
Philipp Gabler, BSc

Automatic Graph Tracking
in Dynamic Probabilistic Programs

via Source Transformations

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme:

Computer Science

submi�ed to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr. mont. Franz Pernkopf

Co-supervisor

Dipl.-Ing. Dr. Martin Trapp, BSc

Institute of Signal Processing and Speech Communication

Faculty of Electrical and Information Engineering

Graz, December 2020

Es macht so glücklich, Computer zu sein:
alle Schererein

verwandeln sich in Rechnerei
und gehn in Millionstel Sekunden vorbei.

In wenigen “bit”
kriegst du die ganze Weltordnung mit

im Grund
heißt die Frage ja immer “Sein oder Nichtsein”,

die erledigst du sogar ohne Und,
den ganzen Moder

mit einem einzigen Oder.
Andreas Okopenko

iii

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to tugrazonline is identical to the
present master‘s thesis.

Date Signature

v

This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

All code samples, unless otherwise noted or cited from other sources,
are also available under the mit license:

The MIT License (MIT)

Copyright (c) 2020 Philipp Gabler

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The LATEX source of this document is available at
https://github.com/phipsgabler/master-thesis

or upon request from the author∗.

∗<first name>.<last name>@protonmail.com

vii

http://creativecommons.org/licenses/by-sa/4.0/
http://opensource.org/licenses/MIT
https://github.com/phipsgabler/master-thesis

Abstract

This thesis presents a novel approach for the implementation of a tracking
system to facilitate program analysis, based on program transformations. The
approach is then applied to a speci�c problem in the �eld of probabilistic
programming.

The main contribution is a general system for the extraction of rich com-
putation graphs in the Julia programming language, based on a transformation
of the intermediate representation (IR) used by the compiler. These graphs
contain a slice of the whole recursive structure of any Julia program in terms
of executed IR instructions, including control �ow operations. The system is
�exible enough to be used for multiple purposes that require dynamic pro-
gram analysis or abstract interpretation, such as automatic di�erentiation or
dependency analysis.

The second part of the thesis describes the application of this graph track-
ing system to probabilistic programs written for Turing.jl, a probabilistic
programming system implemented as an embedded language within Julia.
Through this, an executed Turing model can be analysed, and the dependency
structure of involved random variables be extracted from it. Given this struc-
ture, analytical Gibbs conditionals can be calculated for a large set of models
and passed to Turing’s inference mechanism, where they are used in Markov
Chain Monte Carlo samplers approximating the modeled distribution.

ix

https://github.com/search?q=Turing.jl&type=Repositories

Acknowledgements

Better late than never. I owe great thanks to:
• Martin Trapp, for neverlasting encouragement and help;
• Franz Pernkopf, for all the freedom;
• Hong Ge & the Turing Team, for giving my work a basis and meaning;
• the Julia Community, for making all the work possible;
• the best of all parents, for their unbounded support.

xi

Contents

Notation xv

1 Introduction 1
1.1 Scope . 3
1.2 Related Work . 4

2 Background 7
2.1 Bayesian Inference and MCMC methods 7
2.2 Probabilistic Programming . 12
2.3 Compilation and Metaprogramming in Julia 17
2.4 Automatic Di�erentiation and Computation Graphs 25

3 Implementation of Dynamic Graph Tracking in Julia 31
3.1 Extended Wengert Lists . 32
3.2 Automatic Graph Tracking . 33
3.3 Evaluation . 38

4 Graph Tracking in Probabilistic Models 41
4.1 Dependency Analysis in Dynamic Models 41
4.2 Automatic Calculation of Gibbs Conditionals 46
4.3 Evaluation . 50

5 Conclusion 61
5.1 Future Work . 62

A Mathematical Details 67
A.1 Measure Theory in Probability Theory 67
A.2 Details of Automatic Di�erentiation 68

Bibliography 75

xiii

Notation

P[K ∈ � | - = G] Random variables and their realizations will usually be
denoted by upper and lower case letters, respectively (with
occasional exceptions for Greek variable names). Sets are
also named by uppercase letters.

E [-],V- [5 (-,.)] Expectation and variance; if necessary, the variable with
respect to which the moment is taken is indicated as a
subscript.

q (G), 5/ (G) Density functions are named using letters commonly used
for functions, with an optional subscript indicating the
random variable they belong to. Densities always come
with implied base measures depending on the type of the
random variable.

? (G,~ | I) The usual abuse of notation with the letter “p” standing for
any density indicated by the names of the variables given
to it is used when no confusion arises (in this case, 5-,. |/
is implied). A @ may be used as well, mostly for proposal
distributions or unnormalized densities.

P[- ∈ �] = %- (�) =
∫
�
?- (G) d` (G)

A capital % with subscript is used for the probability mea-
sure associated with a random variable.

P[- ∈ dG] = %- (dG) = ?- (G) d` (G)
Di�erentials of this form are used to concisely express
densities of random variables, i.e., Radon-Nikodym deriva-
tives of the associated probability measure. The example
is equivalent to the statement d%-

d` = ?- .
-8 ∼ Normal(`, f) The tilde notation for describing random variables is used

throughout, often without explicitly specifying depen-
dence or independence, where understood from context.
Named distributions that are not themselves random vari-
ables are spelled out in upright script.

. ∼ @(·, -8−1) The same notation is used when a random variable is spec-
i�ed to be sampled from a given, possibly unnormalized,

xv

density. In this context and elsewhere, the midpoint is
employed to denote anonymous functions of one variable
given by partial application.

~ ↦→ ? (G | ~, I) Anonymous functions are distinguished from function
evaluation; this is crucial to di�erentiate between proba-
bility densities and likelihoods, for example.∫

? (G) dG = 1 Integrals over the whole domain of a density or measure
are written as inde�nite integrals, where the usage is clear.

1(I= = :) Indicator function. The value is 1 when the predicate inside
holds, and 0 otherwise.

[G,~, I] =
(
G
~
I

)
For consistency with Julia code, vectors (arrays of rank 1)
are written in brackets, with elements separated by com-
mas. Thereby, the form written in a row denotes a column
vector; actual row vectors are written as transposed col-
umn vectors.

K (:) = [K (:)1 , . . . ,K
(:)
#
] Superscript indices in parentheses are used for series or se-

quences of variables, and subscript indices for components
of multivariate variables.

I−8 = [I1, . . . , I8−1, I8+1, . . . , I#]
Negative indices denote all components of a variable with-
out the negated one.

5 .(G, 1) = [5 (G1, 1), . . . , 5 (G# , 1)]
Function application with a period indicates vectorized ap-
plication, as in Julia code∗: the function is applied over all
elements of the input arrays individually, whereby arrays
of lower rank or scalars are “broadcasted” along dimen-
sions as necessary.

D� (G , ~) = (J 1 , J 2) ↦→ m 1� (G , ~) J 1 + m2� (G , ~) J 2
Derivatives are written using a capital D for a total deriva-
tive operator (like the Fréchet derivative), and m8 for the
conventional partial derivatives with respect to the 8-th
argument.

f(x) = rand(x) Julia code (including identi�ers mention in the text) is
always typeset in typewriter font.

IRTracker.jl Julia packages are set in the same font as Julia code. In
the electronic version, a hyperlink to their source code on
Github is automatically added.

∗See https://docs.julialang.org/en/v1/manual/functions/#man-vectorized-1

xvi

https://github.com/search?q=IRTracker.jl&type=Repositories
https://docs.julialang.org/en/v1/manual/functions/#man-vectorized-1

1 Introduction

This chapter gives an overview over the scope of the thesis and existing approaches
in the literature. It is based on Gabler et al. (2019), which presents a preliminary
version of this work.

In machine learning, several methods make use of computation graphs of
programs that represent mathematical expressions. One example is automatic dif-
ferentiation (AD), which derives new expressions from an expression that usually
represents a loss function, to calculate its gradient (Gebremedhin & Walther 2020;
Griewank & Walther 2008). AD is a special case of more general message passing
algorithms (Minka 2005; Minka 2019; Ruozzi 2011), which all require a graph as basic
data structure for the operation they perform: there, values are passed between
nodes, representing variables in a domain that depend on each other. Moreover, in
other �elds, such as program analysis or program transformation (cf. Aho, Sethi
& Ullman 1986; Muchnick 1997; Singer 2018), the same requirements might occur
through the need to derive abstract graphs of program �ow from a given program.

There are several options how to extract the computation graph in question,
many of which are already established in the AD community (see Baydin et al. (2018)
for a survey on AD methods). For one, graphs can be required to be written out
explicitly by the user, by providing a library to build graphs “by hand” (e.g. Chewxy
et al. (2020) and Jia et al. (2014)) in a more low-level application programming
interface (API). Alternatively, there are higher-level APIs like PyTorch (Paszke et
al. 2017) or AutoGrad (Maclaurin, Duvenaud & Adams 2015), where graphs are
recorded implicitly by executing a forward program written in more declarative
style (TensorFlow (Abadi, Agarwal, et al. 2015) is somewhere between these). Such
APIs are called operator overloading in AD terminology, because they extend existing
operations to additionally track the computation graph at run-time on so-called tapes
or Wengert lists (Bartholomew-Biggs et al. 2000). This kind of tracking is dynamic,
in the sense that a new graph is recorded for every execution. However, being
implemented on a library level, it usually requires the programmer to use non-native
constructs instead of language primitives, leading to cognitive overhead, while it
also makes the applicability limited to library functions and not easily extensible.
This notably happens for control statements, which can rarely be “overloaded”.
Furthermore, there are additional run-time costs due separate interpretation of
derivative graphs.

1

Alternatively, an implementation can allow the user to write out computations
as a “normal” program in an existing programming language (or possibly a restricted
subset of it), and use program transformation techniques to extract graphs from
the input program. Such meta-programs, known as source transformations, can in
turn operate on plain source code (cf. Tapenade, Tapenade developers (2019)), or on
another, more abstracted notion used by the programming language infrastructure,
like the abstract syntax tree (AST), or an intermediate representation (IR). They
operate on the syntactic structure of the whole program, during or before compi-
lation. Unlike in operator overloading, it is hence possible to inspect and exploit
control structures directly. This can lead to more e�cient results, compared to
operator overloading, since the transformation is done only once per program and
eligible for compiler optimizations. Whereas the user is not restricted to the domain
speci�c language provided by a library, and can use regular language constructs,
data structures, and custom functions rather freely, in this approach, usually, no
records of the actual execution paths are constructed explicitly. Only purely static
information is used only at compile time, and cannot be accessed for further analysis
or transformation during execution. (See section 2.4 for a more in-depth treatment
of automatic di�erentiation techniques.)

For probabilistic programming languages, there exist mainly two paradigms for
handling program structure (van de Meent et al. 2018). In the case of evaluation-
based systems (e.g., Turing.jl (Ge, Xu & Ghahramani 2018), Gen.jl’s dynamic
interface (Cusumano-Towner 2020), Church (Goodman, Mansinghka, et al. 2012),
Anglican (Wood, van de Meent & Mansinghka 2015), Pyro (Bingham et al. 2018)), no
structure is extracted at all. The interaction between the system and user programs
consists only of a sequence of messages (in an abstract sense), indicating “events”
that can be taken up by inference algorithms. In graph-based systems, an static
representation of the model is �rst constructed and then passed to the inference
algorithm. This representation can be close to probabilistic graphical models (as
in ForneyLab.jl (Cox, van de Laar & de Vries 2018), Venture (Mansinghka, Selsam
& Perov 2014), PyMC3 (Salvatier, Wiecki & Fonnesbeck 2016)), symbolic (as in
Gen.jl’s static interface, and Soss.jl (Scherrer 2019)), or more compiler-oriented as
in Stan (Carpenter, Gelman, et al. 2017), BUGS (Lunn, Thomas, et al. 2000), or JAGS
(Plummer 2003).

In a variety of modeled domains, though, the execution path of programs can
drastically change at each run. Examples of this are implementations of models
containing non-uniform data, such as parse trees (Socher et al. 2011) or molecular
graphs (Bianucci et al. 2000), of Bayesian nonparametric models (Hjort et al. 2010),
or simply the occurrence of stochastic control �ow in any probabilistic model. We
call such models dynamic. The lack of an explicit, unique graph structure makes
it impossible, or at least di�cult, to apply source transformation approaches on
their implementation. Operator overloading is the more direct way for supporting
dynamic models, since it automatically records a new tape for each input. In fact,
many of the already mentioned state-of-the-art machine learning libraries are based
on dynamic graphs using operator overloading in some form.

2

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Gen.jl&type=Repositories
https://github.com/search?q=ForneyLab.jl&type=Repositories
https://github.com/search?q=Gen.jl&type=Repositories
https://github.com/search?q=Soss.jl&type=Repositories

Reliance on operator overloading makes it impossible to take advantage of the
bene�ts of source transformations, such as utilizing information about control �ow,
integrating with optimizations at compile time, or exploiting the source model
structure. A source transformation approach based on intermediate compiler rep-
resentations has recently gained popularity in machine learning, and promises to
resolve this dilemma; see Bradbury et al. (2018) and Lattner et al. (2020). While the
main focus of these e�orts has been optimization of linear algebra/tensor calculations
and automatic di�erentiation, other use cases start to emerge, for example automatic
detection of sparsity patterns (Gowda et al. 2019).

1.1 Scope

Computation graphs are thus a required resource for many algorithms. In this
thesis, I present a novel variant of automatic extraction of computation graphs
suitable for static and dynamic models, using IR-based source transformation instead
of operator overloading. Inspired by recent work on di�erentiable programming
(Innes 2018), the approach transforms the intermediate representation used by the
compiler of the Julia programming language. This system can be used to dynamically
track computation graphs of any Julia program, including machine learning models
and probabilistic programming systems, without having to explicitly declare graph
structures.

The transformation is implemented as a custom part of the compilation process.
Its result is passed back to the compiler, where it can be optimized further. At run
time, both data and control path are tracked alongside the original calculations, in
the form of a nested data structure. This data structure contains all functions called
during execution, enriched by recorded control �ow decisions and possibly meta-
information that can be used to analyse the execution. Thus, the system combines
advantages of a source transformation with a tape-based run-time approach.

The extracted graphs can be used for various applications in which computation
graphs are required. It is possible to implement automatic di�erentiation on top of it,
as well as other algorithms that can be formulated via message-passing (Minka 2005;
Minka 2019), and methods that operate on run-time dependency graphs, from simple
debugging to concolic execution (Sen, Marinov & Agha 2005; Zeller et al. 2019). As a
speci�c use case in the �eld of Bayesian inference, a dependency tracking system for
a class of models in the Julia-base probabilistic programming language Turing.jl

has been implemented. This system allows to extract the graphical model underlying
a probabilistic program, by recovering the factorization structure of the random
variables and intermediate transformations. On top of this, Gibbs conditionals can
automatically be derived for the models and used in compound MCMC algorithms,
similar to JAGS and BUGS.

3

https://github.com/search?q=Turing.jl&type=Repositories

1.2 Related Work

The topic of this thesis crosses several disciplines – at least automatic di�erentiation,
compiler and programming language theory, and probabilistic programming. Since
these have not always worked together, similar principles may be have been found
or (re-)introduced in each of them.

Automatic di�erentiation has a long history, in which di�erent styles became
more or less fashionable depending on the dominating use-case and available lan-
guages and infrastructure. Traditionally, numerical code in Fortran or C was di�eren-
tiated by whole-source transformation systems like Tapenade (Tapenade developers
2019). After phase of many operator overloading systems that were driven by the
rise of deep learning (Abadi, Agarwal, et al. 2015; Neubig et al. 2017; Paszke et al.
2017; Tokui et al. 2015), compiler-based approaches have regained popularity. More
recently, there have been e�orts to add built-in automatic di�erentiation to the Swift
programming language in Swift for TensorFlow (TensorFlow Developers 2018), and
work in Julia for Zygote.jl (Innes 2018). Both started to apply source transformation
to the intermediate representation of the compiler, which enables e�ortless di�eren-
tiation through complex control �ow, custom data types, and nested functions. A
similar approach to Zygote.jl is taken in Python with Tangent (van Merrienboer,
Moldovan & Wiltschko 2018).

Generalizations of the kinds of analyses and transformations used in these
systems can be found under multiple terms in the compiler literature: data- and
control-�ow analysis, information propagation, or abstract interpretation (Muchnick
1997; Singer 2018). There, the program structure is always assumed to be known
statically, though, as compilers fundamentally are source transformers. Closest
to an evaluation-based analysis are concolic execution methods (Sen, Marinov &
Agha 2005; Zeller et al. 2019), in which a given program is “instrumented” through
additional instructions that, next to the concrete evaluation, track the execution in
symbolic form (hence the name). The symbolic information can then be used in
formal methods to, for example, �nd sets of program input that ensure complete test
coverage of all branches. There already exists a proof-of-concept implementation of
a concolic fuzzer in Julia (Churavy 2019), which applies the same kind of IR-based
transformations as Zygote.jl (cf. discussion in section 3.3).

These information propagation methods, most of which �nd solutions to (poten-
tially recursive) equations de�ned over program structure, can in turn be seen as
a form of message passing, under which not only a variety of learning algorithms
can be summarized (Minka 2005), but also automatic di�erentiation (Minka 2019)
and gradient based optimization (Dauwels, Korl & Loeliger 2005). Other forms of
abstract analysis exist for program optimization, e.g., sparsity detection in numerical
programming (Gowda et al. 2019), or the detection of parts of probabilistic programs
that need not to be reevaluation after input changes (Becker 2020).

Many implementations of these methods do not use the original form of the
program, but a syntactically simpli�ed lowered form. Such forms can be dependency
graphs as used in compiler theory, or the intermediate languages used by actual

4

https://github.com/search?q=Zygote.jl&type=Repositories
https://github.com/search?q=Zygote.jl&type=Repositories
https://github.com/search?q=Zygote.jl&type=Repositories

compiler implementations. These can take portable, language independent forms as
in LLVM (LLVM Project 2019), or be special to a particular compiler implementation,
as in Julia (Bezanson, Edelman, et al. 2017) or Swift (Apple 2020). As these two lan-
guages illustrate, there are often even multiple layers of intermediate representations
used in the same system.

Lately, special intermediate representations for machine learning applications
have been introduced. One of them is the machine learning intermediate representa-
tion (MLIR, Lattner et al. (2020)), with the purpose of forming a reusable mid-layer
between programming languages and run-time systems, featuring exchangeability
between di�erent machine learning frameworks and “accelerators” (processing hard-
ware, such as CPUs, GPUs, and TPUs), while taking advantage of modern compiler
technology like LLVM. Another one is Swift’s intermediate representation (SIL),
which is used in the Swift for TensorFlow project. JAX (Bradbury et al. 2018) plays a
similar role for expression-graph based machine learning systems, by tracing Python
functions and compiling their graphs directly to optimized code. This system can
interact with XLA (“accelerated linear algebra”, TensorFlow Developers (2020)),
which allows to compile sequences of numerical Python functions, which would
otherwise be slow, to e�ciently fused platform code.

As for the trade-o� between transformation-based and evaluation-based im-
plementations, several hybrid graph tracking approaches between source transfor-
mation and graph tracking exist. Among AD systems, recent TensorFlow versions
have introduced AutoGraph1, which rewrites regular Python functions to traced
TensorFlow implementations by replacing control �ow statements with TensorFlow
combinators. Such functions still need to be re-traced whenever a non-tensor input
argument changes. Its predecessor, TensorFlow Fold, (Looks et al. 2017) follows a
similar, but more explicit style and provides many of these combinators as “dynamic
batching operators” to de�ne static graphs emulating dynamic operations. In proba-
bilistic programming, the “dynamicity problem” can be approached in other ways
as well: a technique called stochastic memoization is employed in the probabilistic
programming languages Church (Goodman, Mansinghka, et al. 2012) and Venture
(Mansinghka, Selsam & Perov 2014) to produce what in the latter is called “prob-
abilistic execution traces”, where multiple di�erent traces are dynamically stored
as alternative parallel paths in the execution trace, with possible interconnections.
Gen.jl (Cusumano-Towner et al. 2019; Cusumano-Towner 2020) in Julia, on the
other hand, is de�ned over a single abstract interface, for which two implementations
are provided: a dynamic one, where dictionary-like traces are recorded at run-time
from general programs, and a static one, that converts a restricted, combinator-based
model syntax to a �xed graph structure through meta-programming.

1https://www.tensorflow.org/api_docs/python/tf/autograph, visited on 2020-10-26

5

https://github.com/search?q=Gen.jl&type=Repositories
https://www.tensorflow.org/api_docs/python/tf/autograph

2 Background

This chapter provides background for concepts used later in chapters 3 and 4. It gives
a quick overview of Bayesian inference and probabilistic programming in general,
necessary to understand the requirements and usual approaches of probabilistic
programming systems. Consequently, the machinery and language used to develop
the graph tracking system forming the main part of the work are described. First,
basic notions and techniques of Julia’s compilation process as well as the language’s
metaprogramming capabilities are described, which form the basis of the imple-
mentation. Second, a short introduction to graph tracking and source-to-source
automatic di�erentiation is given, from which many of the ideas and terminology
that will later be used were taken.

2.1 Bayesian Inference and MCMC methods

Probabilistic modeling (Winn, Bishop, et al. 2019) is an approach to model phenomena
based on the assumption that observable data can be fully described through some
data generation process that involves randomness. Recovering the details of this
process, by estimating which one from a class of processes �ts observed data best, is a
form of learning: if we have a good description of how observations are generated, we
can make summary statements about the whole population (descriptive statistics) or
predictions about new observations. For example, learning the speci�cs a conditional
relation between independently observed paired data can be used to solve regression
or classi�cation problems. A model is thereby a formal description of the data
generating process, in mathematical or algorithmic form.

Within the Bayesian framework (Bolstad 2004; Congdon 2006; Gelman, Carlin,
et al. 2020), we assume that the generative process is speci�ed by random variables
related through conditional distributions, which describe how the observables would
be generated: some latent variables are generated from prior distributions, and the
observed data are generated conditionally on the latent variables. The goal is to
learn the posterior distribution of the latent variables given the data. Whereas the
generative model speci�es how we assume data generation to work from latent to
observed values in “forward” direction, the posterior estimate allows us to reason
“backwards” from given observations to the latent values that have generated them.
This can also be described iteratively, as a process of updating prior beliefs through
the inclusion of new knowledge given by observations.

7

As an example, consider a linear regression model, where some output depends
linearly on an input variable, with Gaussian noise of �xed standard deviation f :

. ∼ Normal(\0 + G\1, f) . (2.1)

In a traditional approach, \ would be considered �xed, and estimated through least-
squares optimization given pairs of observations of G and ~. In a Bayesian approach,
though, we �rst decide on some prior distribution for the parameters, which are
now a thought of as realizations of random variableK , and then try to recover the
posterior distribution ofK given the observed data. This estimate allows some more
applications, compared to the single point estimate of least-squares regression. With
the full posterior distribution, more complex question can be answered, such as the
variance or credibility of the estimation. We can also derive a posterior predictive
distribution, that models the probability of future values, taking into account the
information gained by the values and variation of the already observed values (Marin
& Robert 2007).

In the following, we will mostly assume that the involved random variables
have densities with respect to a suitable base measure, generally written as `: the
counting measure in the discrete case, and the Lebesgue measure in the �nite-
dimensional continuous case (Kallenberg 2006). Measure theory notation allows to
conveniently unify summation and integration; see appendix A.1 for more details.

The posterior of the generative model can be expressed as a conditional distribu-
tion using Bayes’ theorem. In terms of densities, we then have1

posterior︷ ︸︸ ︷
? (\ | G) =

likelihood︷ ︸︸ ︷
? (G | \)

prior︷︸︸︷
? (\)

? (G) , (2.2)

where G are the observed data, and \ are the latent values. The posterior represents
the distribution of the unobserved latent variables as a combination of the prior
belief updated by what has been observed (Congdon 2006). \ often functions as a
parametrization of the likelihood distribution. Also note that in practice, one might
not be interested in all of the latent variables, but only a marginal; this corresponds
to integrating out some parts of \ .

Going beyond simple applications like the example mentioned above, hand-
ling the posterior gets di�cult, though. Simply evaluating the posterior density
\ ↦→ ? (\ | G) at single points is not enough in a Bayesian setting for usages such
as prediction, certain parameter estimation methods, or exact evaluation of the
normalization term ? (G). The problem is that almost all of the relevant quantities
depend on some sort of expectation over the posterior, an integral of the form

E [5 (K) | - = G] =
∫

5 (\)? (\ | G) d` (\), (2.3)

1Note the abuse of notation regarding ? (·); see page xv on notation.

8

for some (measurable) function 5 (the integral is understood to range over the whole
support ofK). This in turn involves calculating the marginal

? (G) =
∫

? (G, \) d` (\), (2.4)

the normalization term in equation (2.2), often called the “model evidence”.
When the involved distributions are of a su�ciently “nice” form, e.g., a conjugate

pair (see Marin & Robert 2007, chapter 2.2.2; Murphy 2012, chapter 9.2.5), the
integration can be performed analytically, since the posterior density has a closed
form for a certain known distribution, or at least is a known integral. In general,
however, this is not tractable, not even by standard numerical integration methods,
and approximations have to be made. Even for discrete variables, naive application
of summation can lead to combinatorial explosion.

Different techniques for posterior approximation are available: among them
are optimization-based approaches for general graphical models, such as variational
inference (Murphy 2012, chapter 21 and 22) and other methods generalized under the
framework of message passing (Minka 2005). The methods described in this thesis,
however, fall into the category of Monte Carlo methods, and are based on sampling
(Murphy 2012, chapter 23; Vihola 2020). Their fundamental idea is to derive, for
given observations G and a speci�ed density ofK ∼ c (· | G), a sampling procedure
with a consistent estimator � for expectations of 5 :

� (:) (5) → E [5 (K) |- = G] =
∫

5 (\)c (\ | G) d` (\), as : →∞, (2.5)

in some appropriate stochastic convergence (usually convergence in probability is
enough).

Examples of such methods are rejection sampling (Devroye 1986, chapter II.3;
Vihola 2020, section 4), importance sampling (Vihola 2020, section 4), and particle
�lters (Dahlin & Schön 2015). Many Monte Carlo methods are de�ned in a form that
directly samples a sequence of individual random variables (. (:)):≥1, called a chain,
for which the estimator is given by the arithmetic mean, such that a law of large
numbers (LLN) holds:

� (:) (5) = 1
:

:

∑
8=1
5 (. (8)) → E [5 (K) | - = G] . (2.6)

If we can sample . (:) ∼ c (· | G) exactly, they are i.i.d. and the LLN holds trivially;
such samplers exist, but might also be di�cult to derive or not possess good enough
convergence properties (especially in high dimensions). Another large class of such
samplers are Markov Chain Monte Carlo (MCMC) methods (Robert & Casella 1999;
Vihola 2020), which, instead of sampling exactly from the density, de�ne the . (:)

9

Start from an arbitrary . (1) = ~ (1) with c (~ (:)) > 0
for : ≥ 1 do

Sample a proposal .̂ (:) ∼ @(. (:−1) , ·)
With probability U (.̂ (:) , . (:−1)), set . (:) = .̂ (:) ; else, keep . (:) = . (:−1)

end for
Algorithm 2.1: General scheme for the Metropolis-Hastings algorithm.

via a (time-homogeneous) Markov chain:

P[. (:+1) ∈ d~ | . (:) = ~ (:) , . . . , . (1) = ~ (1)]
= P[. (:+1) ∈ d~ | . (:) = ~ (:)]
= (~ (:) , d~)

(2.7)

for all : ≥ 1 (the di�erential notation expresses this as a density in ~; see page xv).
By constructing the parameterized measure , the transition kernel, in the right way,
the resulting Markov chain has the target density c (· | G) as the unique stationary
distribution – that means for all c (· | G)-measurable sets�, the posterior distribution
is invariant under transitions according to the kernel:∫

c (\ | G) (\,�) d` (\) =
∫
�

c (\ | G) d` (\) = P[K ∈ � | - = G], (2.8)

and so the LLN for Markov chains holds. (For discrete spaces, this relation is more
familiarly written as a left eigen-problem on a stochastic matrix: c = c for G �xed,
and c and considered a vector and matrix.) The advantage of MCMC methods is
that they apply equally well to many structurally complex models, and treat densities
in a uniform way, without requiring special knowledge about the speci�c distribution
in question. I refer to Vihola (2020, chapter 6), Robert & Casella (1999), and Murphy
(2012, chapters 24 and following) as introductions to MCMC theory and practice.

Frequently, MCMC methods are variations of the Metropolis-Hastings algo-
rithm (MH), which splits the general de�nition of the transition kernel into two parts:
a proposal distribution, given by a transition kernel (~ (:−1) , ~ (:)) ↦→ @(~ (:−1) , ~ (:))
which is easy to sample from, and an acceptance rate function U (on which there are
some technical conditions). Subsequent samples are then produced by proposing
values from the conditional distribution @(~ (:−1) , ·) dependent on previous chain ele-
ment ~ (:−1) , and incorporating them into the chain with a probability given through
U (see algorithm 2.1). There exist many MH-based schemes with di�erent properties
and requirements: from the classical random-walk Metropolis algorithm with Gaus-
sian proposals, over Reversible Jump MCMC for varying dimensions (Green 1995),
to gradient-informed methods like Metropolis Adjusted Langevin and Hamiltonian
Monte Carlo (HMC) (Betancourt 2018; Girolami & Calderhead 2011).

For multi-component structures, where the latent variables can be subdivided
into several (potentially multivariate) blocks asK = [K1, . . . ,K"], a good proposal

10

distribution can be hard to �nd, though. One way to break down the problem is to
use a family of block-wise updates, given by conditional kernels @8 operating only on
the single blockK8 , with the rest,K−8 , �xed. Then we can use the following modi�ed
proposal .̂ in algorithm 2.1:

.̂
(:)
−8 = .

(:−1)
−8 ,

.̂
(:)
8
∼ @8 (. (:−1)

8
, · | . (:−1)

−8)
(2.9)

(negative indices denote removal of the indicated entry). The kernels for each block
may themselves be any valid transition kernel, which allows one to freely mix
di�erent MCMC methods suitable for each variable in a problem. The sampling
order of the blocks (i.e., the series of indices 8 for which equation (2.9) is applied) can
be chosen in di�erent random or deterministic conventions under some technical
conditions (see Vihola 2020, chapter 6.6).

This so-called “within-Gibbs” sampler bears its name because it is a generalization
of the classical Gibbs sampling algorithm (S. Geman & D. Geman 1984), using as a
simple set of transition kernels the conditional distributions of the blocksK8 given
the rest:

@8 (~ (:−1)
8

, d~ (:)
8
| ~ (:−1)
−8) = P[K (:)

8
∈ d~ (:)

8
| K (:−1)
−8 = ~

(:−1)
−8 , - = G], (2.10)

notably independent of the previous sample ~ (:−1)
8

. They can directly be used as
component proposals for a within-Gibbs sampler, leading to an always-accepting
algorithm with U ≡ 1. This approach has the advantage of being very algorithmic,
which makes it rather easy to apply, even manually, to many models. Hence, the
method is a popular starting point for general probabilistic programming systems,
most prominently BUGS (Lunn, Spiegelhalter, et al. 2009; Lunn, Thomas, et al. 2000)
and JAGS (Plummer 2003; Plummer 2017).

In many real-world models, the factorization structure of the underlying graph
is quite sparse and results in small Markov blankets. Algorithms to derive Gibbs
samplers can exploit this large independency between variables. In short, they “trim”
the dependency graph of the model to the local Markov blankets of each target
variable, and derive either a full conditional from it, where possible (for discrete or
conjugate variables), or otherwise approximate it through appropriate local sampling
(e.g., slice sampling) (see Plummer 2003).

As an example, consider a simple Gaussian mixture model with equal weights,
 components, and # observations, speci�ed as follows:

`: ∼ Normal(<, B) for 1 ≤ : ≤ ,
/= ∼ Categorical() for 1 ≤ = ≤ #,
-= ∼ Normal(`/= , f) for 1 ≤ = ≤ # .

(2.11)

(Categorical() is short for a uniform categorical distribution over [1, . . . ,].) To
derive the conditional distribution of /= given the remaining variables, we start by

11

writing down the factorization of the joint density:

? (I1:# , `1: , G1:#) =∏
:

? (`:)∏
=

? (I=)∏
=

? (G= |`I=) (2.12)

(with the slice notation E1:" used for denoting the combined vector [E1, . . . , E"] for
each variable E). From this, we can derive an unnormalized density proportional
to the conditional by removing all factors not including the target variable (which
become part of the normalization constant):

? (I= | I−=, `1: , G1:#) ∝ ? (I=)? (G= |`I=) . (2.13)

This is equivalent to �nding the Markov blanket (Murphy 2012, section 24.2; Koller &
Friedman 2009, section 4.5) of /= : only those conditionals relating the target variable
to its children and parents remain. Since the clusters are drawn from a categorical
distribution, the support is discrete, and we can �nd the normalization constant �
by summation:

? (I= | I−=, `1: , G1:#) = ? (I=)? (G= |`I=)/�

=
Categorical(I= |) Normal(G= | `I= , f)

∑:∈ supp(/=) Categorical(: |) Normal(G= | `: , f)
,

(2.14)

which can be expressed as a general discrete distribution over supp(/=) = {1, . . . , },
with the unnormalized weights given by the numerator. Next, the conditionals of
the `: have the form

? (`: | I1:# , `−: , G1:#)

∝ ? (`:)∏
=

? (G= |`:)1(I= =:)

=∏
=

(Normal(`: |<, B) Normal(G= | `: , f))1(I= =:) ,

(2.15)

which we recognize as a product of conjugate pairs of normal distributions (1 being
the indicator function). More examples are extensively covered in Murphy (2012,
chapter 24.2).

2.2 Probabilistic Programming

Probabilistic programming is a structured way for implementing generative models,
as described in the previous section, through the syntax of a programming language.
It is bene�cial to consider probabilistic programs not only as syntactic sugar for
denoting the implementation of a joint probability density over some set of variables,
but as organized objects in their own right: they open up possibilities that “black
box” density functions cannot automatically provide. In more concise terms of van
de Meent et al. (2018):

12

@model function normal_mixture(x, K, m, s, f)
N = length(x)

` = Vector{Float64}(undef, K)
for k = 1:K

`[k] ~ Normal(m, s)
end

z = Vector{Int}(undef, N)
for n = 1:N

z[n] ~ Categorical(K)
end

for n = 1:N
x[n] ~ Normal(`[z[n]], f)

end

return x
end

Listing 2.1: Turing.jl implementation of a Gaussian mixture model with prior on the

cluster centers, equal cluster weights, and all other parameters fixed as arguments.

Probabilistic programming is largely about designing languages, in-
terpreters, and compilers that translate inference problems denoted in
programming language syntax into formal mathematical objects that
allow and accommodate generic probabilistic inference, particularly
Bayesian inference and conditioning.

A probabilistic program di�ers from a regular program (that may also contain
stochastic parts) through the possibility of being conditioned on: some of the internal
variables can be �xed to observed values, from outside. As such, the program denotes
on the one hand a joint distribution, that can be forward sampled from by simply
running the program top to bottom and producing (pseudo-) random values. But
at the same time, it also represents a conditional distribution, in form of an unnor-
malized conditional density, which together with an inference algorithm can also be
backward sampled from. (Other pairs of terms, such as “evaluation” and “querying”,
are in use as well.) Consider the model (2.11) from above: to perform inference on it
in Turing.jl (Ge, Xu & Ghahramani 2018), the probabilistic programming language
used in this thesis, its mathematical description might be translated into the Julia
program given in listing 2.1.

We can then sample from the model in several ways using Julia:

julia> model = normal_mixture(x_observations, K, m, s, f);
julia> forward = sample(model, Prior(), 10);
julia> chain = sample(model, MH(), 1000);

A model instance model is created �rst. The value of forwardwill then be a dataframe-
like object containing 10 values for each variable sampled from the forward (i.e., joint)
distribution, matching the size of x_observations. Similarly, chain will contain a
length 1000 sample from a Markov chain targeting the posterior, conditionally on

13

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories

x_observations, created using the Metropolis-Hastings algorithm. If we were to
write out code for these two functionalities manually, in idiomatic Julia, we would
end up with at least two separate functions needed for the sampler:

function normal_mixture_sampler(N, K, m, s, f)
` = rand(Normal(m, s), K)
z = rand(Categorical(K), N)
x = rand.(Normal.(`[z], s))
return `, z, x

end

function normal_mixture_logpdf(`, z, x, K, m, s, f)
N = length(x)
ℓ = 0.0
ℓ += sum(logpdf(Normal(m, s), `[k]) for k = 1:K)
ℓ += sum(logpdf(Categorical(K), z[n]) for n = 1:N)
ℓ += sum(logpdf(Normal(`[z[n]]), x[n]) for n = 1:N)
return ℓ

end

And still, with these, we would lack much of the �exibility of models written in a
dedicated library such as Turing.jl: no general interface for sampling algorithms
to automatically detect all latent and observed variables; no possibility for other,
nonstandard execution forms as are needed for variational inference or gradient com-
putation for HMC; no automatic name extraction and dataframe building for chains.
All these points highlight the advantages of dedicated probabilistic programming
languages (PPLs) over hand-written model code. (Additionally, there is of course
a bene�t of reducing errors introduced by the sampling function not matching the
likelihood function, or errors involving log-probabilities.)

Many PPLs are implemented as external domain-speci�c languages (DSLs),
like Stan (Carpenter, Gelman, et al. 2017), JAGS (Plummer 2003), and BUGS (Lunn,
Spiegelhalter, et al. 2009; Lunn, Thomas, et al. 2000). Others are speci�ed in the
“meta-syntax” of Lisp S-expressions, as Church (Goodman, Mansinghka, et al. 2012),
Anglican (Wood, van de Meent & Mansinghka 2015), or Venture (Mansinghka, Selsam
& Perov 2014). A third group is embedded into other host programming languages
of su�cient syntactic �exibility, for example Gen.jl (Cusumano-Towner et al. 2019;
Cusumano-Towner 2020) and Soss.jl (Scherrer 2019) in Julia (besides the already
named Turing.jl), or Pyro (Bingham et al. 2018) and PyMC3 (Salvatier, Wiecki &
Fonnesbeck 2016) in Python.

The latter approach is advantageous when one wants to enable the use of regular,
general-purpose programming constructs or interact with other functionalities of
the host language. There are also a variety of further reasons why one would
rather describe an inference problem in terms of a program than in more “low-level”
form, e.g., as a graph or likelihood function. In a good probabilistic programming
DSL, models should be expressible very concisely and intuitively, without much
bookkeeping (e.g., as close to textbook model speci�cations as possible). At the same
time, structures should exist to allow complex behavior, such as to

14

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Gen.jl&type=Repositories
https://github.com/search?q=Soss.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories

• de�ne recursive relationships,
• write models using imperative constructs, such as loops, or mutable intermediate

computations for e�ciency,
• optimize details of the execution, e.g. for memoization, likelihood scaling, or

preliminary termination,
• use distributions over complex custom data structures, e.g. trees,
• perform inference involving complex transformations from other domains, for

which implementations already exist, e.g. neural networks or di�erential equation
solvers, or

• integrate calls to very complex external systems, e.g. simulators or renderers.

Depending how many of these features should be supported, several possibilities
for the implementation of such a DSL exist. All are based on some form of abstract
interpretation. A rough distinction can be made between compilation-based meth-
ods, which statically translate the model code to a graph or density function, and
evaluation-based methods, which dynamically or implicitly build such a structure
at run-time, by allowing an inference algorithm to interleave the execution. The
latter often makes it easier to include host-language control constructs. See van de
Meent et al. (2018) for a general introduction into some common implementation
approaches for PPLs, and Goodman & Stuhlmüller (2014) for a detailed overview
of the internals of one speci�c, continuation-based implementation called WebPPL
(using a Lisp-based syntax).

Models in Turing.jl are written in DynamicPPL.jl syntax (Tarek et al. 2020),
which transforms valid Julia function de�nitions into a reusable representation
(@model is a Julia macro; see section 2.3 for more explanation). The result is a new
function which produces instances of a structure of type Model, which in turn will
contain the provided data, some metadata, and a nested function with the slightly
changed original model code. In the concrete case of the model in listing 2.1, the
resulting code would be approximately equal to the code in listing 2.2. The purpose of
this is the following: the outer function, the model “generator”, constructs an instance
of the model for given parameters – usually done once per inference problem, to
�x the observations and hyper-parameters. Subsequently, the sample function can
be applied to this instance with di�erent values for the sampling algorithm, which
in turn will use the inner evaluator function of the instance to run the model with
chosen sampler and context arguments, that are passed to the “tilde functions”, to
which the statements of the form expr ~ D are converted.

A special distinction is made for the tilde functions of variables that are based on
the model’s arguments. DynamicPPL.jl distinguishes between assumptions, latent
variables that should be recovered through posterior inference, and observations,
that need to be provided when instantiating the model – the posterior is then the
conditional distribution of the assumed variables given the observations. The latter
by default will only contribute to the likelihood, instead of being sampled. But in

15

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories

function normal_mixture(x, K, m, s, f)
function evaluator(rng, model, varinfo, sampler, context, x, K, m, s, f)

N = length(x)
` = Vector{Float64}(undef, K)
for k = 1:K

dist_mu = Normal(m, s)
vn_mu = @varname `[k]
inds_mu = ((k,),)
`[k] = tilde_assume(

rng, context, sampler, dist_mu, vn_mu, inds_mu, varinfo
)

end
z = Vector{Int}(undef, N)
for n = 1:N

dist_z = Categorical(K)
vn_z = @varname z[n]
inds_z = ((n,),)
z[n] = tilde_assume(

rng, context, sampler, dist_z, vn_z, inds_z, varinfo
)

end
for n = 1:N

dist_x = Normal(`[z[n]], f)
vn_x = @varname(x[n])
inds_x = ((n,),)
if isassumption(model, x, vn_x)

x[n] = tilde_assume(
rng, context, sampler, dist_x, vn_x, inds_x, varinfo

)
else

tilde_observe(
context, sampler, dist_x, x[n], vn_x, inds_x, varinfo

)
end

end
return x

end
return Model(

:normal_mixture, evaluator,
(x = x, K = K, m = m, s = s, f = f),
NamedTuple()

)
end

Listing 2.2: Slightly simplified macro-expanded code of the model in listing 2.1. The

inner code is put into an evaluator closure, and every tilde statement is replaced by a

tilde_ * function, to which additional data and state information are passed.

16

certain cases, such as in probability evaluation or when using the complete model in
a generative way, this behavior can be di�erent. For this purpose, the tilde functions
for the variables x[i] in listing 2.2 are distinguished in a conditional statement.

Inside the tilde functions, the real stochastic work happens. Depending on the
sampler and the context, values may be generated and stored in the VarInfo object,
and the joint log-likelihood incremented, as happens for most MCMC samplers.
In this case, one call to the evaluator corresponds to one sampling step. In other
situations, model evaluation serves the purpose of density evaluation, in which no
new values need to be produced; this use case is needed for probability queries, or
density-based algorithms (which might additionally use automatic di�erentiation
on the density evaluation procedure). All shared information for external usage is
thereby conventionally stored in the VarInfo object, which resembles a dictionary
from variable names2 to values (internal sampler state can also be stored in the
sampler object). Through the sample interface, the resulting values of sequential
evaluations are then stored in a Chains object, a data frame containing a value for
each variable at each sampling step.

From the point of view of a sampling algorithm, all that it sees is a sequence of
tilde statements, consisting of a value, a variable name, and a distribution. Turing.jl,
crucially, does not have a representation of model structure. This is su�cient for
many kinds of inference algorithms that it already implements – Metropolis-Hastings,
several particle methods, HMC and NUTS, and within-Gibbs combinations of these –
but does not allow more intelligent usage of the available information. For example,
to use a true, conditional, Gibbs sampler, the user has to calculate the conditionals
themselves. Structure-based optimizations such as partial specialization of a model
to save calculations, automatic conjugacy detection (Ho�man, Johnson & Tran 2018),
or model transformations such as Rao-Blackwellization (Murray et al. 2017) cannot
be performed in this representation.

2.3 Compilation and Metaprogramming in Julia

To better explain the inner workings of Turing.jl models and the program trans-
formations introduced later, we will now turn to an overview of Julia’s evaluation,
compilation, and metaprogramming techniques.

Julia (Bezanson, Edelman, et al. 2017) is a programming language with a strong,
dynamic type system with nominal, parametric subtyping (Pierce 2002) and elab-
orate multiple dispatch (Bruce et al. 1995). It uses LLVM (LLVM Project 2019) for
JIT-compilation and while it is dynamically typed, a combination of method spe-
cialization and type inference allows it to produce very optimized, fast machine
code (Bezanson, Chen, et al. 2018). The language syntactically draws on a certain
resemblance to Matlab, Python, or Ruby. Contrary to them, it is designed to uti-
lize a compiler, and not primarily rely on libraries calling foreign functions (e.g.,

2These VarName objects, constructed by the macro @varname, simply represent an indexed variable
through a symbol and a tuple of integers.

17

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories

NumPy), to achieve C-like speed. Although Julia does use, e.g., BLAS and LAPACK
for numerical algebra, there is nothing that fundamentally prevents implementing
their functions: true array types, fast loops, and various optimizations are available,
as opposed to languages like Python, which are fundamentally limited to their dy-
namic interpretation. This advantage carries over to domains outside of numeric
computation, of course.

The key element to Julia’s versatility is its multiple dispatch approach. The
terminology of Julia uses function only for the name of certain callable objects, which
can have multiple methods for di�erent combinations of argument types. When
a function is applied, the types of the arguments are determined, and the most
speci�c matching methods selected and called. For example, the + function has many
methods for di�erent types, de�ned at various places, and can be freely extended by
users for custom types. This �exibility eliminates the need for many organizational
mechanisms such as interfaces or inheritance, without compromising expressibility.

On top of that, the language is built on a very open compilation model. Underly-
ing the surface syntax is an abstract syntax tree (AST), used in the initial stages of
compilation, but also exposed to the programmer through macros, which allow to
transform pieces of code at compile time. Julia macros are proper hygienic, Lisp-style
code transformations (cf. Hoyte 2008), not simple text-substitutions as C prepro-
cessor macros. As an example, look at the following method that sums up the sin

values of a list of numbers:

function foo(x)
y = zero(eltype(x))
for i in eachindex(x)

@show y += sin(x[i])
end
return y

end

The invocation of the standard library macro @show will be treated by the compiler,
during parsing, as a function call receiving as input the following data structure,
representing y += sin(x[i]) in S-expression-like form:

Expr(:(+=), :y, Expr(:call, :sin, Expr(:ref, :x, :i)))

In this particular case, the nested structure is not taken advantage of or transformed,
but simply converted to a string used to print the value of the expression, labeled by
its form in the code:

macro show(ex)
blk = Expr(:block)
unquoted = sprint(Base.show_unquoted, ex) * " = "
assignment = Expr(:call, :repr, Expr(:(=), :value, esc(ex)))
push!(blk.args, Expr(:call, :println, unquoted, assignment))
push!(blk.args, :value)
return blk

end

The result is then spliced back into the AST, which is compiled further as if it were
written as

18

1: (%1::Core.Compiler.Const(foo, false), %2::Array{Float64,1})
%3 = eltype(%2)::Compiler.Const(Float64, false)
%4 = zero(%3)::Float64
%5 = eachindex(%2)::Base.OneTo{Int64}
%6 = iterate(%5):Union{Nothing, Tuple{Int64,Int64}}
%7 = (%6 === nothing)::Bool
%8 = not_int(%7)::Bool
br §3 (%4) unless %8
br §2 (%6, %4)

2: (%9, %10)
%11 = getfield(%9, 1)::Int64
%12 = getfield(%9, 2)::Int64
%13 = getindex(%2, %11)::Float64
%14 = sin(%13)::Float64
%15 = (%10 + %14)::Float64
%16 = repr(%15)::String
%17 = println("y += sin(x[i]) = ", %16)
%18 = iterate(%5, %12)::Union{Nothing, Tuple{Int64,Int64}}
%19 = (%18 === nothing)::Bool
%20 = not_int(%19)::Bool
br §3 (%15) unless %20
br §2 (%18, %15)

3: (%21)
return %21

Listing 2.3: SSA-form of the lowered form of the method foo(:: Vector { Float64 })
as defined defined above, annotated with inferred types (as through @code_warntype).

function foo(x)
y = zero(eltype(x))
for i = eachindex(x)

begin
println("y += sin(x[i]) = ", repr(var"#1# value" = (y += sin(x[i]))))
var"#1# value"

end
end
return y

end

Note the automatic conversion of the symbol :value to a generated name #1#value,
in order to not possibly shadow any variables from the calling scope.

After macro expansion, the code of the method is lowered into an intermediate
representation consisting of only function calls and branches. This comprises several
transformations: �rst, certain syntactic constructs are “desugared” into primitive
function calls. For example, array accesses, x[i], are replaced by calls to the li-
brary function getindex(x, i). The for loop in the example is converted into the
equivalent of a while loop using the iterate library function:

iterable = eachindex(x)
iter_result = iterate(iterable)
while !(iter_result === nothing)

i, state = iter
@show y += sin(x[i])
iter_result = iterate(iterable, state)

end

19

Consequently, all nested expressions are split apart, so that only simple, unnested
calls remain, and any subsequent assignments to variables are linearized into a
series of de�nitions, with newly introduced names of the form %i. The remaining
control �ow statements (e.g., while loops and conditionals) are represented through
a sequence of labeled basic blocks, with (possibly conditional) branches between
them. Return statements form a special kind of branch without a block target. The
sequence of assignments is further processed into single static assignment (SSA)
form (Rosen, Wegman & Zadeck 1988; Singer 2018), the characteristic property of
which is that every variable is assigned exactly once, by giving a unique, position-
independent name to each intermediate value of an expression. By introducing this
immutability guarantee and �attened structure, the resulting code is, in a certain
sense, referentially transparent, which facilitates program �ow analyses, and makes
many transformations easier (Muchnick 1997). Accordingly, SSA form is widely used
in intermediate forms of compiler systems (such as LLVM (LLVM Project 2019), or
Swift (Apple 2020)), simplifying transformations and optimizations.

The result of the translation of our example into three basic blocks can be found
in listing 2.3: the �rst block contains the logic before the for-loop, including the
test condition and the desugared iterate primitive. In the second block, we see the
lowered form of array indexing with getindex, and the logic that the @show macro
was expanded to. The block has two block arguments, %9 and %10, which are used
to pass forward the updated iteration state %18 and incremented value %15. The
branches are the same as in the �rst block. Finally, the third block is used to break
out of the loop; it receives the �nal summed up value and returns it.

There is one notable complication regarding conversion to SSA form: we need to
be able to distinguish between assignments of variables arising from “joined” control
�ow paths. Consider the assignment of y in the following code example:

x = f()
if !g()

y = x - 1
else

y = x + 1
end
h(y)

Here, the value of h(y) depends on two possible locations of y – hence, we cannot
simply rename every variable in a naive way. Instead, in the variant of SSA form
used in this work, values of variables that are assigned in multiple parent blocks
are passed on as block arguments, as in �gure 2.1 on the right. This makes basic
blocks resemble local functions, and cleanly resolves the problem of control joins
just like functions handle variable inputs. The traditional, functionally equivalent
alternative is to introduce q-functions (Rosen, Wegman & Zadeck 1988), which are
de�ned ad-hoc to distinguish between several values depending on the control path
taken before. This form is shown in the same �gure on the left.

In the next step, type inference is applied. Until now, the operations involved
were purely syntactic in nature, and could be performed by solely transforming the
code of the function foo, without taking into account semantic information. As soon

20

2:
%3 = %1 - 1

3:
%4 = %1 + 1

4:
%5 = (%3, %4)

1:
%1 = f()

br §2 unless %2
%2 = g()

%6 = h(%5)
φ 4: (%5)

%6 = h(%5)

1:
%1 = f()

br §2 unless %2
%2 = g()

2:
%3 = %1 - 1
br §4 (%3)

3:
%4 = %1 + 1
br §4 (%4)

Figure 2.1: Two control flow graphs of the same function, illustrating the correspondence

between SSA representations usingq-functions and block arguments. The SSA variables

%3 and %4 correspond to the values of y in the two branches, which are merged in %5.

as foo is called on a concrete type during evaluation, though, a speci�c overload,
called a method, must be chosen. To apply type inference on the body of a given
function, the most speci�c method �tting to the argument types of each call will be
selected. If we go with the example and consider foo([1.0]), with Vector{Int} as
the sole argument type, the types as annotated in listing 2.3 will be inferred.

The last step of compilation happening within Julia consists of inlining and
optimizing the typed intermediate code, resulting in the form shown in listing 2.4.
Logically, this is equivalent to 2.3, but now all function calls are either lowered to
intrinsic functions (arraysize, sle_int), or converted to typed invoke primitives.
Several method calls have been inlined, e.g., the +, which has become an add_int

intrinsic. The many empty blocks and branches, and some spurious constants, are
left-overs from the optimization processes. This code is in true, traditional SSA
form, with all named variables eliminated, and block arguments converted to the
mentioned q-functions. Finally, this representation will be translated and sent to
LLVM, where further optimization can happen, and machine code will be generated
and executed, as well as stored for later usage as part of the just-in-time compilation
mechanism.

A key principle in Julia’s compilation model is type specialization (Bezanson,
Chen, et al. 2018). As we have seen, whenever a function call is reached during
evaluation, the concrete types of the arguments are �rst determined, and then the
most speci�c method selected. This automatically gives the language dynamic
semantics: a Julia implementation can theoretically perform type-based dynamic
dispatch at every call. In reality, the Julia compiler at this point combines multiple
dispatch and JIT compilation into one of the main principles of optimization. Instead
of dynamically evaluating the code of a function at every call, methods are JIT-
compiled the �rst time they are used. Their compiled code is then cached in a

21

1 %1 = arraysize(x, 1)::Int64
%2 = slt_int(%1, 0)::Bool
%3 = ifelse(%2, 0, %1)::Int64
%4 = slt_int(%3, 1)::Bool

goto §3 if not %4
2 goto §4
3 goto §4
4 %8 = q (§2 => true, §3 => false)::Bool

%9 = q (§3 => 1)::Int64
%10 = q (§3 => 1)::Int64
%11 = not_int(%8)::Bool

goto §22 if not %11
5 %13 = q (§4 => 0.0, §21 => %18)::Float64

%14 = q (§4 => %9, §21 => %42)::Int64
%15 = q (§4 => %10, §21 => %43)::Int64
%16 = arrayref(true, x, %14)::Float64
%17 = invoke sin(%16::Float64)::Float64
%18 = add_float(%13, %17)::Float64
%19 = sle_int(1, 1)::Bool

goto §7 if not %19
6 %21 = sle_int(1, 0)::Bool

goto §8
7 nothing::Nothing
8 %24 = q (§6 => %21, §7 => false)::Bool

goto §10 if not %24
9 invoke getindex(()::Tuple, 1::Int64)::Union{}

$(Expr(:unreachable))::Union{}
10 goto §11
11 goto §12
12 goto §13
13 goto §14
14 %32 = invoke :(var"#sprint #339")(

nothing::Nothing, 0::Int64, sprint::typeof(sprint),
show::Function, %18::Float64

)::String
goto §15

15 goto §16
16 goto §17
17 invoke println("y += sin(x[i]) = "::String, %32::String)::Any

%37 = (%15 === %3)::Bool
goto §19 if not %37

18 goto §20
19 %40 = add_int(%15, 1)::Int64

goto §20
20 %42 = q (§19 => %40)::Int64

%43 = q (§19 => %40)::Int64
%44 = q (§18 => true, §19 => false)::Bool
%45 = not_int(%44)::Bool

goto §22 if not %45
21 goto §5
22 %48 = q (§20 => %18, §4 => 0.0)::Float64

return %48

Listing 2.4: Typed and optimized code of the call foo([1.0]) in SSA form, as obtained

through @code_typed (the extra bars are due to the forma�ing of CodeInfo).

22

method table, which is used for lookup at subsequent calls. Note that method
compilation does not happen recursively at once: only when the body of a compiled
method is actually executed with concrete arguments, the same process is performed
again, for each invoked method.

So, in a sense, JIT compilation can be seen as a process that returns compiled
code, given a function and a tuple of types. Similar to macros, which transform
original code, given an expression, the process of generating compiled methods from
argument types is customizable in Julia. So-called generated functions are a form of
staged programming (Bolewski 2015; Rompf & Odersky 2010), a paradigm in which
code generation is controlled via regular types and functions, instead of specially
privileged constructs as macros are. Such generated functions, when called, are not
directly translated into machine code: instead, they emit new code to the compiler
based on the types of their arguments. The new code is then JIT-compiled. For
example, when we have two methods of a function f:

f(x::Int) = println("Int")
f(x::String) = println("String")

we could replace them with the following generated function:

@generated function f_generated(x)
if x == Int

return :(println("Int"))
elseif x == String

return :(println("String"))
else

error("Method error")
end

end

Calling f_generated(1) will then determine the argument type (typeof(1) == Int),
and pass it to the function body of f_generated. There, the conditional will select
the �rst branch, and the expression :(println("Int")) will be returned. This is
now passed back to the compiler, which will lower the code and compile the method
for Int arguments, and store the result in the method table. The stored code can
then be executed – on the arguments that were used to determine the type tuple the
generated function has been called with! The next time f_generated is executed,
the function body is not executed anymore, but the generated code of the function
de�ned through the expression :(println("Int")) directly looked up3. Of course,
simply replacing dispatch, as with this example, is not what generated functions are
used for in practice. Most applications concern parametric types with type-encoded
“shape arguments”, such as tuples, named tuples, or array ranks. They can also
be used for type-level computations on values that become known later, through
singleton types such as Val.

The direct generation of code, given argument types, is however not the furthest
we can go. For one, generated functions are not only allowed to return Expr objects –

3A caveat: technically, the compiler is still free to call the generating code multiple times – which is the
reason generated functions must never involve side e�ects or depend on external state.

23

the internal representation of the surface AST – but also CodeInfo objects, which are
the internal representation of lowered code in (almost) SSA form. This, on its own,
would not be of much use most times, but there is a second, more interesting feature:
it is possible to retrieve the lowered representation of a method programmatically,
given a function and an argument type tuple. Combining these two, we now have
all the tools to implement IR-level code transformations as follows:

1. De�ne a generated function, taking as arguments another function and its argu-
ments.

2. Within the generated function, obtain the IR of the method of the passed-in
function for the remaining arguments.

3. Transform this IR however necessary.
4. Return the IR, which will then be compiled and called on the actual arguments.

Importantly, unlike macros, such transformations can be performed recursively:
one simply applies the same generated function to inner function calls during the
transformation in step 3. Since the transformation operates not during parsing, the
function to be transformed needs not be known beforehand, and not be present
literally in the code – the generated function can be called on every available callable
object, at any time during run-time. This makes it possible to transform even
functions from other libraries, internally calling yet other functions. One particular
example of this principle is source-to-source automatic di�erentiation, as shown in
the next section: a call to a function gradient(f, x, y) can obtain the IR of the
method for f on typeof(x) and typeof(y), produce di�erentiated code, and call the
result on x and y. Naturally, di�erentiating f involves recursively di�erentiating
the other, unknown functions within it, too (down to “primitive” functions, whose
derivative is known), and combining the results using the chain rule.

This metaprogramming pattern is extremely powerful, and becoming more
and more popular. It allows to change evaluation semantics in more profound
ways than multiple dispatch can: by rewriting the code of the called function, it
is possible to change what invoking a method within its body means. Through
this, several abstract interpretation algorithms can be realized, by extending the
existing data path with additional metadata (such as automatic di�erentiation, or
other forms of information propagation analysis (Singer 2018, part II)), or non-
standard execution be implemented (e.g., continuation-passing style transformations).
There exist already two Julia packages with the goal of simplifying this kind of
transformations: Cassette.jl4, which provides overloadable function application
by a so-called “overdubbing” mechanism, abstracting out some common patterns;
and IRTools.jl5, which has a more user-friendly alternative to CodeInfo, and a
macro similar to @generated that makes writing recursive IR-transformation easier
by directly using said data structure. The latter is what the work of this thesis builds
on.

4https://github.com/jrevels/Cassette.jl
5https://github.com/FluxML/IRTools.jl

24

https://github.com/search?q=Cassette.jl&type=Repositories
https://github.com/search?q=IRTools.jl&type=Repositories
https://github.com/jrevels/Cassette.jl
https://github.com/FluxML/IRTools.jl

2.4 Automatic Differentiation and
Computation Graphs

This section will explain some of the interrelations between automatic di�erentiation,
computation graphs, and IR transformations, to be able to understand how SSA-form
representation is a natural structure for extracting and analysing computation graphs,
and how the necessary transformations arise in practice. To appreciate how the form
of the computation graphs interacts with the mathematics, some foundations need
to be introduced �rst.

Many algorithms in machine learning and other domains can be ex-
pressed as optimization problems over a multivariate function with scalar output –
typically a loss function over a parameter space, which measures the performance
of a model for a speci�c task. The parameters minimizing the loss function then
de�ne the optimal model. When the loss function is (sub-)di�erentiable, there exist
a variety of gradient-based optimization methods to minimize the loss (at least in
terms of a practically su�cient local minimum).

While in some cases the loss function is simple enough to �nd the gradient
by manual calculation, in general, the model, and therefore the loss function, may
be speci�ed in terms of rather complicated programs, for which “hand-writing”
derivatives is di�cult to infeasible. For this reason, computerized methods for
di�erentiation have been developed. These can be categorized into three classes:
• Finite di�erence methods
• Symbolic di�erentiation
• Automatic di�erentiation

In �nite di�erence methods, the idea is to discretize the de�nition of derivatives,
and numerically evaluate the function within an environment. This is simple to
implement, but does not scale well with the dimension of the involved space, and
can become numerically unstable in various ways (Press et al. 2007, section 5.7).
Symbolic di�erentiation works by representing the functions in question as symbolic
algebraic objects, and applying the di�erentiation rules as one would manually. This
does not lose precision or introduce divergence, but can su�er from blow-up of
the size of the generated expressions; additionally, it requires the functions to be
expressed in a custom representation, di�erent from normal functions or programs
(Baydin et al. 2018).

Automatic differentiation or AD, the third category, is perhaps unfortu-
nately named – it does not signify much at �rst sight. The relevant idea is to not
start from functions as black-box or symbolic objects, but from programs. Then
the perturbation that makes up the value of the derivative at a point is propagated
through the steps of the program. For this to work, there needs to exist an explicit
representation of the computation graph at the evaluation at a point, which is what
makes the topic relevant for this thesis. In contrast to the former two methods, AD

25

x y

sin

z

g

Ω

Dsin(x)

Dg(z,y)

x

Ω

y

z

(a) Forward mode.

x y

sin

z

g

Ω

D sin(x)

Dg(z,y)

Ω

z

x y

*

*

(b) Backward mode.

Figure 2.2: Computation graph and intermediate expressions of the expression

g(sin(x), y), together with the derivative graphs in forward- and backward mode.

Dashed arrows indicate re-use of forward values in the derivative graph. S is the result-

ing value, D and D∗ the derivative operators, and dots and bars indicate perturbation

values.

relies on numeric, not symbolic evaluation, but is (up to the �oating point errors
already present in the input function) exact – no discretization error, as in �nite
di�erences, is introduced. For a more detailed treatment, I refer to Griewank &
Walther (2008), the standard work on the topic, and the survey by Baydin et al.
(2018), which includes a comparison of state-of-the-art implementations.

The appendix A.2 contains a more formal introduction of the underlying con-
cepts. In short, we treat a program as the composition of functions, and derivatives
as equally-shaped compositions of the linear operators they represent. Since compo-
sition is associative, there are many possible orders for evaluation of these composed
derivatives. The two main fashions of AD, forward mode and backward mode, cor-
respond to evaluation aligning with the original function evaluation order, and its
reverse. These composition orders naturally can be described through the com-
putation graphs of functions, and transformations on them. This is illustrated in
�gure 2.2, where we see the computation graph of a simple expression g(sin(x), y),
with input variables x and y and output S . There, the graphs of the corresponding
forward-mode (left) and backward-mode (right) calculations are related to the com-
putation graphs. The dotted (¤G) and barred (Ḡ) values are the perturbation values
propagated through the derivative graphs, corresponding to intermediate variables
in the original.

In this setting, forward-mode AD is simply an e�cient way to calculate the
Jacobian-vector product � (G)J, or equivalently the total derivative at G for a �xed
perturbation J, avoiding full matrix multiplication. Applying this to all basis vectors,
we get back the gradient. Backward mode, on the other hand, calculates the product
of the Jacobian with a dual vector. This, in fact, is nothing else than a vector-Jacobian
product with the transposed Jacobian. Recovering the (transposed) gradient of a loss
function of type R# → R then reduces to evaluating it at a constant scalar output
perturbation of 1. Notably, this in involves only one pass over the graph, while in

26

x y z Ω

? ? sin() g(,)

Figure 2.3: Wengert list of the example function g(sin(x), y) introduced above. Every

intermediate variable becomes an element, linked through pointers. The gradient can

be calculated by backward traversal and accumulating the adjoint values as metadata

in the list elements. S is the resulting value of the expression.

forward mode, # passes are required. For this reason, backward mode enjoys a much
more prominent role in gradient-based machine learning.

The practical implementation of AD in programming languages opens
up another set of possible choices. One way is to use an external, compiler-based
system that transforms a complete program in a subset of a standard programming
language (e.g., Tapenade, which transpiles Fortran and C code (Tapenade developers
2019)) or in a custom speci�cation, as is done in Stan (Carpenter, Ho�man, et al.
2015). But both of these examples are really applied in niche cases: large numeric
simulations, and log-densities in a probabilistic model. Moreover, these systems lack
�exibility in programming, especially concerning abstractions and interaction with
other libraries, and require external tooling besides a main programming language.
Recently, the Swift for TensorFlow project (Hong & Lattner 2018; TensorFlow Devel-
opers 2018) introduced a modern variant of this by extending the compiler of the
Swift programming language with facilities to perform automatic di�erentiation
internally, and some features to simplify graph operations required by TensorFlow.

The second possibility is operator overloading. Forward mode can rather easily
be added to any existing programming language which has a su�ciently extensible
system for overloading mathematical operators by implementing dual numbers (see
page 73). This can be done using ad-hoc polymorphism with traits (Amin 2016)
or type classes (Wadler & Blott 1989), or by dynamic dispatch, which is what is
used in Python and Julia. Julia is especially versatile in this respect, since every
function can be overloaded to a new type of dual numbers by simply adding a method,
unlike Python, where only certain operators are open to extension – a fundamental
limitation of its single dispatch, object oriented approach.

Backward-mode AD can be implemented using operator overloading as well, but
this requires more e�ort. Since adjoint values cannot be simply threaded through
in parallel to forward evaluation, one needs to build up a data structure during the
forward pass, which can at the end be run in reverse order. One possibility of doing
this is to use closures (function objects capturing an environment), but the usage
of many higher order functions might lead to unwanted heap allocation and makes
understanding harder.

The alternative is to use a tape structure, orWengert list (Baydin et al. 2018, section
3). On such a list, the computation graph is stored in topological order with pointers

27

between elements, as shown in �gure 2.3. The Wengert list can also be constructed
through an operator overloading approach, which is exactly what most graph-based
machine learning frameworks do: PyTorch (Paszke et al. 2017), TensorFlow (Abadi,
Agarwal, et al. 2015) in eager mode, DyNet (Neubig et al. 2017), and Chainer (Tokui
et al. 2015). In these, the programmer interacts with a library mirroring the usual
numerical functions, but operating on a special “variable” or “tensor” type. These
operations are overloaded so that function calls, in addition to performing the
primal calculations, are stored either explicitly on a global Wengert list structure, or
implicitly in the constructed expression objects. Then, one can start a backward pass
from any leaf to propagate back derivatives to the roots of the computation graph,
by following the edges and summing up adjoint values in parent nodes’ metadata.
JAX (Bradbury et al. 2018) carries the idea further and allows general composable
source transformations to implement not only di�erentiation, but also vectorization,
parallelization, and other syntactic abstractions over functional programs written in
Python, over a uni�ed intermediate representation that is recovered from an original
function by tracing.

This style of implementation has limitations, though: it requires building up
many objects at run-time, and is completely oblivious to control structures. Addi-
tionally, the code expressing di�erentiable functions has to be written entirely in
the DSL, in a library-aware fashion, preventing the usage of third-party functions
and language features, and forcing the user to adhere to certain semantic constraints
that cannot be veri�ed statically by the host language. TensorFlow in graph mode
addresses some of these points. It builds up a complete expression graph, which
is di�erentiated symbolically, and is therefore somewhat in the middle between
operator overloading (since the graph is still a run-time data structure) and a static
transformation (the resulting graph is not interpreted in the host language, but
converted to run on an “accelerator”, which can one of several kinds of processing
device – CPU, GPU, TPU,. . .). It still requires to stick to the provided expression
types and library functions, though.

E�orts to overcome these limitations lead to the third kind of approach: language-
internal source transformation. Recent work in Julia (Innes 2018) has shown that
the available metaprogramming mechanisms (described in section 2.3) allow to
systematically derive derivative programs for arbitrary user-provided Julia programs,
given only a set of primitive adjoints (such as derivatives of built-in functions). This
approach works purely structurally on the Julia IR, employing generated functions
to analyse functions’ code and transform them completely, including third-party
functions and data types, and control �ow. The key insight here is that SSA-form IR
already resembles the structure of Wengert lists, extended by branches. For example,
the Wengert list in �gure 2.3 could be written as

G = ?,
~ = ?,
I = sin(G),
S = 6(I,~) .

(2.16)

28

(Again, see appendix A.2 for mathematical details). As in building up reverse com-
putation graphs, the adjoint code will invert the control �ow of the basic blocks
in the primal function, taking into account that data �ow may involve dynamic
dependencies. In our little example (without control �ow), this leads to

Ḡ = Ī2 = −X,
~̄ = cos(G) X
Ī = [X,−X]
S̄ = X,

(2.17)

for output perturbation X (to be read from bottom to top). These two equations
should illustrate the kinship of Wengert form and SSA code. Di�erentiation through
data types and closures is also supported, via a uni�ed treatment in a tuple-like form,
with constructors and accessors (inspired by cons-cells in Lisp).

An implementation of this principle has been released as the Zygote.jl package6.
In similar spirit, there is also work on directly di�erentiating the LLVM intermediate
representation, by extending the compiler pipeline with a di�erentiation pass that
comes after all language-speci�c and high-level optimizations (Moses & Churavy
2020), released as the Enzyme project7. Furthermore, there are applications that use
the same techniques for other purposes, like sparsity detection (Gowda et al. 2019)
or concolic execution (Churavy 2019) (cf. discussion in section 3.3).

Internal source-based methods can therefore be composable, extensible, and
more user-friendly, since no special treatment of programs to be di�erentiated is
required: primal functions can be implemented as any other regular function in the
host language, and primitive adjoints added at any time. A source-transformation
approach also completely avoids the obscure issue of “perturbation confusion”, which
leads to hard-to-�nd errors when using nested di�erentiation with dual numbers
(Baydin et al. 2018; Manzyuk et al. 2019).

As a concluding note, all these graph operations reveal that automatic di�eren-
tiation is really only a special case of message passing algorithms in computation
graphs (Minka 2019). Other learning methods that can be described as message
passing are optimization algorithms (Dauwels, Korl & Loeliger 2005; Ruozzi 2011)
and a variety of variational approximations (Minka 2005; Winn & Bishop 2005).
Hence, it is no surprise that computation graphs play a large role as the foundation
of other learning algorithms for probabilistic models, such as described below.

6https://github.com/FluxML/Zygote.jl
7https://enzyme.mit.edu/

29

https://github.com/search?q=Zygote.jl&type=Repositories
https://github.com/FluxML/Zygote.jl
https://enzyme.mit.edu/

3 Implementation of Dynamic
Graph Tracking in Julia

As described previously, there is a trade-o� between source-transformation meth-
ods and library-based (operator overloading) approaches for tracking computation
graphs. Since the ultimate goal of this work is to analyse dynamic probabilistic
models written in Turing.jl, properties of both are desirable. An operator overload-
ing approach has been considered for this purpose, since it would have allowed to
potentially reuse AD implementations, but was thought insu�cient, because the
structure of control �ow and recursion are lost. Inspired by the work of Innes (2018),
it seemed most promising to start from a source-transformation based approach
implemented over the IR, especially from a usability point of view. The advantages
of using a transformation of the IR over the surface AST are the same: there is less
overhead from handling multiple syntactic forms, and naming is already normalized
into a convenient format. Additionally, there are existing Julia packages to simplify
handling the IR data structures and set up the transformations.

However, the dynamicity of the trace structure of general probabilistic programs
needs to be preserved and exposed to the user, for each function evaluation – which
is di�erent from the AD usage, where the adjoint function is already the ultimate
goal, and is assumed not to have a computation graph changing with the arguments.
Hence, a method for a hybrid version was developed: through an IR transformation,
the original code of a function to be tracked should be extended by additional
statements to record a trace of the executed statements and control �ow operations
at run-time. The algorithm and structures on which this approach is based have
already been shortly described in Gabler et al. (2019), and will be explained more
extensively below. An open source implementation is available online1.

As we have seen above in section 2.3, generated functions allow the inspection
and transformation of the IR of given functions. This technique can be applied
to recursively traverse the implementation of a given function, annotating each
operation with necessary tracking statements, and changing the inputs and outputs
accordingly to extract this information from outside. To ensure su�cient generality,
we requite the following properties of the tracking system:

1. Storage of all intermediate values during execution.
2. Symbolic capture of intermediate expressions and branches in an analysable,

1https://github.com/TuringLang/IRTracker.jl

31

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/TuringLang/IRTracker.jl

graphical form.
3. Preservation of the relation of each part of the structure to the corresponding

original IR.
4. Proper nesting of this information for nested function calls, making relations

between arguments and function inputs recoverable.
5. Correct handling of constants and primitive functions in the IR.
6. Extensibility of the tracking functions, to allow multiple possible ways to analyse

code (e.g., by di�erent de�nitions of what should be recorded).
7. A way to add custom metadata to the recorded structure during tracking.

This kind of operation will be similar to the (explicit) construction of Wengert lists
in backwards-mode AD (see section 2.4); but contrary to the AD case, the nested call
structure and control �ow shall be preserved as well. Hence, we call this structure
extended Wengert list.

3.1 Extended Wengert Lists

The extended Wengert list structure is implemented in Julia through nested objects of
an abstract supertype AbstractNode, with several concrete subtypes for the di�erent
kinds of nodes. Additionally, there are special types for the tape- and block references
(corresponding to SSA variables and blocks), and an expression type TapeExpression,
mimicking the built-in Expr, but adding more semantic distinctions (such as between
references and constants, and between primitive and non-primitive function calls).
On top of this, an API to query the graph structure is provided, allowing, for example,
to �nd all children or parents of a tape reference up to a certain depth, or extract
data from nodes, such as referenced variables, arguments, or metadata.

Figure 3.1 illustrates the resulting extended Wengert list for one run of a short
stochastic function:

geom(n, beta) = rand() < beta ? n : geom(n + 1, beta)

(for readability, the result is displayed to only three levels of nesting). The function
draws a sample from the geometric distribution with parameter beta, starting to
count at value n (simulating, for example, throws of a biased coin until heads are
observed). On the left, we have the function’s original IR in textual form, consisting
of two blocks. The central part is the graph of nested nodes. There, values and jumps
from the top-level call are recorded in their encountered order, as nodes with “tape
references” @1 to @9. SSA variables (%i) occurring in expressions of SSA de�nitions
are also replaced in the nodes by the respective tape references. Each node is linked
to the original IR statement it records, as indicated by the red arrows.

In the lower middle part, we see the node corresponding to the statement
%7 = geom(%6, %3). It is recorded at reference @8 with expression geom(@7, @3)

and value 4 (the notation 〈geom〉 indicates that geom is a constant, and ()... stands
for the absence of optional arguments). The values of the arguments of this call can
be inspected by looking up the respective references. Since geom is not a primitive

32

⟨geom⟩(⟨1⟩, ⟨0.6⟩, ()...) → 4::Int64
 @1: [Arg:§1:%1] geom::typeof(geom)
 @2: [Arg:§1:%2] 1::Int64
 @3: [Arg:§1:%3] 0.6::Float64
 @4: [§1:%4] ⟨rand⟩(, ()...) → 0.74::Float64
 @1: [Arg:§1:%1] @4#1 → rand::typeof(rand)
 @2: [§1:%2] ⟨default_rng⟩() → ...
 @3: [§1:%3] @1(@2, ⟨Float64⟩) → 0.74::Float64
 @4: [§1:&1] return @3 → 0.74::Float64
 @5: [§1:%5] ⟨<⟩(@4, @3, ()...) → false::Bool
 @1: [Arg:§1:%1] @5#1 → <::typeof(<)
 @2: [Arg:§1:%2] @5#2 → 0.74::Float64
 @3: [Arg:§1:%3] @5#3 → 0.6::Float64
 @4: [§1:%4] ⟨lt_float⟩(@2, @3) → false::Bool
 @5: [§1:&1] return @4 → false::Bool
 @6: [§1:&1] goto §2 since @5 == false
 @7: [§2:%6] ⟨+⟩(@2, ⟨1⟩, ()...) → 2::Int64
 @1: [Arg:§1:%1] @7#1 → +::typeof(+)
 @2: [Arg:§1:%2] @7#2 → 1::Int64
 @3: [Arg:§1:%3] @7#3 → 1::Int64
 @4: [§1:%4] ⟨add_int⟩(@2, @3) → 2::Int64
 @5: [§1:&1] return @4 → 2::Int64
 @8: [§2:%7] ⟨geom⟩(@7, @3, ()...) → 4::Int64
 @1: [Arg:§1:%1] @8#1 → geom::typeof(geom)
 @2: [Arg:§1:%2] @8#2 → 2::Int64
 @3: [Arg:§1:%3] @8#3 → 0.6::Float64
 @4: [§1:%4] ⟨rand⟩() → 0.99::Float64
 @5: [§1:%5] ⟨<⟩(@4, @3) → false::Bool
 @6: [§1:&1] goto §2 since @5 == false
 @7: [§2:%6] ⟨+⟩(@2, ⟨1⟩) → 3::Int64
 @8: [§2:%7] ⟨geom⟩(@7, @3) → 4::Int64
 @9: [§2:&1] return @8 → 4::Int64
 @9: [§2:&1] return @8 → 4::Int64

geom(n, beta) = rand() < beta ? n : geom(n + 1, beta)

Original function definition

1: (%1)
 %2 = Random.default_rng()
 %3 = (%1)(%2, Float64)
 return %3

1: (%1)
 %2 = Random.default_rng()
 %3 = (%1)(%2, Float64)
 return %3

First argument is
function itself

rand()rand()

1: (%1, %2, %3)
 %4 = Base.lt_float(%2, %3)
 return %4

<(::Float64, ::Float64)

1: (%1, %2, %3)
 %4 = Base.add_int(%2, %3)
 return %4

Primitive function

+(::Int, ::Int)

geom(::Int, ::Float64)

1: (%1, %2, %3)
 %4 = Main.rand()
 %5 = %4 < %3
 br 2 unless %5
 return %2
2:
 %6 = %2 + 1
 %7 = Main.geom(%6, %3)
 return %7

Original IR

geom(::Int, ::Float64)

Nested argument

Typed return value

Corresponence
between IR and
tracked statements

Top-level call
Argument
values

Nested call to a non-
primitive function

Conditional branch taken

Nested
trace
of geom

Figure 3.1: Extended Wengert list for one run of the stochastic function geom (only

three levels shown). The central box is the tracked graph of the call geom(1, 0.6).

The other boxes show the original IR of the called non-primitive functions, to which

the nodes are linked. Angle brackets indicate constant values.

function, the node holds a list of child nodes as well. In this case, it resembles the
top level, due to the recursivity of geom. We can see the three arguments @1, @2, and
@3, corresponding to the block arguments %1, %2, and %3, with the value of @2 being
now 2 instead of 1. Furthermore we can see function calls of rand and < as well
as a conditional jump, corresponding to the branch in the original IR, followed by
calls of + and geom. Following back the tape references from the result value @9, the
data path of the trace can be extracted. It can be used for reverse-mode AD, and
only these nodes would be recorded in a conventional Wengert list. In this work,
however, the system also records the nodes on the control path, consisting of @6 and
the nodes it depends on.

3.2 Automatic Graph Tracking

Recording an extended Wengert list requires to capture all block arguments, SSA
de�nitions, and taken branches, with their actual values and metadata. This is
achieved by extending the IR with new statements creating nodes and recording

33

them on the extended Wengert list structure described in the previous section. Care
needs to be taken to properly record function calls, since we need to ensure that
non-primitive functions are recursively tracked.

The recording functionality is implemented as a transformation using a gener-
ated function operating on the IR, using the IRTools.jl package, as described in
section 2.3. The resulting IR consists of about three to �ve times as many statements
as the original. This is a small constant overhead per statement, but should not a�ect
complexity when done properly, such as with a good choice of collection structures
and paying attention to type stability. In the transformed code, the basic blocks and
control structure are preserved, except for the redirection of return statements to
one extra block at the end. Due to JIT compilation, the transformation is performed
at most a constant number of times per method, and then stored as compiled code.
However, the tracking – the recording of all statements in the extended Wengert
list structure – happens at every execution during run-time, which is an important
feature to allow the application to dynamic models.. Furthermore, the extended code
is available to all standard optimizations performed in the following compiler passes.

The transformed code of the example function geom, whose untracked IR is given
in �gure 3.1 above at the left, is displayed in �gure 3.2. First, a “graph recorder”
object is passed into the function via the extra argument %5. In this, the original IR is
stored for later access. Subsequently, every original SSA statement is replaced by a
call to one of the trackedX functions, to which both the function and its arguments
are passed. The latter are wrapped into TapeExpressions directly (for constants)
or indirectly (through trackedvariable and trackedargument, which preserve the
symbolic mapping to SSA variables). The record! function takes care of constructing
the child nodes of the possibly nested call, and storing them on the recorder object.

To get a more detailed understanding, consider the SSA statement %6 = %2 + 1

in the second block of geom, which describes the application of the function + to an
SSA variable and a constant. The IR of the block is shown again in 3.2 on the box on
the lower right, with corresponding pieces of IR highlighted in matching colors (%6
being transformed into %33 to %37 on the left).

1. First, a constant node %33 for the function is set up.
2. Then, the SSA variable argument %2 is tracked in %34. There, trackedvariable

has the purpose to correctly relate the node in the trace (@2) to the original
variable. This is necessary, since a block could be visited multiple times during
tracking – for example, if it belongs to a loop body – which requires to give
multiple, unique names to references to the same original variable. Additionally,
trackedvariable copies mutable values, since the tracked information would
otherwise not preserve intermediate values correctly in the case of mutations.

3. Next, both of the function arguments are packed into the tuple %35; the second
argument, which was a literal value 1 in the original IR, is preserved as a literal
as well (wrapped into a QuoteNode object for technical reasons).

4. Finally, the function and arguments are passed to the function trackedcall,
which takes care of actually calling the original function. Doing so, it will, if the

34

https://github.com/search?q=IRTools.jl&type=Repositories

1: (%4, %5, %1, %2, %3)
 %6 = saveir!(%5, <original IR>)
 %7 = TapeConstant(%1)
 %8 = trackedargument(%5, %7, nothing, 1, $(QuoteNode(§1:%1)))
 %9 = record!(%5, %8)
 %10 = TapeConstant(%2)
 %11 = trackedargument(%5, %10, nothing, 2, $(QuoteNode(§1:%2)))
 %12 = record!(%5, %11)
 %13 = TapeConstant(%3)
 %14 = trackedargument(%5, %13, nothing, 2, $(QuoteNode(§1:%3)))
 %15 = record!(%5, %14)
 %16 = TapeConstant(Main.rand)
 %17 = Base.tuple()
 %18 = trackedcall(%5, %16, %17, $(QuoteNode(§1:%4)))
 %19 = record!(%5, %18)
 %20 = TapeConstant(Main.:<)
 %21 = trackedvariable(%5, $(QuoteNode(%4)), %19)
 %22 = trackedvariable(%5, $(QuoteNode(%3)), %3)
 %23 = Base.tuple(%21, %22)
 %24 = trackedcall(%5, %20, %23, $(QuoteNode(§1:%5)))
 %25 = record!(%5, %24)
 %26 = Base.tuple()
 %27 = trackedvariable(%5, $(QuoteNode(%5)), %25)
 %28 = trackedjump(%5, 2, %26, %27, $(QuoteNode(§1:&1)))
 %29 = trackedvariable(%5, $(QuoteNode(%2)), %2)
 %30 = trackedreturn(%5, %29, $(QuoteNode(§1:&2)))
 br 2 (%28) unless %25
 br 3 (%2, %30)
2: (%31)
 %32 = record!(%5, %31)
 %33 = TapeConstant(Main.:+)
 %34 = trackedvariable(%5, $(QuoteNode(%2)), %2)
 %35 = Base.tuple(%34, $(QuoteNode(⟨1⟩)))
 %36 = trackedcall(%5, %33, %35, $(QuoteNode(§2:%6)))
 %37 = record!(%5, %36)
 %38 = TapeConstant(Main.geom)
 %39 = trackedvariable(%5, $(QuoteNode(%6)), %37)
 %40 = trackedvariable(%5, $(QuoteNode(%3)), %3)
 %41 = Base.tuple(%39, %40)
 %42 = trackedcall(%5, %38, %41, $(QuoteNode(§2:%7)))
 %43 = record!(%5, %42)
 %44 = trackedvariable(%5, $(QuoteNode(%7)), %43)
 %45 = trackedreturn(%5, %44, $(QuoteNode(§2:&1)))
 br 3 (%43, %45)
3: (%46, %47)
 %48 = record!(%5, %47)
 return %46

All arguments are
recorded as constants
in special nodes

Jumps and returns are passed
down to the next block

Extra argument for the recorder object

1: (%1, %2, %3)
 %4 = Main.rand()
 %5 = %4 < %3
 br 2 unless %5
 return %2

2:
 %6 = %2 + 1
 %7 = Main.geom(%6, %3)
 return %7

Original IR, stored in recorder

SSA statements are translated
to trackedcall calls

Called function
Function argument tuple
(second argument is a constant)

First function argument

Function call expression

Actual jump is recorded
in target block

Locations in original IR
(block §2, variable %7 and
branch &1)

Special extra block
for return values

Figure 3.2: Tracked IR of the method geom(::Int, :: Float64). Corresponding parts

in original and transformed IR are highlighted in matching colors. (The original IR

consists of two blocks, shown separately on the right.)

35

struct DepthLimitContext <: AbstractTrackingContext
level::Int
maxlevel::Int

end

DepthLimitContext(maxlevel) = DepthLimitContext(1, maxlevel)
canrecur(ctx::DepthLimitContext, f, args...) = ctx.level < ctx.maxlevel

function trackednested(ctx::DepthLimitContext, f_repr::TapeValue,
args_repr::ArgumentTuple{TapeValue}, info::NodeInfo)

new_ctx = DepthLimitContext(ctx.level + 1, ctx.maxlevel)
return recordnestedcall(new_ctx, f_repr, args_repr, info)

end

Listing 3.1: Implementation of a tracking context to limit the nesting depth to a maxi-

mum (provided as part of IRTracker.jl).

called function is not considered primitive, recursively track its children, and
pack the resulting child nodes into a new nested node, together with the return
value. Otherwise, the result will simply be stored in a special primitive-call node.

5. The resulting node is then stored on the recorder; this operation at the same
time returns the return value, %37, replacing the original %6, which is needed in
subsequent calculations (in this case, in %39, as the argument of the recursive call
to geom).

Branches, tracked with trackejump and trackedreturn, cannot be stored on the
recorder object before the respective jumps are taken. The solution is to �rst construct
the respective nodes of all possible branches of a block (%28), and adding them as an
extra argument to the old branches. Then, in each target branch, the jump node from
which the branch originated is recorded immediately (in this case, in statement %32).
As a special case, all return branches are converted to unconditional jumps to one
new block at the end, which contains a single uni�ed return branch. (For illustration,
in �gure 3.2, %28 and %30, the branch variables of block 1, are highlighted in colors
matching the original branches.) This way, return branches can be treated in the
same way as internal branches. A more formal description in pseudo-code is given
in algorithm 3.1.

Lastly, some special dispatch is used for the transformation to work correctly on
certain special kinds of function calls, such as intrinsic functions, type application,
and ccall primitives, which require more careful handling. These functions are
detected and replaced by trackedspecial tracking statements appropriately.

To provide some modularity and extensibility to the system, it also a�ords
customization of some behavior by tracing contexts. All of the trackedX functions
explained above, used directly in the transformed code, are really internal methods
that work directly on the recorder object. Their behavior – namely, performing the
actual method calls and constructing the nodes – is de�ned in another method of the
same function, which dispatches on a context object stored in the recorder object,
and can be overloaded by the user for a custom context.

36

https://github.com/search?q=IRTracker.jl&type=Repositories

Input: original_ir
Output: New IR with tracking statements inserted

Initialize empty IR object new_ir

for old_block in blocks(original_ir) do
Add an empty block new_block to new_ir

if this is the �rst block then
Add set up for %recorder

end if

⊲ Handle arguments
Copy all arguments from old_block to new_block

Add tracking and recording for each argument

⊲ Take care of branch recording in target blocks
if there exist branches to old_block then

Add new argument %branch_node to new_block

Add recording for %branch_node
end if

⊲ Transform all statements
for stmt in statements(old_block) do

Add tracking and recording for stmt to new_block

end for

⊲ Transform all branches
for branch in branches(old_block) do

if branch is a return branch then
Add tracking for a return node corresponding to branch

Add a branch replacing the original return
Pass the original return value and the return node as branch arguments

else
Add tracking statement for a branch node corresponding to branch

Copy the original branch
Pass the branch node as extra argument to the branch

end if
end for

end for

⊲ Set up return block
Add new block to new_ir, with arguments %return_value and %return_node

Add recording of %return_node
Add return branch, returning %return_value and %recorder

Algorithm 3.1: Overview of the IR transformation to record an extended Wengert list.

This transformation happens inside a generated function called by trackcall, which

assembles the resulting value and IR into a new node with the correct metadata. The

details of statement tracking and branch transformation are explained in the text;

the description of metadata recording, and the mechanisms to correctly rename SSA

variables during the transformation and tape references at run-time were le� out for

simplicity.

37

This allows, for one, to overload the notion of what constitutes a primitive
function. In the default context, primitive functions are only those that do not have
IR on their own (such as intrinsics and functions de�ned in C), which leads to
extremely large recursive traces even for simple functions. To prevent this, we can
introduce a new DepthLimitContext, as shown in listing 3.1. There, the function
canrecur is overloaded to stop at depth maxlevel; this method will be called to
determine whether a tracked function is considered primitive. Besides this, we also
have to rede�ne the behavior of trackednested to specify that for non-primitive
functions, i.e., nested calls, the level remembered in the context object should be
incremented. recordnestedcall is a built-in function of the library that performs
the actual recursive tracking.

From this we see that trackedcall is only a thin wrapper around a conditional
statement over canrecur, trackednested, and its sibling trackedprimitive. Beyond
this, context dispatch allows a user to change any other of the tracking functions
as well. This can be used to store custom metadata, calculate information dur-
ing tracking, or even change return values or nesting dynamically. In addition to
those methods, also trackedargument, trackedreturn, and trackedjump can be cus-
tomized, which we have seen in the example; furthermore, there are trackedspecial,
trackedconstant, and trackederror. trackedvariable is more primitive and can-
not be overloaded, since this would change the relation between references of tracked
nodes. More information is available on the package’s public repository.

3.3 Evaluation

The extended Wengert list created by tracking a function can be used for many
purposes in which computation graphs are required. All algorithms that can be
formulated as message-passing can directly work on this, as well as all methods that
operate on run-time dependency graph slices, from simple debugging to concolic
execution (see discussion below).

As a proof of concept, a small backward-mode AD system was implemented in
the form of a context. This simply required storing the derivative operators for all
intermediate values during the forward pass, and writing a backward pass as graph
traversal on the resulting computation graph.2 The implementation has been tested
on some simple composed functions, but is not intended for serious application. Due
to the very abstract nature of the implementation, not more individual evaluations
of it are performed, except unit tests to ensure correctness of the interface. The
approach discussed in chapter 4 illustrates a more realistic use-case of the proposed
system, and serves thus a larger integration test.

More potential use cases arise when the tracked model is actually static – in this
case, the complete structure can be recovered from one graph tracking pass. This
graph can then be analysed and used in various ways; even more so, when additional
semantic knowledge about the model program exists, such as meanings of certain

2https://github.com/TuringLang/IRTracker.jl/blob/master/test/test_backward_ad.jl

38

https://github.com/TuringLang/IRTracker.jl/blob/760143734de1bf4e90da655d833e7999fc0ab2de/test/test_backward_ad.jl
https://github.com/TuringLang/IRTracker.jl/blob/master/test/test_backward_ad.jl

domain-speci�c functions. Examples of this are conjugacy detection as described by
Ho�man, Johnson & Tran (2018), and automatic Rao-Blackwellization as in Murray
et al. (2017).

The implementation is limited in two respects. First, in practical terms,
there are some trade-o�s to be made regarding the storage of intermediate results
and functions in nodes. In the current design, nodes are parameterized by the types
of their contents, which leads to very large types, and potential slow-down during
type inference. Not doing this would prevent type stability of the transformed code,
since all of the intermediate values that are passed directly in the original code are
wrapped in node structures and unwrapped again. There are even still some cases in
which the parametrization does not eliminate type instability. Alternatively, original
values could be passed unwrapped into the trackedcall functions, besides the node
arguments; this would lead to more complicated handling of values, though.

The other, more fundamental restriction is inherent to dynamic tracing: alter-
native paths, that were not taken due to run-time control �ow, are not recorded.
Compared to a traditional operator overloading system, IRTracker.jl does preserve
the information about which branches were taken, and for which reason in the case
of conditional branches, but this is not enough for complete static analysis in general.

One possible direction for extension is concolic execution (Zeller et al. 2019),
in which the function is traced multiple times with di�erent arguments, whose
exact values are determined by constraint solving, so that all possible execution
paths are covered. This is potentially slow, and goes against the spirit of the idea of
tracking once, in lockstep with normal forward execution. Also, it is not applicable to
general user-de�ned types, but constrained to whatever theories the used SMT solver
supports. Alternatively, a method to merge control paths in the transformed function
could be conceived. This might, however, su�er from exponential blow-up in several
cases, is di�cult to get right in the presence of mutation, and has complicated
theoretical properties (e.g., one might not be able to guarantee termination of the
tracing code).

As a di�erent future direction, it is conceivable that a composable context system
could be designed, such that, for example, one could perform automatic di�eren-
tiation and dependency graph tracking within one tracking pass. However, this
would require more careful design, since it is unclear how to deal with potential
non-commutativity or non-associativity of the e�ects of contexts in di�erent orders
(e.g., which one gains priority in the decision about nested or primitive tracking).

39

https://github.com/search?q=IRTracker.jl&type=Repositories

4 Graph Tracking in Probabilistic
Models

We will now see how the system described in chapter 3, implemented in the Julia
package IRTracker.jl, can be utilized for the analysis of probabilistic models written
in DynamicPPL.jl, and for posterior inference in Turing.jl. This part of the work
is realized in another package, AutoGibbs.jl, which is also available as open-source
code1. There are two applications provided, built on top of the graph tracking
functionality: �rst, dependency analysis of random variables in a model. The result
is a complete graphical model for static models, and a slice of it for dynamic models.
This graph can be plotted for visualization. Second, given the dependency graph,
the conditional likelihoods of unobserved variables in static models can be extracted.
With these, analytic Gibbs conditionals for certain variables can be derived and used
in Turing.jl’s within-Gibbs sampler.

4.1 Dependency Analysis in Dynamic Models

In order to apply IRTracker.jl to extract the dependencies in a probabilistic model
written in DynamicPPL.jl, recall the internal structure of such models. As was
introduced in section 2.2, there is one evaluator function, into which the original
code is transformed, and which evaluates the model in di�erent modes. This function
has the same structure as the original code, but adds some more complicated book-
keeping logic to it, and transforms the tilde statements into function calls with
additional metadata. Furthermore, when using the model as a callable object, there are
several layers of dispatch (about �ve layers of nesting, depending on the arguments),
until the real evaluator function is actually hit. There is no further nesting involved
beyond the evaluator function, though (Turing.jl currently does not support nested
models).

Therefore, we �rst need to introduce an IRTracker.jl context that will record all
the internal function calls down to the evaluator function, and stop there. Similar to
the DepthLimitContext demonstrated on page 36, the main task here is to overload
the canrecur method to stop at the right call. This can easily be done by introducing
a helper predicate function ismodelcall that dispatches on the involved types.

1https://github.com/phipsgabler/AutoGibbs.jl

41

https://github.com/search?q=IRTracker.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=IRTracker.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=IRTracker.jl&type=Repositories
https://github.com/phipsgabler/AutoGibbs.jl

Next, we notice that the resulting computation graph consists of a nested and quite
complicated structure, due to the initial levels of nesting. To work with the core
model structure, we need to remove outer layers from the innermost node containing
the trace of the evaluator function. Finally, many of the statements in the trace of
the evaluator function do not have relevance for dependency analysis – like those
that stem from internal calculations done by the model, or statements that were
written by the user but to not lie on the dependency graph, such as debugging
statements or parts of loops. These can be stripped o� in advance, so as to clean the
raw dependency trace. The three preparation steps are put together in one method:

function slicedependencies(model::Model{F}, args...) where {F}
trace = trackmodel(model, args...)
strip = strip_model_layers(F, trace)
slice = strip_dependencies(strip)
return slice

end

where trackmodel extracts the computation graph with the context for models track-
ing, strip_model_layers removes the outer method calls, and strip_dependencies

removes all SSA code that is not on the dependency graph spanned by the sampling
statements.

The �nal and most intricate step is to add all the remaining SSA statements
to a new graph structure, describing a more domain-speci�c representation. In
this Graph type, only assumption, observation, call, and constant nodes remain,
storing relevant metadata such as their values, variable names, and distribution
objects. In addition, the object contains intermediate information used during graph
construction, such as the mapping between newly generated and original references.
The graph construction is implemented in a function makegraph. The �nal graph
dependency tracking interface thus consists of the single function

function trackdependencies(model, args...)
slice = slicedependencies(model, args...)
return makegraph(slice)

end

There are two complications regarding makegraph. For one, model arguments are
handled specially by DynamicPPL.jl – there are some internal arguments added,
and the original arguments are inspected to allow, e.g., to run the same model in
prior or likelihood contexts. This part needs to be sorted out, so that the passed
argument values are correctly set up as constants in the dependency graph. Since all
information is present, the task is resolved by correctly identifying the arguments
and restructuring their contents into the right form.

The other problem is the handling of mutation, and tracking of modi�ed array
elements. For example, a hidden Markov model with states s and transition matrix T

might contain code like this:

s = zeros(Int, N)
s[1] ~ Categorical(K)
for i = 2:N

s[i] ~ Categorical(T[s[i-1]])
end

42

https://github.com/search?q=DynamicPPL.jl&type=Repositories

In order to model the dependency between successive elements of s, an empty array
is �rst set up, and then subsequently populated by the results of the tilde statements
describing the Markov process. In this form, only the individual variables s[i] are
“seen” by the inference algorithm. Internally, the respective tilde statements are
translated to array assignments of the form s[i] = tilde_assume(...), but with
additional lowering of the involved arguments, after which the corresponding IR
will look approximately like this:

%9 = %i - 1 # i - 1
%10 = getindex(%s, %9) # s[i - 1]
%11 = getindex(%T, %10) # T[s[i - 1]]
%12 = VarInfo{:s}(((%i,),))
%13 = Categorical(%11)
%14 = tilde_assume(..., %13, ..., %12, ...) # %14 ~ %13
%15 = setindex!(%s, %14) # s[i] = %14

(which is not real SSA form – several statements have been collapsed, and letters
been used in SSA variables for clarity.) We see that the direct association between
the original variable s[i] (within %s) and its distribution (%13) is not preserved in
the line of the tilde method, but spread over multiple statements. Even worse, since
all statements for the di�erent s[i] result in mutating setindex! calls on %s, the
immediate dependency between s[i] and s[i-1] is not available structurally, but
must be recovered dynamically.

The makegraph implementation solves this by successively identifying mutated
arrays representing random variables through inspection of the indexing calls around
tilde statements, and storing the association between the assumption and the array
elements. This part of the procedure is the most intricate one, and there may exist
cases where mutation is able to “circumvent” the dependency analysis. Addition-
ally, the matching between indexing arguments involves some careful treatment of
variable names; the existing DynamicPPL.jl API for this functionality is not very
comprehensive. Due to this, the implementation of AutoGibbs.jl currently only
supports “simple” indexing by one tuple of integers. Other, more general indexing
styles allowed in Julia could be added in future extensions. Furthermore, broad-
casting tilde statements, that are supported in DynamicPPL.jl, are not supported by
AutoGibbs.jl at the moment.

To illustrate the extracted dependency graphs obtained by AutoGibbs.jl, we
will examine the two simple models shown in listing 4.1: a Boolean variable sampled
from a mixture of two Bernoulli distributions, and a simple single-variable Gaussian
model with conjugate prior. The pretty-printed Graph objects resulting from each
model are shown below them, in listing 4.2. We can see that the model arguments
for observations occur as constant values, and all of the intermediate function
calls visible in the original model de�nitions are preserved. From this structure,
AutoGibbs.jl can construct output in the Dot graph format and visualized using
GraphViz (Gansner & North 2000). The rendered output of the example models is
shown in �gure 4.1.

43

https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories

@model function bernoulli_mixture(x)
w ~ Dirichlet(2, 1/2)
c ~ DiscreteNonParametric([0.3, 0.7], w)
x ~ Bernoulli(c)

end

@model function hierarchical_gaussian(x)
_ ~ Gamma(2.0, inv(3.0))
m ~ Normal(0, sqrt(1 / _))
x ~ Normal(m, sqrt(1 / _))

end

Listing 4.1: Two simple example models: a mixture of two Bernoulli random variables

with fixed probabilities, and a Gaussian model with conjugate prior. Both models are

defined over one single observation.

〈2 〉 = false
〈3 〉 = Dirichlet(2, 0.5) → Dirichlet{Float64}(alpha=[0.5, 0.5])
〈4 〉 = w ~ 〈3 〉 → [0.82, 0.17]
〈5 〉 = DiscreteNonParametric([0.3, 0.7], 〈4 〉) → DiscreteNonParametric{...}(

support=[0.3, 0.7], p=[0.82, 0.17])
〈6 〉 = c ~ 〈5 〉 → 0.3
〈7 〉 = Bernoulli(〈6 〉) → Bernoulli{Float64}(p=0.3)
〈8 〉 = x ~ 〈7 〉 ← 〈2 〉

(a) Trace of bernoulli_mixture(false) (some type parameters not shown).

〈2 〉 = 1.4
〈3 〉 = Gamma(2.0, 0.33) → Gamma{Float64}(U=2.0, \ =0.33)
〈4 〉 = _ ~ 〈3 〉 → 0.92
〈5 〉 = /(1, 〈4 〉) → 1.08
〈6 〉 = sqrt(〈5 〉) → 1.03
〈7 〉 = Normal(0, 〈6 〉) → Normal{Float64}(`=0.0, f=1.03)
〈8 〉 = m ~ 〈7 〉 → 1.85
〈9 〉 = /(1, 〈4 〉) → 1.08
〈10 〉 = sqrt(〈9 〉) → 1.03
〈11 〉 = Normal(〈8 〉, 〈10 〉) → Normal{Float64}(`=1.85, f=1.03)
〈12 〉 = x ~ 〈11 〉 ← 〈2 〉

(b) Trace of hierarchical_gaussian(1.4).

Listing 4.2: Traced structure of the two example models introduced above, with fixed

observations false and 1.4. Values in 〈angle brackets〉 denote intermediate values

(similar to SSA variables), and right arrows denote the resulting values of function calls.

The le� arrow indicates the source of the observed value. Decimal parts have been

truncated for be�er readability.

44

⟨2⟩ = false

⟨3⟩ = Dirichlet(2, 0.5)

⟨4⟩ = w ~ ⟨3⟩

⟨5⟩ = DiscreteNonParametric([0.3, 0.7], ⟨4⟩)

⟨6⟩ = π ~ ⟨5⟩

⟨7⟩ = Bernoulli(⟨6⟩)

⟨8⟩ = x ~̇ ⟨7⟩ ← ⟨2⟩

(a) bernoulli_mixture(false)

⟨2⟩ = 1.4

⟨3⟩ = Gamma(2.0, 0.3333333333333333)

⟨4⟩ = λ ~ ⟨3⟩

⟨5⟩ = /(1, ⟨4⟩)

⟨6⟩ = sqrt(⟨5⟩)

⟨7⟩ = Normal(0, ⟨6⟩)

⟨8⟩ = m ~ ⟨7⟩

⟨9⟩ = /(1, ⟨4⟩)

⟨10⟩ = sqrt(⟨9⟩)

⟨11⟩ = Normal(⟨8⟩, ⟨10⟩)

⟨12⟩ = x ~̇ ⟨11⟩ ← ⟨2⟩

(b) hierarchical_gaussian(1.4)

Figure 4.1: Dependency graphs of the models in listing 4.1, generated by AutoGibbs.jl
and rendered by GraphViz. More information, such as node values, is stored in the

real model graph, but not printed for be�er readability. Circular nodes denote tilde

statements, while deterministic intermediate values, corresponding to normal SSA

statements, are wri�en in rectangles.

45

https://github.com/search?q=AutoGibbs.jl&type=Repositories

4.2 Automatic Calculation of Gibbs Conditionals

The ultimate contribution of this work is to utilize the dependency extraction system
to extend Turing.jl with JAGS-style automatic calculation of Gibbs conditionals.
In JAGS (and its sibling, BUGS) conditional extraction works over a wide range
of variable types (Plummer 2003) by symbolic analysis and recognition of several
patterns, e.g., conjugate distributions from exponential families, log-concave or
compactly supported distributions; see Lunn, Thomas, et al. (2000). This is possible
since the class of models is constrained by the modeling language, and available in
completely structured form.

In Turing.jl, models are much less restricted, and the symbolic form has to
be recovered from outside, as we have seen. To focus on the principal ideas and
not to extend the scope too much, the implementation described in this section
was restricted to the simpler case of �nite, discrete conditionals. But since the
construction of unnormalized conditionals densities, a necessary intermediate step,
is independent from the problem of normalization, this part could still serve as a
starting point for further, more general conditional samplers, as those in JAGS and
BUGS. Additionally, and this is a more fundamental limitation, the models to which
the extraction algorithm can be applied must be static in a speci�c sense: the whole
Markov blanket of the variable in question must be constant, unique, and reachable
within one run of model tracking. A large fraction of the models used in practice do
ful�ll this condition, however, as counterexamples would require stochastic control
�ow or non-constant supports. As this problem is di�cult to solve in general, the
same constraint applies to JAGS and BUGS, which makes AutoGibbs.jl not more
limited than these.

The implementation of the conditional extraction system involves three main
steps:

1. Extracting the symbolic form of the conditional likelihood of Markov blankets in
a given dependency graph.

2. Constructing closures calculating the normalized discrete conditionals from these
likelihoods.

3. Providing a Gibbs-component sampler for Turing.jl, that can utilize the resulting
conditional distributions.

Alternatively, it would be possible to repeatedly trace the dependency graph and
recalculate the conditional likelihood at each Gibbs-component sampling step. This
could remediate some restrictions, but at higher run-time cost.

The third of these steps turned out to be the easiest, since the sampling system of
Turing.jl is designed to be extensible. Ideally, a Gibbs-conditional sampler would
have �rst been added to Turing.jl and then simply been reused for AutoGibbs.jl;
in practice, it worked out the other way round, and the AutoGibbs.jl sampler has,
in generalized form, been added to Turing.jl afterwards (without the automatic
extraction, only supporting user-provided conditional distributions).

The initial step, the symbolic extraction of likelihood functions, is implemented

46

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories

〈2 〉 = false { false
〈3 〉 = Dirichlet(2, 0.5) { Dirichlet(2, 0.5)
〈4 〉 = w ~ 〈3 〉 { logpdf(Dirichlet(2, 0.5), \ [w])
〈5 〉 = DNP([0.3, 0.7], 〈4 〉) { DiscreteNonParametric([.3, .7], \ [w])
〈6 〉 = c ~ 〈5 〉 { logpdf(DiscreteNonParametric([.3, .7], \ [w]), \ [c])
〈7 〉 = Bernoulli(〈6 〉) { Bernoulli(\ [c])
〈8 〉 = x ~ 〈7 〉 ← 〈2 〉 { logpdf(Bernoulli(\ [c]), \ [x])

(a) bernoulli_mixture(false)

〈2 〉 = 1.4 { 1.4
〈3 〉 = Gamma(2.0, 1/3) { Gamma(2.0, 1/3)
〈4 〉 = _ ~ 〈3 〉 { logpdf(Gamma(2.0, 1/3), \ [_])
〈5 〉 = /(1, 〈4 〉) { /(1, \ [_])
〈6 〉 = sqrt(〈5 〉) { sqrt(/(1, \ [_]))
〈7 〉 = Normal(0, 〈6 〉) { Normal(0, sqrt(/(1, \ [_])))
〈8 〉 = m ~ 〈7 〉 { logpdf(Normal(0, sqrt(/(1, \ [_]))), \ [m])
〈9 〉 = /(1, 〈4 〉) { /(1, \ [_])
〈10 〉 = sqrt(〈9 〉) { sqrt(/(1, \ [_]))
〈11 〉 = Normal(〈8 〉, 〈10 〉) { Normal(\ [m], sqrt(/(1, \ [_])))
〈12 〉 = x ~ 〈11 〉 ← 〈2 〉 { logpdf(Normal(\ [m], sqrt(/(1, \ [_]))), \ [x])

(b) hierarchical_gaussian(1.4)

Figure 4.2: Association of the dependency graph of the example models from listing 4.1

with intermediate symbolic functions. The expressions on the right are implicit functions

of \ . (DNP is used to abbreviate DiscreteNonParametric to avoid breaking lines.)

by �rst converting the full trace into a symbolic joint log-density. The expression
of each node in the dependency graph is therefore associated with a corresponding
symbolic representation of a function of the “trace dictionary” \ , containing all
values of the random variables by name (which is to view the probabilistic model as
a joint density over trace dictionaries). This is done in the following simple fashion:
• References to call nodes or constant nodes (〈i〉 = x) are inlined.
• References to tilde nodes (〈j〉 = v ~ D) are converted to dictionary lookups: \[v].
• Call nodes are converted to functions from the trace dictionary to a function call

on the converted references: f(〈i〉, 〈j〉){ f(x, \[v]).
• Tilde nodes are converted to log-density evaluations of their values given the

corresponding distribution: 〈j〉 = v ~ D{ logpdf(D, \[v])

All resulting expressions are thereby to be understood as implicit functions of \ .
These new expression function objects can then be numerically evaluated as log-
densities for given values of all random variables. For illustration, the joint densities
of the bernoulli_mixture and hierarchical_gaussian models introduced above
in listing 4.1, are associated with corresponding symbolic functions as shown in
�gure 4.2. By adding the log-likelihoods for each tilde statement, we get the symbolic
log-joint density as, for example,

logpdf(Gamma(2.0, 0.33), \ [_]) + logpdf(Normal(0, sqrt(/(1, \ [_]))), \ [m]) +
logpdf(Normal(\ [m], sqrt(/(1, \ [_]))), \ [x]),

47

corresponding to the density over _,<, and G , factorized as

? (_,<, G) = ? (_) ? (< | _) ? (G |<, _) . (4.1)

From this we can then derive conditionals by normalizing the proportional condi-
tional, which can be obtained by removing all terms of the joint factorization that
do not depend on the conditioned variable (cf. section 2.1):

? (< | _, G) ∝ ? (< | _) ? (G |<, _),
? (_ |<, G) ∝ ? (_) ? (< | _) ? (G |<, _),

(4.2)

which in more technical terms are given through the Markov blanket of< and _
(Murphy 2012, section 24.2; Koller & Friedman 2009, section 4.5).

The crucial problem here is to �nd the normalization factor. In our case, within
the constraint of discrete and �nite random variables, the normalization factor can
be obtained exactly, as it reduces to a �nite sum. (In the more general case, it could
be found by analysing the structure of the resulting expression, such as the conjugate
variables<, _, and G above, but this is out of scope of the present work.) For example,
c in the bernoulli_mixture model is such a �nitely supported variable – we get

? (c | F, G) = ? (F) ? (c | F) ? (G | c)
∑s∈{0.3,0.7} ? (F) ? (s | F) ? (G | s)

. (4.3)

Since the distribution of every variable is preserved in the dependency graph, we can
perform the same operation programmatically, and turn the symbolic log-density
into a distribution object by simply tabulating the values of the denominator through
evaluating of the expression over the whole support of c , the set {0.3, 0.7}, and
summing it up to get the normalization factor.2 This step �nalizes the second of the
three points of the scheme listed above.

To give a concrete illustration of the construction in programmatic terms, con-
sider the bernoulli_mixture example:

1. Find the likelihood expressions that match a given conditioned variable (this
includes indexed variables subsumed by a parent, like v[i] and v), and their
distribution:

ℓ1 = logpdf(DiscreteNonParametric([0.3, 0.7], \ [w]), \ [c]) .
D = DiscreteNonParametric([0.3, 0.7], \ [w]) .

2. For each of these (sub-)variables, collect the likelihoods of their children variables,
thus completing the Markov blanket:

ℓ2 = logpdf(Bernoulli(\ [c]), \ [x]) .

The complicated part of this and the previous step is the correct matching of
indexed variables in the trace dictionary: forms like \[v][1] and \[v[1]] need
to be resolved correctly to the same value.

2This uses the interface of distribution objects from the Distributions.jl package, which have a
support method whose result is an iterable object.

48

https://github.com/search?q=Distributions.jl&type=Repositories

3. Construct for each conditioned variable a closure function that takes as an ar-
gument a �xed trace dictionary, tabulates the conditional log-likelihood over it
with the conditioned variable �xed to all values of its support, and normalizes
the result: let

S = support(D) = [0.3, 0.7],
then the closure is

\ ↦→ DiscreteNonParametric(S, so�max(table(\)))

where
table(\)8 = eval(ℓ1, \ [c { S8]) + eval(ℓ2, \ [c { S8])

are the unnormalized log-likelihoods. Here, so�max(G) = exp.(G)/∑8 exp(G8) is
the normalization operation on log-probabilities, eval the evaluation function for
likelihood closures, and \ [E { G] denotes setting the value of the variable E in \
to G .

The result of this process is a collection of closures that represent the conditional
likelihoods as “kernels”: functions from conditioned-on variables to distribution
objects. These closures can then be used to construct a conditional sampler for
usage in Turing.jl’s Gibbs sampler, in combination with other samplers for the
continuous variables.

As for potential improvements, there is of course a wide range of possibil-
ities for extension. As mentioned before, further classes of random variables beyond
those with �nite support could be handled, using methods and heuristics as in BUGS
or JAGS. This could also involve symbolic methods such as in AutoConj (Ho�man,
Johnson & Tran 2018). More generally, variance-reducing transformations, e.g., the
Rao-Blackwellization from Murray et al. (2017), are applicable. Furthermore, as done
in Gen.jl, a variant of “argument di�s” could be devised to prevent unnecessary
re-evaluation of model parts (see Cusumano-Towner 2020, section 1.2.3; Becker 2020)
(a technique that could also be used to improve e�ciency of particle samplers).

Besides improvements via inference algorithms, it would be possible for models
that are written in a vectorized or otherwise “trace constant” fashion, such that
the structure of the conditionals does not change with the number of observations,
to record the trace for a small model and reuse it for arbitrary larger ones, thus
avoiding recomputation and recompilation. Finally, the evaluation of the conditional
closures, which is currently performed by simple interpretation of expressions, could
be sped up by compiling them to Julia methods, or even better by reusing the SSA-like
structure to emit Julia IR directly.

A more radical approach would be to move away from working on a trace-based
reconstruction obtained at run-time. Such an idea, using a PPL-speci�c intermediate
representation of the complete model program, with generalized transformation
capabilities, is outlined in section 5.1 below. This could allow more invariance with
respect to inference algorithms, and would enable handling more general probabilistic
models (foremost, not only static ones).

49

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Gen.jl&type=Repositories

4.3 Evaluation

AutoGibbs.jl is a prototype. There is still some slowness resulting from compilation,
and therein primarily type inference, of the functions handling all the strongly typed
expression trees. Besides the possibility of just optimizing these further, the following
fact is most important to realize: compilation takes place only once – as soon as a
conditional is constructed, it can be reused in arbitrarily many sampling runs of the
same model. The �nished conditionals then do not take so much time anymore, quite
the contrary: they are much faster than other within-Gibbs samplers, since they only
involve evaluating a �xed expression, constructing a distribution, and sampling from
it once (and even this could be sped up further). This makes it possible to sample
much longer chains in the same time, which is an overall advantage.

Furthermore, due to the limitations AutoGibbs.jl puts on the structure of vari-
able names and indexing, there are cases in which models cannot be formulated
in a some speci�c way in DynamicPPL.jl, thus losing certain advantages such as
block-wise treatment of collections of independent variables. Again, the restrictions
are mostly a detail of the current implementation. Based on the lessons learned
through this work, further improvements to Gibbs sampling in Turing.jl are already
planned.

Besides several unit tests for correctness of the derived dependencies
and conditionals on a variety of small models chosen to test certain features and
corner cases, an experimental comparison of AutoGibbs.jl and existing Turing.jl

samplers has been conducted. Three o�-the-shelf Bayesian models were chosen: a
Gaussian mixture model (GMM) with # observations, clusters, known variances
f , and priors over cluster centers `, weightsF , and assignments I (Marin & Robert
2007, section 6.2):

F ∼ Dirichlet(K),
I= ∼ Categorical([1, . . . ,],F), for 1 ≤ = ≤ #,
`: ∼ Normal(0, f1), for 1 ≤ : ≤ ,
G= ∼ Normal(`I= , f2), for 1 ≤ = ≤ # ;

(4.4)

a hidden Markov model (HMM) with # observations, clusters, known variances f ,
and priors over transition ()) and emission (<) probabilities (Marin & Robert 2007,
section 7.3):

): ∼ Dirichlet(), for 1 ≤ : ≤ ,
<: ∼ Normal(:, f1), for 1 ≤ : ≤ ,
B1 ∼ Categorical([1, . . . ,], [1/ , . . . , 1/]),
B= ∼ Categorical([1, . . . ,],)B=−1), for 2 ≤ = ≤ #,
G= ∼ Normal(<B= , f2), for 1 ≤ = ≤ # ;

(4.5)

and a -truncated in�nite mixture model (IMM) with # observations, in stick-
breaking construction with �xed parameter U , but otherwise of the same form as

50

https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories

the GMM, to represent a nonparametric example (Hjort et al. 2010, section 2.2):

F ∼ TruncatedStickBreakingProcess(U,K),
I= ∼ Categorical([1, . . . ,],F), for 1 ≤ = ≤ #,
`: ∼ Normal(0, f1), for 1 ≤ : ≤ ,
~= ∼ Normal(`I= , f2), for 1 ≤ = ≤ # .

(4.6)

The concrete values of all involved hyper-parameters can be found in the test direc-
tory of the published source code3.

The three interesting classes of metrics in the context of this work are:

1. the “extraction time” of AutoGibbs.jl, i.e., the time it takes to extract and a
conditional including compilation times,

2. the sampling speed when used as component of a within-Gibbs sampler, and
3. the quality of the resulting chains, in terms of convergence and variance di-

agnostics. (Note that while this really benchmarks Gibbs sampling, not the
implementation of AutoGibbs.jl, it is a relevant comparison for the practitioner.)

These quantities were estimated on each of the test models, which all involve one
discrete and two continuous parameter arrays. As a baseline for AutoGibbs.jl’s
static conditional (AG), Turing.jl’s Particle Gibbs sampler (PG; Andrieu, Doucet &
Holenstein (2010, see)) was chosen, which is also suited to discrete parameters. PG
was always used with 100 particles, since lower values did not lead to convergent
chains. Continuous variables were sampled using Hamiltonian Monte Carlo (HMC;
Betancourt (2018, see)) with hand-tuned parameters (10 leapfrog steps with step
size 0.05). The experiments have been set up to vary between AG and PG, and
between 10, 25, and 50 observations, since this number determines the size of the
trace, and thus in�uences both AG’s compile times and the overall sampling time. All
measurements were conducted using the following system con�guration, as shown
by InteractiveUtils.versioninfo():

Julia Version 1.3 .1
Commit 2d5741174c (2019-12-30 21:36 UTC)
Platform Info:

OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0 .1 (ORCJIT, haswell)

Everything was executed single-threaded, with exclusive resource access on the
server, to preclude measurement noise as much as possible. Each of the three models
was benchmarked in a separate Julia session, starting with a �xed random seed. The
last two chains of the HMM with 50 observations using Particle Gibbs could not be
completed, due to the twelve hour time limit set by the job scheduler. The raw data
can be found online in Gabler (2020)4.

3https://github.com/phipsgabler/AutoGibbs.jl/tree/master/test
4https://doi.org/10.5281/zenodo.4307916

51

https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/phipsgabler/AutoGibbs.jl/tree/2b433f8f5c37a55f63fbf175193130b46c8b569f/test
https://github.com/phipsgabler/AutoGibbs.jl/tree/master/test
https://doi.org/10.5281/zenodo.4307916

The DynamicPPL.jl implementations of the models can be found in listing 4.3.
Note that for each, there exists a second, equivalent implementation used for PG,
since particle samplers in Turing.jl require the usage of special data types due to
their task copying mechanism.

It follows a detailed analysis of the results per model in graphical form, based
on six plots each. First, PG and AG are compared in terms of sampling times by
number of observations on the top left. Right of this, we have the dependency of the
extraction time of AG given the number observations. The �rst of these points is
almost always an outlier, since it involves additional compilation time. Through the
rest, a quadratic function is �tted, which always matched the values very closely.

On the recto pages, plots for convergence analysis are visualized. Since these are
estimated per parameter, and the test models involve larger arrays of parameters, the
�rst elements of the continuous and the �fth element of the discrete parameters have
always been chosen as representatives. On the top, the �rst chain of each experimen-
tal combination is shown as a qualitative representative (thinned for ease of plotting).
Well-converging chains should look like stationary processes – more like white noise
than a random walk. In the middle plot, the estimated autocorrelation functions of
the same chains are given, which are a way to evaluate convergence speed by eye.
The functions should vanish quickly (indicated by the gray signi�cance bar around
the abscissa); perfectly uncorrelated chains would have vanishing autocorrelation
except for lag zero.

Lastly, two diagnostic values are plotted for each combination and chain. The
“scale-reduction” R̂, after Gelman & Rubin (1992), estimates the factor by which the
scale of the current distribution might be reduced if the simulations were continued
(see Gelman, Carlin, et al. 2020, p. 285). It should be close to one for indicating good
convergence; as a rule of thumb, a value of more than 1.1 is suspicious. The e�ective
sample size (ESS) arises in the estimation of the asymptotic variance of Markov
chains (Vihola 2020, section 7.2), where it is formally analogous to the sample size
in the central limit theorem for i.i.d. variables. The ESS can also be interpreted as
a one-point summary of the autocorrelation estimate, normalized by chain length.
It should be close to the actual number of samples, or at least of the same order of
magnitude.

52

https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories

@model function gmm(x, K)
N = length(x)
w ~ Dirichlet(K, 1/K) # Cluster association prior
z ~ filldist(Categorical(w), N) # Cluster assignments
` ~ filldist(Normal(0.0, s1_gmm), K) # Cluster centers

for n = 1:N
x[n] ~ Normal(`[z[n]], s2_gmm) # Observations

end
end

@model function hmm(x, K, ::Type{T}=Float64) where {T<:Real}
N = length(x)

T = Vector{Vector{X}}(undef, K)
for i = 1:K

T[i] ~ Dirichlet(K, 1/K) # Transition probabilities
end

s = zeros(Int, N)
s[1] ~ Categorical(K)
for i = 2:N

s[i] ~ Categorical(T[s[i-1]]) # State sequence
end

m = Vector{T}(undef, K)
for i = 1:K

m[i] ~ Normal(i, s1_hmm) # Emission probabilities
end

x[1] ~ Normal(m[s[1]], s2_hmm)
for i = 2:N

x[i] ~ Normal(m[s[i]], s2_hmm) # Observations
end

end

@model function imm_stick(y, U, K)
N = length(y)
crm = DirichletProcess(U)
v ~ filldist(StickBreakingProcess(crm), K - 1)
w = stickbreak(v) # Cluster weights

z = zeros(Int, N)
for n = 1:N

z[n] ~ Categorical(w) # Cluster assignments
end

` ~ filldist(Normal(0.0, s1_imm), K) # Cluster centers

for n = 1:N
y[n] ~ Normal(`[z[n]], s2_imm) # Observations

end
end

Listing 4.3: Gaussian mixture model, hidden Markov model, and infinite mixture model

using a stick-breaking construction. The two-step calculation of w via v is a technical-

ity due to Turing.jl’s handling of nonparametric models. The function stickbreak
normalizes the stick-lengths v into a Dirichlet-like distribution. The Categorical(p)
constructor automatically infers the support of the categorical distribution from the

weight vector as 1:length(p).

53

https://github.com/search?q=Turing.jl&type=Repositories

AG & HMC PG & HMC

10 25 50 10 25 50

0

500

1000

1500

2000

Observations (data size)

Sa
m

pl
in

g
ti

m
e

(s
)

Sampling times for GMM

0

20

40

60

10 25 50

Observations (data size)

Ex
tr

ac
ti

on
 ti

m
e

(s
)

Repetition

First

Other

AG extraction times for GMM

Figure 4.3: Sampling and extraction times for GMM, factored by algorithm and number

of observations. Points are ji�ered horizontally to increase readability. A quadratic

curve is fi�ed to the extraction times.

Gaussian Mixture Model

For the GMM, the AG sampling times (�gure 4.3, left) lie consistently below the
minimum of the PG sampling times, even with the largest number of observations.
Extraction time (on the right) seems to grow quadratically, with exception of the
�rst call of the conditional extraction, involving compilation and type inference.

The mixing behavior of the chains (�gure 4.4, top) shows a large variation. With
10 and 25 observations, neither of the algorithms reaches consistently satisfactory
results; the distribution of '̂ values (bottom left) is quite di�use and suspiciously
large (more so for PG), and especially the ESS (bottom right) is way too low. A look
at the exemplary autocorrelation plots (middle) seems to con�rm bad convergence.
The corresponding chains clearly show random-walk-like or “lumped” behavior for
some combinations.

For 50 observations, the result is di�erent with AG. The F and ` parameters
appear to converge well in most cases, with very low-variance chains and visibly
large ESS values. But for unknown reasons, the I parameter seems to have gotten
“stuck” in this particular example and not moved at all, which is the reason no
autocorrelation function could be estimated. PG might have improved somewhat,
looking at the lower '̂ distributions, but not enough to make a meaningful di�erence,
as ESS and autocorrelation plots show no su�ciently good behavior.

54

10 observations 25 observations 50 observations

w
[1]

z[5]
μ[1]

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

0.00
0.25
0.50
0.75
1.00

1.00
1.25
1.50
1.75
2.00

-10

0

10

Step

Sa
m

pl
ed

 v
al

ue Algorithm

AG

PG

Chain comparisons for GMM

10 observations 25 observations 50 observations

w
[1]

z[5]
μ[1]

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Lag

A
C

F

Algorithm

AG

PG

Autocorrelation estimate for GMM

AG & HMC PG & HMC

w
[1]

z[5]
μ[1]

10 25 50 10 25 50

1.0
1.2
1.4
1.6
1.8

1.0
1.2
1.4
1.6
1.8

1.0
1.2
1.4
1.6
1.8

Observations (data size)

R

R values for GMM

AG & HMC PG & HMC

w
[1]

z[5]
μ[1]

10 25 50 10 25 50

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

Observations (data size)

ES
S

ESS values for GMM

Figure 4.4: Diagnostics, factored by algorithm, number of observations, and a selection

of model parameters. R̂ and ESS point estimates are ji�ered horizontally for be�er

readability. A horizontal line marks the reference value of 1.1 in the R̂ plot. For chain

plots and autocorrelation, the third chain of the respective combination has been used.

55

AG & HMC PG & HMC

10 25 50 10 25 50

0

500

1000

1500

2000

Observations (data size)

Sa
m

pl
in

g
ti

m
e

(s
)

Sampling times for HMM

0

20

40

60

10 25 50

Observations (data size)

Ex
tr

ac
ti

on
 ti

m
e

(s
)

Repetition

First

Other

AG extraction times for HMM

Figure 4.5: Sampling and extraction times for HMM, factored by algorithm and number

of observations. Points are ji�ered horizontally to increase readability. A quadratic

curve is fi�ed to the extraction times.

Hidden Markov Model

Also for HMM, the same trends in sampling and extraction times as with GMM are
visible (�gure 4.5), with AG being consistently faster. The extraction times seem to
be quite the same as GMM, even in absolute terms, as are the outliers of the �rst
function calls.

Mixing behavior for this model is much better overall. The chains (�gure 4.6,
top) look less like random walks, especially for `. Autocorrelation plots (middle)
are sometimes quite good, especially for B , and in all cases better as those above for
GMM. The '̂ values (bottom left) are all in better ranges (note the di�erence in the
scale of the ordinate!), and ESS (bottom right) noticeably higher. Overall, AG seems
to improve over PG on average, to some degree.

56

10 observations 25 observations 50 observations

m
[1]

s[5]
T[1, 1]

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

0.8
1.0
1.2
1.4

1.00
1.25
1.50
1.75
2.00

0.00
0.25
0.50
0.75
1.00

Step

Sa
m

pl
ed

 v
al

ue Algorithm

AG

PG

Chain comparisons for HMM

10 observations 25 observations 50 observations

m
[1]

s[5]
T[1, 1]

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Lag

A
C

F

Algorithm

AG

PG

Autocorrelation estimate for HMM

AG & HMC PG & HMC

m
[1]

s[5]
T[1, 1]

10 25 50 10 25 50

1.00

1.05

1.10

1.00

1.05

1.10

1.00

1.05

1.10

Observations (data size)

R

R values for HMM

AG & HMC PG & HMC

m
[1]

s[5]
T[1, 1]

10 25 50 10 25 50

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

Observations (data size)

ES
S

ESS values for HMM

Figure 4.6: Diagnostics, factored by algorithm, number of observations, and a selection

of model parameters. R̂ and ESS point estimates are ji�ered horizontally for be�er

readability. A horizontal line marks the reference value of 1.1 in the R̂ plot. For chain

plots and autocorrelation, the third chain of the respective combination has been used.

57

AG & HMC PG & HMC

10 25 50 10 25 50
0

500

1000

1500

2000

Observations (data size)

Sa
m

pl
in

g
ti

m
e

(s
)

Sampling times for IMM

0

25

50

75

100

10 25 50

Observations (data size)

Ex
tr

ac
ti

on
 ti

m
e

(s
)

Repetition

First

Other

AG extraction times for IMM

Figure 4.7: Sampling and extraction times for IMM, factored by algorithm and number

of observations. Points are ji�ered horizontally to increase readability. A quadratic

curve is fi�ed to the extraction times.

In�nite Mixture Model

Again, similar trends of sampling times and extraction times (�gure 4.7) are noticeable.
Here we can observe some larger involved factors, though; both curves grow faster,
with PG on 10 observations even being faster than AG on 50 observations; although
still on a signi�cantly higher scale in general.

In this example, PG appears to work better on average. In the example chain
plots (�gure 4.8, top), we can only see a noticeable di�erence for `, while the auto-
correlation graphs (middle) are almost all worse for AG (although both algorithms
seem to do better than in the GMM test). ESS (bottom right) is only satisfactory
for the I parameters, but PG here shows a much more consistent behavior of the '̂
distribution (bottom left).

58

10 observations 25 observations 50 observations

v[1]
z[5]

μ[1]

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

0.0

0.2

0.4

0.6

2.5
5.0
7.5

10.0

-15
-10
-5
0
5

10

Step

Sa
m

pl
ed

 v
al

ue Algorithm

AG

PG

Chain comparisons for IMM

10 observations 25 observations 50 observations

v[1]
z[5]

μ[1]

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Lag

A
C

F

Algorithm

AG

PG

Autocorrelation estimate for IMM

AG & HMC PG & HMC

v[1]
z[5]

μ[1]

10 25 50 10 25 50

1.00
1.05
1.10
1.15
1.20
1.25

1.00
1.05
1.10
1.15
1.20
1.25

1.00
1.05
1.10
1.15
1.20
1.25

Observations (data size)

R

R values for IMM

AG & HMC PG & HMC

v[1]
z[5]

μ[1]

10 25 50 10 25 50

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

Observations (data size)

ES
S

ESS values for IMM

Figure 4.8: Diagnostics, factored by algorithm, number of observations, and a selection

of model parameters. R̂ and ESS point estimates are ji�ered horizontally for be�er

readability. A horizontal line marks the reference value of 1.1 in the R̂ plot. For chain

plots and autocorrelation, the third chain of the respective combination has been used.

59

Summary

Whereas the sampling times of PG always grow rather fast, depending on the number
of observations, the rate of growth seems to be much lower for AG. The behavior
of these curves appears to be superlinear, perhaps quadratic. For GMM and HMM,
the maximal sampling time of AG is always below the minimal sampling time of PG.
Even in the case of IMM, AG’s sampling time with 50 observations is closest to PG’s
with only 10 particles, with the latter still obviously rising much faster.

With regard to the extraction times, we can note a pretty clear quadratic run-time
depending on the number of observations. The �rst run is always signi�cantly above
this trend, due to the impact of compilation and type inference. Additionally, the �rst
invocation for the lowest number of observations might have involved additional
compilation of library functions, explaining the larger residual compared to the �rst
runs of the larger numbers.

In terms of convergence, AG and PG deliver quite comparable results, varying
with some variation in quality depending on model and number of observations.
In most cases, judging by eye through the exemplary autocorrelation plots, one or
the other seems to slightly beat the other, which is buttressed by the distribution of
the diagnostic values. IMM seems poses a particularly bad application for AG, but
otherwise, no consistent “winner” is visible, and variations do not seem to follow a
consistent pattern.

In conclusion, it can be said that for models where both are applicable, Auto-
Gibbs.jl provides a viable alternative to PG, delivering comparable results in less
time. Care has to be taken to diagnose mixing behavior, though, as always in MCMC
simulations.

60

https://github.com/search?q=Auto\protect \discretionary {\char \hyphenchar \font }{}{}Gibbs.jl&type=Repositories
https://github.com/search?q=Auto\protect \discretionary {\char \hyphenchar \font }{}{}Gibbs.jl&type=Repositories

5 Conclusion

The history of this project forms a large arc, starting from a general problem in
Turing.jl, over a digression into compiler technology and automatic di�erentiation,
back the implementation of a proof of concept in the form of a very speci�c inference
method. As we have seen, two separate pieces of software have emerged from it:
IRTracker.jl and AutoGibbs.jl.

IRTracker.jl is a novel system for tracking (slices of) computation graphs in
general Julia programs through transformation of Julia’s IR. It combines advantages
from operator overloading and source-transformation approaches to record more
structured data than conventional tracking systems, as are used in AD. It is not
specialized for certain DSLs such as probabilistic programs, but versatile enough
to track all Julia programs, for various purposes in program analysis or abstract
interpretation.

AutoGibbs.jl is an extension for Turing.jl that utilizes those tracked graphs
to construct Gibbs conditional samplers for certain classes of models. On its own,
the latter is an improvement over the previous situation in Turing.jl: Gibbs condi-
tional samplers can be signi�cantly faster than particle-based samplers, the go-to
instrument for discrete variables in Turing.jl so far, while delivering comparable
inference results. Already the addition of a “manual” Gibbs conditional sampler
in Turing.jl allows to directly implement many models from the literature, for
which conditionals are often provided analytically. Automatic derivation allows
to generalize this to a large class of models that have been found useful in other
systems such as JAGS. However, the underlying issue – that Turing.jl lacks a struc-
tural representation of models – is not resolved by the implementation. This makes
AutoGibbs.jl not completely satisfactory, since the recursion and branch tracking
features of IRTracker.jl cannot be applied in a useful way.

The real di�culty is that dynamic models cannot be satisfactorily handled
through snapshot-like slices in the form of traces. Systems trying to achieve this
either become restrictive in their expressibility, or very complex in some aspects,
up to practical limitation (see Mansinghka, Selsam & Perov (2014) and Goodman,
Mansinghka, et al. (2012)). Furthermore, during implementation process, the two
main practical di�culties turned out to be matching of variable names, e.g., subsum-
ing x[1:10] under x[1:3][2], and the correct handling of mutations that shadow
actual data dependencies. The latter occurs in cases where one has, for example,
an array x, samples a value x[1], writes that to x with setindex!, and then uses

61

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=IRTracker.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=IRTracker.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=IRTracker.jl&type=Repositories

getindex(x, 1) somewhere downstream. A more versatile dictionary structure for
variable name keys could improve the situation for variable names1, but wouldn’t
solve all of the underlying issues.

There is also a fragility problem: Julia IR, while being publicly documented and, to
a certain extent, o�cially supported, is a rather internal feature of the language, and
may change between compiler versions. The IRTools.jl package provides a good
mid-layer mitigating this, but there are still many reasons why a more specialized
representation would be advantageous. From a di�erent point of view, also the
internal structure of DynamicPPL.jl’s model representations might change, and this
is an implementation detail that should not be relied on from the outside – especially
not by an important feature such as dependency extraction. In a certain sense, the
whole approach is misguided: why rely on external tracking for a framework that is
really under ones own control, using such heavy machinery as IR transformations?
This is illuminated by following very telling comment about recent tendencies in
Julia (Cassette.jl is an IR transformation package very similar to IRTools.jl):

Using Cassette on code you wrote is a bit like shooting yourself with a
experimental mind control weapon, to force your hands to move like
you knew how to �y a helicopter. Even if it works, you still had to learn
to �y the helicopter in order to program the mind-control weapon to
force yourself to act like you knew how to �y a helicopter.2

In conclusion, even though it has enabled the implementation of AutoGibbs.jl,
the dynamic graph tracking system of IRTracker.jl does not solve the underlying
problem of analysis of dynamic probabilistic models. In the course of development,
various techniques have been tried or ruled out, challenges identi�ed, and other
alternatives explored. This knowledge has lead me to a better understanding of the
domain and some more advanced ideas for the future, some of which are laid out in
the following section.

5.1 Future Work

While IRTracker.jl is quite a satisfying and complete system, the approach that
AutoGibbs.jl takes provides only an ad-hoc solution to a major shortcoming of
Turing.jl: the lack a structural model representation that is open to analysis and
transformations. This has made me consider alternatives, approaching the repre-
sentation problem for probabilistic programming languages on a more fundamental
level.3.

Let us review the important features of a universal, �exible PPL as mentioned
in section 2.2. Its DSL should allow for general recursion and nesting, support for

1Work to tackle these issues has already begun in Turing.jl, as of December 2020.
2Lyndon White (2020), private communication on https://julialang.slack.com.
3The following ideas are based on a previous informal collection at https://github.com/phipsgabler/
probability-ir

62

https://github.com/search?q=IRTools.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=Cassette.jl&type=Repositories
https://github.com/search?q=IRTools.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=IRTracker.jl&type=Repositories
https://github.com/search?q=IRTracker.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://julialang.slack.com
https://github.com/phipsgabler/probability-ir
https://github.com/phipsgabler/probability-ir

all language constructs and custom types and extensions, and be able to delegate to
other samplers or complex programs. In addition, the internal representation should
be such that multiple forms of analysis, optimization, non-standard execution, and
transformation can be performed. Currently, Turing.jl is following a rather simple
approach: one data structure (VarInfo) contains a map from variable names to values,
the accumulated log-likelihood, and some other sampling metadata. AutoGibbs.jl’s
solution consists only of retro�tting some more structure onto this representation –
which is not ideal, and for proper analysis, it would be desirable to begin with a
better representation from the start.

From di�culties described above, which became apparent during the imple-
mentation of the Gibbs conditional extraction, together with the knowledge about
DynamicPPL.jl’s internals, I developed an understanding of what a more advanced
representation of probabilistic models, with a focus on transformation and analysis,
could be, from a metaprogramming, static analysis, and language design perspective.
The idealized goal would be for variable names and dependency graphs in general
probabilistic programs to behave more conveniently as abstract data structures, and
to be part of a closed, elegant, high-level language. Many successful approaches to
PPL design probably come from the perspective of e�cient and general inference
algorithms, putting the language design problem second to such a desire – but it
should be possible to approach the �eld from a more “linguistic” perspective as well.
A further goal would be to close the gap between practical inference systems and
the mostly theoretical, functional-programming-based approaches of formalizing
probabilistic programs, such as probabilistic lambda calculi, or type-theoretic for-
mulations; see Bhat et al. (2012), Heunen et al. (2017), Ramsey & Pfe�er (2002), and
Ścibior, Ghahramani & Gordon (2015).

Universal PPLs have as their goal to let the user write down every model that is
meaningful in the underlying programming language, and still be able to do inference
on it. Of course, at the boundary of the space of “reasonable” programs, trade-o�s
need to be made to still be able to do this. It seems advantageous to split up this
conjunction: by creating a format in which one can denote every possible model of
a very large class, without a priori having to deal with the restrictions of inference.
Then, for each model, suitable transformations and analyses can be performed in
a uniform representation, and specialized backends be chosen from a wide range,
each understanding a precisely de�ned fragment of the used modeling language.

What I propose therefore is a “probabilistic intermediate representation”, that
turns around how things are currently construed in most of the approaches. Instead
of starting from a model as a “sampling function”, which is evaluated to extract graphs
or other symbolic representations from it, one would begin from a representation
that already is general, yet richly structured, and derive inference programs from it.
Viewed from the opposite direction, in contrast to PPLs that are built on top of a DSL
representation, such a representation should be backend-agnostic, and instead allow
all kinds of models to be speci�ed in a uniform syntax, without being constraint by
the demands of a speci�c sampling algorithm or inference technique. Furthermore,
it should not matter to the representation how complicated, nonparametric, or

63

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories

dynamic a model is – the object that is worked with is always a �xed, full program
in a speci�ed syntax, with an intuitive denotation.

This separation between the a “speci�cation abstraction” in form of a general rep-
resentation and “evaluator abstractions” provided by interfaces to multiple sampler
implementations seems novel. The closest correspondence would be the formal-
ization attempts of probabilistic models through monads and type systems; but
that is more semantic than syntactic. There exist some domain-speci�c “linguae
frankae” like the syntax of Stan and JAGS, but they are, too, rather restricted, and
not independently de�ned and maintained – the systems coming later just chose
to take over the same kind of input format for their own implementation. Gen.jl
(Cusumano-Towner 2020) provides an extensible interface for the class of models
it supports, but this is still quite tightly bound to its inference system. All these
approaches could rather be abstracted out into a model speci�cation formalism in its
own right, that has more general analysis capabilities, and can then be transformed
abstractly, ultimately producing the form some concrete evaluator (i.e., sampling
algorithm or PPL system) requires.

The advantage of such a separation, besides making available solutions and
techniques from programming language theory and compiler construction, is that it
provides a di�erent kind of common abstraction for PPLs than is possible through a
“one DSL per system” approach. Recently, developers in Julia have started writing
more and more “bridge code” to allow PPL interaction: there is invented a common
interface that multiple PPL systems can be �t under, and then models in each can be
used from within the other at evaluation. This is necessary due to the lack of division
of each system into an evaluator and a model speci�cation part: they always go
together. (DynamicPPL.jl is itself supposed to de�ne an extensible model description
language, but in practice is still quite strongly coupled with Turing.jl.)

I believe that starting from a common model speci�cation language is in many
cases preferable, and more general than just a common interface for evaluators.
Such interfaces tend to assume much more about the internals, while the capabilities
of universal probabilistic programs are essentially �xed: the notation of random
variables used in model speci�cation “by hand”, extended through the forms of an
embedding programming language. Starting from this, I consider the following a
least upper bound of all the universal PPL modeling approaches:
• General code: covered by normal Julia IR with SSA statements, branches, and

blocks.
• “Sampling statements”: special assignment forms for tildes, or assumptions and

observations in Turing.jl parlance, which relate names or values to distributions
(or, more generally, sub-models or even measures) in an declarative way.

• First-class variable names: these may be quite complex, containing for example
indexing, �eld access, link functions, and more, which can be identi�ed and
analysed in a structured way.

Given this, it seems feasible to de�ne arbitrary probabilistic programs in an IR-like

64

https://github.com/search?q=Gen.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Turing.jl&type=Repositories

syntax, similar to an extended SSA form; the crucial point being that names and
tildes are not separated from the host language. The idea amounts to writing out a
directed graphical model with deterministic and stochastic nodes and named random
variables, but generalized to programs – e.g., allowing dynamic structure with to
branching and recursion. A model in this kind of format then de�nes an abstract
and uninterpreted parametrized joint density function (or measure) over its trace
space (as given through the uni�ed name set of all possible runs, see e.g. Lew et al.
(2020)), factorized into primitive statements and blocks.

There is still much to be clari�ed and researched about the syntax and semantics
of such a representation, but the underlying principle should be intuitively clear
by just matching the existing Julia IR to probabilistic semantics of models like in
Turing.jl, Soss.jl, or Gen.jl. Consider, for example, a hierarchical Gaussian
model, informally written as

n = 1
while n <= N

{x[n]} ~ Normal({mu[z[n]]})
n += 1

end
{y} ~ MvNormal({x}, {sigma})

where braces indicate �rst-class variable names. We can imagine this to be repre-
sented directly in a probabilistic IR by conceiving of a lowering mechanism that
treats tilde statements just like assignments, and preserves variable names in some
form:

1:
goto 2 (1)

2 (%1):
%2 = {z[%1]}
%3 = {mu[%2]}
{x[%1]} ~ Normal(%3)
%4 = %1 < N
br 4 unless %4
br 3

3:
%5 = %1 + 1

br 2 (%5)
4:

{y} ~ MvNormal({x}, {sigma})

If we de�ne the tilde statements to behave like stochastic function calls, with a side
e�ect of somehow storing the intermediate stochastic values and their names as
metadata, this is exactly how the evaluation semantics of DynamicPPL.jl, or Gen.jl’s
dynamic interface, work in most cases.

In contrast to AutoGibbs.jl’s data structures, this kind of model is not a slice,
but preserves the complete information about a model speci�cation though �rst-class
representations. The probabilistic part of it, as opposed to the code generated by
DynamicPPL.jl, is referentially transparent. These properties make analysis and
code transformations, similar to the ones possible with IRTools.jl, signi�cantly
easier and more general. On the formal representation we can then apply transfor-

65

https://github.com/search?q=Turing.jl&type=Repositories
https://github.com/search?q=Soss.jl&type=Repositories
https://github.com/search?q=Gen.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=Gen.jl&type=Repositories
https://github.com/search?q=AutoGibbs.jl&type=Repositories
https://github.com/search?q=DynamicPPL.jl&type=Repositories
https://github.com/search?q=IRTools.jl&type=Repositories

mations such as specialization on a constant parameter or observation, resulting in
a new model in IR form, exploitation of probabilistic knowledge, like collapsing or
conjugacy exploitation, “disaggregating” a non-parametric model into something
sampleable (e.g., re-representing a Dirichlet process model with a CRP-based one),
or other changes of the probabilistic structure. We can also apply static analysis or
abstract interpretation techniques, like the extraction of Gibbs conditionals. Finally,
the model can be converted into a form �t for evaluation in various backends –
the transformation of the IR into executable code, or data structures for other PPL
systems.

All these usages can be represented through composition of several small
structural functions: constructing a new model that is the Gibbs conditional for some
variable; turning a model into a plain Julia generative function; extracting the log-
likelihood function of the model; specializing a model with some variable to given
observations, and checking that the result is static; perform a causal intervention
on some random variable; of converting a model with �xed data into a factor graph
representation.

A somewhat similar idea is currently being developed in JAX (Bradbury et
al. 2018), which is intended for numeric functions, and in which there exists a
uni�ed representation of (functionally pure) programs that can undergo various
transformations. On top of JAX, Oryx4 should provide the necessary infrastructure
to apply this in the setting of probabilistic programs. JAX, though, is closer to lambda
calculus in A-normal form than SSA-form IR; it assumes referential transparency,
static computation graphs, and has no representation of control structures. In Julia,
Soss.jl (Scherrer 2019) takes a somewhat comparable approach by representing
models written in a Julia DSL in completely symbolic expression form, from which
inference code is generated. Also here, not the full generality of the host language
is available, but only a pure subset of it; and again, control structure can only be
realized through combinator functions, not at language level.

The approach most comparable to the a system as I imagine, although stemming
from a completely di�erent domain, would be the tactic or elaborator systems
in proof assistants (e.g., Brady 2013; Coq Development Team 2020). There, user-
written programs are iteratively re�ned into other, more specialized forms through
functions expressed in a metalanguage (the so-called tactics), interleaving automated
transformations and manual interventions. A similar style of development could
boost the usability and �exibility of Bayesian inference: after writing a down model
syntactically, the user can interactively re�ne the model code in symbolic, algebraic
form, applying their knowledge and constraints, until they arrive at a form that can
be passed to some inference mechanism.

4https://www.tensorflow.org/probability/oryx

66

https://github.com/search?q=Soss.jl&type=Repositories
https://www.tensorflow.org/probability/oryx

A Mathematical Details

A.1 Measure Theory in Probability Theory

Measure theory (Tao 2011; Bronstein & Semendjajew 1995, section 10.5) allows us
to treat both discrete and continuous probabilities (more general cases) under a
common notation, primarily by the introduction of integrals over measures. The
basic idea of a measure is to generalize the concept of a “volume function” on sets.

A measure space is a triple (S,A, `), whereA ⊆ 2S is a f-algebra of measurable
sets (i.e., closed under complement, countable union, and countable intersection),
and ` : A → R ∪ {∞} is a f-additive function:

`

(⋃
:

�:

)
=∑

:

` (�:) (A.1)

for all disjoint countable families (�:) in A. Additionally, we require that ` (∅) = 0.
The necessity for A and ` being de�ned in such an elaborate way, instead of just
taking it as 2S , is that for uncountable S , it is not possible to consistently assign a
measure to the complete power set. The restriction to measurable subsets speci�cally
�lters out those pathological cases.

In probability theory (Kallenberg 2006), one always operates within a special
measure space called probability space. In a probability space (S,A, %), we addition-
ally require that % (S) = 1. S is then called the set of events – think of all possible
outcomes of some experiment.

A function between measure spaces, or probability spaces in particular, is called
measurable when every preimage of a measurable set under the function is mea-
surable. A random variable is a measurable function - : (S,A, %) → (R,B, %-)
between probability spaces with a pushforward %- , such that

%- (�) = % (-−1(�)) (A.2)

for all � ∈ B. The introduction of random variables allows to consistently convert
set-theoretic operations on events into “numerical” ones: think of assigning to each
outcome of a coin throw a number in {1, 2}, or to each measurement of some height
a value in R+. In practice, this allows us to forget about the underlying event space
and think solely in terms of the values in the domain of the random variable, with
notation like

P[U (-)] = % ({l ∈ S | U (- (l))}), (A.3)

67

where U is an arbitrary predicate de�ning a set in the domain of- . In such a setting, it
might the case that there exist some base measure `, such that probability evaluation
can be expressed as integral over some density ?- with respect to `:

P[- ∈ �] =
∫
�

?- (G) d` (G), (A.4)

for all %- -measurable sets �, or in di�erential notation

P[- ∈ dG] = ?- (G) d` (G) . (A.5)

In this case %- is said to be absolutely continuous with respect to `, written %- � `.
This statement is equivalent to the existence of a Radon-Nikodym derivative

d%-
d`

= ?- . (A.6)

For countably supported distributions, a density always exists with respect to the
counting measure, and the random variable is then called discrete. For �nite-
dimensional continuous values, when a density exists with respect the Lebesgue
measure, we speak of a continuous random variable.

A.2 Details of Automatic Differentiation

The standard reference for AD is Griewank & Walther (2008). Baydin et al. (2018)
gives a comprehensive survey including a comparison of state-of-the-art implemen-
tations. There are many works on the formalization of AD; see, for example, Abadi
& Plotkin (2020), Vytiniotis et al. (2019), Wang et al. (2019), Sajovic & Vuk (2016), or
Elliott (2018).

To understand how AD works, let us �rst ask: what is a derivative, really? When
we talk about gradients, which is what we really need in a gradient-based optimiza-
tion algorithm, this is usually a rather loosely used term for “the vector of partial
derivatives”, which then points into an ascent direction. This is however not the
most natural form to work with derivatives in a compositional approach. Instead of
starting with a limit of tangent slopes, more insight is provided by viewing deriva-
tives as best-approximating linear operators. One of the most general de�nitions is
provided by the Fréchet derivative (Bronstein & Semendjajew 1995, p. 463), essentially
a generalization of the total di�erential1. Let - and . be normed spaces. A function
5 : * ⊆ - → . is Fréchet di�erentiable at a point G in environment* 3 G if there
exists a bounded linear operator � : - → . such that

lim
‖J ‖-→0

‖ 5 (G + J) − 5 (G) −�(J)‖.
‖J‖-

= 0. (A.7)

1I prefer thinking in terms of the Fréchet derivative, since it makes explicit the fact that derivatives
are operators, and provides enough �exibility while still being intuitive. Di�erent abstractions are
possible, though.

68

When such an � does exist, it is unique, and we may call it the derivative of 5
at G , writing D5 (G) = �. When the derivative exists for all G , we can use D as a
well-de�ned higher-order function on its own; we will assume this in the following.2

The important fact here is that D5 (G) is still a function: speci�cally, a linear
function approximating how 5 reacts to an input perturbation, J, around G . Or, in
asymptotic notation:

5 (G + J) = 5 (G) + D5 (G) (J) + > (‖J‖) ; (A.8)

i.e., the linear approximation becomes better the closer J comes to G . The operator
view allows one to nicely write the propagation of di�erential values through com-
posed functions, by the chain rule, which we write in the following compositional
form:

D(q ◦k) (G) = Dq (k (G)) ◦ Dk (G) (A.9)

for di�erentiable functions q andk , with composition (q ◦k) (G) = q (k (G)). In the
one-dimensional case, we simply have

Dq (G) = J ↦→ m1q (G) J, (A.10)

where m1q (G) denotes the standard “primitive” derivative, since scalar linear maps
are exactly multiplications by a scalar. Therefore, we can recover the chain rule

D(q ◦k) (G) (J) =
(
Dq (k (G)) ◦ Dk (G)

)
(J)

=
(
m1q (k (G)) m1k (G)

)
J,

(A.11)

as we know it from calculus. Here, the product in the resulting expression arises
from the fact that we propagated through m1k (G)J as the input value of Dq (k (G)). It
is, however, remarkable that this formula is not entirely compositional: to construct
D(q ◦k), it is not only necessary to know Dq and Dk , but alsok (Elliott 2018). Still,
this is not as bad as it may seem: as I will now explain, AD algorithms evaluate both
(q ◦k) (G) and D(q ◦k) (G) at once, in lockstep fashion, so that the intermediate
values of the former can be reused in calculation of the latter.

Consider the speci�c case of 5 (G,~) = 6(B8=(G), ~) = B8=(G) − ~. The binary
subtraction operator 6 has a derivative of D6(G) (J1, J2) = J1 − J2, a linear function
of two arguments. By composition, we have:

D5 (G,~) = D
(
6 ◦ (sin ⊗ id)

)
(G,~)

= D6
(
(sin ⊗ id) (G,~)

)
◦ D(sin ⊗ id) (G,~)

= (J1, J2) ↦→ cos(G) J1 − J2

(A.12)

2In in practical cases, functions are frequently only piecewise di�erentiable due to branches, failing
this de�nition only on a countable set of points. Fortunately, the formalism of AD remains the same
under weaker notions of di�erentiability. Additionally, such points often behave well enough to admit
a subdi�erential, from which we can just choose an arbitrary subgradient; this does not necessary
lead to a descent direction, but still allows minimization under reasonable conditions (see Pock 2017,
section 6.1; Griewank & Walther 2008, chapter 14; Abadi & Plotkin 2020).

69

(where id is the identity function, and (q ⊗k) (U, V) = (q (U),k (V)) de�nes product
morphisms). In order to calculate this algorithmically, let us expand the computation
of 5 into a sequence of intermediate, primitive calculations, as we would have in a
programmatic representation:

G = ?,
~ = ?,
I = sin(G),
S = 6(I,~) .

(A.13)

We have given the �nal result the name S , and and introduced an intermediate
value I. This is known as the forward, or primal function in AD terminology.
The relations of these values can be expressed as the black computation graph in
�gure A.1(a). Following the graph, or equivalently, following the equations in (A.13),
the composition of the derivative operators can be built up incrementally, as shown
in the blue part of that �gure, by calculating the following tangent values:

¤G = J1,

¤~ = J2,

¤I = D sin(G) (¤G)
= cos(G) J1,

¤S = D6(I,~) (¤I, ¤~)
= cos(G) J1 − J2.

(A.14)

The tangent values of input variables G and ~ become the input perturbations J1 and
J2. For every subsequent tangent value, we apply the derivative at the corresponding
primal variable (depending on the primal parents) to the tangent values of the
parents – this way, the composition of the derivative operators follows the chain
rule. This algorithm, called forward-mode AD, can now be applied practically not
only on symbolic functions, but on programs, by always jointly computing (E, ¤E) for
every variable E , given its parents in the graph. This requires a form of non-standard
execution.

Recovering the full gradient of a multivariate function q : * ⊆ R# → R
(which is generally the form of loss functions for parametric models) requires to
evaluate Dq (G) for # times. This is because individual partial derivatives can only
be extracted from Dq (G) by calculating the sensitivities to unit input perturbations
in coordinate directions, for each of the input variables:

∇q (G) =
©«
Dq (G) (1, 0, . . . , 0)

...

Dq (G) (0, . . . , 0, 1)

ª®®¬ =
©«
m1q (G)
...

m#q (G)

ª®®¬ , (A.15)

which is really a special case of taking directional derivatives (which can be recovered
generally by application of the di�erential to any vector with unit norm.)

70

x y

sin

z

g

Ω

Dsin(x)

Dg(z,y)

x

Ω

y

z

(a) Forward mode.

x y

sin

z

g

Ω

D sin(x)

Dg(z,y)

Ω

z

x y

*

*

(b) Backward mode.

Figure A.1: Computation graph and intermediate expressions of the expression

g(sin(x), y), together with the derivative graphs in forward- and backward mode.

Dashed arrows indicate re-use of primal values in the derivative graph.

In order to overcome the increase of complexity with the number of input
dimensions, we can reformulate the compositional equation. Let us introduce D∗q (G),
the adjoint operator of Dq (G), whose de�ning property is that “inverts” the order of
the perturbation application: instead of calculating a primal sensitivity with respect
to an input perturbation (J), it maps a linear output perturbation (d) to an operator
that applies this to the primal sensitivity:

D∗q (G) (d) = J ↦→ d
(
Dq (G) (J)

)
. (A.16)

The adjoint di�erential is therefore an object of the double dual space. This becomes
more readable when we �x a basis to represent the derivative. Doing so, in the
�nite-dimensional case, the derivative Dq (G) is the Jacobian matrix at G , �q (G). In
this setting, forward-mode AD is simply an e�cient way to calculate the Jacobian-
vector product �q (G)J, or equivalently the total derivative for a �xed perturbation,
avoiding full matrix multiplication – which is the reason we have to apply it to the
basis vectors to get back the gradient. Backward mode, on the other hand, calculates
the product of the Jacobian with the operator that should be applied to the result,
but does not yet apply it to the input perturbation – therefore, it returns a matrix:

d
(
Dq (G) (J)

)
= 3T �q (G)J
=

(
�q (G)T3

)T
J

= D∗q (G) (d) (J),
(A.17)

where we assume d to be represented by the co-vector 3T. Since the unapplied
D∗q (G) (d) is itself an object in the dual space, it is also represented as a co-vector –
and in fact, nothing else than a transformation of the transposed Jacobian, or a
vector-Jacobian product. Recovering the gradient of a loss function then reduces to
evaluating it at a constant scalar output perturbation of 1, which is equivalent to the
application of the primal di�erential to the matrix of basis vectors.

71

Note that due to this relation to the transpose, the adjoint operator inverses the
order of composition in the chain rule:

D∗(q ◦k) (G) (d) = 3T �q (k (G)) �k (G)
=

(
�k (G)T �q (k (G))T3

)T

=
(
D∗k (G) ◦ D∗q (k (G))

)
(d) .

(A.18)

For our example function 5 , this gives the same structural form of the result as the
forward mode – only that now, the value is a vector:

D∗ 5 (G,~) = D∗
(
6 ◦ (sin ⊗ id)

)
(G,~)

= D∗(sin ⊗ id) ◦ D∗6
(
(sin ⊗ id) (G,~)

)
= X ↦→ [cos(G)X,−X]T.

(A.19)

In this form, starting with an output perturbation X = 1, we get back the complete
gradient vector through just one evaluation. Incidentally, this is nothing else than
the back-propagation “trick” (Bishop 2006)! Furthermore, applying this result to
[J1, J2] gives back the linear combination of the forward mode result.

In programmatic terms, we can proceed similar to above, only this time in-
troducing adjoint intermediate values Ē . For the values in equation (A.13), we get

Ḡ = Ī2 = −X,
~̄ = D∗ sin(G) Ī1

= cos(G) X
Ī = D∗6(G,~) (S̄)
= [X,−X]

S̄ = X,

(A.20)

which is displayed in the red graph in A.1(b). Note that now, the back-propagated
values can not be computed in parallel with forward evaluation; hence the equations
are stated in reverse order. Instead of one lockstep evaluation, the intermediate
primal values have to be stored and reused in a second, backward pass.

Finally, it has to be noted that the two described modes of automatic di�erentia-
tion are only two extremes of a spectrum. Forward and backward calculations can
really be interleaved in arbitrary order, just as it is possible to multiply Jacobians and
their transposes in di�erent order. One frequent use case of this mixed-mode AD is
when loss functions, di�erentiated using backward mode, contain broadcasting func-
tions, e.g., nonlinearities within neural networks. These have a type of R# → R# ,
but only involve a linear number of operations, so forward mode pays o�3. Similar
properties hold for second order derivatives: the calculation of Hessians is often

3As a rule of thumb in Julia, for 5 : R" → R# , forward mode typically performs better when " � #

or as long as " / 100. This folklore should always be con�rmed by benchmarking, though. See
https://github.com/JuliaDiff/ReverseDiff.jl#should-i-use-reversediff-or-forwarddiff.

72

https://github.com/JuliaDiff/ReverseDiff.jl#should-i-use-reversediff-or-forwarddiff

fastest by using forward-over-reverse composed di�erentiation. In general, unfortu-
nately, determining the optimal order of derivative evaluation is hard – this so-called
optimal Jacobian accumulation problem is known to be NP-complete (Naumann
2007).

Dual Numbers

Forward mode can be recast in mathematically equivalent form by using dual num-
bers (see Baydin et al. 2018, section 3.1.1; Deakin 1966). These consist of two parts,
similar to complex numbers: I = G + ~n . However, unlike to the imaginary unit, the
in�nitesimal unit n vanishes under multiplication with itself: n2 = 0. The conse-
quence of this is that analytic functions can naturally be extended to dual numbers
by nonstandard interpretation as truncated Taylor series:

q (G + n) = q (G) + m1q (G)n +
m2

1q (G)
2

n2 + . . .︸ ︷︷ ︸
n2 (...)=0

(A.21)

Since the higher order terms vanish, this is exactly the tuple of primal and tangent
value that is calculated during the lockstep evaluation in forward mode:

(I, ¤I) = (q (G),Dq (G) (¤G)) ⇔ I + ¤In = q (G + ¤Gn) . (A.22)

The generalization to higher dimensions, as well as higher derivatives in form of
hyper-dual numbers (Fike & Alonso 2012), follow naturally.

73

Bibliography

Abadi, M., A. Agarwal, et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Preliminary White Paper.

Abadi, M. & G. D. Plotkin (2020). “A Simple Di�erentiable Programming
Language”. In: Proceedings of the ACM on Programming Languages 4 (POPL),
pp. 1–28. doi: 10.1145/3371106.

Aho, A., R. Sethi & J. Ullman (1986). Compilers: Principles, Techniques and Tools.
Massachusetts: Addison-Wesley.

Amin, N. (2016). “Dependent Object Types”. PhD Thesis. EPFL. doi:
10.5075/epfl-thesis-7156.

Andrieu, C., A. Doucet & R. Holenstein (2010). “Particle Markov Chain Monte
Carlo Methods”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 72.3, pp. 269–342. doi: 10.1111/j.1467-9868.2009.00736.x.

Apple (2020). Swift Compiler. url: https://swift.org/swift-compiler/ (visited
on 2020-11-01).

Bartholomew-Biggs, M. et al. (2000). “Automatic Di�erentiation of Algorithms”.
In: Journal of Computational and Applied Mathematics 124.1, pp. 171–190. doi:
10.1016/S0377-0427(00)00422-2.

Baydin, A. G. et al. (2018). “Automatic Di�erentiation in Machine Learning: A
Survey”. In: Journal of Machine Learning Research 18.153, pp. 1–43.

Becker, M. R. (2020). “Dynamic Specialization in Trace-Based Probabilistic
Programming Systems”. In: ProbProg 2020.

Betancourt, M. (2018). “A Conceptual Introduction to Hamiltonian Monte Carlo”.
In: arXiv: 1701.02434 [stat].

Bezanson, J., J. Chen, et al. (2018). “Julia: Dynamism and Performance Reconciled
by Design”. In: Proc. ACM Program. Lang. 2 (OOPSLA). doi: 10.1145/3276490.

Bezanson, J., A. Edelman, et al. (2017). “Julia: A Fresh Approach to Numerical
Computing”. In: SIAM Review 59.1, pp. 65–98. doi: 10.1137/141000671.

Bhat, S. et al. (2012). “A Type Theory for Probability Density Functions”. In:
SIGPLAN Notices 47.1, pp. 545–556. doi: 10.1145/2103621.2103721.

Bianucci, A. M. et al. (2000). “Application of Cascade Correlation Networks for
Structures to Chemistry”. In: Applied Intelligence 12.1, pp. 117–147. doi:
10.1023/A:1008368105614.

Bingham, E. et al. (2018). “Pyro: Deep Universal Probabilistic Programming”. In:
arXiv: 1810.09538 [cs, stat].

75

https://doi.org/10.1145/3371106
https://doi.org/10.5075/epfl-thesis-7156
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://swift.org/swift-compiler/
https://doi.org/10.1016/S0377-0427(00)00422-2
https://arxiv.org/abs/1701.02434
https://doi.org/10.1145/3276490
https://doi.org/10.1137/141000671
https://doi.org/10.1145/2103621.2103721
https://doi.org/10.1023/A:1008368105614
https://arxiv.org/abs/1810.09538

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information
Science and Statistics. New York: Springer. 738 pp.

Bolewski, J. (2015). “Staged Programming in Julia”. Presentation. JuliaCon 2015
(Boston).

Bolstad, W. M. (2004). Introduction to Bayesian Statistics. New York: Wiley.
Bradbury, J. et al. (2018). JAX: Composable Transformations of Python+NumPy

Programs. Version 0.1.55.
Brady, E. (2013). “Idris, a General-Purpose Dependently Typed Programming

Language: Design and Implementation”. In: Journal of Functional Programming
23.05, pp. 552–593. doi: 10.1017/S095679681300018X.

Bronstein, I. N. & K. A. Semendjajew (1995). Taschenbuch der Mathematik:
Ergänzende Kapitel. 7th ed. Leipzig: Teubner.

Bruce, K. et al. (1995). “On Binary Methods”. In: Theory and Practice of Object
Systems 1.3, pp. 221–242. doi: 10.1002/j.1096-9942.1995.tb00019.x.

Carpenter, B., A. Gelman, et al. (2017). “Stan: A Probabilistic Programming
Language”. In: Journal of Statistical Software 76.1 (1), pp. 1–32. doi:
10.18637/jss.v076.i01.

Carpenter, B., M. D. Ho�man, et al. (2015). “The Stan Math Library: Reverse-Mode
Automatic Di�erentiation in C++”. In: arXiv: 1509.07164 [cs].

Chewxy et al. (2020). Gorgonia/Gorgonia: Bug�x Release: Vectors Were Not Properly
Broadcasted. Version 0.9.15. Zenodo. doi: 10.5281/zenodo.4054193.

Churavy, V. (2019). Vchuravy/ConcolicFuzzer.Jl.
Congdon, P. (2006). Bayesian Statistical Modelling. 2nd ed. Wiley Series in

Probability and Statistics. Chichester: Wiley. 573 pp.
Coq Development Team (2020). Coq 8.12.1 Documentation. url:

https://coq.inria.fr/distrib/current/refman/ (visited on 2020-12-08).
Cox, M., T. van de Laar & B. de Vries (2018). “ForneyLab.Jl: Fast and Flexible

Automated Inference through Message Passing in Julia”. In: ProbProg 2018.
Cusumano-Towner, M. F. et al. (2019). “Gen: A General-Purpose Probabilistic

Programming System with Programmable Inference”. In: SIGPLAN 2019. PLDI,
pp. 221–236. doi: 10.1145/3314221.3314642.

Cusumano-Towner, M. F. (2020). “Gen: A High-Level Programming Platform for
Probabilistic Inference”. PhD Thesis. Cambridge: Massachusetts Institute of
Technology.

Dahlin, J. & T. B. Schön (2015). “Getting Started with Particle Metropolis-Hastings
for Inference in Nonlinear Dynamical Models”. In: arXiv: 1511.01707 [q-fin,

stat].
Dauwels, J., S. Korl & H.-A. Loeliger (2005). “Steepest Descent as Message Passing”.

In: IEEE Information Theory Workshop. doi: 10.1109/ITW.2005.1531853.
Deakin, M. A. B. (1966). “Functions of a Dual or Duo Variable”. In: Mathematics

Magazine 39.4, pp. 215–219. doi: 10.1080/0025570X.1966.11975721.
Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer.

843 pp.

76

https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1002/j.1096-9942.1995.tb00019.x
https://doi.org/10.18637/jss.v076.i01
https://arxiv.org/abs/1509.07164
https://doi.org/10.5281/zenodo.4054193
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.1145/3314221.3314642
https://arxiv.org/abs/1511.01707
https://arxiv.org/abs/1511.01707
https://doi.org/10.1109/ITW.2005.1531853
https://doi.org/10.1080/0025570X.1966.11975721

Elliott, C. (2018). “The Simple Essence of Automatic Di�erentiation”. In: arXiv:
1804.00746 [cs].

Fike, J. A. & J. J. Alonso (2012). “Automatic Di�erentiation through the Use of
Hyper-Dual Numbers for Second Derivatives”. In: Recent Advances in
Algorithmic Di�erentiation. Springer, pp. 163–173. doi:
10.1007/978-3-642-30023-3_15.

Gabler, P. (2020). MCMC Simulation Data for AutoGibbs.Jl Benchmarks. doi:
10.5281/zenodo.4307916.

Gabler, P. et al. (2019). “Graph Tracking in Dynamic Probabilistic Programs via
Source Transformations”. In: 2nd Symposium on Advances in Approximate
Bayesian Inference.

Gansner, E. R. & S. C. North (2000). “An Open Graph Visualization System and Its
Applications to Software Engineering”. In: Software: Practice and Experience
30.11, pp. 1203–1233.

Ge, H., K. Xu & Z. Ghahramani (2018). “Turing: A Language for Flexible
Probabilistic Inference”. In: International Conference on Arti�cial Intelligence
and Statistics, pp. 1682–1690.

Gebremedhin, A. H. & A. Walther (2020). “An Introduction to Algorithmic
Di�erentiation”. In: WIREs Data Mining and Knowledge Discovery 10.1, e1334.
doi: 10.1002/widm.1334.

Gelman, A., J. B. Carlin, et al. (2020). Bayesian Data Analysis. 3rd ed.
Gelman, A. & D. B. Rubin (1992). “Inference from Iterative Simulation Using

Multiple Sequences”. In: Statistical Science 7.4, pp. 457–472. JSTOR: 2246093.
Geman, S. & D. Geman (1984). “Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images”. In: IEEE Transactions on pattern analysis and
machine intelligence 6, pp. 721–741.

Girolami, M. & B. Calderhead (2011). “Riemann Manifold Langevin and
Hamiltonian Monte Carlo Methods”. In: Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73.2, pp. 123–214. doi:
10.1111/j.1467-9868.2010.00765.x.

Goodman, N. D., V. Mansinghka, et al. (2012). “Church: A Language for Generative
Models”. In: arXiv: 1206.3255 [cs].

Goodman, N. D. & A. Stuhlmüller (2014). The Design and Implementation of
Probabilistic Programming Languages. url: http://dippl.org (visited on
2019-10-15).

Gowda, S. et al. (2019). “Sparsity Programming: Automated Sparsity-Aware
Optimizations in Di�erentiable Programming”. In: Program Transformations
for Machine Learning Workshop. NeurIPS 2019.

Green, P. J. (1995). “Reversible Jump Markov Chain Monte Carlo Computation and
Bayesian Model Determination”. In: Biometrika 82.4, pp. 711–732. doi:
10.1093/biomet/82.4.711.

Griewank, A. & A. Walther (2008). Evaluating Derivatives: Principles and
Techniques of Algorithmic Di�erentiation. 2nd ed. Philadelphia: Society for
Industrial and Applied Mathematics. 438 pp.

77

https://arxiv.org/abs/1804.00746
https://doi.org/10.1007/978-3-642-30023-3_15
https://doi.org/10.5281/zenodo.4307916
https://doi.org/10.1002/widm.1334
http://www.jstor.org/stable/2246093
https://doi.org/10.1111/j.1467-9868.2010.00765.x
https://arxiv.org/abs/1206.3255
http://dippl.org
https://doi.org/10.1093/biomet/82.4.711

Heunen, C. et al. (2017). “A Convenient Category for Higher-Order Probability
Theory”. In: arXiv: 1701.02547 [cs, math].

Hjort, N. L. et al. (2010). Bayesian Nonparametrics. Cambridge Series in Statistical
and Probabilistic Mathematics 28. Cambridge: Cambridge University Press.

Ho�man, M. D., M. J. Johnson & D. Tran (2018). “Autoconj: Recognizing and
Exploiting Conjugacy Without a Domain-Speci�c Language”. In: arXiv:
1811.11926 [cs, stat].

Hong, M. & C. Lattner (2018). “Graph Program Extraction and Device Partitioning
in Swift for TensorFLow”. Presentation. 2018 LLVM Developers’ Meeting.

Hoyte, D. (2008). Let over Lambda.
Innes, M. J. (2018). “Don’t Unroll Adjoint: Di�erentiating SSA-Form Programs”. In:

arXiv: 1810.07951 [cs].
Jia, Y. et al. (2014). “Ca�e: Convolutional Architecture for Fast Feature

Embedding”. In: arXiv: 1408.5093 [cs].
Kallenberg, O. (2006). Foundations of Modern Probability. Probability and Its

Applications. New York: Springer.
Koller, D. & N. Friedman (2009). Probabilistic Graphical Models: Principles and

Techniques. Adaptive Computation and Machine Learning. Cambridge: MIT
Press. 1231 pp.

Lattner, C. et al. (2020). “MLIR: A Compiler Infrastructure for the End of Moore’s
Law”. In: arXiv: 2002.11054 [cs].

Lew, A. K. et al. (2020). “Trace Types and Denotational Semantics for Sound
Programmable Inference in Probabilistic Languages”. In: Proceedings of the
ACM on Programming Languages. POPL 2020. Vol. 4, pp. 1–32. doi:
10.1145/3371087.

LLVM Project (2019). LLVM Language Reference Manual. url:
https://llvm.org/docs/LangRef.html.

Looks, M. et al. (2017). “Deep Learning with Dynamic Computation Graphs”. In:
arXiv: 1702.02181 [cs, stat].

Lunn, D. J., D. Spiegelhalter, et al. (2009). “The BUGS Project: Evolution, Critique
and Future Directions”. In: Statistics in Medicine 28.25, pp. 3049–3067. doi:
10.1002/sim.3680.

Lunn, D. J., A. Thomas, et al. (2000). “WinBUGS - A Bayesian Modelling
Framework: Concepts, Structure, and Extensibility”. In: Statistics and
Computing 10, pp. 325–337. doi: 10.1023/A:1008929526011.

Maclaurin, D., D. Duvenaud & R. P. Adams (2015). “Autograd: E�ortless Gradients
in Numpy”. In: AutoML Workshop. ICML. Vol. 238, p. 5.

Mansinghka, V., D. Selsam & Y. Perov (2014). “Venture: A Higher-Order
Probabilistic Programming Platform with Programmable Inference”. In: arXiv:
1404.0099 [cs, stat].

Manzyuk, O. et al. (2019). “Perturbation Confusion in Forward Automatic
Di�erentiation of Higher-Order Functions”. In: Journal of Functional
Programming 29, e12. doi: 10.1017/S095679681900008X.

78

https://arxiv.org/abs/1701.02547
https://arxiv.org/abs/1811.11926
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1408.5093
https://arxiv.org/abs/2002.11054
https://doi.org/10.1145/3371087
https://llvm.org/docs/LangRef.html
https://arxiv.org/abs/1702.02181
https://doi.org/10.1002/sim.3680
https://doi.org/10.1023/A:1008929526011
https://arxiv.org/abs/1404.0099
https://doi.org/10.1017/S095679681900008X

Marin, J.-M. & C. P. Robert (2007). Bayesian Core: A Practical Approach to
Computational Bayesian Statistics. Springer Texts in Statistics. New York:
Springer. 255 pp.

Minka, T. (2005). Divergence Measures and Message Passing. Technical Report
MSR-TR-2005-173. Microsoft Research.

Minka, T. (2019). “From Automatic Di�erentiation to Message Passing”.
Presentation. Advances and Challenges in Machine Learning Languages
Workshop.

Moses, W. S. & V. Churavy (2020). “Instead of Rewriting Foreign Code for Machine
Learning, Automatically Synthesize Fast Gradients”. In: arXiv: 2010.01709
[cs].

Muchnick, S. S. (1997). Advanced Compiler Design and Implementation. San
Francisco: Morgan Kaufmann. 856 pp.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning Series. Cambridge: MIT Press. 1067 pp.

Murray, L. M. et al. (2017). “Delayed Sampling and Automatic Rao-Blackwellization
of Probabilistic Programs”. In: arXiv: 1708.07787 [stat].

Naumann, U. (2007). “Optimal Jacobian Accumulation Is NP-Complete”. In:
Mathematical Programming 112.2, pp. 427–441. doi:
10.1007/s10107-006-0042-z.

Neubig, G. et al. (2017). “DyNet: The Dynamic Neural Network Toolkit”. In: arXiv:
1701.03980 [cs, stat].

Paszke, A. et al. (2017). “Automatic Di�erentiation in PyTorch”. In: Autodi�
Workshop. NIPS 2017.

Pierce, B. C. (2002). Types and Programming Languages. Cambridge, Mass: MIT
Press. 623 pp.

Plummer, M. (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models
Using Gibbs Sampling”. In: Proceedings of the 3rd International Workshop on
Distributed Statistical Computing. Vienna.

(2017). “JAGS Version 4.3.0 User Manual”.
Pock, T. (2017). Convex Optimization. Lecture Notes. Graz: Graz University of

Technology.
Press, W. H. et al. (2007). Numerical Recipes: The Art of Scienti�c Computing. 3rd ed.

New York: Cambridge University Press.
Ramsey, N. & A. Pfe�er (2002). “Stochastic Lambda Calculus and Monads of

Probability Distributions”. In: SIGPLAN Notices 37.1, pp. 154–165. doi:
10.1145/565816.503288.

Robert, C. P. & G. Casella (1999). Monte Carlo Statistical Methods. New York:
Springer.

Rompf, T. & M. Odersky (2010). “Lightweight Modular Staging: A Pragmatic
Approach to Runtime Code Generation and Compiled DSLs”. In: SIGPLAN
Notices 46. doi: 10.1145/1868294.1868314.

Rosen, B. K., M. N. Wegman & F. K. Zadeck (1988). “Global Value Numbers and
Redundant Computations”. In: Symposium on Principles of Programming

79

https://arxiv.org/abs/2010.01709
https://arxiv.org/abs/2010.01709
https://arxiv.org/abs/1708.07787
https://doi.org/10.1007/s10107-006-0042-z
https://arxiv.org/abs/1701.03980
https://doi.org/10.1145/565816.503288
https://doi.org/10.1145/1868294.1868314

Languages. SIGPLAN-SIGACT 1988. San Diego: ACM Press, pp. 12–27. doi:
10.1145/73560.73562.

Ruozzi, N. R. (2011). “Message Passing Algorithms for Optimization”. PhD Thesis.
Yale: Yale University.

Sajovic, Ž. & M. Vuk (2016). Operational Calculus for Di�erentiable Programming.
Version 1. arXiv: 1610.07690 [cs, math]. url:
http://arxiv.org/abs/1610.07690 (visited on 2020-12-22).

Salvatier, J., T. V. Wiecki & C. Fonnesbeck (2016). “Probabilistic Programming in
Python Using PyMC3”. In: PeerJ Computer Science 2, e55. doi:
10.7717/peerj-cs.55.

Scherrer, C. (2019). Soss.Jl. url: https://github.com/cscherrer/Soss.jl.
Ścibior, A., Z. Ghahramani & A. D. Gordon (2015). “Practical Probabilistic

Programming with Monads”. In: Symposium on Haskell. SIGPLAN 2015.
Vancouver: ACM, pp. 165–176. doi: 10.1145/2804302.2804317.

Sen, K., D. Marinov & G. Agha (2005). “CUTE: A Concolic Unit Testing Engine for
C”. In: SIGSOFT Software Engineering Notes 30.5, pp. 263–272. doi:
10.1145/1095430.1081750.

Singer, J. (2018). Static Single Assignment Book.
Socher, R. et al. (2011). “Parsing Natural Scenes and Natural Language with

Recursive Neural Networks”. In: ICML’11. Madison: Omnipress, pp. 129–136.
doi: 10.5555/3104482.3104499.

Tao, T. (2011). An Introduction to Measure Theory. Graduate Studies in Mathematics
126. American Mathematical Society.

Tapenade developers (2019). The Tapenade A.D. Engine. url:
https://www-sop.inria.fr/tropics/tapenade.html (visited on 2019-10-09).

Tarek, M. et al. (2020). “DynamicPPL: Stan-like Speed for Dynamic Probabilistic
Models”. In: arXiv: 2002.02702 [cs, stat].

TensorFlow Developers (2018). Swift for TensorFlow. url:
https://github.com/tensorflow/swift (visited on 2020-11-01).

(2020). XLA: Optimizing Compiler for Machine Learning. url:
https://www.tensorflow.org/xla (visited on 2020-10-27).

Tokui, S. et al. (2015). “Chainer: A Next-Generation Open Source Framework for
Deep Learning”. In: Workshop on Machine Learning Systems. NIPS 2015.

Van de Meent, J.-W. et al. (2018). “An Introduction to Probabilistic Programming”.
In: arXiv: 1809.10756 [cs, stat].

Van Merrienboer, B., D. Moldovan & A. Wiltschko (2018). “Tangent: Automatic
Di�erentiation Using Source-Code Transformation for Dynamically Typed
Array Programming”. In: Advances in Neural Information Processing Systems 31.
NeurIPS. Ed. by Bengio, S. et al., pp. 6256–6265.

Vihola, M. (2020). Lectures on Stochastic Simulation. Lecture Notes. Jyväskylä:
University of Jyväskylä.

Vytiniotis, D. et al. (2019). “The Di�erentiable Curry”. In: Program Transformations
for ML Workshop. NeurIPS. Vancouver.

80

https://doi.org/10.1145/73560.73562
https://arxiv.org/abs/1610.07690
http://arxiv.org/abs/1610.07690
https://doi.org/10.7717/peerj-cs.55
https://github.com/cscherrer/Soss.jl
https://doi.org/10.1145/2804302.2804317
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.5555/3104482.3104499
https://www-sop.inria.fr/tropics/tapenade.html
https://arxiv.org/abs/2002.02702
https://github.com/tensorflow/swift
https://www.tensorflow.org/xla
https://arxiv.org/abs/1809.10756

Wadler, P. & S. Blott (1989). “How to Make Ad-Hoc Polymorphism Less Ad Hoc”.
In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, pp. 60–76.

Wang, F. et al. (2019). “Demystifying Di�erentiable Programming: Shift/Reset the
Penultimate Backpropagator”. In: arXiv: 1803.10228 [cs, stat].

Winn, J. & C. M. Bishop (2005). “Variational Message Passing”. In: Journal of
Machine Learning Research 6, pp. 661–694.

Winn, J., C. M. Bishop, et al. (2019). Model-Based Machine Learning.
Wood, F., J.-W. van de Meent & V. Mansinghka (2015). “A New Approach to

Probabilistic Programming Inference”. In: arXiv: 1507.00996 [cs, stat].
Zeller, A. et al. (2019). Concolic Fuzzing. The fuzzing book. url:

https://www.fuzzingbook.org/html/ConcolicFuzzer.html.

81

https://arxiv.org/abs/1803.10228
https://arxiv.org/abs/1507.00996
https://www.fuzzingbook.org/html/ConcolicFuzzer.html

Colophon

This document was typeset using the pdfLATEX typesetting system, with the
memoir document class. The body text is set in 11 pt Linux Libertine, enhanced
by the microtype package. Other fonts include Biolinum and Inconsolata.

The document source has been written in Emacs with AUCTEX mode,
using TeXworks as pdf viewer. Figures were created in Inkscape, plots in R
using ggplot2.

	Affidavit
	License
	Abstract
	Acknowledgements
	Contents
	Notation
	Introduction
	Scope
	Related Work

	Background
	Bayesian Inference and MCMC methods
	Probabilistic Programming
	Compilation and Metaprogramming in Julia
	Automatic Differentiation and Computation Graphs

	Implementation of Dynamic Graph Tracking in Julia
	Extended Wengert Lists
	Automatic Graph Tracking
	Evaluation

	Graph Tracking in Probabilistic Models
	Dependency Analysis in Dynamic Models
	Automatic Calculation of Gibbs Conditionals
	Evaluation

	Conclusion
	Future Work

	Mathematical Details
	Measure Theory in Probability Theory
	Details of Automatic Differentiation

	Bibliography

