
Mag. rer. nat Dipl.-Ing. Simon Genser, BSc

Model-based Pre-Step Stabilization Method
for Non-Iterative Co-Simulation

DOCTORAL THESIS
to achieve the university degree of

Doktor der technischen Wissenschaften
submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Daniel Watzenig

Institute of Automation and Control
Faculty of Electrical and Information Engineering

Graz, December 2020





STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used.

.........................................
date

.........................................
signature





Abstract
As development processes should increase in efficiency, they need to become faster
and cheaper, and therefore simulations are gaining in significance in this field. In
todays industrial applications, different simulation software, and sometimes even
hardware parts, have to be coupled accordingly, this special kind of simulation is
called co-simulation. The Model-based Pre-Step Stabilization Method is a coupling
method for the non-iterative co-simulation. The main goal of this thesis and the
invented coupling method is to ensure a stable behaviour of co-simulations which
are highly sensitive against coupling errors and are therefore especially challenging.
The coupling method consists of three main steps: (1) approximating the monolithic
result, by solving the so-called Error Differential Equation; (2) extrapolating the
monolithic result one communication step into the future; (3) optimizing the input in
such a way, that the co-simulated result fits the extrapolated monolithic one. All main
steps are based on the so-called Interface Jacobian subsystem description, a surrogate
model description based on the in- and outputs of the subsystems. These surrogate
models can be provided by the subsystem themselves, or they can be approximated
by the coupling method, therefore two different system identification methods can
be utilized, the Recursive Least Squares and the Multivariable Output Error Stace
Space approach. An optimal set of pre-defined parameters of the coupling method
is determined by a sensitivity analysis, additionally the accuracy and stability are
investigated at the classical co-simulation benchmark example, the dual mass oscil-
lator. There it will be demonstrated, that the stability region according numerical
stability is clearly enlarged by a factor between r3.2, 8.2s, compared to state of the art
coupling methods. Also the accuracy of the co-simulation utilizing the Model-based
Pre-Step Stabilization Method is improved, as larger communication step sizes lead to
co-simulations with the same or an improved accuracy. Additionally the exponential
and bounded-input bounded-output stability of the presented coupling method is de-
rived. As evaluation the co-simulation of a helicopter and its control has been chosen,
there it is shown, that the Model-based Pre-Step Stabilization Method improves the
co-simulation clearly according stability and accuracy.

Keywords: co-simulation; Interface Jacobians; stabilization method; system identi-

fication
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Kurzfassung
Die modellbasierte Pre-Step Stabilisierungsmethode ist eine Kopplungsmethode für
die nicht-iterative Co-Simulation. Das Hauptziel der Kopplungsmethode ist die Stabil-
isierung herausfordernder Co-Simulationen. Die Kopplungsmethode besteht aus drei
Hauptschritten: (1) Annäherung des monolithischen Ergebnisses durch Lösung der
sogenannten Fehlerdifferentialgleichung; (2) Extrapolation des monolithischen Ergeb-
nisses um einen Kommunikationsschritt in die Zukunft; (3) Optimierung des Inputs
in der Weise, dass das co-simulierte Ergebnis mit dem extrapolierten monolithischen
übereinstimmt. Alle Hauptschritte basieren auf der sogenannten Interface Jacobian
Subsystembeschreibung, einer Ersatzmodellbeschreibung, die nur auf den Ein- und
Ausgängen der Subsysteme basiert. Diese Ersatzmodelle können vom Subsystem
selbst bereitgestellt werden, oder sie können durch die Kopplungsmethode approx-
imiert werden. Dafür werden zwei verschiedene Systemidentifikationsmethoden ver-
wendet, die rekursive Methode der kleinsten Quadrate und der Multivariable Out-
put Error Stace Space Ansatz. Die optimalen Parameter der Kopplungsmethode
werden durch eine Sensitivitätsanalyse bestimmt. Zusätzlich wird die Genauigkeit
und Stabilität am klassischen Co-Simulations Benchmark-Beispiel, dem Zweimassen-
Oszillator, untersucht. Dort wird gezeigt, dass der Stabilitätsbereich entsprechend
der numerischen Stabilität im Vergleich mit anderen Kopplungsmethoden deutlich
vergrößert ist. Zusätzlich wird auch die Genauigkeit der Co-Simulation unter Verwen-
dung der modellbasierten Pre-Step-Stabilisierungsmethode verbessert. Des Weiteren
wird die exponentielle und eingangs- und ausgangsbegrenzte Stabilität der vorgestell-
ten Kopplungsmethode gezeigt. Zur Auswertung wird die Co-Simulation eines Hub-
schraubers und seiner Steuerung gewählt, es wird gezeigt, dass die modellbasierte Pre-
Step-Stabilisierungsmethode die Co-Simulation hinsichtlich Stabilität und Genauigkeit
deutlich verbessert.

Schlagwörter: Co-Simulation; Interface Jacobians; Stabilisierungsmethode; System
Identifikation
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1
Introduction

A key to master the challenge of faster and more efficient virtual develop-
ment processes is the intelligent coupling of different simulation software.
Especially of importance is the quality of the results, as high accurate
results are required for a virtual validation. Therefore research and de-
velopment in the field of co-simulation and especially in the part of the
coupling strategies is mandatory.

1.1 Outlook

The main contribution of this thesis is to introduce a new coupling method for co-
simulation, the so-called Model-based Pre-Step Stabilization Method. The first chap-
ter will work as an introduction explaining co-simulation, what are the challenges and
what are the different applications, especially focusing on the different coupling meth-
ods in co-simulation. Additionally the problem statement and the significance of this
thesis will be given. The following chapter will deal with the invented method itself,
the basic idea and its variations and options will be derived and discussed in full de-
tail. Among other things, how to access the mandatory subsystem information and
the workflow of the coupling method, will be stated and discussed in Chapter 2. The
analysis of the method will be the topic of Chapter 3, there a well-known co-simulation
benchmark example, the dual mass oscillator is used to perform a design of experiment
to analyze the Model-based Pre-Step Stabilization Method according to its sensitiv-
ity against various parameters and different options. Additionally a stability analysis
and accuracy analysis, according to the communication step size and the stiffness of
the dual mass oscillator, will be carried out. In Chapter 4 the Model-based Pre-Step
Stabilization Method is evaluated at the co-simulation of a helicopter and its control.
The last chapter states a summary of the coupling method and its evaluation and
concludes the thesis.
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1 Introduction

1.2 Background and Motivation

In today’s industry there is the need to improve the development processes to keep
the amount of time and money for the developing to a minimum. Therefore the
concept of virtual development is getting more and more attention, this means that
simulation gains in significance. Especially the coupling of different simulation tools
is a crucial part, because typically an industrial simulation consists of more than one
simulation software. A monolithic approach, which means modeling and simulating
everything in one simulation tool is often not possible. For example, consider that
the goal is to simulate a vehicle to determine the consumption according to a new
control strategy of a hybrid engine, therefore at least the combustion engine, the
electric motor, the control unit, the wheels, the chassis, the driver and the drivetrain
have to be modeled. For all these parts exist tailored simulation software to model
it in the appropriate degree of detail and typically there are different departments
or even different companies involved. For all these reasons the coupling of different
simulation software is required where it is not possible, or not wanted, to exchange
the programming code or the models directly. Therefore the so-called weak coupling
approach, see for more details [1], is needed because the different simulation software
is transformed into so-called subsystems where the model and its solver are included,
see Figure 1.1. The mandatory coupling between these subsystems is carried out
by the exchange of data at certain time points, the so-called communication points,
exclusively. This simulation of coupled simulation software is called co-simulation.
It should be denoted that it is also possible to couple simulation software to real
hardware parts, e.g. to an engine test bed or an electronic control unit, this is called
real time co-simulation.

With the increasing relevance of co-simulation more and more industrial companies
get attracted and therefore the need of a standardization is rising. The Functional
Mock-Up Interface (FMI), see [2], is a standard for the subsystems of co-simulation,
which is widely supported by a high number of simulation software. The utilization
of a standard framework for the subsystems, so-called Functional Mock-Up Units
(FMU), enables a much easier integration and therefore coupling between those
subsystems. Additionally the look inside a subsystem is not required for the coupling
and so the intellectual property rights of a certain subsystem can be protected by
transforming the subsystems into an FMU. This is for sure an important factor that
the FMI standard increased in significance because, so the companies can be sure that
non of their top-secret models got unveiled. An FMU only needs signals as an input
and provides the appropriate output signals, i.e. an FMU can be seen as a black box.
In the upcoming version of FMI the output of a subsystem may contain the solver
steps of the subsystem and not the value at the communication point exclusively,
these quantities are called intermediate values.

Agile development processes, especially Continuous Integration and Continuous
Development (CI/CD), are an additional application field of co-simulation. There
the testing of different software components and their interaction is important,
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1.2 Background and Motivation

Figure 1.1: The concept of co-simulation

therefore the integration of the developed software components as subsystem for the
co-simulation have to be automated. This means that the co-simulation is often used
for this whole agile development process, because it ensures the correct functionality
of the coupled and interacted software tools. In the last years cloud computing is
getting more and more attention also for simulations. The basic idea is that parts
of the simulation, pieces of software, are stored in the cloud and it is possible to run
a simulation based on these parts from everywhere around the globe. Therefore the
coupling of these different software parts have to be realized and this can be seen as
a co-simulation, where the different subsystems are stored in a cloud. Also a mix of
cloud and local co-simulation, some subsystems are stored in the cloud and others are
locally available on a hard drive, might be of interest in the future. Co-simulation
enables to combine and connect different simulation tools and software, which were
otherwise not feasible to couple.

From a mathematical viewpoint co-simulation is an interesting opportunity to
combine different numerical solvers. In a co-simulation, it is possible to adjust every
subsystem with its perfectly tailored numerical solver. This means that systems
with high dynamics can use sophisticated solvers and other subsystems with lower
dynamics can use classical solvers, e.g. Runge-Kutta methods. Not only the type
of the numerical solver also the step size of the solver can vary from subsystem to
subsystem. One can be a classical fixed step solver and the other is a variable step
size one, therefore it is possible to choose the solver accordingly to the needs of the

3



1 Introduction

subsystem. For cases where the dynamics in a subsystem are similar, the choice of
the solver may not be problematic, but for the case that the dynamics vary signif-
icantly this can be challenging. Such systems are called stiff systems and typically
the solver and its step size have to be chosen after the fast dynamic and therefore
small step sizes and a high computational effort is required. For co-simulation stiff
subsystems are additionally challenging, because these subsystems are sensitive ac-
cording extrapolation and the induced coupling error, this can lead to weak results
or even an instable co-simulation. Additional to the previously discussed case, also
the coupling of subsystems which are significantly different in terms of dynamics may
lead to challenges for the co-simulation, and therefore both cases are referred as stiff
co-simulations.

1.3 Problem Statement and Significance

The contribution of this work is to derive, analyze and evaluate a stabilization method
for co-simulation, namely the Model-based Pre-Step Stabilization Method. This cou-
pling method is especially of importance for stiff co-simulations, as those co-simulations
are especially sensitive against coupling errors and therefore it is particularly challeng-
ing to ensure a stable behaviour of the whole simulation. The state of the art to
handle stiff problems is to decrease the communication step size accordingly to the
fastest dynamic, this produces a high amount of communication and computational
effort. By utilizing the introduced coupling method the need to decrease the commu-
nication step size significantly can be avoided, the stability region of the co-simulation
is clearly enlarged, i.e. the utilization of large communication step sizes is possible.
Additionally to the stability, also the accuracy of the results is increased and therefore
the reliability of the co-simulation is enhanced.

1.4 Co-Simulation Coupling Methods – An Overview

The fundamental challenge in co-simulation is to cope with the coupling error, due
to the extrapolations of the inputs of the subsystems. In the co-simulations which
are considered in this thesis, the subsystems are always coupled in a closed loop
manner, and therefore the extrapolation of at least one input is unavoidable. Different
co-simulation approaches can be first divided into iterative and non-iterative, also
called explicit and implicit, co-simulation coupling methods. Iterative methods repeat
a communication step until the coupling error is under a certain threshold, therefore
it must be possible to reset the whole subsystem, this is a restrictive assumption to
the subsystems. Non-iterative methods calculate a communication step only once,
there is no repeating or resetting of the subsystem needed. The terms explicit and
implicit co-simulation methods arise from the analogy to numerical solvers of ordi-
nary differential equations, e.g. the explicit and implicit Euler method, see e.g. [3].
Based on the exploited information for the coupling, co-simulation methods can be
classified into signal-based and model-based approaches. Compared to signal-based
coupling methods (sbc), which rely exclusively on the coupling signals, model-based
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1.4 Co-Simulation Coupling Methods – An Overview

Figure 1.2: Illustration of explicit, linear-implicit, and implicit extrapolation respec-
tively coupling in co-simulation

coupling methods (mbc) require additional information about the subsystems, non-
differentiating whether the information of the subsystem is provided by the subsystem
itself, or whether it is either approximated somehow. Figure 1.2 shows the differences
between explicit or non-iterative (dashed-dotted lines) and implicit or iterative (dashed
lines) co-simulation, the resetting of the subsystem required for the iterative coupling
approach is displayed via the arrows. A mix of explicit and implicit approaches are
the so-called linear implicit coupling methods, these methods are non-iterative but
have benefits of the implicit approaches regarding accuracy and stability. Typically
linear implicit methods are model-based approaches, as e.g. [4, 5] or the Model-based
Pre-Step Stabilization Method presented in this work.

The basic and easiest way to co-simulate various subsystems is to utilize the so-
called zero-order-hold (ZOH) extrapolation, this is a non-iterative and signal-based
coupling method, depicted in Figure 1.2. By this coupling approach the coupled signal
is kept constant for the period of one communication step and therefore represents
an extrapolation with a constant, respectively a polynomial extrapolation of order
zero. Widely used is also the first-order-hold (FOH) extrapolation method, which
is a polynomial extrapolation of order one, depicted in Figure 1.2. Theoretically a
polynomial extrapolation of arbitrary order is possible but due to robustness and
practical reasons, typically polynomial extrapolations up to a maximum order of two
are common. The Nearly Energy Preserving Coupling Element (NEPCE), see [6, 7, 8]
is a non-iterative and signal-based approach which compensates the coupling error in
terms of energy. The lost energy of the extrapolation error is brought back into the
subsystem in the next communication step, therefore this can be seen as a deferred
correction approach. The NEPCE approach can be extended by a correction term if
the subsystem includes a direct feed-through, see therefore [9]. This means that this
extended NEPCE approach is a model-based coupling method because information
about the subsystem is required.
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1 Introduction

Model-based coupling approaches can be differentiated into two further classes based
on the requirement, whether the access to the states of the subsystems is mandatory or
not. On the one hand the Linear-Implicit Stabilization Method in [4, 10] requires the
access to the states of the subsystems. On the other hand the Model-based Corrector
from [5] or the iterative coupling method Interface Jacobian based Co-Simulation
Algorithm from [11, 12] does not require access to the states of the subsystem. The
introduced Model-based Pre-Step Stabilization Method is a non-iterative coupling
method which does not require access to the states of the subsystems. This is a
mayor difference, because for simulation tools it can be hard to provide access to the
states and the number of states is typically much higher than the number of coupling
signals.
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2
Model-based Pre-Step Stabilization
Method

The Model-based Pre-Step Stabilization Method is a co-simulation cou-
pling method especially designed to handle stiff problems by utilizing
the information of the Interface Jacobians of the subsystems. The cou-
pling method achieves improved stability and accuracy of the overall co-
simulation.

This chapter will deal with the derivation of the Model-based Pre-Step Stabilization
Method, which is based on the Interface Jacobian subsystem representation. A typical
subsystem description is the state space description, see e.g. [13], and therefore the
connection of the Interface Jacobians and state space representation will be discussed.
The benefits and also the drawbacks of the Interface Jacobian representation will be
in focus, too.
The Model-based Pre-Step Stabilization Method is composed of three main steps: (1)
computing the approximated monolithic output, via solving the so-called Error Dif-
ferential Equation; (2) performing the model-based extrapolation of the monolithic
output one communication step into the future; (3) optimization of the input to mini-
mize the deviation of the extrapolated monolithic output and the co-simulation result.
The derivation of these steps will be carried out for the case of continuous-time and
discrete-time subsystems.
An important question is how to access the crucial Interface Jacobians. There are two
possible ways, the first one is that the subsystem itself provides the information, like it
is mentioned in the Functional Mock-Up Interface Standard 2.0, see [2]. Unfortunately
this option is in practice not supported by many simulation tools. The second way is
to approximate the Interface Jacobians, based on the in- and outputs of a subsystem.
This can be done by standard system identification methods, the focus in this work
is drawn to two methods: (1) a subspace method, the so-called Multivariable Output
Error State Space method (MOESP), for details see [14, 15, 16]; (2) the Recursive
Least Squares (RLS) approximation method, see e.g. [17, 18].
The structure and the workflow of the coupling method is stated and discussed, there
all required parameters and options of the coupling method are given. Special atten-
tion is drawn to the so-called Error-based Phase Check and the learning and switch
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2 Model-based Pre-Step Stabilization Method

phase, which are important for the case of approximated Interface Jacobians.

2.1 Subsystem Representation

The basis for a model-based method is the description of the system, the model. For
this work a linear time-variant representation has been chosen and therefore the most
common description is the so-called state space representation

9x � Aptqx�Bptqu, (2.1)
y � Cptqx�Dptqu, (2.2)

for a continuous-time system. It should be denoted that this description is time-
variant, i.e. that the system dynamics can change over time. Here u stands for a
column vector of size m which denotes input of the system. The output is described
by y a column vector of size n. Additionally to the in- and outputs there exists
the so-called states x, a multidimensional column vector, these are quantities which
are utilized to model the physical processes, dependencies and connections inside
the system. It should be mentioned that y,u and x are time dependent. The state
matrix Aptq describes the evolution of the states, Bptq is called the input matrix and
connects the inputs with the states. In the output equation (2.2) the output matrix
Cptq describes how the states influence the output and the matrix Dptq is called
direct feed-through matrix, because it represents the instantaneous influence of the
input to the output. It should be emphasized that the matrices Aptq,Bptq,Cptq and
Dptq can vary over time, as the dependency of t denotes.

A time-discretization of (2.1) leads to the discrete-time state space representation

xk�1 � ΦAk
xk �ΦBk

uk, (2.3)
yk � Ckxk �Dkuk. (2.4)

The connection to the continuous-time representation is the following

ΦAk
:� eAk∆T , (2.5)

ΦBk
:�
» ∆T

0
eAkτBkdτ (2.6)

where ∆T denotes a constant sampling rate and Ak :� Ap∆T � kq,Bk :�
Bp∆T � kq,Ck :� Cp∆T � kq and Dk :� Dp∆T � kq for k P Z. The function eA

denotes the matrix exponential of the matrix A, for more details see e.g. [19]. It
should be mentioned that the continuous and the discrete-time representation are
equally widespread. The benefit of the continuous-time description is that typically
it is easier to model in continuous-time because most physical laws are given in a
continuous-time manner. Therefore the utilization of a continuous-time description
will be often the case if the modeling of a subsystem is of high importance and interest.
The discrete-time description is better suited for the case of system identification,

8



2.1 Subsystem Representation

because most system identification techniques, and especially the two focused ones of
this work, are identifying in a discrete-time manner. Therefore this representation is
better suited if system identification is required.

For the case of co-simulation there are two major drawbacks of the state space
representation. First, typically the subsystems are black boxes, so the only known
quantities are the inputs and outputs of a subsystem and therefore the access to the
states or the number of states is not possible. Although in FMI 2.0, see [2], there
is the possibility that the subsystem itself provides the state space matrices, but
unfortunately nearly none simulation software is supporting this feature. Second, if
one gets access to the state matrix A, there will be the issue that, typically the size
of A will be much greater than the number of in- or outputs. This would lead to a
much higher computational effort of the whole model-based coupling method, which
would result in a significant slow down of the overall co-simulation, so this case is
from minor interest. All in all this means, that a subsystem description including
states is not preferable. Therefore the non-linear, input-output based description of
the subsystem Si is

9yi � Sipyi,ui, 9uiq. (2.7)

The basis of the coupling method is the linearized input-output based representation

9yi �
BSi
Byi

yi �
BSi
Bui

ui �
BSi
B 9ui

9ui. (2.8)

The matrices BSi

Byi
, BSi

Bui
, BSi

B 9ui
are called the partial derivatives or the Interface Jacobians

of the subsystem Si. The concept of Interface Jacobians avoids the usage of states
and is based on in- and outputs of a subsystem exclusively. The Interface Jacobians
have already been used for iterative co-simulation in [11, 12, 20]. The main aim of this
work is to utilize the Interface Jacobians for non-iterative co-simulation, for previous
publications of this coupling method see [21, 22, 23].

2.1.1 Continuous-Time Version

The continuous-time representation of a subsystem Si by Interface Jacobians is stated
in (2.8). Here it should be denoted that in general this description is time-variant, i.e.
the matrices BSi

By
, BSi

Bu
, BSi

B 9u
are time dependent and can change their values over time.

It should be denoted that a necessary assumption is that the in- and outputs of a
subsystem are continuous differentiable, which means e.g. that hybrid systems are not
considered. As subsystems with a relative degree ¡ 1 would lead to BSi

Bui
� BSi

B 9ui
� 0,

the linearized subsystem description (2.8) is designed for handling subsystems with a
relative degree ¤ 1. As the co-simulation of subsystems with an relative degree ¡ 1
is not challenging, only subsystems with a relative degree ¤ 1 are considered. The
relative degree of a subsystem is defined as the maximum of the relative degree of
every output of the subsystem, see [24].
For academic examples and for general academic reasons, the connection of the state
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2 Model-based Pre-Step Stabilization Method

space representation in (2.1) and (2.2) and the Interface Jacobian subsystem descrip-
tion in (2.8) for the continuous-time case is of high interest and will be further discussed
in the following. Time differentiation of the output equation of Si

yi � Ciptqxi �Diptqui (2.9)

is leading to

9yi � Ciptq 9xi �Diptq 9ui.

In this equation the two terms 9Ciptqx and 9Diptqu, which have their origin in the
product rule of differentiation, are neglected because only system matrices which slowly
vary in time are considered, therefore 9Ciptqx � 9Diptqu � 0 is assumed. Inserting the
state equation (2.1) in the equation above results in

9yi � Ciptq pAiptqxi �Biptquiq �Diptq 9ui.

From rearranging follows

9yi � CiptqAiptqxi �CiptqBiptqui �Diptq 9ui. (2.10)

Transforming the output equation (2.9) into

xi � C
�1
i ptq pyi �Diptquiq (2.11)

and inserting it into (2.10), is leading to

9yi � Ciptq
�
Aiptq

�
C�1
i ptq pyi �Diptquiq

�
�Biptqui

�
�Diptq 9ui.

Rearranging results in

9yi � CiptqAiptqC
�1
i ptqyi��

�CiptqAiptqC
�1
i ptqDiptq �CiptqBiptq

�
ui �Diptq 9ui.

Comparing this equation with (2.8) leads to

BSi
Byi

� CiptqAiptqC
�1
i ptq, (2.12)

BSi
Bui

� �CiptqAiptqC
�1
i ptqDiptq �CiptqBiptq, (2.13)

BSi
B 9ui

�Diptq. (2.14)

This shows the connection of the Interface Jacobian subsystem description and the
state space representation.

The inversion of the output matrix Cptq in (2.11) should be discussed in more
detail. The following is partly published in [25]. The basic assumption for a sensible
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2.1 Subsystem Representation

application of the Model-based Pre-Step Stabilization Method is, that the outputs
yj, j � 1, . . . , npiq of the subsystem Si are linear independent, this means

c1y1 � . . . cnyn � 0 ñ c1 � . . . � cn � 0.

This characterization is equivalent to the fact that none yi can be combined from the
others. This means, that every output consists unique information and no output sig-
nal is redundant. To discuss the inversion of Cptq, the case differentiation according
the number of states x and the number of outputs n, is helpful:
x   n: This case is not of interest, as a subsystem with less states than outputs is not
sensible from the modeling point of view. Additionally only due to the influence of
the direct feed-through, it is possible to get n linear independent outputs from only x
states.
x � n: For the case that the number of outputs is the same as the number of states the
matrix Cptq is a square matrix. So there is still the question, if a singular matrix Cptq
is possible. Due to the assumption that all n outputs are linear independent also x
states have to be linear independent and therefore the mapping between these have to
be unique, this means that Cptq is regular. If the influence of the direct feed-through
matrix Dptq is not negligible the case can occur that Cptq is singular. That would
mean, that for the crucial inversion of Cptq the application of pseudo inverse is needed,
herein the preferred one is the so-called Moore-Penrose pseudo inverse, see for more
Details [26].
x ¡ n: As the number of states is greater than the number of outputs not all dynam-
ics of the states can be displayed in the outputs and therefore the inversion of Cptq,
utilizing the pseudo inverse, is always canceling some behaviour of the subsystem out.
Especially for the case of strong connected states, this can lead to problems with the
Interface Jacobian subsystem description.
The mandatory inversion of Cptq has major influence to the choice of certain param-
eters for the system identification methods, more about this in Section 2.3.

2.1.2 Discrete-Time Version

The discrete-time Interface Jacobian subsystem description

yk�1
i �

BSkdi

Byki
yki �

BSkdi

Buki
uki �

BSkdi

Buk�1
i

uk�1
i , (2.15)

is the basis for the Model-based Stabilization Method for the case of approximated
Interface Jacobians, because system identification methods typically generate discrete-
time models. To keep the notation and following derivation as simple as possible, the
communication step size ∆T is assumed to be constant for the whole simulation and
the subscript i for the subsystem Si is omitted. In this work the discrete-time state
space description is the following

xk�1 � Φk
Ax

k �Φk
Bu

k�1, (2.16)
yk�1 � Ckxk�1 �Dkuk�1. (2.17)

11



2 Model-based Pre-Step Stabilization Method

Figure 2.1: Connection between input and output of a discrete-time subsystem for co-
simulation

The matrices Φk
A,Φk

B,C
k and Dk are denoted with the subscript k because the ma-

trices are approximated on information, i.e. in- and outputs, until the communication
point T k :� k∆T . In (2.16) it is clear to see, that the input uk�1 influences xk�1 and
as depicted in Figure 2.1 and stated in (2.17) the output yk�1 is influenced by uk�1,
too. This means that at T k the input u is extrapolated to the communication point
T k�1, resulting in uk�1. Then the subsystem, i.e. the subsystem solver, is interpo-
lating the input at the appropriate time points between T k and T k�1, how the input
is interpolated is mostly out of the power of the co-simulation. The subsystem solver
decides the number and step size of the interpolation of u, also the utilization of a
variable step size solver is possible and common. This is important because in this
way the subsystems are typically integrated in co-simulation platforms, see therefore
[27, 28]. Although this state space description is in contrast to the classical discrete-
time state space representation in (2.3) and (2.4). If another co-simulation platform
integrates the subsystems in a different way, one has to change this subsystem descrip-
tion appropriately and so the Model-based Stabilization Method can be utilized for
this platform, too.
In the following the connection of the discrete-time Interface Jacobian subsystem de-
scription (2.15) and the discrete-time state space description in (2.16) and (2.17) is
derived. Inserting (2.16) in (2.17) is leading to

yk�1 � Ck
�
Φk
Ax

k �Φk
Bu

k�1��Dkuk�1.

Rearranging (2.17), with a time shift of one communication step back, results in

xk �
�
Ck�1��1 �

yk �Dk�1uk
�
.
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2.2 Three Main Steps

Substituting this into the equation above is leading to

yk�1 � Ck
�
Φk
A

�
Ck�1��1 �

yk �Dk�1uk
�
�Φk

Buk�1

	
�Dkuk�1.

Transforming this equation in

yk�1 � CkΦk
A

�
Ck�1��1

yk �CkΦk
A

�
Ck�1��1

Dk�1uk � . . .

. . .�
�
CkΦk

B �D
k
�
uk�1

and comparing this with (2.15) results in

BSkd
Byk

� CkΦk
A

�
Ck�1��1

, (2.18)

BSkd
Buk

� �CkΦk
A

�
Ck�1��1

Dk�1, (2.19)

BSkd
Buk�1 � C

kΦk
B �D

k. (2.20)

The inversion of Ck�1 can be analogously discussed to the continuous-time case, see
therefore Section 2.1.1. In (2.20) is it obvious that a direct feed-through Dk has the
same influence as CkΦk

B. This means that for this subsystem representation there
is no difference between a direct feed-through and high dynamics of the input which
influences the output through the states, which is compatible with Fig. 2.1.

2.2 Three Main Steps

The core of the Model-based Pre-Step Stabilization Method are the following three
main steps:
(1) approximation of the monolithic results, utilizing the Error Differential Equation;
(2) performing a model-based extrapolation of the monolithic results one communica-
tion step into the future;
(3) optimizing the inputs in such a way that the gap between the extrapolated mono-
lithic result and the co-simulated resulted is minimal.
In the following, these three steps are derived and discussed in detail for the continuous-
and discrete-time version of the coupling method. This section is mainly published in
[23]. The following assumptions are made to keep the notation of the derivation as
simple as possible:

• the overall co-simulation consists of two fully coupled subsystems (i.e. u1 � y2,
u2 � y1 at the communication points);

• the inputs and outputs ui, yi for i � 1, 2 are scalar signals;
• the communication step size ∆T and the subsystem solver step size δT are fixed

for the whole computation time and equal for both subsystems;
• the inputs and outputs ui, yi for i � 1, 2 are continuous differentiable signals in

time;
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2 Model-based Pre-Step Stabilization Method

2
3

1

Figure 2.2: Illustration of the three main steps of the Model-based Pre-Step Stabiliza-
tion Method, from the viewpoint of subsystem S2, all subsystems have sim-
ulated until the communication point T k.

• to ensure zero-stability, see [1, 29], the co-simulation does not consist of an
algebraic loop, i.e. at least one of the direct feed-through terms of the subsystems
is zero;

• the co-simulation scheduling is parallel, that means all inputs have to be extrap-
olated in every communication step.

2.2.1 Continuous-Time Version

The continuous-time version of the Model-based Pre-Step Stabilization Method con-
sists of two ordinary differential equations respectively initial value problems and one
optimization problem. The user-defined parameters and their influence to the results
according accuracy and stability will be discussed in Chapter 3. The idea of the
method is in Figure 2.2, from the viewpoint of the subsystem S2, depicted. Subsystem
S1 and S2 have simulated until the communication point T k. In step one, the mono-
lithic result ỹ2 is approximated over the last communication step. Based on that, a
model-based extrapolation over the next communication step is performed in step two,
resulting in ŷ2. Step three contains the optimization of the input u2 in such a way
that the difference α2 between y2 and ŷ2 is minimized.

Step 1: Approximate the Monolithic Solution

For approximation of the monolithic solution ỹi over the last communication step
T k�1 Ñ T k of a subsystem, see step 1 in Figure 2.2, the so-called Error Differential
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2.2 Three Main Steps

Equation is utilized, which represents an ordinary, vector-valued differential equation1.
Its derivation is based on the subsystem description (2.8) and the following two cases:

• Ideal coupling of the two subsystems:

9ỹ1 �
BS1

By1
ỹ1 �

BS1

Bu1
ỹ2 �

BS1

B 9u1
9ỹ2 (2.21)

9ỹ2 �
BS2

By2
ỹ2 �

BS2

Bu2
ỹ1 �

BS2

B 9u2
9ỹ1 (2.22)

• Coupling by co-simulation:

9y1 �
BS1

By1
y1 �

BS1

Bu1
u1 �

BS1

B 9u1
9u1 (2.23)

9y2 �
BS2

By2
y2 �

BS2

Bu2
u2 �

BS2

B 9u2
9u2 (2.24)

Comparing (2.21) with (2.23) results in

9ỹ1 �
BS1

By1
ỹ1 �

BS1

Bu1
ỹ2 �

BS1

B 9u1
9ỹ2 � 9y1 �

BS1

By1
y1 �

BS1

Bu1
u1 �

BS1

B 9u1
9u1. (2.25)

Inserting of the definition

δi :� ỹi � yi, for i � 1, 2, (2.26)

representing the gap between the monolithic output ỹi and the computed output yi
from the subsystem, see Figure 2.2, in (2.25) is resulting in

BS1

By1
ỹ1 �

BS1

Bu1
ỹ2 �

BS1

B 9u1
9ỹ2 �

BS1

By1
� y1 �

BS1

Bu1
u1 �

BS1

B 9u1
9u1 � 9ỹ1 � 9y1loomoon

9δ1

. (2.27)

Combining the extrapolation error2 ε2 :� y1 � u2 with δ1 � ỹ1 � y1 is leading to

ỹ1 � u2 � ε2 � δ1. (2.28)

Rearranging (2.26) for i � 2 is resulting in

ỹ2 � y2 � δ2. (2.29)

Rearranging the extrapolation errors ε2 � y1 � u2 and ε1 :� y2 � u1 is leading to

y1 � u2 � ε2, (2.30)
u1 � y2 � ε1. (2.31)

1The size of the differential equation is based on the overall number of outputs of all subsystems,
for this derivation, due to the assumptions, it is fixed to two.

2The terms ε1 and ε2 are denoted as extrapolation errors because they describe the deviation of the
coupled signals, u1 � y2 and u2 � y1 at the communication points, over a communication step,
see Figure 2.2.
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2 Model-based Pre-Step Stabilization Method

Inserting (2.28) - (2.31) in (2.27) results in

9δ1 �
BS1

By1
pu2 � ε2 � δ1q �

BS1

Bu1
py2 � δ2q �

BS1

B 9u1
p 9y2 � 9δ2q

. . .�
BS1

By1
pu2 � ε2q �

BS1

Bu1
py2 � ε1q �

BS1

B 9u1
p 9y2 � 9ε1q .

From algebraic rearrangements follows the final ordinary Error Differential Equation

9δ1 �
BS1

By1
δ1 �

BS1

Bu1
pδ2 � ε1q �

BS1

B 9u1
p 9δ2 � 9ε1q. (2.32)

Via symmetry for (2.22) and (2.24) follows

9δ2 �
BS2

By2
δ2 �

BS2

Bu2
pδ1 � ε2q �

BS2

B 9u2
p 9δ1 � 9ε2q. (2.33)

The fact that the two ordinary differential equations above are coupled motivates to
write them in vector and matrix notation�

9δ1
9δ2



loomoon
�: 9δ

�

�BS1
By1

BS1
Bu1

BS2
Bu2

BS2
By2



looooomooooon

�:Ã

�
δ1
δ2



loomoon
�:δ

�

�
BS1
Bu1

0
0 BS2

Bu2



looooomooooon

�:B̃

�
ε1
ε2



loomoon
�:ε

. . .

. . .�

�
0 BS1

B 9u1
BS2
B 9u2

0



looooomooooon

�:C̃

�
9δ1
9δ2



loomoon
�: 9δ

�

�
BS1
B 9u1

0
0 BS2

B 9u2



looooomooooon

�:D̃

�
9ε1
9ε2



loomoon
�: 9ε

.

Rearranging this equation leads to

pI � C̃q 9δ � Ãδ � B̃ε� D̃ 9ε,

where I denotes the identity matrix from appropriate size. The final Error Differential
Equation results in

9δ � pI � C̃q�1 �Ãδ � B̃ε� D̃ 9ε
�
. (2.34)

It should be mentioned that pI � C̃q is regular because at least one of BS1
B 9u1

or BS2
B 9u2

are
zero, due to (2.14) and the assumption of zero-stability.

Note: Due to the definition of δi � ỹi � yi and the assumption that yi is con-
tinuous it follows that δi is continuous as well. This leads obviously to the initial
conditions for δ � pδ1, δ2q

T , combining this with the equation (2.34) above, leads to an
initial value problem for the computation of δ in rT k�1, T ks, the monolithic solution
ỹi can be computed via

ỹi � δi � yi for i � 1, 2. (2.35)

The numerical solving of (2.34) requires an appropriate numerical solver for ordinary
differential equations, like Runge-Kutta methods, see e.g. [13]. For a satisfying
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performance of the overall co-simulation coupling method, the parameters of the
solver, especially the step size, have to be chosen appropriately.

The error analysis for co-simulations is complicated as there are different sources
for the coupling error, e.g. the extrapolation of the inputs, time delay due to the
coupling or aliasing3 of the coupling signals. In the further the focus is drawn to the
coupling error originating from aliasing effects. It is clear that such an aliasing in the
signal can only be detected if the subsystem solver is utilizing smaller time steps and
these intermediate values have to be available for the co-simulation. To handle this
effect so-called anti-aliasing filters have been developed e.g. [8]. There the lost energy
of the aliasing coupling error is brought back into the system with one step delay. Due
to the fact that the coupling error εi for i � 1, 2 is the input for the Error Differential
Equation, the computing of the monolithic output ỹi has additionally an anti-aliasing
effect to the overall co-simulation. It should be pointed out that the aliasing coupling
error is recovered with no delay. Summarizing this means that, if intermediate values
are available, the utilization of the Error Differential Equation is compensating the
extrapolation error and the effect of aliasing.

Step 2: Model-based Extrapolation

The second step of the coupling method is to perform a model-based extrapolation of
the approximated monolithic output over the next communication step ∆T , depicted
as step 2 in Figure 2.2. The model-based extrapolation of the overall system is the
basis for the pre-step behaviour of the coupling method. The ordinary differential
equation for the extrapolation is based on the assumption of ideal coupling between
the subsystems and the subsystem description

9ŷi �
BSi
Byi

ŷi �
BSi
Bui

ui �
BSi
B 9ui

9ui for i � 1, 2. (2.36)

The assumption of ideal coupling between the subsystems

ŷ1 � u2,

ŷ2 � u1,

is combined with equation (2.36), which results in
�

9ŷ1
9ŷ2



loomoon
�: 9ŷ

�

�BS1
By1

BS1
Bu1

BS2
Bu2

BS2
By2



looooomooooon

�:Â

�
ŷ1
ŷ2



loomoon
�:ŷ

�

�
0 BS1

B 9u1
BS2
B 9u2

0



looooomooooon

�:B̂

�
9ŷ1
9ŷ2



loomoon
�: 9ŷ

.

3Note: Aliasing of a signal means that due to the sampling rate no all important parts can be
captured, therefore reducing of the sampling rate is typically recommended. In the field of co-
simulation aliasing means, that the signal can not be displayed correctly, by the values at the
communication points only, i.e. between two communication points the signal is varying more
than linear, e.g. oscillating.
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2 Model-based Pre-Step Stabilization Method

Rearranging this equation results in the final differential equation4

9ŷ � pI � B̂q�1Âŷ. (2.37)

Note: The initial condition for (2.37) is defined from the solution of the Error Differ-
ential Equation, i.e. ŷipT kq � ỹipT

kq for the extrapolation over rT k, T k�1s, leading to
an initial value problem for every communication step.
As in step one, the final ordinary differential equation in (2.37) has to be solved by an
appropriate numerical solver, like the Runge-Kutta methods. Like in the case of the
Error Differential Equation, the parameters of the numerical solver have to be chosen
in such a way, that the accuracy of the numerical solution of (2.37) is sufficient. Oth-
erwise the performance of the presented co-simulation coupling method could decrease
drastically.

Step 3: Pre-Step Input Optimization

The Pre-step Input Optimization is the third main step of the Model-based Pre-Step
Stabilization Method and can be computed for every subsystem on their own, i.e. the
optimization of the input of a subsystem is independent from other subsystems and
can therefore be computed in parallel. Hence the subscript i is avoided in the following
derivation. The input optimization is based on

αptq :� yptq � ŷptq,

which displays the gap between the co-simulated result yptq and the extrapolated
monolithic output ŷptq. The optimization problem

» Tk�1

Tk

|αpτq|dτ ÝÑ 0 (2.38)

is formulated in such a way that the gap between yptq and ŷptq is minimized over
the next communication step ∆T . The optimization problem in (2.38) can be solved
by applying different numerical integration schemes, see [13], here the focus is on the
Right Riemann sum » b

a

fptqdt � pb� aq fpbq (2.39)

and the Trapezoidal rule » b

a

fptqdt �
b� a

2 pfpbq � fpaqq .

Applying the Right Riemann sum (2.39) to (2.38) results in�
ypT k�1q � ŷpT k�1q

�
∆T ÝÑ 0, (2.40)

4pI � B̂q is regular because of the zero-stability assumption, analogous to pI � C̃q before.
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the absolute value | � | is here not necessary, because ypT k�1q � ŷpT k�1q is a scalar
value. Utilizing the Trapezoidal rule leads to

�
ypT k�1q � ŷpT k�1q � ypT kq � ŷpT kq

� ∆T
2 ÝÑ 0.

Due to the fact that ŷpT k�1q, ŷpT kq and ypT kq are known values the choice of the
numerical integration rule does not change the idea and structure for the further
derivation in a crucial way. This means that also other integration schemes, like the
Midpoint rule can be easily utilized. To keep the derivation understandable and the
notation clear the focus is drawn to the discretized optimization problem in (2.40), it
can be written as

ypT k�1q
!
� ŷpT k�1q. (2.41)

The goal of the optimization is to compute the input uptq and therefore the connection
between yptq and the input uptq has to be elaborated. To describe this relation a
close look on the system description (2.8) and standard theory of ordinary differential
equations, e.g. [13] is needed. The analytical solution of (2.8) is described through

yptq � e
BS
By
pt�TkqypT kq�

» t

Tk

e
BS
By
pt�τqBS

Bu
upτq dτ �

» t

Tk

e
BS
By
pt�τqBS

B 9u
9upτq dτ, (2.42)

where t P rT k, T k�1s for k � 0, 1, . . . with T 0 denotes the beginning of the co-simulation
and ypT 0q the initial condition. The derivative 9u denotes the time derivative, which
is computed piecewise for every communication step. Due to the appearance of 9u in
(2.42) the choice of piecewise constant basic functions is not favorable because u would
not be differentiable. That is the reason why piecewise linear basic functions, they are
at least weak differentiable, are utilized to describe the input u in the following, i.e.
the preferred approach for uptq is

uptq � uk0 � skt for t P rT k, T k�1s, (2.43)

where uk0 � ypT kq, with y representing the output from the coupled subsystem. The
slope of u in the communication step T k Ñ T k�1 is denoted with sk. Inserting this
approach in (2.42) and evaluating the equation for t � T k�1 leads to

ypT k�1q �e
BS
By
pTk�1�TkqypT kq �

» Tk�1

Tk

e
BS
By
pTk�1�τqBS

Bu
. . .

. . .puk0 � skτq dτ �

» Tk�1

Tk

e
BS
By
pTk�1�τqBS

B 9u
sk dτ.

Rearranging the last equation is leading to

yk�1 � e
BS
By

∆Tyk � uk0

» Tk�1

Tk

e
BS
By
pTk�1�τqBS

Bu
dτ � . . .

sk
» Tk�1

Tk

e
BS
By
pTk�1�τqBS

Bu
τ dτ � sk

» Tk�1

Tk

e
BS
By
pTk�1�τqBS

B 9u
dτ,
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with
φA :� e

BS
By

∆T , (2.44)

φB :�
» Tk�1

Tk

e
BS
By
pTk�1�τqBS

Bu
dτ, (2.45)

φC :�
» Tk�1

Tk

e
BS
By
pTk�1�τqBS

Bu
τ dτ, (2.46)

φD :�
» Tk�1

Tk

e
BS
By
pTk�1�τqBS

B 9u
dτ, (2.47)

it is possible to write
yk�1 � φAy

k � uk0φB � sk pφC � φDq . (2.48)
Inserting (2.48) into (2.41) results in

ŷk�1 � φAy
k � φBu

k
0 � sk pφC � φDq . (2.49)

As it is the case, that yk and uk0 is known from the previous communication step and
ŷk�1 is given due to the model-based extrapolation it is now possible to determine sk
through

sk � pφC � φDq
�1 �ŷk�1 � φAy

k � φBu
k
0
�

(2.50)
and therefore the input over the next communication step is fully determined. A closer
look on (2.49) directly implies that for φC�φD � 0, which represents the singular case,
the choice of sk has no influence, so one can set sk � 0. Therefore the computation of
sk in (2.50) is well-defined.
If one is interested in utilizing piecewise constant functions for the input, one choice
is to use the energy equivalent piecewise constant input uconst. It is defined as» Tk�1

Tk

upτqdτ � ∆Tuconst,

which means that over the communication step the energy, the integral of the function,
is the same for input u and uconst., therefore they are equivalent according to their
energy.

Summarizing all three main steps, one can say that in step one and in step two,
the ordinary differential equations (2.34) and (2.37) are taken mutual couplings
between the subsystems into account. Therefore is the, one step into the future ex-
trapolated, monolithic output, an satisfying approximation of the monolithic output.
One can say it displays the optimal value for the co-simulated output of the next
communication step. Based on this quantity the minimization of α will be achieved,
this means the Model-based Pre-Step Stabilization Method is choosing the input in
such a way, that the error over the future communication step is minimized. This
means the method is compensating an extrapolated coupling error and is therefore
working in pre-step manner. This one-step look into the future is the reason why the
method is called pre-step. Combining this pre-step behaviour with considering the
mutual coupling between the subsytems is the reason why the method is stabilizing
the overall co-simulation.
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2.2.2 Discrete-Time Version

A discrete-time version of the Model-based Pre-Step Stabilization Method is especially
useful for the case that the Interface Jacobians have to be approximated because this
is leading to the discrete-time subsystem description. A possible choice would also be
to transform the identified discrete-time subsystem description into a continuous-time
one, but this approach is not preferred mainly due to the following three reasons:
(1) A transformation from the discrete-time to the continuous-time is a numerical
computation and therefore contains additional errors and so the quality of the ap-
proximation decreases, see therefore e.g. [30].
(2) A major benefit of the discrete-time version of the coupling method is, that the
two differential equations, Step 1 and Step 2, from the continuous-time version are
algebraic equations in the discrete-time version. This means less computational effort
solving it and even more accurate results of the equation because the discretization
error of numerical integration methods is omitted.
(3) The transformation from a discrete-time to the continuos-time representation is
computational expensive because it has to be performed in every communication point.

Due to those reasons a discrete-time version of the coupling method is sensible
because the direct utilization of the approximated Interface Jacobians is possible. The
discrete-time Model-based Pre-Step Stabilization Method consists of the same three
main steps as the continuous-time version. The difference lies in the fact that the
underlying subsystem description is in discrete-time (2.15) instead of continuous-time
(2.8).

Step 1: Error Differential Equation

The Error Differential Equation approximates the monolithic output based on the
extrapolation error and the discrete-time Interface Jacobians. The idea and structure
of the derivation is similar to the one of the continuous-time case, starting with the
following cases:
Ideal coupling of the subsystems:

ỹk1 �
BSd1

Byk�1
1

ỹk�1
1 �

BSd1

Buk�1
1

ỹk�1
2 �

BSd1

Buk1
ỹk2 , (2.51)

ỹk2 �
BSd2

Byk�1
2

ỹk�1
2 �

BSd2

Buk�1
2

ỹk�1
1 �

BSd2

Buk2
ỹk1 . (2.52)

Co-simulation coupling of the subsystems:

yk1 �
BSd1

Byk�1
1

yk�1
1 �

BSd1

Buk�1
1

uk�1
1 �

BSd1

Buk1
uk1, (2.53)

yk2 �
BSd2

Byk�1
2

yk�1
2 �

BSd2

Buk�1
2

uk�1 �
BSd2

Buk2
uk2. (2.54)
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2 Model-based Pre-Step Stabilization Method

Comparing (2.51) and (2.53) results in

ỹk1 �
BSd1

Byk�1
1

ỹk�1
1 �

BSd1

Buk�1
1

ỹk�1
2 �

BSd1

Buk1
ỹk2 � . . .

. . . yk1 �
BSd1

Byk�1
1

yk�1
1 �

BSd1

Buk�1
1

uk�1
1 �

BSd1

Buk1
uk1.

(2.55)

The discrete-time version of (2.26) and (2.28) - (2.31) are

δki � ỹki � yki for i � 1, 2,
ỹk�1

1 � uk�1
2 � εk�1

2 � δk�1
1 ,

ỹk�1
2 � yk�1

2 � δk�1
2 ,

yk�1
1 � uk�1

2 � εk�1
2 ,

uk�1
1 � yk�1

2 � εk�1
1 .

Rearranging (2.55) and utilizing the quantities above is leading to

δk1 �
BSd1

Byk�1
1

δk�1
1 �

BSd1

Buk�1
1

�
εk�1

1 � δk�1
2

�
�
BSd1

Buk1

�
εk1 � δk2

�
.

From (2.52) and (2.54) follows analogously

δk2 �
BSd2

Byk�1
2

δk�1
2 �

BSd2

Buk�1
2

�
εk�1

2 � δk�1
1

�
�
BSd2

Buk2

�
εk2 � δk1

�
. (2.56)

Combining the above equations and rearranging them results in the discrete-time Error
Differential Equation5

δk � pI � C̃
k

dq
�1
�
Ã
k

dδ
k�1 � B̃

k

dε
k�1 � D̃

k

dε
k
�
, (2.57)

where

δk �

�
δk1
δk2



, Ã

k

d �

�
� BSd1

Byk�1
1

BSd1
Buk�1

1
BSd2
Buk�1

2

BSd2
Byk�1

2

�

, B̃k

d �

�
� BSd1

Buk�1
1

0
0 BSd2

Buk�1
2

�

,

εk �

�
εk1
εk2



, C̃

k

d �

�
0 BSd1

Buk
1

BSd2
Buk

2
0

�
, D̃

k

d �

�BSd1
Buk

1
0

0 BSd2
Buk

2

�
.

It should be noted that the discrete-time Error Differential Equation is an algebraic
equation and therefore the solution can be computed with no additional effort.
If intermediate values of the subsystem are available there are two ways of improving
the accuracy of the discrete-time Error Differential Equation:

5The matrix pI � C̃k

dq is regular due to the assumption of zero-stability, analog to the continuous-
time case. It should be mentioned that the name Error Differential Equation is kept although the
equation is a difference equation instead of a differential equation.
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(1) First one can determine the extrapolation error based on the intermediate values
and then interpolate the quantities εk, εk�1 energy equivalent, i.e.

εcor. �

°
j εj

∆T �
�
εk � εk�1� 0.5, (2.58)

εk � εk � εcor., (2.59)
εk�1 � εk�1 � εcor., (2.60)

where j denotes the index representing the intermediate values.
(2) The second option exploiting the intermediate values is, to transform the Interface
Jacobians to a smaller step size, therefore one has to interpolate all intermediate values
to this step size, and solving the algebraic equation (2.57) recursive with the chosen
smaller step size. This option needs a higher computational effort and is therefore not
always recommended.

Step 2: Model-based Extrapolation

The second step of the discrete-time Model-based Pre-Step Stabilization Method is
to perform an extrapolation of the approximated monolithic output ỹk, computed in
Step 1. Analog to the continuous-time case the derivation starts with the case of ideal
coupling:

ŷk�1
1 �

BSd1

Byk1
ŷk1 �

BSd1

Buk1
ŷk2 �

BSd1

Buk�1
1

ŷk�1
2 , (2.61)

ŷk�1
2 �

BSd2

Byk2
ŷk2 �

BSd2

Buk2
ŷk1 �

BSd2

Buk�1
2

ŷk�1
1 . (2.62)

Combining both equations above and rearranging them results in6

ŷk�1 � pI � B̂
k
q�1Â

k
ŷk. (2.63)

with

Â
k : �

�BSd1
Byk

1

BSd1
Buk

1
BSd2
Buk

2

BSd2
Byk

2

�
,

B̂
k : �

�
� 0 BSd1

Buk�1
1

BSd2
Buk�1

2
0

�

,

ŷk : �
�
ŷk1
ŷk2



.

Analog to the continuous-time version, the initial condition is defined as ŷk � ỹk,
which displays the fact that the approximated monolithic result is extrapolated one
communication step into the future.
Due to the fact that there is no approximation error while solving an algebraic equa-
tion, there is no need and it is not possible to improve the accuracy of (2.63).

6The matrix pI�B̂
k
q is regular due to the assumption of zero-stability, analog to the continuous-time

case.
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Step 3: Input Optimization

The input optimization for the discrete-time Model-based Pre-Step Stabilization
Method can be computed for every subsystem Si independent from the others, there-
fore the subindex i is ommitted in this section. Based on the discrete-time subsystem
description (2.15) and the extrapolated monolithic output ŷk�1 the input uk�1 is op-
timized. The optimization problem is stated as

ŷk�1 !
� yk�1

combining this with (2.15), results in

ŷk�1 �
BSkd
Byk

yk �
BSkd
Buk

uk �
BSkd
Buk�1u

k�1.

The quantities ŷk�1, yk and uk are known values and therefore the equation is rear-
ranged into

BSkd
Buk�1u

k�1 � ŷk�1 �
BSkd
Byk

yk �
BSkd
Buk

uk. (2.64)

The right side of the equation above is known and therefore this equation represents
a linear system of equations. The solution can be determined with

uk�1 �

�
BSd
Buk�1


�1 �
ŷk�1 �

BSd
Byk

yk �
BSd
Buk

uk
�
. (2.65)

Due to the assumptions, the in- and outputs are scalar signals exclusively, BSd

Buk�1 is
a scalar value and therefore the case that BSd

Buk�1 � 0 can be omitted, because the
optimized input would not have any influence to the system and this case is not of
interest. The case of multidimensional in- and output signals will be further discussed
in the next section.

2.2.3 Generalization for Multidimensional In- and Outputs

For the derivation of the main steps of the continuous- and discrete-time method it is
assumed that the in- and outputs of the subsystems are scalar signals exclusively. For
Step 1, the Error Differential Equation, and Step 2, the Model-based Extrapolation,
the generalization for an arbitrary number of in- and outputs is straightforward. For
Step 3, the Input Optimization, the generalization for an arbitrary number of in- and
outputs of a subsystem will be discussed afterwards. In the following the discrete-time
version will be discussed in detail, because for the continuous-time version it is analog.
The need to pay attention to the number of in- and outputs can be directly seen at
(2.65), because there the matrix BSk

d

Buk�1 is inverted. The size of the matrix is n � m,
where n denotes the number of outputs and m denotes the number of inputs. The
classical inversion is only possible for the case that n � m and the matrix is regular.
That means three remaining cases have to discussed, n   m, n � m with a singular
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matrix and m ¡ n.
For n   m the linear system of equations in (2.64) is an overdetermined system, i.e.
there are more equations than variables and therefore no solution exists, therefore a
least squares approach is used to solve the system of equations. The least squares
solution can be computed by solving the normal equations, which can be determined
by multiplying (2.64) from the left with

�
BSk

d

Buk�1

	T
resulting in

�
BSd
Buk�1


T
BSd
Buk�1u

k�1 �

�
BSd
Buk�1


T �
ŷk�1 �

BSd
Byk

yk �
BSd
Buk

uk


,

for more details about the normal equations see e.g. [31]. Therefore the least squares
solution of (2.64) is

uk�1 �

��
BSkd
Buk�1


T
BSkd
Buk�1

��1�
BSkd
Buk�1


T �
ŷk�1 �

BSkd
Byk

yk �
BSkd
Buk

uk


.

Here it should be denoted that the matrix�
BSkd
Buk�1


�

:�
��

BSkd
Buk�1


T
BSkd
Buk�1

��1�
BSkd
Buk�1


T

is called the Moore-Penrose pseudo inverse of BSk
d

Buk�1 , for more details of the pseudo
inverse in general, see e.g. [32].
For n � m it should not occur, that BSk

d

Buk�1 is singular because the coupled signals are
all linear independent and therefore they all inherit non-redundant information and
therefore is BSk

d

Buk�1 regular. Just in case that due to approximations or numerical errors
BSk

d

Buk�1 gets singular the pseudo inverse should be utilized to solve the linear system of
equations (2.64).
For m ¡ n, which means there are more inputs than outputs, the linear system
of equations in (2.64) is underdetermined, which means there are more variables than
equations. Therefore additional conditions can be fulfilled, for the case of co-simulation
the minimizing of the extrapolation error is a sensible claim. This means that the linear
system of equations is restructured to the following optimization problem

min
uk�1

�
ŷk�1 � uk�1�2 (2.66)

s.t.
BSd
Buk�1u

k�1 � ŷk�1 �
BSd
Byk

yk �
BSd
Buk

ukloooooooooooooomoooooooooooooon
:�rhs�const.

. (2.67)

Here it should be denoted that ŷk�1 stands for the appropriate extrapolated outputs
from the coupled subsystem, so that ŷk�1 � uk�1 describes the extrapolation error.
This optimization problem will be solved by the theory of Lagrange multipliers, for
more details see e.g. [33]. The Lagrange function L is defined as

Lpuk�1,λq �
�
ŷk�1 � uk�1�2

� λ

�
BSd
Buk�1u

k�1 � rhs



,

25



2 Model-based Pre-Step Stabilization Method

where λ :� pλ1, . . . , λnq
T denotes the Lagrange multipliers. To determine the optimal

solution uk�1 the following linear system of equations have to be solved

BL

Buk�1
!
� 0,

BL

Bλ
!
� 0.

Differentiation L with respect to uk�1 results in

BL

Buk�1 � �2
�
ŷk�1 � uk�1�� �

BSd
Buk�1λ


T
!
� 0 (2.68)

and differentiating L with respect to λ is leading to

BL

Bλ
�

BSd
Buk�1u

k�1 � rhs
!
� 0. (2.69)

Rearranging (2.68) results in

uk�1 � ŷk�1 � 0.5
�

BSd
Buk�1


T
λ, (2.70)

inserting this in (2.69) leads to

BSd
Buk�1

�
ŷk�1 � 0.5

�
BSd
Buk�1


T
λ

�
� rhs.

Algebraic rearranging results in�
BSd
Buk�1

�
BSd
Buk�1


T�
λ � 2 BSd

Buk�1 ŷ
k�1 � 2rhs.

Finally λ can be determined by solving

λ �

�
BSd
Buk�1

�
BSd
Buk�1


T��1 �
BSd
Buk�1 ŷ

k�1 � 2rhs
�
. (2.71)

Combining this equation with (2.70) results in the solution of the optimization problem
(2.71), that means uk�1 can be computed in such a way that the extrapolation error
is minimized additionally.

2.3 Approximation of the Interface Jacobians

The Interface Jacobians are the basis for the coupling method and therefore the ques-
tion how to access them is fundamental. The Functional Mock-Up Interface Standard
2.0 is providing the function fmi2GetDirectionalDerivative, by this the required par-
tial derivatives of the subsystem are accessible, unfortunately these functionality is
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supported by almost none simulation tool. Therefore the Interface Jacobians have
to be approximated, the utilization of system identification methods is unavoidable.
This work is focusing on two different system identification methods: First the so-
called Multivariable Output Error State Space method or MOESP method, which is
a specific version of the so-called subspace methods. Second a Recursive Least Square
(RLS) approach is utilized for approximating the Interface Jacobians. As all system
identification methods, these two also require a so-called learning phase, this means it
is not possible to determine sensible Interface Jacobians in the first steps. This means
that at the beginning of every co-simulation there is a certain time frame where a
signal-based coupling approach (ZOH or FOH) has to be applied because the Inter-
face Jacobians are not available, more about this so-called learning phase in Section
2.4.3.
Both methods require constant sampling rates and therefore the communication step
size is restricted to be constant through the whole co-simulation. All subsystem solvers
are fixed step solvers with the same solver step size, so the number of possible inter-
mediate values is in every communication step and for every subsystem is the same.
The identified Interface Jacobians are, for both methods, in discrete-time description.
In every communication point the system identification has to be performed and is
therefore an online identification, i.e. it happens simultaneously to the co-simulation.
To keep the notation simple and clear, the subindex i for the subsystem Si is omitted
in every quantity because all considerations are valid for each subsystem independent
of the others.

2.3.1 Multivariable Output Error State Space Method

The MOESP method is based on the inputs u and the outputs y of a subsystem ex-
clusively. Therefore it is well suited for this situation because typically the subsystems
are black boxes and so there is no additional information available. This section will
derive the MOESP method, similar as in [5], for more details see [14, 15, 16]. As
the system identification will be applied online, the inputs u0, . . . ,uk and the outputs
y0, . . . ,yk of the subsystem are available, assuming that the actual communication
point is T k.
The MOESP method will compute the linear time-invariant discrete-time state space
matrices ΦA,ΦB,C and D, which represents the state space description

xk�1 � ΦAxk �ΦBuk,

yk � Cxk �Duk.

Starting r time steps back

xk�r�2 � ΦAxk�r�1 �ΦBuk�r�1,

yk�r�1 � Cxk�r�1 �Duk�r�1
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and r-times recursive insertion until index k is reached, results in

xk�r�2 � ΦAxk�r�1 �ΦBuk�r�1,

xk�r�3 � ΦAxk�r�2 �ΦBuk�r�2,

� ΦA
2xk�r�1 �ΦAΦBuk�r�1 �ΦBuk�r�2,

...
xk � ΦA

r�1xk�r�1 �ΦA
r�2ΦBuk�r�1 � . . .�ΦAΦBuk�1 �ΦBuk,

yk�r�1 � Cxk�r�1 �Duk�r�1,

yk�r�2 � Cxk�r�2 �Duk�r�2,

� CΦAxk�r�1 �CΦBuk�r�1 �Duk�r�2,

...
yk � CΦA

r�1xk�r�1 �CΦA
r�2ΦBuk�r�1 � . . .�CBΦAΦBuk�1 �Duk.

Rewriting these equations above results in

�
������

yk�r�1
yk�r�2
yk�r�3

...
yk

�
�����


loooomoooon
:�yk�r�1|k

�

�
������

C
CΦA

CΦA
2

...
CΦA

r�1

�
�����


loooooomoooooon
:�Γr

xk�r�1 � . . .

�

�
������

D
CΦB D
CΦAΦB CΦB D

... . . . . . . . . .
CΦA

r�2ΦB . . . CΦAΦB CΦB D

�
�����


looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
:�Ψr

�
������

uk�r�1
uk�r�2
uk�r�3

...
uk

�
�����


loooomoooon
:�uk�r�1|k

,

(2.72)

where Γr stands for the extended observability matrix, Ψr for a Toeplitz matrix and
yk�r�1|k and uk�r�1|k for the out- respectively inputs of the last r time steps, from
index k � r � 1 to index k. The Block Hankel matrice composed of the outputs is
defined as

Y k�r�1|k : �
�
yk�r�N�2|k�N�1 yk�r�N�3|k�N�2 . . . yk�r�1|k

�
� . . .

�

�
����
yk�r�N�2 yk�r�N�3 . . . yk�r�1
yk�r�N�3 yk�r�N�4 . . . yk�r�2

... ... . . . ...
yk�N�1 yk�N�2 . . . yk

�
���
. (2.73)
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Analog the Block Hankel matrix composed of the inputs is defined as

U k�r�1|k : �
�
uk�r�N�2|k�N�1 uk�r�N�3|k�N�2 . . . uk�r�1|k

�
� . . .

�

�
����
uk�r�N�2 uk�r�N�3 . . . uk�r�1
uk�r�N�3 uk�r�N�4 . . . uk�r�2

... ... . . . ...
uk�N�1 uk�N�2 . . . uk

�
���
. (2.74)

Here N stands for the window size, i.e. the number of past samples which are taken
into account for the system identification, typically N ¡¡ r. Taken these two Hankel
matrices it is possible to write

Y k�r�1|k � ΓrXk �ΨrU k�r�1|k, (2.75)

where Xk :� pxk�r�N�2 xk�r�N�3 . . . xk�r�1q. Equ. (2.75) can be written as�
U k�r�1|k
Y k�r�1|k



�

�
I O

Ψr Γr


�
U k�r�1|k
Xk



. (2.76)

Combining this with the classical LQ-decomposition, see e.g. [3],�
U k�r�1|k
Y k�r�1|k



�

�
L11 0
L21 L22


�
QT

1
QT

2



, (2.77)

where QT
1 and QT

2 are orthogonal and L11 and L22 are lower triangular matrices and
inserting in (2.76) the upper block row U k�r�1|k � L11Q

T
1 , into the lower block results

in

Y k�r�1|k � ΨrL11Q
T
1 � ΓrXk. (2.78)

Rearranging of (2.77) leads to

Y k�r�1|k � L21Q
T
1 �L22Q

T
2 , (2.79)

in contrast to (2.78) here the sums are orthogonal, and therefore the summands of
(2.78) and (2.79) can not be equal. Multiplying (2.78) and (2.79) from the right side
with Q2 leads to

Y k�r�1|kQ2 � ΨrL11Q
T
1Q2loomoon
�0

�ΓrXkQ2, (2.80)

Y k�r�1|kQ2 � L21Q
T
1Q2loomoon
�0

�L22Q
T
2Q2loomoon
�I

. (2.81)

To approximate the discrete-time matrices ΦA and C the row space of Γr has to be
extracted and therefore a singular value decomposition, see e.g. [31], is applied to
(2.81), resulting in

L22 �

�
U s

Un


�
Ss 0
0 Sn


�
V T

s

V T
n
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Here Sn denotes the singular values which are non-significant, i.e. they are below a
certain threshold and therefore we can assume Sn � 0, this leads to

L22 � U sSsV
T
s � ΓrXkQ2. (2.82)

Therefore the extended observability matrix Γr can be stated as follows, with the
desired order and the corresponding row space

Γr � U sS
1{2
s . (2.83)

From the definition of the extended observability matrix Γr in (2.72) one can see that
C can be determined from the first block row of Γr. To identify ΦA the following
linear system has to be solved

ΓrΦA � Γr (2.84)

where Γr stands for Γr without the last block row and Γr denotes Γr without the
first block row. The system is overdetermined and therefore a solution should be
computed by using the least square approach. To determine the matrices ΦB and D
the multiplication of (2.78) and (2.79) from the left with UT

n and from the right with
Q1

UT
nY k�r�1|kQ1 � U

T
nΨrL11Q

T
1Q1loomoon
�I

�UT
nΓrXkQ1loooooomoooooon

�0

UT
nY k�r�1|kQ1 � U

T
nL21Q

T
1Q1loomoon
�I

�UT
nL22Q

T
2Q1loooooomoooooon

�0

is required. The term UT
nΓrXkQ1 � 0 and UT

nL22Q
T
2Q1 � 0 holds because of (2.82)

with UT
nU s � 0. Combining the above equations results in

UT
nΨrL11 � U

T
nL21 (2.85)

which represents a overdetermined linear system of equations to compute ΦB and D,
therefore the least squares approach should be applied to solve it.

Summarizing the MOESP method in the following steps:
1. Set the window size N .
2. Determine the In/Output data matrices Y k�r�1|k in (2.73) and U k�r�1|k in

(2.74).
3. Compute the LQ decomposition of

�
Y k�r�1|k U k�r�1|k

�T in (2.77).
4. Compute the singular value decomposition of L22 in (2.82) and determine or

choose the order of the identified model.
5. Evaluate (2.83) and determine so the extended observability matrix Γr.
6. Extract C from Γr and solve (2.84) to determine ΦA.
7. Solve the linear system of equations in (2.85) and determine ΦB and D.
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Figure 2.3: Dependencies of in- and output by SISO, MISO and MIMO systems

The MOESP method will be applied in every communication step and the used samples
are collected by a moving window of size N . Therefore a time-invariant system is
available in every communication step leading to a time-variant subsystem description.
Here it should be mentioned that, the larger the moving window is, i.e. choose N large,
the slower the adaption of a change in the subsystem dynamics is.
The identified state space matrices ΦA,ΦB,C and D have to be transformed in the
Interface Jacobian representation, this can be done by utilizing the equations (2.18) -
(2.20). Here it should be emphasized that the transformation rules are based on time-
variant subsystems and therefore an ignoring of the time shift in the transformation
rules can lead to poor results.

2.3.2 Recursive Least Squares

The Recursive Least Squares (RLS) approach is widely known and often used as a
method for system identification, more details e.g. [17, 18]. In this work the RLS
will be utilized to identify the time-variant discrete-time Interface Jacobian subsystem
representation in (2.15). The following section will explain the identification process
starting with the classical single input single output (SISO) RLS, over a RLS for mul-
tiple inputs and single outputs systems (MISO) to a MIMO (multiple input multiple
output) RLS. Then the transformation to a state space model7 utilizing the Gilbert
Realization, see e.g. [34], is discussed and finally this state space model is transformed
to the desired Interface Jacobian subsystem representation. The differences between
the SISO, MISO and MIMO subsystems are depicted in Fig. 2.3, there it is obvious
that every input may influence every output, which is directly connected to the num-
ber of to be identified parameters.

7It should be mentioned that with a RLS approach a direct feed-through termD can not be identified
and therefore it is always set to zero.
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2 Model-based Pre-Step Stabilization Method

The RLS for a SISO system is the basis of the identification process, it is a standard
method and can be found in many books or papers, e.g. [17, 18]. A SISO subsystem,
where y denotes the scalar output and u stands for the scalar input, can by described
by the following difference equation

yk � ak1y
k�1 � . . .� akNy

k�N � bk1u
k�1 � . . .� bkMu

k�M . (2.86)

Here k denotes the discrete time index, N and M stands for the number of considered
past samples of the output and input and the order of the difference equation is the
maximum of N and M . The SISO RLS approximates the parameters ak1, . . . akN and
bk1, . . . b

k
M in the least square sense, i.e. minimizing the quadratic error. The following

pseudo code steps describes the SISO RLS:
1: g � Pφ

�
λ� φTPφ

��1

2: p � p� g
�
ykmeasure � φ

Tp
�

3: P �
�
P � gφTPλ�1�

g denotes the vector of the gain, P stands for the covariance matrix, p :��
ak1, . . . , a

k
N , b

k
1, . . . , b

k
M

�T describes the vector of the to be identified parameters,
φ :�

�
yk�1, . . . , yk�N , uk�1, . . . , uk�M

�T denotes the data vector containing the ap-
propriate in- and output samples and λ is called the forgetting factor. In the first
line of the RLS the gain is computed. The second line describes the update of the
identified parameter p, here it is clear to see, that the parameters are only adapted
if the measurement ykmeasure and the solution based on the identified model yk � φTp
does not fit. In the third line the covariance matrix P is updated. The initial value
of the matrix P , with a size of pM �Nq � pM �Nq has to be chosen by the user. A
detailed derivation of the RLS can be found, e.g. [17, 18]. Due to the adaption of the
parameters the result of the identification is a time-variant system description.
The first step to generalize the SISO RLS, is to apply the same idea to MISO systems,
there the following difference equation is the basis

yk �ak1y
k�1 � . . .� akNy

k�N � bk11u
k�1
1 � . . .� bk1Mu

k�M
1 �

bk21u
k�1
2 � . . .� bkM2u

k�M
2 � . . .� bkm1u

k�1
m � . . .� bkMmu

k�M
m ,

(2.87)

where m denotes the number of inputs. The difference to the SISO system is that, one
output depends on m inputs. The SISO RLS can be easily adapted to a MISO RLS,
by changing the definitions of φ and p to

p :�
�
ak1, . . . , a

k
N , b

k
11, . . . , b

k
1M , b

k
21, . . . , b

k
M2, b

k
m1, . . . , b

k
Mm

�T
,

φ :�
�
yk�1, . . . , yk�N , uk�1

1 , . . . , uk�M1 , uk�1
2 , . . . , uk�M2 , uk�1

m , . . . , uk�Mm

�T
.

According the parametrization, only the size of the covariance matrix P is changed to
pN �Mmq � pN �Mmq.
To identify subsystems containing n outputs and m inputs, so-called MIMO systems,
the MISO RLS has to be applied to every output. This means that the MIMO RLS is
basically a MISO RLS for every output of the subsystem, the MISO RLS is n times,
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2.3 Approximation of the Interface Jacobians

independent from each other, applied, see also Fig. 2.3. The difference equations of a
MIMO system are

yk1 �a
k
11y

k�1
1 � . . .� ak1Ny

k�N
1 � bk111u

k�1
1 � . . .� bk11Mu

k�M
1 �

bk121u
k�1
2 � . . .� bk1M2u

k�M
2 � . . .� bk1m1u

k�1
m � . . .� bk1Mmu

k�M
m ,

yk2 �a
k
21y

k�1
2 � . . .� ak2Ny

k�N
2 � bk211u

k�1
1 � . . .� bk21Mu

k�M
1 �

bk221u
k�1
2 � . . .� bk2M2u

k�M
2 � . . .� bk2m1u

k�1
m � . . .� bk2Mmu

k�M
m ,

...
ykn �a

k
n1y

k�1
n � . . .� aknNy

k�N
n � bkn11u

k�1
1 � . . .� bkn1Mu

k�M
1 �

bkn21u
k�1
2 � . . .� bknM2u

k�M
2 � . . .� bknm1u

k�1
m � . . .� bknMmu

k�M
m .

and the parameters ak11, . . . , a
k
nN and bk111, . . . , b

k
nMm are identified with the MIMO

RLS.
Difference equations are equivalent to discrete-time transfer functions Hpzq, which
contain the elements

Hk
ijpzq �

yipzq

ujpzq
�

bkij1z
�1 � . . .� bkijMz

�M

1� aki1z
�1 � . . .� akiNz

�N
(2.88)

for all i � 1, . . . , n and j � 1, . . . ,m. Based on this MIMO transfer function Hpzq a
state space model can be realized. The transformation from a state space model to a
transfer function is unique and is described by

Hkpzq � Ck
�
zI �ΦA

k
��1 ΦB

k �Dk. (2.89)

The reverse way, from the transfer function to the state space model is not necessarily
unique and more complicated to determine. The so-called minimal realization ofHpzq
is desired, because it describes Hpzq with the least possible number of states, with
the Gilberts Realization, see e.g. [34], it is possible to determine such a minimal
realization. The first step of Gilberts Realization is to determine the partial fraction
expansion for every H ijpzq, resulting in

Hkpzq �
ņ

i�1

Rk
i

z � zi
, (2.90)

where zi denotes the n poles of the transfer function. The n �m matrices Ri can be
determined as the residues of zi

Rk
i � lim

zÑzi
pz � ziq

kHpzq.

With ni :� rankpRiq the state matrix ΦA
k in Gilberts Realization is determined as

ΦA
k �

�
��z1In1

. . .
znInn

�
�
. (2.91)
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This means that the number of states is
°n
i�1 ni. Comparing (2.89),(2.90) and (2.91)

results in the fact that the matrices Ri can be written as

Ri � CiΦB i

where Ci is a n� ni matrix and ΦB i a ni �m matrix is, leading to

ΦB �

�
����

ΦB1
ΦB2
...

ΦBn

�
���
,

C � pC1C2 . . .Cnq .

Here it should be denoted that choice of ΦB i and Ci is not unique, therefore the
minimal realization as a discrete-time state space model is not unique either.
To determine the discrete-time Interface Jacobian subsystem representation in (2.15)
the utilization of the transformation rules (2.18) - (2.20) is mandatory. As mentioned
in the previous section there is a time shift in the transformation rules which have to
be taken into account.

Summarizing the approximation of the Interface Jacobian subsystem representa-
tion utilizing the RLS as system identification method:

1. Utilize the MIMO RLS for approximating the parameters of the MIMO transfer
function respectively difference equation.

2. Apply Gilberts Realization to transform the MIMO transfer function to a mini-
mal state space model.

3. Transform the state space model to the desired Interface Jacobian representation.
How to choose the forgetting factor λ and the parameters N and M will be discussed
in Chapter 3.

2.3.3 Quality Assessment

Due to the fact that system identification always contains errors the assessement of
the quality of the identified Interface Jacobians is essential. Initially the reasons for
insufficient system approximations are discussed, the main reasons for the approxima-
tion errors of system identification can be classified in two groups. First, requirements
according the subsystem and its structure and second, the persistence of excitation of
the input, see for more details e.g. [17, 35].
Due to the fact that the subsystems, are black-boxes there is no information about
the structure or the behavior of the subsystem available. In the following the three
main reasons for approximation errors in system identification are stated:

• non-linearities in the subsystem,
• changes in the dynamics of the subsystem,
• high number of states in the subsystem, i.e. more states in the subsystem than

in the surrogate model.
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2.3 Approximation of the Interface Jacobians

All these three sources of approximations errors can be handled by the fact that the
system identification is time-variant and therefore the identified linear subsystems
can adapt themselves in every communication step. For example, a time-invariant
subsystem containing more, typically much more, states than the surrogate model is
approximated by a time-variant surrogate model with fewer states and so the fewer
number of states in the surrogate model is compensated by a time-variant approxima-
tion. It is clear that, a change in the dynamics of the subsystem can only be taken
into account in delayed manner in the surrogate model. Therefore it is important to
parametrize the system identification in such a way that the delay and the approxi-
mation error is minimal, more details about this parametrization and its influence in
Chapter 3.
The second source of insufficient results of the system identification is that the input
of the subsystem is not appropriately. This means that with this input the subsys-
tem is not enough stimulated, so that the output contains enough information about
the behavior of the system. To specify the requirements of the input more precisely,
the term of a persistent excited input is introduced, the following definition and more
details can be found in [17]:

Definition 1. A signal urks is called persistently exciting of order n if for all k there
exists an integer m such that

ρ1In  
k�m̧

i�k

φpi, nqφpi, nqT   ρ2In,

where In denotes the n � n identity matrix, 0   ρ1   ρ2 are real scalars and the
regression vector is defined as

φpi, nqT � purk � 1s urk � 2s . . . urk � nsq .

According to [17] the number of distinct spectral lines are equivalent to the order
of persistence excitation of a signal. This means that, for example a sinusoid signal
containing of n different frequency components is persistently exciting of order 2n.
To determine the persistence excitation order of a signal, a frequency analysis of the
signal is required, for more details about this computation see [36].
There are different reasons for insufficient persistent excited signals, first the so-called
oversampling, this means that the sampling rate, in the case of co-simulation, the
communication step size, is too small. At first this sounds not logic because typically
the smaller the sampling rate the better the signal is displayed, but for the case of
system identification it is important that the utilized samples hold enough dynamic
components and therefore the step size should not be too small. How to compute
and determine the ideal step size for system identification is explained in detail in
[37]. The second reason is that the signal may be in a phase where there is not much
dynamic in the signal, e.g. an idle phase of an engine.

Whether the MOESP or the RLS method is utilized the same quality assessment
approach can be utilized, because it is based on the Interface Jacobian subsystem
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2 Model-based Pre-Step Stabilization Method

description in (2.15). The quality assessement is implemented directly after the
system identification, that means before the three main steps of the Model-based
Pre-Step Stabilization Method are executed, more about the workflow of the coupling
method in general in Section 2.4. The quality assessement is based on the difference
of the value yk, simulated by the subsystem itself, and the value

yk �
BSkd
Byk

yk�1 �
BSkd
Buk

uk�1 �
BSkd
Buk�1u

k,

which represents the output of the linear, identified subsystem Sd. It should be em-
phasized that yk and yk are computed with the same inputs uk and uk�1. Therefore
the difference between yk and yk is exclusively due to the error of the system identifica-
tion method, the MOESP or RLS method. The measurement of the difference between
yk and yk is essential to grade the quality of the system identification, therefore the
following normalized error measure is introduced

εkSI,rel :� 1
n

ņ

i�1

|ykris � ykris|

max
j�1,...,k

pyjrisq � min
j�1,...,k

pyjrisq � ε
, (2.92)

where n denotes the number of scalar outputs of a subsystem and ykris denotes the
i-th entry of the output at the coupling point T k. The idea of definition of εkSI,rel
above is to normalize the absolute error of every scalar output. This normalization
is done by the peak-to-peak value or range of the past samples of the scalar output,
determined by the term max

j�1,...,k
pyjrisq � min

j�1,...,k
pyjrisq. The additional term ε is added

to the range value for the case of constant or nearly constant signals, because so
the singular case max

j�1,...,k
pyjrisq � min

j�1,...,k
pyjrisq � 0 can be avoided. Choosing ε very

small, around ε � 10�12, is large enough to avoid the singular case and it does not
influence the error measurement εkSI,rel significantly. The benefit of εkSI,rel is that this
error measure is invariant against scaling or adding an offset to a signal, which will be
the case for example if the units of a signal are changed from meter to millimeter or
from degree Celsius to Kelvin. Therefore it is sensible to determine the mean value
of different scalar signals in (2.92). This error measure can be utilized for an online
strategy deciding how to determine the input in optimal manner, more details are
denoted in Section 2.4.2.

2.4 Implementation Aspects

The following section will deal with aspects about the implementation of the Model-
based Pre-Step Stabilization Method, in focus are the workflow of the coupling method,
a tool for an online determination how the input is computed, the learning phase of
the system identification methods and the so-called switch phase.
The structure of a co-simulation utilizing the Model-based Pre-Step Stabilization
Method for the coupling of N subsystems is depicted in Figure 2.4, for the case of
approximated Interface Jacobians. The term SI denotes the system identification
method, the RLS or the MOESP method, afterwards the quality assessement denoted
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as QA is executed. Based on this information the Error-based Phase Check and the
Learning Phase Check is performed. Additionally all N output vectors yi, i � 1, . . . , N
are merged together to one global output vector y, which is utilized in the main steps.
There are three different options of the main steps as depicted by dotted lines in Figure
2.4, it should be emphasized, that based on the Learning Phase Check and the Error-
based Phase Check, only one of the three options is carried out in a communication
step, but this option can differ for any communication step. The three options are:
(1) the model-based coupling method consisting of the classical three main steps, the
Error Differential Equation, the Model-based Extrapolation and the Input Optimiza-
tion;
(2) the modified model-based coupling approach, which differs from the model-based
coupling approach by skipping the Input Optimization;
(3) the signal-based coupling approach, typically ZOH or FOH coupling, there are no
Interface Jacobians required.
By the execution of the main steps the global input vector u is determined. This
vector is divided into the appropriate subsystem inputs ui, i � 1, . . . , N . These are
sent to the subsystems and there a step is performed and the next communication step
starts from the beginning. It should be mentioned that in general the in- and outputs
of the subsystem are vectors from different size.

2.4.1 Workflow of the Coupling Method

In the following the procedure or the workflow of the Model-based Pre-Step Stabiliza-
tion Method is discussed, the details of the coupling method are described in Section
2.2. The focus will be on the order of the execution of the computation steps and on
highlighting the dependencies between each steps. It should be mentioned that the
following section is valid for a discrete-time and continuous time-subsystem represen-
tation. The workflow in Figure 2.5 shows the procedure of the Model-based Pre-Step
Stabilization Method for one communication step. It starts after the simulation of all
subsystems and ends with the determination of the inputs for every subsystem. As
the coupling method is a model-based method, the workflow starts with the access of
the required Interface Jacobians for every subsystem. The Interface Jacobians can be
provided by the subsystem itself or they can be approximated, for practical examples
typically an approximation is unavoidable. Therefore one can decide whether the RLS
or the MOESP method should be utilized as system identification method, both will
result in a discrete-time representation.
The Interface Jacobians of every subsystem are assembled to the global Interface Jaco-
bians, representing the behavior of the whole co-simulation. It should be emphasized
that due to these global matrices the mutual coupling effects and influence between the
subsystems can be taken into account, this is a crucial part of the improved coupling
performance of the introduced method. The global Interface Jacobians are required
for the computation of the global main steps, the approximation of the monolithic
outputs and the model-based extrapolation of these outputs over the next communi-
cation step.
The next step is to solve the global Error Differential Equation, to approximate the
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2 Model-based Pre-Step Stabilization Method

Figure 2.4: Structure of a co-simulation with multiple subsystems coupled via the
Model-based Pre-Step Stabilization Method

monolithic output of every subsystem for the last communication step. Additional to
the global Interface Jacobians, the extrapolation error, previously denoted as ε, of the
last communication step is required for the computation of the monolithic output. The
next step is to extrapolate the approximated monolithic output over the next com-
munication step. This extrapolation is based on the global Interface Jacobians and
therefore the mutual coupling between the different subsystems is considered. The
monolithic outputs are the initial values for the model-based extrapolation. The last
step is to determine the inputs for every subsystem, here it is important to mention
that this computation is local, this means it can be computed for every subsystem
independent from the others. Only the Interface Jacobians of each subsystem and not
the global ones are required. After the optimization of the inputs for every subsystem,
the inputs are sent to each subsystem and then all subsystems are able to simulate
the next step, after that the worklflow starts from the beginning.

2.4.2 Error-based Phase Check

The quality assessment described in Section 2.3.3 is the basis of the Error-based Phase
Check, where the decision is made how the input for the next communication step is
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Figure 2.5: Workflow of the Model-based Pre-Step Stabilization Method

computed. As depicted in Figure 2.6, the relative errors εiSI,rel of the system identi-
fication are computed for every subsystem Si and then they are summarized in the
global error measure εSI,global, defined as

εSI,global :�
c¸

i

pεiSI,relq
2, (2.93)

which represents the Euclidean norm, of the vector containing all εiSI,rel. Based on
εSI,global there are three different strategies for the determination of the input for the
next communication step:
(1) εSI,global ¥ thSBC : This is the case where the system identification failed, because
the error εSI,global is to high to use the identified subsystem models, therefore a classical
signal-based coupling method (SBC) is chosen for this communication step, i.e. ZOH-
or FOH-extrapolation of the input. Due to the definition of εSI,global in (2.93) it is
obvious that a high approximation error in just one subsystem can be the reason that
εSI,global ¥ thSBC holds. This is necessary due to the mutual coupling and therefore
possible high influence between the subsystems.
(2) thSBC ¡ εSI,global ¥ thmod.: This represents that the system identification results
are not as bad as in the previous case, but still not accurate enough to utilize the
standard Model-based Pre-Step Stabilization Method. Therefore a modification of
the coupling method is used, which should be less sensitive to approximation errors,
according [23]. The difference to the classical coupling method is, that instead of the
input optimization, the extrapolated monolithic output from Step 2, the model-based
extrapolation, is directly utilized as the input for the next communication step. This
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Figure 2.6: Workflow of the SI-based Input Check

means

u � Lŷ,

where u and ŷ denote the vector containing the appropriate quantities of all subsys-
tems. This modified version holds for the continuous-time and discrete-time version
of the coupling method.
(3) εSI,global   thmod.: If the approximation error for all subsystems is sufficiently small,
the Model-based Pre-Step Stabilization Method is utilized for the coupling of every
subsystem.
It is important to emphasize the necessity that all εiSI,rel have to be sufficiently small
to utilize the Model-based Pre-Step Stabilization Method for the classical and the
modified version. Because even though just one subsystem might be badly approxi-
mated, this subsystem may have an influence to all others due to the global structure
of Step 1 and Step 2 of the coupling method. How to choose the important thresholds
thSBC and thmod. will be further discussed and analyzed in Chapter 3, it is obvious
that thSBC ¥ thmod. should hold. For the case of thSBC � thmod. the modified version
of the coupling method will never be utilized.

2.4.3 Learning Phase

A learning phase is required because the system identification methods, i.e. the RLS
and the MOESP method, need some time to gather enough samples to learn the behav-
ior of the system. In this time the signals are coupled in signal-based manner, because
no information about the Interface Jacobians is available. The actual length of this
phase depends highly on the example and the required accuracy of the approximated
Interface Jacobians. The time should be chosen in such a way that the gathered data
contain enough information about the subsystem. The rule of thumb for choosing the
learning phase is, that it should be as small as possible but as long as required. Due
to the fact that the Model-based Pre-Step Stabilization Method is mainly applied to
systems where signal-based coupling generates insufficient results, the learning phase
needs to be as small as possible, so that the simulation does not diverge or show odd
results in that time.
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For the RLS method it is possible to specify the initial parameters p, i.e. the initial
Interface Jacobians, and therefore it should be possible to keep the learning phase
to a minimum. Such initial parameters can be determined by previous runs or from
theoretical considerations about the subsystems. The influence of the length of the
learning phase will be analyzed in Chapter 3.

2.4.4 Switch Phase

After the learning phase the coupling method is switched to its regular working mode.
Due to the fact that this switch can stimulate some unwanted effects if it is instanta-
neously, i.e. from one communication step to the next, this switching is smoothed with
a hyperbolicus tangent function, a similar approach can be found in [38]. The time how
long the switching process should last is defined in the user parameter timeSwitching.
During the switching process the inputs uSBC , computed by the signal-based coupling
approach, and uMBC , computed by the Model-based Pre-Step Stabilization Method,
are determined and they are merged together to u, which are the inputs sent to the
subsystems. The merged inputs u are determined as

u � facSBCuSBC � facMBCuMBC .

Here the quantities facSBC and facMBC are determined over the hyperbolicus tangent
approach as

facMBCptq �
1
2

�
tanh

�
�5� 10

timeSwichting
pt� TStartSwitchingq



� 1

�
,

facSBC � 1� facMBC .

In Figure 2.7 the progress of facSBC and facMBC is depicted for different values of
timeSwitching, there it is obvious the greater timeSwitching is, the smoother the
transition from the learning phase to the standard coupling phase is. For displaying
an instantaneously switch one should choose timeSwitching as the communication step
size. The influence and the effects of timeSwitching on the co-simulation results will
be analyzed in Chapter 3.
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Figure 2.7: The switching process for four different values of timeSwitching
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3
Analysis of the Method

The analysis of a method is required to give an insight in the behavior
and the effects of the method. The analysis is indispensable to understand
the method and establish trust in it. Especially in a multidisciplinary field
with a lot of different influences like co-simulation, and a complex method
like the Model-based Pre-Step Stabilization Method a sensitivity analysis is
mandatory because there the question of how to parametrize the coupling
method will be answered. The benefit of the coupling method in terms of
stability will be shown by comparing it to other state of the art coupling
methods. Therefore a stability analysis according the stiffness of the sub-
systems and communication step size will be performed and exponential
and BIBO-stability will be verified, too. Additionally an accuracy analysis
will be carried out to show the improved performance of the Model-based
Pre-Step Stabilization Method.

The herein focused sensitivity, stability and accuracy analyses will be performed uti-
lizing the dual mass oscillator example, which is a classical benchmark example of
co-simulation, see e.g. [5, 6, 20, 22, 23]. The physical parameters, the stiffness and
damping coefficients, are chosen appropriately so that the co-simulation is a stiff one,
therefore the example is well designed for analyzing the Model-based Pre-Step Stabi-
lization Method. The sensitivity analysis is a design of experiment(DoE) to examine
the influence of various parameters of the coupling method to the co-simulation re-
sults, leading to guidelines for the parametrization of the coupling method for the case
of approximated and exact Interface Jacobians. The stability analysis will show the
improved stability of the coupling method according the damping and stiffness of the
dual mass oscillator and the communication step size of the co-simulation. For the
accuracy analysis of the coupling method the damping and stiffness of the dual mass
oscillator is varied together with the communication step size of the co-simulation.

3.1 Dual Mass Oscillator

The dual mass oscillator is a linear and time-invariant benchmark example for co-
simulation for force/displacement coupling, see for more details [29]. As it is depicted
in Figure 3.1 it consists of two masses m1 and m2, which are fixed to a wall by a spring
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and damper each, too. The coupling between the two masses is realized with a spring
and a damper. The dual mass oscillator is separated into two subsystems S1 and S2,
the subsystem S1 consists of the mass m1 and a spring, with the spring constant c1,
and a damper, with a damping factor of d1, attached to the wall. The outputs of this
subsystem are the position and the velocity of the mass. In the subsystem S2 the mass
m2 is attached to the wall by a spring, with the spring constant c2, and a damper,
represented by the damping factor d2. Also represented in S2 is a spring, described by
the spring constant ck and a damper, with the damping factor dk, which couples m1
and m2, the force between this two masses is the output of S2. Both subsystems are
stated in the following continuous-time state space representations:
Subsystem S1:

9x1 � A1x1 �B1u1, (3.1)
y1 � C1x1 (3.2)

Subsystem S2:

9x2 � A2x2 �B2u2, (3.3)
y2 � C2x2 �D2u2 (3.4)

where

x1 �

�
x1
9x1



, A1 �

�
0 1

� c1
m1

� d1
m1



, B1 �

�
0
1
m1



, C1 �

�
1 0
0 1



,

x2 �

�
x2
9x2



, A2 �

�
0 1

� c2�ck

m2
�d2�dk

m2



, B2 �

�
0 0
ck

m2
dk

m2



,

C2 �
�
ck dk

�
, D2 �

�
�ck �dk

�
.

The position and velocity of the mass m1 respectively m2 are described by the states
x1 and 9x1 respectively x2 and 9x2. The chosen parameters are:

m1 � 10 kg, m2 � 10 kg, c1 � 1e6 Nm�1,

c2 � 1e7 Nm�1, d1 � 1 Nsm�1, d2 � 2 Nsm�1.

The initial conditions are set to:

x0
1 � 0.1, 9x0

1 � 0, x0
2 � 0, 9x0

2 � 0. (3.5)

The values for the the spring and damper realizing the coupling are set to

ck � 1e5 Nm�1, dk � 1e3 Nsm�1,

for the sensitivity analysis, for the stability analysis and for the accuracy analysis these
parameters vary. If the communication step size is not varied for analysis purposes, it
is fixed ∆T � 1 ms and the subsystems are solved by the explicit Euler method with
a constant step size of δt � 0.01 ms. The scheduling of the co-simulation is parallel
and therefore the inputs of both subsystems S1 and S2 have to be extrapolated.
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3.1 Dual Mass Oscillator

Figure 3.1: Dual mass oscillator separated into two subsystems

c ckmax ckmin
nc

5e5 Nm�1 2.5e5 Nm�1 2.5e4 Nm�1 1.5
d dkmax dkmin

nd
1e3 Nsm�1 3e3 Nsm�1 5e2 Nsm�1 1.5

Table 3.1: Numerical values for the non-linear characterizations of the spring and
damper coefficients

3.1.1 Non-linear Dual Mass Oscillator

The analysis for the case of approximated Interface Jacobians is of minor interest
for linear time-invariant subsystems, as the above described dual mass oscillator is.
Therefore the dual mass oscillator is adapted by a non-linear spring and damper be-
tween the two masses m1 and m2. This means the constant spring ck and damper dk
coefficients are replaced by time-variant quantities, represented by the characteristics
in Figure 3.2 and the equations

ck :� max
�
min

�
c|x2r1s � u2r1s|nc�1, ckmax

�
, ckmin

�
, (3.6)

dk :� max
�
min

�
d|x2r2s � u2r2s|nd�1, dkmax

�
, dkmin

�
, (3.7)

the chosen values are stated in Table 3.1. The term x2r1s � u2r1s describes the dis-
placement of the coupling spring from their idle state, this means the difference of the
positions of m1 and m2. Analog represents x2r2s � u2r2s the difference between the
velocities of the two masses, which is the basis for the time-variant damper coefficient
dk. In Table 3.1 the term nc � nd � 1.5 is stated which means that for a higher dif-
ference in the position respectively velocity of the two masses the spring respectively
damper coefficient increases until their maximum, such spring and dampers are called
progressive1. These non-linear adaptions to the dual mass oscillator makes the online
adaption of the identified subsystems necessary and therefore this case is better suited
to analyze the Model-based Pre-Step Stabilization utilizing approximated Interface
Jacobians.

1Progressive springs and dampers are for exampled used in suspension springs.
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Figure 3.2: Comparison of time-variant and constant spring and damper coefficients

3.1.2 Extension with External Force

A dual mass oscillator without any external force is for the case of approximated
Interface Jacobians from minor interest, because the input is not sufficiently exciting
and the simulation time can only be chosen quite small. Therefore an external force
is added to the dual mass oscillator leading to an extended subsystem S1, where the
external force is added in the following way

9x1 � A1x1 �B1u1 �

�
0
1
m1



Fex.ptq. (3.8)

The external force Fex. is defined as

Fex.ptq �

"
5e5 sinp10tq t � 0.05 k for k P N
0 otherwise

Due to the impulses of Fex. the input is persistently exciting and therefore the dual mass
oscillator is better suited to analyze the coupling method for the case of approximated
the Interface Jacobians.

3.2 Sensitivity Analysis

The understanding of how a system or a process works is crucial in many fields e.g.
engineering, business or medicine. Especially of interest is the influence of parameters
to the outputs of a system, this means how sensitive the system is according to para-
meter variations. The experimental approach is to study the changes in the output
while changing the input parameters, this is the basic idea of a design of experiment,
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for more details see [39].
It is quite obvious that if the adaption of a certain parameter results in a significant
change in the output, this parameter is of high importance for the system. If other-
wise, the outputs are nearly constant while varying some other parameter, this one is
not significant for the system. To capture those terms more precisely, the so-called
effects are introduced, the computation of those effects is the main part of the so-called
analysis of variance. By changing one parameter and keeping all others steady the so-
called main effect of this parameter can be determined. To investigate if a combination
of certain parameters are of mayor or minor importance for the system, the so-called
interaction effects are computed. To determine all possible interaction effects between
the parameters a full factorial experiment has to be carried out. There all different
parameter combinations are included, leading to a factorial number of experiments
which have to be run. For example if the system consists of three analyzed parameters
where the first parameter has three and the others two levels, the number of needed
experiments is 3 � 22 � n � 12 � n. Here n stands for the number of repetitions for
each parameter set. The repetitions are needed in case of uncontrollable influence to
the system, e.g. measurement noise, natural deviation or stochastic aspects. Due to
the fact that the number of experiments increases exponentially, the parameters and
especially the number of levels for each parameter should be chosen carefully.
Based on the data from all simulation runs an optimal set of parameter should be
determined. This will be done by ascending sorting according to the error measure of
all performed runs, because an error measure of 0 would be optimal. This results in a
list of indices, where the first element of the list contains the run with the lowest error
and the last one the run with the highest error. The influence of the parameters to the
error measure is then determined by plotting all parameters in the same order as in
the list above. Therefore the parameters leading to the best results are plotted at the
first position and the parameters leading to the highest error are plotted at the last
position. Based on those sorted list of parameters the optimal set of parameter is deter-
mined by taking the mean value of all analyzed parameters, where the corresponding
error is only 10% greater than the lowest error of all runs. This technique is taking
into account, that there may be different combinations of nearly optimal parameters,
therefore the mean value over a certain number of sufficiently good results is better
than taking the parameters of the best run exclusively. This is especially important
because the goal is to identify a general set of optimal parameters and therefore those
parameters should be as robust as possible.
The structure of a design of experiment analysis contains the following steps:

1. planning
2. running
3. analyzing
4. concluding

The first step planning means, that the analyzed parameters and their levels have
to be determined. There it should be kept in mind, that the number of required
experiments increases exponentially, with the number of analyzed parameters and
their levels. Additionally external or uncontrollable influences should be considered.
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Figure 3.3: Setup of the sensitivity analysis for the Model-based Pre-Step Stabilization
Method

The higher those influences are expected, or if they are unknown, the higher the
number of repetitions should be chosen. Running the experiments is the most time
consuming part of the analysis. Therefore one should make clear, that the results are
stored well structured and organized, so that nothing can be mixed up or even lost.
The third step is the analysis of the experiments, in the analysis of variance the effects
are computed and it is determined how significant the parameters are. The ascending
sorting analysis results in an optimal set of parameters. It should be pointed out that
both analyses are based on the same data. The last step is to draw a conclusion based
on the two analyses, which means answering the question of the significance of the
parameters and which parameters are optimal.

The performed sensitivity analysis of the Model-based Pre-Step Stabilization Method
will answer the question of how to parametrize the coupling method correctly and
how significant the influence of the parameters are, the setup is depicted in Figure
3.3. Therefore a design of experiment analysis will be utilized for the discrete-time
and continuous-time version of the coupling method. The continuous-time version
will utilize exact Interface Jacobians and therefore, the focus is on analyzing the
coupling method without any approximation error in the Interface Jacobians, the
utilized example will be the linear time-invariant dual mass oscillator. Analyzing the
influence of the approximation of the Interface Jacobians the discrete-time version
of the method and the non-linear dual mass oscillator extended with an external
force is chosen. Due to the fact that the analyzed system, the co-simulation utilizing
the Model-based Pre-Step Stabilization Method, is a simulation, there are no real
measurements included. Therefore it is completely free of any stochastic behavior
and so there are no uncontrollable influences and therefore there are no repetitions
required, i.e. n � 1.

3.2.1 Exact Interface Jacobians

For the case of exact Interface Jacobians the continuous-time version of the Model-
based Pre-Step Stabilization Method is utilized, because if exact knowledge about the
Interface Jacobians is available, it is typically given in continuous-time manner. The
utilized error measure is defined as

εmono,global :�
c¸

i

pεimono,relq
2, (3.9)
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with

εkmono,rel :� 1
n

ņ

i�1

|ykris � ykmonoris|

max
j�1,...,k

pyjmonorisq � min
j�1,...,k

pyjmonorisq � ε
. (3.10)

The first step of the design of the experiment is to choose the analyzed parameters
and their levels. The analyzed parameters and their type are stated in Table 3.2 and
will be discussed in the following.
If the boolean parameter useErrDiffEqu is true the Error Differential Equation is solved
as the first step of the coupling method, all details to the Error Differential Equation
can be found in Section 2.2.1. If the parameter useErrDiffEqu is set to false, the solv-
ing of the Error Differential Equation is skipped, i.e. δ is set to 0, for the definition
of δ see (2.26).
By the parameter optionErrDiffEqu the solver of the Error Differential Equation can
be chosen. The value exact stands for an exact solver, utilizing the matrix exponential
and convolution, by this method no numerical discretization error is added. If the
term ex. euler is chosen the classical explicit Euler method, see e.g [40], is utilized.
The number of discretization steps for solving the Error Differential Equation over
one communication step can be adjusted by the parameter stepsErrDiffEqu. It is from
integer type, because it stands for the number of intermediate steps for solving the
ordinary differential equation in one communication step. This means if the commu-
nication step size ∆T � 10ms and stepsErrDiffEqu is set to 100, the step size of the
solver of the Error Differential Equation is 10ms

100 � 0.1ms. The here discussed inter-
mediate steps or values should not be mixed up with the intermediate values of the
subsystems, there is no connection.
The parameters optionExtrapolation and stepsExtrapolation are analogously defined
as optionErrDiffEqu and stepsErrDiffEqu, with the difference that optionExtrapola-
tion and stepsExtrapolation define the solver and its steps for the model-based extrap-
olation, the second step of the Model-based Pre-Step Stabilization Method, for details
see Section 2.2.1.
The third step of the coupling method, the input optimization, can be influenced by
the parameter stepsDiscreteSystemMatrices. This parameter stands for the number
of intermediate values for calculating the values ΦB, ΦC and ΦD, see therefore (2.45)
- (2.47). This means, the higher this parameter the more accurate the computation of
these quantities will be.
For the integer parameters, namely stepsErrDiffEqu, stepsExtrapolation and steps-
DiscreteSystemMatrices, the chosen levels are stated in Table 3.3. The levels are all
chosen equally, because so it is easier to compare the results. All combinations of
all six analyzed parameters will be investigated, this means this analysis of variance
consists of a full factorial design of experiment. Therefore the number of runs can be
easily computed via

neededRuns � 2 � 2 � 4 � 2 � 4 � 4 � 512,
based on the number of levels of each analyzed parameter. This means that for gen-
erating the required data one has to perform 512 runs with different parameters. Due
to the fact that all data is simulated there are no further unknown influences to the
simulation, this means that there is no need for any repetitions, i.e. n � 1.
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optionErrDiffEqu stepsErrDiffEqu optionExtrapolation
exact or ex. euler integer exact or ex. euler
stepsExtrapolation stepsDiscreteSystemMatrices useErrDiffEqu

integer integer boolean

Table 3.2: Analyzed parameters of the design of experiment for the case of exact Inter-
face Jacobians

stepsErrDiffEqu stepsExtrapolation stepsDiscreteSystemMatrices
1 1 1
10 10 10
100 100 100
1000 1000 1000

Table 3.3: Levels of the integer type analyzed parameters

Analysis of Variance

The analysis of variance investigates how sensitive the Model-based Pre-Step Stabi-
lization Method is against changes in the parameters. The following definitions and
derivations are based on [39]. As an illustration of how to compute the needed quan-
tities for the analysis of variance, assume the following example:
There are three analyzed parameters A, B and C with a levels for A, b levels for B
and c levels for C. The simulated results are stored in a three dimensional array or a
tensor, called y, there yijk denotes the result based on the i�th level of A, j�th level
of B and k�th level of C. The term

yi�� :�
b̧

j�1

ç

k�1
yijk

denotes the total sum of all results, with the i-th level of the parameter A, analog the
quantities y�j�, y��k are defined. Additionally one can define

yij� :�
ç

k�1
yijk,

which represents the sum of all results with the i�th level of A and the j�th level of
B, analog are yi�k, y�jk defined. The term

y��� :�
a̧

i�1

b̧

j�1

ç

k�1
yijk

stands for the sum of all results. Based on these quantities the required sum of squares
can be computed. The impact of a single parameter A the so-called sum of squares
for the main effect SSA is defined as

SSA :� 1
bc

a̧

i�1
y2
i�� �

y2
���

abc
,
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analog SSB and SSC can be defined. The two-parameter interaction sum of squares
SSAB is defined as

SSAB �
1
c

a̧

i�1

b̧

j�1
y2
ij� �

y2
���

abc
� SSA � SSB,

analog the quantities SSAC and SSBC can be defined. The degrees of freedom DoF
of a single parameter A or a combination of A and B can be computed as

DoFA :� a� 1

for a single parameter, or

DoFAB :� pa� 1q � pb� 1q

for a combination of two parameters. Based on the DoFA the mean square MSA of
SSA can be determined by

MSA :� SSA
DoFA

. (3.11)

Analog the MSAB for the two-factor interaction effects is defined as

MSAB :� SSAB
DoFAB

. (3.12)

This example illustrates how to compute the required mean square for the main and
interaction effect. The following design of experiment will consist of more than three
parameters, therefore the needed quantities have to be generalized. The results of the
analysis of variance are stated in Table 3.4. Additionally these results are depicted in a
heatmap in Figure 3.4, the diagonal entries of the heatmap represents the mean sum of
squares for the main effects and the off-diagonal entries stand for the interaction effect
of the parameters denoted at x- and y-axis. Due to the fact that the sum of squares for
interaction effects are symmetric, i.e. SSAB � SSBA, the heatmap is symmetric too.
At the heatmap and the corresponding table it is clearly visible that the parameters
stepsExtrapolation and optionExtrapolation are the most significant ones. Also the
interaction of those two parameters is highly significant. In Figure 3.5 the main effects
of all six analyzed parameters are depicted, there and also in Table 3.4 and in Figure
3.4, it can be seen that the parameter optionErrDiffEqu and stepsErrDiffEqu are of
nearly no significance. Both parameters are also not interacting with any other, as it
is displayed in the off-diagonal entries of the heatmap and the interaction effect plots
in Figure 3.6 and 3.7, as all lines are parallel or even coincident.
Of low significance are stepsDiscreteSystemMatrices and useErrDiffEqu. As de-
picted in Figure 3.10 and 3.11 there is an observable interaction between steps-
DiscreteSystemMatrices, stepsExtrapolation and useErrDiffEqu. The main effect
MSstepsDiscreteSystemMatrices � 0.07% is rather small but the interaction with step-
sExtrapolation is significant with MSstepsDiscreteSystemMatrices�stepsExtrapolation � 7.26%.
Additionally the impact of stepsDiscreteSystemMatrices is shown in Figure 3.5, there
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Parameters Main and Two Factor Interaction Effects MSX Rate / %
optionErrDiffEqu 5.00e-12 0
stepsErrDiffEqu 7.56e-8 0
optionExtrapolation 6.26e2 17.32
stepsExtrapolation 1.27e3 36.72
stepsDiscreteSystemMatrices 2.86e1 0.07
useErrDiffEqu 1.03e1 0
optionErrDiffEqu – stepsErrDiffEqu 1.36e-12 0
optionErrDiffEqu – optionExtrapolation 4.32e-12 0
optionErrDiffEqu – stepsExtrapolation 3.00e-11 0
optionErrDiffEqu – stepsDiscreteSystemMatrices 2.32e-11 0
optionErrDiffEqu – useErrDiffEqu 0 0
stepsErrDiffEqu – optionExtrapolation 2.73e-9 0
stepsErrDiffEqu – stepsExtrapolation 3.55e-9 0
stepsErrDiffEqu – stepsDiscreteSystemMatrices 1.56e-8 0
stepsErrDiffEqu – useErrDiffEqu 7.56e-8 0
optionExtrapolation – stepsExtrapolation 1.27e3 36.72
optionExtrapolation – stepsDiscreteSystemMatrices 3.12e1 0.01
optionExtrapolation – useErrDiffEqu 1.04e1 0.26
stepsExtrapolation – stepsDiscreteSystemMatrices 6.64e2 7.26
stepsExtrapolation – useErrDiffEqu 3.96e1 1.87
stepsDiscreteSystemMatrices – useErrDiffEqu 3.09e1 0

Table 3.4: Results of the Analysis of Variance for the case of exact Interface Jacobians
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exact Interface Jacobians - Sum of Squares of Main and Interaction Effects
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Figure 3.5: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - Main Effects

it is obvious that with a growing value for stepsDiscreteSystemMatrices the error
εmono,global is decreasing, this influence is not as high as for the parameter stepsExtrap-
olation, but it can be observed.
This leads to the conclusion that from the three main steps of the analyzed coupling
method the second step, the model-based extrapolation is the most significant. Espe-
cially of interest is that, utilizing the Error Differential Equation or not, i.e. setting
useErrDiffEqu to true or false, does not, impact the results much, because the effect
MSuseErrDiffEqu � 0.0026% is roughly greater than zero and also the corresponding
interaction effects are all nearly zero. From this point of view it is reasonable, that
also stepsErrDiffEqu and optionErrDiffEqu are of nearly no significance, because they
only effect how accurate the Error Differential Equation is solved.
Therefore the focus in the following is, to have a closer look on the significant param-
eters stepsExtrapolation and the optionExtrapolation. In Figure 3.5 one can see, that
for optionExtrapolation is set to exact, every run is sufficiently accurate. The same
effect can be observed by setting stepsExtrapolation to 100 or 1000. The interaction
between those two parameters is depicted in Figure 3.8 and 3.9. There it is obvious
that with increasing stepsExtrapolation there is no difference between the results uti-
lizing optionExtrapolation set to ex. euler or exact. This is in contrast to the results
where stepsExtrapolation is set to 1 or 10, there is an obvious gap between the results
based on the two different values of optionExtrapolation. This behaviour is reasonable
because the lower the step size for the explicit Euler method is, the more accurate the
solution is. Additionally one can see that for the case of optionExtrapolation is set to
exact the number of stepsExtrapolation has no influence. This is explainable because
regardless of the number of intermediate steps, an exact solver will always generates
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Figure 3.6: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - Interaction Effect for optErrDiffEqu

the same result. Therefore one can say, use optionExtrapolation as exact in combina-
tion with stepsExtrapolation is set to 1 or set optionExtrapolation to ex. euler and
stepsExtrapolation to 1000. This means there is a strong interaction between those
two parameters and they are also, independent from each other, significant for the
coupling method.
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Figure 3.7: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - Interaction Effect for stepsErrDiffEqu
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Figure 3.8: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - Interaction Effect for optExtrapolation
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Figure 3.9: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - Interaction Effect for stepsExtrapolation
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Figure 3.10: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - Interaction Effect for stepsDiscreteSystemMa-
trices

Ascending Sorting Analysis

The question of how to parametrize the Model-based Pre-Step Stabilization Method
will be answered by the determination of an optimal set of parameters, via the second
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Figure 3.11: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - Interaction Effect for boolUseErrDiff

part of the design of experiment the so-called Ascending Sorting Analysis. Based on
the sorted runs, according to the error measure εmono,global, all six analyzed parameters
will be rearranged in the same order. This means that in Figure 3.13 and 3.14 the
parameters corresponding to a low error are depicted on the left side. If there is a
specific pattern recognizable, especially for the parameters corresponding to the low
errors, this means that a certain value or values of the parameter are from special
interest. Due to the fact that there are many different runs with almost an optimal
error, see therefore Figure 3.12, the optimal set of parameters is defined from all runs
where the error is maximally 10 % higher than the best result, the corresponding pa-
rameters are called nearly optimal. The interpretation of the Figures 3.13 and 3.14
is easier with the help of the histogram, see therefore Figure 3.15 and 3.16. In these
histograms only the results from the nearly optimal runs are depicted, as only these
values are of interest for the computation of the optimal set of parameters. For all
integer type parameters, the weighted mean over the data depicted in the histogram
represents the optimal parameters. For the qualitative parameters the value is chosen
which appears most in the histogram. The optimal set of parameters is stated in Table
3.5 and will be discussed in the following.
In Figure 3.13 one can see that for the parameters optionErrDiffEqu and stepsErrDif-
fEqu no pattern is recognizable, the values are arbitrary distributed and therefore no
specific value is required for computing the best results. The same can be observed in
the histogram in Figure 3.15, where every value appears with the same frequency for
both parameters. The optimal parameter for optionErrDiffEqu is set to exact because
it appears more often in the histogram. For stepsErrDiffEqu a weighted mean based
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Figure 3.12: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - sorted εmono,global
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Figure 3.13: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - sorted runs of analyzed parameter

on the histogram is determined, leading to

stepsErrDiffEquopt. � p25 � 1� 24 � 10� 24 � 100� 24 � 1000q 1
97 � 275.
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Figure 3.14: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - sorted runs of analyzed parameter

Figure 3.15: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - histogram of nearly optimal parameters

By comparing the parameter optionExtrapolation in Figure 3.13 and stepsExtrapo-
lation in 3.14 a pattern can be clearly seen. For runs according low errors hold, if
optionExtrapolation is set to ex. euler than stepsExtrapolation is 100 or 1000. For
the case, that optionExtrapolation is exact the choice of stepsExtrapolation is arbi-
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Figure 3.16: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - histogram of nearly optimal parameters

Parameter Value
optionErrDiffEqu exact
stepsErrDiffEqu 275

optionExtrapolation exact
stepsExtrapolation 371

stepDiscreteSystemMatrices 543
useErrDiffEqu false

Table 3.5: Optimal set of parameters for the case of exact Interface Jacobians

trary. On the right side of these figures one can see, that the choice of ex. euler
as optionExtrapolation and stepsExtrapolation to 1 or 10, is resulting in high errors.
This perfectly fits the observations from the analysis of variance. There it has been de-
tected that optionExtrapolation and stepsExtrapolation have a strong interaction. In
Figures 3.8 and 3.9 one can observe the phenomenon as described above. This leads to
the conclusion that the best results can be observed by choosing optionExtrapolation
as exact, the parameter stepsExtrapolation can be set to 1. The Ascending Sorting
analysis can not handle interaction effects and therefore the optimal value of stepsEx-
trapolation is computed by the weighted mean based on the histogram in Figure 3.16,
resulting in

stepsExtrapolationopt. � p16 � 1� 16 � 10� 32 � 100� 33 � 1000q 1
97 � 371.

This higher value of stepsExtrapolation will not effect the quality of the results in a
negative way. The optimal value for optionExtrapolation is set to exact because it has
a higher frequency than ex. euler in the histogram in Figure 3.15.
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For stepsDiscreteSystemMatrices a clear pattern is recognizable, one should choose
the parameter 1000 or 100. Choosing the values 1 or 10 is leading to bad results, as it
is depicted in Figure 3.14. The optimal value is computed as a weighted mean, based
on the histogram in Figure 3.16, leading to

stepsDiscreteSystemMatricesopt. � p48 � 100� 59 � 1000q 1
97 � 543.

For the parameter useErrDiffEqu the pattern and also the histogram is clear, the
optimal value of useErrDiffEqu should be set to false.
The results of the co-simulation using the determined optimal parameters from Table
3.5 are depicted in Figure 3.17 and the corresponding coupling errors are depicted
in Figure 3.18. The coupling error is defined as the difference of the monolithic and
the co-simulation result. From the two figures it is obvious that the set of optimal
parameters is a good choice because the co-simulated results are really close to the
mono-simulated results, resulting in small coupling errors.
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Figure 3.17: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - position, velocity and force for optimal param-
eters

Guideline for Parameters

This paragraph summarizes the results of the design of experiment for the case of
exact Interface Jacobians, leading to guidelines for parametrizing the Model-based
Pre-Step Stabilization Method. The analysis of variance has proofen that the major
influence arises from two parameters, optionExtrapolation and stepsExtrapolation.
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Figure 3.18: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
exact Interface Jacobians - coupling error of position, velocity and force
for optimal parameters

All other parameters are more or less not critical for the coupling method. Based on
the Ascending Sorting Analysis an optimal set of parameters is determined, see Table
3.5 for the values of the six analyzed parameters. Guideline for parametrizing:

1. useErrDiffEqu: The analysis has shown that setting the parameter to false leads
to better results. This means the Error Differential Equation is skipped. There-
fore the choice of the parameters optionErrDiffEqu and stepsErrDiffEqu is of
no influence. If otherwise, one wants to use the Error Differential Equation one
should use optionErrDiffEqu set to exact and stepsErrDiffEqu can be set to 1.

2. stepDiscreteSystemMatrices: This parameter should be chosen as high as possi-
ble, but increasing this value leads to a higher computational effort. Therefore
and due to the fact that between 100 and 1000 the error εmono,global is nearly the
same, one should not choose stepDiscreteSystemMatrices greater than 1000, the
determined optimal value of 543 is a good choice.

3. optionExtrapolation: If one is interested in the highest possible accuracy one
should always choose exact, this guarantees the best results, but it will cost
computational time. If the focus is drawn to a faster co-simulation one should
choose ex. euler as parameter. In the following it will be pointed out, that there
is a high connection of optionExtrapolation and stepsExtrapolation.

4. stepsExtrapolation: It can be clearly divided into two cases. First, if optionEx-
trapolation is set to exact, all values of stepsExtrapolation generates the same
results and due to minimizing the computational effort one should choose step-
sExtrapolation as 1. It should be really emphasized that, this is only valid,
for exact as the value of optionExtrapolation. Second, if optionExtrapolation is
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choosen as ex. euler, the parameter stepsExtrapolation should be chosen as high
as possible, considering the aspect of increasing computational effort.

3.2.2 Approximated Interface Jacobians

For the case of approximated Interface Jacobians the influence of the user-defined pa-
rameters is analyzed in the following. The Interface Jacobians can be approximated
with two different system identification methods a Recursive Least Squares Approach
(RLS) or the Multivariable Output Error State Space Method (MOESP), both are
derived and described in detail in Section 2.3. Due to the fact that those two ap-
proximation methods have different parameters the analysis is split into two parts,
one utilizing the RLS, the other the MOESP as system identification method. The
parameters of the design of experiment which are valid for both cases are stated in
Table 3.6, these parameters will be explained in the following.
The parameter timeLearning defines the length of the learning phase, where the co-
simulation is signal-based coupling, i.e. zero-order or first-order hold. This is unavoid-
able in the case of approximated Interface Jacobians because it needs a certain amount
of time to gather a sufficient amount of data, so that the online system identification
methods can work properly. Online system identification means, that only data in the
present or the past of the simulation can be used, therefore a learning phase, to gather
enough information is mandatory for utilizing online system identification methods.
For more details about the learning phase see Section 2.4.3.
Between the learning phase and the standard coupling phase, there has to be a switch-
ing. To keep the disturbance of this switching as small as possible, the switching is
performed smoothly. The duration of this switch phase is defined by the parameter
timeSwitchphase, the higher it is, the smoother the interference of the switching will
be. For more details see Section 2.4.4.
If the approximation errors of the Interface Jacobians are sufficiently high, the cou-
pling method will not perform the standard model-based coupling schema. The error-
based phase check, see Section 2.4.2, will determine in which phase the coupling
method works, which means how the subsystems are coupled. The parameter thresh-
oldMbc2sbcCoupling represents thSBC and thresholdMbcNoInputOpt stands for thmod.
in Section 2.4.2. It should be denoted that the condition

thmod. ¤ thSBC (3.13)

should be always fulfilled. This functionality can be seen as a safety inquiry, so that
a bad approximation in a single step can not lead to critical consequences.
The parameter useErrDiffEqu is the same as in the case of exact Interface Jacobians, it
describes whether the Error Differential Equation should be utilized or not, for details
see Section 3.2.1. For the parameters of type real in Table 3.6 the levels have to be
defined. As typical for a DoE one has to think of the number of required experiments
when defining the number of levels, therefore one is always limited. The chosen levels
are stated in Table 3.7. Here it should be emphasized that although the condition
thresholdMbcNoInputOpt ¤ thresholdMbc2sbcCoupling holds, all full factorial com-
binations of the parameters will be computed. This is important for the computation
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timeLearning timeSwitchphase thresholdMbc- thresholdMbc- useErrDiffEqu
2sbcCoupling NoInputOpt

real real real real boolean

Table 3.6: Analyzed parameters of the DoE for the case of approximated Interface Ja-
cobians for RLS and MOESP as system identification

timeLearning timeSwitchphase thresholdMbc- thresholdMbc-
2sbcCoupling NoInputOpt

0.1 0.002 0.01 0.01
0.2 0.01 0.05 0.05
0.5 0.05 0.1 0.1

0.5 0.5
1 1
2 2
5 5

Table 3.7: Levels of the integer and real type analyzed parameters for RLS and MOESP
as system identification

of the sum of squares for the main and interaction effects.
The case of utilizing the RLS as system identification method will be discussed first.
The analyzed parameters and their levels are stated in Table 3.8. The parameter λ is
called the forgetting factor, it describes the weighting of the samples, for more details
see [17, 18]. The latest sample has the highest weight and the others are weighted in
descending order. One can roughly say that around 1

1�λ data samples are of significant
impact for the system identification. Therefore there is a big gap between choosing
λ � 0.99 or λ � 0.999, for the value λ � 1 there is no forgetting and all samples are
weighted the same.
The parameters M and N determines the order of the identified difference equation
(2.86). N stands for the number of considered values of the output itself andM defines
the number of considered values of the corresponding input, see also (2.88). It should
be denoted that for every input there will be the same number of considered samples.
The levels with 1 and 2 each are chosen because the Dual Mass Oscillator, see Section
3.1, has only two states in each subsystem. Therefore an approximation with three or
more states would be senseless.
By utilizing the RLS as system identification method, there are eight analyzed pa-
rameters in total, based on the different number of levels, the number of required
simulations can be computed as

neededRuns � 3 � 3 � 7 � 7 � 2loooooomoooooon
general parameter

� 5 � 2 � 2loomoon
RLS parameter

� 17640.

The MOESP method requires two parameters, the modelOrder and the windowSize,
the chosen levels are stated in Table 3.9. The parameter modelOrder stands for the
number of states of the underlying state space model, for more details of how the
MOESP method approximates the Interface Jacobians see Section 2.3.1. It should be
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λ M N
real integer integer
0.95 1 1
0.98 2 2
0.99
0.999
1

Table 3.8: Analyzed parameters and their levels of the DoE for the case of approximated
Interface Jacobians for RLS as system identification

modelOrder windowSize
integer integer

1 50
2 200

500
1000

Table 3.9: Analyzed parameters and their levels of the DoE for the case of approximated
Interface Jacobians for MOESP as system identification

denoted that choosing modelOrder greater than two would not make any sense for
that example, because the number of states for both subsystems is two. For both
subsystems the same number of states is chosen, due to the fact that the subsystems
are from similar structure.
In contrast to the RLS the MOESP requires a moving window of considered samples.
The parameter windowSize describes the number of samples in this moving window.
The larger the windowSize is, the more data is taken into account for the approximation
of the Interface Jacobians. The drawback is that all data in this window are weighted
the same and therefore the reaction to changes in the system dynamics is slow. Due
to the fact that the sampling rate, i.e. the communication step size, is 1 ms, this
means that the windowSize levels of 50, 200, 500, 1000 stand for moving windows with
a length of 0.05, 0.2, 0.5 and 1 second. Due to the fact that it is an online system
identification, the window is filled until the correct number of samples are stored and
then it is always shifted, keeping its size constant, as a classical moving window. This
means that for the value of 1000 always the whole history of the simulation is taken
into account, because the simulation ends at 1 second. The number of required runs is
based on the number of levels of all seven analyzed parameters and can be computed
as

neededRuns � 3 � 3 � 7 � 7 � 2loooooomoooooon
general parameter

� 2 � 4loomoon
MOESP parameter

� 7056.
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3 Analysis of the Method

Analysis of Variance

The analysis of variance investigates, how much influence the analyzed parameters of
the Model-based Pre-Step Stabilization Method, according the overall co-simulation
result have. This leads to the conclusion which parameters are important and should
therefore be chosen with care and for which the choice is not crucial. As mentioned
before, this design of experiment will be split up into two cases, one for utilizing the
RLS as system identification method and for the other one, the MOESP method is
the system identification tool. Therefore the following analysis of variance will be
structured into these two parts.

RLS as System Identification First the analysis of variance for the RLS based cou-
pling method will be discussed. The computed mean sum of squares for the main
MSX and interaction effects MSXY are stated in Table 3.10. The definitions of MSX
and MSXY and how to compute them are stated in Section 3.2.1. Additionally the
main and interaction effects are visualized as a heatmap in Figure 3.19, the diagonal
entries of the heatmap represent the mean sum of squares for the main effects and the
off-diagonal entries the mean sum of squares for the interaction effects, according the
parameter denoted at the x- and y-axis. There it is clearly visible that the interaction
effect of N and M has the most influence, followed by main effect of M and N. There-
fore they will be discussed in further detail.
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Figure 3.19: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Sum of Squares of Main and
Interaction Effects

In Figure 3.20 (a) one can see that the parameter timeLearning is of minor significance,
additionally in the interaction plot in Figure 3.21 it is obvious that there is no interac-
tion with any other parameter of significant importance. The same phenomenon can
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Figure 3.20: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Main Effects

be observed for the parameter timeSwitchphase in Figure 3.20 (b) and Figure 3.22.
Both statements are supported by the fact that all main and interaction effects ac-
cording timeLearning and timeSwitchphase are from rate 0, see therefore Table 3.10.
The main effect plot of thresholdMbc2sbcCoupling and thresholdMbcNoInputOpt
in Figure 3.20 (c) and (d) shows a slight tendency for choosing small values, but
the heatmap shows that the effects are of nearly zero significance for the coupling
method. The interaction plots for both parameters look similar, there is no interac-
tion with other parameters, except for the case of the interaction of the parameters
with themselves. This arises from the condition thresholdMbcNoInputOpt ¤ thresh-
oldMbc2sbcCoupling.
The choice of λ is of minor importance to the performance of the Model-based Pre-
Step Stabilization Method, because the main effect and also the interaction effects
visualized in the heatmap in Figure 3.19 or stated in Table 3.10 are nearly zero. This
fact is supported by the interaction plots in Figure 3.25, as λ shows no significant
interaction with any other parameter.
Whether the Error Differential Equation is utilized or not is of minor significance for
the analyzed coupling method because the main and interaction effects in Table 3.10
are nearly zero. Due to the main effect plot in Figure 3.20 (h) and the interaction
plots in Figure 3.28 the choice of setting useErrDiffEqu to false seems legit, because
the error is less than by utilizing the Error Differential Equation.
As mentioned before, most significant for the coupling method is the choice of the
parameters M and N. The first thing one can observe is that the main effect plots in
Figure 3.20 (f) and (g) look identical, and both show better results by choosing the
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Figure 3.21: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Interaction Effects of time-
Learning

value of 1. The interaction plots in Figure 3.26 and 3.27 show that with all other
parameters there is nearly no interaction, but the interaction of M and N is highly
significant. This is indicated in subplot (f) by the crossing of the lines, because this
means that if M is set to a value of 1 the best choice for N is also 1, but if M is set to 2
also N should be chosen as 2. In other words the parameters M and N should always
be chosen the same, because choosing M and N with different values is leading to high
errors. This is the reason for the high mean square of sums for the interaction of M
and N. The high main effect value can be explained by the main effect subplots (f)
and (g) because choosing M and N to a value of 1 is significantly reducing the error.
Comparing the scaling of the y-axis of all main effect plots in Figure 3.20 leads also
to the conclusion that the choice of M and N has the most influence for the analyzed
coupling method.
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Parameters Main and Two Factor Interaction Effects MSX Normalized / %
timeLearning 3 0.1
timeSwitchphase 20 0.8
thresholdMbc2sbcCoupling 30 1.2
thresholdMbcNoInputOpt 11 9.4
λ 20 0.8
M 372 14.3
N 372 14.3
useErrDiffEqu 44 1.7
timeLearning – timeSwitchphase 1 0
timeLearning – thresholdMbc2sbcCoupling 1 0
timeLearning – thresholdMbcNoInputOpt 0 0
timeLearning – λ 3 0.1
timeLearning – M 2 0
timeLearning – N 2 0
timeLearning – useErrDiffEqu 3 0.1
timeSwitchphase – thresholdMbc2sbcCoupling 7 0.3
timeSwitchphase – thresholdMbcNoInputOpt 0 0
timeSwitchphase – λ 4 0.1
timeSwitchphase – M 10 0.4
timeSwitchphase – N 10 0.4
timeSwitchphase – useErrDiffEqu 7 0.3
thresholdMbc2sbcCoupling – thresholdMbcNoInputOpt 10 0.4
thresholdMbc2sbcCoupling – λ 6 0.2
thresholdMbc2sbcCoupling – M 18 0.7
thresholdMbc2sbcCoupling – N 18 0.7
thresholdMbc2sbcCoupling – useErrDiffEqu 5 0.2
thresholdMbcNoInputOpt – λ 2 0
thresholdMbcNoInputOpt – M 0 0
thresholdMbcNoInputOpt – N 0 0
thresholdMbcNoInputOpt – useErrDiffEqu 1 0
λ – M 2 0
λ – N 2 0
λ – useErrDiffEqu 3 0.1
M – N 1524 58.7
M – useErrDiffEqu 41 1.6
N – useErrDiffEqu 41 1.6

Table 3.10: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Sum of Squares of Main and
Interaction Effects
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Figure 3.22: Sensitivity analysis for the Model-based Pre-Step Stabilization Method
for Interface Jacobians approximated by RLS - Interaction Effects of
timeSwitchphase
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Figure 3.23: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Interaction Effects of thresh-
oldMbc2SbcCoupling
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Figure 3.24: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Interaction Effects of thresh-
oldMbc2NoInputOpt
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Figure 3.25: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Interaction Effects of λ
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Figure 3.26: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Interaction Effects of M
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Figure 3.27: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Interaction Effects of N
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Figure 3.28: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - Interaction Effects of useEr-
rDiffEqu
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3 Analysis of the Method

MOESP as System Identification In the following the analysis of variance for the
case of approximated Interface Jacobians by the MOESP method is stated. The main
and two-factor interaction effects are stated in Table 3.11 and visualized in a heatmap
in Figure 3.29. There one sees, that the three parameters thresholdMbc2sbcCoupling,
modelOrder and useErrDiffEqu have a high significance for the coupling method.
Therefore those three parameters will be discussed in further detail.
The parameter timeLearning is of minor importance, as its main effect is 0.01, only
the interaction with the parameter timeSwitchphase with a normalized mean square
of sums of 0.04 is observable. This interaction effect is also depicted in the interaction
plot in Figure 3.31 (a), as there is a crossing of the lines. With all other parameters
there is no detectable interaction from timeLearning.
Except for the interaction mentioned above, there is no remarkable effect, neither an
interaction nor a main effect, for the parameter timeSwitchphase, as it is depicted in
Figure 3.32 (b) - (f). This means that this parameter is of minor importance for the
coupling method.
The parameter thresholdMbcNoInputOpt has a negligible main effect, as it is depicted
in Figure 3.30. Additionally, as it is depicted in Figures 3.34 (c) and (d), the only
two observable interactions are with the parameters thresholdMbc2sbcCoupling and
modelOrder. In all other subplots no interaction is recognizable.
The size of the moving window of the MOESP method is described by the parameter
windowSize. The heatmap in Figure 3.29 shows clearly a small but observable inter-
action with modelOrder and thresholdMbc2sbcCoupling. In the interaction plots in
Figure 3.36, it is clear to see that, always the interaction with windowSize set to 50
differs from the other three values. The same behaviour can be observed at the main
effect plot in Figure 3.30 (e). This means that there is a difference if windowSize is
set to 50, but for the values 200, 500 and 1000 the difference is rather small.
The highest influence has the main effect of thresholdMbc2sbcCoupling, with a nor-
malized mean square of sums of 0.30, the same can be observed in Figure 3.30 (c), com-
paring the y-axis of the different main effects it is clear that thresholdMbc2sbcCoupling
is of major influence for the coupling method. The interaction is compared to its main
effect rather low, only with the parameters thresholdMbc2sbcCoupling, modelOrder
and useErrDiffEqu small dependencies are recognizable.
The choice of the modelOrder is of importance for the coupling method, as a normal-
ized mean square of 0.11 denotes. The interaction with the other six parameters is
rather small and of negligible importance, as it is depicted in Figure 3.35.
Whether the Error Differential Equation is utilized or not is of high importance, as
the value of 0.22 for the normalized mean square shows. This fact is supported by the
main effect plot in Figure 3.30 (g). Only the interaction with the parameter thresh-
oldMbc2sbcCoupling is recognizable, see therefore heatmap in Figure 3.29, all other
interactions have a normalized effect of nearly 0.
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3.2 Sensitivity Analysis

Parameters Main and Two Factor Interaction Effects Absolute Normalized / %
timeLearning 5.9 1.5
timeSwitchphase 2.0 0.5
thresholdMbc2sbcCoupling 120.8 29.8
thresholdMbcNoInputOpt 3.8 0.9
modelOrder 46.3 11.4
windowSize 12.4 3.1
useErrDiffEqu 90.1 22.2
timeLearning – timeSwitchphase 17.1 4.2
timeLearning – thresholdMbc2sbcCoupling 1.3 0.3
timeLearning – thresholdMbcNoInputOpt 0.6 0.1
timeLearning – modelOrder 3.4 0.8
timeLearning – windowSize 2.5 0.6
timeLearning – useErrDiffEqu 1.6 0.4
timeSwitchphase – thresholdMbc2sbcCoupling 1.5 0.4
timeSwitchphase – thresholdMbcNoInputOpt 0.4 0.1
timeSwitchphase – modelOrder 2.2 0.5
timeSwitchphase – windowSize 0.5 0.1
timeSwitchphase – useErrDiffEqu 1.7 0.4
thresholdMbc2sbcCoupling – thresholdMbcNoInputOpt 11.2 2.8
thresholdMbc2sbcCoupling – modelOrder 15.7 3.9
thresholdMbc2sbcCoupling – windowSize 9.2 2.3
thresholdMbc2sbcCoupling – useErrDiffEqu 34.2 8.4
thresholdMbcNoInputOpt – modelOrder 9.6 2.4
thresholdMbcNoInputOpt – windowSize 1.0 0.2
thresholdMbcNoInputOpt – useErrDiffEqu 0.9 0.2
modelOrder – windowSize 7.9 2
modelOrder – useErrDiffEqu 0.6 0.1
windowSize – useErrDiffEqu 1.3 0.3

Table 3.11: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - Sum of Squares of Main
and Interaction Effects
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Figure 3.29: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - Sum of Squares of Main
and Interaction Effects
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Figure 3.30: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - Main Effects
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Figure 3.31: Sensitivity analysis for the Model-based Pre-Step Stabilization Method
for Interface Jacobians approximated by MOESP - Interaction Effects
of timeLearning
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Figure 3.32: Sensitivity analysis for the Model-based Pre-Step Stabilization Method
for Interface Jacobians approximated by MOESP - Interaction Effects
of timeSwitchphase
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Figure 3.33: Sensitivity analysis for the Model-based Pre-Step Stabilization Method
for Interface Jacobians approximated by MOESP - Interaction Effects
of thresholdMbc2SbcCoupling

0.1 0.2 0.5
timeLearning

0.2

0.25

0.3

0.35

m
on

o,
gl

ob
al

(a)

thresholdMbcNoInputOpt = 0.01
thresholdMbcNoInputOpt = 0.05
thresholdMbcNoInputOpt = 0.1
thresholdMbcNoInputOpt = 0.5
thresholdMbcNoInputOpt = 1
thresholdMbcNoInputOpt = 2
thresholdMbcNoInputOpt = 5

0.002 0.01 0.05
timeSwitchphase

0.2

0.22

0.24

0.26

0.28

0.3

m
on

o,
gl

ob
al

(b)

0.01 0.1 1 5
thresholdMbc2sbcCoupling

0.1

0.2

0.3

0.4

0.5

0.6

m
on

o,
gl

ob
al

(c)

1 2
modelOrder

0

0.1

0.2

0.3

0.4

m
on

o,
gl

ob
al

(d)

50 500
WindowSize

0.2

0.25

0.3

0.35

0.4

m
on

o,
gl

ob
al

(e)

1 0
useErrDiffEqu

0.1

0.2

0.3

0.4

m
on

o,
gl

ob
al

(f)

Figure 3.34: Sensitivity analysis for the Model-based Pre-Step Stabilization Method
for Interface Jacobians approximated by MOESP - Interaction Effects
of thresholdMbc2NoInputOpt
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Figure 3.35: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - Interaction Effects of mod-
elOrder
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Figure 3.36: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - Interaction Effects of win-
dowSize
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Figure 3.37: Sensitivity analysis for the Model-based Pre-Step Stabilization Method
for Interface Jacobians approximated by MOESP - Interaction Effects
of useErrDiffEqu
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Ascending Sorting Analysis

The Ascending Sorting Analysis is analogous to the case of utilizing exact Interface
Jacobians, see therefore Section 3.2.1. The goal of this analysis is to determine an
optimal set of parameters for the Model-based Pre-Step Stabilization Method, in the
case of utilizing approximated Interface Jacobians. The simulation runs are sorted in
ascending order according to the error measure εmono,global, as it is depicted in Figure
3.38 or 3.45. As it is the case for the analysis of variance in the previous section, this
analysis is split up into the same two parts. The first part will deal with the analysis
of the coupling method utilizing the RLS method as system identification method,
for approximating the required Interface Jacobians. In the second part, the MOESP
method is used instead of the RLS.

RLS as System Identification Beginning with the RLS as system identification
method, it should be mentioned that the maximum error is set to εmono,global � 1,
as it can be seen by the saturation of εmono,global starting at approximately run 5800,
in Figure 3.38. In Figures 3.39 and 3.40 all eight analyzed parameters are rearranged
according to the sorted runs depicted in Figure 3.38. It should be denoted that only
the first 500 runs are depicted because the focus is drawn to the simulation results with
a low error measure. For the computation of the optimal parameters the average over
all parameter values, according simulation runs where εmono,global is only 10% higher
than its minimum, are taken into account, this means that only the first 179 simulation
runs are considered.
For the parameter timeLearning there is no obvious pattern recognizable in Figure
3.39, but in the first histogram in Figure 3.41 one can observe that the value 0.2 has
the highest frequency. But the trend to a specific value for this parameter is not
completely clear. The optimal value for timeLearning is determined with

timeLearningopt. �
�
50 � 0.1� 99 � 0.2� 30 � 0.5

� 1
179 � 0.22.

The second subplot in Figure 3.39 and 3.41 refers to the parameter timeSwitchphase.
There it is recognizable, that the parameter should be chosen small, the value 0.05 is
of minor frequency. This fact is especially evident from the histogram, based on this
data the optimal value is determined as

timeSwitchphaseopt. �
�
101 � 0.002� 78 � 0.01

� 1
179 � 0.005.

For the parameter thresholdMbc2sbcCoupling the pattern is extremely obvious, be-
cause only the two highest values 2 and 5 appear in the first 400 runs. It should
be mentioned, that there are 7 possible values of thresholdMbc2sbcCoupling, as it is
stated in Table 3.7. Also in the histogram the obvious pattern is easily observable.
The optimal value is computed as

thresholdMbc2sbcCouplingopt. �
�
78 � 2� 92 � 5

� 1
179 � 3.54.
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At a first glance on the fourth subplot in Figure 3.39 one can observe, that the para-
meter thresholdMbcNoInputOpt should be chosen rather small than big, because the
values 2 and 5 are not displayed in the first 500 runs. In the corresponding histogram
in Figure 3.41 it is clear to see, that small values are preferred. The optimal value can
be computed as

thresholdMbcNoInputOptopt. �
�
44 � 0.01�44 � 0.05� 43 � 0.1� 37 � 0.5� . . .

�12 � 1
� 1

179 � 0.21.

For the parameter λ a specific pattern is recognizable, the values 0.98 and 0.95 should
be avoided. Based on the histogram, a more detailed view for the optimal choice of λ is
possible. There the highest frequency is at the value of 0.999, but the difference to 1 is
rather small. Based on that data the optimal choice for this parameter is determined
as

λopt. �
�
60 � 1� 72 � 0.999� 33 � 0.99� 14 � 0.98

� 1
179 � 0.996.

The parameters M and N have identical results and it is quite obvious that the value of
1 is preferred. There are just some rare cases where M and N are set to 2. Remarkable
is that there is not a single case where M and N are chosen differently for the first 500
simulation runs, as one can see by comparing the second and third subplot in Figure
3.40. The optimal choice for these parameters can be clearly set to

Mopt. �1,
Nopt. �1.

Whether the Error Differential Equation should be utilized or not, is decided by setting
useErrDiffEqu to true or false. From the fourth subplot of Figure 3.40 a clear pattern is
not identifiable. In the histogram the situation is more obvious, the value true appears
approximatly twice as much as the value false. This means that useErrDiffEqu should
be set true, but it should be emphasized that this choice is not clear, it stays uncertain.
An overview of the eight analyzed optimal parameters is stated in Table 3.12. Figure
3.43 shows the position, velocity and the coupling force of the dual mass oscillator for
the optimal parameter settings and in Figure 3.44 the corresponding coupling error
for all three signals are depicted. As the co-simulated results fit the monolithic results
quite well the optimal set of parameters seems well chosen. Additionally one can
observe that after the learning phase, the oscillations of the coupling error is damped
clearly, which shows the effect of the Model-based Pre-Step Stabilization Method.
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Parameter Value
timeLearning 0.22

timeSwitchphase 0.005
thresholdMbc2sbcCoupling 3.54
thresholdMbcNoInputOpt 0.21

λ 0.996
M 1
N 1

useErrDiffEqu true

Table 3.12: Optimal set of parameters for the case of approximated Interface Jacobians
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Figure 3.38: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - sorted εmono,global
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Figure 3.39: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - sorted runs of analyzed pa-
rameters
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Figure 3.40: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - sorted runs of analyzed pa-
rameters
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Figure 3.41: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - histogram of nearly optimal
parameters

Figure 3.42: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - histogram of nearly optimal
parameters
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Figure 3.43: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - position, velocity and force
co-simulated utilizing optimal parameters
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Figure 3.44: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by RLS - coupling error of position,
velocity and force co-simulated utilizing optimal parameters
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MOESP as System Identification The following section deals with the Ascending
Sorting Analysis for the case of utilizing Interface Jacobians approximated by the
MOESP method. In Figure 3.45 the simulation runs are depicted in ascending sorted
order according to the error measure εmono,global, see (3.9) for its definition. From
the sorted parameter plots in Figures 3.46 and 3.47 the optimal set of parameters
can be determined by analyzing the patterns in it. Helpful for determining this set of
parameters are the histograms in Figures 3.48 and 3.49. The optimal set of parameters
will be determined as the average of the values depicted in those histograms. Due to
the fact, that between the low errors the gap is wider than in case of utilizing the
RLS, the condition of considering only parameters which correspond to errors which
are maximal 10% greater than the lowest, would lead to only three entries in the
histogram. Therefore the condition is adapted so that a minimum of 50 simulation
runs are considered. The set of optimal parameters is stated in Table 3.13 and will be
discussed in the following.
Starting with the parameter timeLearning one sees in the first subplot of Figure 3.46
that a clear pattern is hard to determine, therefore the histogram in Figure 3.46 shows
that the value 0.2 appears mostly. The optimal value of timeLearning is determined
by computing the mean of the data depicted in the histogram, resulting in

timeLearningopt. � p5 � 0.1� 28 � 0.2� 17 � 0.5q 1
50 � 0.29.

For the parameter timeSwitchphase it is obvious, that small values appear with a
higher frequency, as one can observe in the second histogram in Figure 3.46. This
means a fast changing between learn and model-based coupling phase is better for the
performance of the coupling method. The optimal value is computed as

timeSwitchphaseopt. � p37 � 0.002� 13 � 0.01q 1
50 � 0.004.

The third subplot in Figure 3.46 shows a really clear pattern, only the values 2 and 5
appear. This fact is also shown in the histogram according to the parameter thresh-
oldMbc2sbcCoupling. The small values 0.01, . . . , 1 are not suited for generating results
with a low error, as there is not a single case where thresholdMbc2sbcCoupling is less
than 2 in the best 430 simulation runs, as it is depicted in the third subplot of Figure
3.46. The optimal value for the parameter is computed based on the data displayed
in the histogram, this results in

thresholdMbc2sbcCouplingopt. � p13 � 2� 37 � 5�q 1
50 � 4.22.

For the parameter thresholdMbcNoInputOpt no clear pattern is recognizable in the
fourth subplot of Figure 3.46, the values look arbitrarily distributed. This fact is
supported by the fourth histogram in Figure 3.48, every parameter appears at least 6
times, only values 2 and 5 have a higher frequency. The optimal value is computed as
the mean of this data, leading to

thresholdMbcNoInputOptopt. �
�
6 � 0.01� 6 � 0.05� 6 � 0.1� 6 � 0.5� . . .

6 � 1� 8 � 2� 12 � 5�
� 1

50 � 1.72.
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Parameter Value
timeLearning 0.29

timeSwitchphase 0.004
thresholdMbc2sbcCoupling 4.22
thresholdMbcNoInputOpt 1.72

modelOrder 1
windowSize 778

useErrDiffEqu false

Table 3.13: Optimal set of parameters for the case of Interface Jacobians approximated
by MOESP

How to choose the parameter modelOrder optimally is an easy question, as the pat-
tern in the first subplot of Figure 3.47 is really clear, for every simulation run of the
best 500 the model order has been set 1. Therefore the optimal value can be set to
modelOrderopt. � 1. For the parameter windowSize the pattern shows that high values
are improving the results. From the second histogram in Figure 3.49 it is clear that
high values have a positive influence on the analyzed coupling method, the optimal
values is computed as the following

windowSizeopt. � p2 � 200� 19 � 500� 29 � 1000q 1
50 � 778.

The question whether the Error Differential Equation should be utilized or not is hard
to answer from the pattern in third subplot of Figure 3.47, because the best results are
reached by utilizing it, but at the majority of the top 50 simulation runs the parameter
useErrDiffEqu is set to false, as it is depicted in the histogram in Figure 3.49. Therefore
the optimal value for useErrDiffEqu is set to false. Utilizing the optimal parameters
stated in Table 3.13 leads to the simulation results and the corresponding coupling
error depicted in Figure 3.50 and 3.51. There it is obvious to see that after the
learning phase, the coupling error decreases clearly, as the oscillations in Figure 3.51
are damped.
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Figure 3.45: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - sorted εmono,global
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Figure 3.46: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - sorted runs of analyzed
parameters

89



3 Analysis of the Method

0 50 100 150 200 250 300 350 400 450 500

1

2
modelOrder

0 50 100 150 200 250 300 350 400 450 500
50

200

500

1000
WindowSize

0 50 100 150 200 250 300 350 400 450 500
1

0
useErrDiffEqu

Figure 3.47: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - sorted runs of analyzed
parameters

Figure 3.48: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - histogram of nearly opti-
mal parameters
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Figure 3.49: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - histogram of nearly opti-
mal parameters
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Figure 3.50: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - position, velocity and force
co-simulated utilizing optimal parameters
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Figure 3.51: Sensitivity analysis for the Model-based Pre-Step Stabilization Method for
Interface Jacobians approximated by MOESP - coupling error of position,
velocity and force co-simulated utilizing optimal parameters
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Guideline for Parameters

This guideline for choosing the parameters of the Model-based Pre-Step Stabilization
Method, for the case of utilizing approximated Interface Jacobians, will summarize the
design of experiment and compare the results of utilizing the RLS and the MOESP
method as system identification method.
The parameters timeLearning, timeSwitchphase, thresholdMbc2sbcCoupling, thresh-
oldMbcNoInputOpt, useErrDiffEqu are parameters which are always required, no mat-
ter whether the RLS or MOESP is utilized. Therefore these so-called general param-
eters can be easily compared in the following. The optimal values for timeLearning
are in the case of utilizing the RLS 22ms and for utilizing the MOESP 29ms, which is
satisfying as those results are quite similar. Additionally the depicted significance, i.e.
the main and interaction effects, in Figures 3.19 and 3.29 are in both cases not of high
importance. Therefore the choice of timeLearning is independent from the selected
system identification method. It should be emphasized, that for a specific example
the choice of timeLearning will always depend on the size of the communication step
size and the amount of data stored in the signals, because the input signals have to
be sufficiently exciting, see for details Section 2.3.3.
The time for switching from the learn phase to the model-based coupling phase is
determined by the parameter timeSwitchphase, no matter which system identification
method is chosen the value is around 5ms. Also the influence on the accuracy of the
analyzed coupling method is in both cases negligible, i.e. the question of how to choose
timeLearning is of minor importance. The value of timeSwitchphase should always be
chosen by considering the communication step size, for the analyzed example the op-
timal value of 5ms is determined at a communication step size of 1ms, which means
the switching takes 5 communication steps.
The optimal value of the parameter thresholdMbc2sbcCoupling is nearly independent
from the chosen system identification method, as selecting the RLS the optimal value
is 3.54 and by choosing the MOESP method it is 4.22. Leading to the conclusion
that a high value is the best option for accurate results of the Model-based Pre-Step
Stabilization Method.
For the parameter thresholdMbcNoInputOpt it is not that clear, because the opti-
mal value by utilizing the RLS is computed as 0.21 and the selection of the MOESP
method is leading to an optimal value of 1.72. The difference in those optimal values
is not dramatic, because for both cases the significance of the accuracy of the results
is of minor importance, as the main and interaction effects depicted in Figure 3.19, for
the RLS, and Figure 3.29, for the MOESP, are really low. Nevertheless it seems that
the input optimization is less sensitive against approximation errors in the Interface
Jacobians, if the MOESP method is utilized.
For the parameter useErrDiffEqu the optimal value determined by utilizing the RLS
is true and for the MOESP it is false, therefore a closer look on the results leading
to those values is necessary. Both optimal values are not clearly determined, for both
cases the majority for true respectively false was only around 66%. Therefore there
is not a high confidence in the determined optimal values. The heatmap depicted in
Figure 3.19 shows that useErrDiffEqu is not significant for the performance of the
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coupling method if the RLS is utilized. This is in contrast to the fact that the signifi-
cance of useErrDiffEqu is stated as 22% if the MOESP is used, as it is stated in Figure
3.29 or Table 3.11. This leads to the conclusion that overall setting useErrDiffEqu to
false may be the better choice but it can not be guaranteed and may depend on the
example.
The parameter λ and windowSize can be compared because both parameters affect
the number of considered samples for the online system identification. The RLS is
a recursive method and the parameter λ weighted the samples descending, a rule of
thumb is that approximately 1

1�λ samples are of importance for the RLS. For the
MOESP method windowSize denotes the samples of the moving window. Comparing
the optimal values for λ with 0.996, i.e. � 400 considered samples, and 778 for mode-
lOrder, leads to the fact that in both cases a high number of considered samples are
beneficial. It should be pointed out that for the RLS method the significance of λ is
negligible, as depicted in Figure 3.19 or Table 3.10. But for the MOESP method the
choice of windowSize has slight influence, as one can see in Figure 3.29 or Table 3.11.
The number of states for identifying the required Interface Jacobians is determined by
the parameter modelOrder if the MOESP method is utilized and if the RLS is used
the parameters M and N imply this information. The parameter modelOrder and
M, N can not be compared directly but the determined optimal values show similar
results. The best values are for modelOrder 1 and also M and N should be set to
1 for generating the best results. Also the analysis of variance for these parameters
shows strong similarities, because the choice of the values are of high significance for
the coupling method. For the case of utilizing the RLS the interaction effect of M and
N has a very high influence with 59%, also the main effect of M and N is high with
14%.
Comparing the analyzed results of utilizing the RLS and the MOESP for the approxi-
mation of the Interface Jacobians leads to the conclusion that the RLS based coupling
method is easier to parametrize, because only the choice of M and N is highly signif-
icant. For the MOESP method more parameters influence the quality of the results
and therefore the parametrization is more complicated. A second aspect is that the
learning phase is slightly smaller if the RLS is utilized. Comparing the sorted error
measures εmono,global in Figures 3.38 and 3.45 leads to the conclusion that the lowest
εmono,global is reached by utilizing the MOESP method, but the average of the low-
est 1000 or 2000 simulation runs is better if the RLS is utilized. Therefore and all
in all, the RLS is the preferred system identification method because it is easier to
parametrize and more robust, but the MOESP method is still a fine alternative.

3.3 Stability Analysis

The stability of a method is a crucial property and therefore it should be analyzed in
detail. First of all, a clarification of the term stability is necessary, because different
stability concepts exist and it should be made clear what kind of stability is investigated
in this section. For co-simulation the so-called zero-stability is a fundamental property,
because it means that with a convergence of the communication step size ∆T Ñ 0 the
co-simulation results converges too, see e.g. [1, 29]. Zero-stability can be guaranteed
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for the dual mass oscillator because there is no algebraic loop, which can easily be
seen because the direct feed-through of S1 is zero. Zero-stability is a property of the
subsystems and the modeling of the subsystems and therefore zero-stability can not
be influenced by the coupling method. This means zero-stability is a basic assumption
of a co-simulation in general.
The term numerical stability deals with the influence of errors arising from a finite
communication step size, which includes for example the coupling error resulting from
the unavoidable extrapolation of the subsystem inputs. This kind of stability is highly
dependent on the coupling method and is therefore of interest. It should be mentioned,
that numerical stability is always connected to a test problem. As the stability depends
on the chosen test problem, it is sensible to utilize a widely known benchmark example.
For this work the linear dual mass oscillator has been chosen, for details see Section
3.1. The stability analysis will analyze the case of exact Interface Jacobians only,
because the approximation of Interface Jacobians always requires a learning phase
during which the signal-based coupling would lead to instabilities, which would falsify
the analysis. Therefore the focus is put on analysing the stability of the method
without the influence of the approximation of the Interface Jacobians.
The stability analysis for the case of approximated Interface Jacobians is carried out
regarding exponential and bounded-input bounded-output (BIBO) stability, for details
see [25, 41]. The terms exponential and BIBO stability are treated simultaneously as
they can be computed based on the same indicator, the so-called Bohl exponent. For
free and time invariant systems Lyapunov stability is sufficient, but for time variant
systems additional stability concepts exist. Uniform stability means that the transition
matrix has to be bounded by an independent constant, this is in contrast to Lyapunov
stability where this constant may depend on the initial time. Additionally the term
asymptotic stability exist, this means that any perturbed motion tends to the original
motion as the time tends to infinity, which means the limit of the transition matrix
is the zero matrix as the time tends to infinity. Combining asymptotic and uniform
stability, results in uniform asymptotic stable systems and it can be shown that these
systems are equivalent to exponential stable systems. Therefore the concept of stability
is for time variant systems more complicated as for time invariant ones and exponential
stability is the most restrictive stability measure. Regarding disturbances, exponential
stability is the most robust stability measure for free systems. For forced systems, i.e.
the systems depend on an input, the stability is typically analyzed in the sense of
BIBO-stability. This means that the system reacts on a bounded input sequence
always with a bounded output sequence.

3.3.1 Numerical Stability

The numerical stability analysis deals with the case of exact Interface Jacobians and
therefore the linear dual mass oscillator from Section 3.1 is chosen. As proposed in
the previous section the RLS is chosen as system identification method. The param-
eters of the coupling method are based on the sensitivity analysis from the previous
section and are stated in Table 3.5. For comparing the stability analysis of the Model-
based Pre-Step Stabilization Method the classical zero-order-hold, the Nearly Energy
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Preserving Coupling Element (NEPCE) and the Model-based Corrector (MBCorr) ap-
proach have been chosen. The NEPCE method, for details see [6, 7], is a signal based
coupling method which compensates the coupling error in delayed manner. As the
Model-based Pre-Step Stabilization Method, the MBCorr approach, for details see [5],
utilizes information of the subsystems and therefore the MBCorr is an ideal candidate
for comparison, as the assumptions and the utilized information is the same as for the
Model-based Pre-Step Stabilization Method.
In the analysis the communication step size ∆T is varied from 0.5ms to 10ms, addition-
ally the stiffness ck and the damping coefficient dk of the spring-damper, representing
the coupling between the two masses, is varied too. Based on every triple p∆T, ck, dkq
a co-simulation is performed, leading to three signals as results, each. These simula-
tion results are the basis for the determination whether the co-simulation is stable or
instable.
The triple p∆T, ck, dkq represents an instable co-simulation, if the amplitude of one of
the three results in the last 20% of the simulation time is greater than the amplitude in
the first 20% of the simulation time. It should be pointed out that it is sufficient that
only one of the three results has to fulfill the condition so that the whole co-simulation
and respectively the triple p∆T, ck, dkq is classified as instable. The stability regions
are determined by the communication step size ∆T and the quantity ck

dk
. If ck

dk
Ñ 8

this means, that the influence of the stiffness is much higher than of the damping, this
can be approximately seen as a rigid connection and for this case the co-simulation
is sensitive to extrapolation errors. Therefore an upper boundary according ck

dk
will

exist. Combining (3.4) with the coupling condition u1 � y2 and u2 � y1 leads to

y2 � ck px2 � x1q � dk p 9x2 � 9x1q ,

where x1 and x2 denote the position of the two masses. Based on this equation one
can see that if dk is much greater than ck the influence of the position of the masses is
negligible for the coupling force y2. Additionally the influence of x1 for the subsystem
S2 is of minor importance, as one can see by the definition ofB2 in (3.4). Therefore the
coupling of x1 is negligible but y2 still influences x1 and therefore instable behaviour
according x1 can be accumulated in S1. This may lead to inaccurate results or in the
worst case this can lead to an instable behaviour of the co-simulation. The choice of
ck and dk, so that ck px2 � x1q is approximately the same as dk p 9x2 � 9x1q represents
the case without stability issues. Due to the fact that 9x2 � 9x1 is roughly 100 times
larger than x2 � x1 the ratio ck

dk
� 100 represents the unproblematic choice of ck and

dk. Summarizing this means that for ck

dk
Ñ 0 and ck

dk
Ñ 8 problems with the stability

of the co-simulation are expected.
The stability regions of all considered coupling methods are depicted in Figure 3.52, for
a quantitative comparison the surface area of all four coupling methods are computed
as follows. On the x-axis the length unit lx is logarithmically defined, i.e. between
ck

dk
� 10�2 and ck

dk
� 103 are 5lx . On the y-axis the length unit is linear defined, i.e.

the difference of ∆ � 8ms and ∆ � 5ms is 3ms . For zero-order-hold coupling the
surface area is determined as Azoh :� 7.5ms lx, for the NEPCE approach the corre-
sponding stability region has a surface area of ANEPCE :� 10.5ms lx. Utilizing the
MBCorr approach is resulting in a stability region of size AMBCorr :� 19.5ms lx. The

96



3.3 Stability Analysis

Model-based Pre-Step Stabilization Method generates the largest stability region, with
a surface area of Apre�step :� 62ms lx. Comparing this stability region to the other
three is resulting in the fact, that the utilization of the presented coupling method is
increasing the stability region by a factor of Apre�step

Azoh
� 62

7.5 � 8.2 compared to zero-
order-hold coupling. Comparing it to the NEPCE approach is leading to an increased
stability region of Apre�step

ANEP CE
� 62

10.5 � 5.9 and comparing the MBCorr approach with the
Model-based Pre-Step Stabilization Method is leading to an increased stability region
by a factor of Apre�step

AMBCorr
� 62

19.5 � 3.2. The enlarged stability region of the presented
coupling method can be explained by the fact, that it is the only method which com-
pensates the coupling error in pre step manner.
Additionally one can observe, that there is a strong connection of the communica-
tion step size ∆T and the ratio ck

dk
, as the shape of the stability regions for MBCorr,

NEPCE and zero-order-hold coupling indicates. For a decreasing communication step
size ∆T all stability regions are getting wider, this can be explained as for ∆T Ñ 0
all combinations of ck and dk would lead to a stable co-simulation, independent of the
chosen coupling method, as the chosen test problem is zero-stable. Therefore only the
upper part of the stability region is of interest. The Model-based Corrector (MBCorr)
approach enlarges the stability region compared to the signal-based coupling methods
NEPCE and zero-order-hold. This can be explained by the fact that a model-based
approach makes use of additional information about the subsystems, which leads to
enlarged regions of stability. As NEPCE coupling compensates the extrapolation er-
ror, its stability region is enlarged compared to the classical zero-order-hold coupling.
These nested stability regions are understandable as with an increase in the complex-
ity of the coupling method the stability should increase, as additional information is
exploited.
In Figure 3.53 the stability region utilizing the zero-order-hold coupling approach is
depicted. There it can be seen that for ck

dk
  0.2s�1 and ck

dk
¡ 1000s�1 all simulations

are instable. Additionally one can observe, that by increasing ∆T the stability region
narrows. For ∆T ¡ 3ms no stable combination of ck and dk exists. The inverted V-
shaped stability region shows clearly the strong connection of ∆T and ck

dk
. The small

stable region in the upper right corner arises from alising effects and can therefore be
ignored, only connected stability regions are of importance. The NEPCE approach
leads to the stability region depicted in Figure 3.54. As before, the inverted V-shape
of the stability region is obvious, for ∆T ¡ 4ms no stable combination of ck and dk
exists. In Figure 3.55 the stability region of the Model-based Corrector approach is de-
picted, as before, the inverted V-shape of the stability region is evident. Additionally,
one can observe that the upper boundary of the communication step size ∆T is 5ms.
The stability region of the Model-based Pre-Step Stabilization Method is depicted in
Figure 3.56, there it is obvious that its shape is completely different from all others,
especially in the region where ck

dk
  0.1s�1 holds. The increased stability for small ra-

tios of ck

dk
arises from the pre-step manner of the coupling method, because due to the

utilization of the Interface Jacobians the instable behaviour triggered through x1 can
be compensated. Additionally, it can be observed that the stability region is nearly
independent from the communication step size, as the stability region is of rectangular
shape. According to the few stable points in the top, center part of Figure 3.56, a weak
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Figure 3.52: Comparison of the stability regions for different co-simulation techniques

dependency between ∆T and ck

dk
exists. As at the previous stability regions, the ratio

ck

dk
� 10s�1 is more likely to lead to stable co-simulations. The ratio ck

dk
has an upper

boundary for stable results as, none of the coupling methods achieve stable results for
ck

dk
¡ 2 � 104s�1, at least for relevant communication step sizes around 1ms.

This analysis has proven that with utilization of the Model-based Pre-Step Stabiliza-
tion Method the numerical stability is improved. This means the co-simulation is
stable for a wider range of ck and dk, it is only bounded by ck

dk
� 104s�1. Especially

remarkable is that in contrast to the other coupling methods, the stability region
for the Model-based Pre-Step Stabilization Method is nearly independent from the
communication step size ∆T , as one can see in Figure 3.52.

98
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Figure 3.53: Stability region for zero-order-hold coupling

Figure 3.54: Stability region for the NEPCE method
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Figure 3.55: Stability region for the Model-based Corrector Approach

Figure 3.56: Stability region for the Model-based Pre-Step Stabilization Method
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3.3 Stability Analysis

3.3.2 Exponential and BIBO-Stability

In contrast to the numerical stability analysis in the previous section, the focus of
this section is to analyze the Model-based Pre-Step Stabilization Method in terms of
exponential stability and BIBO-stability. Due to the fact that both stability concepts
are suitable for time variant systems, the case of approximated Interface Jacobians
can be analyzed. Therefore the nonlinear dual mass oscillator from Section 3.1.1 is
chosen as test problem. This means, that the time variant character of the analyzed
system is caused by the nonlinear character of the subsystem itself and additionally by
the approximation of the Interface Jacobians, which leads to time varying parameters.
As proposed in the previous section, the RLS has been chosen as system identification
method. The parametrization of the coupling method is based on the sensitivity
analysis of the previous section, the utilized parameters are stated in Table 3.12. All
relevant facts and definitions for evaluating exponential and BIBO-stability will be
stated in the following and are based on [25].
The discrete-time state space representation without direct feed-through is

xk�1 � Φk
Ax

k �Φk
Bu

k�1,

yk�1 � Ckxk�1.
(3.14)

An autonomous, free or unforced system can be written as

xk�1 � Φk
Ax

k. (3.15)

Definition 2 (see [41]). A linear system (3.14) is called exponentially stable, if there
exist reals α ¥ 1 and β P r0, 1q such that

}Φk,k0} ¤ αβk�k0 for all k0 ¤ k. (3.16)

The term

Φk,k :� I, Φk,k0 :� Φk�1
A Φk�2

A . . .Φk0
A for all k ¡ k0,

describes the transition matrix of (3.15). BIBO-stability means that any bounded
input generates a bounded output, more precisely stated in the following definition.

Definition 3 (see [41]). A linear time-variant system (3.14) is called BIBO-stable, if
from supkPN|uk|   8 follows supkPN|yk|   8.

The following theorem connects BIBO-stability and exponential stability.

Theorem 3.3.1 (see [41]). A linear system (3.14) is BIBO-stable if φkA,φkB and Ck

are bounded in k and the free system (3.15) is exponential stable.

As it is stated in (3.16), exponential stability is defined for one system and therefore,
the first step is to combine the two subsystems S1 and S2 of the non-linear dual mass
oscillator and the coupling element CoupEle, depicted in Figure 3.57, to one system
S1 � S2 � CoupEle. The introduced subsystem CoupEle represents the Model-based

101



3 Analysis of the Method

Figure 3.57: Rearranging of the co-simulation of two subsystems S1, S2 coupled via the
Coupling Element CoupEle into one system S1� S2� CoupEle

Pre-Step Stabilization Method and its state space representation will be derived in the
following.
Due to the fact that the exponential stability in [41] is defined for state space repre-
sentation only, S1, S2 and CoupEle will be stated in discrete-time time-variant state
space representations:

S1 :
xk�1

1 � Φk
A1x

k
1 �Φk

B1u
k�1
1 �Φk

Bex.
F k�1
ex. , (3.17)

yk�1
1 � Ck

1x
k�1
1 , (3.18)

S2 :
xk�1

2 � Φk
A2x

k
2 �Φk

B2u
k�1
2 , (3.19)

yk�1
2 � Ck

2x
k�1
2 �Dk

2u
k�1
2 , (3.20)

CoupEle :
xk�1
c � Φk

Ac
xkc �Φk

Bc
uk�1
c , (3.21)

yk�1
c � Ck

cx
k�1
c . (3.22)

The subsystems S1 and S2 represent the non-linear dual mass oscillator and are defined
in Section 3.1.1. In the following the representation of CoupEle will be derived. The
discrete-time method in Section 2.2.2 is the basis for this derivation.
The first step is the approximation of the monolithic output by the computation of δk
in

δk � pI � C̃
k

dq
�1
�
Ã
k

dδ
k�1 � B̃

k

dε
k�1 � D̃

k

dε
k
�
,

where the coupling error is defined as εk � Lyk � uk, inserting this in the equation
above results in

δk � pI � C̃
k

dq
�1
�
Ã
k

dδ
k�1 � B̃

k

d

�
Lyk�1 � uk�1�� D̃k

d

�
Lyk � uk

��
. (3.23)
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The model-based extrapolation of the monolithic output yk � δk can be computed as

ŷk�1 � pI � B̂
k
q�1Â

k �
yk � δk

�
. (3.24)

From inserting (2.71) in (2.70) the input optimization for two subsystems can be
written as

�
uk�1

1
uk�1

2



looomooon
�:uk�1

� ŷk�1 �
1
2

�
�� BSd1

Buk�1

�T � BSd1
Buk�1

� BSd1
Buk�1

�T	�1
0

0
� BSd2
Buk�1

�T � BSd2
Buk�1

� BSd2
Buk�1

�T	�1

�



loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon
�:Mat1

� . . .

�

�
�����
�

BSd1
Buk�1 � 2 0

0 BSd2
Buk�1 � 2

�
loooooooooooooomoooooooooooooon

�:Mat2

ŷk�1 � 2
�

BSd1
Byk 0
0 BSd2

Byk

�
loooooooomoooooooon

�:Mat3

yk � 2
�

BSd1
Buk 0
0 BSd2

Buk

�
loooooooomoooooooon

�:Mat4

uk

�
����� .

(3.25)

Inserting (3.23) in (3.24) results in

ŷk�1 � pI � B̂
k
q�1Â

k
�
yk � pI � C̃

k

dq
�1 � . . .

�
�
Ã
k

dδ
k�1 � B̃

k

d

�
Lyk�1 � uk�1�� D̃k

d

�
Lyk � uk

�� 	
.

(3.26)

Combining the input optimization in (3.25) with the model-based extrapolation in
(3.26) leads to

uk�1 �

�
I �

1
2Mat1Mat2



pI � B̂

k
q�1Â

k

looooooooooooooooooooooomooooooooooooooooooooooon
�:Mat5

�
yk � pI � C̃

k

dq
�1 � . . .

�
�
Ã
k

dδ
k�1 � B̃

k

d

�
Lyk�1 � uk�1�� D̃k

d

�
Lyk � uk

�� 	
� . . .

�
1
2Mat1

�
Mat3y

k �Mat4u
k
�
.
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After rearranging the equation reads as

uk�1 � �Mat5pI � C̃
k

dq
�1B̃

k

dlooooooooooooomooooooooooooon
�:Mat

uk�1Ñuk�1

uk�1 � . . .

�
�Mat5pI � C̃

k

dq
�1D̃

k

d �
1
2Mat1Mat4



loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

�:Mat
ukÑuk�1

uk � . . .

�Mat5pI � C̃
k

dq
�1Ã

k

dloooooooooooomoooooooooooon
�:Mat

δk�1Ñuk�1

δk�1 � . . . (3.27)

�Mat5pI � C̃
k

dq
�1B̃

k

dLlooooooooooooomooooooooooooon
�:Mat

yk�1Ñuk�1

yk�1 � . . .

�

�
Mat5

�
I � pI � C̃

k

dq
�1D̃

k

dL
	
�

1
2Mat1Mat3



looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

�:Mat
ykÑuk�1

yk.

CoupEle can be described as the state space system�
� uk

uk�1

δk

�

� Φk

Ac

�
�uk�1

uk

δk�1

�

�Φk

Bc

�
yk�1

yk



, (3.28)

with �
�uk�1

uk

δk�1

�



as states and �
yk�1

yk




as inputs. The state matrix

Φk
Ac

:�

�
� 0 I 0
Matuk�1Ñuk�1 MatukÑuk�1 Matδk�1Ñuk�1

�pI � C̃
k

dq
�1B̃

k

d �pI � C̃
k

dq
�1D̃

k

d pI � C̃
k

dq
�1Ã

k

d

�



and the input matrix

Φk
Bc

:�

�
� 0 0
Matyk�1Ñuk�1 MatykÑuk�1

pI � C̃
k

dq
�1B̃

k

dL pI � C̃
k

dq
�1D̃

k

dL

�
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can be derived from (3.23) and (3.27). The output equation from CoupEle reads as

uk�1 �
�
0 I 0

�loooomoooon
�:Ck

c

�
� uk

uk�1

δk

�

. (3.29)

The subsystems S1, S2 and CoupEle will be combined into one system, as it is shown
in Figure 3.57. Therefore the subsystems S1 and S2 are combined and rearranged,
leading to

yk�1 �

�
Ck

1Φk
A1 0

0 Ck
2Φk

A2


�
xk1
xk2



� . . .

�

�
Ck

1Φk
B1 0

0 Ck
2Φk

B2 �D
k
2



loooooooooooooooomoooooooooooooooon

�:MatkCB

uk�1 �

�
Φk
Bex.

0



F k�1
ex. .

The output of CoupEle, the quantity uk�1, is the input for S1 and S2 and therefore
(3.28) and (3.29) is inserted in the equation above, resulting in

yk�1 �

�
Ck

1Φk
A1 0

0 Ck
2Φk

A2


�
xk1
xk2



�MatkCBC

k
cΦk

Ac

�
�uk�1

uk

δk�1

�

� . . .

�MatkCBC
k
cΦk

Bc

�
yk�1

yk



�

�
Φk
Bex.

0



F k�1
ex. .

The states of the combined system S1� S2� CoupEle can be written as�
���������

uk�1

uk

δk�1

yk�1

yk

xk1
xk2

�
��������

.

Therefore the system can be stated as�
���������

uk

uk�1

δk

yk

yk�1

xk�1
1
xk�1

2

�
��������

� φkAcomb

�
���������

uk�1

uk

δk�1

yk�1

yk

xk1
xk2

�
��������

�

�
���������

0
0
0
0
0

Φk
Bex.

0

�
��������


loooomoooon
�:φk

Bcomb

F k�1
ex. , (3.30)
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lenrater s \tsim rsecs 1.0 2.0 3.0 4.0 5.0
0.25 0.9990 0.9846 0.9843 0.9838 0.9820
0.5 0.9870 0.9830 0.9800 0.9811 0.9789
0.75 0.9811 0.982 0.9808 0.9800 0.9800
1 0.9825 0.9801 0.9789 0.9790 0.9792

Table 3.14: Computed Bohl exponents for the co-simulation of the nonlinear dual mass
oscillator coupled with the Model-based Pre-Step Stabilization Method

with

φkAcomb :�

�
�������������

Φk
Ac

Φk
Bc

0 0
0 0
0 0

0 0 0 0 I 0 0
MatkCBC

k
cφ

k
Ac

MatkCBC
k
cφ

k
Bc

Ck
1φ

k
A1 Ck

2φ
k
A2

0
�
φkB1

0



0 0 0 φkA1 0

0
�

0
φkB2



0 0 0 0 φkA2

�
������������

.

The output equation of S1� S2� CoupEle reads as

yk�1 �
�
0 0 0 0 I 0 0

�loooooooooooooomoooooooooooooon
Ckcomb

�
���������

uk

uk�1

δk

yk

yk�1

xk�1
1
xk�1

2

�
��������

.

The system in (3.30) will be analyzed according to exponential stability. To evaluate
whether a system is exponential stable or not the so-called Bohl exponent

βpΦk
Aq :� lim sup

iÑ8
sup
k¥0

����Φk�i,k
���� 1

i

can be utilized, because the condition

βpΦk
Aq   1

is sufficient and necessary that a system (3.14) is exponential stable, see therefore [42].
The Bohl exponent βpφkAcombq is determined with a numerical robust method, which is
stated in [25]. The computed Bohl exponents are stated in Table 3.14, the simulation
time tsim and the interval length rate lenrate are varied. The transient time is set to
0.5 seconds, the interval length len is then determined via len � lenrateptsim � 0.5q.
From the fact that βpφkAcombq � 0.98 the system (3.30) is exponential stable. Due to
Theorem 3.3.1 and the fact that (3.30) is exponential stable and that the matrices
φkAcomb ,φ

k
Bcomb

,φkCcomb are bounded for all k, it follows that S1 � S2 � CoupEle is a
BIBO-stable system.

106



3.4 Accuracy Analysis

3.4 Accuracy Analysis

Although the main focus of the Model-based Pre-Step Stabilization Method is to im-
prove the performance of a co-simulation in terms of stability, the accuracy of the
co-simulation should not be ignored. Therefore the accuracy of the invented coupling
method will be compared to the classical zero-order-hold, the Nearly Energy Preserv-
ing Coupling Element and the Model-based Corrector approach in the following. Due
to the fact, that it is of interest how the accuracy of the co-simulation depends on the
stiffness ck and damping dk of the spring, representing the coupling between the two
masses, and the communication step size ∆T , the chosen example is the linear dual
mass oscillator from Section 3.1. Therefore the continuous version of the Model-based
Pre-Step Stabilization Method, with exact Interface Jacobians is utilized, the parame-
ters of the coupling method are the optimized ones, stated in Table 3.5. The measure
for the accuracy is the error εmono,global defined in (3.9), this means all three coupled
signals, the position x1 and velocity 9x1 of the mass in subsystem 1 and the coupling
force F between the two masses are considered with equal weight.
In Figure 3.58 the accuracy of zero-order-hold coupling dependent on the communi-
cation step size ∆T and the rate ck

dk
is depicted. The quantity ck

dk
has been chosen

for the same reasons as described in Section 3.2.2. It should be pointed out, that the
color of the points in the figure represents εmono,global, the maximum is set to 1 because
εmono,global is a relative error and therefore a differentiation between errors over 100% is
negligible. One can see in Figure 3.58 that zero-order-hold coupling generates results
with a good accuracy for ck

dk
P r0.5s�1, 1000s�1s for ∆T ¤ 1ms. For ∆T � 2ms or

∆T � 3ms the range of ck

dk
narrows symmetrically around ck

dk
� 10. For a commu-

nication step size larger than 3ms no sufficiently accurate result is possible. As an
exception the results with ∆T � 10ms and ck

dk
P r50s�1, 2000s�1s act but these results

can be ignored, because they origin from aliasing effects and therefore those results
are of no interest. The accuracy plot of the NEPCE method in Figure 3.59 looks
similar to the one of the zero-order-hold coupling, the only difference is that also for
∆T � 4ms and ∆T � 5ms sufficiently accurate results exist. This means that due
to the utilization of the NEPCE method the usage of a higher communication step
size is possible. As supposed, the usage of model-based coupling methods leads to an
increased accuracy, as it is depicted for the Model-based Corrector approach in Figure
3.60. There it is obvious that the area of sufficiently accurate results is enlarged, there
accurate results exists up to ∆T � 8ms. As it has been detected in the stability anal-
ysis in Section 3.3.1, there is an interaction between the communication step size ∆T
and ck

dk
, as the inverted V-shape of the region of accurate results in Figures 3.58 - 3.60

indicates. The region of accurate results for the Model-based Pre-Step Stabilization
Method is depicted in Figure 3.61, there it is obvious that the area is larger than the
ones before. This means, that the analyzed coupling method has the effect, that for
a wider range of ck

dk
, a large communication step size can be chosen and the results

will still be accurate. Therefore the Model-based Pre-Step Stabilization Method is not
as sensitive for the choice of the communication step size ∆T as all other mentioned
coupling methods. Additionally, the interaction of ∆T and ck

dk
is less than compared

with the other coupling methods, as the region of accurate results is approximately
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Figure 3.58: Accuracy of zero-order-hold coupling depending on ∆T and ck
dk

Figure 3.59: Accuracy of NEPCE coupling depending on ∆T and ck
dk

rectangular.
The progression of εmono,global for fixed values of ck � 2e5Nm�1 and dk � 200Nsm�1

and a varying communication step size are depicted in Figure 3.62, for all four men-
tioned coupling methods. There again it should be denoted that the maximum error
is set to 1. So one can observe that the zero-order-hold coupling (ZOH) and the
NEPCE coupling are inaccurate for ∆T ¥ 2ms. The declining for ZOH coupling for
∆T ¡ 7ms origins from aliasing effects and can therefore be ignored. The model-based
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Figure 3.60: Accuracy of the Model-based Corrector approach depending on ∆T and
ck
dk

Figure 3.61: Accuracy of the Model-based Pre-Step Stabilization Method depending on
∆T and ck

dk

coupling methods show an obvious increase by the border of accurate results for the
communication step size. For the Model-based Corrector approach accurate results
are possible for ∆T � 5ms and for the Model-based Pre-Step Stabilization Method
even up to 9ms. Additionally it should be denoted that for all ∆T ¡ 2ms the error
εmono,global of the Pre-Step method is obviously smaller than the error of the MBCorr

109



3 Analysis of the Method

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZOH
NEPCE
MBCorr
Pre-Step

Figure 3.62: Comparison of εmono,global of different co-simulation coupling methods at
varying communication step size ∆T for ck � 2e5 and dk � 200

method. Communication step sizes smaller than 0.5ms are of no interest for the ana-
lyzed method, due to two reasons. First, the invented co-simulation coupling method
is a stabilization method and is therefore designed to handle large communication step
sizes. Second, the classical zero-order-hold coupling and other signal based coupling
methods generate for small communication step sizes sufficiently accurate results and
therefore there is no need for improvements. Summarizing this means, that the im-
provements by utilizing the Model-based Pre-Step Stabilization Method are depicted
in Figure 3.62, in the area between the MBCorr result and the Pre-Step result from
r2ms, 10mss.
For ∆T � 1ms the position x1, the velocity 9x1 and the coupling force F signal are
depicted in Figure 3.63, there all four different coupling methods and the monolithic
results, acting as reference solution, are shown. There one can see that both signal-
based coupling methods, the ZOH and the NEPCE method are instable and therefore
the results are of no use. Both model-based methods show similar results, both are
equally and satisfyingly accurate. The results of MBCorr and the Pre-Step method by
enlarging the communication step size to ∆T � 2ms are depicted in 3.64. There it is
obvious that both results are quite accurate but especially in the force signal there is a
clear difference between the two results. The Pre-Step result precedes and the MBCorr
result follows the monolithic result. For a closer look on this phenomenon a zoom in
Figure 3.65 is given. There one can see the difference between the two model-based
approaches clearly. In the communication point at t � 0.02s the Pre-Step Method
computes an approximation of the monolithic result and then optimizes the input in
such a way that at t � 0.02s�∆T � 0.022s the co-simulated result coincides with the
approximated monolithic result. Due to the direct feed-through term in the second
subsystem of the dual mass oscillator, see (3.4), this optimized input effects instan-
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3.4 Accuracy Analysis

Figure 3.63: Comparison of position x1, velocity 9x1 and coupling force F of different
co-simulation coupling methods at ∆T � 1ms for ck � 2e5 and dk � 200

taneously the subsystem resulting in the discontinuous gap in co-simulation result at
t � 0.02s, therefore the Pre-Step method precedes the monolithic result. The Model-
based Corrector approach tries to preserve in the co-simulated result the same energy
as in the monolithic result. This means that the integral over r0.02s, 0.022ss from
the monolithic and co-simulated result should coincide, i.e. the two shaded regions in
Figure 3.65 should be from equal size. This phenomenon is a natural property of these
coupling methods and does not origin from a special choice of the example or of the
parameters. Figure 3.66 depicts the result of the two model-based coupling methods
with a communication step size ∆T � 6ms. There it is obvious that the MBCorr
result is instable and is therefore of no use. The result from the Model-based Pre-Step
Stabilization Method is still stable and from sufficient accuracy, taken into account
that ∆T � 6ms is a large choice for this example.
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Figure 3.64: Comparison of position x1, velocity 9x1 and coupling force F of the Model-
based Corrector and the Model-based Pre-Step Stabilization Method at
∆T � 2ms for ck � 2e5 and dk � 200

Figure 3.65: Comparison of the Model-based Pre-Step Stabilization method and the
Model-based Corrector approach
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Figure 3.66: Comparison of position x1, velocity 9x1 and coupling force F of the Model-
based Corrector and the Model-based Pre-Step Stabilization Method at
∆T � 6ms for ck � 2e5 and dk � 200
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4
Evaluation

The evaluation of a new method is the crucial part to demonstrate the im-
proved performance. There the advantages and benefits of the introduced
method should be made clear, obviously and reasonably.

This chapter deals with the evaluation of the Model-based Pre-Step Stabilization
Method, it is compared to state of the art signal- and model-based coupling meth-
ods. As evaluation example the co-simulation of a helicopter and its controller has
been chosen. In the following, the setup of the co-simulation will be stated and ex-
plained in detail, including a description of both subsystems, the helicopter and the
controller. Additional information and further details about the helicopter and its
controller can be found in [43, 44, 45, 46]. The results of the co-simulation will be
analyzed in detail, with a focus on the stability and accuracy for large communication
step sizes.

4.1 Helicopter-Control Co-Simulation

In this section the co-simulation of a helicopter and its controller will be treated. The
helicopter and the controller model will be stated and discussed in the following, both
models origin from [44] and additional details about the helicopter and its controller
can be found in [43, 45, 46]. The aircraft model represents a Westland Lynx with
around 4500 kg gross weight, which is used for multiple purposes in military. The heli-
copter consists of a twin engine and a four blade semi-rigid main rotor. The controller
is from type H8 and the pilot is simulated by stating the reference commandos which
are required for the controller. The utilized design is called full-authority-controller,
which means that the controller has the full control over all blade angels. More de-
tails about the helicopter and the controller will be stated in the following subsections.

In the following the various reasons for choosing this example for the evaluation
of the Model-based Pre-Step Stabilization Method will be discussed:
(1) Although the helicopter and its controller represent a complex system the exact
state space representations are accessible. Therefore the influence of approximated
and exact Interface Jacobians can be analyzed and studied in detail.
(2) The co-simulation of a helicopter is challenging because the natural, physical
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dynamics of a helicopter are strongly interconnected, i.e. the states have strong
mutual couplings, and a helicopter is in general an instable system. Therefore the
unavoidable extrapolation error of a co-simulation can be critical in terms of accuracy
and stability.
(3) This co-simulation is stiff, because the stiffness of the monolithic approach is
determined by

max|λpAmonoq|

min|λpAmonoq|
� 3.3e5,

where |λpAmonoq| denotes the absolute value of the eigenvalues of the monolithic state
matrix Amono. Due to the fact that a co-simulation can be seen as an integration
method, like the well-known Explicit Euler method, the expression stiff co-simulation
origins from the theory of numerical solvers for ordinary differential equations. For
classical integration methods the stability depends on the sampling rate or the step
size of the integration and the so-called stiffness of the example, the higher the stiffness
the lower the sampling rate has to be. Typical as example the well-known Dahlquist
Equation 9x � λx is chosen and for this case the stiffness is represented by the para-
meter λ. For general examples the stiffness is determined by the quotient of the
highest absolute eigenvalue divided by the smallest one λmax

λmin
. Due to this quotient, it

is possible to evaluate the stiffness of a co-simulation, based on the eigenvalues of the
monolithic state matrix. This determined stiffness of the co-simulation represents an
upper boundary of the sampling rate, in the case of co-simulation the sampling rate is
the communication step size ∆T . From an other point of view, a stiff system consists
of fast and slow dynamics and to keep the system stable the sampling rate has to be
chosen according to the fast dynamic.
Due to these reasons, this co-simulation example is well chosen for evaluating the in-
troduced coupling method. In the upper part of Figure 4.1 the standard control circuit
is shown, which represents the helicopter and its control. The pilot is represented by
the specification of the commandos r, therefore this term is called pilot commandos.
The lower part in this figure shows the co-simulation, the controller is stated as sub-
system S2 and the helicopter is represented by the subsystem S1. The block between
the two subsystems represents the co-simulation coupling, this means every subsys-
tem has their own solver and is only communicating with each other at discrete time
points, the communication time points. The communication between the subsystems
is exclusive by exchanging its output signals y1 and y2. The co-simulation coupling
will be executed in parallel and therefore both subsystem inputs u1 and u2 have to be
extrapolated. The data exchange is for both subsystems at the same communication
time points, the time between two time points is denoted as the communication step
size ∆T and is constant for the whole simulation.
Due to the fact that the influence of the approximation of the required Interface Ja-
cobians will be investigated, the continuous-time version, for the utilization of exact
Interface Jacobians, and the discrete-time version, for the use of approximated Inter-
face Jacobians, of the Model-based Pre-Step Stabilization Method will be applied. All
needed settings and parameters for both versions of the coupling method are stated
and derived in Section 3.2, and can be found in Table 3.12 for the discrete-time version
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4.1 Helicopter-Control Co-Simulation

Figure 4.1: Control circuit of the helicopter transformed into a co-simulation of two
subsystems

and in Table 3.5 for the continuous-time version. Due to the fact that the timeLearning
and the timeSwitchphase are parameters which depend on the chosen communication
step size ∆T , they have to be adjusted to fit the different communication step size in
the helicopter control co-simulation. In the sensitivity analysis ∆T � 1ms and for the
helicopter control co-simulation the communication step size is around ∆T � 100ms
and therefore the chosen value of timeLearning with 12s is of the same character as
0.22s for the dual mass oscillator, the same holds for the timeSwitchphase with an
chosen value of 1s for the following example. The simulation end time is for all runs
set to 150s.

4.1.1 Helicopter Model

The modeling of a helicopter is a challenging task as the dynamics of the rotors and
aerodynamics are highly coupled and sensitive. As described and discussed in [43], the
modeling can be differentiated into three levels with a growing complexity of the model.
The level 1 modeling consists of rigid blades and a linear 2-D model of aerodynamics.
By increasing the complexity for a level 2 modeled helicopter, a number of blade elastic
are considered, e.g. the second order rotor flapping and coning modes, are included.
The aerodynamics are then described as nonlinear 3-D equations and local effects of
the blades are considered. In a level 3 modeled helicopter the rotor is modeled in
detail, with all elastic modes and the aerodynamics are considering turbulences and
therefore a full wake analysis is carried out. The more complex the helicopter is, the
closer the simulated results are to the real flight behaviour. Depending on the task one
is interested in, the level of modeling should be chosen. For example if one is interested
in the design of the rotor, only a level 3 modeled helicopter will provide helpful data.
If one is interested to design a controller or conduct a parametric study of the flight
quality for example, a level 1 helicopter model will be sufficient. The helicopter model
used in this co-simulation is based on the non-linear Rationalised Helicopter Model
from [43], which is level 2 modeled. As it is shown in [43] experimental data has
proven that the Rationalised Helicopter Model is of sufficient accuracy. The model
itself is instable due to strong cross couplings, which origin from the strong coupling
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of the natural dynamics of a helicopter. As the focus lies on the evaluation of the
Model-based Pre-Step Stabilization Method, a linearized state space model of the
Rationalised Helicopter Model is sufficiently, as shown in [44, 46]. The linearized
model is a reasonable choice, as the focus of the analysis will lie on the comparison of
the co-simulated and the monolithic results and not to real flight data. In the following
the linearized state space model of the helicopter will be stated and discussed. The
subsystem 1 inherits the linear continuous-time time-invariant state space model

9x1 � A1x1 �B1u1, (4.1)
y1 � C1x1. (4.2)

with

x1 :�

�
�����������

θ
φ
p
q
ξ
vx
vy
vz

�
����������


(4.3)

where θ denotes the pitch and φ the roll attitude. The states p and q stand for the
roll and pitch rate and ξ describes the yaw rate, with vx, vy, vz the velocity of the
helicopter in forward, lateral and vertical direction is denoted. Figure 4.2 describes
the orientation of the helicopter, it should be mentioned that the positive z-direction is
pointing towards the ground. The numerical values of the matricesA1,B1 and C1 can
be found in [47]. Computing the eigenvalues λA1 of A1 is resulting in maxpRepλA1qq �
0.2342, which means that the helicopter is an instable system. The output of the
helicopter y1 consists of

y1 :�

�
�������

9H
θ
φ
9ψ
p
q

�
������

, (4.4)

where 9H stands for the heave velocity and 9ψ for the heading rate. The outputs of
the helicopter y1 are divided into controller outputs yctrl :�

�
9H, θ, φ, 9ψ

	T
and rate

signals yrate :� pp, qqT . The input of the helicopter u1 are the four blade angels
• main rotor collective,
• longitudinal collective,
• lateral cyclic,
• tail rotor collective,
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4.1 Helicopter-Control Co-Simulation

Figure 4.2: Illustration of the three movement directions of the helicopter

who are determined by the controller, which will be discussed in detail in the next
section. In the following the effect of the four blade angels to the motion of the
helicopter will be discussed. The main rotor collective changes all the blade angels at
the same time and therefore is mainly controlling the lift of the helicopter, represented
mainly by the heave velocity 9H of the helicopter. The longitudinal collective changes
the angels of the blade in such a way that the helicopter moves longitudinally, therefore
the helicopter is tilting which is mainly described by the pitch θ of the helicopter. The
lateral cyclic is responsible for the movement of the helicopter in lateral direction,
therefore the angels of the blade are changed in such a way that mainly the roll is
influenced. The tail rotor collective is used to compensate the torque generated by
the main rotor and stops the helicopter from spinning around, it can also be utilized
to move the helicopter in lateral direction. It should be emphasized that the motion
of a helicopter is not as decoupled as it has been described, the dynamics are actually
highly coupled.
As one part of the evaluation will be to investigate the influence of utilizing a system
identification for approximating the required Interface Jacobians, the exact Interface
Jacobians are needed too. Based on the numerical values of A1,B1 and C1 from
[47] the exact Interface Jacobians BS1

By
, BS1
Bu

and BS1
B 9u

can be computed by applying the
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transformation rules (2.12) and (2.13), resulting in

BS1

By
�

�
�������

�2.91e� 01 1.37e� 04 1.70e� 05 4.45e� 02 �1.51e� 01 1.69e� 01
0.00e� 00 0.00e� 00 0.00e� 00 5.34e� 02 0.00e� 00 1.00e� 00
0.00e� 00 0.00e� 00 0.00e� 00 5.95e� 02 1.00e� 00 1.16e� 06
�1.38e� 03 0.00e� 00 0.00e� 00 �7.35e� 01 �2.06e� 00 �3.91e� 01
�5.79e� 03 0.00e� 00 0.00e� 00 �6.36e� 02 �1.16e� 01 �2.55e� 00
3.16e� 03 0.00e� 00 0.00e� 00 �3.29e� 16 4.39e� 01 �2.00e� 00

�
������


(4.5)

BS1

Bu
�

�
�������

4.82e� 00 �3.11e� 02 �3.00e� 02 1.25e� 02
0.00e� 00 0.00e� 00 0.00e� 00 0.00e� 00
0.00e� 00 0.00e� 00 0.00e� 00 0.00e� 00
3.06e� 01 �1.05e� 02 �4.97e� 01 �2.07e� 01
1.24e� 01 8.28e� 02 �2.75e� 00 �1.79e� 02
�3.64e� 02 4.75e� 01 1.43e� 02 0.00e� 00

�
������

. (4.6)

Due to the fact, that the direct feed-through term of helicopter is zero it is clear that
BS1
B 9u

� 0 holds, see therefore (2.14). The subsystem is solved with an numerical solver,
the explicit Euler method with a step size of 2ms, for details of the chosen numerical
solver, see for example [40]. The initial conditions are xp0q � 0, which represents that
the helicopter is standing on the ground and both rotors are standing still.

4.1.2 Controller Model

Control theory is a huge field of research with a long history and mostly the aim of the
controller is to damp disturbances from the outside, or trying to follow a given reference
track, as accurate as possible. Due to the assumptions and requirements different
control strategies can be applied, e.g. adaptive control, optimal control, stochastic
control or robust control. Robust control is the part which will be in the focus of this
section, as the controller, representing the subsystem 2 of the co-simulation, is from
type H8. This controller has been chosen, as it is suited for tracking a given reference
signal. As the focus of this chapter is the evaluation of the Model-based Pre-Step
Stabilization method and not the design of the controller, the details of H8 controller
in general and for this example can be found e.g. in [44, 45]. Nevertheless the most
important facts about H8 control theory will be stated in this section.
As the designed controller is a so-called full authority controller, the pilot is only
defining the reference quantities r, further called pilot commands. As it is shown in
Figure 4.1 the input of the controller is

e :�
�
r � yctrl
0� yrate



.

The differentiation of the outputs of the helicopter into yctrl and yrate origins from the
fact that only for the heave velocity 9H, the pitch attitude p, the roll attitude r and
the heading rate 9ψ a reference signal, the pilot commands, are defined. For the roll
and pitch rate the reference signal is always constantly zero.
In the following, a brief summary of H8 control will be stated, based on [44], additional
information can be found for example in [45, 48, 49]. The theory of H8 control can

120



4.1 Helicopter-Control Co-Simulation

be assigned to the broad topic of robust control, there the aim is to design controllers
which compensate the influence of disturbances sufficiently or improve the accuracy
of a tracking problem. In Figure 4.3 the basic structure of a H8 controller is shown,
there u denotes the control signals, v the measured signals, w the exogenous input,
typically a disturbance or command signals and z stands for the error signals, which
should be minimized by the controller. The aim of H8 control is to find a controller
K which minimizes

||F lpP,Kq||8,

where F lpP,Kq denotes the closed-loop transfer function from w to z, i.e. z �
FlpP,Kqw. The || � ||8 can be interpreted in the frequency domain as

||F lpP,Kq||8 � max
ω

σ pF lpP,Kqpjωqq

where ω stands for the frequency, j denotes the imaginary unit and σpAq stands for
the maximum singular value of the matrix A. In the time domain holds

||F lpP,Kq||8 � max
wptq�0

||zptq||2
||wptq||2

with ||zptq||2 :�
b³8

0
°
ipziptqqdt. Roughly speaking one can say that minimizing

||F lpP,Kq||8 means that the reaction of P to an exogenous input w should be mini-
mized. A version of H8 control is the so-called mixed-sensitivity approach. The differ-
ence to the classical one is that instead of one, two transfer functions are considered,
namely S, the transfer function from w to the output, and KS, the transfer function
from w to u. In Figure 4.4 the structure of the S{KS mixed-sensitivity H8 control
loop is depicted, there it is visible that there are two error signals z1 � W 1pr � yq
and z2 � W 2u. The quantity r denotes reference signals which should be tracked.
Therefore the optimization problem can be formulated as finding a controller K which
minimizes

∥∥∥∥∥
�
W 1S
W 2KS


∥∥∥∥∥
8

.

For the utilized controller of this co-simulation, the S{KS mixed-sensitivity approach
has been augmented by a scalingW 3 of the reference signals r, so that all signals can
be equally well tracked. For details of how the weights W 1,W 2 and W 3 are chosen,
see [44, 45], all needed information for computing the specific controller can be found
in [47].
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Figure 4.3: General control design, from
[44]

Figure 4.4: S/KS mixed-sensitivity min-
imization in standard form
(tracking), from [44]

The utilized controller for the helicopter control co-simulation is described as the fol-
lowing linear, continuous-time, time-invariant state space system

9x2 � A2x2 �B2u2, (4.7)
y2 � C2x2. (4.8)

The number of states is 20 and the input u2 is the difference of the outputs of the
helicopter and the reference signals, this means

u2 :�

�
�������

9Href � 9H
θref � θ
φref � φ
9ψref � 9ψ
�p
�q

�
������

.

The outputs of the controller y2 are the same four signals, which are the inputs of the
helicopter, namely

• main rotor collective,
• longitudinal collective,
• lateral cyclic,
• tail rotor collective.

The physical connection and description of the in- and outputs of the controller is
stated in the previous section. Computing the eigenvalues λA2 of A2 one clearly sees
that the subsystem of the controller is stiff because maxpabsp<pλA2 qqq

minpabsp<pλA2 qqq
� 3.4e5. This makes

it even more challenging to use such a controller as a subsystem for co-simulation. As
the main part of the evaluation of the invented coupling method is to analyze the
effect of approximated Interface Jacobians, the exact Interface Jacobians BS2

By
, BS2
Bu

and
BS2
B 9u

are required. By applying (2.12) and (2.13) to A2,B2 and C2, the exact Interface
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Jacobians can be determined as

BS2

By
�

�
���
�2.25e� 01 �3.69e� 01 �3.05e� 00 4.07e� 01
�4.99e� 01 �2.13e� 02 �1.78e� 01 2.37e� 02
�4.83e� 00 �2.06e� 01 �2.78e� 01 2.55e� 01
5.41e� 01 2.32e� 02 2.19e� 01 �2.67e� 02

�
��
 (4.9)

BS2

Bu
�

�
���

6.34e� 01 1.90e� 02 �4.93e� 01 1.87e� 02 �2.68e� 01 1.25e� 01
2.84e� 02 1.12e� 03 �2.86e� 02 1.08e� 03 �1.55e� 02 7.33e� 01
2.77e� 01 1.06e� 02 �4.58e� 01 1.16e� 02 �1.60e� 01 5.33e� 00
�3.04e� 02 �1.19e� 03 3.32e� 02 �1.25e� 03 1.69e� 02 �7.66e� 01

�
��
.

(4.10)

As there is no direct feed-through term in (4.8) the BS2
B 9u

is a zero matrix with 4 columns
and 6 rows. As the subsystem representing the helicopter, also the controller, is solved
by the explicit Euler method with a step size of 2ms, for details of the explicit Euler
method see [40]. The initial conditions are set to zero for all states. Neither the
helicopter nor the controller model consist of a direct feed-through which means that
the co-simulation is zero-stable.

Before running the co-simulation the pilot commands r have to be defined. The
four choosable signals of the pilot are the heave velocity 9Href , the pitch attitude θref ,
the roll attitude φref and the heading rate 9ψref , the remaining two outputs of the
helicopter the pitch rate and the roll rate are always specified as zero reference signals.
As this selection influences the whole simulation, five different versions are tested and
analyzed. The versions differ in aspects of amplitude, simultaneous combination of
the four signals and discontinuous gaps. The first version is depicted in Figure 4.5,
there it is obvious that no simultaneous action in the pilot commands exists, this
means

If rrisptq � 0 ñ rrjsptq � 0 @j � i for every t.

In other words this means, that if one of the four pilot commands is unequal zero, all
others are zero for this moment. The idea behind this choice is that the dynamics of the
whole simulation should be easier to handle for the co-simulation, as there is no simul-
taneous excitation origin from the pilot commands. Additionally this version is free of
discontinuous gaps which should also be less challenging for the co-simulation. In the
second version of the pilot commands, only the heave velocity and the heading rate are
unequal zero, as depicted in Figure 4.6. The heave velocity consists of different steps
according height and duration and is therefore highly discontinuous. Simultaneously
the heading rate is varying between different parts of sinusoidal and steps functions.
Therefore this version may be more challenging, as there is more simultaneous action
and discontinuous gaps. The main difference of the third version, depicted in Figure
4.7, is that the pitch attitude is unequal zero. The discontinuous steps of the heave
velocity are more regular and also the heading rate does not change its dynamics as
often and fast as in version two. The fourth version of pilot commands is depicted
in Figure 4.8, there again only the heave velocity and the heading rate are unequal
zero. But the difference to the version two is that there are no discontinuous gaps in
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Figure 4.5: Pilot commands version 1

the heave velocity and also the heading rate consists of only one sinusoidal part with
only one pause. Therefore different results between version two and four should be
mainly based on the discontinuities of the pilot commands. In Figure 4.9 all four sig-
nals are varying nearly all the time, this means there is a lot of action simultaneously.
Especially noticeable is that the heading rate consists of only discountinuous steps.
Therefore the fifth version should be the most challenging one for the co-simulation.
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Figure 4.6: Pilot commands version 2
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Figure 4.7: Pilot commands version 3
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Figure 4.8: Pilot commands version 4
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Figure 4.9: Pilot commands version 5
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4.1.3 Results

First of all the effect of approximation errors of the required Interface Jacobians will be
investigated, this is possible because the exact Interface Jacobians of both subsystems
are accessible, see therefore (4.5), (4.6), (4.9) and (4.10). In Figure 4.10 the heave
velocity, the heading rate and also the z-velocity of the helicopter are depicted utilizing
the Model-based Pre-Step Stabilization Method with approximated and exact Interface
Jacobians. The surprising fact is that the utilization of exact Interface Jacobians
is leading immediately to instable results, as just a few seconds after the learning
phase, where in both cases the coupling is ZOH, the result starts to oscillate. The
reason for this paradox behavior is deep-set in the definition and computation of the
Interface Jacobians and will be discussed in the following. Both subsystems are stated
as classical continuous-time state space model, represented by the matrices A,B,C
and D, therefore the transformation rule (2.12)

BS1

By1
� C1ptqA1ptqC

�1
1 ptq,

is required to compute the Interface Jacobian subsystem representation. There the
problematic inversion of C1 is clearly visible. The subsystem 1, representing the
helicopter, consists of 8 states and 6 outputs and therefore, as discussed in Section
2.1.1, the inversion of C1 will be computed utilizing the pseudo inverse. This is
the reason for the instable behaviour because some dynamics are cancelled out by
inverting the matrix C1 and therefore the Interface Jacobian BS1

By1
does not represent

the real behaviour of subsystem 1 sufficiently. Also in subsystem 2, representing
the controller, the number of states with 20 is higher than the number of outputs
with 4 and therefore the required inversion of C2 for computing BS2

By2
cancels even

more dynamics and information about the subsystem. For this example the exact
Interface Jacobians are not usable because the number of states is higher than the
number of outputs and the states are highly coupled, due to the natural dynamics
of a helicopter and its control. Figure 4.10 shows that the effect of this subsystem
representation based on the exact Interface Jacobians is huge, the co-simulation gets
nearly immediately instable.
Here the question arises how can approximated Interface Jacobians be a better subsys-
tem description as the exact ones? The reason for this, is the choice that the number
of states is the same as the number of outputs, for the case of using the RLS as system
identification this means setting N � M � 1. On the one hand, this is motivated by
the fact that the inversion of C1 and C2 is then unproblematic, because the matrices
are square and the outputs are linear independent by assumption. On the other hand
also the sensitivity analysis in Section 3.2.2 shows, that the best choice is to choose
N � M � 1. This means the complex subsystem of the helicopter and its controller
are approximated by a time-variant less complex Interface Jacobian description. The
required accuracy of the description can be reached by the time-varying characteristics
of the system identification methods. This effect is of interest because the situation of
the two subsystems is typical and therefore this will also be valid for other examples.
Summarizing this means, that the utilization of exact Interface Jacobians is not
a guarantee for a better performance of the co-simulation, the helicopter control
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Figure 4.10: Helicopter outputs for exact and approximated Interface Jacobians

co-simulation shows that it can destabilize the whole simulation. Especially for the
case that the number of states is much higher and the states are highly coupled in
the subsystems, the utilization of the approximated Interface Jacobians seems more
favorable. This fact is further reinforced by considering, that typically the access to
the exact Interface Jacobians requires a high effort and these may be really challeng-
ing. All in all this example shows, that approximated Interface Jacobians may lead
to much better results than exact ones.

For the evaluation of the results of the co-simulation, the classical error measure
εmono,global defined in (3.9) and the stability measure σmono,global are utilized. The
stability measure σmono,global is defined as

σmono,global :� 1
6

6̧

i�1

b
evarpy1ris � y1,monorisq �

1
4

4̧

i�1

b
evarpy2ris � y2,monorisq,

(4.11)

where y1,monoris stands for the i-th scalar signal of the monolithic output of the heli-
copter and y2,monoris represents the i-th scalar signal of the monolithic output of the
controller. The function evar computes a special variance of a signal. The difference
to the classical variance is that, a time varying mean value of the signal will be taken
into account, for more details see [50]. It should be mentioned that, if the mean value
of the signal is constant the classical variance coincides with the computed variance
of evar. The reason why the evar function is utilized and not the classical variance
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is that in the classical variance a stationary error, i.e. y1ris � y1,monoris � const. � 0
for a certain time, will affect the variance highly and by utilizing evar this stationary
errors will be cancelled and only oscillations of y1ris � y1,monoris will be considered.
The effect of stationary errors will be captured by the error measure εmono,global and
therefore the utilization of evar is required to separate the error measure and the
stability measure from the influence of stationary errors. Therefore one can say that
εmono,global describes the accuracy and σmono,global denotes the stability of the results,
for sure these two concepts are connected and intertwined but a useful separation is
possible.
Based on the error measure εmono,global and the stability measure σmono,global the
Model-based Pre-Step Stabilization Method (Pre-Step SI) is compared to zero-order-
hold (ZOH) coupling, the Nearly Energy Preserving Coupling Element (NEPCE)
approach, and the Model-based Corrector approach with exact (MBCorr exact)
and approximated (MBCorr SI) subsystem information. As the utilization of exact
Interface Jacobians for the Model-based Pre-Step Stabilization Method leads to
instable results, this coupling method is ignored in the further chapter. In Figure
4.11 the results of the different coupling methods, utilizing version 1 of the pilot
commands, are depicted depending on the communication step size ∆T , which varies
between r0.01s, 0.3ss. The maximum value of εmono,global and σmono,global is set to 1,
because results with such a high value of εmono,global or σmono,global are useless results.
In the figure it is obvious that for ∆T Ñ 0s, εmono,global and σmono,global are both
decreasing for all coupling methods except for the NEPCE coupling, which acts
differently than the others. Until ∆T � 0.1s the results of ZOH, MBCorr exact and
Pre-Step SI nearly coincide, only the MBCorr SI results are worse for ∆T ¥ 0.08s.
Until ∆T � 0.14s the Pre-Step SI method is just slightly better than ZOH but for
∆T ¡ 0.14s this changes drastically as ZOH coupling gets instable, as σmono,global
increases highly. For ∆T P r0.16s, 0.2ss the Model-based Pre-Step Stabilization
Method is the only coupling method which produces stable results. Utilizing version
2 of the pilot commands is leading to the results depicted in Figure 4.12, there the
results are similar to the ones recently discussed. The only noticable difference is,
that the MBCorr SI result is stable up to ∆T � 0.12s. Comparing the Figures
4.11 - 4.15 it is obvious that all five diagrams look very similar, this means that the
choice of the pilot commands is not critical for the co-simulation of the helicopter
and its control. The error and oscillations measures vary just in a small range, the
tendency is for all five tested versions of the pilot commands the same. Therefore
in the following chapter only the first version of the pilot commands will be utilized.

As the first version of the pilot commands is utilized, the highest communication step
size where all compared coupling methods generate useful results is ∆T � 0.08s and
therefore all outputs of the helicopter and its control will be further discussed based on
a communication step size of ∆T � 0.08s. The six simulation results of the helicopter
outputs are depicted in Figures 4.16 and 4.17, there the five co-simulation coupling
methods are compared to the monolithic results. At the heave velocity it is obvious
to see, that the accuracy of all coupling methods, except for NEPCE, is sufficient.
Especially of interest is that the MBCorr SI result has two peaks at t � 12s and
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Figure 4.11: Error measure εmono,global and stability measure σmono,global dependent on
∆T for pilot commands version 1
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Figure 4.12: Error measure εmono,global and stability measure σmono,global dependent on
∆T for pilot commands version 2

t � 80s, the first one coincides with the end of the learning phase. Comparing this to
the other five outputs of the helicopter, one sees in every signal a peak at t � 12s and
t � 80s. Especially in the pitch attitude for t P r80s, 95ss there is an obvious deviation
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Figure 4.13: Error measure εmono,global and stability measure σmono,global dependent on
∆T for pilot commands version 3
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Figure 4.14: Error measure εmono,global and stability measure σmono,global dependent on
∆T for pilot commands version 4

from the monolithic result. The NEPCE method shows nearly permanent deviations
from the monolithic result. Summarizing the six helicopter outputs, depicted in
Figures 4.16 and 4.17, shows that the ZOH, the MBCorr exact and the Pre-Step SI
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Figure 4.15: Error measure εmono,global and stability measure σmono,global dependent on
∆T for pilot commands version 5

coincide with the monolithic results, which means the performance is for this case
satisfying. It is also obvious that the NEPCE approach has drawbacks in terms of
accuracy and the MBCorr SI approach has two major deviations, one immediately
after the learning phase and the other after a pause of around 20 seconds. Even
though the velocity of the helicopter is not an output of the subsystem, one can
analyze the results for the purpose of evaluation of the utilized coupling methods, see
for the x-, y- and z-velocity of the helicopter Figure 4.18. As mentioned in the other
helicopter outputs the NEPCE method is inaccurate and the MBCorr SI result has
some small peaks in the z-velocity at t � 12s and t � 80s. Additional to those small
peaks, there is a nearly permanent deviation from the monolithic result in the velocity
in x-direction. Comparing all those nine outputs of the helicopter, the heave velocity,
the pitch and roll attitude, the heading rate, the pitch and roll rate, and the velocity
in all three cartesian directions, the same effects can be more or less investigated in
every signal, this reflects the strong interconnection and coupling in the subsystem of
the helicopter itself.
The four outputs of the controller are depicted in Figures 4.19 and 4.20. Comparing
the main rotor collective signal with the heave velocity, one sees that there is a
strong connection. Additionally the two observed peaks of MBCorr SI are specially
remarkable, as they are � 5 times higher than the amplitude of the monolithic
signal. The two peaks in all MBCorr SI results, outputs of the helicopter and the
controller, are correlating strongly, as they all appear at � 12s and � 80s. This
correlation is a further evidence that the two subsystems are strongly intercon-
nected. The oscillations of the NEPCE approach are significant in the time intervals
r1s, 11ss, r35s, 45ss, r81s, 91ss and r115s, 125ss, they correlate exactly with the parts
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where the heave velocity is changing. This leads to the conclusion that the change in
the heave velocity is leading to the oscillations and deviations of all NEPCE results.
For the ZOH, the MBCorr exact and the Pre-Step SI results all four outputs of the
controller are of satisfying accuracy and free of any unwanted oscillations.
One of the keys of the improved performance of the Model-based Pre-Step Stabi-
lization Method is, that complex subsystems are approximated with less complex
surrogate models, with the approximated Interface Jacobians, which are time variant.
The time variant subsystem description is achieved by utilizing the RLS and therefore
the identified parameters can vary over time and adapt themselves appropriately. As
N � M � 1 is chosen, the difference equation of a scalar output signal, see (2.87),
e.g. the heave velocity or the main rotor collective, can be written as

yk � ak1y
k�1 � bk11u

k�1
1 � . . .� bkm1u

k�1
m , (4.12)

where m � 4 for the subsystem 1 and m � 6 for the subsystem 2, as this is the
number of inputs of the subsystems. The superscript index k denotes the time variant
aspect of the parameters ak1, bk11, . . . , b

k
m1. In the Figures 4.21 - 4.24 the progression

of all identified parameters is depicted over the full simulation time, including the
learning phase from 0s until 12s. In the learning phase the RLS is identifying the
parameter, but the coupling is not influenced by the parameters, as the coupling
is exclusively carried out by the ZOH approach in the learning phase. The high
oscillations at the beginning of the simulation, roughly around the first 5 seconds,
origin from the fact, that for all parameters the initial values are set to zero. It should
be mentioned that in all following parameter plots the parameter a1 is denoted to
left y-axis and all other parameters to the right y-axis, this is required as they differ
significantly in their range. Considering the above mentioned four figures there are
two main observations. First, all parameters are really time varying, except for a1 of
the heave velocity which seems to be nearly constant, it is only varying in the range of
r0.96, 0.97s. This means that all parameters are really adapting themselves over time
and therefore the choice of a time-variant Interface Jacobian subsystem description is
necessary and mandatory. The lack of complexity in the surrogate models, compared
to the real subsystems, is compensated by the automatic adaption of the parameters.
The second observation is that, none of the parameters is zero, or even near zero, this
means that every input of a subsystem is influencing every output of the subsystem,
this reflects the strong coupling in the subsystems. As depicted in Figure 4.21 the
heave velocity is mainly influenced by the parameter b11 which denotes the influence
of the main rotor collective signal from the controller, this fits perfectly with the
modeling of the subsystems as discussed in the previous section. It seems that the
main rotor collective has the most influence on all outputs of the helicopter as the
parameter b11 has the biggest range, as depicted in Figures 4.21 and 4.22. But the
influence does not depend on the value of the identified parameters exclusively, the
range of the input signal is of the same importance. In Figures 4.19 and 4.20 the
range of the main rotor collective is � 0.1rads, for the longitudinal cyclic � 1.5rads,
for the lateral cyclic � 1rads and for the tail rotor collective � 1rads. Comparing the
ranges to the identified parameters of the pitch attitude one sees that the main rotor
collective and the longitudinal collective, represented through parameter b21, has the

133



4 Evaluation

0 50 100 150
-0.5

0

0.5

1

0 50 100 150
-0.1

0

0.1

0 50 100 150
-0.1

0

0.1

0.2

Figure 4.16: Helicopter outputs for ∆T � 0.08s: heave velocity, pitch attitude and roll
attitude

most influence. For the roll attitude the influence of the main rotor collective is not
as strong as before and therefore the lateral cyclic, b31, and the tail rotor collective,
b41 are of significance. These observations fit the physical description of the blade
angels of the helicopter. For the other signals the influence of the four inputs to
the outputs are in the same range. But in general the progression of the identified
parameters shows clearly the fact that every move of the controller is influencing the
whole behaviour of the helicopter, which is again an evidence of the strongly coupled
dynamics of this co-simulation.
Figures 4.23 and 4.24 show the progression of the identified parameters of the four
outputs of the controller, the main rotor collective, the longitudinal cyclic, the lateral
cyclic and the tail rotor collective. In the beginning of the simulation there are higher
oscillations than at the helicopter outputs, but after the learning phase the progression
of the parameter is smooth and free of oscillations. For analyzing the influence of
the inputs of the controller to its outputs the range of the inputs is required, from
Figure 4.16 follows that the range of the heave velocity is � 1ft

s
, for the pitch attitude

it is � 0.2rads and for the roll attitude the range can be determined as � 0.2rads.
The range of the heading rate is � 0.1 rads

s
, the range of the roll rate is � 0.4 rads

s

and for the pitch rate the range can be stated as � 0.3 rads
s
, which can be derived

from Figure 4.17. Combining the progression of the input parameters bi1 for the main
rotor collective, see Figure 4.23, one can observe that the heave velocity, the roll and
pitch attitude are of importance and that the heading rate and especially the roll and
pitch rate are significant for the main rotor collective. For the longitudinal cyclic,
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Figure 4.17: Helicopter outputs for ∆T � 0.08s: heading rate, roll rate and pitch rate
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Figure 4.18: X-,y- and z-velocity of the helicopter for ∆T � 0.08s

only the influence of the heave velocity is not significant, all other five inputs are of
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Figure 4.19: Controller outputs for ∆T � 0.08s: main rotor collective and longitudinal
cyclic
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Figure 4.20: Controller outputs for ∆T � 0.08s: lateral cyclic and tail rotor collective
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Figure 4.21: Identified parameters for helicopter outputs: heave velocity, pitch attitude
and roll attitude

higher importance, especially the pitch rate is significant. Based on the progression of
the identified parameters of the lateral cyclic, depicted in Figure 4.24, the significant
influence of the roll rate and the pitch attitude is obvious. The heading rate and the
heave velocity are of importance for the lateral cyclic. For the tail rotor collective
signal, the most important inputs are the heading rate and the pitch rate. The other
four inputs are of less or no significant influence.
As the results are mainly based on the approximated Interface Jacobians, the quality
of this approximated subsystem description is of high importance. Therefore in the
upper part of Figure 4.25 the measure εSI,global of the error of the system identification
method is stated, for its definition see (2.93). There it is obvious that for the whole
simulation the measure is under 0.15, which is an accurate result as εSI,global is an rel-
ative measure, especially if one is considering the fact that only the highest peaks are
in the range of r0.1, 0.15s. For the main part of the simulation εSI,global is around 0.02,
which can be seen as an approximation error of around 2%. At the end of the learning
phase, denoted by the black doted line at t � 12s, the highest peaks are reached, but
this is clear as the coupling method is switched from ZOH to the pre-step coupling.
To damp the influence of these high peaks the switch phase has been introduced, for
details see Section 2.4.4. The lower part of Figure 4.25 shows in which coupling phase
the Model-based Pre-Step Stabilization method is running during the simulation.
Starting with the learning phase for 12s, followed by the switch phase for 2s. From
the rest of the simulation the coupling method stays in the pre-step phase, because
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Figure 4.22: Identified parameters for helicopter outputs: heading rate, roll rate and
pitch rate

the εSI,global never reaches the boundaries of thresholdMbc2sbcCoupling � 3.54 or
thresholdMbcNoInputOpt � 0.21, which would be necessary to switch in the SBC
only phase or the modified pre-step phase. This switching between the phases is only
required if the approximation is too weak, therefore no switching from the pre-step
phase is the preferred case. For more details of this error-based phase check see
Section 2.4.2.

As the stability of the co-simulation is the main focus of the Model-based Pre-
Step Stabilization the question arises why the coupling gets instable at � ∆T � 0.2s,
as it is depicted in Figure 4.11. The answer is based on the learning phase, where
the first 12s of the co-simulation the coupling is ZOH, because if already in the
learning phase the results are oscillating, the system identification method identified
completely wrong Interface Jacobians and therefore the whole Model-based Pre-Step
Stabilization will fail. This problem will be treated by a shorter learning phase of
2s and improved initial parameters. The shorter learning phase will decrease the
influence of the instable behaviour of the ZOH in the learning phase drastically and as
the learning phase is too short to completely identify the model without any previous
knowledge, well-chosen initial parameters are required. The initial parameters are
saved from a previous co-simulation with ∆T � 0.1s at around t � 8s because at that
time the parameters are nearly steady. It is important to take initial parameters from
the beginning of the simulation as they vary over the time significantly and therefore
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Figure 4.23: Identified parameters for controller outputs: main rotor collective and
longitudinal cyclic

the parameters are saved at the first moment when all parameters where nearly steady.
Due to the fact that these parameters are the basis for a discrete-time subsystem
description they have to be recalculated according to the utilized communication step
size.
This recalculation will be derived by transforming a difference equation to the double
sampling rate, this means the parameters of the difference equation have to change
accordingly to the sampling rate. The concept of this derivation will be generalized so
that a difference equation can be recalculated to any sampling rate which is greater
than the original one. Starting with inserting the difference equation from (4.12) in

yk�1 � ak�1
1 yk � bk�1

11 uk1 � . . .� bk�1
m1 u

k
m,

leads to

yk�1 � ak�1
1

�
ak1y

k�1 � bk11u
k�1
1 � . . .� bkm1u

k�1
m

�
� bk�1

11 uk1 � . . .� bk�1
m1 u

k
m.

Rearranging it results in

yk�1 � ak�1
1 ak1y

k�1 � ak�1
1 bk11u

k�1
1 � bk�1

11 uk1 � . . .� ak�1
1 bkm1u

k�1
m � bk�1

1m1u
k
m.

One should assume that the sampling rate is doubled, i.e. the values uk1, . . . , ukm are
not available, only the values at time points k � 1 and k � 1 are accessible, therefore
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Figure 4.24: Identified parameters for controller outputs: lateral cyclic and tail rotor
collective
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Figure 4.25: Quality of the identified Interface Jacobians and the progression of the
Error-based Phase Check

the assumption holds that
uk � uk�1.
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As the parameters are taken from a steady phase, we can assume that
ak�1

1 � ak1 �: a1,

bk�1
11 � bk11 �: b11,

...
bk�1
m1 � bkm1 �: bm1.

Considering the assumptions is leading to
yk�1 � pa1q

2yk�1 � pa1b11 � b11qu
k�1
1 � . . .� pa1bm1 � bm1qu

k�1
m .

Comparing the above equation with the difference equation of the double sampling
rate

yk�1 � ã1y
k�1 � b̃11u

k�1
1 � . . .� b̃m1u

k�1
m ,

leads to
ã1 � pa1q

2,

b̃11 � a1b11 � b11,

...
b̃m1 � a1bm1 � bm1,

which are the transformations rules to recalculate identified parameters to the double
sampling rate. Analog, it can be shown that for any integer multiple of the original
sampling rate H, i.e. the enlarged sampling rate H̃ � kH, for k P N, the required
parameters can be calculated as

ã1 :� pa1q
H̃
H , (4.13)

b̃j1 :� bj1

H̃
Ḩ

i�0
pa1q

i, (4.14)

for j � 1, . . . ,m.
In the following a generalization of this transformation to a general sampling rate H̃,
which has to be greater than the original one H, will be stated. The quantities

∆ �

Z
H̃

H

^
,

δ �
H̃

H
�∆,

describe the integer part and the decimal part of the ratio H̃
H
. The transformed pa-

rameters are determined via
ã1 � ãlow,1p1� δq � ãup,1δ,

b̃11 � b̃low,11p1� δq � b̃up,11δ,

...
b̃m1 � b̃low,m1p1� δq � b̃up,m1δ,
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with

ãlow,1 :� pa1q
∆,

ãup,1 :� pa1q
∆�1,

b̃low,11 :� b11

∆̧

i�0
pa1q

i,

b̃up,11 :� b11

∆�1̧

i�0
pa1q

i,

...

b̃low,m1 :� bm1

∆̧

i�0
pa1q

i,

b̃up,m1 :� bm1

∆�1̧

i�0
pa1q

i.

This means the parameters are always transformed exactly for the integer case and if
the ratio H̃

H
is of non-integer type, i.e. δ � 0, the parameters are linear interpolated.

The benefit of using the linear interpolation is that, there are no problems if one of
the parameter is negative, because therefore the transformed parameter might get an
imaginary part. The loss of accuracy through this linear interpolation can be neglected
for two reasons. First, the transformed parameters are only used as initial parameters
and will therefore adapt themselves anyway. Second, the parameters utilized for the
transforming originate from a previous run and they are saved from a moment, where
nearly all signals are steady, therefore the error of the saving of the parameters pre-
dominate the errors introduced to the linear interpolation for case of δ ¡ 0.
The effect of the shortening of the learning phase, from 12s to 2s, and replacing the
zero initial parameters with the recalculated ones described above, is depicted in Fig-
ure 4.26. There the major improvement in terms of accuracy εmono,global and stability
σmono,global is clearly visible for ∆T ¡ 0.18s. Due to the loaded initial parameters it
is possible to generate stable results where also the accuracy is sufficient. This means
that the Model-based Pre-Step Stabilization Method is able to generate a stable co-
simulation, with a sufficient accuracy, even for the case of large communication steps.
The problem of an instable learning phase, due to ZOH coupling, can be overcome
by shortening the learning phase dramatically and setting recalculated initial param-
eters from an previous stable run. For the demonstration that the results are really
improved, the six helicopter output signals are depicted in Figures 4.27 and 4.28. In
all six subplots the same effects can be seen, for the Pre-Step SI result with the 12s
learning phase and no initial parameters, there are strong oscillations from the begin-
ning until t � 25s. These oscillations origin from the instable behavior of the ZOH
coupling in the learning phase. After these oscillations the result stabilizes, but it is
obviously less accurate than the results obtained by setting the recalculated initial pa-
rameters and shortening the learning phase to 2s. The difference in terms of accuracy
also at the end of the simulation is impressive, the difference between the monolithic
and the Pre-Step SI loaded Initial Parameter result is nearly not visible. Having a

142



4.1 Helicopter-Control Co-Simulation

closer look at the result regarding the velocity in Figure 4.29, the improved accuracy
of the results by loading the initial parameters is even more obvious. Especially for
the case of the velocity in z-direction the monolithic result is nearly coinciding with
the pre-step results utilizing the loaded initial parameters. The same effects of high
oscillations at the classical pre-step results and an obvious improvement in terms of
accuracy can be seen at the four outputs of the controller in Figures 4.30 and 4.31.
Especially of interest is that the classical pre-step result is always superimposed by
high frequent oscillations, also at the end of the simulation. The pre-step results,
with utilizing the recalculated initial parameters, are free of these oscillations and the
gap to the monolithic result is significantly smaller. As the only difference of the two
pre-step results are the identified Interface Jacobians, represented by the parameters
a1 and b11, . . . , bm1, the progression of the identified parameters is of special interest
and is therefore depicted in Figure 4.32 for both cases, for the output signal heave
velocity of the helicopter. As one can see, the parameters with initial values unequal
zero are free of any oscillations and also the values at the end of the simulation are
significantly different. This means that the wrong choice of initial conditions and a too
long learning phase have significant influence for the whole simulation, not only at the
beginning of the simulation. The loaded initial parameters seem like a good choice, as
there is no major adaption of the parameter over the time, small and smooth adap-
tions are always necessary as the less complex Interface Jacobians are approximating
more complex subsystems by a time-variant approach. At a first glance, the results of
the error measure of the system identification εSI,global depicted in the upper part of
Figure 4.33 seem paradox, as the pre-step results are way better than the ones with
the loaded initial parameters. But the reason is easy to see in (2.92), as the scaling
of the error measure is done by the amplitude of the past samples of the signal and
for the case of no loaded initial parameters there are high oscillations, where the peak
values are up 100 times higher than for the results with loaded initial parameters. This
leads to the conclusion that εSI,global is smaller although the actual approximation is
worse than the other. This means the measure εSI,global is not suited for signals with
high oscillations. Comparing the progression of εSI,global in Figure 4.33 for the case of
loaded initial parameter with the one of the classical pre-step results in Figure 4.25
one can easily see that the amplitude and also the oscillations are very similar, which
is an additional hint that the version with the loaded initial parameters works really
well. As at the beginning of the simulation, in the first � 20s, there are some high
peaks of εSI,global for the case of loaded initial parameters, the modified pre-step phase
is activated for a few short periods. As explained in detail in Section 2.4.2 the modified
pre-step phase is a special version of the Model-based Pre-Step Stabilization method
which is less sensitive against approximation errors in the Interface Jacobians. The
need for this phase switching is to damp the influence of these approximation errors
before they can lead to weak or even instable results, one can see this switching as a
security function, for preventing the coupling getting instable. The phase switching
works well as after � 20s there is no further need for any switching.
Figure 4.26 shows that the results, if the loaded initial parameters are utilized, are
stable up to ∆ � 0.3s. As demonstration that also the accuracy, especially after
� 20s, is sufficient, the six outputs of the helicopter are depicted in Figures 4.34 and
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Figure 4.26: Error measure εmono,global and stability measure σmono,global dependent on
∆T for pilot commands version 1 for the case of loaded initial parameters
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Figure 4.27: Helicopter outputs for ∆T � 0.2s for the case of loaded initial parameters:
heave velocity, pitch attitude and roll attitude

4.35. It should be emphasized, that there are no high frequent oscillations in the re-
sults and that the heave velocity nearly coincides with the monolithic result and also
for the other five signals the accuracy after a short period is sufficient. The velocity
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Figure 4.28: Helicopter outputs for ∆T � 0.2s for the case of loaded initial parameters:
heading rate, roll rate and pitch rate
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Figure 4.29: x-, y- and z-velocity of the helicopter for ∆T � 0.2s for the case of loaded
initial parameters

of the helicopter is depicted in Figure 4.36, there it is remarkable how accurate the
co-simulated z-velocity fits to the monolithic result. The outputs of the controller are
depicted in Figures 4.37 and 4.38, there one sees that, there are high oscillations for
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Figure 4.30: Controller outputs for ∆T � 0.2s for the case of loaded initial parameters:
main rotor collective and longitudinal cyclic
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Figure 4.31: Controller outputs for ∆T � 0.2s for the case of loaded initial parameters:
lateral cyclic and tail rotor collective

the first 20 seconds but afterwards the results are free of oscillations and the accu-
racy is satisfying. Especially if one is considering the fact that a constant gap to the
monolithic results is not as harmful as oscillations. Summarizing this means, that the
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Figure 4.32: Comparison of the identified parameters for the case with and without
loaded initial parameters, for the helicopter output heave velocity
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Figure 4.33: Quality of the identified Interface Jacobians and the progression of the
Error-based Phase Check for the case of loaded initial parameters

option to load initial parameters and so keeping the learning phase to a minimum,
is improving the performance of the Model-based Pre-Step Stabilization in terms of
stability and accuracy for large communication step sizes.
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Figure 4.34: Helicopter outputs for ∆T � 0.3s for the case of loaded initial parameters:
heave velocity, pitch attitude and roll attitude
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Figure 4.35: Helicopter outputs for ∆T � 0.3s for the case of loaded initial parameters:
heading rate, roll rate and pitch rate
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Figure 4.36: X-, y- and z-velocity of the helicopter for ∆T � 0.3s for the case of loaded
initial parameters

0 50 100 150
-1

-0.5

0

0.5

1

0 50 100 150
-4

-2

0

2

4

6

Figure 4.37: Controller outputs for ∆T � 0.3s for the case of loaded initial parameters:
main rotor collective and longitudinal cyclic
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Figure 4.38: Controller outputs for ∆T � 0.3s for the case of loaded initial parameters:
lateral cyclic and tail rotor collective

4.2 Summary and Conclusion of the Helicopter-Control
Co-Simulation

As evaluation of the Model-based Pre-Step Stabilization Method, the coupling method
has been compared to the classical ZOH coupling, NEPCE method and the Model-
based Corrector approach with exact (MBCorr exact) and approximated (MBCorr SI)
subsystem information, at the co-simulation of a helicopter and its control. The two
major outcomes of this evaluation will be stated and discussed in the following.
First, the full potential of the Model-based Pre-Step Stabilization Method can be seen,
if the learning phase is drastically shortened, as otherwise the simulation already gets
instable in the learning phase for larger communication step-sizes. For such a short
learning phase, well chosen initial parameters are required. These parameters can be
accessed from a previous run with a smaller communication step size, where all results
are stable and accurate. Figure 4.26 shows the satisfying improvements in terms of
accuracy and stability by utilizing the recalculated initial parameters.
Second, the fact that utilizing the Model-based Pre-Step Stabilization Method with
approximated instead of exact Interface Jacobians is leading to much better results is
surprising and sounds paradox. The fact that the Interface Jacobian subsystem de-
scription is derived by a transformation rule where the inversion of the output matrix
C is necessary, is the origin for the instable behaviour for the case of exact subsystem
information. Because the number of states in the subsystems is higher than the out-
puts and therefore the utilization of the pseudo inverse, for inverting C, is canceling
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out too much significant dynamics. This effect can be investigated at the helicopter
control co-simulation as the states of the subsystems are highly coupled. The key to
overcome the problem of inverting C is to choose the number of states, for the approx-
imated Interface Jacobians, equally to the number of outputs. Therefore the complex
subsystems, with a high number of states, are approximated by less complex surrogate
models which are time-varying, this means the loss of complexity is compensated by
a self-adaption of the approximated Interface Jacobians.

151





5
Summary and Conclusion

The improved stability and accuracy of the Model-based Pre-Step Stabi-
lization Method will lead to a more trustworthy co-simulation. Therefore
this coupling method will facilitate the way to include co-simulation into
the virtual validation processes of the future.

5.1 Model-based Pre-Step Stabilization Method

The goal of the Model-based Pre-Step Stabilization Method is to stabilize the co-
simulation of multiple subsystems by exploiting subsystem information, the so-called
Interface Jacobians. The method itself consists of three main steps:

1. Approximating the monolithic output, by solving the Error Differential Equation,
which is based on the extrapolation error of the last communication step.

2. Extrapolating the determined monolithic output one communication step into
the future, under the consideration of cross couplings between the subsystems.

3. Optimizing the input for every subsystem in such a way, that the co-simulated
output of the subsystem fits the extrapolated monolithic one.

As the subsystem description can be in continuous- or discrete-time manner, two ap-
propriate versions of the Model-based Pre-Step Stabilization Method exists, which are
stated in Section 2.2 with all further details to the three main steps. These three
main steps are based on the Interface Jacobians and therefore the question how to
access these mandatory quantities is of high significance. As most subsystems can be
described as state space systems, the connection to the Interface Jacobian subsystem
description is derived and stated in Section 2.1. On the one hand the Interface Ja-
cobians can be provided by the subsystem itself and on the other hand the Interface
Jacobians can be approximated by the invented coupling method, based on the in-
and the outputs of the subsystems. For this purpose, two system identification meth-
ods have been presented and analyzed, the Multivariable Output Error State Space
(MOESP) approach and the Recursive Least Square (RLS) method, all required de-
tails are stated in Section 2.3. Due to the fact, that the quality of the approximated
Interface Jacobians is important for the coupling method, the quality measure is de-
termined in every communication step. Based on this measure the error based check
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decides in every communication step, whether the classical Model-based Pre-Step Sta-
bilization Method or the modified version, where step three is skipped, or whether
only zero-order-hold coupling is performed. For more details, see Section 2.4, which
deals with the implementation aspects. Further discussed in this section, are the work-
flow of the coupling method and the learning and switch phase. The learning phase
is required for the system identification methods to gather enough data, so that the
calculated Interface Jacobians are useful. The switch phase is applied right after the
end of the learning phase, because the switching from the signal-based coupling in the
learning phase, to the pre-step coupling, might lead to deviations or oscillations which
should be smoothed and damped by this switching approach.

5.2 Analysis

The sensitivity analysis of the invented coupling method analyzed the case of exact
and approximated Interface Jacobians. As typically exact Interface Jacobians, pro-
vided by the subsystems themselves, are stated in continuous-time manner, this case
is focusing on the continuous-time version of the Model-based Pre-Step Stabilization
Method. The analysis of variance has shown, that the second step of the coupling
method, the model-based extrapolation, is the most significant one. Due to the
so-called Ascending Sorting Analysis, an optimal set of parameters for the coupling
method has been determined, see therefore Table 3.5.
By analyzing the case of approximated Interface Jacobians, the discrete-time version
of the Model-based Pre-Step Stabilization Method has been in focus. This sensitivity
analysis has shown, that the RLS and the MOESP approach are both useable system
identification methods. The difference is, that the parametrization of the RLS is
easier and the average results are better, i.e. it is more robust, and therefore the RLS
is the preferred choice of system identification method for approximating the Interface
Jacobians. The Ascending Sorting Analysis determined an optimal set of parameters
for utilizing the RLS and the MOESP method, see therefore Tables 3.12 and 3.13.

As the main goal of the Model-based Pre-Step Stabilization Method is to increase the
co-simulation performance in terms of stability, a stability analysis has been carried
out. Therefore the dual mass oscillator co-simulation has been chosen as the test prob-
lem. The co-simulation is investigated with regard to three different types of stability:
numerical stability, exponential stability and bounded-input bounded-output (BIBO)
stability. Additionally it should be stated, that the co-simulation is zero-stable, as
there are no algebraic loops.
Numerical stability deals with the influence of errors originating from a finite com-
munication step size, e.g. the coupling error. For analyzing this kind of stability, the
stiffness and damping coefficients of the spring damper, connecting the two masses,
and the communication step size are varied. Therefore the linear dual mass oscillator
with a time-invariant subsystem description is chosen and therefore the case of exact
Interface Jacobians is the appropriate one to investigate. The Model-based Pre-Step
Stabilization Method shows a clearly enlarged stability region compared to the other
state of the art co-simulation coupling techniques, see therefore Figure 3.52. This
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proves that the invented coupling method is stabilizing the co-simulation, which is
especially important for the use of large communication steps.
The terms exponential and BIBO stability can both be investigated for time-variant
subsystem descriptions and therefore the non-linear dual mass oscillator, extended
with an external force has been chosen as test problem. As the subsystem description
is time-variant, the choice of the approximated Interface Jacobians is appropriate,
i.e. the discrete-time version of the invented coupling method will be utilized. Ex-
ponential and BIBO stability can be simultaneously determined by evaluating the
so-called Bohl exponent. As the computed Bohl exponent is less than 1 and the
time-variant matrices are bounded in every step it follows that the co-simulation uti-
lizing the Model-based Pre-Step Stabilization Method is exponential and BIBO stable.

Although the stability is the main focus of this thesis, the accuracy of the cou-
pling method should not be neglected. The influence of the stiffness and damper
coefficients and the communication step size, according the accuracy of the co-
simulation has been investigated, as reference the monolithic results were utilized.
The region of accurate results is quite similar to the stability region, which means the
invented coupling method is not only improving the stability, also the accuracy of the
co-simulation is enhanced. For certain stiffness and damper coefficients, the effect of
the communication step size according the accuracy of the results is investigated in
Figure 3.62. There it is clearly visible, that by utilizing the Model-based Pre-Step
Stabilization Method the choice of a larger communication step size is possible without
any loss in the quality of the results.

5.3 Evaluation

In Chapter 4 the Model-based Pre-Step Stabilization Method is evaluated at the co-
simulation of a helicopter and its control. This co-simulation has been chosen mainly
for the following two reasons. First, the exact Interface Jacobians are accessible and
therefore the effect of approximating the Interface Jacobians can be investigated. Sec-
ond, the helicopter represents an instable subsystem and the controller a stiff one and
therefore the co-simulation is challenging. Additionally the states of both subsystems
are highly coupled, as the dynamics of a helicopter are in nature highly coupled.
The influence of the five different, pre-defined versions of the pilot commands is not
significant for the co-simulation, this makes the evaluation less complicated, as only
one version of the pilot commands is utilized for the further evaluation. Comparing the
cases of exact and approximated Interface Jacobians results in the paradox, that the
approximated Interface Jacobians lead to much better results than the exact ones, the
results utilized by the exact Interface Jacobians are even instable. This leads to the
conclusion, that it is not possible to guarantee that utilizing exact Interface Jacobians
is leading to better results. As described in detail in Section 4.1.3, the reason for this
paradox effect is, that the subsystems have more states than outputs and additionally
the states in the subsystems are highly coupled. Taken into account that accessing
exact Interface Jacobians is hard to achieve, as nearly no simulation software is sup-
porting such a feature right now, the preferred way is to approximate the Interface
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Jacobians.
First, it should be mentioned, that utilizing the Model-based Pre-Step Stabilization
Method is leading to improved results according stability and accuracy, especially the
unwanted oscillations in the results are damped. As the RLS is utilized as system iden-
tification method the influence of the choice of the initial values has been investigated.
With using zero initial values, the learning phase has to be sufficiently large to get
stable results. There the problem arises, that if the co-simulation starts to oscillate
already in the learning phase, the approximated Interface Jacobians are not suffi-
ciently accurate, so the coupling by the Model-based Pre-Step Stabilization Method
will oscillate and gets instable too. By setting appropriate initial values, loaded from
a previous stable run with a lower communication step size, the learning phase can
be shrinked to a minimum. As now the instable behaviour in the learning phase can
be avoided, the region of stable and accurate results is clearly enlarged. This means
that one can set the communication step size larger, without a significant loss in the
quality of the results in terms of stability and accuracy, which represents the main
goal of the coupling method. Therefore the evaluation stated that with utilizing the
Model-based Pre-Step Stabilization Method the co-simulation performance in terms
of stability and accuracy is clearly improved.

5.4 Outlook

The main goal for the future is to make the presented coupling method available for
a broader audience and therefore the implementation in the co-simulation platform
Model.CONNECTTM, see [27], will be in focus. This topic can be seen from two
different viewpoints, on the one hand the implementation of the coupling method
into the existing framework. On the other hand how the user should be able to
interact or adjust the method, which and how the parameters and settings should be
adjusted automatically. For example the question on which part of the co-simulation
the Model-based Pre-Step Stabilization Method should be applied has to be answered.
In any case it will not be necessary to couple every signal or even every subsystem
with this enhanced coupling method, zero-order-hold coupling will be sufficiently for
some signals for example. The usability of the Model-based Pre-Step Stabilization
Method will be the main key to integrate the coupling method in Model.CONNECTTM

successfully.
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Abbreviations

FMI Functional Mock-Up Interface
FMU Functional Mock-Up Unit
CI/CD Continuous Integration and Continuous Development
sbc Signal based coupling
mbc Model based coupling
NEPCE Nearly Energy Preserving Coupling Element
ZOH Zero-order-hold coupling
FOH First-order-hold coupling

MOESP Multivariable Output Error Stace Space
RLS Recursive Least Squares

SISO Single input single output
MISO Multiple input single output
MIMO Multiple input multiple output

QA Quality Assessment
SI System Identification

SSA Sum of squares for the main Effect according A
SSAB Sum of squares for the interaction Effect according A and B
DoFA Degree of freedom according A
DoFAB Degree of freedom according the combination of A and B
MSA Mean sum of squares for the main effect according A
MSAB Mean sum of squares for the interaction effect according A and B

DoE Design of experiment
BIBO Bounded-input bounded-output
MBCorr Model-based Corrector
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