
Institut für
Regelungstechnik

Matthias Clara, BSc

Model Predictive Control for
Networked Control Systems

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Electrical Engineering

submitted to

Graz University of Technology

Supervisor:
Ass.Prof. Dipl.-Ing. Dr.techn. Martin Steinberger

Institute of Automation and Control

Graz, December 23, 2020

afdqd

AFFIDAVIT

“I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which has
been quoted either literally or by content from the sources used.
The text document uploaded to TUGRAZonline is identical to the present master’s thesis.”

Signature Date

2

afdqd

ACKNOWLEDGMENTS

I would like to thank Martin Steinberger for being my helpful advisor during the whole
working period of my master’s thesis and for introducing me into the area of Networked
Control Systems. I couldn’t have asked for a better person.
Special thanks are also given to my family for their financial support throughout my
studies and for their superior education that helped me become who I am today.

Matthias Clara
Graz, December 23, 2020

3

afdqd

ABSTRACT

Networked Control Systems (NCS) have been one of the main research areas for the
past years. In such systems, data may be randomly delayed or even lost during the
transmission. Some methods based on Model Predictive Control (MPC) are considered in
order to overcome the so-called network-induced constraints. This thesis is focused on the
controller design and on the performance analysis within the framework of data packet
dropouts and data packet disorder. Both sensor-to-controller and controller-to-actuator
network-induced delays are assumed to be upper and lower bounded and equal to an
integer multiple of the sampling period. In the beginning of this thesis, an overview of
the topic NCSs is given. The next part focuses on the conventional MPC and on the
modified MPC approach which can be used in a NCS. The last part of this thesis includes
a simulation example and a practical implementation in order to show the feasibility and
efficiency of the considered methods.

4

afdqd

KURZFASSUNG

Der weitverbreitete Einsatz von vernetzten Regelungssystemen führt zu einem grundle-
genden Wandel im Bereich der Regelungstechnik. In solchen Systemen ist die Ankun-
ftszeit der Datenpakete beim Adressaten unbekannt und ein möglicher Datenverlust
kann auftreten. Im Zuge dieser Masterarbeit werden Methoden basierend auf die mod-
ellprädiktive Regelung (MPC) gezeigt, um die netzwerkinduzierte Totzeiten und die
Datenpacketverluste in einem vernetzten Regelungssystem zu kompensieren. Es wird
angenommen, dass die Verzögerungen vom Sensor zum Regler und die Verzögerungen
vom Regler zum Aktuator beschränkt sind und einem ganzzahligen Vielfachen der Abtast-
periode entsprechen. Im ersten Abschnitt dieser Arbeit wird ein allgemeiner Überblick
über das Thema vernetzte Regelung gegeben. Des Weiteren werden die konventionelle
modellprädiktive Regelung sowie einige modifizierte Versionen davon genauer betrachtet
um Netzwerkeffekte berücksichtigen zu können. Im abschließenden Teil dieser Arbeit wird
die Effizienz und die Anwendbarkeit der gezeigten Methoden anhand eines konkreten
Simulationsbeispiels sowie eines Experiments überprüft.

5

Contents

1 Introduction 9

2 Overview of Networked Control Systems 11
2.1 Advantages and Applications of Networked Control Systems 11
2.2 Components of Networked Control Systems 12
2.3 Packet-based Data Transmission . 13
2.4 Control Challenges . 14

2.4.1 Network-induced Delay . 14
2.4.2 Data Packet Dropout . 16
2.4.3 Data Packet Disorder . 16
2.4.4 Single and Multiple-packet Transmission 17
2.4.5 Sampling Period . 17

2.5 Simulation of Variable Time Delays . 18

3 Classical Model Predictive Control 22
3.1 Design of the Controller . 24

3.1.1 Predictive Model . 24
3.1.2 Cost Function . 25
3.1.3 Specification of the Reference Signal 26
3.1.4 Constraints . 27
3.1.5 Soft Constraints . 30

4 Model Predictive Control for Networked Control Systems 31
4.1 Packet-based Control With Time Synchronization 33
4.2 Packet-based Control Without Time Synchronization 36
4.3 Consideration of the Controller Calculating Delay 38
4.4 Compensation of Data Packet Dropouts 42

5 Two Tank System 43
5.1 Mathematical Model . 43

5.1.1 Linearization of the Model . 44
5.2 Simulation using the Linearized Model . 46

5.2.1 Without Network . 46
5.2.2 Without Time-delay Compensation 48
5.2.3 Time-delay Compensation Without Time Stamps 49
5.2.4 Packet-based Control With Time Synchronization 53
5.2.5 Compensation of Data Packet Dropouts 57

5.3 Simulation using the Nonlinear Model . 59
5.3.1 Without Network . 59
5.3.2 Without Time-delay Compensation 60
5.3.3 Time-delay Compensation Without Time Stamps 62
5.3.4 Packet-based Control With Time Synchronization 62
5.3.5 Compensation of Data Packet Dropouts 67

6 Experiments 69
6.1 Parameter Identification . 69

6

6.2 Real-time Control Software - QUARC . 73
6.3 Without Network . 74
6.4 Packet-based Control With Time Synchronization 78
6.5 Compensation of Data Packet Dropouts 84

7 Conclusions 87

8 References 89

7

Symbols and Acronyms

NCS Networked Control Systems
MPC Model Predictive Control
PID Proportional-Integral-Derivative Controller
CAN Controller Area Network
TCP Transmission Control Protocol
UDP User Datagram Protocol
IP Internet Protocol
FTP File Transfer Protocol
RTD,RTT Round-Trip Delay, Round-Trip Time
LMI Linear Matrix Inequality
SISO Single Input Single Output
MIMO Multiple Input Multiple Output
RHOC Receding Horizon Optimal Control
CAS Control Action Selector
HIL Hardware-in-the-Loop
τc,k Controller calculating delay
τ ′c,k Extended controller calculating delay
τsc,k Network-induced delay in the backward channel
τca,k Network-induced delay in the forward channel
τk Round-Trip Delay
h Sampling period
Ac, Bc, Cc, Dc Continuous time system dynamic matrix, input matrix, output matrix

and direct feedthrough
A,B,C,D Discrete time system dynamic matrix, input matrix, output matrix

and direct feedthrough
n Number of states
m Number of inputs
p Number of outputs
I Identity matrix
Nc, Np Control and prediction horizon
Q,R Weighting matrices
F,G,H Matrices for the predicted outputs of the system
Fx, Gx, Hx Matrices for the predicted states of the system
W,L,M Matrices for the constraints
J Cost function
tstamp,back Time stamp in the backward channel
tstamp,for Time stamp in the forward channel
tstamp,start Time stamp for the controller calculating delay
tnow Actual time instant
Uk−τsc,k|k−τsc,k Entire Control sequence based on information up to time k − τsc,k
Uk|k−τsc,k Reduced control sequence based on information up to time k − τsc,k
Uk|k−τsc,k−τc,k Reduced control sequence based on information up to time k − τsc,k − τc,k
nd,sc Upper bounds of consecutive packet drop in the backward channel
nd,ca Upper bounds of consecutive packet drop in the forward channel

8

1 Introduction

Nowadays, with the development of large-scale or complex industrial systems, there is a
need of using distributed actuators, sensors and control devices. In order to reduce high
cost and complexity of communication links, shared communication media are used, by
which a huge amount of information is sensed, processed and transmitted. Such a control
system, where the control loop is closed through a real-time communication network, is
referred to as Networked Control System (NCS) [11, 14, 39, 40].
NCSs have made it possible that a large number of actuators, sensors and controllers

can be interconnected over the network to interact with the physical environment. Such
systems have been applied in a broad range of areas such as remote surgery, automated
highway systems, mobile sensor networks and unmanned aerial vehicles [21]. This
kind of control system involves controlling a plant from a remote location through a
communication channel and brings new functionalities, such as reduced system wiring, low
cost, decreased system complexity and simple system maintenance and diagnosis [5, 21].
The advantages brought by NCSs however do not come at no cost. An important basis of
conventional control systems is that the data exchange among the control components are
lossless. In NCSs, the data has to be transmitted through the communication network,
which means that perfect data exchange among the control components is essentially
unavailable. This imperfection introduces the so-called communication constraints to
the control system, which include, e.g., network-induced delays (the delays occur in
transmitting the feedback and control information), data packet dropouts (packets may
get lost during the transmission), data packet disorder (the order of the sent packets
may be changed), time synchronization problems (different control components may work
based on different clocks), and so on. These communication constraints present great
challenges for the controller design and can degrade the control performance and even
cause instability of the feedback loop.
One of the main problems in NCSs is the design of control schemes accounting for

the absence of feedback and control information for possibly long time intervals. Many
approaches based on different ideas have been introduced. Depending on the assumptions
about the network connection, stochastic approaches as, e.g., in [25, 26], or methods only
assuming the boundedness of delays are employed [27]. Buffers are utilized in order to
handle time varying delays in [28, 29]. In [30], a version of a filtered Smith predictor is
proposed that allows to robustly stabilize uncertain unstable plants with constant time
delays. The problem of the design of robust H∞ controllers for uncertain NCSs with
the effects of networked-induced delays and data packet dropouts has been considered
in [31]. The controller design and the stability analysis based on over-approximation
techniques and linear matrix inequalities (LMIs) are presented in [27, 32]. An MPC
strategy for multivariable plants was shown in [33], where the sensor-to-controller delays
where described by stochastic and deterministic quantities, but the controller-to-actuator
delays were assumed to be known and fixed. In [34], the MPC method was used to
compensate the packet dropouts at the sensor-to-controller side, while zero control was
applied when the control packet was lost. In [1, 35, 36], modified MPC methods were
introduced to compensate the delayed or missing control signals.
Model Predictive Control (MPC) provides a set of future control sequences at one time

instant, which means that the future values of the control input can be predicted [1].

9

Because of this feature, the MPC approach can be used to compensate the communication
constraints in NCSs. In this work it’s assumed that the network-induced delays are upper
and lower bounded. Furthermore, it’s also assumed that the time-delays are equal to
an integer multiple of the sampling time. The design problem of the closed-loop NCS
in the presence of communication delays and data packet dropouts is illustrated and
several compensation methods are presented. In order to avoid data packet disordering,
an active compensation scheme is proposed, which requires the usage of the time stamp
technique and a comparison rule defined at the actuator side. With this method, the
effect of data packet disorder can effectively be eliminated. A simulation example and a
practical implementation are given in order to show the feasibility and efficiency of the
proposed methods.
The goal of this thesis is to investigate how the communication constraints affect the

control performance of the control system. Furthermore, it’s also shown how the MPC
deals with the communication delays in both forward and backward channel. However,
the stability is not taken into consideration and no statement about the stability analysis
is made.

10

2 Overview of Networked Control Systems

Over the past years, communication and computing technologies have improved tremen-
dously. Consequently, the field of control engineering itself has also advanced towards
networked control. In general, a Networked Control System (NCS) is a control system,
where the control loop is closed through a communication network. The defining feature
of a NCS is that signals are exchanged among the system components in the form of data
packages through a shared communication media. Such kind of systems provide many
benefits, but they also raise several challenges which have to be overcome. In this section,
the common characteristics which are shared by many NCSs in many application domains
are investigated. Figure 1 shows a typical structure of a NCS.

Figure 1: Typical structure of a NCS.

2.1 Advantages and Applications of Networked Control Systems

For many years now, data networking systems have been applied in military and industrial
applications, such as aircraft [21], intelligent traffic control systems [11], factory automa-
tion [21], remote surgery [14], and so forth. Connecting the control system components
via a shared network can effectively reduce the complexity of systems, without a big
economical investment. NCSs reduce unnecessary wiring and they allow data to be shared
efficiently [5]. One of the biggest advantages of NCSs is scalability. It’s easy to add or
remove control components, such as sensors, actuators or controllers, which are connected
through a network at different locations, without having to heavily change the whole
system. Furthermore, NCSs simplify the system maintenance and diagnosis [21]. These
systems are becoming more and more important today and they have a lot of potential in
applications like space explorations [21], domestic robots [14], and so on.

11

2.2 Components of Networked Control Systems

A NCS consists of five basic elements:

• The plant, which has to be controlled.

• The sensor/s, to collect the information.

• The actuator/s, to apply the control commands.

• The controller/s, to provide decisions and commands.

• The communication network, to enable exchange of information.

An essential part of a control system is the acquisition of information from the environ-
ment. Sensor data can be in any form starting from small numbers representing weight,
temperature, pressure, etc. or in chunk form such as arrays, images or videos [21]. The
potential application of large-scale networked systems is constantly growing. In NCSs
the relevant data is collected using distributed sensors to study the system under control.
The sensors should be cheap, reliable and energy efficient and they should also be easily
added or removed from a system.
For many years now, different control strategies, starting from PID control, optimal

control, adaptive control, robust control and so on, have been studied when using NCSs
[7, 21]. Applying all these control strategies over a network becomes a challenging task,
because of the communication constraints that may occur (see figure 1).
When choosing the communication or data transfer type, security, reliability and

availability are the main areas to focus on. The choice of the network depends obviously
on the application to be served. Control Area Network (CAN) is a serial, asynchronous,
multi-master communication protocol mostly used for applications needing high data
rates of up to 1Mbps [21]. CAN is applied in industrial and automotive applications.
The internet is one of the most used choices for many applications where the plant and
the controller are far away from each other.
The generalized NCS structure with all his components is shown in figure 2.

Figure 2: Block diagram of a NCS.

The signals y and u are the plant output and the control signal respectively. The
signals ỹ and ũ are the plant output and the control signal transmitted through the
communication network. From a general perspective of system structure, NCSs may

12

contain two different structures: the direct structure, shown in figure 2 and the hierarchical
structure, shown in figure 3 [7, 11].

Figure 3: NCS in the hierarchical structure.

In the hierarchical structure a local controller is present on the plant side and the
communication network is used to close the loop between the main controller and the
local system [7]. This type of approach can be seen as a hierarchical combination of the
direct structured NCS and a conventional local control system. Most available papers on
NCSs have focused on the direct structure, which is also the case in this thesis.

2.3 Packet-based Data Transmission

In NCSs, data is stored in packets and then transmitted through the communication
network. The information is split up into similar structures of data before transmission,
called packets, which are reassembled to the original data chunk once they reach their
destination [7].
The most commonly used protocols for sending packets over a network are the Trans-

mission Control Protocol (TCP) and the User Datagram Protocol (UDP). Both protocols
build on top of the IP protocol. In other words, all the packets are sent to an IP address,
regardless of whether the TCP or the UDP is used. Generally, TCP is more suitable
for exchanging larger files while UDP is best for simple messages. The main differences
between these two protocols are illustrated in table 1 [18].
For the TCP, the communicating devices have to establish a connection before trans-

mitting data and they must close the connection after the transmission. The TCP never
concludes a transmission until all the data has been correctly transmitted. It stores data
in a send buffer and receives data in a receiver buffer. TCP uses a flow control mechanism
that ensures a sender is not overwhelming a receiver by sending too many packets at
once. This protocol is best suited for applications that need high reliability and where
transmission time is relatively less critical, e.g. File Transfer Protocol (FTP), email, and
so on [18].
The UDP is a connection-less protocol, which means that no connection between sender

and receiver has to be established before sending the data. UDP doesn’t provide flow
control. It continuously sends datagrams to the recipients whether they receive them or
not. With the usage of this protocol, packets may get lost and they may be delivered out

13

of order. UDP is best suited for applications that require speed and efficiency, e.g., online
games, live broadcasts, streaming videos, and so on [18].

Transmission Control Protocol (TCP) User Datagram Protocol (UDP)

Connection-oriented protocol. Datagram oriented protocol.

Does error checking and also makes error
recovery.

Performs error checking, but it discards er-
roneous packets.

Retransmission of lost data packets is possi-
ble.

Retransmission of lost packets is not
possible.

Is reliable as it guarantees delivery of data. The delivery of data cannot be guaranteed.

Data packet disorder cannot occur. Data packet disorder can occur.

20-80 bytes variable length header. 8 bytes fixed length header.

Slower, as it requires more resources. Faster as error recovery is not attempted.

Less time efficient. Simpler and time efficient.

Table 1: Differences between TCP and UDP.

As far as NCSs is concerned, UDP is used in most applications (and also in this thesis)
due to the real-time requirement and the robustness of the control system. As a result,
the effect of data packet dropout and data packet disorder has to be explicitly considered.

2.4 Control Challenges

Due to the usage of channels with a limited bandwidth, random transmission delays may
occur in the forward and/or in the backward channel. The size of the data packets can
be fixed but it is usually limited only to the maximum capacity [7]. In some cases, e.g.,
if more than one sensor is used, the packet size is too low to carry all the information,
therefore, the data can be sent within more than a single packet (data fragmentation).
The transmission delay is the time from the beginning of the transmission of the first data
packet to the time instant when the last part of the data has been received. If at least
one packet may be lost during the transmission, all the information will be unrecoverable.
Overfilled transmission buffers and random delays can be a source of another important

issue, which is data packet disorder. Furthermore, in NCSs the limited bandwidth of the
network generates a situation, where a smaller sampling period may not lead to a better
system performance, which is normally the case for a sampled data system.

2.4.1 Network-induced Delay

The main reason of problems, which can degrade the control performance in NCSs is
a limited capacity of the communication media [4]. Due to this limitation, random

14

transmission delays can occur. A delay in a control loop typically affects the performance
and the stability of the control system. In certain circumstances, the delay may be so
large, that it can be treated as a data lost. Figure 4 shows the structure of a typical NCS,
including the random network-induced delays.

Figure 4: Structure of a NCS with the network-induced delays.

There are three types of network-induced delays:

• τsc,k: sensor-to-controller delay (backward channel delay)

• τca,k: controller-to-actuator delay (forward channel delay)

• τc,k: controller calculating delay

All these delays are non-deterministic [9]. Very often, the controller calculating delay
τc,k is negligibly small compared to the other two delays. Depending on the type of
communication network being used in NCSs, the characteristics of the network-induced
delays vary as the follow [7]:

(i) Random access networks (e.g. CAN or Ethernet) are random and unbounded
delays.

(ii) Cyclic service networks (e.g. Token-Bus) are bounded delays, which can often
be assumed as constant.

(iii) Priority order networks (e.g. DeviceNet) are bounded delays for the data packets
with higher priority and unbounded delays for those with lower priority.

The delays τsc,k and τca,k may have different characteristics, however, in most cases they
are not treated separately (only for static controllers) and only the so-called Round-Trip
Delay (RTD), often also referred to as Round-Trip Time (RTT), is of interest [7, 11].

τk = τsc,k + τca,k + τc,k (1)

In this work it’s assumed that the network-induced delays are equal to an integer multiple
of the sampling period h. Furthermore, it’s also assumed that the delays are upper and
lower bounded such as

τsc,min ≤ τsc,k ≤ τsc,max
τca,min ≤ τca,k ≤ τca,max.

(2)

15

Note that τsc,k, τca,k and τc,k are integer numbers representing the multiple of the sampling
period. This means that the actual network-induced time-delays can be computed by
multiplying τsc,k, τca,k and τc,k with the sampling period h.

2.4.2 Data Packet Dropout

Data transmission errors in communication networks are inevitable. A significant difference
between NCSs and conventional control systems is the possibility, that data may not reach
the wanted destination. This phenomenon is often referred to as data packet dropout. In
figure 5 the structure of a NCS with the data packet dropout problem is shown.

Figure 5: Structure of a NCS with the network-induced delays.

Data packet dropouts can occur either in the backward or in the forward channel and
make either the sensing data or the control signals unusable. Usually, packet dropouts
result from transmission errors in physical network links, which is far more common in
wireless than wired networks, or from buffer overflows due to congestion.
As already mentioned in section 2.3, data packet dropouts cannot occur in the case

where the TCP is used, since all the data will be transmitted successfully.

2.4.3 Data Packet Disorder

In communication networks, different data packets suffer different delays, which means
that a data packet sent earlier may arrive at the destination later than a data packet
which has been sent later [11, 12]. This phenomenon is referred to as data packet disorder.
A typical data transmission process in NCSs is illustrated in figure 6. Let’s assume that

a sensor sends its sampled data every h seconds. Due to the arbitrary network-induced
delays, the sampled data packet sent at time instant tk−1 may arrive at the controller
side later than its subsequent data packet sent at time instant tk.

16

Figure 6: Typical data transmission process in a NCS.

Remark. Given a constant sampling period h and variable network-induced delays, data
packet disorder occurs if and only if

∆τm = τmax − τmin > 1 (3)

where τmax and τmin are upper and lower bounds of the RTD [6].

2.4.4 Single and Multiple-packet Transmission

In the case where, e.g., multiple sensors and/or multiple actuators are used (MIMO-
systems), data may be delayed or lost only in a single link. The controller has to wait
for the arrival of all the sensing data packets before it is able to compute the upcoming
control actions. If only one sensing data packet is lost, all the others have to be discarded
due to insufficiency of information. Such a technique is often referred to as multi-packet
transmission [7, 11].
Another possibility is to send the sensing data of multiple steps via a single data packet

over the network. The packet size used in NCSs can be very large compared to the data
size needed to encode a single step of sensing data. Such a technique is often referred to
as single-packet transmission [7].

2.4.5 Sampling Period

In NCSs, a smaller sampling period may not result into a better system performance [7].
This phenomenon happens because if the sampling period is too small, too much sensing
data will be produced. This leads to an overload of the network and it causes congestion,
which may increase the chance of longer delays and data packet dropouts. The relation
between the sampling period, the network congestion and the system performance is
shown in figure 7.

17

Figure 7: Relation between sampling period, network congestion and system performance.

When the sampling period decreases (a to b), the system performance gets better, since
the network congestion does not appear until point b. If the sampling period decreases
even more (b to c), the system performance decreases as well, due to network congestion.
As shown in figure 7, there is an optimal sampling period (point b), which leads to the
best possible system performance.

2.5 Simulation of Variable Time Delays

There are several techniques to accurately simulate the networked-induced delays. Very
often, the time-varying delays is assumed to be lower and upper bounded, which is also
done in this thesis. Furthermore, the delays are assumed to be equal to an integer multiple
of the sampling time h, since all the components work with the same sampling rate.
This last assumption simplifies the implementation substantially. In this thesis, all the
simulations are performed with Matlab and Simulink. In [16] it has been shown, why
the Simulink built-in blocks Variable Integer Delay and Variable Time Delay shouldn’t
be used to simulate a packet-based time-varying transmission, since the resulting data
heavily deviates from the accurate result.
Let’s consider a system consisting of a continuous-time plant and a discrete-time

controller that are connected with two communication channels. The feedback information
is stored in packets and sent through the communication media to the controller with a
sampling time of h = 1s. The transmission is affected by an arbitrary variable time delay,
which is shown in figure 8.

18

Figure 8: Packets transmitted through the channel (top). Respective delays (bottom).

Packet 0 is delayed by 1s, packet 1 is delayed by 2s, packet 2 is delayed by 1s, and so
on. Figure 9 shows why the Simulink build-in blocks shouldn’t be used in NCSs. The
resulting data packets of both blocks are the same, but they strongly deviate from the
accurate result, because the specified delay is related to the sampling instances and not to
the individual packets in the networked control loop. In [16], a possible extension of the
Simulink built-in blocks Variable Integer Delay and Variable Time Delay is presented. It
may happen, that several packets arrive at the destination at the same time (see figure
10 at time instance t = 3s). In this scenario, the most recent packet is used and the older
one is simply be discarded. Sometimes, in the case where newer packets are available, it
makes sense to skip older packets. In Algorithm 1 the pseudo code of the packet-based
transmission, in the case where older packets don’t get skipped, is illustrated. Whereas
Algorithm 2 shows the pseudo code of the packet-based transmission in the case where
older packets get skipped.

19

Algorithm 1: Packet-based transmission in the case where older packets don’t get
skipped.
Initialize packet buffer;
while simulation is running do

Subtract h from all delays in the packet buffer;
if a packet has been sent then

Get actual packet delay (in multiples of h);
Write actual packet delay at first position in the buffer;

end
Choose most recent packet with delay 0 (from the buffer);
Write the chosen packet at the output;

end

Algorithm 2: Packet-based transmission in the case where older packets get
skipped.
Initialize packet buffer;
Initialize packetold = 0;
while simulation is running do

Subtract h from all delays in the packet buffer;
if a packet has been sent then

Get actual packet delay (in multiples of h);
Write actual packet delay at first position in the buffer;

end
Choose most recent packet with delay 0 (from the buffer);
if chosen packet number > packetold then

Write chosen packet at the output;
Store the packet number of the chosen packet into packetold;

else
Write packetold at the output;

end
end

Note that the packet number in algorithm 2 is simply the position of the packet in the
packet buffer. In order to be able to store the packets and their respective delays, the
so-called persistent variables are used. Persistent variables are local to the function in
which they are declared, yet their values are retained in memory between calls to the
function [20]. The simulated results of the extended version of the Simulink block can be
seen in figure 10.

20

Figure 9: Results using the Simulink built-in blocks.

Figure 10: Results using the extended version of the Simulink built-in block
Variable Integer Delay.

21

3 Classical Model Predictive Control

Model Predictive Control (MPC) is an advanced control method that is used to handle
control problems while systems having input, state and output constraints [5]. It is an
algorithm based on the Receding Horizon Optimal Control (RHOC) methodology [3].
The MPC uses a model of the system to make predictions about the system’s future
behavior. It solves an online optimization problem to find the optimal control action
that drives the predicted output to the reference signal. It can also incorporate future
reference information into the control problem to improve the control performance [10].
The basic MPC concept can be summarized as follows: the control action is obtained

at each time instant based on the control process model predicting either the output
or the states of the process over a fixed number of future time instants, known as the
prediction horizon Np, with the current plant state as the initial condition [4, 5]. The
result is a sequence of Nc − 1 predicted control values, where Nc is the so-called control
horizon. Only the first value from the sequence is applied to the process. At the next
time instant, a new control sequence is calculated using current process state values as
initial conditions. Figure 11 shows the structure of the MPC approach, where ûk+i and
ŷk+i are the predicted values of the plant input and plant output respectively.

Figure 11: Structure of the MPC.

The MPC offers several important advantages such as [10, 17]:

(1) Constraints on the state, input and output of the system can be imposed (hard and
soft constraints).

(2) It’s easy to implement for MIMO systems.

(3) The process model captures the static and dynamic interactions between input,
output and disturbance variables.

22

(4) No integrator is needed. ⇒ no windup effect

As usual, the advantages brought by the MPC do not come at no cost. Some disadvantages
of the MPC approach are [17]:

(1) Fast optimization algorithms should be used, since the optimization is performed
online.

(2) It relies on fast hardware.

(3) Depends on the process dynamics.

(4) Challenging for nonlinear systems.

In MPC applications, the output variables are often referred to as controlled variables,
while the input variables are also called manipulated variables [19]. While MPC is suitable
to almost any kind of problem, it displays its main strength when applied to problems
with [19]:

• A large number of manipulated and controlled variables.

• Constraints imposed on both the manipulated and controlled variables.

• Time delays.

The actual output y, the predicted output ŷ and the manipulated input u for a SISO
system are illustrated in figure 12.

Figure 12: Basic concept for MPC.

Due to the ability to pre-compute future control actions, the MPC approach provides a
possible implementation for NCSs, with the advantage of being able to deal with delays
and random data packet loss. Therefore, the MPC should be developed by considering
constraints and data packet dropouts.
In this thesis, the Matlab toolbox for optimization modeling called YALMIP is used

[37]. This toolbox makes development of optimization problems extremely simple. The
qpoases solver is used to solve the optimization problem [38].

23

3.1 Design of the Controller

The plant of a linear, time-invariant, time-continuous MIMO system is given as

dx(t)

dt
= Acx(t) +Bcu(t)

y(t) = Ccx(t)
(4)

with states x(t) ∈ Rn, input u(t) ∈ Rm, output y(t) ∈ Rp and constant matrices
Ac ∈ Rn×n, Bc ∈ Rn×m and Cc ∈ Rm×n. With the usage of a sample-and-hold element,
the equivalent discrete-time model can be written as

xk+1 = Axk +Buk

yk = Cxk
(5)

with A = eAch, B =
∫ h

0 e
Ac(h−τ)Bcdτ , C = Cc and where h ∈ R+ is the sampling period.

3.1.1 Predictive Model

The model representation in (5) is further modified using a new formulation by incorpo-
rating

uk = uk−1 + ∆uk, (6)

where uk−1 is the control input at time instant k − 1 and ∆uk is the difference between
the control input at time instant k and the control input at time instant k − 1 [3, 17].
As it’s shown in figure 12, in the case where Nc < Np the following equation has to hold:

ûk+i = ûk+Nc−1 for Nc ≤ i ≤ Np (7)

The predictive model of the output in matrix notation results to

ȳk+1 =

 ŷk+1
...

ŷk+Np

 = Fxk +Guk−1 +H∆ūk

= ḡk +H∆ūk

(8)

with

∆ūk =

 ∆ûk
...

∆ûk+Nc−1

 , F =


CA
CA2

...
CANp

 , G =


CB

C(A+ I)B
...

C(ANp−1 + . . .+A+ I)B

 ,

H =



CB 0 · · · 0

C(A+ I)B CB · · ·
...

...
... · · ·

...
C(ANc−1 + . . .+A+ I)B C(ANc−2 + . . .+A+ I)B · · · CB

...
...

. . .
...

C(ANp−1 + . . .+A+ I)B C(ANp−2 + . . .+A+ I)B · · · C(ANp−Nc + . . .+A+ I)B


,

24

where F ∈ RpNp×n, G ∈ RpNp×m and H ∈ RpNp×mNc are the matrices used to specify the
predicted output of the system.
Another possibility would be to predict the states of the system. The predicted states

result to
x̂k+1 = Fxxk +Gxuk−1 +Hx∆ūk

= ḡx,k +Hx∆ūk
(9)

where Fx, Gx and Hx are the matrices used to specify the predicted states of the system.
In order to compute the predictive model of the states, the matrix C has simply to be
replaced with the identity matrix I.

3.1.2 Cost Function

The proposed MPC approach is formulated based on a quadratic cost function given as

J =

Np∑
i=1

(ŷk+i − rk+i)
TQi(ŷk+i − rk+i) +

Nc∑
i=1

∆ûTk+i−1Ri∆ûk+i−1, (10)

with the weighting matrices Qi ∈ RpNp×pNp and Ri ∈ RmNc×mNc [17]. At this point, the
question is how to choose the weighting matrices Qi and Ri.

• Qi and Ri should be symmetric (non-symmetric part has no influence)

• Qi < 0, Ri > 0: The cost function J may be small, but the error can be large.

• Qi < 0, Ri < 0: The optimal solution diverges towards infinity. The optimization
ahhhggsdfsadf problem is unbounded, if no further constraints are used.

• Qi > 0, Ri > 0: Is a conservative choice.

• Qi ≥ 0, Ri ≥ 0, HTQH+R > 0: The optimization problem is convex, which means
ahhhggsdasdasdasdasdssfsadf that the solution is for sure a global minimum.

The so-called error vector is introduced to the calculations such as

ēk = ḡk − r̄k+1. (11)

Equation (10) is further modified and the quadratic cost function in matrix notation can
be written as

J(∆ūk) = ∆ūTk (HTQH +R)∆ūk + 2∆ūTkH
TQēk + ēTkQēk,

where ∆ūk is the optimization variable.
As mentioned before, in this thesis a quadratic cost function is used. Some alternative

cost functions are, e.g.,

⇒ J =

Np∑
i=1

x̂Tk+iQix̂k+i +

Nc∑
i=1

ûTk+i−1Riûk+i−1 (12)

⇒ J =

Np∑
i=1

|qTk+ix̂k+i|+
Nc∑
i=1

|aTk+iûk+i| (13)

25

The structure of the MPC feedback loop is shown in figure 13.

Figure 13: Structure of the classical MPC.

3.1.3 Specification of the Reference Signal

The predicted reference signal r̄k+1 ∈ RpNp has to be applied to the system. Let’s assume
that p = 3, which means that the system has three outputs that need to be controlled.
Figure 14 shows the basic concept for the specification of the reference signal over the
entire simulation time [17].

Figure 14: Specification of the reference signal over the entire simulation time in the case
where p = 3.

At each time instant, Np predicted values of the reference signal are applied to the system.
A timeseries object is created in Matlab and with the usage of the From Workspace block,
the reference signal can be sent to Simulink. There are two methods that can be used for
the specification of the reference signal.

26

• Without preview: With this method no preview of the reference signal is given.

[
t r

]
=



t1 000 000 000 . . . 000
t2 000 000 000 . . . 000
...

...
...

...
. . .

...
tN−1 000 000 000 . . . 000
tN 123 123 123 . . . 123
...

...
...

...
. . .

...
tend 123 123 123 . . . 123


(14)

Whenever the values in the first column change, the entire row will change as well.
With this method, the controller reacts later, because the future values of the
reference signals are unknown.

• With preview: With this method, a preview of the reference signal is given.

[
t r

]
=



t1 000 000 000 . . . 000 000
t2 000 000 000 . . . 000 000
...

...
...

...
. . .

...
...

tN−1 000 000 000 . . . 000 000
tN 000 000 000 . . . 000 123
tN+1 000 000 000 . . . 123 123
...

...
...

...
. . .

...
...

tend 123 123 123 . . . 123 123


(15)

Whenever new information comes in, the values in the last column change and all
the others are shifted to the left by one. The values stored in the first column are
simply being discarded. With this method, the controller reacts earlier, because the
future Np values of the reference signal are known.

With the usage of the second method, a better control performance can be guaranteed,
because the controller reacts earlier whenever the reference signal changes. However,
since the main topic of this work is to investigate how the network affects the control
performance, the first method is used instead.

3.1.4 Constraints

As mentioned before, one of the biggest advantages of the MPC is that the constraints on
the state, input and output of the system can easily be imposed [17].

• Constraints on the input:

umin ≤ uk ≤ umax ∀ k (16)

Equation (16) is further modified to

umin ≤ uk = uk−1 + ∆ûk ≤ umax
umin ≤ uk+1 = uk + ∆ûk+1 = uk−1 + ∆ûk + ∆ûk+1 ≤ umax

...
umin ≤ uk+Nc−1 = uk−1 + ∆ûk + ∆ûk+1 + . . .+ ∆ûk+Nc−1 ≤ umax

27

The constraints on the input of the system can be specified in matrix notation as

ūmin ≤ Luk−1 +M∆ūk ≤ ūmax, (17)

where ūmin ∈ RmNc , ūmax ∈ RmNc , L ∈ RmNc×m, M ∈ RmNc×mNc and ∆ūk ∈
RmNc are given as

ūmin =

umin...
umin

 , L =

I...
I

 , M =


I 0 · · · 0
I I · · · 0
...

...
. . .

...
I I · · · I

 ,

ūmax =

umax...
umax

 and ∆ūk =

 ∆ûk
...

∆ûk+Nc−1

 .
• Constraints on the change of the input:

∆umin ≤ ∆uk ≤ ∆umax ∀ k (18)

Equation (18) is further modified to

∆umin ≤ ∆ûk ≤ ∆umax

∆umin ≤ ∆ûk+1 ≤ ∆umax
...

∆umin ≤ ∆ûk+Nc−1 ≤ ∆umax

The constraints on the change of the input can be specified in matrix notation as

∆ūmin ≤ ∆ūk ≤ ∆ūmax, (19)

where ∆ūmin ∈ RmNc and ∆ūmax ∈ RmNc are given as

∆ūmin =

∆umin
...

∆umin

 and ∆ūmax =

∆umax
...

∆umax

 . (20)

• Constraints on the states:

xmin ≤ xk ≤ xmax ∀ k (21)

Equation (21) is further modified to

xmin ≤ xk ≤ xmax
xmin ≤ x̂k+1 ≤ xmax

...
xmin ≤ x̂k+Np ≤ xmax

28

The constraints on the states of the system can be specified in matrix notation as

x̄min ≤ x̄k+1 ≤ x̄max. (22)

By inserting equation (9) into (22) we get

x̄min ≤ ḡx,k +Hx∆ūk ≤ x̄max, (23)

where x̄min ∈ RpNp , x̄max ∈ RpNp and x̄k+1 ∈ RpNp are given as

x̄min =

xmin...
xmin

 , x̄max =

xmax...
xmax

 and x̄k+1 =

 x̂k+1
...

x̂k+Np

 .
• Constraints on the output:

ymin ≤ yk ≤ ymax ∀ k (24)

Equation (24) is further modified to

ymin ≤ ŷk+1 ≤ ymax
...

ymin ≤ ŷk+Np ≤ ymax

The constraints on the output of the system can be specified in matrix notation as

ȳmin ≤ ȳk+1 ≤ ȳmax. (25)

By inserting equation (8) into (25) we get

ȳmin ≤ ḡk +H∆ūk ≤ ȳmax, (26)

where ȳmin ∈ RpNp , ȳmax ∈ RpNp and ȳk+1 ∈ RpNp are given as

ȳmin =

ymin...
ymin

 , ȳmax =

ymax...
ymax

 and ȳk+1 =

 ŷk+1
...

ŷk+Np

 .
The goal is to combine all the computed constraints into one equation. It results

W∆ūk ≤ w̄, . . . linear inequality constraints (27)

where

W =



−M
M
−I
I
−Hx

Hx

−H
H


and w̄ =



−ūmin + Luk−1

ūmax − Luk−1

−∆ūmin
∆ūmax

−x̄min + ḡx,k
x̄max − ḡx,k
−ȳmin + ḡk
ȳmax − ḡk



29

are the combination of the constraints represented in matrix notation. The optimization
problem results to

min
∆ūk∈RmNc

∆ūTk (HTQH +R)∆ūk + 2∆ūTkH
TQēk

subject to W∆ūk ≤ w̄
(28)

with

Q ≥ 0, R ≥ 0 and HTQH +R > 0.

3.1.5 Soft Constraints

There are situations where no feasible solution of the optimization problem can be found,
e.g., due to model uncertainties, disturbances, estimator error of the observer, and so
on [17]. If this happens, the controller stops the computations. A possible remedy of
this problem would be to use the control input from the previous step or to apply the
predicted control input from the previous iteration. Those solutions are quiet simple
but they can lead to further issues. The best remedy would be to use the so-called
soft constraints. Soft constraints allow to violate the constraints, but not by much and
only if absolutely necessary. An additional optimization variable ε̄ is introduced and the
optimization problem results to

min
∆ūk∈RmNc

ε̄∈Rlength(w̄)

∆ūTk (HTQH +R)∆ūk + 2∆ūTkH
TQēk+ρ‖ε̄‖2

subject to W∆ūk ≤ w̄+ε̄

ε̄ ≥ 0

(29)

where ρ is a tuning parameter. An alternative way to choose the optimization problem
would be

min
∆ūk∈RmNc

ε̄∈R

∆ūTk (HTQH +R)∆ūk + 2∆ūTkH
TQēk+ρε̄

subject to W∆ūk ≤ w̄+V ε̄

ε̄ ≥ 0,

(30)

where ρ is again a tuning parameter. The array V is given as

V =


α
α
...
α

 or V =


α1

α2
...
αN

 , (31)

where N is the length of the vector w̄.

30

4 Model Predictive Control for Networked Control Systems

As it has already been mentioned in section 3, for the classical MPC only the first optimal
control move is implemented as the current control law. In the case where a MPC is
used for NCSs, not just the first value of the predicted sequence, but the entire predicted
control sequence is sent to the actuator side. The basic structure of the MPC approach
for NCSs is illustrated in figure 15.

Figure 15: Basic structure of the MPC approach for NCSs.

Note that with this approach the controller calculating delay τc,k is assumed to be zero.
Later on in this work, an additional approach, where the controller calculating delay is
taken into account, is presented as well. The RTD is given as

τk = τsc,k + τca,k. (32)

The working concept of this approach can be explained as follows: the data from the sensors
is stored in a packet and sent to the controller side via the shared communication network.
The information received by the controller gets delayed by the sensor-to-controller delay
τsc,k. After the MPC finishes the computations, the predicted control sequence is stored
in a packet and sent via the communication network to the actuator side. Again, the
information reaching the actuator side gets delayed by the controller-to-actuator delay
τca,k. With the knowledge of both network-induced delays, the Control Action Selector
(CAS) has to select the correct control input, which has been predicted by the controller.
Whenever a packet reaches the CAS, the most recent packet is stored in a buffer. If two
or more packets arrive either at the controller or at the actuator side at the same time
due to the random time-delays, the most recent one is used.
In order to understand the basic concept of the MPC approach for NCSs, an example is

presented.
Example: Let’s assume that the data from the sensors is stored in a packet and send to
the controller side via a shared communication media.

aax1aa

x2
...
xn

The packet gets delayed by the backward channel delay τsc,k. After the MPC finishes
the computations, the entire predicted control sequence is stored in a packet and sent

31

through the communication network to the actuator side.

ûk
ûk+1

ûk+2
...

ûk+Nc−1

The packet gets delayed by the forward channel delay τca,k. Whenever the packet reaches
the CAS it will be stored in a buffer. The sampling period in this short example is
assumed to be h = 1s and the delays at time instant k (for this specific example) are
given as

τsc,k = 1 τca,k = 2 ⇒ τk = τsc,k + τca,k = 3.

The CAS selects the input of the plant as:

ûk
ûk+1

ûk+2

ûk+3
...

ûk+Nc−1

Let’s assume that in the next time instant no packet reaches the actuator side. The last
received packet, which has been stored in the buffer, is reused instead. The next predicted
control input of the last used control sequence is chosen as the new plant input.

ûk
ûk+1

ûk+2

ûk+3

ûk+4
...

ûk+Nc−1

The same will happen again as long as a new packet reaches the CAS or until the last
predicted control input ûk+Nc−1 is reached.

ûk
ûk+1

ûk+2
...

ûk+Nc−1

In this short example it has been assumed that both delays are known by the CAS,
without performing any computations. In reality this is obviously not the case.

32

At this point the question is how to identify the random time-delays in the forward and
in the backward channel. As mentioned in section 2.5, the network-induced delays are
assumed to be equal to an integer multiple of the sampling time h [16] and both delays
have to be bounded such as

τsc,min ≤ τsc,k ≤ τsc,max ⇒ 1 ≤ τsc,k ≤ Nc − 2

τca,min ≤ τca,k ≤ τca,max ⇒ 1 ≤ τca,k ≤ Nc − 2,
(33)

where τsc,k and τca,k are the integer multiples of the delays in the forward and backward
channel at time instant k respectively. Since it’s impossible to have a perfect data
transmission over the network, the minimum value of both delays is assumed to be equal
to the sampling period h. The sum of both delays τk = τsc,k + τca,k (RTD) has also to be
bounded such as

τk,min ≤ τk ≤ τk,max ⇒ 2 ≤ τk ≤ Nc − 1. (34)

If equation (34) holds, then the CAS will always be able to find a suitable predicted
control signal value for the plant.
Note that the maximum value of both network-induced delays is equal to Nc − 2, since

the RTD isn’t allowed to exceed the given upper bound. This can be explained as follows:

• If τsc,k = 1 ⇒ 1 ≤ τca,k ≤ Nc − 2 ⇒ 2 ≤ τk ≤ Nc − 1 X

• If τsc,k = 2 ⇒ 1 ≤ τca,k ≤ Nc − 3 ⇒ 2 ≤ τk ≤ Nc − 1 X

...

• If τsc,k = Nc − 2 ⇒ 1 ≤ τca,k ≤ 1 ⇒ 2 ≤ τk ≤ Nc − 1 X

With the usage of time stamps it’s possible to identify the transmission delays in
the forward and backward channel. The sampled data packets are labeled with a time
stamp, which contains the information of the corresponding sampling time instant of
the sampled data packet. There are two types of approaches which can be applied to
the system: the forward and backward channel delays τsc,k and τca,k can be identified
separately (packet-based control with time synchronization) or simply the RTD τk has to
be identified (packet-based control without time synchronization) [7].

4.1 Packet-based Control With Time Synchronization

For the design of the packet-based control with the time synchronization approach, the
following assumptions are required.

Assumption 1. The control components in the NCS are all time-synchronized and the
data packets sent from both the sensor and the controller are time-stamped.

Assumption 2. The delays in the backward and forward channel are upper bounded with
τsc,max and τca,max respectively.

The structure of the packet-based control approach with time synchronization is il-
lustrated in figure 16 and the timeline of the packet-based approach is shown in figure
17.

33

Figure 16: Structure of the packet-based control approach with time synchronization.

Figure 17: Timeline of the packet-based approach for NCSs.

The working principle of this approach can be explained as the follow: the state vector
xk is stored in a packet together with a time stamp, which contains the time instant of
the sampled data packet.

x1

x2
...
xn

tstamp,back

The packet is transmitted to the controller side and delayed by the sensor-to-controller
delay τsc,k. When the packet reaches the controller, the backward channel delay can be
computed as

τsc,k =
tnow − tstamp,back

h
. (35)

Since a sample-and-hold element is used, it’s assumed that the measured time tnow and
the stored time stamp tstamp,back are equal to an integer multiple of the sampling period.
After the MPC finishes the computations, the controller determines a sequence of

forward control actions

Uk|k−τsc,k =
[
ûk|k−τsc,k . . . ûk+τca,k|k−τsc,k

]T
, (36)

34

where ûk+i|k−τsc,k for i = 0, 1, ..., τca,k are the forward control action predictions based on
information up to time k − τsc,k [13]. In other words, the first τsc,k + 1 values of the
entire resulting predicted control sequence are simply thrown away and the rest is stored
in a packet together with a time stamp, which again contains the time instant of the
sampled data packet [7].

ûk+τsc,k+1

ûk+τsc,k+2

...
ûk+Nc−1

tstamp,for

The packet is transmitted to the CAS on the actuator side and delayed by the controller-
to-actuator delay τca,k. When the packet reaches the CAS, the forward channel delay can
be computed as

τca,k =
tnow − tstamp,for

h
. (37)

The CAS compares its time stamp with the one already stored in the buffer and only
the one with the latest time stamp is saved. With this comparison, data packet disorder
can be prevented. Let’s denote the forward control sequence already in the CAS and the
one just arrived by Uk1−τca,k1

|k1−τk1
and Uk2−τca,k2

|k2−τk2
respectively, then the chosen

sequence is determined by the following comparison [7]:

Uk−τ∗ca,k|k−τ
∗
k

=

{
Uk2−τca,k2

|k2−τk2
if k1 − τk1 < k2 − τk2

Uk1−τca,k1
|k1−τk1

otherwise (38)

Finally, the CAS has to select the correct value from the predicted control sequence as
the new input of the plant.

ûk+τsc,k+1

ûk+τsc,k+2

...
ûk+τca,k

...
ûk+Nc−1

tstamp,for

The packet containing the state vector is sent at each time instant, however, the packet
containing the predicted control sequence is only sent whenever the MPC is active. This
approach can be summarized as follows:

35

Algorithm 3: Packet-based control approach with time synchronization
if the controller receives the delayed state data xk−τsc,k at time instant k, the
controller then

Calculates the current backward channel delay τsc,k;
Computes the control sequence as in (36);
Packs Uk|k−τsc,k and sends it to the CAS in one data packet with the
corresponding time stamp;

else
Let k = k + 1 and wait for the next time instant;

end
if a data packet arrives at the CAS then

The forward channel delay τca,k is calculated;
The CAS updates the control sequence stored in the buffer;
The new control action is picked out by the CAS and applied to the plant;

end

With the usage of the packet-based control approach with time synchronization, the risk
of network congestion decreases, since the size of the transmitted packet on the controller
side is reduced. However, very often it’s only required to identify the RTD τk.

4.2 Packet-based Control Without Time Synchronization

The second approach that can be applied to the system is the so-called packet-based
control approach without time synchronization. In practice, it’s often not required to
identify the forward and backward channel delays separately since it’s normally the RTD
that affects the system performance. The following assumptions are required for this
approach.

Assumption 3. The RTD τk is upper bounded by τmax.

Assumption 4. The data packets sent from the sensor are time-stamped.

The structure of the packet-based control approach without time synchronization is
illustrated in figure 18.

Figure 18: Structure of the packet-based control approach without time synchronization.

36

The state vector xk is at each time instant stored in a packet together with a time
stamp, which contains the time instant of the sampled data packet.

x1

x2
...
xn

tstamp,back

The packet is transmitted to the controller side and delayed by the sensor-to-controller
delay τsc,k. When the packet reaches the controller, the backward channel delay doesn’t
need to be computed.
After the MPC finishes the computations, the controller again determines a sequence of

forward control actions such as

Uk−τsc,k|k−τsc,k =
[
ûk−τsc,k|k−τsc,k . . . ûk−τsc,k+τk|k−τsc,k

]T
. (39)

It has been assumed that the maximum possible value for the RTD is τk = Nc − 1.
It is noticed that in such a case the backward channel delay τsc,k is not required for
the controller, since the controller simply produces Nc − 1 step forward control actions
whenever a data packet containing the feedback information arrives. This relaxation
implies that the time synchronization between the controller and the actuator (plant)
isn’t required anymore.
The entire predicted control sequence and the time stamp of the packet containing the

sensing data (tstamp,back) are stored in a packet, but this time no time stamp containing
the time instant of the sampled data packet sent by the controller (tstamp,for) has to be
attached.

ûk
ûk+1
...

ûk+Nc−1

tstamp,back

The packet is transmitted to the CAS on the actuator side and delayed by the controller-
to-actuator delay τca,k. When the packet reaches the CAS, the RTD can be computed
as

τk =
tnow − tstamp,back

h
. (40)

The CAS compares its time stamp with the one already stored in the buffer and only the
one with the latest time stamp is saved. With this comparison, data packet disorder can
be prevented. Finally, the CAS has to select the correct value from the predicted control

37

sequence as the new input of the plant.

ûk
ûk+1
...

ûk+τk
...

ûk+Nc−1

tstamp,back

The packet containing the sensing data is sent at each time instant, however, the packet
sent by the controller is only sent whenever the MPC is active. Algorithm 4 shows a
possible implementation of this approach.

Algorithm 4: Packet-based control approach without time synchronization
if the controller receives the delayed state data xk−τsc,k at time instant k, the
controller then

Calculates the control sequence as in (39);
Packs Uk−τsc,k|k−τsc,k and sends it to the CAS in one data packet;

else
Let k = k + 1 and wait for the next time instant;

end
if a data packet arrives at the CAS then

The RTD τk is calculated;
The CAS updates the control sequence stored in the buffer;
The new control action is picked out by the CAS and applied to the plant;

end

The only difference between this approach and the approach presented in section 4.1
is the size of the packet sent by the controller. For the packet-based control without
time synchronization approach, the packet size is always the same (maximum), since the
controller simply sends all Nc− 1 predicted control steps to the actuator side. The risk of
network congestion increases, since more information is sent through the network.

4.3 Consideration of the Controller Calculating Delay

As already mentioned in section 2.4.1, very often the controller calculating delay τc,k is
assumed to be zero, since its value is smaller compared to the other two network-induced
delays. This assumption holds for slow systems with a large sampling period. However,
neglecting the controller calculating delay can become a problem for fast systems with a
small sampling period. It can happen that τc,k is larger than the sampling period h. In
this case the controller calculating delay can become problematic and it can significantly
reduce the control performance. The control approach presented in section 4.1 is further
modified such that the controller calculating delay τc,k can be compensated. Note that for
the packet-based control approach without time synchronization the controller calculating
delay is already taken into account, since the time interval between the time instant when
the feedback information is sent to the controller side and the time instant when the
control signals reach the CAS is measured.

38

Since τc,k is not equal to an integer multiple of the sampling time h, a new delay τ ′c,k is
introduced [24].

τ ′c,k = τc,k + τwait (41)

Figure 19 shows the timeline of the controller calculating delay in a typical NCS.

Figure 19: Timeline of the controller calculating delay.

The measured RTD results to

τk = τsc,k + τca,k + τ ′c,k. (42)

For the modified packet-based control approach with time synchronization the controller
calculating delay has to be identified. The structure and the timeline of this approach are
shown in figure 20 and 21 respectively.

Figure 20: Structure of the modified packet-based control approach with time synchro-
nization.

Figure 21: Timeline of the modified packet-based control approach with time synchro-
nization.

39

The working principle of this approach can be explained as follows. The state vector xk
is stored in a packet together with a time stamp, which contains the time instant of the
sampled data packet.

x1

x2
...
xn

tstamp,back

The packet is transmitted to the controller side and delayed by the sensor-to-controller
delay τsc,k. When the packet reaches the controller, the backward channel delay can be
computed as

τsc,k =
tnow − tstamp,back

h
(43)

and the measured time instant is stored in a time stamp such as

tstamp,start = tnow. (44)

After the MPC finishes the computations, the controller calculating delay τ ′c,k can be
computed as

τ ′c,k =
tnow − tstamp,start

h
. (45)

It’s assumed that if another packet reaches the controller side while the MPC is still
running, the incoming packet is simply discarded. Another possibility would be that
whenever a packet reaches the controller while this last one is still running, the computation
gets interrupted. The main idea behind this approach is that the controller always uses
the most recent information, but this can also lead to a scenario, where the controller
is not able to finish the computations, since it gets interrupted all the time. Because of
this, it cannot be guaranteed that enough information reaches the CAS and the risk of
instability increases drastically.
The predicted sequence of forward control actions results to

Uk|k−τsc,k−τ ′c,k =
[
ûk|k−τsc,k−τ ′c,k . . . ûk+τca,k|k−τsc,k−τ ′c,k

]T
, (46)

where ûk+i|k−τsc,k−τ ′c,k for i = 0, 1, ..., τca,k are the forward control action predictions based
on information up to time k − τsc,k − τ ′c,k. In other words, the first τsc,k + τ ′c,k + 1 values
of the entire resulting predicted control sequence are simply thrown away and the rest is
stored in a packet together with a time stamp, which again contains the time instant of
the sampled data packet.

ûk+τsc,k+τ ′c,k+1

ûk+τsc,k+τ ′c,k+2

...
ûk+Nc−1

tstamp,for

40

The packet is transmitted to the CAS on the actuator side and delayed by the controller-
to-actuator delay τca,k. When the packet reaches the CAS, the forward channel delay can
be computed as

τca,k =
tnow − tstamp,for

h
. (47)

The CAS compares its time stamp with the one already stored in the buffer and only the
one with the latest time stamp is saved. With this comparison, data packet disorder can
be prevented. Finally, the CAS has to select the correct value from the predicted control
sequence as the new input of the plant.

ûk+τsc,k+τ ′c,k+1

ûk+τsc,k+τ ′c,k+2

...
ûk+τca,k

...
ûk+Nc−1

tstamp,for

This approach is suited for fast systems with small sampling periods. However, this
approach is not used very often. Measuring time delays using the time stamp technique
takes significant time and a even higher time-delay can be caused [22]. For slow systems
this restriction is not relevant, since the time stamp-induced delays are very small
compared to the measured network-induced delays. Another restriction is the network
congestion. The controller calculating delay is usually very small and NCSs are not suited
for systems with such a small sampling period (see section 2.4.5). Furthermore, this
approach is quiet complicated and complex to implement.
In algorithm 5 a possible implementation of this approach is presented.

Algorithm 5: Modified packet-based control approach with time synchronization
if the controller receives the delayed state data xk−τsc,k at time instant k, the
controller then

Calculates the current backward channel delay τsc,k;
Computes the control sequence as in (46);
Calculates the controller calculating delay τ ′c,k;
Packs Uk|k−τsc,k−τ ′c,k and sends it to the CAS in one data packet with the
corresponding time stamp;

else
Let k = k + 1 and wait for the next time instant;

end
if a data packet arrives at the CAS then

The forward channel delay τca,k is calculated;
The CAS updates the control sequence stored in the buffer;
The new control action is picked out by the CAS and applied to the plant;

end

41

4.4 Compensation of Data Packet Dropouts

Some packets not only suffer transmission delays but also, even worse, can be lost during
the transmission. In fact, there is a challenging issue in NCSs: how to actively compensate
for communication delays and overcome data packet dropouts without degrading the
control performance. In general, time-delays and packet dropouts are always linked to
each other [22]. Most of the control systems are delay-sensitive. In other words, for most
of the control systems, out-of-date information is useless and only real-time information
should be used. Therefore, a packet with relatively large delay should be classified as a
junk information, which is better to be dismissed. In such a scenario, a packet dropout is
happened proactively in order to improve the control performance. It’s natural to assume
that only a finite number of consecutive data dropouts can be tolerated in order to avoid
the NCS to become an open loop [2].
In this thesis it’s assumed that the network-induced delays and the data packet dropouts

are independent from each other. This assumption leads to a model which is obviously
defective in terms of authenticity and reliability. In [22], the relation between time-delays
and data packet dropouts is taken into consideration and a possible implementation based
on the Markov chain approach is presented. With the Traditional Markov Chain approach,
the relation between time-delays and data packet dropouts is not considered, since 3
independent Markov chains are used. With the so-called Nested Markov Chain approach,
the relation between time-delays and data packet dropouts is taken into consideration.
In order to compensate for data packet dropouts the following assumption is required.

Assumption 5. The sum of the maximum backward and forward channel delay and
the maximum number of continuous data packet dropouts is upper bounded by τ̄sc (τ̄ca
respectively)

τ̄sc = τsc,max + h · nd,sc τ̄ca = τca,max + h · nd,ca (48)

where nd,sc and nd,ca are the upper bounds of the number of consecutive data packet
dropouts in both channels.

In NCSs, there are three methods which are often used in order to compensate the
random data packet dropouts [8].

• Method 1: In the case where a data dropout occurs, the control input is set to
zero.

• Method 2: In the case where a data dropout occurs, the control input keeps the
previous value until new data arrives.

• Method 3: In the case where a data dropout occurs, the control prediction approach
presented in section 4 is used.

42

5 Two Tank System

In this section, a simulation example is given to show the feasibility and efficiency of the
proposed methods. Given is a system consisting of two tanks and a reservoir, as shown in
figure 22. With the usage of two pumps, water can be transferred into the tanks and the
goal is to control the water-level of the bottom tank.

Figure 22: Structure of the two tank system.

5.1 Mathematical Model

The mathematical model for the two tank system is given in form of the following nonlinear
differential equations

dx1

dt
= f1(x, u) = −k1

√
x1 + zp,1

dx2

dt
= f2(x, u) = −k2

√
x2 + k1

√
x1 + zp,2

y = g(x, u) = h2

h1 = x1 − h01

h2 = x2 − h02

(49)

where the parameters k1 and k2 are constant. The state variables x1 and x2 are the levels
in the top and bottom tank respectively, which are defined as the sum of the length of
the drains h01, h02 and the water levels h1, h2, i.e. xi = hi + h0i (i = 1, 2). The output y
of the system is defined as the water-level of the bottom tank. The inflow due to pump
1 is symbolized by zp,1 and the inflow due to pump 2 by zp,2. In this thesis the second
pump is not used and the voltage u2 is set to zero. The nonlinear characteristics of both
pumps are given as

zp,i(ui) =

{
αi +

√
βi + γiui for βi + γiui > 0

0 otherwise
. (50)

43

The parameters of the two tank model are given in table 2.

Parameter Tank 1 Tank 2
ki[cm

1
2 s−1] 0.391 0.386

h0i[cm] 10.17 10.53
αi[cms

−1] 0.055 0.059
βi[cm

2s−2] -3.077 -3.246
γi[cm

2s−2V −1] 3.551 3.61

Table 2: Parameters of the two tank system.

5.1.1 Linearization of the Model

The nonlinear model is linearized in the equilibrium yE = 15cm. It results

0 = f1(xE , uE) = −k1
√
x1E + zp,1E

0 = f2(xE , uE) = −k2
√
x2E + k1

√
x1E + zp,2E

yE = g(xE , uE) = 15cm

(51)

with the equilibrium point

xE =

[
x1,E

x2,E

]
=

[
k2

2x2,E

k2
1

yE + h02

]
. (52)

With the usage of the transformation

∆x := x− xE → x = xE + ∆x

∆u := u− uE → u = uE + ∆u
(53)

it’s possible to compute the nonlinear functions f(x, u) and h(x, u) as a Taylor series for
the equilibrium point (xE , uE) as the following:

f1(x, u) = f1(x, u)
∣∣∣
xE ,uE︸ ︷︷ ︸

= 0

+
∂f1(x, u)

∂x

∣∣∣
xE ,uE

∆x+
∂f1(x, u)

∂u

∣∣∣
xE ,uE

∆u+ · · ·

f2(x, u) = f2(x, u)
∣∣∣
xE ,uE︸ ︷︷ ︸

= 0

+
∂f2(x, u)

∂x

∣∣∣
xE ,uE

∆x+
∂f2(x, u)

∂u

∣∣∣
xE ,uE

∆u+ · · ·

g(x, u) = g(x, u)
∣∣∣
xE ,uE︸ ︷︷ ︸

= yE

+
∂g(x, u)

∂x

∣∣∣
xE ,uE

∆x+
∂g(x, u)

∂u

∣∣∣
xE ,uE

∆u+ · · ·

(54)

Only the linear terms are used, therefore the terms of higher order can be neglected. With
the definition

∆ẋ :=
d

dt
(∆x) (55)

44

one gets

ẋ = ∆ẋ ≈ ∂f(x, u)

∂x

∣∣∣
xE ,uE

∆x+
∂f(x, u)

∂u

∣∣∣
xE ,uE

∆u

y = yE +
∂g(x, u)

∂x

∣∣∣
xE ,uE

∆x+
∂g(x, u)

∂u

∣∣∣
xE ,uE

∆u,

(56)

with the abbreviations

A :=
∂f(x, u)

∂x

∣∣∣
xE ,uE

b :=
∂f(x, u)

∂u

∣∣∣
xE ,uE

cT :=
∂g(x, u)

∂x

∣∣∣
xE ,uE

d :=
∂g(x, u)

∂u

∣∣∣
xE ,uE

(57)

and

∆y := y − yE . (58)

The linear mathematical model can be described as
∆ẋ = A∆x+ b∆u

∆y = cT∆x+ d∆u.
(59)

For the computation of the dynamic matrix A, the so-called Jacobian matrix has to be
used

∂f(x, u)

∂x
=

[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]
=

[
−k1

2
1√
x1

0
k1
2

1√
x1

−k2
2

1√
x2

]
. (60)

By inserting the equilibrium point (xE , uE), the system matrix A is

A =
∂f(x, u)

∂x

∣∣∣
xE ,uE

=

[
−k1

2
1√
x1,E

0
k1
2

1√
x1,E

−k2
2

1√
x2,E

]
=


−k1

2
1√

k2
2x2,E

k2
1

0

k1
2

1√
k2
2x2,E

k2
1

−k2
2

1√
yE+h02

 . (61)

The same is done for the input vector b

b =
∂f(x, u)

∂u

∣∣∣
xE ,uE

=

[
γ1

2
1√

β1+γ1u1,E

0

]
, (62)

the output vector cT

cT =
∂g(x, u)

∂x

∣∣∣
xE ,uE

=
[
0 1

]
(63)

and for the direct feedthrough d

d =
∂g(x, u)

∂u

∣∣∣
xE ,uE

= 0. (64)

Hence, the linear mathematical model of the two tank system is given as

∆ẋ =


−k1

2
1√

k2
2x2,E

k2
1

0

k1
2

1√
k2
2x2,E

k2
1

−k2
2

1√
yE+h02

∆x+

[
γ1

2
1√

β1+γ1u1,E

0

]
∆u

∆y =
[
0 1

]
∆x.

(65)

45

5.2 Simulation using the Linearized Model

First of all, the linearized model, which has been discretized with a sampling period of
h = 0.5s, is analyzed. A model predictive controller is used to track the desired water
level for the bottom tank. The symmetric weighting matrices Q and R are set equal to
the identity matrix and the prediction and control horizons are chosen to be

Np = 20 and Nc = 8. (66)

In this thesis, only constraints on the input u1 and the states x1 and x2 are imposed.
The constraints for the pump voltage u1 are given as

umin ≤ ui ≤ umax
0− u1,E ≤ ui ≤ 5V − u1,E

(67)

with

umin =


uk,min
uk+1,min

...
uk+Nc−1,min

 =


−1.8782
−1.8782

...
−1.8782

 umax =


uk,max
uk+1,max

...
uk+Nc−1,max

 =


3.1218
3.1218

...
3.1218

 . (68)

The constraints for the states x1 and x2 are given as

xmin ≤ xi ≤ xmax
h0i − xi,E ≤ xi ≤ 20cm+ h0i − xi,E for i = 1, 2

(69)

with

xmin =


x1,min

x2,min
...

xNp−1,min

xNp,min

 =


−14.7112
−15
...

−14.7112
−15

 xmax =


x1,max

x2,max
...

xNp−1,max

xNp,max

 =


5.2888

5
...

5.2888
5

 . (70)

As it has already been shown in section 3.1.5, the combination of the constraints repre-
sented in matrix notation is given as

W∆ūk ≤ w̄, (71)

with

W =


−M
M
−Hx

Hx

 and w̄ =


−ūmin + Luk−1

ūmax − Luk−1

−x̄min + ḡx,k
x̄max − ḡx,k

 . (72)

5.2.1 Without Network

Let’s assume that the control components are all directly connected to each other, in
other words no network is used. The classical MPC approach, which has been presented
in section 3, where only the first value from the predicted control sequence is applied to

46

the process, is used. The schematic of the feedback loop using the linearized model is
shown in figure 23.

Figure 23: Schematic of the feedback loop with the linearized model in the case where no
network is used.

The output of the feedback loop with the linearized model can be seen in figure 24. It’s
shown that there is almost no overshoot at the output of the linearized model, because
no network-induced delays or data packet problems affect the control performance. The
water level in the bottom tank takes nearly 40 seconds to reach the equilibrium point
yE = 15cm and nearly 40 seconds to get from the equilibrium point to a height of 5cm.

Figure 24: Water level in the bottom tank for the feedback loop with the linearized model
without network.

47

5.2.2 Without Time-delay Compensation

Let’s now assume that a network is used for the communication between the control
components. This means that random time-delays will affect the transmission of the data
packets between the plant and the controller side. For the communication network, an
artificial network is created as it has been shown in section 2.5. In order to simplify the
simulation, both delays are chosen to be equal to the sampling period such as

τsc,k = τca,k = 1. (73)

Figure 25 shows the behavior of the water level in the bottom tank in the case where
no time-delay compensation is applied to the system. It can be seen that the solver is
not able to find a solution at time instant t = 8s, because the problem is infeasible. The
simulation stops running, since the chosen constraints have been exceeded. In figure 26
the states and input of the system are illustrated.

Figure 25: Water level in the bottom tank for the feedback loop with the linearized model
without the time-delay compensation.

48

Figure 26: States and input of the system for the feedback loop with the linearized model
without the time-delay compensation.

The state x2 and the input u1 do not exceed the given constraints. The solver is not
able to find a solution without exceeding the imposed constraint of the state x1 and that’s
why the simulation stops running.

5.2.3 Time-delay Compensation Without Time Stamps

First of all, it’s assumed that both delays are known by the CAS without the usage of
time stamps. Furthermore, it’s also assumed that in the case where no packets reach
either the controller or the actuator side, the last received packet is used instead. This
means that a buffer is used on both sides.
The distribution of the network-induced delays in both channels and the distribution

of the RTD is shown in figure 27. The probability of the delay in the backward channel
being large is higher than the probability of the delay in the forward channel being large.
The backward channel delay is typically severer than the forward channel delay, which
is due to the fact that in a NCS, especially when it is combined with wireless sensor
networks or Internet of Things systems, excessive sensors will be deployed in the network,
which can lead to a higher time-delay [22].
It can be seen that the probability of the RTD being small is very low and that the

probability of τk being large is high. This can be explained like the follow: first of all, the
sensor-to-controller delay is generated assuming that it is uniformly distributed with the
given boundaries

τsc,min ≤ τsc,k ≤ τsc,max ⇒ 1 ≤ τsc,k ≤ Nc − 2. (74)

Since the RTD is not allowed to exceed the upper bound, which is assumed to be Nc − 1,
the controller-to-actuator delay is generated assuming that it is uniformly distributed

49

with the resulting boundaries

τca,min ≤ τca,k ≤ τk,max − τsc,k, (75)

where τk,max is the upper bound of the RTD. It’s clear that by using this method the
probability of the forward channel delay being small is high.
Another possibility to model the network-induced delays would be to assume, that the

RTD is uniformly distributed. This assumption would result into smaller RTDs compared
to the RTD of the first method. The most used approach to model the networked-induced
delays in NCSs is the Markov chain approach. It is one of the most attractive methods due
to the reason that it is more natural to involve the temporal evolution of time-delays in
the network, since the current time-delay may influence the future time-delays in practice.
However, in this work the first presented method is used instead.
In figure 28 and 29 the network-induced delays and the RTD are illustrated respectively.

Figure 27: Distribution of the network-induced delays and the RTD.

It can be observed that the delay in the backward channel is never equal to zero, since
the data from the sensors is sent at each time instant. Both delays aren’t allowed to
exceed the upper bound of Nc−2, which is in this case 3s. Whenever a packet reaches the
controller side, a packet containing the predicted control sequence is sent to the actuator.
This means that the controller isn’t constantly sending information (see figure 28). Figure
29 shows at which time instants the packets reach the actuator side. The RTD isn’t
allowed to exceed the upper bound of Nc − 1, which is in this case 3.5s.

50

Figure 28: Backward channel delay τsc,k and forward channel delay τca,k over the time
(for 20s).

Figure 29: RTD τk over the time (for 20s).

51

Note that in this thesis the upper bounds of the network-induced delays depend on the
control horizon Nc. This means that a larger control horizon will lead to larger network-
induced delays. For the two tank system with a sampling period of h = 0.5s, a control
horizon of Nc = 20 would result into RTDs up to 9.5s. Such large delays are obviously
difficult to handle and they result into a bad control performance and into instability. A
possibility to avoid those problems and to guarantee a better control performance would
be to choose the upper bounds of the network-induced delays to be independent of the
control horizon Nc. This method would increase the control performance but it would
also increase the computation time of the controller, since more predicted control values
are computed.
The schematic of the feedback loop with the time-delay compensation without time

stamps is shown in figure 30. As mentioned before, both time-delays are assumed to be
directly known by the CAS.

Figure 30: Schematic of the feedback loop with the linearized model in the case where no
time stamps are used.

Figure 31 shows the water level in the bottom tank for the simplified time-delay
compensation without time stamps. The water level in the bottom tank follows the
reference signal, but it oscillates quiet strongly. This phenomenon can be explained as the
follow: in this simplified implementation, the last used control signal is reused in the case
where no packet reaches the CAS and this leads to the oscillation behavior of the output
signal. In order to avoid this oscillation, the technique presented in section 4 is used. This
means that whenever a packet doesn’t reach the CAS, the next predicted control input of
the last received packet, which is stored in a buffer, is applied as the new plant input.
Note that in this simplified implementation the MPC runs at each time instant, because

it’s assumed, that whenever a packet reaches either the controller or the actuator side,
the packet is stored in a buffer. This means that the MPC always uses the packet stored
in the buffer on the controller side for the computations. With this method a lot of
unnecessary computation time is needed, which may degrade the control performance. It
makes more sense to just run the MPC whenever a packet reaches the controller side. By
doing that, only a buffer on the actuator side is needed.

52

Figure 31: Water level in the bottom tank for the feedback loop with the linearized model
in the case where no time stamps are used.

5.2.4 Packet-based Control With Time Synchronization

In this section, the packet-based control approach with time synchronization is applied to
the system, which means that time stamps are used to identify both network-induced
delays separately. In figure 32 the schematic of the feedback loop is shown and the
behavior of the water level in the bottom tank can be seen in figure 33. There is almost
no oscillation at the output of the system. It can be observed that it’s convenient to skip
older packets, because the system reacts faster.

Figure 32: Schematic of the feedback loop with the linearized model in the case where
time stamps are used.

53

Figure 33: Water level in the bottom tank for the feedback loop with the linearized model
when using the packet-based control approach with time synchronization.

In figure 34 and 35 the states and the input of the plant are illustrated respectively.
Again, it can be observed that it’s more convenient to skip older packets, since the
controller reacts faster. Furthermore, it’s also shown that the input voltage u1 oscillates
in the case where the data among the control components is exchanges in the form of
data packets over a network. A possibility to reduce this oscillation behavior would be to
increase the weighting matrix R.
In order to avoid the MPC running at each time instant, the so-called Enabled Subsystem

block in Simulink is used. With the usage of this block it’s possible to run the MPC only
whenever a packet reaches the controller side. Because of this feature, a better control
performance is guaranteed, since there is less computation time needed. Figure 36 shows
how often the MPC is running during the simulation. When the MPC is active, the value
increases by 1 and when the MPC is inactive, the value decreases by 1. It can clearly be
seen that in the case where older packets don’t get skipped, the MPC is more often active
than if older packets get skipped. It’s also shown that when older packets get skipped (in
this specific case), the MPC is more often inactive than active during the simulation time.

54

Figure 34: States of the system for the feedback loop with the linearized model when
using the packet-based control approach with time synchronization.

Figure 35: Input of the system for the feedback loop with the linearized model when using
the packet-based control approach with time synchronization.

55

Figure 36: Active/Inactive state of the MPC during the simulation when using the packet-
based control approach with time synchronization.

Until now, the MPC has always predicted the control sequence over the entire control
horizon Nc. As mentioned in section 4.1, the first part of the predicted control sequence
has simply be discarded. Another possibility would be to choose the boundaries of the
cost function J , such that the MPC only predicts those control inputs that can effectively
be used, since the controller already knows the sensor-to-controller delay τsc,k before it
starts the computations. The quadratic cost function results to

J =

Np∑
i=1

(ŷk+i − rk+i)
TQi(ŷk+i − rk+i) +

Nc∑
i=τsc,k+2

∆uTk+i−1Ri∆uk+i−1. (76)

Figure 37 shows how the water level in the bottom tank behaves in the case where the
boundaries of the cost function are reduced. The computation time is lower, since the
boundaries of the cost function are smaller. However, it can clearly be seen that the
quality of the results isn’t that good anymore. The water level is not able to reach the
equilibrium point and there is always a certain deviation from the reference signal. A
possibility to get a better control performance would be to choose the control horizon
bigger than the maximum possible RTD τk.
Since the results of the packet-based control approach without time synchronization are

the same as the results presented in this section (in the case where the MPC predicts over
the entire control horizon Nc), no simulations using the approach presented in section 4.2
are performed. As already mentioned, only the size of the packet sent by the controller to
the actuator side changes.

56

Figure 37: Water level in the bottom tank for the packet-based control approach with
time synchronization with the reduced boundaries of the cost function.

5.2.5 Compensation of Data Packet Dropouts

In this section, data packet dropouts are taken into account and their impact on the control
performance is investigated. For each communication channel, a uniformly distributed
integer number with the given boundaries a and b is generated such as

asc ≤ Xsc ≤ bsc ⇒ 1 ≤ Xsc ≤ 5

aca ≤ Xca ≤ bca ⇒ 1 ≤ Xca ≤ 5
(77)

It has been assumed that whenever the random number Xsc is equal to zsc ∈ [asc, bsc], the
packet containing the feedback information is dismissed. In the case where Xca is equal
to zca ∈ [aca, bca], the packet containing the future control actions is discarded. It is clear
that by decreasing the upper bounds bsc and bca, the number of data packet dropouts
in the network increases. Furthermore, it’s also assumed that only five consecutive data
packet dropouts are tolerated. Figure 38 shows how often the MPC is running during
the simulation and the time instances, where data dropouts in the forward and in the
backward channel (in the case where older packets get skipped).
The three methods presented in section 4.4 are applied to the system. In figure 39 the

results of the three methods are illustrated. It can be seen how the random packet losses
affect the control performance.
The first method is very simple to implement, but the control input set to zero causes

an unsmooth switching, which cannot always be tolerated and therefore it’s difficult to
get a good control performance. The difference between the results of the second and
third method isn’t that big in this specific case, but it’s more convenient to apply the
control prediction approach presented in section 4 (Method 3), since it provides the best
control performance. However, it’s more complex and complicated to implement.

57

Figure 38: Status of the MPC (top). Packet dropouts in the backward channel (middle).
Packet dropouts in the forward channel (bottom).

Figure 39: Water level in the bottom tank for the feedback loop with the linearized model
with packet dropouts.

58

5.3 Simulation using the Nonlinear Model

As shown in section 5.2, the controller works quiet good when using the linearized model.
Very often, such a model is defective in terms of reliability and authenticity, because of
the neglected nonlinear terms. That’s why it’s of interest to investigate how the controller
works on the nonlinear model as well. The parameters of the MPC are all the same as in
the previous section. The constraints for the pump voltage u1 are given as

umin ≤ ui ≤ umax
0 ≤ u1 ≤ 5V

(78)

with

umin =


uk,min
uk+1,min

...
uk+Nc−1,min

 =


0
0
...
0

 umax =


uk,max
uk+1,max

...
uk+Nc−1,max

 =


5
5
...
5

 . (79)

The constraints for the states x1 and x2 are given as

xmin ≤ xi ≤ xmax
h0i ≤ xi ≤ 20cm+ h0i for i = 1, 2

(80)

with

xmin =


x1,min

x2,min
...

xNp−1,min

xNp,min

 =


10.17
10.53

...
10.17
10.53

 xmax =


x1,max

x2,max
...

xNp−1,max

xNp,max

 =


30.17
30.53

...
30.17
30.53

 . (81)

5.3.1 Without Network

Let’s first assume that the control components are all directly connected to each other,
which means that no network is used. Again, the classical MPC approach presented in
section 3 is used.
The behavior of the output of the plant is shown in figure 40. The water level in the

bottom tank does not overshoot in the equilibrium point yE = 15cm. The same result
has already been shown for the linearized model. However, by comparing figure 24 with
figure 40 it can be seen, that the output of the nonlinear model reaches the reference
signal faster than the output of the linearized model.

59

Figure 40: Water level in the bottom tank for the feedback loop with the nonlinear model
without network.

5.3.2 Without Time-delay Compensation

A network is used for the communication among the control components. Random
time-delays will affect the transmission between the controller and the actuator side. In
order to simplify the simulation, both network-induced delays are assumed to be equal to
the sampling period such as

τsc,k = τca,k = 1. (82)

Figure 41 shows the behavior of the water level in the bottom tank. Also in this case the
simulation stops running at time instant t = 11s, because the given boundaries have been
exceeded. The solver isn’t able to find a feasible solution within the allowed regions. In
figure 42 the states and input of the system are illustrated respectively.

60

Figure 41: Water level in the bottom tank for the feedback loop with the nonlinear model
without the time-delay compensation.

Figure 42: States and input for the feedback loop with the nonlinear model without the
time-delay compensation.

The state x1 exceeds the given upper bound and that’s why the simulation stops running.

61

5.3.3 Time-delay Compensation Without Time Stamps

The simplified compensation approach presented in section 5.2.3 is applied on the nonlinear
model as well. Both network-induced delays are assumed to be directly known by the
CAS without performing any computations. Figure 43 shows the behavior of the output
of the plant. The water level in the bottom tank more or less reaches the wanted level,
but it oscillates quiet strongly. By comparing figure 30 with figure 43, it can be seen that
the oscillation behavior of the nonlinear model is stronger than the oscillation behavior of
the linearized model. In other words, the output signal of the nonlinear model is more
inaccurate than the output signal in the linear case.

Figure 43: Water level in the bottom tank for the feedback loop with the nonlinear model
in the case where no time stamps are used.

5.3.4 Packet-based Control With Time Synchronization

The packet-based control approach with time synchronization is also applied to the
nonlinear model. Both assumptions 1 and 2, presented in section 4.1, have to be fulfilled
and the working principle is the same as the one already illustrated in Algorithm 3.
Again, the backward channel delay τsc,k can be computed right after the packet reaches

the controller side. The first values of the predicted control sequence are simply discarded
and the other ones are sent to the plant side together with a time stamp. As it’s shown
in figure 44, the output signal of the plant follows the reference signal without oscillating.
By comparing the results of the linearized model, shown in figure 33, with the results
of the nonlinear model it can clearly be seen, that the network-induced delays have a
bigger impact on the control performance when using the nonlinear model. I can also be
observed that the output signal of the nonlinear model reaches the reference signal faster
than the output signal of the linearized model.

62

Figure 44: Water level in the bottom tank for the feedback loop with the nonlinear model
when using the packet-based control approach with time synchronization.

In figure 45 and 46 the states of the system and the input signal are shown respectively.

Figure 45: States of the system for the feedback loop with the nonlinear model when
using the packet-based control approach with time synchronization.

63

Figure 46: Input of the system for the feedback loop with the nonlinear model when using
the packet-based control approach with time synchronization.

Figure 47 shows how often the MPC is active during the simulation time.

Figure 47: Active/Inactive state of the MPC during the simulation when using the packet-
based control approach with time synchronization.

64

The controller is more active in the case where older packets don’t get skipped. It can
also be observed that in the case where older packets get skipped (in this specific case),
the MPC is equally often active than inactive during the simulation.
The boundaries of the cost functional are reduced as it has been shown in equation (76),

since the backward channel delay is already known by the controller before it starts with
the computations. The MPC only predicts those control inputs that can also be applied
to the plant. By doing that, the size of the packet sent by the controller is reduced and it
varies at each time instant.
Figure 48 shows the behavior of the water level in the bottom tank. As it has already

been shown for the linearized model, the output of the plant isn’t able to follow the
desired target, because the MPC predicts over less time steps. Whenever this approach is
applied, it would make more sense to choose the upper bound of the RTD independently
from the control horizon Nc. Figure 49 and 50 show the states of the nonlinear model and
the plant input respectively. It can be seen that the state x2 doesn’t oscillate, however,
the state x1 and especially the plant input u1 oscillate significantly during the simulation
time.

Figure 48: Water level in the bottom tank for the packet-based control approach with
time synchronization with the shorted cost function.

65

Figure 49: States of the nonlinear model for the packet-based control approach with time
synchronization with the shorted cost function.

Figure 50: Input of the nonlinear model for the packet-based control approach with time
synchronization with the shorted cost function.

66

5.3.5 Compensation of Data Packet Dropouts

In this section, data packet dropouts are taken into consideration. The three methods
presented in section 4.4 can be applied to the nonlinear model, if assumption 5 holds.
Figure 51 shows how often the MPC is active during the simulation and the exact time
instances, when packets get lost in the forward and in the backward channel (in the case
where older packets get skipped).
In figure 52 the results of the three methods are illustrated. It can be seen that it’s

more convenient to apply the control prediction approach presented in section 4 (Method
3), since the other two methods do not guarantee an optimal control performance.

Figure 51: Status of the MPC (top). Packet dropouts in the backward channel (middle).
Packet dropouts in the forward channel (bottom).

67

Figure 52: Water level in the bottom tank for the feedback loop with the nonlinear model
with packet dropouts.

68

6 Experiments

As it has been shown in the previous sections, there is an important difference between
the usage of the linearized model and the nonlinear model. The simulation results in the
linear case are better than the simulation results in the nonlinear case, because of the
nonlinear effects which have been neglected when calculating the linearized model.
Very often, the mathematical model does not fully describe the system in real life.

That’s why it’s interesting to observe how the simulations performed in sections 5.2 and
5.3 look like for the real model. First of all, the unknown parameters of the model have
to be identified.

6.1 Parameter Identification

It’s very important to perform the parameter identification at the beginning of this
experiment. If older values for the parameters are used, the calculated mathematical
model will lead to a bad control performance and even to instability, since the values of
the parameters change over time.
Capacitive sensors of the type Liquicap T FMI21 are used to measure the water level

in the top and in the bottom tank [15]. First of all, in order to convert the measured
signals into a value in cm, an offset d and a gain V have to be computed. The parameters
h0i and ki for i = 1, 2 are identified by performing an outflow test. Water is pumped
into the tank, until a steady state of the water level is reached. Next, the water inflow is
switched off and the water level in the tank is measured. The simplified mathematical
model results to

dx

dt
= −k

√
x. (83)

This nonlinear differential equation can be computed analytically with the so-called
separation of variables approach.

dx

dt
= −k

√
x

dx√
x

= −kdt

2
√
x = −kt+ C

(84)

In order to compute the constant of integration C, the time instant te, where the tank is
fully emptied, is introduced such that

x(te) = 0 ⇒ C = kte. (85)

Regarding (84) yields

x(t) =
1

4

(
− kt+ C

)2
. (86)

The analytical solution for the fill height h(t) = x(t)− h0 is given as

h(t) =

{
k2

4

(
t− te

)2 − h0 for t0 ≤ t ≤ te
−h0 for t ≥ te

. (87)

69

With the usage of the least squares method, it’s possible to identify the unknown
parameters h0i and ki for i = 1, 2 with

E =
n∑
i=1

[
si −

(
k2
approx

4
(ti − te,approx)2 − h0,approx

)]2

, (88)

where si is the i-th measured value of the fill height, ti is the corresponding time
instance and n is the amount of measured values. Figure 53 shows the measured and
the approximate water level in the top tank and figure 54 shows the measured and the
approximate water level in the bottom tank (after performing the outflow test).

Figure 53: Measured and approximated water level in the top tank, after performing the
outflow test.

70

Figure 54: Measured and approximated water level in the bottom tank, after performing
the outflow test.

For the identification of the pump parameters the so-called steady-state method is used.
A constant pump voltage ui is applied and after a while, a steady state of the fill height
is reached.

dxi
dt

= 0 = −k
√
xi + zp,i (89)

The inflow zp,i can be computed as

zp,i = ki
√
xi, (90)

since the parameters k1 and k2 are already known. For the first pump, this method is
performed 11 times, with voltages between 3.6V and 6.6V in 0.3V steps. For the second
pump, this method is performed 14 times, with voltages between 3V and 5.6V in 0.2V
steps. At this point, the pump parameters αi, βi and γi can be computed by interpolation.
Figure 55 shows the u1/zp-curve of the first pump and figure 56 shows the u1/zp-curve of
the second pump.

71

Figure 55: u1,pump/zp-curve of the first pump.

Figure 56: u1,pump/zp-curve of the second pump.

In table 3 the identified parameters of the two tank system are illustrated.

72

Parameter Tank 1 Tank 2
offsethi -16.1964 -16.9361
gainhi -76.6903 -79.1449

ki[cm
1
2 s−1] 0.3767 0.4029

h0i[cm] 7.6654 6.6288
αi[cms

−1] -1.6024 -2.3402
βi[cm

2s−2] -0.7026 3.0621
γi[cm

2s−2V −1] 2.2686 2.7854

Table 3: Parameters of the two tank system.

6.2 Real-time Control Software - QUARC

QUARC is the most efficient way to implement real-time applications on hardware using
Simulink. With the so-called HIL Simulation Block it’s possible to communicate with
the real world. In this thesis, two analog inputs are needed to collect the data from
the sensors and one analog output is needed to activate the first pump. Since YALMIP
isn’t suited for real-time applications, another way to compute the optimization problem
has to be found. In this work, the so-called qpOASES is used [38]. It’s an open-source
C++ parametric active-set algorithm for quadratic programming [23]. qpOASES solves
quadratic problems of the following form:

min
ξ

1

2
ξT Ŵ ξ + ĉT ξ

s.t. Aiqξ ≤ biq
(91)

This means that the optimization problem

min
∆ūk∈RmNc

ε̄∈R

∆ūTk (HTQH +R)∆ūk + 2∆ūTkH
TQēk + ρε̄

subject to W∆ūk ≤ w̄ + V ε̄

ε̄ ≥ 0,

(92)

has to be specified in the form given in equation (91). In the case where soft constraints
are not used, the optimization problem is given by

min
ξ

1

2
ξT 2(HTQHR)ξ + 2HTQēkξ

s.t. Wξ ≤ w̄
(93)

where

ξ = ∆ūk. (94)

In the case where soft constraints are used, the optimization problem is

min
ξ

1

2
ξT
[
2(HTQHR) 0

0 0

]
ξ +

[
2HTQēk

ρ

]
ξ

s.t.
[
W −V
0 −1

]
ξ ≤

[
w̄
0

]
,

(95)

73

where

ξ =

[
∆ūk
ε̄

]
. (96)

6.3 Without Network

First of all, it’s assumed that the control components are all directly connected to each
other, in other words no network is used. The prediction and control horizons are again
chosen as

Np = 20 and Nc = 8. (97)

The weighting matrices Q and R are chosen as

Q =


0.1 0 · · · 0
0 0.1 · · · 0
...

...
. . .

...
0 0 · · · 0.1

 and R =


0.2 0 · · · 0
0 0.2 · · · 0
...

...
. . .

...
0 0 · · · 0.2

 , (98)

with their respective sizes Q ∈ RpNp×pNp and R ∈ RmNc×mNc . The constraints for the
pump voltage u1 are given as

umin ≤ ui ≤ umax
0 ≤ u1 ≤ 10V

(99)

with

umin =


uk,min
uk+1,min

...
uk+Nc−1,min

 =


0
0
...
0

 umax =


uk,max
uk+1,max

...
uk+Nc−1,max

 =


10
10
...

10

 . (100)

The constraints for the states x1 and x2 are given as

xmin ≤ xi ≤ xmax
h0i ≤ xi ≤ 20cm+ h0i for i = 1, 2

(101)

with

xmin =


x1,min

x2,min
...

xNp−1,min

xNp,min

 =


10.17
10.53

...
10.17
10.53

 xmax =


x1,max

x2,max
...

xNp−1,max

xNp,max

 =


30.17
30.53

...
30.17
30.53

 . (102)

For the simulations using the real model, soft constraints are used as it has been shown
in equation (95). The weighting parameter ρ and the array V are chosen as

ρ = 1000 and V =



v1

v2
...

v2Nc

v2Nc+1
...

v2Nc+4Np


=



0
0
...
0
1
...
1


. (103)

74

Note that the first 2Nc values of the array V are responsible for the constraints on the
input signal and the rest 4Np values are responsible for the constraints on the states of
the plant. Since the given boundaries of the pump voltage u1 cannot be exceeded, hard
constraints are used. However, for the states x1 and x2 soft constraints are applied. This
means that the states are allowed to exceed the given boundaries without the simulation
stops running. Figure 57 shows the behavior of the water level in the bottom tank in the
case where no network is used.
It can be seen that the water level in the second tank follows the reference signal, but

there is always a small deviation from the wanted fill height. It’s shown that the deviation
between the output signal and the reference signal is smaller for lower reference signal
values and larger for higher reference signal values. This deviation emerges because of the
inaccurate model description. Very often, the position of the assumed equilibrium point
deviates from the position of the equilibrium in real life. That’s why it makes sense to
investigate the control behavior of the presented methods on a practical implementation
as well. A possibility to compensate this deviation would be to incorporate an integral
part into the optimization problem. Since the goal of this thesis is to investigate how the
communication constraints affect the control performance, no compensation is made.
It can also be observed that there is a slight oscillation behavior of the water level

(especially when leaving the equilibrium point). The control horizon is reduced to Nc = 3.
As figure 58 shows, the oscillating behavior of the water level in the second tank is reduced
significantly.

Figure 57: Water level in the bottom tank for the feedback loop with the real model
without network (for Nc = 8).

As already mentioned in this work, in order to always have enough predicted control
values it’s assumed that the network-induced delays in the forward and in the backward
channel are not allowed to exceed the upper bound of Nc − 2. This means that a control

75

horizon of Nc = 3 would lead to network-induced delays which are equal to the sampling
period h. A tradeoff between the oscillating behavior and the maximum value of the
network-induced delays is needed. That’s why the control horizon is chosen to be equal
to Nc = 6. The boundaries of the network-induced delays result to

1 ≤ τsc,k ≤ Nc − 2 ⇒ 1 ≤ τsc,k ≤ 4

1 ≤ τca,k ≤ Nc − 2 ⇒ 1 ≤ τca,k ≤ 4
(104)

and the boundaries of the RTD to

2 ≤ τk ≤ Nc − 1 ⇒ 2 ≤ τk ≤ 5. (105)

A control horizon of Nc = 6 leads to network-induced delays in the forward and in the
backward channel up to 2s a RTDs up to 2.5s.

Figure 58: Water level in the bottom tank for the feedback loop with the real model
without network (for Nc = 3).

Figure 59 shows the water level in the bottom tank for a control horizon of Nc = 6.

76

Figure 59: Water level in the bottom tank for the feedback loop with the real model
without network (for Nc = 6).

The states and the input of the plant are illustrated in figure 60 and 61 respectively.

Figure 60: States of the real model in the case where no network is used (for Nc = 6).

77

Figure 61: Input of the real model in the case where no network is used (for Nc = 6).

As it can be observed in figure 61, there is an unsmooth behavior of the voltage of the
first pump. A possibility to improve this behavior would be to increase the values of the
weighting matrix R, but it turned out that increasing the weighting matrix R leads to an
increase of the deviation between the reference signal and the output of the plant.

6.4 Packet-based Control With Time Synchronization

In this section, the packet-based control approach with time synchronization is applied
to the model in real life and the results are investigated. First of all, the prediction and
control horizons are chosen to be equal to

Np = 20 and Nc = 8. (106)

This means that RTDs up to 3.5s can occur. The network-induced-delays are implemented
in the same way as it has already been shown in section 5.2.3. Figure 62 shows the
distribution of the network-induced delays and the distribution of the RTD. The behavior
of the water level in the bottom tank is illustrated in figure 63. The output of the plant
oscillates quiet strongly due to the network-induced delays. This oscillation gets worst the
greater the distance from the equilibrium point. Furthermore, it can also be observed that
it’s more convenient to skip older packets, which has also been observed in the simulations
performed with the linear and nonlinear model.
Figure 64 shows how often the MPC is running during the simulation. As expected, the

controller runs more often in the case where older packets don’t get skipped and in this
specific case, the MPC is more inactive than active in the case where older packets get
skipped.

78

Figure 62: Distribution of the network-induced delays and the RTD (Nc = 8).

Figure 63: Water level in the bottom tank for the feedback loop with the real model using
the packet-based control approach with time synchronization (Nc = 8).

79

Figure 64: Active/Inactive state of the MPC during the simulation when using the packet-
based control approach with time synchronization (Nc = 8).

In figure 65 the output of the real model with a control horizon of Nc = 3 is shown.

Figure 65: Water level in the bottom tank for the feedback loop with the real model using
the packet-based control approach with time synchronization (Nc = 3).

80

The oscillation behavior is significantly smaller compared to the previous result, since
both network-induced delays are equal to the sampling period h. As already mentioned,
in order to have larger delays, the control horizon is set to Nc = 6. The distribution of
the resulting delays is presented in figure 66.
As it can be observed, the probability of the RTD being large is very high. This means

that all the simulations presented in this thesis show the worst case scenarios which
can occur in a NCS, since the RTDs are always assumed to be near the upper bound.
Normally, the probability of the RTD being that large is lower.
With RTDs up to 2.5s, the water level in the second tank can still be controlled quiet

good, in the case where the reference signal is near the equilibrium point. By leaving the
equilibrium point, the oscillation behavior gets significantly worst. This phenomenon is
perfectly shown in figure 67.
The states and the input of the plant are illustrated in figure 68 and 69 respectively.

The state x1, which is the water level in the first tank, oscillates quiet strongly during
the entire simulation. Because of this, no steady state of the water level in the second
tank can be reached.
Figure 70 shows how often the MPC is running during the simulation. As expected, by

decreasing the upper bound of the network-induced delays, the active state of the controller
is increased, since smaller delays affect the transmission of the feedback information.

Figure 66: Distribution of the network-induced delays and the RTD.

81

Figure 67: Water level in the bottom tank for the feedback loop with the real model using
packet-based control approach with time synchronization (Nc = 6).

Figure 68: States of the real model for the packet-based control approach with time
synchronization (Nc = 6).

82

Figure 69: Input of the real model for the packet-based control approach with time
synchronization (Nc = 6).

Figure 70: Active/Inactive state of the MPC during the simulation when using the packet-
based control approach with time synchronization (Nc = 6).

83

6.5 Compensation of Data Packet Dropouts

In this section, data packet dropouts are taken into account and their impact on the
control performance using the real model is investigated. The three methods presented in
section 4.4 are applied to the system in real life as well. The implementation is the same
as it has already been shown for the simulation example. Figure 71 shows how often
data packet dropouts occur in the backward and in the forward channel. Whenever a
packet drops, the value is increased my one. The data packets sent from the plant side to
the controller side drop way more often than the packets sent by the controller. This is
obviously the case, since packets containing the feedback information are sent at each
time instant. The MPC only sends information whenever a packet reaches the controller
side.
In figure 72, the results of the three methods are illustrated. As expected, the control

prediction approach presented in section 4 leads to the best control performance, whereas
the results of the first and the second method are more inaccurate. As shown, in this
specific example data dropouts occur nearly 220 times in the backward channel and nearly
45 times in the forward channel. Again, the worst case scenarios are investigated, since
usually the amount of data packet dropouts is way lower.

Figure 71: Data dropouts in both channels during the simulation (Nc = 6).

84

Figure 72: Water level in the bottom tank for the feedback loop with the real model with
packet dropouts (Nc = 6).

At this point, the number of data packet dropouts is reduced, as it can be seen in figure
73. As expected, the control performance increases.

Figure 73: Data dropouts in both channels during the simulation (Nc = 6).

85

Figure 74: Water level in the bottom tank for the feedback loop with the real model with
packet dropouts (Nc = 6).

86

7 Conclusions

In this thesis, several methods based on the MPC approach that can be applied for NCSs
subject to random communication time-delays are presented. The UDP is used, because
it is best suited for applications that require high speed and efficiency, which is normally
a fundamental characteristic in control technology. With the usage of this protocol,
packets may get lost during the transmission (data packet dropout) and they may be
delivered out of order (data packet disorder). These communication constraints can lead
to a degradation of the control performance and they have to be explicitly considered
when designing the controller. This thesis is focused on the controller design and on
the performance analysis within the framework of data packet dropouts and data packet
disorder.
Since the MPC is able to predict the control input over a fixed number of steps, it can

be utilized to compensate the random network-induced delays. To identify the unknown
communication delays, the time stamp technique is used. Whenever a packet is sent
either to the controller or to the actuator side, a time stamp containing the time instant
of the sampled data packet is attached. It’s possible to identify the network-induced
delays separately (packet-based control with time synchronization) or only the RTD,
which is the sum of the delays in the forward and in the backward channel, is required
(packet-based control without time synchronization). With the first method, the risk of
network congestion decreases, since the size of the packet sent by the controller varies over
time. However, this method implies that the time synchronization between the controller
and the plant is required. With the second method, the risk of network congestion
increases, since the size of the packet sent by the controller is always the maximum.
For these two approaches, the controller calculating delay is assumed to be zero, since
it’s normally very small compared to the other two delays. For fast systems, where the
controller calculating delay is larger than the sampling period h, the calculating time-delay
has to be compensated (as shown in this work). However, this method is not used very
often, since measuring the network-induced delays using the time stamp technique takes
significant time and an even higher time-delay can be caused.
A simulation example is given, in order to show the feasibility and efficiency of the

proposed methods. For the communication network, an artificial network is created
based on the UDP working principle. The results of the simulations performed using
the linearized model are better than the results of the simulations using the nonlinear
model, because of the nonlinear effects which have been neglected when calculating the
linearized model. Very often, the mathematical model does not fully describe the model
in real life. That’s why a practical implementation is presented as well. It’s shown that
the proposed methods can be utilized to compensate the communication constraints that
can occur in NCSs. Measuring the random time-delays with the time stamp technique is
simple to implement, but it can take significantly long time and an even higher time-delay
may be caused. For slow systems this restriction can simply be neglected, however, for
fast systems the time stamp-induced delays can lead to a bad control performance. It’s
also shown that the data packet disorder problem can successfully be eliminated with
a comparison rule defined at the actuator side, which is very easy to implement. In
order to compensate for the random data packet dropouts, a control prediction approach
should be used, since it leads to the best possible control performance. It’s important to
point out, that the presented methods only work if certain assumptions are fulfilled. The
network-induced delays are assumed to be equal to an integer multiple of the sampling

87

time h and they are also assumed to be upper and lower bounded. Furthermore, it is also
assumed that all control components are time-synchronized, which means that they all
work based on the same clock. The number of consecutive data packet dropouts must
also be limited, otherwise the NCS can become an open loop. Obviously, the larger the
communication delays, the worse the control performance gets.

88

8 References

[1] G. P. Liu , J. X. Mu , D. Rees and S. C. Chai (2006), Design and stability analysis of
networked control systems with random communication time delay using the modified
MPC, International Journal of Control, 79:4, 288-297

[2] Guo-Ping Liu, Yuanqing Xia, Jie Chen, D. Rees and Wenshan Hu, Networked
Predictive Control of Systems With Random Network Delays in Both Forward and
Feedback Channels, IEEE, VOL. 54, 2007

[3] Mohohlo S. Tsoeu, Thabo Koetje, Unconstrained MPC Tuning for Prediction
Accuracy in Networked Control Systems, International Conference on Networking,
Sensing and Control Delft, the Netherlands, April 2011

[4] Grzegorz Ewald, Mietek A. Brdys, Model Predictive Controller for Networked
Control Systems, IFAC Proceedings Volumes, VOL. 43, Issue 8, 274-279, 2010

[5] Jing Wu, Tongwen Chen, Model predictive control for networked control systems,
International Journal of Robust and Nonlinear Control, June 2009

[6] Yun-Bo Zhao, Guo-Ping Liu and D. Rees, Actively Compensating for Data Packet
Disorder in Networked Control Systems, IEEE transactions on circuits and systems-
II: express briefs, VOL. 57, NO. 11, November 2010

[7] Yun-Bo Zhao, Guo-Ping Liu, Yu Kang, Li Yu, Packet-Based Control for Networked
Control Systems - A Co-Design Approach, Science Press, Beijing and Springer
Nature Singapore Pte Ltd., 2018

[8] G. P. Liu, Predictive Controller Design of Networked Systems With Communication
Delays and Data Loss, EEE transactions on circuits and systems-II: express briefs,
VOL. 57, NO. 6, JUNE 2010

[9] Ke Zhang, Hai Huang and Jianming Zhang, MPC-Based Control Methodology in
Networked Control Systems, Simulated Evolution and Learning, 814-820, 2006

[10] Brian Roffel, Ben Betlem, Model Predictive Control, Process Dynamics and Control,
2011

[11] Yun-Bo Zhao, Xi-Ming Sun, Jinhui Zhang and Peng Shi, Networked Control Systems:
The Communication Basics and Control Methodologies, Mathematical Problems in
Engineering, June 2015

[12] Yun-Bo Zhao, Guo-Ping Liu and D. Rees, Design of a Packet-Based Control
Framework for Networked Control Systems, IEEE transaction on control systems
technology, VOL. 17, NO. 4, July 2009

[13] Bo Yu, Yang Shi, Ji Huang, Modified Generalized Predictive Control of Networked
Systems With Application to a Hydraulic Position Control System, Journal of
Dynamic Systems Measurement and Control, May 2011

[14] Joo P. Hespanha, Payam Naghshtabrizi, Yonggang Xu, A Survey of Recent Results
in Networked Control Systems, IEEE, VOL. 95, Issue: 1, Jan 2007

89

[15] Erich Kobler, Parametrisierung Zweitankmodell, Bachelorarbeit Telematik, Graz
University of Technology, Februar 2013

[16] Martin Steinberger, Markus Tranninger, Martin Horn, Karl Henrik Johansson,
How to Simulate Networked Control Systems with Variable Time Delays?, IFAC-
PapersOnLine: Proceedings of the 21st IFAC World Congress, July 2020

[17] Martin Steinberger, Lecture: Optimization and Control, Graz University of Technol-
ogy, 2019

[18] URL: https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html (sta-
tus: 13.11.2020)

[19] URL: https://www.sciencedirect.com/topics/engineering/model-predictive-control
(status: 22.09.2020)

[20] URL: https://de.mathworks.com/help/matlab/ref.html (status: 24.11.2020)

[21] Fei-Yue Wang, Derong Liu, Networked Control Systems: Theory and Applications,
Springer, 2008

[22] Pengyi Jia, Xianbin Wang, Nested Markov Chain - A Novel Approach to Model
Network-Induced Constraints, IEEE Annual Information Technology, Electronics
and Mobile Communication Conference, November 2017

[23] URL: https://www.coin-or.org/qpOASES/doc/3.0/manual.pdf (status: 21.11.2020)

[24] Rachana Ashok Gupta, Mo-Yuen Chow, Networked Control System: Overview and
Research Trends, IEEE, Vol. 57, Issue: 7, July 2010

[25] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla and S. S. Sastry, Foundations
of control and estimation over lossy networks, Proceedings of the IEEE, vol. 95, no.
1, pp. 163-187, 2007

[26] M. Palmisano, M. Steinberger and M. Horn, Optimal finite-horizon control for
networked control systems in the presence of random delays and packet losses, IEEE
Control Systems Letters, vol. 5, no. 1, pp. 271-276, 2021

[27] W. P. M. H. Heemels and N. van de Wouw, Stability and stabilization of networked
control systems, in Networked Control Systems, ser. Lecture Notes in Control and
Information Sciences, Bemporad A., Heemels M., Johansson M., Ed. Springer,
London, 2010, vol. 406, pp. 203-253

[28] L.Repele, R. Muradore, D. Quaglia and P. Fiorini, Improving performance of
networked control systems by using adaptive buffering, IEEE Trans. Ind. Electron.,
vol. 61, no. 9, pp. 4847-4856, Sep. 2014

[29] J. Ludwiger, M. Steinberger and M. Horn, Spatially distributed networked sliding
mode control, IEEE Control Syst. Lett., vol. 3, no. 4, pp. 972-977, Oct. 2019

[30] J. E. Normey-Rico and E. F. Camacho, Unified approach for robust dead-time
compensator design, Journal of Process Control, vol. 19, no. 1, pp. 38-47, 2009

90

[31] D. Yue, Q. L. Han and J. Lam, Network-based robust H∞ control of systems with
uncertainty, Automatica, vol. 41, no. 6, pp. 999-1007, Jun. 2005

[32] M. Cloosterman, L. Hetel, N. van de Wouw, W. Heemels, J. Daafouz and H.
Nijmeijer, Controller synthesis for networked control systems, Automatica, vol. 46,
no. 10, pp. 1584-1594, 2010

[33] Goodwin GC, Haimovich H, Quevedo DE, Welsh JS, A moving horizon approach to
networked control system design, IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1427-1445, 2004)

[34] Imer OC, Yuksel S, Basar T, Optimal control of LTI systems over unreliable com-
munication links, Automatica, vol. 42, no. 9, pp. 1429-1439, 2006

[35] Tang Pl, De Silva CW, Compensation for transmission delays in an ethernet-based
control network using variable-horizon predictive control, IEEE Transactions on
Control Systems Technology, vol. 14. no. 4, pp. 707-718, 2006

[36] Xia Y, Liu GP, Rees D, Predictive control of networked systems with random delay
and data dropout, Proceedings of IEEE International Conference on Networking,
Sensing and Control, Ft. Lauderdale, Florida USA, pp. 643-648, 23-25 April 2006

[37] Martin Steinberger, Automatisierung Mechatronischer Systeme - Inverses Pendel
Labormodell, WS. 2018/19

[38] Hans Joachim Ferreau, qpOASES User’s Manual, ABB Corporate Research, Switzer-
land, Dec. 2014

[39] D. Zhang, P. Shi, Q. Wang, and L. Yu, Analysis and synthesis of networked control
systems: A survey of recent advances and challenges, ISA Trans., vol. 66, pp.
376–392, Jan. 2017

[40] X. Zhang et al., Networked control systems: A survey of trends and techniques,
IEEE/CAA J. Automatica Sinica, vol. 7, no. 1, pp. 1–17, Jan. 2020

91

	Introduction
	Overview of Networked Control Systems
	Advantages and Applications of Networked Control Systems
	Components of Networked Control Systems
	Packet-based Data Transmission
	Control Challenges
	Network-induced Delay
	Data Packet Dropout
	Data Packet Disorder
	Single and Multiple-packet Transmission
	Sampling Period

	Simulation of Variable Time Delays

	Classical Model Predictive Control
	Design of the Controller
	Predictive Model
	Cost Function
	Specification of the Reference Signal
	Constraints
	Soft Constraints

	Model Predictive Control for Networked Control Systems
	Packet-based Control With Time Synchronization
	Packet-based Control Without Time Synchronization
	Consideration of the Controller Calculating Delay
	Compensation of Data Packet Dropouts

	Two Tank System
	Mathematical Model
	Linearization of the Model

	Simulation using the Linearized Model
	Without Network
	Without Time-delay Compensation
	Time-delay Compensation Without Time Stamps
	Packet-based Control With Time Synchronization
	Compensation of Data Packet Dropouts

	Simulation using the Nonlinear Model
	Without Network
	Without Time-delay Compensation
	Time-delay Compensation Without Time Stamps
	Packet-based Control With Time Synchronization
	Compensation of Data Packet Dropouts

	Experiments
	Parameter Identification
	Real-time Control Software - QUARC
	Without Network
	Packet-based Control With Time Synchronization
	Compensation of Data Packet Dropouts

	Conclusions
	References

