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Abstract

E-learning systems have become a prevalent and almost unavoidable part of educa-
tion over the past years, and can take many forms. From so-called Massive Open
Online Courses (MOOCs) to smaller, locally-used training courses that take place
online, the field of e-learning is diverse.

This thesis took two e-learning systems into account for its analyses. First, the
data from six MOOCs was used to predict dropouts, and furthermore evaluate the
influence of forum interactions on dropout rates. In this, the number of interactions,
the user’s active time, as well as the average time between clicks achieved high
feature importance scores and showed promising results. However, while first
statistics showed what seemed to be a positive correlation between forum posts and
course completion, what could be found by using AdaBoosted decision trees was
that at the average active forum users of 6.38%, the forum data was not sufficiently
expressive to have much influence on the dropout prediction results, or to score
highly on feature importance.

Secondly, a small, university-specific e-learning course, built on the principle of
self-regulated learning, was investigated for patterns of user behavior. With only 31

students, the course showed a markedly lower user number than the previously
considered MOOCs, which had an average of 5852.67 students each. Due to this, a
combination of sequence extraction methods and heat maps was used to find user
behavior patterns and make inferences regarding assessment outcomes. By splitting
users according to their course performance, as well as by whether they exhibited
organised or unorganised behavior in their course progression, it was possible to
put those four user categories into relation. The findings showed that unordered
students had a tendency towards repeating assessments, while ordered students
most often reached full points on their first try. Furthermore, lower performing
students tended to view less new content in a row than higher performance ones,
and reviewed a higher number of older course content.

Overall, both sets of analyses showed limitations connected to a lack of data. For
the MOOC data set from part one, this specifically applied to forum data due to
the low number of forum participants. In part two, the small data set significantly
limited the number of feasible machine learning methods that could be applied.
For future work, this may be a useful point to consider when selecting data sets.
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Kurzfassung

E-learning Systeme haben im Laufe der vergangenen Jahre zunehmend an Bedeu-
tung gewonnen und stellen mittlerweile einen beinahe unersetzlichen Bestandteil
im Bildungsbereich dar. Dabei sind die Formen die sie annehmen vielfältig, von
sogenannten Massive Open Online Courses (MOOCs) bis zu kleineren, lokal einge-
setzten Ausbildungskursen, die online stattfinden.

Diese Arbeit befasste sich für die Analysen mit zwei verschiedenen e-learning
Systemen. Zunächst wurden mit den Daten von sechs verschiedenen MOOCs Ab-
brecher vorausgesagt, sowie der Einfluss von Forumaktivität auf die Abbrecherquote
untersucht. Hierbei zeigte sich, dass die Anzahl der Interaktionen, die aktive
Zeit des Users und die durchschnittliche Zeit zwischen zwei Klicks als Features
starke Auswirkungen auf die Ergebnisse hatten. Obwohl erste Auswertungen einen
positiven Zusammenhang zwischen Forumposts und Kursabschluss aufzuweisen
schienen, konnte dies unter Nutzung von AdaBoosted Entscheidungsbäumen allerd-
ings nicht gezeigt werden. Mit nur 6,38% aktiven Forumusern hatten die Forum-
daten kaum Einfluss auf die Resultate und erreichten auch keinen hohen Wert bei
der Auswertung der Feature Importances.

Darauffolgend wurde ein kleiner, universitäts-spezifischer e-learning Kurs unter-
sucht, der auf dem Prinzip des selbstgesteuerten Lernens aufbaut. Insbesonderes
Augenmerk wurde hierbei auf das Erkennen von Mustern im Userverhalten gelegt.
Mit 31 Usern war der Kurs bedeutend kleiner als die zuvor untersuchten MOOCs
mit durchschnittlich 5852,67 eingeschriebenen Usern. Aufgrund dessen wurde
eine Kombination aus Sequence Extraction Methoden und Heatmap Diagrammen
verwendet, um Muster im Userverhalten zu finden und Schlüsse auf die Testergeb-
nisse der User ziehen zu können. Durch das Aufteilen der User in organisiert und
unorganisiert Lernende, als auch nach ihren Kursergebnissen, konnten die vier
Kategorien in Relation zueinander gesetzt und verglichen werden. Die Ergebnisse
zeigten, dass unorganisiert Lernende eine Tendenz zum Wiederholen der Tests
aufwiesen, während organisiert Lernende meist beim ersten Antritt die volle Punk-
tezahl erreichten. Weiters riefen User mit schlechteren Testergebnissen weniger
neue Inhalte nacheinander auf als jene die besser abschnitten und wiederholten
mehr vergangene Kursinhalte.

Insgesamt zeigten sich in den Analysen beider Datensätze Schwächen, die mit
dem Fehlen von Daten zusammenhingen. Für die MOOC Daten bezog sich dies
insbesondere auf die Forumdaten aufgrund der niedrigen Anzahl an Forumsusern.
In Teil zwei waren die anwendbaren Machine Learning Algorithmen aufgrund des
kleinen Datensets eingeschränkt. Im Weiteren könnte es nützlich sein, dies bei der
Auswahl der Datensets zu beachten.
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1. Introduction

This chapter focuses on the motivation for this thesis, as well as on giving a short
overview of the general structure and topics of research discussed in it.

1.1. Motivation and Focus

With the fast-paced change of the job market and work environments in the current
day and age, life-long learning has become a term that seems ever-present. However,
this more recent requirement brings difficulties in addition to opportunities, when e-
learning systems and MOOCs don’t seem to perform as well as they were expected
to back when they first started their rise to popularity.

While this lack of performance of students in MOOCs, especially, may not seem
like a big problem when the learners are situated in a place where education is
comparatively easy to obtain, there are many areas where this is not the case and
e-learning systems present the only chance to continue learning. Conditions such as
distance, lack of money or consistent time availability present difficulties to people
who may want to, but are not able to seek further education on topics that interest
them.

MOOCs aim to mitigate this disparity in education to give everyone the chance to
learn. However, because there are high dropout rates in MOOC courses across the
board, it is necessary to take a look at why this is the case, and how it is possible to
predict and potentially mitigate dropouts.

In addition to, and in part due to the popularity of MOOCs, different e-learning
methodologies have found their way into formerly traditional education institutions,
so that self-directed and self-regulated learning have risen in importance once more.
With this comes the necessity of investigating the effects that a self-directed or
self-regulated learning environment has on its students’ behaviors, as well as on
their performance.

1.2. Contribution and Research Question

This work investigates the impact of the inclusion of forum data in classification
tasks for dropout prediction. For this, boosted decision trees are used to classify
users into “dropouts” and “completers”. To measure the influence of the forum
features and be able to track their development as time goes on, experiments with

1



1. Introduction

and without inclusion of forum data are run each at the beginning, middle, and
end of each course.

With these analyses, this work aims to contribute to the research into the influence
of social interaction such as forum activity in e-learning courses on dropout rates,
as well as general student performance.

Furthermore, this work assesses the applicability of sequence extraction methods
on small e-learning courses, and evaluates the meaningfulness of the results in
combination with heat maps. In a further step, it also seeks to make connections be-
tween self-regulated learner behavior and assessment outcomes, with the intention
of finding patterns, as well as differences between those students who performed
more and less highly, respectively.

The hope is that by finding possible answers to these questions, the work can
contribute to the research of how e-learning environments, especially self-regulated
ones that typically require a high level of self-sufficiency from the student, can be
constructed to best support various students’ learning behaviors and needs.

1.3. Thesis Outline

This thesis is divided into six chapters.
Chapter 2 covers basic information about the history of e-learning in general, as

well as that of MOOCs in particular. It describes previous research done in regards
to learning behavior and dropout prediction, as well as underlying psychological
theories that apply to user interaction with MOOCs and influence the completion
rate, such as the theory of planned behavior. The chapter also discusses popular
approaches of learning analytics that are commonly used in previous research to
analyse user behavior. In addition, it explains some of the more popular machine
learning algorithms used in research, such as decision trees, and Markov models,
as well as concepts such as boosting and bagging, and model evaluation.

Chapter 3 first gives a brief explanation of the specific data set received from
some of the institution’s Coursera courses, its structure and an overview over the
information that was considered, as well as the proposed strategies and concepts
for the analyses. Subsequently, it then shows the results and goes on to discuss
them and their meaning, describing how the new findings fit in with the previous
research considered in the literature study of chapter 2.

Following this, chapter 4 similarly describes the received data, its contents and
structure, and the significant strategies and concepts to be applied in the analyses of
the information. Again, the chapter shows the results and discusses them in detail.

Chapter 5 briefly discusses the lessons learned throughout the work on this thesis,
each for literature, development, and evaluation.

Finally, chapter 6 focuses on the results in relation to the research questions and
proposes further research and possible avenues for future work, thus concluding
the thesis.

2



2. Background and Related Work

This chapter briefly discusses the topics of interest relevant for this thesis, beginning
with an overview of the history of e-learning, and an explanation of the important
learning models that are present in technology-enhanced learning, in particular in
view of the analysis this work will later be doing in chapter 4. Afterwards, the work
elaborates on the history of MOOCs specifically. The work then takes a brief detour
to pay additional attention to the popular MOOC platform Coursera, which is one
of the sources of the course data that the work will later focus on. Following this,
the chapter continues with an explanation of technology-enhanced learning and
learning strategies that are particularly relevant for e-learning environments.

The second section focuses on data science and learning analytics, followed by
the third section, which describes the machine learning approaches commonly used
in learning analytics, and in particular in learner behaviour and dropout prediction.
Here, there will be a focus on decision trees, Markov chains and Markov models,
as well as sequence analysis, as those are relevant for the later analyses.

The last parts will discuss existing and related work in learning analytics and
dropout prediction, respectively. They will give short descriptions of the ideas and
approaches presented in the research.

2.1. E-Learning

E-learning in general and applications such as MOOCs in particular have grown
in importance as computers and digital media increased in pervasiveness. The
following sections will briefly explain the learning models that apply to e-learning,
e-learning’s history, give an overview over MOOCs in general, and the MOOC
platform Coursera specifically, as well as give a short outline of the learning theories
that are connected to technology-enhanced learning.

2.1.1. Learning Models

Many learning models, such as project-based learning, team-based learning, and
problem-based learning, assume or even require students to be in physical proximity
to one another, some more so than others. Due to the fact that many of them are
based on the assumption of traditional modes of teaching, these learning techniques
emphasise working together on a problem or project, often in the presence or with
the help of the teacher (Bédard et al., 2012; Michaelsen and Sweet, 2008).

3



2. Background and Related Work

As such, they are only tangentially relevant for the field of e-learning, which is
often used in cases where physical proximity is difficult or impossible to achieve, or
the aim is to make the coursework time-independent. It follows that self-regulated
learning and self-directed learning can, because of their emphasis on independence
on the students’ parts, in fact be considered the most significant learning theories
in regards to e-learning.

With self-regulated learning focusing on the student’s own motivation and drive
to organize and complete their workload, Schunk (1989, p. 83) refers to it as
“learning that occurs from students’ self-generated behaviors systematically oriented toward
the attainment of their learning goals”. In practice, this means that self-regulated
learners are assumed to have both motivation, and a functioning learning strategy
that not only causes them to start the learning progress, but also to successfully
navigate their way through the learning material without any outside regulation of
their learning process (Perry & Winne, 2006).

Even though the exact definition of self-regulated learning depends on the specific
theory, there are similarities and overlaps to be found. The typical characterization
of a self-regulated learner expects activeness, and independent management of
the learning process of the student (Greene & Azevedo, 2007). Some sources also
consider goal setting a part of self-regulated learning (Pintrich, 2000). In this case, it
is also necessary to consider motivation, as Locke and Latham (2004) explain, since
the two influence each other.

Self-regulated learning itself can be further organised into phases. Once again,
however, the specific terms and divisions differ between publications and the
used model. In the time since the first publications during the late 1980s, multiple
scholars have created self-regulated learning models and defined terms (Panadero,
2017). To name only one example of the differences between two such models and
terminologies, Pintrich (2000) specified the phases as identification and planning,
monitoring and control of learning strategies, and reaction and reflection, while
Winne and Hadwin (1998) identified the phases as task definition, goal setting and
planning, studying tactics, and adaptions to meta-cognition (Greene & Azevedo,
2007). While there are similarities, the terminology doesn’t match entirely, though
the underlying thought remains alike.

Self-regulated learning depends on the student controlling their own learning
process—namely by using cognitive, motivational, and emotional functions (Lens
& Vansteenkiste, 2012). This responsibility over their own behavior has the effect
of increasing the feeling of ownership that the students feel in the process, which,
in combination with feedback of their learning effectiveness, in turn has positive
effects on their learning progress, as they feel more personal responsibility, but also
more satisfaction for the outcome of the process (Zimmerman, 1990). Chapter 4

will be using data from a self-regulated learning system to analyse user behavior in
later parts of the thesis.

Sharing several key-points with self-regulated learning, self-directed learning’s
most-used specification comes from Knowles (1975):
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In its broadest meaning, self-directed learning describes a process in which
individuals take the initiative, with or without the help of others, in diagnosing
their learning needs, formulating learning goals, identifying human and ma-
terial resources for learning, choosing and implementing appropriate learning
strategies, and evaluating learning outcomes. (p. 18)

While the four basic phases of self-regulated learning that were specified above
closely match those of self-directed learning, and intrinsic motivation is seen as a
crucial component of the learning process as well, differences can be pinpointed
when looking at the two learning methods side by side.

Self-directed learning, sometimes also called self-guided learning or autonomous
learning (Černochová & Selcuk, 2019), differs from self-regulated learning in that it
has the tendency to focus more outside of traditional education environments, and
“involves planning trajectory” (Saks & Leijen, 2014), which means that the student has
total freedom in creating their learning goals and picking their learning material—
thus, both the learning goal and the way there is more or less to be planned and,
more crucially, decided by the student (alearningjourneyweb, 2017). This is unlike
self-regulated learning, which tends to define specific learning tasks that have to be
completed by the student, thus fixing a certain learning trajectory in place.

2.1.2. A Brief History of Technology-Enhanced Learning and
E-Learning

Because e-learning wasn’t created so much as it naturally developed, finding a
specific “start” to its history is a difficult task, as it developed differently in various
sectors (Nicholson, 2007). Generally it is fair to say that the concept of e-learning
itself has existed for a long time, however.

Back in the 1960, Patrick Suppes and Don Bitzer already realised the possible
use of computers almost like personalised teachers. While Patrick Suppes created a
computer managed instruction system to be used in his courses which was already
self-paced like a lot of MOOCs are nowadays (Molnar, 1997; Nicholson, 2007),
Don Bitzer ended up creating PLATO, a system that intended to help develop and
deliver computer-based education (Nicholson, 2007).

Contrary to the modern version of e-learning, computer-based training—generally
considered to be the first form of electronic education—still required some sort
of connection to a data medium, such as a CD-ROM. As this was before the
rise of the web, computer-based training was still location-dependent, as well as
time-dependent, unlike today’s e-learning (Hubackova, 2015).

Following computer-based training and the emergence of the Web, Web-based
training started to become popular. This, then new, form of training did not only
provide a way of teaching, but also an opportunity for teachers and students to
communicate (Hubackova, 2015). As this presented a range of new possibilities,
new research and projects quickly followed.
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It was around this time that the potential for the usage of technology in education
started to truly be realised. Though there had been developments in the field before,
the actual term e-learning has only been in use since 1999 (Hubackova, 2015). It was
in this year too that John Chambers, then-CEO of Cisco Systems, predicted that
education would ultimately take up a big portion of internet capacity, stating that
schools that did not move with the times might end up seeing students pass them
over in favor of more internet-based schools and courses (Friedman, 1999).

While not quite as drastic as Chambers predicted, interest in e-learning quickly
began to emerge and evolve, which in turn caused a variety of platforms to be
created in response.

One example of this heightened interest in using the Web for education and
lifelong learning was the creation of MIT OpenCourseWare, which was one of the
pioneers for sharing course materials across higher education. Starting out with only
50 courses in 2002, it has since only grown in content and participants, containing
over 2500 courses in 2018 (OpenCourseWare, 2020).

Years later, Stanford University trialled taking some of its courses online and
offering them to whoever wanted to join. Originally started with a selection of only
three courses, they managed to draw in more than 100,000 students per course in
their first semester in 2011 (Severance, 2012). One of the courses, “Introduction to
Artificial Intelligence” by Peter Norvig and Sebastian Thrun, is generally credited
with being the first open online course, whose platform eventually went on to create
Udacity (Moe, 2015).

Reacting to the big success of the online courses, though especially that of
“Introduction for Artificial Intelligence”, various online platforms for e-learning
were formed, Coursera being one of them (Severance, 2012).

2.1.3. Forms and Techniques of E-Learning

E-learning itself is a collective term that can be used to signify a number of dif-
ferent forms of learning. The most basic division is between synchronous and
asynchronous e-learning. Synchronous e-learning uses technology such as video
conferences and chats—communication methods that require the participants to
be online at the same time (Hrastinski, 2008). On the other hand, asynchronous
e-learning is time-independent, using technologies such as forums and e-mail,
which makes it ideal for self-paced courses, such as most MOOCs nowadays (Soni,
2015).

Asynchronous e-learning can once again take different forms, depending on
the learning method employed. Two of the more common learning methods were
already mentioned in section 2.1.2, computer-based training and Web-based training.
Nowadays, however, the use of other methods has grown, some of them being
blended e-learning, social learning and game-based learning (Soni, 2015). In the
following sections, this work will give a short description of these, comparatively
newer forms of asynchronous e-learning.
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Blended E-Learning

Blended (e-)learning can describe various teaching methods, depending on the
context, as Driscoll (2002) explains. In the definition that will be used for this
work, blended e-learning is defined as a combination of e-learning activities and
instructional materials, and face-to-face teaching methods (Littlejohn and Pegler,
2007; Kahiigi et al., 2008). This way, traditional teaching methods that are typ-
ically location- and time-specific can be enriched with the opportunities newer
technologies offer.

According to Driscoll (2002), some easy ways to employ blended e-learning
are providing an online forum for students to exchange questions and answers
regarding the learning subject, providing preparatory materials online before the
face-to-face sessions, and putting the final assessments online—for example in the
form of multiple-choice tests.

Social Learning

With social media taking up an increasingly large part of people’s lives, it only
makes sense that learning, too, has evolved to make use of this development.
Consequently, social learning describes learning that utilizes social media of some
kind to facilitate the learning process.

According to Wodzicki et al. (2012), “social networking sites allow students to connect
formal and informal learning settings”. As learning is, like Amry (2014) writes, “the
outcome of social interactions between students in collaborative learning activities”, this
opportunity for knowledge exchange and student cooperation is typically expected
to enrich the learning process.

Twitter, WordPress and YouTube are only a few examples for such technologies
that can be used as education tools, with some, such as Google Documents, hav-
ing become cornerstones of online collaboration between students (Dabbagh &
Kitsantas, 2012). Facebook has become essential for networking between students
(Dabbagh & Kitsantas, 2012), facilitating the creation of study groups or even online
knowledge exchange in groups. Online blogs have become an increasingly more
important source of supplementary learning materials or explanations, but are also
used by educators to facilitate knowledge exchange by having students create blog
posts about chosen or assigned topics to increase participation and the feeling of
ownership in a course (Top, 2012).

Game-Based Learning

Game-based (e-)learning attempts to use what Garris et al. (2002) call “instructional
computer games” for educational purposes, enabling the user to actively interact
with and apply the knowledge to be learned (Pivec, 2007). According to Boeker et al.
(2013), this has the effect of increasing students’ motivation when interacting with
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the learning material. These interactions, and more generally game-based learning
itself can take different forms, depending on the area in which it is used.

On the one hand there are, for example, mobile applications that allow players to
compete in more or less trivia-based games, containing subjects from politics over
geography to physics. On the other hand there are applications that are more direct
in the skills they teach.

One example for this is the application Scratch, which provides a playful intro-
duction into the basic structures of programming by giving the user puzzle pieces
that represent certain programming blocks/actions (e.g. for-loops, if statements)
(Scratch, 2020). The applications lets the user create their own games, change exist-
ing games by other users, and generally learn by applying the knowledge while
also playing what essentially amounts to a game, thus making it reasonable to
consider it an example for game-based learning.

Gamification

While gamification shares part of its name with game-based learning, there are
significant differences in how gamification works. According to the most popular
definition, gamification is considered to be “the use of game design elements in non-
game contexts” (Deterding et al., 2011).

As opposed to game-based learning, which refers to games which were primarily
built around the purpose of teaching the player, gamification works to extend (in
some cases previously existing) study material by adding elements of playfulness
and gaming. This can be done in various ways, with one of them being the addition
of game-fiction, id est (i.e.) a fictional story-line or context (Sailer & Homner, 2020).

Persuasive Technologies and Design

Fogg (2003, p.15) defines persuasion as the attempt to change a person’s behavior
and/or attitude towards a topic or matter without the utilisation of outright ma-
nipulation, coercion or deception. Additionally, it is stipulated that true persuasion
has to be intentional on the designer’s part, not an unplanned side effect of the
technology. Persuasive technologies are thus purposefully created technologies that
strive to influence the user in some way.

In learning in particular, persuasive design is often used in order to increase
learners’ motivation, performance, and general engagement (Engelbertink et al.,
2020). Personalized approaches have been found to be especially effective, with some
of the most effective strategies being reward, competition, social comparison, and
social learning (Orji et al., 2019). When looking at those strategies, it is noteworthy
that all but reward are considered types of social support, with only reward being a
type of dialogue support (Oinas-Kukkonen and Harjumaa, 2009; Engelbertink et al.,
2020). The social aspects should thus not be underestimated, even when it comes to
technologies.
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Bite-Sized Learning

As life grows faster, sitting down to learn for long stretches of time, especially
once the person is not learning full-time anymore, becomes difficult. Nonetheless,
life-long learning is becoming more and more of a requirement in the fast-paced job
market of today. Bite-sized learning is the answer to this often shortened time-frame
the learners have available to concentrate on gaining new knowledge, which has at
the same time become close to indispensable.

Kulkarni and Naik (2019) describe bite-sized learning as “small, self-contained
information nuggets with a focus to achieve defined objectives”. Bite-sized learning
modules are supposed to take little time to finish, so that one may complete such
a “bite” quickly and not lose any of the underlying information value. This is
possible by having only one single, very specific learning objective per module,
as opposed to conventional e-learning courses, which often consist of multiple
learning objectives (Kulkarni & Naik, 2019).

Mobile Learning

Mobile learning refers to learning that is intended to take place mobile, and consid-
ers this during the development of the lesson/application. Examples for this can
range from productivity applications to flashcard learning applications, or even the
use of the internet to find information. When including mobile learning in a more
traditional learning environment, it is necessary to consider the available devices
and constraints that follow because of them (Chen & Denoyelles, 2013).

2.1.4. State of the Art and Problems

Since e-learning’s development, higher education institutions especially have started
using increasing amounts of e-learning content in their teaching. Because of the
technical advancements, both in general and in the learning sector specifically,
e-learning now allows for multiple content presentations, personalization of the
content and the learning tactics employed in the run of a course, and ubiquitous
learning (Kahiigi et al., 2008).

While it has, in general, been accepted reasonably well, there are still roadblocks
that stop the use of e-learning from being as far-reaching as it could be.

The most basic problem connected to e-learning is the possible lack of training in
how to use the technological means to enhance the learning and/or teaching process
(Riasati et al., 2012). Depending on the technology to be used, additional training
may be necessary for the teachers, which is not always feasible. Furthermore, some
teachers resist the changes in the teaching approach.

Another possible barrier that may play a role in hindering e-learning from being
fully immersed in the teaching process is that it often requires teachers to revise
their courses or create new course material instead of being able to reuse the content
that they may have prepared in the past. In combination with what may be an
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entirely unfamiliar tool to the teachers, creating this new learning material often
takes longer when taking e-learning technologies into consideration than it does to
update and use traditional learning materials (Riasati et al., 2012).

In their work, Kulkarni and Naik (2019) mention the information overload that
students are confronted with nowadays, and the shortened attention span many
learners struggle with, partly due to that reason. They postulate that this is a major
factor for why bite-sized learning is quickly gaining influence in the e-learning
sector, especially in job training environments. Considering the vast amounts of
information often conveyed in the course of a lecture session, bite-sized learning
may not be a possibility in the education sector, however, or may at the very least
have to be adapted to fit the environment.

Whether the answer is bite-sized learning or not, this shift in how information is
processed needs to be addressed in the way e-learning presents its information and
the way the learners interact with the learning material, not only in businesses but
also schools.

In part, this increased shortness of the attention spans links to the shift in
how learners use technology nowadays. Often, phones are faster and more easily
available than ever before, so that shifting learning from computers to phones seems
like a reasonable action and may be one way to deal with the changes in how people
learn (Kulkarni & Naik, 2019). However, in many cases e-learning content is not
optimised or even prepared to be mobile-ready, so that there is a need to review
the presentation of the learning content and possibly even platform the learning
content is made available through.

Another problem e-learning, especially as it pertains to courses that are entirely
or mostly done online, has to deal with is that regularly updating big courses takes
a lot of time and effort from the instructor, especially in fields that change rapidly. It
may not be reasonable to expect the lecturer to create new video material, which is
the preferred lecture medium in many MOOCs, every time the study field changes.

Depending on the subject matter covered in the course, the decision for how to
design the MOOC may also present hardships. Some subjects lend themselves better
to practically-oriented MOOCs, which has to be considered during the creation
of the MOOC itself. To do this, it is necessary for the creator to have a certain
familiarity with the different types of MOOCs that exist. Some of those types will
be shortly described in the next section.

2.1.5. Introduction to MOOCs

Traditionally, the term MOOC is an overarching term for openly accessible online
courses that are intended to educate a large number of people, irrespective of
their place of residence, age, or living circumstances. The original meaning has
since morphed to be less strict about how open the courses are, or about their
massiveness, with the number of different MOOC types having multiplied since
the initial creation of the nomenclature.
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Originally, MOOCs were differentiated into two sub-types beyond this overarch-
ing term, with a look at the history of MOOCs revealing mostly cMOOCs (Kesim &
Altınpulluk, 2015). In the following sections, this work will give a short description
about both this type, and of xMOOCs.

Beside those two major categories, MOOCs have since also been categorized
according to their various features, thus increasing the number of different types
significantly. Pilli and Admiraal (2016), for example, proposed a new categorisation
according to MOOC size and openness, which the work will give a short overview
of. This taxonomy was chosen because it was one of the most recent ones, as well
as one of the most accessible ones, with only two axes along which MOOCs can
be placed. In the course of explaining this taxonomy, the chapter will also give an
overview over various categorisations beyond the split into cMOOCs and xMOOCs,
and how they fit into the categories proposed by Pilli and Admiraal.

cMOOCs

cMOOCs are based on the connectivist approach, hence their name (Kesim and
Altınpulluk, 2015; Smith and Eng, 2013). The connectivist approach states that the
student “is responsible for their own learning” (Kesim & Altınpulluk, 2015), a process
that cMOOCs have adopted, emphasising the social connection across the network
of learners (Conole, 2016). McLoughlin and Magnoni (2017) describe cMOOCs as
being delivered “through collaborative tools, blogs and discussion boards rather than
content/learning management systems”, in a throwback to what has fallen out of the
norm nowadays with platforms such as Coursera, Moodle and edX easily available.

Due to how they are presented, cMOOCs are quite free in their structure, es-
pecially regarding the learner’s time management, resource use and the taken
learning path (McLoughlin & Magnoni, 2017). Because of this immense freedom
while navigating the cMOOC, users are especially dependent on their abilities to
collaborate and communicate, and use critical thinking and information media
skills (McLoughlin & Magnoni, 2017).

In addition, cMOOCs are harder to grade and award a certification for, as
McLoughlin and Magnoni (2017) explain. This is because the learning path is
free and completely open to the learner. It is possible for the direction of the course
to change if the students’ input and interests directs it that way, and as the students
are welcome and even invited to present their own input and opinions into the
course to influence its trajectory.

xMOOCs

According to McLoughlin and Magnoni (2017), xMOOCs are closer related to
traditional learning environments than cMOOCs, focusing on content more than
the cMOOC counterpart and adhering to the behaviorist approach. Due to the
closer mirroring of traditional learning environments, xMOOCs are also easier to
grade, as they set certain prerequisites for the user to be able to finish the course.
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Current MOOC courses, especially those offered by universities as parts of a study
program or on sites such as Coursera and edX, are most commonly xMOOCs, even
though it is the younger type of the two (Kesim & Altınpulluk, 2015).

xMOOCs often present the possibility of being counted towards a degree at
universities that accept their certifications, since they effectively act almost like
traditional university courses, often with given timeframes in which the course
has to be completed, graded assignments, and course contents that are clear and
specified by the teacher and are not influenced by the students.

Pilli and Admiraal’s Taxonomy

Pilli and Admiraal consider more than the two main types xMOOC and cMOOC
for their taxonomy. They chose the two categories Openness and Massiveness to
categorize a large number of newer MOOC types. As visible in Figure 2.1, they
named four quadrants, each representing a MOOC category, where scale references
the size/allowed number of participants in the MOOC and openness refers to how
open the course is to participants in regards to, among other things, freedom of
access, time constraints, place constraints, et cetera (etc.) (Pilli & Admiraal, 2016).

Openness

Massiveness

I
Small Scale
Less Open

II
Small Scale
More Open

III
Large Scale
Less Open

IV
Large Scale
More Open

Figure 2.1.: Pilli and Admiraal’s Taxonomy for MOOCs. Adapted from Pilli and Admiraal (2016).

Quadrant I contains MOOCs that are smaller in size and less open. An example for
this would be a university-specific distance-learning course, as those are typically
only available to the students of a particular university course. The MOOC types
that Pilli and Admiraal (2016) consider part of this quadrant are described in short
in the following paragraphs.

• SPOCs refer to Small Private Online Courses. In short, they could be described
as a MOOC that is designed to be used as part of a traditional university
course. These expect the collaboration between the students and the teachers,
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as well as between the students. These interactions can take place in person
or online (Pilli & Admiraal, 2016).

• groupMOOCs focus on collaboration in smaller groups (Conole, 2016). Ad-
ditionally, each student is assigned a mentor. Both of these things are done
in an attempt to counteract the high dropout rates generally associated with
MOOCs (Pilli & Admiraal, 2016).

• Task-based MOOCs set tasks for the learners. However, there are many ways
that those tasks can be solved, and the decision is ultimately down to the
learners themselves (Pilli & Admiraal, 2016).

Quadrant II considers MOOCs that are small and open—besides the previously
described cMOOCs, this also encompasses a number of different types, such as
BOOCs, COOCs, DOCCs, POOCs, LOOCs, gMOOCs, pMOOCs, adaptive MOOCs and
network-based MOOCs (Pilli & Admiraal, 2016). In the following paragraphs, this
work will describe a selection of the different types in short.

• COOCs—Community Open Online Courses—are typically courses that are
provided by a corporation to train its employees and/or customers. According
to Pilli and Admiraal (2016), these sorts of MOOCs are often also known as
Corporate MOOCs.

• gMOOCs are game-based and game-based learning MOOCs and include
serious games as part of the teaching material, or games that can otherwise
be valuable to the learning experience (Pilli & Admiraal, 2016).

• pMOOCs, also known as Project-Based MOOCs, place special emphasis on the
development of projects (Pilli & Admiraal, 2016).

Quadrant III categorises MOOCs that are large and less open. Example types of
this category are VOOCs, SMOCs, HOOCs, miniMOOCs and POOCs, a selection of
which this work will be describing in the following paragraphs.

• VOOCs, or Vocational Open Online Courses, are usually short (around an
hour from start to completion) and show examples of practical procedures in
addition to experts’ advice (Pilli & Admiraal, 2016).

• POOCs are Personalized Open Online Courses and adjust their content to the
learner, according to their preferences, knowledge and actions in the course
(Pilli & Admiraal, 2016).

Finally, quadrant IV considers large and open MOOC types. The other one of the two
originally considered MOOC types, xMOOC, is part of this category. Besides that,
it also includes transferMOOCs, madeMOOCs, asynchMOOCs, SPOCs, Content-
based MOOCs, Flex-MOOCs, iMOOCs, MOOC-Eds, and MOORs (Pilli & Admiraal,
2016).

• TransferMOOCs are MOOCs that are created with the transferred material
from traditional, class-based courses (Pilli & Admiraal, 2016). The existing
courses are simply moved over to the online version (Conole, 2016).
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• MadeMOOCs, on the other hand, are specifically made with online knowl-
edge transfer in mind. Because of this, they are more interactive than trans-
ferMOOCs, often having the learner doing exercise questions on the MOOC
page itself (Pilli & Admiraal, 2016).

• AsynchMOOCs is a course type that can be found on Coursera and which
has no specific start and/or end date. They do not have a fixed schedule, nor
do they have deadlines, or if they do, they are more flexible than in other
types of MOOCs (Pilli and Admiraal, 2016; Conole, 2016).

• iMOOCs place special focus on social learning and learner interaction, more
so than other MOOC types. Completed assessments from the learners are
uploaded and published for others to see (Pilli & Admiraal, 2016).

The list of MOOCs named in this section is not intended to be exhaustive—with
the various taxonomies, there are also a large number of MOOC types, some of
them very specific to only a small number of MOOCs, that simply cannot all be
considered in this work in an efficient manner.

2.1.6. The Coursera Platform

As part of this thesis will be focusing on data retrieved from Coursera MOOCs, this
section will be giving a short description of the platform.

Coursera was established as its own, independent company in 2012 by Daphne
Koller and Andrew Ng, both of whom were professors for Computer Science at
Stanford University, just one year after the use of online courses was trialled at
Stanford (Severance, 2012).

With 3,800 active courses and 45 million learners by the end of 2019 (Shah, 2019),
Coursera’s aim to provide education and learning opportunity has shown to be
well-accepted by both course creators as well as students. The large number of
MOOCs across different fields of knowledge, from humanities over technological
fields to languages, indicates that this is not just the case for technological fields,
even if the first three courses that were originally offered in the pilot program at
Stanford University were all part of their Computer Science program (Severance,
2012).

Nowadays, it is not just one university that supplies the teaching materials.
Courses are supplied and maintained by organizations across the world, including
universities and institutions such as IBM, Princeton and Yale, with participation
itself being free of charge, though certification of completion involves payment.

Besides stand-alone courses, Coursera offers different modes of course organi-
sations on its website. Specializations and Professional Certificates consist of sets of
courses surrounding the more general topic topic, while Degrees, are set up by
universities and function just as their conventional counterparts.

MasterTrack Certificates on Coursera can be used to count towards a master’s
degree. Similar to degrees, the courses of MasterTracks tend to be paid (Shah, 2019).
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Courses on Coursera can have multiple sessions per year, which users can enroll
in. Depending on the course in question, users may then be provided with video
lectures, graded and/or peer reviewed assignments, programming assignments
and quizzes. The courses also provide discussion forums where users can post and
answer questions, and interact (Coursera, 2018a).

To be able deal with the amount of grading required to be able to assess the stu-
dents of the MOOCs when there are only a limited amount of teachers responsible
for the course, most of the courses nowadays make use of automated grading and
peer assessments. In a similar vein, questions are commonly answered by other
students and less often by the teacher. As MOOCs are often quite large, this also
presents a positive aspect for the students, as the probability is high that there will
be a student who is able to help, who is also available at about the time the question
is asked (Severance, 2012). Because of this, the turnaround rate in the forums is
significantly faster through student involvement than it would otherwise be.

2.1.7. Learning Strategies in E-Learning Environments

While one of the aims of MOOCs is to make education available to everyone and
facilitate lifelong learning, taking part in them does present its own, very specific
challenges. Due to their often close to teacher-less nature, MOOCs require a high
level of self-efficacy, goal-setting and task interest from the student (Lung-Guang,
2019). In addition to that, self-organisation plays a significant role in MOOCs,
especially for those that do not have a fixed schedule and where the student has to
rely on themselves to continue on through the course.

However, a number of those traits—self-efficacy, goal-setting, and self-organisation
in particular—are learned behavior. Because of this they need to be taken into ac-
count when considering different educational backgrounds of students. People who
have finished higher education may have had the chance to develop those skills
to a certain degree already, while those that did not attend higher education may
have starting difficulties. Due to this, it is necessary to make considerations for
how to mitigate possible negative effects of initially poor self-efficacy, etc., to retain
students who may otherwise drop out.

To further explain user behavior and requirements for successful completion of
MOOCs, Lung-Guang (2019) used both the Theory of Planned Behavior (TPB) and
the model of Self-Regulated Learning (SRL) in his study, considering the students’
decision-making processes as they were participating in the MOOCs.

According to Glanz et al. (2015), the TPB is a theoretical model that tries to
connect motivational factors with the likelihood of specific human behavior in
situations in which the person has or perceives to have a measure of control. The
TPB also considers the influences of norms and perceived control of other parties,
and the effects this may have on the performed actions (Lung-Guang, 2019). The
TPB is widely accepted and has been used in multiple research into user behavior
in MOOCs (Lung-Guang, 2019; Yang and Su, 2017).
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The model of SRL contains strategies such as self-evaluation, goal setting, monitor-
ing, etc. (Zimmerman & Martinez-Pons, 1990), making it relevant when considering
MOOCs. As MOOCs do not, for the most part, offer a fixed schedule apart from a
start and end date, it is necessary for the student to set their own goals and evaluate
their performance throughout the course, as well as adapt accordingly. Additionally,
student support is generally lower than in traditional learning environments, often
only taking place through forum posts. According to Kizilcec et al. (2017), SRL is a
teachable skill, and by identifying learner characteristics that point towards lower
SRL skills, it may be possible to pinpoint students who are at risk of dropping out,
and supporting them.

However, in a study by Kizilcec et al. (2016), it was found that simply recom-
mending SRL strategies alone did not have a significant effect on student behavior.
According to their research, the “overall percentage of viewed lectures and passed assess-
ments was similar”, both when students were shown SRL study tips and when they
were not.

Looking at both TPB and SRL and the skills described in each, it becomes clear
that both of these models place a high level of importance on self-interest and
self-motivation as two significant factors to carry a person through a specific task
(Lung-Guang, 2019). This does not differ when it comes to MOOCs, as students
who take part are required to self-regulate their learning behavior.

In addition to TPB and SRL, it is also necessary to consider intrinsic and extrinsic
motivation when it comes to MOOCs. Either or both can be the reason for a user
to start a MOOC. In one study, Littlejohn et al. (2016) found that learners with
higher SRL scores tended to be intrinsically motivated, while those with lower
SRL scores tended to be extrinsically motivated. Motivation has also been found
to increase when student interaction is encouraged (Richards, 2011), and in turn
seems to increase student engagement with the course content, which furthermore
has positive effects on completion rates (Xiong et al., 2015).

According to Yang et al. (2013), the growth of social connectedness during a
MOOC’s progression plays an important role in minimising student attrition. This
is reflected in student behavior in both MOOCs, as well as distance universities,
as both are faced with high dropout rates (Kotsiantis et al., 2003). Both of those
education systems have little to no personal student interactions, which presents
a challenge in retaining the students. According to Yang et al. (2013), increasing
student interaction may have a positive effect on user retention. In our research, this
work will also be taking a look if this held true for the data that was available to us.

In another study, Lung-Guang (2019) found that involving students in the plan-
ning of their actions, and encouraging them to do so, increases students’ perception
of planned behavior. This in turn improves decision-making skills, improving,
furthermore, planned behavior. As planned behavior is a significant basis for suc-
cessfully finishing a MOOC, this should be considered by the teacher. In their
research, Kizilcec et al. (2017) found that both goal setting and strategic planning
“predicted attainment of personal course goals”.
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2.1.8. Description of a Self-Regulated Learning System

In chapter 4, this work will be using data from a self-regulated learning system
to model user behavior. This system was created by Alexander Nussbaumer to be
used at an Austrian university, in context of a larger class.

The aim of the course is to supply learning material in a similar way as traditional
learning systems, such as Moodle or MOOCs, in order to make them comparable.
It leaves the choice of how and if to consume this material to the learner. The main
page shows an index/table of contents, listing and linking to all course sections, as
well as course content chapters.

The system forgoes more complicated navigation logic and supplies the user only
with “Index”, “Previous” and “Next” buttons on each page, where the “Next” and
“Previous” buttons simply move along the index in the given direction.

An example structure of the index is shown in Listing 2.1

− I n s t r u c t i o n
− S e c t i o n 1 :

− Learning Goal
− Content Chapter
− Content Chapter
− Assessment

− S e c t i o n 2 :
− Learning Goal
− Content Chapter
− Assessment

− Learning Progress
Listing 2.1: Simplified course structure/index of the self-regulated learning system

Each section covers a singular topic, with content chapters focusing on a specific
aspect or example.

2.2. Data Science and Learning Analytics

E-learning in general and MOOCs specifically produce a large amount of data
that can be used to improve the learners’ interactions and success with and in the
course. When applying data science to click-stream, forum and interaction data, it
is possible to draw important conclusions from it that can significantly help when
improving the course experience. While some people argue that data science is
just statistics with a new name, Blei and Smyth (2017) instead postulate that data
science is “the child of statistics and computer science”.

According to them, data science combines some features from statistics—the
foundations of analyzing and reasoning about data—with some that are more
typical for computer science, such as certain methods of computational thinking.
While statistics provide the features to be able to deal with high dimensionality
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of data, as well as complexity and causality, computer science is responsible for
optimisation, sampling and scaling (Blei & Smyth, 2017).

In the following section, this work will discuss further the contributions that
computer science makes to data science, as well as shortly describe the field of
data analytics. Then this work will provide a short overview over data and process
mining, as well as give a brief summary of the field of learning analytics. Finally,
selected data science methods will be introduced.

2.2.1. Data Science and Data Analytics

Data analytics is a broad field that consists of a number of different methods that
are all considered part of it. There are, however, some basic, statistical concepts that
are at the base of most or even all of them. Probability, sampling, and prediction are
concepts that are particularly meaningful in this context (Berthold & Hand, 2003).
They are heavily used across the different methods that can be considered to be
part of data analytics.

Looking at data analytics, they can be further split into a number of categories,
as listed by Berthold and Hand (2003). The most meaningful methods in context
of the research covered in this thesis, however, are statistical methods such as
linear models, regression modelling and multivariate analysis, Bayesian methods,
and support vector and kernel methods, of which support vector machines are
part. Furthermore, there are rule inductions, and neural networks. Lastly there
are stochastic search methods, which can consist of genetic algorithms, simulated
annealing and evolution (Berthold & Hand, 2003).

In section 2.2.4, this work will give short explanations on the methods that are
most influential in the research direction that this thesis will be covering.

2.2.2. Data and Process Mining

The line between learning analytics and data mining—especially data mining in the
educational sector—can seem blurry and vague. Even in literature, (educational)
data mining and learning analytics seem to go hand in hand and are often only
used together.

According to Baker and Inventado (2014), data mining differs from learning
analytics in that it focuses more on automated methods than learning analytics do,
though they stated that ultimately the difference comes down to the use of models
more than the methods used to get the results. Educational data mining especially
is most often used in conjunction with learning analytics, with each using methods
of the other field, which makes a clear delineation of where one ends and the other
one begins difficult.

Data mining does its best to gain useful information from the huge amounts of
data that are available nowadays. Hand et al. (2001, p.1) define data mining as
“the analysis of (often large) observational data sets to find unsuspected relationships and
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to summarize the data in novel ways that are both understandable and useful to the data
owner”.

Cherkassky and Mulier (2007, p.15) explain that “in a more narrow sense, many data
mining algorithms attempt to extract a subset of data samples (from a given large data set)
with useful (or interesting) properties”. To do this, some of the common methods and
algorithms are Decision Trees, Bayesian networks, and Support Vector Machines
(Grigorova et al., 2017).

To show how these and other methods fit into the wider field of data mining
paradigms, this work references Maimon and Rokach (2014) and their description
of how various types of data mining paradigms are in relation to each other. The
graphical representation of this relationship can be found in Figure 2.2.

Data Mining Paradigms

Verification Discovery

Prediction Description

Classification Regression

Neural
Networks

Bayesian
Networks

Decision
Trees

Support
Vector

Machines

Instance
Based

Figure 2.2.: Taxonomy of data mining paradigms. Adapted from Maimon and Rokach (2014, p. 166).

This work will mostly be focusing on classification, and furthermore on decision
trees, as these are what will be used for the analyses in later sections.

As opposed to data mining, process mining is more concerned with discovering
patterns of and insights into the process itself, rather than into singular actions and
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data points (Mukala, Buijs, & Van Der Aalst, 2015). In the learning environment,
process mining can be used to analyse student learning behavior by using process
models built from click data collected from course interactions (Mukala, Buijs,
Leemans, et al., 2015). One such example would be the fuzzy miner, as used by
Mukala, Buijs, Leemans, et al. (2015), to find process models.

Similarly to process mining, relationship mining focuses on the relationship
between features in a given data set. This can take various forms, depending on
both the type of data available and the knowledge the researcher is aiming for.
According to Baker and Inventado (2014), there are four kinds of relationship mining
that are particularly meaningful in the educational sector, those being association
rule mining, sequential pattern mining, correlation mining, and casual data mining.

2.2.3. Learning Analytics

The U.S. Department of Education (2012) defines learning analytics as “incorporating
concepts and techniques from information science and sociology, in addition to computer
science, statistics, psychology, and the learning sciences”. With the overall aim to, basi-
cally, understand the students’ learning processes, learning analytics place a strong
emphasis on human reasoning, as opposed to data mining, which attempts to
automate the discovery process (Viberg et al., 2018). Often used side by side with
(educational) data mining, learning analytics by themselves focus on making use of
business intelligence, and various types of analytics, such as academic, action and
predictive (Papamitsiou & Economides, 2014).

Independent fields of their own, academic analytics specifically focus on analysing
educational data at a regional or institutional level rather than across the whole field,
while action analytics focus more on the teacher than the student—they function as
a sort of self-reflection and promote reflection on teaching methods and materials
employed by the teacher (Steiner et al., 2014).

Furthermore, other than social network analysis, which can be used to, amongst
other things, find students who are not sufficiently connected to the group, and/or
students with high influence (U.S. Department of Education, 2012), learning ana-
lytics also use technologies such as data visualisation, prediction and relationship
mining to analyse the available learning data (Viberg et al., 2018).

In much of the recent literature, learning analytics were used not after a course
finished, but while it was still ongoing, as this gives the teacher the chance to
intervene and counteract negative student performance or negative developments
in the learning progress (Steiner et al., 2014). Chatti et al. (2012) described the
learning analytics process as circular, as visualised in Figure 2.3, with the effect that
it lends itself well to being used for constant evaluation and adjustment.

Learning analytics have been used to detect students who are considered to be
at risk of failing a course to allow intervention and thus an increase in the chance
of success (U.S. Department of Education, 2012). However, while they have been
found to achieve reasonable results in raising learning support and teaching in
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Data collection /
Pre-processing

Analytics and ActionPost-processing

Figure 2.3.: Learning Analytics Process. Adapted from Chatti et al. (2012, p. 6).

35% of the cases, they have not brought a significant increase in student learning
outcomes, with only 9% of the research results Viberg et al. (2018) considered in
their literature review showing improvements. Though Viberg et al. (2020) later
found that this was the case with 20% instead, even this higher number does not
do the possibilities of learning analytics justice.

On the other hand, when Schumacher and Ifenthaler (2018) asked students what
they expected of learning analytic features, they found that planning and organi-
zation support, self-assessments, and adaptive recommendations were frequent
answers, as well as personalised analyses of learning activities. This makes learning
analytics not just interesting from the teachers’ views, but also from the students’.
This is especially the case in self-regulated learning, as the high amount of indepen-
dence and autonomy can lead to a higher need for external encouragement and
support.

2.2.4. Selected Data Science Methods and Models

In the past years of research, a broad variety of different methods to analyse and
model data were used to give insight into the in part massive amounts of data
that exist nowadays. Some of them have become especially prevalent in the area
of e-learning, such as decision trees, which are often used in an attempt to predict
dropouts.

Additionally, this chapter will pay attention to splitting criteria, boosting and
bagging, and the problem of model evaluation, all of which become relevant in
chapter 3. Finally, there will be a short description and explanation of Markov
chains, as well as sequential analysis, the last of which will be used to examine the
user behavior in the self-directed course analysed in chapter 4.
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Decision Trees

The decision tree algorithm is a supervised data mining technique that is used
to build a predictive model which can be used for classification tasks (Li, 2019;
Rajeshkanna and Arunesh, 2018). This tree represents the decision rules on the way
from an initial situation to an ultimate result/class label (Alharan et al., 2017). Due
to the way it is constructed it is always a directed graph, starting at a root with
no incoming edges, and ending at the leaves, which have no outgoing nodes and
represent the most likely class affiliation according to the edges traversed from the
root (Maimon & Rokach, 2006).

Decision trees (see Figure 2.4) can either be built from the top down or from the
bottom up, depending on the algorithm used, with literature typically preferring
the top-down approach (Maimon & Rokach, 2006). In this case, the building process
starts at the root, with the first attribute chosen through whichever method was
used to pick it. Then, another node is drawn for each of the options that follow—
these can be boolean values, numerical ranges, or even strings—and the second
attribute is added for each. The attributes do not necessarily have to match on the
two branches, since the information gain may change depending on the previously
given true/false answer.

Each non-leaf node represents a feature that the data is split on, while each edge
constitutes as a value, or range of values in the case of numeric attributes, that the
feature can take on (Maimon & Rokach, 2006). An example of a simple decision
tree using a small subset of features that will be used in the analyses in chapter 3 is
shown in Figure 2.4.

Root
Requests

Leaf
Dropout

isThreadStarter

<10 ≥10

Leaf
Dropout

Leaf
Completer

false true

Figure 2.4.: Structure of a decision tree, exemplified with features used in this work. Adapted from
Maimon and Rokach (2006, p. 166).
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In this example, the feature Requests is numerical, thus the outgoing edges give
ranges of values to split the sample set on. The feature isThreadStarter, however, is
binary with only True and False being valid values. Numeric attributes, especially if
they do not split in a binary way (unlike in the example mentioned in this section),
increase the complexity of the decision tree, and anything but binary splits should
be used with caution, as increased complexity affects model accuracy (Breiman
et al., 1984).

Once a certain stopping criterion is hit—e.g. a maximum tree depth is reached—
the algorithm terminates, ending each branch with a final node—the leaf—with the
corresponding class label of the combination of attribute values along the branch.
The depth of a decision tree is measured by the number of “levels” it has from the
root node to the last/deepest leaf. The Root node would be level 0, with the one
below that being level 1, and so forth.

After the tree has been created, it can then be used to predict class affiliation.
While the basic decision trees are only rarely used nowadays, there are newer

variations that have found broad application in the area of dropout prediction, e.g.
Boosted Decision Trees (BDTs), which will be used for some of the analyses to come.

Splitting Criteria

To be able to choose the best split at each level, decision trees need some measure
to differentiate between a good and a bad split, and how to decide which feature
to split on next. These measures are referred to as splitting criteria. There are many
different criteria that can be used when building decision trees, often depending on
the type of data to be analysed. Two of the most commonly used criteria and the
ones this section will be focusing on are Information Gain and Gini Index.

At its core, Information Gain is used to express the impurity of a set of samples
(Raileanu & Stoffel, 2004). To do so, it basically compares the entropy before a split
with that after a split and calculates the difference. The formula for this method is
shown in Equation 2.1, as given by Maimon and Rokach (2006).

In f ormationGain(ai, S) = Entropy(y, S)− ∑
vi,j∈dom(ai)

|σai=vi,j S|
|S| · Entropy(y, σai=vi,j S)

Entropy(y, S) = − ∑
cj∈dom(y)

|σy=cj S|
|S| · log2

|σy=cj S|
|S|

(2.1)
Raileanu and Stoffel (2004) derived the formula by first giving the probability

for a random sample to be assigned to a random class ci. This so-called prior
probability, denoted as p(ci), gives the likelihood that a sample belongs to some
class ci. The information content of this probability can be calculated by simply
taking the negative binary logarithm of this probability, which can then further be

23



2. Background and Related Work

used to formulate the average necessary amount of information to classify a sample
as belonging to the class, as shown in Equation 2.2.

in f o(S) = −
k

∑
i=1

p(ci)log2(p(ci)) (2.2)

After a split, where n is the number of different outcomes, and T is the attribute
test, this equation would then look as in Equation 2.3

in f oT(S) =
n

∑
i=1

p(ti)in f o(Ti) (2.3)

The information gain by conducting a split would thus be the difference between
in f o(S) and in f oT(S), as in Equation 2.1. Or, as Raileanu and Stoffel (2004) describe
it, Equation 2.4.

In f ormationGain(T) = −
k

∑
i=1

p(ci)log2(p(ci)) +
n

∑
i=1

p(ti)
k

∑
j=1

p(cj|ti)log2(p(cj|ti))

(2.4)
According to Raileanu and Stoffel (2004), for a node/test T with n different

outcomes and k different classes, the Gini Index is defined as in Equation 2.5, and
estimates the probability of misclassification.

Gini(T) = 1−
k

∑
i=1

(p(ci)
2 −

n

∑
i=1

p(ti)
k

∑
j=1

p(cj|ti)(1− p(cj|ti) (2.5)

Boosting and Bagging

Boosting and bagging are meta-algorithms that can be used with both classification
and regression models (Ghojogh & Crowley, 2019). Because boosting and bagging
train multiple individual classifiers that are created with varying training sets, which
are then combined into one, combined classifier, they are considered examples of
ensemble methods (Opitz & Maclin, 1999).

According to the research conducted by Freund and Schapire (1996), boosting
can improve classifier performance in two ways: It generates many hypotheses
that may or may not only be marginally better than randomly guessing, with a
large error, which are then combined into one hypothesis with small error. This is
done by having the algorithm find hypotheses that minimize the training errors for
subsets of the data set. Secondly, the algorithm responds to the training samples,
so hypotheses for partial sample splits may vary from each other strongly. In
fact, boosting actively encourages this effect by changing the distribution over the
training set in reference to the previous hypothesis’ performance.

Bagging—short for “bootstrap aggregating”—differs from boosting in that it does
not choose features according to previous results, they are picked uniformly at
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random with replacement (Breiman, 1996). In fact, the different weak hypotheses do
not have any influence on each other during the creation process at all (Freund &
Schapire, 1996). It is only after the hypotheses were created that they are combined
by simple voting—this means that the samples get assigned those classes that the
partial hypotheses most often assigned to them (Breiman, 1996).

While boosting is a technique that is effective when learning from imbalanced
data, bagging is still considered to outperform boosting when the data contains
noise (Khoshgoftaar et al., 2010). Freund and Schapire (1996) also found that
boosting works particularly better with simpler algorithms, while the improvement
on bagging is smaller—though still present—when it comes to more involved ones.

Model Evaluation

A common method used for the evaluation of decision tree classifiers is the calcula-
tion of the accuracy score, which puts into relation true positives, false positives,
true negatives, and false negatives. As visible in Equation 2.6, accuracy is calculated
by dividing the true classifications by the total number of classified samples.

accuracy =
tp + tn

tp + tn + f p + f n
(2.6)

Because of the way it is calculated, accuracy score should not be used when the
data set is imbalanced—that is, when one class has a lot more data samples than
the other one. This throws off the accuracy score, as the class with the majority of
samples overwhelms the few of the other class, which leads to an accuracy score
that does not represent the performance of the model correctly. It is because of this
that a model might reach a 99% accuracy score on an unbalanced data set, if one of
the classes contains 99% of the samples, by simply guessing the bigger class every
time (Khoshgoftaar et al., 2010).

Due to accuracy being considered an insufficient measurement for model per-
formance with unbalanced classes, the data in this work was artificially balanced.
However, this does marginally skew the results with duplicated samples for the
smaller class, which was an accepted risk in this case.

If the aim is to get a meaningful evaluation result for the original, unbalanced data
set, a different evaluation method is necessary. As a consequence of the shortfalls
of accuracy, some research prefers the utilization of metrics such as the F1 score,
which is considered more appropriate for use with imbalanced data (Koyejo et al.,
2014).

Another approach is the Matthews Correlation Coefficient (MCC), which can
also be used for the evaluation of model performance on unbalanced data sets,
and should in fact be preferred over accuracy and F1 score according to Chicco
and Jurman (2020). The calculation, once again, considers true positives, true
negatives, false positives, and false negatives. Unlike accuracy, the MCC considers
false positives and negatives in the numerator as well, however. Equation 2.7 shows
the equation in its entirety, as given by Chicco and Jurman (2020).
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MCC =
tp · tn− f p · f n√

(tp + f p)(tp + f n)(tn + f p)(tn + f n)
(2.7)

In Chapter 3, this work will compare the results of the model performance
calculated with balanced data and using the accuracy score, with that of the MCC
calculated with the original, unbalanced data set.

Markov Chain and Markov Models

Markov models are an broad category of models that can vary widely in their
complexity. The least complex form could probably be considered to be Markov
chains, which are used to illustrate event sequences and their probability (Fink,
2014).

At the base, Markov chains are made up of states and transitions between the
states. Each of the transitions has a probability, meaning for an optimal creation
of a Markov chain, a transition matrix is indispensable. A transition matrix gives
probabilities for moves between each of the states (see Table 2.1).

To name an example, the table contains the value 0 at S0 / S0. This means that
there is no possibility for the transition from the first to the second of these states.
Because the states are the same for Si and Sj, this means that there is no circle back
to the same state. S1, on the other hand, forms a circle because it has a non-zero
possibility of circling back to itself.

With the information from Table 2.1, it is then possible to calculate the total
probability for the occurrence of a sequence/chain in a specific context in a further
step (Fink, 2014).

S0 S1 S2

S0 0 .5 .5

S1 .5 .1 .4

S2 .3 .4 .3

Table 2.1.: An example of a transition matrix

With simple Markov chains, the next state is only influenced by the current state,
not any of the previous ones. It is not necessary for every node in the Markov chain
to have a transition to every other node. In the case of a non-existent connection
between two nodes, it is simply not possible for the one state to follow after the
other. Markov chains can be depicted as flow charts, where each connection between
nodes has a certain probability (see Figure 2.5).

Hidden Markov models present the additional difficulty of their underlying state
sequence being unknown (“hidden”), unless a specific state is active, in which case
a generated output of the state is transmitted (Fink, 2014).
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S0 S1 S2 S3p01 p12 p23
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p13

Figure 2.5.: Structure of a Markov Chain

Sequential Analysis

Sequential analysis methods look for patterns of behavior in actions that take place
over time (Pohl et al., 2016). Lag sequential analysis is one variety of method that can
be applied to this effect (Lloyd et al., 2016).

At its base, (lag) sequential analysis assigns codes to certain behaviors and then
models sequences as they appear over time. As Kenny et al. (2006) explains, lag
sequential analysis is then “used to study interpersonal behavior by measuring the
number of times certain behaviors precede or follow a selected behavior” using conditional
probability, and is a method often used in interaction analysis in human sciences.

In this, “lag” refers to the number of events that are considered for the sequence.
Furthermore, it is important to note that in Lag Sequential Analysis (LSA), two
codes are chosen as start and end nodes, and that it does not necessitate a specific
order of states between them to consider the start and end nodes sequential—it
specifies the number of transitions between the states, not the actual sequences
(Pitkänen, 2017).

Sequence: ABCABACBABBCADC
Lag: [-2, 2]
Start Event: A
End Event: C

Lag -2 -1 1 2

Occurrences 1 2 1 2

Table 2.2.: Example of lag sequential analysis parameters and output. Adapted from Pitkänen (2017,
p.34)

For the example in Table 2.2, the range of the lag means that with lag -2, the
algorithm starts from the occurrence of the chosen start event, and moves two places
to the left in the sequence to find the end event. If found, it counts as an occurrence.
For lag 2, the algorithm looks to the right of the occurrence of the start event.
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Faraone and Dorfman (1987) explain that lag sequential analysis can be used
to find and express cross-dependencies in sequences of interactions; however, the
assumption that there are cross-dependencies must hold, or the results will be
incorrect. Furthermore, Gottman et al. (1990) noted that lag sequential analysis
should only be used as a fallback if it is not possible to conduct a full analysis with
a Markov model of second or third order due to a lack of data, as it functions as
a “trick to get around the problem”. Pitkänen (2017) mentions that noise presents a
significant problem to the method, as well as high lags, as they may find irrelevant
sequences.

2.3. Related Work in the Area of Learning Analytics

In previous research, both models based on logistic regression and support vectors,
as well as those based on clustering have been used to analyse data and predict
user behavior in MOOCs (AL-Shabandar et al., 2017). For clustering, self-organised
map clustering has been found to be a viable approach to visualizing user behavior
patterns (Alias et al., 2015).

Wong et al. (2015) used keyword taxonomy on MOOC forum data to analyse
learning processes in MOOC courses. They classified the messages into “Remem-
bering”, “Understanding”, “Applying”, “Analyzing”, “Evaluating”, and “Creating”,
as proposed by Anderson and Krathwohl’s taxonomy (Anderson et al., 2000).

With a focus on teach-outs—learning sessions that focus more on the creation of
a discussion around a topic of “pressing social urgency” without formal assessments—
Yan et al. (2019) used content analysis and topic modeling on forum data to evaluate
learner engagement features.

Focusing more on the students’ study approaches, Akçapinar et al. (2020) anal-
ysed logs collected by an eBook system, and furthermore investigated the connection
between students’ reading behavior and academic performance by using associa-
tion rule mining analysis. In a previous attempt at a similar analysis, Cheng and
Chu (2019) employed LSA to find behavior patterns and model student learning
achievements. This was then followed by research by Yang and Chen (2020), which
focused further on the online learning behavior of students, and used LSA to model
the learning behavior of different cognitive styles as they corresponded to learning
behavior.

Researching a similar topic, Saint et al. (2020) used simple frequency analysis,
epistemic network analysis, temporal process mining and stochastic process mining
to analyse patterns of SRL. They extracted the top and bottom decile and compared
their behavior in the course, finding that the top decile students put a higher focus
on summative tasks, goal setting, and reviewing answers to formative quizzes. The
bottom decile students, on the other hand, were found to be only half as active as
top decile ones, on average.

Malekian et al. (2020) researched student readiness for assessment tasks in
MOOCs, and found that by using sequential pattern mining with neural network
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models, they were able to investigate the differences in sequences of behavior for
higher- and lower-performing students. The results showed that higher-performing
students tended to view and review lecture materials more, while lower-performing
students had more sequences that related to repeated failed assessment submissions.

2.4. Related Work in the Area of Dropout Prediction

In the past years, there has been much interest in the area of dropout prediction
using various machine learning algorithms and models. This section will be focusing
on looking at some of the recent research, the methods used, and the eventual
results that were achieved by applying them.

Lee and Chung (2019) discussed the class imbalance problem as it applies to
dropout prediction in face-to-face education. Because the number of dropouts tends
to be very small in this case—in contradiction to MOOCs, where the dropout rate
can make up about 90% of the students who originally signed up for the course—
classifiers may treat the dropouts as “noise”, leading to inaccurate predictions
in later stages. When comparing random forest, boosted decision tree, random
forest with Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al.,
2002), and boosted decision tree with SMOTE, they found that the classifier that
performed best when it came to precision-recall the was boosted decision tree
classifier.

AL-Shabandar et al. (2017) found that there was “strong correlation between click
stream actions and successful learner outcomes” in their research, using a variety of
different supervised machine learning algorithms for the data classification, in com-
bination with learning analytics, which have already been used to predict student
dropouts in the past, not only in MOOCs but traditional learning environments, as
well (Tseng et al., 2014).

Likewise, Support Vector Machines (SVMs) and least mean square algorithms
have been found to be useful means to estimate the dropout rates with only click
stream data (He et al., 2015). In their research, AL-Shabandar et al. (2017) used
self-organised maps and feed-forward neural networks to predict whether a user
would complete a course or not.

Hagedoorn and Spanakis (2017) considered the temporal aspect in their approach
to predict user attrition. They found that while it was possible to get good results
with all of their analyses, which compared logistic regression, random forest and
AdaBoost results, it was significantly more difficult to predict the week in which
the dropout would occur. They also found that a profile that was left empty by the
user was a high indication that they would later drop out.

As profiles may be seen as a way for MOOC students to form connections with
each other and become more involved with the MOOC and/or its platform, this
finding also leads back to those presented by Yang et al. (2013), which mentioned
that higher social connectedness had positive influence on MOOC completion rates.
This may indicate that it is beneficial to include tasks that urge students to somehow
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interact with each other, e.g. through a forum.
In their research paper, He et al. (2018) used multiple linear regression to investi-

gate the connection between forum posts and study outcome, and found that those
that participated in the MOOC forums had a tendency to get better results than
those that did not.

Wen et al. (2014) used collective sentiment analysis combined with survival
analysis to investigate correlation between user sentiment in MOOC forum posts
and user dropouts. Previously, Ramesh et al. (2013) used probabilistic soft logic to
predict (dis-)engagement through the use of sentiment and subjectivity, neither of
which brought the desired results. Building on this knowledge, Wen et al. (2014)
acknowledge that using sentiment polarity analysis techniques to analyse single
forum posts is prone to erroneous results due to the lack of context. They postulate,
however, that with a large enough number of analyses, those errors may diminish
in severity.

Meanwhile, Qiu et al. (2016) found that higher effort and asking more questions
did not necessarily lead to a higher probability for passing the course. They did,
however, note that forum activity seemed to be a positive indicator for learning
performance, as a whole, even though the level of student engagement in the
forums lay at only 6% active users. This echoed the findings by Ramesh et al. (2014),
who also observed that forum activity was a high-ranking feature when predicting
course completion, second to only the number of lecture views, especially in the
middle and end phases of the course.

Xing et al. (2019) investigated the achievement emotions in connection with
dropout rates, using a classifier to predict achievement emotion in forum posts,
which was then in turn used in connection with a survival modeling technique to
further study the effects of those emotions.

A case study by Pigeau et al. (2019) compared eight classification models in
how they performed in dropout prediction of 12 different courses from the MOOC
platform OpenClassrooms, focusing on random forest, AdaBoost, SVM, logistic
regression, and neural networks, as well as LSTM neural network, a process mining
method, and a method based on sequence mining. They subsequently found that
AdaBoost and logistic regression gave the most promising results, with AdaBoost
performing more reliably when predicting failing learners, and logistic regression
being better with passing ones.

From a different point of view, Henderikx et al. (2018) explain that it is necessary
to reconsider the meaning of failure in relation to MOOCs. Their paper on how
intentions play into user dropouts in MOOCs proposes that the intentions of the
user need to be taken into account when looking at dropout rates, as some students
may only wish to view a specific lecture and have no intention to finish the entire
course from the start.

Because of this, dropout prediction may have to learn to account for these people
who only ever intend to “sit in” on some classes, or tracking of intentions and their
changes might be useful.
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Hew et al. (2020) also mention this when they write about how to measure the
success of a MOOC. Furthermore, they argue that using completion as a measure for
student success may not be useful, “due to the considerable difference between MOOC
and traditional university courses”. They state that a large number of students start a
MOOC because of reasons other than finishing the course, different from how it
would be at a traditional university. Due to this, using metrics that one would use
at a traditional university—like dropout rate—will most likely not be representative
of the MOOC’s benefit to the students. Instead, the proposed approach is to use
indicators such as “learner satisfaction” (Hew et al., 2020; Rabin et al. (2019)).

Similarly, Brochenin et al. (2017) do not consider completion of the course for
their analysis, but instead choose to focus on resource usage behavior of the users.
By finding out which resources were accessed particularly often or tended to be
skipped, they aim to draw conclusion from the behavior data, and furthermore
figure out how to improve the course content.

2.5. Summary

E-learning has continually gained significance over the past few years, as continuing
education has become more and more important, and e-learning has become more
present in traditional teaching environments. With life-long learning almost becom-
ing a necessity in the fast-changing job market, and e-learning swiftly becoming
ever-present, some e-learning types such as mobile, as well as bite-sized learning
have crucially shot up in importance as attention spans shorten.

With this surge in relevance, learning theories such as self-directed and self-
regulated learning have also gained a central role, as researchers and teachers are
working to get them more integrated and more strongly considered in the area of
e-learning.

Much of the research focuses on MOOCs, which are by now well-established
e-learning systems. Nevertheless, they still have the seeming issue of high dropout
rates and thus appear not to live up to their potential. However, because the
definition for what can be considered “success” for the student is dependant on the
student’s goals when signing up for the course in the first place, research seems to
be rapidly moving in two directions with this research question.

Some researchers are working to find ways to predict and mitigate these low
completion rates, while others are attempting to find different ways of classifying
whether a student was successful in attaining their specific goal in a MOOC, even if
this goal was not course-completion by itself. Furthermore, some research wholly
focuses on how students use and interact with e-learning courses and their material.
In either case, student behavior and the analysis thereof is an interesting factor that
has quickly become a central point of research in both areas. In one such example,
for instance, research has found that social connectedness, as well as social support
rewards seem particularly relevant to e-learning, as both appear to influence student
outcomes, motivation and engagement positively.
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Due to the similarity and overlap of the fields, they often work with similar
methods to analyse data, with a heavy focus on learning analytics—data mining
algorithms such as decision trees and support vector machines especially find
regular use, as well as Markov chains and models.
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3. Analysing Coursera Data from a
South-American University

This work aims to perform drop-out and completion prediction by using data from
a selection of Coursera MOOCs, as well as their connected course forums. The
original data is processed to create a set of features using the user actions with and
without the forum data, which is then used with a boosted decision tree classifier
to get the results.

3.1. Dataset

The six MOOCs that will be analyzed in the course of this work were offered on
the MOOC platform Coursera. While most of the courses were STEM or STEM-
adjacent, their specific subject focus was varied. To give an overview over the topics
included, a list of the MOOC titles, as well as a short description of the general
course topic can be reviewed in Table 3.1. From this point onward, this work will
be using abbreviations to refer to the MOOCs throughout the rest of the text. These
abbreviations, functioning as codes to identify the MOOC in question, are also
listed in the table.

To enable students to assess time requirements of a course, Coursera allows
course creators to specify course period/duration lengths and estimated workloads
for the course. The considered MOOCs had listed course periods that ranged from
4 to 6 months, and an estimated workload of 2 to 7 hours per month. However,
MOOCs on Coursera are often self-paced, with this information functioning as
a suggestion more than strict deadline. Furthermore, Coursera does not usually
formally require previous knowledge when accessing a course.

Code MOOC Content

AST Análisis de Sistemas de Transporte Fundamentals of management of passenger transport systems

DSV Decodificando Silicon Valley Interacting with Silicon Valley as a technological entrepeneur

EA Electrones en Acción Introduction to electronics and Arduinos

GOE Gestión de organizaciones efectivas Building successful organisations

PCA Hacia una práctica constructivista en el aula Designing classes for a constructive environment

WS La Web Semántica Fundamentals about the Semantic Web

Table 3.1.: This table lists the MOOC titles with a short content description. Code refers to the
abbreviation that will be used throughout the work to reference specific courses.
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MOOC Title Launch Duration
Estimated
workload

Análisis de Sistemas de Transporte (AST) October 2015 6 months 2-3 h/month

Decodificando Silicon Valley (DSV) October 2015 4 months 5-7 h/month

Electrones en Acción (EA) October 2015 4 months 4-6 h/month

Gestión de organizaciones efectivas (GOE) October 2015 6 months 2-3 h/month

Hacia una práctica constructivista en el aula (PCA) April 2015 N/A N/A

La Web Semántica (WS) October 2015 7 months 2-4 h/month

Table 3.2.: The table shows the MOOCs considered in the course of this work, as well as basic data
about the course iterations.

Due to this, the given workload and suggested course duration may not represent
the reality for each student, and can in fact vary widely according to the users’
pre-existing knowledge levels and/or the length of their learning sessions.

At the time of the course iterations, course sessions on Coursera had an official
start date that functioned as a kick-off day for the students enrolled in the course.
While it was possible to join after a course has already started, it was only possible
to pre-enroll for the course if the start date was in the future. Once the start date
had passed, the pre-enrollment then automatically transformed into a normal
enrollment, and the user could access the course forum and assessments. From
then, courses were self-paced with suggested deadlines for the students (Coursera,
2018a). Their material was available to the users without additional time constraints.
This means that students could view all course material over the span of several
months, or even just all in one day, if they wished.

Each of the specific course iterations analysed in this work took place and were
active between the years 2015 and 2016, with sessions having started in either April
or October 2015. Detailed information about launch month, duration, and estimated
workload for each course (if available) is specified in Table 3.2, where the Launch
column shows the original launch date of the course, and Duration is the time in
months that the session was considered active. Estimated workload describes the time
in hours that was estimated by the creators of the course to be necessary for a user
to pass the course. In one case, no course period or suggested workload was given.
This is denoted with N/A.

To successfully complete a course, all its graded assignments need to be passed.
However, while course access on Coursera is, for the most part, freely available,
assessments cannot always be completed or even viewed if the user does not pay
the course fee.

To join courses without paying the fee, it is possible to enroll as auditor, in which
case most of the course material is freely available to the user. It is likely that
they will not be able to submit certain assignments or get grades, however, and
they will not get a certificate after finishing the course. If a course is joined as
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ID Mode

1 In video

2 Course quick

3 Open single page

4 Quick questions

5 Survey

6 Formative

7 Summative

Table 3.3.: Coursera’s classification for assessment types

an auditor and the student decides they want to receive a certificate, they can
choose to pay for the course after having already started it. At this point, any
previously inaccessible course material and assessments will be made available
and the student becomes eligible to receive a certificate after having successfully
completed the course (Coursera, 2018c). Students who paid the course fee are also
referred to as being verified, which is the term that will be used in this work in any
analyses/statistics using this particular information going forward.

Coursera supports a number of different assessment types that teachers can
utilize in their courses. The six examples that were analyzed in this work included
assessments that can roughly be divided into quizzes, peer review assignments
and programming assignments. In this specific context, quizzes are automatically-
graded and can be multiple-choice or in-video, whereas peer review assignments
are graded by fellow students of the course.

In the available Coursera data, these rough assessment types are more finely
associated with IDs between 1 and 7, the array of which can be found in Table 3.3,
together with their corresponding assessment type names as found in Coursera’s
data export.

Not all of the different modes found application in the six courses that were
analyzed for this work. In fact, only types 1 (in video), 6 (formative) and 7 (summa-
tive) were used. In the context, in video refers to quizzes that were integrated in the
lecture videos. From the data available, this seemed to be the most popular option
in the analysed courses. Over 54% of the 172 assessments from six courses were in
video assessments.

The second most popular assessment type was summative, which still made up
over 27% of assessments. It is typically used at the end of a learning section/period
to assess the student’s knowledge (Garrison & Ehringhaus, 2007).

On the other hand, formative assessment refers to assessments that are not, in
and of themselves, supposed to be used by the teacher to grade the students or for
final assessments; instead the goal is for the student to learn from the assessment
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Assessment Type Frequency

MOOC # Modules # Assessments 1: In video 6: Formative 7: Summative

AST 6 32 20 6 6

DSV 4 31 1 26 4

EA 4 27 11 0 16

GOE 7 17 11 0 6

PCA 10 58 50 0 8

WS 7 7 0 0 7

Total 38 172 93 32 47

Table 3.4.: The table shows the number of modules and assessments for each MOOC, as well as the
frequency of assessment types across the different MOOCs. For the considered courses,
types 2 to 5 were not used.

and have it function as a self-assessment of knowledge, and to be able to adapt the
further learning process according to the students’ needs (Ventista, 2018; Garrison
and Ehringhaus, 2007). Assessments of this type made up the remaining 19% in the
studied courses.

The complete breakdown of the number of modules in each MOOC, as well as
the number of assessments and distribution of assessment types can be found in
Table 3.4.

In addition to general facts about course structure and content, Coursera provides
a wealth of further, in-depth information about its courses and students. Some of
this data which are relevant for this work are the records of course sign-ups and
assignment actions, the data about the assignments, and the information whether
the student ultimately passed the course.

Furthermore, one of the relevant points of interest for this work is the log
containing the initial interactions of the user with the course and/or course de-
scription, those of importance being users with the membership role Learner and
Pre enrolled learner. In the context of the log, Learners are those who enroll in a course
where the launch date has already passed. Pre-enrolled learners (pre-)enrolled in
a course before the start date, and are automatically enrolled—creating a further
data entry with the Learner membership role—once a course’s start date has arrived.
Further states include Browser, which is a user who viewed the course description
but did not enroll, and Not enrolled, which describes a user who un-enrolls after
having enrolled for the course in the past.

The log may contain multiple entries for the same user, for example one each
with the roles Browser, Learner and Not enrolled for someone who first looked at
the course description, then enrolled in it and finally un-enrolled at a later date
(Coursera, 2018b). An overview over these user states in tabular form was compiled
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Tag Description

Browser User viewed the course description but did not enroll

Pre enrolled learner User enrolled in the course before the start date

Learner User enrolled in the course after the start date

Not enrolled User un-enrolled from a course after previously enrolling

Table 3.5.: User states in relation to a MOOC as seen in the data sets, with explanation of terms

in Table 3.5.
Upon evaluation of each course’s enrollment data, it was found that the student

numbers of the analyzed MOOCs varied widely, with between 1579 and 14630

enrollments for each of the courses. Altogether, the sign-ups encompassed over
36,000 students, though the same student may have been counted twice if they
enrolled in more than one of the six courses that were part of the data set considered
in this work.

To ascertain the MOOCs’ dropout rates, further data was gained from course grades,
which contains information about the users’ course grades. New entries are created
each time a grading event takes place. Each of the entries contains the course id
and a learner id. Furthermore, they include information on the time of the grading
event, as well as the number of course assessments that the user has passed at that
specific point in time, the number of course assessments that the user passed and
the user’s identity was verified for, and the grade according to the passed items,
as well as the grade according to the passed items for which the user identity was
verified. Besides this, they also contain the overall passing state, which can take on
one of four values, described in Table 3.6.

State Description

0 Course was started, not passed

1 Course was finished, not verified

2 Course was finished, verified

3 Course is not passable

Table 3.6.: The four states describe the user’s state in regards to the course. A course can be passed
without verifying the graded assignments, though no course certificate will be handed
out in that case.

However, while Coursera specifies four different states, the analyses in this work
going forward only consider two. Since all courses were passable by design, state 3

becomes redundant for this purpose. Furthermore, while both state 1 and state 2

occur in the data, they are both combined in the ”Completers” class that this work
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Figure 3.1.: Number of Users per Course with Final Completion State

will be using to classify users. From here on, anytime ”Completers” are mentioned,
they are intended to refer to both students who did and did not get verified by
paying the course fee. State 0 is mirrored in the ”Dropouts” class that is used
henceforth.

Like most MOOCs, the six courses analysed in this work were also found to
have high dropout rates. To statistically evaluate the dropouts, this work first
put into relation the number of enrolled students with those who enrolled and
further interacted with the course after their initial sign-up, and finally those who
successfully finished the course. As visible from Figure 3.1, there is a sharp drop in
the numbers from enrolled students to only those who accessed the course after,
with another, even sharper drop to the number of students who completed the
course, both verified and not.

To differentiate between users who only signed up, and those who participated
after their enrollment, Table 3.7 gives an overview over the enrolled students of
each course, both those who were active in the course after the initial sign-up, and
overall, as well as the dropouts, again with the numbers of only those students who
had additional activities besides the sign-up, and the total number. As visible from
the dropout rates, they show similarly high percentages in either case, with 2.1%
difference in the best case for GOE, and 0.2% difference in the worst case for WS,
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Enrollments Dropouts Dropout Rate

MOOC All Active All Active All Active Completers Verified Survey

AST 1549 1045 1528 1024 98.6% 98.0% 21 18 39

DSV 1616 977 1600 961 99.0% 98.4% 16 14 41

EA 9817 8017 9352 7552 95.3% 94.2% 465 244 189

GOE 5081 3355 4877 3151 96.0% 93.9% 204 154 74

PCA 14630 11743 14263 11376 97.5% 96.9% 367 272 388

WS 2423 1541 2416 1534 99.7% 99.5% 7 4 84

Overall 35116 26678 34036 25598 96.9% 96.0% 1080 706 815

Table 3.7.: MOOC enrollment, and dropout statistics

and a median difference of 0.6% between all and active dropout rates.
Dropouts comprised between 95.3% and 99.7% of the enrolled students when

considering all students who enrolled, and between 93.9% and 99.5% when only
considering students who had at least one additional action after the enrollment.
Both those who formally un-enrolled and those who did not finish the course
without un-enrolling were counted among dropouts. The majority of users who
passed a MOOC also chose to verify their result by paying the course fee (before or
after qualifying for completion), thus becoming eligible for a certificate from the
course.

The “Survey” column corresponds to the number of users enrolled in that course
who gave information about their demographic data.

Coursera allows users to specify certain information about themselves, such as
age and place of residence. Through this data, provided by the users themselves
in their profiles and through surveys, it is possible to gain knowledge about
demographics. Due to the voluntary status of this data, only a small sample of
students is represented from each course. Interestingly, while the total number of
enrolled students showed big differences from course to course, it was in this data
that similarities surfaced.

The majority of users who made their birth years available were born in the 1980s,
something that matched across all six MOOCs. At the point in time that the courses
were available, this would have made this portion of users about 26 to 35 years
old. Similarly, 1970s and 1990s were strongly represented as well in each of the
courses. The complete statistical analysis can be found in Table 3.8, with age groups
as percentages in Figure 3.2.

The courses themselves were taught in Spanish, a fact that is also represented
in the demographic data—the majority of users were living in Spanish speaking
countries at the time of the course sessions. From the demographics data collected
in the user survey, students from Mexico, Spain, Chile and Colombia constituted a
large part of each course’s user base, as visible in Table 3.9.
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Births by Decade

MOOC <1950 1950s 1960s 1970s 1980s 1990s N/A Total

AST 0 1 3 7 17 11 0 39

DSV 0 1 2 8 27 3 0 41

EA 4 11 30 40 64 38 2 189

GOE 0 4 9 18 31 12 0 74

PCA 4 28 74 95 147 38 2 388

WS 0 5 11 25 34 9 0 84

Total 8 50 129 193 320 111 4 815

Table 3.8.: Number of users by their decade of birth. Of those who answered the question, the largest
fraction of students of each course were born in the 1980s, making them between 26 and
35 at the time of taking the courses.
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Figure 3.2.: Age group percentages as represented in the survey.

40



3.1. Dataset

Country of Residence

MOOC Argentina Chile Colombia Mexico Peru Spain Other Total

AST 2 4 4 3 3 5 18 39

DSV 3 5 4 2 2 2 23 41

EA 7 23 20 26 14 45 60 187

GOE 0 10 7 16 8 8 25 74

PCA 15 45 43 106 14 33 127 383

WS 7 11 8 13 2 11 32 84

Total 34 95 91 166 43 104 285 808

Table 3.9.: Number of users by their country of residency. As the classes were in Spanish language,
the core audience were those from Spanish speaking countries.

Finally, the last data file of particular interest to this work contains information on
the learners’ course progress. Each course item (e.g. lectures, assignments, quizzes)
and the learners’ interactions with them are listed, together with information on
whether the course item was started (1) or completed (2), and a timestamp for each
action. Additionally, they contain the user and course IDs.

A course item may be restarted multiple times, with only the last completion
counting for the grade, if it is indeed graded. For the purpose of this work, however,
repeated accesses of course items are counted as interactions like any other; there is
no differentiation in how they are treated.

The data about the interactions with the MOOCs and their content were further
supplemented with forum data. Coursera provides each course with its own dedi-
cated discussion forum section, where the students are able to swap ideas and ask,
as well as answer each other’s questions.

General participation in the forums was mostly shown to be low across the board
for all courses. To compare the numbers for completers and dropouts, this work put
into relation the number of students who participated in the forums and those who
passed or did not pass the course. Both are also shown in percentages, for better
comparability. It shows that, in general, the percentage of forum post writers among
completers is significantly higher than the same percentage among dropouts. The
full statistical evaluation for each course can be found in Table 3.10.

Using both the course interaction data and the forum data, Table 3.11 com-
piled the interaction information to show how course activity varied between the
“Completers” and “Dropouts” classes, and the influence of the forum data on the
calculated averages. It also compares these average number of interactions with the
average number of interactions that took place overall, or “globally”. This is done
both including and excluding forum data.
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Completers Dropouts

MOOC No Posts Posts No Posts Posts Total

AST 6 (28.57%) 15 (71.43%) 940 (91.80%) 84 (8.20%) 1045

DSV 7 (43.75%) 9 (56.25%) 916 (95.32%) 45 (4.68%) 977

EA 344 (73.98%) 121 (26.02%) 7194 (95.26%) 358 (4.74%) 8017

GOE 166 (81.37%) 38 (18.63%) 2946 (93.49%) 205 (6.51%) 3355

PCA 269 (73.30%) 98 (26.70%) 11015 (96.83%) 361 (3.17%) 11743

WS 1 (14.29%) 6 (85.71%) 1445 (94.20%) 89 (5.80%) 1541

Table 3.10.: Statistics of forum posts in relation to completers/dropouts

Avg. Interactions with Forum Avg. Interactions without Forum

MOOC Global Completers Dropouts Global Completers Dropouts

AST 44.09 46.43 42.91 42.91 46.19 42.84

DSV 66.57 58.50 66.23 66.04 58.38 66.17

EA 71.15 154.30 65.62 70.78 154.07 65.65

GOE 39.03 57.69 37.20 38.44 57.60 37.20

PCA 42.62 75.50 41.18 42.22 75.30 41.15

WS 36.47 130.86 35.47 35.79 129.29 35.36

Overall 49.99 87.21 48.10 49.36 86.81 48.06

Table 3.11.: Comparison between global average interactions in the forum per user with those of
completers, and dropouts, done both with and without considering forum data.

In an attempt to get a more in-depth understanding about users’ utilisation of
these forums, and to find whether there were patterns in how the forums were
used, this work used this data to look at the general interaction behavior of the
users. The statistics created from this data additionally differentiated the type of
forum interaction, namely between thread questions—posts that started a new
thread—and thread replies—posts that were written in response to an existing
thread—in the statistics created from the available data.

Implementing this separation, Table 3.12 attempts to investigate how forum
untilisation differs when it comes to users asking questions, as opposed to users
answering them. It shows the total number of unique users who were active in the
course forum, as well as the total number of posted question and answers, each.
Additionally, the table shows the average number of posts per user who was active
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MOOC Active Users Active User % Questions Replies Posts/User Replies/Thread

AST 99 9.47% 74 163 2.39 4.29

DSV 54 5.53% 56 70 2.33 1.94

EA 479 5.97% 476 667 2.39 2.59

GOE 243 7.24% 220 146 1.51 2.75

PCA 459 3.91% 345 556 1.96 4.03

WS 95 6.16% 92 149 2.54 4.38

Total 1429 6.38% 1263 1751 2.19 3.33

Table 3.12.: Forum statistics for each MOOC

in the forum. The percentage shown in the ”Active Users” column represents the
percentage of users who participated in the forums of those who signed up for the
course and had at least one course content interaction. Lastly, the table gives the
mean number of replies per thread per course to investigate general engagement
with the forum threads.

Completers Dropouts

MOOC Only Q Only R Both Only Q Only R Both

AST 2 (13.33%) 6 (40.00%) 7 (46.67%) 21 (25.00%) 43 (51.19%) 20 (23.81%)

DSV 2 (22.22%) 2 (22.22%) 5 (55.56%) 27 (60.00%) 11 (24.44%) 7 (15.56%)

EA 30 (24.79%) 37 (30.58%) 54 (44.63%) 167 (46.65%) 104 (29.05%) 87 (24.30%)

GOE 18 (47.37%) 13 (34.21%) 7 (18.42%) 137 (66.18%) 40 (20.29%) 28 (13.53%)

PCA 29 (29.59%) 30 (30.61%) 39 (39.80%) 113 (31.30%) 194 (53.74%) 54 (14.96%)

WS 0 (0.00%) 1 (16.67%) 5 (83.33%) 46 (51.69%) 25 (28.09%) 18 (20.22%)

Total 81 (22.88%) 89 (29.05%) 117 (48.07%) 511 (44.67%) 419 (36.63%) 214 (18.71%)

Table 3.13.: Statistics regarding the user activity in the forums in each MOOC, where ’Only Q’ are
students who only created new threads, and ’Only R’ corresponds to students who only
replied to existing threads.

Further statistics can be found in Table 3.13, which shows how learners used the
forum, and how their utilisation plays into and/or differs with their completion
status. “Only Q” gives the number of students who only started a new thread in the
forum but did not write any answers in existing threads, even their own. “Only R”
is the opposite—students who only replied to existing threads but did not start a
new one. Students who both started a new thread and replied to at least one thread
are counted in the “Both” column. In addition to absolute numbers, each column
also gives percentages, wherein the percentages were calculated per class.

Following this, Table 3.14 takes the differentiation of forum posts into question
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Started Threads/User Thread Replies/User

MOOC 0 1-5 6-10 >10 0 1-5 6-10 11-15 >15

AST 995 50 0 0 969 70 6 0 0

DSV 936 41 0 0 952 23 1 0 1

EA 7679 331 6 1 7735 258 20 2 2

GOE 3165 189 1 0 3267 86 2 0 0

PCA 11508 232 3 0 11426 309 7 0 1

WS 1472 69 0 0 1492 41 6 0 2

Table 3.14.: The number of posts that a user typically made in the forum, and whether this post was
the start of a new thread or a reply. The table shows the number of users who made a
number of posts that is included in the given range.

and reply posts, and creates categories going by frequency to show a more finely
granulated distribution across the ratio of questions to replies in the forums.

3.2. Framework and Concept

The following section expands on the pre-processing and analysis processes, as
well as explaining the selected features used in the analyses. It further explains the
training and testing process, as well as how some of the model parameters were
chosen.

3.2.1. Pre-processing and Feature Extraction

In the first step, the available data was cleaned of incomplete and faulty rows.
During this process, user interaction data without timestamps or invalid data in
the timestamp field were disregarded. As were users without any actions after the
initial enrollment.

Following this, the user interactions were compiled and used to create user-
specific interaction data. This data consisted of both activity with the course content
and, optionally, the course discussion forums. Each user’s interaction data was
sorted by timestamps, after which they were split into sessions. A new session
was started if there were more than 30 minutes of downtime between two actions,
as previously done by Vitiello (2017). These sessions were then used to create the
features shown in Table 3.15, which were afterwards used in the further analyses.

For the runs where forum interactions were included in the feature analysis, the
additional features from Table 3.16 were added.

Due to the large difference between the number of completers and dropouts in
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Feature Description

sessions The number of sessions the user started

requests The total number of actions the user made in the course

days The number of days where the user made at least one action

activetime The total time that the user spent active

sessionlen The average length of the user’s sessions

clicktime The average length between two clicks

sessionrequests The average number of requests per session

dayrequests The average number of requests per active day

Table 3.15.: The table gives short descriptions of the features used for the dropout prediction

Feature Description

forumposts The number of forum posts the user posted in the considered
timeframe

threadstarter Boolean value, whether the student started a new thread in the
considered timeframe

threadresponder Boolean value, whether the student posted a reply to an existing
thread in the considered timeframe

Table 3.16.: Additional forum features created for the training and testing stages

the courses, it is necessary to perform class balancing to avoid improperly taught
classifiers. This can be done in one of two basic ways.

Firstly, the class sizes of the training data can be equalized by removing data
from the larger class. This approach, however, is often less desirable, as it shrinks
the data the algorithm can learn from.

The other possibility is to add data to the smaller class. Generally, this is the
preferred way of dealing with class imbalances. Depending on the used approach,
existing data from the smaller class can simply be copied and thus multiplied, or
the data can be changed in a minuscule manner and added thus. For this work, the
copying approach was chosen, with the smaller, completers class being sampled
until the class members matched the larger number of dropouts.

In reference to Vitiello (2017), analyses were done splitting the data into Absolute
partitions, Days, Percentage wise partitions, and Scaled portions of the data.

For the Absolute approach, only an absolute number of initial user actions are
considered when creating the features. The feature creation process uses from 1 to
100 initial actions per user, with an increase of 10 initial actions for each experiment.
So the experiments will take place with the features using the first 10 interactions
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the user has with the course according to the timestamps, go on to 20, 30, etc. and
finally end with the first 100 interactions.

Days. In total, this approach considers the first seven days of the user’s course
actions for the features. This does not just refer to active days, but does start from
the first time the user interacts with the course, even if this is after the official course
start. Considering the timestamps, each user’s actions were considered in 24-hour
steps for each of the runs. Actions within the first 24 hours were considered in the
features for one day, within the first 48 hours the features for two, etc.

Percentage uses certain percentages of user actions for the feature creation, de-
pending on each user’s total amount of actions. Starting at just 1% of the user’s
action, the algorithm continues with 10, 20, etc. At 100%, all of the user’s actions
are considered in the feature creation.

Scaled, similarly to Percentage, considers percentages of the user’s data for the
feature creation, though in this case it also considers the timing. Taking the total
amount of time that the user spent interacting with the course, the Scaled setting
considers the actions taken in the first 1% of the time the user spent interacting
with the course material, then going on to 10, 20, etc.

This work uses BDTs to model and predict student dropouts, as Vitiello (2017)
used in his experiment considering the data from two different MOOC platforms at
once. Gradient BDTs also showed the best results when Liang et al. (2016) compared
the results from SVMs, logistic regression, random forest and gradient BDT for
dropout predictions. Together with the great results presented by Vitiello (2017),
this made BDTs the most promising algorithm for this analysis. The method was
previously described in Chapter 2.2.4.

3.2.2. Training and Testing

For this analysis, both the AdaBoost and the decision tree classifiers were used
to fit the data. With the combination of those two algorithms, there are several
parameters that can be set. One of those parameters is max depth, which describes
the maximum depth the decision tree can reach before the algorithm terminates.
Because the choice of this maximum depth plays a significant role in the quality
of the final model, this value has to be considered carefully. There is, however,
no universal “best way” for choosing this parameter. The official documentation
of scikit-learn suggests starting with a maximum depth of 3, and evaluating and
potentially increasing from there (scikit-learn, 2020a). This approach was adopted
for this work.

Once the maximum depth value becomes too high, the train and test scores start
to differ increasingly, which is a sign of overfitting that can be recognised from the
accuracy plots. For this work, only one course (EA) and one mode (Percentage)
was considered in the plot of each maximum depth value experiment to avoid
overwhelming it. However, the results do represent the general trend, and are thus
meaningful by themselves. Furthermore, to be able to compare accuracies across
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runs with varying max depth, the accuracy mean across all splits of the Percentage
mode was taken for each training and test run with the data from the MOOC.

Figure 3.3.: Comparison of training and testing accuracies over varying max depths during decision
tree creation.

As visible from the results to be found in Figure 3.3, experiments were done with
maximum depths of 1 to 8. The difference between training and testing accuracy is
minimal for a maximum tree depth of 1, and only slightly larger at 2, but increases
noticeably starting at maximum depth 3 before reaching a peak at 4. After this
point, the difference stays mostly constant for the rest of the experiments that were
conducted.

Due to this constancy at the higher maximum depth values, it is reasonable to
assume that further increasing the maximum depth of the decision tree will lead
to similarly consistent differences between training and testing accuracy going
forward, or even increase more. As overfitting already has a noticeable effect, it
is unlikely that the effect of overfitting will become less pronounced with higher
maximum depth, once more.

Taking into consideration those insights, the pronounced effect of the overfitting
present starting at maximum depth 3 is also visible in the results when comparing
the accuracy graphs from maximum depth 1 and maximum depth 3 in Figure
3.4. While the increase in accuracy could be legitimate under other circumstances,
the previous comparison of training and test scores suggests that it is most likely
overfitting that led to the increased accuracy, instead.

From the multiple trials with varying settings for the maximum decision tree
depth, it was possible to decide on the parameter value for this particular data set,
as explained above. While maximum depth 2 showed marginally higher difference
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a) max depth = 1

b) max depth = 3

Figure 3.4.: Prediction accuracies for two different max depth settings, showing the effects of overfit-
ting.

between training and test accuracy than maximum depth 1, it also increased
accuracy significantly. Because of this, a maximum depth value of 2 was used going
forward.

The number of weak learners (n estimators) was set to 50 for the AdaBoostClassi-
fier, with learning rate set to 1.0, as is the default.

Due to the previously performed class balancing and in combination with other
validation measures, prediction accuracy is a reasonably good measurement for
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the goodness of fit or, in other words, the final classifier performance. Because
overfitting can, even with balanced classes, lead to a misleadingly good accuracy
score, it is still a good idea to check for overfitting with balanced classes, as was
done with the comparison of train and test scores.

3.3. Results

For comparison purposes, the dropout prediction analyses were run both for the
data that contained forum activity in addition to the basic course interaction data,
and for the data that did not. Thus, the analysis was run twice in its entirety. Fur-
thermore, the four modes Absolute, Days, Percentage, and Scaled were implemented
to use an increasing amount of data for the feature creation for each experiment. The
modes were previously explained in Section 3.2.1. Each analysis was run over ten
folds and the results were quantified using the average of the normalized accuracy
scores of each fold for each of the analyzed courses. The results of each mode’s
experiments—Absolute, Days, Percentage and Scaled—are represented in one plot,
with the respective x-axis representing the dimension used by the approach.

As visible in Figures 3.5, 3.6, 3.7, and 3.8, each showing the results excluding
forum features at the top and those including forum features at the bottom, the
difference in accuracy is minimal, and in some cases worse for the experiment
including forum features than for the one excluding them.

As visible from the accuracy scores in Figure 3.5, accuracy for the mode Absolute
is close to 0.5 when using only the first course interaction to create features. This
makes sense, as this would be only marginally better than the algorithm simply
guessing the class affiliation for each sample. At 10 interactions, however, the result
is already significantly better, and the scores continue to increase for EA, PCA, and
GOE. DSV, WS, and AST are all clustered close to 1.0. Both experiments, with and
without forum features, show very similar results. The main difference seems to be
that there is a small shift towards better accuracy at one singular data point, where
the accuracy is closer to 0.55.

Figure 3.6 analyses the results with the actions during the first 1 to 7 days of
the users’ enrollments in the MOOCs. Once again, DSV, AST, and WS are closely
clustered together at almost 1.0 for both the experiment with forum features, and
that without. In this case, however, Figure 3.6b shows some lower scores at various
points for AST, GOE, and EA, in particular. In general, accuracy still rises with time
overall for each of the courses in both cases, though not as smoothly as was the
case for the Absolute mode. It also does not reach the same heights for the courses
GOE, EA, and PCA as it did in Absolute.

When considering percentages from 1 to 100, the accuracy scores became very
stable for each MOOC, and showed a smaller range than the other solutions across
all MOOCs. This is shown in Figure 3.7. GOE starts with the lowest accuracy for
both the experiment with the forum features and the one without, though the one
including forum features is marginally higher.
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a) Absolute without forum

b) Absolute with forum

Figure 3.5.: Absolute: Accuracy of dropout prediction using BTDs as averaged over 10 folds, with
and without forum features.

The results of the scaled approach, shown in Figure 3.8 seem almost like a
combination of the results of Absolute and Days. Once again, DSV, AST, and WS are
clustered at the top. The accuracies of GOE, PCA, and EA, however, start at similar
values as they did in Days, and rise with increasing number of actions similarly to
how they did in Absolute. Once more, the results with forum features swing between
being better and worse than the accuracy scores for the experiment disregarding

50



3.3. Results

a) Days without forum

b) Days with forum

Figure 3.6.: Accuracy of dropout prediction as averaged over 10 folds, with and without forum
features

the forum features.
To compare the results of the analyses using class balancing and accuracy scores

with analyses made with the MCC and no class balancing, another run took place,
once again with included forum data. However, while MCC is generally expected
to work well for imbalanced data sets, this did not appear to be the case with the
given data. The results, found in Figures 3.9 and 3.10 for Percentage and Absolute,
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a) Percentage without forum

b) Percentage with forum

Figure 3.7.: Accuracy of dropout prediction as averaged over 10 folds, with and without forum
features

respectively, showed high fluctuations in their scores when not using class balancing.
This is especially the case for the courses with the three highest dropout rates, AST,
DSV and WS.

However, the three courses also had significantly fewer enrollments, with between
977 and 1541 active students, than the other three, which show better results and
had between 3355 and 11743 active students.
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a) Scaled without forum

b) Scaled with forum

Figure 3.8.: Accuracy of Dropout Prediction Using Boosted Decision Trees as averaged over 10 folds

Since class balancing as used for this analysis also increases the amount of data,
it is possible that the results follow from a lack of data for the smaller courses when
class balancing does not take place.

Thus, after another try with class balancing, the results once again become more
reasonable and closely match the accuracy scores, when taking into account that the
MCC signifies the score 0 as matching the average random prediction (scikit-learn,
2020b).
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a) Results for Percentage using MCC without class balancing.

b) Results for Percentage using MCC with class balancing.

Figure 3.9.: Comparing MCC scores for Percentage with balanced and unbalanced data.

Due to this, class balancing seems necessary for the given analyses, irrespective
of the selected evaluation method.

Following this, the most relevant features for the boosted decision tree classifier
when used in conjunction with AdaBoost were analysed. This was done at the
beginning, middle and end of the course, to be able to see differences in the
progression of each feature’s significance. Once again, this analysis took place for
both the feature set with and without features gained through incorporating forum
data to be able to compare the results, as seen in Table 3.17. The most significant
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a) Results for Absolute using MCC without class balancing.

b) Results for Absolute using MCC with class balancing.

Figure 3.10.: Comparing accuracy score for Absolute with balanced data with MCC score without
balancing data.

features for the experiment including forum features are shaded in blue, while the
ones for the experiment excluding forum features are colored in red.

Absolute 10 50 100

F N F N F N

sessions 0.024 0.004 0.044 0.056 0.060 0.024
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requests 0.224 0.020 0.228 0.020 0.280 0.196

days 0.020 0.000 0.036 0.028 0.048 0.036

activetime 0.152 0.256 0.244 0.232 0.188 0.244

forumposts 0.064 - 0.132 - 0.108 -
threadstarter 0.024 - 0.016 - 0.016 -
threadresponder 0.024 - 0.000 - 0.000 -
sessionlen 0.084 0.224 0.064 0.316 0.112 0.164

clicktime 0.304 0.436 0.084 0.216 0.088 0.256

sessionrequests 0.024 0.004 0.060 0.060 0.028 0.044

dayrequests 0.056 0.056 0.092 0.072 0.072 0.036

Days 1 3 5 7

F N F N F N F N

sessions 0.036 0.040 0.064 0.048 0.024 0.032 0.008 0.020

requests 0.144 0.100 0.184 0.216 0.228 0.228 0.224 0.264

days 0.004 0.004 0.040 0.040 0.040 0.048 0.040 0.040

activetime 0.316 0.360 0.248 0.288 0.288 0.300 0.268 0.236

forumposts 0.020 0.036 0.064 0.056

threadstarter 0.008 0.020 0.004 0.008

threadresponder 0.000 0.000 0.000 0.000

sessionlen 0.132 0.184 0.108 0.108 0.080 0.108 0.064 0.116

clicktime 0.168 0.160 0.104 0.152 0.108 0.104 0.112 0.128

sessionrequests 0.112 0.132 0.068 0.052 0.100 0.120 0.096 0.084

dayrequests 0.060 0.020 0.128 0.096 0.064 0.060 0.124 0.112

Percentage 10% 50% 100%

F N F N F N

sessions 0.024 0.048 0.032 0.068 0.080 0.096

requests 0.508 0.312 0.296 0.248 0.296 0.308

days 0.004 0.016 0.036 0.048 0.032 0.048

activetime 0.104 0.212 0.136 0.188 0.180 0.160

forumposts 0.084 0.124 0.124

threadstarter 0.000 0.020 0.000

threadresponder 0.020 0.000 0.000

sessionlen 0.048 0.164 0.044 0.084 0.052 0.084

clicktime 0.064 0.096 0.152 0.168 0.072 0.128

sessionrequests 0.064 0.068 0.120 0.096 0.080 0.092

dayrequests 0.080 0.084 0.040 0.100 0.088 0.104

Scaled 10 50 100
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F N F N F N

sessions 0.044 0.032 0.040 0.020 0.064 0.076

requests 0.268 0.304 0.248 0.252 0.308 0.312

days 0.056 0.060 0.096 0.092 0.028 0.056

activetime 0.136 0.168 0.144 0.208 0.184 0.176

forumposts 0.064 0.052 0.136

threadstarter 0.000 0.000 0.000

threadresponder 0.020 0.008 0.000

sessionlen 0.084 0.088 0.064 0.092 0.032 0.076

clicktime 0.144 0.152 0.164 0.192 0.088 0.128

sessionrequests 0.084 0.072 0.132 0.088 0.080 0.088

dayrequests 0.100 0.124 0.052 0.056 0.080 0.088

Table 3.17.: The feature importances at the beginning, middle and end of the course when consid-
ering forum-derived features (F) in comparison to not including forum data (N).

Both result sets showed that without fail activetime was amongst the three highest
ranked features. When inspecting the results containing the forum features, requests
becomes more important overall. While it appears in the ranking features 10 out
of 13 times when forum data is not considered, it reaches one of the highest three
scores every single time when also incorporating forum features.

Clicktime, on the other hand, seemed to get lower scores overall when forum
features were present. Even when clicktime reached a remarkably high score both
with and without forum feature consideration in the Absolute category at the 10

action split, the score without forum feature consideration ranked over 0.1 points
above that with forum features.

The feature scores of sessions and days were low in all analysed use cases. They
should not be dismissed out of hand, however, as they may be contributing to the
model quality only when regarded in combination with another feature.

For the analysis that was run with the addition of forum features, the results
show that threadresponder reached particularly low importances throughout the
entire prediction process. While threadstarter performed better, it still did not score
high enough to be considered among the three highest ranked features even once.
In contrast, the feature forumposts was among the three highest ranking features in
4 out of 13 trials.

3.4. Discussion

One of the interests of this chapter was to examine the significance that forum
interactions/forum features in dropout prediction. As Table 3.10 showed, there is a
marked difference between the percentage of forum users among completers and
that among dropouts. In fact, for the courses AST, DSV, and WS, more than 50% of
completers wrote at least one forum post, whether it was a question or reply. This
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is not the case when looking at the dropouts, where participation percentages were
below 9% for every course.

However, when looking at the classification results, there was no marked dif-
ference between the result with and without forum features for the most part. In
fact, the scores become worse in some cases. This leads to the possible conclusion
that the inclusion of the forum features may lead to overfitting. Feature selection
may be necessary to counteract this. As the features threadstarter and threadresponder
didn’t score particularly high in the feature importance analysis found at 3.17, they
may be possible candidates for exclusion, with days and sessions being two more
candidates for removal for analyses with this particular data set.

When reviewing the classification results themselves, it quickly becomes apparent
that the experiment where percentage amounts of actions were used to create the
features performed best, even at just 10% of the actions. In comparison to the
experiment where an absolute number of interactions was picked, the difference
in performance is indisputable. Absolute numbers performed the worst of all
experiment modes in the beginning, then jumped up sharply at 10 interactions,
after which it improved steadily for GOE, EA, and PCA. DSV, AST, and WS jump
from about 0.5 to almost 1.0 at 10 considered interactions. This might be because
dropouts stop interacting very early on in the course, leading to drastically different
features between completers and dropouts.

Overall, however, accuracy scores are only worse for the experiment considering
day-wise interactions. Because that experiment considers a fixed number of days, it
falls into a similar category as the one considering an absolute number of actions.
Fixed numbers of days/interactions do not take into account the length of the
course, or when the user actually starts interacting with the course. Longer courses
will usually generate more user interactions, simply due to the higher number
of course items that the users will access on average, and some students may
sign up for the course only to come back to it at a later time to start and finish
it, while technically only falling partially or not at all into the window of time
that the day-wise experiment takes into consideration. Thus the experiment using
absolute numbers will in most cases be using much less actions to fit the model
than an experiment using percentages. This matched the findings in the work of
Vitiello (2017), who observed that the results for Percentage were the best of the
four experiments.

In closer examination of the results for the Days approach, what stands out is
that there is a significant difference in the performance depending on the MOOC.
AST, DSV, and WS all perform extremely well, while GOE, PCA, and EA perform
in the range between 0.75 at worst and 0.89 at best. Furthermore, the accuracies
are mostly stable for AC and GOE. When looking at the average of active days
of users according to classes, as in Table 3.18, the difference between completer
and dropouts are among the lowest for GOE, PCA, and EA. However, AST shows
a smaller difference than PCA, and still performs significantly better than the
other three courses. In general, the numbers show why importance of the days
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Average Active Days

MOOC Completers Dropouts Difference

AST 13.67 3.65 10.02

DSV 24.00 3.50 20.50

EA 13.62 4.16 9.46

GOE 9.46 2.81 6.65

PCA 16.95 3.42 13.53

WS 18.33 3.04 15.29

Table 3.18.: The average number of active days of users per class.

feature in 3.17 is generally low. Except for DSV and WS, the difference is generally
comparatively low, especially considering the courses were generally without a hard
deadline/closing date, and does not make for a good indicator whether someone
will drop out or complete a course.

In a further attempt to explain the comparatively low performances in the results,
the average interactions for each day were calculated for both completers, and
dropouts, respectively. Here, the relatively low performances of EA, GOE, and PCA
become clearer. As Figure 3.11 shows, the average of interactions during the first
10 days are relatively low, with similar results to be found in Figure 3.12 for both
GOE and PCA. Assuming the majority of students signed up close to the start of
the course, this would mean that the three courses work with only a small amount
of data for the Days approach.

In any case, the average number of interactions for EA, GOE, and PCA is in
general relatively low at a maximum of 8 to around 10, depending on the course.
The courses AST, DSV, and WS, in comparison, all show interaction averages of
30 to 55 at the maximum, offering a lot more interactions to work with. Since the
requests feature is consistently high in importance in Table 3.17, this explains why
AST, DSV, and WS perform so well in the classification task.

When comparing the feature importance results without forum features from
this work with the one done in the thesis written by Vitiello (2017), some notable
overlaps in the highest scoring features can be observed. Just as was found there,
this work also found days to be one of, if not the, lowest scoring feature. In fact,
there are only six instances in Table 3.17 where days did not get the lowest score,
and in five of those cases it was only sessions that scored lower—another low scorer
for Vitiello (2017), as well.

The list of features that are among the highest-ranked at least twice, requests,
activetime, sessionlen, and clicktime also exactly matches the ones identified as most
important by Vitiello (2017). AL-Shabandar et al. (2017) also found the number
of user events/actions to be the highest weighted feature in their analysis, which
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Figure 3.11.: The average number of course interactions in EA, calculated per class.

matches the results of most of the experiments in Table 3.17.
Table 3.19 summarizes the highest and lowest importance features by counting

their occurrences in the top three over all experiments, in order of decreasing
frequency for highest, and of increasing frequency for lowest. As it shows, the
results exhibit considerable overlap in both section, with the lowest three matching
in order exactly. The highest scoring features then show some differences, with
active time and requests swapping places between the two works.

Furthermore, while it still is among the highest scoring features in half of the
experiments, clicktime doesn’t appear among the highest frequency top-scorers for
Vitiello (2017) often enough to be in the top three, but does for this work. Even

Features as found in this work Features as found by Vitiello (2017)

Highest Active Time, Requests, Clicktime Requests, Active Time, Session Length

Lowest Days, Sessions, Active Day Requests Days, Sessions, Active Day Requests

Table 3.19.: Comparison of highest scoring features with the results found by Vitiello (2017).
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GOE

PCA

Figure 3.12.: The average number of course interactions in GOE and PCA over time, calculated per
class.
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more notably, Session Length, which was the third highest frequency result for top
scoring features in the reference work, is far from being in the top three influential
features in this work, with only 19.23% of experiments where it was among the
three features with the highest feature importances. In the results presented by
Vitiello (2017), this was the case in 66.67% of the experiments.

What further stands out in this work are the mostly low feature importances
of the forum-derived features, which does not match the results of Ramesh et al.
(2014), who found forum activity to be the second-most important feature in their
analysis. In Section 3.1, it was shown in Table 3.10 that the percentage of forum users
was consistently higher among completers than it was among dropouts. While
participation percentages ranged between 3.17% and 8.20% for dropouts, they
were between 18.63% to 85.71% for completers. In fact, the average participation
percentage over all courses for completers was 47.46%, but only 5.52% for dropouts.

In both cases, however, the participation rates were higher than the 3% partic-
ipation rate over all students that Breslow et al. (2013) found in their analyzed
MOOC. This seems to stem from more active Dropouts, as his numbers for certifi-
cate earners—52% of them were active in the forum—closely matches the 47.46%
of active completers in the forums in this work. From these statistical analyses in
regards to forums, it is possible to postulate that there seems to be a correlation
between course completion and forum activity in most evaluated courses.

Further looking into this possible connection, Table 3.13 shows that in terms of
behavior, completers were generally more likely to interact with the forums by both
creating new threads, and responding to existing ones, with percentages between
18.42% and 83.33%. Dropouts usually either leaned towards creating only new
threads, or only answering to existing ones, though which one their behavior is
skewed to differs between courses. For DSV, EA, GOE, and WS, students who only
created new threads outweigh the others, while in AST and PCA, dropouts showed
a preference for only responding to existing posts.

This is also reflected when looking at the average question and response posts
per person in Table 3.20, where completers and dropouts were treated separately.
While there are 0.04 question posts per enrolled dropout in PCA, there are 0.03

response posts. Because the number of students who are active in the forum is
so much smaller than the number of enrolled students altogether, however, the
numbers are generally very low, and differences small.

This does not change significantly when looking at the average number of total
forum interactions per user, where the numbers don’t rise over 5.43 posts at the
maximum, for the course WS. This can be seen in Table 3.21. Even when considering
only active forum posters, the highest average is 6.33, once again for WS. Because
of these low numbers, it is reasonable to expect low importance of features derived
from the number of forum posts—the differences between completers and dropouts
is ultimately too small to have much impact.
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Avg. Q Active Avg. Q Avg. R Active Avg. R

MOOC C D C D C D C D

AST 0.81 0.06 1.13 0.68 1.76 0.12 2.47 1.50

DSV 0.81 0.04 1.44 0.96 2.06 0.04 3.67 0.82

EA 0.31 0.04 1.21 0.92 0.65 0.05 2.48 1.03

GOE 0.19 0.06 1.03 0.88 0.19 0.03 1.00 0.53

PCA 0.36 0.02 1.36 0.59 0.47 0.03 1.77 1.06

WS 1.43 0.05 1.67 0.92 4.00 0.08 4.67 1.36

Overall 0.65 0.05 1.31 0.83 1.52 0.06 2.68 6.30

Table 3.20.: Average number of forum questions and responses per class, averaged over all students,
and only those who were active in the forum. “Q” refers to new threads being posted,
while “R” is a reply to an existing thread. “C” is short for completers, and “D” for
dropouts.

Avg. Posts Active Avg. Posts

MOOC Completers Dropouts Completers Dropouts

AST 2.57 0.18 3.60 2.18

DSV 2.88 0.08 5.11 1.78

EA 0.96 0.09 3.69 1.95

GOE 0.38 0.09 2.02 1.41

PCA 0.83 0.05 3.12 1.65

WS 5.43 0.13 6.33 2.28

Overall 2.18 0.10 3.98 1.88

Table 3.21.: Average number of forum posts per class, both averaged over all students, and only over
those who were active in the forum.

3.5. Summary

High dropout rates are a pervasive problem in the area of MOOCs. This chap-
ter looked at user course interaction data and forum data in an attempt to find
correlations between dropouts and user actions. With feature creation processes
being run at different points throughout the course/with varying amounts of data,
the analysis aimed to investigate the progression of the results from earlier in the
course to later on. Using decision trees that were boosted with AdaBoost and with
a maximum three depth of 2, it found a high degree of accuracy was able to be
reached with this approach.

63



3. Analysing Coursera Data from a South-American University

Over all courses, feature importance results showed some differences to previous
research, in that session length did not seem to be as highly ranked in this case.
What was found in this case was that the three most important features were the
amount of active time in the course, the number of requests, and the average time
between two clicks.

When investigating the effects of inclusion of forum interaction data, a larger
number of forum interactions, especially if the user engaged both in existing threads
and created new ones, seemed to be positively correlated with course completion
in the statistical analyses at the start of the chapter. Upon inclusion of forum data
in the classification learning data, however, comparisons of the results showed
that features that were derived from forums did not necessarily lead to improved
performance of the used classifier, most likely due to the mostly small difference
between the number of forum posts of the two classes, and feature importances for
forum features were mostly low.

Such being the case, it might be of interest to try similar analyses with courses
that have a higher percentage of forum interactions among the students—perhaps
by having one or more assessments directly include interactions with the forum in
some shape or form.
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4. Analysing E-Learning Data from an
Austrian University

This work also considers a data set collected throughout a class at an Austrian
university to investigate learning behavior in connection with student performance.
The online system is built to support self-regulated learning, and represented a
mandatory section of the coursework, which the students were required to pass in
itself to be able to pass the course.

As previously described in Section 2.1.8, the e-learning course consists of multiple
sections, which are themselves made up of chapters or subsections that the students
work through. It is left up to them whether they do this in the given order or not, or
even whether they study any of the section chapters at all. Each section contains an
associated assessment that the students can take whenever they feel ready to do so.
If they are not satisfied with the result, they can retake the assessment immediately,
or go back and revise the section contents once more before another attempt of
the assessment. There is no maximum limit on the number of allowed assessment
attempts, and only the best result is counted towards the student’s final grade.

4.1. Dataset

The analysed course is part of a class at an Austrian university and was only
made available to students who were signed up for it during the winter term in
2018/19. The class itself enrolled 31 students, none of which dropped out during
its progression. It was not openly available on the web. Because of this, the target
group of the course was quite small, and the data set gained from it is limited. With
the trial group being only one class of students, the resulting data set is made up of
the same 31 users who were originally enrolled in the parent-class, with most of
them having a background in technology, particularly computer science (see Table
4.1).

At the beginning and end of the course, a survey was sent out to the participants
where they were asked to supply demographic data as well as information about
expectations and motivations, and assessments of the course structure and execution,
respectively. The introductory survey was filled out by 19 of the 31 students. The
summarised information from the first survey can be found in Table 4.1, as well.

Besides the information collected through the surveys, two data files contained
the information collected throughout the progression of the course. One of the
available files for this course consists of user traces, showing interactions of the
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Demographic Response distribution

Response Frequency Percentage

Gender

Female 8 25.80%

Male 11 35.48%

Other 0 0.00%

No Answer 12 38.71%

Age

18-20 1 3.23%

21-23 6 19.35%

24-26 10 32.26%

>26 2 6.45%

No Answer 12 38.71%

Field of Study

Computer Science 13 41.94%

Software Engineering and Management 5 16.13%

Information and Computer Engineering 1 3.23%

No Answer 12 38.71%

Table 4.1.: Demographic data of the students who filled out the survey at the beginning of the course.
Of the 31 students taking the course, 12 chose not to answer the survey and are recorded
in the “No Answer” options of the table.

users with the course material in the form of visits and assessments, as well as login
and logout actions. When applicable, the log entries show the section that an action
was part of, as well as the visited material’s id, in addition to a timestamp, among
other information.

Additionally, a second log file shows the users’ assessment results, as well as the
number of times they were repeated, giving the information listed in Table 4.2.

The course website is built to show an overview page with links to each of the
different content pages after the successful login. From there, it is possible to get an
overview over the course topics, and access every content chapter.

The course itself is structured in three main topics/sections, with additional
instructional and learning progress pages, which are also accessible from the
overview page. Each of the sections consists of a number of content chapters (see
Table 4.3) and has learning goal information and a corresponding assessment that
can be retaken an infinite amount of times, with the best try counting towards
the final result. There are no prerequisites to be able to see any piece of learning
material, and though there is an order to the content chapters and sections, it is not
a requirement for the student to study them in order, or even at all, to be able to
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Tag Description

id Interaction ID

user User ID

assessment List of assessment sections with interactions

section Section ID

completedsections Number of successfully completed sections

status 0 if not successfully completed, 1 if successful

timestamp start timestamp of assessment start

timestamp finish timestamp of assessment end

Table 4.2.: Description of the data received through a course at an Austrian university.

# of Chapters per Section

# of Students # of Graded Assessments Section 1 Section 2 Section 3

31 3 7 5 5

Table 4.3.: The course in numbers—student count, assessment numbers and content chapters per
section

take the section exam. The content chapters themselves primarily contain textual
descriptions and information about the section topic.

Besides using the overview page to navigate the content, it is also possible to
change to the previous or next chapter directly from the currently viewed one.

4.2. Framework and Concept

The small size of the data set presented a challenge, in that typical machine learning
algorithms require more information to be able to create an appropriate model.
Because of this factor, originally the decision was made to build this analysis on
the concept of sequential analysis, which was explained in Section 2.2.4. However,
due to the fact that no assumptions of cross-dependencies can be safely made in
this case, the analysis was ultimately further simplified the process by applying a
sequence mining approach. This method was previously presented by Malekian
et al. (2020) in their attempt to find whether there were specific patterns to be found
in students who failed assessments, as opposed to those who passed.

For this, the data was first cleaned of any test and/or invalid users. Then, the
actions were used to create user profiles, where each profile contained the actions
with timestamps sorted by time. Similarly to the preparation done in Chapter 3,
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actions that took place within 30 minutes from each other were considered to be
part of one “session”. If the break time between two consecutive actions exceeded
30 minutes, a logout/login action pair was added in between the two actions if it
was not already present, as previously done by Saint et al. (2020). This served to
make the switch between two sessions visible in the heat map visualising the user
behavior.

Code Description

IN Login

OUT Logout

IND Index page

INS Instruction page

PRO Progress page

U1 Section 1 content

U2 Section 2 content

U3 Section 3 content

G1 Goal page of section 1

G2 Goal page of section 2

G3 Goal page of section 3

A1 Assessment of section 1

A2 Assessment of section 2

A3 Assessment of section 3

Table 4.4.: Action codes with short descriptions.

In the next step, so-called “codes” were defined for specific actions and/or
action types of students. The actions were substituted with these codes, defined in
Table 4.4, to reduce complexity. Any accesses that involved a content chapter of a
particular section were coded with that section—e.g. an access of an item belonging
to section 2 would simply be referred to as ”U2”. The one exception to this case
was the overview page for the section’s exam, which was dropped as it functions
only as an information page before the assessment effectively starts. The outcome
was a list of codes for each student which described the student’s path through the
online course.

Following this, the students were split into two classes—those who repeated at
least one of the assessments, and those who did not, denoted from here on with
“O” for the students who did not repeat, and “R” for those who did. This data was
then used to create the transition matrices/heat maps depicted in Appendix A.1 for
the O and Appendix A.2 for R. Due to the fact that at the end of the course, each
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Code Description

v The content was new to the user and was viewed for the first time

rv The content was known to the user and being reviewed

a-p The assessment was passed with 100% of the points

a-f The assessment was passed with less than 100% of the points

Table 4.5.: Codes used in sequence mining, adapted from those used by Malekian et al. (2020).

student had reached the full 100% of each assessment, these codes may effectively
be used interchangeably with passing and failing in coming sections, if failing is
considered to be any result below the 100% mark, in this specific case.

Based on the work of Malekian et al. (2020), the data was then further simplified
by using only content accesses, and assessment attempts with their result. In this
way, content was broken down to extract whether a student was viewing content
that was new to them, or reviewing content that they had already viewed in the
past during the course. This process also removed the information how students
moved from content to content, as this information can also be extracted from the
heat maps in Appendices A.1 and A.2 and does not influence how the students
interacted with the actual learning content.

Similarly, assessments were simplified into passing and failing tries, or as appli-
cable for this paper: attempts where 100% of the points were reached and attempts
where less than 100% were reached. Furthermore, while the original work con-
sidered attempts of the same assessment as the previous one, and attempts of a
different assessment to the previous one as two separate cases each with their own
label, it was decided due to the size of the available data in this case not to make
the distinction.

One further reason for this was that due to the structure of the course, the support
for sequences including assessments were significantly lower than those including
only views and reviews, as the number of course content pages far outnumbered
the assessment attempts. Overall, assessment repetitions did not take place often
enough for each individual assessment, or for other assessments than the most
recent one, to be able to use this approach with the available data. Even with this
change, sequences containing assessment attempts were ultimately far outnumbered
by those that contained only view and review actions.

The final codes used in this process and going forward are documented in Table
4.5, together with short descriptions of each.

Following this, sequence extraction was used on the combined data of O and R,
and for each class’ data, individually. Referring once more to Malekian et al. (2020),
this was done with different lags, which were previously described in Section 2.2.4,
and selected to be in the range of 1 to 9. For each lag, the occurring sequences
were extracted and their support was calculated to be able to evaluate importance.
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Sequences below a specific minimum support value were dropped. This minimum
support value was selected to be 20% in the original work. However, in this thesis,
the lack of data caused results to be sparse for the 20% minimum, leading for the
limit to be dropped to 10%.

4.3. Results

The data consisted of 31 students with an average of 65.53 actions per student.
There were a total of three sections, each with one final, graded assessment that the
students were supposed to pass to complete the course. 46 of the 93 assessments
in total were completed with the maximum reachable points at first try. Generally,
students re-attempted the assessments until they got full points. At maximum, this
took four tries. The distribution of the number of assessment attempts per user can
be viewed in Figure 4.1.

Figure 4.1.: Number of assessment attempts per student, per assessment

As shown, the majority of students completed assessments 1 and 2 only once,
while assessment 3 had an even distribution of students who attempted it one,
two and three times. Assessment 2 seems to have a lower number of attempts in
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Assessment # of Attempts Average # of Attempts

1 52 1.68

2 46 1.48

3 64 2.06

Table 4.6.: The table shows the number of attempts for the assessments, average number of attempts
per student per assessment

comparison to the others altogether, with more than half of the students making
only one attempt. One student in both assessment 1 and assessment 3 attempted
the assessment four times, while the maximum for assessment 2 was three attempts.
An overview of the total number of attempts per assessment, as well as the average
number of assessment attempts for each of the three assessments can be found in
Table 4.6.

With the multiple assessment attempts, there was a steady increase in the point
percentage, overall and per student. The increase in the overall achieved percentage
across each assessment is shown in Figure 4.2.

During the second attempt, there was an average of 75% increase in the total
points for the students who did not finish at full points on their first try, and another
average of 41.6% total point increase on the third try, if there was one.

The view numbers for each section can be found in Table 4.7. As the table shows,
the instruction page was visited a total of 55 times. Most of the views of this section
took place before any of the sections and their contents were viewed. Only 15 of the
55 checks took place during an active session, which for this analysis is considered
the time between the first interaction with a section’s content—including the section
goal page—and the first visit of the section’s assessment page.

The number of accesses for each of the learning goal pages was very even, as can
be seen in Table 4.7. The learning goal page of the relevant section was generally
checked before the section’s learning content chapters were visited, as shown in the
column “Before LC”.

Content Accesses Before LC Average per Student

Instruction Page 55 1.77

Section 1: Learning Goal 48 38 1.54

Section 2: Learning Goal 46 35 1.48

Section 3: Learning Goal 48 35 1.54

Progress Page 107 3.45

Table 4.7.: Number of accesses per course section, where LC is short for “Learning Content”
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Figure 4.2.: Improvement in the overall point percentage across all students, per assessment.

Learners checked their progress on the progress page a total of 107 times. Only
11 of those checks took place during an active session, and in fact most often the
learning progress was only checked after the student had finished all three assess-
ments, though 12 students also viewed their progress before retaking previously
finished assessments.

About half of the students viewed the content chapters in a section in the order
they were intended to be viewed, while a small subset of 5 students did not view the
learning units at all or only a select few before taking the assessment. The numbers
were calculated by section and show some variation in the relation between ordered
and unordered learners, as visible in Figure 4.3.

About half—15 of the 31—of the students switched between sections during an
active sessions.

Of 31 students, 29 took the assessments in order. Of the others, one student
worked through the assessments in order, then started over to do them once more,
ending with a third try of assessment 1. The last student started with 2, went on to
finish section 1 and ended with 3.

In the case that a student repeated an assessment attempt, the majority of students
did not view the goal or learning sections again. Of the students who repeated the
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Figure 4.3.: Number of students who viewed the sections in order/out of order

assessments one or multiple times, half reviewed one or more learning contents for
at least one retry in section 1, 5 of 7 students reviewed learning contents in section
2, and only 6 of 15 students reviewed contents in section 3.

To be able to assess differences in student behavior in more depth, this work
calculated the transition probabilities between each pair of states for both the
students who repeated assessments, and those who did not. The probabilities were
then visualised in heat maps, where higher probabilities are higher saturated and
lower probabilities have less saturation. Figure A.1 shows the results for students
who did not repeat assessments, and Figure A.2 shows those of students who did
repeat at least one assessment once or more times. Both of these heat maps can be
found in the Appendix.

Figure 4.4 shows the difference in behavior between students who repeated
assessment and those who did not. For this, the probability values for transitions
found for students who repeated were subtracted from those found for students who
did not repeat. Because of this, negative, or blue-shaded numbers are transitions
that had higher probability for repeating students, while positive, or red-shaded
numbers had higher probability for students who did not repeat. The darker the
shade, the higher the difference between the results for the two classes.
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Heatmap of User Transitions

Figure 4.4.: Heat map showing the difference between transition probabilities for students repeated
assessments and those who did not.

To further investigate the connection between learner behavior and outcome, the
work specified ordered/unordered behavior as additional categories, to be com-
bined with the previously defined classes O (for students who did each assessment
only once), and R (for students who repeated at least one assessment). Class affili-
ation for O/R was calculated for each of the three assessments separately, which
means that this specific class could change for a student, depending on whether
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unordered ordered

A1 A2 A3 A1 A2 A3

O 29.41% 46.15% 25.00% 71.43% 72.22% 45.45%

R 70.59% 53.85% 75.00% 28.57% 27.78% 54.55%

Table 4.8.: Percentages of users who took an assessment once/multiple times per assessment number,
for ordered learners, and unordered learners.

the student repeated that particular assessment. Ordered/unordered classes were
calculated over the whole course, as it considered the overall learning behavior the
student displayed. Using these numbers, Table 4.8 shows the calculated percentages
of unordered learners who took the specific assessment one/multiple times, as well
as the same for ordered learners.

The sequence extraction approach was originally run with a set minimum support
of 20%, where support is calculated by dividing the number of occurrences of a
specific sequence by the total number of extracted sequences. Any sequences that
did not reach this number were dropped from the results. Like in the reference work
of Malekian et al. (2020), the sequences were then modeled in sequence diagrams,
where arrows leading back to the state itself signify an additional repeat of the
state, and the numbers in the square brackets above the arrows denote the number
of repetitions to be found among the set of extracted sequences. For example, the
annotation “[1...3]” means that the repetition of the state takes place between (and
including) 1 and 3 times. The state names used in the sequence diagrams were
previously described in Table 4.5. This led to the results visualised in Figure 4.5,
collecting all sequences with the lags in the range of 1 to 9. The term “lags”, in this
case, is adopted from sequential analysis and used as described in Chapter 2.2.4.

However, the result set was quite sparse, with no extracted sequences that reached
the minimum support score of 20% for lag 6 and up for the data set with all students.
For the class O, there were no valid results from lag 4 upwards, while the results
for R only showed a lack of results starting at lag 7.

In an effort to gain more insight into the behavioral patterns and improve the
results, the minimum support percentage was subsequently lowered to 10. For the
combined-class data set, as well as class R, all nine lag sizes returned results in this
case, though the data set associated with the class O still did not show results for
lags larger than 4. The results for this experiment can be found in Figure 4.6.

4.4. Discussion

Generally, the number of students who viewed a section’s content in order varies
by section.

Section one was viewed in order by 45.16% of the students, while section two
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[1...5]

a) Over all students, regardless of class affiliation.
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[1...3]

b) Students who did not repeat any assessments.

v

[1...2]
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[1...6]

c) Students who repeated at least one assessment.

Figure 4.5.: State transitions with support 20, overall, for students with one assessment attempt, and
for students with repeated assessment attempts.
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a) Over all students, regardless of class affiliation.
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b) Students who did not repeat any assessments.
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c) Students who repeated at least one assessment.

Figure 4.6.: State transitions with support 10, overall, for students with one assessment attempt, and
for students with repeated assessment attempts.
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even increased this percentage to 58.06%. After section two, the percentage falls
once more, with section three only showing 35.48% of students viewing its content
in order. Interestingly, this behavior seems to negatively correlate with the number
of assessment attempts, as assessment 1 was repeated only 1.48 times per student
on average, but assessment 2 had an average of 2.06 attempts per student, as seen
in Table 4.6.

This apparent connection between organised learning behavior and higher av-
erage results seems to be further confirmed by the results in Table 4.8. Learners
that displayed unordered learning behavior appear to have a higher probability of
repeating an assessment, while people that viewed all learning content in order
have a high percentage of users who used only one assessment attempt to reach
the full points. This seems related to, and matches previous findings from Mukala,
Buijs, and Van Der Aalst (2015), who discovered that students who performed better
usually showed a higher degree of structural learning behavior than those who did
not perform as well.

While a seemingly minor difference, the unorganised learning behavior also
shows itself in disjointed view actions, which causes the lower number of repetitions
of them in Figures 4.5 and 4.6. As opposed to students of the class O, who have
fewer review actions in a row—so much so, in fact, that it did not pass the 20%
support minimum in Figure 4.5—members of the class R show a tendency to review
a larger number of past content chapters.

When comparing the heat maps for the classes O (Figure A.1) and R (Figure A.2),
this general mode-changing behavior shows as well in the number of connections.
Several aspects stand out in the heat map, one of them being that O learners were
apparently more likely to check the instructions. For O students, the probability of
a transition from the index—the entry point into the system after the log in, so a
point everyone would pass—to the instruction page was at 40%, while it was at 15%
for students of the class R. In fact, the class R seemed to use the index in a different
way than the class O, in that they jumped to different parts of the course with it
more often, and, noticeably so, returned to it more often from the various course
content sections in the course, as well.

Users from class R also appeared to directly return to previous material more
often, further showing why the ’rv’ action was so highly supported in Figures 4.5
and 4.6. On the other hand, users from class O did not generally return to previous
content directly, with the only exception being the return from content of the section
1 back to the goal of the same section.

From the numbers in Table 4.7, it is reasonable to conclude that students paid a
large amount of attention to their progress page. For a course that contained three
assessments, the average progress page checks per student were 3.45. For students
who did not repeat their assessments, 50% of transitions were from assessment 3 to
the progress page. For repeaters, the transition probability from assessment 3 to
progress page was still at 45%. This can also be found mirrored in Figures A.1 and
A.2. Class O especially checked the progress page after finishing assessment 3 in
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88% of the cases, while for class R it was still 45%. From the progress page, most
users returned to the index or logged out, but a small number of transitions—5%
for class O, and 12% for class R—accessed assessment 3, either to take it for the first
time, or to retake it. Because of this, it appears that students generally re-evaluated
their results after the last assessment, possibly to go back and improve a result if
they were not satisfied with their final grade.

Generally, the acceptance of the course structure and according learning behavior
showed higher student assessment results initially, showing that the course’s order
and organisation is well defined. In any case, however, assessment results invariably
improved with additional attempts, and all students finished with 100% of the
points. As the course represented part of a longer class, and took place partway
through the semester, it is likely that the students had motivation to finish the
course with good results because they were already invested in the outcome. Due
to the fact that they had likely also already put work into the class previous to this
segment, this probably functioned as further impetus.

This is also reflected in the fact that the course was finished in a single session by
the majority (61.30%) of students. On the average, the course was finished in 1.55

sessions, overall.

4.5. Summary

This chapter focused on investigating the link between learning behavior in a self-
regulated learning environment and assessment performance. Machine learning
algorithms do not represent the best solution when the number of samples is small,
even when the number of classes and/or features is small, as well. Due to this
limitation, the data set in this chapter, with 31 students and 3 assessments, was
analysed by way of sequence extraction and calculating their support.

In combination with heat maps and various statistical analyses, this revealed that
students who showed better self-organisation skills had a tendency to need fewer
attempts in reaching 100% of the points on all assessments. Students who repeated
one or more assessments reviewed a larger number of content chapters than those
who completed all assessments with full points on the first try. Additionally, it was
found that students who did not repeat any assessments tended to view more new
content chapters without interruptions than the other class.

General behavior differed significantly in the use of the index, where users who
repeated assessments were found to use it significantly more to navigate the course
than users who did not, who mostly jumped directly from one content chapter to
the following one. The inclusion of a progress page, in particular, was found to be
well-accepted and often-used by the students, and the acceptance of the suggested
structure showed some connection to initial higher student performance.

However, because the students all completed the course with full points, the
learning method of the students who did not keep as closely to the suggested order
of the learning material should ultimately still be considered as being successful.
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This chapter briefly examines the insights gained throughout the work on this
thesis.

5.1. Literature

Over the course of working on chapter 2, what became increasingly evident was
the wide scope of e-learning technologies, as well as the underlying learning and
behavioral theories. It quickly became clear that it was not enough to merely
concentrate on technical aspects when the focus of much of the research is on
the user behavior in relation to the respective e-learning system. This was also
often represented in background literature that mentioned links of user behavior to
different psychological theories such as the model of self-regulated learning and the
theory of planned behavior. Additionally, factors such as motivation, goal-setting,
etc. play a big role for learning systems when it comes to successfully engaging
users.

Similarly diverse as the technologies used for e-learning are the methods used
to analyse e-learning data. Depending on the amount of data available and the
research objective, anything from statistical analysis over decision trees to support
vector machines finds application. Picking the right method(s) for the available data
plays a big role in getting useful results.

Much of the research over past years focused on analysing user behavior in an
attempt to predict dropouts. However, more recent research has started moving
towards a more differentiated view on what should be considered successful
participation in MOOCs, which may not always correspond to completing the entire
MOOC. As such, literature showed that the understanding on what succeeding
in an e-learning course means may be changing, and that it is not only high final
scores that equate to a successful course participation.

5.2. Development

Throughout development of the analyses for chapter 3, the main difficulty was
finding the right parameters for the decision tree classifier. Due to setting the
maximum depth of the decision tree too high in the beginning, overfitted results
led to unrealistic numbers. Additionally, class balancing was utterly crucial. A first
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attempt at the analyses was made without class balancing and showed a near-
constant almost-100% accuracy without regard for the number of samples used
in the machine learning process. After class balancing, the numbers became more
realistic, and the accuracy score more meaningful. Additionally, what should not be
disregarded is the side-effect of gaining more data through class balancing, when it
is done by generating new samples. This was especially notable in the results of the
analyses using MCC as opposed to accuracy.

In contrast, the main difficulty with the data set analysed in chapter 4 was that it
was small. The first idea was to use a (hidden) Markov model to analyse the user
behavior. However, throughout the preparation of the data and statistical analyses
it quickly became apparent that this would not be possible due to lack of data. The
transition matrix was then used to create the heat maps to visualise user transitions.
Since one of the goals was to see whether the students visited the sections in order
or jumped between them, it quickly became apparent that it would not make sense
to merge the separate learning sections into one bigger ’learning content’ section for
the heat maps. However, the same did not make sense for the sequence diagrams,
which show the view vs. review behavior. Because of this, the section chapters were
ultimately considered regardless of the section they belonged to for this analysis,
only in view of whether they were being viewed for the first time or reviewed.

5.3. Evaluation

If there is one thing to be learned from the evaluation in chapter 3, it is that even
when one expects there to be enough data, there probably is not. In this specific case,
the forum data was not significant enough to show the results previous research
was able to find. Furthermore, while feature importance can give an indication for
which features should be included and which can be dropped, it is not the be-all
and end-all, as it can be specific to the analysed data set, as found when comparing
the results from Vitiello (2017) to the ones from this thesis. A feature that performs
highly for one data set may not do so for a different one. The feature importance
scores do not represent this. Thus, they need to be used with caution when it comes
to feature selection.

In regards to the analyses in chapter 4, structured learning seems to either be a
reason for initial higher performance, or a side-effect of a particular learning type.
While it is not possible to tell whether students who display structured learning
behavior show a tendency to perform highly because of their learning behavior,
or if they display structured learning behavior and perform highly because of a
different factor altogether, there does seem to be a connection in some way. Finally,
students who are already part-way into a course will likely finish an e-learning
course and not drop out. If there has been a certain amount of work put into the
course before the e-learning part starts, it seems to be likely that the students will
attempt to perform highly.
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6. Conclusion and Future Work

This chapter focuses on summarizing the findings gained in this thesis, and consid-
ers possible future improvements and directions for further research.

6.1. Conclusion

With digitisation and digital learning becoming prevalent, the varieties of systems
and underlying learning theories have become numerous. By picking two different
systems, this thesis aimed to get a wider view over the various forms of learner
behavior and their patterns, and how the data that is accumulated in online learn-
ing systems can be used to draw conclusions about student performance, and
dropout prediction. Specifically, this thesis focused on the MOOC courses of a
South-American university, hosted on the platform Coursera, and the self-hosted,
self-regulated learning based e-learning course of an Austrian university.

The general theory behind the two systems was similar, in that they both assumed
a measure of self-organising skill from the students to be able to complete the
course, and the content could be viewed in whichever order the student preferred.
However, while the Coursera MOOCs all had a minimum of 1.5 thousand students,
and were openly available on the web, the other learning system was part of a
university-specific class and allowed only the students enrolled in the class access.

Due to the different sizes, data scopes, functionalities, and general research
questions involved with each of the data sources, two different approaches were
chosen to analyse the courses.

For the more traditional MOOC courses from the South-American university,
this thesis aimed to conduct dropout prediction using boosted decision trees, using
steadily increasing amounts of the available data. The influence of forum data on
the outcome of the dropout prediction was evaluated, to see if the inclusion had
positive effects on accuracy. Furthermore, the feature importances were calculated
for both the case including forum data, and the one excluding it.

Findings showed that features such as the number of user actions, the user’s
active time, and the average time between clicks generally scored highly in the
results. The inclusion of forum features did not have a notable effect on the results,
with the features threadstarter and threadresponder scoring especially low feature
importances. This represents the notable limitation of the analysis, namely the lack
of forum participation of the users. Only an average of 6.38% of users participated
in the forums, which are too few to lead to a meaningful result when it comes to
the influence of forum activity on user retention.
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For the self-directed learning system from the Austrian university, the aim was to
evaluate the general user behavior and find possible patterns, as well as links to
learner performance. Due to the considerably smaller size than the Coursera courses,
which were open to the general public and thus drew in a much larger group of
learners, this presented a challenge for the usage of machine learning algorithms.
To avoid the problems of over- and underfitting due to missing data, traditional
sequence extraction was used in combination with heat maps and statistical analysis
to find patterns in behavior and outcomes.

The results showed a possible connection between ordered learning behavior and
an initial higher performance in the assessments. Students who viewed the learning
contents in order tended to score full points on their first assessment attempts more
often, though the end results after sometimes multiple assessment attempts had
every student at full points. However, due to the small size of the data set and the
fact that the course took place partway through a (face-to-face) university course,
the students would have already been motivated to finish, so the results need to
be viewed in its context. In a stand-alone e-learning course, the students may not
have reattempted the assessments until they reached full points, or they might have
dropped out entirely.

6.2. Future Work

For MOOCs, there are many possible directions where further research can take
place. Because dropout rates are so high, what may be of interest in the future is
what motivations and factors make a learner decide not drop out. If we assume
dropping out to be the rule, what differs for the students who do not do so?
Investigating which factors completers may have in common to the exclusion of
dropouts may be a possible direction to take this in. It may also be of interest to
take the learners’ original motivations into account, since it is a possibility that not
everyone who enrolls in a course enrolls with the specific goal of completing it.

Furthermore, as briefly mentioned in the summary of Chapter 3, focusing on
courses that place a stronger focus on utilisation of forums may be of interest when
including forum features in classification tasks. Results may show more significant
difference before and after inclusion of forum interactions if, for example, one
of the initial tasks involves interacting with the forum, even if this consists of a
semi-formal task such as a short introduction post. It may be of interest if this
initial, mandatory interaction with the forum functions as a factor to convince users
who may otherwise not have become aware of or active in the forum to consider
participation even after the task.

Similarly, it would be interesting to evaluate whether semi-formal assignments
such as the task to write an introduction post in an existing thread have positive
effects on forum participation, or function as a block that causes more people to
drop out before doing the forum task. And if this is the case, do dropout rates fall
later in the course or do they behave as usual?
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In the case of the self-directed learning system, it may be of interest to review
the analysis with more data. Due to the lack of data, Markov models could not be
applied in this specific case, but may be a possible direction for further research.

It may also be interesting to consider whether the behavior of the students for
this course matches the behavior in courses that are not part of a larger course. The
same thing is true with a course that is the first task of a longer class. Do students
feel higher motivation to repeat assessments until they have reached the full points
even if the self-directed learning course is unattached to/not partway through a
university class?

In that case, it would also be possible to study the effect the self-directedness
has on the dropout rates. Due to the specific nature of how the self-directed course
was included in the university course, no students dropped out after starting, but
would this still be the case if the course were longer and not, for the most part, able
to be finished in one session? Do shorter courses increase student motivation in this
case? Do multiple short, self-directed courses with very specific topics fare better
than one long, self-directed course that covers multiple topics?

Finally, the difference in behavior, and possible connection between ordered/
unordered learning and performance could also be used to predict student outcomes
during active course sessions, and allow for the teachers to intervene if a student is
in danger of dropping out or failing the course.
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Appendix A.

Transition Heat Maps

A.1. Students who did not repeat assessments
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Appendix A. Transition Heat Maps

A.2. Students who repeated at least one assessment
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