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Abstract

Title: Recovery of superquadric parameters from depth images using deep

learning

Reconstruction of 3D space from 2D image data has always been a sig-

nificant challenge in the field of computer vision. Simple geometric entities

are used to describe larger, more complex objects or entire scenes. This rep-

resentation of the environment allows an autonomous agent to manipulate

and interact with it’s surroundings. Superquadrics are parametric models,

able to describe a wide array of 3D objects using only a few parameters,

which makes them a suitable representation in such tasks. In this work, we

explore the possibility of using deep learning techniques to successfully re-

cover parameters of a single superquadric from depth images. We present a

new framework, which enables us to train deep learning models able to inter-

pret the ambiguous nature of superquadrics in general position. We propose

multiple loss functions for usage in supervised and unsupervised learning sce-

narios. On a synthetic depth image dataset, our best CNN regression model

achieves an IoU accuracy of 95% and a speedup of a factor of 240 compared

to the classic iterative recovery method.

Keywords

superquadrics, parametric models, reconstruction, 3D, deep learning, convo-

lutional neural networks, CNN, parameter recovery





Abstract

Titel: Vorhersage von Parametern für superquadrische Modelle aus Tiefen-

bildern mit Deep-Learning

Die Rekonstruktion von 3D-Objekten aus 2D-Bilddaten war im Bereich

der Bildverarbeitung schon immer eine große Herausforderung. Dazu werden

einfache geometrische Objekte verwendet, um größere, komplexere Objekte

oder sogar ganze Szenen zu beschreiben. Diese Darstellung der Umgebung

ermöglicht es einem autonomen Agenten, seine Umgebung zu manipulieren

und so mit ihr zu interagieren. Superquadrics sind parametrische Modelle,

die eine Vielzahl von 3D-Objekten mit nur wenigen Parametern beschrei-

ben können, was sie zu einer geeigneten Darstellung für solche Aufgaben

macht. In dieser Arbeit wird untersucht, ob es mithilfe von Deep-Learning-

Techniken möglich ist, die Parameter einzelner Superquadrics erfolgreich aus

Tiefenbildern wiederherzustellen. Dazu wurde ein Deep-Learning-Framework

entwickelt, das es ermöglicht, Modelle zu trainieren, die die Mehrdeutig-

keit von Superquadrics auch in einer allgemeinen Position interpretieren

können. In diesem Rahmen wurden mehrere Loss-Funktionen sowohl für

überwachtes als auch nicht überwachtes Lernen verwendet. Das beste CNN-

Regressionsmodell erreicht eine IoU-Genauigkeit von 95%, wobei die Berech-

nung im Vergleich zur klassischen iterativen Reproduktionsmethode um einen

Faktor von 240 beschleunigt werden konnte.

Schlüsselwörter

Superquadrics, parametrische Modelle, Rekonstruktion, 3D, Deep Learning,

Convolutional Neural Networks, CNN





Povzetek

Naslov: Pridobivanje parametrov superkvadrikov iz globinskih slik s pomočjo

globokega učenja

Rekonstrukcija trodimenzionalnega prostora z dvodimenzionalnih slik je

že od nekdaj pomemben izziv na področju računalnǐskega vida. Za opis kom-

pleksnih objektov ali celotnih scen se uporabljajo preprosti geometrijski ele-

menti. Predstavitev okolja na takšen način avtonomnemu agentu omogoča

upravljanje z vsebovanimi elementi ali pa možnost reagiranja na določene

dogodke v okolici. Superkvadriki so parametrični modeli, s katerimi lahko

opǐsemo širok nabor trodimenzionalnih objektov z uporabo majhnega števila

parametrov, in so zato primerni elementi za predstavitev okolja. V tem

delu razǐsčemo možnosti uporabe metod globokega učenja v namen uspešne

pridobitve parametrov superkvadrika iz globinskih slik. Predstavimo novo

ogrodje za učenje modelov globokih nevronskih mrež, ki so sposobni razbrati

dvoumnost superkvadrikov v splošni poziciji. V sklopu tega dela predlagamo

več funkcij napake, s katerimi lahko modele učimo na nadzorovan ali nenad-

zorovan način. Na sintetični podatkovni zbirki naš najbolj uspešen CNN

regresijski model doseže 95% IoU natančnost in pa 240-kratno pohitritev

izvajanja v primerjavi s klasično iterativno metodo.

Ključne besede

superkvadriki, parametrični modeli, rekonstrukcija, 3D, globoko učenje, kon-

volucijske nevronske mreže, CNN, pridobivanje parametrov





Chapter 1

Introduction

One of the pioneers of visual neuroscience, David Marr, starts his book Vi-

sion [1] with the following though: ”What does it mean, to see? The plain

man’s answer (and Aristotle’s, too) would be, to know what is where by

looking. In other words, vision is the process of discovering from images

what is present in the world, and where it is.” The quote gives a nice insight

into how the research community partitioned computer vision into two major

branches: recognition and reconstruction.

3D reconstruction has therefore been one of the main problems of com-

puter vision since it’s beginnings. In the context of reconstruction, we are

not only concerned with the shape and appearance of objects in our envi-

ronment, but also their relative pose in relation to some origin. To describe

and interpret, geometry is used as the main language. In the spirit of a

bottom-up approach, the result of a reconstruction is a set of elemental ge-

ometric entities. This can include primitive volumetric shapes, voxels, or,

even simpler, points, which may be further connected into a surface or mesh.

All of these have their advantages and disadvantages when it comes to scene

or object description. The choice of these building blocks allow us to control

the complexity of a description; a trade-off between accuracy and it’s ease of

use. The more closely a reconstruction resembles the target object or scene,

the harder it is to manage it computationally.

1
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Figure 1.1: Some examples of superquadrics; With their flexible surface

equation, they can represent a wide variety of different 3D shapes.

A good example of geometric primitives are superquadrics [2]. These

are parametric models, capable of forming a wide array of different shapes.

Another major contribution is the amount of information needed to de-

scribe them. With only five internal parameters for size (a1, a2, a3) and

shape (ε1, ε2), we can represent shapes ranging from quadrics to ellipsoids

or something in between, such as cylinders. By extending the model with

additional seven external parameters for translation (t1, t2, t3) and rotation

(qi, qj, qk, qw), we can place them within the context of a 3D environment and

estimate the shape of any 3D object within it. Some examples are shown in

Figure 1.1.

A reconstructed scene can be used inform an autonomous agent of it’s

surroundings and allow it to learn or take actions. The choice of object

representation in relation to a specific task is an important decision to be

made when designing a solution. With collision avoidance, maneuvering or

grasping tasks, it is usually instrumental to only know and process a subset
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Figure 1.2: Superquadrics can be used to model complex real-world objects;

On the left are modelled stone blocks and sarcophagi from a sunken Roman

ship (courtesy of [4]). On the right is an amphora, modelled by a deformable

superquadric (courtesy of [5]).

of possible features of an object. An exact representation, e.g., a 3D model

of an object, would often be redundant and would lead to more data needed

to be processed in order to infer a decision in a situation. In such tasks,

superquadrics are a fitting choice for object representation. Their useful-

ness was already proven in practical applications, specially in various robot

grasping tasks, where the shape and position if objects is undeterministic,

for example, when handling mail pieces [3]. Another example is the usage in

digital heritage, shown in Figure 1.2.

On the topic of sensing, depth imaging is now a relatively inexpensive

method of gathering visual data from the 3D environment. Depth images

are often being labeled as 2.5D data. They are essentially two dimensional

images, but they encode depth, rather than color information for each pixel.

If needed, they can be easily transformed into 3D data, e.g., a point cloud

(a collection of points in 3D space), usually scattered across object’s surface.

Because of their compactness, the usage of depth images is also memory

efficient. While depth imaging nowadays is inexpensive in terms of hardware



4 CHAPTER 1. INTRODUCTION

requirements, the process of creating a large dataset, suitable for training

deep neural networks, would be a very time consuming process. To alleviate

this, synthetic datasets can be constructed to prototype on, expand or even

replace a real dataset. For example, 3D mesh data or parametric shapes can

be easily rendered only with the depth buffer, or in case of ray tracing, by

calculating distances to nearest intersection of ray with the environment.

Successful methods for recovery of superquadric parameters already exist

in literature, but are often of iterative nature and consequently, slow. The

execution time can be vary depending on how many object there are in the

scene or how big they are. With the recent advancements of deep learning

techniques, our aim is to revisit the problem of superquadric recovery and

make use of Convolutional Neural Networks (CNNs) [6, 7] to significantly

speed up the recovery process, while maintaining the high accuracy of existing

methods.

1.1 Challenges

While object appearance is approximated in object-space using the super-

quadric model, we also fit them into the context of world-space using the same

external parameters. This is considered to be an issue of pose estimation.

This is a complex problem due to the vagueness in describing spatial relations

and especially, orientation. While a simple CNN regression model would work

for other parameters, the real challenge lies in determining the rotation of

the superquadric. It is an ambiguous representation of the state of an object,

since multiple rotations can describe a superquadric that appears the same

and holds the exact same volume as it’s rotated counterpart. One example

would be, if we rotate a cylinder along it’s major axis. Other situation

might involve a superquadric with switched axis sizes, but same rotation,

thus appearing different. These examples can be seen in Figure 1.3.

Because of these symmetrical properties of superquadrics, we believe it

is important to try to determine it’s parameters using a more geometrically-
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Figure 1.3: Describing objects in general position can be ambiguous; If we

rotate the cylinder (a) along the z axis, the actual appearance of it wouldn’t

change. Both, the green and yellow rotations would yield the same result.

For object (b), it is impossible to determine how it was transformed from

pose on the left to pose on the right. We could either rotate it by 90◦ around

y axis or just swap its dimensions in x and z axes.

aware learning criterion. Instead of comparing predicted parameters directly,

we could instead compare fully rendered superquadrics. To achieve this, we

can help ourselves by using the superquadric surface equation, which has

nice characteristics and could allow us to design a new loss function. The

optimization process would then be based much more on the 3D properties

of the superquadrics, rather than just comparing raw numbers.

There are also challenges related to data acquisition. When capturing

monocular depth images, i.e., imaging from a single perspective, we are ef-

fectively dealing with partial data. Objects are viewed only from one side

and information is lost at the moment of capture. Another potential prob-

lem would be the availability of labeled data. It is not hard to generate a

synthetic dataset of depth images of virtual objects. If we possess ability to

render these objects, we obviously already have their geometric description

in some form or another. This makes is easy to construct ground-truth la-

bels for individual examples. However, when dealing with real-world data,

we either have to make manual measurements of real-world object or that

information is not available to us at all. In such situations, we could benefit
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greatly by using unsupervised learning, meaning there is no need for labeled

data in the learning process. This is a complex problem, since we would

need a differentiable loss function, that is not only capable of estimating

parameters, but also reconstruction of the original input data.

1.2 Contribution

Within the scope of this Master’s thesis, we make the following contributions:

• We introduce a new and improved CNN regressor, able to predict 12

parameters of a single superquadric in general position from a depth

image. This is the direct upgrade to an existing model, only capable

to estimate parameters of unrotated superquadrics.

• We propose a geometrically-aware loss function, which is able to train

a CNN regressor to recover superquadric parameters in a supervised

manner by evaluating the superquadric inside-outside function.

• We propose two additional loss functions, which are able to train a

CNN regressor to recover superquadric parameters in an unsupervised

manner with unlabeled data.

• We present the results and follow with an extensive analysis. We

compare our methods to each other and to the state-of-the-art in su-

perquadric parameter recovery.

1.3 Thesis structure

This work has a total of eight chapters. In Chapter 2, we begin with an

overview of the related work. A brief history of reconstruction and classical

methods of parametric recovery are presented first, followed by some of the

current work which already makes use of CNNs. In Chapter 3, we present
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the mathematical background behind superquadrics, needed for further def-

initions and derivation of our loss functions. In Chapter 4, we make a short

overview of neural networks. We define what the core building blocks are

and what are some of the procedures, involved in training a neural network.

We then present our experimental setup in 5. This includes describing the

methodology, shared by all the experiments. We define the CNN architecture,

training procedure, as well as present our dataset and metrics. In Chapters 6

and 7, we present the methodology behind our main contributions. Both ap-

proaches, supervised and unsupervised, are described in detail and for each,

we also show the results and end with a discussion. Finally, we conclude this

thesis with closing remarks in Chapter 8.
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Chapter 2

Related work

In this section, we first cover a brief history of 3D reconstruction and volu-

metric models. Then, we outline the main superquadric parameter recovery

approaches, achieved by classical computer vision methods. Finally, we sur-

vey work within the contemporary machine learning solutions and how they

apply to computer vision tasks. Specifically, we are interested into pose-

estimation and 3D recovery, with a priority on estimating objects in general

position.

2.1 Early volumetric reconstruction

The idea of a generalized bottom-up reconstruction originally resulted from

the advancements in perceptual psychology and neuroscience in 1960’s and

70’s. During that time, the visual system was being studied extensively and

the ideas were transferred to the emerging field of computer vision. A math-

ematical model for object representation was needed and the first volumetric

primitive surfaced in the 1971, called the generalized cylinder or sometimes

also generalized cone [8]. These are volumes, created by parametrizing an

arbitrary curve in 3D space. The parametrization would come in different

forms, for example sweeping a 2D shape along a curve in 3D space.

In that period, the first theoretical vision system was introduced by David

9
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Marr [1], sometimes called the ”Marr’s paradigm”. He proposed a process

to recover 3D information from 2D images by first extracting depth cues

from the image as an interim step. Individual part-level models would then

be approximated by hierarchically by using a suitable shape representation.

He defined the criteria for representation effectiveness within the context of

object recognition:

1. Accessibility – having an efficient way to compute the representation

from an image.

2. Scope and uniqueness – all possible shape priors for a given task

should be accounted for, while still maintaining the uniqueness of indi-

vidual shapes.

3. Stability and sensitivity – having the ability to capture more general

properties of a shape, but distinguishing smaller variations between

different shapes.

With these guidelines in mind, Brooks presented the first implementa-

tion of Marr’s theoretical system, called ACRONYM [9]. It used general-

ized cylinders as volumetric models and the shapes were computed directly

from edge-based image features, without the intermediate step of extracting

depth information. The implementation, however, showed some weaknesses

of Marr’s system, in practice being a lot more restrictive than the theoretical

model.

The next breakthrough came in mid 80’s, specifically Biederman [10] ar-

gued, that human object recognition works by assembling volumetric primi-

tives, called geons, into larger constellations, forming complex models of the

environment. Geons are a set of 36 simple 3D shapes, such as cubes, cylinders

or cones, and the process was called Recognition-by-components (RBC). This

was considered an upgrade to Marr’s system, offering a viewpoint-invariant

object recognition by analyzing curvature properties of geons. RBC-based

systems were often only evaluated by interpreting hand-drawn lines. The
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processing of real-word images, outside of a controlled lab environment, lead

to a combinatorial explosion when interpreting image features [11].

The generalized cylinder remained relevant as a volumetric representation

well into 1990’s. Efforts to segment and extract them from intensity [12] or

depth images [13] were initially successful, however, the parametric model

was complex which hindered further advancements. To find an alternative to

generalized cylinders and geons, a search for better volumetric models was

well under way. Some examples of these proposals include implicit polyno-

mials [14], blobby models [15], symmetry-seeking models [16], Fourier sur-

faces [17] and finally, superquadrics [18] and various derivatives, such as

hyperquadrics [19]. For more extensive overview of volumetric-based recon-

struction the reader is referred to [20, 11].

2.2 Superquadric parameter recovery

The formulation of superquadrics can be traced back to 1910, when math-

ematician Gabriel Lamé [21] first described parametric curves, now known

as Lamé curves. A subset of these were superellipses, a generalization of

the ellipse, capable of modeling many symmetric shapes, ranging from rect-

angles, ellipses, rhomboids to various concave 4-armed stars. In 1981, Barr

created an extension to quadric surfaces and parametric patches used com-

monly for computer graphics in that period. He introduced superquadrics [2],

3D parametric objects, capable of modeling many desired shapes only with

a few interactive parameters. Pentland first brought superquadrics to the

attention of computer vision community [18]. He proposed them as the vol-

umetric model of choice due to their simplicity and universality. He devised

an analytical approach, where the relationship between surface normal and

the texture/contour of the object in intensity image is considered. Except

for some synthetic images, the approach was not successful [20]. Pentland

also proposed a brute-force search of the parameter space [22] using parallel

computing.



12 CHAPTER 2. RELATED WORK

Figure 2.1: The joint segmentation and recovery of multiple superquadrics,

devised by [29]. Here shown is the fitting process; On the left is the original

depth image. Initial seed superquadrics are then gradually expanded until

an MDL hypothesis is reached on the right.

In 1987, Bajcsy and Solina [23] proposed a least-squares minimization pro-

cess for depth images, which they formulated in detail a few years later [24].

This is is still considered as the basis for current state-of-the-art superquadric

recovery solutions. Boult and Gross [25, 26] have proposed using the su-

perquadric radial distance as the fitting function, however, the resulting re-

covered superquadrics were visually indifferent to those, recovered by the

inside-outside function. Additionally, more computation is needed to calcu-

late the radial distance, so the inside-outside function was used more exten-

sively by researchers. Others have approached the recovery procedure from

another perspective, for example, by using genetic algorithms [27]. Various

extensions to superquadrics were also proposed [19, 28], but ultimately still

use the same iterative process, which constrained further development in

this direction. The original method from Solina and Bajcsy [24] was later

expanded by Leonardis and Solina [29], where they achieved a joint seg-

mentation and recovery of multiple superquadrics on the basis of Minimum

Description Length (MDL) principle [30]. The fitting process is shown in

Figure 2.1. The fitting function, however, remained of iterative nature. An

extensive survey of the field was also covered by [20].
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2.3 Deep learning in 3D

In the last decade, a new machine learning paradigm emerged, which enabled

various fields of computer science to advance further than before. Deep learn-

ing revitalized many areas, where research stalled or was for a time devoid

of fresh ideas. Especially, the field of computer vision gained significant

ground in numerous recognition, detection, semantic segmentation and re-

construction efforts because of the performance of CNNs. Different from the

classical approaches described above, we outline here the main contributions

of deep learning models in 3D and how they might be useful for the task of

superquadric parameter recovery.

2.3.1 Structure and volumetric representation

Neural networks for 3D reconstruction are employed in various configurations

and use different building blocks and shape representations. What these

networks have in common, however, is handling of 3D data in some form or

another. Most of the 3D reconstruction research relies heavily on the use

of encoder-decoders, a type of deep neural architecture, which first encodes

information in a latent vector, then uses an up-sampling decoder for data

reconstruction.

Wu et al. [31] were the first to introduce the idea of using discretized

volumetric grids for spatial representation. Their encoder network consists

of 3D convolutional layers and takes as input a voxelized depth image. The

output is a latent vector, used for object recognition and to determine the

next best view. Another alternative is to encode 2D or 2.5D data directly

using 2D convolutional layers, which is the standard way of processing images

with CNNs. For example, MarrNet [32] takes as input only a single RGB

image and then as an intermediary step estimates surface normals, depth and

silhouette of the object. This is considered to be a 2.5D sketch according to

the Marr paradigm [1]. The intermediate representations are then encoded

into a latent vector, which is followed by a 3D decoder that outputs an
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occupancy grid of size 1283. It is obvious, that 3D encoders have a far

greater impact on memory consumption and performance than 2D encoders.

An increase of the resolution of the voxelized space results in cubic growth

of required resources. Nevertheless, volumetric grids allow for storage of true

3D data of arbitrary resolution. In contrast, 2D images only contain a single

perspective, leading to object self-occlusion and loss of information.

Two main versions of volumetric grids exist in relation to 3D reconstruc-

tion: occupancy and distance grids. Occupancy grids can be divided into

binary and probabilistic counterparts. In binary grids, we mark individual

voxels whether they are a part of target shape or not [32, 33]. With prob-

abilistic grids, a probability for each voxel is given instead. For example,

in [34], a sigmoid is applied element-wise after a 3D decoder processes the

latent vector. Distance grids can be thought of as discretized 4D functions.

Each voxel encodes the information about the distance from it’s position to a

reference point. One example are signed distance functions (SDF), which are

positive when a point lies outside of the object and negative if it lies inside.

In contrast, Park proposed DeepSDF [35], a network which learns a spatial

classifier, enabling continuous estimation of the SDF. This is different to the

volumetric approach. Rather than regressing values for each element of a

discretized distance space, the authors learn a parametric spatial boundary

classifier, which returns the value of SDF at a specific continuous point in

space.

Objects can also be represented by an unordered set of 3D points, most

often sampled from their surface. This is an efficient way of representation,

since only the object boundary is used in computation and not the whole

3D space. The main issue, however, is the structure of data, which can’t

be processed nicely with a convolutional layer. To store point-clouds, grids

of size N × 3 or H ×W × 3 are used. Using a orthographic view, a depth

image could also be considered a point-cloud with the Z coordinate encoded

in pixel intensity. Point-based architectures only recently started to emerge

with some specialized architectures. Qi et al. [36] were the first to create a
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geometrically-aware architecture, capable ob encoding unordered 3D points.

They use it to segment and classify individual object in the scene. Alter-

natively, [37] proposed a point-based decoder to predict point-clouds from

single RGB images.

2.3.2 Pose estimation

Pose estimation is the task of determining the rotation and position of a

particular object in relation to world center. It can either be a standalone

task or often, an auxiliary estimation in a larger reconstruction system. This

is not a trivial task due to the ambiguous and periodic nature of rotation

description. Zhu et al. [38] use a standard encoder-decoder architecture to

reconstruct volumetric data, however, they simultaneously train a pose re-

gressor. Miao et al. [39] uses Mean Squared Error (MSE) to train six separate

regressors for all parameters of a general pose; position and rotation. They

did, however, use non-complex medical X-ray images, generally taken in a

constrained environment. Methods where the loss function is based more on

geometric representation are generally more successful. For example, Xiang

et al. [40] minimize the distance between points on the surface of rotated

objects to predict rotation. They use depth cues and semantic segmenta-

tion information from RGB to segment and retrieve individual objects. To

calculate the difference between ground-truth and predicted pose, surface

point-set-based distances are often used, such as Chamfer distance [37] or

Earth Mover’s distance [41].

Most commonly, pose estimators are regression models, which output

continuous values as pose descriptors [39, 40]. This presents no issues for

translation parameters, however, rotation description has some intrinsic lim-

itations. First, rotation is periodical, e.g. by increasing the angle of rotation

in one axis, we eventually end up in the initial pose. This means that a hy-

pothetical loss function, comparing ground-truth and predicted pose, would

have infinite global optimums. The choice of global optimum, to which the

model converges, is then dependant on the initialization of model parameters.
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Another limitation is the description itself. Euler angles are known to

suffer from gimbal lock [42]; a loss of one degree of freedom. Rotation quater-

nions have the unit norm constraint, which makes regression non-trivial [38].

To ensure better initial estimation for a regressor, various activation func-

tions are used to limit the prediction in a specific range. For example sig-

moid and tanh activations put the predicted value in ranges [0, 1] and [−1, 1],

respectively [38]. Vector normalization is used as a non-linearity for quater-

nions [43, 44].

2.3.3 Recovery of volumetric primitives

Work was also done on the bottom-up concept by recovering individual volu-

metric primitives from 3D data, which relates to our goal the most. In 2017,

Tulsiani et al. [43] proposed a method to learn shape abstractions using

primitive shapes. They used cuboids as their geometric primitive of choice

and fitted them to triangle meshes. The result was a joint segmentation-

recovery pipeline, where multiple primitives were successfully fitted on parts

of the mesh at once. In a recent paper by Paschalidou et al. [44], the authors

adapted this pipeline to use superquadrics instead of cuboids, achieving a sig-

nificantly smaller fitting error due to the wide range of shapes superquadrics

can approximate. A later expansion to this work [45] proposes a system

for hierarchical unsupervised recovery of superquadrics. Both authors used

ShapeNet [46] as their dataset and thus trained only on it’s limited set of

object categories. We think a more generalized approach is needed in order

to model objects in a truly unconstrained fashion. Superquardics were also

being recovered from point clouds by Slabanja et al. [47].

Based on the idea of combining 3D visual data and CNNs, we recently

started working towards a superquadric recovery method, which would elim-

inate this iterative constraint and offer a deterministic and possibly real-time

execution speeds. We presented the idea in form of a preliminary study [48],

where we trained a CNN regressor to estimate 8 parameters (size, shape and

position) for a superquadric in an isometric view. We were successful in
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achieving a faster execution time and also improving parameter estimation

in comparison to the classic method. We showed that a model, trained with

synthetic data could be used for real-world examples. We did not, however,

managed to estimate rotational parameters using this model. The goal of

this thesis is thus to expand on the mentioned paper and introduce rotation

prediction.
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Chapter 3

Superquadrics

In this chapter, we explain what superquadrics are and why they can be

used in practice. We describe some crucial definitions and present the math-

ematical foundation, on which we will build our methods later on. First,

we introduce where the idea of superquadrics came from, then we present

the implicit equation and some of it’s properties, that make superquadrics a

good choice for object estimation.

3.1 Superellipses

Superellipses are a subgroup of Lamé curves [21], which are defined by an

implicit equation (x
a

)m
+
(y
b

)m
= 1, (3.1)

where m is a rational number. If we add an additional constraint

m =
2p

2q + 1
; p, q ∈ Z+, (3.2)

meaning the numerator is even and denominator is odd, we get superellipses.

By having an even number as the numerator, the value of each bracket be-

comes positive, effectively mirroring the function of the 1st (+,+) quadrant

in all other quadrants of the Cartesian coordinate system. Parameters a and

19
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Figure 3.1: The effect of parameter ε on the superelliptic curve. When ε

approaches 0, the resulting curve forms a square. By increasing it towards

∞, the curvature turns toward the coordinate system origin in forms many

useful shapes in the process.

b then represent the size of the resulting connected and symmetric superel-

liptic curve in x and y axis, respectively. We can simplify this further by first

raising the terms to the second power, and defining a new variable ε = 2q+1
p

,

which replaces the residual of m. Consequently, the parity of the new shape

parameter ε becomes unconstrained. Superellipses can then be described by

the implicit equation (x
a

) 2
ε

+
(y
b

) 2
ε

= 1, (3.3)

where ε is a real positive number. In Figure 3.1, we can observe the many

different shapes that parameter ε allows us to approximate. When increasing

ε from near 0 to ∞, we get in order: a square (ε→ 0), squircle (0 < ε < 1),

circle (ε = 1), rounded rhombus (1 < ε < 2), rhombus (ε = 2) and then it

forms into a concave star (ε > 2), finally resembling a cross when ε→∞.
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3.2 Parametric equation and superellipsoids

The implicit equation is an intuitive description for the superellipse, however

it only allows us to check, whether a point [x, y]T lies on it’s curve. To find

out which points lie on the curve directly, or rather, sample points from the

curve, we can transform equation 3.3 into the parametric form

s(η) =

[
a cosε(η)

b sinε(η)

]
, 0 ≤ η ≤ 2π. (3.4)

This way x and y coordinates of the curve are calculated for any angle η w.r.t

the origin. The granularity of such a curve is controlled by setting the step

size when computing for angle η.

The transition from 2D curves to 3D surfaces can be achieved by the

spherical product of two curves p(η, θ) = s1(η) ⊗ s2(θ). In case of superel-

lipses, the resulting equation is a parametric form of a superellipsoid surface:

p(η, θ) =


a1 cos

ε1(η) cosε2(θ)

a2 cos
ε1(η) sinε2(θ)

a3 sin
ε1(η)

 , 0 ≤ η ≤ 2π, 0 ≤ θ ≤ π. (3.5)

The size of the superellipsoid is determined by three parameters (a1, a2, a3),

each spanning half of it’s respective axis. Shape is determined by two curva-

ture parameters (ε1, ε2). As with superellipses, ε1 determines the curvature

of the xy plane (cross-section at z = 0). Similarly, ε2 determines the curva-

ture of the perpendicular plane to the xy plane, which also contains z axis

(either x = 0 or y = 0). An example of such a superellipsoid can be seen

in Figure 3.2. There, a combination of a circular curve with a rectangular

curve results in a superellipsoid, which closely resembles a cylinder.

Finally, not all superquadrics are superellipsoids. Superquadrics by def-

inition are a broader family of 3D surfaces, which besides superellipsoids

also contain supertoroids and superhyperboloids. In this thesis, we are es-

sentially dealing only with superellipsoids, however we are using the term

superquadrics, since in general literature, superquadrics have a synonymous

meaning to superellipsoids.
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Figure 3.2: Spherical product of two superelliptic curves with parameters

ε1 = 0.1 and ε2 = 1.0. The resulting superellipsoid has a cylinder-like shape.

3.3 Superquadric inside-outside function

By converting the parametric form for ellipsoids, given by Eq. (3.5) back to

the implicit form, we get:((
x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

= 1. (3.6)

This is the implicit superquadric equation in object-space. Size parameters

(a1, a2, a3) represent the size of the superquadric in xs, ys and zs axis, respec-

tively, while shape parameters (e1, e2) represent the roundness of vertical and

horizontal edges. The solution of this equation is a set of points p = [x, y, z]T ,

which lie on the surface of the superquadric.

We can convert the implicit equation to a function F : R3 → R+ and

evaluate it for a specific point in space p:

F (p) = F (x, y, z) =

((
x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

. (3.7)

This is also called the inside-outside function. As the name already suggests,

the function can be used to easily determine, where a point lies in relation to

the superquadric. The result of the inside-outside function is a non-negative

real number. If the points lies inside the superquadric then F (p) < 1, if



3.4. SUPERQUADRICS IN GENERAL POSITION 23

it lies outside of the superquadric, then F (p) > 1 and as already stated,

F (p) = 1 when the point lies on the surface. The value of F at the center of

the superquadric is exactly 0. The function is continuous w.r.t. the distance

from the center. It’s value will increase exponentially the further away from

superquadric center a point will be. From this point on, any mention of the

”superquadric function” will refer directly to the inside-outside function.

3.4 Superquadrics in general position

Until now, we defined the superquadric function in object-space. However,

in practice, objects are often transformed into a world coordinate system.

This includes translation and rotation of an object. These operations are

not commutative, so a specific order is needed. In our case, we first rotate

the superquadric around the origin, then translate it. The superquadric

function implies that the point p = [x, y, z]T is given in relation to the object,

meaning it is object-centered, however we are dealing with world-centered

coordinates. This is why we first transform world-space coordinates into

object-space coordinates and then calculate the superquadric function.

In general, there is a minimum of six additional external parameters

for the superquadric function. We have three parameters for translation

(t1, t2, t3) and three for rotation (α, β, γ) of the superquadric.

3.4.1 Rotation representation

The number of rotational parameters can vary if we use a different type

of representation. The simplest way to describe rotation is by using Euler

angles, denoted as (α, β, γ). Usually, a reference coordinate space is rotated

in a specific sequence of intrinsic rotations, where the magnitudes are given

by the three Euler angle parameters. However, this method is prone to

gimbal locking, a state of the system, where two axes end up in a parallel

configuration, leading to loss of one of the degrees of freedom. One solution

is to change the description of rotation.
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In our case, we use unit quaternions q = [qi, qj, qk, qw]T , also called versors,

to represent rotation. This is a compact representation, needing only one

more parameter. It does not suffer from gimbal lock and multiple rotations

can be more easily composed in comparison to Euler angles.

To apply a quaternion rotation, e.g. rotate a point p around it’s origin,

we can derive a rotation matrix Rq from a quaternion q = [qi, qj, qk, qw]T :

Rq =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 =


1− 2(q2j + q2k) 2(qiqj − qkqw) 2(qiqk + qjqw)

2(qiqj + qkqw) 1− 2(q2i + q2k) 2(qjqk − qiqw)

2(qiqk − qjqw) 2(qjqk + qiqw) 1− 2(q2i + q2j )

 .
(3.8)

Then, we simply calculate the productRqp to get the new location of point p,

rotated by quaternion q around it’s origin. This transition from quaternion

to rotation matrix is unique and so is the reverse operation. A point could

also be rotated using a quaternion directly, however, this method provides a

more intuitive approach.

3.4.2 Transformation matrix

The superquadric function implies superquadric centered coordinates, so to

place a superquadric into the world, we need to derive the appropriate trans-

formation matrix. We know how to transform points from object-centered

coordinate system ps = [xs, ys, zs]
T into world-space points pw = [xw, yw, zw]T

with the following homogeneous matrix Rt:


xw

yw

zw

1

 = Rt


xs

ys

zs

1

 , Rt =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1

 . (3.9)

With this matrix, a homogeneous point is first rotated around the coordi-

nate system origin and then translated. To reverse the transformation and
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compute ps from pw, we can simply invert the transformation matrix by


xs

ys

zs

1

 = Rt−1


xw

yw

zw

1

 , Rt−1 =


r11 r21 r31 −(t1r11 + t2r21 + t3r31)

r12 r22 r32 −(t1r12 + t2r22 + t3r32)

r12 r23 r33 −(t1r13 + t2r23 + t3r33)

0 0 0 1

 .
(3.10)

The inverse Rt−1 changes the order of operations, where the point is first

translated into the local coordinate system of the superquadric and then

rotated around it’s origin. Finally, we can evaluate the superquadric function

for world-centered points F (Rt−1pw). If we expand the new inside-outside

function in general space, we get

F (pw) =

((
xwr11 + ywr21 + zwr31 − t1r11 − t2r21 − t3r31

a1

) 2
ε2

+

+

(
xwr12 + ywr22 + zwr32 − t1r12 − t2r22 − t3r32

a2

) 2
ε2

) ε2
ε1

+

+

(
xwr13 + ywr23 + zwr33 − t1r13 − t2r23 − t3r33

a3

) 2
ε1

.

(3.11)

From now on, the evaluation of the superquadric function will simply be

denoted as F (p), though the reader should note that world-centered points

pw are being used. In total, we use 12 parameters

λ = (a1, a2, a3, ε1, ε2, t1, t2, t3, qi, qj, qk, qw), (3.12)

to evaluate the superquadric function F (p;λ).

3.5 Superquadric vocabulary

By choosing an appropriate parameter space, we are effectively choosing a

vocabulary of shapes, that the superquadric equation can represent. This

is particularly notable with shape parameters (ε1, ε2). For use in computer
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vision applications, shape is usually bounded: 0 < ε1, ε2 < 1 [20]. This only

includes convex shapes out of all possible superquadrics. For our purposes, we

further limit the upper bound to 1. This range includes shapes like spheres,

cuboids, cylinders and everything in between. This is shown in Figure 3.3.

Note, that at ε = 0, the inside outside function is singular and numerical

instability can develop when ε → 0. Due to this, our final range for shape

parameters becomes: 0.1 ≤ ε1, ε2 ≤ 1.

The vocabulary is also determined by size parameters (a1, a2, a3). By

constraining these to a range [amin, amax], we effectively limit the maximum

ratio between two axes of an object to amax/amin. The bigger this ratio is,

the more diverse set of objects can be represented.

3.6 Visualization

A superquadric and it’s inside-outside function can be rendered and visu-

alized in different ways. We first outline the process for rendering the su-

perquadric surface. Then, we show how the evaluated inside-outside function

can be visualized in 3D space.

3.6.1 3D surface rendering

To render a superquadric on a Graphics Processing Unit (GPU), we have to

first create a 3D mesh. We begin by sampling points from the superquadric

surface with the parametric equation 3.5. We first create a 2D array of polar

coordinates by sampling equally-spaced points from ranges 0 ≤ η ≤ 2π and

0 ≤ θ ≤ π. We evaluate the parametric equation on sampled points, which

results in a set of 3D points on superquadric surface in object-space. The

exponentiation in Eq. (3.5) is in fact a signed power function:

xp = sign(x)|x|p, (3.13)

where sign(.) returns −1 if x is negative and 1 otherwise. This is done to

assure, that the exponentiation does not result in complex numbers when x
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Figure 3.3: The vocabulary of superquadrics; We limit the range of shape

parameters ε to [0.1, 1]. By doing this we avoid numerical instabilities at

lower values of ε and at the same time the occurrence of concave shapes at

higher values of ε.
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(a) (b) (c)

Figure 3.4: Visualization of superquadric surface and the inside-outside

function: (a) a wiremesh of superquadric surface, which we use to denote the

ground-truth superquadric. (b) Phong lightning shaded superquadric, used

to represent predicted superquadrics. (c) a scatter plot of the superquadric

hypersurface. The color represents the value of inside-outside function and

opacity is set to 1 for points inside the superquadric. All examples represent

a superquadric with the same parameters.

is negative. To transform derived points to world-space, we multiply them

with transformation matrix Rt, shown in Eq. (3.9).

The next step would be to transform the point-set into a connected tri-

angle mesh. We use an implementation of the Qhull algorithm [49] for quick

convex hull computation, since our vocabulary of superquadrics only includes

convex shapes. Alternatively, any similar algorithm, which computes mesh

from points can be used.

We then render the resulting mesh on the GPU in two ways. One is

by rendering a wire-frame model, which only renders triangle lines. This

mode is useful, when we want to see the density of sampled points on the

surface. The other mode is achieved by rendering and shading the entire

mesh including triangle faces. In this case, we make use of Phong lightning,

which can be computed using surface normals. Both modes of rendering are

shown in Figure 3.4.
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3.6.2 Visualization of the inside-outside function

The inside-outside function is a hypersurface, which makes it difficult to

visualize. It’s a 4D function which we have to visualize in 3D space. One

way is by using color coding. We know how to visualize points in 3D space

by using a scatter plot. Each point in the plot is then colored according to

the value of inside-outside function at that position.

We can further increase the visibility of such a visualization by control-

ling the opacity of individual points. We set opacity of points inside the

superquadric to 100% and the opacity of points outside to 15%. This con-

figuration provides us with a clear view of the superquadric and at the same

time the increasing values of the inside-outside function around it. This can

be observed in Figure 3.4.
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Chapter 4

Neural networks

In this chapter, we give a coarse overview of artificial neural networks, partic-

ularly for the purpose of recovering superquadric parameters. In accordance

to the main theme, we mostly cover convolutional neural networks and pro-

vide the reader with some fundamental definitions, on which we build our

method later on. We first briefly present the general term of ANNs, and then

define learning. Last, we take a look at CNNs which are used predominantly

in the field of computer vision.

4.1 Artificial neural networks

The study of neurons and neural networks is a broad scientific endeavour,

a multidisciplinary research which combines sciences, such as biology, psy-

chology and neuroscience. By trying to mimic these processes, the domain

of machine learning adapted many concepts found in real life and a new

subgroup was founded. Artificial neural network is a general term, used

to describe a computing system, which is loosely analogous to the neural

structure and operations, found in our brains. This paradigm combines dif-

ferent data structures, algorithms and other conventions and now forms a

well-established way of learning statistical data representations.

31
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4.1.1 Neuron

The artificial neuron was conceived in response to new neuroscientific achieve-

ments in 1940’ [50]. It tries to mimic the concepts of a biological neuron.

Human ability to remember and recall was at that time contributed the the

neural structure in our brain. This is the reason that a mathematical for-

mulation was interesting for the field of artificial intelligence. We can find

different kinds of biological neurons in different parts of our brain, neverthe-

less, they all share the same structure:

1. Dendrites act as an input to the neuron and transmit incoming signal

to the nucleus.

2. Axon transmits electrical signal from the neuron towards synapses.

3. Synapses then transfer the output signal to other neurons.

The natural neuron has a so-called all-or-none response, meaning that the

neuron gets excited only when the stimulus crosses a certain threshold. There

is no magnitude of excitement based on the potential input, it’s either excited

or it’s not. These findings contributed to formulation of a mathematical

model of the neuron: the artificial neuron. It is defined as a weighted sum

of inputs:

y = g(
∑
i

xiwi + b0), (4.1)

where wi are weights, xi are inputs, b0 is the bias and g is an activation

function. If we model the all-or-none activation, similarly to a biological

neuron, then g is a step function:

g(x) =

1 x ≥ t

0 x < t
, (4.2)

where t is a specific threshold. It has to be noted, that this model is abstract,

simplified and only loosely based on the real biological neuron. Any men-

tions of neurons or neural networks from this point on will refer to artificial

neurons and artificial neural networks (ANNs), respectively, except if stated

otherwise.
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4.1.2 Network topology

Any configuration of arbitrarily connected neurons is by definition a neural

network. These can be further classified, depending on certain properties

of the topology. Two of the major groups are Recurrent Neural Networks

(RNN) [51, 52] and Feed-Forward Neural Networks (FFNN) [53, 54]. RNNs

are connected with cyclic directed graphs, where neurons can propagate data

forwards, backwards or have loop-back connections. In contemporary re-

search, these are mostly used to learn the distribution of sequenced data, e.g.,

text, speech, time-series, etc. By allowing cyclic connections, temporally-

dependant information can be memorized by the network.

FFNNs are more constrained, since neurons can only distribute data for-

ward. They are usually grouped into layers, where each layer has an arbitrary

number of neurons. A generalized type of FFNN is called a perceptron [53].

These can be divided into two groups:

• Two-layer perceptron only has an input layer and an output layer.

The input layer only propagates the values forward to the output layer

and does not compute anything, so some also call it the single-layer

perceptron. The output layer then calculates a weighted sum of inputs

and passes the result through an activation function.

• If we add one or more hidden layers between the input and output lay-

ers, we create a multi-layer perceptron (MLP). By having multiple

layers of nonlinear neurons stacked together, MLP has the ability to

model highly nonlinear data. In theory, such a network can approx-

imate any nonlinear function. If the MLP has three or more hidden

layers, the network is considered as a deep neural network. Alterna-

tively, the network is shallow.

In general, we define a neural network as a function y = f(x; θ), where x

is the input, y is the output of the neural network, f is a composition of func-

tions f = f1 ◦f2 ◦ · · · ◦fn, where each function represents an individual layer,

and θ are the weights of individual layers, also called network parameters.
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(a) (b)

(c) (d)

Figure 4.1: The visualization of various activation functions; (a) sigmoid,

(b) tanh, (c) ReLU and (d) Leaky RelU.
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4.1.3 Activation functions

With neural networks, the activation function is the main reason behind

the ability to model highly nonlinear data. There are many options we

can choose, but each has it’s advantages and uses. These functions have to

be designed with multiple criteria in mind. An activation function has to

be differentiable to compute gradients and update network weights. This

mechanism will be further discussed in Section 4.2. It is also advantageous

to have a function, which is not expensive to compute. We group them

accordingly to their popular functionality in the contemporary literature.

We also visualize them in Figure 4.1.

Hidden layer activation

For hidden layers, we can use the Rectified Linear Unit (ReLU ) [55] function

, which is defined as

ReLU(x) = max(x, 0). (4.3)

The rectifier is a simple, piece-wise function, which can be efficiently com-

puted. For this reason it is suitable for usage in hidden layers, since hidden

layers usually represent the majority of neurons in a deep neural network. It

is also differentiable, however, the derivative when x < 0 is 0, which leads

to the problem of vanishing gradient in a neural network. When this

happens, some of the neurons become inactive and don’t contribute to the

learning anymore. Consequentially, the model looses capacity. One of the

possible solutions is to use a Leaky ReLU [56] function:

LeakyReLU(x) =

x x ≥ 0

αx x < 0
, (4.4)

where α is a small constant. This enables a small gradient even when x < 0,

preventing neuron shutdown, while retaining the nonlinear properties.
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Output activation

Activation in the output layer are different depending on the type of output

we want to predict. While the type of the function influences output range,

it is also dependant on the type of data distribution we want to model. The

justification for these functions is based on the maximum likelihood estima-

tion (MLE) method, used in statistics for estimating distribution parameters.

For this reason the following function are frequently used in regression tasks.

A linear activation is simply an identity mapping:

Linear(x) = x. (4.5)

It’s range is [−∞,∞], which makes it suitable for regressing arbitrary contin-

uous parameters. Other useful functions are sigmoid functions. The logistic

sigmoid is defined as

σ(x) =
1

1 + e−x
. (4.6)

It’s range lies in (0, 1), which makes it suitable for modeling a Bernoulli

distribution, for example in binary classification tasks. An improvement to

the logistic sigmoid is a hyperbolic tangent, also called tanh:

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x)− 1. (4.7)

This is a shifted and scaled version of the logistic sigmoid and offers bigger

gradients around x = 0, since it’s range is in (−1, 1), leading to faster con-

vergence during training. Nevertheless, both of these functions suffer from

the saturation of gradients when the output is large (in negative or positive

direction).

4.2 Learning

Learning is an abstract concept within the context of neural networks. It is

the process of acquiring knowledge, in our case, by analysing a distribution of

examples. These experiences can then be used to make assumptions about
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unseen examples from the same distribution. We first define what is an

optimization problem, then explain what means to learn and finally, look at

the different types of learning.

4.2.1 Definition of learning

Training a neural network is an optimization problem P , which we can define

as a tuple P = (X, Y, f, opt,L), where:

• X is a set of training examples. These are passed as input to the first

layer of the neural network.

• Y is a set of target values.

• f is a neural network.

• opt is either minimization or maximization of the criterion.

• L is the criterion function. For a pair (y, f(x)); y ∈ Y , x ∈ X, the

criterion function results in a measure of cost (minimization) or fitness

(maximization).

To solve this optimization problem, we are looking for a neural network

f : X → Y , which will yield the smallest cost given criterion L. Specifically,

we have to find suitable network parameters, which will minimize the cost.

The goal of training a neural network can then be defined as

arg min
θ
L(f(X; θ),Y ). (4.8)

4.2.2 Gradient descent and backpropagation

To find suitable parameters θ for neural network f , we need to somehow

search the parameter space. Because of high dimensionality of the param-

eter space, brute-force methods like grid search or random search are not

suitable methods to solve the optimization problem. We can instead use
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gradient descent. This is an iterative optimization algorithm, which tra-

verses the parameter space by calculating the derivative of the function being

minimized. At each iteration, we move by a small step in the direction of

the negative gradient. We define this update rule as

θi+1 = θi − γ∇Lθ, (4.9)

where γ is the learning rate parameter, which defined the step size, and

∇Lθ is the gradient of loss function L w.r.t. parameters θ. There are three

versions of the basic gradient descent algorithm:

• Batch gradient descent computes the gradient on the whole dataset

(X,Y ). This results in accurate update steps and the algorithm usu-

ally finds the closest path to a local minimum. However, the training

is slow, since the whole dataset needs to be processed for a single step.

• Stochastic gradient descent (SGD) computes the gradient only on a

single pair (xi, yi) from the dataset. This significantly speeds up the

training process. This induces some noisiness in the optimization path,

but doesn’t normally influence the resulting optimum.

• Mini-batch gradient descent uses a subset of data for each gradient

update. This is a compromise between stochastic and batch gradient

descent algorithms. By only a small subset of examples, for example

32, we can already make a more generalized guess of the gradient,

while still maintaining much faster computation time, in comparison

to updating for the whole dataset. This approach is currently most

used in practice.

What is left is the computation of the gradient ∇Lθ, which can be effi-

ciently computed with backpropagation. This algorithm follows the chain

rule of differentiation and composes derivatives of individual layers to calcu-

late the gradient of the whole network. It starts at the output of the network

and then propagates the partial derivatives back until it reaches the first
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layer. This is very efficient in comparison to the naive method of calculat-

ing derivatives for each network parameter individually. In practice, this is

implemented with automatic differentiation techniques.

4.2.3 Supervision

When training a neural network, the amount of supervision can be controlled.

This decision can be based on different factors, like the type of task or the

availability of data. There are three degrees of supervision:

• Supervised learning. Each training example x ∈X has a matching

label y ∈ Y . A label is the target value we wish our network to predict,

given x.

• Semi-supervised learning. During training, some of the examples

may have labels attached to them. This approach can be useful for

when labeling data is costly or if we want to expand our dataset auto-

matically.

• Unsupervised learning. No training example has a label associated

with it. The result is usually a generative model - a statistical repre-

sentation of the training data itself.

4.3 Convolutional neural networks

Like ANNs themselves, convolutional neural networks (CNNs) are inspired

by some biological processes. Hubel and Wiesel [57] were the first to discover

how specific organization of neurons in the visual cortex enable complex

processing of visual data by combining simple, but numerous stimuli. Based

on their findings, Fukushima [58] later proposed a computational model. This

was the first CNN, however, backpropagation was still not used at the time.

First one to combine CNNs and backpropagation was LeCun [59]. Since

then, many improvements were proposed for this computational model, but
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the ability to train neural networks on a GPU had the biggest impact on the

field. Since then, CNNs have dominated many computer vision challenges.

4.3.1 Convolutional layer

The main building block of CNNs is the convolutional layer. A convolution

is defined as an operation between two functions f ∗ g. In the context of

CNNs, these functions represent the n-dimensional arguments. For 2D data,

the first would be an input image I and the second a learnable filter K, also

called a feature. The filter then gets convolved across the image which forms

a response map S. This process can be defined as

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (4.10)

where S(i, j) is a single pixel in the resulting response map. In other words,

for every pixel in the input image I, we calculate a dot product with it’s

surrounding neighborhood and the kernel K. Each convolutional layer then

has multiple kernels, each acting as a separate, independently trained neuron.

This is a simplified notation of convolution. In practice, cross-correlation

is actually used instead of convolution. These operations are similar, the only

difference being that convolution flips the filter before processing. In terms of

network weights, this does not matter, since only weight indices are changed.

We therefore use the term convolution for any of these operations. When

constructing a CNN architecture, we use a more generalized form, which

also allows processing n-dimensional data and supports additional hyper-

parameters, such as stride and size.

4.3.2 Architecture

The topology of a neural network, often called the architecture, defines how

data is processed and how the representation is shaped as a result. The

design of CNNs differentiates from the design of fully-connected FFNNs.

Since the first proposal of a CNN [58], the general idea of the architecture
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was retained to this day. With it’s cascading structure, it is loosely based on

neural pathways inside the visual cortex. CNNs are usually composed of the

following building blocks:

• Convolutional layers receive image data as input and convolve it

with trainable filters.

• Pooling layers reduce the dimensionality of data by grouping and re-

ducing it’s input with one of the reduction functions (min, max, mean,

etc.).

• Activation layers induce nonlinearity into the model. Most com-

monly used is the ReLU function.

• Batch normalization layers normalize the data across mini-batches

by having mean and bias as trainable parameters.

• Fully-connected layers are usually last in the pipeline. These make

high-level assertions about features, gathered from convolutional layers.

One or more of these elements are then grouped into more abstract struc-

tures, called blocks. Each block consists of two steps. The first block is

feature extraction with one or more convolutional layers, each followed by

an activation layer. The data is then down-sampled, either by selecting a

bigger stride on the last convolutional layer or by using pooling operations.

At the same time, the number of trainable filters is increased. By using such

a configuration, we effectively enlarge the receptive field. This allows for

a hierarchical representation inside the neural network, where initial layers

focus on a smaller set of simple features, whereas deeper layers combine these

to form more numerous complex representations.

In the end, fully-connected layers encode features from convolutional lay-

ers into a latent vector. This is the representation of input date, which had

it’s dimensionality reduced. Depending on the task, the activation function

of the last layer is then set accordingly.
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Figure 4.2: The shortcut connection in ResNet [6]; The input x is joined

by the results of the block F (x). This identity mapping ensures that the

gradients are propagated all the way to the beginning of the network.

CNNs are also invariant to translation. Since all input elements (pixels

in case of an image) share the same trainable filters, each filter learns features

independently of their position.

4.3.3 ResNet

We describe a well established convolutional architecture called ResNet [6].

This is currently considered as the state-of-the-art architecture and since it

inception in 2016, no significant breakthroughs in the field were achieved.

Due to this, it is considered as the go-to convolutional encoder for many

different tasks.

ResNet architecture tries to solve a problem, which was very prominent

with deep neural networks in general. It is the problem of vanishing gra-

dients. With gradient based training algorithms, such as gradient descent,

the weight of the network are updated based on the partial derivatives of

loss function w.r.t. the weights. This is calculated with backpropagation,

by utilizing the chain rule. This means that the gradient of early layers is a

long chain of products and the direct influence of their parameters gets di-

minishing returns with deeper networks. This leads to slow learning of initial
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layers, compared to final layers of the network. In [6], the authors propose

residual connections. These connections are defined as

y = f(x) + x, (4.11)

where f is a functional block, composed of multiple convolutional layers, x

is the input data and y the result of the connection. In other words, an

identity mapping is performed by joining the output of the block with it’s

input. This is shown in Figure 4.2. With this mechanism, the contributions

of initial layers can be propagated deeper into the network. The gradient

can thus be estimated better, since the derivative of an identity mapping is

equal to 1. These ”shortcut connections” do not add any new parameters

or computational complexity. ResNets can be arbitrarily deep by composing

together individual blocks. A few versions exist, numbered by the number of

convolutional layers: ResNet-18, 101, etc.
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Chapter 5

Experimental setup

In this chapter we present our experimental setup, which is shared for all

experiments. We first describe our synthetic dataset and some properties

of the examples in it. We also discuss the choice of CNN architecture, the

choice of different hyper-parameters and then describe the training proce-

dure. Finally, we define performance metrics, which we use to evaluate the

model.

5.1 Dataset

We use a similar synthetic dataset as in our preliminary study [48]. It con-

tains artificial depth images, where a single superquadric is placed in a scene

and rendered in a orthographic projection using a custom ray-tracing ren-

derer. The renderer works by following a ray in discrete steps along the

z axis and then detects when the ray intersects the superquadric surface.

When that happens, the value of distance from the viewport is written to

the respective pixel. The result is an image of size 256× 256. This is conve-

nient, since raw grayscale pixels are usually stored with 8 bits of information,

which yields a total of 256 possible pixel values. In this way, the dept image

is represented by a 3D space of size 2563.

In comparison to [48], we updated the dataset in two ways. First, we

45
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Figure 5.1: Examples from our synthetic dataset. These are depth images

of size 256 × 256, where a a single superquadric in rendered inside the 3D

space. The projection of the camera is orthographic.
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changed the parameter range for shape parameters (0.1 ≤ ε1, ε2 ≤ 1). Pre-

viously the minimum value was 0.01. As suggested in [20], we decided to

increase the lower bound to minimize the possibility of numerical instability,

that might occur when evaluating the superquadric equation at small num-

bers of ε. When ε approaches 0, the inside-outside function becomes highly

exponential. A point, far from the superquadric surface would then have a

large value, which might be hard to represent using single or even double

precision floating point format, which would lead to overflow errors. The

reduction in precision only occurs with sharp-edged objects and is perceptu-

ally barely noticeable. We also increased the number of examples to a total

of 150,000 depth images for training. Each image is annotated with all 12

parameters. For the test set, we generated additional 20,000 examples, on

which we make the final evaluation of performance and compare the different

models. Some examples from the dataset are shown in Figure 5.1.

5.2 Model architecture

In our preliminary study [48], we used a custom architecture, similar to

VGG [7]. It’s main characteristics are in line with the original ideas of CNNs:

the network is deep and has a widening receptive field with deeper layers.

While such an architecture was proven to be suitable for our task, we can

still improve this by using an even more contemporary architecture, with

additional advantages. We therefore decided to use a network with residual

connections, called ResNet [6]. It’s modular nature allows us to easily choose

the depth of the network, which influences the model capacity. For tasks

involving real-world images, ResNet with 50 or more layers is often used to

model the real-world complexity. In contrast, we use a version with 18 convo-

lutional layers, which should be enough to extract simpler features from our

depth images. Another improvement are the shortcut connections between

consecutive blocks. Any overhead in model capacity can be mitigated by

simply learning an identity mapping, like ResNets do. This helps us, when
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Figure 5.2: We use a modified ResNet-18 [6] as the architecture for our

CNN model. Instead of a large fully connected output used for classification,

we add two fully connected layers with 256 neurons each and four regression

heads, each for a specific superquadric parameter group.

searching for the optimal network depth, since any redundant deeper layers

can be skipped. These mappings also enable faster learning of initial layers,

since the gradient is back-propagated better.

The final architecture is similar to the reference ResNet. It is shown in

Figure 5.2. The first convolutional layer has a filter of size 7 to capture a

bigger initial receptive field, since our depth images mostly consist of low-

frequency information. From that point on, we use a filter of size 3. By

setting the stride of convolution to 2 every 3 convolutional layers, the data

is pooled, which widens the receptive field of convolutional filters. In the

end, we modify the network slightly to change it from a classification to a

regression model. The existing final layer, used for classification, is removed

and two new fully-connected layers are added, with each having 256 neurons.

This part of the network is the regressor, which mixes and processes features,
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received from the convolutional layers. The network output is then split

into four groups, one for each parameter type. Size, shape and translation

parameter groups each have a fully-connected layer with 3, 2 and 3 outputs,

respectively. We also attach a final sigmoid activation, which is done so

the initial predictions result in values close to ”0.5”, making the result of

superquadric inside-outside function stable and suitable for backpropagation.

Rotation parameters have a final fully-connected layer with 4 outputs. Since

we use versors to describe rotation, we use L2-based normalization as the

final activation function.

To speed up the training process, we use transfer learning. Specifically, we

use pre-trained weights for ResNet-18, trained on the ImageNet [60] dataset.

These are loaded into the model before any modifications to the network.

The pre-trained model was trained on color images with 3 color channels,

however, our depth images only have a single depth channel. To fix this

misalignment, we sum the weights of the first pre-trained convolutional layer

along the channel axis. This way, we convert the input shape of the pre-

trained model to accept our depth images without loosing the pre-trained

weights.

5.3 Training and hyper-parameters

The dataset is first split into two parts: 10% for the validation and 90%

for the training set. We define a custom generator, which yields batches of

data during training. Each epoch, we first iterate through the whole training

dataset and then evaluate the performance on the validation set. The data

is also shuffled each pass to ensure a representative distribution of the whole

dataset in a single batch. For the optimization algorithm, we use Adam [61],

for which we set an initial learning rate of 1e−4. We set the batch size to

32, which is commonly used in practice for this algorithm.

When evaluating the performance on the validation dataset, we also cal-

culate the accuracy metric, defined in Chapter 5.4. Both, validation loss and
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accuracy are stored and used as control values for the training procedure. We

create a callback function, which monitors the validation loss and decreases

the learning rate by a factor of 10, when the validation loss stagnates for 10

epochs. This is done to stabilize gradient descent around the local minimum

and to ensure convergence of the loss function. When a new minimum vali-

dation loss is achieved, we store the parameters of the whole network to disk.

The training is complete, when validation loss stagnates for 20 epochs.

5.4 Metrics

To evaluate the performance of our model, we use volumetric intersection-

over-union (IoU) inside a 3D space. We use the binary occupancy function 6.5

to generate superquadric voxel grid VB,λ. All points that lie outside of the

superquadric have a value of 0 and all others a value of 1. The IoU error is

then calculated between binarized voxel grids of predicted and ground-truth

superquadric parameters:

IoU(ŷ,y) =

∑|V | V B,ŷ ∩ V B,y∑|V | V B,ŷ ∪ V B,y

(5.1)

where |V | = r3 and represents the size of the discretized space, y are ground-

truth parameters and ŷ are the predicted parameters. Our goal is then to

maximise this performance measure, which represents the ratio of coverage

between the generated and true superquadrics. A value of 0 means that there

is no overlap and a value of 1 means that the superquadrics overlap perfectly.

Next, we define some metrics to compare the quantitative properties of

predicted parameters. We can’t compare these directly, e.g. predicted â1 with

ground-truth a1. The order of size parameters a can be arbitrary, since the

network is not restricted in this sense. For size parameters, we calculate the

average relative difference between volumes of ground-truth and predicted

superquadrics:

∆A =
1

N

N∑
i=1

â1â2â3 − a1a2a3
a1a2a3

, (5.2)
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where N is the number of examples in the test set, a1,2,3 are the ground-

truth size parameters and ˆa1,2,3 are the predicted size parameters of indi-

vidual examples. The result is a relative error, which tells us by how many

percent the predicted superquadrics differ in volume from the ground-truth

superquadrics. For example, ∆A = −4% would mean, that the predicted

superquadrics have on average a 4% smaller volume.

In a similar fashion, we evaluate shape parameters ε. The term (ε1+ε2)/2

represents the average value of parameters ε for a given superquadric. We

then simply calculate the relative difference in average value of ε for all

superquadrics by

∆E =
1

N

N∑
i=1

(ε̂1 + ε̂2)− (ε1 + ε2)

ε1 + ε2
, (5.3)

where N is the number of examples in the test set, e1,2 are the ground-truth

shape parameters and ˆe1,2 are the predicted shape parameters of individual

examples. The number 2 in the denominator can be dropped, since all terms

include it.

Translation parameters t are the only group, where the order is deter-

ministic, so we can evaluate each parameter individually. 3D information in

depth images is encoded differently for z axis in comparison to x and y. The

ability to analyze individual translation parameters can therefore be useful

to check, how the selected data representation influences model bias. The

error is defined as

∆Tk =
1

N

N∑
i=1

t̂k − tk; k ∈ {1, 2, 3}, (5.4)

where N is the number of examples in the test set, tt the ground-truth

translation parameter and t̂k is the predicted translation parameter. ∆T

then forms a tuple (∆T1,∆T3,∆T3) for all translation parameters t1, t2 and

t3, respectively.

We do not compare the difference in predicted and ground-truth rotation-

It is difficult to determine a suitable metric for this kind of comparison. Even
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if we used a distance metric between two rotations, the predictions of rotation

can be arbitrary, since other superquadric parameters can be adjusted to fit

the shape properly. This wouldn’t be practical, so we rather determine the

accuracy of rotation indirectly from the volumetric IoU.



Chapter 6

Supervised learning of

superquadric parameter

recovery

In this chapter, we present a new method for superquadric parameter recov-

ery from depth images. We first formulate the problem for this task and

present the motivation behind our approach.

6.1 Motivation

In [48], we trained a regression model using a very simple objective function,

by minimizing the squared error between predicted and ground-truth param-

eters. As evident, this interaction was not complex enough to capture the

ambiguous nature of rotation. By comparing only the regressed values them-

selves, we reduce the parameter space of quaternion coefficients to have only

a single global optima, regardless of object symmetry, and despite orienta-

tion being a periodic description. The estimated parameters should instead

be compared in geometric terms. Ideally, the error of each parameter group

should correspond exactly to the error between ground-truth and estimated

superquadrics, constructed using respective parameters. For example, if two

53
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superquadrics were exactly the same, but have different positions, only the

translation parameters would need to contribute to the error the most.

The goal is therefore to design a new training objective, i.e. a loss func-

tion, which would in a geometric and object-aware fashion guide the op-

timization procedure of a convolutional neural network for the purpose of

superquadric parameter recovery. There should be some consideration when

designing such an objective:

1. The characteristics of each parameter group need to be accounted for.

For example, a superquadric being more rounded that it should be is

in general considered less severe, than an error in it’s position. Per-

parameter importance needs to be reflected in the magnitude of error.

2. The shape of the superquadric needs to be considered. This partic-

ularly important when considering rotation and symmetry. Two su-

perquadrics could look the same, but have different parameters asso-

ciated with them. A trivial example would be rotating a superquadric

along any axis by 180 degrees, which would to an observer yield the

same 3D shape, because of its symmetry.

3. The objective function needs to be differentiable in order to support

backpropagation of gradients and to allow proper training of the neural

network.

4. It should also be effectively computed and numerically stable.

When considering possible solutions, the usage of superquadric inside-

outside function from Eq. (3.11) seems tempting. It was, after all, used

in the original least-squares minimization method, proposed by Solina and

Bajcsy [24]. The function is positive and increases continuously from the

center the superquadric towards infinity. Lastly, the function is differentiable

w.r.t. the parameters, which enables the computation of the gradient.

The main question is: Can we compare two superquadric functions? By

mapping 3D coordinates to a real value, the inside-outside is by definition a



6.2. PROBLEM FORMULATION 55

4D function, also called a hypersurface in R4. We can measure the difference

between two curves in R2 or two surfaces in R3, for example, by sampling

equally-distanced points and calculating the mean squared error (MSE) be-

tween the values at those points. Of course, MSE can be changed for any

other metric. If the metric is differentiable, we can create a cost function

that enables us to fit the parameters of a curve or a surface using gradient

descent optimization. We can do the same for two hypersurfaces in R4. This

is the main idea behind our approach.

6.2 Problem formulation

The goal is to create a predictor, which recovers the parameters λ of a single

superquadric. The predictor can be defined as a function:

ŷ = f(X), (6.1)

where X is the input in form of a depth image. The function then returns

all 12 estimated superquadric parameters ŷ = [â1, â2, â3, ε̂1, ε̂2, t̂1, t̂2, t̂3, q̂i,

q̂j, q̂k, q̂w]. Since superquadric parameters λ are continuous real values, we

formulate this task as a regression. For the predictor function, we use a

convolutional neural network

ŷ = fCNN(X;θ), (6.2)

where θ are learnable parameters of the network and ŷ is the output. In the

case of a regression model, the outputs are continuous values ŷ ∈ R12. To

train the neural network, we have to minimize a cost function

L (y, ŷ) , (6.3)

where ŷ are the predicted superquadric parameters and y are the ground-

truth superquadric parameters. The design of this cost function is described

in Chapter 6.3.
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6.3 Occupancy loss

Here we first define all the intermediate volumetric representations and then

formulate our geometrically-aware cost function.

6.3.1 Adjusted inside-outside function

The inside-outside function has an unwanted property, that violates one of

the considerations, listed in Chapter 6.1. The problem arises when comparing

superquadrics with different shape parameters (ε1, ε2). In this case, the

difference in value of these inside-outside functions, evaluated at the same

point would be disproportionately attributed only to the shape parameters,

since they control the exponentiality of the function. A point in space would

yield a far bigger value for a sharper superquadric, even if all other parameters

match. To adjust the exponentiality of the inside-outside function, we can

raise it to the power of ε1, as suggested in [24]:

F ε1(x, y, z) =

(( x

a1

) 2
ε2

+

(
y

a2

) 2
ε2

) ε2
ε1

+

(
z

a3

) 2
ε1

ε1

. (6.4)

6.3.2 Occupancy grid

Even though the inside-outside function is now adjusted for shape param-

eters, the biggest differences still occurs outside of the superquadric where

F ε1(x, y, z) > 1. We want to have a greater focus on differences in close

proximity to the superquadric. To achieve this, we can further transform the

inside-outside into an occupancy function. The trivial solution would be a

simple binarization function B : R3 → {0, 1}:

B(x, y, z) =

1 F ε1(x, y, z) ≤ 1

0 F ε1(x, y, z) > 1
, (6.5)
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however, this operation is not differentiable. Instead, we follow the proposal

of [45] and calculate probabilistic occupancy with function

G(x, y, z) = σ(s(1− F ε1(x, y, z)), (6.6)

where G : R3 → (0, 1) and s is a scaling factor, which controls the sharpness

at the border of the superquadric. This function returns a value close to

1 if a point is inside the superquadric, close to 0 if it is outside and 0.5 of

the point is directly on the surface of the superquadric. The function is also

continuous and therefore differentiable.

6.3.3 Sampling of the inside-outside function

The probabilistic occupancy function 6.6 is evaluated for a specific world-

centered point p = [x, y, z]T in the Cartesian coordinate system. If we evalu-

ate the function for all possible points p ∈ R3, we end up with a continuous

hypersurface in R4, where each coordinate encodes the value of the given

function.

We can calculate an approximation of this hypersurface by first discretiz-

ing the coordinate system into a set of fixed, equally-distanced points. The

discretization procedure is controlled by resolution parameter r and mini-

mum and maximum bounds bmin and bmax for each of the axis. In a linear

manner, we sample r points in each axis from bmin to bmax, which results in

a 3D grid of discretized points pd. For each of these points, the occupancy

function is evaluated and stored into a volumetric grid:

V G,λ = G(x, y, z;λ), ∀[x, y, z]T ∈ pd. (6.7)

By doing this we get a discrete approximation V G,λ of occupancy function in

3D space, given parameters λ. In other terms, we create a voxel grid, where

each voxel encodes the value of the occupancy function at that location. The

size of the grid corresponds to the selected resolution: |V | = r3.
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Figure 6.1: The visualization of the occupancy loss function; Both, pre-

dicted and ground-truth parameters are first used to calculate the inside-

outside function for a discretized 3D space. Each inside-outside grid is then

converted to an occupancy grid and MSE is calculated between them.

6.3.4 Final definition

Finally, we can define our cost function. We use MSE to calculate the differ-

ence of two voxelized occupancy spaces:

LOC (y, ŷ) =
1

|V |

r∑
i,j,k

(V G,y(i, j, k)− V G,ŷ(i, j, k))2, (6.8)

where y are ground truth parameters of the target superquadric and ŷ are

estimated superquadric parameters. Specifically, we first sum all the squared

differences between matching points and then divide this by the size of the

grid |V |. The visualization of this loss function can be seen in Figure 6.1.

6.4 Implementation details

The loss function as defined in Section 6.3 is relatively expensive compu-

tationally in comparison to the neural network. We have to compute the
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inside outside function, which is by itself not trivial due to many exponenti-

ation functions, for every discretized point in the 3D space. The number of

points rises cubically with the resolution of discretization. To compute this

efficiently in practice, we use meshgrids to represent the discretized points.

We create three separate 3D tensors, X, Y and Z, where each encodes the

coordinates of the respective axis. This data structure is useful, because it

allows us to parallelize the computation of the inside-outside function. The

operations are independent for each point in space and computation can

be done efficiently on the GPU. The meshgrid structure can also be easily

transformed into a point cloud. We first stack all 3 tensors into a tensor

of shape (3, n, n, n), where n is the resolution of the discretized coordinate

space. Then, we can reshape the tensor into (n, n, n, 3) and finally flatten it,

which results in a set of points of size (n3, 3).

After preparing the coordinate system tensors, we can evaluate the inside-

outside function for both, ground-truth and predicted parameters. Inside the

function, we first ensure that the inside-outside function will not become sin-

gular by clipping parameters to allowed ranges. These ranges are [0.05, 1] for

size, [0.1, 1] for shape and [0.0, 1] for translation parameters. The conjugated

quaternion is then transformed into a rotation matrix. The coordinate sys-

tem is rotated by calculating a dot product between the rotation matrix and

each point in space. This is done efficiently by broadcasting the operation

to all points in space in parallel. The translation vector is also rotated in

the same way to transform it to object-centered coordinates. Transformed

coordinates are then inserted into the inside-outside equation. Finally, we

calculate the occupancy function and the resulting 3D tensors are then used

to calculate MSE between them. This process is done for each pair of ground-

truth and predicted parameters in a batch. We manually iterate through all

examples in a batch, since we can’t broadcast operations to the whole batch.

During the computation of the inside-outside function, a few numerical

instabilities can arise. Most notable is the problem of undefined gradient for

certain operations. For example, the exponentiation function f(x) = xn has a
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partial derivative ∂f
∂n

= xn ln(n). When x = 0, the value of natural logarithm

becomes undefined. The backpropagation then fails and usually corrupts the

weights in the neural network. To prevent this from happening, we have to

ensure, that the input to exponentiation functions is always different from 0.

First, we add a small constant, e.g., 1e−4, to the initial coordinate system

where a coordinate is 0. By doing this, we offset any points lying directly

on the axes by a small margin. Then the inner terms in the inside-outside

function are raised to the power of 2. This can result in rounding errors. For

example, if we raise 1e−4 to the power of 2, the result is 1e−8, which would

get rounded to 0 if we used single precision floating points. Due to this, we

again add a small constant as in the previous situation. Later exponentiations

don’t suffer from this occurrence.

6.5 Experiments and results

In this section, we present the experiments and most importantly, the results

of our methodology. First, we analyse some properties of the loss function

and train a preliminary model. Then, individual experiments are described,

along with the results and a short discussion.

6.5.1 Loss function analysis

Our first goal was to test if the new loss function LOC has all the necessary

properties, that would enable the model to learn rotations. To test this, we

defined two superquadrics with identical shape, size and translation param-

eters. We then rotated one of these superquadrics along a specific axis for

360 degrees. Along the way, we calculated the error between them and then

plotted a graph for each of the axes.

The result can be seen in Figure 6.2. First, we can observe the periodic

nature of rotation. The loss is highest at a difference in angle of 90 degrees.

At that point the superquadrics are perpendicular to each other and the loss

should be highers. At 180 degrees, the loss falls back to 0, since superquadrics
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Figure 6.2: Demonstration of loss function LOC ; We rotate a superquadric

with parameters {a1 = 0.1, a2 = 0.2, a3 = 0.3, ε1 = ε2 = 1} for 360 degrees

around each axis. Along the way we calculate the loss between it’s current

and unrotated pose. From the graph, we can observe the symmetric property

of the loss function.

are symmetric. The same observation then repeats itself from 180 to 360

degrees. Another thing to point out are the magnitudes of responses. These

differ due to the dimensions of the superquadric. In case of example in

Figure 6.2, a1 is the dimension along axis x. When we rotate it around

another axis y, the magnitude is relatively large. This happens because for

smaller superquadrics in a fixed space, larger values of the inside-outside

function are calculated for points further from the surface on the border of

space. The ratios between rotating axes are also important. Response for

y axis has the biggest magnitude because the ratio between a1 and a3 is

the biggest. Alternatively, rotation around x has the smallest magnitude,

because the ratio between a2 and a3 is the smallest. With this experiment

we confirmed the positive properties of the loss function.

6.5.2 Dual loss training

The original idea was to upgrade the model, presented in [48]. We first

wanted only to expand the existing model by adding another loss function,

which would optimize rotation. We created a loss function with two dif-
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ferent criterions, where each would optimize its own group of superquadric

parameters:

LDUAL = LMSE(a,ε,t) + LOC(q), (6.9)

where LMSE is the standard MSE loss function, calculated between param-

eter values:

LMSE =
1

N

N∑
(y − ŷ)2. (6.10)

The first term would optimize only parameters for size, shape and trans-

lation and the second term would optimize rotation parameters with the new

loss function. We wanted to do this for two reasons: (1) The prediction of

first eight parameters (size, shape and translation) was already successful

and the model was trained quickly by only calculating the MSE between

predicted and ground-truth parameters directly. (2) For predicting only ro-

tation, other parameters of LOC can be fixed, which speeds up the otherwise

relatively slow computation of the loss.

As a preliminary test, we first trained a model, which would only predict

rotation of a superquadric. Ground-truth parameters were used to calculate

the shape of two superquadrics. One was then rotated with the predicted

quaternion and the other was rotated with ground-truth quaternion. The

loss between them was then calculated using LOC . We achieved an IoU score

of 75.02%. During training, the validation loss converged to local minimum,

while training loss kept decreasing. This behaviour was strange and it looked

like the network failed to generalize on the dataset. In comparison, a random

estimator for rotation prediction would result in an IoU score of around 58%.

The network did learn something, however, there was some obstacle prevent-

ing it to learn better. In Figure 6.3, we plot the distribution of shortest

arc angles from predicted to ground-truth rotation. The distribution gives

us the insight into why the overall accuracy is low. Many examples appear

to get stuck in a local minimum during training. The peaks around 0, π

and 2π radians are correctly estimated. These represent the differences of

0, 180 and 360 degrees, which all result in the same representation of a su-
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Figure 6.3: The distribution of shortest arc angles between predicted and

ground-truth rotations; Note the incorrect predictions around π
2

and 3π
2

ra-

dians, while rotations grouped around 0, π and 2π radians are correctly

estimated. This confirms unwanted local minimum in the loss function.

perquadric, because of their symmetric nature. In contrast, peaks around π
2

and 3π
2

represent rotations by 90 and 270 degrees, which results in a pose,

perpendicular to the ground-truth. One example of a superquadric, which

ends up in a local minima during training is shown in Figure 6.4. It’s shape

and size cause the opposite corners across the center to line up. Any mod-

ifications to the parameters then result in a loss, larger than previous step,

causing the superquadric to get stuck.

We then trained a model, which predicts the full set of superquadric

parameters and uses loss LDUAL to calculate the error. The results are shown

in Table 6.1. In this configuration, which besides rotation also predicts size,

shape and translation, we achieved an IoU score of 62.76%. We know the
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Figure 6.4: One of the local minimums in which the superquadrics get

stuck when learning only rotation; The red wireframe represents the target

superquadric and the predicted superquadric is shaded with gray color. In

this situation, any change of rotation would yield a larger loss, compared to

current step.

Table 6.1: Performance comparison of both our supervised models, which

predict all 12 superquadric parameters.

Method IoU

Model 1, LDUAL 62.76± 11.34%

Model 2, LOC 94.62± 3.18%

upper limit is already set by performance of model 1. The model then suffers

from additional reduction in IoU, since the faults in both loss function are

compounded and not nullified.

6.5.3 Full recovery with occupancy loss

One possible solution to the shortcomings of LDUAL was to only use a single

loss function for all parameters. We therefore wanted to use LOC to predict

all parameters, not only rotation. This was intended from the beginning,

however, it proved to be difficult to implement. The most common issue was

numerical instability. In some parts, the parameter space would have large

gradients, which would cause the optimization algorithm to make large steps
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Figure 6.5: The value of loss and validation loss during training with loss

function LOC with all parameters. The step at around 30 epochs is caused

by the reduction of learning rate.

and miss the local minimum completely, but at the same time be slow in other

areas. We sometimes experienced numerical overflow, so we changed number

representation from single-precision to double-precision floating point. Some

of the functions, used in implementation if the inside-outside function, have

undefined gradient for some inputs, which caused trouble during training and

corrupted the gradients. We solved this by adding small constant numbers

in certain places. This is described in more detail in Chapter 6.4. After these

fixes were applied, we successfully implemented the loss function and then

trained a model. The progression of loss and validation loss during training

can be observed in Figure 6.5.

The performance of both models, which predict all superquadric param-

eters, is listed in Table 6.1. By training our model with the loss function

LOC , we reach a IoU score of 94.62%, which is a significant increase from the

model, trained using the dual loss LDUAL, presented in the previous exper-

iment. By calculating the error on all parameters, we effectively expanded
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Figure 6.6: The distribution of IoU accuracy for model 3 on the test set;

99.06% of examples have an IoU greater than 85%.

the dimensionality of parameter space, which enabled the optimization algo-

rithm to escape from local minimum, shown in Figure 6.4. The issue appears

to be completely resolved, since both, validation and training loss, decrease

evenly and no overfitting occurs. We also managed to reduce the standard

deviation from 11.35% to 3.18%.

During training, different parameter groups are learned quicker than oth-

ers, due to the nature of the loss function LOC . Translation parameters are

fitted first and the superquadrics are centered after only two epochs. Then,

size and rotation parameters are fitted at a similar pace and need about 30

epochs to converge. At this point, the average IoU is already at around 85%.

After that, shape parameters are fitted slowly for more than 100 epochs,

until the training as a whole converges. This is because change in ε has a

relatively small effect on the loss function, when the superquadric is already

in the target pose. In Figure 6.6, we can see the distribution of all IoU accu-
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racy scores across the test set. The minimum IoU achieved for an individual

example is 52.71% and the maximum is 99.24%. From all of the examples,

99.06% have an IoU greater than 85%.

For examples with a low IoU, we can visualize, analyze and then deter-

mine what is the reason behind bad performance. We take 4 examples with

less than 70% IoU and show their depth images as well as 3D renders in

Figure 6.7. Each row represents a superquadric. From top to bottom, the

IoU scores are: 52%, 54%, 61% and 68%. True and predicted depth images

are shown in the left column and renders are in the right column. To ana-

lyze the examples, we built an iterative minimization tool, which allows us

to manually search the superquadric parameter space. By calculating the

gradient of the loss function w.r.t. predicted parameters in iteration i, we

can then update predicted parameters in iteration i + 1. We are then able

to determine, if it is possible to minimize the predictions even further from

their current position in the parameter space.

Examples in Figure 6.7 can be grouped into 2 categories, which also ap-

plies to other examples with IoU < 70%. In the first group are superquadrics

from first and third row; Their parameters are located inside a saddle point

in the parameters space. With our manual minimization tool, we managed

to find the correct parameters, however, it takes a long time to escape the

saddle and find the suitable local minimum. At the saddle point, the gradi-

ents are low and there are multiple possible choices of which parameter group

to update. To conclude, these kind of examples can be solved, but we would

need to run the training procedure longer. This can be defined as a trade-off

between the number of predicted outliers and the time it takes to train the

network. The second group then contains examples, similar to those in the

second and fourth row. As evident, the ground-truth and predicted depth

images look almost identical to the human eye. In both cases, only one side

of the superquadric if visible. This is known as the self-occlusion problem.

The model can’t determine the size of the occluded axis of the superquadric,

so it makes a guess, representative of similar examples in the training set.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Predictions of model 3, with an IoU < 70%; Each row represents

a superquadric. In (a), (c), (e), and (g) from left to right, ground-truth and

predicted depth images are shown. Rendered superquadrics are shown in (b),

(d), (f), and (h), where red wiremesh represents the ground-truth, and gray

model represents the prediction.
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Table 6.2: Errors for each parameter group; We compare out best model

with the iterative method.

Method ∆A ∆E ∆T

Iterative [24] −10.30% +6.07% (+0.00%,+0.00%,+1.56%)

supervised, LOC +0.14% -0.36% (+0.01%,+0.01%, -0.03%)

We expected this could be an issue, however, we couldn’t predict what the

model will do in such a case. For all such examples, the size of the occluded

axis is predicted as being shorter in comparison to the ground-truth. We can

not improve the performance of such examples, since the information is lost

and it is up to the model to hallucinate the occluded data.

We extend the qualitative analysis to the examples around mean IoU,

specifically within one standard deviation. These are presented in Figure 6.8.

To the human eye, predictions with accuracy bigger than 95% are hardly

distinguishable from the ground-truth. Below this point, we start to observe

some differences, most notably, in object shape. Predicted superquadrics are

in many cases slightly more rounded than their ground-truth counterparts.

This happens because changes in shape parameters have a small impact on

the loss function. Consequently, the gradients are small and learning slower.

We also observe, that when the predicted superquadrics are more rounded,

there is a bigger chance that size will increase as well. Size parameters have

steeper gradients during training, so the neural network compensates rounded

edges by increasing the volume of the superquadric.

In Table 6.2, we observe our error metrics for each parameter group,

predicted by the model. Overall the error are centered closely around 0.

This means that no major bias was introduced into the model. The volume

of the predicted superquadric is on average 0.14% larger then ground-truth,

as indicated by the metric ∆A. The model predicts superquadrics as being

slightly less rounded than their ground-truth counterparts, specifically, by

0.36%. The average differences of translation parameters are negligible. We
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(a) 93.19% IoU (b) 93.76% IoU

(c) 94.55% IoU (d) 94.97% IoU

(e) 95.53% IoU (f) 95.94% IoU

(g) 97.11% IoU (h) 97.98% IoU

Figure 6.8: Predictions of model 3; The IoU score is within the distance of

one standard deviation from mean IoU. This range represents the majority

of the predictions (68.27%) on the test dataset.
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Table 6.3: Comparison of our best model with the classic method from

Solina and Bajcsy [24]

Method IoU Execution time [ms]

Iterative [24] 84.51± 8.89% 690.52± 275.62

supervised, LOC 94.62± 3.18% 2.88± 0.92

can only observe a slightly bigger bias for z coordinate, which might be

because the coordinated for z axis are encoded differently in comparison to

x and y, since we use depth images as the main 3D representation.

6.5.4 Comparison to the classic method

Finally, we compare the performance of the supervised approach with the

classic method from Solina and Bajcsy [24]. First noticeable in Table 6.3 is a

notable increase in IoU accuracy. We managed to increase it by an absolute

value of 10.09%. At the same time, we reduced the standard deviation from

around 9% to around 3%. We have therefore managed to maintain a high

accuracy and even to improve the performance, however, even more impor-

tant is the execution time, which we reduced by a factor of 240. Since this

is a feed-forward CNN the execution time is constant, which was expected.

We should also consider the possibility of parallel computing. Our CNN

regressor processes a mini-batch at a time, while maintaining the constant

execution speed. This means that we can at once calculate parameters for

multiple depth images. Similar performance was already achieved in our pre-

liminary study [48], however, the execution time is now further reduced by

0.72ms. This is because we use a modified ResNet-18 instead of a VGG-like

network [7], and thus use less parameters than before. The classic method in

comparison to ours also exhibits larger biases, as evident in Table 6.2. The

volume of predictions is heavily underestimated by the iterative method and

the predicted shape is more rounded than that of the ground-truth.
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6.6 Discussion

We managed to create a new loss function by evaluating the inside-outside

function and comparing the occupancy between two superquadrics. The orig-

inal idea of only expanding the original model from our preliminary study [48]

did not work; By dividing the loss into two parts, we created a simpler and

faster loss function, able to recover rotations, however, we also limited the

parameter space and introduced more false local minimums. Training only

with loss LOC was difficult to implement due to all numerical instabilities and

other variables, which had to be accounted for. In the end, this approach

proved to be successful and despite various technical problems during imple-

mentation, our perseverance was rewarded. With this model we achieved not

only a faster and even real-time execution speed, but also improved the over-

all accuracy by a large margin in comparison to the classic iterative method.



Chapter 7

Unsupervised learning of

superquadric parameter

recovery

In this chapter, we present an alternative approach to training superquadric

parameter recovery. This is an unsupervised version of our training proce-

dure. We explore two different methods for loss function formulation and

then compare them. We also analyze the results in comparison to the super-

vised version and the classic iterative method.

7.1 Motivation

While supervised learning is obviously a more reliable approach, it is often

not the most efficient strategy when it comes to real-world data. Neural

networks need a large dataset to properly learn the distribution of all possible

inputs. As with other machine learning algorithms, the more complex the

data is, the more data we need and consequently, the model needs more

capacity and takes longer to train. Constructing a large annotated dataset

is an expensive task, since each example needs to be labeled separately. This

time consuming and often, a human expert is needed to infer labels. There

73



74 CHAPTER 7. UNSUPERVISED LEARNING

are also ambiguous examples, which lie on the decision boundary or have

missing features. These can be hard to annotate, even for an expert. Manual

annotation of the dataset influences model bias and variance. Deriving a

valid unsupervised learning method is therefore an attractive solution.

We ultimately want to recover superquadric parameters of real objects

from depth images. For many of these objects, multiple superquadrics would

be needed to describe the complexity of their shape. An annotator would

need to manually segment objects into smaller part-objects and then try to

estimate superquadric parameters of every part-object. It would be practi-

cally impossible to label real data this way. It is difficult for a human to

determine the shape and general position of a superquadric, only by observ-

ing a depth image.

The classic method from Solina and Bajcsy [24] is an iterative minimiza-

tion process. The idea behind it can act as an inspiration towards an unsu-

pervised solution, possibly in form of a loss function, which would minimize

the same cost function as their algorithm does. For the classic approach,

the depth images are first converted into a point cloud. The algorithm then

searches for solution so that optimally, the point cloud lies on the surface of

the predicted superquadric. We can in the same way utilize the input data

to guide the training process of a CNN.

Another side effect of recent advancements in 3D deep learning are vari-

ous differentiable conversion techniques between 2D and 3D representation.

For example, these methods are able to convert 2D depth images to a vox-

elized occupancy grid or alternatively, render a 3D occupancy grid to a 2D

image. The latter can be useful for us. As we demonstrated in Chapter 6,

we can calculate an occupancy grid of a superquadric, which is, evidently, a

differentiable operation. If we then also implement a differentiable renderer

and use it to render depth images, we can directly compare the input depth

image with the rendered depth image of a predicted superquadric. Gadelha

et al. [62] first proposed a projection operator, which calculates the silhouette

of an 3D object. Later, the authors expanded on this idea by creating a depth
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projection operator, capable of rendering depth images of voxel grids [63].

We can use this method to adapt our loss function for supervised learning

and use it to train the network in an unsupervised manner.

7.2 Problem formulation

As with our supervised learning method, we want to create a prediction

model, which would recover superquadric parameters λ from depth images

X. We define this as a regression task, where we use a CNN as the predictor

function:

ŷ = fCNN(X; θ), (7.1)

where θ are learnable parameters of the network and ŷ is the output. To

train the network, we minimize a cost function

L (X, ŷ) , (7.2)

where ŷ are the predicted superquadric parameters and X is the input depth

image. Note that loss is being computed in an unsupervised fashion only with

the input data and predicted parameters. No ground-truth labels are used.

7.3 Least squares loss

As our fist option for a loss function, we draw inspiration from the origi-

nal least squares minimization method, proposed by Solina and Bajcsy [24].

The algorithm uses the properties of the inside-outside function to fit a su-

perquadric to the input point cloud in an iterative process. We derive our

loss function by following some general guidelines for implementing the clas-

sic iterative method in [20].

7.3.1 Point cloud fitting

The main idea behind this approach is to use a property of the inside-outside

function in Eq. (3.7). Specifically, we know that when F (p) = 1 for a point
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p = [x, y, z]T , the point p lies directly on the superquadric surface. Our input

data comes in form of depth images, so we first need to transform them into

a point cloud. Since our depth images are made in orthographic perspective,

the transformation into a point cloud is trivial. We define an operation

H(X) = {[i, j,X(i, j)]T ;X(i, j) > 0}, ∀0 ≤ i < h, 0 ≤ j < w, (7.3)

where h and w are height and width of the input image X. In other terms,

the z coordinate in the depth image is encoded as the depth value, so for

every pixel X(i, j) in the image, we create a 3D point [i, j,X(i, j)]T . This

results in a dense point cloud of size w × h, which also includes background

points. To get only points on object surface, we further filter the point cloud

and remove all points where z = 0.

Ideally, the goal of the optimization problem is then to approximate su-

perquadric parameters λ, so that

F (H(X);λ) = 1. (7.4)

This means we are searching for a superquadric surface, which would fit to

the input points. To change this into an objective function, we can minimize

the squared distance between input points and superquadric surface directly:

min
n∑
i=1

(F (H(X);λ)− 1)2, (7.5)

where n is the total number of points, gathered from the depth image of a

superquadric. This is the core idea behind this approach.

7.3.2 Self-occlusion problem

The criterion in Eq. (7.5) is under-constrained for fitting partial-view data,

such as depth images. Due to object self-occlusion, the resulting point cloud

can only represent at most half of the object. The other part is occluded and

the information is consequently lost. The missing data cannot be retrieved

and assumptions cannot be made about it. We therefore have to predict
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Figure 7.1: The visualization of least squares loss. The initial depth image

is converted into a point cloud. We then try to minimize the distance between

these points and the surface of the predicted superquadric.

a superquadric, which fits the partial data best without redundancies. It

is suggested in [20], that we multiply the objective function with the term
√
a1a2a3. The term is proportional to the volume of the superquadric. By

doing this, a solution with a smaller superquadric is favoured over a bigger

one. The parameter space is changed, having a bigger gradient around the

local minimum. With this addition, the objective function is defined as

min
n∑
i=1

√
λ1λ2λ3(F (H(X)Cλ)− 1)2, (7.6)

where λ1, λ2 and λ3 are size parameters a1, a2 and a3, respectively.

7.3.3 Final definition

Finally, we can define our loss function. We make one additional change. As

with the supervised loss, we use the adjusted inside-outside function F (p)ε1

from Eq. (6.4), so the differences in parameter space for different shapes are
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minimized. Combining this with the objective function from Eq. (7.6), we

get a new least squares loss function

LLS (X, ŷ) =
n∑
i=1

√
ŷ1, ŷ2, ŷ3(F (H(X); ŷ)ŷ4 − 1)2, (7.7)

where ŷ are predicted superquadric parameters and X is the input image.

Again, ŷ1, ŷ2 and ŷ3 are size parameters a1, a2 and a3, and ŷ4 is shape param-

eter ε1. The visualization of the loss function can be observed in Figure 7.1.

7.4 Differentiable render loss

Our second loss function for unsupervised learning is based on a differentiable

renderer. We defined and implemented the superquadric occupancy function

in Chapter 6.3. Now we need to project the 3D voxel grid into a 2D depth

image. We follow the procedure, described in [62] and [63] to derive the

differentiable renderer. We also make some adjustments to the process, so the

output matches our depth images as closely as possible. We first present the

definition of a differentiable renderer and some intermediate representations

and then define the loss function.

7.4.1 Silhouette projection

We begin with our occupancy voxel grid from equation 6.7. We denote the

voxel grid as V : Z3 → (0, 1). The value of a grid element is either close

to 0 at indices outside of the superquadric or close to 1 at indices inside the

superquadric. The sharpness of transition close to superquadric surface is

determined by parameter s in Eq. (6.6). The bigger s is, more binary will

the voxel grid become.

To start of, we define the silhouette projection, described in [62]. From

a certain view, a silhouette of the voxel grid can be rendered to a 2D image.

This is done by using a function P : Rn3 → Rn2
:

P (V ) = 1− e−τ
∑
k V (i,j,k), (7.8)
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where τ is another parameter. Here,
∑

k V (i, j, k) is a line integral along

each line of sight, which returns the number of voxels, intersected by the

line. We then raise e to the negative power of line integral, which results in

a value between 0 and 1. The final result of the function P (V ) is therefore

a silhouette, where lines, which intersect no voxels will result in value of 0,

and alternatively, lines that intersect one or more voxels will result in a value

that approaches 1. Parameter τ controls the sharpness of this transition;

the greater it is, more binary will the transition be. The approach of using

line integrals is a valid choice, since our depth images are in an orthographic

projection. The projection here is done along the z axis, as evident from the

equation. Indices (i, j) then represent the location of the resulting pixel in

the silhouette image.

7.4.2 Depth projection

The silhouette projection function can be further expanded to also calculate

depth, as described in [63]. The idea is similar, as we again make use of

integral lines along z axis. However, this time, we define an intermediate

function A : Rn3 → Rn3
:

A(V , i, j, k) = e−τ
∑k
l=1 V (i,j,l). (7.9)

As evident, the operator is similar to the silhouette projection. The main

difference lies in the inner term
∑k

l=1 V (i, j, l). Here, we calculate the cu-

mulative sum of voxels along each line of sight for each index k. If we then

raise e to the power of this cumulative value for each index, the resulting

value is equal to 1 until we hit a voxel. After a voxel is hit, the value at that

point approaches 0. Again, the sharpness of this transition is determined by

parameter τ .

If we then want to render a depth image, we just count the values along the

z axis for each line of sight. Intuitively, we count the number of voxels until

the object is hit. The original proposal from [63] implies that background

has infinite distance. In our case, the space is bounded into a n3 grid, so
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Figure 7.2: The visualization of differentiable renderer loss; We use the

occupancy grid to render a depth image and then compare it with the input

depth image using MAE.

we make the appropriate modification to the method. To calculate depth we

use the operator T : Rn3 → Rn2
:

T (V ) = 1− 1

n

∑
k

A(V , i, j, k), (7.10)

where n is the resolution of the voxel grid in a single axis. We divide the

depth by the resolution of voxel grid to normalize the value to range [0, 1].

A value of 1 then represents a far point and a value of 0 represents a point

near to the observer. To match this with our depth images in the dataset,

we flip this by subtracting from one. The resulting depth image is the near

identical to images in our dataset.

7.4.3 Final definition

The final definition of the differentiable render loss function can then be

assembled. We calculate the MAE between the input depth image and the

rendered depth image, constructed from predicted superquadric parameters:

LDR (X, ŷ) =
1

|X|

n∑
i,j

|X(i, j)− T (V G,ŷ)(i, j)|, (7.11)
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where V G,ŷ is the occupancy voxel grid from Chapter 6, n is the size of the

image in one axis and (i, j) are indices of a pixel in the image. We chose

MAE as the error measure, since we want outliers to have a lesser impact on

the loss function. This is explained in Chapter 7.6. The visualization of the

loss function can be observed in Figure 7.2.

7.5 Implementation details

Again, we describe the implementation more in detail. We first talk about

specifics of the least squares loss and then the about the differentiable ren-

derer loss.

7.5.1 Implementation of least squares loss

To implement the least squares loss function, we partially reused our im-

plementation of the inside-outside function. The function first receives as

arguments the input image and predicted parameters. In the beginning, we

set a parameter r, which controls the resolution of our viewport. The in-

tuition behind this is similar to the resolution of discretized space of the

occupancy loss. The input image can be of arbitrary resolution, which then

gets resized to resolution r. No interpolation must be used here, so we resize

the image with nearest neighbor method. To convert the resized depth im-

ages into point clouds, we iterate over all images in the batch and gather all

indices and values of non-zero elements. This results on a set of points on

superquadric surface, which we use to calculate the error.

For each point, we also switch x and y coordinates and then flip the

values of y coordinate again. This is done to align the coordinate system used

internally by the loss function and the one used by the renderer of original

depth images. Predicted parameters and points clouds are then inserted into

the loss function and the error is computed.
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7.5.2 Implementation of differentiable renderer

The predicted superquadric parameters and the input image are given as

arguments to the loss function. This time, the input depth image is only

resized in the same manner, as in least squares loss. No other modifications

are made. The predicted parameters are then used to calculate the occupancy

voxel grid.

The main addition here is the implementation od the depth projection

operator. To calculate the integral along each line of sight, a cumulative sum

function is used. This is applied to the dimension in z axis. The implemen-

tation of the rest of the loss function is then trivial. Again, we permute and

flip the dimensions, as described in Chapter 7.5.1, to align the coordinate

systems of the internal representation and the input depth image.

7.6 Experiments and results

Here, we present the results for models, trained without supervision. We first

describe experiments, related to the least squares loss. Then, we analyse the

differentiable rendering approach. We also compare both methods with the

supervised model, as well as the classic iterative minimization method.

7.6.1 Least squares loss

The implementation of LLS was heavily influenced by the classic method [24].

The main advantage of least squares objective function is its simplicity and

speed. When calculating loss, we only need to minimize for points, gathered

from the surface of the superquadric on a depth image. In the context of

training and not inference, such a process can be faster than other alterna-

tives. Especially the usage of 3D data representation can result in expensive

loss functions. On the same machine, it takes 21 minutes to complete an

epoch when using the least squares loss. In contrast, the loss function for

supervised learning from Chapter 6 takes 35 minutes. For one instance of
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Figure 7.3: The distribution of IoU accuracy of predictions. The model

was trained with loss LLS in an unsupervised manner.

training, e.g., for 150 epochs, this can amount to more than 24 hour difference

in total time.

The loss converged quickly during training. On the test set, we reach an

IoU accuracy of 74.82% with standard deviation of 14.5%. To get a better

understanding of the performance, we look at the distribution of IoU scores

in Figure 7.3. The distribution starts to increase at around 30% IoU and

rises almost linearly, until reaching a peat at around 87%. It is more spread

out, which is also signified with a large standard deviation, relative to the

total range.

Next, we try to explain the performance of the model by looking at indi-

vidual cases. In Figure 7.4, we present the qualitative results of the trained

model. The first thing we notice is the similarity between ground-truth and

predicted depth images. The difference is minimal and can hardly be no-

ticed with the human eye, even in cases with low IoU. This, however, is an

illusion caused by the orthographic projection of the depth images. We can
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(a) 21.84% IoU (b) 34.88% IoU

(c) 43.08% IoU (d) 55.02% IoU

(e) 64.11% IoU (f) 74.98% IoU

(g) 85.99% IoU (h) 95.11% IoU

Figure 7.4: Qualitative results of the model, trained with unsupervised

least squares loss LLS. The examples are sampled across the whole range.

For each subfigure, the original depth image is on the left and the predicted

one on the right.
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(a) 21.84% IoU (b) 34.88% IoU (c) 43.08% IoU

(d) 55.02% IoU (e) 64.11% IoU (f) 74.98% IoU

(g) 85.99% IoU (h) 95.11% IoU

Figure 7.5: 3D renders of predictions by the model, trained without super-

vision with loss LLS. The examples match those in Figure 7.4. Red wiremesh

represents the ground-truth superquadric and the gray object is the predicted

superquadric.
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see a different picture when looking at 3D renders of these same examples

in Figure 7.5. The model overestimates the size of the superquadrics by a

large margin. This is especially noticeable, when self-occlusion is present in

the depth images. Examples with IoU < 50% are mostly images, where only

one side of the superquadric is visible, similarly to examples (a), (b) and (c).

This effect is magnified, when superquadrics are shorter in the direction of

the occluded axis. Almost all of the low IoU scores can be attributed to this

property of the model. The second contributor to this are shape parame-

ters. The model predicts the superquadrics as having slightly sharper edges

than the ground-truth examples. Otherwise, the prediction of translation

and rotation is accurate.

The issue behind overestimating the volume is caused by the nature of the

objective function. The loss only works one way; It guarantees that points

from the depth image will be in close proximity to the surface of predicted

superquadric. It does not, however, penalize a superquadric that also extends

away from the points in the depth image. This results in larger predictions.

This is also discussed in [24], where the authors suggest to introduce the term
√
a1, a2, a3 into the objective function, which minimizes the overall volume

of the superquadric. Despite following the suggestion and adding the term,

our model is not able to minimize volume to such extent during training.

Another difference is in the estimation of the initial parameters. The classic

iterative method uses the depth image to infer some rough initial parameters,

which are used as the starting point in the parameter space. This enables

the optimization to converge to the correct local minimum. We, on the

other hand, do not have such control over the initial predictions. These are

dependant on network weight initialization and it wouldn’t be practical to

set these manually. What we can do, is to ensure, that the initial predictions

don’t cause singularities in the inside-outside function. This is done with a

final sigmoid activation, which results in all initial predictions to be around

0.5. This inability to influence initial predictions more might be the cause

why our model fails to converge to the proper local minimum.
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Table 7.1: Errors for each parameter group for model, trained with differ-

entiable render loss LLS.

∆A ∆E ∆T

+13.69% −19.27% (+0.41%, −0.05%, −2.67%)

In Table 7.1, we observe the average error of each parameters set. Some

of them are quite significant. The volume of predicted superquadrics is on

average 13.69% larger than ground-truth superquadrics. This is supported

by our qualitative analysis, where we found that predicted superquadrics

are often over-extended, particularly when there is notable self-occlusion in

the depth image. The roundness is underestimated by 19.27%. Predicted

superquadrics have sharper edges, which can also be seen in most of rendered

examples in Figure 7.5. The error in translation is relatively small for x

and y axis, however, the error of estimating z coordinate stands out. On

average, the superquadrics are predicted to be located 2.67% behind the

actual position in 3D space, when viewing it along the z axis. This accounts

for 6.83 units in a depth image of size 256× 256.

7.6.2 Depth projection hyper-parameters

Before we implemented the differentiable render loss LDR, we first needed to

implement a working differentiable renderer. This was done by using a depth

projection operator, described in Chapter 7.4. We would then compare the

original depth images, rendered by our dataset renderer, and predicted depth

images, rendered by the new differentiable renderer. It was therefore crucial

that these match as closely as possible for the same set of superquadric

parameters λ. The differentiable renderer includes two parameters, which

influence the resulting depth image. First is the sharpness parameter s of

the occupancy function from Eq. (6.6) and the second is parameter τ in

the depth projection operator from Eq. (7.9). Both of these in some way

represent the rate of transition between occupant and non-occupant points
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Figure 7.6: Finding optimal parameters s and τ for the differentiable ren-

derer; We use grid search to find the parameters, where minimum MAE is

achieved between original and rendered depth images. Found: s = 117.3 and

τ = 4.82 (MAE = 0.0056).

in space. For a depth image, low values of these parameters would result

in gradual blending from background to foreground. Alternatively, we want

almost binary transition, so high values are preferred.

To find optimal sharpness parameters, we take a set of superquadric pa-

rameters and render both depth images, one with dataset renderer and one

with differentiable renderer. We then calculate the MAE between them. We

use grid search and iterate through all the parameters to find the configura-

tion, which results in minimum MAE. The grid search heatmap is shown in

Figure 7.6. We found values s = 117.3 and τ = 4.82 to be optimal, which

results in MAE of 0.0056. Intuitively, this means that the minimum error

two images will have during learning is equal to this value. This could induce
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Table 7.2: Comparison of all models, trained in an unsupervised manner.

Method IoU

unsupervised, LLS 74.82± 14.50%

unsupervised, LDR 85.64± 5.72%

some bias in our model, since the optimization algorithm will try to minimize

this error further.

7.6.3 Differentiable render loss

With the right hyper-parameters found for the differentiable renderer, we

could incorporate it in a loss function LDR. We first tried to minimize

MSE between the original and rendered images in the loss, however, this

yielded poor results. The network would fit the predicted superquadric to

the ground-truth superquadric only based on their 2D contours inside the

depth image. The main reason behind this was MSE, where any outliers

have a large impact, since the error is squared. When superquadrics were

matched by contour, any perturbation of the parameters would result in

contours being slightly offset. Pixels, which were a part of a superquadric

in one image, but part of the background on the other, would then cause a

big increase in error. The model was then stuck in this false local minimum.

The issue was resolved by using MAE error, where the outliers don’t carry

as much weight. The network was then mostly able to escape such local

minimums during training.

The results are presented in Table 7.2. As a comparison, we include

the performance of model, trained using loss function LLS. We achieve an

IoU accuracy of 85.64% with standard deviation 5.72%. This is a significant

improvement in comparison to using LLS as the loss function. While we

increased the average IoU, we also raised the confidence of the model with

lowering the standard deviation.
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Figure 7.7: The distribution of IoU accuracy for predictions made by the

unsupervised model, trained with loss function LDR.

The distribution of IoU scores can be seen in Figure 7.7. This is an overall

improvement from the previous model. The minimal IoU of all examples in

the test set is 44.18% and the minimal is 95.25%. The distribution starts

increasing at 60% IoU and the peak is reached at around 88%. 99% of the

examples in test set have an IoU bigger than 67%.

In Figure 7.8, we present the qualitative results along the range of IoU

scores in increments of around 10%. Similarly to the least squares model, the

predicted examples look quite similar to the ground-truth, although the dif-

ferences are more noticeable here. We can see the slight difference in depth

values. For reference, the rendered superquadrics can be observed in Fig-

ure 7.9. Examples with an IoU lower than 70% have one thing in common;

The 2D contour between predicted and ground-truth images matches, how-

ever, the actual 3D shapes don’t. The contour matching effect was already

reduced by changing the final error measure in loss function LDR from MSE

to MAE, although some examples of this apparently persist. Less than 1%
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(a) 44.17% IoU (b) 54.55% IoU

(c) 65.26% IoU (d) 75.11% IoU

(e) 85.63% IoU (f) 93.65% IoU

Figure 7.8: Qualitative results for model, trained with loss LDR. The

examples are sampled across the whole range. For each subfigure, the original

depth image is on the left and the predicted depth image is on the right.
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(a) 44.17% IoU (b) 54.55% IoU

(c) 65.26% IoU (d) 75.11% IoU

(e) 85.63% IoU (f) 93.65% IoU

Figure 7.9: 3D renders of examples from Figure 7.8. Red wiremesh rep-

resents the ground-truth superquadric and the gray object is the predicted

superquadric.
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Table 7.3: Errors for each parameter group for all our models, supervised

and unsupervised, and the iterative methods [24].

Method ∆A ∆E ∆T

Iterative [24] −10.30% +6.07% (+0.00%,+0.00%,+1.56%)

sup., LOC +0.14% −0.36% (+0.01%,+0.01%,−0.03%)

unsup.,LLS +13.69% −19.27% (+0.41%, −0.05%, −2.67%)

unsup.,LDR +8.22% +4.01% (+0.76%,−0.63%,−0.12%)

of examples suffer from this, so this issue only effects a small minority. This

is the side effect of directly comparing whole images. By doing this, we also

include the background in the computation of error. Ideally, we would only

compare points on the superquadric and calculate the difference between

them, but there is a trade-off: Any attempts to mask the background would

result in overestimation of superquadric volume, similarly to how the least

squares model behaves. We either focus only on the points from the original

depth images and possibly have predictions with larger volumes or we com-

pare whole images, which prevents over extension, but gives precedence to

contour fitting.

Properties of model predictions can be further examined by looking at the

errors in Table 7.3. The average volume of predicted superquadrics is larger

by 8.22% from the ground-truth superquadrics. The model overestimates the

size parameters slightly. Also increased by 4.21% is the average roundness,

which causes the predicted superquadrics to have smoother edges. The error

of translation parameters is relatively small when compared to the whole 3D

space. Error is similar for all three exes and accounts for 0.76%, 0.63% and

0.11% in x, y and z axis, respectively. In a 256 × 256 image, these values

would account for 1.94, 1.61 and 0.28 pixels. The error for parameter t3

somewhat stands out from the rest and is centered closer to 0. This means

than the model better estimates the depth of the input image.
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Table 7.4: Comparison of our unsupervised models. Also included are the

classic iterative method [24] and our model from Chapter 6, trained with

supervision.

Method IoU Execution time [ms]

Iterative [24] 84.51± 8.89% 690.52± 275.62

supervised, LOC 94.62± 3.18% 2.82± 0.76

unsupervised, LLS 74.82± 14.50% 2.83± 0.22

unsupervised, LDR 85.64± 5.72% 2.77± 0.16

7.6.4 Overall comparison

Table 7.4 shows the comparison between all our supervised and unsupervised

models, as well as the iterative method [24]. First thing we observe is that

not all our models perform better than the iterative minimization method.

Unsupervised learning with the least squares loss function LLS achieves an

IoU smaller by about 10% in comparison. We believe this is due to the

overextending volumes and sharper edges, as supported by parameter met-

rics in Table 7.3. The supervised approach is obviously superior in terms

of IoU accuracy. With self-supervision, the neural network is dependant on

the interpretation of the input data and at the same time the transformation

from superquadric parameters to 3D data. In this regard, the complexity

of recovery problem is shared between unsupervised and iterative methods,

since there is a possibility of self-occlusion. The unsupervised approach by

using a differentiable renderer in loss LDR outperforms the iterative method

by an absolute value of 1.13%. The average IoU is similar, however, our

model also offers improved confidence with the smaller standard deviation.

The execution time is similar with all CNN models, since the actual archi-

tecture is not changed. All models offer a similar speedup of around 240×.

We compare the metrics in Table 7.3. Both unsupervised methods result in

predictions with a slightly larger volume of the superquadrics, which is op-
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posite of the iterative method. The large bias happens due to self-occlusion,

but the iterative method then underestimates the occluded volume, rather

than the other way around. We can’t explain this difference in behaviour.

It looks like the iterative method somehow puts a bigger focus on minimiz-

ing volume in comparison to our methods, despite implementing the same

objective function. Our methods are therefore comparable when predicting

superquadric shape and size, but have an edge when predicting its general

pose.

7.7 Discussion

The possibility of unsupervised approach presents a large step towards large-

scale learning on real-world datasets with actual objects. The process of

labeling 3D data is expensive and sometimes practically impossible. To have

such a method enables us to not restrict a hypothetical practical application

only with laboratory-grade conditions, but also to solve real problems in

an unconstrained environment. We presented here two new loss functions.

The creation of first was heavily inspired by one of the more established

methods of superquadric recovery. The second one was the result of new

ideas and advancements in deep learning. In the end, both models, trained

by these loss functions, managed to outperform the classic iterative method.

We presented the advantages and disadvantages of using both loss functions.

The supervised approach, though unsurprisingly, still offers a more stable

and accurate model. Nevertheless, it is crucial that we have the ability to

choose the appropriate method based on the availability of data, time, or

other resources.
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Chapter 8

Conclusion

This thesis presents a novel framework for superquadric recovery using deep

learning techniques. It foremost provides the possible approaches of how

to deal with 3D representation and parametric models in the context of

neural networks. By recovering a single superquadric from a depth image, it

builds the necessary fundamental knowledge and acts as a preliminary step

towards methods, capable of interpreting more complex scenes with more

superquadrics.

8.1 Summary

We divided our methodology into two parts; supervised and unsupervised.

With supervised learning, we created a model which outperforms the classic

approach of parametric recovery and established a new state-of-the-art for

recovery of single superquadrics. We achieve an IoU of 94.62% and a speedup

of the execution time by a factor of 240. In comparison to the 68.31% IoU

of the iterative method, this is a significant improvement. We managed to

solve the original goal of a geometrically-aware loss function, which is able

to interpret superquadrics in general position. With unsupervised learning,

we introduced a methodology to be used in an unconstrained environment

with unknown a priori shapes. The model, trained on the least squares

97
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loss achieved an IoU accuracy of 74.82%. The main issue was the under-

constrained objective function, which sometimes resulted in overextension of

the predicted superquadrics. The other model was trained using a differen-

tiable renderer and achieved an IoU of 85.64%, which outperforms the classic

iterative method by a small margin, however, due to self-occlusion, cannot

compete with the supervised approach directly.

8.2 Future work

As this framework only presents solutions to recover single superquadrics

from depth images, there are many possible improvements to be made. Es-

pecially, the ability to process multiple superquadrics at once would be cru-

cial to understand more complex scenes. This could come in form of a serial

pipeline, where a segmentation step would first divide the input image into

multiple part-level sections, followed by one of our models, which could pre-

dict parameters for each of those sections. The ultimate goal, though, is

an end-to-end solution. We would need to build a model with a support-

ing architecture, which would predict a variable number of superquadrics.

This approach would also require a loss function, which would fit the data

according to MDL principle, but would also avoid trivial solutions. Many im-

provements can be made to how we prepare the training data, which could be

augmented in some way. For example, we could add noise to mimic real-world

depth images, which are usually noisy due to reflection and refraction of light

rays. For real-world data, various 3D scanners are now ready to capture also

RGB data. We could then train a model with combined color and depth

image channels. The methods, proposed in this thesis, offer a promising new

direction for research of superquadric recovery with deep learning and at the

same time the flexibility to apply them to many different scenarios.
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models from 3D point clouds: The case study of sarcophagi cargo from

a 2nd/3rd century AD Roman shipwreck near Sutivan on island Brač,
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