TU

Grazm

Sebastian Grill, BSc

Machine Learning Assisted Heat
Detection in Dairy Cows

Master’s Thesis
to achieve the university degree of
Diplom-Ingenieur

Master's degree programme: Electrical Engineering and Audio Engineering

submitted to

Graz University of Technology

Supervisors

Univ.-Prof. Dipl-Ing. Dr. Franz Pernkopf*
Dipl-Ing. Dr. Christian Knoll!
Dipl-Ing. Dr. Tobias Rauter?

Institute for Signal Processing and Speech Communication
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Gernot Kubin

Graz, January 2021

nstitute for Signal Processing and Speech Communication, TU Graz
2smaXtec Animal Care GmbH

This document was compiled with pdfI¥TEX2e and Biber.

The KTEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to the
present master‘s thesis.

Date Signature

Acknowledgments

I would like to thank both my supervisors at Signal Processing and Speech
Communication Institute, Graz University of Technology, Franz Pernkopf and
Christian Knoll for their mentoring during the entire course of this work.
Throughout our many meetings they helped me gain a deeper understanding
of neural networks and provided helpful input with architectural decisions, as
well as guiding me through the organizational hurdles along the way. I am
especially grateful that they took time out of their Christmas holidays to edit
this thesis.

I would also like to thank my supervisor at smaXtec, Tobias Rauter, who was
instrumental in making infrastructural decisions on the code surrounding the
deep learning models, identifying many of my misconceptions early on and for
his help in finding and fixing the occasional intricate bug or performance issue.
His good natured sarcasm provided me with motivation when writing seemed
arduous and I consider myself privileged to have been able to work with and
learn from such a gifted engineer over the last couple of years.

Furthermore I would like to thank my classmate and friend Ludwig Mohr at the
Institute of Computer Graphics and Vision, Graz University of Technology, for
giving me a crash course in applied neural networks, introducing me to pytorch
and our countless machine learning related virtual water cooler discussions
that helped me understand many of the concepts involved and without a doubt
greatly sped up my progress.

I would like to thank all people at smaXtec involved in making this thesis
possible, especially Alexander Oberegger and Matthias Wutte. I would also
like to thank all my colleagues at smaXtec for their outstanding camaraderie,
professionalism, helpfulness and dedication to nurturing an amicable workplace
atmosphere.

I would like to thank my parents and family, without whose unconditional
support and encouragement I would never have endeavored to enroll at univer-
sity.

Finally I would like to thank my partner Barbara, for her endless patience
(which I have thoroughly tested), encouragement and support throughout my
entire academic career but especially during the work on this thesis.

Abstract

Agriculture is currently undergoing a rapid transformation, driven by dig-
itization. One aspect is heat detection in dairy cows. Manual detection is
prohibitively time consuming, especially in larger farms, but since the advent
of the Internet of Things, it is has become possible to continuously collect time
series of cow health parameters that enable automation.

Livestock farming features diverse processes and conventions all over the world,
owed to different climate zones, farm sizes and local conditions, which in term
is reflected in the cattle monitoring data. Conventional algorithms struggle to
robustly detect heats from dairy biosignals out-of-the-box, instead requiring
manual parameter adaptation on a case by case basis.

This thesis presents two machine learning models based on feed forward and
recurrent neural networks respectively, in an attempt to improve generalization
of detection. While ultimately their performance falls short of what is required
by productive use, experiments performed revealed shortcomings in data labels,
that, if addressed correctly, hold the potential for great improvements. Despite
the lack of performance, the recurrent neural network model demonstrated
that it was able to learn the underlying problem and could, with further
improvements, achieve the desired outcome.

Y

Contents

Abstract
1 Introduction
2 Related Work

2.1 Time Series Classification
2.1.1 Traditional Approaches
2.1.2 Deep Learning Approaches
2.1.3 Summary
2.2 Estrus Detection and Machine Learning
2.3 Conclusion on Related Literature

Dataset

3.1 Background on the Origin of Sensor Data
3.1.1 Sensor Placement
3.1.2 Sensor Measurements

3.2 Structure of Raw Data,
321 MetaData.
3.2.2 Time Series Data

Methodology

4.1 Preprocessing and Data Representation
4.1.1 Data Gathering 0.
4.1.2 Data Storage
4.1.3 Preprocessing oL

4.2 Machine Learning Models
421 DatalLoader.
4.2.2 Multilayer Perceptron L.
4.2.3 Long Short Term Memory

Vii

vi

25
25
25
26
27
27
28

Contents

5 Results
5.1 Evaluation metricso
5.1.1 Precision
5.1.2 Recall
5.1.3 Fj-Score
5.1.4 Accuracy
5.2 Multilayer Perceptron.o
5.2.1 Balanced Dataset
5.2.2 Unbalanced Dataset
5.3 Long Short Term Memory
5.4 Summary

6 Analysis of Classification Behavior
6.1 Classification Problems
6.1.1 Positive Class Label Temporal Precision
6.1.2 Duplicate Labels
6.1.3 Classification Issues in Grazing Animals
6.2 Summary

7 Outlook and future work

Appendix
Acronyms

Bibliography

viil

51
51
52
52
53
93
54
54
%)
o8
60

61
61
61
64
64
67

68

70
71

73

List of Figures

2.1
2.2
2.3
2.4
2.5

2.6
2.7

2.8
2.9

2.10

2.11

3.1
3.2
3.3
3.4

4.1
4.2

General layout of a Multilayer Perceptron. 9
Schematic of a neuron in a fully connected neural net. 9
The rectified linear unit activation function. 10
The logistic function. 11
The internal structure of a LSTM cell, illustrating the position

of the various gates.o 13
The graph of a basic FFN compared to a basic RNN. 14
The same graph as in figure 2.6 but unrolled in the time domain

over three time steps. oL 15

Blockchart of the entire LSTM system when used for classification. 16
Fully Convolutional Network architecture as proposed in [WYO].
Yellow bars indicate convolutional layers, dark blue are batch
normalization steps and violet indicate ReLLU activation func-
tions. The final two layers are global average pooling and a

softmax activation function. 18
Residual Network architecture as proposed in [WYO]. Coloring

scheme of units is similar to figure 2.9. 19
The GRU cell. o 20
Sensor in bolus formato 26
Schematic depiction of sensor placement 27
Example of an activity signal with heat annotation. 29

Example of a temperature signal with heat annotation from the
same animal and time frame as the activity data in figure 3.3.
The downward spikes in the signal are caused by the intake of

cold water by the cow. 30
Initial concept for data gathering and preprocessing. 32
Schematic of the data acquisition step. 33

List of Figures

4.3

4.4

4.5

4.6

4.7

4.8

4.9

0.1

5.2

2.3

0.4
2.5

6.1

6.2

Hierarchy of data inside the Hierarchical Data Format version
5 (HDF5) raw database.
Arrangement of time series features in zarr for use with feed
forward networks. oo
Arrangement of a single sample for use with a recurrent type of
network.
Overview of the preprocessing stage. Pink blocks represent (tem-
porary) storage of data while violet blocks represent process-
ing/transformation steps. L.
Block diagram of drink spike removal. Values in parenthesis
state the length of the rolling window used in the respective
computation. Delays required for causality have been omitted
for simplicity. Window lenghts were determined empirically.
Rumen temperature signal before and after filtering with the
algorithm depicted in figure 4.7.
“Time-to-space” transformation.

Confusion matrix of the MLP for the balanced dataset. A con-
fusion matrix visualizes the accuracy of classification. Each row
corresponds to a class label, while the columns correspond to
the actual classification made by the model. As a consequence,
the higher the values along the main diagonal and the lower the
values along the secondary diagonal, the better the classification.
The data for colorization is normalized per row.
Confusion matrix for the MLP trained on balanced and evaluated
on imbalanced data.o
MLP confusion matrix for both training and evaluation on im-
balanced data.o oo
Confusion matrix for LSTM with class weight 100..
Confusion matrix for LSTM with class weight 250..

Example of label and Long Short Term Memory (LSTM) model
classification output overlayed on the input features. Red areas
mark samples classified as heat by the model. Green areas mark
samples labeled as heat.
Similar plot to figure 6.1 from the same animal, at a different
time. Note the distinct pre-heat not considered by the label.

41

41
43

63

List of Figures

6.3

6.4

6.5

Numerous labels are in such close temporal proximity, that they
must be considered duplicates. The above is a prime example of
how these duplicates cause the model to widen the timespan of
its heat classifications.o
Example of a barn-held animal where classification worked con-
siderably well. oo
This animal is held on pasture sporadically. Note irregular ac-
tivity spikes of varying magnitude that cause multiple false
positives. These spikes are present in the group activity as well,
which suggests that they were not caused by heats but instead
by outside influence. oL

Xi

List of Tables

3.1

4.1

4.2

5.1

5.2

2.3

5.4
2.9

Exemplary time series data

Schematic of the structure of the data and its index inside the
pandas DataFrame in the preprocessing pipeline.
Schematic of the structure of the data after unstacking of the
animal ID index.00

Test results with MLP model trained and evaluated on data
with removed class imbalance.
Test results with MLP model trained on data with removed class
imbalance, evaluated on data with imbalance.
Test results with MLP model trained and evaluated on data
with imbalance.
Test results for LSTM with class weight 100.
Test results for LSTM with class weight 250.

X

1 Introduction

Smart Farming, the digitization of agricultural production, is an active research
field. The aim of smart farming is to aid farmers and reduce their workload by
providing data and insights.

In dairy farms, continuous monitoring of cattle can provide information about
health and productivity of cows that otherwise would be prohibitively work
intensive or even impossible to acquire. One topic of interest is the management
of dairy cow reproduction, in particular, detection of heats. Cows only lactate
for a limited amount of time after parturition, therefore dependable heat
detection is necessary to ensure productivity and avoid prolonged periods in
which the cow does not produce milk. Traditionally, farmers would spend
time monitoring cows visually for increased activity. Globalization has led to
increased competition, causing milk prices to decrease, making this practice
economically inviable. Thus, there is an increased need for alternative ways of
heat detection.

Data driven heat detection can offer a cost effective alternative to visual
observation of cows. Continuous time series measurements of individual cow
activity have long been postulated to be a feasible way of detecting heats
[Kid77]. Additionally, there is evidence that suggests the same can be achieved
with body temperature [Gas+15]. A robust and reliable data-driven system for
heat detection must however consider the following aspects:

e Farming practices vary wildly depending on climate, vegetation, altitude,
regional customs and local environment. Whereas on some farms, cows
may be held indoors the entire year, on others animals will cover signifi-
cant distances each day between a milking parlor and their pastures. This
will result in a great variety of different activity patterns.

1 Introduction

e The body temperature will be influenced by seasonality.

e Sicknesses can and and often will cause artifacts in temperature or ac-
tivity or both. So can other environmental influences, like the presence
of predatory animals or dogs, disturbances during nighttime due to an
animal calving, failure of a water supply, etc.

e The data is heavily biased due to cows spending the majority of their
time being not in heat. Typically a heat will last for 12-18 hours roughly
every 21 days. In practice under typical conditions, for every time stamp
labeled as heat, there are 230-250 timestamps labeled not as heat.

These issues mean that signal statistics will not only be non-stationary in
time, but also vary greatly from farm to farm. Under these conditions, it is
challenging to design traditional algorithms that will successfully cope with the
full range of signal variability and still produce the desired performance without
needing careful adaptation to each farm’s individual properties. The advent
of the Internet of Things (IOT) makes it possible to acquire an abundance
of health related continuous time series data. In parallel to this development
but also driven by the amount of available data and enormous advances in
compute resources, machine learning methods have pushed the boundaries of
classification performance in many fields during the last 10 years and often
surpassed hand-made rule based systems by far. Given an ample amount of
training data, machine learning models have demonstrated the capability to cope
with adversities such as time variance and produce classification performance
often surpassing that of humans.

The main objective of this thesis is therefore to develop a robust machine
learning model prototype that is capable of reliably detecting heats in cows
being held under diverse conditions. The raw data is provided by the company
smaXtec Animal Care GmbH [Ani] and consists of individual cow’s temperature
and activity time series measurements as well as meta data.’

To be able to achieve robust heat detection, the following subtasks need to be
accomplished:

'A detailed description of the dataset can be found in chapter 3.

1 Introduction

e The data is persisted across several databases of different types. For
preprocessing the data effectively, it needs to be acquired from these
sources.

e The data needs to be cleaned. Since the data is acquired from an IOT
sensor network, there is a real possibility of network outages or sensor
failure causing data holes. Additionally, sensors have systematic measure-
ment errors. These measurement errors can sometimes undergo temporal
evolution as hardware ages. Data cleaning needs to account for these cases
as much as possible and remove them from the dataset if specifications
are exceeded.

e Before training a model, the data requires preprocessing. For example, in
case of neural networks, this typically includes normalization of data and
transforming categorical to numerical data via one-hot-encoding.

e We survey the state of the art in time series classification to identify
promising techniques capable of achieving the main objective.

e A selection of promising techniques should be implemented in prototype
form and assessed for their classification performance.

During the course of this thesis, the minor milestones were accomplished,
culminating in the development of two different types of neural networks. Neither
of the models achieved the primary goal of delivering robust classification
performance, however closer inspection of the results revealed that the reason
for the lack of performance lies in the dataset itself. Future work will focus on
improving the dataset, which - after retraining - is expected to greatly improve
both classifiers.

Outline

Chapter 2 gives an overview of the current state-of-the-art in time series
classification (T'SC) and briefly discusses a few selected publications in the field
that cover both traditional and machine learning based approaches. The second

1 Introduction

part has a narrower focus on recent publications on the topic of automated heat
detection. Chapter 3 contains information about the data used in this work.
The sensor system used to measure and transmit the data is briefly explained,
followed by a description of the available time series and meta data. The primary
body of work is laid out in Chapter 4, describing how the data is gathered
and how the pipeline developed for preprocessing works. It concludes with a
description of both machine learning models. Chapter 5 presents the results of
evaluations performed on the models described in chapter 4. A discussion of
the results as well as problems identified with the data labels is contained in
chapter 6. Finally, chapter 7 provides an outline of planned improvements as
well as a general outlook.

2 Related Work

This chapter gives an overview of work related to this thesis by first looking at
TSC both from the angle of traditional algorithms (section 2.1.1) as well as
the field of deep learning (section 2.1.2). Section 2.2 then focuses on related
work in the field of automated heat detection. Section 2.3 contains a summary
of related works and briefly discusses the relevance for this thesis.

2.1 Time Series Classification

TSC is an active and broad research topic. As such, providing more than a
mere superficial view on the field would be beyond the scope of this thesis.
Nonetheless a few selected supervised approaches for TSC are discussed, first
traditional' ones that are often used as a performance baseline in literature.
Second, a few deep learning architectures are presented. These emerged mostly
from the fields of computer vision or language processing and speech recognition,
but have successfully been applied to TSC as well.

2.1.1 Traditional Approaches
Dynamic Time Warping & k-Nearest-Neighbors
k-nearest-neighbors (k-NN) clustering based on dynamic time warping (DTW)

as distance measure is frequently used as a baseline to judge the performance
of TSC algorithms [Bag+17; Ism+19].

IThe distinction between deep learning and traditional algorithms is not very clear in
literature. For the purpose of this thesis, when manual feature engineering is involved, an
algorithm is said to be not of the deep learning type and vice versa.

2 Related Work

The DTW algorithm works by establishing a distance matrix M between all
points a; and b; of two time series a and b. The distance measure can be any
applicable distance, like Mahalanobis, etcetera. In this example we will use the
squared euclidic distance.

The elements of the distance matrix are defined as

M, ; = (a; — b;)* with i € {0,1}, j € {0, J}. (2.1)

We now introduce a path as a set of points, i.e. P = {p1, pa, ..., Pk, ---Px }, Where
each point consists of a tuple of coordinates py = (ix, jr). A valid path must
satisfy the conditions Vk € [1, K —1],0 < i1 —ip < land 0 < jppq —Jk < 1.

For each item in M, the algorithm then calculates an item in the path distance
matrix D where each item D;; is the minimum possible accumulated sum
of matrix items following a valid path from M ; to item M; ;. The optimum
warping distances are then found by backtracking, starting at D; ; and following
the smallest adjacent elements in D to get to D ;. This way, the warping

distances are identified that effectively minimize the distance between a and
b.

This algorithm has complexity O((I +1)(J + 1)), with the assumption [+ 1 ~
J 4+ 1 ~ n this can be further simplified to O(n?). Due to this rather high
complexity, normally restrictions are placed on the maximum amount of warping

to reduce runtime. More recently however, optimizations were proposed to
reduce the complexity of DTW [GS18; TD20].

Additionally, many publications put focus on further improving upon the
robustness of DTW as a measure of time series similarity. A shortcoming of
DTW is identified in [JJO11] as the lack of regard to phase difference between
points. The authors propose what they term “weighted dynamic time warping”,
where differences with high phase difference are penalized through high weights.
Another approach to improve robustness is proposed in [Mar09], in the form of
time warp edit distance. The similarity is quantified by measuring how many
“edit operations” need to be performed by the algorithm to transform one time
series into another. A similar approach was taken in [SAD13], however the
approach to transforming one time series into another was accomplished by a
different set of operations (“move, split and merge”).

2 Related Work

Once a time-warp independent distance has been calculated, the k-NN algorithm
[CH67] with £ = 1 is used to classify time series. In general, k-NN works by
assigning a sample the same class as the majority of its & neighbors, where
“neighbors” are the k samples closest in the feature space. The literature
surveyed does not qualify why k£ = 1 is widely used as the benchmark, but
presumably DTW is a strong feature resulting in a trivial classification problem
that does not make a majority vote (i.e. k =3 or k = 5) with it’s associated
increased runtime complexity necessary.

Collective of Transformation-based Ensembles and Hierarchical Vote
Collective of Transformation-based Ensembles

In [Bag+15] a technique termed collective of transformation-based ensembles
(COTE) is presented. As the name implies, it is an ensemble technique, i.e., 35
classifiers are trained on several transformed feature space representations of
the input time series. The transformations used include the shapelet transform
[YKO09], the “periodogram transform” as obtained by performing the discrete
Fourier transform (DFT), and an autocorrelation-based transform. These are
then used as feature for classifiers in a heterogeneous ensemble, where classifiers
are combined via weights obtained in cross-validation. The classifiers used are
k-NN, naive Bayes, C4.5 decision tree, support vector machines with linear and
quadratic basis function kernels, random forest, rotation forest and a bayesian
network. This ensemble type is termed flat-COTE to distinguish it from other
ensemble-based methods also studied in the publication. The authors propose a
significant performance advantage over other approaches for flat-COTE tested
on 72 data sets, most of which are part of the UCR time series database
[Dau-+18].

Hierarchical vote collective of transformation-based ensembles (HIVE-COTE)
[LTB16] is a further improvement of COTE that adds two additional trans-
formation types, two additional classifiers and a hierarchical voting system.
Several publications name HIVE-COTE as current state-of-the-art regarding
TSC performance [Bag+17; Ism+19].

Classification performance aside, both flat-COTE and HIVE-COTE are im-
mensely complex to train. The high number of hyperparameters and classifiers
makes this approach impractical for many applications. Additionally, both

2 Related Work

methods rely on the shapelet transform, which is stated to have runtime com-
plexity O(n*m?) where m is the number of time series in the dataset and n is
their length [Bag+15], which is extraordinarily high.

Given these drawbacks, research continues to look for methods that are both
easier to train and have a smaller computational resource footprint.

2.1.2 Deep Learning Approaches
Introduction

Multilayer Perceptron A Multilayer Perceptron (MLP), also referred to as
feed-forward neural network or fully connected neural network is the most
primal form of neural network and is rooted in research dating back as far as
the middle of the 20th century [Ros60]. It consists of an input layer, an output
layer and a variable number of hidden layers in between. Each layer can contain
a variable number of neurons (figure 2.1). The layers in a MLP are typically
fully connected layers, where each neuron of one layer is connected with all
neurons of the subsequent layer.

Mathematically, a single layer network maps an input @ onto an output y via
the relation

y = f(x,0). (2.2)

0 is the set of parameters that specify the model [GBC16]. Each neuron performs
the operation

y=g(w'z+c) (2.3)
with w being the weight vector, ¢ being the bias and g being a nonlinear
activation function. Figure 2.2 illustrates this relation.

Historically, a number of functions have been used as activation functions like
the logistic function, also known as sigmoid function or the tanh function.

2 Related Work

Input Hidden Ouput
layer layer layer

Figure 2.1: General layout of a Multilayer Perceptron.

Bias
c
r1 o— Wy
Activation
function Output

Inputs { T2 o— W2 ﬁ ‘@ -Y

r3 o— W3

Weights

Figure 2.2: Schematic of a neuron in a fully connected neural net.

2 Related Work

3.0 1

2.5 1

2.0 1

9(2)

1.5

1.0 4

0.5 A1

0.0 A1

z

Figure 2.3: The rectified linear unit activation function.

More recently those have been superseded by the rectified linear unit (ReLU)
function (equation (2.4), figure 2.3) [Jar+09; NH10; GBB10].

g(z) = max{0, z} (2.4)
Figure 2.1 illustrates a MLP with a single hidden layer. Using equations (2.3)
and (2.4), when moving from a single neuron to a layer of neurons, introducing

W as the weight matrix and ¢ as the bias vector, the output h of the hidden
layer becomes

h(z) = g(W'zx + c). (2.5)

The final output y becomes

y = g,(W, h(z)). (2.6)

W has a subscript here to distinguish it from the weight matrix of the hidden
layer. Typically, each layer in a MLP has its own independent weight matrix.

10

2 Related Work

1.0 4

0.8 A

0.6 1

9(2)

0.4 1

0.2 1

0.0 1

z

Figure 2.4: The logistic function.

Similarly, the subscript of the activation function g, emphasizes that the output
layer typically uses different class of activation function than all of the hidden
layers. In case of binary classification, a sigmoid function, also known as logistic
function, is a common choice. The logistic function is depicted in figure 2.4 and
is defined according to (2.7). In case of multi-class classification, the softmax
activation function is preferred over the logistic function as activation function
of the output layer.

9(2) = = 27)

The number of neurons in a neural net influences the complexity of the input-
output relation that can be provided by the model. A larger number of neurons
results in a larger set of functions that the model can provide, but since the
number of parameters increases, it also makes it harder to train. The number of
parameters can not only be increased by increasing the number of neurons in a
single hidden layer, but also by increasing the number of hidden layers, which
is often referred to as the depth of a network. In case of deeper networks, the

11

2 Related Work

layers are chained together. Let equation (2.8) be the output of the m-th layer
in a multi-layer network, given an input z (analogous to equation (2.5)).

hw(z) = gWlz+ec,) (2.8)

The output y of the entire network with M hidden layers for an input « is
then given by equation (2.9).

Y= Qy(WyThM(- .. ha(hi(x)))) (2.9)

A relatively recent optimization for the training process of deep learning models
is batch normalization [IS15]. During training of a network, first the input is
propagated through the model. Then the output is compared to the desired
output to compute the error that was made. Afterwards, the error gradients are
computed by backpropagation through the network. In this step, the weights
are adjusted via the gradients under the assumption that only a single layer
is adapted. However, during each adaptation, all layer weights are actually
adjusted together, resulting in unexpected effects [GBC16]. To sidestep this
problem and achieve faster learning, [IS15] propose normalizing the output of
each layer according to

x — E(x
y:W)(—i—)e*7+B' (2.10)
The parameters v and 3 are learned and enable the output to have independent
p and o. This seems counterproductive after normalization, but results in an
output that can represent the same family of functions as without normalization
but with different, improved learning dynamics for the entire system [GBC16].
Learning of 7, 8, p and o happens via running statistics over all input values
in the training phase.

12

2 Related Work

Output
hit)

Current Cell State Next Cell State

(o ——e—
ml of
(t)

ra O,

t
Vi g
Current Hidden State @ @ Next Hidden State

L J

Input

Figure 2.5: The internal structure of a LSTM cell, illustrating the position of the various
gates.

Long Short Term Memory Long short term memory (LSTM) networks
(figure 2.5) were first proposed in 1997 [HS97] but have received significant
attention only much more recently. With advances in hardware, ultimately they
have become extremely successful in fields like speech recognition and machine
translation [GBC16].

LSTMs are a type of recurrent neural networks (RNN) and as such were
specifically developed to process sequences of values where the order is im-
portant context [GBC16]. In contrast to purely feed forward networks (FFN)
such as MLPs or feed forward convolutional neural networks (CNN) like fully
convolutional networks (FCN) or residual networks (ResNet), RNNs are not
memoryless systems. This means that not only the current input is considered
in forming the output, but instead a hidden state is also considered that is
formed by the network depending on previous inputs (figure 2.6). How the
hidden state is formed and updated, depending on the input, is learned by
the RNN. The graph of the RNN can be unrolled in the time domain (figure

13

2 Related Work

X040
X040

Figure 2.6: The graph of a basic FFN compared to a basic RNN.

2.7). With this display, the dependency of the output at each time step on the
hidden state of the previous time step becomes more explicit.

RNNs are trained via a process called back-propagation through time (BPTT).
Given a significant length of the input sequence ‘¥, this process makes the RNN
act like a very deep network. Similar to deep FFNs, earlier RNN structures
suffered from what is called diminishing gradient. This means that during
backpropagation, passing through many layers (or in the case of RNNs many
recursions) the error gradient tends to vanish (or more rarely, explode). Without
meaningful gradient information, the weights do not get adapted. This made
previous generations of RNNs hard or even impossible to train properly.

The novelty of LSTM is the introduction of several gates, with the intent
of giving the network the capability to learn to control when and how the
internal state is updated and how much of the internal state versus the input
is propagated into the output. As such, the cell itself dynamically controls
its own memory, based on what it has learned during training and the input.
The purpose of this mechanism is to enable the gradient to “flow” over longer
periods of time without either vanishing or exploding [GBC16].

The internal structure of a cell with its four gates is illustrated in figure 2.5.
Equations (2.11) through (2.16) describe the update mechanism during one
time step, where h; and ¢; are the hidden state and cell state, x; is the input, #;,
f:, g: and o; are the input, forget, cell and output gates, all at time ¢. ¢ is the
sigmoid function and o the Hadamard product (element-wise multiplication).
W are weight matrices and b are bias vectors.

14

2 Related Work

@) () €
()
SEORD

Figure 2.7: The same graph as in figure 2.6 but unrolled in the time domain over three time
steps.

1 = U(VViiiUt + by + Whyih 1 + bhi) ()
fi =0 (Wiszy + by + Wiphy_ 1 + byy) (2.12)
g: = tanh (v‘/igmt + biy + Wigh, 1 + bhg) ()
Oy = U(VViofUt + bio + Wiohi 1 + bho) (2.14)
ct=froci1+109; ()
h; = o, o tanh(c¢;) (2.16)

Figure 2.5 shows that the output of LSTM is its internal hidden state h{,
which is a vector with the same dimension as the width of the LSTM layers.
Since the objective is both for LSTM to have a certain width as well as having
the entire model return class probabilities for all classes in the label data, the
hidden state has to be somehow mapped onto the class space. This can be
achieved by applying a fully connected layer with sigmoid activation? onto the
output of LSTM (equation (2.17), figure 2.8).

ylt) = a(WyTh(t)> (2.17)

2If the problem is multi-class and not binary classification, a softmaz activation would
be preferable over the sigmoid.

15

2 Related Work

Fully
connected
layer

Figure 2.8: Blockchart of the entire LSTM system when used for classification.

Convolutional Neural Networks Much like LSTMs, CNNs are an old concept,
dating back to works of Alexander Waibel and Yann LeCun in the late 1980ies.
Similar to LSTMs, CNNs too received much more attention starting with the
second decade of the 21st century, owing to progress in computer hardware.

As the name indicates, a CNN layer employs an operation termed convolution.
The convolution of two signals f and g, indicated by the operator * is defined
as

(f*g)(t) = / " f(t—)g(r)dr. (2.18)

Similarly, the discrete convolution of two discrete time signals f and g is defined
as

(fxg)n)= > fln—mlgm]. (2.19)

m=—00

In general, CNNs are often used in image processing, where using higher-
dimensional convolution is desired. For applications with one-dimensional time
series signals, the one-dimensional convolution (equation (2.19)) however is
sufficient. A 1-d convolutional layer uses the convolution operation to convolve
each input signal with one or more kernels w of weights, which are learned
parameters. The length of the kernel w is a hyperparameter, analogous to the
width of a layer in a MLP. The output of a convolutional layer need not be the
same dimension as the input, it can also be a multiple of the input size, in which
case multiple kernels are used with each input to produce multiple outputs. The
output size of a layer too is a hyperparameter. Other hyperparameters include
whether the kernel is dilated, i.e. there is spacing between kernel elements and

16

2 Related Work

the stride, which indicates if the kernel slides continuously or “skips” a number
of samples. The output of a convolutional layer is often referred to as the feature
map.

CNN architectures often consist of convolutional layers combined with pooling,
which is an operation that reduces the dimensionality through certain operations
(e.g. taking the maximum of a certain window). Recent research in time series
classification however has focused on architectures that are fully convolutional,
i.e. they do not include pooling operations, instead stacking a varying number
of convolutional layers on top of each other.

The motivation for CNNs with regard to TSC comes from two special properties
[GBC16]: Parameter sharing and equivariant representations.

Parameter sharing means that a parameter is used more than once. Recall the
introduction to MLPs, where the length of temporal “memory” of the model
determined the size of the input layer. This means that for each input feature,
the weight matrix of the first hidden layer holds a vector of separate weights
that are only used once. In a convolutional layer, the length of a kernel w is
independent of the length of the input. In a typical application, w is much
shorter than the input signal, meaning the parameters are shared for all samples
of the input signal. This lets a CNN be much more flexible with regard to the
number of its parameters.

Equivariance means that the output is invariant to time shifts. Shifting an
input sequence by a number of samples will result in the output sequence being
equally shifted but otherwise similar.

These are both desirable properties of a model when performing TSC.

Related Publications

Fully Convolutional Network and Residual Network In [WYO], the authors
implemented three neural-network-based deep learning architectures for TSC, a
MLP, a FCN [SLD17] and a ResNet [He+16] and compared their performance
on a subset of the UCR dataset [Dau+18].

For the FCN, three convolutional layers were used, each coupled with batch
normalization and followed by a ReL.U activation function (figure 2.9). The

17

2 Related Work

pool&softmax

conv2

Figure 2.9: Fully Convolutional Network architecture as proposed in [WYO)]. Yellow bars
indicate convolutional layers, dark blue are batch normalization steps and violet
indicate ReLU activation functions. The final two layers are global average pooling
and a softmax activation function.

convolutional layers use [128, 256, 128] sized filters respectively, with convolution
kernels sized [8, 5, 3]. The output of the final convolution layer is fed to a global
average pooling layer and into a softmax layer.

In case of ResNet, the same convolution layers with batch normalization and
ReLU activation are used as for the FCN. The main difference is that ResNet
contains many more layers. ResNet consists of 3 blocks, which are each made up
of three consecutive layers of convolution, normalization and activation (figure
2.10). The first block uses 64 filters, while the latter two blocks use 128. Same
as in the FCN, convolution kernels are sized 8, 5 and 3, but for respective blocks
instead of layers. Another major difference of ResNet compared to FCN is the
usage of skip connections that bypass each convolution block. The motivation
for this architecture is to reduce the impact of the vanishing gradient problem
that arises in very deep architectures by allowing gradient to flow directly
through the skip connections.

FCN and ResNet both deliver state of the art performance on the chosen subset
of the UCR dataset. The literature does not agree on which method is superior,

18

2 Related Work

input c // // pool&softmax

Figure 2.10: Residual Network architecture as proposed in [WYO]. Coloring scheme of units
is similar to figure 2.9.

[WYO] found FCN to perform better while [Ism+19] suggest that ResNet offers
better performance. The discrepancy is accounted by [Ism+19] to using a larger
and more diverse subset of the UCR data.

Long Short Term Memory To improve the classification of the FCN proposed
in [WYO], [Kar+17] used LSTM and FCN in parallel and concatenated their
outputs before going through the final softmax layer. The LSTM uses the
attention mechanism proposed in [Bah+16] to improve the learning of long
term dependencies. With this model termed Attention Long Short Term Memory
Fully Convolutional Network (ALSTM-FCN) the authors propose a significant
improvement both over FCN and COTE.

An encoder-decoder based approach to classifying time series with LSTM was
used in [Tan+16], also incorporating an attention mechanism. The authors
compared their model to the results from [WO15], which they found their
model outperforms.

Due to the structure of LSTMs, they have an advantage in processing time
series data over memoryless architectures (MLPs, CNNs). No preprocessing is
necessary to reshape input data to supply the network with information of past
values, as the network efficiently saves this information in its hidden state. This

19

2 Related Work

Current Hidden State Next Hidden State/Output
e ® N W
@ &
[c] [o]
Input @

Figure 2.11: The GRU cell.

reduces the complexity of preprocessing when working on continuous data.?
This advantage comes at a cost though, as training an RNN is a sequential
process that can not be parallelized owing to its recursive nature. Despite its
advantages for working with time series, LSTMs still struggle with long term
dependencies [Tri+18].

GRU Gated recurrent units (GRU) are the second type of gated RNNs (to-
gether with LSTMs)(figure 2.11 shows a standard GRU cell). Its genesis lies in
works such as [Cho+14; Chu+14], trying to simplify the complicated architec-
ture of LSTMs by unifying the forget and the update gates [GBC16]. As such,
the GRU exposes its state fully each time, as opposed to LSTM, where a gate
controls the exposure [Chu+-14].

The authors of [Che+18] used a slightly modified GRU in classifying multivariate
times series with missing data from a medical database. The model is termed
GRU-D where D stands for decay, which is a learnable parameter. Higher
decay means that an input variable relies less on past values than lower
decay. This model uses a mask internally to deal with missing data, additional
inputs were time stamps of input values and time delta from the previous

3Section 4.1.3 explains the reqired reshaping process.

20

2 Related Work

input. This modified version was compared to traditional GRUs and improved
classification considerably. The authors attribute this to GRU-D learning to
extract “informative missingness”, that is correlations between missing data
and certain classes.

With regard to performance of GRUs versus LSTMs, [Chu+14] did a comparison
in the field of speech and music signal modeling. The conclusion was that no
gated RNN held a definitive performance advantage over the other, instead
performance was found to be highly application/data dependent.

Transformer The architecture termed transformer [Vas+17] is a very recent
development, fueled by the intention to further improve upon the performance
of LSTMs while doing away with its shortcomings, namely the need for strictly
sequential computation, which does not allow for parallelization. The original
work uses an encoder-decoder type structure for use in machine translation
tasks. In this capacity, the task of the encoder is to transform the input sequence
into a language-agnostic representation that is sent to the decoder, where the
representation is transformed back into the target language.

When classifying time series, the objective is not to map the input series onto a
different type of output time series but a class label instead. For this task, the
encoder-decoder scheme is not needed and the output of the encoder can be
used directly instead. The encoder itself is made up of an input embedding stage
that converts input tokens? to vectors. Depending on the type of input data,
this step is also not needed for TSC. This is followed by positional encoding,
which injects information about the relative position of tokens in a sequence, a
multi-headed attention unit and a fully connected feed forward type unit. It is
proposed in [Vas+17] that their approach with a self-attention unit is able to
learn long term dependencies more effectively than gated RNN type models at
lower computational complexity.

This technique was used in [RK20] to classify crop types from multivariate
optical satellite sensor data time series and found similar performance compared
to an LSTM approach. Time series analysis on clinical data with a self-attention

4In case of machine translation, a token would be a word. In case of TSC, it would
instead be a scalar or vector.

21

2 Related Work

based model was performed in [Son+18]. The publication reports improved
performance over a LSTM baseline.

2.1.3 Summary

In this section, several neural network architectures for TSC were introduced,
along with a few conventional algorithms. Afterwards, a couple of publications
were presented that compared these methods for their TSC performance. While
the conventional algorithms are still widely regarded as benchmarks if not
state-of-the-art, they have either too high computational requirements (DTW +
k-NN), are too complex for productive use or both (COTE & HIVE-COTE).

The neural network architectures offer an attractive alternative. Research tends
to favor feedfoward architectures (FCN, ResNet, transformer) over RNNs due
to their lowered training complexity. Both FCN and ResNet have demonstrated
good performance on subsets of the UCR time series database. Some research
suggests that transformer could offer similar or better performance, but there
are no direct comparisons yet to draw any definitive conclusions.

2.2 Estrus Detection and Machine Learning

Estrus detection is still a niche field where most innovation is currently driven
by privately held companies that do not publish research save for performance
evaluations that do not go into any sort of detail about the models being used
in the field. Information about the true state of the art is therefore rather hard
to come by. As in other medical research, field trials to acquire data from live
animals are costly, which leads to sample sizes often being small, which in turn
diminishes the significance of conclusions being drawn from the research. To the
best of my knowledge, I am not aware of freely available dairy cattle datasets
that could be used to objectively compare different methods. Nevertheless, in
this section an attempt is made to provide an overview over publicly available
research.

A team of researchers equipped 10 cows with acceleration sensor collars of their
own design [YHL13]. The data was smoothed and 7 features (3-axis acceleration,

22

2 Related Work

the derivative in all 3 axes as well as the mean acceleration) were used for
further processing. Via k-means clustering a training set was created that splits
the data into 3 classes (lying down, medium active and highly active).

This training set was used to train a Support Vector Machine (SVM) to classify
the data. Finally an activity index is calculated from a comparison of current
to historic activity together with the trend of classified activity levels. The
activity index is then used via thresholding to discriminate heat events. With
this method the authors managed to correctly classify 4 cows as having had
a heat, while 6 did not. Given the small size of the surveyed population and
there being no information about the time length of the surveyed data, the
significance of these results is hard to place.

Some interesting work is presented in [Fau+19], where the authors performed a
study comparing several machine learning approaches on a rather small dataset
of 18,000 time samples. The used algorithms were k-NN, elastic net, SVM,
random forest, gradient boosted trees, local cascade and a shallow MLP as
well as their own approach termed local cascade ensemble. The local cascade
ensemble offered best performance in this scenario, closely followed by gradient
boosting and significantly improving over the performance of local cascade.

Activity data from pedometers as well as milk progesterone levels from 58 cows
were collected in [OCo-+11], totaling in about 14 accumulated years worth
of time series data. Hidden Markov Models (HMM) were used to build both
univariate as well as bivariate models, using either activity or progesterone or
both together. Labels were created by looking at effective artificial inseminations
while ineffective inseminations were excluded from the data. The univariate
activity model is reported to have 70% sensitivity and 14% error rate while
the bivariate model performs slightly better. The relatively low sensitivity is
accounted to silent estruses being part of the test data.

2.3 Conclusion on Related Literature

The survey of literature regarding estrus detection with machine learning
methods did not yield much useful information. What little publications are
available either did not use state-of-the-art methods, worked with very small

23

2 Related Work

datasets or both. Furthermore, due to the unique nature of how data is acquired
for the dataset used in this thesis (see chapter 3), as well as the much bigger
size, the applicability of published approaches remains debatable.

Looking at the field of TSC in general, current research suggests that CNNs
like FCN or ResNet are most promising candidates for application in estrus
detection. Despite this, a decision was made to implement a MLP and a
LSTM-based model. The MLP was chosen as a baseline and testbed for ease
of implementation while getting the code base set up. The decision to go with
LSTM instead of one of the CNN models was forced by the complexity of the
implementation required to achieve efficient training with minibatch processing
(section 4.2) when working with input sequences of varying lengths. Based on
the expected performance, FCN and ResNet remain the prime candidates and
will be implemented during work following up to this thesis.

24

3 Dataset

Thanks to advances in wireless sensors and the IOT, it is nowadays possible to
acquire interruption-free time series of sensor measurements. The applications
are manifold, from airplanes and trains to factories where predictive maintenance
is rapidly becoming standard to reduce or even negate downtime of costly
machines, drivetrains or powerplants. This technology is also making its way
into agriculture, where it can be used to monitor animals, aiding in improving
health and productivity. Section 3.1 gives some background into how the data
is measured and what is measured exactly, while section 3.2 goes into detail on
how the data is structured.

3.1 Background on the Origin of Sensor Data

3.1.1 Sensor Placement

There are several established ways of acquiring bovine health monitoring data.
Most of these include collars fixed to the neck or other extremities of animals.
Conversely, the data used in this work was acquired using a sensor that rests
in the gastrointestinal system. The sensor in the form of a small tube, as seen
in figure 3.1, is called a “bolus”.

The rumen of cows is subdivided into several parts, the frontal oriented part
closest to the esophagus being the reticulum. If objects beyond a certain density
are ingested by cows, they tend to drift to the bottom of the reticulum and
remain there indefinitely for the remainder of the lifespan of the animal. The
bolus dimensions and density are chosen to facilitate this mechanism, as such
when the bolus is applied via the esophageal tube, the peristaltic movement

25

3 Dataset

Figure 3.1: Sensor in bolus format

of the rumen causes the sensor to eventually drift past the feedstuffs to the
bottom of the reticulum, where it will remain, as seen in figure 3.2.

3.1.2 Sensor Measurements

Each bolus is equipped with 2 types of sensors, a temperature sensor and a
3-axis accelerometer.! The sampling period for the eventual time series is 10
minutes.

In the case of temperature measurement, this is ample temporal resolution,
given that the temperature signal does not undergo rapid changes. In case of the
acceleration sensor, this sampling rate would constitute severe under-sampling.
The sensor measures with 100 Hz and aggregates all 3 axes over 10 minutes, with
several steps of preprocessing to filter out earth’s gravitation and enhance the
signal-to-noise ratio (SNR) resulting in a unitless acceleration index between 0
and 100.

!The manufacturer offers another type of bolus that also measures pH value, but this
data was not used in this work.

26

3 Dataset

V)

Figure 3.2: Schematic depiction of sensor placement

The preprocessing chain is proprietary and therefore can not be laid out exactly
in this work. The low overall sampling rate is dictated by the limited power
budget of the sensor and its internal battery. After preparation, the sensor
periodically transmits its data via a gateway to a cloud server for storage and
further processing.

3.2 Structure of Raw Data

The data can be divided into two subtypes, time series data and meta data.
At the time of writing, the dataset contains 76852 animals with meta data,
of which roughly 35000 have time series data available inside the period of
consideration, starting with April 1st 2018 and ending with April 1st 2020.

3.2.1 Meta Data

The meta data holds all information pertaining to an animal that is not
contained in the time series data in the form of a java script object notation

27

3 Dataset

‘ datetime H activity ‘ temperature ‘
2018-12-28 13:51:00 0.00 21.610001
2018-12-28 14:01:00 9.14 37.610001
2018-12-28 14:11:00 5.14 39.980000
2018-12-28 14:21:00 4.88 40.269001

2018-12-28 14:31:00 13.61 40.269001

Table 3.1: Exemplary time series data

(JSON) file. Among a unique Identifier (ID), these are informations about the
lactation state of the animal,? inseminations and pregnancy analyses performed
by the farmer. Furthermore cows are typically held in groups. This affiliation is
represented in the meta data through a group ID. Individual cow meta data is
the primary source from which labels for the time series data are constructed.?

There is also a second level of meta data that holds information on an organiza-
tion level. In general, an organization will represent a farm. Organization data
is mostly relevant to the preprocessing stage, for example to localize timestamps
from Universal Coordinated Time (UTC) to the respective timezone.

Sensitive data like country or actual farm affiliation were purged from the
JSON documents for the purpose of information security.

3.2.2 Time Series Data

Time series data can be seen as a table of two columns holding 64 bit floating
point numbers respectively, with the index in the time dimension being a string
of format YYYY-MM-DD HH:mm:ss as outlined in table 3.1. For an outline of
how the values are measured, see sections 3.1.1 and 3.1.2.

2The lactation status of an animal states which state of the lactation cycle the cow is in
at one point. Possible statuses are pregnant, close to calving, lactating, dry, etcetera.
3The specifics of this process are outlined in section 4.1.3.

28

3 Dataset

15.0 4 e

12.51

10.0 4 |

7.5 A

Activity index

5.0 1 N | ‘ =

2.5
o

0.0

2019-01-01 2019-01-03 2019-01-05 2019-01-07 2019-01-09 2019-01-11 2019-01-13

Figure 3.3: Example of an activity signal with heat annotation.

Activity Data

Activity is a strong source of information for heat detection [Kid77; VV96;
Fir+02]. Around the time of ovulation, activity shows a prolonged increase (see
figure 3.3), the magnitude of which varies depending on outside influences, i.e.
whether cows are held on pasture or indoors, material and surface texture of
barn floors, etcetera. Depending on the circumstances, estrus related activity
increases may be embedded in a considerable amount of noise. Conditions in
New Zealand for example are typically such that animals are held on pasture
and are driven to a barn twice a day, over a distance of several kilometers.
These phases of increased activity can mask an estrus event quite effectively,
making it necessary to apply measures such as incorporating the activity of the
herd or daily activity patterns into processing to enhance the SNR. Figure 3.3
contains two examples of significant activity spikes outside of the range labeled
as heat.

Temperature Data

Similar to the activity, estrus also influences the body temperature of cows
[WBS58; Hig+19; Wan+20]. Trials at smaXtec to create a purely temperature
based estrus detection system faced issues in practice. While there is definitely
correlation with estrus events, temperature alone has low specificity due to
some sicknesses creating similar temperature patterns. Figure 3.4 shows part
of an exemplary temperature time series. Noteworthy are the downward spikes,
which are caused by water intake of the animal, as well as the temperature

29

3 Dataset

N
o

w
®

Rumen temperature (°C)
w w
» o

2019-01-01 2019-01-03 2019-01-05 2019-01-07 2019-01-09 2019-01-11 2019-01-13

w
N

Figure 3.4: Example of a temperature signal with heat annotation from the same animal and
time frame as the activity data in figure 3.3. The downward spikes in the signal
are caused by the intake of cold water by the cow.

increase shortly prior to the heat annotation as well as the reduced water
intake around heat. The water intake spikes are removed from the signal during
preprocessing to increase correlation with the actual body temperature.

30

4 Methodology

This chapter documents the practical work undertaken for this thesis, starting
with gathering of the required data from varying sources in section 4.1.1, the
storage solutions chosen for various steps of the preprocessing in section 4.1.2
as well as the preprocessing itself in section 4.1.3, along with the technologies
used in the process and closes with the machine learning approaches chosen
and implemented in section 4.2.

4.1 Preprocessing and Data Representation

To enable usage of the data for training machine learning models, the data
needs to be converted from its original raw form into something a machine
learning model can “understand”. In case of neural networks, this constitutes
the form of strictly numerical vectors or matrices. Strings or categorical data
must be converted to other representations. Normalization or standardization
of inputs is often required, as is cleaning of the data. Figure 4.1 illustrates an
initial concept of the approach envisioned for the preprocessing data flow and
storage. Minor adaptations had to be made for practical reasons which are
described in the following sections.

4.1.1 Data Gathering

The data in its raw form is distributed over several databases (see Figures 4.1
and 4.2). To speed up any further processing steps and limit the traffic load
that acquiring large amounts of data puts on the databases and application
programming interface (API) services, an intermediate raw database is created,
that serves as the basis for all further processing.

31

4 Methodology

— P
Metadata @ BigTable | Timeseries data

P>
HDF5| Raw data

Preprocessing & label generation

Additional preprocessing Training data

Figure 4.1: Initial concept for data gathering and preprocessing.

Meta data is acquired from postreSQL databases via a public representational
state transfer (REST) API with an open source API client [sma]. The meta
data is downloaded first because it is required to build the tree structure of the
raw database, which is stored in HDF5. Additionally, the unique identification
keys of animals are required for calls to the time series database. To be able
to store the JSON files in HDF5, they need to be serialized first. For this the
json component from the python standard library was used together with hdpy
[h5p] for writing to and reading from HDF5. Before the JSON documents are
serialized, any fields that contain personalized information that could be used
to identify a farm are deleted. The link to physical persons or farms can still be
reconstructed via each organization’s or animal’s unique ID, but not without
the information mapping IDs to their physical counterparts.

Acquisition of time series data from its BigTuble database is accomplished using
a proprietary database client provided by smaXtec. The client is based on an
open source project implementing a time series store for BigTable [Wut]. Since
the database client supports at most downloading 400 days of data at once,
downloading the entire 2 years of data requires splitting the downloading of
each animal time series into two separate calls. The client intermediately stores
the downloaded data into comma separated values (CSV) formated text files,

32

4 Methodology

Timesseries Data
(BigTable)

Animal Data

(pSQL) Raw Data Store
(hdf5)
Organisation Data
(PSQL)
Event Data
(PSQL)

Figure 4.2: Schematic of the data acquisition step.

which - in a second step - are then parsed using pandas [pan]. Split parts are
concatenated, the UNIX timestamp index is converted to a human readable ISO
8601 compliant datetime format (see section 3.2.2) and then serially written to
HDF5! via pandas’ API for pytables [pyt].

4.1.2 Data Storage
Raw Data Storage

The raw data storage uses HDF5. It is structured hierarchically, the top level is
split into organizations, which are further split into individual animals (figure
4.3). Additionally, the database contains a mapping between animals and
organizations to make lookup operations easier.

Temporary Intermediate Storage

Due to constraints imposed on the processing by available random access
memory (RAM), along several points in the data preprocessing pipeline, data
needs to be persisted into non volatile storage.? This was accomplished using the

"'While HDF5 is a well established format, owing to its age it does not incorporate
strategies for consecutively writing to a database, hampering write performance.
2The process is outlined in detail in section 4.1.3.

33

4 Methodology

root

— organisation "foo’

— organisation foo’ metadata
— animal 'bar’

t animal ’bar’ metadata

animal ’bar’ timeseries data

L animal 'qux’

L ...
— organisation 'quux’
...

L animal <> organisation map

Figure 4.3: Hierarchy of data inside the HDF5 raw database.

feather format as offered by PyArrow [pya] for serialization and deserialization
performance as well as good integration with pandas.

Training Data Storage

Contrary to the initial concept in figure 4.1, HDF5 is not used as storage for
the eventual training data. At the final stage, training data does no longer
contain categoricals or any other non numeric types of data, which enables
using database types optimized strictly for this purpose. zarr [zar| was chosen
because it offers good read and write performance, the ability to read and write
concurrently and compression of numerical higher dimensional array data as
well as good integration with the parallel computing framework dask [das],
which was used to speed up some of the processing steps needed for batch
composition (section 4.1.3).

The eventual representations in zarr are sketched out in figures 4.4 and 4.5.

For the first representation, each row represents one sample, corresponding with
one point in time that needs to be classified. The columns represent different

34

4 Methodology

TN

3

T2

x1

Sample

Time delay/Feature

Figure 4.4: Arrangement of time series features in zarr for use with feed forward networks.

features, where the first column is reserved for label data. The second column
contains the days that have passed since the last parturition of the animal. The
actual time series data itself consists of 288 features, where the first feature
represents the timestamp that should be classified and the remaining features
are time delayed samples from the same time series, giving the model two days
of “memory” of the time series.

The second representation is geared towards use with networks that do not
need temporal context in the input, because it is provided by the internal
state. This makes the time-to-space transformation unnecessary and saves a
lot of redundancy in the data, freeing up resources that can be used to store
additional features.

The main difference is that the data is not stored as one continuous tensor.
Different amounts of time series data are available for different animals, which
makes it impossible to store the data in a continuous array without padding

35

4 Methodology

T M

T3

T2

T

Feature

Figure 4.5: Arrangement of a single sample for use with a recurrent type of network.

all time-series to similar length.? Instead, the data is sharded along the animal
key. This can be realized using zarrs tree-like data organization. The entire
dataset is combined into a group that can be accessed like a dictionary via the
animal ID as key. Each value is then a sample, consisting of the time-series of
all available features and the annotation (figure 4.5).

4.1.3 Preprocessing

The task of preprocessing can roughly be divided into cleaning of the data,
feature and label generation as well as standardization/normalization and batch
preparation. Figure 4.6 contains an overview over the entire process.

3This would be possible, however simply training a network on zero-padded data would
introduce bias and therefore worsen the eventual classification performance. Section 4.2.3
contains a detailed description of how this was achieved to enable batch processing.

36

4 Methodology

Raw Data Store
(hdf5)

Discard empty series/
no group assignment

Align timeseries
indices

Drop duplicates
from DST switching

Compute addi-
tional features
from metadata

Normalize time-
series data

Temporary storage
(Apache Arrow/ — K—

Drop missing
data/no heats

Calculate
group feature

Compute labels
from metadata

feather)

”Fold” 1 (zarr)

Temporary storage
(Apache Arrow/
feather)

(Pseudo-)
— Random shuffle
(DASK)

Time—Space Train Data Store
transformation (zarr)

?Fold” 2 (zarr)
?Fold” N (zarr)

Figure 4.6: Overview of the preprocessing stage. Pink blocks represent (temporary) storage
of data while violet blocks represent processing/transformation steps.

Pipeline Architecture

The pipeline is arranged into four steps that are divided by (temporary) storage.
The first step encompasses cleaning, label and feature generation, in the second
step, time series are standardized, the third step rearranges the data to provide
the machine learning model with a time window of data instead of a single
sample and the fourth and final step splits the data into a test and a training
set and shuffles samples so that when the machine learning framework loads
batches of data to train the model, those batches are not biased by, for example,
containing data from just a single animal.

Where possible, the pipeline makes use of parallel processing to utilize all
resources provided to it by the host it is executed on. The first step uses
python’s concurrent.futures ProcessPoolFxecutor class to fork as many workers
as central processing unit (CPU) cores are available. Parallelization is achieved
by processing organizations in parallel, with all animals in one organization
processed in series.

37

4 Methodology

The second step uses the StandardScaler from the scikit-learn library [skl],
which performs two passes over the data. The first pass happens in a serial
manner to fit the scaler parameters to each feature, then in the second step
animals are scaled in parallel, once again using ProcessPoolExecutor. Writing
to the first zarr database is done serially, as designing a parallel scheme was
deemed out of scope for the purpose of this thesis. The last step of splitting and
shuffling the data is once again performed in parallel using dask and daskml.

Data Cleaning

Data cleaning does not happen in a single step, rather it is accomplished via
two checks during the course of preprocessing. At the time of writing, cleaning
is mostly focused on removing parts of data that are either too short* to be
considered or lack some other critical information (e.g. no heats in the surveyed
time span, no group information, etc.).

The first filter is situated immediately after data is loaded from the raw
data store (see figure 4.1.3). If there is no time series data present for the
observation period, the respective animal is immediately discarded and the
pipeline continues with the next animal. The same is true for animals that are
not assigned to a group.®

The second filter sits at the end of the first stage of the pipeline, after labels
have been generated. For each animal we assess whether there are at least 30
days of recording and at least one heat annotation present in the data. If not,
the animal is discarded. This step is necessary as group feature calculation may
reduce the amount of data available for each animal, so that these criteria may
be missed in the first step.

Feature Generation

The pipeline generates the following four features:

4 Animals with less than a month of time series data were not considered. The motivation
is to exclude the possibility introducing bias because of incomplete temporal context. In the
majority of cases in production, ample temporal context is available.

5Designing a model that can cope with missing group information is in principle desirable,
but out of scope for this thesis.

38

4 Methodology

Index Features Labels

Organisation ID ‘ Group ID ‘ Animal ID Datetime Feature A | Label A
abced defg ijkl 2018-1-1T'00:00:00 42 True
2018-1-1T00:10:00 42 False
mnop qrls 2018-1-1T00:00:00 15 False

Table 4.1: Schematic of the structure of the data and its index inside the pandas DataFrame
in the preprocessing pipeline.

The Days in Milk (DIM),

the “group feature”,

the “heat feature” and

the temperature with spikes from water intake removed.

The DIM is the number of calendar days that have passed since the last
parturition. The reason adding this as a feature is that the model could
learn to distinguish DIM with higher probability of heat from ones with lower
probability, such as directly after parturition. Calculation of DIM was achieved
using code provided by smaXtec that calculates this out of meta data® once for
each calendar day, then using a frontfill strategy to fill in the timestamps in
between.

The “group feature” is the mean of the activity index for each timestamp
of each animal in a respective group. If the group is of sufficient size, taking
the mean of the activity should suppress fluctuations of individual cows as
the mean converges against the expected value of the activity, while contain-
ing environmental influences that affect all animals.” Computing the mean
is straight forward using the pandas DataFrame format. Transforming the
DataFrame to enable this calculation however is a bit more involved. Table 4.1
illustrates the format of the data before this calculation. It should be noted
that at the beginning of the pipeline the datetime index is aligned to calendar
10 Minute intervals. This reduces the complexity and RAM footprint of several

6This calculation is in principle trivial, counting only days since the most recent previous
parturition, however certain edge cases such as aborts have to be considered.

"An example for such an influence would be the group being driven to and from the barn
for milking.

39

4 Methodology

Animals
ijkl qrls
Index Features | Labels | Features | Labels
Organisation ID ‘ Group ID ‘ Datetime Feature A | Label A | Feature A | Label A
abed defg 2018-1-1T00:00:00 42 True nan nan
2018-1-1T00:10:00 42 False nan nan
mnop 2018-1-1T00:00:00 nan nan 15 False

Table 4.2: Schematic of the structure of the data after unstacking of the animal ID index.

calculations in the pipeline while introducing only minor sampling errors. To
take the mean of each animal for each group, the table has to be transformed
by unstacking the animal ID from the row index and making it a column index
(table 4.2). The mean is then calculated considering only groups with more
than 5 cows, inserted as an additional column to each animal, then the animal
ID is once again stacked to the row index and the rows containing “Not a
Number” (NaN) are dropped.

With the “heat feature”, an attempt was made to compute a simple distance
based metric between the single cow activity and that of its group. This should
indicate whenever the behavior of one specific cow deviates from the behavior
of the group. It is calculated by taking the difference between the cow and
group activities, then applying a sliding window sum operation with a window
length of 12 samples.

Temperature inside the rumen is influenced by several factors, such as actual
body temperature, fermentation heat and to a large degree frequency and
volume of water ingestion together with the temperature of the ingested water
itself (see also figures 3.4 and 4.8 respectively). Since body temperature is the
desired information, the spikes caused by water intake should be removed to
make inference easier for the eventual machine learning model. The algorithm
implemented in this work performs two passes over the data. Each time, a
rolling statistic (median and o) is calculated, from which an adaptive threshold
is computed. Any value falling below the adaptive threshold is replaced by a
long-term sliding mean (figure 4.7). The result of this filtering process can be
seen in figure 4.8.

40

4 Methodology

e[n]| dn] = z[n] |din] yln] = d[n] |yn]
if z[n] > t[n] if d[n] > t[n] —
else &[n] else d[n]
: 2[n] t[n] : d[n] t[n]

rolling(72) rolling(36)

|
.mean() .mean()

rolling(288) e

.median() Y

rolling(288)) 055
K .variance()

Figure 4.7: Block diagram of drink spike removal. Values in parenthesis state the length
of the rolling window used in the respective computation. Delays required for
causality have been omitted for simplicity. Window lenghts were determined
empirically.

Rumen
emperature (°C)
w w w S
H O 0 O

t
w
N

019-01-01 2019-01-03 2019-01-05 2019-01-07 2019-01-09 2019-01-11 2019-01-13

mM(WMmWMM

N

Filtered
rumen
temperature (°C)
w b
o O

w w w
N » O
L L L

2019-01-01 2019-01-03 2019-01-05 2019-01-07 2019-01-09 2019-01-11 2019-01-13
Time

Figure 4.8: Rumen temperature signal before and after filtering with the algorithm depicted
in figure 4.7.

41

4 Methodology

Label Generation

Label generation uses two types of data source, user input and labels provided
by the preexisting classification system. In case of user input, insemination
dates and manually performed pregnancy checks as well as calvings 270-290
days after a potential heat were regarded as gold standard. The autonomously
generated labels by the classification system are first checked for periodicity. A
single positive classification has a significant chance of being a false positive.
In case there are two classifications that line up with the estrus cycle length
within a tolerance of +3 days, chances are good that both classifications are
true positives.

For each class of labels, the pipeline gathers the relevant timestamps from meta
data and applies the respective checks (for example, whether there are other
heats before or after or whether there are calvings or pregnancy checks that
confirm it as a heat). After this step, the local activity maximum is sought in a
timespan of +12 hours. The label is then shifted to this local activity maximum.
The reasoning for this process is that users can not be expected to be that
precise in their input of labels. To provide exact insemination information, the
peak activity is an important reference point, from which the time of ovulation
and optimum insemination time can be estimated. The timespan starting two
hours prior to maximum and ending eight hours post maximum is then labeled
as heat. Estrus itself is not a singular moment but lasts hours. Therefore with
the labels an attempt is made to train the model to classify the time range
relevant to farmers and not detect a single irregularity. This also reduces the
class imbalance to some degree, although it remains quite significant.

After computation of all label classes, the label vectors are combined by applying
an element-wise OR operation over all vectors, that is, the final label of a sample
is set to one if at least one of the label vectors is one. Otherwise if all are zero,
the final label is zero as well.

Dataset Composition
Feed-forward neural networks such as the MLP used for this work do not

possess any memory. As a consequence, any information needed by the network
to perform its classification task needs to come from the input. In case of

42

4 Methodology

o

Time | |72 /\1’3 x2 |T1 Time
3 x4 |23 | T2

v | x4 3
Delay

Figure 4.9: “Time-to-space” transformation.

time series classification, a significant portion of information is provided by
previous values of the time series. The step in figure 4.6 titled “Time-to-Space
transformation” deals with this requirement by transforming the time series
in such a way that each sample is not a single value but instead a time slice
(figure 4.9) of the value to be classified and its immediate past. This can be
accomplished by duplicating the original time series N times, where N is the
number of samples of past information that are to be passed to the model.
After duplication, the n-th column is then time-shifted by n.

The performance of a machine learning model or any statistical model for that
matter can not be evaluated with data that was used in training, because
in such a case, the model could have “learned the data by heart” instead of
learning an underlying pattern or ground truth. This would result in deceptively
good performance during evaluation, while the model would then perform very
badly on data it has not observed previously. This behavior is termed overfitting
of training data, while a model that performs well on unseen data is said to
generalize.

To forgo this problem, data is commonly split into parts of unequal size, one
for training and another for evaluation. If not stated differently, experiments
were performed with a split of % of the data falling into the evaluation set and
% into the training set. Implementation-wise, the train_test_split method of the
dask.ml library was used. This method also shuffles rows before performing the

43

4 Methodology

split, so that any bias in the data that is a result of how it is ordered does not
propagate into the test and training sets.

An optional final step for the preprocessing pipeline is the creation of multiple
instances of the same training set by shuffling the data. Often when training
a neural network, several passes are performed over the training data termed
epochs. It may be beneficial to shuffle the training set between epochs. This
option is available via a random permutation implemented by dask.

4.2 Machine Learning Models

This section documents the work undertaken to train and evaluate the machine
learning models as well as the work to get the data loaded into pytorch.

4.2.1 Data Loader

There is a custom system for feeding data into a model provided in pytorch.
This method is based on a class representing the data and another one that is
called the data loader that samples from the data and passes it to the model,
incorporating multi-process parallelism. This system offers a lot of flexibility
because the user can write own implementations tailored exactly to the use
case and the properties of the data. There is a strong interface that - if adhered
to - ensures compatibility with pytorch.

With pytorch come two built-in ways of representing the data: The map-style
dataset and the iterable-style dataset. In case of the map-style dataset, the data
class provides a map from indices or keys to data samples. The data loader
then performs (pseudo-)random access via these keys to build batches that are
loaded into the model. This is a viable way of working with data where random
access is performant.

In case of the training data format chosen for part of this work, random access
on single non-adjacent samples becomes very slow because zarr splits the array
into blocks that are individually compressed and stored. If random samples
are accessed, all blocks that contain them have to be decompressed. To ensure
optimal performance, it is desirable that the lowest possible number of blocks

44

4 Methodology

has to be decompressed for any batch. In case of random access without using a
cache, the number of blocks being decompressed would be impractically high,®
resulting in bad performance.

Block size is configurable, but there is a tradeoff between block size and
compression rate. Bigger blocks allow a more efficient compression at the price
of taking longer to decompress and vice versa. Also each block is stored as a
separate file. Making blocks too small can thus lead to issues with the number
of files in a folder or partition (depending on the file system that is used). Due
to these issues, it is impractical to use the map-style dataset together with a
zarr database that combines the entire data into a single array. If, however,
data can be with each animal having a separate array, this remains a viable
solution.

The iterable-style dataset offers a second way of loading data. Instead of
returning data for an index, an iterator over the data is returned. The data
loader then repeatedly calls the iterators next method until it has enough
samples for a batch. The difference at the database level is that samples are no
longer chosen randomly, instead adjacent samples are loaded. This minimizes
the number of blocks having to be decompressed because zarr implements an
iterator with a built in block cache. Thus the current block is only decompressed
once. Parallelism is achieved by having multiple iterators work on different
slices of data.’

This approach has one major downside. That is, random sampling from the
data is no longer achieved at the model training stage and one has to enforce
the randomness when creating the dataset. This comes at comparatively little
additional cost though, since data has to be shuffled prior to splitting between
test and training dataset anyway (see section 4.1.3).

8The exact ratio of blocks and samples depends on blocksize, batch size and the size
of the entire dataset. If the dataset is large compared to block and batch size, each sample
would likely come from a separate block.

9zarrs previously existing iterator had no concept of iterating only over parts of the
array. Since this would have hampered performance at startup of each data loader worker
(the worker having to run the iterator to its starting point before being able to provide the
requested data), a pull request was contributed to zarr that expands the iterator with this
functionality.

45

4 Methodology

There are several approaches in machine learning as to how a dataset can
actually be consumed:

e Batch processing
e Sample by sample processing
e Minibatch processing

In batch processing, the entire dataset is consumed at once. This is the optimum
with regard to stability of many optimization algorithms, however a prerequisite
is that the entire dataset can fit into RAM or Video Random Access Memory
(VRAM) in case a Graphic Processing Unit (GPU) is used instead of a CPU
to speed up computation. Given the size of typical datasets required to train
learning models such as LSTM of even modest dimensions, this is not an
option.

On the other extreme of the spectrum there is sample-by-sample processing,
where each input sample is loaded separately and the model is updated based
on the error gradient computed on just one sample. While the memory footprint
of this approach is much more manageable than batch processing, all numerical
convergence advantages of batch processing are lost and as such, convergence
may be much slower and the model may not converge against a solution of the
same classification performance. Additionally, with this type of processing, a
lot of parallelization potential is foregone, especially in GPU processing where
a lot of pipelines can work in parallel, thus leading to either long training times
or increased hardware requirements.

The third option, called minibatch processing, is a compromise between the two
aforementioned approaches. Data is split into smaller parts that will comfortably
fit into available memory - the minibatches - and the model is updated based
on the gradient computed from these minibatches. While not offering the same
favorable convergence performance as batch processing, the impact is kept much
smaller compared to sample-by-sample processing and there is a considerable
reduction of training time!°.

10The LSTM unit used in this work trained by more than factor four faster with minibatches
of size 10 compared to batchsize of 1. 10 was the maximum number of minibatches that
would reliably fit into the 11 Gb of vRAM of the nVidia GTX 1080Ti GPU used to accelerate

training.

46

4 Methodology

It is dictated by the nature of how RNNs consume data, that the data format
is fundamentally different compared to FFNs. Where @ for the MLP model in
this work was a three-dimensional tensor of format with dimensions being time
delay/feature and sample, in case of LSTMs, samples can not be concatenated
along the time axis. The reason for this is that via means of the hidden state h,
the model forms implicit context to the data. Concatenating samples along the
time axis would imply that data consists of a singular continuous time series.
The discontinuities in the signal as well as the context belonging to the previous
animal bleeding over into the next animal would lead to undesirable effects
to the detriment of convergence towards a performant model and ultimately
worse performance. As a consequence, data must be organized in a different
way (section 4.1.2 and in particular, figure 4.5).

With this data format, concatenation must happen along a third axis, the
batch axis, to comply with requirements dictated by the RNN nature of the
model. This is however not possible out-of-the-box, since time axes of samples
are of different lengths.!* The solution for this problem is to pad all samples in
a minibatch to the length of the longest sequence. pytorch offers a datatype
called a PackedSequence that not only stores all the padded sequences but also
the actual length of each sequence, masking the padded part at computation
time so it is oblique to the model. After processing, the results have to be
unpacked and flattened, afterwards a mask is applied to get rid of padding so
that the loss function only considers valid data.

4.2.2 Multilayer Perceptron
Architecture
The MLP implementation for this work consists of 6 hidden layers & 1000

neurons, an input layer 4 289 neurons'? and a single output neuron. In between
each layer and its activation function, batch normalization is used.!?

HThe reason for these dissimilar lengths lies in the nature of the data. Sensors are activated
at different times for different animals and certain other data, particularly group activity
data may not be available through the entire time, leading to time samples being dropped
from the index.

12988 time series data points and one for DIM information.

3 The output layer is an exception.

47

4 Methodology

Objective Function

The most common choice of objective function for binary classification is the
Binary Cross Entropy (BCE)/log loss function, which is defined as

N

l(z,y) = %Z —w, <yn logo(x,) + (1 — yn) -10g<1 — a(xn)>) (4.1)

n=1

Training a model on data that contains a big class imbalance usually leads to
the model classifying everything as the majority class, because this behavior
helps it minimize the cost function sufficiently. Since this is not the intended
behavior for a classifier, BCE can incorporate class reweighting, which makes
the cost function consider one class much more heavily than the other. BCE is
then defined according to

N

l(x,y) = i Z —wy, <pyn logo(x,) + (1 — yn) - log<1 — a(xn)>> . (4.2)

n=1

with p being the weight of the positive class weight.

Optimization

The optimizer used for training the MLP model is the Adam algorithm [KB15],
which has become very popular in deep learning applications. Adam stands for
adaptive moment estimation and is a stochastic gradient based optimization.
The major novelty of Adam is that, as hinted at by the name, it adapts its
learning rate based on estimates of the first and second moments of the gradient.
This improves the convergence behavior, especially late in the learning phase
and in cases where the gradient is very noisy.

48

4 Methodology

Design considerations

The motivation for trying this type of model was not the expectation that
it would perform exceptionally well. It started out as a baseline while the
infrastructure around it was put in place. Eventually it achieved noticeable
performance under controlled conditions.!*

Compared to more specialized architectures, this type of neural network has
an unfavorable way of scaling complexity wise regarding the number of input
features. For example, if for each data point, the previous two days of time series
data are considered as input features, this will result in 288 features, requiring
288 neurons in the input layer. If the classification task is multivariate, each
additional time series that should be considered then adds an additional 288
input features for this configuration. Additionally due to the “general purpose”
nature of a vanillal® MLP, learning a complex task such as multivariate time
series classification requires individual hidden layers to be very wide as well,
that is, to contain many neurons.

To reduce the complexity of the learning task and the required size of the input
layer, this approach was used solely with the “heat feature” and the DIM as
input (see section 4.1.3).

4.2.3 Long Short Term Memory
Architecture
For the LSTM architecture, a single LSTM cell with a cell width of 100 neurons

was used. The hidden state is mapped onto the output via a fully connected
layer with a sigmoid activation function.

Particularly when the model did not have to deal with class imbalance. For more details
see section 5.
15Vanilla in the sense of there being no specialization of layers towards a certain task.

49

4 Methodology

Input metrics

The input sequence is made up of four features, the activity, temperature
with drink spikes removed, the DIM and the group activity. Both temperature
and group activity are manually preprocessed metrics, therefore it is debatable
whether this can still be considered a true deep learning task in accordance with
the definition chosen for this work. However, in case of the group activity, using
unprocessed signals would have been technically unfeasible. Groups consist
of varying numbers of cows, which can not be accommodated, as the size of
the feature space needs to be preset and can not be variable. Additionally
feeding the group information to the model in this way would have inflated the
feature space by one order of magnitude or even more and would most likely
have required a larger model, which in term usually drives the requirement for
data necessary to train. The resulting requirements with regard to difficulty of
training as well as processing power could potentially have far exceeded the
scope of this work.

Objective Function

For the LSTM, same as for theMLP model, BCE was used (equations (4.1)
and (4.2)) as loss function.

Optimization

Again, same as the MLP model, the Adam optimizer was chosen.

Gradient clipping

LSTM as implemented for this thesis displayed a tendency to suffer from a
sporadically occurring exploding gradient. These rare events completely fouled
the training process, driving model weights to regions from which recovery is
not possible. To keep this from happening, gradient clipping was added to the
model by clipping the gradient norm just before updating the model weights,
as described in [GBC16].

50

5 Results

In this section metrics used to evaluate performance (section 5.1) as well as
the experiments performed in the course of evaluation and their results are
presented. Both the MLP and LSTM models were trained and tested via cross
validation, the MLP on data with and without class imbalance (section 5.2),
LSTM was only trained on unbalanced data! with two different class reweighting
settings (section 5.3).

5.1 Evaluation metrics

Models are evaluated on the basis of four basic performance metrics:

e Precision
e Recall

e F-Score
e Accuracy

Each of these metrics except accuracy is calculated separately for both positive
and negative class. Additionally the support of each class is calculated as well
as the average and weighted average over classes.

The choice of using this ensemble of metrics for evaluation is well established
for binary classification. Precision and recall together (when calculated for each
class) give a much more complete view of the classification behavior of a model
as opposed to accuracy alone, especially with regard to unbalanced data as is
the case in this thesis. The reason for calculating both for each class separately

'Removing the class imbalance like for the MLP model would not have been possible in
case of the LSTM, because it would have destroyed temporal context, which in case of the
MLP was contained in a separate data dimension, see section 4.1.2.

51

5 Results

is that neither considers true negatives. However, the true negatives of one
class are the true positives of the other class, so this helps to cover a “blind
spot” that could otherwise lead to an incomplete picture of performance.

The Fi}-Score serves to combine both precision and recall into a single per-
formance metric. Care must be taken in classification problems such as this
not to rely solely on F, because it does not consider true negatives.? Also, in
practice often either precision or recall is valued higher than the other, while
the Fi-Score gives similar importance to both. Since the objective of this thesis
is to evaluate a prototype and not a highly optimized production model, the
F-Score is sufficient.

Additionally, a confusion matrix is presented for each experiment so the magni-
tude of true and false classifications relative to each other can be presented in
an intuitive fashion.

5.1.1 Precision

The precision is the ratio of true positive cases over all positive classifications,
defined as

ip

Precision = .
tp+ fp

(5.1)

tp is the number of true positive and fp is the number of false positive classifi-
cations. The significance of precision lies in stating how many of the positive
predictions were actually correct. Precision ranges from 0 to 1, where 0 indi-
cates that all positive predictions were wrong, while 1 indicates that all were
correct.

5.1.2 Recall

Recall is the ratio of true positive classifications over the sum of true positives
and false negatives, defined as

2This is somewhat remedied by calculating separate Fj-Scores for both classes.

52

5 Results

tp

Recall = ————,
tp+ fn

(5.2)

with fn being the number of false negative classifications. Intuitively, recall
states how much of the positive labeled data was correctly classified by the
model. It too ranges from 0 to 1, where 0 indicates that none of the positive
cases were identified, while 1 indicates that all were classified correctly.

5.1.3 Fj-Score

The Fj-Score is defined as the harmonic mean of precision and recall:

Precision - Recall
F=9. |
! Precision + Recall (5-3)

The Fj-Score is a positive number ranging from 0 to 1. Zero indicates that
all classifications were wrong while 1 indicates that all classifications were
correct.

5.1.4 Accuracy

The Accuracy reflects the overall agreement of model classification and label
data and is defined as

tp+in

Accuracy =
Y ot in+ fp+ fn

(5.4)

where tn is the number of correct negative classifications. It is added for
completeness, although not much emphasis should be put on it. Due to the
class imbalance, even if none of the heats were correctly identified, their small
number would cause accuracy to be quite high.

53

5 Results

5.2 Multilayer Perceptron

Training for the MLP model was performed on a time slice of 2 days of the
“heat feature” and the respective DIM value as input. Parameters for the Adam
optimizer were as follows: learn rate = 0.01, 51 = 0.9, 8, = 0.999, e = 1-1078.
These are pytorch defaults, except the learn rate was increased by one order
of magnitude. Batch size was set to 50000. The validation split of data was
performed with a testset ratio of 0.3 except when training on the dataset
with included class imbalance. Training was performed over 50 epochs without
shuffling of batches in between epochs.

5.2.1 Balanced Dataset

The dataset used in this work has a class imbalance factor of roughly 250, so for
each sample that is labeled as heat, there are 250 samples labeled not as heat.
This imbalance creates huge issues for a machine learning algorithm, or any
classification algorithm in general, since few false negatives compared to the
number of all samples will already result in a significant reduction of precision
of the positive class. As a consequence, during early development of the MLP
model, the dataset was artificially balanced by dropping a random selection
of samples from the negative class until both classes were equal in numbers.
The motivation for this experiment was to determine whether the model was
rich enough for learning in an optimized setting, early on during development.
Table 5.1 and figure 5.1 show the results.

‘ H Precision ‘ Recall ‘ Fi-Score ‘ Support ‘

no heat 0.955931 | 0.919398 | 0.937309 | 2349665
heat 0.922466 | 0.957672 | 0.939739 | 2352823
Accuracy 0.938548 | 4702488

Macro Avg 0.939198 | 0.938535 | 0.938524 | 4702488
Weighted Avg || 0.939187 | 0.938548 | 0.938535 | 4702488

Table 5.1: Test results with MLP model trained and evaluated on data with removed class
imbalance.

54

5 Results

0.8
No heat 189387

0.6
pel
Qo
=

0.4

heat 99590
0.2

X X
(o))
ov\\e’ Ne
&

Figure 5.1: Confusion matrix of the MLP for the balanced dataset. A confusion matrix
visualizes the accuracy of classification. Each row corresponds to a class label,
while the columns correspond to the actual classification made by the model. As
a consequence, the higher the values along the main diagonal and the lower the
values along the secondary diagonal, the better the classification. The data for
colorization is normalized per row.

Considering the superficial nature of the hyperparameter optimization that
was done, the results are surprisingly good. For both classes, a Fj-score of
about 0.94 is achieved. The confusion matrix (figure 5.1) underlines these
results, the majority of values is situated in the main diagonal, which signals
correct classification. The model was clearly able to capture the essence of what
distinguishes both classes.

Still, it should be kept in mind that the balancing of classes removes a majority
of the entire dataset, and as a consequence, a lot of opportunity for the model
to make mistakes. The remaining experiments will unveil that the unbalanced
dataset poses a much harder problem to solve.

5.2.2 Unbalanced Dataset

For the unbalanced dataset, two experiments were performed, one with the
model trained on the balanced dataset and a second one with the model trained

55

5 Results

on the imbalanced dataset, albeit with class reweighting in the objective
function.

Results are presented in table 5.2 and figure 5.2.

‘ H Precision ‘ Recall ‘ F-Score ‘ Support ‘

no heat 0.999838 | 0.937214 | 0.962211 | 474935652
heat 0.061904 | 0.969628 | 0.116379 | 2349381
Accuracy 0.927522 | 477285033

Macro Avg 0.530871 | 0.948471 | 0.539295 | 477285033
Weighted Avg || 0.995221 | 0.927522 | 0.958048 | 477285033

Table 5.2: Test results with MLP model trained on data with removed class imbalance,
evaluated on data with imbalance.

0.8
no heat 34521101
0.6
X
Q
-+
=
0.4
heat 71355
0.2
X X,
> 2
@ &

Figure 5.2: Confusion matrix for the MLP trained on balanced and evaluated on imbalanced
data.

The results suddenly paint a very different picture compared to section 5.2.1.
While the Fj-score for the negative class at 0.96 is rather good, for the positive
class it sits at 0.11, owing to the very low precision of 0.06. The respective
confusion matrix (figure 5.2) underlines the issue: The rows within themselves
look good, but looking at the right column of the matrix, the number of false

56

5 Results

positives (upper right) is an order of magnitude bigger than the number of true
positives (lower right). This means that many samples were falsely classified
as heats. This corresponds ti a large amount of false alarms. Owing to the
significant class imbalance, the recall of just short of 0.94 for the negative class
results in a number of false positives that dwarfs the total number of positive
labels in the dataset.

Finally the model was trained on the dataset with imbalance present with class
reweighting. The test-train split ratio had to be changed to 50%, otherwise
the size of the training set would have exceeded available non volatile memory
space. Positive class weight was set to 250.

The results are presented in table 5.3 and figure 5.3.

‘ H Precision | Recall ‘ Fi-Score ‘ Support

no heat 0.999074 | 0.939812 | 0.968537 | 791556817
heat 0.063465 | 0.823969 | 0.117852 | 3918237
Accuracy 0.939241 | 795475054

Macro Avg 0.531269 | 0.881890 | 0.543194 | 795475054
Weighted Avg || 0.994465 | 0.939241 | 0.964347 | 795475054

Table 5.3: Test results with MLP model trained and evaluated on data with imbalance.

The results echo what happened in the first experiment with unbalanced data.
Due to the class imbalance, the number of false positives is much higher than
the number of positive labels. There is a slight difference in that precision of
the positive class is a bit higher while recall is 14 percentage points lower. The
F-score for the positive class is nonetheless almost the same, so this experiment
simply resulted in a different tradeoff between precision and recall, while the
overall performance is not significantly different.

Despite working with class reweighting as well as training on the dataset with
removed class imbalance, the MLP could not achieve the required performance.
Specifically, the number of false positives remains an issue.

57

5 Results

0.8
no heat 47642457

0.6
X
Q
o
=

0.4

heat 689732
0.2

Figure 5.3: MLP confusion matrix for both training and evaluation on imbalanced data.

5.3 Long Short Term Memory

For the LSTM model, the parameters of the Adam optimizer were set to
pytorch defaults (see section 5.2). Batch size was set to 10, testset size for
cross validation was kept at a ratio of 0.3. Gradient clipping was set to 10.
Input metrics used were DIM, activity, group activity and filtered temperature.
Training was run for 50 epochs with random batch sampling.

The first of two experiments experiments was performed with a positive class
weight of 100.

Results are listed in tables 5.4 and figure 5.4.

The theme from the MLP model continues with the LSTM model. A notable
difference with a positive class weight of 100 is that the model even more heavily
favors the negative class, resulting in even lower precision for the positive class,
which should not come as a surprise, as it is a logical consequence of a lower
class weight.

For the second LSTM experiment, parameters were kept similar except for
positive class weight, which was set to 250.

Results are listed in tables 5.5 and 5.5.

58

5 Results

H Precision ‘ Recall ‘ Fi-Score ‘ Support ‘

no heat 0.999421 | 0.840877 | 0.913319 | 528629444
heat 0.027132 | 0.901035 | 0.052678 | 2603609
Accuracy 0.841171 | 531233053
Macro Avg 0.513276 | 0.870956 | 0.482999 | 531233053
Weighted Avg || 0.994655 | 0.841171 | 0.909101 | 531233053

Table 5.4: Test results for LSTM with class weight 100.

no heat

heat

84117312

N .

Ko
AN

oney

Figure 5.4: Confusion matrix for LSTM with class weight 100.

H Precision ‘ Recall ‘ F-Score ‘ Support

no heat 0.999350 | 0.937664 | 0.967525 | 528629444
heat 0.064747 | 0.876201 | 0.120584 | 2603609
Accuracy 0.937363 | 531233053
Macro Avg 0.532049 | 0.906933 | 0.544054 | 531233053
Weighted Avg || 0.994770 | 0.937363 | 0.963374 | 531233053

Table 5.5: Test results for LSTM with class weight 250.

59

5 Results

0.8
no heat 32952514
0.6
X
Q
o
=
0.4
heat 322323
0.2
X X
> 2
¥ N
o

(\

Figure 5.5: Confusion matrix for LSTM with class weight 250.

With this setting, the LSTM model is on par with the performance of the
MLP model, even though the LSTM did not get the “heat feature”, which
contains both the information of activity and group activity as did the latter.
The MLP model therefore did not have to learn the relationship between those
raw inputs.

5.4 Summary

Looking at the results presented in sections 5.2 and 5.3, neither model was able
to achieve the desired performance. Both do so in a remarkably similar way,
by producing a high number of false positives, which in turn result in a low
precision score of the positive class, since the support of said positive class is
very low relative to the total number of samples. Neither training the MLP
model with removed class imbalance nor using varying class reweighting in
either model resulted in significant improvements.

To get to the bottom of why results are the way they are, chapter 6 looks at a
couple of failure modes of the LSTM to offer explanations for why the models
perform as they do and identify possible remedies.

60

6 Analysis of Classification
Behavior

Looking at the results from chapter 5, apart from table 5.1 the results look
rather underwhelming. There is a common theme of very low precision for the
positive class, resulting in a mediocre Fij-Score. The generally acceptable scores
for the negative class suggest that each model has simply learned to heavily
favor the negative class. This is insofar surprising, as class reweighting was
used to modify the cost function in a way that the positive class is represented
according to the class imbalance factor.

Results for both MLP and LSTM models are suspiciously similar, suggesting
that there may be some kind of underlying systematic issue. Given these
circumstances, a closer survey of the classification behavior of the LSTM model
trained with class weight of 250 was made to gain a better understanding.
During the course of this survey, several points were identified that somewhat
relativize the low positive class precision.

6.1 Classification Problems

6.1.1 Positive Class Label Temporal Precision

Section 4.1.3 discusses how labels are actually generated. The heat datetimes
from meta data are used to seek local maxima of activity, around which, in a
fixed timespan, positive labels are created. Figures 6.1 and 6.2 illustrate that
this process does not always capture actual animal behavior. There are cases
where a pre-heat may cause a premature onset of the activity increase. In other

61

6 Analysis of Classification Behavior

o
IS

DIM
|

o

5}

|
g
=}

Normalized

4~ B=m model_output
e label

I
23000 23200 23800

N
5}

— T =
I model_output
- label =

Nooo
n o

Activity

Normalized

o
S

Py

23000 23&00 23800

3 T
- model_output
27w label

1 | I 1
-1
|

23000 23200 23400

Normalized
Group Activity

23800
0.25

0.00 W‘TV—V"VW‘\V’A‘V /N _WALVI—W 4»

-0.25

perature

=

m

Normalized

—0.50 1 m=m model_output
—0.754 | ‘Iabel

]
-

23000 23200 23400 23600 23800
Sequence index

Figure 6.1: Example of label and LSTM model classification output overlayed on the input
features. Red areas mark samples classified as heat by the model. Green areas
mark samples labeled as heat.

cases, the local activity maximum does not always agree well with what a
human expert would classify as the span of the heat.

These problems suggest that the approach used to generating heat labels is too
crude. The lack of temporal precision in the labels causes the model to be unable
to learn the underlying ground truth without making its heat classification
timespan far too long. This factor alone causes an estimated number of false
positives of two to three times the number of positively labeled data.

62

6 Analysis of Classification Behavior

T
0.0 | B model_output |
2 - labe
N
5z 03
gD
2 -1.0
29700 30000 30100
T -
73 model_output
o
ﬁ_@ 5.0 label H
g2 25
5<
z 0.01
=25
30100
3 T
-]l - model_output
§§ 2 | label i
=9 11
© <
Ee ,
™ |
-1
Il
29700 30000 30100
0.25
° model_output
85 000 label |
Nw
TG 025
E Q
§§ ~0.50
-0.75
29900 30100

Sequence index

Figure 6.2: Similar plot to figure 6.1 from the same animal, at a different time. Note the
distinct pre-heat not considered by the label.

63

6 Analysis of Classification Behavior

N
.

I model_output

75é00 75é00 76600 76200 76:100 76600 76é00 77600

. model_output

1 . i i label

75600 75800 76000 76200 76400 76600 76800 77000

DIM

Normalized

o

-
v

Normalized
Activity
-
o
L]

o w

-
v

>
s model_output
82 10- N N [— |_outp!
53 . ll = label
© <
Ea 51
S5
=5 O'W-MMMWMM
75600 75800 76000 76200 76400 76600 76800 77000
, 04
FE 0.2 4 . .I model_output
sE ll = label
29 o004
25 02
S5 024
- H H

75600 75800 76000 76200 76400 76600 76800 77000
Sequence index

Figure 6.3: Numerous labels are in such close temporal proximity, that they must be consid-
ered duplicates. The above is a prime example of how these duplicates cause the
model to widen the timespan of its heat classifications.

6.1.2 Duplicate Labels

While surveying the classification plots, it was discovered that a significant
number of labels exist in close temporal proximity (figure 6.3). This serves as
an aggravating factor to the problems caused by the lack of temporal precision
of labels, causing a even stronger tendency of the model to make the timespans
classified as heat overly wide. Overall, the ground truth used to train the models
lacks temporal precision.

6.1.3 Classification Issues in Grazing Animals

There seems to be a strong influence from the way a farm operates onto how well
the proposed methods are capable of detecting heats correctly. In particular it

64

6 Analysis of Classification Behavior

o —0.754 ™= model_output [/] T

8 m label I ‘

&=

g2 -1.001

S

Z -125 | |
4000 6000 8000 10000 12000 14000

| m== model_output
 label

Normalized
Activity
~
v

4000 6000 8000 10000 12000 14000
o2 1 == model_output || [
g2 m label
=0
T <
Ea
g3o
[c]
4000 6000 8000 10000 12000 14000
0.2 1 =

| mo;iel_output
e label

o
S

Normalized
Temperature

4000 6000 8000 10000 12000 14000
Sequence index

Figure 6.4: Example of a barn-held animal where classification worked considerably well.

is the non-stationary behavior of animals held outside that poses a fundamental
problem.

Consider for example an animal held inside a barn (figure 6.4). Activity statistics
are very stationary, resulting in excellent SNR. This in term makes it easy for
the model to correctly recognize heats. On the other hand, the activity of the
animal in figure 6.5 is highly non-stationary, suggesting that it spends varying
amounts of time outside. The activity spikes displayed by the second animal
result in numerous false positive classifications.

The overall behavior of the model therefore demonstrates that its classifications
are heavily based on spikes in activity alone.

The extraordinary number of false positives in grazing cows indicates that it
did not learn to consider the activity of the respective group, as information

65

6 Analysis of Classification Behavior

s model_output

3
N 27 - label
T
€0
B, |]
! I
15 50000 52000 54000 56000 58000 60000 62000
- [model_output
82107 m fabel
© .2
€L 51
&<
= 0
15 —20000 52000 54000 56000 58000 60000 62000
-2 - model_output
Q>
N5 101w label
© <
=2
O 0
04 50000 52000 54000 56000 58000 60000 62000
[model_output

. mm |abel

Normalized
Temperature

|

o o o

N o N

50000 52000 54000 56000 58000 60000 62000
Sequence index

Figure 6.5: This animal is held on pasture sporadically. Note irregular activity spikes of
varying magnitude that cause multiple false positives. These spikes are present
in the group activity as well, which suggests that they were not caused by heats
but instead by outside influence.

contained therein could aid the model in distinguishing in these cases. High
activity being both present in the single animal and the group is a strong
indication of the group being relocated. Further research should be put into
determining whether the data might be heavily biased towards animals being
held inside a barn as opposed to being held in pastures. If this is indeed the
case, using techniques such as careful data augmentation to reduce the bias
could help improve classification for pasture held animals.

06

6 Analysis of Classification Behavior

6.2 Summary

Although there is a severe lack of precision for classifying heats, the approach
prototyped for this work still shows promise. Several issues were identified
that severely hinder the ability of the model to achieve proper classification.
Despite these issues, the model has demonstrated the capacity to detect heats
in barn-held cows reasonably well, even if lacking robustness. Chapter 7 will
discuss some possibilities to improve on the existing system.

67

7 Outlook and future work

The goal of this thesis was to find a suitable architecture and implement a
prototype machine learning model for dairy cow heat detection under a diverse
set of livestock farming conditions. The milestone of reaching high overall model
performance was not quite achieved. Designing a machine learning system is an
iterative process however that does not conclude with implementing and testing
the model. The experiments performed on the two models implemented in the
course of this thesis revealed issues with the training data set. In particular,
these are:

e Lacking temporal precision of labels
e Duplicate labels

Also an overly high false positive rate was discovered in animals with periodic
spikes in activity, indicating that the models failed to learn to consider the
group activity accordingly.

As a follow up to this thesis, future work will focus on improving the quality of
the labels. Duplicate labels can be eliminated by using debouncing techniques,
additional work will go into more careful placement of heat labels. These steps
alone hold much potential for improvement.

Additionally, there is further potential in fine-tuning the models. Hyperparam-
eter optimization was almost completely omitted in this work. Performance
could benefit from tuning optimizer parameters as well as layer size and LSTM
cell count. Analogous to batch normalization in FFNs, layer normalization
techniques exist for RNNs [BKH16] as well that may improve convergence
speed and quality.

Since the model was not able to learn the relationship between cow and group
activity, either due to lack of training data size, model capability or both, a
compromise could be to additionally feed the handmade “heat feature” or other

68

7 Outlook and future work

handmade features into the model that emphasize the single cow activity versus
group activity correlation.

Due to the limited scope of this thesis, implementing the most promising
architectures in the form of FCN and ResNet had to be omitted. Future work
will include testing both architectures on the dataset, once the identified issues
with labels have been solved.

Finally, recent research in the fields of language and sequence processing suggests
that attention mechanisms such as used in the transformer architecture have the
potential to be able to capture even longer distance sequence relationships than
LSTMs. Future work should consequently consider implementing a transformer
network for TSC in the hope of improving the overall performance.

69

Appendix

70

Appendix

Acronyms

ALSTM-FCN Attention Long Short Term Memory Fully Convolutional Net-
work

APl Application Programming Interface

BCE Binary Cross Entropy

BPTT Back-Propagation Through Time

CNN Convolutional Neural Network

COTE Collective of Transformation-based Ensembles

CPU Central Processing Unit

CSV Comma Separated Values

DFT Discrete Fourier Transform

DIM Days in Milk

DTW Dynamic Time Warping

FCN Fully Convolutional Network

FFN Feed-Forward Network

GPU Graphic Processing Unit

GRU Gated Recurrent Unit

HIVE-COTE Hierarchical Vote Collective of Transformation-based Ensembles

HDF5 Hierarchical Data Format version 5

HMM Hidden Markov Model

ID Identifier

I0T Internet of Things

JSON Java Script Object Notation

k-NN £-Nearest-Neighbors

LSTM Long Short Term Memory

MLP Multilayer Perceptron

71

Appendix Acronyms

NaN “Not a Number”

RAM Random Access Memory

ReLU Rectified Linear Unit

ResNet Residual Network

REST Representational State Transfer
RNN Recurrent Neural Network

SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio

SVM Support Vector Machine

TSC Time Series Classification

UTC Universal Coordinated Time
vVRAM Video Random Access Memory

72

Bibliography

[Ani]

[Bag+15]

[Bag+17]

[Bah+16]

[BKH16]

[CH67]

[Che+18]

smaXtec Animal Care GmbH Inside Monitoring. URL: https :
//smaxtec.com/ (cit. on p. 2).

Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom.
“Time-Series Classification with COTE: The Collective of
Transformation-Based Ensembles.” In: IEEE Transactions on Knowl-
edge and Data Engineering 27.9 (2015), pp. 2522-2535. DOI: 10.
1109/TKDE.2015.2416723 (Cit. on pp. 7, 8).

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and
Eamonn Keogh. “The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances.”
In: Data Mining and Knowledge Discovery 31.3 (2017), pp. 606—
660. DOI: 10.1007/s10618-016-0483-9 (cit. on pp. 5, 7).

Dzimitry Bahdanau, Jan Chorowski, Dimitriy Serdyuk, Philémon
Brakel, and Yoshua Bengio. “End-to-end attention-based large
vocabulary speech recognition.” In: Proceedings of 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2016, pp. 4945-4949. DOI: 10. 1109/ ICASSP . 2016 .
7472618 (cit. on p. 19).

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
Normalization. 2016. arXiv: 1607.06450 [stat.ML] (cit. on p. 68).

Thomas Cover and Peter Hart. “Nearest neighbor pattern classifi-
cation.” In: IEEFE Transactions on Information Theory 13.1 (1967),
pp. 21-27. DOI: 10.1109/TIT.1967.1053964 (cit. on p. 7).

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David
Sontag, and Yan Liu. “Recurrent Neural Networks for Multivariate
Time Series with Missing Values.” In: Scientific Reports 8 (Apr.
2018). DOI: 10.1038/s41598-018-24271-9 (cit. on p. 20).

73

https://smaxtec.com/
https://smaxtec.com/
https://doi.org/10.1109/TKDE.2015.2416723
https://doi.org/10.1109/TKDE.2015.2416723
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1109/ICASSP.2016.7472618
https://doi.org/10.1109/ICASSP.2016.7472618
https://arxiv.org/abs/1607.06450
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1038/s41598-018-24271-9

Bibliography

[Cho+14]

[Chu+14]

[das]
[Dau+18]

[Fau+19]

[Fir+02]

[Gas+15]

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bahdanau, and
Yoshua Bengio. “On the Properties of Neural Machine Translation:
Encoder—Decoder Approaches.” In: Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Trans-
lation. Doha, Qatar: Association for Computational Linguistics,
Oct. 2014, pp. 103-111. por: 10.3115/v1/W14-4012 (cit. on p. 20).

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua
Bengio. “Empirical evaluation of gated recurrent neural networks
on sequence modeling.” In: Proceedings of NIPS 2014 Workshop
on Deep Learning. Dec. 2014 (cit. on pp. 20, 21).

dask. URL: https://dask.org (cit. on p. 34).

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia
Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann
Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony
Bagnall, Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The
UCR Time Series Classification Archive. https://www.cs.ucr.
edu/~eamonn/time_series_data_2018/. Oct. 2018 (cit. on pp. 7,
17).

Kevin Fauvel, Véronique Masson, Elisa Fromont, Philippe Faverdin,
and Alexandre Termier. “Towards Sustainable Dairy Management
- A Machine Learning Enhanced Method for Estrus Detection.” In:
Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2019, pp. 3051-3059. DOTI:
10.1145/3292500.3330712 (cit. on p. 23).

Regina Firk, Eckhard Stamer, Wen Junge, and Joachim Krieter.
“Automation of oestrus detection in dairy cows: A review.” In:
Livestock Production Science 75.3 (July 2002), pp. 219-232 (cit. on
p. 29).

Johann Gasteiner, Josef Wolfthaler, Wolfgang Zollitsch, Marco
Horn, and Andreas Steinwidder. “Diagnostic validity of real time
measurement of reticular temperature for the prediction of parturi-
tion and estrus in dairy cows.” In: Proceedings of 12th Conference

on Construction, Engineering and Environment in Livestock. Sept.
2015 (cit. on p. 1).

74

https://doi.org/10.3115/v1/W14-4012
https://dask.org
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1145/3292500.3330712

Bibliography

[GBB10]

[GBC16]

[GS18]

[h5p]
[He-+16]

[Hig+19]

[HS97]

[1S15]

[Ism+19]

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse
Rectifier Neural Networks.” In: Journal of Machine Learning Re-
search 15 (Jan. 2010) (cit. on p. 10).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016 (cit. on pp. 8, 12-14, 17, 20, 50).

Omer Gold and Micha Sharir. “Dynamic Time Warping and Geo-
metric Edit Distance: Breaking the Quadratic Barrier.” In: ACM
Trans. Algorithms 14.4 (Aug. 2018). DOI: 10.1145/3230734 (cit.

on p. 6).
h5py. URL: https://www.hbpy.org (cit. on p. 32).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
residual learning for image recognition.” In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. Dec. 2016, pp. 770-778. DOI: 10.1109/CVPR.2016.90
(cit. on p. 17).

Shogo Higaki, Ryotaro Miura, Tomoko Suda, L. Mattias Andersson,
Hironao Okada, Yi Zhang, Toshihiro Itoh, Fumikazu Miwakeichi,
and Koji Yoshioka. “Estrous detection by continuous measurements
of vaginal temperature and conductivity with supervised machine
learning in cattle.” In: Theriogenology 123 (Jan. 2019), pp. 90-99.
DOI: 10.1016/j.theriogenology.2018.09.038 (cit. on p. 29).

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Mem-
ory.” In: Neural Computation 9.8 (1997), pp. 1735-1780. DOL:
10.1162/neco.1997.9.8.1735 (cit. on p. 13).

Sergey loffe and Christian Szegedy. “Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covariate
Shift.” In: Proceedings of Machine Learning Research. Vol. 37. July
2015, pp. 448456 (cit. on p. 12).

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhas-
sane Idoumghar, and Pierre Alain Muller. “Deep learning for time
series classification: a review.” In: Data Mining and Knowledge
Discovery 33.4 (2019), pp. 917-963. DOI: 10.1007/s10618-019-
00619-1 (cit. on pp. 5, 7, 19).

75

https://doi.org/10.1145/3230734
https://www.h5py.org
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.theriogenology.2018.09.038
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1

Bibliography

[Jar4-09]

[JJO11]

[Kar+17]

[KB15]

[Kid77]

[LTB16]

[Mar09]

[NH10]

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and
Yann LeCun. “What is the best multi-stage architecture for object
recognition?” In: Proceedings of IEEE 12th International Confer-
ence on Computer Vision. 2009, pp. 2146-2153. por: 10.1109/
ICCV.2009.5459469 (cit. on p. 10).

Young-Seon Jeong, Myong K. Jeong, and Olufemi A. Omitaomu.
“Weighted dynamic time warping for time series classification.” In:
Pattern Recognition 44.9 (2011), pp. 2231-2240. po1: 10.1016/j.
patcog.2010.09.022 (cit. on p. 6).

Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun
Chen. “LSTM Fully Convolutional Networks for Time Series Clas-
sification.” In: IEEE Access 6 (Dec. 2017), pp. 1662-1669. DOTI:
10.1109/ACCESS.2017.2779939 (cit. on p. 19).

Diederik P. Kingma and Jimmy Lei Ba. “Adam: A method for
stochastic optimization.” In: Proceedings of 3rd International Con-
ference on Learning Representations (ICLR). Dec. 2015 (cit. on
p. 48).

Charles A. Kiddy. “Variation in Physical Activity as an Indication
of Estrus in Dairy Cows.” In: Journal of Dairy Science 60.2 (1977),
pp. 235-243 (cit. on pp. 1, 29).

Jason Lines, Sarah Taylor, and Anthony Bagnall. “HIVE-COTE:
The Hierarchical Vote Collective of Transformation-Based Ensem-
bles for Time Series Classification.” In: Proceedings of 2016 IEEE
16th International Conference on Data Mining (ICDM). 2016,
pp. 1041-1046. DOI: 10.1109/ICDM.2016.0133 (cit. on p. 7).

Pierre-Francois Marteau. “Time Warp Edit Distance with Stiffness
Adjustment for Time Series Matching.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 31.2 (2009), pp. 306—
318. por: 10.1109/TPAMI.2008.76 (cit. on p. 6).

Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Im-
prove Restricted Boltzmann Machines.” In: Proceedings of the 27th
International Conference on International Conference on Machine
Learning. 2010, pp. 807-814 (cit. on p. 10).

76

https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1109/ICDM.2016.0133
https://doi.org/10.1109/TPAMI.2008.76

Bibliography

[0Co+11]

[pan]
[pya)

[pyt]
[RK20]

[Ros60)]

[SAD13]

[skl]
[SLD17]

[sma]

[Son+18]

Jared O’Connell, Frede Aakmann Tggersen, Nicolas C Friggens,
Peter Lgvendahl, and Sgren Hgjsgaard. “Combining cattle activ-
ity and progesterone measurements using hidden semi-Markov
models.” In: Journal of agricultural, biological, and environmental
statistics 16.1 (2011), pp. 1-16 (cit. on p. 23).

pandas. URL: https://pandas.pydata.org (cit. on p. 33).

pyarrow. URL: https://arrow.apache.org/docs/python (cit. on
p. 34).

pytables. URL: https://www.pytables.org (cit. on p. 33).

Marc RuSwurm and Marco Kérner. “Self-attention for raw optical
Satellite Time Series Classification.” In: ISPRS Journal of Pho-
togrammetry and Remote Sensing 169 (2020), pp. 421-435. DOI:
10.1016/j.isprsjprs.2020.06.006 (cit. on p. 21).

Frank Rosenblatt. “Perceptron Simulation Experiments.” In: Pro-
ceedings of the IRE 48.3 (1960), pp. 301-309. por: 10. 1109/
JRPROC. 1960.287598 (Cit. on p. 8).

Alexandra Stefan, Vassilis Athitsos, and Gautam Das. “The Move-
Split-Merge Metric for Time Series.” In: IEEE Transactions on
Knowledge and Data Engineering 25.6 (2013), pp. 1425-1438. DOTI:
10.1109/TKDE. 2012.88 (cit. on p. 6).

sklearn. URL: https://scikit-learn.org (cit. on p. 38).

Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully Con-
volutional Networks for Semantic Segmentation.” In: IEEFE Trans-
actions on Pattern Analysis and Machine Intelligence 39.4 (2017),
pp. 640-651. DOI: 10.1109/TPAMI.2016.2572683 (cit. on p. 17).

smaXtec. URL: https://github. com/smaxtec/sxapi (cit. on
p. 32).

Huan Song, Deepta Rajan, Jayaraman J. Thiagarajan, and Andreas
Spanias. “Attend and diagnose: Clinical time series analysis using
attention models.” In: Proceedings of 32nd AAAI Conference on
Artificial Intelligence, AAAI 2018. Jan. 2018, pp. 4091-4098 (cit.
on p. 22).

7

https://pandas.pydata.org
https://arrow.apache.org/docs/python
https://www.pytables.org
https://doi.org/10.1016/j.isprsjprs.2020.06.006
https://doi.org/10.1109/JRPROC.1960.287598
https://doi.org/10.1109/JRPROC.1960.287598
https://doi.org/10.1109/TKDE.2012.88
https://scikit-learn.org
https://doi.org/10.1109/TPAMI.2016.2572683
https://github.com/smaxtec/sxapi

Bibliography

[Tan+16]

[TD20]

[Tri+18]

[Vas+17]

[VV96]

[Wan+20]

[WBS58]

Yujin Tang, Jianfeng Xu, Katsunori Matsumoto, and Chihiro Ono.
“Sequence-to-Sequence Model with Attention for Time Series Clas-
sification.” In: Proceedings of 2016 IEEE 16th International Con-
ference on Data Mining Workshops (ICDMW). 2016, pp. 503-510.
DOI: 10.1109/ICDMW.2016.0078 (cit. on p. 19).

Christopher Tralie and Elizabeth Dempsey. Fxact, Parallelizable
Dynamic Time Warping Alignment with Linear Memory. 2020.
arXiv: 2008.02734 [cs.SD] (cit. on p. 6).

Trieu H. Trinh, Andrew M. Dai, Minh-Thang Luong, and Quoc V.
Le. “Learning Longer-term Dependencies in RNNs with Auxiliary
Losses.” In: Proceedings of 35th International Conference on Ma-
chine Learning, ICML 2018. Vol. 11. Feb. 2018, pp. 7930-7939
(cit. on p. 20).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.
“Attention is All You Need.” In: Proceedings of 31st Conference
on Neural Information Processing Systems (NIPS). 2017 (cit. on
p. 21).

J.H. Van Vliet and Frank Van Eerdenburg. “Sexual activities
and oestrus detection in lactating Holstein cows.” In: Applied
Animal Behaviour Science 50.1 (1996), pp. 57-69. DOI: https:
//doi.org/10.1016/0168-1591(96)01068-4 (cit. on p. 29).

Shuilian Wang, Hongliang Zhang, Hongzhi Tian, Xiaoli Chen,
Shujing Li, Yongqiang Lu, Lanqi Li, and Dong Wang. “Alterations
in vaginal temperature during the estrous cycle in dairy cows
detected by a new intravaginal device - a pilot study.” In: Tropical
Animal Health and Production 52.5 (Sept. 2020), pp. 2265-2271
(cit. on p. 29).

T. Randall Wrenn, Joel Bitman, and J. F. Sykes. “Body Temper-
ature Variations in Dairy Cattle during the Estrous Cycle and
Pregnancy.” In: Journal of Dairy Science 41.8 (1958), pp. 1071
1076 (cit. on p. 29).

78

https://doi.org/10.1109/ICDMW.2016.0078
https://arxiv.org/abs/2008.02734
https://doi.org/https://doi.org/10.1016/0168-1591(96)01068-4
https://doi.org/https://doi.org/10.1016/0168-1591(96)01068-4

Bibliography

[WO15]

[Wut]

WYO

[YHL13]

[YKO9]

[zar]

Zhiguang Wang and Tim Oates. “Encoding Time Series as Images
for Visual Inspection and Classification Using Tiled Convolutional
Neural Networks.” In: Papers from the 2015 AAAI Workshop. 2015
(cit. on p. 19).

Matthias Wutte. cattledb. URL: https://github. com/wuttem/
cattledb (cit. on p. 32).

Zhiguang Wang, Weizhong Yan, and Tim Oates. “Time Series
Classification from Scratch with Deep Neural Networks: A Strong
Baseline.” In: Proceedings of 2017 International Joint Conference
on Neural Networks (IJCNN), pp. 1578-1585. DOI: 10.1109/IJCNN.
2017.7966039 (cit. on pp. 17-19).

Ling Yin, Tiansheng Hong, and Caixing Liu. “Estrus detection in
dairy cows from acceleration data using self-learning classification
models.” In: Journal of Computers 8.10 (2013), pp. 2590-2598
(cit. on p. 22).

Lexiang Ye and Eamonn Keogh. “Time Series Shapelets: A New
Primitive for Data Mining.” In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2009, pp. 947-956. DOT: 10.1145/1557019.1557122
(cit. on p. 7).

zarr. URL: https://zarr.readthedocs.io/en/stable (cit. on
p. 34).

79

https://github.com/wuttem/cattledb
https://github.com/wuttem/cattledb
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1145/1557019.1557122
https://zarr.readthedocs.io/en/stable

	Abstract
	Introduction
	Related Work
	Time Series Classification
	Traditional Approaches
	Deep Learning Approaches
	Summary

	Estrus Detection and Machine Learning
	Conclusion on Related Literature

	Dataset
	Background on the Origin of Sensor Data
	Sensor Placement
	Sensor Measurements

	Structure of Raw Data
	Meta Data
	Time Series Data

	Methodology
	Preprocessing and Data Representation
	Data Gathering
	Data Storage
	Preprocessing

	Machine Learning Models
	Data Loader
	Multilayer Perceptron
	Long Short Term Memory

	Results
	Evaluation metrics
	Precision
	Recall
	F1-Score
	Accuracy

	Multilayer Perceptron
	Balanced Dataset
	Unbalanced Dataset

	Long Short Term Memory
	Summary

	Analysis of Classification Behavior
	Classification Problems
	Positive Class Label Temporal Precision
	Duplicate Labels
	Classification Issues in Grazing Animals

	Summary

	Outlook and future work
	Appendix
	Acronyms
	Bibliography

