2.2. Measured Data

The second evaluation is performed on the basis of a measurement campaign
described in [32] and [38], which was conducted in a 6× 8 m laboratory room
with a single anchor at position a1 and an agent at position p as illustrated in
Fig. 12. We consider again first-order reflections only, hence, for this room we have
K ≤ 5. Four directive antennas were used at the anchor, whereas the complex-
valued beampatterns bm(φ) were available as a codebook with a resolution of 10◦.
Measurements to the agent were performed using an Ilmsens Correlative Channel
Sounder [51]. Each measurement was convolved by a raised cosine pulse with a
pulse width of Tp = 2.4 ns, a roll-off factor of β = 0.9, and a carrier frequency of
fc = 5.4 GHz. The agent was placed at positions p on a 15× 14 grid with 5 cm
spacing as shown in Fig. 12, resulting in 210 measurements in (unobstructed) LOS
condition. Both, anchor and agent, were placed at a height of 1.5 m, leading to
reduced floor and ceiling reflections, since all involved antennas exhibit narrow
elevation patterns. For the DMC-based algorithm, we estimated Ĉn

(m) individually

for each antenna using the 210 measurements to estimate the DPS Ŝν
(m)

(τ).

For each grid position, the algorithms are used analogously to the synthetic
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tions in comparison to PEBp. The AWGN level N0 was set such that

SNR(1m) = 40 dB.

setup and the resulting cumulative frequency of the position error over the grid
agent positions is shown in Fig. 13. For comparison, we include our previous results
from [32], where this evaluation was performed using an omni-directional antenna at
the anchor. We identify a significant improvement, especially regarding estimation
outliers (i.e. errors of more than half a meter). By consideration of the DMC

via Ĉn
(m) in the DMC-based method, the result can be improved even further.

Specifically, the 80 % error is almost halved from 20 cm for the AWGN-based
method down to 12 cm, and the amount of estimates to achieve an error of less
than 10 cm goes up from 50 % to 72 %.

To gain further insight in the information provided by the SMCs and the
beampatterns, we analyze |bm(φk)|2 SINRk, which is shown in Table 1. To obtain
the SINRs, we apply (20) where we use the amplitude estimates obtained by (49).
As seen in (38), these quantities indicate the quality of SMCs and highlight how
each antenna can be used to focus on particular SMCs from different directions.
E.g., we see that the SMC from the plasterboard east wall achieves a high SINR
value from the east antenna measurement. For comparison, we include a sum of the
weighted SINRs (similar to what is used in (38) to quantify the total information
collected from each SMC with the multi-antenna system), as well as the SINRs of
SMCs using a single omni-directional antenna at the anchor from [32] (the latter
were obtained by method-of-moments estimation). The information gain of specific
directional antennas is highlighted and the overall higher performance is justified.
A variant of the AWGN-based algorithm was implemented on low-cost devices
based on the DecaWave DWM1000 module as described in [31]. The system was
evaluated in a field test and put in context with other indoor localization systems
in terms of accuracy and required infrastructure.

7. Conclusions

In this article, we investigated a multipath-based, single-anchor positioning system
for indoor environments, which exploits non-coherent angular measurements from
a set of directive antennas. Such measurements can be obtained for example from
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Figure 12: Floorplan of the used laboratory environment where the measurement
campaign was conducted. The four reflective surfaces that yield specular
reflections used by the algorithms are shown as well as the beampatterns
of the antennas at the anchor, labelled according to the four cardinal
directions by north (N), west (W), south (S) and east (E). The gray
rectangles indicate tables and cupboards, which have negligible effect
onto the azimuth propagation of the SMCs.
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Figure 13: Cumulative frequency of the position error ‖p− p̂‖ for the algorithms
described in Sec. 6.1 evaluated over grid agent positions with measure-
ment data from the environment shown in Fig. 12.

a mm-wave radio system with analog beamforming or a UWB transceiver with
switched directive antennas. We derived and analyzed the position error bound
(PEB), the Cramér-Rao lower bound (CRLB) on the position estimation error, for
the proposed measurement system to gain insight about the achievable performance
in comparison to a conventional antenna array requiring fully coherent processing
of the antenna signals. Analysis of the PEB showed that the main contribution to
high-accuracy (centimeter-level) positioning lies in the delays of specular multipath
components (SMCs), whereas the directional antennas allow overlapping SMCs
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Table 1: |bm(φk)|2 SINRk in dB of the respective SMCs and the four used antennas
(cf. Fig. 12) obtained using (20) with the estimated amplitudes from (49).
The column added contains the sum over all antennas, whereas the entry
omni contains the results from [32] using an omni-directional antenna in
the same setup.

SMC N W S E added omni [32]

LOS 23.2 16.7 12.6 11.9 24.6 17.2
plasterb east 7.0 −10.2 −15.6 16.3 16.8 3.1
plasterb west 3.6 5.7 −1.0 −12.5 8.4 −0.6
white board −5.8 12.5 8.9 6.1 14.8 3.4
window 13.7 7.4 −4.2 8.0 15.5 −∞

to be resolved, enhancing the robustness of the system. It was shown that non-
coherent processing of directional measurements achieves a very similar performance
compared to a fully coherent antenna array. Specifically, the bound on the RMS
angle estimation error reduces by a factor of

√
3 when using the same number of

antenna elements, whereas the delay estimation bound remains identical. This
is a promising result, indicating that a high-accuracy, single-anchor positioning
system exploiting angle information could be implemented efficiently with non-
coherent (consecutive) measurements. Such measurements can be conducted with
an adaptive, low-power analog antenna frontend, reducing the required number of
radio chains to a minimum. In this regard, a position estimation algorithm was
derived, showing the achievability of the PEB. Indeed, the performance is limited
by dense multipath as self-interference, not by measurement noise.
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Appendix

A. Derivation of EFIM

General FIM

The FIM for signal model (7) can be assembled by sub-matrices Iϑϑ′ with
ϑ,ϑ′ ∈ {φ, τ ,α, ζ} as

Iθ =




Iττ Iτφ Iτα Iτζ
IH
τφ Iφφ Iφα Iφζ
IH
τα IH

φα Iαα Iαζ
IH
τζ IH

φζ IH
αζ Iζζ


 . (50)

The main contributors to position information are the sub-matrices Iττ and
Iφφ, which are described in detail in Sec. 3. In contrast, to characterize position
information loss due to nuisance parameters, we examine the sub-matrices of the
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FIM describing the cross-dependencies between the useful parameters and the
nuisance parameters. The generic form of the sub-matrices Iϑϑ′ is described by

[Iϑϑ′ ]k,k′ = 2<
{

∂
∂ϑk

(αkb(φk)⊗ s(τk))
H
C−1
n

∂
∂ϑ′

k′
(αk′b(φk′)⊗ s(τk′))

}
. (51)

EFIM for SMC Delay and Angle estimation

In the following derivations, we use the setup employing directional antennas with
non-coherent processing, i.e., we use the parameters from (9), where we consider
that all phase shifts ζk,m are unknown. In contrast, the FIM and resulting error
bounds for a setup of coherent antenna arrays, including multipath resolved models,
is well described in [11] in terms of array constellations and in [13] for models
including a statistical description of the DMC.

To obtain more insightful expressions, we assume that the SMCs are orthogonal
to each other, cf. (66), that the DMC is uncorrelated between antennas, cf. (65),
and equal DMC statistics for each antenna, cf. (69), leading to the matrix elements

[Iττ ]k,k = 2 |αk|2 ‖b(φk)‖2 ‖ṡ(τk)‖2H (52)

[Iφφ]k,k = 2 |αk|2 ‖ḃ(φk)‖2 ‖s(τk)‖2H (53)

[Iαα]k,k = 2 ‖b(φk)‖2‖s(τk)‖2H (54)

[Iτφ]k,k = 2 |αk|2<
{〈
ḃ(φk), b(φk)

〉 〈
ṡ(τk), s(τk)

〉
H

}
(55)

[Iτα]k,k = 2αk‖b(φk)‖2<
{〈
ṡ(τk), s(τk)

〉
H

}
(56)

[Iφα]k,k = 2αk <
{〈
ḃ(φk), b(φk)

〉}
‖s(τk)‖2H (57)

where ṡ(τ) = ∂s/∂τ and ḃ(φ) = ∂b/∂φ. We omit the phase related matrices,
because each Iζζ turns zero on the main diagonal due to the inner derivative of the
phasor making the elements purely imaginary, which removes them via the <{·}
operator. Only on the off-diagonals there can be non-zero values, hence the phase
influences the estimation of other parameters only when the SMC orthogonality
from (66) does not hold.

We observe that there is only an information loss due to the estimation of the
amplitudes. More specifically, via the inversion lemma from (17), we obtain the
full EFIM of position related parameters ϑ ∈ {φ, τ} as

Ĩϑ = Iϑϑ − ILϑ (58)

where the second term can be interpreted as the information loss due to the
estimation of the nuisance parameter given as

ILϑ = IϑαI−1
ααIH

ϑα. (59)

Using the FIM sub-matrices (54) and (56), the information loss for the delay is
given as

[
ILτ
]
k,k

= 2
|αk|2
σ2
w

‖b(φk)‖2<
{〈
ṡ(τk), s(τk)

〉
H
}2

‖s(τk)‖2H
. (60)

Using the FIM sub-matrices (54) and (57), the information loss for the angle is
given as

[
ILφ

]
k,k

= 2
|αk|2
σ2
w

<
{〈
ḃ(φk), b(φk)

〉}2‖s(τk)‖2H
‖b(φk)‖2 . (61)
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Inserting (60), and (52) into (58), results in the EFIM for delay estimation, given
as

[Ĩτ
]
k,k

= 2
|αk|2
σ2
w

‖b(φk)‖2‖ṡ(τk)‖2H

(
1−
<
{〈
ṡ(τk), s(τk)

〉
H
}2

‖ṡ(τk)‖2H‖s(τk)‖2H

)

= 2
|αk|2
σ2
w

‖b(φk)‖2‖ṡ(τk)‖2Hξdelay

k (62)

where ξdelay

k ∈ [0, 1] can be interpreted as the information loss on the SMC delay
estimation induced by the estimation of the complex amplitude αk in the DMC.
Inserting (61), and (53) into (58), results in the EFIM for AoA estimation, given
as

[Ĩφ
]
k,k

= 2
|αk|2
σ2
w

‖ḃ(φk)‖2‖s(τk)‖2H

(
1− <

{〈
ḃ(φk), b(φk)

〉}2

‖ḃ(φk)‖2‖b(φk)‖2

)

= 2
|αk|2
σ2
w

‖ḃ(φk)‖2‖s(τk)‖2Hξangle

k (63)

where ξangle

k ∈ [0, 1] can be interpreted as the information loss on the SMC AoA
estimation induced by the estimation of the complex amplitude αk in the DMC.

B. Assumptions

In the following, we will introduce assumptions for the SMC and DMC model that
allow further insightful discussion in terms of contributions to position information.

� The DMC is uncorrelated between antennas, i.e., Cν is block-diagonal (cf. (11))
with

C(m,m′)
ν = 0 ∀m 6= m′.

For different antenna setups, there are different arguments supporting this
assumption: For a conventional array consisting of omni-directional antennas,
the DMC becomes approximately uncorrelated for an antenna-spacing of λ/2
and a uniform angular power spectrum [44].

In our considered case using directional antennas, it can be argued that each
antenna at the anchor covers one sector in the azimuth plane with differently
aligned main beam directions. As a result, the shapes of the beampatterns are
approximately orthogonal such that

∫
Sν(φ, τ) bm(φ) b∗m′(φ) dφ�

∫
Sν(φ, τ) |bm(φ)|2 dφ. (64)

With this, we may reduce the noise covariance matrix in (10) to block matrices
on the main diagonal for which the mth matrix is given as

C(m)
n =

∫
S(m)
ν (τ) s(τ)s(τ)H dτ + σ2

wIN (65)

where S
(m)
ν (τ) =

∫
Sν(φ, τ)|bm(φ)|2dφ is the delay power spectrum (DPS) con-

sidering the mth antenna beampattern of the antenna array at the anchor node.
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� We assume that SMCs are orthogonal to each other, i.e., there is no path-overlap
in the resolvable angle and delay domain. Analogously to the previous assumption,
this can be justified due to the directional antennas at the anchor which cover
non-overlapping sectors in the azimuth plane. This means that for any two SMCs
k and k′, we have

M∑

m=1

b∗m(φk)bm(φk′)〈s(τk), s(τk′)〉Hm �
M∑

m=1

|bm(φk)|2‖s(τk)‖Hm (66)

where

〈x,y〉Hm = σ2
w x

H
(
C(m)
n

)−1
y (67)

‖x‖2Hm = 〈x,x〉Hm (68)

are the weighted inner product and weighted norm, respectively, accounting for

the inverse of C
(m)
n which is a whitening operation [12, 46]. Specifically, the

left-hand side expression of (66) is always close to zero, except for the rare case
of two SMCs that arrive at the same time while also having the same AoA.

� We further simplify the DMC statistics by saying that each antenna at the anchor
exhibits the same DMC statistics, i.e.,

Sν(τ) = S(1)
ν (τ) = · · · = S(M)

ν (τ) (69)

resulting in

〈x,y〉H = 〈x,y〉H1 = · · · = 〈x,y〉HM (70)

‖x‖2H = ‖x‖2H1
= · · · = ‖x‖2HM . (71)

References

[1] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and research
challenges for 5G wireless networks,” IEEE Wireless Commun., vol. 21, no. 2,
pp. 106–112, Apr. 2014.

[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,
and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32,
no. 6, pp. 1065–1082, June 2014.

[3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors,
and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very
large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Wireless Commun. Mag., vol. 52,
no. 2, pp. 186–195, Feb. 2014.

[5] E. Torkildson, U. Madhow, and M. Rodwell, “Indoor millimeter wave MIMO:
Feasibility and performance,” IEEE Trans. Wireless Commun., vol. 10, no. 12,
pp. 4150–4160, Dec. 2011.

[6] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile
communications for 5G cellular: It will work!” IEEE Access, vol. 1, pp.
335–349, 2013.

Single-Anchor Positioning: Multipath Processing w. Non-Coh. Directional Measurements

142



[7] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless
networks: Potentials and challenges,” Proc. IEEE, vol. 102, no. 3, pp. 366–385,
Mar. 2014.

[8] K. Witrisal, P. Meissner, E. Leitinger, Y. Shen, C. Gustafson, F. Tufvesson,
K. Haneda, D. Dardari, A. F. Molisch, A. Conti, and M. Z. Win, “High-
accuracy localization for assisted living: 5G systems will turn multipath
channels from foe to friend,” IEEE Signal Process. Mag., vol. 33, no. 2, pp.
59–70, Mar. 2016.

[9] H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, and F. Tufvesson,
“5G mmwave positioning for vehicular networks,” IEEE Wireless Commun.,
vol. 24, no. 6, pp. 80–86, Dec. 2017.

[10] Y. Shen and M. Win, “Fundamental limits of wideband localization; Part I: A
general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 4956–4980,
Oct. 2010.

[11] Y. Han, Y. Shen, X. Zhang, M. Win, and H. Meng, “Performance limits and
geometric properties of array localization,” IEEE Trans. Inf. Theory, vol. 62,
no. 2, pp. 1054–1075, Feb. 2016.

[12] K. Witrisal, E. Leitinger, S. Hinteregger, and P. Meissner, “Bandwidth scaling
and diversity gain for ranging and positioning in dense multipath channels,”
IEEE Wireless Commun. Lett., vol. 5, no. 4, pp. 396–399, 2016.
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Abstract

High-accuracy indoor radio positioning can be achieved by using high
signal bandwidths to increase the time resolution. Multiple fixed anchor
nodes are needed to compute the position or alternatively, reflected multipath
components can be exploited with a single anchor. In this work, we propose
a method that explores the time and angular domains with a single anchor.
This is enabled by switching between multiple directional ultra-wideband
(UWB) antennas. The UWB transmission allows to perform multipath
resolved indoor positioning, while the directionality increases the robustness
to undesired, interfering multipath propagation with the benefit that the
required bandwidth is drastically reduced. The positioning accuracy and
performance bounds of the switched antenna are compared to an omni-
directional antenna. Two positioning algorithms are presented based on
different prior knowledge available, one using floorplan information only and
the other using additionally the beampatterns of the antennas. We show that
the accuracy of the position estimate is significantly improved, especially in
tangential direction to the anchor.
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1 Introduction

Accurate radio positioning for indoor environments can be achieved with time-of-
flight methods based on (ultra-) wideband signals. In harsh scenarios, the dense
multipath propagation can significantly deteriorate the probing signals. To tackle
this issue, one can increase the signal bandwidth, allowing for an increased time
resolution such that the interfering multipath is resolved in time from the useful
line-of-sight (LOS) component [1]. At ultra-wide bandwidth (UWB), one can even
exploit multipath, turning a foe into a friend [2]. This makes it possible to reduce
infrastructure and to gain robustness in non-line-of-sight situations.

Alternatively, multiple measurements can be combined to resolve the multipath
in the angular domain, which reduces the bandwidth required to achieve a desired
accuracy. This can be achieved by combining signals originating from different
transmitters distributed over the environment, or by using array processing tech-
niques where the measurements of many omni-directional antennas are used. The
latter case, using wideband antennas, is well known to yield highly accurate position
measurements [3, 4], [5, Chapter 18]. However, both approaches require a lot of
infrastructure and coherent processing of the received signals.

We propose employing multiple switched directional antennas which are capable
of UWB transmissions [6]. The antennas are connected to a single transceiver,
which will be used as an anchor, for instance. Each employed antenna covers (e.g.)
a part of the azimuth plane. Due to the UWB transmission, their measurements
can be used to perform multipath-resolved positioning where detectable multi-
path components (MPC) are associated with the environment. The directional
antenna reduces interfering multipath and thus the required bandwidth to be able
to resolve MPCs. We analyze the achieved positioning accuracy using directional
antennas in comparison with an omni-directional one. We also derive algorithms
for this new type of radio frontend. Both results are validated using experimen-
tal data from a measurement campaign. Directive antennas were also proposed
for indoor positioning in [7, 8], however received signal strength measurements
are used from narrowband antenna elements to augment angle-of-arrival estimation.

The paper is organized as follows: Section 2 discusses the basic signal model.
Section 3 provides a description of the statistical error bounds for positioning
taking the directive antennas into account. Section 4 describes the developed
positioning algorithms based on the signal model. In Section 5 we evaluate the
performance bounds, likelihood functions and achieved position accuracy with
the algorithms based on measurement data. Section 6 summarizes the work and
presents concluding remarks.

2 Signal Model

We consider an agent node aiming at finding its position p using radio frequency
measurements from one anchor node, located at known position a. The agent node
is equipped with a single omni-directional antenna. The anchor node employs a
sector antenna which consists of M directional antennas as illustrated in Fig. 1.
Two anchors are shown, equipped with M = 4 antennas, each covering one sector
of the azimuth angle plane with a half-power beamwidth of about 90°. Antenna
m transmits the signal s(t) and the sampled signal rm ∈ CN×1 is observed at
the agent. We model this received signal as a sum of deterministic MPCs plus
contributions of diffuse multipath (DM) νm and additive, white Gaussian noise
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Figure 1: Floorplan of measurement environment. Tables (light-gray) and cup-
boards (dark-gray) are shown, as well as patterns of the used antennas
at the anchors. The axis describes the distance in meters.

(AWGN) wm, according to

rm =
K∑

k=1

αkbm(φk)s(τk) + νm +wm. (1)

The first term on the right-hand-side describes the deterministic MPCs as replicas
of the transmitted signal s(t). Each replica is delayed by τk which is determined by
the length of the path between the agent and the anchor. Reflected paths can be
modeled by virtual anchors whose positions are computed from the environment
model [2, 9]. We use a vector notation with s(τk) = [s(0 · Ts − τk), s(1 · Ts −
τk), . . . , s((N − 1) · Ts − τk)]T where Ts is the sampling period and the signal is
normalized according to ‖s(t)‖2 = 1. For each MPC, the environmental model is
also used to determine the angle-of-departure at the anchor denoted by φk, as well
as the angle-of-arrival at the agent denoted by ϕk. This is illustrated in Fig. 1,
where both angles are shown for the MPC that comes from the “plaster board west”
surface. The amplitude of each MPC is determined on the one hand by αk which
covers propagation effects, e.g. path loss or attenuation at the reflection point,
and on the other hand by the complex-valued beampattern described by bm(φk).
For simplicity, we consider only the directional characteristics at the anchor side,
assuming a uniform radiation pattern at the agent.

The second term of Equation (1) describes the DM which models interfering
MPCs that cannot be associated to an environmental model. It is described as a
zero-mean Gaussian random process, shaped by the transmitted signal s(t). The
AWGN exhibits a constant double-sided power spectral density of N0/2.

149



3 Position error bound

We use the position error bound (PEB) [10] as derived in [2, 11] to analyze the
performance gain of the sector antenna when used for multipath-assisted positioning.
It is defined as

E{‖p− p̂‖2} ≥ tr{I−1p } (2)

where E{·} and tr{·} denote the expectation and trace operators, respectively, and
Ip is the Fisher information matrix of p written by

Ip =
8π2β2

c2

∑

k

∑

m

SINRk,mDr(ϕk). (3)

Here, c is the speed of light, β is the mean-square bandwidth of the transmitted
pulse and Dr(ϕk) = e(ϕk)e(ϕk)T is called the ranging direction matrix that is used
to relate the ranging information intensity to the direction of ϕk, where e(ϕk) =
[cosϕk sinϕk]T [10]. The contribution of each individual MPC is quantified by its
signal-to-interference-plus-noise ratio (SINR) [11], here defined by

SINRk,m =
|αk|2|bm(φk)|2

N0 + Tp
∫
φ

|bm(φ)|2Sν(τk, φ) dφ

where Sν(τ, φ) describes the angle-delay power spectrum of the DM and Tp is a
pulse duration parameter of waveform s(t), see [11].

From (3), the gain of exploiting M measurements is seen to be expressed by∑
m SINRk,m, because Dr(ϕk) is the same for all m. This result is based on the

assumption that (i) only ranging information is exploited for solving the positioning
problem (i.e. angle information is neglected because the angle resolution is assumed
to be very coarse), and (ii) the DM and AWGN are independent for individual
measurements m. To evaluate the potential performance gain, we assume a uniform
angular power spectrum Sν(τk, φ) = Sν(τk). Furthermore, since the efficiency of
the antenna is not related to its directivity, we assume that its total power gain is
independent of the beam pattern, expressed as

∫ π
−π |bm(φ)|2 dφ = 1. We thus get

∑

m

SINRk,m ≈
|αk|2

N0 + TpSν(τk)

∑

m

|bm(φk)|2 (4)

showing that the SINR gain is approximated as the sum of the antenna power
gains at φk.

4 Derivation of the positioning algorithm

The previous section investigated the signal model and the expected position error
using performance bounds. In the following, we derive an algorithm for multipath-
assisted indoor localization using a single anchor only. We will exemplify two
methods: Algorithm I treats the measurements as independent and Algorithm II
incorporates the antenna gain patterns to get the agent’s position.

In Algorithm I we assume that the path amplitudes, including the beam-
patterns, αk,m = αkbm(φk), are estimated independently from each measure-
ment m as nuisance parameters. Stacking the signals s(τk) in the signal matrix
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S(τ ) = [s(τ1), . . . , s(τK)] with the delays τ = [τ1, . . . , τK ]T and corresponding the
amplitudes in αm = [α1,m, . . . , αK,m]T, the signal model is

rm = S(τ )αm +wm

where we neglect the contribution by the DM. With this AWGN noise model, the
likelihood function of the received signal rm conditioned on αm and τ follows as

p(rm|αm, τ ) ∝ exp
{
− ‖r − S(τ )αm‖2

}
. (5)

In order to estimate the agent’s position, we express the delays τ as a function
of the agent’s position p using the geometric model of the environment. With
hypothesized τ , the amplitudes are estimated using least-squares [12]

α̂m = (SH(τ )S(τ ))−1SH(τ )rm. (6)

Stacking the measurements in r = [rT1 , · · · , rTM ]T then the assumption of indepen-
dent measurements and amplitudes yields

p(r|p) =
∏

m

p(rm|p)

and the maximum likelihood estimation of the agent position p̂Alg1 follows as

p̂Alg1 = argmax
p∈P

∏

m

p(rm|p) (7)

with the set P containing hypothesized agent positions within the communication
range to the anchor.

Algorithm II explicitly employs the complex-valued beampatterns {bm(·)} to
estimate the MPC amplitudes αk jointly from all measurements m = 1 . . . ,M using

r = X(τ , {bm(φk)})α+w

where

X(τ , {bm(φk)}) =



b1(φ1)s(τ1) . . . b1(φK)s(τK)

...
...

bM (φ1)s(τ1) . . . bM (φK)s(τK)




and α = [α1, . . . , αK ]T and w as AWGN. The likelihood function follows in an
equivalent fashion as (5) with the ML solution of p̂Alg2 according to

p̂Alg2 = argmax
p∈P

p(r|p) (8)

where we expressed the conditionals τ and {bm(φk)} by the agent’s position p.
The amplitudes α result equivalent to (6). Assuming non-overlapping MPCs the
amplitudes are

α̂k =

M∑
m=1

b∗m(φk)sH(τk)rm

M∑
m=1
|bm(φk)|2

=

M∑
m=1

b∗m(φk)α̂k,m

M∑
m=1
|bm(φk)|2

(9)

with α̂k,m = sH(τk)rm at the right-hand-side of (9). It shows that the estimated
amplitudes {α̂k} of Algorithm II are a weighted average of the individual amplitudes
{α̂k,m} in Algorithm I.
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5 Evaluation

In this section, we evaluate the derived position performance bound in Section 3
and the achieved accuracy of the multipath-assisted indoor localization algorithms.

5.1 Measurement setup

We placed one agent at pn and two anchors at a1 and a2 as illustrated in Fig. 1.
The anchors were equipped with M = 4 directive antennas, equally spaced on a
circle with radius of 2 cm at center a. The antennas were aligned such that their
mainlobes point at different directions, named North (N ), West (W ), South (S )
and East (E ), each 90◦ apart as illustrated in Fig. 1. The measurements between
the agent and each directive antenna were performed using an Ilmsens Correlative
Channel Sounder [13]. Subsequently, each measurement was convolved by a raised
cosine pulse using a carrier frequency of fc = 5.4 GHz. For a comparison of the
impact of bandwidth on the estimated SINRs, we used (i) a pulse duration of
Tp = 0.5 ns (equivalent to a bandwidth of 2 GHz) with a roll-off factor of R = 0.5
and (ii) a pulse duration of Tp = 2.4 ns (bandwidth of 500 MHz) with a roll-off
factor of R = 0.9 which has been found to model Channels 2 and 5 of the recently
available DecaWave DW1000 UWB transceiver [14]. We placed the agent at
n ∈ {1, . . . , 210} different positions on a 15× 14 grid with 5 cm spacing, resulting
in 420 channel measurements. For a comparison, we repeated the experiment using
omni-directional antennas on both anchor and agent nodes.

The complex-valued beampattern bm(·) was available as a codebook in a reso-
lution of 10◦. We used linear interpolation to evaluate the beampattern, given a
specific angle. The spatial offset between the directive antennas results in a phase
shift of the carrier frequency as a function of the MPC angle-of-departure. For
simplicity, we considered this phase shift already in the beampattern.

5.2 Evaluation of performance bounds

We evaluate the SINR values of individual MPCs which quantify their contributions
to the PEB in (2) via (3). Tables 1 and 2 report the estimated SINR values for
selected MPCs for the two anchor positions and the pulse durations of Tp = 0.5 ns
and Tp = 2 ns. The SINRs are reported for each directive antenna based on the
estimated amplitudes α̂k,m. The SINR of Sec is based on amplitude estimation
considering the overall amplitude in (9) while Added denotes the (not weighted)
sum of SINRs of N+W+S+E as modeled by (4). For comparison we also show
the SINRs for an omni-directional antenna at the anchor (Omni).

Comparison of Tables 1 and 2 demonstrates that, in general, the SINR increases
with higher signal bandwidth, justified by the improved separation of MPCs along
the delay domain. Further, we can observe that the SINR of an individual directive
antenna (N, W, S or E ) is strongly dependent on the angle-of-departure of the
MPC (see Fig. 1 which exemplifies the beampatterns of the directional antennas in
addition to the angle-of-departure of the MPCs).

Consideration of a joint amplitude estimation is highly beneficial in terms of
SINR as shown in the Sec column. The SINR is clearly improved since it takes
information obtained at M measurements into account. The sum of individual
SINRs (Added) is seen to be an upper limit on the achievable performance. Hereby
independent measurements of the DM of each antenna are required.

The tremendous advantage of the directional antennas is the potential to resolve
MPCs in the spatial domain. This is justified by Tables 1 and 2 by comparison
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Table 1: SINR in dB of deterministic MPCs for Tp = 0.5 ns, R = 0.5 at anchor
position a1 (top) and a2 (bottom) of sector antenna North (N ), West
(W ), South (S ), East (E ). The omni-directional antenna (Omni) is shown
for comparison.

anchor position a1

MPC N W S E Sec Added Omni
LOS 30.6 16.4 17.9 11.7 33.0 31.0 25.4
plasterb east 6.3 −∞ −∞ 12.1 12.8 13.1 11.0
plasterb west −1.1 3.4 −5.4 −∞ 3.2 5.1 0.3
white board −1.1 18.3 15.9 −0.4 19.4 20.3 11.1
window 1.2 −∞ −3.3 −1.1 1.1 4.1 0.9
PEBr / cm 0.2 0.6 0.6 1.1 0.1 0.2 0.3
PEBt / cm 4.4 2.3 3.2 4.6 1.8 1.6 3.2

anchor position a2

MPC N W S E Sec Added Omni
LOS 9.0 21.5 23.6 18.3 27.7 26.5 24.8
plasterb east −9.3 0.3 1.9 1.8 −∞ 6.3 2.6
plasterb west −5.1 −0.8 −∞ −∞ −∞ 0.6 −∞
window 15.2 7.8 −0.1 4.3 15.8 16.3 10.0
PEBr / cm 1.0 0.5 0.4 0.7 0.3 0.3 0.4
PEBt / cm 3.0 5.3 13.0 9.4 2.8 2.4 5.3

of the SINR values. Consider e.g. the MPCs plasterb east and white board using
anchor position a1. At a high bandwidth of Tp = 0.5 ns (Table 1), both MPCs
are well separated in the delay domain and subsequently reasonably high SINR
values (> 10 dB) are obtained. The omni-directional antenna reaches similar values
compared to the combined sector antennas Sec. As soon as the bandwidth is reduced
(Table 2), both MPCs overlap and the SINRs using the omni-directional antenna
suffer. Still, the sector antenna is able to gain additional spatial information,
verified by the formidable improvement of Sec and Added.

Finally, we report the evaluated PEB, radial (PEBr) and tangential (PEBt) to
the angle-of-arrival of the LOS. In general, the PEB is lower in direction of the
LOS because the LOS is usually equipped with the highest SINR. Using the sector
antennas, the tangential PEB is reduced by up to a factor of three, still employing
only one anchor node.

We conclude that the SINR is strongly dependent on the beampattern as well as
the bandwidth. MPCs having an angle-of-departure within the antenna’s mainlobe
reach high SINRs. The combination of the antennas is superior since more channel
measurements are used in combination with angular diversity.

5.3 Evaluation of the likelihood functions

Fig. 2 illustrates the likelihood functions in log-domain using a1 and pulse pa-
rameters of s(t) with high bandwidth (Tp, R) = (0.5 ns, 0.5) and low bandwidth
(2.4 ns, 0.9) for positions within the communication range (compare to floorplan in
Fig. 1). Brighter areas indicate a better model fit. We can observe that increased
bandwidth (left) yields a steeper likelihood. The angular diversity of the sector
antenna using Eq. (7) (Fig. 2b) and (8) (Fig. 2c) reduces some of the local maxima
and thus the probability for outliers (Fig. 2a). The estimation of {αk} in (8)
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(b) Illustration of log-likelihood in (7) using the sector antenna.
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(c) Illustration of log-likelihood in (8) using the sector antenna.

Figure 2: Illustration of likelihood in log-domain using the sector antenna as func-
tion of agent position evaluated for points within the communication
range (see Fig. 1). The anchor and true agent position are indicated by
a1 and p.
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Table 2: SINR in dB of deterministic MPCs for Tp = 2.4 ns, R = 0.9 at anchor
position a1 (top) and a2 (bottom) of sector antenna North (N ), West
(W ), South (S ), East (E ). The omni-directional antenna (Omni) is shown
for comparison.

anchor position a1

MPC N W S E Sec Added Omni
LOS 16.1 11.4 11.5 7.4 14.9 18.7 17.2
plasterb east 3.3 5.6 8.8 9.4 8.4 13.5 3.1
plasterb west 3.2 2.0 −∞ −6.5 3.0 5.9 −0.6
white board 0.5 9.5 8.9 3.5 9.4 13.0 3.4
window −∞ −∞ −1.1 3.0 −∞ 4.5 −∞
PEBr / cm 4.4 5.8 5.5 7.3 4.3 2.7 3.9
PEBt / cm 20.5 18.9 21.5 18.2 16.9 9.8 28.1

anchor position a2

MPC N W S E Sec Added Omni
LOS 3.8 19.3 18.2 16.2 23.5 22.9 19.4
plasterb east −2.8 −0.1 1.9 3.4 3.5 7.2 1.4
plasterb west −∞ −0.4 −∞ −4.4 −0.8 1.0 −∞
window 10.8 2.2 −5.3 3.1 11.6 12.1 4.4
PEBr / cm 8.0 3.1 3.6 4.3 1.9 2.0 3.0
PEBt / cm 23.2 30.3 76.0 28.0 18.2 15.1 43.6

(Fig. 2c) results in a more distinct likelihood function compared to the independent
estimation of {αk,m} in (7) (Fig. 2a). Especially for Tp = 2.4 ns the application of
the directional antennas results in a distinct global maximum that is well separated
from the local maxima as shown in Fig. 2c.

5.4 Evaluation of the position accuracy

Finally, we investigate the performance of both position estimators using anchor a1

and 210 measurements of {rm} each at a different position of p. All measurements
were performed in LOS conditions, considering the MPCs evaluated in Tables 1
and 2. The cumulative distribution functions of the distance between the true and
estimated positions ε = ‖ptrue − p̂‖ are shown in Fig. 3. It confirms that a high
bandwidth (Fig. 3 left) is favorable for indoor positioning, with 90% of ε below
10 cm. This reveals that the high bandwidth suffices to separate and utilize the
multipath propagation.

Using a lower bandwidth (Fig. 3 right) exemplifies the gain due to the directional
antennas compared to the omni-directional antenna. The omni-directional antenna
is not able to separate the MPCs well enough (compare the likelihood function
in Fig. 2a right) which results in a poor position error where the 90% limit of
ε is only at 50 cm. Using the sector antenna drastically reduces the position
error. Algorithm I gathers additional information due to angular diversity. The
incorporation of the beampattern by Algorithm II enables highly accurate indoor
localization where the 90% limit of the position error is reduced to 20 cm.
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Figure 3: Cumulative distribution function (CDF) of the position error using pulse
parameters (Tp, R) = (0.5 ns, 0.5) (left) and (2.4 ns, 0.9) (right) of Algo-
rithm I and II. Algorithm I Omni incorporates a single omni-directional
antenna and is shown for comparison.

6 Conclusions

In this paper, we have evaluated a UWB indoor positioning system using multiple
directive UWB sector antennas at the anchor side. We included the antenna
patterns into theoretical performance bounds for positioning and, based on that, we
analyzed the reliability of deterministic MPCs in comparison with the performance
of an omni-directional antenna. Two positioning algorithms were presented, both
described by ML estimators using the measurements of the directive antennas and
the floorplan information. The second algorithm also made use of the directive
antenna patterns. The accuracy of both algorithms was evaluated by examining the
likelihood functions and the cumulative distribution function of the position error.
It was shown that the directive antennas achieve overall better results, especially
considering the tangential information of the MPC directions.
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Abstract

In this paper, we demonstrate the advantage of using directive ultra-
wideband antennas for time-of-flight positioning methods. We show how the
employment of a switched sector antenna system assists in multipath-resolved
indoor positioning with a single anchor. The antenna system improves the
joint time and angle resolution which enables resolving multipath components
even in unfavorable situations to increase the robustness of positioning
methods.
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1 Motivation

In indoor environments, radio signals are affected by dense multipath propagation.
Accurate positioning methods are based on time-of-flight (ToF) estimation of
probing signals. To estimate the ToF accurately, high bandwidths are needed to
achieve high time resolution where the multipath deterioration is reduced. With
ultra-wideband (UWB) signals, one can even exploit the multipath, because the
line-of-sight (LOS) component and the interfering multipath components (MPC)
can be resolved in time domain. This enables robust positioning using a single
anchor by associating the MPCs with an environment model [1].

Path overlap is an issue that may arise for these methods in unfavorable posi-
tions. It occurs when one or more MPCs arrive shortly after each other making it
impossible to resolve them in time domain. To tackle this issue, one can explore
additionally the angle domain. One way to achieve this is with multiple (array)
measurements from antennas distributed over a small region in the environment.
The measurements can be coherently combined which improves the angular reso-
lution and thus the positioning accuracy [2]. However, this comes at the cost of
an expensive (multi-antenna) infrastructure and implementation issues with the
coherent processing of the measurement signals. Alternatively, the angle domain
can be explored using multiple directional antennas, each covering a subspace of
the angle domain, thereby enabling indoor positioning methods based on received
signal strength [3, 4].

In our approach, we stick with measurements from a single anchor position using
a switchable system that employs a set of directional UWB antennas. Each antenna
thus “shouts” towards one sector around it. Fig. 1 shows the used scenario with
four sector antennas [5,6]. The switching system is indicated by the beam patterns
on top of the anchor position a, labeled according to the cardinal directions (North,
West, South, East). Measurements with this setup were performed with the shown
agent at position p. To estimate channel statistics, a measurement grid was used
around the agent position which is also shown in Fig. 1.

In this work, we investigate the received signals for each antenna and compare
them to measurements from an omni-directional antenna in terms of the capability
to resolve MPCs. We will also report the positioning performance of a simple
positioning algorithm using the sector antennas compared to an omni-directional
antenna. The performance is represented by the cumulative distribution function
of the position error.

An additional motivation for this switching system is a possible application
for UWB PHY communication systems, where we expect an improvement in link
quality by making use of the gained location awareness [7]. Also, an application in
multi-user interference scenarios could be considered [5].

2 Signal model

The agent at position p records radio frequency measurements originating from
one anchor located at position a (or vice versa). The agent is equipped with a
single omni-directional antenna, while the anchor employs the described switching
system with M = 4 antennas, referred to by m = 1 . . .M . Antenna m transmits
the signal s(t) and the signal rm(t) is observed at the agent. Based on our previous
work [1], we model this received signal as a sum of deterministic MPCs, described
by amplitudes αk and path delays τk, plus contributions of diffuse multipath (DM)
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Figure 1: Floorplan of measurement environment. Tables (light-gray) and cup-
boards (dark-gray) are shown, as well as patterns of the used antennas
at the anchors. The axis describes the distance in meters.

νm(t), and additive, white Gaussian noise (AWGN) w(t), according to

rm(t) =

K∑

k=1

αkbm(φk)s(t− τk) + s(t) ∗ νm(t) + w(t).

An addition for this work is the influence of the beampattern bm(·) which affects
on the one hand the amplitude of the MPCs and on the other hand the DM
νm(t) that has been spatially filtered by the antenna. The angle φk denotes the
angle-of-departure at the anchor (see Fig. 1).

The same signal model was used in [6] where we evaluated position error bounds,
outlined simple positioning algorithms and investigated the resulting position
likelihood and error statistics.

3 Measurement setup

The measurement setup follows the one described in [6]; a short summary follows.

The directional antennas were mounted at the anchor position a, rotated 90◦

apart such that they point in the four cardinal directions as shown on Fig. 1.
Each antenna exhibits a half-power beamwidth of approximately 90◦, hence the
whole azimuth plane is covered. In an additional measurement, an omni-directional
antenna was used at the same anchor position. The agent employed an omni-
directional antenna for all measurements. The measurements between agent and
anchor were performed using an Ilmsens Correlative Channel Sounder [8]. The
measured signals were convolved by a raised cosine pulse with pulse duration of
Tp = 2.4 ns (equivalent to a bandwidth of about 500 MHz), roll-off factor of R = 0.9
at a carrier frequency of fc = 5.2 GHz. Multiple measurements were made by
moving the agent on a 15 × 14 grid with 5 cm spacing.
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4 Results

In this section, we examine the received signals for the center position of the grid,
comparing the sector antennas at the anchor with an omni-directional setup. We
also demonstrate the performance gain in terms of the position accuracy.

4.1 Capability to resolve MPCs

In Fig. 2 the amplitude as the absolute value of the received baseband-equivalent
signal is shown over the path length (obtained by multiplying the delay time by
the speed of light c). The amplitude is normalized to the maximum value among
all the shown signals to make them comparable. The vertical dashed lines indicate
the expected arrival times of the MPCs resulting from reflections on the surfaces
stated at the top of the figure (compare with Fig. 1).

Comparing the signals of the directional sector antennas in Fig. 2b to the signals
from the omni-directional antenna in 2a, we can see that the directivity increases
the strength of the MPCs that are in the respective directions of the antennas,
while also decreasing the DM between the MPC peaks. Moreover, a large benefit
can be seen when examining the plaster board east and white board MPCs. These
MPCs arrive very close after each other which results in path overlap that causes
a single peak between the MPC positions as shown in Fig. 2a. In Fig. 2b we can
see that the directive antennas can clearly resolve this issue, where the West and
South antennas can focus on the white board MPC and the East antenna can focus
on the plaster board east MPC.

4.2 Positioning accuracy

As a closure, we present one result based on [6] where we evaluated the position
accuracy using the switching system compared to an omni-directional antenna. An
approximate maximum likelihood algorithm was used to estimate agent position p̂
for each grid point (see Fig. 1) based on the measurements described above. The
resulting cumulative distribution function of the position error is shown in Fig. 3.

It can be seen that an accuracy gain is achieved, where 90% of the estimations us-
ing the sector antennas exhibit an error of only 25 cm, whereas the omni-directional
antenna measurements result in an error of 60 cm (c.f. the horizontal arrow in
Fig. 3). Moreover, a robustness gain is observable when we examine how many of
the measurements can reach a low error of 25 cm (55% with the omni-directional
antenna, against 90% with the sector antennas, c.f. the vertical arrow in Fig. 3).
Lastly, the highest error occurring with the switching system is around 40 cm, while
with the omni-directional antenna there are points where the error is above one
meter (about 5% of the points).

5 Conclusions

In this paper, we investigated the application of multiple directive UWB sector
antennas for ToF positioning. We showed that the switched antenna system can
significantly enhance a single-anchor-based multipath-resolved indoor positioning
system. The combined time and angle resolution makes MPCs resolvable even
in unfavorable positions and thus increases the robustness and / or reduces the
required bandwidth. These capabilities enable practical implementations with
commercially available devices such as the DW1000 transceiver front-end. In
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Figure 2: Received signal of agent at p transmitted from anchor at a which uses
an omni-directional antenna (a) and the directional sector antennas (b).
Specific MPCs are indicated by the dashed vertical lines (compare with
Fig. 1).
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the future, we will investigate the application of the antenna system for UWB
communications.
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C. A. Boano, and K. Römer, “Switchable Directional Antenna System for
UWB-based Internet of Things Applications,” in International Conference on
Embedded Wireless Systems and Networks (EWSN), 2017.

[6] M. Rath, J. Kulmer, M. S. Bakr, B. Großwindhager, and K. Witrisal,
“Multipath-assisted indoor positioning enabled by directional UWB sector an-
tennas,” in 18th IEEE International Workshop on Signal Processing Advances
in Wireless Communications, SPAWC, 2017.

[7] R. D. Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and
H. Wymeersch, “Location-aware communications for 5G networks: How loca-
tion information can improve scalability, latency, and robustness of 5G,” IEEE
Signal Processing Magazine, vol. 31, no. 6, pp. 102–112, Nov 2014.

[8] R. Zetik, J. Sachs, and R. S. Thoma, “UWB short-range radar sensing - the
architecture of a baseband, pseudo-noise UWB radar sensor,” IEEE Instrumen-
tation Measurement Magazine, vol. 10, no. 2, pp. 39–45, April 2007.

Indoor Localization and Communication Enhanced by Directional UWB Antennas

164



Directionally Resolved UWB Channel Modeling for
Environment-Aware Positioning

Michael Rath, Erik Leitinger, Anh Nguyen, and Klaus Witrisal

published in the 14th European Conference on Antennas and Propagation (EuCAP 2020)

Abstract

In this paper, we formulate a radio channel model for directionally resolved
ultra-wideband radio measurements, which takes the directionality of a
steerable antenna frontend into account. We outline a figure of merit to
assess the quality of specular multipath components (SMCs) for positioning
applications, the signal-to-noise-and-interference-ratio (SINR), and perform
an analysis thereof for a practical environment on the basis of a measurement
campaign conducted in a parking house. The angle resolved analysis of
the SINRs of various SMCs establishes a site specific model of the radio
environment that can be leveraged for location-aware radio positioning and
communication systems.
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1 Introduction

Many applications of radio networks require knowledge about the environment in
some form, desirably via a radio map that assigns each position in the environment
a quality measure about a specific radio link. Previously, these maps would
describe the received signal strength (RSS) or power spectral density from a
particular transmitter (base station), which is a main performance indicator for
narrowband systems, e.g., Wi-Fi. With the increasing bandwidth of upcoming radio
systems, for example with millimeter-wave (mm-wave) systems or ultra-wideband
(UWB) radio nodes, a high delay resolution becomes available, and with massive
multiple-input multiple-output (MIMO) systems also a high angle resolution. These
properties allow to resolve multipath propagation such that one can describe (a
main component of) the radio channel by a superposition of specular multipath
components (SMCs). The parameters of these SMCs (delay, angle) are related to
the position of the agent node. It becomes possible to describe each SMC with
its delay and angle, relating both to geometric properties of the environment and
the locations of the transceivers, and therefore to map and predict these channel
parameters across an environment, yielding far superior channel state information
in comparison to an RSS model. For instance for positioning, this information
translates directly to the expected performance, because each SMC carries useful
position information [1].

In this work, we propose to describe UWB radio channels with a directionally
resolved SMC amplitude model, relating the amplitudes of SMCs to the position
of a mobile agent, as an extension of the purely geometric delay/angle model. We
evaluate the proposed model using radio channel response measurements acquired
in a parking deck by means of low-cost UWB transceivers. At the anchor side the
transceiver was equipped with a switched array of directional antennas. We perform
a qualitative analysis on the basis of the channel measurements themselves and
a quantitative analysis on the basis of the signal-to-interference-and-noise-ratios
(SINRs) of the SMC amplitudes, which quantify their useful position information.
Our analysis intends to outline the applicability of such a multipath-resolved,
directional environment model for (ultra)-wideband radio systems equipped with
steerable antennas.

2 Problem Formulation

We consider radio systems operating at ultra-wide bandwidth and employing
switchable directional antenna arrays. On the basis of these systems, we may build
a multipath resolved radio channel model that has a close relation to geometric
properties of the environment. A single physical anchor at position a1 is considered,
that communicates with a mobile agent at position p. We intend to formulate a
model for multipath component amplitudes in relation to the agent position. To
this end, we first establish a model for the measured channel response and then
outline the extraction of MPC parameters in relation to the environment.

2.1 Measurement Model

The anchor node employs an antenna array which consists of M directional antennas,
each of which exhibits a beampattern bm(φ), where we operate in the azimuth
plane with angle-of-departure (AoD) φ. When referring to the general anchor
position, we use a1 which is defined to be the mass point of the antenna array. The
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agent transmits a lowpass-equivalent signal s(t) modulated by carrier frequency fc
and the anchor receives the channel response signal rm(t) using antenna m.

The anchor acquires N samples of the received signal sampled with frequency
fs = 1/Ts at antenna m such that [rm]i = rm([i− 1] · Ts), i = 1 . . . N and stacks
them into the observation vector rm.

We describe this observation vector by the superposition of k = 1 . . .K specular
multipath components (SMCs) and use the sampled transmitted signal

s(τk) = [s(0 · Ts − τk), . . . , s([N − 1] · Ts − τk)]
T ∈ RN×1

to write

rm =
K∑

k=1

bm(φk)αk,m s(τk) + nν,m +wm ∈ CN×1 (1)

which can be separated in three distinct parts: The first part contains the position-
related SMC parameters φk and τk = 1/c · dk, where c is the speed of light. The
according complex amplitudes αk,m = αkejζk,m also contain phase offsets ζk,m
introduced by the measurement equipment between measurements m = 1, . . . ,M .
The second part nν,m are samples of a stochastic process characterizing the self-
interference due to the dense multipath component (DMC). Finally, measurement
noise wm is modeled as additive white Gaussian noise (AWGN) with variance
σw = N0/Ts, where N0/2 is the double-sided power spectral density.

To describe the DMC and AWGN, the (m,m′)th block of the noise covariance
matrix Cn ∈ CMN×MN reads

[Cn]m,m′ = [Cν ]m,m′ + σ2
wIN ∈ CN×N .

where Cν is the DMC covariance matrix. The (m,m′)th block of the DMC
covariance matrix is given as

[Cν ]m,m′ =

∫∫
Sν(φ, τ) bm(φ) b∗m′(φ)s(τ)s(τ)H dφ dτ . (2)

To simplify this covariance matrix, we assume the DMC to be uncorrelated between
antennas, i.e., Cν is block-diagonal, which can be argued since each antenna at
the anchor covers one sector in the azimuth plane with differently aligned main
beam directions. As a result, the shapes of the beampatterns are approximately
orthogonal such that

∫
Sν(φ, τ) bm(φ) b∗m′(φ) dφ�

∫
Sν(φ, τ) |bm(φ)|2 dφ

which shows that the angle-delay power spectrum has to be considered for this
assumption to be fulfilled exactly. With this, the noise covariance matrix Cn
becomes a block-diagonal matrix with the mth block matrix C

(m)
n = [Cn]m,m

given as

C(m)
n =

∫
S(m)
ν (τ) s(τ)s(τ)H dτ + σ2

wIN ∈ CN×N (3)

where S
(m)
ν (τ) =

∫
Sν(φ, τ)|bm(φ)|2dφ is the delay power spectrum (DPS) consid-

ering the mth antenna beampattern of the antenna array at the anchor node.
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2.2 Geometric Model

In the following, we aim at modelling the SMC parameters from (1) in relation to
the geometry of the environment. The SMCs result from reflections on flat surfaces
in the considered environment, where the number of bounced surfaces defines the
order of the SMC denoted by O(k).1 The number of useful SMCs K is determined
by designation of significantly large flat surfaces (> 1 m2) whose number we denote
by Kseg and then setting K = (Kseg − 1)max{O(k)}, where we used the maximum
operator max{·} to find the SMC with the highest number of bounced surfaces.
With the SMC set at hand, we define the virtual anchor set A which consists of the
physical anchor a1 as well as K − 1 virtual anchors (VAs) ak that are determined
by mirroring a1 on the respective reflective surfaces. Depending on the SMC order,
this mirroring operation has to be performed multiple times at each surface in the
propagation path.

Now we have the tools to describe the kth SMC in relation to the geometry of
the environment. We first have the SMC delay described by

τk(p) = 1
c‖p− ak‖ (4)

and the angle-of-arrival (AoA) with respect to the VA described by

φVAk (p) = ∠(p− ak). (5)

This angle is used to determine the AoD with respect to the physical anchor
described by

φk(p) = (−1)O(k)φVAk (p)− 2

O(k)∑

j=1

(−1)j φ(k)segj
(6)

where φ
(k)
segj denotes the angle of the jth involved reflective segment in the propa-

gation path with j = 1, . . . ,O(k) ordered according to the sequence of bounced
surfaces.

We use this angle in our model, since the antenna configuration is situated at the
physical anchor. With these position-related delay and angle models the complex
amplitudes of the SMCs can be modeled as

αk,m(p) = PL
(
τk(p)

)
Γk
(
φk(p)

)
ej(2πfcτk(p)+ζk,m) (7)

where we have the pathloss (PL) for the respective propagation delay and the
complex-valued reflection coefficient Γk, which covers reflection losses and carrier
phase rotations, both related to the materials of the involved surfaces and the
incidence angle of each bounced surface, hence we have the AoD dependence. The
phasor accounts for the phase rotation depending on the carrier frequency fc and
the phase offset ζk,m that combines hardware and array effects. Since measurements
of different antennas are only combined non-coherently, we do not exploit the phase
related to the carrier frequency.

2.3 Amplitude Quality Model

We are interested in the quality of SMC amplitudes for applications such as
positioning systems, hence, for each SMC k at antenna m, we define the signal-to-

1In most considerations, only first and second order reflections are regarded due to the high
reflection losses.
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interference-and-noise-ratio (SINR) as [2]

SINRk(p) =
M∑

m=1

|bm(φk)|2|αk,m(p)|2

× sH
(
τk(p)

)[
C(m)
n

]−1
s
(
τk(p)

)

=
M∑

m=1

|bm(φk)|2SINRk,m(p), (8)

which describes the non-coherently combined SINR for all antennas. A detailed
derivation can be found in [2]. This quantity was previously evaluated in regards of
contributions to position estimate accuracy [3] and contributions to communication
channel capacity [4].

When using low-cost devices to acquire channel response measurements, it is a
challenging task to obtain reliable SMC amplitude estimates α̂k,m to be used for
SINR evaluation. We follow the approach outlined in [5, 6] to obtain

α̂k,m =
1

bm(φk)

sH(τk)
[
C

(m)
n

]−1
rm

sH(τk)
[
C

(m)
n

]−1
s(τk)

(9)

where we omitted the agent position dependence for brevity. These individual
amplitude estimates can then in turn be combined, weighted by the respective
beampatterns, to obtain the estimate of one SMC via

α̂k =

∑M
m=1 |bm(φk)|2|α̂k,m|∑M

m=1 |bm(φk)|2
. (10)

With the amplitudes given in (10), the SINR of the kth SMC used in (8) is estimated
using a Method-of-Moments estimator as in [7].

3 Results

A measurement campaign was performed in a parking deck as illustrated in Fig. 1.
Fig. 2 shows an overview photo of the parking spaces around the physical anchor
position a1.

3.1 Involved Hardware

For both anchor and agent, a modified hardware platform based on the DecaWave
DWM1000 module [8] was used with a self-built directional UWB antenna at the
anchor and an omni-directional UWB antenna at the agent. Photos of the hardware
modules are shown in Fig. 3. The system is capable of measuring channel responses
at a carrier of 6.5 GHz with a bandwidth of 900 MHz (Channel 7 of the IEEE
802.15.4 UWB standard [9]) between the agent and one of the four directional
antennas at intervals of approximately 15 milliseconds. Each directional antenna
has a half-power beamwidth of about 100◦ and the antennas are pointed towards
the four cardinal directions to cover the whole azimuth plane. For a more detailed
description of this system, please refer to [6], where the system was evaluated for
indoor positioning in office environments.

The agent device was mounted on top of a car at a height of 1.8 m. This car
was equipped with a highly accurate IMU which provided a ground truth position
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ā(2)i′ ā(3)i′′
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â1â2
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Figure 1: Floorplan of used environment. The physical anchor at position a1 is
indicated with a blue circle and the calibrated virtual anchors âk are
indicated with magenta crosses (initial VA positions are shown in light
red crosses). For the anchor a2 the 3 stage grid points to calibrate the
anchor position are shown (see Sec. 3.2). The trajectory ground truth
positions of the agent are shown as a line of blue dots between the parking
spaces. Green crosses along the trajectory indicate the positions of the

cluster centers p
(i)
C for the SINR analysis from Sec. 3.3. The starting pose

of the used car is shown by the respective icon (the agent was mounted
on the center left side of the car). On the bottom right, the camera icon
shows the orientation of the camera used to obtain the photo seen in
Fig. 2.
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Figure 2: A photo showing the parking deck where the measurements were con-
ducted. The position from where this photo was shot is indicated in
Fig. 1 with a camera icon.

(a) anchor (b) agent

Figure 3: Photos showing the modified DecaWave DWM1000 hardware platform
to perform the measurements at the anchor and agent respectively.

estimate of the agent with millimeter accuracy at a significantly higher rate than
the channel response measurements. These position estimates were synchronized
with the channel response measurements via a GPS responder, recording a common
time estimate at the start and end of the measurement run. The car traveled
around the parking spaces for three rounds. For one round the relevant ground
truth positions of the traveled trajectory are shown in Fig. 1. The trajectory shown
is a subset of all recorded positions that we will consider in the following.

Channel response measurements between the agent and the antenna pointing
towards the “left” (cf. Fig. 1) are shown in Fig. 4. In Fig. 5, the recorded channel
responses of each antenna are shown for one example trajectory position pex.
In both plots, it is easily possible to make out the SMCs associated with the
environment, which can be formulated via the VA model. A detailed analysis
thereof is given in the following.

3.2 VA Processing

The initial steps to analyze the measured channel responses, i.e., to process SMC
amplitudes, involve the establishment of the VA model as described in Sec. 2.1. In
a first step, the position of the physical anchor is mirrored at known surfaces to
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Figure 4: Channel responses for the antenna pointing towards the left. Shown
in log-scale for one round. The ranges dk to the respective VAs are
superimposed in light green dots. The red dashed line indicates the
channel response that is shown in Fig. 5d.

obtain initial VA positions ãk (see Fig. 1). This results in the anchor positions
ã2 and ã11 belonging to the western and northern wall, respectively. Additional
mirroring operations are carried out for potential reflecting materials such as the
ceiling metal beams (see Fig. 2) to obtain anchor positions ã9 and ã10 for the metal
beams in the west and ã6 and ã8 for the metal beams in the east. We want to note
that there are additional VAs representing the remaining metal beam reflections
which are omitted from our further analysis (and thus not shown in Fig. 1) due to
minor insights gained.

The second pre-processing step involves the calibration of each VA position. This
is accomplished iteratively for l = 1 . . . L by spanning a grid around a VA basis

position (initially ãk is used) obtaining candidate positions and sets ā
(l)
i ∈ Ā(l).

Additionally, for each VA, a suitable subset of the trajectory positions P(k) is
chosen where the initial VA ãk exhibits good visibility conditions, i.e., a significantly

strong reflection is possible at the respective surface. The best candidate VA a
(l)
best

is chosen based on a maximum likelihood approach. This procedure is performed
for L = 3 times, each time using finer grid spacing and the previously determined
VA as a basis to obtain the finalized VA positions âk ∈ Â. The calibration
procedure is illustrated in Fig. 1 for a2. The set of calibrated VAs allows us
already to perform a qualitative analysis of the CIRs. In Fig. 4, on top of the
CIRs, the distances dk between VAs and agent positions are shown as green dots.
A qualitative examination of the distance trajectories shows a good fit to the
progress of the SMC delays along the agent position trajectory. The shown channel
responses for the selected position pex alongside the dotted distance lines of each
SMC confirm this observation. However, we take the next step and examine the
strength of these SMCs for antennas pointing towards different directions to study
the evident angle-relation of the amplitudes. Hence, in the following, we apply
the geometric model to estimate SMC amplitudes and examine the position/angle
resolved statistics.
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Figure 5: Example of channel responses for each antennas pointing in one of the
cardinal direction. The used position is indicated in Fig. 1 as pex, and in
Fig. 4 the respective channel response is indicated. Hypothesized pulses
shifted according to the delays from (4) and weighted with amplitudes
from (10) are also plotted in red.
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3.3 SINR Analysis

We aim for a further quantitative analysis of the SMC amplitudes and use the SINR
estimated via (8) as a figure of merit for selected positions along the trajectory. To
this end, we choose representative positions along the trajectory to form position
clusters. We use a spacing of 1.25 meter to designate cluster centers denoted by

p
(i)
C , resulting in i = 0, . . . , 30 representative trajectory positions as shown in Fig. 1,

where the first and last cluster centers (i.e., p
(0)
C and p

(30)
C ) are shown for reference.

Each channel response measurement is assigned to the cluster that is closest to
the respective ground truth position. We use the calibrated VA positions âk to
estimate the SMC amplitude values α̂k,m using (9) and in turn α̂k using (10) for
each measured channel response. The collected SMC amplitudes of one cluster are
used with a Method-of-Moments estimator [7,10] to obtain the respective SINR
given in (8).

The SINRs of each SMC at each cluster point are shown in Fig. 6, on the one hand
over the positions along the trajectory and on the other hand over the respective
AoD. While the line-of-sight component (α1) unsurprisingly achieves generally high
values approaching 20 dB, we see specific regions where SMCs achieve an SINR
of more than 10 dB, which characterizes a reflection strong enough to be of use
for positioning and location-aware systems. As specific examples, we note the
west wall reflection α2, which achieves high values towards the U-turn beginning
(around cluster 8, close to pex) as well as the starting position, highlighting the
potential for multipath-assistance in these regions. Another remarkable example is
seen for the northern wall reflection α11, which even surpasses the LOS strength at
around cluster 15. This is due to the obstruction of the LOS component at the
peak of the U-turn.

We turn our attention to the angular distribution of the SMC SINRs seen in 6b.
While the LOS component covers most of the angle region, it is evident that each
SMC is focused around one specific angle. For instance, when we consider angles
around 0◦ (i.e., towards the “right” of the anchor), we have the SMCs α6 and α8,
on the opposite side we have α2, α9 and α10. With SINR values approaching or
even surpassing 10 dB, a multi-antenna system can steer towards these directions
to collect useful location information and therefore enhance the robustness of a
positioning system.

4 Conclusion

In this article, we established a directional model for radio channel responses
operating at ultra-wide bandwidths. We formulated this model as a superposition
of specular multipath components impinging from different directions and a dense
multipath component resulting from diffuse scattering from the environment. Each
specular component is characterized by delay and angle related to the geometry of
the environment. With this relation, the strengths of the specular reflections were
modeled and the Signal-to-noise-and-interference ratio (SINR) was introduced as
a figure of merit. We outlined a measurement campaign in a parking house and
presented an angle and delay-resolved analysis of the reflection SINRs, motivating
the application of multi-antenna systems to harvest these reflections for localization
and communication systems.
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Figure 6: Amplitude SINR estimates using method-of-moments over clusters of
positions along the trajectory (from all three rounds).
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