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Abstract

Brain-computer interfaces (BCIs) can be an important tool to restore some indepen-
dence in persons with severe motor disabilities. However, their use is not widespread.
BCIs typically require a long offline calibration period before each single-use, which
dissuades a regular use. Furthermore, BCIs are still prone to errors, by misinterpreting
a user’s intentions. The detection of the user’s awareness of such errors can be used
to improve his/her interaction with a BCI.

In this thesis, I investigated error-related potentials (ErrPs), which are the neural
signature of error processing. More precisely, I used electroencephalography (EEG) to
study the detection of ErrPs occurring during the continuous control of a cursor and
of a robotic arm. The undertaken studies showed that the continuous detection of
ErrPs was reliable, not only offline but also in online scenarios, in which users receive
real-time feedback regarding the ErrP detections.

Furthermore, I developed a generic ErrP classifier, using the EEG signals from several
non-disabled participants and showed that such a classifier can be directly used with
new participants, if combined with a participant-specific threshold. These findings hint
at the possibility of providing immediate feedback of the ErrP detections from the start
of the BCI use, skipping offline calibration.

Finally, I tested this generic classifier for the continuous detection of ErrPs in an online
experiment with no offline calibration. In this experiment two groups of participants
continuously controlled a robotic arm: participants with a spinal cord injury (SCI) and
non-disabled control participants. Participants with SCI displayed a heterogeneous
ErrP morphology. Still, this classifier could be reliably used with all participants that
displayed clear ErrP signals, independently of the SCI.

This thesis contributes to the investigation of the continuous detection of ErrPs and
further expands it towards realistic online scenarios. Furthermore, it explores the trans-
fer of an ErrP classifier across different populations and addresses its online use for the
continuous detection of ErrPs in a population with SCI.
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Kurzfassung

Gehirn-Computer-Schnittstellen (brain-computer interface, BCI) können ein wichtiges
Hilfsmittel sein, um Personen mit schweren motorischen Behinderungen eine gewisse
Selbständigkeit zu verleihen. Die Verwendung von BCIs ist jedoch immer noch nicht
sehr verbreitet. Ein Einschränkung ist, dass sie üblicherweise eine aufwendige Offline-
Kalibrierung benötigen. Darüber hinaus sind BCIs immer noch fehleranfällig, weil sie
häufig die Absichten eines Benutzers falsch interpretieren. Die Fehlererkennung des
Benutzers kann hierbei berücksichtigt werden, um die Leistungsfähigkeit des BCIs zu
verbessern.

In der vorliegenden Dissertation habe ich Fehlerpotentiale (error-related potential,
ErrP) untersucht. Diese stellen ein neuronales Merkmal der Fehlerverarbeitung dar,
mit dessen Hilfe die von einem Benutzer wahrgenommenen BCI-Fehler erkannt werden
können. An Hand von Elektroenzephalographie (EEG) wurden ErrPs untersucht, die
während der kontinuierlichen Kontrolle eines Cursors und eines Roboterarms auftreten.
Die Ergebnisse dieser Untersuchungen zeigten, dass die kontinuierliche Erfassung von
ErrPs sowohl offline als auch in Online-Szenarien, in denen eine Fehlerrückmeldung in
Echtzeit gegeben wird, zuverlässig funktioniert.

Darüber hinaus entwickelte ich einen generischen ErrP-Klassifikator basierend auf den
EEG-Signalen von nicht-beeinträchtigten Teilnehmenden, der mit Hilfe eines person-
enspezifischen Schwellwerts direkt auf neue Personen angewandt werden kann. Diese
Erkenntnis zeigt die Möglichkeit auf, ErrP-Erkennung beim Beginn der Verwendung
eines BCIs einzusetzen, ohne dabei auf eine Phase der Offline-Kalibrierung zurückgreifen
zu müssen.

Abschließend testete ich diesen generischen Klassifikator für die kontinuierliche ErrP-
Erkennung in einem Online-Experiment ohne Offline-Kalibrierung. In diesem Experi-
ment wurde ein Robotorarm fortlaufend von Teilnehmenden aus zwei Gruppen kontrol-
liert: nicht-beeinträchtigte Personen und Personen mit einer Rückenmarksverletzung
(spinal cord injury, SCI). Die Teilnehmenden der SCI-Gruppe zeigten hierbei eine inho-
mogene ErrP-Morphologie. Dennoch konnte der Klassifikator für alle Teilnehmenden,
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die ein deutliches ErrP-Signal aufzeigten, zuverlässig eingesetzt werden, unabhängig
von ihrer Gruppenzugehörigkeit.

Diese Dissertation trägt zur Untersuchung der kontinuierlichen Erkennung von ErrPs
bei und erweitert diese auf ihre Anwendbarkeit in Online-Szenarien. Schließlich wird
die Übertragung des generischen ErrP-Klassifikators auf verschiedene Populationen
aufgezeigt und die Verwendbarkeit für die fortlaufende ErrP-Erkennung in Online-
Szenarien für Teilnehmer und Teinehmerinnen mit SCI dargestellt.
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Structure of the thesis

This thesis is divided into 4 chapters.

Chapter 1 Introduction consists of an overview of the topics covered by this thesis. It
describes the neural basis of EEG and its use to study error processing. Furthermore, it
introduces brain-computer interfaces, error-related potentials and their asynchronous
detection.

Chapter 2 Motivation and Aims describes the motivation of the thesis and frames
it in relation to the state-of-the-art literature on the asynchronous detection of error-
related potentials, which serves as background for the thesis. Furthermore, the main
aims of this thesis are defined.

Chapter 3 Methods and Results summarises the scientific publications in the scope
of the thesis and highlights their contribution to it.

Chapter 4 Discussion and Conclusion provides a discussion regarding the achieve-
ments of the presented scientific publications and emphasizes their contribution to the
state-of the-art literature. Furthermore, it proposes future applications and possible
advancements of the developed work.
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1. Introduction

1.1. Neural basis of EEG

Neurons are the fundamental units of the brain. They connect with each other at
synapses and communicate by means of action potentials. These are short electric
pulses with amplitude of about 100 mV and a typical duration of 1 to 2 milliseconds.
A neuron sending an action potential through a synapse is called presynaptic neuron,
while the neuron receiving it is called postsynaptic neuron. The action potential triggers
a voltage change in the membrane of the postsynaptic neuron, which is known as
postsynaptic potential (PSP). PSPs last tens to hundreds of milliseconds and are
caused by ions flowing in or out of the postsynaptic neuron [1, 2]. This flow of current
creates a small dipole, i.e., a pair of positive and negative charges separated by a
small distance. When the dipoles of thousands or millions of neurons are spatial and
temporally aligned, they can be summated and their sum approximated by a single
equivalent current dipole [3]. A dipole located in a conductive medium, such as the
cerebral cortex, generates a current that flows through the medium, in a process known
as volume conduction. When this electric current reaches the scalp, it induces a voltage
difference that can be measured by electrodes [4].

This technique of measuring the brain’s electric activity with electrodes placed on
the scalp, is know as electroencephalography (EEG) and was introduced by Berger
in 1924, who succeeded in recording the first human EEG [5]. As the skull has low
electric conductivity and attenuates the electric current, EEG can be seen as an atten-
uated measure of the extracellular current flow from the summated activity of a large
population of neurons with similar spatial orientation. Pyramidal neurons of the cortex
are thought to be responsible for most of the EEG signal, because they are spatially
aligned and oriented perpendicular to the cortical surface [1, 6]. EEG is a non-invasive
technique that offers a temporal resolution in the order of milliseconds and a spatial
resolution in the order of centimetres. Despite offering a good temporal resolution, its
spatial resolution is lower than the one offered by other measuring techniques, such as
electrocorticography (ECoG) and magnetoencephalography (MEG).
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1. Introduction

ECoG is a similar technique to EEG, with the difference of measuring the brain’s electric
activity through electrodes placed on the cortical surface, either outside or beneath the
dura mater [7]. It offers a temporal resolution comparable to EEG but a much better
spatial resolution, in the order of millimetres, because it does not suffer from the
attenuation caused by the skull [8]. Nevertheless, ECoG presents major limitations and
risks: the placement of electrodes can only be done in clinical settings and, due to
its inherent risks, is only performed in persons suffering from a pathological condition,
such as intractable epilepsy [9].

MEG is a non-invasive technique that captures the magnetic fields produced by the
electrical currents occurring in the brain. Since the magnetic field of electric dipoles is
perpendicular to their orientation, MEG mainly captures the activity of dipoles oriented
parallel to the scalp. It offers a temporal resolution comparable to EEG but a spatial
resolution in the order of millimetres, because magnetic fields suffer almost no distortion
by the skull. Nevertheless, MEG requires large equipment, making it non-portable and
expensive [10, 11].

An alternative approach to study the brain is offered by functional near-infrared spec-
troscopy (fNIRS) and functional magnetic resonance imaging (fMRI): they detect
changes in the cerebral haemodynamic responses and rely on the close link between
such changes and neuronal activation. Since firing neurons have a high need of energy,
they are supplied with oxygen at a greater rate than inactive neurons. This causes a
localised change in the relative levels of oxygenated and deoxygenated haemoglobin
in the blood. fMRI and fNIRS exploit the fact that these two forms of haemoglobin
have different magnetic and spectral absorption properties. fNIRS uses near-infrared
light and measures the changes in its absorption by haemoglobin [12, 13]. It offers
a temporal resolution in the order of a second and the spatial resolution in the order
of a centimetre [14]. fMRI relies on blood-oxygen-level-dependent (BOLD) contrast
and measures the changes in the magnetic susceptibility of blood. It provides a spatial
resolution in the order of millimetres and a temporal resolution in the order of a second
[15–18].

EEG is a non-invasive, portable and relatively inexpensive technique that offers a good
compromise between temporal and spatial resolution. Hence, it is nowadays a common
tool in research and clinical settings, where it is used to characterise and diagnose
neurological disorders [19, 20]. EEG signals are often divided into two broad categories:
ongoing oscillations and event-related potentials (ERPs).

Oscillations are produced by sustained synchronised electrophysiological activity in
larger groups of neurons. They are, in general, not driven by events but can be
strongly modulated by internal or externally triggered motor or cognitive tasks, such
as motor execution, motor imagery or mental subtraction [21–23]. Such triggers can
cause a short lasting increase or decrease of the ongoing oscillations’ amplitude, which
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is localised and specific to certain frequency bands [24]. These changes are known as
event-related synchronisation (ERS) and event-related desynchronisation (ERD), re-
spectively. They are time- but not phase-locked to the triggers [21, 25]. Hence, they
cannot be extracted by a linear method, such as averaging, but can be detected by fre-
quency analysis. Oscillations are conventionally categorized and named based on their
frequency, despite the lack of agreement regarding the range of the main frequencies
bands. The most common frequency bands are delta, theta, alpha, beta and gamma,
which correspond, approximately, to the intervals [0.5, 4] Hz, [4, 8] Hz, [8, 12] Hz,
[12, 30] Hz and [30, 140] Hz, respectively [4, 22].

ERPs are transient neural responses that are time- and phase-locked to discrete events,
such as the onset of a stimulus or the execution of a motor response [4, 26]. Stimuli
can be sensory: auditory, visual, tactile or olfactory stimuli; or cognitive, such as the
awareness of an error. Although large ERPs can be visible as voltage fluctuations in
the ongoing EEG, most ERPs are rather small and become visible only when multiple
EEG epochs are combined together to form an average ERP waveform [26].

1.2. Neural signature of error processing

The study of error processing was first introduced by Rabbit, who described the oc-
currence of a slowing as a behavioural adjustment after the commitment of an error
[27, 28]. This phenomenon is generally referred to as post-error slowing.

The study of the neural mechanisms associated with error processing was initiated in
the 1990s by Falkenstein and Gehring, using EEG recordings. The neural signature of
error processing was identified as an ERP with two distinct components, called error
negativity (Ne or ERN) and error positivity (Pe) [4, 26, 29–31].

The error negativity (Ne) component is characterised by a negative potential with
peak amplitude over the fronto-central channels, occurring 0 to 200 ms after the error.
The Pe component is characterised by a positive potential with peak amplitude over
centro-parietal channels occurring 200 to 500 ms after the error. Nevertheless, the
latency of these components is dependent on the experimental paradigm [32]. In the
frequency domain, the Ne component has also been associated with a power increase
in the theta band over the medial frontal cortex [33–37].

EEG and fMRI studies suggest that the Ne is generated in the caudal part of the anterior
cingulate cortex (ACC) [38–42]. The Pe is not so well studied, but it is believed to be
generated in the rostral part of the ACC [43, 44]. Figure 1.1 depicts the location of
the ACC within the human cortex.

Initially, it was believed that the Ne component represented the error recognition, as
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1. Introduction

Figure 1.1.: Graphical representation of a sagittal section of the human cortex. The
anterior cingulate cortex is highlighted in grey. Image modified from [45].

the outcome from the comparison between the expected and the verified responses [29–
31]. However, later studies identified that the Ne component can also be present after
correct responses [46–48]. These findings support the hypothesis that the Ne reflects
the comparison process itself and not the outcome of the comparison. The significance
of the Pe component is not so well understood, since it shows high variance across
participants and tasks. It is believed to be associated either with the error awareness
or with a subjective error assessment process, modulated by the individual significance
of an error [49].

The Ne and Pe components can be modulated by several factors [32]. For instance,
making the errors more meaningful, and thus increasing the participants’ engagement
not to commit them, leads to an increase in the Ne amplitude [50, 51]. Furthermore,
older participants show a reduction of the Ne and Pe amplitudes [32, 52]. The Ne has
been observed when participants commit errors in a wide variety of tasks, leading to the
belief that it is associated with the existence of a generic error-processing system [53].

There is still no definite theory regarding the neural basis of error processing. The main
theories are the comparator theory, the conflict monitoring theory and the reinforcement
learning theory. The comparator theory, popular in the 1990s, proposed that the Ne
results from the outcome of the comparison between the internal representations of a
correct action and of the actual action [46]. Nevertheless, this theory assumes that
the brain would have access to the correct action, which could have been executed.
The conflict monitoring theory addresses this issue. It proposes that the ACC detects
a conflict between simultaneously active, competing representations of an action. For
instance, it proposes that when a person commits an error, there is a simultaneous
activation of the representations of the actual erroneous action and of the intended
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correct action. The ACC detects such conflict and engages the frontal cortex to resolve
it [54–56]. The reinforcement learning theory proposes that the Ne is associated
with the occurrence of an outcome that is worse than expected. For instance, it
proposes that when a person commits an error, there is a drop in dopaminergic activity,
which activates the ACC and transmits a negative reinforcement learning signal to the
frontal cortex [39, 53]. Both conflict monitoring and reinforcement learning theories
are backed up by strong evidence and neither theory seems capable of disproving
the other. Alternatively, Botvinick proposes an integrative approach that combines
both theories, in which the conflict acts as a teaching signal driving the negative
reinforcement learning [57–59].

1.3. Brain-computer interfaces

In 1973, Vidal proposed a strategy, based on EEG, for brain-computer communication,
coining the term brain-computer interface (BCI) [60, 61].

A BCI was initially defined as a system that converts consciously modulated brain
signals into the control signal for an external device, without using the activity of any
muscles or peripheral nerves [62, 63]. This definition was later expanded to include BCIs
that are controlled with non-intentionally modulated brain activity or that combine
different input signals [64–67]. BCIs controlled with intentionally modulated brain
activity are nowadays known as active BCIs [68]. BCIs controlled with non-intentionally
modulated brain activity can be divided into reactive BCIs and into passive BCIs [66,
69]. Reactive BCIs are controlled with brain activity that arises in reaction to external
stimulation [70–73], and thus users can indirectly modulate their brain activity to
control an application [66]. Passive BCIs are controlled by non-intentionally modulated
brain activity, which does not have the purpose of voluntary control. Passive BCIs can
be used to monitor the ongoing cognitive state of the user and, e.g., detect changes in
attention and workload or identify error processing [74–79]. BCIs that simultaneously
process different types of brain signals [80–88] or that combine brain signals with other
types of inputs, such as eye gaze [89, 90] or heart beat [91], are known as hybrid BCIs
[65, 67, 92–95].

As depicted in Figure 1.2, the first step of a BCI system is the acquisition of a user’s
brain signals, which can be done with EEG or other techniques that measure brain
signals. Afterwards, the brain signals are processed, using approaches such as spatial
and temporal filtering, in order to extract meaningful features. These features are then
evaluated by a classifier that decodes the user’s brain signals. Finally, the output of
the classifier is translated into the control signal of an external device, which the user
sees as feedback of the BCI’s assessment of his/her brain signals.
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Signal
acquisition

Signal processing Feature
Extraction

Classifier

External
Device

Feedback

Figure 1.2.: Main components of a BCI. First, the brain signals of a user are recorded
and processed in order to extract meaningful features. These features are used to
classify the user’s brain activity. The output of the classifier is converted into the
control an external device. Finally, the user perceives the behaviour of the external
device as feedback resulting from his/her own brain signals.

By definition, a BCI is a closed-loop system, which is able to process a user’s brain
signals and provide meaningful feedback in real-time. Due to this, BCIs are said to
operate in an online manner. For the real-time processing to be possible, it is first
necessary to build a classifier. Nowadays, the classifiers used in BCIs are typically
machine learning models constructed from pre-recorded brain signals, which are capable
of making predictions or decisions regarding previously unseen brains signals [96]. The
construction of a classifier is also known as training a classifier, the pre-recorded brain
signals are known as training data and the unseen signals are known as testing data. In
order to acquire training data, a user is typically asked to perform several repetitions,
also known as trials, of specific mental or motor tasks in order to generate brain signals
that are distinguishable by the classifier. The acquisition of training data is known as
calibration and it is often done without the user receiving any feedback of the BCI,
i.e., in an offline manner.

The main aim of BCI research is to assist and support people with disabilities [64,
97, 98]. This target population is commonly referred to as BCI end-users [98, 99]
and includes, e.g., persons with a spinal cord injury (SCI) or with amyotrophic lateral
sclerosis (ALS) [98, 100–102]. BCIs can be used to replace communication [72, 103,
104] or movement [105, 106] through, e.g., the use of a spelling system or the control
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1.4. Error-related potentials in BCIs

of a wheelchair. Additionally, BCIs can also be used to restore movement through, e.g.,
the use of functional electrical stimulation of muscles in paralysed persons [107–109],
and to improve brain function in the context of stroke rehabilitation [110]. Differently,
BCI research can also target non-disabled users [66]. In this context, BCIs can be used
to monitor the users’ brain activity during prolonged tasks and provide information
regarding changes in the user’s cognitive state by, e.g., detecting lapses of attention
[75, 77, 79, 111].

EEG is the most commonly used technique to record neural signals for BCI applications
[64] and many different types of EEG signals can be used in BCIs [112, 113]. For
instance, BCIs can rely on brain oscillations, which can be intentionally modulated by
execution and imagination of movements as well as by certain mental tasks [23, 25,
114–116, 116–119]. Furthermore, several types of evoked potentials and event-related
potentials can be used in BCIs [70, 73, 120–122]. For example, the P300 potential
is the most commonly used signal for communication purposes, in applications known
as P300 spellers [71, 123–125]. Recently, an effort has been made to develop BCIs
based on more intuitive control signals [126–128]. Examples of such efforts are the use
of movement-related cortical potentials (MRCPs) to detect movement intention or to
identify different grasp types [129–133], or the use of error-related potentials (ErrPs)
to detect a user’s subjective awareness of errors [134–136].

1.4. Error-related potentials in BCIs

BCIs are a promising technology but are still prone to errors in the recognition of a user’s
intents. In 2000, Schalk and colleagues described, for the first time, the occurrence
of an ErrP following errors of a BCI [134]. In this experiment, participants controlled
a cursor along a vertical line towards a target at one of the line’s extremities, using
intentionally modulated brain oscillations. The EEG signals after the cursor reached
any of the line’s extremities were analysed. It was considered a correct outcome when
the cursor reached the target and an incorrect outcome when the cursor reached the
opposite line extremity. An ErrP was defined as the difference between the signal
following incorrect outcomes and the signal following correct outcomes. The ErrP
signal closely relates with the neural signature of error processing, characterised by the
Ne and the Pe components, which was described before. Nevertheless, the subtraction
of the correct signal from the error signal can lead to dissimilarities between the the
ErrP and the neural signature of error processing, since the correct signal can also
present an Ne component in some experimental paradigms [47, 48].

Schalk’s discovery led to the understanding that EEG signals could be used not only
to control a BCI but also to identify and correct its errors, leading to an improvement
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1. Introduction

of the BCI’s performance [135]. To this end, it was necessary to establish a reliable
single trial detection of error signals, which was first explored by Parra and Blankertz,
in the context of incorrect motor actions of participants [137–139].

In the BCI field, single trial detection of ErrPs actually refers to the detection of the
neural signature of error processing. This nomenclature is not very accurate, since in
a single trial situation either the error signal or the non-error signal is detected, rather
than the difference between the two signals. Nevertheless, from here onwards, we will
adhere to the conventionally used nomenclature: single trial detection of error-related
potentials.
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Figure 1.3.: Error-related potential at channel FCz. Figure generated with data from
[140].

Ferrez and colleagues proposed the following categorization of ErrPs, based on the
situations in which the errors occur and based on who committed them [136]. Re-
sponse ErrPs arise following a participant’s incorrect motor action. Feedback ErrPs
arise following the presentation of a stimulus that indicates an incorrect performance
of the participant. Observation ErrPs arise following the observation of errors made
by an external agent. In the context of BCIs, interaction ErrPs arise following unin-
tended responses of the interface. Furthermore, Ferrez and colleagues also analysed
the occurrence and the single trial detection of interaction ErrPs at individual steps of
a task rather than at the end of a longer task, as done by Schalk [85, 136, 141, 142].
Moreover, they clarified that ErrPs were not simply a consequence of errors being rare
events [136, 143, 144] and showed that ErrPs’ morphology was stable during long pe-
riods of time and across participants [143]. Iturrate and colleagues further investigated
the single trial recognition of ErrPs during the observation of a robot that moved in
discrete steps [145, 146]. More recently, ErrPs were investigated in tasks in which
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1.5. Generic ErrP classifiers

continuous movement was coupled with an additional discrete feedback [79, 147–149].
Figure 1.3 illustrates an ErrP. When filtered with a non-causal filter, ErrPs display
a negative peak at approximately 200 ms after the error onset followed by a positive
peak at approximately 300 ms after the error onset. The peaks of the ErrP are more
pronounced over the fronto-central electrodes. Nevertheless, the timing of the ErrP
peaks are dependent on the task [150–152].

ErrPs-based BCIs can be used either in a corrective manner or in an adaptive manner
[135]. The corrective approach is mainly used in the context of hybrid BCIs that
combine ErrPs’ detection with an intentionally modulated control signal, e.g., motor
imagery [85, 148, 153]. The intentionally modulated signal is used to decode the
user’s intentions from the EEG and a misclassification of these intentions results in
an erroneous feedback action by the BCI. The detection of ErrPs aims to identify the
user’s perception of such errors and, in case ErrPs are successfully detected, the BCI
can take corrective actions. The BCI can, e.g., prevent an erroneous action from being
fully executed or revert its outcome [85, 87, 139, 154–156]. The adaptive use of ErrP-
based BCIs can be applied either in the context of the hybrid BCIs or in the context of
passive BCIs, in which the ErrP is the only signal analysed. In hybrid BCIs, the ErrP
signal can be used to modify or adapt the classifier corresponding to the active control
signal, in order to prevent future errors of the respective classifier [88, 153, 157–163].
When the ErrP is the only controlling signal of a BCI, it can be used a penalty signal
in reinforcement learning tasks [143, 164–166].

1.5. Generic ErrP classifiers

A main challenge when developing BCIs is the construction of meaningful classifiers,
that accurately translate the brain signals of a user into his/her intended actions. Since
EEG signals can be highly subject specific [167], BCI classifiers are usually trained with
each participant’s own brain signals [168]. These classifiers are known as personalised
classifiers. Classifiers that are not trained with a user’s own brain signals are also
known as generic classifiers [169–171]. Additionally, due to the non-stationarity of
EEG signals, i.e., due to the change of the signal’s characteristics with time, the brain
patterns extracted for classification can differ across sessions, leading to a poor BCI’s
performance [168, 172]. As a consequence, calibration is often repeated before each
BCI use in order to retrain the classifier. Several works attempted to address these
constrains and investigated strategies to reduce calibration and to adaptively retrain
classifiers [158, 172–176]. Nevertheless, these approaches are not regularly applied in
online scenarios [177].

ErrPs are still not commonly incorporated in BCIs. The limited use of ErrPs in BCIs
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can be possibly linked with most BCIs relying on session-specific personalised classifiers
that require a long calibration period. This is particularly critical when combining ErrPs
with other EEG-based controlling signals, in a hybrid BCI, as it would lead to a further
increase of the calibration duration. Therefore, the use of ErrPs classifiers that require
little or no calibration with the user could encourage the construction of BCIs that
combine ErrPs with other control modalities, by avoiding a significant extension of the
calibration period.

Grizou, Iturrate and colleagues investigated the construction of ErrP classifiers that do
not require offline calibration [178–181]. The ErrP signal is particularly good candidate
for the study of a classifier’s transfer, due to its stability over long periods of time and
across participants [143]. The transferability of ErrP classifiers, across participants
and across tasks, has been investigated in the context of discrete tasks. Iturrate and
colleagues investigated the transfer of an ErrP classifier across different participants
and also proposed a latency correction method for transferring an ErrP classifier across
different time-locked tasks [150, 182]. Spüler and colleagues studied the transferability
of ErrPs across non-disabled participants and across participants with ALS and showed
that the transfer of ErrPs across non-disabled participants was successful [84]. Nev-
ertheless, this was not the case for participants with ALS and the authors suggested
that, for motor impaired participants, personalised classifiers should be used. Kim
and colleagues investigated the transfer of an ErrP classifier across participants and
also from an observation task to an interaction task [183, 184] and concluded that the
transfer across tasks outperformed the transfer across participants. These studies show
promising results regarding the transferability of ErrPs in offline scenarios. Hence, they
can be seen as a strong foundation for the study of ErrPs’ transfer in online scenarios.

1.6. Asynchronous detection of ErrPs

One important application of BCIs is to provide an alternative control mechanism
to persons with motor disabilities. BCI research is evolving in the direction of finding
strategies to offer BCI users a more natural control of an external device [126–128, 130–
132, 185, 186]. One strategy to achieve such a natural control is to allow users to
continuously control the BCI through intuitive strategies [187–192].

In the context of continuous actions, the user can realise at any moment that an
error occurred. Hence, such situations require a continuous detection of ErrPs. This
strategy of continuously analysing brain signals in order to detect ErrPs is also known
as asynchronous detection of ErrPs [193–195] and contrasts the more commonly used
technique, known as synchronous, in which only epochs of brain signals, time-locked
to events, are evaluated [142, 146, 148, 153].
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Figure 1.4.: Representation of the offline asynchronous detection of ErrPs using a
sliding window approach. At a predefined rate, a time-window of brain signals is
evaluated by the classifier. The output of the classifier is then translated into the
detection of ErrPs, through a decision threshold.

Figure 1.4 depicts a schematic representation of the the asynchronous detection of
ErrPs using a sliding window, in an offline scenario. In this approach, brain signals
are analysed by sliding a window at a fixed rate through the pre-recorded EEG. Each
EEG window is evaluated by the classifier and leads to a classifier output, which is
transformed into the probability of the window belonging or not to the error class.
This probability can then be used for the detection of ErrPs by means of a decision
threshold τ , which serves as a boundary between the two classes, and affects the bias
of the classifier towards one of them. This approach is directly transferable to an
online scenario, in which the ongoing EEG signals are analysed in real-time and the
participants can receive real-time feedback resulting from their brain signals.

The asynchronous detection of ErrPs was first proposed by Milekovic and colleagues
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in 2013. They used ECoG signals to evaluate the asynchronous detection of ErrPs
during a computer game [196, 197]. Afterwards, Omedes and colleagues showed the
feasibility of asynchronously detecting ErrPs from EEG signals, during the monitoring
of continuous tasks on a computer screen [193–195]. Spüler and colleagues expanded
the asynchronous detection of ErrPs with EEG to a situation in which participants con-
tinuously controlled a cursor, in a computer game similar to the one used by Milekovic
and colleagues [197, 198]. So far, the study of the asynchronous detection of ErrPs
during continuous actions has only been investigated in offline scenarios, in which the
participants received no feedback of their ErrPs.

1.7. ErrPs in potential end-users of BCIs

Despite the developments in the BCI field in the last 20 years, few BCIs have been
actually tested with potential BCI end-users [100, 101, 108, 109, 116, 199–203]. Fur-
thermore, such studies typically include very few participants. A brain signal of interest
in a population of potential BCI end-users can differ from the corresponding signal in
a non-disabled population [204–207]. Hence, a crucial step for the development of
BCIs for end-users is the characterisation of the brain signals of interest in the target
populations.

The study of ErrPs in potential end-users of BCIs is still in its early stages and the
application of online ErrPs-based BCIs in end-users is very still scare [84, 208–210].
In 2012, Spüler and colleagues studied ErrPs in six participants with ALS, in an on-
line experiment in which participants used a P300 speller [84]. In 2017, Seer and
colleagues studied ErrPs in persons with ALS and verified an attenuated amplitude of
the negativity of the ErrP in participants with poorer executive functioning [208]. In
2019, Keyl and colleagues compared the electrophysiology of ErrPs in participants with
SCI and in control participants. They concluded that although the ErrP morphology
was comparable among the groups, participants with SCI displayed reduced peak am-
plitudes [211]. Kumar and colleagues studied ErrPs during post-stroke rehabilitation
movements but did not obtain clear ErrP signals [209].

1.8. ErrPs’ applications for non-disabled users

Most BCIs attempt to offer strategies for communication or control for daily live
activities of persons with disabilities. Nevertheless, some BCIs also target recreational
activities of these persons, by addressing activities such as gaming, painting, music
composition and internet browsing [212–215]. In recent years, the development of
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BCIs for non-disabled persons has also attracted considerable interest [66, 74, 216–
220].

Passive BCIs, which do not require an intentional modulation of brain signals, are par-
ticularly suited for non-disabled users. They can be used simultaneously with standard
control strategies relying on motor control in order to provide an additional source
of information regarding what the user is experiencing [66, 221]. For example, pas-
sive BCIs can be used to monitor the brain activity during prolonged tasks and detect
changes in attention, workload, or identify error awareness [75–78].

The ErrP signal is particularly suited for BCI applications targeting non-disabled users.
Recently, ErrPs have been investigated in real world situations of such users, such
as driving a car [79, 147, 222, 223] and virtual environments [144, 224–227]. For
instance, Zhang, Chavarriaga and colleagues investigated ErrPs occurring during sim-
ulated and real driving tasks and classified ErrPs, offline and online, in a time-locked
manner [79, 147, 222, 223]. The detection of errors occurring in virtual reality (VR)
environments can be used to improve users’ immersive experience. Still, the studies on
ErrPs occurring in VR environments mainly focus on the electrophysiological charac-
terisation of ErrPs and, to the best of our knowledge, have not attempted classification
[144, 224–227].
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2.1. Motivation

BCIs are a promising technology to restore some independence in persons with severe
motor disabilities but are still prone to errors. Hence, BCIs would benefit from the
incorporation of an error detection system, either to correct actions of a BCI or to
improve its performance [135].

Former BCIs relied on mental strategies that were not necessarily intuitive [80, 82].
More recently, research on BCIs is evolving in the direction of establishing more intuitive
and natural approaches [126]. A particular example of such approaches is the study of
decoding strategies that would provide BCI users with an intuitive continuous control
of an end effector, such as a robotic arm [187]. In the context of continuous actions, a
user can realise at any moment that an error occurred. To address this aspect, research
on ErrPs evolved in the direction of establishing strategies for detecting ErrPs during
continuous movement.

A first approach to address the detection of errors in continuous actions was proposed
by Kreilinger and consisted in coupling predefined discrete events to the continuous
trajectory, to which the error signals could be time-locked [148, 149]. Nevertheless,
such approach did not take into account the possibility of the users realising the occur-
rence the errors at any moment. More recently, the need of coupling discrete events
to continuous tasks was overcome and ErrP research focused on establishing reliable
strategies for the continuous detection of ErrPs. In particular, this was addressed by
the works of Omedes on the detection of ErrPs during the observation of continuous
actions [193–195] as well as by the works of Spüler and Milekovic on the detection of
ErrPs during the control of a cursor [196–198].

The works mentioned in this section investigated strategies for the continuous detection
of ErrPs. Nevertheless, they are theoretical investigations that were conducted in
offline conditions. In my opinion, a limitation of the current state-of-the-art literature
on ErrPs is the lack of a demonstration of the use of continuous ErrP detection in
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online conditions as well as the establishment of its pertinence in applications targeting
potential end-users of BCIs.

2.2. Aim of the thesis

The central aim of this thesis is to explore ErrPs occurring during continuous control, by
developing a strategy for their asynchronous detection in online scenarios that could
be applicable to potential end-users of BCIs. Specifically, this thesis aims to shift
the study of the asynchronous detection of ErrPs from theoretical investigations done
in offline conditions to online applications closer to real-world conditions, in which
participants can receive real-time feedback of their own ErrPs. Additionally, this thesis
aims to characterise ErrPs in a population with SCI. Finally, it aims to investigate
the transferability of an ErrP classifier for online asynchronous ErrP detection, across
different populations of participants, with and without SCI.
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3.1. Offline asynchronous detection of ErrPs

[228] C. Lopes-Dias, A. I. Sburlea, and G. R. Müller-Putz. Masked and unmasked
error-related potentials during continuous control and feedback. Journal of Neural En-
gineering, 15(3):036031, 2018.

The aim of the first study of the thesis was to investigate the occurrence of ErrPs
during the execution of a continuous task. For that, we developed an experiment
in which participants controlled a cursor towards one of four targets on a computer
screen using a joystick. We recorded the EEG signals of 15 non-disabled participants
and analysed the signals offline.

The experiment consisted of 12 experimental blocks with 30 trials each. In 30% of the
trials of each block, the participants lost control of the cursor at a random moment
during its trajectory towards the targets. When this happened, the cursor followed a
trajectory perpendicular to the previous ongoing movement, as depicted in Figure 3.1.
These losses of control were defined as errors and the respective trials were considered
error trials. The trials in which no error occurred were considered correct trials. The
cursor’s position on the screen was presented in two different feedback conditions:
jittered feedback (masked) and normal feedback (unmasked). The masked feedback
aimed to introduce some uncertainty on the moment in which errors were detected
by the participants. The errors occurring in trials with masked feedback were labelled
masked errors and the errors occurring in trials with normal feedback were labelled
unmasked errors. Half of the blocks displayed masked feedback.

In this work, we first investigated the electrophysiological signature of correct and error
trials, irrespectively of the feedback modality. Figure 3.2 displays the grand average
correct and error signals at channel FCz. Correct trials were not associated with any
event and thus the electrophysiological trace of their average presented no noticeable
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3. Methods and Results

Figure 3.1.: Experimental protocol. Left: A possible cursor’s trajectory in an un-
masked error trial. Right: A possible cursor’s trajectory in a masked correct trial.

potential. The average error trace was consistent with descriptions of ErrPs from
state-of-the-art literature.
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Figure 3.2.: Grand average correct and error signals at channel FCz (in green and
red, respectively).The grey areas denote the intervals in which correct and error sig-
nals are significantly different (Wilcoxon signed-rank tests, Bonferroni corrected, with
p < 0.05). The dashed lines represent the average error and correct signals of each
participant. The scalp distribution of the grand average error signal is displayed at the
peaks of the error signal.

When comparing the error signals obtained in the two feedback modalities, the grand
average masked error signal presented a delay of 28 ms in relation to the grand average
unmasked error signal. The delay in the masked condition could have resulted from
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3.1. Offline asynchronous detection of ErrPs

a higher task complexity. Surprisingly, the time-locked classification of masked errors
against unmasked errors yielded results not significantly above chance level. Hence,
masked and unmasked conditions were combined for the asynchronous ErrP detection.
The asynchronous strategy is particularly suited for the detection of ErrPs during
continuous tasks, in which the moment of the occurrence of the errors cannot be
predetermined.
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Figure 3.3.: Asynchronous detection – cross-validation in the first 80% of the data:
Grand average true negative rate (TNR) and true positive rate (TPR) (green and red
solid lines, respectively) in function of the threshold τ . The chance level of the TNR
and TPR are represented in green and red dashed lines, respectively. The shaded areas
represent the 95% confidence interval of the average curves. The grey dashed lines
indicate the threshold that maximises the grand average TPR (τ = 0.575) as well as
the corresponding TPR and TNR results (68.0% and 76.0%, respectively).

Our approach for the asynchronous ErrP detection was based on the use of a shrinkage
linear discriminant analysis (sLDA) classifier [229] with two classes, correct and error.
The classifier relied on time domain features whose dimensionality had been reduced,
by using principal component analysis (PCA) and only keeping the components that
explained 99% of the data’s variance. We defined an ErrP detection as the occur-
rence of two consecutive EEG windows with an error probability above a predefined
decision threshold τ . This strategy aimed to minimise false positive ErrP detections.
Furthermore, we defined trial-based metrics to evaluate the asynchronous ErrP detec-
tion. Error trials were considered positive and correct trials were considered negative.
Hence, a true positive trial was defined as an error trial with no ErrP detections before
the error onset and at least one ErrP detection after the error onset. A true negative
trial was defined as a correct trial with no ErrP detections. The evaluation of the
asynchronous ErrP detection was done in terms of TPR and TNR. TPR was defined
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3. Methods and Results

as the fraction of error trials that were true positive trials and TNR was defined as the
fraction of correct trials that were true negative trials.

Moreover, we used a 10×5-fold cross-validation in the first 80% of the data to evaluate
offline the asynchronous ErrP detection and the effect of varying the classifier’s decision
threshold τ . Figure 3.3 displays the results obtained for all the tested τ . The chance
level curves were obtained by repeating the cross-validation procedure with permuted
training labels. The decision threshold that maximised the grand average TPR was
τ = 0.575.
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Figure 3.4.: Asynchronous ErrP detection – cross-validation in the first 80% of the
data: Average delay of the ErrPs detection in masked and unmasked error trials suc-
cessfully classified (pink and dark red lines, respectively). The corresponding shaded
areas indicate the 95% confidence intervals. The shaded grey areas indicate the regions
in which the delay in masked and unmasked trials was significantly different (Wilcoxon
signed-rank test, Bonferroni corrected, with p < 0.05).

Despite having combined masked and unmasked errors for the asynchronous detection
of ErrPs, we still evaluated the effect of the two feedback modalities on the moment in
time in which the ErrPs were detected. Figure 3.4 depicts the average ErrP detection
delay, i.e., the period between the error onset and the ErrP detection, in the masked
and unmasked error trials successfully classified (TP trials). In this evaluation, we only
considered the decision thresholds τ with which all participants had at least one error
trial successfully classified.

Finally, we evaluated the asynchronous detection of ErrPs in a pseudo-online scenario,
in which the first 80% of the data was used to train the ErrP classifier and the last 20%
of the data was used to test it. Figure 3.5 presents the results obtained with the decision
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Figure 3.5.: Asynchronous ErrP detection – Chronological split (80% - 20%): The
percentage of correct trials successfully classified (TNR) are depicted with green bars
and the percentage of error trials successfully classified (TPR) are depicted with red
bars. The chance level results are represented with small circles. Left: Asynchronous
ErrP detection using the threshold τ = 0.575. Right: Asynchronous ErrP detection
using individual thresholds. The blue numbers indicate the threshold of each partici-
pant.

threshold τ =0.575 (left), which maximised the grand average TPR, as well as with
the threshold τ that maximised the individual TPR (right). To prevent overfitting, the
thresholds used in the pseudo-online scenario were obtained from the cross-validation
in the first 80% of the data. This figure also illustrates that some participants benefit
from an individualised decision threshold when using a personalised ErrP classifier.
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Contribution to the thesis: In this work, we developed the core methodology for
the asynchronous detection of ErrPs, which we used in the subsequent studies. We
showed the feasibility of asynchronously detecting ErrPs using a classifier based on
time-domain features. Furthermore, we investigated the use of a personalised ErrP
classifier in combination with a personalised decision threshold, in a pseudo-online
scenario.
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3.2. Online asynchronous detection of ErrPs

[140] C. Lopes-Dias, A. I. Sburlea, and G. R. Müller-Putz. Online asynchronous de-
coding of error-related potentials during the continuous control of a robot. Scientific
Reports, 9(1):17596, 2019.

The main aim of the second study of this thesis was to asynchronously detect ErrPs
in an online experiment. Furthermore, we introduced an experimental setup that
resembled a possible use of a BCI by an end-user.

In this study, we measured the EEG signals of 15 non-disabled participants while they
used their right hand to continuously control a robotic arm towards one of two targets
placed on a wooden structure, as depicted in Figure 3.6. The participants’ hand
movement on the tabletop was tracked and translated into the robot’s movement on
a horizontal plane. Each trial corresponded to a movement towards one of the targets.
In 30% of the trials, the paradigm triggered an error at a random moment during the
robot’s trajectory. The error consisted in interrupting the participants’ control of the
robot and adding an upwards displacement to the robot’s hand. Participants perceived
the error by noticing the robot stopping and lifting. These trials were called error trials
and the remaining ones were called correct trials.

The experiment was divided into two parts, the calibration and the online parts, which
took place consecutively. The calibration part consisted of 8 blocks and the online
part consisted of 4 blocks, with 30 trials each: 21 correct and 9 error trials. The
calibration part was used to collect the participants’ EEG data, with which we trained
a personalised ErrP classifier, based on PCA and sLDA. The calibration data were also
used to determine a personalised decision threshold for every participant, using cross-
validation. The chosen threshold was the one that maximised the product of TPR
and TNR. Finally, the personalised ErrP classifier was combined with the personalised
decision threshold.

In the online part of the experiment, the classifier was tested asynchronously and
participants had the possibility of correcting the robot’s errors. If a true positive
ErrP detection occurred, i.e., if an ErrP was detected after an error, the robot’s hand
lowered and the participants regained its control. The downward movement informed
the participants of the ErrP detection. Participants were instructed to move the robot’s
hand to the selected target when regaining control. For a matter of fluidity of the
experiment, we decided not to give participants feedback of the false positive ErrP
detections, i.e., of the ErrP detections occurring before the error onset or during
correct trials.
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Figure 3.6.: Experimental setup and protocol. Top: Experimental setup. Bottom:
Experimental protocol. During the pre-trial period, the white square on the screen
indicated the physical target of the coming trial. During the trials, the participants
moved the robot to the target on the wooden structure. In the post-trial period, the
white square on the screen changed colour to either green or red, indicating whether
or not the robot reached the physical target, and the robot automatically returned to
its home position.

The electrophysiological signatures of the grand average correct and error signals at
channel FCz are depicted in Figure 3.7. The presented signals were filtered with a causal
filter in order to illustrate their electrophysiological signature in an online scenario. The
use of a causal filter led to a change in the error signal’s morphology in comparison
to the use of a non-causal filter, which is more commonly applied to depict ErrPs. In
particular, it caused a shift of the negative component of the ErrP to after its positive
component.

The results regarding the asynchronous ErrP detection in the online part of the exper-

26



3.2. Online asynchronous detection of ErrPs

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

µV

10

0

-10

time (s)

A
m
p
li
tu
d
e
(µ
V
)

Calibration

Avg. correct

Avg. error

95% conf. interval

95% conf. interval

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

µV

10

0

-10

time (s)

A
m
p
li
tu
d
e
(µ
V
)

Online

Avg. correct

Avg. error

95% conf. interval

95% conf. interval

Figure 3.7.: Grand average correct and error signals at channel FCz and the corre-
sponding 95% confidence intervals, in green and red, respectively. The grey areas
represent the time-points in which the signals were significantly different (Wilcoxon
rank-sum tests, Bonferroni corrected, p < 0.01). The scalp distribution of the signals
are displayed at the time-points corresponding to the peaks of the error signal.

iment are summarised in Figures 3.8 and 3.9. Figure 3.8 depicts the TNR and TPR
obtained for each participant and their average. Figure 3.9 depicts the time-points
of the ErrP detections during the error trials, in relation to the error onset (t = 0 s).
These results indicate that most ErrP detections occurred within one second after the
error onset.

Aver
ag

e
S0

1
S0

2
S0

3
S0

4
S0

5
S0

6
S0

7
S0

8
S0

9
S1

0
S1

1
S1

2
S1

3
S1

4
S1

5
0
10
20
30
40
50
60
70
80
90

100
86.8

70.0

0.800

0.7750.8750.775
0.825

0.725
0.575

0.700

0.850
0.725

0.9000.725
0.7750.725

0.875

(%
)

True Negative Rate True Positive Rate

Figure 3.8.: Online asynchronous ErrP detection. The green and red bars represent
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TPR was 70.0% and the average TNR was 86.8%. The blue numbers indicate the
decision threshold τ of each participant.
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Figure 3.9.: ErrP detections’ delay in the online scenario. Violin plots, for every
participant, of the time-points of all ErrPs detections during the error trials of the
online part of the experiment, in relation to the error onset (t = 0 s).

Contribution to the thesis: This work is the first demonstration of the asynchronous
detection of ErrPs in an online scenario. The experimental setup resembled a possible
use of a BCI by end-users, due to the continuous control of the robotic arm and to its
use as feedback of the BCI output. This is a first step in the direction of applying the
asynchronous detection of ErrPs to potential BCI end-users.
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3.3. Asynchronous detection of ErrPs with a generic
classifier

[230] C. Lopes-Dias, A. I. Sburlea, and G. R. Müller-Putz. Asynchronous detection of
error-related potentials using a generic classifier. In 8th Graz Brain-Computer Interface
Conference 2019, pages 54–58, 2019.

[231] C. Lopes-Dias, A. I. Sburlea, and G. R. Müller-Putz. A generic error-related po-
tential classifier offers a comparable performance to a personalized classifier. In 2020
42nd Annual International Conference of the IEEE Engineering in Medicine Biology
Society (EMBC), pages 2995–2998, 2020.

After asynchronously detecting ErrPs in an online experiment with non-disabled par-
ticipants, we decided that the next step would be the translation of the developed
methods to potential end-users of BCIs. However, from the knowledge gained with the
previous experiment, it was clear that it would not be viable to perform such a long ex-
periment, consisting of a lengthy calibration and, additionally, of a testing online part.
Therefore, we decided to investigate a strategy to reduce the experiment’s duration.

In the two works presented in this section, we developed a generic classifier for the
asynchronous detection of ErrPs and showed that such classifier offers a classification
performance comparable to a personalised ErrP classifier.

In the first article of this section [230], we used the EEG data of the 15 participants
of the previous study to develop a generic ErrP classifier. For each participant, we
trained a classifier with the calibration data of the remaining 14 participants and tested
it asynchronously on the calibration data of the participant not used for the training.
Figure 3.10 (top) shows the grand average classification results obtained and the results
of a chance level classifier, which was constructed using a random permutation of the
training labels. The vertical grey dashed line represents the optimal threshold at a group
level (τ = 0.7), i.e., the threshold that maximises the product of the grand average
TPR and the grand average TNR. Figure 3.10 (bottom) depicts the individual results
of every participant. The blue dashed line depicts the optimal individual threshold and
the grey dashed line depicts the optimal threshold at a group level.

In the second article of this section [231], we used the generic classifier trained in
calibration data of 14 participants, just as before, but now we tested it, asynchronously,
in the online part of the experiment of the participant not used in the training. Testing
the generic ErrP classifier in the online part of the participants’ data allowed us to
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Figure 3.10.: Top: Grand average TNR and TPR (green and red solid lines, respec-
tively) for the asynchronous ErrP detection with a generic classifier. The chance level
results are depicted with green and red dashed lines. The shadowed areas represent
the 95% confidence intervals of the curves. The optimal threshold at a group level
(τ = 0.7) is represented with a grey vertical dashed line. Bottom: Average TNR and
TPR obtained for every participant. The optimal individual threshold is represented
with a blue dashed line and the optimal threshold at a group level is represented with
a grey dashed line.
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3.3. Asynchronous detection of ErrPs with a generic classifier

directly compare the generic classifier with the personalised classifier of the previous
study, since both classifiers were evaluated in the same dataset. The classification
results obtained with both classifiers are depicted in Figure 3.11. The classifiers’
performances, in terms of TNR and TPR, were not significantly different (Wilcoxon
signed ranksum test, p = 0.63 for TNR and p = 0.72 for TPR).
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Figure 3.11.: Comparison of the asynchronous ErrP detection results obtained with
a generic and a personalised ErrP classifiers. Left: TNR using the generic and the
personalised classifiers (dark green and light green, respectively). Right: TPR using
the generic and the personalised classifiers (dark red and pink, respectively).

Contribution to the thesis: These works propose a generic classifier for the asyn-
chronous detection of ErrPs and show that such classifier offers a comparable per-
formance to a personalised ErrP classifier. Moreover, our results reveal that some
participants benefit from a personalised threshold when using a generic ErrP classifier.
These works allowed the development of an online experiment that did not require
offline calibration, leading to a reduction of the experimental duration.
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3. Methods and Results

3.4. Online asynchronous detection of ErrPs in
participants with SCI

[232] C. Lopes-Dias, A. I. Sburlea, K. Breitegger, D. Wyss, H. Drescher, R. Wildburger,
and G. R. Müller-Putz. Online asynchronous detection of error-related potentials in
participants with a spinal cord injury by adapting a pre-trained generic classifier. Jour-
nal of Neural Engineering, 2020, accepted.

The aim of the final study of this thesis was to test the asynchronous detection of
ErrPs with a generic classifier, in an online scenario and with potential end-users of
BCIs. We chose to conduct the experiment with participants with a spinal-cord injury
due to the convenience of recruiting them through the Rehabilitation Clinic Tobelbad,
Austria.

The experiment consisted of 8 online blocks, each with 30 trials. We kept the exper-
imental setup and protocol of this study very similar to our previous one, as depicted
in Figure 3.12. The main difference between the experimental setups was the replace-
ment of the physical targets by targets on a screen. The errors were identical to the
previous experiment. Therefore, we could use the EEG data of the previous experiment
to train a generic ErrP classifier. This classifier was tested asynchronously in an online
experiment, in which 8 participants with SCI and 8 non-disabled control participants
took part. Each participant in the SCI group was matched with a control participant
of the same gender and a maximum age difference of 5 years.

The experiment required no previous offline calibration with the participants and they
received feedback of the ErrP detections during its entire duration. Similarly to the
previous study, we decided not to give participants feedback of the false positive de-
tections, i.e., of the ErrP detections occurring before the error onset or during correct
trials. The generic classifier was initiated with a generic decision threshold τ = 0.7
since, in our previous investigation, this was considered to be the optimal threshold at
a group level, as depicted in Figure 3.10 of the previous section.

Despite giving participants feedback during the entire duration of the experiment, we
still used the first three blocks to tailor the decision threshold to each participant.
Hence, after each of these blocks, we evaluated offline the asynchronous ErrP detec-
tion with the generic classifier, on all the available EEG data of each participant at
that moment. We used the optimal threshold resulting from this evaluation as the
personalised decision threshold in the coming block. From block 4 onwards, we kept
the decision threshold of every participant fixed. Therefore, we only used the remaining
blocks, i.e., blocks 4 to 8, for the evaluation of the classifier, since no parameter was
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3.4. Online asynchronous detection of ErrPs in participants with SCI

Figure 3.12.: Top: Experimental setup. Bottom: Experimental protocol. During
the pre-trial period, two squares were displayed on the top part of the screen. The
white square was the target of the coming trial. The participants were instructed to
move the robot to the target square during the trials. Afterwards (post-trial period),
the target changed colour to either green or red, indicating whether the robot reached
or not the target and the robot automatically returned to its home position.

changed in these blocks.

In this work, we also presented the electrophysiology of ErrPs in participants with
SCI and in non-disabled control participants, at a group level and for the individual
participants, as depicted in Figure 3.13.

Moreover, we tested asynchronously and online, the transfer of a generic ErrP classifier
from non-disabled participants to two distinct populations: participants with SCI and a
different group of non-disabled control participants. The classification results obtained,
in terms of TNR and TPR, are depicted in Figure 3.14. Figure 3.15 illustrates the online
asynchronous detection of ErrPs and the trials’ offline evaluation for participant C1.
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Figure 3.13.: Grand average (top) and individual average (bottom) correct and error
signals at channel FCz (green and red solid lines, respectively) for participants with SCI
and control participants. The shaded areas represent the 95% confidence interval of the
grand average curves. The grey regions indicate the time-points in which correct and
error signals were statistically different (Wilcoxon ranksum tests, Bonferroni corrected,
α = 0.01)
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Figure 3.14.: Generic classifier: ErrP detection results, in terms of true TPR and
TNR, using the generic classifier online. The circles on the individual bars represent
the chance level of the corresponding metric for every participant.
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Figure 3.15.: Online detection of ErrPs with the generic classifier and trials’ offline
evaluation for participant C1. Left: Error trials, aligned to the error onset (black
vertical line). Right: Correct trials, aligned to the start of the trial. The dark grey areas
represent the trials and the white marks within them represent the ErrP detections.
The narrow rectangles colour code the trials’ offline evaluation. In these rectangles,
trials successfully classified (true positive trials and true negative trials) are coded in
white and trials with false positive ErrP detections are coded in light grey. Error trials
with no ErrP detections are coded in black.

Finally, we evaluated the asynchronous detection of ErrPs with a personalised classifier,
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3. Methods and Results

offline, using a 10×5-fold cross-validation. Figure 3.16 depicts the classification results
obtained with a personalised classifier and a personalised decision threshold.
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Figure 3.16.: Personalised classifier: Average TNR and TPR resulting from the offline
cross-validation procedure with the personalised classifier. The circles on the individual
bars represent the chance level of the corresponding metric for every participant.

In this study, we concluded that participants who did not present clear ErrP signals
obtained a chance level performance with the generic classifier. Despite half of the
participants with SCI not presenting clear ErrP signals, we hypothesise that such effect
can be associated with psychological factors rather than with the SCI itself.

Contribution to the thesis: This study shows the feasibility of asynchronously de-
tecting ErrPs online in participants with SCI. Moreover, it shows that it is possible to
transfer a classifier for the asynchronous detection of ErrPs across non-disabled par-
ticipants and also from non-disabled participants to participants with SCI, in case the
latter present clear ErrP signals. These results suggest that the use of a generic ErrP
classifier is a viable approach to give participants feedback of the ErrP detections from
the start of an experiment, avoiding the offline calibration of ErrPs.
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4. Discussion and Conclusion

The main aims of this thesis were the study of the asynchronous detection of ErrPs
during continuous control and the investigation of its applicability to online scenarios.
To this end, we started by focusing on the asynchronous detection of ErrPs using a
personalised classifier, both in offline and in online scenarios. Furthermore, we devel-
oped a generic classifier for the asynchronous detection of ErrPs. This classifier was
tested in an online scenario, both with participants with SCI and with non-disabled
control participants. In the following sections, we summarise the achievements of this
thesis and discuss them in relation to the current state of the art.

4.1. Asynchronous detection of ErrPs

In recent years, BCI research is rapidly evolving in the direction of establishing intuitive
and natural approaches to control a BCI [126–128, 130–132, 185, 186, 233, 234]. In
particular, there was a strong emphasis on the investigation of strategies that would
offer BCI users an intuitive and continuous control of an end effector, such as a
cursor or a robotic [187, 188, 190–192]. In the context of continuous control, the
user’s perception that an error occurred can happen at any moment. Hence, the
identification of errors in such situations requires an asynchronous detection of ErrPs.
This is a relatively recent research topic, yet it has a great potential for exploration
and applicability.

As mentioned in the Introduction, the asynchronous detection of ErrPs has been inves-
tigated by Milekovic, Omedes and Spüler. Milekovic showed the feasibility of detecting
ErrPs from ECoG signals [196, 197]. Omedes then established the asynchronous detec-
tion of ErrPs from EEG signals in an observation task [193–195]. Spüler and colleagues
further pursued this line of research, by using EEG signals to asynchronously detect
ErrPs in a task involving the continuous control of a cursor [198]. All these studies were
performed in offline conditions, i.e., the asynchronous ErrP detection was conducted
after the end of the experiment. Thus, the participants received no feedback of their
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ErrPs.

In the study described in section 3.1 [228], we also investigated, offline, the asyn-
chronous detection of ErrPs in a task involving continuous control of a cursor. We
proposed an ErrP classifier based on time domain features. This classifier offered a
classification performance comparable to the results presented in [193, 198], which were
based either on frequency domain features or on a combination of time and frequency
domain features.

In [228], we introduced two modalities of continuous feedback: masked and unmasked.
The unmasked feedback referred to the normal feedback. The masked feedback com-
bined the normal feedback with a jitter component. The masked feedback aimed to
create some uncertainty regarding the moment in which users perceived the errors.
In [228], we showed that, on average, the ErrP detections occurred later in the masked
condition than in the unmasked condition. This results possibly reflect that participants
took longer to realise the occurrence of the errors in the masked condition.

The asynchronous detection of ErrPs is, by design, a very unbalanced problem. Errors
are isolated events that occur unexpectedly and are separated by longer periods of
time with no errors. We considered two main strategies to approach the asynchronous
detection of ErrPs. First, we defined an ErrP detection as the occurrence of two
consecutive EEG windows with an error probability above the decision threshold τ .
This strategy helped to reduce the false positive ErrP detections. Furthermore, in
[228], we showed that the use of a personalised decision threshold in combination
with the ErrP classifier can improve the classification performance in an asynchronous
scenario, by biasing the classifier towards one of the classes. Thus, we applied these
strategies in our subsequent studies.

Offline experiments are important because they allow researchers to investigate strate-
gies to improve BCIs’ performance. However, the ultimate goal of BCI research should
be the development of solutions that are applicable to real-word scenarios, in an on-
line manner. So far, the online detection of ErrPs has been only investigated in a
time-locked manner, using either discrete tasks [87, 153, 155] or a combination of
continuous tasks with additional discrete feedback moments [146, 148, 149].

To the best of our knowledge, we present in this thesis the first demonstration of
the online detection of ErrPs in an asynchronous manner. In the study described
in section 3.2 [140], non-disabled participants controlled a robotic arm towards two
targets. This experimental setup aimed to resemble a possible use of a BCI by an end-
user. The errors occurred during the robot’s movement towards the targets and were
automatically generated by the paradigm. This strategy assured that all participants
experienced the same number of errors and aimed to elicit comparable motivation and
engagement across participants.
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This study was composed of two distinct parts: an offline calibration and an online
part, in which the classifier was tested. When constructing the ErrP classifier, we
incorporated our previous findings, by combining the personalised classifier with a
personalised decision threshold. In the online part, participants could correct the errors
triggered by the paradigm, in case an ErrP was detected by the classifier. We decided
not to give participants feedback of the false positive detections of ErrPs. This aimed
to preserve the experimental conditions as much as possible, from calibration to online
parts and across participants. Moreover, it avoided that the possible occurrence of
many false positive ErrP detections would disturb the fluidity of the experiment. In
any case, giving participants feedback, even if only partially as in our study, will always
influence them. For instance, in this study, we observed that the peak amplitudes of
the ErrPs were, on average, more pronounced during the online part of the experiment
than during the calibration [140]. We hypothesise that this is a consequence of an
increase in participants’ engagement caused by the feedback [26, 32].

The online asynchronous detection of ErrPs is an important step towards the ap-
plicability of ErrPs in real-world scenarios. However, in online experiments, all the
methodological decisions are made before the experiment. Thus, online experiments
will probably not lead to the best possible classification results. Instead, they offer a
glimpse of what is an expectable performance in real-word scenarios.

4.2. Generic ErrP classifiers

The big majority of BCIs rely on personalised classifiers, which are trained with the
participants own brain signals. These classifiers typically use brain signals recorded
during an offline calibration task, taking place right before each BCI use.

An alternative to personalised classifiers are generic classifiers. These are trained with
brain signals acquired either during a different task or from other participants. The
construction and use of a generic classifier is also known as classifier transfer, either
across different tasks or across different participants. Generic classifiers require minimal
or no offline calibration and thus have the potential of making the use of BCIs more
straightforward and less time consuming. However, the study of generic classifiers is
still scarce [170, 171, 173, 179–181, 235], possibly due to the belief that they offer a
worse performance than personalised classifiers.

The ErrP signal is a particularly good candidate for the construction of a generic
classifier because its morphology is stable across participants and over long periods
of time [143]. In recent years, the study of generic ErrP classifiers has received a
renewed interest [236–238]. However, so far, the transfer of ErrP classifiers has only
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been studied in tasks in which the ErrP detection is done in a time-locked manner
and in offline scenarios. Iturrate and colleagues [150, 182] studied the transfer of
an ErrP classifier across different participants and different tasks, proposing a latency
correction method. Furthermore, Kim and colleagues extended the transfer of ErrP
classifiers not only across different participants but also across tasks involving different
types of ErrPs: interaction and observation ErrPs [183, 184]. Kim and colleagues
concluded that the transfer across tasks outperformed the transfer across participants.
However, transferring ErrP classifier across very different tasks, in particular from 2D
tasks on a computer screen to a real-world 3D tasks ErrPs, is not always successful
and poses additional challenges that remain to be addressed [150, 239].

In this thesis, we present, to the best of our knowledge, the first demonstration of the
use of a generic classifier for the asynchronous detection of ErrPs, offline and online.
In section 3.3 [230, 231], we present a generic ErrP classifier which was tested asyn-
chronously, by transferring the classifier across different participants [230]. For each
of the 15 participants of our first online experiment [140], we trained an ErrP classi-
fier with data from the 14 remaining participants and tested it asynchronosly in the
participant not used for training. In [230], we also show that although the proposed
classifier does not necessarily require calibration, participants benefit from a person-
alised decision threshold when using the generic classifier, similarly to what we had
verified with the personalised ErrP classifier. Moreover, we show that the performance
of the generic ErrP classifier is comparable to the performance of a personalised ErrP
classifier [231]. These results challenge the common belief that a personalised classifier
always yields a better classification performance than a generic classifier. Moreover,
these findings can encourage the incorporation of ErrP classifiers when constructing
BCIs, since the proposed classifier does not require offline calibration.

Furthermore, in this thesis we present the first demonstration of the asynchronous
detection of ErrPs with a generic classifier in an online scenario. In section 3.4 [232],
we describe an online experiment in which we asynchronously detected ErrPs using a
generic classifier with personalised decision thresholds. This experiment is, in its struc-
ture, similar to our first online experiment [140]. The main methodological differences
are the use of a generic ErrP classifier, the elimination of the offline calibration and the
incorporation of two distinct groups of participants: 8 non-disabled participants and 8
participants with SCI.

In this study, we evaluate the performance of the generic classifier during an online
experiment, and also the performance of a personalised classifier, offline through cross-
validation [232]. These different approaches do not allow us to directly compare the
performance of the two classifiers since they are not tested with the exact same dataset.
Still, the different performances of the two classifiers in non-disabled participants sug-
gests that these participants would have benefited from a personalised classifier. Hence,
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interestingly, these results do not support our previous findings, which indicated that a
generic ErrP classifier offers a comparable performance to a personalised ErrP classifier
[231]. The main difference between the non-disabled populations that participated in
the experiments [140] and [232] is their age range. Participants in [140] were mostly
recruited from a population of university students while the non-disabled participants
in [232] were age-matched with the participants with SCI and, thus, were of a much
broader age range. Hence, in [232], the generic ErrP classifier was transferred across
populations with a very different age range. Several studies report a decrease of the
ErrP peak amplitudes with age [32, 52]. The electrophysiological results of this study
also support such decrease in amplitudes [232]. We hypothesise that the average drop
in performance with the generic ErrP classifier verified in the non-disabled participants,
can be related with the transfer of the classifier, trained with ErrPs from a relatively
homogenous population, to a population with a broader age range. Interestingly, we
observed that older participants were more likely to benefit from lower personalised
decision thresholds, possibly to compensate the lower amplitudes of their ErrPs.

4.3. ErrPs in BCI end-users

A substantial challenge in the BCI field is to test BCIs with potential end-users. A first
reason for the limited literature on BCIs with end-users is the logistical difficulties in
recruiting such participants, which often results in studies with very few participants
[98, 100–102, 127, 128, 203, 240, 241]. The comprehensible desire of thoroughly
testing the BCIs in non-disabled participants before using them with potential BCI
end-users, can delay its application. In addition, the brain signals of interest in non-
disabled participants are not necessarily representative of the corresponding signals in
end-users. Moreover, it is important to focus on end-user needs, through user-centred
approaches, which take into account the users’ subjective preferences [242].

Recently, efforts have been made in the direction of characterizing ErrPs in potential
BCI end-users [208, 209, 211]. Our work complements the existing state-of-the-art
literature, by providing a characterization of ErrPs in 8 participants with SCI [232].
We show that the ErrP morphology is not homogenous across participants with SCI.
However, further studies are necessary to unveil the reasons behind the dissimilarities.
In [232] we hypothesise that age variation and psychological reasons can influence such
dissimilarities [243–247].

In this thesis, we also present, to the best of our knowledge, the first demonstration
of the asynchronous detection of ErrPs in potential BCI end-users. In [232], we con-
structed a generic ErrP classifier, trained with data from non-disabled participants,
and tested the classifier online for the asynchronous detection of ErrPs not only with
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a different group of non-disabled participants but also with participants with SCI. All
the participants, with or without SCI, that displayed clear ErrP signals obtained clas-
sification performances above chance level with the generic classifier. Moreover, we
show that most participants without clear ErrP signals would also not have benefited
from personalised classifiers. Hence, our work also shows that it is possible to transfer
a generic ErrP classifier from non-disabled users to participants with SCI, when the
latter display clear ErrP signals.

In 2012, Spüler and colleagues investigated the transfer of an ErrP classifier across par-
ticipants with ALS and also across non-disabled participants [84] and hypothesised that,
for motor impaired participants, personalised ErrP classifiers were necessary. Spüler
did not investigate the ErrP transfer from non-disable participants to participants with
ALS. The participants with ALS in [84] displayed a heterogeneous ErrP morphology.
This possibly explains the lack of success when transferring an ErrP classifier across
them. In our study [232], participants with SCI also displayed a heterogeneous ErrP
morphology. Hence, we hypothesise that transferring an ErrP classifier from non-
disabled participants to potential BCI end-users is a better strategy than transferring
an ErrP classifier across potential BCI end-users.

4.4. Limitations and recommendations

The pursuit of a feasible implementation of our studies, compelled us to undertake
some compromises. In this section, we present the main limitations of our work and
discuss possible future strategies to overcome them.

A limitation of this thesis regards our choice of not giving participants feedback of
the false positive ErrP detections during the online experiments. This was not a
technical limitation but rather an experimental design choice. ErrPs are modulated
by factors such as motivation and engagement. Hence, we wanted to avoid that
the possible occurrence of many false positive ErrP detections would lead to a loss
of the participants’ motivation. Any type of feedback, even if only partial as in our
experiments, will influence the participants. Giving them, in addition, feedback of
the false positive ErrP detections would lead to an even more unequal scenario across
participants. Giving participants full feedback regarding the asynchronous detection
of ErrPs is a straightforward step, since no methodological changes are needed in
relation to the work presented in this thesis. Nevertheless, the results of such an
experiment have to be interpreted with caution, since participants will not necessarily
be in comparable conditions.

Other limitation of our online experiments is the fact that, although we aimed to mimic
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an intuitive use of a BCI, the manner in which the errors were triggered was not very
natural. A more intuitive strategy would have been the introduction of a sideways
deviation, instead of the stopping and lifting of the robotic arm. Nevertheless, the
incorporation of the vertical dimension conferred practical benefits. The subsequent
lowering of the robotic arm was integrated as a cue regarding the ErrP detections,
eliminating the need of extra feedback modalities.

Moreover, in all our experiments, the errors were externally triggered, what does not
happen in the real use of a BCI. In such context, only the user knows about the
occurrence of errors, since they result from his/her subjective evaluation of a situation.
The use of artificially triggered errors is a common practice in ErrP research. It allows
researchers to establish a ground truth, which can be used as a reference to evaluate
the performance of ErrP classifiers. Alternatively, if the errors are not known, one could
use an approach in which the user reports the perception of errors, such as described
in [248], to test the asynchronous detection of ErrPs.

Finally, an obvious limitation of our work is the use of the participants’ own movement
to achieve continuous control of the cursor and the robot, and not their brain signals.
This choice was a consequence of our belief that intuitive mental strategies for contin-
uous trajectory decoding using EEG are still unable to provide reliable control, despite
major progresses in recent years [190–192]. Alternatively, we could have used less intu-
itive strategies to achieve continuous control, such as the modulation of sensory motor
rhythms [148, 249]. However, we considered that such alternatives would have led us
to deviate from the intended natural control of the robot. In any case, the methods
developed in this thesis can be directly applicable to a situation where the continuous
control is decoded from brain signals.

4.5. Summary and conclusion

In this thesis, we investigated the asynchronous detection of ErrPs, in offline and
online experiments. Additionally, we developed a generic ErrP classifier that does not
require previous offline calibration with the user. We showed that such classifier offers a
performance comparable to a personalised ErrP classifier. Moreover, we asynchronously
tested the generic ErrP classifier in an online experiment, in which participants with SCI
and also non-disabled participants took part. Our results showed that the generic ErrP
classifier is transferable across non-disabled participants and also from non-disabled
participants to participants with SCI, as long as these display ErrPs.

The generic ErrP classifier developed requires no previous offline calibration and can
be used asynchronously and online, by different populations of BCI users. Hence, our
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findings have the potential to encourage the widespread incorporation of ErrP detection
in BCIs. In my opinion, this thesis presents a significant contribution to the research
on ErrPs in the BCI field, bringing the state of the art closer to the applicability of the
asynchronous detection of ErrPs to real life situations.

4.6. Future perspectives

Many interesting research questions remain to be investigated. Since the the asyn-
chronous detection of ErrPs is a relatively recent research topic, the investigation of
methodological aspects to improve it should, in my opinion, be further pursued. For
instance, it is worth to further investigate and evaluate the benefit of using frequency
features, time features or a combination of both, for the asynchronous detection of
ErrPs with personalised and generic classifiers.

Furthermore, deeper investigations on the asynchronous use of generic ErrP classifiers
can lead to an expansion of the applicability of ErrPs. In this thesis, we asynchronously
tested the transfer of a generic ErrP classifier across participants who took part in
two very similar experiments. It remains to be investigated, e.g., if such transfer is
also generalisable across very different tasks or across distinct sessions with the same
participant.

Finally, the most promising future extension of the work presented here is, in my
opinion, the application of the online asynchronous detection of ErrPs to realistic
daily life activities of non-disabled users. In such activities, ErrPs can be used to
provide information regarding the user’s subjective experience without requiring explicit
communication. There are three main aspects that support this view.

First, given the current state of the art in BCIs, non-disabled users certainly find
motor-based control more intuitive and reliable than BCI-based control. Hence, the
asynchronous decoding of EEG signals that do not require an intentional modulation,
such as the ErrP, could be easily integrated with motor tasks. Such strategy would
probably be accepted by the users as long as it would be combined with a portable
EEG headset that would not require a long preparation time.

Second, non-disabled users in realistic daily life activities would not be willing to cali-
brate a classifier often [219]. Hence, the use of a generic ErrP classifier, or the transfer
of the classifier across different sessions, would be an asset when targeting ErrP de-
tection in non-disabled users.

Lastly, most daily life activities of non-disabled users are continuous and not discrete.
Therefore, the asynchronous detection of ErrPs is specially suited to such tasks. Ex-
amples of activities that could benefit from real-time ErrPs ’ detection are, e.g., driving
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4.6. Future perspectives

a car [79, 147], gaming [197, 198], and VR environments [144, 220, 250, 251]. During
the completion of this thesis, we also studied ErrPs in a realistic environment: we in-
vestigated the time-locked single trial detection of ErrPs in a VR environment, in which
participants performed a self-paced pick-and-place task, and attempted to differentiate
distinct system errors that can occur [250]. Nevertheless, this and the previously men-
tioned studies are still, to some extent, artificial. In my opinion, the extension of such
studies to even more realistic scenarios and the application of the asynchronous ErrP
detection to daily life activities of non-disable persons can contribute to the develop-
ment of reliable strategies to detect ErrPs which, in turn, would be applicable to BCIs
targeting potentials end-users. In particular, the online use of a generic classifier to
asynchronously detect ErrPs in daily life activities remains to be investigated in future.
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[5] H. Berger. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie
und Nervenkrankheiten, 87(1):527–570, Dec 1929.

[6] E. Niedermeyer, D. L. Schomer, and F. H. Lopes da Silva. Niedermeyer’s
electroencephalography: Basic principles, clinical applications, and related
fields. Wolters Kluwer Health/Lippincott Williams & Wilkins, 2011. ISBN
9780781789424.

[7] D. T. Bundy, E. Zellmer, C. M. Gaona, M. Sharma, N. Szrama, C. Hacker, Z. V.
Freudenburg, A. Daitch, D. W. Moran, and E. C. Leuthardt. Characterization
of the effects of the human dura on macro- and micro-electrocorticographic
recordings. Journal of Neural Engineering, 11(1):016006, Jan 2014.

[8] N. Hill, D. Gupta, P. Brunner, A. Gunduz, M. Adamo, and G. Schalk. Recording
human electrocorticographic (ECoG) signals for neuroscientific research and real-
time functional cortical mapping. JoVE, 64:e3993, Jun 2012.

[9] M. Simon. Intraoperative electrocorticography (ECOG) for seizure focus local-
ization. Clinical Neurophysiology, 127(9):e306, 2016.

47



Bibliography

[10] D. Cohen. Magnetoencephalography: Detection of the brain’s electrical activity
with a superconducting magnetometer. Science, 175(4022):664–666, 1972.

[11] F. H. Lopes da Silva. EEG and MEG: Relevance to neuroscience. Neuron, 80
(5):1112 – 1128, 2013.

[12] F. Jobsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen
sufficiency and circulatory parameters. Science, 198(4323):1264–1267, 1977.

[13] A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl. Near infrared
spectroscopy (nirs): A new tool to study hemodynamic changes during activation
of brain function in human adults. Neuroscience Letters, 154(1):101 – 104, 1993.

[14] Y. Hoshi. Functional near-infrared spectroscopy: current status and future
prospects. Journal of Biomedical Optics, 12(6):1 – 9, 2007.

[15] S. Ogawa, T. M. Lee, A. S. Nayak, and P. Glynn. Oxygenation-sensitive contrast
in magnetic resonance image of rodent brain at high magnetic fields. Magnetic
Resonance in Medicine, 14(1):68–78, 1990.

[16] S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank. Brain magnetic resonance
imaging with contrast dependent on blood oxygenation. Proceedings of the
National Academy of Sciences, 87(24):9868–9872, 1990.

[17] G. H. Glover. Overview of functional magnetic resonance imaging. Neurosurgery
Clinics of North America, 22(2):133 – 139, 2011.

[18] R. S. Menon, J. S. Gati, B. G. Goodyear, D. C. Luknowsky, and C. G. Thomas.
Spatial and temporal resolution of functional magnetic resonance imaging. Bio-
chemistry and Cell Biology, 76(2-3):560–571, 1998.

[19] W. Tatum, G. Rubboli, P. Kaplan, S. Mirsatari, K. Radhakrishnan, D. Gloss,
L. Caboclo, F. Drislane, M. Koutroumanidis, D. Schomer, D. Kasteleijn-Nolst
Trenite, M. Cook, and S. Beniczky. Clinical utility of EEG in diagnosing and
monitoring epilepsy in adults. Clinical Neurophysiology, 129(5):1056 – 1082,
2018.

[20] P. Miranda, C. Cox, M. Alexander, S. Danev, and J. Lakey. Overview of current
diagnostic, prognostic, and therapeutic use of EEG and EEG-based markers of
cognition, mental, and brain health. Integrative Molecular Medicine, 6, Jan 2019.

[21] G. Pfurtscheller and F. H. Lopes da Silva. Event-related EEG/MEG synchro-
nization and desynchronization: basic principles. Clinical Neurophysiology, 110
(11):1842 – 1857, 1999.

48



Bibliography

[22] O. Jensen, E. Spaak, and J. M. Zumer. Human Brain Oscillations: From Physio-
logical Mechanisms to Analysis and Cognition, pages 1–46. Springer International
Publishing, Cham, 2014. ISBN 978-3-319-62657-4.

[23] E. Friedrich, R. Scherer, and C. Neuper. The effect of distinct mental strategies
on classification performance for brain–computer interfaces. International journal
of psychophysiology, 84:86–94, 2012.

[24] G. Pfurtscheller. Functional brain imaging based on ERD/ERS. Vision Research,
41(10):1257 – 1260, 2001.

[25] G. Pfurtscheller and A. Aranibar. Event-related cortical desynchronization de-
tected by power measurements of scalp EEG. Electroencephalography and Clin-
ical Neurophysiology, 42(6):817 – 826, 1977.

[26] S. Luck and E. Kappenman. The Oxford Handbook of Event-Related Potential
Components. Oxford Library of Psychology. Oxford University Press, 2011. ISBN
9780199705870.

[27] P. Rabbitt. Error correction time without external error signals. Nature, 212
(5060):438–438, Oct 1966.

[28] P. Rabbitt and B. Rodgers. What does a man do after he makes an error? an
analysis of response programming. Quarterly Journal of Experimental Psychol-
ogy, 29(4):727–743, 1977.

[29] M. Falkenstein, J. Hohnsbein, J. Hoormann, and L. Blanke. Effects of errors
in choice reaction tasks on the ERP under focused and divided attention. Psy-
chophysiological Brain Research, pages 192–195, 1990.

[30] M. Falkenstein, J. Hohnsbein, J. Hoormann, and L. Blanke. Effects of crossmodal
divided attention on late ERP components. ii. error processing in choice reaction
tasks. Electroencephalography and Clinical Neuro-physiology, 78:447–455, 1991.

[31] W. J. Gehring, B. Goss, M. G. Coles, D. E. Meyer, and E. Donchin. A neural
system for error detection and compensation. Psychological Science, 4(6):385–
390, 1993.

[32] M. Falkenstein, J. Hoormann, S. Christ, and J. Hohnsbein. ERP components on
reaction errors and their functional significance: a tutorial. Biological Psychol-
ogy, 51(2):87 – 107, Feb 2000.

[33] P. Luu and D. M. Tucker. Regulating action: alternating activation of midline
frontal and motor cortical networks. Clinical Neurophysiology, 112(7):1295 –
1306, 2001.

49



Bibliography

[34] P. Luu, D. Tucker, and S. Makeig. Frontal midline theta and the error-related
negativity: neurophysiological mechanisms of action regulation. Clinical Neuro-
physiology, 115:1821–1835, 2004.

[35] J. F. Cavanagh, M. X. Cohen, and J. J. B. Allen. Prelude to and resolution of
an error: EEG phase synchrony reveals cognitive control dynamics during action
monitoring. Journal of Neuroscience, 29(1):98–105, 2009.

[36] J. F. Cavanagh, L. Zambrano-Vazquez, and J. J. B. Allen. Theta lingua franca:
A common mid-frontal substrate for action monitoring processes. Psychophysi-
ology, 49(2):220–238, 2012.

[37] J. F. Cavanagh and M. J. Frank. Frontal theta as a mechanism for cognitive
control. Trends in Cognitive Sciences, 18(8):414 – 421, 2014.

[38] S. Dehaene, M. I. Posner, and D. M. Tucker. Localization of a neural system for
error detection and compensation. Psychological Science, 5(5):303–305, 1994.

[39] W. H. R. Miltner, C. H. Braun, and M. G. H. Coles. Event-related brain potentials
following incorrect feedback in a time-estimation task: Evidence for a “generic”
neural system for error detection. J. Cognitive Neuroscience, 9(6):788–798, Nov
1997.

[40] C. S. Carter, T. S. Braver, D. M. Barch, M. M. Botvinick, D. Noll, and J. D.
Cohen. Anterior cingulate cortex, error detection, and the online monitoring of
performance. Science, 280(5364):747–749, 1998.

[41] K. Kiehl, P. Liddle, and J. Hopfinger. Error processing and the rostral ante-
rior cingulate: an event-related fMRI study. Psychophysiology, 37(2):216—223,
March 2000.

[42] K. R. Ridderinkhof, M. Ullsperger, E. A. Crone, and S. Nieuwenhuis. The role
of the medial frontal cortex in cognitive control. Science, 306(5695):443–447,
2004.

[43] V. v. Veen and C. S. Carter. The timing of action-monitoring processes in the
anterior cingulate cortex. Journal of Cognitive Neuroscience, 14(4):593–602,
2002.

[44] M. J. Herrmann, J. Römmler, A.-C. Ehlis, A. Heidrich, and A. J. Fallgatter.
Source localization (LORETA) of the error-related-negativity (ERN/Ne) and
positivity (Pe). Cognitive Brain Research, 20(2):294 – 299, 2004.

[45] H. Gray and W. Lewis. Anatomy of the Human Body. Lea & Febiger, 1918.

50



Bibliography

[46] M. G. Coles, M. K. Scheffers, and C. B. Holroyd. Why is there an ERN/Ne on
correct trials? response representations, stimulus-related components, and the
theory of error-processing. Biological Psychology, 56(3):173 – 189, 2001.

[47] F. Vidal, T. Hasbroucq, J. Grapperon, and M. Bonnet. Is the ’error negativity’
specific to errors? Biological psychology, 51(2-3):109—128, January 2000.

[48] F. Vidal, B. Burle, M. Bonnet, J. Grapperon, and T. Hasbroucq. Error negativity
on correct trials: a reexamination of available data. Biological Psychology, 64
(3):265 – 282, 2003.

[49] T. J. Overbeek, S. Nieuwenhuis, and K. R. Ridderinkhof. Dissociable components
of error processing. Journal of Psychophysiology, 19(4):319–329, 2005.

[50] W. J. Gehring, B. Goss, M. G. H. Coles, D. E. Meyer, and E. Donchin. The
error-related negativity. Perspectives on Psychological Science, 13(2):200–204,
2018.

[51] G. Hajcak, J. S. Moser, N. Yeung, and R. F. Simons. On the ERN and the
significance of errors. Psychophysiology, 42(2):151–160, 2005.

[52] G. P. Band and A. Kok. Age effects on response monitoring in a mental-rotation
task. Biological Psychology, 51(2):201 – 221, 2000.

[53] C. B. Holroyd and M. Coles. The neural basis of human error processing: Re-
inforcement learning, dopamine, and the error-related negativity. Psychological
Review, 109:679–709, Oct 2002.

[54] M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, and J. D. Cohen.
Conflict monitoring and cognitive control. Psychological Review, 108(3):624–
652, 2001.

[55] N. Yeung, M. Botvinick, and J. D Cohen. The neural basis of error detection:
Conflict monitoring and the error-related negativity. Psychological review, 111:
931–59, Nov 2004.

[56] C. S. Carter and V. van Veen. Anterior cingulate cortex and conflict detection:
An update of theory and data. Cognitive, Affective, & Behavioral Neuroscience,
7(4):367–379, Dec 2007.

[57] M. M. Botvinick, J. D. Cohen, and C. S. Carter. Conflict monitoring and anterior
cingulate cortex: An update. Trends in Cognitive Sciences, 8(12):539 – 546,
2004.

51



Bibliography

[58] M. M. Botvinick. Conflict monitoring and decision making: Reconciling two
perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral
Neuroscience, 7(4):356–366, Dec 2007.

[59] M. J. Frank, B. S. Woroch, and T. Curran. Error-related negativity predicts
reinforcement learning and conflict biases. Neuron, 47(4):495 – 501, 2005.

[60] J. J. Vidal. Toward direct brain-computer communication. Annual Review of
Biophysics and Bioengineering, 2(1):157–180, 1973.

[61] J. J. Vidal. Real-time detection of brain events in EEG. Proceedings of the IEEE,
65(5):633–641, 1977.

[62] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan. Brain–computer interfaces for communication and control. Clinical
Neurophysiology, 113(6):767 – 791, 2002.

[63] G. Pfurtscheller. Brain-computer interface - state of the art and future prospects.
In 2004 12th European Signal Processing Conference, pages 509–510, 2004.

[64] J. Wolpaw and E. W. Wolpaw. Brain-Computer Interfaces: Something New
under the Sun, pages 1–424. Oxford Scholarship, Jan 2012.

[65] G. Pfurtscheller, B. Allison, G. Bauernfeind, C. Brunner, T. Solis Escalante,
R. Scherer, T. O. Zander, G. R. Müller-Putz, C. Neuper, and N. Birbaumer.
The hybrid BCI. Frontiers in Neuroscience, 4:3, 2010.

[66] T. O. Zander and C. Kothe. Towards passive brain–computer interfaces: apply-
ing brain–computer interface technology to human–machine systems in general.
Journal of Neural Engineering, 8(2):025005, Mar 2011.

[67] G. R. Müller-Putz, C. Breitwieser, F. Cincotti, R. Leeb, M. Schreuder, F. Leotta,
M. Tavella, L. Bianchi, A. Kreilinger, A. Ramsay, M. Rohm, M. Sagebaum,
L. Tonin, C. Neuper, and J. d. R. Millán. Tools for brain-computer interaction:
A general concept for a hybrid BCI. Frontiers in Neuroinformatics, 5:30, 2011.

[68] T. O. Zander, C. Kothe, S. Jatzev, and M. Gaertner. Enhancing Human-
Computer Interaction with Input from Active and Passive Brain-Computer In-
terfaces, pages 181–199. Springer London, London, 2010. ISBN 978-1-84996-
272-8.

[69] F. Cabestaing and P. Derambure. Physiological Markers for Controlling Active
and Reactive BCIs, chapter 4, pages 67–84. John Wiley and Sons, Ltd, 2016.
ISBN 9781119144977.

52



Bibliography

[70] R. Fazel-Rezai, B. Allison, C. Guger, E. Sellers, S. Kleih, and A. Kübler. P300
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Abstract
The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well 
established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in 
tasks with continuous feedback is still in its early stages. Objective. We developed a task in 
which subjects have continuous control of a cursor’s position by means of a joystick. The 
cursor’s position was shown to the participants in two different modalities of continuous 
feedback: normal and jittered. The jittered feedback was created to mimic the instability that 
could exist if participants controlled the trajectory directly with brain signals. Approach. This 
paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss 
of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback 
modalities, time-locked potentials revealed the typical frontal-central components of error-
related potentials. Errors occurring during the jittered feedback (masked errors) were delayed 
in comparison to errors occurring during normal feedback (unmasked errors). Masked errors 
displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis 
allowed a good distinction between correct and error classes (average Cohen-κ = 0.803, 
average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis 
between masked error and unmasked error classes revealed results at chance level (average 
Cohen-κ = 0.189, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we 
performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The 
asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 
84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results 
suggest that the masked and unmasked errors were indistinguishable in terms of classification. 
The asynchronous classification results suggest that the feedback modality did not hinder the 
asynchronous detection of ErrPs.

Keywords: interaction error-related potential, asynchronous classification, continuous control, 
continuous feedback, brain–computer interface, EEG, jittered feedback
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1. Introduction

Brain–computer interfaces (BCIs) convert mentally modu-
lated brain activity into actions of an external device, consti-
tuting a resource that offers more independence to people with 
severe motor disabilities [1, 2].

In the context of BCIs, the brain activity is often measured 
non-invasively at the scalp level, using electroencephalog-
raphy (EEG). The conversion of EEG signals into a device’s 
actions is not flawless and hence BCIs sometimes misinter-
pret their users’ intentions. These misinterpretations prompt 
increased frustration and lack of motivation among BCI users 
[3]. Therefore, BCIs can benefit from the incorporation of 
an error detection system in order to provide a smoother and 
robust interaction between user and external device. Such 
system can be used either to correct an action perceived as 
erroneous by the user (corrective approach) or to decrease the 
chance of future misclassifications (by adapting the classifier 
responsible for the action generation–adaptive approach) [4].

The development of an error detection system is possible 
because the recognition of an error elicits a neuronal response, 
which can be measured using EEG and is associated with a 
coarse differentiation between favorable and unfavorable out-
comes [5]. The electrophysiological signature of error detec-
tion is named error-related potential (ErrP). Different types of 
ErrPs have been described in literature [4]. Response ErrPs 
occur in speeded response time tasks in which subjects are 
asked to respond as quickly as possible to a stimulus [6–9]. 
Observation ErrPs occur when subjects observe an error being 
committed by an external agent [10–12]. Feedback ErrPs 
occur when subjects receive the information that the action 
they performed was not correct [13]. Finally, interaction ErrPs 
occur in the context of BCIs, when users believe that the com-
mand they issued was misinterpreted by the interface [14, 15].

The inclusion of error detection systems in BCIs that con-
trol devices whose actions occur in a discrete way (discrete 
BCIs) is well established, both in the corrective and adap-
tive approaches [16–21]. However, BCIs controlling devices 
whose actions occur in a continuous manner (continuous 
BCIs) offer a more intuitive interaction with their users and 
have already been developed [22–24].

The study of error detection during continuous actions 
requires an asynchronous detection of errors and it is still in 
the early stages. Kreilinger et  al studied interaction errors 
in a BCI that combined continuous and discrete feedback  
[22, 25]. Iturrate et  al showed that errors can be detected 
during the observation of a continuous task [26], and Omedes 
et al detected them in an asynchronous manner [27]. Omedes 
et al also studied sudden and gradually unfolding errors in an 
observation task [28]. Milekovic et al showed that interaction 
errors can be detected during a task with continuous control 
and feedback using electrocorticographic recordings [29] and 
Spüler et  al showed that it was also possible to do it using 
EEG [30].

One potential breakthrough of continuous BCIs would be 
to provide the users with full trajectory control of a cursor 
or a robotic arm. Nevertheless, existing studies on trajectory 
decoding from brain signals showed some instability in the 

decoded trajectory [31, 32]. We aim to investigate the effect of 
feedback’s instability in error-related potentials during a task 
with continuous control and feedback. For that, we developed 
a task in which participants used a joystick to continuously 
control a cursor towards a target. The continuous feedback of 
the cursor position was either normal or jittered. The jittered 
feedback intended to mask the cursor’s position. In some of 
the trials (error trials), the participants lost the control of the 
cursor during the trial, therefore not reaching the target (giving 
rise to masked and unmasked errors). We created this protocol 
with three main goals in mind. First, we want to investigate 
if the jittered feedback would affect the electrophysiological 
signature of the error signals. Second, we intend to perform 
time-locked classification of correct trials against error trials, 
and of masked errors against unmasked errors. Finally, we aim 
to detect error-related potentials in an asynchronous manner.

2. Materials and methods

2.1. Hardware and data acquisition

EEG data were recorded at a sampling rate of 1000 Hz using 
BrainAmp amplifiers and an actiCap system (Brain Products, 
Munich, Germany) with 61 active electrodes and three EOG 
electrodes. The amplifiers used have a 0.016 Hz hardware 
high-pass filter of first-order. The EEG electrodes were placed 
at positions Fp1, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, 
F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, 
C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5, CP3, CP1, 
CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3, P1, Pz, P2, P4, 
P6, P8, PO9, PO7, PO3, POz, PO4, PO8, PO10, O1, Oz, and 
O2. The ground electrode was placed at position AFz and the 
reference electrode was placed on the right mastoid. The EOG 
electrodes were placed above the nasion and below the outer 
canthi of the eyes.

2.2. Participants and experimental environment

Fifteen volunteers (aged between 19 and 27 years old, nine 
male) participated in the experiment, which took place in a 
shielded room. The participants sat in a comfortable armchair, 
in front of a screen that displayed the experimental proto col. 
The refresh sampling rate of the screen was 60 Hz. The right 
armrest of the chair was removed and in its location was placed 
a table with a joystick on it. The joystick position was adjusted 
for each participant in order to allow its comfortable manipu-
lation by the participants, whilst keeping their elbow on the 
table. After the experimental protocol was explained to the par-
ticipants, they signed an informed consent form that had been 
previously approved by the local ethics committee.

2.3. Experiment overview

The experiment consisted of 12 blocks of 30 trials each. The 
trial duration was variable, lasting on average 4.6 ± 0.7 s  
(mean  ±  SD). Between each trial, there was a 2.5 s break. 
Between each block, the participants could rest for as long 
as they needed. Half of the blocks consisted of masked trials. 
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30% of trials of each block were error trials, leading to the 
same number of masked and unmasked error trials.

2.3.1. Trial and task description. At the beginning of a trial, 
four equally spaced squares were displayed on the upper part 
of a computer screen, at the same distance from its centre. On 
the lower part of the screen there was a red circle that repre-
sented the cursor. The squares and the circle were displayed on 
a gray area, inside which the cursor could move (see figure 1, 
top left image). In each trial, one of the squares was randomly 
selected by the paradigm as the target and therefore colored 
yellow, whilst the others were blue. All squares had the same 
probability of being selected. The cursor was controlled by 
the participants through a joystick. The displacement of the 
joystick corresponded to the direction of the movement of the 
cursor, which moved at a constant velocity. The task consisted 
in moving the cursor from its initial position to the target. A 
trial ended when the cursor reached the target or when it hit 
the boundary of the gray region (see supplementary video, 
available at stacks.iop.org/JNE/15/036031). The participants 
were instructed to shift their gaze to the target at the begin-
ning of each trial and to keep it fixed on the target during the 
entire trial, to minimize the eye movements during the cursor 
movement.

2.3.2. Masked trials. In these trials, the cursor jittered 
perpend icularly to the direction of its movement. To achieve 
this effect, at each time-point was created a new velocity vec-
tor (vmask), by combining the original velocity vector (vorig) 
and its orthogonal vector ( v⊥orig): vmask = vorig + αv⊥orig, with 
α ∈ unif(−0.75, 0.75). vmask was then scaled to keep the 
velocity constant (see figure  1, top right and bottom right 

images). Masked trials can be either correct or error trials (as 
well as the unmasked ones).

2.3.3. Correct trials. We considered as correct trials all the 
trials in which the participants successfully guided the cursor 
to the target (see figure 1, bottom right image). Participants 
completed on average 20.2 ± 0.5 correct trials per block.

2.3.4. Error trials. In these trials, the participants lost control 
over the cursor (error onset). The error onset occurred when 
the cursor was located within the green semicircles depicted 
in the bottom left image of figure 1 (at a uniformly random 
distance from the centre of the screen). At the error onset, the 
cursor moved perpendicularly to its last direction, until the 
trial ended. The side of the cursor’s deviation was randomly 
assigned and each side had the same probability of being cho-
sen. The participants were instructed to keep their gaze fixed 
on the target and to bring the joystick to its resting position 
when realizing that the control over the cursor was lost. The 
joystick automatically returns to the resting position when no 
pressure is applied.

2.4. Preprocessing

The EEG signal was resampled to 250 Hz and band-pass fil-
tered between 1 and 10 Hz with a zero-phase Butterworth 
filter of order 4. To remove outlier channels, we calculated 
the variance of the amplitude of each channel during cor-
rect and error trials. The first and third quartiles (Q1 and 
Q3) of the channels’ variance were used to calculate the 
IQR interval (IQR = Q3 − Q1). Channels whose variance 
lied outside [Q1 − 3 × IQR, Q3 + 3 × IQR] were excluded, 

�vorig
α�v⊥orig

�vmask

Figure 1. Top left: One of the four possible setups of the experimental protocol at the beginning of a trial. Top right: Schematic calculation 
of the cursor’s velocity in the masked trials. The modified velocity vector is depicted with a dashed red arrow. Bottom left: Illustration of a 
possible cursor’s trajectory and error onset in an unmasked error trial. All the green elements (semicircles and midline) were invisible to the 
participants. Bottom right: Illustration of a possible cursor’s trajectory in a masked correct trial.
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due to being considered extreme outliers [33]. Artifactual 
trials were rejected by visual inspection of the EEG chan-
nels. Additionally, error trials contaminated with eye move-
ments around the error onset were removed. For that, error 
trials were epoched in the interval [−0.5, 1.0] s, time-locked to 
the error onset (t  =  0 s) and the variance of the horizontal and 
vertical derivatives of the EOG channels during this period 
was calculated. Error trials whose variance would be higher 
than Q3 + 3 × IQR were removed. The maximum number of 
removed channels per subject was 3 (0.4 ± 0.9 (mean  ±  SD)). 
On average, 8.6 ± 5.6% of the error trials and 1.9 ± 2.5% of 
the correct trials were excluded (mean  ±  SD).

2.5. Electrophysiological analysis

After the preprocessing, correct and error trials were epoched, 
retaining a 1.5-s window interval per trial. In the correct trials, 
we chose the interval [−0.5, 1.0] s, time-locked to the cursor 
crossing the horizontal midline of the screen (t  =    −0.5 s). 
The horizontal midline of the screen is depicted in the bottom 
left image of figure 1. In the error trials, we chose the interval 
[−0.5, 1.0] s, time-locked to the error onset (t  =  0 s).

2.6. Time-locked classification

After the preprocessing, the EEG signal was low-pass filtered 
and resampled to 50 Hz. For the time-locked classification 
of correct trials against error trials, we used a shrinkage-
LDA classifier with two classes (correct and error), which 
was tested using a ten times five-fold cross-validation [34]. 
The features used to train the classifier for the correct class 
consisted of the amplitudes of all EEG channels during the 
correct trials (masked and unmasked) in the [0.1, 0.5] s, time-
locked to the cursor crossing the horizontal midline of the 
screen (t  =  −0.5 s). The features used to train the classifier 
for the error class consisted of the amplitudes of all the EEG 
channels during the error trials (masked and unmasked) in the 
interval [0.1, 0.5] s, time-locked to the error onset (t  =  0 s).

We also performed a time-locked classification of masked 
error trials against unmasked error trials. In this case, we used 
the same classification procedure described above but now 
with two other classes: unmasked errors and masked errors. 
The features used to train the classifier were the same as the 
ones described for the error class, but taking into considera-
tion the type of trial (masked or unmasked).

In order to assess the performance of the time-locked clas-
sification, we used the true positive rate (TPR), the true nega-
tive rate (TNR) and the Cohen-κ coefficient as performance 
measures [35]. The chance-level results were calculated at 
a subject level by using a classifier with randomly shuffled 
training labels. Additionally, we also calculated the 95% con-
fidence interval for the performance measures of a theoretical 
chance-level classifier.

2.7. Asynchronous classification

After the preprocessing, the EEG signal was, again, low-pass 
filtered and resampled to 50 Hz. Correct and error trials were 

epoched from the time-point in which the cursor crossed the 
horizontal midline of the screen until the trial ended, avoiding 
the period of the trials in which eye movements could have 
happened. Epoched this way, the correct trials lasted on 
average 2.37 ± 0.25 s and the error trials lasted on average 
3.20 ± 0.62 s (mean  ±  SD).

We used a shrinkage-LDA classifier with two classes: cor-
rect and error. As features to train the classifier for the cor-
rect class, we considered the amplitudes of all EEG channels 
during the correct trials (both masked and unmasked), in the 
interval [0.1, 0.5] s, time-locked to the cursor crossing the hori-
zontal midline of the screen (t  =  −0.5 s). As features to train 
the classifier for the error class, we considered the amplitudes 
of all EEG channels during the error trials (both masked and 
unmasked), in the interval [0.1, 0.5] s time-locked to the error 
onset (t  =  0 s). The number of features was then reduced using 
principal component analysis (PCA), conserving the comp-
onents that explained 99% of the signal’s variance. These 
components were used as features to train the classifier in 
a time-locked manner. The classifier was then tested asyn-
chronously, by sliding a 400 ms window over the trials, what 
resulted in a classifier’s output every 20 ms.

For each fixed threshold (τ, such that τ ∈ [0, 1] with steps 
of 0.025) for the error class probability (pe), we considered an 
error event when pe � τ in at least two consecutive windows. 
The evaluation metric that we used to assess the asynchronous 
classification defines a correct trial as successfully classified 
if no error event was detected during the entire trial duration 
(true negative trial). An error trial was considered to be suc-
cessfully classified if no error event was detected before the 
error onset and at least one error event was detected after the 
error onset (true positive trial). The average duration between 
the error onset and the end of the trial was 1.48 ± 0.64 s 
(mean  ±  SD).

Two methods were used to evaluate the classifier asynchro-
nously. The first method consisted in performing a ten times 
five-fold asynchronous cross-validation in the first 80% of the 
data (the first 80% of the correct trials and of the error trials). 
To assess the performance of the asynchronous cross-valida-
tion classification, we used TPR and TNR as performance 
measures. The chance level results were calculated at a sub-
ject level, by using a classifier with randomly shuffled training 
labels. The second method consisted in using a chronological 
split (80%–20%) of the data to perform asynchronous classi-
fication (the first 80% of the trials were used to train the clas-
sifier in a time-locked way and the last 20% of the trials were 
used to test it asynchronously). To assess the performance of 
the asynchronous classification on the chronological split, we 
used TPR and TNR as performance measures. The chance 
level results were calculated at a subject level, by averaging 
50 repetitions of the classification done with randomly shuf-
fled training labels.

The asynchronous cross-validation and the search of the 
optimal thresholds were performed only on the first 80% of 
the data. On the remaining 20% of the data, we evaluated the 
asynchronous classification using all thresholds. The results 
for optimal thresholds at group- and subject-level were com-
pared. The TPR was chosen as the optimization measure 
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to select the optimal thresholds because true positive trials 
contain two distinct periods (one in which no error happens 
and no error event is detected by the classifier, and another 
that starts with the error onset, and in which an error event is 
detected). This choice prevents the classifier from being too 
biased towards any of the classes.

3. Results

3.1. Electrophysiological results

3.1.1. Correct and error signals. The grand average correct 
and error signals at channel FCz are displayed in figure 2 (in 
green and red color, respectively). Defining the error onset at 
t  =  0 s, the grand average error signal presents a first negative 
peak at 196 ms, followed by a positive peak at 404 ms, and a 
later negative peak at 616 ms. The error-related potential (cal-
culated as the difference between the average error signal and 
the average correct signal) is essentially similar to the average 

error signal because the average correct signal is nearly flat. 
For this reason, we chose not to include the error-related 
potential in the figure. The average correct and error signals 
of each subject are shown in dashed lines. The gray areas rep-
resent the time periods in which correct and error signals are 
significantly different (Wilcoxon signed-rank tests, Bonfer-
roni corrected, with p  <  0.05). Figure 2 also shows the scalp 
distributions of the grand average error signal at t = 196 ms,  
t = 404 ms and t = 616 ms.

3.1.2. Masked and unmasked error signals. Figure 3 shows 
the grand average masked and unmasked error signals at chan-
nel FCz (in pink and dark red color, respectively) as well as 
the average signals of each subject (in dashed lines). The 
grand average unmasked error signal presents a first negative 
peak at 192 ms, followed by a positive peak at 388 ms and a 
later negative peak at 592 ms. The grand average masked error 
signal presents a first negative peak at 212 ms, followed by a 
positive peak at 420 ms and a later negative peak at 652 ms. 
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Figure 2. Grand average correct and error signals at channel FCz (in green and red, respectively). Both masked and unmasked trials 
were considered to obtain the presented the grand averages. The gray areas denote the intervals in which correct and error signals are 
significantly different (Wilcoxon signed-rank tests, Bonferroni corrected, with p  <  0.05). The dashed lines represent the average error and 
correct signals of each participant. The scalp distributions of the grand average error signal are displayed at t  =  196 ms, t  =  404 ms and 
t  =  616 ms.
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Figure 3. Grand average masked and unmasked error signals at channel FCz (in pink and dark red, respectively). The gray areas denote the 
intervals in which masked and unmasked error signals are significantly different (Wilcoxon signed-rank tests, Bonferroni corrected, with 
p  <  0.05). The dashed lines represent the averaged masked and unmasked error signals of each participant. The scalp distributions of the 
grand average masked and unmasked error signals are displayed for t  =  180 ms and t  =  292 ms.
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The gray areas indicate the regions in which masked and 
unmasked error signals were significantly different (Wilcoxon 
signed-rank tests, Bonferroni corrected, with p  <  0.05). Fig-
ure  3 shows also the scalp distributions of the grand aver-
age masked and unmasked error signals at t  =  180 ms and 
t  =  292 ms (in the region where the signals were significantly 
different). Unmasked errors displayed significantly larger 
(positive and negative) peak amplitudes than masked errors 
(Wilcoxon signed-rank tests, one-sided, p  =  0.027 in both 
cases). Unmasked errors also displayed significantly earlier 
positive and negative peaks than masked errors (Wilcoxon 
signed-rank tests, one-sided, p  =  0.0015 for the positive peak 
and p  =  0.0065 for the negative peak). The time-shift that 
maximized the cross-correlation between the grand average 
masked and unmasked error signals was 28 ms.

3.2. Time-locked classification

The results of the time-locked classification of error trials 
against correct trials are displayed in figure  4. On average, 
96.4 ± 2.0% (mean  ±  SD) of the correct trials were success-
fully classified (true negative rate (TNR)) and 81.8 ± 6.3% 
(mean  ±  SD) of the error trials were successfully classified 
(true positive rate (TPR)). The 95% confidence interval for 
the TNR of a theoretical chance level classifier was [64.3, 75.7] 
and is depicted with dashed green lines. The 95% confidence 
interval for the TPR of theoretical a chance level classifier was 

[21.3, 38.7] and is depicted with dashed red lines. The average 
Cohen-κ coefficient was 0.803 ± 0.079 (mean  ±  SD). The 
95% confidence interval for the Cohen-κ coefficient of a 
chance level classifier was [−0.158, 0.158] and is depicted 
with dashed lines. The chance level results of each participant, 
for all the measures, are represented with small circles.

The results of the time-locked classification of masked error 
trials against unmasked error trials are displayed in figure 5. 
On average, 60.6 ± 9.7% (mean  ±  SD) of the masked error 
trials were successfully classified (true negative rate (TNR)) 
and 58.3 ± 6.8% (mean  ±  SD) of the unmasked error trials 
were successfully classified (true positive rate (TPR)). The 
95% confidence interval for the TNR and TPR of a theor-
etical chance level classifier was [36.7, 63.7] and is depicted 
with dashed lines. The average Cohen-κ coefficient was 
0.189 ± 0.144 (mean  ±  SD). The 95% confidence interval for 
the Cohen-κ coefficient of a theoretical chance level classi-
fier was [−0.189, 0.189] and is depicted with dashed lines. The 
chance level results of each participant, for all the measures, 
are represented with small circles.

3.3. Asynchronous classification

In order to detect errors in an asynchronous manner, we consid-
ered a classifier with two classes: correct and error. We decided 
to use both masked and unmasked trials to train these classes 
due to the chance level outcome of the time-locked classification 
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Figure 4. Time-locked classification of correct trials against error trials. The small circles indicate the chance level at a subject level. 
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of masked errors against unmasked errors. We used a ten times 
five-fold asynchronous cross-validation in the first 80% of the 
data. Figure 6 (top) shows the average percentage of correct and 
error trials successfully classified (TNR and TPR, left and right 
images, respectively) in function of the considered thresholds 
(τ), for each subject (dashed colored lines). Figure 6 (bottom) 
shows the average TNR and TPR (green and red lines, respec-
tively) for each of the considered thresholds, and the 95% con-
fidence interval for the averages (shaded areas). The average 
chance level of TNR and TPR are displayed in green and red 
dashed lines, respectively. The threshold that maximized the 
average TPR was τ = 0.575. Using this threshold, we obtained 
an average TPR of 68.0% and an average TNR of 76.0%. 
Figure 7 displays the average detection delay (period between 
the error onset and the detection of an error event by the classi-
fier) in the masked and unmasked error trials successfully clas-
sified (TP trials) as well as the corresponding 95% confidence 
interval, in function of τ. The gray shaded areas indicate the 
regions in which the average delay in masked and unmasked 
trials was significantly different (Wilcoxon signed-rank tests, 
Bonferroni corrected, with p  <  0.05).

In order to simulate an online scenario, we considered a 
chronological split (80%–20%) of the data, using the first 
80% of the data to train the classifier and the last 20% to test 
it asynchronously. The average TNR and TPR obtained (black 

solid lines) in function of τ as well as the individual results of 
each participant (colored dashed lines) are shown in figure 8. 
Figure 9, left image, shows the TNR and TPR of each partici-
pant and their average, for τ = 0.575. With this threshold, we 
obtained an average TNR of 80.9% and an average TPR of 
64.9%. The chance level results of each participant are repre-
sented with small circles.

Next, in order to try to improve the classification results in 
the simulated online scenario, we decided to use individual-
ized classifiers. Therefore, we considered, for each subject, the 
threshold τ that maximized the individual average TPR in the 
asynchronous cross-validation in the first 80% of the data (see 
figure 6, top right). This threshold was then used in the asyn-
chronous classification of the data in the chronological split 
(80%–20%). Figure 9, right image, shows the TNR and TPR 
obtained for each subject, using individualized thresholds, 
and their average. The average TNR obtained was 84.0% and 
the average TPR was 64.9%. The chance level results of each 
participant are represented with small circles. The blue num-
bers near the barplots of each subject indicate the threshold 
used for that subject. The use of individualized thresholds did 
not significantly change the TPR nor the TNR, in comparison 
with the use of τ = 0.575 (Wilcoxon signed-rank tests, with 
p  =  0.828 for the TPR comparison and p  =  0.361 for the TNR 
comparison).
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4. Discussion

We developed this study to investigate if the instability 
of the feedback, during a task with continuous control and 

continuous feedback, would affect the error signal at a neu-
rophysiological level. We also intended to study if different 
feedback modalities could make the error signals discernible 
in terms of classification. Finally, we aimed to asynchronously 
decode errors during a task with continuous control and con-
tinuous feedback. With these aims in mind, we developed a 
task in which participants continuously controlled a cursor on 
a screen using a joystick. The feedback of the cursor position 
was either normal (unmasked trials) or jittered (masked trials). 
The error trials correspond to a loss of control over the cur-
sor’s trajectory. The correct trials correspond to the period in 
which the cursor is moving on the screen and are not associ-
ated with any specific event. Thus, our protocol differs from 
standard protocols on error-related potentials in discrete BCIs, 
in which correct trials are associated with a correct event, but 
is similar to protocols described in literature regarding error-
related potentials during continuous feedback [4, 28, 30].

In the electrophysiological analysis, the correct signals 
were mainly flat. Error and correct signals were significantly 
different in the time periods corresponding to the first nega-
tivity and positivity of the error trials.

When comparing the error signals under the two types of 
feedback (masked and unmasked errors), we obtained two 
small intervals in which the signals were significantly dif-
ferent. The masked error signal was delayed in comparison 
to the unmasked error signal: the peaks of the masked error 
signals occurred significantly later than the corresponding 
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peaks of the unmasked error signals. The time shift that maxi-
mized the cross-correlation between the two grand average 
signals was 28 ms. Additionally, peak amplitudes in masked 
error signals were significantly less pronounced than the peak 
amplitudes in unmasked error signals. We hypothesize that 
this occurs due to a smearing effect in the averaged masked 
error signal, caused by a trial-to-trial variability in the moment 

in which participants realized the occurrence of an error 
[36]. Alternatively, these results could be seen as evidence 
for conceptualizing error awareness as a decision process, 
involving evidence accumulation [37, 38]. Steinhauser and 
Yeung suggested that the amplitude of the Pe component of 
ErrPs reflects the evidence strength that an error has occurred  
[39, 40]. Following this line of reasoning, the lower Pe 
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amplitude observed in the masked errors of our experiment 
could reflect a weaker evidence for the occurrence of an error, 
caused by the jittered feedback.

The time-locked classification of correct against error trials 
allowed a good discrimination between the type of trials. On 
average, 96.4% of the correct trials were successfully classi-
fied and 81.8% of the error trials were successfully classified. 
The obtained average Cohen-κ was 0.803. Differently, the 
time-locked classification of masked errors against unmasked 
errors did not allow a satisfactory discrimination between the 
classes. On average, 60.6% of the masked errors trials were 
successfully classified and 58.3% of the unmasked error trials 
were successfully classified. The obtained average Cohen-κ 
was 0.189. These value lie within the 95% confidence inter-
vals for a chance level classifier. This indicates that the type 
of feedback used (normal or jittered) did not make the errors 
distinguishable in terms of classification. The time-locked 
classification results are similar to the ones obtained in [41] 
and comparable with state-of-the-art literature on time-locked 
classification of error-related potentials [15, 26, 27, 30].

Given that masked and unmasked errors were indistin-
guishable in terms of time-locked classification, we decided 
to perform asynchronous classification only for the detec-
tion of errors (correct versus error), using both masked and 
unmasked trials to train the classifier. First, we performed an 
asynchronous cross-validation in the first 80% of the data, 
what allowed the calculation of average results for each sub-
ject, taking into account the data variability. In this scenario, 
masked errors were detected significantly later than unmasked 
errors, for the thresholds (τ) that lead to better performances. 
Then, in order to simulate an online scenario, we considered 
the first 80% of the data to train the classifier and the last 20% 
to test it. We used two approaches to evaluate results in this 
simulated online scenario. The first approach consisted in a 
non-individualized classifier for all subjects: we chose the 
threshold that maximized the average TPR in the asynchro-
nous cross-validation in the first 80% of the data (τ = 0.575), 
resulting in an average TPR of 64.9% and in an average TNR 
of 80.9%. The second approach consisted in individualized 
classifiers: we chose the threshold that maximized the indi-
vidual average TPR in the asynchronous cross-validation in 
the first 80% of the data. The use of individualized classifiers 
slightly improved the classification results: the average TNR 
increased from 80.9% to 84.0% and the average TPR remained 
the same. The difference between the classifiers regarding the 
TPR and TNR was not significant. We were expecting fatigue 
to influence the results in the simulated online scenario [42] 
but the performances obtained in this case lied within the 95% 
confidence interval calculated for the cross-validated data, 
indicating no decrease in performance.

Other studies also performed asynchronous decoding of 
ErrPs. Omedes et  al asynchronously classified sudden and 
gradual observation errors [28]. Their sudden errors are com-
parable to the unmasked errors in this study. Their gradual 
errors appeared to be much less time-locked to the onset than 
the masked errors presented here. Spüler and Niethammer 

asynchronously classified outcome and execution errors 
during continuous control and continuous feedback [30]. 
According to their categorization, the errors in our protocol 
would be both outcome and execution errors. Both Spüler 
and Omedes considered frequency domain features in their 
classification but we obtained comparable results using only 
time domain features. Alternatively, one could approach the 
detection of error-related potentials from a more generic per-
spective, by taking into account frequency ranges that are not 
commonly considered [43, 44].

The direct transfer of our simulated online results to an 
online scenario would not be realistic because it would require 
a long training period (it took us around 50 min to record 80% 
of the trials). The need for big amounts of data to train the clas-
sifiers is a general problem in the BCI field and it is of extreme 
importance to investigate possible approaches to overcome it. 
Several studies used different approaches to reduce calibra-
tion time. Kim and Kirchner showed the feasibility of using 
a classifier trained with observation errors to classify interac-
tion errors within the same task [45]. Iturrate and colleagues 
showed the feasibility of transferring a classifier between 
different observation tasks, using delay-corrected potentials 
[46]. Spinnato and colleagues showed that a wavelet domain 
Gaussian linear mixed model (LMM) was superior to other 
classifying methods, particularly when using few training 
trials [47]. Kim and Kirchner also showed that it was pos-
sible to use a classifier trained with errors of several partici-
pants to classify the errors of another participant, at the cost 
of a decrease in performance [45]. Pinegger and Müller-Putz 
developed a similar classifier but for the detection of P300, 
without loss of performance [48]. These strategies (as well 
as the use of adaptive classifiers) are alternatives to reduce 
calibration times that should be considered when developing 
online BCIs [17–21].

In our study, correct and error trials were successfully clas-
sifiable. Masked and unmasked errors were different in terms 
of electrophysiology but indistinguishable in terms of clas-
sification. The asynchronous detection of errors was reliable 
and not influenced by the feedback modality during the con-
tinuous control of a cursor using a joystick. Hence, we envi-
sion that we could use EEG to detect error signals during the 
continuous control of a robotic arm.
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online asynchronous decoding of 
error-related potentials during the 
continuous control of a robot
catarina Lopes-Dias  , Andreea i. Sburlea   & Gernot R. Müller-putz  *

error-related potentials (errps) are the neural signature of error processing. therefore, the detection 
of errps is an intuitive approach to improve the performance of brain-computer interfaces (Bcis). the 
incorporation of errps in discrete Bcis is well established but the study of asynchronous detection 
of errps is still in its early stages. Here we show the feasibility of asynchronously decoding errps in 
an online scenario. For that, we measured EEG in 15 participants while they controlled a robotic arm 
towards a target using their right hand. In 30% of the trials, the control of the robotic arm was halted 
at an unexpected moment (error onset) in order to trigger error-related potentials. When an errp 
was detected after the error onset, participants regained the control of the robot and could finish the 
trial. Regarding the asynchronous classification in the online scenario, we obtained an average true 
positive rate (TPR) of 70% and an average true negative rate (TNR) of 86.8%. These results indicate 
that the online asynchronous decoding of errps was, on average, reliable, showing the feasibility of the 
asynchronous decoding of errps in an online scenario.

Brain-computer interfaces (BCIs) are systems that measure brain activity, often using electroencephalography 
(EEG), and convert it into actions of an external device1. As BCIs enable communication without movement, they 
are a valuable tool to provide more independence to people with severe motor disabilities2–4.

The main obstacle to the widespread use of BCIs is their non-optimal performance, which sometimes leads 
to a misinterpretation of the user’s intention and a consequent execution of a wrong action. The user’s experience 
with the BCI can be spoiled by occurrence of many mistakes or by the effort to correct them.

The user’s awareness of the committed mistake is associated with a neural pattern named error-related 
potential (ErrP). ErrPs occur both in humans and in monkeys and can be measured using several imaging tech-
niques5–12. Additionally, ErrPs morphology is comparable in humans with and without spinal cord injury13. ErrPs 
are related with conflict monitoring14 and have been reported in association with the awareness of self-committed 
mistakes, observed mistakes of another person or agent, and BCI’s mistakes14–17.

The use of ErrPs is an intuitive approach to improve BCIs’ performance, either in a corrective manner, by 
allowing the BCI to take a corrective action, or in an adaptive manner, by reducing the possibility of future 
errors18–20.

The detection of ErrPs in a time-locked manner is well established21–23, and it has been extensively applied 
in discrete BCIs, whose actions occur in a discrete manner, allowing users to interact with a computer or with a 
robot24–31.

Recently, an effort has been made to develop BCIs that provide a more intuitive control to the user, by e.g., 
providing continuous control to the user32–34. In this situation, the user can perceive, at any moment, that an error 
occurred. This possibility triggered the research on the asynchronous detection of ErrPs35–39.

In the current study, we investigate the feasibility of the online asynchronous ErrPs’ detection, while partic-
ipants continuously controlled a robotic arm towards a target, using their right hand. In 30% of the trials, the 
user’s control of the robot was halted at random point. Participants could regain the robot’s control if an ErrP was 
detected after the error onset. To our knowledge, this is the first report of online asynchronous detection of ErrPs.

Materials and Methods
participants. 15 right-handed volunteers (5 women) participated in the experiment. All participants had 
normal or corrected-to-normal vision and had no history of brain disorders. The participants were, on average, 
23.5 ± 2.5 years old (mean ± std). Participants were paid 7.50 euros per hour, were explained the experimental 
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protocol and signed an informed consent form that had been previously approved by the local ethics committee 
of the Medical University of Graz (Ethical approval number 30-275 17/18). The experiment was performed in 
accordance with the Declaration of Helsinki.

Hardware and measuring layout. We recorded EEG and EOG data at a samplig rate of 500 Hz using 
BrainAmp amplifiers and an ActiCap cap (Brain Products, Munich, Germany). We used 61 EEG electrodes and 
3 EOG electrodes. The EOG electrodes were placed above the nasion and below the outer canthi of the eyes. The 
ground electrode was placed at position AFz and the reference electrode was placed on the right mastoid. The 
layout of the EEG electrodes is described in Fig. 1 of the Supplementary Material.

experiment layout. Figure 1 depicts the physical layout of the experiment. Participants sat on a chair in 
front of a table. On the table was a wooden structure: 4-sided box, with open sides towards the participants and 
the tabletop. On the ceiling of the structure was a Leap Motion device (Leap Motion, San Francisco, United 
States), used to track the participants’ right hand (not visible in Fig. 1). The participants kept their right hand 
lying on the table, inside the wooden structure. This setup occluded the participants’ hand from their field of 
view. On the right side of the participants, we placed a robotic arm (Jaco Assistive robotic arm - Kinova Robotics, 
Bonn, Germany). On the wooden structure, were placed two physical targets: violet cuboids with a square base of 
14 cm side. The centres of the targets were 35 cm apart and their mid-point was located 30 cm in front of the home 
position of the robot’s hand, as shown in Fig. 1. Behind the structure, within the participant’s line of sight to the 
targets, was a monitor that displayed information regarding the experiment. The participant shown in Fig. 1 gave 
her informed consent for the photo to be made available in an open-access publication.

controlling the robot. During the trials, participants could control the position of the robot’s hand on a 
horizontal plane, by moving their hand on the table, which was tracked with the Leap Motion. To reduce the 
range of the participants’ movements, we considered the robot’s hand displacement to be three times larger than 
the participants’ hand displacement.

experiment overview. Before the experiment, two blocks in which participants performed eye movements 
were recorded. The experiment then consisted of 12 blocks of 30 trials each. 70% of the trials of each block were 
correct trials (21 trials) and the remaining 30% were error trials (9 trials).

The sequence of correct and error trials within each block was randomly generated using a uniform distribu-
tion to place the error trials. We defined a maximum of 2 consecutive error trials in each block and repeated the 
randomization procedure until the sequence of trials satisfied this condition.

Half of the trials in each block were associated with the left target and the remaining trials with the right tar-
get. The sequence of targets within each block was randomly assigned using a uniform distribution. We defined 
a maximum of 3 consecutive trials with the same target in each block and repeated the randomization procedure 
until the targets’ sequence satisfied this requirement.

pre-trial. During the pre-trial period, the monitor displayed information regarding the coming trial. As 
depicted in Figs. 1 and 2, on the top part of the screen were displayed two squares representing the targets lying on 
the wooden structure. One of the squares was filled in white and the other had no fill. The filled square indicated 
the selected target for the coming trial. On the bottom part of the screen was a rectangle, representing the home 

Figure 1. Experimental setup. In this figure, the robot is at its home position. The squares on the screen 
represent the physical targets (violet cuboids) on the wooden structure. The rectangle on the bottom part of 
the screen represents the participant’s hand home position and the text above it states ‘Bring your hand to the 
home position’. Inside the wooden structure, there is a Leap Motion device (not visible here) used to track the 
participants’ right hand movement.
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position of the participant’s hand. The position of the participant’s hand was depicted by a dot on the screen. The 
trial would start when the dot entered the rectangle. This ensured that the participant’s hand was at a comparable 
position at the beginning of each trial (within a 1 × 3 cm rectangle).

Participants could use the pre-trial period to rest for as long as they needed. When participants felt ready to 
start the trial, they had to bring their hand below the home position, fixate their gaze on the physical target and 
finally enter the rectangle from below. This final step ensured a forward movement of the robot. Participants 
were also instructed to keep their gaze fixed at the target during the entire trial duration, in order to prevent eye 
movements.

trials. The aim of each trial was to bring the robot’s hand from its home position to the selected target. During 
the trials, the screen was black. A trial ended when the robot’s hand was above the intended target (hit) or after 
6 seconds (no hit). Afterwards (post-trial period), as shown in Fig. 2, the two squares from the pre-trial period 
reappeared on the screen for 1.2 seconds and the filled square was now coloured in either green (hit) or red (no 
hit). This feedback was always in line with the behaviour of the robot. Then, the screen would turn black, the robot 
would automatically return to its home position and a new pre-trial period would start.

Error Trials. During these trials, the paradigm triggered an error. The error consisted in interrupting the partic-
ipants’ control of the robot and adding a 5 cm upwards displacement to the robot’s hand. Participants perceived 
the error by noticing the robot stopping and lifting. The errors occurred randomly, when the robot’s hand was 
within 6 to 15 cm in the forward direction from its home position. This represents approximately 25 to 65% of the 
minimal forward displacement necessary for the robot to hit the target. For every error trial, we drew a value de 
from a uniform distribution U([6, 15]). The error was triggered when the robot’s hand reached the distance de cm, 
in the forward direction, from its home position.

Correct Trials. In these trials, the paradigm did not trigger any error. Participants reached the selected target 
in 99.75 ± 0.14% of the correct trials (mean ± std). Correct trials lasted on average 2.02 ± 0.14 s (mean ± std). 
Correct trials were comparable in the calibration and online parts of the experiment.

calibration and online parts of the experiment. The calibration part of the experiment comprised the 
first 8 blocks and the online part comprised the last 4 blocks. The calibration part was used to collect data to train 
an ErrP classifier and to find a threshold for the classifier. In the online part of the experiment, we tested the ErrP 
classifier, tuned with the calculated threshold, for the asynchronous detection of ErrPs.

For a matter of fluidity of the experiment, we decided not to give participants feedback of the false positive 
detections, i.e., of the ErrP detections when no error had occurred. Thus, from the participants’ perspective, the 
online ErrP classifier had no effect on the correct trials and affected only the error trials. However, false positive 
detections were taken into account when evaluating the classifier.

Figure 2. Experimental protocol. During the pre-trial period, participants could rest for as long as they 
wished. The pre-trial period ended and a new trial started when the participants moved their hand to its home 
position. During the trials, the screen was black. Participants were instructed to bring the robot’s hand to the 
selected target. A trial finished either when the robot reached the target or after 6 seconds, in case target was not 
reached. Afterwards (post-trial period), the squares reappeared on the screen for 1.2 seconds and gave feedback 
regarding hitting the target: a green square indicated that the target was hit and a red square indicated that the 
target was not hit. Then, the screen turned black, the robot automatically returned to its home position and a 
new pre-trial period started.
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Calibration error trials. In the error trials during calibration, when the error happened, the participants lost con-
trol of the robot, which remained still for the rest of the trial. The total trial duration was 6 seconds. Participants 
were instructed not to move until the trial ended.

Online error trials. In the error trials during the online part of the experiment, the participants had the possibil-
ity of correcting the robot’s errors. If, after the error onset, an ErrP was detected by the ErrP classifier (true posi-
tive detection), the robot’s hand lowered 5 cm and the participants regained control of the robot. The downward 
movement informed the the participants of the ErrP detection. Participants were instructed to move the robot’s 
hand to the selected target when regaining control of the robot. To accommodate the extra movement, we added 
6 seconds to the maximal trial duration when the first true positive detection occurred. When no true positive 
detection occurred, the robot remained still, as in the error trials during calibration.

Correct trials. For the participants, correct trials were identical in both the calibration and the online parts of 
the experiment, due to our decision of not giving feedback of the false positive detections in the online part of 
the experiment.

Data preprocessing. Eye movements and blinks were removed from the EEG data, using the data recorded 
right before the beginning of the experiment and using the subspace subtraction algorithm40. The EEG signal was 
then filtered between [1, 10] Hz using a causal Butterworth filter of order 4.

Defining events. For the calibration error trials, we defined the error onset as the moment in which the robot 
started its upwards displacement. The error onset was individually calculated for every error trial, based on the 
robot’s position. The average delay between the error marker and the error onset was 0.210 ± 0.004 s (mean ± std).

For the online error trials, we considered an average error onset, by adding the average delay of the robot, 
calculated from the calibration data (0.210 s), to the time of the error marker in every error trial. This aimed to 
compensate the less reliable error onset estimation in case an ErrP occurred between the error marker and the 
start of the robot’s upwards displacement (false positive detection).

Correct trials were not associated with any intrinsic event. Therefore, we defined a virtual onset, occurring 
one second after the start of every correct trial. The virtual onset was chosen at a time-point in which errors could 
already occur in the error trials, in order to assure a comparable expectation in the participants.

electrophysiological analysis. For the electrophysiological analysis, we considered an EEG epoch of 1.5 s 
from every trial. For the correct trials, we considered the interval − . .[ 0 5, 1 0] s, time-locked to the virtual onset 
(0 s). For the calibration error trials, we considered the interval − . .[ 0 5, 1 0] s, time-locked to the error onset (0 s). 
For the online error trials, we considered the interval − . .[ 0 5, 1 0] s, time-locked to the average error onset (0 s).

Detection of error-related potentials. We used the data from the calibration part of the experiment to 
build an ErrP classifier that was tested asynchronously in the online part of the experiment.

Train an ErrP classifier. For every participant, we considered all trials from the calibration part of the experi-
ment. We took, as features, the amplitudes of all 61 EEG channels at every time-point within a 450 ms window 
of every trial. The window started 300 ms after the error onset of error trials and 300 ms after the virtual onset of 
correct trials.

Next, in order to reduce the number of features, we performed principal component analysis (PCA) on 
the features, keeping the components that explained 99% of the data’ variability. These components were then 
used as features to train a shrinkage-LDA classifier with two classes: error and correct. After PCA we kept, on 
average, 139.5 ± 13.5 features per participant (mean ± std). Figure 2 of the Supplementary Material depicts the 
grand-average original feature space in the time-spatial domain as well as the grand-average projection into the 
time-spatial domain of the features kept after PCA.

ErrP detection. The classifier was constructed to be evaluated in an asynchronous manner, using a sliding win-
dow, with a leap of 18 ms. The classifier’s evaluation of each window resulted in the probability of the analysed 
window to belong to either class (correct or error). We defined an ErrP detection when two consecutive windows 
had a probability of belonging to the error class above a certain threshold τ.

Threshold τ for the ErrP classifier. The threshold τ was obtained using the calibration data and used in the online 
part of the experiment to tune the ErrP classifier.

In order to find the threshold that best suited each participant, we performed a 2 × 5-fold asynchronous 
cross-validation in the participant’s calibration data, where we tested 41 thresholds: from 0 to 1 in steps of 0.025. 
We used a low number of repetitions in the cross-validation to promote a shorter duration of the experiment.

As evaluation metric for the asynchronous ErrP detection in the cross-validated data, we defined the true 
negative trials (TN trials) as the correct trials in which no ErrP was detected during the entire trial duration. We 
defined the true positive trials (TP trials) as the error trials in which no ErrP was detected before the error onset 
and at least one ErrP was detected within 1.5 s of the error onset.

Then, we calculated the average true negative rate (TNR) and the average true positive rate (TPR) for all the 
tested thresholds, based on the 10 iterations. The average TNR and average TPR were further smoothed using 
a moving average with 7 samples. The smoothed curves were named moving average TPR and moving average 
TNR.
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For every participant, we considered the threshold that maximized performance to be the one that maximized 
the product of the moving average TPR and the moving average TNR. This threshold was then used in the online 
part of the experiment.

online errp detection. The ErrP classifier was tested online in the last 4 blocks of the experiment. We 
decided to relax the evaluation metrics when testing the classifier online (in comparison with the metrics 
described for the cross-validated data) in order to consider the possible occurrence of secondary error-related 
potentials28.

In the online evaluation, we defined the true negative trials (TN trials) as the correct trials in which no ErrP 
was detected (keeping the same definition used in the evaluation of the cross-validated data). Additionally we 
now defined the true positive trials (TP trials) as the error trials in which no ErrP was detected before the average 
error onset and at least one ErrP was detected after the average error onset.

A video of the online experiment can be seen in the Supplementary Material. The participant in the video gave 
her informed consent for it to be made available in an open-access publication.

Results
electrophysiology. Calibration. Figure 3 depicts the grand average correct and error signals of the calibra-
tion part of the experiment at channel FCz (green and red solid lines, respectively). The green and red shaded 
areas represent the 95% confidence intervals of the grand average signals. The time-intervals in which correct and 
error signals were significantly different ( = . .t [0 320, 0 432] s, = . .t [0 558, 0 710] s, = . .t [0 726, 0 760] s and 

= . .t [0 770, 0 780] s) are represented by grey rectangles (Wilcoxon rank-sum tests, Bonferroni corrected, 
< .p 0 01). The vertical line at t = 0 s represents the error onset for the error trials and the virtual onset for the 

correct trials. The error signal presents a small negativity with peak amplitude −0.71 μV at 0.246 s, followed by a 
positivity with peak amplitude of 8.46 μV at 0.354 s, which is followed by a broader negativity with peak amplitude 
−6.98 μV at 0.568 s. Figure 3 also depicts the topoplots of correct and error trials at the time-points t = 0.354 s and 
t = 0.568 s.

Online part. Figure 4 depicts the grand average correct and error signals of the online part of the experiment at 
channel FCz (green and red solid lines, respectively). The green and red shaded areas represent the 95% confi-
dence intervals of the grand average signals. The time-intervals in which correct and error signals were signifi-
cantly different ( = . .t [0 316, 0 390] s, = . .t [0 504, 0 606] s and = . .t [0 698, 0 710] s) are represented by grey 
shaded areas (Wilcoxon rank-sum tests, Bonferroni corrected, < .p 0 01). The error signal presents a small nega-
tivity with peak amplitude −1.29 μV at 0.246 s, followed by a positivity with peak amplitude 10.7 μV at 0.342 s and 
by a broader negativity with peak amplitude −8.63 μV at 0.532 s. Figure 4 also depicts the topoplots of correct and 
error trials at the time-points t = 0.342 s and t = 0.532 s.

Asynchronous errp detection. Offline asynchronous ErrP detection in the calibration data. During 
the experiment, we performed asynchronous ErrP detection in the calibration data to find the threshold τ that 
was used online (using a 2 × 5-fold cross-validation to reduce the experiment duration, as described in sec-
tion Threshold τ for the ErrP classifier).

For visualization purposes, here we present the asynchronous ErrP detection results, obtained using a 
10 × 5-fold cross-validation in the calibration data, in which we tested 41 thresholds τ from 0 to 1, with steps of 
0.025. The evaluation metric used to assess the results was the same as described in section Threshold τ for the 
ErrP classifier. Figure 5 displays the grand average TPR and TNR of the asynchronous classification performed 
using a 10 × 5-fold cross-validation in the calibration data (red and green solid lines, respectively), in function of 
the threshold τ. The chance-level TPR and TNR (red and green dashed lines, respectively) were obtained by per-
forming the same classification procedure with randomly permuted training labels. The shaded green and red 

Figure 3. Grand average correct and error signals of the calibration part of the experiment at channel FCz 
(green and red solid lines, respectively). The green and red shaded areas represent the 95% confidence intervals 
of the grand average signals. The regions in which correct and error signals were significantly different are 
marked with a grey rectangle (Wilcoxon rank-sum tests, Bonferroni corrected, < .p 0 01). The vertical line at 
t = 0 s represents the error onset of error trials and the virtual onset of correct trials. The dashed vertical lines at 
t = 0.30 s and t = 0.75 s delimit the window used to train the ErrP classifier.
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areas represent the 95% confidence intervals of the grand average curves. The obtained TPR results were signifi-
cantly higher than chance levels TPR results for thresholds τ ∈ . .[0 100, 0 975] (Wilcoxon rank-sum tests, one 
sided, Bonferroni corrected, < .p 0 01). The obtained TNR results were significantly higher than chance level 
TNR results for thresholds τ ∈ . .[0 150, 0 975] (Wilcoxon rank-sum tests, one sided, Bonferroni corrected, 

< .p 0 01).

Online asynchronous ErrP detection. In the online part of the experiment, we used for the asynchronous ErrP 
detection, a subject specific-threshold τ, calculated as described in section Threshold τ for the ErrP classifier. The 
evaluation metric used to assess the results was described in section Online ErrP detection. Figure 6 depicts the 
TPR and TNR of the online asynchronous ErrP classification for every participant as well as the average results. 
We obtained an average TPR of 70.0% and average TNR of 86.8%. The blue numbers on top of the bars indicate 
the used threshold τ used for every participant.

Figure 7 depicts, for every participant, a violin plot of the time-points of all the ErrP detections in the error 
trials of the online part of the experiment, in relation to the average error onset (t = 0 s).

Discussion
In the described experiment, we asynchronously decoded ErrPs in an online scenario. Here, we showed the ErrPs’ 
electrophysiology during the calibration and the online parts of the experiment. In both conditions, ErrP dis-
played similar shapes but the grand average ErrP in the online condition exhibited stronger peak amplitudes.

We chose to display, in both conditions, the ErrPs’ electrophysiology using EEG signals filtered with a causal 
filter in order to match the ErrPs’ appearance in the online scenario. The displayed results differ from standard 

Figure 4. Grand average correct and error signals of the online part of the experiment at channel FCz (green 
and red solid lines, respectively). The green and red shaded areas represent the 95% confidence interval for the 
grand average signals. The grey rectangles represent the time-intervals in which correct and error signals were 
significantly different (Wilcoxon rank-sum tests, Bonferroni corrected, < .p 0 01). The vertical line represents 
the average error onset of the error trials and the virtual onset of the correct trials.

Figure 5. Asynchronous ErrP detection in the calibration data. Grand average TNR and TPR (solid green and 
red lines, respectively) in function of the threshold τ, calculated from the 10 × 5-fold cross-validation in the 
calibration data. The chance-level TPR and TNR are represented with red and green dashed lines. The shaded 
areas represent the 95% confidence intervals for the grand average curves.



7Scientific RepoRtS |         (2019) 9:17596  | https://doi.org/10.1038/s41598-019-54109-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

state-of-the-art literature, in which it is commonly used a zero-phase filter. In our situation, the typical N200 
component of ErrPs is shifted to after the ErrPs’ P300 component. The difference is a direct consequence of using 
a causal filter and does not reflect any particularity of the neural activity.

We also showed results regarding the asynchronous ErrP detection in the calibration data using 
cross-validation, where different thresholds for the ErrP classifier, ranging from 0 to 1, could be tested.

Finally, we displayed the results of the asynchronous ErrP detection for the online part of the experiment, in 
which we obtained an average TNR of 86.8% of and an average TPR of 70%. In the online part of the experiment, 
all participants displayed a major cluster of ErrP detections within one second of the error onset, as shown in 
Fig. 7. Some participants displayed a secondary cluster of ErrP detections, which can possibly be associated with 
secondary ErrPs, as described by Salazar-Gomez and colleagues28. Alternatively, these later detections could also 
be possibly linked to an event-related potential associated with the robot resuming its movement (that the classi-
fier erroneously classified as an ErrP).

We decided not to give participants feedback regarding false positive detections, neither in correct nor in error 
trials, to maintain the flow of the experiment and avoid interruptions. Still, from Figs. 6 and 7, we can infer that 
the majority of ErrP detections were not associated with false positive detections.

Literature supports that, in general, feedback improves BCIs performance and several feedback modalities 
have been tested41–45. But, to the best of our knowledge, the effect of ErrPs’ feedback has not been studied yet. 
Nevertheless, we believe it can help participants to be more engaged and could possibly be associated with the 
increase in the peak amplitudes of the ErrP verified in the online scenario. Moreover, we believe that providing 

Figure 6. Online asynchronous ErrP detection. The green bars represent the TNR of every participant and their 
average. The red bars represent the TPR of every participant and their average. The average TPR was 70.0% and 
the average TNR was 86.8%. The blue numbers indicate the threshold τ, used for each participant.

Figure 7. Time-points of all ErrP detections in the online scenario. Violin plots, for every participant, of the 
time-points of all ErrPs detections in the error trials of the online part of the experiment, in relation to the 
average error onset (t = 0 s).
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feedback of the false positive detections could help participants to understand if they have any control over these 
detections and, if so, adapt their behaviour accordingly.

Therefore, we conclude that the asynchronous decoding of ErrPs in an online scenario is possible and reliable 
and we suggest that giving participants full feedback of the ErrP detections would not decrease and would possi-
bly increase participants’ performance.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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ONLINE ASYNCHRONOUS DECODING OF

ERROR-RELATED POTENTIALS DURING THE

CONTINUOUS CONTROL OF A ROBOT

CATARINA LOPES-DIAS, ANDREEA I SBURLEA AND GERNOT R
MÜLLER-PUTZ

Figure 1 shows the location of the 61 EEG electrodes used in the experi-
ment.

Figure 2 shows that, in the classification procedure, the principal compo-
nents retained after PCA preserve the activity of the original feature space.

Figure 1. Layout of the EEG electrodes. The ground elec-
trode was placed at position AFz and the reference electrode
was placed on the right mastoid.
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Figure 2. Grand average classifier features: Left: Grand-
average original feature space. Middle: Grand-average pro-
jection into the temporal-spatial domain of the principal com-
ponent (PC) features retained after PCA. Right: Difference
between the grand-average original feature space and the
grand-average projection of the features retained after PCA.
The channel order is the following: 1-Fp1, 2-Fp2, 3-F7, 4-
F3, 5-Fz, 6-F4, 7-F8, 8-FC5, 9-FC1, 10-FC2, 11-FC6, 12-T7,
13-C3, 14-Cz, 15-C4, 16-T8, 17-TP9, 18-CP5, 19-CP1, 20-
CP2, 21-CP6, 22-TP10, 23-P7, 24-P3, 25-Pz, 26-P4, 27-P8,
28-P09, 29-O1, 30-Oz, 31-O2, 32-PO10, 33-AF3 34-AF4 35-
F5, 36-F1, 37-F2, 38-F6, 39-FT7, 40-FC3, 41-FC4, 42-FT8,
43-FCz, 44-C5, 45-C1, 46-C2, 47-C6, 48-TP7, 49-CP3, 50-
CPz, 51-CP4, 52-TP8, 53-P5, 54-P1, 55-P2, 56-P6, 57-PO7,
58-PO3, 59-POz, 60-PO4, 61-PO8.
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ABSTRACT: Error-related potentials (ErrPs) can be used
to improve BCIs’ performance but its use is often with-
held by long calibration periods. We recorded EEG data
of 15 participants while controlling a robotic arm towards
a target. In 30 % of the trials, the protocol prompted an
error during the trial in order to trigger ErrPs in the partic-
ipants. For each participant, we trained an ErrP classifier
using the data of the remaining 14 participants. Each of
these classifiers was tested asynchronously on the data of
the selected participant. The threshold that maximized
the product of the average true positive rate (TPR) and
the average true negative rate (TNR) was τ = 0.7. For this
threshold, the average TPR was 53.6 % and the average
TNR was 82.0 %. These results hint at the feasibility of
transferring ErrPs between participants as a reliable strat-
egy to reduce or even remove the calibration period when
training ErrP classifiers to be used in an asynchronous
manner.

INTRODUCTION

Brain-computer interfaces (BCIs) are a suitable tool to
help restoring some autonomy to people with severe mo-
tor disabilities [1,2,3]. Most BCIs rely on converting
modulated brain activity of a user (often measured us-
ing electroencephalography (EEG)) into commands of an
external device, such as a robot. Nevertheless, the perfor-
mance of most BCIs is not optimal and, occasionally, the
interface misinterprets the intention of its user and thus
a wrong command is executed. The user’s awareness of
the committed mistake is associated with a neural pattern
named error-related (ErrP), which is also measurable by
EEG [4] .
Incorporating ErrPs’ detection in a BCI can help to im-
prove its performance [5, 6]. A main barrier to its
widespread use is the calibration time necessary to train
ErrP classifiers: many trials are needed to train a clas-
sifier and errors should not occur too often to still be
perceived as so. Two main approaches have been pro-
posed to reduce the training duration of ErrP classifiers,
based on either transferring information between differ-
ent tasks or transferring information between different
participants. Iturrate and colleagues studied the use of
classifiers trained with ErrPs from one observation task
and tested in ErrPs from another observation task, using
latency correction [7,8]. Kim and colleagues studied the

use of an ErrP classifier trained with ErrPs from an ob-
servation task and tested with ErrPs from an interaction
task (and vice-versa) [9,10]. Nevertheless, Ehrlich and
colleagues, did not recommend re-using ErrP classifiers
across different experimental tasks [11]. Kim and col-
leagues also studied the use of an ErrP classifier trained
with ErrPs from several subjects and tested in ErrPs from
another subject [9]. These studies suggest that transfer-
ability of ErrPs is viable in the context of discrete BCIs
(in which all events occur in a discrete way).
Recently, an effort has been made to develop BCI
paradigms that promote a smoother and more intuitive in-
teraction with their users, by relying on continuous con-
trol or actions - continuous BCIs [12,13,14]. In this con-
text, the user’s error awareness can occur at any moment
and is not, necessarily, time-locked to specific events, re-
quiring an asynchronous detection of ErrPs. The exis-
tence of ErrPs in continuous contexts as well as its asyn-
chronous detection has been established [15, 16, 17,18].
Another approach to improve BCIs consists in developing
BCIs that closer resemble end-user applications, in which
users interact with or observe robots [10,19,20,21,22].
In this work, we developed a paradigm in which the user
has continuous control over a robotic arm in a task in
which errors are triggered by the paradigm. We studied
the electrophysiological signature of the ErrPs in this task
and, additionally, investigated the feasibility of using a
generic ErrP classifier trained on the ErrPs of 14 partic-
ipants by testing it asynchronously with data of another
participant.

MATERIALS AND METHODS

EEG recording: We recorded EEG and EOG data at a
sampling frequency of 500 Hz, using BrainAmp ampli-
fiers (Brain Products, Munich, Germany). We used 61
EEG electrodes and 3 EOG electrodes. The EEG elec-
trodes were placed at positions Fp1, Fp2, AF3, AF4, F7,
F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1,
FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4,
C6, T8, TP9, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
TP8, TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO9,
PO7, PO3, POz, PO4, PO8, PO10, O1, Oz, and O2. The
ground electrode was placed at position AFz and the ref-
erence electrode was placed on the right mastoid. The
electrodes were placed above the nasion and below the

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-11



outer canthi of the eyes.
Participants: We recorded 15 right-handed healthy

volunteers (5 female). The participants were, on aver-
age, 23.4±2.5 years old (mean ± std). Participants were
paid 7.50 C per hour and, before the experiment, read
and signed an informed consent form that was previously
accepted by the local ethical committee.

Experiment layout: Figure 1 depicts the layout of the
experiment. Participants sat in front of a table, with their
right hand lying flat on the table, covered by a wooden
structure. On the ceiling of this structure was a Leap Mo-
tion device that tracked their right hand movements (Leap
Motion, San Francisco, USA). On the right of the partici-
pants was a robotic arm (Jaco Assistive robotic arm - Ki-
nova Robotics, Bonn, Germany). On top of the wooden
structure were two violet boxes representing the physi-
cal targets, centred in relation to the home position of the
robot’s hand. Behind the wooden structure was a moni-
tor that displayed information regarding the experiment.
During the trials, the participants could control the posi-
tion of the robot’s hand on an approximately horizontal
plan, by moving their right hand on the table. We consid-
ered robot’s hand displacement to be three times bigger
than the participants’ hand displacement, to reduce the
range of the participants’ movements.

Figure 1: Experimental setup during the pre-trial period. In
this image, the robot is at its home position. The squares on
the screen indicate that, in the next trial, the participant should
move the robot’s hand towards the right target (purple box) on
the wooden structure. The screen also shows the home position
for the participant’s hand (rectangle on the bottom part of the
screen). The text on the screen (not readable in the picture)
states ’Bring your hand to the home position’.

Experiment overview: The experiment consisted of 8
blocks of 30 trials each. Each block contained 21 correct
trials and 9 error trials (70% and 30%, respectively). The
position of the error trials within the block was randomly
generated, using an uniform distribution.

Pre-trial period: During this period, on the upper part
of the screen were displayed two squares, representing
the two targets on the wooden structure. One of the
squares was filled in white, representing the selected tar-
get for the next trial, and the other had no fill. On the
bottom part of the screen was a rectangle representing

Figure 2: Experimental protocol. During the pre-trial period,
the participants can rest for as long as they wish. The pre-trial
period ends and a trial starts, when the participant brings his/her
right hand to its home position (the bottom rectangle). During
the trials, the screen is black. The participants were instructed
to bring the robot’s hand to the selected target (indicated by the
white square). A trial finishes either when the robot reaches the
target or after 6 seconds (if the target was not reached). Af-
terwards (post-trial), the squares reappear on the screen for 1.5
seconds and give feedback regarding hitting the target (a green
square indicates that the target was hit and a red square indi-
cates that the target was not hit). Then the screen turns black
and the robot automatically returns to its home position and a
new pre-trial period starts.

the home position for the participants’ hand. The partic-
ipants’ hand was represented by a dot on the screen. A
new trial started when the participants’ hand entered its
home position. The participants could use the pre-trial
period to rest for as long as they needed. Participants
were instructed to bring their hand to below the home po-
sition, to fixate their gaze on the selected physical target
and to enter the home position when they felt ready to
start a new trial. Participants were also instructed not to
move their gaze during the entire trial duration, in order
to minimize eye movements.

Trials: The aim of each trial was to move the robot’s
hand to the selected target. During the trials, the screen
was black. A trial finished when the robot’s hand was
above the target (hit) or after 6 seconds (no hit). After-
wards, as shown in Figure 2, the two squares from the
pre-trial period reappeared on the screen for 1.5 seconds
and the previously filled square was now filled in either
green (hit) or red (no hit). Then, the screen would turn
black, the robot’s hand would automatically move to its
home position and a new pre-trial period would start.

Error trials: In these trials, the paradigm triggered an
error during the trial. The error consisted on halting
the participant’s control of the robot and adding a 5 cm
upwards displacement to the robot’s hand.The errors oc-
curred randomly when the robot’s hand was within 25 %
to 65 % of the minimal forward displacement necessary
for the robot to hit the target. Participants perceived the
error by noticing the robot stopping and lifting. After
the error happened, the participants could not control the
robot until the trial ended. Participants were instructed to
remain still. The error trials lasted 6 seconds.

Correct trials: In these trials, no error was triggered by
the paradigm. The participants reached the selected target
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in 99.7±0.5 % (mean ± std) of the correct trials. Correct
trials lasted, on average, 2.06± 0.17 seconds (mean ±
std).

Preprocessing the data: The eye movements and
blinks were removed from the EEG data, using the arte-
fact subspace subtraction algorithm [23]. The EEG data
was then filtered between 1 and 10 Hz with a Butterworth
causal filter of order 4.

Electrophysiological analysis: For the electrophysio-
logical analysis, we cut the EEG data in 1.5 s epochs. For
the error trials, we considered the interval [-0.5, 1]s time-
locked to the error onset (0 s). Since correct trials have
no intrinsic onset, we defined a virtual onset, occurring
one second after the start of the trial (at a time-point in
which errors could already occur). For the correct trials
we considered the interval [−0.5,1]s, time-locked to the
virtual onset (0 s).

Asynchronous ErrP classification with a generic clas-
sifier: For every participant we trained an ErrP classi-
fier with two classes (correct and error) using the data
from the remaining 14 participants. In order to train each
of these classifiers, we considered as features for the er-
ror class the amplitudes of all EEG channels at all time
points within the window [0.30,0.75]s after the error on-
set. Similarly, we considered as features for the correct
class the amplitudes of all EEG channels at all time points
within the window [0.30,0.75]s after the virtual onset.
Afterwards, in order to reduce the number of features, we
applied principal component analysis (PCA) to the fea-
ture matrix and kept the components that preserved 99 %
of the data variance. These components were used to train
a shrinkage LDA classifier [24]. Each of these classifiers
was tested asynchronously in the data of the participant
not used for training. For that, we slid a 450 ms window
through the trials, obtaining an output from the classifier
every 18 ms.
For every fixed threshold τ (τ from 0 to 1 in steps of
0.025), we considered an error detection when the classi-
fier’s probability for the error class (pe) was greater or
equal to the threshold τ for two consecutive windows
(pe ≥ τ). As an evaluation metric for the asynchronous
classification, we defined as true negative trials (TN tri-
als) the correct trials in which no error detection occurred.
We defined as true positive trials (TP trials), the error tri-
als in which no error detection occurred before the error
onset and at least one error detection occurred within 1.5
seconds after the error onset. We considered the group
performance to be optimal for the threshold that maxi-
mized the product of the average TPR and the average
TNR.

RESULTS

Figure 3 displays the grand average correct and error sig-
nals at channel FCz (green and red solid lines respec-
tively). The 95 % confidence interval for the average
curves are represented by the shaded green and red areas.
The time-regions in which correct and error signals were
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Figure 3: Grand average correct and error signal at channel FCz
(green and red solid lines, respectively). The shaded areas rep-
resent the 95 % confidence interval for the average signals. The
grey regions represent the time-regions in which correct and er-
ror signals were significantly different (Wilcoxon signed-rank
tests, p < 0.01, Bonferroni corrected).The topoplots for the cor-
rect and error grand average signals are displayed for t =0.354 s
and t = 0.568 s. The time point t = 0 represents the error onset
of error trials and the virtual onset of correct trials

significantly different are represented by grey shaded ar-
eas (Wilcoxon signed-rank tests, p < 0.01, Bonferroni
corrected). Figure 3 displays also the topoplots for the
correct and error grand average signals at the peaks of the
grand average error signal (t =0.354 s and t = 0.568 s).
Figure 4 shows the average true negative rate (TNR) and
the average true positive rate (TPR) (represented with
green and red solid lines, respectively), for all the tested
thresholds in the asynchronous ErrP classification with a
generic classifier. The chance-level TNR and TPR were
calculated by performing the same classification proce-
dure with shuffled training labels. The 95 % confidence
intervals for the average curves are represented by shaded
areas. The threshold that maximized the group perfor-
mance was τ = 0.700. For this threshold, the average
TNR was 82.0 % and the average TPR was 53.6 %.
Figure 5 depicts the individual TNR and TPR of each
participant. It depicts also the threshold that maximizes
group performance (τ = 0.700, grey dashed lines) and
the thresholds that maximizes the individual performance
(blue dashed lines).

DISCUSSION

We developed an experimental task relying on continu-
ous control of a robot towards a target. In 30 % of the tri-
als (error trials), an error was triggered by the paradigm,
causing the participants to loose control over the robot
during the trial. We then studied the electrophysiologi-
cal features associated with the error trials. The peaks
of the error signal occurred at t =0.354 s and t =0.568 s.
Our results are not directly comparable with state-of-the-
art literature because we processed the EEG signal with
a causal filter, causing the N200 component of the ErrP
to shift to around 600 ms. We decided to keep the causal
filter because it depicts the ErrP’s shape in the scenario
of an online ErrP decoder, bringing awareness to the fact
that ERP shapes can be influenced by the filter used to
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Figure 4: Average TNR and average TPR (green and red solid
lines, respectively) for the different thresholds tested in the
asynchronous ErrP classification with a generic classifier. The
chance-level TNR and TPR are depicted with green and red
dashed lines. The shadowed areas represent the 95 % confi-
dence intervals for the average curves. The threshold that maxi-
mizes the group performance is represented with a grey vertical
dashed line.

process the signal.
Afterwards, we evaluated the feasibility of transferring
ErrP information across participants, by training a clas-
sifier with the data from 14 participants and testing it
with the data of the remaining participant in an asyn-
chronous manner (generic classifier). From Figure 4, we
observe that the average TPR is above chance-level for
all the thresholds and that the average TNR is increasing
with the threshold. This points to the feasibility of using
such classifiers as a starting point for an adaptive BCI. In
Figure 5, it is possible to compare the individual perfor-
mance of every participant with the generic classifier. We
observe that participants with higher individual threshold
present minor or negligible drops in performance with the
use of a generic classifier tuned to the group performance
(e.g. participants 1, 2 and 3). On the other hand, partic-
ipants with lower individual threshold can present major
performance drops (e.g. participants 5 and 8). This in-
dicates that the performance of such classifier is still de-
termined by individual characteristics of the participants.
Nevertheless it seemed a suitable option for the majority
of the participants.

CONCLUSION

In this work we showed the feasibility of transferring
ErrP information across participants, by training a clas-
sifier with the data from 14 participants and testing it
with the data of the remaining participant in an asyn-
chronous manner. We then showed that, although the
performance of such classifiers is still dependent on indi-
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Figure 5: Individual TNR and TPR (green and red solid lines,
respectively) for the different thresholds tested in the asyn-
chronous ErrP classification with a generic classifier. The
threshold that maximizes the group performance is represented
with a grey dashed line (τ = 0.7). The threshold that maximizes
the individual performance is represented with a blue dashed
line.

vidual characteristics of the participants, the majority of
them would benefit from such generic approach. There-
fore, we believe that transferring ErrP information across
participants is a viable alternative to reduce the calibra-
tion period in a scenario of asynchronous ErrP classifica-
tion, as a starting point for an adaptive BCI.
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A Generic Error-related Potential Classifier Offers a Comparable
Performance to a Personalized Classifier

Catarina Lopes-Dias1, Andreea I. Sburlea1 and Gernot R. Müller-Putz1

Abstract— Brain-computer interfaces (BCIs) provide more
independence to people with severe motor disabilities but
current BCIs’ performance is still not optimal and often the
user’s intentions are misinterpreted. Error-related potentials
(ErrPs) are the neurophysiological signature of error processing
and their detection can help improving a BCI’s performance.

A major inconvenience of BCIs is that they commonly require
a long calibration period, before the user can receive feedback of
their own brain signals. Here, we use the data of 15 participants
and compare the performance of a personalized ErrP classifier
with a generic ErrP classifier. We concluded that there was
no significant difference in classification performance between
the generic and the personalized classifiers (Wilcoxon signed
rank tests, two-sided and one-sided left and right). This results
indicate that the use of a generic ErrP classifier is a good
strategy to remove the calibration period of a ErrP classifier,
allowing participants to receive immediate feedback of the ErrP
detections.

I. INTRODUCTION

Brain-computer interfaces (BCIs) allow to restore some
autonomy to people with severe motor disabilities by con-
verting thoughts into the control of an external device (e.g.
a robotic arm or a cursor). BCIs’ performance is still not
optimal and sometimes they misinterpret the user’s intentions
giving rise to errors.

The cortical signature of error processing is named error-
related potential (ErrP). The detection of ErrPs can be used
to improve a BCI’s performance [1]–[3]

The majority of state-of-the-art BCIs are personalized
BCIs – they rely on the brain signals of each individual user.
Such BCIs need a long calibration time, during which the
brain signals of the user are recorded and processed in order
to train a classifier, before the user can receive feedback
of their own brain signals. Alternatively, generic BCIs –
which rely on the brain signals of other individuals rather
than of the final user - allow the user to receive immediate
feedback. Nevertheless, generic BCIs are believed to offer a
worse performance than personalized BCIs.

ErrP classifiers are often meant to be used in combina-
tion with other classifiers (that classify e.g. motor imagery
tasks or movement-related cortical potentials) [4]–[6]. In a
personalized approach, combining several decoders leads to
an even longer calibration time. Therefore, using a generic
ErrP classifier is an appealing possibility, if performance is
not severely compromised.

This work has been supported by the ERC consolidator grant 681231
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1 Institute of Neural Engineering, Graz University of Technology, Graz,
Austria gernot.mueller@tugraz.at

Some works already explored the development of generic
classifiers for error-related potentials and other event-related
potentials in the context of discrete tasks [7]–[11]. But BCIs
are developing in the direction of providing the user contin-
uous control of an external device [12]. In such a situation,
the user can perceive at any moment that an error occurred
and therefore it requires a continuous (asynchronous) ErrP
detection. Continuous decoding of ErrPs using personalized
classifiers has been explored in offline and online situations
[13]–[17] but the continuous decoding of ErrPs using generic
classifiers remains largely unexplored [18].

In this work, we analyse the data from an asynchronous
online ErrP decoding experiment [15] and compare the per-
formance of a personalized classifier with a generic classifier
in an asynchronous context.

II. MATERIALS AND METHODS

A. Dataset description

We used a dataset previously recorded [15] containing the
data of of 15 right-handed healthy volunteers (5 female). The
participants were, on average, 23.5±2.5 years old (mean ±
std).

EEG and EOG data was recorded at a sampling frequency
of 500 Hz, using BrainAmp amplifiers (Brain Products,
Munich, Germany). We used 61 EEG electrodes and 3 EOG
electrodes. The EEG electrodes were placed in a 10-10
layout. The ground electrode was placed at position AFz and
the reference electrode was placed on the right mastoid. The
EOG electrodes were placed above the nasion and below the
outer canthi of the eyes.

B. Experimental layout

In the experiment analysed, participants could control a
robotic arm (Jaco assistive robotic arm - Kinova Robotics,
Bonn, Germany) towards two physical targets, depicted in
Figure 1. The control was done using the participants’ right
hand, which was tracked with a Leap Motion device. The de-
tails regarding the control of the robot and the experimental
layout are described in [15].

C. Experiment overview

The experiment consisted of 12 blocks. Each block con-
tained 30 trials: 21 correct trials and 9 error trials. The
aim of every trial was to bring the robot’s hand from
its home position to above the selected physical target. A
trial ended when the robot reached the target or after 6
seconds, in case the target was not reached. As depicted in
Figure 2, each trial was preceded by a pre-trial period, when
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Fig. 1. Experimental setup: The violet cuboids on the wooden structure
represent the physical targets. During the trials, the participants can steer
the robotic arm towards the targets, using their right hand movement on
the tabletop. In this figure, the robotic arm is at its home position. The
participant on this image gave her informed consent for the photo to be
made available in this publication. This figure was adapted from [15].

the monitor indicated the target of the coming trial (white
square). Each trial was followed by a post-trial period, when
the participants received feedback of the robot reaching or
not the desired target (green or red square) and then the robot
returned to its home position.

Fig. 2. Trial description. Each trial was preceded by a pre-trial period
and followed by a post-trial period. During the pre-trial period participants
received information regarding the target of the coming trial. During the
trial, participants controlled the robot towards the selected target. In the
post-trial period, participants received information of the behaviour of the
robot (green or red square) and then the robot returned to its home position.
This figure was adapted from [15].

1) Correct trials: In these trials no error was triggered by
the paradigm. Participants could steer the robot towards the
selected target.

2) Error trials: In these trials, the paradigm triggered an
error during the motion of the robot. The error consisted
in halting the participant’s control of the robot. Participants
would perceive the error by noticing the robot stopping and
realizing that they were no longer in control.

D. Calibration and online blocks

The first 8 blocks of the experiment were calibration
blocks and the last 4 blocks were online blocks, as depicted
in Figure 3.

From the participants’ perspective, only the error trials
were different in the offline and online blocks. In the error
trials of the calibration blocks, the participants had no
possibility of correcting the robot’s errors: when an error
occurred, the robot remained still for the rest of the trial. In

Block 1

30 trials
9 errors

. . . . . .

Block 8

30 trials
9 errors

Block 9

30 trials
9 errors

Block 12

30 trials
9 errors

Calibration Online

Fig. 3. Experiment overview: The experiment consisted of 12 blocks. Each
block contained 30 trials, of which 9 were error trials and 21 correct trials.
The first 8 blocks were calibration blocks and the last 4 blocks were online
blocks.

the error trials of the online blocks, the participants had the
possibility of correcting the robot’s errors: if an ErrP was
detected by the classifier after the error onset, participants
regained control of the robot and could steer it towards the
desired target. The correct trials during calibration and online
blocks were indistinguishable for the participants.

E. Data preprocessing

Eye movements and blinks were removed from the EEG
data using the subspace subtraction algorithm [19], relying
on 2 blocks of eye movements recorded right before the
experiment. The EEG signal was then filtered between 1 and
10 Hz using a causal Butterworth filter of order 4.

F. Personalized classifier

The personalized classifier used here is the same as the
one described in detail in [15]. For every participant, we
used the data of their calibration blocks to train a shrinkage-
LDA classifier based on time-domain features. We also used
the calibration blocks to determine a personalized threshold,
as described in [15].

G. Generic classifier

The generic classifier used here is the same as the one de-
scribed in [18]. For each participant, we used the calibration
blocks from the 14 other participants to train a shrinkage-
LDA classifier based on time-domain features. Additionally,
as suggested in [18], we tailored the generic classifier for
each participant by using a personalized threshold.

To determine the threshold for every participant, we
performed an asynchronous classification with the generic
classifier on the participant’s own calibration data where we
tested the performance of thresholds from 0 to 1 in steps of
0.025, similarly to the procedure described in [15].

H. Metrics to evaluate the classifiers

As an evaluation metric for the asynchronous classifica-
tion, we defined as true negative trials (TN trials) the correct
trials in which no error detection occurred. We defined
as true positive trials (TP trials), the error trials in which
no error detection occurred before the error onset and at
least one error detection occurred after the error onset. The
classification performance of the classifiers will be described
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in terms of the true positive rate (TPR) - percentage of error
trials successfully classified - and true negative rate (TNR)
- percentage of correct trials successfully classified.

I. Comparing the personalized and generic classifiers

Both personalized and generic classifiers were evaluated
asynchronously using the same metrics (TNR and TPR) and
both classifiers were tested in the same data set: the 4 online
blocks of each of the 15 participants.

III. RESULTS

A. Personalized classifier

Figure 4 depicts the TPR and TNR obtained using the
personalized classifier (in light green and pink respectively),
for every participant as well as their average. On average,
we obtained a TPR of 70.0% and a TNR of 86.8%.
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Fig. 4. Classification results of the personalized classifier: TNR (in light
green) and TPR (in pink) for every participant and their average. This figure
was adapted from [15]

B. Generic classifier

The TPR and TNR obtained using a generic classifier for
every participant and their average are depicted in Figure 5.
On average, we obtained a TPR of 72.6% and a TNR of
87.9%.
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Fig. 5. Classification results of the generic classifier: TNR (in dark green)
and TPR (in dark red) for every participant and their average.

C. Comparison of classifiers

Figure 6 depicts the TNR results using both a personalized
and a generic classifier while Figure 7 summarizes the TPR
results using both a personalized and a generic classifier.
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Fig. 6. Comparison of the TNR performance using the generic and the
personalized classifiers (dark green and light green, respectively).
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Fig. 7. Comparison of the TPR performance using the generic and the
personalized classifiers (dark red and pink, respectively).

To test if the results obtained with the two classifiers were
significantly different, we performed a two-sided Wilcoxon
signed rank test for the TPR results and also for the TNR
results. The significance test for the TPR resulted in p =
0.7219. The significance test for the TNR resulted in p =
0.6275. This indicates that the performance of both classifiers
is not significantly different. Moreover, we performed also
one-sided significance tests. When testing if the generic clas-
sifier performance was better than the personalized classifier
we obtained p = 0.3610 for the TPR and p = 0.3138 for
the TNR. When testing if the generic classifier performance
was worse than the personalized classifier we obtained:
p = 0.6488 for the TPR and p = 0.6963 for the TNR.

IV. DISCUSSION

In this work, we compared the classification results ob-
tained using a generic and a personalized classifiers. Both
classifiers were tested asynchronously on the same dataset
and evaluated with the same metrics. We found no significant
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difference in the classification results of the generic and of
the personalized classifiers.

It is commonly believed that personalized classifiers offer
a superior performance than generic classifiers. Surprisingly,
in our dataset, the performance of both classifiers was com-
parable. We verified that some participants with an above-
average performance when using the personalized classifier
(e.g. participants S11 and S13) had a drop in performance
when using the generic classifier. Nevertheless, some par-
ticipants with a below-average performance when using the
personalized classifier (e.g. participant S05) had an increase
in performance when using the generic classifier.

The main drawback of using personalized classifiers is
the need of a long calibration period before the participants
can receive feedback of their own performance. This is
particularly critical in a real-life BCI scenario, where ErrP
classification is usually used in combination with other
classifiers (e.g. motor imagery or movement attempt). Such
scenario requires a long calibration period to collect enough
data to train the different classifiers.

Given that the ErrP generic classifier revealed no drop
in performance, it is a good alternative to reduce, or even
eliminate, the calibration period of a BCI, leading to shorter
experimental time and possibly to reduced fatigue in the
participants.

In a real-life BCI scenario such dichotomy between a
personalized and a generic ErrP classifier could even be
accessed on-site during the experiment. Constructing a BCI
with a generic ErrP classifier would allow immediate feed-
back to the participants while still collecting data to train a
personalized ErrP classifier. A regular on-site comparison of
both classifiers would allow switching from the generic ErrP
classifier to the personalized ErrP classifier when the latter
reliably produced better results.

V. CONCLUSIONS

The generic and personalized classifiers analysed in this
work held a comparable performance. This indicates that the
use of a generic ErrP classifier is a good strategy to eliminate
the calibration period and give immediate feedback to the
participants regarding error detection while preserving, on
average, the classification performance.
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Abstract. A brain-computer interface (BCI) user awareness of an error is associated

with a cortical signature named error-related potential (ErrP). The incorporation of

ErrPs’ detection in BCIs can improve BCIs’ performance.

Objective: This work is three-folded. First, we investigate if an ErrP classifier

is transferable from able-bodied participants to participants with spinal cord injury

(SCI). Second, we test this generic ErrP classifier with SCI and control participants, in

an online experiment without offline calibration. Third, we investigate the morphology

of ErrPs in both groups of participants.

Approach: We used previously recorded electroencephalographic (EEG) data

from able-bodied participants to train an ErrP classifier. We tested the classifier

asynchronously, in an online experiment with 16 new participants: 8 participants

with SCI and 8 able-bodied control participants. The experiment had no offline

calibration and participants received feedback regarding the ErrPs’ detection from

its start. For a matter of fluidity of the experiment, the feedback regarding false

positive ErrP detections was not presented to the participants but these detections

were taken into account in the evaluation of the classifier. The generic classifier was

not trained with the user’s brain signals. Still, its performance was optimized during

the online experiment with the use of personalized decision thresholds. The classifier’s

performance was evaluated using trial-based metrics, which consider the asynchronous

detection of ErrPs during the entire trials’ duration.

Main results: Participants with SCI presented a non-homogenous ErrP morphology,

and four of them did not present clear ErrP signals. The generic classifier performed

above chance level in participants with clear ErrP signals, independently of the SCI

(11 out of 16 participants). Three out of the five participants that obtained chance

level results with the generic classifier would have not benefited from the use of a

personalized classifier.

Significance: This work shows the feasibility of transferring an ErrP classifier from

able-bodied participants to participants with SCI, for asynchronous detection of ErrPs

in an online experiment without offline calibration, which provided immediate feedback

to the users.
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1. Introduction

Brain-computer interfaces (BCIs) can assist people with severe motor impairments to

operate external devices by converting their modulated brain activity into the control of

these devices [1–3]. Although being a promising technology, most BCIs are still error-

prone, and the frequent occurrence of errors can spoil the experience of the BCI user.

The user’s awareness of an unintended response from the device that he/she is controlling

is associated with a neural signature known as error-related potential (ErrP) [4, 5].

ErrPs are associated with conflict monitoring and error processing [6] and can be

measured using non-invasive techniques, such electroencephalography (EEG), that are

often used for BCIs’ control. Therefore, ErrPs can be used to improve BCIs’ performance

either in a corrective manner, by allowing corrective actions, or in an adaptive manner,

by reducing the possibility of future errors [7–11]. The real-time detection of ErrPs

is pertinent in BCIs used by persons with motor impairments and also in applications

targeting healthy users [12–15]. The incorporation of ErrPs’ detection in a BCI promotes

a smoother interaction with its user. Nevertheless, this incorporation is not widely

investigated.

The use of ErrPs in discrete BCIs, which are controlled in discrete steps, is well

established in healthy participants [4, 10, 16–22] and has also been marginally tested

in potential end-users of BCIs [23]. Still, BCIs are developing in the direction of

offering users continuous control of an external device - continuous BCIs [24–28]. The

incorporation of ErrPs in such BCIs requires an asynchronous detection of ErrPs, since

the user can realise at any moment, during the control of the device, that an error has

occurred. The asynchronous detection of ErrPs has been studied in healthy participants,

both in offline scenarios [13, 29–34] and more recently in online scenarios [35].

A possible explanation for the limited use of ErrPs in BCIs can be linked with most

BCIs relying on personalised classifiers, which are constructed with the user’s brain

signals. Since a considerable amount of data is necessary to reliably train the classifier,

personalised classifiers commonly require a long calibration period before the user can

receive feedback of its own brain signals. In this manner, combining ErrPs with other

controlling signals would imply collecting calibration data for all the different signals,

increasing even more the calibration period. Alternatively, using an ErrP classifier that

would not require calibration with the user could encourage the integration of ErrPs

with other control signals when constructing BCIs. This could be achieved by either

transferring an ErrP classifier across different tasks or across different participants. Both

options have been tested in discrete tasks, in offline conditions [23,36–43] and in online

conditions [20]. Recently, the asynchronous detection of ErrPs with a generic classifier

has been studied in the context of a continuous task, in offline conditions [44] and in

pseudo-online conditions [45].

Very few works addressed the study of ErrPs in potential BCI end-users and

the existing studies are mainly conducted offline. Keyl and colleagues characterized

the morphology of ErrPs of spinal cord injured participants and compared it with
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able-bodied control participants [46]. The ErrP morphology was comparable in the

two groups but the ErrPs of the participants in the SCI group showed smaller peak

amplitudes. Kumar and colleagues studied ErrPs during post-stroke rehabilitation

movements [47]. In this work, individual participants did not display very clear ErrP

patterns. Spüler and colleagues studied ErrPs in six participants with amyotrophic

lateral sclerosis (ALS) in an online experiment, and showed that the incorporation of

ErrPs improves the BCI performance [23]. This work also analysed, offline, the transfer

of an ErrP classifier from ALS participants to able-bodied control participants.

Our study has three main aims. First, we test the feasibility of transferring an ErrP

classifier for asynchronous classification from able-bodied participants to potential end-

users of BCIs, in particular participants with a high spinal cord injury (SCI). Second,

we test the feasibility of using a generic ErrP classifier asynchronously in an online

experiment in which both participants with SCI and control participants took part.

Third, we investigate the morphology of ErrPs both in participants with SCI and in

control participants.

In the work presented here, we recorded EEG from both participants with SCI and

control participants while testing asynchronously a generic ErrP classifier in a closed-

loop online experiment. The generic classifier has been trained with the EEG data of

15 able-bodied participants from a previous study of ours and was not retrained during

the experiment [35]. This allowed us to create an online experiment with no offline

calibration period, in which participants received immediate feedback of their brain

signals from the very beginning of the experiment onwards.

2. Methods

2.1. Participants

Sixteen volunteers participated in the experiment, eight of which had a spinal cord

injury. The age of the participants with SCI was 37.5 ± 9.7 years (mean ± std). The

remaining participants were able-bodied control participants. Each participant with SCI

was matched with a control participant of the same sex and a maximum age difference

of 5 years. The control participants were 35.9± 10.8 years old (mean ± std).

All participants with SCI had a spinal cord injury between levels C4 and Th2.

Table 1 summarizes the demographical and clinical data of the participants with SCI:

age, sex, neurological level of injury (NLI) and ASIA impairment score (AIS).

2.1.1. Inclusion and exclusion criteria All participants had to be of age between 18

and 65 years. Given that the experimental paradigm required a preserved arm function,

all participants with SCI had to have the injury at level C4 or lower. Participants

with SCI were excluded if they were artificially ventilated or had major spasms due to

possible interference with the EEG measurement. Control participants were required to

be able-bodied and with no history of neurological diseases.
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Participant Age Sex NLI AIS Time since injury

P1 24 F C5 B > 10 years

P2 29 M C7 C > 10 years

P3 33 M Th2 D > 9 years

P4 36 F C7 B > 10 years

P5 37 M C4 B >10 years

P6 39 M C6 B > 10 years

P7 48 M C4 B 6 - 12 months

P8 54 M C4 B > 1 year

Table 1: Summary of the demographical and clinical data of the participants with SCI.

2.2. Ethical approval and measurements

This study was approved by the local ethics committee of the Medical University

of Graz (ethical approval number 31-501 ex 18/19) and by the Allgemeine

Unfallversicherungsanstalt (AUVA) ethical committee. All participants read and signed

an informed consent form before the start of the experiment and were paid for their

participation. The EEG measurements of the participants with SCI took place at AUVA

Rehabilitation Clinic Tobelbad and the EEG measurements of the control participants

took place at Graz University of Technology.

2.3. Hardware and electrodes’ layout

We recorded EEG data with a sampling rate of 500 Hz using BrainAmp amplifiers and

ActiCap caps (Brain Products, Munich, Germany) with 61 active electrodes positioned

in a 10-10 layout, as detailed in Figure 1 of the supplementary material. The ground

electrode was placed on AFz and the reference electrode was placed on the right mastoid.

Additionally, we used 3 EOG electrodes that were placed above the nasion and below

the outer canthi of the eyes.

2.4. Experimental setup

Similarly to the experimental setup described in [35], participants sat in front of a table,

on top of which was a wooden 4-sided box, with open sides towards the participant and

the tabletop, as depicted in Figure 1 (top). On the ceiling of the box was a Leap Motion

device (Leap Motion, San Francisco, United States) that tracked the participants’ right

or left hand, according to their preferred hand. The position of the Leap Motion on the

ceiling of the box was adjusted to the handedness of each participant. The participants

kept their hand inside the wooden box. On the right side of the participants, attached to

the table, we placed a robotic arm (Jaco Assistive robotic arm - Kinova Robotics, Bonn,

Germany). Differently from [35], a screen monitor was lying on the wooden box, centred

in relation to the robotic arm. The monitor was slightly inclined, with a 15-degree angle,
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Figure 1: Top: Experimental setup. Participants sat in front of a table, attached which

was a robotic arm. The participants controlled the robotic arm during the trials using

their hand. Bottom: The experimental protocol displayed on the monitor. During

the pre-trial period, the white square represented the target of the coming trial. The

small rectangle located centrally, on the bottom part of the screen, represented the home

position of the participant’s hand. A trial started when the participants moved their

hand to its home position. The participants were instructed to move the robot to the

target square during the trials. After the trial (post-trial period), the target changed

colour, indicating whether or not it was reached, and the robot automatically returned

to its home position.

to offer the participants a better view of the screen. This change in relation to [35] was

introduced to minimize head and eye movements during the experiment.

2.5. Controlling the robotic arm

During the trials, participants could control the robotic arm on a horizontal plane by

moving their preferred hand on the tabletop. To reduce the range of the participants’

movements, we considered the robot’s hand displacement to be three times larger than

the participants’ hand displacement.

Many participants with SCI had a very closed fist, due to hand spasticity caused

by their injury, and this impaired their hand’s recognition by the Leap Motion. When
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this occurred, we inserted a small object in the participants’ hand in order to sustain

the hand in a more open position and facilitate its tracking.

2.6. Experiment overview

Before the experiment, we recorded one block in which the participant performed eye

movements [48, 49]. The experiment then consisted of 8 blocks of 30 trials each. 30 %

of the trials of each block were error trials (9 trials). The remaining 70 % of the trials

were correct trials (21 trials). The sequence of correct and error trials within each block

was randomly generated using a uniform distribution. We defined a maximum of 2

consecutive error trials in each block and repeated the randomization procedure until

the sequence of trials satisfied this condition. Similarly, the trials of each block were

equally split between the right and the left targets. The sequence of targets within each

block were randomly assigned using a uniform distribution. We defined a maximum of

3 consecutive trials with the same target in each block and repeated the randomization

procedure until the targets’ sequence satisfied this requirement.

All the 8 blocks were online blocks: we used a generic ErrP classifier in an

asynchronous manner to give participants real-time feedback of the ErrP detections

during the experiment. For a matter of fluidity of the experiment, we decided not to

give participants feedback of false positive ErrP detections, i.e., of the ErrP detections

that happened when no error had occurred. This decision assured that all participants

experienced the same number of errors, which aimed to create a comparable expectation

regarding the occurrence of errors across participants. False ErrP detections can occur

both in correct and error trials and were considered when evaluating the classifier.

The details regarding the generic classifier are described in the section Generic ErrP

classifier.

2.7. Experimental protocol

During the pre-trial period, the monitor displayed two squares, on the top part of the

screen, each with a 14 cm side. As depicted in Figure 1, one of the squares was filled

in white and the other square had no fill. The filled square represented the target of

the coming trial. The centres of the squares were 35 cm apart and their midpoint was

located 30 cm in front of the home position of the robot’s hand. On the bottom part

of the screen was a rectangle, representing the home position of the participant’s hand.

The position of the participant’s hand in relation to its home position was depicted by

a dot on the screen.

Participants could decide when to start a new trial and could rest for as long as

they needed in between trials. A trial started when the dot entered the rectangle. This

ensured that the participant’s hand was at a similar position at the beginning of each

trial. Participants were instructed to, when they felt ready to start a new trial, position

the dot representing their hand below the home position’s rectangle, fixate their gaze
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on the target and finally enter the rectangle from the bottom. This last step ensured a

forward movement of the robot. Participants were also asked to keep their gaze fixed at

the target during the entire trial in order to prevent eye movements.

The aim of each trial was to move the robot’s hand from its home position to the

target square. During the trials, only the two squares were displayed on the screen: the

white square representing the target and the square with no fill. A trial ended when

the robot’s hand was above the target or after 6 seconds (time out), in case the target

has not been reached. After the end of the trial (post-trial period), the target’s colour

changed from white to either green or red, for 1.2 s, indicating whether or not the target

was reached, respectively. This feedback was always in line with the robot’s behaviour.

Then, the screen turned black, the robot automatically returned to its home position

and a new pre-trial period would start.

2.7.1. Error trials In these trials, the paradigm triggered an error, during the

movement of the robot towards the target. The error consisted in interrupting the

participant’s control of the robot and adding a 5 cm upwards displacement to the robot’s

hand. The participants perceived the error by noticing the robot stopping and lifting and

by realizing that the control of the robot was lost. The errors occurred randomly, when

the robot’s hand was within 6 to 15 cm from its home position, in the forward direction.

For every error trial, this distance was drawn from a continuous uniform distribution.

In participants with SCI, the error onset occurred, on average, 1.36 ± 0.14 s after the

start of the error trial (mean ± std). In control participants, the error onset occurred,

on average, 1.30± 0.07 s after the start of the error trial (mean ± std).

We used the generic ErrP classifier in an asynchronous manner to give participants

feedback of the ErrP detections occurring after the error onset. Figure 2 illustrates

all the possible interactions between the participants and the robot during error trials,

taking into account the generic ErrP classifier feedback. If no ErrP was detected after

the error onset, the robot remained still for the rest of the trial. In this situation, the

total duration of the trial was 6 seconds and afterwards the target square turned red.

Differently, if an ErrP was detected by the classifier after the error onset, the robot’s

hand lowered 5 cm and the participants regained its control. The downward movement

informed the participants of the ErrP detection and consequent regain of control. Since

participants instinctively stopped their hand movement when noticing the error, they

were instructed to reinitiate the movement and move the robot’s hand to the selected

target when regaining control of the robot. To accommodate the extra movement, we

added 6 seconds to the maximal trial duration, once the first ErrP detection after the

error onset occurred. If the robot reached the target, after the error onset, the target

square turned green. Participants did not receive feedback of the false positive detections

occurring during the error trials, i.e., of the ErrP detections occurring before the error

onset. Prior to the experiment, participants were informed that errors would occur and

were shown the characteristic robot movement associated with error occurrence, i.e., the

robot stopping and lifting.
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2.7.2. Correct trials In these trials, the paradigm did not trigger any error.

Participants did not receive feedback of the false positive ErrP detections occurring

during the correct trials. Figure 2 illustrates all the possible interactions between

a participant and the robot during correct trials. Correct trials lasted, on average,

2.11 ± 0.17 s for participants with SCI and 2.05 ± 0.13 s for the control participants

(mean ± std). All participants reached the target in more than 99.4 % of the correct

trials.

2.8. Data processing

Eye movements and blinks were removed online from the EEG data, using the subspace

subtraction algorithm [48,49] and the eye movement data recorded right before the start

of the experiment. For the online detection of ErrPs with the generic classifier, the EEG

data were bandpass filtered between 1 and 10 Hz with a causal Butterworth filter of

order 4. For the offline electrophysiological analysis presented here, the EEG data were

bandpass filtered between 1 and 10 Hz with a noncausal Butterworth filter of order 4.

2.9. Defining events

In the error trials, we defined the error onset as the moment in which the robot started its

upwards displacement once the participant’s lost its control. Prior to the experiment, we

calculated the robot’s delay on 100 uncorrected errors, i.e., the time difference between

the error marker and the robot upwards displacement. This resulted in an average delay

of 0.225 ± 0.005 s (mean ± std). Since the robot’s delay was rather stable, we added

the average delay to each recorded error marker in order to obtain the error onset.

Correct trials had no clear onset. Therefore, to obtain comparable onsets in correct

and error trials for the electrophysiological analysis, we defined a virtual onset for the

correct trials at a time point in which errors could occur in the error trials. For every

participant, we defined the virtual onset for his/her correct trials as the average time

difference between the error onsets and the start of the corresponding trials. For the

participants with SCI, the correct onset occurred, on average, 1.36 ± 0.14 s after the

start of the correct trials (mean ± std). For the control participants, the correct onset

occurred, on average, 1.30 ± 0.07 s after the start of the correct trials (mean ± std).

2.10. Generic ErrP classifier

We built a generic error-related potential classifier using the EEG data from 15 able-

bodied participants of a previous study for ours [35]. None of these previous participants

took part in the experiment described here. The EEG data from those participants were

filtered between 1 and 10 Hz using a causal Butterworth filter of order 4. Eye movements

were removed from the data using the subspace subtraction algorithm [48].

For each participant from [35], we used the 8 calibration runs of the dataset and

extracted an epoch with 450 ms from every trial. In the error trials, the selected epoch
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started 300 ms after the error onset. In the correct trials, the selected epoch started

300 ms after the virtual onset. Hence, our initial features were the amplitudes of the 61

EEG electrodes at all the time points of the 450 ms of each epoch.

In order to remove outlier epochs, we first applied principal component analysis

(PCA) on the initial features and kept the PCA components that explained 99 % of

the data variability. Then, we removed 1 % of the correct epochs and 1 % of the error

epochs as outliers. The rejection criterion was based on a large Mahalanobis distance

of the rejected epochs within each class type (error or correct) in the PCA space. After

this step, 2475 correct epochs and 1059 error epochs were kept.

Finally, we repeated the PCA step on the initial feature space, after discarding

the outlier epochs, and kept as features the PCA components that preserved 99 % of

the data variability. This step resulted in 412 PCA components. These components

were then used as features to train a shrinkage-LDA classifier with two classes: error

and correct [50]. The linear scores of the classifier were transformed into probabilities

using a softmax function. The PCA components preserved most of the activity of

the original space, as depicted in Figure 2 of the supplementary material. Figure 3

of the supplementary material depicts the classifier pattern, obtained by applying the

discriminant feature analysis (DFA) method to the training matrix with 3534 epochs

and 412 features [51]. The generic classifier remained unchanged during the entire

experiment. In [45], we showed that the generic ErrP classifier offers a comparable

performance to a personalized ErrP classifier for the asynchronous detection of ErrPs.

Therefore, we chose not to retrain the classifier with the participants’ own data.

2.11. ErrP detection

Similarly to the classifier developed in [35], the generic classifier developed here was

constructed to be used and evaluated in an asynchronous manner. In the online

experiment, the incoming EEG signals were analysed in real-time by the ErrP classifier,

which received as input an EEG window of 450 ms. Consecutive analyzed windows had

a leap of 18 ms. The classifier’s evaluation of each window resulted in the probability

of the analysed window belonging to either class (correct or error). Hence, the classifier

produced a probability output every 18 ms, during the entire duration of each block.

We defined an ErrP detection when two consecutive windows had a probability of

belonging to the error class above a certain threshold τ . In [44], we evaluated offline the

asynchronous ErrP detection with the generic classifier and tested the effect of varying

the decision threshold. From [44] we concluded that the combination of the generic

ErrP classifier with a personalized decision threshold leads to the achievement of better

performances. Hence, in this online experiment, we decided to apply this strategy. The

procedure to determine the personalized thresholds is described in the section Tailoring

the decision threshold of the generic classifier to each participant.
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Figure 2: Experimental protocol and metrics. Graphical representation of the trial

structure, of the interaction between the participant and the robot during the trials, and

of the trial-based metrics used for the evaluation of the classifier. All the occurrences

that are not labelled nor detailed, inherit the corresponding description from the

preceding node.
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2.12. Metrics to evaluate the ErrP classifier

To evaluate the performance of the generic classifier, we considered the trial structure

of the experiment and the asynchronous nature of the decoding. The proposed metrics

assess a trial as successful or unsuccessful, based on the asynchronous detection of

ErrPs over the entire trial’s duration. This strategy has been applied to the study of

asynchronous detection of ErrPs and other event-related potentials, in several other

works [29–35,44, 45, 52–54]. Figure 2 presents a graphical representation of the metrics

proposed here. Correct trials were labelled negative and error trials were labelled

positive.

2.12.1. True negative trials We defined the true negative trials (TN trials) as the

correct trials in which no ErrP detection occurred during the entire trial duration. For

the classifier’s evaluation we considered the true negative rate (TNR): the fraction of

correct trials that are TN trials, i.e., that have no ErrP detections ‡.

2.12.2. True positive trials We defined the true positive trials (TP trials) as the error

trials in which no ErrP detection occurred before the error onset and at least one ErrP

detection occurred within the 1.5 s after the error onset. For the classifier’s evaluation we

considered the true positive rate (TPR): the fraction of error trials that were TP trials.

An additional metric, ErrP detection rate (EDR), considering only the ErrP detections

within the 1.5 s after the error onset, is defined in Figure 5 of the supplementary material,

where its relation with the TPR is detailed ‡.

2.12.3. Chance level To calculate the chance level for TNR and TPR we performed

several classifications with a classifier in which the training labels were randomly

permuted (500 times for the evaluation of the online detection with the generic classifier

and 50 times for the evaluation of the offline cross-validation with a personalized

classifier). Furthermore, we used permutation based p-values to present the significance

of the classification results obtained with the generic ErrP classifier [55,56].

2.13. False activation rate

The false activation rate (FAR) is the percentage of 1-second long intervals that are

contaminated with at least one false positive ErrP detection [57]. For this evaluation,

we considered the entire duration of correct trials and the period before the error onset in

error trials. These periods were divided into 1-second long intervals and these intervals

were evaluated for the presence of false positive ErrP detections.

‡ The metrics TNR and TPR used here address the asynchronous detection of ErrPs in a trial-based

scenario and are not directly comparable with the TPR and TPR definitions commonly used in time-

locked classification.
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2.14. Tailoring the decision threshold of the generic classifier to each participant

In [44] we evaluated offline the asynchronous detection of ErrPs with a generic classifier

similar to the one described here. There, we observed that the decision threshold τ

that maximized the group performance was τ = 0.7. Moreover, we also concluded that

in order to optimize the individual performance with the generic classifier, participants

benefit from the use of a personalized threshold. Therefore, in this experiment, we

decided to initiate the generic classifier with τ = 0.7 in the first block. This enabled us

to skip the offline calibration and allowed us to give participants immediate feedback

of their ErrP detections. Afterwards, we tailored τ to each participant. After each of

the first 3 blocks, we performed offline an asynchronous classification with the generic

ErrP classifier on all the available data and tested thresholds between 0 and 1 in steps of

0.025. For each of the 41 thresholds analysed, we calculated the corresponding TPR and

TNR. The TNR and TPR curves were further smoothed using a moving average with 7

samples. The smoothed curves were named smooth TPR and smooth TNR. For every

participant, we chose the threshold that maximized the product of the smooth TPR

and the smooth TNR. This was considered the threshold that maximized performance

and it was used in the next block. From block 4 onwards, the generic ErrP classifier

was combined with the threshold τ obtained after the third block. The generic ErrP

classifier was not retrained with the participants’ data and only the decision threshold

was updated based on the data.

2.15. Evaluation of the generic ErrP classifier

We stopped tailoring τ to each participant after the third block because we wanted to

collect a substantial amount of data in unchanged conditions. From blocks 4 to 8,

all participants used the generic classifier with a fixed but personalized threshold.

Therefore, we only use the data from blocks 4 to 8 to evaluate the performance of

the generic classifier, ensuring comparable conditions across the participants.

2.16. Personalized ErrP classifier

In order to evaluate, offline, the performance of a personalized classifier, we performed

10 times a 5-fold cross-validation in the entire dataset of each participant, where a

personalized classifier was tested in an asynchronous manner in each fold. There,

we also tested all thresholds from 0 to 1 in steps of 0.025. For every participant,

we obtained, in each fold, a TPR and a TNR for every threshold tested. For every

participant, we averaged the TPR and TNR of the 50 iterations in the cross-validation,

obtaining an average TPR and an average TNR per participant. Finally, we selected

the threshold that maximized the product of the average TPR and the average TNR,

for every participant. The evaluation of the personalized classifier followed the metrics

defined in the section Metrics to evaluate the ErrP classifier.
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3. Results

3.1. Neurophysiology

The electrophysiological results presented here comprise the entire recorded dataset.

Figure 3 shows the grand average correct and error signals at channel FCz (green and

red lines, respectively) for participants with SCI and control participants. The green

and red shaded areas depict the 95 % confidence interval for the grand average signals.

The vertical line at t = 0 s depicts the error onset of the error trials and the virtual

onset of the correct trials. For the participants with SCI, the grand average error signal

displays a negativity, with peak amplitude of −2.4 µV at time t = 0.154 s after the error

onset, followed by a positivity, with peak amplitude of 3.8 µV at time t = 0.332 s. For

the control participants, the grand average error signal displays a negativity, with peak

amplitude of −5.5 µV at time t = 0.176 s after the error onset, followed by a positivity,

with peak amplitude of 5.8 µV at time t = 0.334 s. The grand average correct signal

displays no particular peaks, both in participants with SCI and control participants.

Figure 3 displays also the topographic plots of the grand average correct and error

signals at the time points of the peaks of the grand average error signal.
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Figure 3: Grand average correct and error signals at channel FCz (green and red solid

lines, respectively) for participants with SCI and control participants. The shaded areas

represent the 95 % confidence interval of the grand average curves. The vertical black

line at t = 0 s represents the error onset of the error trials and the virtual onset of the

correct trials. The figure displays also the topographic plots of the grand-average correct

and error signals at the time points of the peaks in the grand average error signal.

As the morphology of the error signals was not homogeneous across participants,

we found it relevant to also present the electrophysiological results of the individual

participants. Figure 4 displays the average correct and error signals at channel FCz



Online asynchronous detection of ErrPs in participants with SCI 15

-0.5 0 0.5 1

-10

0

10 P1
-0.5 0 0.5 1

-10

0

10P2

-10

0

10 P3

-10

0

10P4

-10

0

10 P5

-10

0

10P6

-0.5 0 0.5 1

-10

0

10 P7

-0.5 0 0.5 1

-10

0

10P8

Correct Error

-0.5 0 0.5 1

-10

0

10 C1
-0.5 0 0.5 1

-10

0

10C2

-10

0

10 C3

-10

0

10C4

-10

0

10 C5

-10

0

10C6

-0.5 0 0.5 1

-10

0

10 C7

-0.5 0 0.5 1

-10

0

10C8

Time (s)

A
m

pl
itu

de
(µ

V
)

A
m

pl
itu

de
(µ

V
)

Time (s)

Participants with SCI Control participants

Figure 4: Average correct and error signals at channel FCz of every participant (green

and red lines, respectively). The shaded areas represent the 95 % confidence interval of

the average signals. The black line at t = 0 s represents the error onset of the error trials

and the virtual onset of the correct trials. The grey regions indicate the time points

in which correct and error signals were statistically different (Wilcoxon ranksum tests,

Bonferroni corrected, with α = 0.01).

(green and red lines, respectively) of every participant. The green and red shaded

areas depict the 95 % confidence interval for the average signals. The grey areas

indicate the time points in which correct and error signals were statistically different

(Wilcoxon ranksum tests, Bonferroni corrected, with α = 0.01). Figures 6 and 7 of the

supplementary material depict the topographic plots of the average correct and error

signals of every participant at different time points.
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Figure 5: Optimization of the decision threshold used with the generic ErrP classifier.

Top: Evolution of the decision threshold: Initial threshold (τ = 0.7) and the calculated

thresholds after each of the first 3 blocks, for every participant. Bottom: TNR and

TPR obtained offline, after the third block (dashed green and red lines, respectively) and

the corresponding smooth curves (green and red solid lines). The blue line represents

the threshold that maximizes the product of the smooth curves, which is represented

with a black dotted line.
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3.2. Adaptation of the classifier’s threshold in the first three experimental blocks

This experiment required no offline calibration and the participants received feedback

regarding their ErrP detections from its very beginning. This was possible by combining

the generic ErrP classifier with a generic decision threshold (τ = 0.7) for the first

experimental block. Still, we used the first three experimental blocks to reach a

fixed personalized decision threshold. After each of the first three blocks, we updated

the decision threshold τ in order to maximize the participant’s performance. Hence,

participants used a generic classifier combined with a personalized decision threshold

from block 2 onwards. Figure 5 (top) depicts the initial threshold (τ = 0.7) and the

calculated thresholds after each of the first 3 blocks, for every participant. At the end of

block 3, the average threshold was τ = 0.68 for the participants with SCI and τ = 0.59

for the control participants. Figure 5 (bottom) shows the TNR and TPR obtained offline

after block 3, for all the tested thresholds (green and red dashed lines, respectively). It

also shows the smooth TNR and smooth TPR, obtained with a moving average (green

and red solid lines). The black dotted line depicts the product of these smooth curves

and the blue vertical line indicates the threshold that maximizes it. This is the decision

threshold used for every participant from blocks 4 to 8.

3.3. Evaluation of the online asynchronous classification with a generic ErrP classifier

To evaluate the asynchronous classification results obtained with the generic ErrP

classifier during the experiment, we only considered the data of the last five blocks

of the experiment, i.e., from blocks 4 to 8, since no parameters were changed during

these blocks.

Figure 6 (top) depicts the classification results obtained with the generic classifier

in terms of true positive rate (TPR) and true negative rate (TNR). For participants

with SCI, we obtained an average TPR of 46.9 % and an average TNR of 71.9 %. For

control participants, we obtained an average TPR of 56.4 % and an average TNR of

77.9 %. The circles on the individual bars represent the chance level of the corresponding

metrics. The chance level results for each participant were obtained by averaging

the classification results of 500 classifiers in which the training labels were randomly

permuted and by considering the final participant-specific threshold, as depicted in

Figure 4 of the supplementary material. Figure 6 (bottom) presents the permutation

based p-values regarding the significance of the classification results [55, 56]. Figure 5

of the supplementary material depicts the comparison between the metrics TPR and

EDR. Table 1 of the supplementary material presents the false activation rate (FAR) in

correct and error trials.

Figure 7 illustrates the online asynchronous detection of ErrPs and the trials’ offline

evaluation for participant C1. The dark grey areas represent the trials and the white

marks within them represent the ErrP detections. The narrow rectangles colour code the

trials’ offline evaluation. In these rectangles, trials successfully classified (true positive

trials and true negative trials) are coded in white and trials with false positive ErrP
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Figure 6: Evaluation of the generic ErrP classifier. Top: Classification results in terms

of true positive rate (TPR) and true negative rate (TNR). The circles on the individual

bars represent the chance-level of the corresponding metrics. Bottom: Permutation

based p-value regarding the significance of the results obtained with the classifier.

detections are coded in grey. The error trials with no ErrP detection are coded in black.

3.4. Offline evaluation of the asynchronous ErrP classification with a personalized

classifier

To evaluate offline the asynchronous classification results with a personalized classifier,

we considered the 8 experimental blocks and performed 10 times a 5-fold cross-

validation. As this evaluation was done offline, we tested thresholds from 0 to 1 with a

leap of 0.025 and the results obtained are shown in function of the threshold τ .

Figure 8 depicts the grand average TNR and TPR (green and red solid lines,

respectively) as well as the grand average chance level for TNR and TPR (green and

red dashed lines, respectively) in function of the threshold. The shaded areas represent

the 95 % confidence intervals of the grand average curves. The chance level curves were

obtained by performing 10 times a 5-fold cross-validation with 50 classifiers in which

the labels of the training trials were randomly permuted.

Figure 9 depicts, for every participant, the average TNR and TPR (green and red

solid lines, respectively) and the chance level TNR and TPR (green and red dashed

lines, respectively). The blue vertical line indicates the threshold that maximizes the

individual performance with the personalized ErrP classifier.
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Figure 7: Online detection of ErrPs and trials’ offline evaluation for participant C1.

Left: Error trials, aligned to the error onset (black vertical line). Right: Correct trials,

aligned to the start of the trial. The dark grey areas represent the trials and the white

marks within them represent the ErrP detections. The narrow rectangles colour code the

trials’ offline evaluation. In these rectangles, trials successfully classified (true positive

trials and true negative trials) are coded in white and trials with false positive ErrP

detections are coded in light grey. Error trials with no ErrP detections are coded in

black.
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Figure 8: Evaluation of the personalized ErrP classifier. Grand average TNR and

TPR (green and red solid lines, respectively) and grand average chance level TNR and

TPR (green and red dashed lines, respectively) in function of the threshold. The shaded

areas indicate the 95 % confidence interval for the grand average curves.
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Figure 9: Evaluation of the personalized ErrP classifier. Single subject average TNR

and TPR (green and red solid lines, respectively) and chance level TNR and TPR in

function of the threshold (green and red dashed lines, respectively). The shaded areas

indicate the 95 % confidence interval for the average curves. The blue vertical line

indicates the threshold that maximizes the individual performance.

Figure 10 depicts the average TNR and TPR obtained in the cross-validation, when

using the optimal personalized decision threshold for every participant (green and red

bars, respectively). The small circles on the bars indicate the chance level obtained

for every participant with the considered threshold. For participants with SCI, the

grand average TNR was 77.9 % and the grand average TPR was 55.0 %. For control

participants, the grand average TNR was 86.1 % and the grand average TPR was 71.5 %.
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Figure 10: Evaluation of the personalized ErrP classifier. Average TNR and TPR

calculated from the cross-validation procedure, with the optimal personalized threshold,

for every participant and their average. The small dots on each bar indicate the chance

level with the considered threshold, for every participant.

4. Discussion

In this work we investigated the transfer of a generic ErrP classifier from able-bodied

participants to participants with SCI. The classifier was developed using the data

from able-bodied participants from a previous experiment of ours [35] and was tested

asynchronously in a closed-loop online experiment in which participants with SCI and

able-bodied control participants took part. Using the classifier asynchronously, the

entire trials were evaluated and not only a time-locked window. The online experiment

required no offline calibration period and the participants received feedback of the ErrP

detections immediately from the start of the experiment onwards. Additionally, we also

analysed the morphology of error-related potentials in participants with SCI and in

able-bodied control participants.

The grand average correct signal displayed, as expected, no particular potential

both in participants with SCI and in control participants. The correct epochs correspond

to the period in which the participants were continuously controlling the robot and were

not associated with any specific event. The grand average error signal was associated

with a fronto-central activity both in participants with SCI and control participants.

The peaks of the grand average error signal were less pronounced in participants with

SCI than in control participants, as visible in Figure 3. This matches the results

described in [46]. Nevertheless, the electrophysiological patterns of participants with

SCI were rather heterogeneous and half of the participants with SCI did not display the

characteristic error-related activity (participants P4, P5, P7 and P8). The remaining

participants with SCI revealed patterns comparable to control participants. Therefore,

we believe that in our study the decrease in peak amplitudes observed in the grand

average error signal of participants with SCI is not directly related with the injury, but

rather a consequence of heterogeneity of the signals in the population with SCI. Several

studies reported the effect of psychological factors, such as depression and anxiety, on
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error-related potentials [58, 59]. The population with SCI is particularly vulnerable

to emotional disorders and higher levels of distress [60–62]. Nevertheless, individual

differences are large [62]. To consider a psychiatric evaluation and medication of the

participants would have been valuable for the current work and should be considered

in future studies involving a population with SCI [63]. Interestingly, the error signals

of control participants were also less homogeneous than in our previous studies with a

similar experimental protocol [34, 35]. Several studies showed that ageing affects error

processing and consequently the error-related potentials, hence we hypothesise that the

higher variability observed in the signals of control participants of this study is related

to the wider age range of the participants in comparison with previous studies [64–66].

In order to interpret the classification results we focus on the TPR. This metric

considers an interval after the error onset and the period before the error onset. Hence, it

translates not only the classifier’s ability to decode ErrPs after the occurrence of an error

but also its ability to not detect ErrPs when no error occurs. The TNR only captures

the classifier’s ability to not detect ErrPs when no error occurs. It is still a meaningful

metric but the TNR’s outcome can be artificially increased by the use of a high decision

threshold, as depicted in Figure 4 of the supplementary material. The classification

results of the generic classifier were, on average, lower in participants with SCI than

in control participants. Only half of the participants with SCI obtained a TPR above

chance level. These participants were the ones that displayed clear error patterns. In the

control participants, seven out of eight participants obtained a TPR above chance level.

The remaining participant (participant C5) did not obtain a TPR above chance level and

did not display a very clear error signal. Summarizing, all participants that displayed

clear ErrP patterns in the electrophysiological analysis obtained above chance level

results with the generic classifier, independently of the group (SCI or control). It would

be rather interesting to further investigate the factors that affect the error patterns,

independently of the spinal cord injury. These results support that using a generic ErrP

classifier is a valuable option to give immediate feedback to the participants. Moreover,

it indicates that ErrPs are transferable across participants, and that the transfer can be

applied to distinct populations, such as participants with SCI.

With the generic classifier developed, participants received real-time feedback of the

ErrP detections from the beginning of the experiment. Still, the first three blocks of the

experiment were used to update the threshold applied to the generic classifier. We made

this choice because we had previously shown that some participants strongly benefit

from combining the generic ErrP classifier with a personalized decision threshold [44].

For most participants, the threshold was relatively stable after the first block. This

supports the use of a personalized threshold with the generic classifier, as suggested

in [44]. In a real-world online application, the occurrence of errors can not be easily

assessed, since it is determined by a subjective perception of the BCI user. Such a

constraint hinders an objective evaluation of any ErrP classifier, unless the participants

can use a motor-based strategy to report the occurrence of errors. Still, our approach

could be applied to a real-world asynchronous situation in which the occurrence of errors
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is unknown. Nevertheless, in order to establish a personalized decision threshold, our

approach would need, beforehand, a short online application in which the occurrence of

errors is known. Such application could be the equivalent of one of our experimental

blocks, which contained 9 errors and lasted less than 5 minutes.

In our experiment, we only gave participants feedback of the ErrPs detected after

the error onset. This aimed to assure that participants experienced the same number of

errors and had comparable expectations regarding the occurrence of errors. Providing

participants with feedback of the false positive ErrP detections would have brought

our experiment closer to a real-world application at the cost of putting participants

in dissimilar circumstances, given that false positive ErrP detections could affect their

behaviour and the generation of ErrPs. For instance, participants with many false

positive ErrP detections would certainly be affected by the feedback in a negative

manner. Either by losing engagement or by disregarding the feedback. Such participants

would no longer perceive the errors as meaningful and relevant and this could alter their

ErrPs.

When testing offline, the asynchronous classification with a personalized classifier,

two participants with SCI (participants P4 and P5) and one control participant

(participant C5) obtained chance level TPR results. This indicates that the signals

of these participants were not sufficiently different to build a personalized classifier

and these participants obtained chance level results with both generic and personalized

classifiers.

The classification results obtained with the personalized classifier are not directly

comparable with the results obtained with the generic classifier because the classifiers

were evaluated on different datasets. In a real-world scenario, we could provide

participants immediate feedback of their brain signals using a generic classifier, while

collecting data to train a personalized classifier. Simultaneously, we could compare, at

regular intervals, the performance of the personalized and generic classifiers and swap

the generic classifier for a personalized classifier, once the latter would grant significantly

better performance.

5. Conclusion

Our work shows that a generic ErrP classifier can be used, asynchronously and online, by

participants with SCI and able-bodied participants. Moreover, the generic ErrP classifier

is transferable from an able-bodied population to a population with SCI. The developed

classifier required no previous calibration with the participant and granted immediate

feedback of the ErrP detections. Therefore, our findings can help to widespread the

incorporation of ErrPs in BCIs for different types of users.
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Figure 1 shows the location of the 61 EEG electrodes used in the experiment. Figure 2

displays the grand average of the features used to train the generic ErrP classifier.

Figure 3 depicts the pattern of the generic ErrP classifier. Figure 4 displays the average

TPR and TNR obtained from 500 generic classifiers in which the training labels were

randomly permuted. Figure 5 defines the metric ’ErrP detection rate’ and depicts it

together with the true positive rate, for all participants. Table 1 presents the false

activation rate of every participant for correct and error trials. Figures 6 and 7 display

the topographic plots for correct and error signals at different time points for participants

with SCI and control participants.

Figure 1: Layout of the EEG electrodes: Location of the 61 EEG electrodes used

in the experiment. The ground electrode was placed at position AFz and the reference

electrode was placed on the right mastoid.
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Figure 2: Grand average features of the generic classifier. Left: Grand average of the

1059 error epochs and of the 2475 correct epochs of the original feature space. Middle:

Grand average of the projection into the temporal-spatial domain of the training matrix

with 412 features, for error and correct epochs. The 412 features correspond to the

principal components (PC) retained after PCA. Right: Difference between the grand

average of the original feature space and the grand average of the projection of PCA

features. The channels are ordered from left to right and from front to back.
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Figure 3: Generic classifier pattern: Pattern obtained by applying the discriminative

feature analysis (DFA) method to the training matrix with 3534 trials and 412 features,

used to train the shrinkage LDA classifier. The channels are ordered from left to right

and from front to back.
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Figure 4: Chance level of the generic ErrP classifier: Average TPR and TNR obtained

from 500 generic classifiers in which the training labels were randomly permuted (dashed

red and green lines, respectively). These classifiers were evaluated on blocks 4 to 8

of every participant. The shaded areas indicate the 95 % confidence interval of the

average curves. The vertical blue line indicates the threshold used for every participant

during blocks 4 to 8 of the online experiment, obtained as described in Figure 5 of the

manuscript. The chance levels depicted in Figure 6 of the manuscript, result from the

intersection of the vertical threshold line with the average curves of TNR and TPR.



Online asynchronous detection of ErrPs in participants with SCI 4

Avg. P1 P2 P3 P4 P5 P6 P7 P8
0

10
20
30
40
50
60
70
80
90

100

(%
)

Participants with SCI

Avg. C1 C2 C3 C4 C5 C6 C7 C8
0

10
20
30
40
50
60
70
80
90

100

(%
)

Control participants

True Positive Rate ErrP Detection Rate

Figure 5: ErrP detection rate with the generic classifier: Definition of the metric

ErrP detection rate (EDR) and its comparison with the metric true positive rate. The

ErrP detection rate captures the portion of error trials in which at least one ErrP was

successfully detected in the 1.5 s after the error onset, independently of the classifier

output before the error onset. The ErrP detection rate is less restrictive than the

true positive rate. The difference between ErrP detection rate and true positive rate

captures the portion of error trials in which a false ErrP detection occurred before the

error onset despite at least one successful ErrP detection also occurred in the assigned

1.5 s. In participants with SCI, the average ErrP detection rate was 67.2 %. In control

participants, the average ErrP detection rate was 71.1 %.



Online asynchronous detection of ErrPs in participants with SCI 5

Participants with SCI

FAR (%) Total nr of sec

Correct Error Correct Error

P1 13.9 23.9 172 46

P2 12.1 14.0 215 50

P3 14.2 27.9 141 43

P4 20.4 25.0 167 40

P5 36.6 17.9 142 39

P6 11.0 23.7 118 38

P7 22.1 21.6 131 37

P8 16.8 32.5 154 40

Control Participants

FAR (%) Total nr of sec

Correct Error Correct Error

C1 3.5 9.1 173 44

C2 6.3 14.3 113 42

C3 2.3 4.7 174 43

C4 11.1 9.7 117 31

C5 27.9 33.3 147 39

C6 23.8 30.4 168 46

C7 25.2 20.9 147 43

C8 20.0 35.0 153 40

Table 1: False activation rate (FAR). The false activation rate in correct and error trials

is denoted by FAR. The total number of 1-second long intervals evaluated in correct and

error trials is denoted by Total nr of sec.
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Figure 6: Participants with SCI: Topographic plots at different time points for error

and correct signals (top and bottom row, respectively) for participants with SCI.
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Figure 7: Control participants: Topographic plots at different time points for error

and correct signals (top and bottom row, respectively) for control participants.
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