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Abstract 

 

Monoglyceride lipase (MGL) is an important enzyme acting in lipolysis, hydrolyzing 

monoglycerides into glycerol and free fatty acids. MGL is implicated to impact proliferation 

and proliferation-related pathways in various cancer types, including lung cancer. This thesis 

investigated the differences in lipid droplet content and expression of selected proteins in a 

panel of lung adenocarcinoma cell lines. I could show that chemical inhibition of MGL results 

in an increase in proliferation in H358 and H441 lung cancer cell lines. These cells’ migratory 

abilities however remained unaltered. Phosphoproteomics analysis was employed to examine 

alterations in the degree and pattern of phosphorylation in H358 and H441 cells upon inhibition 

of MGL. Three different approaches to the data analysis independently hinted toward a 

modification of the Wnt pathway and thus a possible involvement of MGL in the regulation of 

said pathway. The results presented in this thesis support the hypothesis that MGL activity 

hinders cell growth in certain cancer cell lines and provides a potential signaling pathway MGL 

might be involved in, which could explain the observed discrepancy in proliferation. 
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Zusammenfassung 

 

Monoacylglycerin Lipase (MGL) ist ein wichtiges Enzym in der Lipolyse, das 

Monoacylglycerine zu Glycerin und freien Fettsäuren hydrolysiert. MGL wird mit Proliferation 

und proliferations-beeinflussenden Signalwegen in verschiedenen Krebs-Arten, ebenso in 

Lungenkrebs, in Verbindung gebracht. Diese Masterarbeit untersuchte die Unterschiede in der 

Menge der Lipidtropfen und die Expression ausgewählter Proteine in einer Sammlung von 

Lungen-Adenokarzinom Zelllinien. Ich konnte zeigen, dass die chemische Inhibierung der 

MGL eine erhöhte Proliferation von H358 und H441 Lungenkrebs Zelllinien zur Folge hatte. 

Die migratorischen Fähigkeiten dieser Zellen blieben allerdings unverändert. Eine 

Phosphoproteomik-Analyse wurde angewandt, um Veränderungen im Auftreten von 

Phosphorylierungen in H358 und H441 Zellen zu untersuchen, wenn MGL inhibiert wird. Drei 

unterschiedliche Herangehensweisen der Datenanalyse deuteten unabhängig voneinander auf 

eine Anpassung des Wnt Signalweges und somit auf eine mögliche Involvierung der MGL in 

diesen Signalweg hin. Die in dieser Masterarbeit präsentierten Ergebnisse unterstützen die 

Hypothese, dass die Aktivität der MGL das Wachstum in bestimmten Krebs Zelllinien 

unterbindet und bietet womöglich eine Erklärung, in welchem Signalweg MGL agiert, was eine 

mögliche Begründung für die beobachteten Wachstumsunterschiede sein könnte.  
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Introduction &  

Hypothesis and Aim 

 

Recent numbers of the American Cancer Society solidify lung (& bronchus) cancer as one of 

the most occurring and most deadly malignancies in the USA (Siegel, Miller, and Jemal 2020). 

In terms of new cases, lung cancer was second in both male (13% of new cases) and female 

(12% of new cases) patients, following only prostate and breast cancer, respectively. In terms 

of mortality an estimated 23% of men died of lung cancer, with 22% of females having 

succumbed to this cancer. Therefore, lung cancer claims the highest number of cancer-related 

deaths per year. In Europe, the numbers paint a similar picture (Ferlay et al. 2018): In men 

around 15% of expected cancer cases in 2018 were lung cancer, only overtaken by prostate 

cancer, with almost one quarter of expected deaths attributed to lung cancer. In women, lung 

cancer ranks only third highest (8.5%) in terms of new cases, behind breast and colorectal 

cancer. Breast cancer claims the highest number of female patients’ lives (16.2%), followed 

shortly, however, by lung cancer (14.2%).  

Lung cancer and more specifically non-small cell lung cancer (NSCLC) can carry a variety of 

genetic mutations, altering tumor suppressor genes, proto-oncogenes and/or DNA repair genes. 

Among the more common and well understood mutations are those that affect the epidermal 

growth factor receptor (EGFR). This receptor tyrosine kinase can be either overexpressed or 

activated through mutations and EGFR itself then activates several signaling pathways, like the 

Phosphoinositide 3-kinase/Protein kinase B (PI3K/AKT) pathway or the Ras/mitogen-activated 

protein kinase (Ras/MAPK) (MAPK is henceforth called by its alternative name, ERK, for 

extracellular signal-regulated kinase) pathway (Sigismund, Avanzato, and Lanzetti 2018). 

Through these pathways, EGFR’s effect on survival, proliferation and migratory abilities is 

facilitated. Both ERK (Vicent et al. 2004) and AKT (David et al. 2004) have been shown to be 

activated in NSCLC. Additionally, the intracellular tyrosine kinase SRC (pronounced “sarc”, 

short for “sarcoma”), which also influences signaling pathways like the ERK and AKT 

pathways, has been implicated as a therapeutic target in NSCLC (Giaccone and Zucali 2008). 

It is widely known, that cancer cells undergo changes in their metabolism as one of the 

hallmarks of cancer. Switching glucose metabolism to aerobic glycolysis – known as the 

Warburg Effect – was already described in the 1920s (Warburg, Wind, and Negelein 1926). In 

recent years, a considerable amount of research went into understanding how lipid metabolism 

is changed in tumors. A “derailed cellular lipidome” in cancer contributes to cancer hallmarks, 

owing to the complexity of lipids and their various functions (Molendijk et al. 2020). The 

strategy of choice in cancer to meet their altered requirements in lipid metabolism is often 

increased uptake of exogenous lipids or an increase in de novo synthesis (Beloribi-Djefaflia, 

Vasseur, and Guillaumond 2016). Excess lipids are then stored in lipid droplets (LD), organelles 
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acting as storage compartments for neutral lipids like triacylglycerol (TAG) and cholesteryl 

esters (CEs). LDs contribute in several ways in meeting cancer hallmarks (Cruz et al. 2020).  

The breakdown of TAGs by adipose triglyceride lipase (ATGL), hormone sensitive lipase 

(HSL) and monoacylglycerol lipase (MGL) is known as lipolysis (Knapp and Gorski 2017). 

Every one of those enzymes hydrolyses one fatty acid (FA) off the glycerol backbone of a 

triglyceride, diglyceride and monoglyceride, respectively.  

The first association between Wnt and cancer was made, when Wnt-1 was described as an 

oncogene in murine breast cancer by Nusse and Varmus, 1982. Wnt furthermore acts upstream 

of Planar Cell Polarity (PCP) components (Humphries and Mlodzik 2018). These components 

arrange in a directional manner in cells, ultimately contributing to the polarity of the respective 

cells. Among its function in other tissues, Wnt is now understood to be strongly involved in 

lung development and, more importantly, maintenance (Raslan and Yoon 2020). Naturally, 

deregulation of Wnt in lung cancer has been shown to not only be involved in establishment of 

tumors, but also in angiogenesis, chemotherapy resistant cancer stem cells and therapeutic 

resistance in general (Rapp et al. 2017). There has been a great deal of interest in the Wnt 

pathway as a therapeutic target in cancers in general recently, owing to the importance and 

impact this pathway can have (Anastas and Moon 2013).  

It has been previously shown that deregulation of a neutral lipase can influence the expression 

and activity of important kinases (Tomin et al. 2018). Given MGL’s importance in signaling, 

particular focus was given to MGL during for this thesis. Additionally, it has been suggested 

that MGL was necessary for cancer cells to be able to maintain growth and migrate (Nomura et 

al. 2010). However, later findings suggest MGL to negatively influence PI3K/AKT signaling 

and thus cancer growth (Sun et al. 2013). The same research group later generated MGL 

knockout mice and showed that MGL deficiency resulted in a higher incidence of multiple 

different tumors, including that of the lung (R. Liu et al. 2018). The same paper also associated 

an activation of ERK and EGFR with the lack of MGL. 

Based on the previous findings regarding MGL in lung cancer mentioned above and the 

knowledge that cancers can exhibit altered metabolic processes involving lipids, we 

hypothesized, that inhibiting MGL could reveal involvement of MGL in oncogenic signaling 

pathways, influencing growth and migration of lung cancer cells. To investigate potential 

effects of the loss of MGL function, we resorted to inhibition of MGL via the chemical JZL184, 

a selective inhibitor of MGL, in a panel of lung cancer cells. Cell growth and migration were 

examined with a cell viability assay and imaging approaches, while an LC-MS/MS method was 

utilized to uncover changes in cellular signaling in those cell lines that exhibited an altered 

phenotype in vitro. 
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Material and Method 

 

Solutions 

Lysis Buffer for Western Blot (WB): 8.775 mg/mL NaCl    

 1% Triton-X     

 0.1% SDS     

 50 mM Tris-HCl    

 pH 8      

 1:100 Protease Inhibitor Cocktail (Sigma Aldrich) 

 1:200 Phosphatase Inhibitor Cocktail (Sigma      

Aldrich) 

Transfer Buffer (1 L):    5.82 g/L Tris-base    

      2.93 g/L Glycine    

      0.375 g/L SDS    

      200 mL Methanol    

      fill to 1 L with Aqua dest. 

10x TBS (1 L):    24.2 g/L Tris-base    

      78.8 g/L NaCl     

      pH 7.6 (with HCl)    

      fill to 1 L with Aqua dest. 

1x TBS-T (1 L):    100 mL TBS     

      1 mL Tween 20    

      fill to 1 L with Aqua dest.  

Lysis Buffer for Phosphoproteomics (PP): 6 M GuHCl     

      10 mM TCEP     

      40 mM CAA     

      100 mM Tris-HCl    

      pH 8.5 

SDC Lysis Buffer for PP:   4% Sodium deoxycholate (w/v)  

      100 mM Tris-HCl    

      pH 8.5 

Isopropanol (ISO) 

EP-Enrichment Buffer:    48% TFA     

      8 mM KH2PO4 
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EP-Beads Buffer:    80% Acetonitrile (ACN)   

      6% TFA 

EP-Wash Buffer:    60% ISO     

      5% TFA 

EP-Transfer Buffer:    60% ISO     

      0.1% TFA 

EP-Elution Buffer:    32.9% ACN     

      5% NH4OH 

SDB-RPS Load&Wash:   1% TFA in ISO 

SDB-RPS Wash:    0.2% TFA     

      5% ACN 

SDB-RPS Elution Buffer:   59.7% ACN     

      0.1244% NH4OH 

MS Loading Buffer:    2% ACN     

      0.3% TFA 

 

Cell Culture 

6 different lung adenocarcinoma cell lines were used, 4 primary adenocarcinoma cell lines – 

A549, A427, H441 and HCC827 – and 2 metastatic adenocarcinoma cell lines – H358 and 

H1299. A549 cells were purchased from CLS (Germany) and the other five were a kind gift 

from Dr. Hrzenjak and Dr. Leithner (Division of Pulmology, Medical University of Graz). Cells 

were cultivated at 37° C, 18% O2, 5% CO2 in 98% relative humidity for all experiments. 

Cell lines were grown in RPMI-1640 medium (Sigma Aldrich), supplemented with 10% FBS 

and 1% L-Glutamine, with the exception of HCC827 cells, which were grown in DMEM 

(Gibco), supplemented with 10% FBS and 1% L-Glutamine. 

MGL inhibition was established using 1 µM of the selective MGL inhibitor JZL184 

(Selleckchem), dissolved in DMSO at 1 mM stock. For control cells the same volume of pure 

DMSO was added instead. 

Cell Harvesting 

Cells were washed 3 times with cold PBS, removing all residual PBS, then Lysis Buffer (WB) 

was added, the amount depending on the plate used (e.g. 200 µl for a 10 cm dish, or 80 µl per 
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well of a 12-well plate). Plates were left 20 minutes on ice before using a cell scraper to detach 

the cells from the plates and transferring the lysate to fresh Eppendorf tubes. Each sample was 

then sonicated for 10 seconds at 70% amplitude and centrifuged at 14,000 g for 5 minutes to 

pellet the cell debris. A 1:20 dilution of the lysate was taken for protein estimation, after which 

1 µg/µl protein solutions were prepared for each sample, adding 1x Laemmli Buffer (4x Stock) 

and 1x Reducing Agent (10x Stock). 

Cell Counting 

Cells were counted with a CASY cell counter using 50 µl cell suspension in 1 ml CASYton 

solution. 

Protein Estimation 

All protein estimations were performed with a Pierce™ BCA Protein Assay Kit (Thermo 

Scientific) in a 96-well plate format according to manufacturer’s instructions. 

Lipid Droplet (LD) Staining 

For LD staining 3*105 cells were seeded on KOH-treated cover slips in 6-well plates 24 hours 

prior to imaging. Cells were then incubated with a 1:1000 dilution of BODIPY™ 493/503 

(Thermo Scientific) for 10 minutes at 37° C and fixed for 10 minutes with 3.7% formaldehyde 

in PBS, followed by two washing steps with PBS. For mounting VECTASHIELD® antifade 

mounting medium containing DAPI (Szabo-Scandic) was used. Images were acquired using a 

Nikon A1+ confocal laser scanning microscope with a 405 nm diode laser and 450/50 BP filter 

for DAPI, a 488 nm argon laser with a 525/50 BP filter for BODIPY™ and a 60x CFI Plan 

Apochromat Lambda oil immersion objective. The settings for the z-stacks were chosen to fit 

the Nyquist criterion. The analysis was performed with the FIJI software (1.51h). For each 

image, a maximum intensity projection of the BODIPY™ channel was generated and a 

threshold was set using the Kapur-Sahoo-Wong (Maximum Entropy) method. The calculated 

values were used on the whole stack for lipid droplet volume quantification. Based on a nucleus 

count a quotient of lipid droplet volume per cell for each image was calculated.  

Protein Gel Electrophoresis 

Proteins were loaded on NuPAGE™ 4-12% Bis-Tris Gels (novex life technologies) and run 

with 1x NuPAGE™ MOPS SDS Running Buffer (novex life technologies). 

Western Blot 

Primary Antibodies (rabbit-antibodies) used were purchased from Cell Signaling Technologies 

(CST) and included ATGL (1:1,000), Phospho-SRC (Tyr416) (1:1,000), Phospho-AKT (S473) 

(1:1,000) and Phospho-EGFR (Tyr1068) (1:1,000). MGL-antibody (1:1,000) was purchased 

from Invitrogen, Phospho-ERK (Tyr204) (1:1,000) was purchased from Abcam and β-actin 
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antibody (1:5,000; mouse-antibody) was purchased from Sigma Aldrich. Anti-rabbit and anti-

mouse antibodies coupled to horse radish peroxidase (HRP) (CST) were used as secondary 

antibodies in 1:3,000 dilution. Antibodies were diluted in TBS-T. 

Amersham™ Protran™ 0.2 µm Nitrocellulose (GE Healthcare Life Science) membranes were 

blotted with Trans-Blot® SD Semi-Dry Transfer Cell (BioRad) for 1 hour 15 minutes at a 

constant 180 mA (220 mA for 2 membranes simultaneously) with a maximum of 25 V after 

soaking the membranes, filters and gel in transfer buffer. 

Membranes were blocked with 5 % skim milk in TBS-T for non-phosphoproteins and 5% BSA 

in TBS-T for phosphoproteins for either 1 hour at room temperature (RT) or overnight at 4° C. 

Incubation with primary antibody was performed for 1 hour at RT or overnight at 4° C. 

Membranes were then washed for 5 minutes 5 times with TBS-T and subsequently incubated 

with secondary antibody for either 1 hour at RT or overnight at 4° C. Before detection, 

membranes were washed another 3 times for 5 minutes each. The two solutions contained in 

SuperSignal™ West Pico PLUS Chemiluminescent Substrate (Thermo Scientific) were mixed 

1:1 and incubated for 5 minutes and then added to the membranes, which were scanned on a 

ChemiDoc Touch (BioRad). Membranes were stripped using Restore™ Western Blot Stripping 

Buffer (Thermo Scientific) for detection of non-phosphoproteins of the corresponding 

phosphoproteins for 7 minutes at RT and afterwards washed for 10 minutes 3 times. 

The ImageLab software (BioRad) was used to quantify protein band intensities from the 

scanned images of the blots. 

Scratch Migration Assay 

Cells were seeded in 12-well plates at ~4*105 per well. After cells reached confluency a scratch 

was introduced down the middle of each well using a 100 µl pipette tip. Scratched off cells 

were discarded by aspirating the old medium and washing the plates once with PBS before 

adding fresh medium. Plates were then immediately imaged with an inverted light microscope, 

the imaged spots were marked and imaged again regularly for up to 72 hours. With the software 

FIJI (1.15h) the area not occupied by cells was then calculated and the percentage by which the 

gap had been closed was determined. 

Cell Growth Evaluation 

Cell proliferation was measured using the Cell Proliferation Kit I (MTT) (Roche). The kit was 

used as suggested in the kit’s manual, although with 2*10³ cells (instead of the suggested 3*10³) 

seeded per well in 96-well plates and the absorbance measured at a wavelength of 550 nm.  

Additionally, to establish growth curves, 8*104 cells were seeded per well in 12-well plates and 

imaged continuously in the Cell Observer (Zeiss) for multiple days, utilizing custom scripts 

written by Jürgen Gindlhuber to determine the cell count. 
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Phosphoproteomics – Sample Preparation  

H358 and A441 cells were seeded in 15 cm dishes and grown to ~80% confluency. Cells were 

then serum-starved for 30 minutes after which 1 µM JZL184 in 20 µL DMSO was added to 20 

mL medium for 20 minutes. The same volume of only DMSO was added to the control cells. 

For harvesting, the dishes were put on ice and washed twice with cold PBS. 3,500 µL of Lysis 

Buffer (PP) were added, cells were detached using a cell scraper and collected in 5 mL tubes. 

Cells were then heated to 95° C for 5 minutes and afterwards put on ice. After sonicating each 

sample with 1.5 kJ at 90% amplitude (on ice) they were heated to 95° C for another 10 minutes.  

For acetone precipitation, samples were initially centrifuged for 30 minutes at 3,500 g and 4° 

C and supernatants were transferred to clean tubes. Half of the supernatant´s volume of H2O 

was added to dilute the samples. With 4 volumes of -20° C acetone proteins were precipitated 

overnight at -20° C. Precipitates were centrifuges at 7,000 g for 15 minutes at 4° C, discarding 

the supernatant. The resulting pellets were washed twice with -20° C 80% acetone and 

subsequently air dried at RT. Pellets were resuspended in SDC Lysis Buffer to reach a minimum 

protein concentration of 3.6 mg/ml and sonicated 3 times for 30 seconds at 80% amplitude.  

Protein concentration was determined with Pierce BCA Protein Assay Kit (Thermo Scientific). 

1 mg of protein per sample (enough for 2 LC-MS/MS measurements) were diluted to 280 µl 

with SDC Lysis Buffer and Trypsin was added in a 1:50 ratio (20 µg). Samples were left to 

digest overnight at 37° C at 1,500 rpm. 3 µl of digested samples were frozen for potential future 

proteome analysis (need to be desalted using SDB-RPS!). 

For Phospho-Enrichment, the EasyPhos platform by Humphrey, Azimifar, and Mann (2015) 

was adapted. The digested samples were mixed with 400 µl ISO by vortexing for 30 seconds. 

100 µl EP-Enrichment Buffer were added and vortexed again for 30 seconds, after which 

samples were centrifuged at 16,000 g for 15 minutes at RT, supernatants were transferred to 

clean tubes. 12 mg TiO2-Beads per 1 mg protein were suspended in EP-Beads Buffer for a 

concentration of 0.5 mg/µl by sonicating for 1 minute in an ultrasonic bath. 24 µl of bead 

suspension were added to each sample, making sure to keep the beads in solution by pipetting 

and vortexing. After 5 minutes incubation at 40° C at 1,500 rpm samples were centrifuged at 

2,000 g for 1 minute at RT and the supernatant was discarded. The beads were then washed five 

times by resuspending in EP-Wash Buffer, incubating for 30 seconds at RT at 1,400 rpm, 

centrifuging at 2,000 g for 1 minute at RT and carefully discarding the supernatant. After 

washing, 75 µl EP-Transfer Buffer were added to the beads, resuspending and then transferring 

them to a C8-Stage tip (self-packed, one layer of C8-material in 200 µl pipette tip with self-

made adapter to fit on 2 ml tube). Using another 75 µl EP-Transfer Buffer the remaining beads 

were transferred to the same tip. Tips were then centrifuged at 1,500 g for 20 minutes (or until 

no liquid remained) at RT, discarding the flow-through. Tubes were replaced by fresh ones and 

phospho-peptides were eluted by adding 30 µl EP-Elution Buffer and centrifuging at 1,500 g 
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for 4 minutes (or until no liquid remained). The elution step was repeated a second time, after 

which samples were immediately dried in a speed vac until a maximum of 15 µl liquid remained 

(but not dried completely).  

Immediately after phospho-enrichment samples were desalted by first being diluted with 100 

µl SDB-RPS Load&Wash and then transferred to a SDB-RPS Stage Tip (self-packed, two 

layers of SDB-RPS material in 200 µl piptette tip with self-made adapter to fit on 2 ml tube). 

After centrifuging samples at 1,500 g until no liquid remained at RT, tips were washed with 

100 µl SDB-RPS Load&Wash and repeating the centrifugation step. The washing step was 

repeated one more time with 100 µl of SDB-RPS Wash. Phospho-peptides were then eluted 

with 60 µl SDB-RPS-Elution Buffer into a fresh 2 ml tube with a glass vial insert. The samples 

were dried down for around 30 minutes in a speed vac. 

Dry samples were either stored at -20° C until measurement or immediately resuspended in 10 

µl MS Loading Buffer (for two injections of 4 µl), shaken for 2 minutes at 1,500 rpm and spun 

down, after which the glass insert was put into a LC injection vial and samples were measured.  

Phosphoproteomics – Machine and Method 

Chromatography was performed on an Ultimate 3000 RSLCnano system (Thermo Fisher 

Scientific) equipped with an Aurora Series UHPLC C18 column (250 mm x 75 µm, 1.6 µm, 

IonOpticks). Total LC-MS/MS measurement time was 133 minutes. Separation was carried out 

at 50 °C at a flow rate of 300 nl/min using the following gradient, where solvent A is 0.1 % 

formic acid in water and solvent B is acetonitrile containing 0.1 % formic acid: 0-18 min: 2% 

B;  18-100 min: 2-25% B; 100-107 min: 25-35% B, 107-108 min: 35-95% B;  108-118 min: 

95% B, 118-118 min: 95-2% B; 118-133 min: 2% B. Mass spectrometry was performed on a 

Maxis II qTOF instrument (Bruker) set to fragment the top 20 most abundant peptides of each 

full spectrum within one cycle. Database search was done with MaxQuant 1.6.1.0 (Cox and 

Mann 2008), searching the public Swissprot database with taxonomy Homo sapiens and 

common contaminants (downloaded on 16.04.2019, 20482 sequences). Carbamidomethylation 

on Cys residues was set as fixed modification, oxidation on Met residues and phosphorylation 

on Ser/Thr residues as variable modification. Detailed decoy database search criteria included: 

trypsin; max missed cleavage sites: 2; acceptance parameters for identification: 1% PSM FDR; 

1% protein FDR. 

Phosphoproteomics – Data Analysis and Visualization 

To statistically analyze the phosphoproteomics data obtained after MaxQuant search of the LC-

MS/MS data, the phospho(ST).txt file was imported into the Perseus software (1.6.5.0) 

(Tyanova et al. 2016). The phospho(ST) table was filtered for contaminant and reverse peptides 

found by the decoy database search. Intensities were log2 transformed to lower effect of outlier 

values and filtered for a localization probability of > 75% and for 3 valid values in at least one 
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group. Missing values were imputed from the downshifted normal distribution of the data 

(width 0.6, downshift 1.8) and values were normalized by subtracting the median. Significantly 

changed phosphopeptides by MGL inhibition were obtained by two-sided Student´s t-test (S0 

0.1) and permutation-based FDR (5%). 

Hierarchical cluster analysis was performed by matching the matrix containing the significantly 

changed phosphopeptides to the matrix obtained after imputing the missing values in the 

original data. Every value in the resulting matrix was z-scored (normalized by subtracting the 

mean, then dividing by the standard deviation), after which Euclidian distance hierarchical 

clustering was used to generate a heatmap. A matrix containing the peptides in the heatmap was 

generated and matched to the matrix obtained after imputing the missing values in the original 

data. A Fisher exact test (Benjamini-Hochberg correction, FDR 2%) was performed to find 

significantly enriched GO, KEGG and Reactome terms. This list of phosphopeptides was sorted 

by p-value to generate Supplemental Table 1 and Supplemental Table 2. 

The matrix generated after imputation of missing values was exported and loaded into a separate 

Perseus entity alongside the 9606.protein.links.v11.0.txt.gz file from the String database 

(Szklarczyk et al. 2019) (downloaded on 16.07.2019) to calculate “signaling scores” based on 

10,000 permutations using the PHOTON software plug-in for Perseus (Rudolph et al. 2016). 

Resulting protein-interaction networks were visualized with Cytoscape software (Shannon et 

al. 2003).  

For additional examination of protein interactions, the KSEA app (Wiredja, Koyutürk, and 

Chance 2017; Hornbeck et al. 2015) was implemented as an automated R script to allow offline 

analysis of the phosphoproteomics data. First, the log2 transformed matrix was exported and 

loaded into a separate Perseus entity where the values were normalized by subtracting the mean 

of every column from the values. The data was then filtered for 3 valid values in at least one 

group, after which missing values were imputed from the downshifted normal distribution of 

the data (width 0.6, downshift 1.8). Because KSEA requires p-values for each peptide, a two-

sided Student’s t-test (S0 0.1) with permutation-based FDR (5%) was performed. The mean of 

each group was then calculated and the difference between the mean of the treatment group and 

the mean of the control group was calculated. The columns “Gene name”, “Protein” and 

“Positions within proteins” were expanded to not contain multiple entries. Log2 transformation 

of the data was reversed in the last step (by raising 2 to the power of the respective value), as 

KSEA does not work with log transformed data. The resulting matrices for H358 and H441 

respectively were exported and used as input for the KSEA R script. 
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Results 

Comparing Lung Cancer Cell Lines:  

Lipolysis and Signaling Proteins 

Lipid droplet content and lipolytic profile differ between different lung cancer cell lines 

To distinguish which cancer cell line would be more likely to be dependent on lipid 

accumulation and/or lipid hydrolysis, our first goal was to compare the lipid droplet (LD) 

content of a lung cancer cell panel and the expression of the key lipolytic enzymes adipose 

triglyceride lipase (ATGL) and monoacylglycerol lipase (MGL) in these cells. 

Western Blot analysis showed that all cell lines expressed ATGL, albeit at greatly varying 

levels. For clarity, data was normalized to the expression levels in A549 cells. (Figure 1). 

Interestingly, unlike ATGL, which was expressed in all cell lines, MGL was virtually gone in 

A427 and H1299 cells, while HCC827, H358 and H441 did express MGL, although 

significantly less than A549 cells. This suggests that MGL could potentially have a more cancer 

etiology- or cell line-dependent role in cancer metabolism.  

 

 

ATGL 

β-actin 

MGL 

Figure 1: ATGL and MGL expression vary in lung cancer cell lines. Cells were grown to ~80% confluency, 

harvested and 20 µg of protein were loaded on the gel. Ratios of ATGL to β-actin and MGL to β-actin were taken 

per sample, means and SD were calculated and all ratios were normalized against A549 ratio for clarity. Mean ± 

SD; n=3 
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Additionally, the LD content of the cells was determined using BODIPY™ dye on a NIKON 

A1+ Microscope to image the cells. The number of nuclei and volume of LDs was determined 

from the microscopy images with help of Jürgen Gindlhuber. The tested cell lines ranged in LD 

content from only a few µm³ per cell to over 30 µm³ per cell (Figure 2). A427 cells, which 

appear to be least dependent on lipolysis among the tested cells (Figure 1), contain the least 

amount of storage lipids, at 2 µm³ per cell. Furthermore, although A549 cells showed the 

highest expression level for both ATGL and MGL, proteins associated with LDs, they are only 

in the center span for LD content with 13 µm³ per cell. H441 and HCC827 are also in within 

the center of the range with 10 µm³ and 18 µm³ LD per cell, respectively. H1299 cells contain 

29 µm³ LDs per cell on average, H358 cells average at 34 µm³ per cell, both with quite large 

standard deviations. The varying numbers and sizes of LDs in the different cell lines was 

already apparent when looking at the microscopy images, a sample of which is provided in 

Figure 3. 

  

Figure 2: Lipid Droplet content is hugely different between lung cancer cell lines. 3*105 cells were seeded on 

cover slips, grown for 24 hours, stained with BODIPY™ and imaged on a NIKON A1+. From microscopy images, 

volume of LDs was calculated and normalised on the number of nuclei counted. Mean ± SD; n shown individually 

per cell line 
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Figure 3: Lipid droplet content is visually different between lung cancer cell lines. Lipid droplets were stained using BODIPY™, after which cells were fixed with 

3.7% formaldehyde and nuclei were stained with DAPI. Images were acquired on a Nikon A1+ confocal laser scanning microscope and edited using the FIJI software. 
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Expression Levels of Signaling Proteins Vary in Different Lung Cancer Cell Lines 

In addition to the lipase and LD profiles, we examined the activation status of several signaling 

kinases SRC, AKT, ERK and EGFR , the majority of which has already been reported to be 

implicated in cross talk between deregulated lipolysis and pro-oncogenic signaling (Tomin et 

al. 2018; Sun et al. 2013; Du et al. 2015; Menendez 2010). Furthermore, we also addressed the 

expression of the most prominent tumor suppressor p53, which has also been brought in 

correlation with deregulated lipolysis in cancer (Di Leo et al. 2019). The ratio of the protein of 

interest or the phosphorylated form to β-actin was calculated from the protein bands’ intensities 

(Figure 4). 

Tyrosine kinase SRC is phosphorylated at the activating site Tyr416 to varying extent and with 

large variance across the cell line panel. Wild-type A549 cells appear to be almost entirely 

devoid of SRC phosphorylation at this residue. Phosphorylation of Proteinkinase B – AKT – 

was fluctuating somewhat greatly between cell lines. A549, A427, HCC827 and H441 cells 

show comparable levels of AKT phosphorylation at Ser437. The metastatic cell lines H1299 

and H358 seem to have AKT more strongly activated (by two to four times) than the other cell 

lines, however with large variance and thus low confidence.  

Furthermore, the active forms of the membrane-bound growth factor receptor EGFR and the 

kinase ERK (MAPK) as well as general expression of the tumor suppressor p53 were examined. 

The presence of the activating phosphorylation at Tyr1068 was found in all cell lines at different 

levels, with H358 and H441 cells showing the highest levels of pEGFR among the tested cell 

lines. When Phospho-ERK (Tyr204) was examined, A427 and HCC827 showed the lowest 

pERK to β-actin ratio, while the levels of other cell lines were comparable to each other. 

However, all ratios calculated are within margins of error of one another. p53 expression was 

also examined with this immunoblotting analysis, revealing comparable levels in A549 and 

A427 cells. While HCC827 and H441 cells have a high variability between samples, their mean 

p53-to-β-actin ratios are considerably higher than those in the other cell lines. On the other 

hand, no p53 was detectable in H1299 and H358 cells, which is expected as they are reported 

to be p53-null (Mitsudomi et al. 1992; Bodner et al. 1992) 

In a nutshell, the overall activation profile of kinases in the lung cancer cell panel differs 

between individual cell lines. Among the lipases, MGL expression seems to differ more greatly 

within the cell lines tested compared to ATGL, with A549, H441 and H358 expressing the 

highest MGL levels observed in the panel. With previous publications suggesting cross talk 

between MGL and pro-oncogenic signaling and the results shown below indicating that those 

three cell lines are most sensitive to changes in MGL activity, we opted to investigate how 

signaling in these three cell lines would be affected if MGL activity was inhibited.   
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pSRC 

pAKT 

pEGFR 

pERK 

p53 

β-actin 

Figure 4: Expressions of pSRC (Tyr416), pAKT (Ser437), pEGFR (Tyr1068), pERK (Tyr204) and p53 differ 

within lung cancer cells. Cells were grown to ~80% confluency, harvested and 20 µg protein were loaded on the 

gel. Ratios of proteins to β-actin (loading control) were taken per sample, means and SD were calculated. Mean ± 

SD; n=3 



[17] 

 

Cellular Effects of Inhibition of MGL Activity: 

Proliferation, Migration and Protein Levels 

Lung Cancer Cell Growth is Marginally Influenced by MGL Activity  

To elucidate, if and to what extend MGL activity impacts growth of lung cancer cells, all cell 

lines were treated with the MGL inhibitor JZL184 and proliferation was tested every 24 hours 

using an MTT cell proliferation kit over a period of up to 72 hours. The first test revealed greatly 

fluctuating growth rates for all cells lines. H358 and H441 cells however trended toward a faster 

growth upon MGL inhibition after 72 hours (Figure 5). For those two cell lines, in addition to 

A549, the MTT test was repeated for a total of n=9 replicates for those cell lines, where the 

Figure 5: Growth of lung cancer cells with MGL inhibition (MGLi) and without (ctrl) determined with an 

MTT assay over 72 hours. For each timepoint, a separate 96-well plate was used. 2000 cells were seeded per 

well. Medium was changed every 24 hours where necessary to maintain MGL inhibition by counteracting 

inactivation of JZL184.  Means of MGLi for each timepoint were normalized to the means of ctrl for the respective 

timepoint. A549 (A), A427 (B), HCC827 (C), H1299 (D), H358 (E), H441 (F). Mean ± SEM; n = 3; *: p < 0.05; 

**: p < 0.01 
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same trend could be replicated (Figure 6). While statistical significance was not reached for 

H441 cells, the growth advantage of H358 cells could be replicated with statistical significance.  

 

 

A549 cells seem to exhibit no significant increase in proliferation if MGL activity is inhibited 

compared to the uninhibited control cells over a period of 72 hours (Figure 5, A). A427, 

HCC827 and H1299 cells all varied in their growth over the 72 hours tested, with no significant 

differences between MGL-inhibited cells and control cells (Figure 5, B - D). For H358 and 

H441 cells however a trend of increased proliferation started to show after 48 hours. This trend 

culminated in a significantly greater proliferation in those two cell lines when MGL activity 

was hampered (Figure 5, E & F). In H441 cells, the increase in proliferation was just over 13% 

compared to the control group, with H358 cells exhibiting a growth increase of almost 37%.  

In a separate experiment, H358 and H441 cells were treated with JZL184 and imaged hourly 

for multiple days to generate a growth curve. The slope of each curve was calculated, and the 

mean of each condition was taken to compare between the control group and the treatment 

group (Figure 7). While inhibition of MGL resulted in H358 cells growing faster by about 7%, 

the same effect was more pronounced in H441 cells, with an increase of almost 17% in growth 

Figure 6: Slight growth advantage of H358 and H441 cells upon MGL inhibition (MGLi) over control (ctrl) 

cells was reproducible when performing an MTT assay with 6 replicates over 72 hours and combining data 

for total n=9. For each time point, a separate 96-well plate was used. 2000 cells were seeded per well. Medium 

was changed every 24 hours where necessary to maintain MGL inhibition by counteracting inactivation of JZL184. 

Means of MGLi for each timepoint were normalized to the means of ctrl for the respective timepoint. A549 (A), 

H358 (B), H441 (C). Mean ± SEM; n = 9; *: p < 0.05; **: p < 0.01 
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rate. Taken together with the MTT results, this experiment supports the assumption, that growth 

in these lung cancer cells is linked to MGL activity. 

 

 

Migration Ability Is Independent of MGL Activity 

In addition to the described growth experiments, the migratory abilities of A549 cells and of 

those cell lines that exhibited a growth advantage upon the inhibition of MGL, H358 and H441, 

were tested by growing them to 100% confluency and introducing a “wound” (scratch) using a 

pipette tip. Following that a series of microscopy images were taken and used to calculate the 

area of the “wound” over time with the help of a custom ImageJ program written by Jürgen 

Gindlhuber.  

A549 lung cancer cells appeared to migrate faster when MGL activity was inhibited, but this 

trend was not observable at every timepoint (Figure 8). H358 cells remained generally within 

margins of error when putting the control and treatment group side by side, with later timepoints 

hinting toward faster migration with MGL inhibited as well. On the other hand, H441 cells that 

were treated with JZL184 did seem to migrate marginally slower compared to the control. None 

of these results showed any statistical significance, however. The reason for this may as well 

be a result of this experiment not measuring solely the migratory capabilities of the cells but a 

combination of migration and proliferation. 

Figure 7: H358 cells grow marginally faster when MGL activity is inhibited, while H441 cells show a 

significant boost in growth after the same treatment. Cells were imaged in technical replicates in the Cell 

Observer over 24 hours. For both the control group (ctrl) and the treatment group (MGLi) the means of the maximal 

slopes of each resulting growth curve were taken and normalized against the respective control group. Medium 

was changed every 24 hours to counteract inactivation of JZL184 to maintain MGL inhibition. Mean ± SEM. n = 

21 (3 replicates times 7 spots per well) 



[20] 

 

 

Figure 8: No effect of MGL inhibition on migratory abilities of lung cancer cells. After cells were grown to 

confluency, a scratch was introduced. Microscopic imaging was used to determine the area of the scratch for 72 

hours total. Percentage of the area closed is blotted against respective timepoints. Mean ± SEM.  

n = 3 
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Immunoblotting Reveals No Effect on Kinase Activation 

Based on the previous Immunoblotting experiments that were done to outline oncogenic protein 

expression and activation levels in different lung cancer cell lines, the same was addressed upon 

MGL inhibition. For this purpose, 1 µM MGL inhibitor JZL184 was administered to A549, 

H358 and H441 cells for 24 hours prior to harvesting for Western Blot (Figure 9).  

 

 

In A549 cells, inhibition of MGL had no observable effect on pSRC expression compared to 

control cells. While pAKT expression trended toward being higher in A549 cells with inhibited 

MGL, the variance between replicates was too big for any sound conclusion. H358 cells showed 

a slight drop in both pSRC and pAKT expression. pSRC expression was lower by around 50% 

when MGL activity was hampered, without reaching statistical significance, however. The 

difference in pAKT expression in H358 between the treatment and control group was even 

β-actin 

pSRC 

pAKT 

Figure 9: MGL inhibition in A549, H358 and H441 cells does not affect SRC and AKT activity. Cells were 

grown to ~80% confluency, incubated with 1 µM JZL184 for 24 hours, harvested and 20 µg of protein were loaded 

on the gel. Ratios of pSRC (Tyr416) and pAKT (Ser437) to β-actin (loading control) were taken per sample, means 

and SD were calculated and normalized to respective control group. Mean ± SD; n=3 
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smaller than in pSRC expression, although with the same trend of AKT activation dropping 

upon MGL inhibition. Lastly, pSRC in H441 was increased almost 2-fold with MGL inhibition 

compared to the control. The considerably large variance prevents this from being statistically 

significant, as well. On the other hand, pAKT was as low as 40% from the pAKT in the control 

cells, however significance was not reached for this result either. 

These Western Blot analyses were repeated multiple times (data not shown), with varying 

results. No conclusive statement could be made from the Western Blots considering pSRC and 

pAKT expression in those 3 cell lines.  

Also, in consideration of the LC-MS/MS phosphoproteomics experiment performed later, the 

cells were again treated with JZL184, however only for a period of 20 minutes, the same 

duration used for the phosphoproteomics experiment. The cells were then again examined via 

Immunoblotting (data not shown). The resulting Western Blots did not show any significant 

differences in pSRC and pAKT expression in A549, H358 and H441 when MGL was inhibited.  

In total, pSRC and/or pAKT expression do not seem to be responsible for the previously 

observed growth advantage of H358 and H441 cells with hampered MGL activity. Therefore, 

H358 and H441 cells were subjected to phosphoproteomics when MGL activity was inhibited 

to potentially establish a link to the differences in proliferation. 

 

 

 

 

 

 

 

 

  

 

 

 



[23] 

 

Phosphoproteome: 

Potential Involvement of MGL in Wnt Signaling Pathway 

Based on the fact, that H358 and H441 cells tended to react to MGL inhibition in regard to 

proliferation and migration, those two cell lines were chosen for a LC-MS/MS 

phosphoproteomics analysis to uncover changes in phosphorylation of proteins that could be 

linked to oncogenic signaling. Cells were grown close to 80% confluency, at which point fresh 

medium was added containing 1 µM JZL184 to inhibit MGL activity. To observe the short-

term signaling effects of the treatment, cells were harvested 20 minutes after administering 

JZL184, rather than incubating for 24 hours, which would reflect a steady-state change. Within 

24 hours, any changes in signaling pathways would most likely be counteracted by regulating 

pathways, which is another reason why the 20 minutes incubation period was chosen. Control 

cells were prepared identically to cells treated with JZL184, except for adding only DMSO (20 

µL) in place of JZL184 (0.1% DMSO in medium). 

After the LC-MS/MS run and the MaxQuant search were completed, the resulting “Phospho 

(ST)Sites.txt” was loaded into Perseus to analyze. For each sample, the total intensities per 

phosphopeptide were loaded instead of the intensities for multiplicities, i.e. not distinguishing 

how many phosphorylations were on one specific peptide. 

To test, whether any differences between sample groups were due to biological changes induced 

by the inhibition of MGL activity or random effects resulting from inconsistency between 

replicates, a Principal Component Analysis was performed. For H358 cells, replicates of the 

control group (c) showed great consistency among themselves. Although the JZL184-treated 

replicates (MGLi) were quite separated from each other, a clear discrimination between control 

and treated samples could be made through the first component. (Figure 10, A). H441 cell 

MGLi samples grouped decently together, with c samples being more separated. Still, a clear 

separation between groups in the first component could be observed (Figure 10, B). By 

clustering of the respective groups for the two cell lines any differences between the treated and 

untreated groups are more likely be due to actual discrepancies in the biology of the cells tested 

rather than due to technical variability.  
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Next, a two-sided Student’s t-test (S0 0.1, permutation-based FDR 5%) was performed on 

peptide level. Before performing the t-test, the data was filtered for 3 valid values in at least 

one group for each cell line. Out of the resulting 1.965 and 609 peptides, 64 and 25 were found 

to be significantly changed between groups for H358 and H441, respectively. Heatmaps of 

differentially phosphorylated peptides are shown in Figure 11 and Figure 12. Intensities were 

normalized by z-scoring on the rows of the data before creating the heatmap, which then 

represents how many standard deviations any row’s value lies from that row’s mean value. In 

H358 the phosphosite with the greatest difference in z-score between the treatment and control 

group was Ser756 of the Protein kinase C-binding protein 1 (ZMYND8). The fold change from 

control cells to treated cells for this peptide was calculated to be 12.47 after imputation of 

missing values. Looking at H441, Ser1218 of Rho GTPase-activating protein 5 (ARHGAP5) 

differs most between groups with a fold change of 20.17 between treatment and control. Among 

the phosphopeptides that were significantly different in their abundance after MGL inhibtion in 

H358 were for example peptides of the transcriptional regulators FOXK1 and FOXK2. While 

Ser101 of FOXK1 showed a fold change of 10.12 in the MGL-inhibited cells, the residue 

Ser428 of the FOXK2 peptide exhibited a fold change of 10.69 in treated cells vs. in the control 

cells. The same peptide of FOXK1 was found in H441 cells; in these cells the Ser101 was more 

phosphorylated, with a fold change of 17.52 in MGL-inhibited cells, however. Additionally, a 

peptide containing Ser412 of the scaffolding protein ARRB1, which is involved in SRC, ERK 

and AKT signaling was detected in H441, with a fold change of 17.83 in cells treated with 

JZL184. Of specific note is a phosphopeptide found in both cell lines, which is part of the 

Catenin delta-1 (CTNND1, henceforth δ-catenin) protein phosphorylated at Ser899. Nothing is 

known about this specific site yet, neither in humans nor in mice. δ-catenin protein takes part 

in regulating cell-cell adhesion and acts within the Wnt pathway. This result thus first hinted at 

a potential effect of MGL activity on Wnt signaling.  

Figure 10: Replicates of Phosphoproteomics MS samples for H358 (A) and H441 (B) cells clustered in 

Principal Component Analysis (PCA). PCA of control cells (c1-c3) vs. treated cells (MGLi1-MGLi3) generated 

in Perseus. 
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Performing a GO enrichment analysis of the cluster that contained phosphopeptides that were 

more abundant in cells with MGL inhibited revealed in both cell lines GO terms referencing 

Wnt signaling. Aside from that, adherens junction terms were enriched in both cell lines alike, 

as well as vascular endothelial growth factor receptor (VEGFR2) response (Supplemental 

Table 1, Supplemental Table 2). 
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Figure 11: Inhibition of MGL activity leads to a number of peptides being more (red) or less (green) 

phosphorylated in H358. Significantly more or less phosphorylated peptides in MGL inhibited cells (MGLi) and 

in control cells (c). Intensities were z-scored, heatmap generated 2 clusters of peptides. 
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Figure 12: Inhibition of MGL activity leads to a number of peptides being more (red) or less (green) 

phosphorylated in H441. Significantly more or less phosphorylated peptides in MGL inhibited cells (MGLi) and 

in control cells (c). Intensities were z-scored, heatmap generated 2 clusters of peptides. 
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Utilization of the PHOTON add-in for Perseus mapped the experimental dataset to the entire 

protein interaction network of the human proteome. The resulting networks were loaded into 

Cytoscape and the difference in mean “signaling scores” between treatment and control group 

was used as basis for visualization. Since the network contains over 17.000 proteins linked by 

known interactions, proteins mapped with the keyword “Wnt” was put in a sub-network for 

both H358 and H441 cells, as this was the pathway that seemed to be enriched in both cell lines. 

In H441 cells, among “Wnt”-annotated proteins that had the most positive “signaling score” 

difference from treatment to control (red) – meaning they participate more in signaling in MGL-

inhibited cells than in control cells – were casein kinase I isoform alpha (CSNK1A1/CK1α) and 

RNA polymerase-associated protein RTF1 homolog (RTF1) (Figure 13). RTF1 is a component 

of the PAF1 complex, which is required for transcription of Wnt target genes. As is known, 

CSNK1A1 phosphorylates β-catenin, a central player in the Wnt pathway (X. Liu et al. 2020). 

Proteins partaking less in signaling processes when MGL was inhibited are indicated with blue 

color in the same figure. The two most prominent proteins here are glycogen synthase kinase-

3 alpha (GSK3A) and adenomatous polyposis coli protein 2 (APC). Both proteins regulate β-

catenin levels in the cytosol by playing a part in inducing β-catenin degradation. 

Figure 13: Several proteins annotated with the keyword “Wnt” were either more or less active in signaling 

when MGL was inhibited in H441 cells according to PHOTON scores. “Signaling scores” were calculated 

with 10,000 permutations in PHOTON within Perseus. The resulting network was loaded into Cytoscape, filtered 

for keyword “Wnt” and colored in accordance with the difference in mean “signaling score” between the group of 

JZL-treated cells (MGLi) and the control group (ctrl). Red indicates “signaling scores” higher in MGLi, blue 

indicates “signaling scores” higher in ctrl. 
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The same analysis in H358 revealed one protein with an obviously higher activity in signaling 

after MGL activity inhibition (red), namely casein kinase II subunit beta (CSNK2B/CK2β) 

(Figure 14). Like CK1α, CK2β also phosphorylates β-catenin and thus affects Wnt signaling, 

however through different interactions with the pathway. Some other proteins that were less 

active in signaling after JZL184 was administered (blue) include other casein kinases (CSNK1D 

and CSNK2A2), E3 ubiquitin-protein ligases (RNF138 and RNF146) and F-box/WD repeat-

containing proteins (FBXW4 and FBXW11) among others, that all directly or indirectly 

regulate Wnt signaling.  

Lastly, the kinase-substrate enrichment analysis tool, KSEA, was used to add another layer to 

the examination of the Phosphoproteomics data. With this, every known kinase was assigned a 

z-score, based on how many known (and predicted) substrates of the corresponding kinase were 

present in the experimental data. The R script written to access KSEA offline is presented in  

Supplemental Text 1. The higher the z-score, the more active a given kinase is in one 

experimental condition compared to a second condition. The kinase with the highest z-score – 

in both H358 and H441 – was cyclin-dependent kinase 2, CDK2 (Figure 15 and Figure 16, red 

bars indicate p-value < 0.05). This kinase is known for phosphorylating β-catenin further 

hinting to the Wnt pathway being affected by MGL activity. Aside from two other CDKs 

(CDK1 and CDK7) glycogen synthase kinase-3 beta (GSK3B) was among the highest z-scores 

Figure 14: Several proteins annotated with the keyword “Wnt” were either more or less active in signaling 

when MGL was inhibited in H358 cells according to PHOTON scores. “Signaling scores” were calculated 

with 10,000 permutations in PHOTON within Perseus. The resulting network was loaded into Cytoscape, filtered 

for keyword “Wnt” and colored in accordance with the difference in mean “signaling score” between the group of 

JZL184-treated cells (MGLi) and the control group (ctrl). Red indicates “signaling scores” higher in MGLi, blue 

indicates “signaling scores” higher in ctrl. 
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in H358 cells, however reaching no statistical significance. GSK3B is a paralogous protein to 

GSK3A, which was found in the PHOTON analysis to be less active upon MGL inhibition. 

While these results contradict each other, PHOTON signaling scores and KSEA z-scores are 

not directly comparable, with the former looking at the complete known interaction map of 

proteins based on the experimental results and the latter looking at the presence of peptides 

known or predicted to be kinase substrates. This little, yet complex discrepancy might be the 

reason for this seeming contradiction. Furthermore, KSEA found AKT1 to be more active when 

MGL was inhibited. The z-score for this kinase was not of statistical significance however, with 

a p-value of around 0.2. 

 

Figure 15: Few kinases were found to be more active in H441 cells upon MGL inhibition. Z-scores are 

calculated by KSEA based on the number of known and predicted substrates of each kinase found in the dataset 

and their fold change between the treatment and the control group. A cut-off of 5 substrates was set for kinases to 

be included in the bar blot. 
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Figure 16: Several kinases were found to be more active in H358 cells upon MGL inhibition. Z-scores are 

calculated by KSEA based on the number of known and predicted substrates of each kinase found in the dataset 

and their fold change between the treatment and the control group. A cut-off of 5 substrates was set for kinases to 

be included in the bar blot. Red bars indicate a p-value < 0.05.  
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Discussion 

 

The experiments performed in this Master thesis showed, that, in terms of abundance of 

lipolytic proteins on a protein level, in lipid droplet content and expression levels of some 

selected signaling kinases, there is a huge variability among cancer cell lines, even of the same 

tissue, e.g. lung. A high amount of lipid droplets would indicate a high number of LD-associated 

proteins, but also a low activity of lipases. A549 cells express more ATGL and MGL than the 

other cell lines in the panel tested and contain a medium LD volume. H1299 and H358 contain 

considerably more LDs than A549, exhibiting little to no expression of those lipases. Since 

H1299 and H358 are metastatic cell lines, this result could be indicative of a derailed lipid 

metabolism being helpful in establishing metastasis. Storage lipids could allow lung tumors to 

be independent of blood vessels regarding nutrients for energy production and thus enable 

detachment from the primary tumor and establishment of metastases. On the other hand, the 

cell line with the lowest storage lipid content measured, A427, was also the cell line with the 

lowest protein levels of ATGL and MGL alike. Since ATGL is the first enzyme in lipolysis 

(Zimmermann et al. 2004), initiating the breakdown of neutral lipids in lipid droplets, this 

suggests perhaps large differences in regulation of ATGL in lung cancer. E.g. CGI-58/ABHD5 

is known to activate ATGL, while G0S2 inhibits its function (Lass et al. 2006; Yang et al. 

2010). Expression of those two regulators of ATGL could also vary in the lung cancer cell line 

panel, which should be tested in future experiments.  

With cell lines other than A549 having quite low MGL protein levels – A427 and H1299 

expressing virtually no MGL – the role the enzyme plays in lung cancer is rather inconclusive. 

On the one hand, (Nomura et al. 2010) suggested that high MGL expression is linked to 

aggressive cancers in humans and that MGL inhibition would counteract this aggressiveness. 

Conversely, R. Liu et al. (2018) found a tumor suppressive characteristic of MGL in a mouse 

model, suggesting MGL to be critical in preventing tumor development. The results presented 

here are not conclusive as to whether MGL does influence lung cancer cell growth, may it be 

positively or negatively. They do suggest however that inhibition of MGL activity affects the 

growth of some –but not all – cell lines examined. H358 and H441 cells appeared to proliferate 

faster, as examined by MTT assay. This finding was further corroborated by continuous cell 

imaging over a prolonged period. Here, 7 spots within each well of a 12-well plate were used 

to calculate a mean per well. These results supported Liu et al.’s findings that MGL activity 

somewhat hinders cancer development. It furthermore prompted phosphoproteomic analyses of 

those two cell lines, to aim to unravel the mechanism behind this apparent growth advantage. 

Considering the recent increase in use of the MGL inhibitor JZL184 in both cancer (Yin et al. 

2020; Marino et al. 2020) and non-cancer (Rodrigues et al. 2020) related research, further 

observations of the effects of this inhibitor could prove useful in the future. 
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Immunoblotting could not reveal a link between MGL activity and signaling proteins’ activity. 

Neither did the LC-MS/MS experiment reveal major changes in oncogenic signaling pathways. 

Given that SRC is a tyrosine kinase and only serine and threonine phosphorylations were 

measured however, no argument can be made whether direct targets of SRC had an altered 

phosphorylation profile. Among the significantly more phosphorylated peptides in cells where 

MGL was inhibited was one belonging to CTNND1, a protein interfacing between Wnt 

signaling and cell-cell adhesions. Gene Ontology terms regarding Wnt signaling are also 

enriched in the MGL inhibited cells, for both H358 and H441. This was a first hint, that MGL 

activity somehow influences the Wnt pathway.  

The Wnt signaling pathways involvement in cancer has been extensively studied over the years. 

Wnt-1 was first described as an oncogene in a murine model as early as the early 1980s by 

Nusse and Varmus (1982). Since then, several components of the Wnt pathway have been 

implied to play a role in human tumors. The canonical Wnt pathway (β-catenin dependent) is 

activated by a Wnt protein binding a Frizzled receptor (along with an LRP co-receptor). This, 

on the one hand, leads to dissociation of E-cadherin from the LRP receptor and, on the other 

hand, results in phosphorylation of Dishevelled (Dvl). The dissociation of E-cadherin is a result 

of the activation of CK1ε (by dephosphorylation), which is associated with E-cadherin and  

δ-catenin and in turn phosphorylates E-cadherin, leading to its dissociation from LRP and 

CK1ε/δ-catenin. β-catenin is also associated with E-cadherin, dissociates from phosphorylated 

E-cadherin as well, however (Casagolda et al. 2010). Dvl is part of the so called “destruction 

complex” (alongside the proteins APC, Axin, GSK3B and CK1α), which is responsible for 

leading to proteasomal degradation of β-catenin. β-catenin is phosphorylated at Ser33, Ser37 

and Thr41 (and Ser45), with these phosphorylations promoting ubiquitination. Phosphorylation 

of Dvl destabilizes the “destruction complex”. Through both described mechanisms, β-catenin 

accumulates in the cytosol and ultimately translocates into the nucleus, where it – in tandem 

members of the TCF/LEF transcription factor family – promotes transcription of Wnt target 

genes (Duchartre, Kim, and Kahn 2016). A graphical summary of the canonical Wnt pathway 

and how the proteins discussed below affect it, is provided in Figure 17. Wnt target genes 

include, among others, MYC (He et al. 1998), Cyclin D (Shtutman et al. 1999) and PPAR-δ 

(He et al. 1999), showing the involvement of Wnt signaling in cell proliferation. 

The PHOTON software offered another layer of analysis to the experimental data. With it, every 

protein is assigned a “signaling score”, indicating a higher involvement in signaling 

mechanisms for positive scores or a lower involvement for negative scores, respectively. This 

score is calculated using the experimentally measured intensities for all phosphopeptides 

detected. A network of all known protein-protein interactions is then generated with these 

“signaling scores”. Filtering this global network for proteins that have been annotated with the 

keyword “Wnt” creates a subnetwork, that was the basis for further discussion. Among the 

proteins with the highest “signaling scores” were Casein kinase II subunit beta 
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(CSNK2B/CK2β) and Casein kinase I isoform alpha (CSNK1A1/CK1α). It has been found, that 

Wnt promotes a metastatic stem-cell like behavior in ovarian tumors. This WNT5A-induced 

effect was also demonstrated to be blocked upon pharmacological inhibition of casein kinase I 

(Kotrbová et al. 2020). CSNK1A1 is also known to phosphorylate β-catenin at Ser45 (X. Liu 

et al. 2020), one of the pivotal residues determining the degradation of β-catenin, thus 

negatively impacting Wnt signaling. Casein kinase II has been shown to also phosphorylate β-

catenin, although at Thr393, which stabilizes and aids in accumulation of β-catenin (Song et al. 

2003, 2). These findings somewhat contradict each other. They might however be just two sides 

of the same feedback coin: The increased stability of β-catenin and the following accumulation 

would lead to a stark increase in expression of Wnt target genes, especially in different stages 

of the cell cycle, as it has been shown that CDK2 can fine tune β-catenin by phosphorylating at 

Ser33, Ser37 and Thr41 (leading to degradation of β-catenin over the course of the cell cycle 

(Park et al. 2004). To counteract an unnecessary overexpression, a possible response of cells 

could be to in turn destabilize the co-transcription factor, that is necessary for the transcription 

in the first place. Zhang et al. (2020) also found, that CSNK2 overexpression decreases stability 

of Tcf7l1. Tcf7l1 is a co-transcription factor in Wnt signaling. Tcf7l1 alone represses 

transcription of Wnt target genes, while presence of β-catenin activates the transcription. The 

higher signaling activity of CSNK2B proposes the idea that in H358 Wnt signaling is 

suppressed when MGL activity is inhibited.  

To add to the hypothesis, that the Wnt pathway responds to inhibiting MGL activity, the kinase-

substrate enrichment analysis software (KSEA) showed that based on the phosphopeptides 

found within the samples measured, cyclin-dependent kinase 2 (CDK2) was significantly more 

active when MGL was inhibited in the cells. CDK2 has already been shown to phosphorylate 

β-catenin at Ser33, Ser37 and Thr41 (Park et al. 2004). These residues, when phosphorylated, 

mark β-catenin for degradation by the destruction complex. This indicates downregulation of 

the Wnt pathway in the measured samples, as they show a higher activity of CDK2 compared 

to the control cells. This idea is supported by the findings of Kawakami et al. (2017), who 

suggest that inhibition of CDK2 has antineoplastic effects in lung cancer. Aside from Wnt-

related activities, CDK2 acts to regulate transcription over the course of the cell cycle (Lim and 

Kaldis 2013). Figure 18 summarizes changes in protein activity within the Wnt pathway for 

both H358 and H441 cells in accordance to PHOTON and KSEA results based on measured 

phosphopeptide intensities.To conclude, our findings suggest that in certain lung cancer cell 

lines monoglycerol lipase seems to inhibit cell growth. This is supported by the increase in 

proliferation observed when activity of MGL was chemically inhibited. Further analysis 

pointed toward the Wnt pathway being influenced upon this inhibition of MGL. Our results 

suggest an inactivation of the Wnt pathway in H358 and H441 lung cancer cells. Future 

experiments should be targeted towards validation of Wnt deactivation by MGL inhibition, e.g. 

by qPCR of known Wnt target genes.  Such an inactivation in A549 cells was shown to decrease 

growth, contrary to what we observed (Wang et al. 2020). On the other hand, overexpression 
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of miR-27a-3p in Triple-Negative Breast Cancer cells promoted growth via inactivation of Wnt 

by targeting GSK3B (Wu et al. 2020). These findings do not allow to draw a conclusion that 

explains the role of Wnt in lung cancer in general. They could, however, relate to the fact, that 

both H358 and H441 cells carry a mutation in the KRAS protein, a part of the Ras/MAPK 

pathway (Mitsudomi et al. 1992). This underlines the importance of understanding the entire 

genetic landscape of any single cancer if one hopes to understand what makes or breaks the 

respective cancer and to find a therapeutic measure against it.  

  

Figure 17: Graphical summary of how different proteins act within the Wnt pathway. When the Wnt pathway 

is inactive (right), E-cadherin is associated with the LRP receptor and δ-catenin and CK1ε are bound to E-cadherin. 

Furthermore, β-catenin is phosphorylated at specific residues by the “destruction complex”, leading to 

ubiquitination and ultimately to degradation. Upon activation (left) of the pathway by binding of a Wnt protein to 

LRP and Frizzled, E-cadherin is phosphorylated and dissociates from LRP. CK1ε is activated by phosphorylation 

and dissociated together with δ-catenin from E-cadherin. Also, the Dishevelled protein destabilizes the 

“destruction complex”. These events result in accumulation of β-catenin in the cytosol which then translocates 

into the nucleus, acting as a co-transcription factor in expression of Wnt target genes. 
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Figure 18: Changes in Wnt signaling pathway observed through changes in phosphoproteome of lung 

cancer cells. PHOTON and KSEA tools revealed changes (denoted by arrows) in activity of several proteins acting 

in the Wnt pathway in H358 (A) and H441 (B) cells.  
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Supplemental Material 

Supplemental Table 1: Enriched pathways and GO terms upon inhibition of MGL in H358. Enrichment of 

KEGG, Reactome and GO terms from top cluster of Figure 11 based on the total dataset. Enrichment performed 

in Perseus. 

Enriched Term  Enrichment factor P value Benj. Hoch. FDR 

KEGG    

ko04520: Adherens 
junction 13.043 2.83E-22 8.98E-20 

ko04670: Leukocyte 
transendothelial 
migration 

10.826 2.62E-12 4.17E-10 

Reactome    

REACT_19195: 
Adherens junctions 
interactions 

12.32 2.84E-13 3.43E-10 

REACT_263991: 
VEGFR2 mediated 
vascular permeability 

11.525 9.08E-13 5.48E-10 

GO    

negative regulation of 
Wnt receptor signaling 
pathway 

15.534 3.64E-15 1.65E-11 

negative regulation of 
canonical Wnt receptor 
signaling pathway 

15.534 3.64E-15 1.65E-11 

regulation of canonical 
Wnt receptor signaling 
pathway 

13.741 3.90E-14 1.18E-10 

Wnt receptor signaling 
pathway 

9.8598 5.65E-14 1.28E-10 

regulation of Wnt 
receptor signaling 
pathway 

13.232 7.84E-14 1.42E-10 

adherens junction 
organization 

9.9242 1.10E-11 1.66E-08 

vascular endothelial 
growth factor receptor 
signaling pathway 

9.4019 2.62E-11 2.97E-08 

cellular response to 
vascular endothelial 
growth factor stimulus 

9.4019 2.62E-11 2.97E-08 

neuron migration 17.667 8.47E-11 6.97E-08 

cellular response to 
growth factor stimulus 

6.6743 7.87E-11 6.97E-08 

response to growth 
factor stimulus 

6.2874 2.21E-10 1.67E-07 

brain development 8.1198 2.55E-10 1.78E-07 
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Supplemental Table 2: Enriched pathways and GO terms upon inhibition of MGL activity in H441. 

Enrichment of KEGG, Reactome and GO terms from top cluster of Figure 12 based on the total dataset. 

Enrichment performed in Perseus. 

 

Enriched Term Enrichment factor P value Benj. Hoch. FDR 

KEGG    

ko04520: Adherens 
junction 8 1,22E-06 0,00030543 

ko04670: Leukocyte 
transendothelial 
migration 

8,4 2,42E-05 0,0030223 

Reactome    

REACT_263991: 
VEGFR2 mediated 
vascular permeability 

11,455 2,61E-06 0,0010735 

REACT_19195: 
Adherens junctions 
interactions 

11,455 2,61E-06 0,0010735 

GO    

vascular endothelial 
growth factor receptor 
signaling pathway 

12 2.32E-08 7.96E-05 

cellular response to 
vascular endothelial 
growth factor stimulus 

12 2.32E-08 7.96E-05 

negative regulation of 
Wnt receptor signaling 
pathway 

14 5.14E-07 0.00088076 

negative regulation of 
canonical Wnt receptor 
signaling pathway 

14 5.14E-07 0.00088076 

regulation of canonical 
Wnt receptor signaling 
pathway 

11.455 2.61E-06 0.001629 

adherens junction 
organization 

10.5 5.02E-06 0.0022972 

cellular response to 
growth factor stimulus 

6.4615 7.82E-06 0.0033508 

regulation of Wnt 
receptor signaling 
pathway 

9.6923 8.97E-06 0.0036194 

response to growth 
factor stimulus 

6 1.44E-05 0.0048101 

anatomical structure 
development 

3.1744 3.17E-05 0.0098891 

Wnt receptor signaling 
pathway 

7.875 3.72E-05 0.01063 

brain development 7.875 3.72E-05 0.01063 

organ development 4.3953 5.76E-05 0.015816 
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Supplemental Text 1: Code to run KSEA within R. 

 

#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@ 

# Script for KSEA app from Perseus .txt file 

#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@ 

 

### set working directory to KSEA_output folder on proteomics drive 

### move the files IMMEDIATELLY AFTER!!! Further runs will overwrite the old files otherwise! 

 

getwd() 

setwd("R:/KSEA_output") 

getwd() 

 

### load the tcltk and KSEA package 

 

library(tcltk) 

library(KSEAapp) 

 

### load "KSData" as a dataset for the calculations 

 

load("C:/Program Files/R/R-3.5.1/library/KSEAapp/data/KSData.RData") 

 

### choose .txt file exported form Perseus 

 

#raw_data <- read.delim(file.choose()) 

raw_data <- read.delim(tk_choose.files(caption = "Select File")) 

 

### remove headers from .txt file 

 

raw_data_formated <- raw_data[-c(1),] 

 

### extract and format required colums 

 

subset_wo_p_FC <- subset(raw_data_formated, select = 

c("Protein","Gene.names","Sequence.window","Amino.acid","Position")) 

subset_wo_p_FC$Residue.Both <- paste(subset_wo_p_FC$Amino.acid,subset_wo_p_FC$Position) 

subset_wo_p_FC$Residue.Both <- gsub('\\s+','', subset_wo_p_FC$Residue.Both) 

subset_wo_p_FC <- subset(subset_wo_p_FC, select = -c(Amino.acid,Position)) 

subsetting <- function(dt) { 

  subset(raw_data_formated, select = grep("Student.s.T.test.p.value|_x.y_", names(raw_data_formated))) 

} 

subset_p_FC <- subsetting(raw_data_formated) 

total_subset <- do.call (cbind, list(subset_wo_p_FC,subset_p_FC)) 

 

names(total_subset)[2] <- "Gene" 

names(total_subset)[3] <- "Peptide" 

names(total_subset)[5] <- "p" 

names(total_subset)[6] <- "FC" 

 

### OPTIONAL: use to replace "NaN" or blank cells with "NULL" if any cells have missing values 

 

# total_subset[total_subset==""] <- NULL 

# total_subset[total_subset=="NaN"] <- NULL 

 

### run KSEA 

 

### here, settings can be changed 

 

### NetworKIN: TRUE or FALSE, TRUE includes NetworKIN predictions in calculation 

### NetworKIN.cutoff: minimum NetworKIN score, min. 1 (only necessary if NetworKIN = TRUE) 

### m.cutoff: minimum # of substrates of a kinase to be in dataset to include kinase in bar plot, min. 0 

### p.cutoff: p-value cutoff for significance in bar plot, between 0 and 1 

 

KSEAapp::KSEA.Complete(KSData, total_subset, NetworKIN = TRUE,  

                       NetworKIN.cutoff = 5, m.cutoff = 5, p.cutoff = 0.05) 
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